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Chapter 1

Introduction

The research presented in this thesis is theoretical in nature, and focusses
on topics from the field of ultracold atoms in optical lattices (see Refs. [1]
and [2] for recent overviews). More specifically, it focusses on long-range
interactions in such systems, where long-range is taken to mean ‘beyond
nearest neighbour (NN)’, and periodic driving of the lattice potential. An
overview of the research is presented in section 1.4. Below, we present a
discussion of the context against which the following chapters must be seen.

1.1 Ultracold atomic gases in optical lattices

Soon after the achievement of Bose-Einstein condensation (BEC) in 1995
(see Refs. [3, 4, 5]) and the experimental realisation of a degenerate Fermi
gas a few years later (Ref. [6]), the field of ultracold atomic gases in optical
lattices began to emerge. Optical lattices are traditionally generated by
counterpropagating laser beams, whose interference pattern is experienced
as a conservative potential by the atoms, via the AC-Stark shift (a well-
written introductory treatment can be found in e.g. Ref. [7]). By appropri-
ately choosing the set-up and intensities of the laser beams, many different
geometries, dimensionalities, and tunnelling rates between nearby lattice
sites can be achieved. The most common lattices are one-dimensional,
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6 CHAPTER 1. INTRODUCTION

square, or cubic (see e.g. Ref. [8]), but recent advances have led to the re-
alisation of hexagonal [9], triangular [10], and kagomé [11] geometries. A
very promising new technique makes use of a split laser beam, where a so-
called holographic mask is imprinted on one of the two split beams before
they are brought back together; the interference between the imprinted and
unaltered beams can then generate almost arbitrary potentials [12].

In most theoretical descriptions, the atoms are treated as simple, struc-
tureless quantum particles (see section 2.1 for more details on the type of
theoretical description that will be relevant for this thesis). That does not
mean that their internal structure is irrelevant: there are many proposals
and experimental studies that rely to a lesser or greater extent on the num-
ber and energetic separation of the internal states available to the atoms.
However, once a species of atoms has successfully been loaded into a lattice,
the role that is given to the internal structure is to a large extent a choice
of the experimentor, and it is possible to create a set-up that allows us
to ignore it altogether. In each of the projects presented below, only one
species of atoms is considered, described by a single quantum field.

There are many suggested applications of this type of system, two
prominent examples being quantum simulation (see Ref. [2] for a recent
introduction and overview) and quantum information processing. The in-
terest of the field can be said to derive from being at the forefront of the
effort to push the limit of human control over quantum behaviour. The
research presented below is of the exploratory type: we investigate var-
ious new set-ups in order to find out which types of collective quantum
behaviour could be observed.

In the context of quantum simulation, one could, in principle, consider
the experimental set-ups that would realise the models discussed in this
thesis as quantum simulators of those models. However, since the results in
this thesis were obtained by means of classical computational methods, such
simulations would not add much to our understanding. Instead, the results
presented here can be used to confirm that within the treated parameter
regime, the set-ups discussed are indeed described by the models we wish
to test. This confirmation then plays a role in justifying the use of the
same set-ups, with other parameter values, as quantum simulators of those
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models in parameter regimes where classical computations are beyond our
reach.

1.2 Periodically driven optical lattices

The question of what happens when an optical lattice is shaken period-
ically has received much attention in recent years; see [13] for a recent
introduction. In the parameter range on which we focus here, an effec-
tive time-independent theory can be derived, which describes the system
as if the atoms were placed in an unshaken lattice, with different parame-
ters than the shaken one. Hence, periodically shaken lattices turn out to
provide a fascinating manipulation technique for ultracold atomic gases.
Specifically, the inter-site tunnelling processes can be modified extensively,
e.g. generating kinetic frustration [14] or mimicking gauge fields [15, 16].

In order to obtain the effective theory mentioned above, the periodically
driven theory needs to have a separation of energy scales. If the Hamilto-
nian is composed of two parts that depend on time with very different
frequencies, an effective Hamiltonian may be obtained by integrating out
the quickly oscillating part. This argument only applies if the other energy
scales in the slowly varying part of the Hamiltonian also correspond to fre-
quencies much lower than the ones being integrated out. A well-written, if
condensed, discussion is offered in Ref. [17], which we partially reproduce
in section 2.2. Another calculational route to the same result is presented
in Ref. [18].

The term ‘shaken lattice’ should sometimes be taken quite literally: the
retroreflecting mirrors that make up the lattice can be moved periodically
in space, i.e. shaken. Alternatively, a frequency difference between the
two counterpropagating laser beams can be induced by means of acousto-
optical modulators (AOMs), as was done in the pioneering study presented
in Ref. [19]. The lattice potential is then no longer static, but becomes
time-dependent: V (r)→ V (r, t).

In the effective theory, density-density interaction terms are not renor-
malised. However, the tunnelling term can be renormalised in many differ-
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ent ways: the parameter J from Eq. (2.1) is replaced by Jeff = JG(A,Ω),
where G is a function of the driving amplitude A and frequency Ω, usually
a Bessel function of maAΩ/~ where m is the mass of the tunnelling atom
and a the lattice spacing.

1.2.1 Context: some selected references

Periodic driving of quantum systems has been studied since the 1960s [20,
21]. The idea to apply it to an optical lattice containing an ultracold atomic
gas was first suggested in 1997 by Drese and Holthaus (Ref. [22]), and
extended to the regime of interacting particles in 2005 by Eckardt et al. in
Ref. [17]. By tuning Jeff to zero, the paradigmatic superfluid-Mott insulator
phase transition (cf. Refs. [23, 24, 8]) was predicted to occur (Ref. [17]).
The first experimental observation came in 2007 in the pioneering work of
Lignier et al. (Ref. [19]), which found that certain values of the shaking
parameters led to a complete disappearance of the otherwise robust phase
coherent lattice BEC. Since then, numerous advances have been made in
both the theoretical and the expermental domain.

The one-dimensional set-up used in Ref. [19] has been generalised to a
cubic lattice (Ref. [25]), also finding the superfluid-Mott insulator transi-
tion. A wider variety of time-reversal symmetric driving functions has been
explored theoretically and tested experimentally for the one-dimensional
system (see Ref. [26]). The Bessel function that multiplies the static hop-
ping matrix element is specific to sinusoidal driving. The driving has also
been shown to overcome the tunnelling inhibition induced by a lattice tilt
(Ref. [27]).

Since square and cubic lattices are separable (i.e. the lattice potential
V (x, y, z) can be decomposed into Vx(x)+Vy(y)+Vz(z), in the cubic case),
the experiments reported in Ref. [25] can be seen as many simultaneous and
coupled repetitions of the 1D version. More recently, other lattice geome-
tries and potential functions have been proposed in Refs. [14] (triangular
lattice) and [28] (square lattice with non-separable potential), where the
lattice potential is not separable and the system is truly two-dimensional.
In these cases, it turns out that the minimum of the single-particle spec-
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trum can be moved continuously from the center to the edge of the Brillouin
zone, enabling the creation of BECs with macroscopic wavefunctions fea-
turing arbitrary quasimomenta.

Different types of driving are also under consideration. One interesting
example is the ‘microrotor’ scheme proposed by Hemmerich et al., which is
predicted to lead to an artificial staggered Abelian gauge field in a square
lattice (see Refs. [15, 29, 30]). The driving is not the same for every site: it
moves the potential minima around the elementary plaquettes of the static
lattice. The most recent development is the generation of a staggered gauge
field in a triangular lattice, with a uniform driving function. Struck et al.
used uniform periodic driving functions that break time-reversal symmetry
(see Ref. [31]). Both approaches render the hopping matrix element J com-
plex, corresponding to broken time-reversal symmetry. When engineered
appropriately, such time-reversal symmetry broken Hamiltonians can be
used to mimick the effects of a magnetic field. Another recent proposal
combined superlattices and species-specific potentials with periodic driv-
ing, leading to non-Abelian gauge fields, quantum spin Hall physics, and
strong artificial gauge fields that vary over many lattice sites [16].

1.3 Long-range interactions

Since atoms are electrically neutral, they do not have the Coulomb repul-
sion that electrons do. Most of the atomic species being used in cold gas
experiments are alkali atoms, such as 87Rb (most frequently), 85Rb, 40K,
39K, 23Na, 7Li, and 6Li, and in fact only have significant short-ranged in-
teractions, which render all terms except the on-site ones neglegible [1].
In the ultracold collision regime, where only the lowest relative angular
momentum collisions play a role (for typical atomic masses, this regime is
characterised by temperatures below 1 mK), the Van der Waals interactions
are effectively determined by the so-called scattering length. The range of
these interactions happens to be on the order of the scattering length itself,
usually a few nanometers [1]. The lattice spacing itself is usually a few
hundred nanometers, justifying the on-site approximation.
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While on-site interactions are responsible for many fascinating effects
(see e.g. [1]), there has been an increasing interest in longer-ranged inter-
actions over the last few years. One promising method to overcome the
short range of the interactions between neutral atoms is to use different
atomic species, or biatomic molecules, which have significant dipole mo-
ments (e.g. Cr has a magnetic dipole moment of 6µB, compared to roughly
1µB for the alkali atoms, where µB is the Bohr magneton). The species of
dipolar atoms presently under study are mostly bosonic (see Ref. [32] for
an overview of bosonic dipolar gases, or Ref. [33] for one focused on optical
lattices), although a recent counterexample is given in Ref. [34]. Most in-
vestigated heteronuclear molecules are fermionic (see e.g. Ref. [35]). Atoms
where one or more electrons have a very high principal quantum number,
so-called Rydberg atoms, have long decay periods and are characterised
by large electric dipole moments [36]. Other ways to obtain significant in-
teractions with longer than on-site range include the use of superexchange
effects (see e.g. Ref. [37]), mediation by other atomic species present in
the lattice (see Refs. [38, 39]), or the study of collective excitations with
effective long-range interactions (see Ref. [40]).

Dipolar interactions are often studied in a two-dimensional context,
where the orientation of a polarising external field is a control knob for
the anisotropy in the long-range interaction within the plane. Three-
dimensional set-ups have also been considered, mostly in bulk, but also
for on-site interactions, as described in e.g. Ref. [41]. Exchange-induced
(Ref. [37]) or mediated (Refs. [38, 39]) long-range interactions are com-
pletely isotropic, in contrast to their fundamentally anisotropic dipolar
counterparts.

Predicted effects of long-range interactions which will be addressed in
this thesis include bosonic (chapter 6) and fermionic (chapter 4) density
waves, bosonic supersolids (chapter 5), and spontaneous time-reversal sym-
metry breaking (chapter 4). Other effects, which will not be addressed in
this thesis, include interaction-generated hopping terms (see e.g. Ref. [41])
and higher-orbital occupation (cf. Ref. [42]).

A density wave is a modulation of the density, which breaks spatial
symmetry. In lattices, density waves are defined as phases where the lattice
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symmetry is broken by the density. The simplest example of a density
wave in a lattice is the so-called checkerboard, which occurs in a square
lattice for repulsive nearest-neighbour interactions. More intricate density
patterns have been predicted when the full dipolar interaction is taken
into account, as described in Ref. [43], since dipolar interactions go beyond
nearest-neighbour.

A supersolid is a phase that combines the properties of a superfluid and
a density wave (the ‘solid’ refers to the density modulation of a lattice of
atoms or ions). Whether such a phase could occur has been investigated
for decades (see e.g. Ref. [44]). The question has recently received much
attention in the context of ultracold atomic gases in optical lattices.

1.3.1 Context: some selected references

In the domain of long-range interactions, the divide between theoretical
and experimental developments is larger than in the case of periodically
driven lattices. The reason for this difference is that the effects of periodic
driving are primarily visible at single-particle level, whereas the effects of
long-range interactions, like any interactions, are much less straightforward
to describe theoretically. Furthermore, periodic driving happened to be
fairly easy to implement within the already existing experimental set-ups,
whereas long-range interactions require either the trapping and cooling of
new atomic species (see Refs. [45, 46]), the in-trap or in-lattice creation
and cooling of biatomic molecules (Refs. [35, 47] show recent work of two
groups on this topic), or working with multi-species mixtures, as described
theoretically in Refs. [37, 39].

Experiments on heteronuclear polar fermionic molecules are close to
quantum degeneracy (see Ref. [35]). Homonuclear biatomic molecular gases
have also been created, both in bulk (Ref. [48]) and in the presence of an
optical lattice (Ref. [47]). Gases of dipolar atoms have reached quantum
degeneracy, as reported in Refs. [45, 46, 34] and been loaded into optical
lattices (see Refs. [49, 50, 51, 52]). The anisotropy of the dipole-dipole in-
teraction has successfully been manipulated [51]. Higher-band effects have
been detected and reported in Ref. [50], and the dipolar interaction has been
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shown to stabilise an attractive s-wave interaction in Refs. [49, 52]. Multi-
species atomic gases have been loaded into optical lattices (cf. Refs. [53, 54]).

Theoretical work on the subject of long-range interactions in lattices
has largely been focused on the expected density wave, as for example in
Refs. [55, 56, 57]. The simplest case has been predicted for a single bosonic
(see Ref. [55]) or fermionic (Ref. [58]) species. More intricate density-wave
states are predicted for multiple layers connected only by the interlayer
attractive interaction (Ref. [59]). Various supersolids have been predicted,
for bosons with long-range interactions (see again e.g. Ref. [55]), Bose-Fermi
mixtures with a nested fermi surface like the ones discussed in Ref. [60], and
spin-1

2 fermions with long-range interactions (see Refs. [58, 43]). Theoretical
calculations on effective long-range interactions in multi-species mixtures
can be found in Refs. [38, 37, 39].

