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CHAPTER 5

Linear and Quadratic Fusion of

Images

This chapter considers the linear and quadratic fusion of a set of n-dimensional images.

We aim to produce a single image that amplifies the signal and minimizes the noise.

As a starting point, we consider wavelet subimages of a single image. We use three

wavelets, the Mexican Hat Wavelet Family (MHWF) and the undecimated multiscale

method to obtain 3N subimages. As an application we consider the detection of galax-

ies in Cosmic Microwave Background radiation maps. We use linear and quadratic

fusion to produce a combined image for the detection. Moreover, we test these ideas

for the simple case of point sources embedded in white noise and for the case of realistic

simulations of microwave images for the 44 GHz channel of ESA’s Planck satellite. In

the last case, using quadratic fusion and allowing ' 1%(5%) of false alarms we detect

26%(23%) more sources than using linear fusion at the 5σ(4σ) level, see López-Caniego

et al. [89].

5.1 Introduction

One of the main challenges in the analysis of n-dimensional images is to overcome the

problem of separating a localized signal from a background. In some cases the signal

can be modeled by a set of sources with spherical symmetry that are diluted in the back-

ground. An interesting case corresponds to sources whose profile can be approximately

described by a Gaussian function. An example is given in astrophysics/cosmology

by a point source observed with an antenna with a Gaussian response. For exam-
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CHAPTER 5: LINEAR AND QUADRATIC FUSION OF IMAGES

ple, in microwave Astronomy the sky is filled with radiation coming from the Cosmic

Microwave Background (CMB), that is a remnant of the Big Bang which carries very

valuable information about the primitive conditions of the Universe, plus diffuse emis-

sions due to the Galaxy (Galactic dust, synchrotron and bremsstrahlung emission) and

emission due to clusters of galaxies. Embedded in this background it is possible to

observe galaxies, that due to the low angular resolution of microwave experiments

appear as “points” convolved with the (approximately Gaussian) response of the de-

tectors. Therefore they are usually referred to as point sources (PS) in the astrophysicists’

jargon.

Fusion or combination of images (Maitre et al. [95], Wang et al. [150] can help to en-

hance the signal (in our case, the point sources in CMB maps) with respect to a noisy

background. Let us consider different images and/or images at different frequencies

corresponding to the same object. A relevant problem is how to fuse these images in

order to get the best single image to be analysed. There are different ways to combine

the images: pixel level (Blum [13]), block level (Li et al. [92]) and image decomposi-

tion (Bijaoui et al. [12], Piella [112]). Another aspect is related to the rule assumed to

combine these data: linear, non-linear (Schrater [126]).

Another interesting case is the fusion of subimages obtained from a single image. Let

us imagine we decompose an image into different subimages (e.g. using wavelet anal-

ysis). The question is how to combine such subimages in order to optimize the sepa-

ration of the sources. This case has not been considered in the literature as far as we

know. We would like to remark that the fusion of images or subimages regarding fea-

ture detection is the first step to generate the best image to be analysed. Afterwards,

one needs to apply a detector to mark out the features. In astrophysics/cosmology it is

standard to consider thresholding above the 5σ level, where σ is the dispersion of the

image, as a simple linear detector.

After the introduction of the framework for quadratic fusion of images, we apply it to

the fusion of subimages obtained applying the Mexican Hat Wavelet Family (MHWF)

with the undecimated multiscale technique. This family has been recently introduced

(González-Nuevo et al. [51]). We test the method with two types of images: (i) distribu-

tion of sources on a white noise background and (ii) distribution of sources on a color

noise background typical of a microwave observation of the sky.

The overview of this work is as follows: in section 5.2 we describe the method for

combining a set of n-dimensional images using a linear and a quadratic approach. In

section 5.3 we present a scheme to produce the subimages needed for the fusion, the

MHWF and the undecimated multiscale method. For comparison, we review a com-
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CHAPTER 5: LINEAR AND QUADRATIC FUSION OF IMAGES

mon approach in Astronomy that is to use the Mexican hat wavelet to filter out the

background in order to enhance the point sources. In section 5.4 we apply these tech-

niques to the interesting case of detecting point sources embedded in white noise and

for the more realistic case of color noise (CMB maps). Finally, in section 5.5 we sum-

marise our results.

