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Abstract

Vehicular Ad-Hoc NETworks (VANETs) are an emerging technology

which aims to improve road safety by preventing and reducing traffic

accidents. While VANETs offer a great variety of promising appli-

cations, such as, safety-related and infotainment applications, they

remain a number of security and privacy related research challenges

that must be addressed.

A common approach to security issues widely adopted in VANETs,

is the use of Public Key Infrastructures (PKI) and digital certificates

in order to enable authentication, authorization and confidentiality.

These approaches usually rely on a large set of regional Certification

Authorities (CAs). Despite the advantages of PKI-based approaches,

there are two main problems that arise, i) the secure interoperabil-

ity among the different and usually unknown- issuing CAs, and ii)

the sole use of PKI in a VANET environment cannot prevent privacy

related attacks, such as, linking a vehicle with an identifier, track-

ing vehicles “big brother scenario” and user profiling. Additionally,

since vehicles in VANETs will be able to store great amounts of in-

formation including private information, unauthorized access to such

information should be carefully considered.

This thesis addresses authentication and interoperability issues in ve-

hicular communications, considering an inter-regional scenario where

mutual authentication between nodes is needed. To provide inter-

operability between vehicles and services among different domains,

an Inter-domain Authentication System (AS) is proposed. The AS

supplies vehicles with a trusted set of authentication credentials by

implementing a near real-time certificate status service. The proposed



AS also implements a mechanism to quantitatively evaluate the trust

level of a CA, in order to decide on-the-fly if an interoperability rela-

tionship can be created.

This research work also contributes with a Privacy Enhancing Model

(PEM) to deal with important privacy issues in VANETs. The PEM

consists of two PKI-based privacy protocols: i) the Attribute-Based

Privacy (ABP) protocol, and ii) the Anonymous Information Re-

trieval (AIR) protocol. The ABP introduces Attribute-Based Cre-

dentials (ABC) to provide conditional anonymity and minimal infor-

mation disclosure, which overcome with the privacy issues related to

linkability (linking a vehicle with an identifier) and vehicle tracking

(big brother scenario). The AIR protocol addresses user profiling

when querying Service Providers (SPs), by relying in a user collabo-

ration privacy protocol based on query forgery and permutation; and

assuming that neither participant nodes nor SPs could be completely

trusted.

Finally, the Trust Validation Model (TVM) is proposed. The TVM

supports decision making by evaluating entities trust based on context

information, in order to provide i)access control to driver and vehicle’s

private information, and ii) public information trust validation.
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Chapter 1

Introduction

Vehicular Ad-hoc NETworks (VANETs) currently provide a prominent field of

research, that aims at improving everyday road safety and comfort. To achieve

this, the development of several potential applications is envisioned. Such ap-

plications, will not only promise to provide extraordinary benefits, but will also

represent important security challenges, especially due to the unique characteris-

tics of VANETs. In this chapter, the basics of VANETs will be briefly introduced,

followed by a discussion about the main reasons why, despite their potential ben-

efits, VANETs also raise important security and privacy concerns that must be

properly addressed. The problem statement and the main contributions of this

thesis are presented in subsequent sections, and finally, at the end of this chapter,

the thesis organization is outlined.

1.1 Motivation

Road traffic injuries are currently the ninth leading cause of death in the world,

killing nearly 1.3 million people annually. Unless effective action is taken, road

accidents are predicted to become the fifth leading cause of death by 2030 (WHO,

2012). Intelligent Transportation Systems (ITS)(Committee, 2007) aim to pro-

vide innovative services that will potentially benefit traffic management. As the

technical basis of ITS, VANETs offer the possibility of significant improvements

in order to mitigate vehicular accidents and enable a wide range of safety and

mobility applications promising extraordinary benefits.

1



1.1 Motivation

VANETs consist of mobile and fixed nodes represented by vehicles and Road

Side Units (RSUs) (Figure 1.1) communicating among each other and enabling

the exchange of different kinds of information (Zarki et al., 2002). Thus, as

previously mentioned, their successful deployment will allow the implementation

of several applications intended to drastically reduce the number of road fatalities

by improving overall road safety, as well as being capable of providing value added

services to enhance driver comfort.

In safety-related applications, exchanged information plays a vital role, in

particular, in traffic safety. Many of these applications may demand the driver’s

awareness and even his/her reaction. If a driver is supposed to react instantly,

e.g., in the case of road accidents or life-critical warning messages, since lives

could depend on these applications, the information must be accurate and truth-

ful, and vehicles should be able to (i) ensure that the information received is

correct, (ii) verify that the sender has been authenticated and authorized, and

therefore can be trusted. To assure both aspects, security measures are essential

and must be taken into consideration. While increasing road safety is its main

goal, VANETs also offer other applications such as location-based services while

en route, which adversaries could exploit by injecting wrong information into the

network or by gaining information from value added services and consequently

threaten drivers’ privacy and safety. Moreover, since vehicles in a VANET will

be provided with storage and processing capabilities, avoiding unauthorized in-

formation disclosure should also be carefully addressed. The lack of security

could consequently jeopardize the potential benefits expected from VANET ap-

plications, thus, a set of security goals should be satisfied in order to prevent

attackers from inserting or modifying exchanged (e.g., life-critical) information,

without compromising drivers’ privacy but able to establish their liability in case

of accidents.

In summary, vehicular communications should not become a weak link in

terms of security and privacy, but should provide users with, at least, the same

level of protection that is currently afforded without vehicular networks. In the

following section, current research issues identified around this topic will be dis-

cussed.

2



1.2 Problem Statement

RSU

RSU

RSU

RSU

RSU

RSU

Figure 1.1: VANET system model

1.2 Problem Statement

The aim of VANETs is to provide safety and comfort, thus, in vehicular commu-

nications, the information exchanged among vehicles plays a fundamental role.

Identifying the context in which information could be trusted is a relevant aspect

to be considered. In particular, for safety-related applications, the information

transmitted among vehicles is considered critical, thus, timely and accurate ex-

change of this information could prevent a great number of fatal road accidents.

However,if an attacker manipulates the information could potentially cause harm;

therefore, in order to prevent potential attacks, implementing security measures

is of the utmost importance. To overcome this, the adoption of Public Key In-

frastructure (PKI) technology, which has been proven to be a suitable solution

in other distributed environments, has been considered. The implementation of

PKI will enable the establishment of secure communication channels, by provid-

ing services needed to prevent a wide range of security attacks. Current PKI

systems consist of a Central Authority (CA) responsible for registering users and

issuing credentials (containing the corresponding private and public key-pair).

In VANETs, it is envisioned that vehicles will be registered with their own re-

gional CA, and therefore, a common architecture will require a wide range of CAs

3



1.2 Problem Statement

CA1

CA2

EU2

CA1

EU1

EU1

Infrastructure
EU2

Infrastructure

CA2 CA2

Trust?

CA1

Trust?

Trust?

Trust?
CA1

CA1 CA2CA2
Trust?

Figure 1.2: Interoperability among CAs, to provide inter-domain authentication

when vehicles travel to different domains

within regional scopes (Figure 1.2). However, by following the implementation

of several CAs, how will authentication and authorization be performed

when vehicles move between two different geographical regions?. It is

assumed that when a vehicle travels to a different geographical region or domain,

a mutual authentication and trusted communication will be achieved thanks to

previous cross-certification agreements (mostly manual). Nevertheless, since cer-

tificate revocation is also the responsibility of the issuing CA, a disadvantage of

cross-certification is that, it is not possible to obtain up-to-date revocation in-

formation resulting in a vulnerability window for the relying party, which raises

the question on how to automatically perform “cross-certification” and i)

validate trust among unknown CAs and ii) validate in near-real time a VANET’s

node certificate status.

Apart from the revocation issues just mentioned, and despite the benefits of

enabling the use of PKI technologies in VANETs, the sole use of PKI cannot

ensure privacy, which also plays an important role in any VANET architectural

solution. A few examples of privacy problems that should be faced in a typical

VANET are: (i) linking a person and an identifier, (ii) tracking a specific node,

and, since vehicles in a VANET will also benefit from accessing a wide number

of added value applications offered by different Service Providers (SPs), (iii) the

big brother scenario of gathering detailed statistics about movement patterns and

services requested by vehicles could also be a threat. To address privacy issues,

4



1.2 Problem Statement

victim

SP01 SP02 SP03

attacker (RSU)

PSEUDO_ID
TIMESTAMP
SERVICE REQ QUERY
SERVICE RESP

attacker

Figure 1.3: Big brother scenario, an attacker (vehicle or RSU) collecting infor-

mation from a vehicle’s requests to different service providers at different times

(t1, t2, ..., tn)

the general approach is the implementation of temporary certificates based on

pseudonyms, which are an interesting, but yet only a complementary solution.

Pseudonyms could prevent linking a person to an identifier, but cannot prevent

an attacker from collecting another user’s related data; the passive collection

of communication information regarding vehicle activities (e.g. locations and

contents of queries to services provided by the infrastructure), could lead to user

profiling (Figure 1.3). Moreover, private information stored in vehicles should

only be disclosed to authorized parties (Figure 1.4).

The general principle in VANET privacy is that information of the vehicle and

the driver should be protected against private citizens and law enforcement agen-

cies, only disclosing it to authorized parties, where privacy should be conditional

to specific scenarios (liability). Given the above mentioned scenario, important

questions to be solved are i) how to avoid user profiling when requesting services

to the infrastructure? ii) how to provide conditional anonymity and unlinkability?

and iii) how to prevent unauthorized information disclosure among vehicles?.

Finally, due to the high mobility of vehicles, the system introduces different

5



1.3 Specific Contributions

Trust?
message type?
action required?
source_entity?
trust_level?

Trust?
private information required?
source_entity?
trust_level?

<warning_msg> <req_information>

Figure 1.4: Information trust validation in vehicle to vehicle communication - no

infrastructure available

network constraints that should be taken into account for the overall security de-

sign. A successful deployment must process and transmit the information within

the timing and communications parameters limited by the network, thus, the

need to carefully design a suitable security solution, able to meet the VANETs’

performance requirements, especially those related to the bandwidth usage and

the processing overhead. Thus, the main purpose of this research work is to deal

with the aforementioned security and privacy issues, and prevent abuse by imple-

menting a PKI-based solution that addresses the interoperability issues among

different realms and ensure the privacy of the involved entities in VANETs. The

specific contributions of this thesis are described in the following section.

1.3 Specific Contributions

The main contributions of this thesis consist in addressing important security

and privacy challenges in Vehicular Ad hoc Networks by proposing a privacy-

aware security framework (Figure 1.5). In particular, to overcome the security

and privacy issues discussed in Section 1.2, we point out the main contributions:

• Authentication System (AS) is a geo-location based trust model, which

provides PKI-interoperability (Figure 1.2), allowing vehicles to perform au-

thentication among untrusted domains. The AS implements the certificate

6



1.3 Specific Contributions

PKI interoperability among 
vehicles from different domains

Vehicle tracking / User profiling
(big brother scenario)

Context trust validation in 
infrastructureless scenarios

Authentication System (AS)

Privacy Enhancing Model (PEM)

Trust Validation Model (TVM)

Attribute‐Based
Privacy (ABP)

Anonymous
Information
Retrieval (AIR)

Private information access
control

Figure 1.5: Privacy-aware Security Framework

validation process, and automatically builds a dynamic CA federation to

provide cross-certification via policy mapping.

• Attribute-Based Privacy (ABP) protocol implements Attribute-Based

Credentials (ABC) to provide minimal information disclosure by selectively

disclosing attributes to any relaying party such as a service provider (SP)

and prevents vehicle tracking (Figure 1.3), especially while requesting ser-

vices from the infrastructure.

• Anonymous Information Retrieval (AIR) implements query permuta-

tion and query forgery to avoid user profiling. Taking advantage of user col-

laboration, the AIR protocol avoids query-user association, and overcomes

potential privacy issues derived by eavesdropping (Figure 1.3). Moreover

the protocol has been designed on the basis that neither the participating

nodes nor the SP can be trusted.

• Trust Validation Model (TVM) is a model which consists of the im-

plementation of context-based policies to i) prevent unauthorized access to

vehicles private information and ii) validate the context of the received in-

formation and the trust level of the source nodes to be able to automatically

7



1.4 Thesis Organization

decide if the message could be trusted (Figure 1.4). Firstly, TVM classifies

the type of information contained in the vehicle and the type of messages

to be exchanged, by assigning different labels to the information according

to its sensitivity level. Secondly, it validates the sender or requestor’s trust

level, according to a set of attributes previously assigned and mainly based

on the role and the type of entity, which is achieved thanks to the proposed

privacy enhancing model.

1.4 Thesis Organization

This thesis is organized as follows:

Chapter 2 Provides an overviews of the basic concepts of Vehicular Ad Hoc

Networks. Current projects and efforts, along with the security and privacy

issues that are inherent in VANET technologies, are also discussed in this

chapter.

Chapter 3 Presents and analyzes the related state-of-the-art approaches, focus-

ing on security and privacy in VANETs.

Chapter 4 Introduces an Inter-domain Authentication System to provide trust

establishment and authentication among vehicles belonging to unknown

domains.

Chapter 5 Proposes a Privacy Enhancing Model (PEM) that consists of an

Attribute-Based Privacy (ABP) protocol which introduces Attribute-Based

Credentials (ABC) to anonymously communicate and prevent vehicle track-

ing. In order to prevent user profiling, the PEM model introduces the

Anonymous Information Retrieval (AIR) protocol that implements query

forgery and permutation to provide minimal information disclosure when

requesting services to the Service Providers (SPs).

Chapter 6 Defines a context-based Trust Validation Model (TVM), by imple-

menting context-based policies to i) avoid unauthorized private information

access and ii) allow information trust validation even when no infrastruc-

ture is available.

8
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Chapter 7 Analyzes the trade-offs among security, privacy and performance

related to the proposed model.

Chapter 8 Gives the main conclusions and future research directions in VANET

security and privacy.
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Chapter 2

Background

2.1 Vehicular Ad hoc Networks

Vehicular Ad hoc NETworks are a subgroup and one of the most relevant repre-

sentations of Mobile Ad hoc NETworks (MANETs). Basically MANETs consist

of autonomous collections of mobile nodes, represented by independent wireless

devices acting as both end systems and routers that move independently form-

ing unpredictable and highly dynamic topologies just as shown in Figure 2.1.

In VANETs’ communication vehicles are equipped with On-Board Units (OBUs)

able to communicate to the infrastructure mainly represented by Road Side Units

(RSUs) located along the roads.

Figure 2.1: Mobile Ad Hoc Network
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2.1 Vehicular Ad hoc Networks

Figure 2.2: Smart-vehicle

2.1.1 Communication Model

It is envisioned that in the coming years 40% of all vehicular components will be

electronic, with this integration, vehicles referred as “smart-vehicles” (Hubaux

et al., 2004), will be equipped with processing, recording and communication

features, capable of processing and storing a great amount of information (Figure

2.2)

The communication among both kinds of VANETs nodes is commonly clas-

sified as vehicle-to-vehicle (v2v) and vehicle-to-infrastructure (v2i) Figure 2.3,

and according to the Dedicated Short Range Communications - DSRC standard

(Armstrong, 2012a), VANETs are capable of communicating at data rates from

6-27Mbps at a maximum transmission range of 1000m, thus, enabling nodes to

exchange all kinds of application-related information.

2.1.1.1 Projects and Organization

The networking community is at present putting significant effort into investigat-

ing inter-vehicle communications. The areas of current research range from the

low layer protocols design to the implementation of a wide range of applications

and mechanisms for the effective deployment of vehicular ad-hoc networks. The

development of these vehicular communication systems is driven by a number

of national and international activities such as, the Car-to-Car Communication

consortium (C2C-CC) (C2CCC, 2012) and the California Partners of Advanced
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Vehicle-to-Vehicle 
communication

Vehicle-to-Infrastructure 
communication

Figure 2.3: Vehicle-to-Vehicle and Vehicle-to-Infrastructure Communication

Transit and Highways (PATH, 2012). These organizations focus on building high

performance architectures and extracting application specific functionality to be

integrated into the VANET system (i.e. application specific packet routing).

2.1.1.2 Communication Standards

In vehicular communications, vehicle are able to share different communication

channels which are highly unreliable and generally with a limited bandwidth. The

need of new protocols and mechanisms to guarantee effective, reliable, and se-

cure communications are needed. The IEEE 802.11 (IEEE LAN/MAN Standards

Committee – IEEE802, 2012) standard family provides wireless connectivity be-

tween v2v and v2i, however these standards have not considered VANET’s unique

characteristics (Section 2.1.1.3 such as driving speeds, traffic patterns, and driv-

ing environments. To address these requirements, recently, the Dedicated Short

Range Communication (DSRC) and the Wireless Access in Vehicular Environ-

ments (WAVE) which are the based on 802.11p and IEEE 1609 standards have

been developed. The DSRC is based on the physical and MAC layer of the

802.11 standard, providing high data transfers and low communication latency in

small communication zones. Taking advantage of the efforts done so far by the
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ASTM2313 working group on DSRC they migrated to the IEEE 802.11 standard

group and renamed the DSRC to IEEE 802.11p WAVE (Zeadally et al., 2010).

The WAVE standards define an architecture and a complementary, standardized

set of services and interfaces that collectively enable secure wireless communica-

tions required to support Intelligent Transportation Systems (ITS) applications.

This includes data exchange between high-speed v2v and v2i communications in

the licensed ITS band of 5.9 GHz (5.855.925 GHz). Additionally, IEEE 1609 is a

higher layer standard on which IEEE 802.11p is based which allows homogeneous

communications interfaces between different automotive manufacturers.