1.4 Thesis overview

This thesis is based on four different projects, two of which combine periodic
driving with long-range interactions (chapters 4 and 5). The other two
investigate new set-ups or effects with either periodic driving (chapter 3)
or effective long-range interactions (chapter 6). The general objectives are
expand and deepen the existing understanding of periodic driving and long-
range interactions in optical lattices, and where possible to predict novel
quantum phases or point out hitherto unknown effects occurring in such
set-ups.

1.4.1 Shaken lattices and finite-momentum BECs

Publication: M. di Liberto, O. Tieleman, V. Branchina, and C. Morais
Smith, Phys. Rev. A 84, 013607 (2011), Ref. [28].

For this project [28], we consider ultracold bosons in a 2D square opti-
cal lattice with an external time-dependent sinusoidal force which shakes
the lattice [17] along one of the diagonals. Taking hopping terms beyond
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nearest-neighbour into account, we find that they are renormalized differ-
ently by the shaking, and introduce both anisotropy and frustration into
the problem. The competition between the different hopping terms leads
to finite-momentum condensates, with a momentum that may be tuned via
the strength of the shaking. We calculate the boundaries between the Mott-
insulator and the different superfluid phases, and present the time-of-flight
images expected to be observed experimentally.

The standard square lattice potential is separable: V (x, y) = cos(x/a)+
cos(y/a). A consequence of this separability is the absence of first-order
diagonal hopping terms. We consider a different, non-separable potential,
where the diagonal hopping terms do not vanish. With suitable signs for the
various hopping terms, frustration may now be introduced into the system,
leading to the appearance of multiple kinetic ground states. In the presence
of on-site interactions, the ground state degeneracy of the BEC is reduced
to two and time-reversal symmetry breaking is energetically favourable. A
similar situation is investigated in Ref. [14], where the naturally frustrated
triangular lattice is considered.

The effective Hamiltonian will be calculated using the same Floquet-
based formalism as in Refs. [17, 18]. Subsequently, the MI-SF phase bound-
aries will be calculated in the mean-field decoupling approximation that
can be found in e.g. [24]. The predicted time-of-flight images are generated
based on the assumption of condensation in one quasimomentum state.
We use a Gaussian envelope to qualitatively convey the effect of the on-site
Wannier function.

1.4.2 Frustrated kinetics, long-range interactions, and spon-
taneous symmetry breaking

Publication: O. Tieleman, O. Dutta, M. Lewenstein, and A. Eckardt,
arXiv:1210.4338, Ref. [61].

Here, we study spontaneous symmetry breaking in a system of kinetically
frustrated spin-polarised fermions in a triangular lattice with long-range
interactions. We show that frustrated kinetics combined with non-uniform
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long-range interactions (e.g. dipole-dipole) induce spontaneous breaking
of time-reversal symmetry. Furthermore, we investigate spatial symmetry
breaking due to the long-range interactions. The symmetry-broken phases
that we discuss include a density wave (cf. Ref. [60]), a staggered current
phase (cf. Ref. [14, 10]), and a phase where a chirally uniform current pat-
tern appears, confined to an effective kagomé sublattice.

The staggered currents are similar to the ones found in Ref. [14], but
the way they come about is different. We find that for weak interactions,
a very generic repulsive long-range interaction that falls off with distance
leads to an effective attractive interaction in momentum space. At filling
factors near 1/4, the Fermi surface exhibits nesting, and a density wave is
favoured. Thus, the interaction that leads to spatial symmetry breaking
also leads to the appearance of staggered currents, in marked contrast to
Ref. [14], where the staggered currents appear due to an interaction term
that favours spatial homogeneity.

The phase boundary calculations are performed in a mean-field approx-
imation where the quartic interaction term is decoupled into an effective
quadratic term. Exact diagonalisations are performed to support the pre-
dictions of the staggered currents and tendency towards density waves.

1.4.3 Long-range interacting bosons in an artificial stag-
gered Abelian gauge-field

Publication: O. Tieleman, A. Lazarides, and C. Morais Smith, Phys. Rev.
A 83, 013627 (2011), Ref. [57].

Here, we calculate the theoretical mean-field zero-temperature phase dia-
gram of a BEC with dipolar interactions loaded into an optical lattice with
a staggered flux. Apart from uniform superfluid, checkerboard supersolid
and striped supersolid phases, we identify several supersolid phases with
staggered vortices, which can be seen as combinations of supersolid phases
found in earlier work on dipolar BECs [56] and a staggered-vortex phase
found for bosons in optical lattices with staggered flux [29, 30]. By allowing
for different phases and densities on each of the four sites of the elementary
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plaquette, more complex phase patterns are found.

The simultaneous presence of a supersolid and a pattern of currents
in the system produces interesting novel phases where the current densities
break spatial homogeneity in response to the density wave. A consideration
from the continuity equation shows that maintaining the a homogeneous
current density would lead to charge build-up and depletion, ultimately
destroying the density modulation. Since the currents are induced by the
hopping terms and are independent of the interactions, they do not change
the nature of the density modulation, but instead adapt to it. Numerous
metastable states are also identified.

The calculations are performed in the Bogolyubov approximation. A
stability analysis based on the Bogolyubov mean-field effective single-particle
spectrum is included, leading to the discovery of a phase-separation region.
Time-of-flight predictions are calculated based on the Fourier transform of
the mean-field BEC wavefunction.

1.4.4 One-dimensional strongly interacting commensurability-
driven density wave

Publication: A. Lazarides, O. Tieleman, and C. Morais Smith, Phys. Rev.
A 84, 023620 (2011), Ref. [40].

Motivated by recent experiments [62], we investigate quantum phase tran-
sitions occurring in a system of strongly interacting ultracold bosons in
a 1D optical lattice. Starting from the common field theory including a
fourth-order interaction term, we apply Haldane’s transformation [63] to
arrive at the sine-Gordon model [64]. After discussing the commensurate-
incommensurate transition described by the Pokrovsky-Talapov model [65],
we focus on the phases appearing at incommensurate filling. There, the
state of the system is determined by an effective field theory describing in-
teracting solitons or kinks [66], which correspond to excess particles or holes
over commensurate filling. We derive the interaction between the kinks by
means of a renormalisation group calculation, finding that it falls off as
1/x2. The resulting phase diagram features superfluid, supersolid and solid
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(kink-lattice) phases. Supersolids generally appear in theoretical studies of
systems with long-range interactions; our results break this paradigm and
show that they may also emerge in models including only short-range (con-
tact) interactions, provided that quantum fluctuations are properly taken
into account.



Chapter 2

Ultracold atoms in optical
lattices: some technical
aspects

In this chapter, we present some more technical results that are relevant for
the remainder of the thesis. Section 2.1 introduces the family of Hubbard
models, section 2.2 briefly reviews Floquet’s theorem for periodic systems,
and section 2.3 offers some details on dipolar interactions.

2.1 Hubbard model

Most theoretical many-body studies of ultracold atomic gases in deep op-
tical lattices (‘deep’ usually means V0 ≥ 5Er; see below) correspond to
some variation of the Hubbard model. It describes quantum particles, ei-
ther bosons or fermions, in a deep lattice. The traditional form features
NN hopping and on-site interactions. For bosons, the model traditionally
describes one species (see e.g. Refs. [23, 67]):

H = −J
∑
〈r,r′〉

a†rar′ +
U

2

∑
r

nr(nr − 1)− µ
∑
r

nr, (2.1)

17
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where 〈, 〉 indicates that the sum runs over all oriented pairs of nearest
neighbours. The vectors r and r′ correspond to the lattice sites. The
parameters J and U are real and positive in the standard form of the
model. The quantity J is usually called the hopping or tunnelling matrix
element, since it corresponds to the process of an atom tunnelling from one
lattice site to another. The interaction energy U represents the cost due
to multiply occupied sites: for every pair of atoms found on a single site,
the total energy of the state is increased by U . The chemical potential µ,
finally, is often introduced for mathemtical convenience, in order to perform
the calculations in the more workable grand canonical ensemble. Note,
however, that in experiments, the particle number is fixed, rather than

the chemical potential. The operators a
(†)
r have the canonical commutation

relation [ar, a
†
r′ ] = δr,r′ . For fermions, on-site interactions between atoms of

the same species are forbidden by the Pauli exclusion principle under the
assumption that only one quantum state per site exists (the single-band
approximation; see below). Hence, the model usually describes two spin
species, labelled (pseudo)spin up and down:

H = −J
∑
〈r,r′〉

∑
σ=↑,↓

a†σ,raσ,r′ + U
∑
r

n↑,rn↓,r − µ
∑

r;σ=↑,↓
nσ,r. (2.2)

Here, J is still generally real and positive, but U may also be negative
without depriving the model of a stable ground state, due to the Pauli

exlcusion principle. The operators a
(†)
r obey the anticommutation relation

{ar, a†r′} = δr,r′ .
The Fermi-Hubbard model has been widely studied in solid-state con-

texts, such as high-TC superconductivity, where it is considered a candidate
theoretical description of a number of as yet unexplained phenomena [68].
Many variations of these models have been studied, and most of the work
presented in this thesis is based on one of the two, with some modified
and some extra terms. The Bose-Hubbard model presented in Eq. (2.1)
exhibits the paradigmatic Mott insulator-superfluid (MI-SF) phase transi-
tion at a critical value for the ratio U/J . This transition, which is briefly
discussed at the end of this section, was first investigated in Ref. [23], fur-
ther studied theoretically in e.g. Refs. [67, 24], and observed experimentally
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in Refs. [8, 69, 70]. The Hubbard model is characterised by a number of
parameters: the dimensionless interaction strength given by the ratio U/J ,
the dimensionality, the lattice geometry, and the number of different par-
ticle types present in the lattice (e.g. the pseudospin up/down states in
Eq. (2.2)). As will be discussed below, all of these parameters are tunable
in experimental setups consisting of deep optical lattices with ultracold
atoms, many of which it describes very well, thus constituting a very rich
playground for both theoretical and experimental studies. A limiting factor
is the temperature: at the moment, the temperatures required for simulat-
ing the candidate mechanisms for high-Tc superconductors have not yet
been achieved.

Experimental control over model parameters

As mentioned above, a number of different parameters that characterise
the Hubbard model can be controlled in experimental set-ups consisting
of ultracold atoms in optical lattices. There are two major aspects that
each allow control over a set of parameters: the gas, and the lattice. The
preparation of the gas allows for different particle types to be loaded into
the lattice, which may perceive the potential differently (see e.g. the spin-
dependent hexagonal lattice presented in Ref. [9]), as well as mixtures. The
optical potential, which is determined by the lasers, controls the dimension-
ality of the lattice, the geometry, and potential spin-dependent properties.
The tunnelling rate and interaction strength depend on both the atomic
species being used and the potential. The lattice constant is determined
by the wavelength of the laser being used, given by a = λ/2, and typically
takes values around 0.5µm. The tunnelling rate depends on the potential
depth, which is proportional to the laser intensity (see e.g. Ref. [7] for a
detailed derivation of how the potential arises due to the AC-Stark shift).
Typical potential depths are up to a few tens of recoil energies, where the
recoil energy is given by Er = ~2k2/2m, with k = 2π/λ being the laser
wavevector.