5.2 Linear and quadratic fusion

Let di(~x) be N images in n-dimensional space (i = 1, . . . , N, ~x ∈ <n). Consider that

these images are the superposition of a signal s i(~x) and noise ni(~x). We will assume that

the signal is a set of point sources characterised by their amplitude A and profile τ i(~x −
~xa), where ~xa is the position of the source and the sources have a small contribution to

the total power of the image. The background n i(~x) is modeled by random fields with

the following properties at any point ~x

〈ni〉 = 0, 〈ninj〉 = Cij = Cji, (5.2.1)

〈ninjnk〉 = 0,

〈ninjnknl〉 = CijCkl + CikCjl + CilCjk, (5.2.2)

where 〈〉 means mean value either on the image or in the sense of realizations of the

field. Note that if the backgrounds of the images are Gaussian, then condition (5.2.2)

is satisfied. Let us focus on a concrete compact source at the origin (~xa = ~0) being

represented by

si(~x) = Aτi(~x), τi ≡ τi(~0), (5.2.3)

where A is the amplitude and τ the profile.

5.2.1 Linear Fusion

In this case we only need to assume the condition (5.2.1) given above that involves

mean value and the correlation between the images at the same point for the noise. We

define the linear fusion dL of the N images as the linear superposition

dL(~x) = ∑
i

aidi(~x), (5.2.4)

where ai are constants.

Now, we are going to express the conditions to obtain a combination such that
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a) 〈dL(~0)〉 = A, i. e. dL(~0) is an unbiased estimator of the amplitude of the source,

b) The variance of dL has a minimum, i. e. it is an efficient estimator.

With these conditions the problem is reduced to the minimization of σ2
L with respect to

ai, subject to a constraint (aiτ
i = 1). Therefore, we get the best signal to noise ratio of

the sources that is attainable with a linear combination of the images. The a i that satisfy

these conditions are given in matrix form by

a = λC−1τ, λ ≡ 1
τtC−1τ

, (5.2.5)

where we have introduced the column vectors a ≡ (a i) and τ ≡ (τi) (τt is the transpose

matrix) and the symmetric matrix C ≡ (Cij), C = Ct. Taking into account the equation

(5.2.4), the fusion field dL can be written in a matrix form as

dL = atd, a ≡ C−1τ

τtC−1τ
, (5.2.6)

and the normalised amplitude at the source position is

νL ≡ 〈dL〉
σL

= AT1/2, T ≡ τtC−1τ. (5.2.7)

νL (or equivalently, the variance) will be considered as the performance measure when

comparing different fission schemes. Notice that we are not considering an MMSE

estimation because we are trying to detect point sources without any prior knowledge

of their position and amplitude.

5.2.2 Quadratic Fusion

In this case we need to assume the conditions given by equations (5.2.1) and (5.2.2) that

involve mean value and the correlations, up to 4th-order, between the images at the

same point for the noise. We define the quadratic fusion dQ of the N images as the linear

plus quadratic superposition

dQ(~x) = ∑
i

aidi(~x) + ∑
i,j

bijdi(~x)dj(~x), (5.2.8)

where ai , bij are constants. The conditions to obtain a combination that optimizes the

detection of the source in an analogous way as in the case of linear fusion are

a) 〈dQ(~0)〉 = αA + βA2, i. e. dQ(~0) is a quadratic estimator of the amplitude of the

source (α and β are two free parameters),

b) The variance of dQ has a minimum, i. e. it is an efficient estimator.
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Therefore, the problem is reduced to the parameter minimization (with respect to a i

and bij) of σ2
Q with two constraints (aiτ

i = α and bijτ
iτ j = ε). The result is given in

matrix form

a = λC−1τ, λ ≡ α

τtC−1τ
, b = µC−1ΣC−1,

Σ ≡ ττt, µ ≡ β

(τtC−1τ)2 , (5.2.9)

where we have introduced the column vectors a ≡ (a i) and τ ≡ (τi) and the symmetric

matrices C ≡ (Cij), C = Ct, b ≡ (bij), b = bt. Taking into account the equation (5.2.8),

the fusion field dQ can be written in a matrix form as

dQ = atd + dtbd = αptd + β(ptd)2, p ≡ C−1τ

τtC−1τ
, (5.2.10)

that is, necessarily the quadratic term must be proportional to the square of the lin-

ear one. Notice that the non-appearance of the cross quadratic terms is due to the

assumption given by equation (5.2.2). Thus, the quadratic fusion is easy to implement

by performing the linear combination dL and adding a term that is proportional to the

square of dL, dQ = dL + εd2
L (we can always take α = 1 if the linear term is present).