2.1.1.3 VANETs Features

As a subgroup of MANETs, VANETs share similar characteristics with other

ad-hoc networks (Zarki et al., 2002), but also possess’ unique features that on

one hand can influence positively on the deployment of several applications, and

on the other hand represent an interesting challenge that must be carefully con-

sidered when designing any architectural solution. In the following, these partic-

ularities will be briefly described.

• Dynamic topology: Compared to conventional MANETs, nodes in VANETs

could be easily distinguished by their variable and high speeds, together

with the different trajectories that nodes are able to follow; communication

links among them can only be established in a temporary fashion, resulting

in continuous topology changes, i.e. the longer that vehicles are within

the communication range (e.g. vehicles following similar trajectories), the

longer that a particular topology is maintained.

• Mobility models: Despite the high mobility that is inherent to a VANET

system, nodes mobility is bounded in speed and space, due to the fact

that vehicles travel along pre-established trajectories (roads). The speed of

vehicles is usually constrained by i) traffic lights, ii) routes intersections,

iii) the speed of other vehicles, and by iv) general speed limits to control

different kinds of urban areas. Moreover, since vehicles move along routes

their movements could be predicted.
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• Geolocalization capabilities: it is expected that most vehicles will have

integrated, positioning devices such as Global Positioning System (GPS)

receivers, along with other communication capabilities, enabling a potential

range of location based applications.

• Low latency requirements: due to the dynamicity of the environment, and

the delay constraints introduced by safety applications, the information

exchanged among vehicles in VANETs is extremely time-sensitive, (e.g.

alert messages to prevent about road conditions)

• Energy supply: an important difference between VANETs and other ad-hoc

networks is that, in traditional MANETs, mobile nodes have limited power

supply and processing resources, resulting in a major issue when designing

services and applications that can be supported by each node, however,

in VANETs resource constraints could be neglected, since in VANETs a

running vehicle is able to provide sufficient battery power, more compu-

tational power resources are assumed. This feature is quite an important

advantage for certain computational intensive tasks related with security

(i.e. cryptography).

• Communication scenarios: communication in VANETs might be strongly

dependent on the scenario (Guerrero-Ibez et al., 2012), current research

identifies two main scenarios i) highways, where vehicles travel at different

speeds and unidirectional movement patterns can be observed, and ii) urban

scenarios, where environmental elements play a fundamental role making

v2v communications more complex.

The most challenging features inherent to a VANET system include the dy-

namic topology and the mobility models (vehicles moving at a variable and high

speed and in different trajectories). On the other hand, thanks to the vehicle’s

geo-localization functionality and its “infinite” energy supply, VANETs are an

enabler for a set of potential applications (further discussed in Section 2.1.1.4),

but also rise important security and privacy issues that must be addressed.
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2.1.1.4 Applications

In VANETs v2v and v2i communication, communicating nodes are either vehi-

cles or RSUs, where the majority of nodes will consist in vehicles equipped with

on-board units (OBUs) and fixed communication units along the road that can

exchange information about traffic issues, road conditions and added value in-

formation, allowing the deployment of a wide range of applications that could

be classified according to different aspects such as target, scenarios, or security

objectives. In this thesis the most common classification initially employed by

authors of (Raya & Hubaux, 2005),(Plossl et al., 2006) has been adopted:

• Warning: Applications aimed to detect risky situations, such as the propa-

gation of alerts in case of accidents. Vehicles exchange messages to inform

each other about special events and dangers on the road, an example could

be alarm signals from emergency vehicles in action, which is done by send-

ing information such as current position, time and destination or desired

route, where other vehicles could and must clear the way for the emergency

vehicle.

• Traffic Management: a safety-related application where messages are pri-

marily exchanged to inform about traffic congestion and road conditions in

a given region with the main purpose of optimizing traffic. This expects

safety in an indirect form basically by preventing potential accidents due

to congestion.

• Added value applications: aimed at providing a wide range of services such

as payment services, location-based services (e.g. finding the closest hotel,

restaurant, etc.), and infotainment (e.g., Internet access, to offer e-mail,

web browsing, video streaming, etc.).

As it can be inferred by the aforementioned applications, VANETs will be

capable of offering a wide range of valuable services. However, along with the

rise of VANETs, a set of security issues has also appeared, the importance of

security and privacy implications will be further discussed in Section 2.1.2.
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2.1.2 Security and Privacy

Vehicular systems are an important problem of our society, where the common

goal is to reduce road accidents. Emerging technologies such as DSRC assigned

for vehicle communications are promising to drastically reduce the number of

traffic victims by providing early emergency warnings in various road situations

(broadcasting routine messages over a single hop every 300ms with traffic related

events information (NHTS, 2006)), as long as the exchanged messages are trust-

worthy they can greatly improve the overall road safety. A compromised VANET

may disrupt the whole technology’s applicability and acceptance, by, for exam-

ple, causing life-threatening situations (i.e. false warnings that could results on

road accidents), thus, any VANET solution must be designed to ensure that the

transmission comes from a trusted source and has not been tampered with since

transmission.

Privacy in VANETs is also a major concern, since vehicles are highly personal

devices and they are kept for a long duration, and are expected to be able to

store a lot of information including personal data; drivers should then be able to

keep and control their personal and vehicle related information. Innocent looking

data from several sources can be collected over long periods and be automatically

evaluated to compromise privacy and produce several attacks (Dötzer, 2005).

Once privacy is lost it is very difficult to re-establish that state of personal rights

and the trust that people delivered into this technology (Kargl et al., 2006). Thus,

on one hand strong security mechanisms are needed to protect applications and

users from possible attacks and on the other hand the protection of user’s private

information (not limited to identity) should be guaranteed.

2.1.2.1 Attacker Model

The classification of attackers can be done according to different characteristics

such as location, motivation, etc., identifying a type of attacker facilitates con-

siderably the study of his capacity, possible attacks and, consequently the harm

that could be caused. Authors of (Raya & Hubaux, 2007), presented a general

classification:

• Insider: is an authenticated member of the network
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• Outsider: is considered by the other members of the network as an intruder.

• Malicious: this attacker seeks no personal benefits from the attacks and

aims to harm.

• Rational: a rational attacker seeks personal profit and hence is more pre-

dictable.

• Active: an active attacker can generate packets or signals.

• Passive: A passive attacker contents himself with eavesdropping on the

wireless channel.

Similar to other conventional MANETs, VANETs can also be vulnerable to a

set of security attacks, which have been in different degree analyzed by authors

of (Aijaz et al., 2006), (Parno & Perrig, 2005) and (Raya & Hubaux, 2005). In

the following, a classification of general attacks on VANETs corresponding to

different security requirements needed in VANETs (de Fuentes et al., 2010) is

described:

Identification and Authentication An active, rational and insider attacker

pretending to be one or multiple different entities could achieve an im-

personation attack by i) claiming to be an authorized entity such as an

emergency vehicle and propagate wrong information in the network, e.g.

sending false information to alter traffic flow, slowing it down or getting a

vehicle-free road, ii) in the same way a vehicle could pretend to be multiple

entities reporting a false bottleneck to achieve the same purpose, iii) simple

use of fictitious identities, to evade being responsible and legally obliged in

case of an accident.

Privacy Linking a person with an identifier (ID disclosure) by a global passive

observer overhearing the communication from vehicles (e.g an attacker RSU

or vehicle on a parking lot), and afterwards could be able to distinguish i)

a vehicle-identifier, which identifier belongs to which vehicle and as a result

to which driver, ii) be able to monitor trajectories. With this information

an attacker could then blackmail a driver if collected information contains

compromising information.
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Confidentiality an attacker represented by a vehicle or by a false RSU could get

illegal access to confidential information, or a passive attacker eavesdropping

the communication and gathering information on services requested by a

vehicle.

Non-repudiation achieved mainly by rational attackers colluding to share the

same credentials.

Availability Denial of service attacks are commonly done by active malicious

attackers willing to bring down the network, these attacks include channel

jamming and aggressive injection of dummy messages.

Data trust Inaccurate data calculation and sending affecting message reliability,

performed by manipulating sent information mainly done by rational active

attackers.

2.1.2.2 Security and Privacy Requirements

The successful deployment and public acceptance of VANET technology requires

a security system able to prevent any generic attack. On vehicular networks,

the system should use a secure and trusted communication infrastructure able to

satisfy the following set of requirements (Kargl et al., 2006) (Raya & Hubaux,

2007):

• Authentication: The authentication of the senders messages is needed to

keep outsiders from injecting messages as well as misbehaving insiders.

• Integrity: All messages should be protected to prevent attackers from al-

tering them, or in the worst-case scenario, to detect its modification.

• Confidentiality: There are application that require that only the sender and

the intended receiver can access the content of a message.

• Access control: Vehicles and applications need fine-grained access rights.

Sensitive information stored in vehicles should only be available for autho-

rized parties.
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• Availability: Transmitted messages must reach all necessary recipients de-

spite the VANET’s status.

• Non repudiation: A sender should not be able to deny the transmission of

a message, specially in case of node’s misbehavior, therefore to be able to

prosecute misuse, non-repudiation is necessary.

• Privacy: The privacy of users should be enforced, it should not be possible to

automatically obtain private information about drivers or vehicle’s behavior

and activities, linking the activities (services requested and location) to and

identifier and an identifier to a person.

2.2 VANET’s Public Key Infrastructure (VPKI)

Cryptography primitives are based on the use of keys employed to encrypt and

decrypt information. There are two types of cryptography: i) symmetric-key

cryptography, and ii) asymmetric-key cryptography also known as Public Key

(PK). Symmetric-key cryptography has been discarded due to its scalability limi-

tations, specially in complex systems such as VANETs where the increased num-

ber of vehicles introduces a significant key maintenance overhead. Opposite to

Symmetric-key, in VANETs, Public Key cryptography has been adopted by many

initiatives and in particular by the WAVE security standards (Section 2.1.1.2).

2.2.1 Basic Concepts

The basic PK provides an encryption and a signature scheme, both consisting of

a private (Sk) and a public key (Pk).

In the encryption scheme an entity (A) publishes its (Pk); which will be used

by others entities to encrypt a message (M) sent to entity (A), C ←− e(M,PkA).

Upon reception of an encrypted message, entity (A) uses its (Sk) to decrypt

and recover the original message (M), d(C, SkA).

Opposite to encryption, the signature scheme, entity (A) signs a message

(M) with its (Sk), C ←− e(M,SkA) that will be verified only with by entities

possessing entity’s (Pk), d(C,PkA).

19



2.2 VANET’s Public Key Infrastructure (VPKI)

Public Key Infrastructure or PKI is the general term for a security infrastruc-

ture which derives its name from Public Key Cryptography. PKI defines message

formats and protocols that allow entitled to securely communicate claims and

statements. The most commonly used assertions, are those that bind identity,

attributes, and authorization statements either to keys or to identities.

The most popular PKI is defined by the IETF’s PKIX working group (Housley

et al., 2002), which defines a security system used for identifying entities (users

and resources) through the use of X.509 identity certificates. In this PKI, highly

trusted entities known as Certificate Authorities (CAs) issue X.509 certificates

where essentially a unique identity name and the public key of an entity are

bound through the digital signature of that CA. As a trusted third party, the CA

can be used as an introducer: through the proof of private key possession and

the validation of the CA’s issues X.509 certificates, entities are able to associate

a trusted, unique identity name with the communicates claims and statements

of others. General security requirements such as identification, authentication,

non-repudiation and confidentiality, could be achieved with the implementation

of a PKI-based solution.

2.2.2 Assumptions

Multiple CAs within regional scopes will be involved, and such CAs (national

or regional) are mostly cross-certified (see Figure 2.4). Vehicles from different

regional scopes should be able to verify each other. A CA will issue certified

public/private key pairs to participating vehicles. To authenticate each other,

vehicles sending a message will add digital signature at each of the messages,

the digital signature will be generated by encrypted hash value of message using

the private key. Vehicles receiving messages will verify the key used to sign the

message, and the message’s Certificate Authorities (CAs) Revocation is assumed

to be done with the distribution of CRLs (Certificate Revocation Lists) that

contain the most recently revoked certificates; CRLs will be updated and provided

when infrastructure is available.
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Figure 2.4: VPKI - Multiple CAs within regional scopes

2.2.3 Open Issues

An efficient VANET architecture is fundamental for being able to manage the

whole certificate’s life cycle (issue, distribution, validation and revocation). Yet,

PKI-based solutions have overlooked the interoperability problems that could

be derived from a multi-CA framework, by assuming explicit cross certification

agreements. Revocation also represents an important scalability issue, CRLs can

be very long due to the increased number of vehicles and their high mobility.

Moreover, as it has been previously discussed, the sole use of PKI, cannot

prevent the privacy issues identified in (Section 2.1.2)
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Chapter 3

State of the Art

Until recently, security in VANETs had been overlooked, yet, has drawn the

attention of a wider research community. In this chapter, the main VANET

security approaches found in the literature will be presented and further discussed.

3.1 Introduction

Since, in VANETs, access is granted by default, to be able to prevent any generic

attack, the system should rely on a secure and trusted communication infrastruc-

ture able to satisfy a set of security requirements that include i) authentication,

ii) integrity, iii) confidentiality, iv) availability, v) non-repudiation and vi) pri-

vacy. Thus, the important challenge is just finding the proper techniques and

architectural solutions to be able to enforce privacy and security. In particular,

authentication should be provided, even in the presence of nodes (vehicles) be-

longing to different ”authentication realms” (usually linked with more than one

geographical area), but without disregarding the privacy requirements inherent

to VANETs users and applications.

An extensive study of security issues in vehicular networks has been presented

by (Hubaux et al., 2004),(Raya & Hubaux, 2005), (Papadimitratos et al., 2006a)

and among others (Wex et al., 2008). Also authors of (Parno & Perrig, 2005)

and (Aijaz et al., 2006) provided a detailed analysis of general system security

attacks on Inter-Vehicle Communication (IVC) and describe the main challenges
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in securing vehicular networks, pointing out important system requirements con-

cerning among others, privacy. In particular, a discussion of specific issues related

to identity and privacy enhancing technologies for VC can be found in (Dötzer,

2005) and (Papadimitratos et al., 2006b). According to current state of the art

research, to implement a secure service access in vehicular networks the Wireless

Access in Vehicular Environments (WAVE) standard (Committee, 2007) assumes

that vehicles will be capable of running cryptographic protocols. Thus, the use of

Public Key Infrastructures (PKI) and digital certificates have been proposed in

(Papadimitratos et al., 2007) as suitable solutions to overcome the authentication

and authorization challenges in VANETs. However the implementation of PKI

also rises interesting challenges.

3.2 Pseudonymity

The importance of privacy preservation for the public acceptance of VANET’s

technology has been highlighted by authors of (Dötzer, 2005) and (Gerlach, 2006),

which have presented an extensive study on the implications of missing privacy.

In particular, it has been remarked that, since, in general, digital certificates

include information regarding the node’s identity, the sole use of PKI cannot

provide privacy. Thus, different approaches based on the use of pseudonyms
1 have been proposed. In VANETs pseudonymity refers to the use of digital

pseudonyms as IDs and assuming that each pseudonym refers to exactly one

holder. However, it is worth to mention that, the use of long-term credentials,

even if combined with a pseudonym approach, opens up the possibility of linking

a pseudonym with the vehicle’s real identifier (e.g. an attacker overhearing the

communications for a long period in parking lot). The analysis of the efective-

ness of pseudonym change provided by (Beresford et al., 2003), defining mix-zones

to provide privacy in pervasive computing, has been exploited by different au-

thors. In (Dötzer, 2005) the concept of short-term certificates with centrally

assigned pseudonyms for VANETs was proposed. Authors define a system where

vehicles change pseudonyms in a certain region pointed out by the system, the

1Pseudonyms are identifiers used by subjects to avoid the use of real information Pfitzmann

& Hansen (2005).
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region is defined when a large number of vehicles are within the communica-

tion range, a disadvantage appears when there are not enough vehicles changing

pseudonyms within the region. In (Golle et al., 2004) authors propose self as-

signed digital pseudonyms, taking a set of measures while changing them: (i)

synchronizing pseudonym change, (ii) introducing gaps (silent periods) and (iii)

changing pseudonyms when nodes are in the region (this was also considered

in (Gerlach, 2006), by defining them as mix-contexts in addition to frequently

change of pseudonyms and protection of a centralized mapping that intend to

increase anonymity). CARAVAN (Sampigethaya et al., 2005), also proposes a

random silent period in order to hamper linkability between pseudonyms. An

improvement of mix-contexts was presented by (Gerlach & Güttler, 2007), con-

sidering anonymity over randomly changing pseudonyms in certain intervals. In

Choi et al. (2005) authors proposed a system to balance auditability and privacy

in VANETs based on symmetric cryptographic primitives and two different sorts

of pseudonyms (short and long term). A study of practicability in pseudonymity

deployment and implementation is done in (Fonseca et al., 2007), where possible

solutions are represented as a combination of existing pseudonymity algorithms.

Authors of (Liao & Li, 2009) proposed the synchronous pseudonym change al-

gorithm where vehicular status information was taken into consideration and

claimed to be more effective than those based on the mix-zones concept. How-

ever, even though pseudonym-based approaches are a commonly accepted solution

to protect privacy in VANETs there are still open issues to be solved. Certificate

revocation has then been identified as one of these important issues, mainly due

to i) the large number of certificates to be issued for a single vehicle, and ii) the

need of ”fresh” revocation information, which has led to the need of implementing

additional mechanisms.