20 CHAPTER 2. INTRODUCTION: TECHNICAL ASPECTS

2.1.1 Derivation

The Hubbard model is intuitively easy to accept as a description of a gas
of interacting atoms in a lattice. It also happens to be easy to derive from
a more general interacting field theory with a periodic external potential,

H =

∫
dx

{
ψ†(x)

[
−∇

2

2m
+ V (x)

]
ψ(x)

+
1

2

∫
dx′U(x− x′)ψ†(x)ψ†(x′)ψ(x′)ψ(x)

}
,

(2.3)

where V (x) = V (x + ej) such that ej represent the elementary lattice vec-
tors, and U(x) represents the interaction energy for two particles separated
by a distance x. To see this derivation, we start from the Bloch waves,
which are eigenfunctions of the periodic potential given by

fn,k(x) = eik·run,k(x) (2.4)

such that un,k(x) has the periodicity of the lattice: un,k(x + ej) = un,k(x).
The index n labels the different bands of the single-particle spectrum to
which the Bloch functions belong, and k is the quasimomentum. The Bloch
functions may now be written in terms of the Wannier functions wn,r(x)
by means of a Fourier transform:

fn,k(x) =
∑
r

wn,r(x)e−ir·k. (2.5)

For a detailed discussion of 1D Wannier functions, see Ref. [71]. Note
that for separable potentials, i.e. of the form V (x) = V (x) + V (y) + V (z),
the different dimensions decouple in the single-particle Hamiltonian, and
therefore the 2D- and 3D-problems are also determined by the 1D results.
Further, remark that the phases of the Bloch functions can be chosen freely,
and that a suitable choice of phases leads to exponentially localised Wannier
functions in the 1D case [71]. Expanding the field operator ψ(x) in terms
of these localised Wannier functions, one obtains a sum over lattice sites.
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Inserting

ψ(x) =
∑
r,n

ar,nwn(r− x), (2.6)

(again, r runs over all lattice sites) into the field theory’s Hamiltonian, and
restricting the on-site sum over the Wannier functions to the lowest-energy
orbital w0 (this approximation is justified when the excitation energy to the
second band is much higher than the energy scales that govern the lowest
band), yields

H = −
∑
r,r′

Jr−r′a
†
rar′ +

∑
r,r′,r′′,r′′′

Ur,r′,r′′,r′′′a
†
ra
†
r′ar′′ar′′′ ,

having defined

Jr−r′ = −
∫

dxw∗(r− x)

[
−∇

2

2m
+ V (x)

]
w(r′ − x) (2.7)

Ur,r′,r′′,r′′′ =

∫
dx dx′ U(x− x′)w∗(r− x)w∗(r′ − x′)w(r′′ − x′)w(r′′′ − x),

where the lowest-band index 0 has been dropped. In sufficiently deep po-
tentials (usually about 5Er or more), the Wannier functions are highly
localised, and it is justified to consider only nearest-neighbour tunnelling
terms. In certain cases, the nearest-neighbour tunnelling terms vanish, or
are very small, in which case longer-distance tunnelling also has to be taken
into account. As discussed in the previous chapter, the interactions are of-
ten very short-ranged, in which case one may safely approximate them to be
limited to on-site processes. With these two approximations, the Hubbard
model emerges:

H = −
∑
r,r′

Jr−r′a
†
rar′δr,r′+ej +

∑
r,r′,r′′,r′′′

Ur,r′,r′′,r′′′a
†
ra
†
r′ar′′ar′′′δr,r′δr,r′′δr,r′′′

= −
∑

r,j,δ=±1

Jja
†
rar+δej +

∑
r

U

2
a†ra
†
rarar, (2.8)
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where U/2 = Ur,r,r,r. Adding the chemical potential term −µ
∑

r a
†
rar, we

obtain Eq. (2.1). A similar derivation for spin-1
2 fermions leads to Eq. (2.2).

Note that we have neglected all longer-ranged interaction terms, which is
well justified when describing typical experiments with e.g. 87Rb. In this
thesis, however, we will often encounter cases where the interactions are
not short-ranged, and nearest-neighbour or longer-distance terms also play
a role.

2.1.2 Mott insulator - superfluid phase transition

The Bose-Hubbard model features the paradigmatic Mott insulator - su-
perfluid transition, studied theoretically in Refs. [23, 67] and first observed
experimentally in Ref. [8]. Here, we give a brief description.

Treating the chemical potential µ as a knob to tune the particle number,
the Hubbard model has two energy scales, J and U . Hence, it is their ratio,
J/U , that determines the state of the system. Intuitively, taking U to zero,
we can see that the particles gain energy by delocalising: that maximises
the expectation value 〈GS|a†rar+ej |GS〉, and thus minimises the expectation
value of the Hamiltonian. The resulting state, where every particle is in the
zero-momentum state, corresponds to a BEC. Going to the other extreme
and taking J to zero, it is easy to see that for integer filling fractions, all
particles will localise in such a way that the filling factor is uniform; this is
the Mott insulator state.

At some intermediate value of U/J , a transition will occur between the
two states. In the Mott insulator, a finite tunnelling term will create virtual
particle-hole pairs. When the tunnelling term becomes strong enough, these
particle-hole pairs will no longer be virtual, but instead become part of the
ground state: the atoms will start to delocalise. Alternatively, coming from
the superfluid side, a finite interaction term leads to condensate depletion.
When the interaction reaches a critical strength, the condensate depletion
reaches unity, and the atoms start to localise. Fig. 2.1 shows the phase
boundary between the superfluid and Mott insulating states.
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Figure 2.1: The MI-SF phase diagram. Left: for low values of zJ/U (z
being the coordination number), the Mott insulating phase is favoured.
Higher filling factors reduce the critical hopping strength. Right: the same
phase diagram, in different variables. The dashed lines represent constant
µ/U ratios, corresponding to the points where the lobes touch the y-axis
in the left panel.

2.2 Floquet’s theorem: periodic systems

Floquet’s theorem

To understand the behaviour of driven quantum systems, we have to turn to
Floquet’s theorem. Although it was derived long before the advent of quan-
tum mechanics [72], it is relevant for a number of different quantum phe-
nomena. One example is the famous Bloch’s theorem, which results from
applying Floquet’s theorem to spatially periodic systems. Here, we will ap-
ply it to temporally periodic systems. The essence is simple: A spatially pe-
riodic Hamiltonian leads to eigenstates consisting of a plane wave multiplied
by a spatially periodic function, called Bloch waves. Similarly, a tempo-
rally periodic Hamiltonian leads to temporally periodic eigenstates, which
we will call Floquet states. The theorem, when applied to temporally peri-
odic quantum mechanical systems (as described in e.g. Refs. [20, 21, 73]),
is as follows: With a Hamiltonian H(t) obeying H(t+ T ) = H(t) for some
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period T , the Schrödinger equation

[H(t)− i~∂t]Ψ(t) = 0 (2.9)

has solutions of the form

Ψα(t) = Φα(t)e−iεαt/~, (2.10)

such that Φα(t+T ) = Φα(t). The energy εα is real-valued, and constitutes
the analogue of the quasimomentum characterising a Bloch state. Hence,
it is called quasienergy. Its eigenvalue equation is given by

[H(t)− i~∂t︸ ︷︷ ︸
H(t)

]Φα(t) = εαΦα(t). (2.11)

Note that due to the periodicity in time, there is also a periodicity in energy:
if Φα(t)e−iεαt/~ is a T -periodic eigenfunction of the Floquet Hamiltonian H,
so is Φα(t)e−i(εα+2πn~/T )t/~. (The name ‘Floquet Hamiltonian’ refers to the
fact that the operator H plays the same role in the quasienergy eigen-
value equation as the normal Hamiltonian does in the time-independent
Schrödinger equation.) This periodicity in energy implies that there is a
Brillouin-zone-like structure in the energy quantum numbers.

Such problems are easier to handle when described in an extended
Hilbert space, which is composed of a Fock space R and the space of square
integrable T -periodic functions T . Any orthonormal basis of states in R,
tensor multiplied with any orthonormal basis in T , together form an or-
thonormal basis in the extended Hilbert space. The scalar product on such
a space will be denoted by 〈〈·|·〉〉, given by

〈〈·|·〉〉 =
1

T

∫ T

0
dt 〈·|·〉 , (2.12)

where 〈·|·〉 denotes the conventional scalar product in R.
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2.2.1 Effective Hamiltonian

In deriving the effective Hamiltonian we will be working with, we follow
Refs. [17, 18]. Now consider a Hamiltonian H = H0 + Hd consisting of
two parts, an undriven (or weakly driven) part, H0, and a (strongly) driven
part, Hd. Assuming that the driving is fast enough, i.e. much faster than the
other timescales in the experiment, the ground state wavefunction will not
be time-dependent, but instead correspond to some effective Hamiltonian,
where the fast driving has been integrated out.

To obtain the effective Hamiltonian, we start from an orthonormal,
stationary basis of the Fock space R. For any time-dependent T -periodic
Hermitean operator F , one can define an orthonormal basis of T -periodic
states that span all Brillouin zones:

|n(t),m〉〉 = e−iF+imΩt |n〉 . (2.13)

The matrix elements of the Floquet Hamiltonian H (see Eq. (2.11)) in the
basis |n(t),m〉 are given by

〈〈n(t),m|H
∣∣n′(t),m′〉〉 =

1

T

∫ T

0
dt 〈n| eiF−imΩtHe−iF+im′Ωt

∣∣n′〉
=
δm,m′

T
〈n|
∫ T

0
dteiF (H+m~Ω)e−iF

∣∣n′〉 (2.14)

+
1− δm,m′

T

∫ T

0
dtei(m

′−m)Ωt 〈n| eiFHe−iF
∣∣n′〉 .

Here, we have divided the Hamiltonian into blocks characterised by a com-
bination (m,m′), with special attention for the diagonal blocks. Note that
the diagonal blocks are separated from each other by steps of ~Ω. This
implies that if the elements of the off-diagonal blocks are much smaller
than ~Ω, we can, in a first perturbative approximation, neglect them, and
focus on the m′ = m blocks [17]. Doing so allows us to define an effective
Hamiltonian:

〈〈n(t),m|H
∣∣n′(t),m′〉〉 ≈ δm,m′ 〈n| 〈eiFHe−iF 〉T ∣∣n′〉+m~Ωδm,m′δn,n′ .

(2.15)
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As long as the energies of the different Brillouin zones do not mix, i.e. if
the Brillouin zone size ~Ω is much larger than the energy scales present
in
〈
eiFHe−iF

〉
T

, we can approximate the spectrum of the time-dependent
Hamiltonian in the first Brillouin zone by that of the time-averaged effective
Hamiltonian, which is then defined by

Heff =
1

T

∫ T

0
dteiF [H(t)− i~∂t]e−iF . (2.16)

In the above derivation, the operator F has never been defined. The rea-
son is that in principle, any time-dependent T -periodic operator will do,
keeping in mind that the set of basis states in which the effective Hamil-
tonian is formulated depends on which operator F one uses. The shape of
the effective Hamiltonian itself therefore also changes with F . A natural
choice for this operator is the primitive of the driven part of the original
Hamiltonian: this choice implies that we work with a basis of states in
the extended Hilbert space whose time-dependence is generated by Hd. It
should be noted that the derivation presented here glosses over a number
of very subtle and interesting effects, which we will not touch upon in this
thesis. Interested readers are referred to [74].

2.2.2 Periodically driven lattice potentials

Below, the basic steps are executed to obtain the form of the many-particle
time-dependent Hamiltonian H(t) to be used for deriving Hff for ultracold
atoms in shaken optical lattices. The driving terms used in this thesis will
always be superpositions of same-frequency sinusoidal functions along all
axes, but the phase and amplitude differences allow for various paths to be
traced. Here, we will simply use some function s(t) such that s(t+T ) = s(t):

H =
|p|2

2m
+ V [r + s(t)], (2.17)
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Now, since we are assuming a deep lattice, it makes sense to perform a
canonical transformation to the comoving frame of reference:

r′ = r + s(t)

p′ = p +m∂ts(t)

G = [r + s(t)] · [p′ −m∂ts(t)],

(2.18)

where G generates the transformation. Hence, the Hamiltonian in the new
frame is given by

H ′ =
|p′ −m∂ts|2

2m
+ V (r′)−m∂2

t s · r′ + (p′ −m∂ts) · ∂ts

=
|p′|2

2m
+ V (r′)−m∂2

t s · r′ + const.

(2.19)

Having obtained this comoving frame-Hamiltonian, we will drop the dashes
and work with the comoving version from now on. Note the intertial force
term that has appeared: this will take the role of Hd in the derivation of
the effective Hamiltonian.

Second quantisation

We use the Wannier basis corresponding to the potential V (r). The form
of the static part of the Hamiltonian in that basis is well-known:

Hs = −
∑
i,j

Jija
†
iaj , (2.20)

where

Jij = −
∫
drw∗(r−Ri)

[
−~2∇2

2m
+ V (r)

]
w(r−Rj). (2.21)

The operator r, expressed in terms of a† and a, is given by∑
i,j

a†iaj

∫
drw∗(r−Ri) rw(r−Rj). (2.22)
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For i = j, the integral yields Ria
†
iai, since the Wannier function peaks at

the origin:∫
dr |w(r−R)|2r =

∫
dr |w(r)|2(r + R)

= R

∫
dr |w(r−R)|2 +

∫
dr |w(r)|2r = R,

(2.23)

since the Wannier function can be chosen to be even, and its square is
normalised to unity. For i 6= j, we can shift the integration variable by
(Ri −Rj)/2 and obtain∫

drw∗[r− (Ri −Rj)/2] rw[r + (Ri −Rj)/2]. (2.24)

This integral vanishes due to symmetry arguments. Hence, we conclude
that the effective single-particle Hamiltonian reads

H = −J
∑
i,j

a†iaj +
∑
i

∂2
t s ·Ria

†
iai. (2.25)

Note that the above derivation does not depend on the statistics of the
particles: it works equally well for bosons and fermions. Having obtained
this second-quantised form of the Hamiltonian, we can add other terms to
the Hamiltonian. As long as they do not contain external potentials, they
will not have any influence on the above derivation.

2.3 Dipolar interactions

The Hubbard models shown in Eq. (2.1) and (2.2) feature only on-site
interactions. One of the possible extensions is to include density-density
interactions between different sites. The resulting model is often called
‘extended Hubbard model’:

H = −J
∑
〈i,j〉

a†iaj +
∑
i,j

Ui,j
2
a†ia
†
jajai − µ

∑
i

ni. (2.26)
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While it is an extension of the traditional Hubbard model, it is certainly
not the only possible one. In the interest of clarity, we will refer to it
as the Hubbard model with long-range interactions, ‘long-range’ denoting
anything beyond on-site.