The normalised amplitude at the source position is

νQ ≡ 〈dQ〉
σQ

= AT1/2 1 + εA2

(1 + 2ε2T−1)1/2 ,

ε ≡ β

α
, T ≡ τtC−1τ. (5.2.11)

νQ will be considered as the performance measure when comparing different fusion

schemes. It is interesting to define the gains with respect to the linear fusion

νQ

νL
=

1 + νLx

(1 + 2x2)1/2 , x ≡ εT−1/2. (5.2.12)

For the case of a “pure” quadratic fusion with α ≡ 0, that is, a fusion without linear

terms, we have
νQ(α=0)

νL
= 2−1/2νL. (5.2.13)

Taking into account the last equations, one clearly obtains that a quadratic fusion is better

than the linear one if νL > 21/2. The maximum value of the gain is obtained for

εmax = T1/2 νL

2
,
(

νQ

νL

)

max
=

(

1 +
ν2

L
2

)1/2

. (5.2.14)

It is clear that for νL � 1 the previous equation leads to (νQ/νL)max ' 2−1/2νL which is

given by the “pure” quadratic term.
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5.3 The Mexican Hat Wavelet Family

When we apply wavelets in <n, we are decomposing a function on a basis that in-

corporates the local and scaling behaviour of the function. Therefore, the continuous

transform involves translations and dilations

Ψ(~x;~b, R) ≡ 1
Rn ψ

(

|~x −~b|
R

)

, (5.3.1)

where Ψ is the mother wavelet, R is the dilation scale and~b is the translation. Then, the

wavelet coefficient is defined as

w(~b, R) =
∫

d~x f (~x)Ψ(~x;~b, R), (5.3.2)

w(~b, R) =
∫

d~q e−i~q~b f (~q)ψ(qR), q ≡ |~q|, (5.3.3)

in real and Fourier space, respectively.

We are interested in the problem of point source detection in the context of astronom-

ical images. These objects appear as points in the sky at microwave frequencies, al-

though in the images they are convolved with the beam of the instrument used for

the observation. This beam can be approximated by a Gaussian and therefore we will

concentrate on Gaussian profiles for our sources. We are going to introduce a new

family of wavelets that can be derived from the Gaussian function using an undeci-

mated multiscale method (González-Nuevo et al. [51]) and compare its performance

with the Mexican hat wavelet (MHW) that has been recently used as a filter to detect

point sources (e.g. Cayón et al. [19], Vielva et al. [144]).

5.3.1 The MHW as a filter

The MHW is defined to be proportional to the Laplacian of the Gaussian function, in

two dimensions

ψMH(x) =
1

2π
(2 − x2)e−

1
2 x2

, x ≡ |~x|, (5.3.4)

ψMH(q) =
q2

2
e−

1
2 q2

, (5.3.5)

in real and Fourier space, respectively. Taking into account equation (5.3.3) and the

Gaussian profile of the source in Fourier space τ(q) = γ2 exp(−(qγ)2/2), the expres-

sion of the wavelet coefficient for a Gaussian source filtered with the MHW at the scale

Rn is
w
T0

=
y2

(1 + y2)2 , y ≡ Rn

γ
, (5.3.6)

where T0 is the amplitude of the source and γ is the beam width (i.e. the width of the

profile).
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5.3.2 The MHWF and the undecimated multiscale method

We can generalize the MHW on the plane and obtain three isotropic filters for which

the distance is the natural scale variable to be dilated at any point (González-Nuevo

et al. [51]). The first two filters, ψvh and ψd, are given by the first and second order

Laplacian of the Gaussian filter. The first one is the usual MHW and the second one is

referred to as “diagonal Mexican hat wavelet” (DMHW). The third one, ψc, is called the