3.3 Certificate Revocation

In common PKI approaches certificate revocation is assumed to be done with

the distribution of CRLs which contain the most recently revoked certificates.

However, CRLs can be very long due to the increased number of vehicles and
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their high mobility, even short lifetime of certificates still creates a vulnerability

window.

Authors of (Fischer et al., 2006) proposed the SRAAC protocol which al-

lows distribution of certificates, anonymous message authentication with quorum

based blinded certificate issuance, anonymity, revocation and isolation of mis-

behaving vehicles. The protocol introduces a set of intermediate certification

servers, previously certified by a CA. Making use of a digital signature algorithm

called Magic Ink-DSS with shared secrets mainly provide revocable anonymity,

where more than one entity must agree to be able to revoke anonymity. The main

drawback of the proposed revocation model is that when a vehicle is detected as

malicious, it cannot be immediately isolated because of the number of certificates

previously stored in its On Board Unit (OBU), which will still be valid for some

arbitrary time. A more complex approach was proposed by authors of (Papadim-

itratos et al., 2008), which consisted of three different protocols: (i) Revocation

using Compressed Certificate Revocation Lists (RC2RL), (ii) Revocation of the

Tamper-Proof Device RTPD, and (iii) Distributed Revocation Protocol DRP,

each one adapted to a specific VANET scenario. In the RC2RL and RTPD when

revocation occurs the CA sends a message to the ”revoked vehicle”, however other

relying parties (vehicles and service providers) do not receive this notifications,

which opens a security gap on the whole VANET system. In the case of the

DRP protocol, the possibility of collusion attacks remains open. Obviously the

existence of an attacker detection system is assumed for the deployment of these

protocols, has not yet been designed.

Authors of (Haas et al., 2009) proposed a mechanism based on bloom filters,

and consisting of two main mechanisms, one to reduce the size of the CRLs and

the second one to organize and distribute the updates on the CRLs instead of

the full CRL itself. However, the use of CRLs represents two major problems.

First, is that static lists are difficult to handle, and second is that in distributed

environments involving different CA domains, the management of trust relation-

ships with CRLs could become cumbersome. In ”traditional” PKI environments

OCSP-based protocols have been proven to be a secure alternative to CRLs; how-

ever, in VANETs, this option has been discarded with the common argument that

if communication failures occurred, the OCSP revocation information would be
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hard to manage. Authors of (Papapanagiotou et al., 2007), presented a certifi-

cate validation scheme based on a distributed version of OCSP for authorization

and authentication in VANETs. Their approach focused on distributing cached

OCSP responses, thus avoiding the exchange of extended certificate status lists.

We believe this is an interesting approach that could be complementary to our

contributed solution, to be further discussed in Chapter 4.

3.4 Group Signature

In order to reduce the number of exchanged keys in VANETs, the idea of group

signatures emerged as an alternative to traditional PKI approaches. In a basic

group signature scheme (Chaum & Heyst, 1991) participants are identified as

follows:

• Group Leader: A trusted entity (vehicle or RSU) responsible for managing

the group: initializing and handling joins and leaves (revocations). It is

also responsible for de-anonymizing a signature in case of liability.

• Group Members: Vehicle representing current set of authorized signers.

Each vehicle has a unique private key allowing it to sign on behalf of the

group and a group public key.

Yet, a number of group signature schemes varying in assumptions, complexity

and features have been proposed.

A mechanism for access control in VANET’s network using the Kerberos model

was described in (Moustafa et al., 2006). The authors proposed an authentication

and authorization mechanism to access offered services according to a previous

subscription (token), so afterwards the vehicle is authenticated at the highways

entry points, this model explored a hybrid approach where group signatures where

considered as part of the solution. However, the proposed approach was specific

for highways environments, thus limiting its applicability. Authors of (Guo et al.,

2007) introduced a group signature approach which, combined with role based

access control vehicles were able to sign messages on behalf the group, thus achiev-

ing conditial anonynimity, that could only be reverse by the group leader. The

26



3.5 Identity-based Cryptography

main disadvantage of this approach is that, group establishment is handled in

a static way, where vehicles are pre-loaded with the corresponding group keys,

and moreover, when traveling to different domains (geographical regions) vehicles

must have in advanced the keys of all the groups belonging to the correspondiong

hierachical regions. Following a similar idea, authors of (Lin et al., 2007) pre-

sented a group-based approach where vehicles own a group signing keys issued

by a trusted group leader. As an alternative to the aforementioned proposals, a

hybrid approach has been presented by the authors of (Hui et al., 2010). Their

proposal consists of a combination of group-based signatures and identity based

signatures, where the former are used for authentication among private vehicles

and, the latter for public vehicles and RSUs. Nevertheless, the main drawbacks

of group-based approaches include: i) that vehicles must trust a group leader

that is responsible for issuing the corresponding signing keys; ii) due to the speed

and trajectories of vehicles, group members should be considered volatile rather

than permanent and, therefore, using a regular vehicle as a group leader might

compromise the communications availability; iii) a large number of members in

a group could increase the computational complexity, the total number of ex-

changed messages and thus severely impact the overall system performance and

iv) interoperability issues have been considered only in a static form, which is not

sufficient for a highly dynamic environment such as a VANET.

To overcome the trust issues originated due to the group leader being a regular

vehicle, authors of (Xiaoping & Jia, 2012) present a new group-based certificate

solution. The main difference among other group-based solutions is that in the

latter, the group certificates are issued by the RSU’s, which are assumed be

trusted by following a top authority approach (however, note that RSUs are also

considered vulnerable to different security attacks, and, therefore, can not be

completely trusted).

3.5 Identity-based Cryptography

Non-PKI approaches have mostly focused in identity-based cryptography. The

concept of identity-based cryptography was introduced by (Boneh & Franklin,

2003) to ease the deployment of the PKI by simplifying the management of a
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large number of public keys. However, it is important to mention that it is based

on an underlying public key cryptosystem and the issuance and utilization pro-

cesses are very similar to those used in a traditional PKI domain. In VANETs,

this idea was first adopted by authors of (Lin et al., 2007), who proposed an ap-

proach based on group-based signatures (as discussed above), and this idea was

followed by authors of (Mahmoud Al-Qutayri, 2010). However, their approach

although interesting, lacks many implementation details, specifically on the cer-

tificate revocation process. Moreover, neither the interoperability issues among

different domains nor the impact on performance are discussed.

3.6 Open Issues

Up to now, research proposals have envisioned a wide range of certification au-

thorities (CAs) acting as trusted third parties within regional scopes, which in

turn, result in the implementation of inter-domain authentication protocols and

the establishment of trust issues among them (e.g. a German vehicle requesting

services in a French infrastructure). However, the security implications derived

from the VANETs’ inter-PKI authentication process i.e. interoperability issues,

have been mostly overlooked by the aforementioned research works by assuming

explicit cross-certification agreements, which, in turn, are based on a static ap-

proach and have been proven to be hard to manage. In order to provide VANET

interoperability among untrusted PKI domains, a PKI-based authentication pro-

tocol capable of dynamically establishing trust relationships among unknown do-

mains is proposed and will be introduced in Chapter 4. Moreover, research pro-

posals aiming to improve privacy, mainly focus on the use of pseudonyms, and

algorithms for changing them in a more efficient form, however pseudonyms can-

not prevent the automatic collection of information allowing an attacker to keep

track of users and vehicles actions (e.g. behavior, movements, preferences, char-

acteristics, etc.). Nevertheless, because of the common belief that pseudonyms

are important for VANETs’ overall security and are quite beneficial for protect-

ing users’ identity, a privacy compliant solution should be fully compatible with

pseudonymity, a privacy-aware protocol based on attribute credentials will be

introduced in Chapter 5. Finally, emerging schemes such as group signature,
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although interesting, must deal with a set of open issues mostly associated to ef-

ficient and dynamic management of groups in terms of trust and communications

overhead.
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Chapter 4

Geolocation-based Trust

In a traditional non-VANET Public Key Infrastructure (Housley et al., 1999), to

validate and trust in an entity’s certificate for Authentication and Authorization

purposes, there should be a certificate path pointing to a trust anchor (root of

trust of a certificate). However, in a VANET system, these anchors will change

with the vehicle’s location, as a result, this trust information needs to be propa-

gated as soon as a driver joins a new geographical position, e.g. when traveling

from Germany to France. Once the driver crosses the border, new authoritative

PKI information should be sent just as shown in Figure 4.1. This chapter intro-

duces the concepts of basic and extended path validation, towards proposing an

security model, which specifically addresses the interoperability and revocation

challenges derived from v2v and v2i communication scenarios, in particular, when

a vehicle from a unknown domain is involved in the communication.

4.1 Introduction

Authentication protocols based on Public Key Infrastructure technologies (PKI )

have proved useful for VANETs, mostly thanks to the several security features

that these solutions offer. Take, for example, the use of encryption to query a

VANET’s service provider while avoiding eavesdropping. Also, the use of PKI

and digital certificates enable the use of digital signatures, in order to provide

more guarantees to, for example, exchange emergency messages among vehicles

in the case of road accidents. Unfortunately, the sole implementation of PKI on

30



4.1 Introduction

Figure 4.1: Geolocation-based Trust

a highly distributed environment such as in VANETs, comes with a important

challenges:

• Lack of real-time revocation: considering the current version of the ITU-T

X509.v3 standard (Housley et al., 2002) only considers the use of Certificate

Revocation Lists (CRLs). As it has been previously analyzed (Chapter

3), real-time information exchange is an important issue and the common

CRL-based solution might not be appropriate to VANET environments,

where in many cases, the different entities require “fresh” (updated) status

information about the drivers’ and vehicles’ digital certificates. Moreover,

alternative solutions such as OCSP also represent interesting challenges

for VANET scenarios and must be carefully addressed, in particular with

communication failures.

• Interoperability: as mentioned in Chapter 2, the use of several Certification

Authorities (CAs) in VANETs conveys several interoperability challenges.

The big question here is: how to assess the “trust level” of a CA, in order

to decide if it is “trusted enough”?
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• Privacy: Common PKI approaches are based on long-term certificates as-

sociated to a digital identity. Since PKI was not intended to overcome any

privacy issues, thus personal information contained in certificates might not

be properly used by third parties.

To provide interoperability among untrusted domains, existing approaches

based their solution on static certificates and trust relationships among partici-

pants (Section 2.2), resulting in additional security considerations e.g. vehicles

needing to access up-to-date CA’s information in order to accurately validate mes-

sages received on the road. Analyzing the previous example of a German vehicle

traveling to a different domain -France (Figure 4.1). While the German vehicle

owns a certificate issued by the German CA, vehicles and the infrastructure in

France will communicate with messages digitally signed by certificates issued by

the French CA. Authentication among the involved vehicles and the infrastructure

implies a certificate validation process that will include i) cryptographic verifi-

cations over the certificate path, ii) certificate’s validity period verification, iii)

certificate status verification, and iv) first certificate in chain verification. Based

on this example, the main interoperability issue is how can the validation pro-

cess be performed if the trust anchor cannot be determined?. Let us

remember that the German CA is unknown to the French VANET infrastructure

and vice versa. Also another question rises due to this trust issue: how will

the involved parties validate the revocation information?. Next section

introduces important concepts to provide a better understanding of the proposed

model (further discussed in Section 4.4).

4.2 Concepts

To achieve validation and interoperability among untrusted VANETs PKI do-

mains the proposed Inter-domain Authentication System for VANETs (further

discussed in Section 4.5) is based on the Online Certificate Status Protocol

(OCSP) standard (Myers et al., 1999) which is by no means new, and has been

successfully implemented in other distributed environments (Casola et al., 2007c).

In this section the basic concepts behind the proposed approach are introduced.
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4.2.1 Basic Path Validation

According to the x.509 v3 standard (Housley et al., 2002), the Basic Path Valida-

tion is the process that determines if a digital certificate is “trusted”, according

to the following criteria: i) the verifier has to verify the digital signature, ii)

the information within the certificate (expiration date, certificate version, etc),

iii) the suspension/revocation status and iv) the validity of all certificates in the

certification path until a trust anchor. It is easy to observe that the ”basic path

validation” process does not include any check to assess the trust level of the

issuing CA, and even more importantly, does not perform any real-time lookup

on the certificate’s status, thus opening a vulnerability window for the whole

system. To complete the Basic Path Validation process, our proposal introduces

the notion of near-real time validation via the Online Certificate Status Protocol

OCSP (Myers et al., 1999).

4.2.2 Multi-CA OCSP

OCSP, was created to be used instead of or as in most cases- in conjunction with

other mechanisms like local Certificate Revocation Lists (CRL), to provide timely

information regarding the revocation status of a digital certificate. Even though

it was initially designed for applications carrying highly sensitive and valuable

information, nowadays it is being used in a wide variety of systems.

When deploying a PKI, certificate validation using OCSP may be preferred

over the use of CRLs for several reasons:

• OCSP can provide more timely information regarding the revocation status

of a certificate.

• OCSP removes the need for clients to retrieve the (sometimes very large)

CRLs themselves, leading to less network traffic and better bandwidth man-

agement.

• To a degree, OCSP supports trusted chaining of OCSP Requests between

Responders. This allows clients to communicate with a trusted Responder

to query an alternate Responder, saving client-side complexity.
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OCSP is based on a request-response scheme, in which an OCSP Client issues

a certificate status query to an OCSP Responder which includes the following

data:

• Target certificate identifier, consisting of an unordered list of certificate

identifiers formed with the issuer’s distinguish name hash, issuer’s public

key hash and finally the serial number of the certificate whose status is

being requested.

• Optional extensions which may be processed by the OCSP Responder; for

example, to demand information about the Certificate Authority quality.

The OCSP request itself may be secured if the client uses a nonce (protec-

tion against replay attacks) and digitally signs it. Once received by the OCSP

Responder, this request is verified (i.e. digital signature), processed and a defini-

tive response message is produced. For each one of the certificates in an OCSP

Request, the OCSP Response message will contain any of the following status:

Good, Revoked (either permanently or temporarily) and Unknown. The signing

key of the OCSP Responder is a very sensitive issue in a PKI environment and, in

fact, depending on the certificate being used to sign the responses, we can define

three different operation modes:

• Authorized OCSP Responder mode

• Transponder OCSP Responder mode

• Trusted OCSP Responder mode

For the proposal presented in this chapter, the “Trusted mode” in Figure 4.2 will

be used to centrally provide a single OCSP service connected to several VANETs’

PKI hierarchies. In Figure 4.2 it can be observed that the OCSP signing certificate

(subject T ) belongs to a hierarchy that differs from that of the certificates being

requested (neither of A, Y or W ). For example, the OCSP service has to be

explicitly trusted by the user with subject X -. In practice, OCSP Responders

working under such centralized models, implement a response cache (the “OCSP

cache” from Figure 4.2) to increase their performance while reducing the number

of queries to external Authorized OCSP Responders and other revocation sources

(like CRLs through HTTP).

34



4.2 Concepts
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Figure 4.2: OSCP in trusted mode

4.2.3 Extended Path Validation

The methodology used to evaluate the security level provided by a Certification

Authority and decide to create a dynamic trust relationship with it, is the Refer-

ence Evaluation Model (REM) (Casola et al., 2007b). Its main goal is to provide

an automatic mean to state the security level provided by an infrastructure; REM

has been widely adopted in the past to dynamically build CA Federations.

4.2.3.1 CA Federation

In a CA Federation the members agree on a minimum set of security requirements

that must be fulfilled by all of them to interoperate. These minimum requirements

are usually a subset of the CA’s Certificate Policy (CP) and can be audited at

any time by the other members of the same Federation. If a new CA wants to

participate in the Federation, then its CP must pass through an “accreditation”

process to ensure compliance with the minimum requirements or, in other case,

to assess the candidate in which provisions (individual rules from the CP) should

be improved to become a member. Once the accreditation process has been
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passed the new member CA’s root certificate is added to a trusted repository

(usually hosted by the Federation itself). Instead of distributing new sets of

cross-certificates to all the VANET’s nodes it is only necessary to let them know

how to access the CA Federation’s repository in order to update their local copies

of trusted CAs.

4.2.3.2 Reference Evaluation Model

The methodology REM basically defines i) how to express in a rigorous way a

security policy (a Certification Policy in our particular case), ii) how to evaluate

a formalized policy and, iii) how to state the provided security level. With REM

any policy is represented through an XML tree containing all its provisions as

intermediate nodes and leaves.

1. The Structuring phase associates an enumerative and ordered data type

Ki to the n leave-provisions of the policy. A policy space “P” is defined as P

= K1 × K2 × ... × Kn, i.e. the vectorial product of the n provisionsKi. For

example, the provision KeyLenght can assume the following ordered values:

{128bits, 512bits, 1024bits, 2048bits}. The space is defined according to a

policy template that strongly depends on the application context.

2. The Formalization phase turns the policy space “P” into an homogeneous

space “PS”. This transformation is accomplished by a normalization and

clusterization process which allows to associate a Local Security Level (LSL)

to each provision. For example if a policy has a KeyLenght of 512bits, it

will be associated to the LSL = 2 and the normalized vector is (1, 1, 0, 0).

After that the provisions may be compared by comparing their LSLs.