Many studies of dipolar atoms in optical lattices focus on 2D systems,
where the dipoles are polarised perpendicularly to the plane of the lattice.
The interaction between two identical polarised dipoles displaced by a vec-
tor r is proportional to the dipole moment squared and the inverse cube of
the distance:

V (r) ∝ d2 1− 3 cos2 ζ

r3
, (2.27)

where ζ is the angle between the direction of polarisation and the displace-
ment vector, d is the dipole moment, and r is the distance between the
dipoles. If the displacement vector is perpendicular to the polarisation vec-
tor, which is always the case with dipoles in a 2D lattice with perpendicular
polarisation, this interaction is repulsive. It can be made attractive, by in-
clining the polarisation relative to the plane by an angle ϕ and rotating it
at a frequency much higher than the trapping frequency of the particles. In
that limit, the particles feel an effective, time-averaged interaction, given
by (see Ref. [32])

〈V (r)〉t = gddd
2 1− 3 cos2 ζ

r3

3 cos2 ϕ− 1

2︸ ︷︷ ︸
a(ϕ)

. (2.28)

With this technique, the interaction can be made attractive even for ζ =
π/2, by setting ϕ > cos−1

√
1/3. Another way to obtain attractive dipolar

interactions is to orient the dipoles within the plane; however, the interac-
tion will be rendered anisotropic in this case, and always be repulsive along
a certain direction. For a more in-depth discussion of how the various
off-site interaction coefficients can be arranged, see section 5.2.2.



30 CHAPTER 2. INTRODUCTION: TECHNICAL ASPECTS

Figure 2.2: The Fourier transform of the isotropic dipolar interaction, at
ky = 0. The different plots represent a cut-off of 5 (blue), 10 (green), or 30
(red) lattice spacings.

Momentum space representation

Since many of the effects to be studied in this thesis are easiest to describe
and study in momentum space, we are interested in the Fourier transform
of the dipolar interaction:

Ṽ (k) =
1

Ns

∑
r

e−ik·rV (r)

= d2gdd
1

Ns

∑
r

e−ik·r
1− 3 cos2 ζ

r3
.

(2.29)

In the case where ζ = π/2 for all (in-plane) displacement vectors, the
interaction is repulsive and isotropic, and the expression for Ṽ simplifies to

Ṽ (k) = d2gdd
1

Ns

∑
r

e−ik·r

r3
. (2.30)

We can approximate this numerically by cutting off the sum at some ‘large’
distance. Figure 2.2 shows that apart from small corrections at small mo-
menta, the overall momentum dependence does not change much at cut-
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offs of more than 5 or 10 lattice sites. The significance of a momentum-
dependent interaction becomes apparent when studying its expectation
value in kinetic eigenstates. The statistics, Bose-Einstein or Fermi-Dirac,
determine the sign of the exchange term, and thus of the effective interac-
tion, as discussed in section 4.1.2.



Chapter 3

Finite-momentum
Bose-Einstein condensates in
2D square optical lattices

Abstract

In this chapter1, we consider ultracold bosons in a 2D square optical lat-
tice described by the Bose-Hubbard model. In addition, an external time-
dependent sinusoidal force is applied to the system, which shakes the lattice
along one of the diagonals. The effect of the shaking is to renormalize the
nearest-neighbor hopping coefficients, which can be arbitrarily reduced, can
vanish, or can even change sign, depending on the shaking parameter. It is
therefore necessary to account for longer-distance hopping terms, which are
renormalized differently by the shaking, and introduce anisotropy into the
problem. We show that the competition between these different hopping
terms leads to finite-momentum condensates, with a momentum that may
be tuned via the strength of the shaking. We calculate the boundaries be-

1This chapter is based on the publication Finite-momentum Bose-Einstein conden-
sates in 2D square optical lattices, Phys. Rev. A 84, 013607 (2011) by M. di Liberto,
O. Tieleman, V. Branchina, and C. Morais Smith.

32
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tween the Mott-insulator and the different superfluid phases, and present
the time-of-flight images expected to be observed experimentally.

3.1 Introduction

Finite-momentum condensates have recently attracted a great deal of at-
tention. In the original two proposals by Fulde, Ferrel, Larkin, and Ovchin-
nikov, it was argued that finite momentum Cooper pairs would lead to in-
homogeneous superconductivity, with the superconducting order parameter
varying spatially (the so-called FFLO phase) [75, 76]. Early NMR experi-
ments at high magnetic fields and low temperatures in the heavy-fermion
compound CeCoIn5 have shown indications of an FFLO phase [77, 78, 79],
although recent data suggest the existence of a more complex phase, where
the exotic FFLO superconductivity coexists with an incommensurate spin-
density wave [80]. For ultracold fermions with spin imbalance, on the other
hand, the observation of the FFLO phase has been recently reported in 1D
[81].

Earlier theoretical studies of a square-lattice toy model for a scalar field,
where non-trivial hopping beyond nearest neighbors was taken into account,
revealed that quantum phases, in which the order parameter is modulated
in space, may be generated [82]. Finite-momentum condensates were also
experimentally detected for bosons in more complex lattice geometries, such
as the triangular lattice under elliptical shaking [10], or for more complex
interactions, as e.g. for spinor bosons in a trap in the presence of Zeeman
and spin-orbit interactions [83]. With regard to bosons in a square lattice, it
was recently shown that changing the sign of the tunnelling matrix element
by shaking the lattice, leads to a finite-momentum condensate in the corner
of the Brillouin zone [19, 25]; furthermore, a staggered gauge field was
predicted to have similar effects on the condensation momentum [29]. In
this case, the bosons condense either at zero momentum or in the corner of
the Brillouin zone, and a first-order phase transition occurs between these
two phases [29].

In this chapter, we propose that finite-momentum condensates can be
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realized for bosons in a shaken square lattice and that we may tune the
momentum of the condensate smoothly from zero to π, by varying the
shaking parameter K0. We consider a 2D square lattice shaken along one
diagonal and investigate the effect of next-nearest-neighbor (N3) and next-
next-nearest neighbor (N4) hopping in the behavior of a bosonic system.
The shaking leads to an effective renormalization of the nearest-neighbor
(NN) hopping parameter, which can vanish or even become negative [17].
When this parameter is tuned to be very small, longer-distance hopping
terms, which are usually negligible, may become relevant and must there-
fore be included in the model. Although the N3 hopping coefficients are
strictly zero in 2D optical lattices where the x- and y-directions are inde-
pendent (i.e. in separable potentials), they are relevant for non-separable
optical lattices. In this chapter, we show that a tunable finite-momentum
condensate can be realized in a certain range of parameters for a realistic
and simple setup, thus providing the possibility of realising and controlling
finite-momentum Bose-Einstein condensates (BECs).

The structure of this chapter is as follows: In section 3.2, we introduce
an extended Bose-Hubbard model which includes longer-distance hopping
coefficients in a non-separable 2D square optical lattice potential, and in-
troduce a sinusoidal shaking force to the system. Next, we show in section
3.3 how the finite-momentum condensate arises, and how the condensation
momentum depends on the shaking. We present a 3D phase diagram, with
as parameters the Hubbard interaction U , the chemical potential µ, and the
shaking parameter K0, and indicate the parameter regime for the realiza-
tion of the tunable momentum condensate in section 3.4. Finally, in section
3.5, we calculate the expected outcome of time-of-flight experiments, and
present some discussion and conclusions in section 3.6.

3.2 The model

3.2.1 Non-separable potential

Before discussing the generic 2D problem, let us recall the behavior of
1D lattices and 2D separable lattices. A simple calculation shows that in
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1D shaken optical lattices of the form V (x) = (V0/2) cos(2kx) (V0 is the
potential depth and k = 2π/λ is the wave vector of the laser beam), N3
hopping coefficients do not change the position of the global minima in
the single-particle spectrum but generate metastable states. 2D separable
potentials do not introduce new physics from this point of view, leading
us to consider non-separable ones. The simplest non-separable potential in
2D is given by [15]

V (r) = −V0

{
sin2[k(x+ y)] + sin2[k(x− y)]

+ 2α sin[k(x+ y)] sin[k(x− y)]
}
,

(3.1)

where we will make the choice α = 1 in the remainder of this work. Had
we chosen α = 0, the potential would have been separable, whereas for 0 <
α < 1 the potential would correspond to a superlattice, with neighboring
wells of different depths. The parameter α is tunable by means of the phase
difference between the x- and y-laser beams [15, 84, 85]: Given a 2D square
lattice generated by the laser electric field

E = E+
x + E−x + E+

y + E−y

E±x =Ae±ikxe−iωteiθ/2p1

E±y =Ae±ikxe−iωte−iθ/2p2,

(3.2)

with k being the inverse lattice constant, ω the frequency of the lasers,
p1,2 the polarisation vectors of the two beams, and θ the phase difference
between them, the lattice intensity is then given by

|E|2 = 4A2
[
cos2(kx) + cos2(ky) + 2cos(kx) cos(ky) cos(θ)p1 · p2

]
. (3.3)

Setting the two polarisation vectors equal, the interference term propor-
tional to α = cos θ survives. Setting the phase difference θ = 0 then allows
the experimentor to generate the lattice shown in fig. 3.1.
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Figure 3.1: The non-separable optical potential V (x, y) given by Eq. (3.1)
with α = 1.

3.2.2 Hopping coefficients

As shown in e.g. Ref. [1] and briefly discussed in section 2.1, we can calculate
the hopping coefficients from the exact band structure

En(q) =
∑
R

tn(R) eiq·R, (3.4)

where n is the band index, q is the quasimomentum, and R is a lattice vec-
tor. In this notation, tn(R) is the hopping coefficient between two sites sep-
arated by the lattice vector R in the n-th energy band. The non-separable
optical potential generates hopping coefficients along the diagonal of the
lattice which were exactly zero for separable potentials. A lattice vector
has the form R = mRae1 + nRae2, where a = λ/2 is the lattice spac-
ing, mR and nR are integers, and e1 and e2 are dimensionless unit vectors
in the x- and y-directions. R is indicated in short notation as (mR, nR).
For the non-separable potential that we have introduced, we expect to find
nonzero hopping terms also for pairs of sites separated by dimensionless
lattice vectors like (1, 1) or (2, 1), which vanish identically for separable lat-
tices. Table 3.1 shows the most relevant lowest-band hopping coefficients
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for shallow lattices. Longer-distance hopping coefficients are neglected, be-
cause they are at least an order of magnitude smaller than the N4 terms,
and therefore not important, as will become clear afterwards.

V0/Er (1, 0)↔ −t (1, 1)↔ t′ (2, 0)↔ t′′

1.0 −2.45× 10−2 −8.89× 10−4 8.88× 10−4

2.0 −4.52× 10−3 −6.65× 10−5 2.27× 10−5

3.0 −1.06× 10−3 −5.89× 10−6 1.06× 10−6

4.0 −2.97× 10−4 −6.74× 10−7 7.86× 10−8

Table 3.1: Relevant hopping matrix elements (in units of the recoil energy
Er) of the lowest band for shallow lattices. Numbers obtained by Fourier
decomposition of numerically calculated approximate band structure. Cal-
culation performed by M. di Liberto as part of his MSc thesis research,
which I co-supervised.

3.2.3 Periodic shaking

We will assume that the lowest-orbital Wannier functions are still even and
real for this non-separable potential. As shown by Kohn [71], this can be
proven for separable potentials; for non-separable ones it is also a reasonable
conjecture, supported by numerical simulations, as shown in Ref. [86]. If we
apply a driving sinusiodal force like the one studied in Ref. [17], but now
along one of the diagonals, the shaking term in the co-moving reference
frame that has to be added to the Hamiltonian reads

W (τ) = K cos(ωτ)
∑
R

(mR + nR)nR, (3.5)

where ω is the shaking frequency, τ is the real time, and nr is the density
operator at site r. Following the approach discussed in Refs. [17], the
non-interacting effective Hamiltonian for the quasienergy spectrum in the
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high-frequency limit ~ω � U, t (and thus ~ω � t′, t′′) is

H0
eff = − tJ0(K0)

∑
r,ν=1,2

a†rar±eν + t′J0(2K0)
∑
r

a†rar±(e1+e2)

+ t′
∑
r

a†rar±(e1−e2) + t′′J0(2K0)
∑

r,ν=1,2

a†rar±2eν ,
(3.6)

where the shaking parameter is K0 = K/~ω (see section 2.2 for more de-
tails on the derivation). The Bessel function J0(x) has a node at x ' 2.405,
but not in the vicinity of x ≈ 4.81; hence, when the NN hopping coeffi-
cient teff = t J0(K0) is negligible, the longer-distance ones are not. The
role of N3 tunnelling in the absence of NN tunnelling was also addressed in
Ref. [26]. Note that the hopping coefficient along the diagonal perpendic-
ular to the shaking direction is not affected by the shaking, in accordance
with Eq. (2.25).