“complementary Mexican hat wavelet” (CMHW) and is such that we have a perfect recon-

struction of any function in <2 at any scale. Furthermore, we use the Gaussian filter as

scaling function at any scale. This way we introduce a non-orthogonal, overcomplete

basis. These functions are given in polar coordinates (x, θ) for any fixed and arbitrary

point on <2 by

ϕ(x) =
1

2π
e−

x2
2 ,

ψvh(x) =
1

2π

(

1 − x2

2

)

e−
x2
2 ,

ψd(x) =
1

2π

(

1 − x2 +
x4

8

)

e−
x2
2 ,

ψc(x) = δ(~x) − 1
2π

(

3 − 3x2

2
+

x4

8

)

e−
x2
2 , (5.3.7)

where δ(~x) is the 2D Dirac distribution. Their Fourier transforms are

ϕ(q) = e−
q2
2 ,

ψvh(q) =
q2

2
e−

q2
2 ,

ψd(q) =
q4

8
e−

q2
2 ,

ψc(q) = 1 −
(

1 +
q2

2
+

q4

8

)

e−
q2
2 , (5.3.8)

and these functions have the following behaviour when q → 0

ϕ(q) → 1, Ψvh(q) → q2, Ψd(q) → q4, Ψc(q) → q6. (5.3.9)

We remark that the CMHW allows one to have perfect reconstruction, and is defined as

the Dirac delta minus the other three functions (Gaussian + MHW + DMHW). We also

notice that the convolution of the image with Ψvh and Ψd are equivalent to study the

2nd and 4th-order invariant differences of the image filtered with a Gaussian, assuming

the appropriate boundary conditions.

The undecimated multiscale method (González-Nuevo et al. [51]) is a pyramidal method

that allows one to decompose any image f (~q) at any scale (multiscale analysis), using
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the analysing wavelets ψvh, ψd and ψc. In particular, for a pixelized image with pixel

size lp, we filter the image at this scale R1 = lp and the image is decomposed, in Fourier

space, as follows

f (~q) = wvh(R1) + wd(R1) + wc(R1) + ws(R1),

wvh(R1) = ψvh(qR1) f (~q), wd(R1) = ψd(qR1) f (~q),

wc(R1) = ψc(qR1) f (~q), ws(R1) = ϕ(qR1) f (~q), (5.3.10)

where ws(R1) is the approximation image. Then we apply the wavelet family at the

scale R2 = 2lp to the approximation image ws(R1), and continue the scheme until the

scale Rn. Therefore, the image f (~q) can be analysed and decomposed in different scales

nlp

f (~q) = ∑
i
[wvh(Ri) + wd(Ri) + wc(Ri)] + ws(Rn) (5.3.11)

The undecimated method has two very interesting characteristics: i) it is a multiscale

approach that allows to study different resolution levels of the image, ii) the family of

wavelets is isotropic.

5.4 Detection of point sources

The aim of this work is to improve the detection of point sources. In figure 5.1 we

show a schematic representation of the procedure that we follow. We make two sets

of simulations. In the first case, we simulate point sources convolved with a Gaussian

beam to which we add white noise. In the case of Planck simulations, we simulate CMB

and Galactic foregrounds plus point sources, we convolve the image with a Gaussian

beam to model the response of the instrument (FWHM=24 arcmin) and then add white

noise. Then we decompose the image into subimages, using three wavelets at different

scales. Following the quadratic fusion technique proposed in section 5.2, we combine

them and apply a simple detection criterion. The images are 118 × 118 pixels in size

(6 arcmin per pixel) and the CPU time needed to generate and completely study every

realization is of the order of one minute in a P4 computer.

5.4.1 White Noise

We have simulated 1000 realizations of the background noise with a flat power spec-

trum and added a Poisson distribution of point sources following González-Nuevo et

al. [50], Toffolatti et al. [141]. This model is in good agreement with the most recent ob-

servations at these frequencies. The sources are randomly distributed in the image with
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POINT
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INPUT

IMAGE
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Wvh

Wd
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Detections
Number of

THRESHOLD DETECTOR

Figure 5.1 Schematic representation of the followed process. First, generate the input

image with a background noise plus a signal (point sources). Second, decomposition

into 12 subimages with the three wavelets Ψvh, Ψd and Ψc at six different scales R.

Third, combination of these subimages and simple threshold detector application.
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amplitudes following approximately a power-law distribution (dN/dA ∝ A−2.7, A ≥
100mJy) and the average < S/N >≈ 4.9. Then we have decomposed every one of

these images into 12 subimages by means of the MHWF and the undecimated multi-

scale method. We have used the three wavelets from the MHWF for 4 different scales

R = {1, 2, 3, 4} in pixel units. We choose these scales because are the ones closer to the

one associated to the FWHM of the sources (Rs ' 2 in pixel units). Considering the

linear and quadratic fusion techniques we combine the 12 subimages into one with mini-

mum variance. In particular, we consider the linearly fusioned image as well as several

cases for the quadratic fusion for different values of ε. We apply a simple thresholding

detector to the original image, that is, we count objects that are above a certain thresh-

old, e.g. 5 times the dispersion of the image (5σ thresholding). This is the standard

approach in astronomical data analysis. Then, we average together the number of de-

tected objects for the 1000 simulated fields. We know the distribution of sources that

we have added to every noise realization and compare the list of detected candidates

with the list of actual sources. This allows us to give the exact number of detections or

false alarms (spurious detections) above 5σ, if any. Furthermore we can calculate the

average gain with respect to the original image for all the detected sources.