3. The Evaluation phase pre-processes the “PS” vector of LSLs in order to

represent it by a n× 4 matrix whose rows are the single provisions Ki and

the number of columns is the chosen number of LSLs for each provision. For

example, if the number of LSL is four and the LSL associated to a provision

is l2, the row in the matrix associated to the provision in the matrix will be:

(1, 1, 0, 0). Finally, a distance criteria for the definition of a metric space is

applied. REM adopts the Euclidean distance among matrices:
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d(A,B) =
√

(σ(A−B,A−B))

where σ(A−B,A−B) = Trace ((A−B)(B − A)T )

In summary, REM’s goal is to evaluate the GSL or security level associated with

a CA through the evaluation of its Certificate Policy so trust decisions can be

taken. To better illustrate our proposal and how the aforementioned concepts

can be effectively adopted by VANETs the two basic communication scenarios

will be presented, mainly consisting of the interactions performed in v2v and v2i

communications.

4.3 Authentication Requirements in VANETs

Communications

Following the communication model presented in Chapter 2, this section analyzes

different scenarios where authentication is required and how should be achieved,

in particular highlights the challenges that are present in typical situations of the

v2v and v2i communication.

4.3.1 Vehicle to Vehicle Authentication

This scenario includes v2v communication without infrastructure availability,

considering that, in a VANET environment vehicles need to authenticate each

other in different situations that are classified according to the following:

• A vehicle offering a “service” is a good example in terms of information

sharing (personal o related to a particular service). Before granting any

kind of permission the vehicle offering the service needs to validate the

requestor’s vehicle credentials.

• A vehicle receives a message from other vehicle (e.g. a safety related mes-

sage), and therefore needs to “prove” the message’s legitimacy by validating

the sender’s credential.
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Both situations require a local authentication service able to address two main

issues: i) how to provide local authentication if the infrastructure is unavailable?,

and ii) how to deal with a situation where vehicles belong to different domains?

4.3.2 Vehicle to Infrastructure Authentication

This scenario involves vehicle-to-infrastructure communication, where vehicles

communicate with the RSUs available on the roads. The infrastructure is able

of providing different kinds of information that are strictly dependent on the

vehicle’s requests and geolocation, and that can be classified into the following

situations:

• A vehicle needs to access a location-based service or any other service of-

fered by a Service Provider (SP). Before granting access and providing the

requested information the SP must validate the vehicle’s credentials.

• A vehicle receives a message from the infrastructure (e.g. a safety related

message, service response), and therefore needs to “prove” the message’s

legitimacy by validating the sender’s credential.

• In a v2v communication where vehicles need to authenticate each other, and

in the case of infrastructure availability then the vehicles request trusted

information from the infrastructure in order to mutually validate their cre-

dentials.

All situations include the use of authentication services, which are actually

provided by the infrastructure and that must deal with the issue of interoperabil-

ity among different CAs. The main security issues to be addressed in this scenario

are: i) how can a vehicle implement interoperable and secure authentication in

VANETs?, ii) how to allow vehicles in a VANET to perform authentication un-

der different (untrusted) domains?, and iii) how to deal with the communication

failures that are inherent to the VANETs system?
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VANET1 CA1
VANET2 CA2

Authentication System

Certificate validator Trusting CA

Service Provider

OCSPOCSP

VANET2 CA2 VANET1 CA1

PA1

PA2

CA2

Figure 4.3: Security Architectural Model

4.4 Security Model for VANETs’ Communica-

tion

The security analysis of the aforementioned scenarios lead us to model the VANET

as two different networks: an ad hoc network of vehicles comprised of unreliable

and dynamic connections (v2v), and a fixed network’s infrastructure offering dif-

ferent services to vehicles (v2i). The v2i scenario models the communication

between these two networks, while the v2v scenario represents an ad hoc com-

munication. To face the issues presented by the previous scenarios, the VANET

protocol should implement optimized messages where security (e.g. digital sig-

nature mechanism and cryptosystem being used) and performance (e.g. signa-

ture size and encryption time) are balanced. The security model proposed takes

into account the overall VANET’s security and performance requirements inde-

pendently from the (proprietary) involved technology. At the design level, the

security architectural model can be represented as in Figure 4.3.
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Figure 4.3 depicts the main components of the proposed security model and

shows that a VANET can be simply modeled as a distributed system composed

by i) wireless communications among vehicles and RSUs, and ii) fixed commu-

nications among the RSUs, the Authentication System (AS), and a set of SPs

hosting VANET’s services. Note that vehicles belonging to different domains

also own certificates issued by different CAs. The creation of several PKIs each

one installing its own CA and thus giving birth to a large set of different and

untrusted security domains, represents one of the biggest interoperability and

security problems that could arise among all VANET users.

The security model proposed in this thesis faces this problem with the adop-

tion of an Authentication System, that acts as an intermediary between the cer-

tificate verifiers (vehicles and service providers) and the issuing CAs by means of

two validation mechanisms (namely basic and extended path validation)(Sections

4.2.1 and 4.2.3, respectively). The details of the proposed Authentication System

will be further discussed in Section 4.5. On the other hand, the proposed model

also faces the problems originated due to the inherent connectivity failures by

associating a Personal Agent (PA) to each vehicle’s request. The PA acts on

behalf of the vehicle that generated a service request by means of a delegation

model: the vehicle’s PA activates and interacts with the Authentication System

in the “wired” network, while keeping the vehicle’s session status. In other words,

when a vehicle needs to deal with connection failures (e.g. if for any reason loses

connection before receiving the requested information from the infrastructure),

then its associated PA will be capable of maintaining the last connection status.

As soon as the vehicle reconnects to the infrastructure, its PA will send the cor-

responding request result. Further details on the different protocols used in the

proposed security model will be discussed in Section 4.6.

4.5 Inter-domain Authentication System

In order to contribute to a solution for the aforementioned scenarios (Section

4.3), and taking into account the unique features of a VANET, the authentication

system proposed in Section 4.4 contains a set of basic functionalities that allow:
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1. The use of near real-time revocation information for multi-CA VANET

environments, based on the OCSP protocol.

2. The use of a security metric able to compute the “security level” associated

with a digital certificate, also in near-real time, in order to decide if the

VANET nodes should trust it or not.

The main goal of the Authentication System (AS) is to enable the basic and

extended path validation of digital certificates. According to the x.509 v3 stan-

dard, the validation of a digital certificate issued by any CA, may consist of two

different set of operations:

1. if the CA is trusted, the verifier has to verify the digital signature, the in-

formation within the certificate (expiration date, certificate version, etc),

the suspension/revocation status, the validity of all certificates in the certi-

fication path until a trust Anchor — basic path validation — Section 4.2.1

2. if the CA is not trusted, the verifier has to perform the same actions as

in point (1) and additionally has to evaluate if a trust relationship can be

created with the otherwise untrusted CA. This action can be performed in

a static or dynamic way — extended path validation — Section 4.2.3

While the first point is widely adopted in the literature and implemented in

many available applications, the second point is more delicate. At the state of

the art, only static extended path validation is performed and implemented in

real world applications. It is primarily based on extending trust links to an un-

trusted CA by explicit human-based agreements that result in cross-certification

processes and, the issuance of cross-certificates that the relying party can use

as Trust-Anchors. Nevertheless, the techniques to dynamically extend trust are

promising and some scientific works have appeared in the literature (Casola et al.,

2007c) to adopt innovative CA evaluation metrics towards this goal. To perform

validation operations (both basic and extended), the proposed Authentication

System is made of two main components: a Certificate Validator and a Trust-

ing CA component, as illustrated in Figure 4.4. The Certificate Validator is

in charge of providing near-real time certificate’s status information; while the
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Figure 4.4: Authentication System Components

Trusting CA component establishes a trust level across unknown domains. In the

following subsections, the main details of these two components will be described.

4.5.1 Certificate Validator

This module is in charge of improving the so-called Basic Path Validation process

(introduced in Section 4.2.1) via the use of near real-time certificate validation.

The primary goal of a Basic Path Validation process is to verify the binding

between a subject’s distinguished name or a subject’s alternative name and the

subject’s public key -as represented in the end entity certificate-, based on the

public key of the trust anchor (i.e. a Certification Authority). This process re-

quires obtaining a sequence of certificates that support that binding. To meet this

goal, the path validation process verifies, among other things, that a prospective

certification path (a sequence of n certificates) satisfies the following conditions:

• For all x in {1, ..., n−1}, the subject of certificate x is the issuer of certificate

x+ 1;

• certificate 1 is issued by the trust anchor;

• certificate n is the certificate to be validated; and

• for all x in {1, ..., n}, the certificate was valid at the time in question.
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As mentioned before, the Certificate Validator by itself cannot decide the trust

level of the issuing CA or the real-time revocation status of the digital certificate

under evaluation. These are the reasons why the “Trusting CA” subsystem is

proposed and will be introduced next.

4.5.2 Trusting CA

The Trusting CA component aims to evaluate the trust level associated with

each one of the participating CAs via two different approaches: the static trust

evaluation and the dynamic trust evaluation.

The static approach is based on off-line agreements between the CAs par-

ticipating in a VANET environment. Usually these are bi-lateral agreements,

meaning that if CA1 trusts in CA2, then the opposite is also true. Static trust’s

agreements are built using lists of trusted CAs or cross-certification processes. It

is easy to notice that both approaches are cumbersome to maintain, therefore our

proposal of using the dynamic trust evaluation approach, just as presented next.

The dynamic trust evaluation has been proposed in order to overcome the po-

tential disadvantages of the static trust evaluation in ad-hoc environments, like

e.g. VANETs. Taking into account the constantly changing trust relationships

among the CAs in a VANET, the belief is that, it is necessary to use techniques

able to compute “on-the-fly” the trust level associated to each one of them. In or-

der to do this, the Trusting CA subsystem implements two mechanisms. For eval-

uating the CA’s security level and generating the dynamic trust relationship, the

implementation of the Reference Evaluation Methodology REM- (Casola et al.,

2007b) is proposed, whose main goal is to provide an automatic mean to com-

pute the security level of a digital certificate. This methodology has been widely

adopted to dynamically build CA federations (Casola et al., 2007a) and to com-

plete the Basic Path Validation process, the Trusting CA introduces the notion of

near-real time validation, a second core component namely the Online Certificate

Status Protocol OCSP (introduced in Section 4.2.2), which is implemented as

an interface between the Authentication System and the Multi-CA OCSP. OCSP

was created to be used instead of or as in most of the cases- in conjunction with

other mechanisms like local CRLs to provide timely information regarding the
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revocation status of a digital certificate. Section 4.6 will describe the associated

protocols of an interoperability system for VANETs.

4.6 Managing Interoperability Among Untrusted

PKI Domains

The authentication system allows interoperable authentication in any distributed

infrastructure, nonetheless the successful implementation of the AS must deal

with the communication failures that are inherent for the VANET system due to

its dynamic nature (infrastructure-less scenarios and nodes mobility). Consider a

scenario where a vehicle moves from one RSU to another, where RSUs are posi-

tioned with a great distance in between, if the communication between the vehicle

and the RSU is lost then keeping the request status and the secure management

of messages are important challenges. In other words when a vehicle reaches the

communication range from the second RSU, this new RSU must be able to pro-

vide the requested service. Dealing with communication failures is an important

issue that is addressed by the AS by assuming that the communication among

vehicles and infrastructure (v2i) is asynchronous, and a PA is associated to each

vehicle. Within a VANET system both v2i and v2v scenarios can be represented

by a combination of different parameters and the corresponding authentication

protocol must cope with the particularities introduced by them:

• v2v communication takes place among two vehicles belonging to different

domains. This scenario implies 2 different actions: i) a registration process

(a vehicle asks for a temporary certificate through the infrastructure - AS

and the OCSP responder), ii) a vehicle already owns a temporary certificate

and can implement basic or extended path validation (locally or with the

infrastructure).

• v2i communication takes place among vehicle and a Service Provider (SP),

and the latter is in charge of validating the local or foreign credentials via

the AS.
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• v2v communication takes place among two vehicles belonging to the same

trusted domain and i) there is no infrastructure availability to validate

credentials, therefore the basic path validation (Section 4.2.1) must be im-

plemented or ii) there is infrastructure availability to validate credentials,

so in this case the extended path validation can be implemented (Section

4.2.3).

4.6.1 Extended v2i Communication Protocol

As mentioned in Section 2.2, a vehicle in a VANET will own a certificate issued

by its regional Certification Authority (CA), which allows inter-vehicle or vehicle

to infrastructure authentication. Within a region, credentials will be validated by

simply performing the basic path validation. In order to communicate with vehi-

cles or infrastructure in a different “untrusted” domain (e.g. a different country),

vehicles are required to first perform a registration process in the new domain, so

a new temporary certificate will be issued by the foreign Certification Authority.

The temporary certificate will be validated locally by any other vehicle within

the same domain, even if no infrastructure is available. Note that, if the vehicle

does not own the temporary certificate; in order to be authenticated the extended

path validation must be performed. This process will require a specific set of ser-

vices from the infrastructure just as shown in Figure 4.5, where a combination of

synchronous and asynchronous communication takes place in order to:

1. Authenticate a vehicle to provide infrastructural services

2. Authenticate a vehicle with extended path validation.

An alternative to include the full digital certificate in the proposed protocol

is to use a unique identification for it (let us call it CertID). This is the design

has been decided to follow, because as will be seen in Chapter 7, the use of a

CertID dramatically reduces the size of the exchanged messages. The CertID can

be build via an approach like the one used by RCF 2560 ((Myers et al., 1999)),

and just as shown in Table 4.1

Where:
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Cert id ::= SEQUENCE {
hashAlgorithm AlgorithmIdentifier,

issuerNameHash OCTET STRING, – Hash of Issuer’s DN

issuerKeyHash OCTET STRING, – Hash of Issuers public key

serialNumber CertificateSerialNumber }

Table 4.1: OCSP’s Certificate ID structure in ASN.1

• issuerNameHash is the hash of the Issuer CA’s distinguished name.

• issuerKeyHash is the hash of the Issuer CA’s public key.

• The hash algorithm used for both these hashes, is identified in hashAlgo-

rithm.

• And serialNumber is the serial number of the vehicle’s certificate for which

the status is being requested.

As shown in Figure 4.5, for the implementation of the asynchronous protocol

the proposed approach is based on a set of PAs that are able to store a session’s

requests in order to maintain its state - especially when connections are lost -.

Figure 4.5, also shows that the RSU receives a vehicle’s signed requests towards

a specific service (e.g. registration, validation or any other service offered by the

infrastructure). The RSU’s server creates a PA and associates the corresponding

request to it. Afterwards the identification of the Personal Agent (PAID) is

sent to the vehicle as an acknowledgement. In turn, the PA acts on behalf the

vehicle within the infrastructure in order to complete the authentication process

through performing the extended path validation and forwarding the vehicle’s

request to the SP after successful authentication. Finally the PA will store the

results of the original request, to be forwarded to the requestor (vehicle), even

if the connection was lost. In subsequent messages, vehicles will include their

PAID, which can be verified by the VANET infrastructure in order to return the

previously stored results. Note that the proposed protocol was designed taking

into consideration the connection constraints of a VANET (only a few messages

must be exchanged), and by adopting an asynchronous approach (messages being
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Figure 4.5: v2i Communication Protocol
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exchanged are short and do not require any complex behavior). In fact, it is

the Personal Agent residing on the RSU server and communicating with other

components within the VANET’s fixed network, the one in charge of managing the

complex elaborations. Thus in this case, security is granted due to the certificate

delegation model between the vehicle and the PA. By following the asynchronous

approach just described, if the client sends a request before the result is available,

then the server will then return a “Null” message.

4.6.2 Extended v2v Communication Protocol

This protocol is aimed at providing local certificate validation (basic path valida-

tion) in v2v communications. The underlying mechanisms have been specifically

designed to deal with the infrastructure unavailability. Just as depicted in Fig-

ure 4.6 when vehicle1 requests information, it sends a signed message to vehicle2,

which in turn generates a reqid that is sent back as an acknowledgement. In order

to perform the basic path validation without infrastructure availability, vehicle2

must have stored “cached” the Public key of the issuing CA. Additionally, in or-

der to enforce the local certificate validation, our proposal assumes that vehicles

will also be capable of storing a list of previously validated certificate identifiers

(validated through the infrastructure). This list will be stored for a temporary

period of time t, thus enabling vehicles to determine whether certain credentials

were successfully validated before, similar to CRL distributions mechanisms dis-

cussed in Section 3.3, this approach also supports distribution of cached OCSP

responses. Going back to 4.6 vehicle2 will then locally validate credentials of

vehicle1, and as in the previous protocol for subsequent messages of the session,

vehicle1 will attach the reqid in order to gather the requested information from

vehicle2.

Note that in infrastructure-less scenarios, even with the use of the list of

previously validated credentials and OCSP cached responses, there will exist a

vulnerability window that cannot be prevented (e.g. certificates that have been

recently revoked will still appear to be valid), however other mechanisms can

be used to reduce this risk such as local validation of messages according to
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vehicle 1 vehicle 2

Req_info (CertID)

Ack (result)

Ack (reqID)

Req_info (reqID)

Figure 4.6: v2v without infrastructure - basic path validation

its classification. Let us take for example the setting of different priority levels

according to the message types (e.g. warning message priority level 1, weather

conditions priority level 2, etc), by assigning “trust” levels referencing the type

of vehicle in the VANET (e.g. ambulance trust level 1, police car trust level

2, etc). With the combination of these two strategies, the aforementioned risk

could be severely reduced. The exploration of these additional strategies will be

further discussed in Chapter 6.

4.6.3 Enabling Vehicular Communication in Untrusted Do-

mains

To enable communication among untrusted domains, a vehicle (vehicle1) with

a certificate issued by its local CA (CertCA1) must first perform a registration

process in order to gather a temporary certificate from the foreign CA (CA2).