3.3 Tunable finite-momentum condensate

The effective Hamiltonian from Eq. (3.6) is diagonal in reciprocal space and
the single-particle spectrum reads

Ek =− 2tJ0(K0) [cos(k1) + cos(k2)] + 2t′J0(2K0) cos(k1 + k2)

+ 2t′ cos(k1 − k2) + 2t′′J0(2K0) [cos(2k1) + cos(2k2)] ,
(3.7)

where kν = k·eν and we have set the lattice constant to unity. The spectrum
has an absolute minimum at the center of the Brillouin zone (k = 0) when
K0 is below a critical value that depends on the lattice depth V0. In a
small interval around K0 ≈ 2.405, two symmetric minima develop along
one diagonal of the Brillouin zone at ±k0, as shown in Fig. 3.2. For higher
values of K0, there is a single minimum in the corner of the Brillouin zone.
We may determine the precise position of these two minima by studying
the first derivative of the single-particle spectrum for k = k1 = k2. The
non-trivial minima are given by the solution of the equation

cos(ka) =
J0(K0)

2J0(2K0)(t1 + 2t2)
≡ f(K0), (3.8)



3.3. TUNABLE FINITE-MOMENTUM CONDENSATE 39

Figure 3.2: Single-particle spectrum at V0 = 3Er for K0 = 2.4048 and
contour plot.

where t1 = t′/t and t2 = t′′/t. We have found that for V0 = 2Er, 3Er,
and 4Er, the second derivative of the single-particle spectrum shows that
Eq. (3.8)) corresponds to a true minimum, while for V0 = 1Er it is a
maximum. Although these numbers seem low in comparison to the usual
rule-of-thumb lattice depth where the single-band approximation is justified
(V0 ≥ 5Er is often used), one must keep in mind that due to the interfer-
ence term, the potential barrier between two minima is 4V0, whereas in
a standard separable lattice potential it is given by V0 itself. Hence, the
single-band approximation remains justified in the present case.

The largest interval Σ of the shaking parameter K0 for which the non-
trivial minima appear, has been found to be at lattice depth V0 = 2.2Er,
where the condensation momentum is finite for 2.4003 < K0 < 2.4093.
Since we expect the bosons to condense at the minimum of the single-
particle spectrum, the condensation momentum given by Eq. (3.8)) is a
function of the shaking parameter K0 and smoothly evolves from k = 0 at
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the left edge of Σ to k = (π, π) at the right edge of Σ, see Fig. 3.3. The two
minima in the Σ region are inequivalent because they are not connected by
reciprocal lattice vectors, and therefore both have to be taken into account
when determining the BEC ground state (see below). The arccosine shape
of the evolution curve can be explained by linearising Eq. (3.8) around
K0 ≈ 2.405, which is a good approximation because Σ � 1. The size of
the interval Σ is determined by the ratios t′/t and t′′/t, and is consequently
small.

In the absence of interactions, the ground state of the tunable-momentum
SF phase with momenta ±k0 would be highly degenerate, given by

|G〉 =

N∑
n=0

cn√
n!(N − n)!

(a†k0
)n(a†−k0

)N−n |0〉

=

N∑
n=0

cn |nk0 , (N − n)−k0〉 ,

(3.9)

where the coefficients cn can be chosen freely, only constrained by the nor-
malization condition

∑
n |cn|2 = 1. The ground state is thus N + 1-fold

degenerate, where N is the number of particles.

3.4 Interactions

Let us now consider an additional term to the Hamiltonian given in Eq. (3.6),
which describes the local interactions between the bosons

Hint =
U

2

∑
r

nr(nr − 1). (3.10)

We will treat the interactions between the atoms in a perturbative way and
study their effect on the ground state degeneracy. By applying first-order
perturbation theory, we find that the correction to the ground-state energy
NEk0 is given by

〈m,N −m|Hint |n,N − n〉 =
U

2Ns

[
−2n2 + 2nN +N(N − 1)

]
δmn,

(3.11)
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Figure 3.3: Evolution of the minimum in the single-particle spectrum in
units of the lattice spacing a as a function of the shaking parameter K0 at
V0 = 3Er (only the positive branch is considered).

where Ns is the number of lattice sites. The matrix element is in diagonal
form and the eigenvalues are an upside down parabola in n. This means
that the minima are at the edge of the interval n ∈ [0, N ] and that they
are degenerate. Interactions have partially removed the degeneracy; the
perturbative (degenerate) ground state to zeroth order is

|G〉 =
c+√
N !

(a†k0
)N |0〉+

c−√
N !

(a†−k0
)N |0〉 (3.12)

and has energy

〈H〉 = 〈H0〉+ 〈Hint〉 = NEk0 +
U

2Ns
N(N − 1). (3.13)

Eq. (3.12) shows that the ground state is a superposition of two degenerate
states in which all the particles have momentum k0 or −k0. These two
states are entangled and behave in a very similar way to the states found
by Stanescu et al. [87] for condensates with spin-orbit coupling, as well as
the time-reversal symmetry breaking BECs studied by Eckardt et al. [14].

The superposition described in Eq. 3.12 is a Schrödinger cat state, which
can be expected to be very fragile with respect to interactions with the
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environment. It is composed of two states which each break time-reversal
symmetry (all particles in momentum state k0 or in −k0). A collapse of the
cat state corresponds to choosing one of the two momenta, similar to the
stabilisation of BECs by interactions. In this particular case, it would also
involve spontaneous time-reversal symmetry breaking, due to the nature of
the two states composoing the Schrödinger cat state.

Aside from the partial lifting of the degeneracy, more intriguing ef-
fects can be expected from interactions - even ‘simple’ on-site ones such as
discussed here. Since they induce depletion of the condensate, it is note-
worthy that the spectrum is most shallow along the diagonal on which the
minima lie. Hence, excitations are likely to be predominantly along that
line, possibly inducing quasi-one-dimensional behaviour into the system.
The superfluidity associated with the finite-momentum BEC could show
anisotropic behaviour: the response to potential differences in different di-
rections would not be the same.

3.4.1 Phase diagram

One can generalize the mean-field approach described in Ref. [24] to cal-
culate the MI-SF phase boundaries, taking into account longer-distance
hopping terms. The outcome is

µ̄± =
Ū

2
(2N0 − 1) +

εk0

2

± 1

2

√
ε2k0

+ 2(2N0 + 1)Ūεk0 + Ū2,

(3.14)

where µ̄ = µ/2t, Ū = U/2t, εk0 = Ek0/2t and k0 is the condensation
momentum, which depends on the shaking parameter K0. Plotting µ̄±
then gives the phase diagram, which is shown in Figs. 3.4 and 3.5. We note
that the condensation momentum is, to leading order, not changed by the
interactions (higher-order Bogolyubov theory shows a shift; cf. [14]). This
can be seen e.g. by doing first order perturbation theory calculations: in
the presence of interactions, the energy per particle is shifted by an amount
of NU/2Ns, which is momentum independent.



3.4. INTERACTIONS 43

Figure 3.4: Phase boundaries for V0 = 3Er where µ̄ ≡ µ/2t and Ū ≡ U/2t:
(a) lobe with N0 = 1; (b) lobes with N0 = 1, 2 in the region of the tunable
finite-momentum condensate.

Figure 3.5: Phase boundaries between the Mott-insulator and the superfluid
phase for V0 = 3Er at fixed K0 and filling factor N0 = 1: (a) K0 = 1; (b)
K0 = 2.405; (c) K0 = 3. Note the different scales for each plot.
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Figure 3.6: Critical value Ūc = (U/2t)c at V0 = 3Er as a function of
the shaking parameter K0; in the inset, we show the region 2.4016 ≤ K0 ≤
2.4081 where the tunable finite-momentum condensate is generated. Except
in the small region where the finite-momentum condensate is generated, Ū
nearly coincides with Ū0J0(K0), where Ū0 is the value of Ū at K0 = 0. The
two lines are indistinguishable in the figure.

3.5 Experimental considerations

The lobe with unit filling N0 = 1 yields a critical value of Ū below which
only the SF phase is allowed, see Fig. 3.6. Typical values of U are too large
to allow us to probe the tunable-momentum SF with ordinary experimen-
tal setups. However, we can decrease U by reducing the s-wave scattering
length with Feshbach resonances, which are available for both the com-
monly used Rubidium isotopes and also for other alkali atoms. We remark
that although the range of K0 in which the condensation momentum is
tunable is very small, the required precision should be within experimental
control [88]. Another challenges could arise due to the shallow nature of
the minima, requiring very low energies to detect the effects discussed here.

The quantum phases discussed above could be experimentally observed
by performing the usual time-of-flight experiments. These experiments
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measure the momentum-space density distribution

n(k) =
〈
ψ†(k)ψ(k)

〉
= N |W (k)|2

(
|c+|2δk,k0 + |c−|2δk,−k0

)
, (3.15)

where W (k) is the Fourier transform of the Wannier function and we
adopted the coherent state approximation for the SF ground state. The
delta functions select the positions of the peaks in the absorption image
and are a clear signal of the presence of such a condensate. Considering
the hypothetical situation of an environment-free experiment, the first atom
that is measured, has one of the two momenta, and causes the wavefunction
to collapse onto the state where all atoms have that momentum, resulting
in a single peak. However, interactions with the environment will in realis-
tic experimental situations already have caused such a collapse before the
measurement process begins. An array of 2D identical systems would reveal
a pattern with both peaks, since either momentum is equally likely to be
measured. By studying the envelope function that suppresses the height
of the peaks outside the first Brillouin zone, we can investigate the effect
of the non-separability of the optical potential on the Wannier functions in
reciprocal space.

In Fig. 3.7 we show a qualitative indication of the expected the pattern
of the time-of-flight image described by Eq.(3.15). Note that the image is
only meant to indicate expected characteristics of the measurement, not
quantitatively predict density distributions. The Fourier transform of the
Wannier function suppresses the peak heights in higher Brillouin zones,
which we have modelled by a Gaussian envelope. In addition, we have
qualitatively included the broadening of the peaks due to the external trap
by replacing every peak by a highly localised Gaussian.

3.6 Discussion and conclusions

We have explored the possibility to generate finite-momentum condensates
in optical lattices under shaking, where the suppression of hopping can be
tuned by the shaking. This opens up the possibility to investigate the role
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Figure 3.7: Time-of-flight picture expected from experiment as a signal
of the finite-momentum-condensate phase. The black square indicates the
first Brillouin zone, and the condensation momentum represented in this
image is k0 = 2π/5a, 2π/5a. The axes are in units of the inverse lattice
constant 1/a.

of longer-distance hopping. We have studied non-separable optical poten-
tials in 2D square lattices, and found that N3 hopping coefficients that
vanish identically in separable potentials survive, although they are sig-
nificantly smaller than their NN counterparts. By applying the shaking
along the diagonal of the lattice, we found that in a small region of the
shaking parameter, where the NN tunneling rate is suppressed, two kinds
of longer-distance hopping coefficients govern the dynamics of the conden-
sate. In this region, we have unveiled an intermediate phase, for which the
condensation point shifts continuously from the center to the edge of the
Brillouin zone as we the shaking parameter is tuned. There are two minima
in the single-particle spectrum and they are symmetric with respect to the
center of the Brillouin zone. In addition, we found that in first approxi-
mation, small interactions between the particles force the ground state to
be a Schrödinger-cat-like superposition of two possible Fock states, both
of which spontaneously break time-reversal symmetry: one where all the
particles condense in one minimum and the other where all the particles con-
dense in the second minimum. Since such a superposition is a Schrödinger
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cat state, it is very sensitive to collapse. More sophisticated calculations
would be informative here, e.g. Bogolyubov approximation-based estimates
of condensate depletion.

Finally, we note that the tunable-momentum condensate should be ex-
perimentally detectable for relatively weak on-site interactions. Although
a few challenges (or avenues for further research) are present, the required
strengths can in principle be achieved with present state-of-the-art exper-
imental techniques, and we hope that our results can stimulate further
experiments in this direction.



Chapter 4

Spontaneous time-reversal
symmetry breaking for
spinless fermions on a
triangular lattice

Abstract

In this chapter1, we investigate a system of spin-polarised (i.e. single-
species) fermions in a two-dimensional triangular lattice. The hopping co-
efficients and filling factor are chosen such that the system is kinetically
frustrated. In addition, a nearest-neighbour (NN), or longer-ranged repul-
sive interaction is considered, since on-site interactions are not allowed due
to the Pauli exclusion principle. In order to obtain physical insight into
the system, we study it in the weakly interacting regime, at mean-field
level. Exact diagonalisations on small systems support the mean-field re-
sults. We find that at low filling factors, time-reversal symmetry is broken

1The publication Spontaneous time-reversal symmetry breaking for spinless fermions
on a triangular lattice, arXiv:1210.4338, by O. Tieleman, O. Dutta, M. Lewenstein, and
A. Eckardt, Ref. [61], is based on the material presented in this chapter.

48
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spontaneously, leading to a pattern of staggered currents running around
the elementary lattice plaquettes. Furthermore, a density-wave appears due
to the repulsive interactions, as well as an exotic phase which combines the
two broken symmetries. Possible realisations of the system are discussed
towards the end of the chapter.