The results for these simulations are shown in Table 5.1, where Ndet denotes the av-

erage number of real detections and N f the average number of false alarms (or spu-

rious detections). We compare the linear case with three quadratic cases with ε =

(5000, 8000, 25000). For comparison purposes we have included in the previous ta-

ble the number of real and false alarms obtained filtering the input image with the

well known standard Mexican hat wavelet at the optimal scale (MHWopt, Vielva et al.

[144]). The MHWopt is the standard Mexican hat wavelet with a scale parameter Ropt

such that the signal to noise of the source with respect to the filtered background is

maximum. For the case we are considering Ropt = 2.9 in pixel units.

For the linear case, we find that the average number of real detections Ndet is 5.48, the

average number of false alarms N f is 0.003 and the ratio between them is r = 0.05%. If

we compare this case with the MHWopt, with Ndet = 4.19 (and r ' 0), the improvement

is ' 23%. Regarding the quadratic fusion, we have exhaustively explored the parameter

ε in the range 0 − 25000. In the different tables, we give the results only for a few

illustrative values of ε in order to compare -with similar ratios- with the linear and the

MHWopt.

We perform a similar analysis comparing the MHWopt and the quadratic case, with

r ' 0.05% and r = 0, respectively. The average number of detections are 4.19 (for the

MHWopt) and 5.60 (for ε = 8000), which implies a 25% improvement. We remark that
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5σ Real MHW Linear Quadratic

ε - - 0 5000 8000 25000

Ndet 4.100 4.190 5.480 5.540 5.600 5.670

N f 0.007 0 0.003 0.003 0.003 0.009

r(%) 0.17 0 0.05 0.05 0.05 0.15

< G > 1.0 1.6 2.0 4.3 4.6 5.1

Table 5.1 5σ detections for white noise + PS. Ndet denotes the average number of real

detections, N f the average number of false alarms, r ≡ 100× N f /(Ndet + N f ). 〈G〉 ≡ ν
νor

is the average gain of the detected sources with respect to the original image

4σ Real MHW Linear Quadratic

ε - - 0 2000 5000 8000

Ndet 6.550 5.650 7.705 7.540 7.480 7.470

N f 0.024 0 0.006 0.010 0.014 0.020

r(%) 0.36 0 0.08 0.13 0.2 0.3

< G > 1.0 1.6 2.0 5.0 5.8 6.3

Table 5.2 4σ detections for white noise + PS

.
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the average detections obtained directly on the real image are Ndet = 4.10. Therefore,

for the quadratic method with ε = 8000 the improvement in the number of detections

is of the order of 26%. Regarding the gain going from real to wavelet space at the 5σ

level, we find that for the case of the MHWopt, the average gain is ' 1.6 as compared

with ' 2 for the linear case, whereas the quadratic fusion gives a gain ' 4.3 (ε = 5000)

and the same r as in the linear case.

We repeat the analysis detecting objects above 4σ. The results are shown in table 5.4.1.

For ε = 2000, Ndet is 7.54, as compared with 5.67 obtained with ε = 25000 in the 5σ, in

both cases the ratio r ' 0.1. Finally, the gain at the quadratic level is higher than 5 at the

4σ level for the considered cases.

5.4.2 The 44 GHz Planck Channel

In this case, the images we generate present a much more complicated structure as com-

pared with the white noise case. On top of the image with the point sources, we add

four diffuse components. The first one is the so-called Cosmic Microwave Background

radiation. The other three components are the main Galactic foregrounds. They include

the thermal emission due to dust grains in the Galactic plane, synchrotron emission

by relativistic electrons moving along the Galactic magnetic field and bremsstrahlung

emission due to free electrons. In addition, we add instrumental noise according to

Planck specifications. In this case, the average < S/N >≈ 2.3.