This registration process can be defined as follows.

1. A vehicle entering a new domain authenticates to the infrastructure via a
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Figure 4.7: v2v with infrastructure availability - extended path validation

RSU (this implies v2i communication just as described in Section 4.6.1 and

Figure 4.5).

2. The RSU requests to the local CA authority the issuing of a temporary

certificate

3. The CA authority validates the current certificate, extends trust, registers

the user in its directories and issues the new temporary certificate that is

delivered to the vehicle via the RSU.

Once the registration process has been successful; a vehicle can authenticate

another vehicle in both basic and extended modes. In particular if the infras-

tructure is not available, then the protocol described in Section 4.6.2 and Figure

4.6 must be performed. If the infrastructure is available then the extended path

validation is possible, just as shown in Figure 4.7.

Figure 4.7 represents the communication flow involving the following scenar-

ios:
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1. v2v communication between two vehicles belonging to untrusted domains:

this scenario might involve a previous registration process where the foreign

vehicle will own a temporary certificate issued by the local CA, and this

registration process will simplify further validation interactions. Within

this process the infrastructure will perform validation and authentication

process via the OCSP responder in order to gather certificate information

from the issuing CA. Note that without the registration process and con-

sidering infrastructure availability it is still possible to perform the same

validation process via OCSP, however the main advantage of the tempo-

rary certificate is to reduce the number of executions of the whole process

and ease the interactions among vehicles when no infrastructure is available

(local validation of certificates issued by the same CA).

2. v2v communication belonging to the same domain: considering the infras-

tructure availability this scenario will involve the implementation of the

extended path validation for certificates issued by the same CA.

The interactions in the v2v communications are shown in Figure 4.7 and explained

next. First, vehicle1 sends a message to vehicle2; this message will include its

own certificate identifier (CertID1). Then, vehicle2 replies with a reqID as an

acknowledgment to vehicle1’s request. Afterwards, in order to perform the ex-

tended path validation, vehicle2 sends to the infrastructure (via RSU) a message

including both certificate identifiers (CertID1 and CertID2). Just as described in

the v2i protocol (Figure 4.5), the RSU generates a PA associated to vehicle2’s

request and sends the PAID as an acknowledgement. The PA acts on behalf

vehicle2 and performs all actions described in the v2i protocol. The PA stores

the result that will be consulted by vehicle2 within subsequent messages in the

session. To validate whether the messages belong to previously established ses-

sion the PAID must be included. Once vehicle2 has the validation result from

the infrastructure is then able to provide the results to vehicle1 in subsequent

messages of the session that will include the reqID.
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4.7 Open Issues

In this chapter an authentication system able to provide authentication among

vehicles belonging to a different domain has been proposed, the AS is based on

two main components, a OCSP based component that provided online status

verification of a given certificate and a REM based component to build dynamic

CA federations and establish dynamic trust relationships, since the introduced

concepts rely on the infrastructure availability, a PA was also introduced to deal

with the communication failures that are inherent to a VANET system. Nev-

ertheless, two main open issues could be identified, i) the propose AS does not

provide any privacy protection and ii) in scenario where the infrastructure is not

available at all the local validation of certificate implies a security vulnerability

window. To address the aforementioned privacy issues, the following Chapter in-

troduces a privacy enhancing protocol based on the implementation of attribute

credentials which in turn could be implemented on the PKI-OCSP based solution

just described, finally the to be able to reduce the security vulnerability window

on infrastructure-less scenarios, a policy evaluation mechanism will be introduced

in Chapter 6.
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Chapter 5

Enhancing Privacy in Vehicular

Communications

This chapter presents a Privacy Enhancing Model which introduces the concept

of Attribute Based Credentials (ABCs) to provide conditional anonymity. An

overview of important concepts regarding ABCs will be introduced, followed by

the description of the Attribute-Based Privacy model and its main architectural

components. Additionally, the Anonymous Information Retrieval (AIR) privacy

protocol based on query permutation and forgery aimed at alleviating user pro-

filing in v2i communications will be described.

5.1 Attribute-Based Privacy

In typical PKI approaches, the use of certificates leads to unnecessarily revealing

the identity of its holder, moreover, as previously discussed, PKI does not guaran-

tee any privacy protection. In VANETs communications, when a driver or vehicle

requests information to any other entity, the corresponding entity only needs to

verify if the vehicle is authorized to access the requested resource or service, and

does not necessarily needs to learn the corresponding identity. Revealing more

information than necessary could lead to potential privacy risks. An attacker

hearing the communications might be able to trace and link communications and

transactions of each vehicle, in particular, in those scenarios where there are not

enough vehicles communicating. The passive collection of information will enable
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the attacker to keep track of driver’s/vehicle’s actions (e.g. behavior, movements,

preferences, characteristics, etc.).

To overcome the aforementioned privacy issues, next section introduces basic

concepts of Privacy Attribute-Based Credentials (P-ABCs) towards proposing

an Attribute-Based Privacy (ABP) protocol for VANETs, that will effectively

implement P-ABCs specifically to provide conditional anonymity and minimal

information disclosure.

5.1.1 Privacy Attribute-Based Credentials (P-ABCs)

P-ABCs, are basically a PKI with privacy enhancing features. P-ABCs are issued

just like ordinary cryptographic credentials (e.g. X.509 credentials) using a digital

(secret) signature key (Camenisch et al., 2012).

However, the main enhancing feature in P-ABCs, is that, credential’s at-

tributes could be transformed into ‘unlinkable’ presentation tokens able to protect

the holder’s privacy, and verifiable in a similar form, just like cryptographic cre-

dentials (using the public verification key of the issuer), and that offer the same

strong security. Next section will introduce the main components in P-ABCs.

5.1.1.1 Components

This section describes the different entities involved in P-ABCs and how do they

interact with each other.

User in P-ABCs the user is the entity to which the credentials are issued, and

responsible for managing and selecting from which credential, which at-

tributes will be disclosed and to which entities.

Attribute Authority (AA) the AA is responsible for issuing credentials.

Verifier the verifier is an entity willing to protect access to a resource or service,

and is the one defining the attributes that a user must prove for the access

to be granted.
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Revocation Authority (RA) the RA is responsible for revoking issued cre-

dentials, in a form that these credentials will not be able to generate pre-

sentation tokens.

Inspector a trusted authority able to de-anonymize presentation tokens under

specific circumstances.

5.1.1.2 Features

This section presents a high level description of the main functionalities offered

by the P-ABCs. A more technical explanation can be found in (Camenisch et al.,

2012).

Credential issuance At initial stage, the AA generates public issuer parameters

and a secret issuance key (similar to public key). The issuer parameters are

used by verifiers to verify the authenticity of presentation tokens, and to

create presentation tokens

Token generation The presentation token is derived from one or more creden-

tials

Token presentation Tokens are sent to verifiers to provide certified information

to from any number of credentials. The token can reveal a subset of the

attribute values in the credentials or prove that one or more values satisfy

a certain predicate. Presentation tokens support the use of pseudonyms.

Presentation Policy The presentation policies are published by the verifiers,

and determine the conditions the must be met to access a resources or ser-

vice, which credentials/issuers does the verifier trust, and which information

should the token reveal or prove.

Token inspection Token inspection is a form to somehow reverse anonymity,

conditional anonymity is provided only if token were generated in compliant

with a presentation policy that specifies the information that should be

recoverable by an inspector.
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De-anonymization Is the result from the token inspection, typical example is

related to liability, however, other scenarios include that for certain service,

the SP might rely in a Trusted Third Party (TTP) for example for payments,

the SP will publish in the presentation policy which information should be

encrypted using the TTP public key.

5.1.2 Attribute-Based Privacy (ABP) Protocol

In VANETs the implementation of a VPKI with hierachical certification authori-

ties is envisioned. In Chapter 4, an AS able to provide PKI-based authentication

among untrusted domains was introduced. However, although the proposed ap-

proach copes with interesting challenges, privacy issues remain unsolved. Thus

additional mechanisms to support conditional privacy must be considered as an

integration of the underlying solution. This section describes the proposed PKI-

compliant ABP protocol, which inspired by P-ABCs implements conditional pri-

vacy, specifically to address vehicle’s tracking (big brother scenario). Next section

describes the main component of the ABP.

5.1.2.1 Entity’s Definition

In compliance with the VPKI and P-ABCs, as shown in Figure 5.1, the ABP

defines three different types of entities the will be introduced next.

Attribute Authority (AA) the AA is the authority responsible for issuing and

revoking the corresponding attribute credentials. In VANET scenarios the

AA could be represented by the regional CA or by any trusted authority

in charge of issuing, revoking, and when applicable revealing the attribute-

based credentials. Note that ABCs are different than the short-term cre-

dentials issued by the AS.

Vehicle/Driver in ABP, entities to which the AA will issue the ABCs, will be

mainly represented by vehicles and drivers. This entities will be responsible

for managing and selecting from which credentials, which attributes will

be disclosed and to which entities, and ultimately will be responsible for

generating a presenting the corresponding presentation tokens.
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Figure 5.1: ABP protocol involved entities

Service Provider (SP) The SP consists of any relying party willing to protect

access to resources, information or services, in common VANET scenarios

the SP could be represented by RSUs, vehicles, authorities, or services pro-

vided by the infrastructure. In VANETs SPs will define the attributes and

conditions that should be included in the presentation tokens for vehicles

and drivers to prove, and, the access to be granted.

The implementation of the ABPs in VANET relies on the existence of the PKI-

based AS. That is, since ABP strongly depends on the AS, it is very likely that the

AA will actually be represented by the same CA responsible for issuing certificates

in VANET. The process to obtain the attribute credentials will be described next.

5.1.2.2 Credentials Issuance

By implementing the AS, the credential issuance process assumes that a vehicle

in a VANET posses a certificate issued by a trusted CA. At initial stage, upon

request, the vehicle will provide either the CertID or the full certificate to AA.
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The AA will perform the basic or extended path validation process to verify that

credentials have not been revoked. The provided certificate could also consist of a

short-term certificate based on an underlying pseudonym solution. On successful

validation, the AA will then issue to the vehicle the corresponding ABCs. ABCs

will include encoded certificate’s information, such as, the expiration date, the

CertID, revocation information, etc. Additional information needed to generate

presentation tokens will also be included.

5.1.2.3 Presentation Tokens

Tokens are data artifacts that contain the required information, and the support

cryptographic evidence, which are exchanged between the vehicles and the service

providers. A token is generated from the vehicle’s /driver’s P-ABCs, and in ABP

are assumed to be pseudonym-based and therefore unlinkable (a SP cannot tell

if two different tokens were derived from the same credentials), unless the token

has been intentionally generated to reveal linkable information (e.g. in case of

liability) the AA could trace back the underlying credentials. In general, a token

will be generated specifically to meet the corresponding SP’s conditions in order

to grant service access. As a result, when a token has been generated, it will be

attached to the vehicle’s request. On reception, the SP will perform two different

actions, i) the token-certificate related validation through the AS, and, if positive,

ii) the ABC validation of the token.

5.1.2.4 Credentials Revocation

In ABP, the revocation of credentials will be done by the AS, providing near-real

time certificate validation via the multi-CA OCSP component. In addition, since

certificates issued by the AS are short-term, the related P-ABCs will be regularly

updated, in particular the non-revocation evidence attribute.

5.1.2.5 Providing Minimal Information Disclosure

This section presents the communication flow of the ABP, and how the mini-

mal information disclosure could be achieved in an inter-regional scenario, next

credential issuance will be described.
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1. A vehicle, vehicle1 with a certificate issued by the CA1, travels to a different

domain infrastructure.

2. Once crossing the inter-regional border, vehicle1 requests a set of P-ABCs

to the current infrastructure, by providing its certificate issued by the CA1.

3. The infrastructure which belongs to a domain with a CA, CA2, since CA1

is unknown, the infrastructure performs the extended path validation in-

troduced in Section 4.2.3.

4. If the certificate of vehicle1 is valid, the CA2 will then issue a set of tem-

porary P-ABCs, so the vehicle will be able to interact with the current

infrastructure with no need to perform further validations.

After the credential issuance has been successfully performed, vehicle1 will be able

to communicate with other vehicles and services with a local-domain validation.

Now imagine a second vehicle, vehicle2, requesting information related to the

driver’s license of vehicle1. For the vehicle1 to verify is an authorized entity is

requesting the information, the following steps must be done.

1. vehicle1 received a message requesting information related to the driver’s

license.

2. Before granting any access to the information, vehicle1 requests to vehicle2

to provide a token that can prove that vehicle2 is an authorized entity, (e.g.

by proving the type of entity or an associated trust level).

3. vehicle2 generates and presents a token proving that is an authorized entity

(probably this information is disclosed), and that its associated trust level

is equal or greater than the one required to access the information.

4. vehicle1 performs both validations, on the associated certificate (issuing

CA, status of certificate, etc), and on the P-ABC that meets the defined

conditions.

5. Upon successful credential’s validation, vehicle1 selects the attributes from

the associated driver’s license, generates the token, and presents it to the

vehicle2.
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6. vehicle2 also performs the two validations on the information received.

Look that, this scenario suits the minimal information disclosure, since, vehi-

cles are able to decided on which attributes should be disclosed, meaning that,

the vehicle1 only needed to provide evidence that the associated driver’s license

was valid and there was no need to disclosed for example the driver’s nationality

that is currently visible in non-digital driver’s license.

5.2 Providing Anonymity and Unlinkability in

VANETs

Privacy in vehicular networks can be considered from different perspectives: i)

identity privacy (linking an identifier to an user or vehicle, ii) location privacy,

which includes speed, position and traveling routes, and iii) data privacy, which

includes not only information contained within the vehicle such as license plate

and driver’s identifiable information, but also by means of services requested by

the users/vehicles which leads to user profiling. So far, most of the research

efforts done in the privacy of VANETs have focused only in protecting user

identification and implicitly user’s location giving very little attention to the

information contained in vehicular communications. While identity and loca-

tion privacy have been addressed by proposing a wide range of pseudonimity

solutions, pseudonymity cannot prevent an attacker from collecting other user’s

related data; thus, user profiling can be achieved just by the passive collection

of communication information regarding vehicles’ activities, just by the simply

contents of their queries. The main objective of this section is to cope with the

privacy issued the lead to user profiling, by proposing an anonymous informa-

tion retrieval protocol mainly based on user collaboration to privately retrieve

information from Service Providers (SPs)

5.2.1 Introducing Query Forgery and Permutation

The proposed protocol is based on the one presented by (Rebollo-Monedero et al.,

2010), which relies on the concept of query forgery. Query forgery refers to the
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process of attaching bogus queries (1 or more) to the authentic ones, in order to

prevent an attacker or service provider to learn about users real interests, meaning

that, if just one user intends to query a service provider, the same user will send

two different queries and the service provider will not discern of which matches

the user’s real interests. In addition, two different approaches were introduced i)

query permutation on a chain of users and ii) query permutation of a trellis of

user. In the query permutation process, a number n of collaborating users attach

their queries and change the order of them before delivering to the corresponding

service provider, the approaches aforementioned differ from the form users are

organized to collaborate (chain and trellis) and thus, provide a different privacy

degree. Due to the special characteristics that are inherent to a VANET system,

this protocol focuses on the query permutation considering a chain of users rather

than a trellis of users, since in VANET is of utmost importance to consider the

performance issues derived from these type of solutions.

5.2.2 Assumptions

Before describing further details of the proposed protocol in a given scenario we

shall first introduce the considered assumptions corresponding to the vehicular

communication system and participant vehicles collaboration.

• It is assumed that neither the SP nor other cooperating vehicles can be

completely trusted regarding the disclosure of a user’s private information.

• Participant vehicles possess a pseudonym-based (short-term ID), managed

by an existent solution (e.g. previously proposed ABP for VANETs).

• Relying in the ABP protocol and presentation tokens, SPs are able to verify

is the entity requesting a service meets the required conditions.

• Services are provided in a “flat-rate” fashion where accountability is not an

issue.

• Vehicles mobility is spatially restricted and spatially dependent due to the

mobility patterns already defined by the infrastructure.
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• Temporary group navigation is possible due to the geographical proximity

and spatial dependency of vehicles.

• Messages exchanged by vehicles and SPs might be encrypted.

• Both queries and replies contain accurate information that may not be

perturbed.

5.2.3 Querying The Infrastructure

The proposed privacy protocol specifically aims to provide unlinkability by pre-

venting unauthorized disclosure of vehicle’s queries. This approach assumes the

existence of a pseudonym generation mechanism/solution that protects users’ real

identities, being aware that: pseudonyms provide temporary anonymity, but the

sole use of pseudonyms cannot prevent the whole user profiling process. Tech-

nically, the protocol is independent of the underlying security solution, although

the presented scenario relies on the existence of a pseudonym solution achieved

thanks to the implementation of attribute-based credentials, which in turn relies

on a PKI-OCSP based protocol including a set of traditional cryptographic mech-

anisms able to prevent the unauthorized disclosure of the messages exchanged by

vehicles and SPs. The protocol also advantages VANET’s unique features by re-

lying on the existence of a cooperative structure of vehicles, which is possible due

to the fact that, vehicles travel along trajectories with geographical proximity to

other vehicles and making possible to navigate as a group. In the following the

main scenarios are described.