4.1 Hamiltonian - basic considerations

4.1.1 Single particle: kinetic frustration

Kinetic frustration affects the low-energy single-particle states, and occurs
when not all hopping terms can be simultaneously minimised. The hopping
terms of the Hamiltonian are given by

Hh =

3∑
j=1

∑
r

∑
σ=±1

Jjc
†
rcr+σej , (4.1)

where r runs over all lattice sites, and the lattice is spanned by any two of
the three primitive vectors ej , given by (1, 0), (−1,

√
3)/2, and (−1,−

√
3)/2

in units of the lattice constant (see fig. 4.1, left panel). By choosing either
one or three of the hopping coefficients Jj to be negative, a single-particle
state can be found that minimises all hopping terms, but not one that
maximises all of them. If the number of negative coefficients is even, how-
ever, the situation is reversed: no single-particle state can be found that
minimises all hopping terms, but they can all be maximised at the same
time. In this case, the system is called frustrated. The degree of frustration
can be measured by the ratio of the lowest achievable energy to the sum
of the minimal values of all the different hopping terms. Note that due to
the complex nature of the wavefunction, other configurations than those
discussed above are also possible, where e.g. none of the hopping terms are
individually minimised. In the case of the triangular plaquette, the mini-
mal energy state is in fact of this type: the wavefunction phases shift by
2π/3 between neighbouring lattice sites. For the connection between this
intersite phase difference and the energy, see Eq. (4.5).
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The frustrated situation is illustrated in the right panel of fig. 4.1: The
sign of the wavefunction on the three lattice sites of the elementary pla-
quette shows the frustration. Starting from a positive sign in the lower left
corner, it is possible to minimise two of the three hopping terms, e.g. the
two non-horizontal bonds, by giving the wavefunction a positive signe ev-
erywhere. To minimise the third one, however, the wavefunction has to
simultaneously have both a positive and a negative sign in the lower right
corner. Such a system can be realised experimentally by periodically shak-
ing the lattice, as was done in Ref. [10], or by considering an unshaken
lattice at (fermionic) filling just below unity: in that case, the holes expe-
rience kinetic frustration.

Figure 4.1: Left panel: the triangular lattice, with three different hopping
coefficients Jj along the elementary lattice vectors ej . Right panel: sketch
of the frustration due to positive hopping terms (negative terms are coloured
green, positive ones red). In this illustration, the frustration appears in the
impossibility of finding a wavefunction for the lower left corner that satisfies
both hopping terms connected to it.

After Fourier transforming and expressing the hopping term in momentum
representation, we obtain the dispersion relation shown in fig. 4.2. The
two minima in the single-particle dispersion relation are, in this case, a
consequence of the real-space frustration discussed above. A non-frustrated
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triangular lattice has a dispersion relation with one unique minimum.

Figure 4.2: Left panel: the frustrated spectrum, with two inequivalent
minima at k = ±(2π/3a, 0). Right panel: the non-frustrated spectrum,
where all Jj are negative.

The momentum-space version of Hh is given by

Hh = 2
∑

k∈BZ1

3∑
j=1

Jj cos(k · ej)︸ ︷︷ ︸
εk

c†kck. (4.2)

(Below, all sums over momenta run over the first Brillouin zone BZ1, also
where this is not indicated.) The two distinct possible dispersion relations
εk, assuming that all three hopping coefficients have equal magnitude, are
shown in fig. 4.2. These two realisations can be tuned smoothly into each
other by changing the ratios of the hopping coefficients. It is noteworthy
that the lowest-energy single-particle states of the frustrated dispersion re-
lation spontaneously break time-reversal symmetry, as can e.g. be deduced
from the fact that they do not lie at a point of reciprocal lattice symmetry.
Another way of seeing this is by observing that hopping terms that are
not completely extremised carry currents. Considering the operator for the
current from site r to site r′,

Ĵr−r′ = iJr−r′
(
c†r′cr − c

†
rcr′
)
, (4.3)
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we see that its expectation value in a single-particle state is sensitive to the
phase difference between the two sites:

〈vac|
∑
j

cjnje
iθjJr−r′

∑
j′

nj′e
−iθj′ c†j′ |vac〉 = 2Jr−r′nrnr′ sin(θr − θr′).

(4.4)

Hence, if the phases on the two sites are either equal or separated by π, the
current between them vanishes. Since the expectation value of the hopping
term between two sites in the same state is given by

〈vac|
∑
j

cjnje
iθjJr−r′

(
c†r′cr + c†rcr′

)∑
j′

nj′e
−iθj′ c†j′ |vac〉

= 2Jr−r′nrnr′ cos(θr − θr′),
(4.5)

which is extremised when the phases are equal or separated by π, we con-
clude that partially frustrated hopping terms carry current, and therefore
break time-reversal symmetry. Further discussion of this point is presented
in section 4.1.2. Ref. [14] provides a discussion of the various lowest-energy
single-particle states in such a lattice, in the context of a many-particle
bosonic system.

Many particles: Fermi surfaces

Since we are dealing with fermions and are interested in many-body sys-
tems, we are mostly interested in the shapes the Fermi surface takes, rather
than the properties of the lowest-energy single-particle state. We will as-
sume that all Jj have the same magnitude. In that case, at filling factors
ν ≤ 1/4, the Fermi surface consists of two closed loops, as shown in the left
panel of figure 4.3. Note that such a (non-interacting) many-body state
does not break time-reversal symmetry, since the particles fill up the states
around both minima equally. At quarter filling, the two loops become tri-
angular and touch at all three corners, leading to a bowtie-shaped Fermi
surface. This case was studied in Ref. [60], where a Bose-Fermi mixture was
found to have a supersolid phase (the fermions form a density wave, and
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superfluid bosons copy the fermionic density wave due to the Bose-Fermi
interaction).

Figure 4.3: Fermi surfaces for J1 = −J2 = −J3 = −|J |, at µ = −2.6J (left)
and µ = −2J (right).

At yet higher filling factors, the two loops join, and the Fermi surface
is fully connected. All frustrated single-particle states are now occupied,
and the physics of the system is governed by higher-energy states, where
the frustration does not play a role (recall that frustration is an effect
that only affects low-energy states). Hence, at filling factors ν > 1/4, the
many-body system does not show any effects of the frustration anymore.
The regimes we are interested in are at low filling and around quarter
filling, since the corresponding Fermi surfaces are susceptible to interesting
interaction-induced effects.

4.1.2 Long-range interactions

Adding generic long-range interactions to the kinetic term Eq. (4.1), we
obtain the complete Hamiltonian,

H =
∑
j

Jj
∑
r

∑
σ=±1

c†rcr+σej +
∑
r6=r′

V (r− r′)c†rcrc
†
r′cr′ . (4.6)
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In momentum space, the expression is

H =
∑
k

εkc
†
kck +

∑
p,q,k

V (k)c†pcp+kc
†
qcq−k, (4.7)

where V (k) is the Fourier transform of V (r− r′). Below, we will discuss
various consequences of such an interaction term, and briefly sketch the
effects we expect in the system under investigation.

Momentum-space attraction

An insightful approximation to this interaction term in the weakly inter-
acting limit is obtained by taking its expectation value in a many-particle
kinetic eigenstate, characterised by sharp quasimomentum occupation num-
bers (which, in a fermionic Hubbard model, can only be zero or one):

|{nk}〉 =
∏
k

(
c†k
)nk |vac〉 , (4.8)

where nk ∈ {0, 1}. In such a state, the expectation value of the interaction
energy is given by

∑
k,p,q

V (k)
〈
c†pc
†
qcq−kcp+k

〉
=
∑
p,q

[
V (0)− V (p− q)

]
npnq. (4.9)

This comes down to keeping only the terms k = p−q and k = 0. The zero
momentum exchange term simply counts all particles and adds an energy
penalty, coming down to a shift in the chemical potential. The crucial point
is the minus sign in front of the V (p− q)-term, that appears due to the
fermionic anticommutation relations. This minus sign implies that as long
as we can approximate the eigenstates of the system by the momentum
eigenstates, the effective momentum space interaction is attractive if the
real-space interaction is repulsive and decreases with distance.
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Time-reversal symmetry breaking

Given a Fermi surface consisting of two disconnected ‘Fermi pools’ (see
fig. 4.3, left panel), at filling ν ≤ 1/4, the consequence of such an effec-
tive momentum-space attraction is a tendency towards imbalanced filling
of the two pools. The energy cost for such an imbalanced filling is purely
kinetic, since it does not fill all the lowest available kinetic energy eigen-
states. Hence, one expects that at a critical ratio U/J , such the imbalance
will become energetically favourable.

As mentioned above, the effects of time-reversal symmetry breaking,
imbalanced momentum-space filling, and currents running through the sys-
tem, are connected. To see this in the many-body context, we Fourier
transform the momentum-space population difference to real space, and
find

nk − n−k =
〈
c†kck

〉
−
〈
c†−kc−k

〉
=

1

Ns

∑
r,r′

sin[k · (r− r′)] i
(〈
c†rcr′

〉
−
〈
c†r′cr

〉)
︸ ︷︷ ︸

Jr−r′/Jr−r′

, (4.10)

where Jr−r′ , which is an expectation value rather than an operator, denotes
the current from site r to site r′. To see that Jr−r′ indeed represents the
real-space currents, it is most straightforward to evaluate the expectation
value of the continuity equation, ∂t 〈n̂i〉 = i 〈[n̂i, H]〉. The most general
real-space form contains hopping terms from any site to any site:

∂t 〈n̂r〉 = i 〈[n̂r, H]〉

= i
∑
r′,r′′

Jr′−r′′
(〈
c†rcr′′

〉
{cr, c†r′} −

〈
c†r′cr

〉
{c†r, cr′′}

)
= i
∑
r′

Jr−r′
(〈
c†rcr′

〉
−
〈
c†r′cr

〉)
=
∑
r′

Jr′−r.

(4.11)

Note that the currents depend on both the Hamiltonian and the state of
the system - the former dependence is related to the fact that the cur-
rents provide information about time-evolution (they are derived from the
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Figure 4.4: The sum of the three different currents is a staggered pattern,
where the current running around the up-triangles ∆ is the opposite of that
running around the down-triangles 5.

continuity equation, or, quite simply, they tell us how the particles in the
system flow, i.e. where they will be next). Connecting the currents to the
momentum-space density distribution again, we find

Jr−r′ = − iJr−r′
(〈
c†rcr′

〉
−
〈
c†r′cr

〉)
= 2Jr−r′ Im

〈
c†rcr′

〉
=

2Jr−r′

Ns

∑
k

sin(k · ej)nk.
(4.12)

The vector quantity Jj = Jej will be our order parameter when calcu-
lating the phase diagram of the time-reversal symmetry breaking phase in
section 4.2. The vector has three components, since there are three nearest-
neighbour current directions. Based on the continuity equation and the ab-
sence of any effect favouring an overall current running through the system,
we expect the total current pattern to be staggered, as shown in fig. 4.4.

We see that the chiral ground states for the BEC found in Ref. [14] have
a fermionic equivalent. In the BEC case, there is complete momentum-space
imbalance: all particles occupy either one, or the other minimal-energy
state. In the fermionic case, the imbalance needs not be complete; as we
will see in section 4.2.1, it depends on the ratio U/J . Another significant
difference is that in the BEC case, the imbalance is a consequence of an
on-site interaction that is minimised by a homogeneous real-space density
distribution, whereas the long-range interaction considered here favours a
density wave (see section 4.3).
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Density wave

Another consideration starts from the real-space formulation of the Hamil-
tonian: repulsive off-site density-density interactions favour breaking spa-
tial homogeneity by inducing density waves. The simplest example is the
case of NN interactions, which are minimised by surrounding high-density
sites by low-density ones. Two such examples, at filling factors 1/3 and
1/4, are shown in fig. 4.5.

Figure 4.5: The real-space arrangements avoiding nearest-neighbour inter-
action energy costs, at filling factor 1/3 (left) and 1/4 (right).

However, for such a density modulation to occur in the weakly interacting
limit, it should not come with a high kinetic energy cost. This condition
is formalised in the requirement that the real part of the susceptibility di-
verges. The susceptibility, which measures the strength of the perturbation
required to induce a density wave, is given by

ReχQ =
∑
k

fk − fk+Q

ξk − ξk+Q
, (4.13)

where ξk = εk−µ, i.e. the single-particle spectrum shifted by the chemical
potential, and fk = [1 + exp(βξk)]−1 is the Fermi-Dirac distribution. If
the Fermi surface is nested, i.e. if ξk ≈ −ξk+Q along a finite portion of the
Fermi surface, the real part of the susceptibility diverges, and the kinetic
energy cost for creating density modulations with wavevector Q vanishes.
In this case, even an infinitesimal perturbation, i.e. an infinitesimally weak
interaction, will lead to a density wave.
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Note that an attractive NN density-density interaction will not lead to
density waves. In the case of the triangular lattice, the nesting condition is
fulfilled at ν = 1/4, but not at ν = 1/3. Hence, the only density wave to be
expected in the weakly interacting case is the one around quarter filling. In
the strongly-interacting limit, a density wave can also appear at ν = 1/3,
but that is not the object of the current investigation.

In the presence of a density wave, the local density is determined by two
contributions: nr = n0 +nmod(r). The modulating contribution nmod mod-
ulates with the characteristic wavevector of the density wave, and takes
both positive and negative values. The overall density obviously never
becomes negative, which is ensured by the presence of the constant con-
tribution n0. The order parameter for a density wave with a particular
wavevector is the fraction of the density that modulates. In real space, it
is given by

ρQ =
∑
r

cos(r ·Q)nr. (4.14)

In momentum space, this can be seen to correspond exactly to the expec-
tation value of the density operator ρ̂Q. The real-space density operator ρ̂r
is given by

ρ̂r = c†rcr =
1

Nsites

∑
k,k′

eir·(k−k
′)c†kck′ =

1

Nsites

∑
p,q

eir·pc†p+qcq =
∑
p

eir·pρ̂p,

ρ̂p =
1

Nsites

∑
q

c†p+qcq. (4.15)

Fourier transforming the order parameter for the density wave, we find

ρQ =
∑
r

cos(r ·Q)
〈
c†rcr

〉
=
∑
k

c†k+Qck = 〈ρ̂Q〉 , (4.16)

which is intuitively easy to understand: it is the expectation value of the
Q-component of the density operator. Note that this is not the same as
the density of the single-particle state with momentum Q, which is given
by c†QcQ.