We do a similar analysis as in the previous subsection. We use the MHWF and the

undecimated multiscale method to decompose the initial image into 12 subimages. We

apply then the linear and quadratic fusion techniques to combine the subimages and use

the output for detection. For comparison purposes we filter the input image with the

Mexican hat wavelet at the optimal scale (Ropt = 1.2 in pixel units) as well and apply a

detector on it. The detector is the usual 5σ or 4σ threshold.

In table 5.3 we show the average number of real detections and false alarms when

detecting directly at the 5σ threshold both on the real image and on the linear and

quadratic combination. Again we have explored different values of ε and show the

most interesting ones, ε = 2000, 5000 and 8000. We also include the results obtained

with the MHWopt. In table 5.4 we show the average number of real detections and

false alarms when detecting directly at the 4σ threshold and for the cases ε = 1000,

5000 and 7000.

First, we remark that the average number of detected sources above 5σ in the original

image is ' 1, as compared with 4 obtained in the white noise case. This shows the
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5σ Real MHW Linear Quadratic

ε - - 0 2000 5000 8000

Ndet 0.970 3.070 3.490 3.890 4.380 4.740

N f 0.001 0.001 0.002 0.004 0.008 0.035

r(%) 0.10 0.03 0.05 0.1 0.2 0.7

< G > 1.0 2.2 2.3 4.7 6.1 7.1

Table 5.3 5σ detections for white noise + PS + CMB + foregrounds.

5σ Real MHW Linear Quadratic

ε - - 0 1000 5000 7000

Ndet 1.560 4.540 5.150 5.430 6.330 6.710

N f 0.037 0.015 0.014 0.036 0.200 0.340

r(%) 2.31 0.32 0.27 0.65 3.0 4.8

< G > 1.0 2.1 2.3 6.0 8.9 11.1

Table 5.4 4σ detections for white noise + PS + CMB + foregrounds.

importance of using filters to enhance the signal and reduce the noise, and for this

particular case, to remove the diffuse components efficiently. Comparing the linear

case with the MHWopt, the average number of detections are 3.49 for the first and 3.07

for the latter (improvement of ' 12%). In both cases the ratio r ' 0.05%.

If we compare the average detections for the MHWopt with the quadratic case with

ε = 8000, we see that the detections are 3.07 and 4.74, respectively, allowing a ratio

r < 1%. This is an improvement of the order of 35% in the number of detections.

Regarding the gain going from real to wavelet space, we remark that at the 5σ level: in

the MHWopt case, the average gain is ' 2.2 as compared with ' 2.3 for the linear case,

whereas the quadratic fusion gives a gain ' 4.7 (ε = 2000).

In the 4σ case, the average number of detections for the quadratic case with ε = 1000

is 5.43, compared with the 5σ case, where we had 4.74 detections (for ε = 8000) and

similar ratio. Finally, the gain at the quadratic level is higher than 6 for all the considered

values of ε at the 4σ level.
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5.5 Conclusions

In this chapter we have presented a new method that combines images that contain

localized sources in such a way that the output image has minimum variance and the

image fusion gives at the position of the source an unbiased estimator of the amplitude.

We studied the linear and quadratic fusion approach. We have tested these ideas in the

context of compact source detection in astronomical data. To do this, we have done one

thousand simulations for each of the two cases we want to consider. First, white noise

plus point sources, and second, color noise plus point sources for the 44 GHz Planck

satellite channel specifications. In both cases we have compared the average number

of real detections and false alarms for the linear and quadratic case with those obtained

with the Mexican hat wavelet at the optimal scale, the best studied tool in CMB science

to detect point sources.

For the white noise case and 5σ threshold, if we compare the linear and MHWopt case

on the one hand, we find that the improvement is of the order of 23%. On the other

hand, if we compare the quadratic fusion and the MHWopt, the improvement is ' 25%.

When we consider the case of realistic simulations for the 44 GHz Planck channel at

5σ, comparing the MHWopt with the linear fusion, the improvement of the latter is of

the order of 12%. Furthermore, we find that using the quadratic fusion we detect ' 35%

more real sources than with the MHWopt (with r < 1%). Moreover, if we compare the

quadratic fusion method with the results obtained when no filtering is done, we detect

around four times more objects for the same ratio r.

We remark that the parameter ε that appears in the quadratic fusion can be easily ob-

tained. The implementation of the method is very straightforward and the CPU nec-

essary to test the method is very small, of the order of seconds for a 118x118 image.

In future works we plan to test these techniques with other backgrounds as the ones

found for higher frequency channels in the Planck satellite.
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