5.2.3.1 Vehicle Query Forgery - Simple Use Case Scenario

In the simple use case scenario, when a single vehicle must request a service from

the Service Provider (Figure 5.2), vehicle simply sends the query via RSU. With

the given scenario, either the RSU or the SP could relate the information of the

query to the actual vehicle. By implementing the query forgery concept, the

vehicle generates a forged query and send it along with the authentic one just as

illustrated in Figure 5.3, in order to ensure that a SP or any attacker overhearing

the communication cannot completely ascertain the vehicle’s current information
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Figure 5.2: A vehicle requesting a service - simple query scenario

Figure 5.3: A vehicle requesting a service - forged query scenario

interests. As shown in Figure 5.3, the authentic query is labeled with ‘1’, and the

forged one, with ‘0’. Thus, the SP cannot discern which of the submitted queries

is authentic or matches user’s real interests.

5.2.3.2 Vehicle’s Query Permutation - Extended Scenario

In the single-user case of Section 5.2.3.1 the transmission of two queries could be

regarded as the collaboration of two different vehicles, each of them submitting

a different query to the service provider, as a result, the service provider could

not discern which query belonged to whom. Note that a RSU could act as an

intermediate in the communication between vehicles and services providers, but

could also be referred as a service provider itself. In the following an extension

of the scenario described in (Figure5.3), which is based on vehicles’ collaboration

will be introduced. Based on the concept of query permutation on a chain of

users introduced in Section 5.2.1. This scenario consists of n vehicles which form

a chain. In this scenario the first vehicles, represented by vehicle 1, attaches two

different queries, an authentic and a forged one in random order, and forwards
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Figure 5.4: Service request through vehicles collaboration - forged query permu-

tation scenario

them to a second vehicle represented by vehicle 2, willing to participate, that

is, a vehicle with a clear intention of requesting a service. In turn, vehicle 2

generates its own query, and then produces a random permutation of the queries,

labeled in Figure 5.4 as ‘0’,‘1’ and ‘2’, respectively. The randomly permuted

list of queries is therefore sent to a third vehicle, vehicle 3, which performs the

same steps as vehicle 2. Theoretically, a maximum number of n vehicles could

collaborate, where, the last vehicle, vehicle n, will deliver to the service provider a

random permutation of (n+1) queries. In this scenario, neither the provider nor

the intermediate vehicles or RSU could know for certain which authentic query

was generated by which of the vehicles.

To deliver the corresponding (n+ 1) replies generated by the SP, the process

is reversed as shown in Figure 5.4.

5.2.4 Anonymous Information Retrieval (AIR) Protocol

The proposed approach could be implemented in two different operation modes

namely single query and group query communication, which somehow follow the

scenarios described in Sections 5.2.3.1 and 5.2.3.2 respectively.

5.2.4.1 Single Query Communication

This operation mode is the simplest and basically relies on the assumption that

there is no need for a previous establishment of a communication group to achieve

certain degree of privacy. Similar to Section 5.2.3.1, in this scenario, the first ve-

hicle, vehicle 1, transmits two queries (authentic and forged) as the collaboration
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of two different vehicles (real and imaginary). On reception, intermediate vehi-

cles (n− 1) might be willing to participate, and taking advantage of the already

started process, insert their own queries and perform the query permutation pro-

cess, so that, a better degree of privacy could be achieved. Note that in the

worst-case scenario, the SP will received only two queries. To deliver the corre-

sponding replies, a similar process must be performed, vehicle n will delete its

own query from the list and reverse the permutation before sending it to vehicle

(n-1). A important advantage is that because no previous group communication

must be established a better performance degree could be achieved. On the con-

trary, the main drawback of this approach is that provides a higher vulnerability

to statistical privacy attacks.

5.2.4.2 Group Query Communication

Opposite to the single query communication,in the group operation mode, the

initiator vehicle must first establish the group by performing the following steps:

1. Vehicle 1, initiates the handshaking process, by sending a “join group”

request to its neighbors1.

2. Once a number of acknowledgments are received, vehicle 1 will automati-

cally evaluate a set of parameters such as speed, direction and distance to

be able to select potential participants. At the application level this can be

achieve by implementing approaches such as the one described in (Borsetti

et al., 2009)

3. On selection, queries will be inserted and forwarded by the members of the

group following an order determined by a hash function, in order to prevent

strategic ordering of vehicles and therefore avoiding collusion attacks.

A clear advantage of the group operation mode lies in the fact that with collabo-

rative participation a higher privacy degree could be achieved. However, the main

disadvantage consists in the group establishment, not only from the performance

perspective, but from the dynamic nature of a VANET, nodes might leave the

communication range once agreed to participate.

1Nodes within communication range, typically within 250m distance
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Type Information

JoinGroupReq (R′) R′ = {ID||location||timestamp||payload}
AckGroupReq (A′) A′ = {ID||location||timestamp||payload}
Query Qn= {Query||QID}
Single query message (M) M = {Qn||IDn}
First vehicle message (M ′) M ′ = {Qn||Qn−1||IDn−1 ||IDn}
Multiple query representation (M ′′) M ′′= {Qn||Q1||Qn−1 ..IDn−1 ||ID1 ||IDn }

Table 5.1: Messages and queries definition

5.2.4.3 Message Definition

In vehicular communications, participant nodes exchange different types of mes-

sages, Table 5.1 shows the minimum information required by each of the messages

that are exchanged in the proposed protocol. In Table 5.1 the ID parameter refers

to a PseudoID (based on anonymous credentials) and the payload may contain

additional information such as vehicle direction and speed. The minimum number

of exchanged messages for the different operation modes is then determined as fol-

lows: For the single query communication mode, the total number of exchanged

messages will be 2 (M ′+ (n − 1)M ′′). In the group communication operation

mode, the initiator (first vehicle) will additionally broadcast a message R′ and

process a number of m(A′) messages. To provide confidentiality to queries, each

vehicle will encrypt its query with the SP’s public key SPpk. This on one hand

will protect the queries in such a way that collusion attacks would imply SP’s

participation. In addition, replies might also be ciphered with a temporary key

(session key) Vtk included in the message, and that cannot be linked to the user’s

real identity, and will prevent the unauthorized disclosure of the reply.

5.2.5 Discussion

The Anonymous Information Retrieval protocol is aimed at providing privacy

and unlinkability regarding both queries and replies for all collaborating vehicles

to reduce user profiling. Under the general assumption that neither vehicles nor

RSUs or SPs could be completely trusted. That is, if an attacker by any reason,

determines the link between two or more different pseudonyms might be able to
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automatically evaluate a vehicle’s position and/or trajectory, but will not be able

to disclosed vehicle’s requested services or particular interests. Even in the case,

where a pseudonym could be linked to driver’s real identity, a complete profile of

the driver and his activities could not be automatically generated. Note that, in

principle, for each 1 < v < n, vehicle’s v privacy can be completely compromised

only if the two participant vehicles in positions (v − 1) and (v + 1) in addition

to the service provider, collude to compare the information available to them

(list of queries and replies). Nonetheless, for this approach to be achievable,

still open issues must be taken into account. In particular efficiency in vehicular

networks has become a major concern; the dynamic nature of VANETs’ v2v and

v2i communications required a real-time transmission of information. In order

to fulfill the given real-time requirements, the privacy solution must be effective

and provide an acceptable performance in terms of computational and bandwidth

needs. Since, in the presented mechanism the number of queries and replies will

remain as (n + 1), which obviously imply more computational and bandwidth

overhead. In a similar form, the size of the packet will increase according to the

number of participants, specially when considering the cryptographic information

that will be included to provide confidentiality. Thus, the maximum number

of participating vehicles should also be taken into consideration. It is worth

to mention that, current approaches aimed a preventing user profiling in v2i

communications, have only considered the use of pseudonyms, which, as explain

in this chapter is not enough. Different authors have proposed the use of vehicular

groups along with a group signature scheme (Section 3.4), to provide anonymous

access to location based service applications in VANET. A clear disadvantage is

the general assumption that the group leader can be completely trusted.
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Chapter 6

Context-based Trust Validation

In privacy-conscious environments (e.g. eHealth), it is a common belief that indi-

viduals should be able to keep and manage access to their personal information,

for example by choosing to which entities their personal data should be disclosed.

This chapter focuses on VANET’s data privacy and trust management from the

driver’s centric approach, which is founded in a Context-Based Trust Validation

Model (TVM) introduced next.

6.1 Introduction

Inspired by eHealth systems, which highly demand the protection of a patient’s

personal data. The Trust Validation Model (TVM) focuses on the trust evalua-

tion of entities for protecting driver’s personal information from being disclosed

to unauthorized parties and, at the same time, to enable decision making based

on the trust level assigned to the communicating entities. In other words, the

driver’s explicit consent authorizes two different tasks i) disclosing his personal

identifiable information, possibly stored in the vehicle (e.g. electronic license

plate, driver’s license, etc.), or by presenting certain attributes that could be

categorized as private information, and ii) processing received information(e.g.

safety message) on intermittent infrastructure-less scenarios, where an online vali-

dation with the infrastructure, cannot be always performed, a further description

of these two scenarios is presented next, which will allow the definition of the

necessary components of the TVM introduced in Section 6.3.
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6.2 Use Case Scenarios

This section defines two infrastructure-less scenarios, where due to the lack of v2i

validations (Section 2.1.1), a security vulnerability exist and must be mitigated

by implementing additional mechanisms.

Scenario 1: Private Information Access Vehicles are considered highly per-

sonal devices that are kept for long, and as discussed in Chapter 2, will be

able to store great amounts of information, including private information,

therefore unauthorized access to such information should also be carefully

considered. Let’s take for example the scenario where a vehicle, vehicle1, is

requesting private information of the driver/vehicle (e.g. past locations) of

vehicle2, assuming that, the requesting entity, vehicle1, is an “emergency

vehicle” just as shown in Figure 6.1. This ’basic’ scenario, raises a few

questions: i) if messages in VANET will be sent anonymously, how does

the vehicle2 verifies the type of entity of vehicle1, ii) how can the trust level

of vehicle1 could be defined and therefore validated?,iii) under which cir-

cumstances will vehicle2 disclose the information, and moreover iv) which

information should be disclosed?.

To be able to answer this questions, it is important to define the context in

which the access to the information will be granted, and exactly what type

of information will be accessed. The context of the information will then

support the trust validation process that will ultimately allow vehicles to

take the appropriate decisions.

Scenario 2: Messages Processing Broadcasting messages to warn drivers about

different situations, is one of the most important applications in VANETs.

Imagine that, a vehicle, vehicle1 receives a number n of “warning” messages

from supposedly n vehicles reporting an accident a few kilometers away, just

as depicted in Figure 6.2. This scenario, which is expected to become a com-

mon scenario in VANET’s safety applications, and where messages are sent

anonymously, raises a very important question: how will vehicle1 know if

messages should be trusted?.
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Information 
request

trust?entity type?

trust level?

which attributes to 
disclose?

Figure 6.1: An emergency vehicle is requesting private information to another

vehicle on the road.

To be able to answer that particular question, it is of utmost importance to

learn about the current situation or context, e.g. how many messages were

received?, were all messages originated from the same vehicle?, what kind

of entities were involved?, from which direction are messages coming? and

how fresh are these messages?. To cope with these issues, it is necessary

to provide a component able to validate the trust level by evaluating the

context parameters that will be provided, and therefore reject or accept the

message by for example lowing the speed, taking a different route, etc.

As it can be observed, in both scenarios it is necessary to implement a mecha-

nism able to evaluate the overall trust level defined by the combination of different

variables provided by the context. Based on the trust level, vehicles then will be

able to take the appropriate decisions.

6.3 Trust Validation Model

The Trust Validation Model (TVM) mainly supports decision making, by evalu-

ating the trust level of contexts derived from the aforementioned scenarios. The
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Accident!

Accident!

(n) vehicles have sent a
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Timestamp01

Location01
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Attribute01

...
Attributen

Message01

Figure 6.2: A vehicle received n warning messages reporting a road accident.
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TVM, first classifies the type information contained in the vehicle and the type of

messages to be exchanged by assigning different labels to the information accord-

ing to its sensitivity level, secondly, validates the sender’s or requestor trust level,

according to a set of attributes previously assigned, and mainly based on the role

and the type of an entity along with other context information. This process

is achieved thanks to the proposed P-ABC protocol presented in Section 5.1.1.

Finally, it matches the context information with a pre-defined policy, which, in

turn will specify the action that should be performed.

Before further describing the TVM, it is important to mention that, the TVM

relies in the following assumptions:

• The existence of Tamper Proof Device (TPD) or Trusted Platform Module

(TPM) able to store security information and perform crytographic/secure

operations.

• The communications in the covered scenarios, are done anonymously.

• Trust validation can be performed even if no “online” validations via v2i

communications are available.

• As already mentioned, the existence of an attribute-based solution is as-

sumed, in this proposal the TVM takes advantage of the P-ABC protocol.

Next, the basic concepts behind the information classification will be clarified.

6.3.1 Information Classification

For the sake of simplicity initial classification of the information will be performed

in correspondence to the type of scenarios aforementioned. However, any driver

should be able to establish its own classification according to his particular privacy

and trust concerns.

6.3.1.1 Private Information

Private information refers to all kinds of information that could be stored in the

vehicle, this obviously, includes attribute credentials and the attributes to be
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disclosed to corresponding authorized parties. In this classification, Information

Labels (IL) will be assigned according to the corresponding scenario, and, the re-

quired privacy level (from now on referred as the Global Security Level (GSL)1)

to access it will be assigned, note that, the privacy level assigned to the informa-

tion, should correspond to the GSL provided in the TVM (further discussed in

Section 6.3.3. An example of labels that could be applied are described next:

• Liability: private information that should be disclosed to authorized parties

only in situations where liability is required (i.e. authorized law enforcement

agents);

• Emergency: information that should be disclosed to authorized parties in

emergency situations (i.e. emergency vehicle -paramedics).

• Services: information that should be disclosed to services offered by the

infrastructure (e.g. when accessing infotainment applications). Note, that

this information is application related, and will strictly depend on the ser-

vices available in the infrastructure.

• Personal: information that should be disclosed to authorized parties for

example to interact with known vehicles when traveling in groups.

• Public: information accessible to any party, no privacy checks are required

by the own vehicle in order to be disseminated. In turn, receivers might

need to perform trust validations, in order to decide whether or not received

information must be trusted, which is strongly related to the classification

presented next.

6.3.1.2 Public Information

This classification refers to all the information in VANETs that is public to its

participants, and that it is no precisely stored in the vehicle, but in turn is rep-

resented by commonly exchanged messages with the main objective of informing

1Terminology defined by the REM methodology Section 4.2.3.2
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Personal Emergency Public

Liability Services

Emergency Traffic management

< other … >Safety

Collaboration

PRIVATE INFORMATION
< stored in vehicle >

PUBLIC INFORMATION
< broadcast >

< other… >

Control

Figure 6.3: Generic Classification of Information.

vehicles about various situations, such as, traffic management, emergency warn-

ings, or nodes misbehavior. Therefore, within this classification, information

could be labeled as follows:

• Emergency: public information about emergency situations such a fatal

road accidents where actions are required and therefore must not be ignored.

• Safety: public information mainly about road conditions, specially aimed

at preventing potential accidents.

• Traffic management: public information to alert vehicles about traffic con-

gestion, aimed at improving the traffic flow, where actions such as lowing

the speed, or changing trajectories might be required.

• Control: public information that is periodically sent in the form of ’hello

beacons’.

• Collaboration: information that will be disseminated to request vehicle’s

collaboration such as group forming to various objectives.

As it can be inferred from Figure 6.3, classification of messages could also be

extended, naturally considering the driver’s trust concerns, since in most of them,
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different actions are required, additionally a trust level referred also GSL should

be assigned. Nevertheless, before trust-based decisions can be taken either for

an entity willing to access driver’s private information or to decide whether or

not to trust any received public information, its is mandatory to perform a trust

evaluation on involved entities’ attribute credentials, next section introduces the

relation between VANETs involved entities and their corresponding trust levels.

6.3.2 Defining Entity’s Trust Level

Trust Levels (TLs) will be provided to entities participating in VANETs in the

form of attribute to be disclosed in different scenarios such as the ones described

in Section 6.2. In order to define what level of trust must be assigned to vehicles,

first, a general classification of vehicles must be done, the type of the vehicle will

be referred as Entity Type (ET). Note, that vehicles can be classified according to

a wide range of parameters. However, in the proposed context only the vehicle’s

‘role’ will be considered. As a result, a ET can be for example emergency, police,

traffic authority, private vehicle, etc. Initially, a default TL could be assigned

by authorities issuing credentials and the TL will correspond to the ET of the

vehicle.

• Zero Trust: (TL = 0), an entity which trust level cannot be validated or

that, actually posses a zero trust value (further discussed in this section).

• Low Trust: (TL = 1), first level of trust that can be assigned by default to

private vehicles.

• Medium Trust: (TL = 2), second level trust that can be assigned by default

to regional authorities such as police vehicles or traffic authorities.

• Semi-full Trust: (TL = 3), third level trust, that can be assigned bye default

to emergency vehicles, and other related authorities.

• Full Trust: (TL = 4), fourth level trust assigned either to enforcing law

authorities in liability cases, or manually assigned by the driver to an entity

which is well known and fully trusted.
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Note that with the implementation of reputation systems or any other solution,

able to detect both misbehaving nodes and collaborating ones, it is very likely

that the default assigned values will change. In this scenario, credentials, will be

updated to the new TL level, where, misbehaving vehicles could loss credibility

when decreasing their default TL or become some kind of reference when, due to

collaborating behavior the TL is increased. Therefore a TL namely ’Untrusted’

with a (TL = −1) is also defined, specially for misbehaving vehicles during the

warning period1. In summary, the combination of the TL and the ET attributes,

will partly define the context in which information could be trusted or disclosed.