4.1. HAMILTONIAN - BASIC CONSIDERATIONS 59

4.1.3 Mean-field approximation

We will study the system in a mean-field approximation, where one-particle
operators c†icj are replaced by their averages plus fluctuations around those
averages, and the fluctuations are kept only to first order. In symbols:

c†icj =
〈
c†icj

〉
+ (c†icj −

〈
c†icj

〉
)︸ ︷︷ ︸

fluctuation

(4.17a)

c†ic
†
jckcl ≈

〈
c†icl

〉
c†jck +

〈
c†jck

〉
c†icl −

〈
c†icl

〉〈
c†jck

〉
−
〈
c†ick

〉
c†jcl −

〈
c†jcl

〉
c†ick +

〈
c†ick

〉〈
c†jcl

〉
.

(4.17b)

Note that we have not taken into account the anomalous averages of the
form 〈cicj〉, which describe superfluid pairing. These terms may be omitted
because we are working with a repulsive interaction, where pairing is not
expected. Consequently, all terms in the mean-field approximation take the
form c†kck′ .

In the following sections, we will make various assumptions about the

averages
〈
c†kck′

〉
. In section 4.2, we study only the time-reversal symmetry

breaking discussed above, and hence assume translational invariance. In
that case, we have 〈

c†kck′
〉

=
〈
c†kck

〉
δk,k′ = nkδk,k′ , (4.18)

and the effective Hamiltonian is diagonal in the quasimomentum states,
taking the form

∑
k ωkc

†
kck where ωk is the single-particle spectrum shifted

by the contributions from the interaction term. In section 4.3, we study
only the density wave. There, we do naturally not assume translational
invariance, but instead use the ansatz〈

c†k±Qj
ck

〉
6= 0 (4.19)

for a certain set of Qj , namely those that fulfill the nesting condition ξk ≈
−ξk±Q for a finite part of the Fermi surface. Lastly, in section 4.4, we
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study yet another phase, where both time-reversal and spatial symmetry
are broken. This calculation is based on the same terms as were taken into
account for the density wave. At the end, we summarise the results by
presenting a unified phase diagram in which all phases found are indicated.

The route we choose for the calculations is as follows: we treat the
quantities 〈c†icj〉 introduced in Eq. (4.17a) as variational parameters, and
extremise the corresponding free energy with respect to them. In the course
of performing this extremisation, we find that it is equivalent to treating
〈c†icj〉 as an expectation value and demanding that it is self-consistent,
i.e. that when calculating that expectation value in the mean-field ground
state, we find the same value as we put into the mean-field Hamiltonian.
The advantage of extremisation, however, is that we do not need to calcu-
late the values of all variational parameters, while still obtaining a phase
boundary.

To conclude this introductory section, we give the complete mean-field
Hamiltonian:

H =
∑
k

(
ωkc

†
kck +

∑
j

ω
Qj

k c†k+Qj
ck

)

−
∑
k,p

{
[V (0− V (k− p)]

〈
c†kck

〉〈
c†pcp

〉
+ [V (Q)− V (k− p + Q)]

〈
c†k+Qck

〉〈
c†p−Qcp

〉}
,

(4.20a)

ωk = εk − µ+ 2
∑

p∈BZ1

[V (0)− V (k− p)]
〈
c†pcp

〉
(4.20b)

ωQ
k = 2

∑
p∈BZ1

[V (Q)− V (k− p + Q)
〈
c†p+Qcp

〉
. (4.20c)

4.2 Staggered currents

In this section, we investigate the possibility of spontaneous time-reversal
symmetry breaking by the appearance of staggered currents, as depicted in
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fig. 4.4. We will only take into account the spatially homogeneous terms
from Eq. (4.20a), yielding a mean-field Hamiltonian that is immediately
diagonal in Fourier space:

HMF =
∑
k

ωkc
†
kck −

∑
k,p

[V (0)− V (k− p)]nknp, (4.21a)

ωk = ξk + 2
∑
p

[V (0)− V (k− p)]np. (4.21b)

By minimising the free energy corresponding to the mean-field Hamiltonian
with respect to all the parameters introduced by the approximation, we find
that demanding self-consistency is equivalent to treating the Hamiltonian
as a variational ansatz. Self-consistently solving for the required parameters
allows us to find the phase transition.

4.2.1 Gap equations

The free energy corresponding to the mean-field Hamiltonian, FMF, is given
by:

FMF
SC = − 1

β

∑
k

ln(1 + e−βωk)−
∑
k,p

nknp[V (0)− V (k− p)]. (4.22)

The subscript SC indicates that this free energy expression only takes into
account the possibility of staggered currents, and not the density wave
discussed in section 4.1. The superscript MF will be dropped from here on,
since we will only be working with mean-field approximations to the free
energy. The first term in this free energy is obtained from the first term
in Eq. (4.21a), and simply gives the free energy of a set of non-interacting
fermions subject to dispersion relation ωk. The second term is quite simply
the constant correction from Eq. (4.21a). Considering a purely nearest-
neighbour interaction, the interaction-related term in the mean-field single-
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particle dispersion can be rewritten as∑
p

npV (k− p) =
1

Ns

∑
p,j

Uj cos[(k− p) · ej ]np

=
1

2

∑
i

Uj
Jj

[Dj cos(k · ej) + Jj sin(k · ej)],
(4.23)

where we have defined

Dj =
2Jj
Ns

∑
k

nk cos(k · ej), (4.24)

analogously to Jj . ThisDj is a self-energy term that appears in the effective
mean-field dispersion in the form of a shift of the hopping coefficients Jj .
Lastly, writing the constant energy correction in terms of Jj and Dj , we
find ∑

k,p

nknpV (k− p) =
Ns

4

∑
j

Uj
J2
j

(D2
j + J 2

j ). (4.25)

Now we express FSC as a function of the seven parameters Jj , Dj , and N :

FSC = −N2V (0) +
Ns

4

∑
j

Uj
J2
j

(J 2
j +D2

j )−
1

β

∑
k

ln(1 + e−βωk) (4.26)

Minimising FSC with respect to Jj yields

Jj =
2Jj
Ns

∑
k

sin(k · ej)
1 + eβωk({Jj})

=
2Jj
Ns

∑
k

nk sin(k · ej), (4.27)

which is exactly our definition from Eq. (4.12). For D, the ‘gap equation’
is also its definition, just like for J - here we see that demanding self-
consistency of N , Jj , and Jj has the same result as extremisation of F .
Now all we have to do is solve the self-consistent set of equations. Given
Dj and Jj , we have to self-consistently solve

N =
∑
k

nk =
∑
k

1

1 + eβωk({Jj ,Dj ,N})
. (4.28)
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Note that we are not fixing the particle number: we are merely calculating
the average value for N . The fixed quantity is still the chemical potential µ.
To solve these equations, we employ numerical iteration: for an initial guess
N0,Jj,0, and Dj,0, we calculate N(N0,Jj,0, Dj,0). Based on the outcome,
we adjust our input values, until we reach N(N0,Jj,0, Dj,0) = N0, etc. The
results found are like those shown in fig. 4.6.

Effective mean-field dispersion relation

As anticipated in section 4.1, our theory predicts the appearance of stag-
gered currents running around the elementary plaquettes of the lattice in
an extended region of parameter space. Self-consistently solving for N , Jj ,
and Dj yields two distinct extremal energy solutions, each of which breaks
time-reversal symmetry and features the momentum-space imbalance dis-
cussed in section 4.1.2. The two solutions correspond to two chiralities for
the currents, i.e. two directions in which they can run around the plaque-
ttes. This degeneracy is reflected in the two different sign configuration of
the three Jj that both minimise the mean-field free energy.

For the purposes of calculating the mean-field dispersion relation, we
note that µ and 2NV (0) are constant shifts, which play a role in determin-
ing the overall population, but not the imbalance. The imbalance between
the two ‘Fermi pools’ is directly visible in the mean-field dispersion relation
introduced in Eq. (4.21b). The shape of the dispersion is determined by
both the Dj , which form a simple addition to the hopping matrix elements
Jj and thus only increase the energetic width of the dispersion relation, and
the Jj , which alter the relative depths of the minima:

εk − UD
∑
j

cos(k · ej)− UJ
∑
j

sin(k · ej)

=
∑
j

[(2Jj − UD) cos(k · ej)− UJ sin(k · ej)]

=
∑
j

√
(2Jj − UD)2 + (UJ )2 cos(k · ej + ϕj),

(4.29)
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where ϕj = − arctan[JU/(2Jj − UD)]. The combined effect of the terms
related to each of the three lattice directions is a deepening of one minimum,
while the other becomes more shallow. Fig. 4.6 shows ωk next to the
corresponding momentum space density for µ = 1, U = 2, and T = 0.1, all
in units of J . Having established that the expected spontaneous symmetry

Figure 4.6: Left: ωk; the ωk = 0-plane is indicated. Right: corresponding
momentum space density. This prediction is obtained for µ = 1, U = 2,
and T = 0.1, all in units of J . The filling factor is ≈ 0.15.

breaking phase does indeed occur, we now turn to the phase diagram.

4.2.2 Ginzburg-Landau expansion of free energy

In order to obtain phase boundaries and information about the order of the
transition, let us perform a Ginzburg-Landau expansion of the free energy,
with the currents Jj as three separate order parameters. The interaction
will be taken to be isotropic, i.e. Uj = U . Eq. (4.26) gives the free energy,
which will be Taylor-expanded in the currents Jj , which constitute the
order parameter for the time-reversal symmetry breaking transition. Let
us start with the result, to second order:

FSC ≈ F (0) +
[
J1 J2 J3

]  αSC γSC γSC

γSC αSC γSC

γSC γSC αSC

 J1

J2

J3

 . (4.30)
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Now let us calculate the coefficients, order by order. The first order vanishes
due to the gap equation. The second order diagonal coefficients are all equal
due to the symmetry of the problem, and given by

αSC =
∂2FSC

∂J 2
j

∣∣∣∣
Jj=0

=
NsU

2J2
j

− U ∂

∂Jj

∑
k

1

1 + eβωk

sin(k · ej)
Jj︸ ︷︷ ︸
gjk

∣∣∣∣
Jj=0

=
NsU

2J2
j

− βU2

4

∑
k

(gjk)2

cosh2(βωk/2)

∣∣∣∣
Jj=0

.

(4.31)

Next, let us consider mixing terms between the different currents. At second
order, there are three of them, again all equal:

γSC =
∂2FSC

∂Jj∂Jl
= −U2

∑
k

gjkg
l
k

cosh2(βωk/2)
. (4.32)

This quantity is always negative in the parameter regime explored here.
Combining all second-order terms, we find Eq. (4.30). Given that γSC is al-
ways negative, diagonalising the matrix of second-order coefficients shows
that the eigenvector with the lowest eigenvalue is given by (1, 1, 1). A
second-order phase transition is indicated by this lowest eigenvalue becom-
ing negative, provided that the fourth-order terms are positive (as will be
checked below). Hence, the state that minimises the free energy has all
three currents present in equal measure, in such a way that there is no net
current running through the system, as expected (see fig. 4.4). To finally
obtain the phase boundary, we self-consistenly solve the equations for the
filling factor ν and the self-energy coefficient Dj , given by

ν =
1

Ns

∑
k

nk(ν,Dj)

Dj =
2

JjNs

∑
k

nk cos(k · ej)nk(ν,Dj),

(4.33)
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and calculate the corresponding values for αSC and γSC. Note that we do
not need to self-consistenly calculate Jj , since it vanishes on the phase
boundary.

A remark on the validity of these results: The mean-field approximation
can only be expected to be good as long as the contribution of the interac-
tion energy does not exceed that of the kinetic energy. Hence, the important
quantity is the ratio of the bandwidth over the average interaction energy
per particle. The bandwidth is 6J , and the average interaction energy per
particle is Uν, setting the validity condition at Uν < 6J . The predicted
phase boundary lies entirely within the domain where this condition holds,
mostly due to the low densities required for this effect to occur. Thus,
there is no evidence within this calculation that suggests the approxima-
tion is invalid. Of course, the assumptions that are made at the beginning
limit the scope of potential outcomes: by not including e.g. spatially mod-
ulating terms, we have excluded the possibility of finding a density wave
(this restriction will be lifted in section 4.3).

Higher-order terms

The Ginzburg-Landau expansion can be continued beyond second order.
All third-order terms vanish, since they are all of third order in the functions
gjk, which is odd in k; given that ωk is even (remember that the Jj are set
to zero when evaluating the sum over the Brillouin zone), the combined
summand is odd, and the entire sum vanishes. We show one example in
equations:

∂3FSC

∂J 2
j ∂Jl

= − βU2

4

∑
k

(gjk)2 ∂

∂Jl
1

cosh2(βωk/2)

∣∣∣∣
Jj=Jl=0

=
β2U3

4

∑
k

(gjk)2glk
tanh(βωk/2)

cosh2(βωk/2)
= 0.

(4.34)

For the fourth order, we obtain

ηSC =
1

4!