Next section introduces the TVM main components, followed by the description

of the main processes.

6.3.3 Model Components

• Credential Validator: Provides the necessary mechanisms to validate the

provided P-ABCs.

• Information Classifier (IC): This module determines the type of information,

that has been requested or has been received. Once the information type

has been identified, obtains the corresponding GSL required to perform any

action defined in the corresponding policy.

• Context Manager (CM): This module is in charge of storing for time (t) (a

pre-defined time interval), context information, that will be provided to the

TE enabling the GSL validation.

• Trust Evaluator (TE): This module establishes different context scenarios

in order to validate the corresponding GSL needed to match any pre-defined

policy.

• Policy Manager (PM): This module provides the mechanisms to be able to

define, validate and match any pre-defined policy. Based on the information

received from the rest of the modules, matches the corresponding policy,

and, upon results an action can be performed.

1Assuming that, vehicles will not always operate in the same mode.
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Figure 6.4: Communication flow among the TVM components.

6.4 Trust Evaluation Communication Flow

Going back to the scenarios described in Section 6.2, this section will illustrate

how will trust validation will be achieved, by describing the main flow among the

different components of the TVM, just as shown in Figure 6.4 . Access control

will be introduced next, followed by the message processing scenario.

6.4.1 Context-based Access Control for Private Informa-

tion

A VANET’s vehicle is able to request any available service to the infrastructure,

but at the same time can offer and request “services” to other vehicle. Let’s take

for example the scenario depicted in Figure 6.1, an emergency vehicle requesting

information. The vehicle will need to identify first which entity is requesting

information, to be able to select the corresponding attributes that might be dis-
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closed. However, since the communications are assumed to be done in an anony-

mous fashion, how will the vehicle perform the authorization checks and decided

whether or not the access to its information will be granted?. To achieve this

goal, on one hand the driver/vehicle can decide which personal information can

be accessible and the minimum required security level to access such information,

and on the other hand the requestor should provide the necessary attributes that

will allow the vehicle to perform the trust validation.

In Previous research (Serna et al., 2008) a Mandatory Access Control (MAC)

model was proposed. The MAC model performed the evaluation of a TL con-

tained in the Attribute Certificate (AC) of the requestor, and matched the TL

with the authorization levels assigned to an entity’s personal information. Ba-

sically, by relying on i) the Simple Security Property (no read-up) and ii) the

*-Property (no write-down). However, further research identify more complex

scenarios where the simple evaluation of an static authorization level was not

be enough, therefore, to perform the trust validation of an entity, additional at-

tributes need to be disclosed, which, will be validated by the CV, just as described

next.

Credentials validation : vehicle1 receives an information request from vehicle2,

for this particular scenario, the CV component performs the validation of

two different attributes (i.e. ET and TL), if no credential validation can be

performed default values (ET = Unknown, TL = −1) will be passed to the

TE. In this example, it is assumed that the CV could successfully validate

the credentials and obtain the values ET = Emergency and TL = 3.

Information Classifier : the IC component will then identify the type of in-

formation that is being requested in correspondence to the defined labels,

lets assumed that for the emergency situation, the information has been la-

beled as IL=“Emergency”. Next the IC will obtain the GSL level required

for “Emergency” label, let us say GSL = 3.

Context Manager : The CM can provide to the TE and the PM additional

context information when applicable.
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Trust Evaluator : The TE component will receive information from the CV and

the CM (if needed), and will then perform context validations and finally

assign a GSL level, in this scenario the TL will be directly assigned,(i.e.

GSL = 3)

Policy Manager : Finally the PM will receive the information from the CV

{ET = Emergency}, the TE {GSL = 3}, the IC {GSL = 3, IL =

Emergency},and optionally (scenario-dependent) from the CM, and , through

the policy matcher the final validation will be performed, and the action

pre-defined in the policy will be executed (i.e. grant or deny access), within

the policy matcher, the validation of the GSL will be performed based on

the properties defined in the described MAC model.

Note, that if any other authoritative vehicle possess the same TL, because

the TE will be different, will not be able to retrieve information with IL =

Emergency if not explicitly defined in the policy, which with the previous model

(MAC)could not be achieved. Moreover, as mentioned before, because of the

behavior of vehicles, the TL might change in time, thus for a misbehaving emer-

gency vehicle, let us say with TL = 1, even though the ET will prove that is an

authority, because of its TL the information access will not be granted. Next a

more complex scenario will be discussed.

6.4.2 Context-based Information Trust

This section defines the communication flow among components of the TVM, in

scenarios where public information is disseminated in order to alert other vehicles

of an event, and for a vehicle to be able to execute any action a trust validation

must be performed. In particular, this section takes as reference the scenario

presented in Figure 6.2, where a vehicle, vehicle1 receives n number of warning

messages, from supposedly n vehicles reporting a road accident. In the next

sections two important processes namely i) context validation definition and ii)

policy definition are described, followed by the communication flow definition.
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6.4.2.1 Defining the Context Validation

The TE component is in charge of performing trust validations with an output

represented by the GSL. Trust validations might depend on the context informa-

tion, thus, different validations could be performed from one scenario to another.

This is mainly because trust validations are mostly user-defined, and strongly

dependent on the driver’s privacy or trust concerns. In other words, similar to

policy definition, the user defines which context information must be considered

for each of the defined scenarios, and based on those specifications, a set of at-

tributes (e.g. location, pseudoID, ET, TL, etc.) will be validated, to match

either all possible scenarios or only specific ones. Focusing on the aforementioned

scenario, where vehicle1 receives warning messages to alert of an accident, de-

ciding whether or not to trust, could be supported if a number of conditions

are met. This conditions are established in terms of context information, to be

more specific, if n = 1, meaning that vehicle1 receives only one warning message,

from a vehicle which credentials could not be verified i.e. (ET = Unknown and

TL = −1), it can be obvious that the message will be discarded. However, if

in the context validation definition, a minimum threshold minM = m has been

defined, and n > minM , trust validations will provide a different outcome. Now

imagine a more complex scenario, where more than one condition should be met,

e.g. a minimum threshold of messages minM = m belonging to entities with a

TL > minTL if all conditions are met, probably the GSL will be calculated as

in Equation 6.1, however, if conditions are not met, the lowest TL value could

be directly assigned i.e. GSL = TL. As it can be inferred, the definition of the

context validation can be customized according to each driver’s concerns. In a

similar form, policies will be defined, just as presented next.

GSL = int(

n∑
i=1

TLi

n
) (6.1)

6.4.2.2 Evaluating Information Trust

Going back the scenario 2 presented in Section 6.2, and assuming that in the

TVM, the TE has already a context validation defined and policies have been
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established, the TVM will implement the following validations.

Credentials validation : vehicle1 receives a number n of “warning” messages

from supposedly n vehicles reporting an accident a few kilometers away, for

this scenario, the CV component performs the validation of three different

attributes (i.e. ET, TL and location), if no credential validation can be

performed default values for each messages/entity will be (ET = Unknown,

TL = −1), this values are deliver to the TE.

Information Classifier : the IC component will then identify the type of in-

formation that is being requested in correspondence to the defined labels,

lets assumed that for the warning alerts, the information has been labeled

as IL = Emergency. Next the IC will obtain the GSL level required for

“Emergency” label of public information, let us say GSL = 4.

Context Manager : The CM will provide to the TE and the PM additional

context information when applicable, for this scenario,the PM will provide

additional information regarding vehicles locations, ETs, and possibly di-

rection or speed, the TE will evaluate the context information such as if

the n come from different ’locations’. This is done because it is not easy to

discern if the n messages come from a single vehiclen using n pseudonyms

or they actually come from n different vehicles, thus additional attributes

should be validated, considering that first alerts do not reach any of the

defined threshold and the GSL = 1.

Trust Evaluator : The TE component will receive information from the CV

and the CM, and will then perform context validations and finally assign

a GSL level, in this scenario the TL will not be directly assigned, since

different threshold have to be met to get one value or another for the GSL.

Policy Manager : Finally the PM will receive the information from the CV

{ET = Emergency}, the TE {GSL = 1}, the IC {GSL = 4, IL =

Emergency}, and optionally (scenario-dependent) from the CM {location1,

... ,locationn, attr1, .. attrn}, and , through the policy matcher the final

validation will be performed, and the action pre-defined in the policy will

be executed (e.g. discard, reroute, etc).
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Chapter 7

Analyzing the trade-offs between

security and performance

The unique characteristics of a VANET highlighted in Chapter 2, require the

adoption of security protocols with little impact on the overall system perfor-

mance, but at the same time secure enough to achieve the drivers’ trust. This

chapter shows empirical results obtained from our quantitative analysis and sim-

ulations, and discusses them from both performance and security perspectives.

7.1 Introduction

In previous chapters, different security and privacy protocols that mainly work

at the application layer have been introduced. However to assure their feasibil-

ity and integration within a mobile network, a set of specific VANET constraints

must be taken into consideration. In this chapter it will be quantitatively demon-

strated that the proposed protocols do respect these constraints. At this aim, a

set of experiments has been designed, mainly consisting of an hybrid approach

that includes i) the evaluation of the implementation of main cryptographic pro-

tocols discussed in Section 4.6 and, ii) their simulation to evaluate the incurred

transmission delays generated by the messages’ security overhead (Section 7.2.1).

We analyze the proposed protocols’ performance in terms of the communication

time required for each one of the exchanged messages. The overall communica-

tion time (Raya & pierre Hubaux, 2005) (Xiaodong et al., 2008) is represented as
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Message Format Type

ID

M ’ {location||timestamp||message||pseudoID} Without Security

S’ M’ + SigSk {M’} Signed Message

A’ M’ ||CertID + SigSk {M’ ||CertID} Authentication

Message

Table 7.1: Signed and authentication messages format

the sum of all the processing and transmission delays from the messages in any

of the proposed protocols for both v2v and v2i communication. In this proposal,

the evaluated times take into consideration two factors:

1. The total communication time for a single message in both v2v and v2i

scenarios.

2. The number of exchanged messages by each one of the proposed protocols.

7.2 Communication Time Estimation

It is expected that vehicles in a VANET will generate signed messages with their

own private key (Sk), attaching the corresponding public key certificate identifier

(CertID) in order for the relying party to perform the validation processes de-

scribed in Section 4.6.1. As mentioned in Section 4.6.1, the rationale behind using

a certificate identifier instead of the full certificate is basically to keep the security

overhead low in the proposed protocols (this will be experimentally demonstrated

in Section 7.2.2).

Table 7.1 shows the different types of messages to be exchanged within the

security protocols proposed in Chapter 4 and analyzed in this section:

As shown in Table 7.1, authentication messages will only include the CertID,

The receiver in turn will extract the corresponding information, verify the signa-

ture and validate the certificate. As a consequence, the communication time and

also the message size will greatly depend on the cryptographic protocols that are

chosen. Thus, the relationship between the security protocols, processes and the
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overall communication time (Tp) can be represented as the sum of the 4 main

parameters shown in Equation 7.1.

1. Time to format and sign a single message (Ts)

2. Time to transmit the message (Tt )

3. Time to cryptographically verify the message’s signature (Tv)

4. Validation time (Ta) -basic or extended path validation on the message -

Tp = a · (Ts + Tv + Tt + Ta) (7.1)

Note that, signing, verification and validation times (Ts, Tv and Ta ) can be

directly evaluated, as they depend on hardware nodes and not on the mobility

features. On the other hand, the transmission time Tt is affected by vehicle’s

mobility, speed, transmission rates and packet size. Therefore the Tt will be

estimated via simulations.

7.2.1 Cryptographic Overhead

In order to provide greater insight into the performance trade-offs in asymmetric

cryptographic protocols, performed experiments will consist of:

1. measuring a message’s signature generation and verification times

2. performing a VANET certificate validation process, using the basic and

extended path mechanisms

3. performing a set of simulations to determine the transmission delays intro-

duced by the security overhead.

Next, the most representative outcomes obtained for 1 and 2 will be presented,

while 3 will be introduced in Section 7.2.2.
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7.2.1.1 Signature and Verification Times

At the state of the art, different proposals for implementing PKI in VANETs,

have used the Elliptic Curve Digital Signature Algorithm ECDSA- (Petit, 2009)

(Blake-Wilson et al., 2002) instead of the RSA cryptosystem (RSA, 2002) typi-

cally found in “traditional” PKIs. On the one hand, the WAVE standard spec-

ification (Committee, 2007) supports the implementation of the ECDSA cryp-

tographic algorithm for authentication in VANETs, assuming that contrary to

RSA, the ECDSA cryptosystem minimally impacts performance. However, this

is mainly due to the large size of RSA certificates, which, on the other hand

has been extensively adopted by OCSP-based approaches implemented by (e.g.

financial institutions). Although recent updates on the RFC 2560 (Santesson &

Hallam-Baker, 2010), have introduced support to other cryptographic algorithms

such as ECDSA. In order to show the performance trade-offs among the two

widely used asymmetric cryptographic algorithms in the proposed protocol, the

first experiment consisted of measuring the message generation and verification

times, using both the RSA and the ECDSA cryptographic algorithms. Note that

the performance of cryptographic algorithms can be strongly affected by the hard-

ware capabilities and the library used to perform them. Over the past few years,

different researchers have attempted to demonstrate the performance impact of

the two well-known cryptographic algorithms RSA and ECDSA (Petit, 2009),

(Mart́ınez-Silva et al., 2007), concluding that ECDSA outperforms RSA, thus

making it more suitable for resource constraint scenarios. Taking into consider-

ation that currently there is no agreement about VANETs’ on-board hardware

capabilities, illustrative measures taken from an experiment done with a Core

II Duo 2Ghz processor and 2GB RAM will be presented. All messages, signa-

tures and certificates were generated and verified with the OpenSSL 0.9.8o library

(OpenSSL, 2010) using RSA with a key length of 1024bits and an ECDSA with a

key length of 192bits. In both cases, the SHA-1 hash function was used. Finally,

the percentage of the security overhead is represented assuming that typically, in

a VANET, the exchanged messages will be of around 200 bytes (NHTS, 2006).

From Table 7.2 it can observe that, for the obtained times (Ts and Tv) there

is not a considerable difference between both algorithms (in fact it was approx-
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eSigning Signature generation Signature Signature % security

algorithm (hash + crypt) verification size overhead

time Ts time Tv

RSA 0.009s 0.007 s 128 bytes 64%

ECDSA 0.011s 0.011s 55 bytes 27.5%

Table 7.2: Signature generation and verification times

imately 37.5%). Now, considering the total number of messages exchanged by

the protocols, our belief is that the generation and verification times will not

severely impact the overall performance of the VANET. Moreover, even though

RSA slightly outperformed ECDSA, this is probably due to the impact of the

cryptographic protocols on the size of the signed messages. ECDSA performs

better overall because the security overhead introduced represents only 27,5% of

a 200 byte message (whereas in RSA, it represented the 64% of it). Thus, the

importance of carefully designing the contents of the each message (e.g. the de-

sign decision of using certificate’s identifiers instead of the full certificate inside

the transmitted messages).

7.2.1.2 Authentication Time Estimation

In order to quantify the validation time required to perform either the basic or

the extended path validation (as described in Chapter 4), two periods of time

have been measured:

• The time required to cryptographically validate a certificate (basic path

validation).

• The time required by the OCSP Responder to validate a certificate (as

required by the extended path validation) (OCSP, 2011).

Obtained results are shown in Table 7.3

7.2.2 Transmission Overhead

Due to VANETs special features In VANETs, one of the important requirements

is that, the security scheme should be efficient in terms of small communication
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Path validation Validation time (Ta)

Basic path validation (RSA) 0.006s

Basic path validation (ECDSA) 0.007s

Extended path validation (OCSP Responder) 0.002s

Table 7.3: Certificate validation execution times

overhead and acceptable processing latency. To be able to determine the trans-

mission delays introduced by the security overhead, the transmission times of a

single message generated including the signature of the different cryptographic

protocols are measured. To have a more realistic insight of a VANET system,

an experimental simulation aimed at evaluating the packet transmission time(Tt)

between two VANET’s nodes has been configured. Next section defines the sim-

ulation scenario followed by the most representative outcomes obtained.

7.2.2.1 Simulation Scenario

The experimental setup was based on an urban scenario similar to the Eixample

district of the city of Barcelona. The scenario consisted of 100 vehicles distributed

in a 1km2 grid map. The map included traffic lanes and lights, and vehicles with

variable speeds between 5-55km/hr, including accelerations and decelerations and

a maximum pause time of 2s. The simulation time was setup to 1000s and,

during this time, the nodes followed different trajectories in a reflective mode

(once the destination was reached, vehicles followed a different trajectory). The

nodes’ mobility pattern was generated using the Manhattan mobility model with

the MobiSim (Mousavi et al., 2007) and the SUMO tool (Behrisch et al., 2011).

Simulations were performed with the widely adopted Network Simulator tool

(NS2, 2012), considering traffic loads1 of 15, 25, 35, and 45. The transmission

range was setup to 250m, with a transmission rate of 4pckts/s and a data rate of

6Mb.

The packet size was configured according to each scenario corresponding to

security overhead introduced by the different cryptographic algorithms; that is 55

bytes for an ECDSA signature (using key length of 192 bits), 128 bytes for a RSA

1The number of nodes that simultaneously transmitted information.
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Simulation area 1km2

Simulation time 1000s

Type of area Urban

Routing protocol AODV

Max queue length 50

Bandwidth 6Mb/s

Node density 100 vehicles

Speed range 5-55km

Transmission range 250m

Message size {38, 55, 128 and 600} bytes

Transmission rate 4pckt/s =0.25 interval

Table 7.4: NS2 configuration parameters

Figure 7.1: Random assigned vehicles spatial distribution

signature (using a key length of 1024 bits), 38 bytes for the ID of the certificate

CertID (as defined in Table 4.1) and 600 bytes, considering a X.509v3 standard

certificate with ECDSA signature (generated with the OpenSSL library). Table

7.4 summarizes the set of parameters used for the NS2 setup.

The initial distribution of nodes was randomly assigned (Figure 7.1) and the

number of connection links was selected according to the different traffic loads.

During the simulation time, transmitting nodes where not always in direct com-

munication range with destination nodes (therefore, most packets were delivered

via multi-hop).
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7.2.2.2 Experimental Results

The results of the incurred transmission delays for both types of signatures are

shown in Figure 7.2. It can be observed that with messages of 55 bytes cor-

responding to the ECDSA Signature, the performance was slightly better than

with the 128 bytes of the RSA signature (7ms and 8ms respectively, considering

a traffic load of 35 nodes). However, if the overall messages in a VANET are

being signed, it is easy to conclude that ECDSA implies a better transmission

performance. Moreover, the traffic load is an additional factor that will affect

the communications. As shown in Figure 7.2, the transmission delays achieved

in a VANET with a traffic load of 40 nodes is almost the double than those

achieved while transmitting 25 nodes; therefore, the need to minimize the secu-

rity information to be included in each packet. Let us, for example, compare

the transmission delays of 21 ms corresponding to the 600 byte packets of a full

X.509v3 certificate with ECDSA and the transmission delay of 6.8ms incurred by

the certificate identifier (CertID), which consists of a 38 bytes packet (according

to Table 1), both with a traffic load of 35 nodes. In this case, we emphasize, once

again, the importance of carefully designing the contents of each authentication

message (e.g. using a CertID in most messages instead of the full certificate inside

the transmitted message).

Figure 7.3 shows that if up to 45 vehicles simultaneously transmit information,

the packet delivery rate remains above the 95% for a 600 byte message size, which

is suitable enough for a VANET environment. However, this can be improved

to 98% considering solely the use of a CertID. As for the size of the different

signatures, it can concluded that, since the size of the packet remains relatively

low there is no significant difference between them and the overall PDR for both

is above the 98%. On the other hand, for a traffic load of 45 or more transmitting

nodes, we noticed that as the packet size increased, the packet delivery rate

decreased. If a congested scenario (more than 50 vehicles transmitting within

transmission range) is considered, large packet sizes will drastically impact the

number of packets being delivered. Thus, the sole use of identifiers in a message

will significantly reduce the packet size (in approximately 93.6% when compared

with those messages containing a full X.509v3 certificate attached).
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Figure 7.2: Security overhead transmission delay

Figure 7.3: Security overhead packet delivery rate
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eSigning Algorithm Message Communication time (s)

RSA 0.030 s

ECDSA 0.036 s

Table 7.5: v2v single message communication time

7.3 Exchanged Messages Computation

As mentioned in previous paragraphs, the overall communication time of the pro-

posed authentication protocol, depends on three factors: i) the electronic signa-

ture algorithm, ii) the security overhead that influences the overall transmission

time and, iii) the total number of exchanged messages related with the authenti-

cation protocol itself. In Section 7.2.1 we have quantitatively evaluated the first

two factors (signature, verification and transmission time for a single message);

in this subsection will be presented an estimation of the total number of mes-

sages needed by the protocols described in Section 4.6, Figure 4.6, Figure 4.5 and

Figure 4.7. In particular it will be evaluated the time required by the overall

communications introduced by the protocols in terms of messages exchanged and

the communication time required for these messages.

7.3.1 Communication Overhead in v2v

For the v2v protocol the minimum number of required messages is: 4. Thus, the

overall communication time (Tcv2v) can be represented as in Equation 7.2:

Tcv2v = a · (Ts + Tv + Tt + TAlocal) (7.2)

Where, as a derivation from Equation 7.1, Ts represents the time to format

and sign a single message and Tv the time to cryptographically verify a messages

signature (Section 7.2.1), Tt denotes the transmission time (Section 7.2.2), and

TAlocal represents the basic path validation time.In the following table we present

the computation of the different timings for a single exchanged message in the

protocol:

As shown in Table 7.5 and considering that vehicles will send messages on

intervals of 300ms (Armstrong, 2012b), these results prove to be good enough for
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eSigning Algorithm Message Communication time (s)

RSA 0.032 s

ECDSA 0.038 s

Table 7.6: v2i single message communication time

processing received data before creating a new message. As a result, according

to Equation 7.2 the overall communication time introduced by the protocol is

Tcv2v = 4 ·(0.009+0.007+0.008+0.006) = 120ms for RSA and Tcv2v = 4 ·(0.011+

0.011 + 0.007 + 0.007) = 144ms for ECDSA, note that this values represent the

time for authentication in the whole communication process among two vehicles.

7.3.2 Communication Overhead in v2i

The v2i communication protocol requires a minimum of 4 exchanged messages

(CertID attached). Again in analogy to Equation 7.1, we represent the overall

communication time (Tcv2i) as:

Tcv2i = a · (Ts + Tv + Tt + TAv2I) (7.3)

Where: Ts represents the time to format and sign a single message, Tv the

time to cryptographically verify a messages signature , Tt denotes the transmission

time, and TAv2I represents the extended path validation time. Note, that TAv2I

includes the Authentication System time and the OCSP responder time, which

according to (EJBCA OCSP) is capable of processing approximately 500 requests

per second. The following table presents the timings introduced by the proposed

protocol as a result of the experimental results.

In the v2i scenario the extended path validation (Section 4.2.3) is performed,

so the computed times increase due to the OCSP responder overhead as shown in

Table 7.6. As a result, the total computation of Tcv2i = 4 ·(0.009+0.007+0.008+

0.008) = 128ms for RSA and Tcv2i = 4 · (0.011 + 0.011 + 0.007 + 0.009) = 152ms

for ECDSA. Notice that in this scenario we have not measured transmission

delays within the infrastructure (e.g. communication between the OCSP servers),

because from the VANET’s perspective the main constrain is the v2v and v2i

communication.
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7.3.3 Communication Overhead in v2v2i

Finally the v2v communication protocol with infrastructure availability represents

a combination of the v2v and v2i scenarios. In this case, the minimum number

of required messages is 8, and the overall communication time Tcv2v2i becomes:

Tcv2v2i = a · (Ts + Tv + Tt + TAv2I) (7.4)

Where: as in Equation 7.2, Ts represents the time to format and sign a single

message, Tv the time to cryptographically verify a messages signature , Tt denotes

the transmission time, and TAv2I represents the extended path validation time.

In summary, the communication time of a message with either RSA or ECDSA –

with extended path validation– will be of 30ms and 37ms respectively. Therefore

the total authentication process Tcv2v2i according to Equation 7.4 is Tcv2v2i =

8 · (30) = 240ms for RSA signatures and Tcv2v2i = 8 · (37) = 296ms for EDCSA

signatures. These results considered the whole authentication process needed in

the communication among two vehicles with infrastructure availability.

7.4 Discussion

Even though PKI-based solutions have been identified as a viable solution (Kargl

et al., 2008) (Gerlach et al., 2007) (Parno & Perrig, 2005) (Raya & Hubaux, 2007)

and is recommended in emerging standards (Committee, 2007), new approaches

which are not based on PKI (Lin et al., 2007), (Mahmoud Al-Qutayri, 2010) ar-

gue that the main drawback of the latter is the large size of public key certificates

exchanged among vehicles, which significantly affects performance. Typically, the

size of a standard X.509v3 RSA full certificate is around 1024 bytes and ECDSA

is around 600 bytes, however, as explained in (Mart́ınez-Silva et al., 2007) and

(Petit, 2009), by applying different techniques an ECDSA X.509v3 certificate can

be reduced. Nevertheless, in our experiments, we have considered 600 bytes as

the upper bound of an ECDSA in order to measure the transmission delays in-

curred from the certificate exchange. In summary, performed simulations have

demonstrated that the overall transmission delay of a certificate of 600 bytes is of

10ms, with a traffic load of 25 transmitting nodes, and 20ms, with a traffic load
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of 35 nodes, which does not represent a major impact in non-congested scenarios.

However, considering that increasing traffic loads will result in increasing delays,

to minimize the impact, we propose the use of CertIDs. Looking back to the

graph in Figure 4, with a traffic load of 35 nodes, the CertID has a transmission

delay that represents less than 50% of the one incurred by the full certificate

(9ms and 20ms respectively). Therefore, our design decision of issuing messages

with a CertID just as used by the OCSP standard (Myers et al., 1999). More-

over, if we consider two vehicles traveling in opposite directions at the maximum

allowed speed (55km/h) in urban regions, the minimal potential communication

duration will be of 10s. During those 10s, the vehicles will transmit messages

every 300ms, thus the transmission time of a CertID will only represent 3.33%

of the 300ms that a vehicle has to spend in order to process a single message.

Note that, during the potential communication period, vehicles are assumed to

be in each other’s direct transmission range (300m). This means that outside

the direct transmission range, the potential duration of communication will in-

crease if intermediate nodes are available to deliver messages via multi hop. Note

that non-standard certificates such as originally proposed in (NHTS, 2006), could

also reduce the total size of the certificate and related communication messages,

but as highlighted by the authors, no interoperability will be provided among

PKIs. Thus, in EU member states, this solution might not be feasible to im-

plement (take, for example, the electronic National ID cards in the EU, where

interoperability was a design criteria from the beginning). Finally, it is also worth

mentioning that approaches such as (Borsetti et al., 2009) work at the application

level, so that vehicles might be able to select communication nodes according to

their geo-location and trajectories (position, direction and speed). This strategy

improves the overall protocol’s performance by disallowing communication with

vehicles traveling in opposite direction and in which the communication duration

is considered lower than those sharing similar trajectories
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Chapter 8

Conclusions

8.1 Conclusions

This thesis has analyzed general security and privacy issues that are present in

VANETs. First, the importance of interoperability for VANET’s authentication,

along with all the challenges it conveys has been introduced. In order to create

secure and dynamic interoperability relationships among untrusted CAs, a secu-

rity model that makes use an Authentication System (AS) has been proposed.

The AS is in charge of performing the contributed Extended Path Validation pro-

cess by validating credentials in near real-time using the Online Certificate Status

Protocol (OCSP) and, quantitatively evaluating a CA’s security level through a

Trusting CA component that implements the Reference Evaluation Methodology

(REM). Secondly, the privacy issues that remained open despite the AS imple-

mentation, were extensively discussed. As it has been explained, to be able to pro-

vide conditional privacy/anonymity and prevent attacks related to the big brother

scenario, additional mechanisms are needed. To provide conditional anonymity

and minimal information disclosure, the Attributed-Based Privacy (ABP) pro-

tocol has been proposed. The protocol implements Privacy-Attributed-Based

Credentials, to selectively select the attributes that should be disclosed to an

authorized party. The P-ABCs also implement a pseudonym-based solution able

to provide conditional anonymity. Relying on the proposed protocols, a Trust

Validation Model(TVM) has been proposed, to address trust validation of en-

tities and support decision making in infrastructure-less scenarios. Finally, an
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analysis of the trade-offs between security and performance when implementing

inter-vehicular authentication across different PKI domains is presented.

8.2 Future work

Future research directions are aimed at enforcing the TVM in infrastructure-less

scenarios, by exploring reputation based systems, and more efficient revocation

information distribution mechanisms. As future work, a performance analysis

in Privacy-ABC technologies must be done, since in P-ACB technologies there

is no commonly agreed framework to identify the pros and the cons. Similar

to P-ABCs, in VANETs due to the lack of a real implementations, security ap-

proaches are generally evaluated via simulations that are often in very controlled

and heterogeneous scenarios, thus the need of establishing a common framework

to accurately evaluate and compare different security solutions.
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Publications

A.1 Journal

• Jetzabel Serna-Olvera, Valentina Casola, Massimiliano Rak, Jesus Luna,

Manel Medina, Nicola Mazzocca. Performance Analysis of an OCSP-Based

Authentication Protocol for VANETs. International Journal of Adaptive,

Resilient and Autonomic Systems, Vol. 3, No. 1. (2012), pp 19-45

• V. Casola, J. Serna, J. Luna, M. Rak and M. Medina. An Interoperability

System for Authentication and Authorization in VANETs. International

Journal of Autonomous and Adaptive Communications Systems, Vol. 3,

No. 2. (2010), pp. 115-135.

• J. Serna, J. Luna and M. Medina. Geolocation-based Trust for Vanets

Privacy. International Journal of Information Assurance and Security, Vol

4 No. 5. (2009), pp. 432-439.

A.2 Conference

• Serna, J., Luna, J., Medina, M.: Geolocation-based Trust for Vanet’s Pri-

vacy. The Fourth International Conference on Information Assurance and
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A.3 Book Chapter

Security (IAS’08).

• Serna, J., Luna, J., Medina, M.: Trust Management and Privacy for Vehic-

ular Ad-Hoc Networks. IXI Jornadas de Paralelismo (JP’08).

A.3 Book Chapter

• J. Serna, J. Luna, R. Morales and M. Medina. Analyzing the trade-offs be-

tween security and performance in VANETs. Accepted for Wireless Tech-

nologies in Vehicular Ad Hoc Networks: Present and Future Challenges.

Ed. IGI-Global, March 2011.

A.4 Technical Reports

• Serna, J., Luna, J., Medina, M.: A Survey of Security, Trust and Privacy

for Vehicular Ad-Hoc Networks. REF: UPC-DAC-RR- XCSD-2008. UPC

(2008).

• Serna, J., Luna, J., Medina, M.: Trust Management and Privacy for Vehicu-

lar Ad-Hoc Networks. REF: UPC-DAC-RR-XCSD-2008-8. UPC Catalonia

(2008).
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taul, L. (2007). On the generation of x.509v3 certificates with biometric in-

formation. In Security and Management , 52–57. 85, 93

Mousavi, S.M., Rabiee, H.R., Moshref, M. & Dabirmoghaddam, A.

(2007). Mobisim: A framework for simulation of mobility models in mobile

ad-hoc networks. In WiMob, 82, IEEE Computer Society. 87

Moustafa, H., Bourdon, G. & Gourhant, Y. (2006). Providing authen-

tication and access control in vehicular network environment. In SEC , 62–73.

26

Myers, M., Ankney, R., Malpani, A., Galperin, S. & Adams, C. (1999).

X.509 Internet Public Key Infrastructure – Online Certificate Status Protocol.

32, 33, 45, 94

NHTS (2006). Vehicle safety communications project. Tech. rep., National High-

way Traffic Safety Administration, US Department of Transportation. 16, 85,

94

NS2 (2012). Network Simulator v2. 87

OCSP, E. (2011). EJBCA OCSP. 86

103



REFERENCES

Papadimitratos, P., Gligor, V. & Hubaux, J.P. (2006a). Securing Vehicu-

lar Communications - Assumptions, Requirements, and Principles. In Proceed-

ings of 4th Workshop on Embedded Security in Cars (ESCAR), 5–14, Berlin,

Germany. 22

Papadimitratos, P., Kung, A., Hubaux, J.P. & Kargl, F. (2006b). Pri-

vacy and Identity Management for Vehicular Communication Systems: a Po-

sition Paper. In Workshop on Standards for Privacy in User-Centric Identity

Management , Zurich, Switzerland. 23

Papadimitratos, P., Buttyan, L., Hubaux, J.P., Kargl, F., Kung, A.

& Raya, M. (2007). Architecture for secure and private vehicular communi-

cations. In International Conference on ITS Telecommunications , 1–6, IEEE

Computer Society. 23

Papadimitratos, P., Buttyan, L., Holczer, T., Schoch, E., Freudiger

J., Raya, M., Ma, Z., Kargl, F., Kung, A. & Hubaux, J.P. (2008).

Secure Vehicular Communication Systems: Design and Architecture. IEEE

Communcations Magazine, 46, 100–109. 25

Papapanagiotou, K., F., M.G. & Panagiotis, G. (2007). A certificate val-

idation protocol for vanets. Globecom Workshops, 2007 IEEE , 1–9. 26

Parno, B. & Perrig, A. (2005). Challenges in securing vehicular networks.

17, 22, 93

PATH (2012). Partners for Advanced Transportation TecHnology.

http://www.path.berkeley.edu/. 12

Petit, J. (2009). Analysis of ecdsa authentication processing in vanets. In Pro-

ceedings of the 3rd international conference on New technologies, mobility and

security , NTMS’09, 388–392, IEEE Press, Piscataway, NJ, USA. 85, 93

Pfitzmann, A. & Hansen, M. (2005). Anonymity, unlinkability, unobserv-

ability, pseudonymity, and identity management – a consolidated proposal for

terminology. Tech. rep., TU Dresden. 23

104



REFERENCES

Plossl, K., Nowey, T. & Mletzko, C. (2006). Towards a security architec-

ture for vehicular ad hoc networks. ARES ’06 , 8. 15

Raya, M. & Hubaux, J.P. (2005). The Security of Vehicular Ad Hoc Networks.

In 3rd ACM workshop on Security of ad hoc and sensor networks (SASN). 15,

17, 22

Raya, M. & Hubaux, J.P. (2007). Securing vehicular ad hoc networks. In

Journal of Computer Security (JCS) 15(1), 39–68. 16, 18, 93

Raya, M. & pierre Hubaux, J. (2005). The security of vanets. In In

VANET05, September 2 , 93–94. 82
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