∂4FSC

∂J 4
j

=
β3U4

48

∑
k

(gjk)4 1− 2 sinh2(βωk/2)

cosh4(βωk/2)
, (4.35a)
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ζSC =
1

(2!)2

∂4FSC

∂J 2
j J 2

l

=
β3U4

32

∑
k

(glkg
j
k)2 1− 2 sinh2(βωk/2)

cosh4(βωk/2)
. (4.35b)

The other terms all contain odd-order derivatives of FSC and consequently
vanish. Given the two coefficients, the self-interaction ηSC and the intercur-
rent interaction ζSC, we have three questions to consider: Is ηSC positive or
negative? Is ζSC positive or negative? And, lastly, which one has a larger
absolute value? There are 23 = 8 distinct possible ways to answer these
questions. Let us go through the different realisations and their effects on
how the staggered currents manifest themselves. Table 4.1 summarises the
results, which are discussed in more detail below.

Situation Coefficients PB TO currents

1 ηSC > 0, ζSC > 0, ηSC > ζSC same 2nd isotropic
2 ηSC > 0, ζSC > 0, ηSC < ζSC same 2nd anisotropic
3 ηSC > 0, ζSC < 0, |ηSC| > |ζSC| same 2nd isotropic
4 ηSC > 0, ζSC < 0, |ηSC| < |ζSC| changed 1st isotropic
5 ηSC < 0, ζSC > 0, |ηSC| > |ζSC| changed 1st isotropic
6 ηSC < 0, ζSC > 0, |ηSC| < |ζSC| changed 1st anisotropic
7 ηSC < 0, ζSC < 0, ηSC < ζSC changed 1st isotropic
8 ηSC < 0, ζSC < 0, ηSC > ζSC changed 1st isotropic

Table 4.1: The different possibilities for the fourth-order terms in the
Ginzburg-Landau expansion for the staggered current phase transition.
Legend: PB = phase boundary (whether it is the same as the 2nd-order
one or not), TO = transition order (first-order or second-order phase tran-
sition).

In case both ηSC and ζSC are positive, the fourth-order terms all result
in energy penalties for large values of the order parameters. Hence, the
phase transition remains continuous - as was assumed when performing the
second-order calculation - and the phase boundary does not change relative
to the second-order result. However, in case ζSC > ηSC, i.e. the intercurrent
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repulsion is stronger than the self-interaction, it is energetically favourable
to for one current direction to have a larger weigth than the others, resulting
in an anisotropic current pattern, as well as a net current running through
the system. This situation (number 2 in table 4.1) does not occur within
the parameter regime we are considering.

In case ηSC > 0 but ζSC < 0, there are two very distinct cases depend-
ing on which one has a larger absolute value, although in both cases, the
current pattern is isotropic, and no net current runs through the system. In
case the self-interaction dominates, we have essentially the same situation
as when the intercurrent interaction is weaker than the self-interaction but
positive: the fourth-order terms have a net negative effect on the magni-
tude of the order parameters, the phase transition is continuous, and the
phase boundary is the same as in the second-order calculation. This sit-
uation, number 3 in table 4.1, occurs for low temperatures and near the
upper critical density. However, when the intercurrent attraction becomes
stronger than the self-interaction, the combined effect of the fourth-order
terms favours larger values for the order parameters, and the phase transi-
tion becomes discontinuous. In this case, the phase boundary also changes
(the symmetry-broken region grows), as is generally the case when the
combined fourth-order terms become negative. This situation, number 4
in table 4.1, occurs in a slightly smaller area than situation 3, for higher
densities and lower temperatures. It is reflected in the phase diagram in
the left panel of fig. 4.7 by the first-order transition that appears in the
upper left corner. Note that in case the fourth-order terms favour larger
values for the order parameters, yet higher orders are required to estimate
the phase boundary.

The self-interaction ηSC does not become negative in the region of pa-
rameter space we have considered, although it does approach zero arbitrar-
ily closely as T → 0. However, in the interest of completeness, we will give
a short discussion of what would happen in case it did, i.e. the last four
situations described in table 4.1. In all of them, the transition is discontin-
uous and the phase boundary is different than the second-order calculation
indicates. If the intercurrent interaction is repulsive, the system has an
incentive to give one current direction a larger weight; however, if the ab-
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Figure 4.7: The phase diagram for the staggered currents. Left: filling
ν versus dimensionless temperature T/J ; interaction strengths used are
U/J = 1.5, 1.6, 1.8, 2.0 (yellow, green, red, and blue lines, respectively).
Smaller interaction strengths lead to smaller regions of parameter space
where the currents occur. Dashed (solid) lines indicate a first- (second-
)order phase transition. The big dots and dotted black line indicate where
the transition order changes from first to second. Right: U/J versus ν;
temperatures used are T/J = 0, 0.1 (blue and red, respectively). At T = 0,
the currents occur for arbitrarily low filling factors. Dashed/solid lines
indicate first/second order transition; the big dots indicate where the tran-
sition order changes. The only phases shown are the ones with staggered
currents (SC) and without (N); for other phases, see sections 4.3 and 4.4.
The phase boundary predicted by a second-order calculation is practically
identical with the phase boundary predicted by the complete mean-field
theory (not just the Ginzburg-Landau expansion): the difference is not vis-
ible on the plot. The difference is that the second-order calculation predicts
a phase transition at marginally lower densities.

solute value of the self-interaction is larger than the intercurrent repulsion,
i.e. |ηSC| > |ζSC|, there is an effective energy penalty for making one order
parameter smaller than the others, and all currents will be present in equal
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measure. If |ηSC| < |ζSC|, the intercurrent repulsion wins, and the current
pattern will become anisotropic, like in situation 2 in table 4.1. Lastly, if
both the self-interaction and the intercurrent interaction would be negative,
all terms would favour larger values for all order parameters, resulting in a
discontinuous transition and an isotropic current pattern.

In most of the domain where the mean-field approximation is valid, ei-
ther situation 1 or situation 3 from table 4.1 occurs, and the transition is
continuous. However, at low temperatures and densities near the upper
critical density, the transition may become discontinuous. Hence, a tricrit-
ical point occurs in the high-density part of the staggered current phase
boundary. However, since the magnitudes of the fourth-order coefficients
in this region are significantly smaller than those of the second-order coef-
ficients, the phase boundary shift is expected to be very small. Note that
where the transition is first-order, the Ginzburg-Landau expansion does not
give us the exact location of the phase boundary, unlike for second-order
transitions. We have tested the phase boundary shift hypothesis at a few
points by iteratively determining the exact mean-field prediction for the
magnitude of Jj , rather than relying on the Ginzburg-Landau expansion.
We do indeed find that a first-order phase transition occurs where expected,
with a very small shift in the phase boundary. The phase diagram is shown
in fig. 4.7.

4.3 Density wave

In this section, we investigate the possibility of spontaneous density wave
(DW) formation. As stated in section 4.1.2, repulsive NN (or longer-range)
interactions can induce density waves even for spinless fermions. The tradi-
tional example of a fermionic density wave involves attractive interspecies
on-site interactions for spin-1

2 fermions, where the system gains energy by
increasing the on-site density. Here, the system gains energy by reducing
the NN density, which also leads to modulations.
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4.3.1 Mean-field assumption and order parameter

To calculate whether such a density modulation is energetically favourable,
we simply go through the same motions as for the staggered current: cal-
culate a mean-field Hamiltonian, obtain the corresponding free energy, and
perform a Landau-Ginzburg expansion in the order parameters. However,
for this calculation we use a different ansatz, which takes also takes into
account spatially inhomogeneous terms. In addition to the 〈c†kck〉-terms,
we also assume nonzero values for〈

c†k±Qj
ck

〉
= n

±Qj

k . (4.36)

Hence, the expectation values with a number of different relative momenta
will survive: 0 and {Qj}.〈

c†kcp

〉
= nkδk,p +

∑
j

(
n
Qj

k δk−p,Qj
+ n

−Qj

k δk−p,−Qj

)
. (4.37)

The Q’s selected for investigation are those where the nesting condition
εk ≈ −εk+Q is fulfilled in the vicinity of the Fermi surface. There are only
three such cases in the shaken triangular lattice, all occurring near filling
ν = 1/4: Q1 = (2π/a, 0), Q2 = (−π/a,

√
3π/a), and Q3 = (−π/a,−

√
3π/a)

(see fig. 4.8). Since all of these vectors lie outside the first Brillouin zone,
we map them to Q1 = (0, 2π/

√
3a), Q2 = (−π/a,−π/

√
3a), and Q3 =

(π/a,−π/
√

3a) under the reciprocal lattice symmetry.

4.3.2 Free energy expansion & degeneracy

The order parameter for the DW transition is the fraction of the density
that modulates with the given wavevector:

ρj =
∑
r

nr cos(r ·Qj) =
∑
r

〈
c†rcr

〉
eiQj ·r. (4.38)

In the last step, we have made use of the fact that in the absence of the
staggered currents discussed in the previous section, the density distribution
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Figure 4.8: The nesting of the Fermi surface at filling ν = 1/4. Right panel:
the nesting vectors mapped to their equivalents within the first Brillouin
zone.

is even. (For a discussion of the density wave in the presence of staggered
currents, see section 4.5.) Like in the case of the staggered currents, we
perform a Ginzburg-Landau expansion of the mean-field free energy in these
order parameters. Since the required calculations are significantly more
lengthy for the density wave, we present the details in an appendix, section
A.1, and simply provide the main result here.

For each nesting vector, there are two important quantities: the mod-
ulating fraction ρj , which is the order parameter for the transition, and a
self-energy term that we will name Dj,j (see section A.1 for the details and
rationale behind this name):

ρj =
1

Ns

∑
k

〈
c†k+Qj

ck

〉
Dj,j =

1

Ns

∑
k

〈
c†k+Qj

ck

〉
cos(k · ej).

(4.39)

This situation is very similar to the one found for the homogeneous den-
sity: as we saw in the calculations for the staggered currents, two quantities
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always have finite magnitudes at the same time, namely the filling ν and
the self-energy coefficient Dj . In the spatially modulated case we are in-
vestigating here, the modulating fractions ρj are analogous to the filling
ν, and the self-energy coefficients Dj,j to the self-energy coefficient Dj . In
section 4.4, we will also investigate the spatially modulating analogue of
the staggered currents Jj . Note that while for the staggered currents, we
calculated the mean-field predictions for the filling ν and the self-energy
coefficient Dj exactly (within the mean-field approximation), here, we are
only interested in the point where the modulating fractions ρj take finite
values; for this purpose, the Ginzburg-Landau expansion will suffice.

In order to answer that question, we need the following free energy
terms related to the density wave:

FDW =F (0) +

3∑
j=1

[
ρj Dj

] [ αρDW γDW

γDW αDDW

] [
ρj
D̃j

]
+ Γρρ1ρ2ρ3.

(4.40)

Note that at second order in all parameters, the three directions decouple,
leading to the conclusion that all three modulations are expected to be
present in equal measure. Furthermore, at second order, it can be seen
that finite values for the ρj are always accompanied by finite values for
the D̃j . A change of variables to the eigenbasis of the 2 × 2 matrices is
not useful, however, since higher-order terms are not necessarily expressed
most elegantly in that basis.

The most interesting aspect of this Ginzburg-Landau expansion is the
unusual appearance of third-order terms. Normally, such terms vanish,
since most calculations are performed with a single order parameter which
has an arbitrary sign. In our case, however, a trilinear term can be com-
posed that retains its sign under appropriate sign changes of the order
parameters. None of the three single order parameters have a preferred
sign, but they do have preferred sign configurations (e.g. all positive, or
one positive and two negative, etc.).
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Degeneracy

The preferred sign configurations due to the trilinear term in Eq. (4.40)
leave some degeneracy, which calls for further discussion. A finite value of
the order parameter ρj corresponds to having alternating rows of high and
low density, with the alternation direction being parallel to the equivalent
vector of Qj within the first Brillouin zone (see fig. 4.8). Clearly, there
are two ways to realise alternating rows of high and low density, given a
particular direction; this corresponds to the fact that ρj can be positive or
negative. If it is positive, the density at the point (0, 0) is high, and vice
versa. Since there are three vectors Qj , eight possible combinations exist.
It can be seen by inspection that four of these eight have a unit cell with
one high- and three low-density sites (see fig. 4.9), and the other four have
the opposite (see fig. 4.10). The choice of sign configuration within the two
sets of four corresponds to choosing which site in the larger (four-site) unit
cell has a different density than the other three, and thus reflects the spatial
symmetry breaking discussed in section 4.1.2.

Figure 4.9: The kagomé lattice of low-density sites resulting from a combi-
nation of the three DWs with equal weights. Red-circled sites have higher
density. This DW is fourfold degenerate due to the freedom to choose the
center of the unit cell. Compare to fig. 4.5: we find exactly the quarter-
filling density wave pattern expected.

In our case, the interactions will favour the arrangement with one high-
density site, thus limiting the degeneracy of the ground state to four. The
low-density sites form a kagomé lattice. Once two of the sets of high-density
rows have been chosen, the third is fixed by the interactions. Mathemati-
cally, this physical argument is expressed through the Γ-term, which par-
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Figure 4.10: The kagomé lattice of high-density sites resulting from a com-
bination of the three DWs with equal weights. This DW is fourfold de-
generate due to the freedom to choose the center of the unit cell. It is
energetically unfavourable, since it increases the number of NN pairs rela-
tive to a homogeneous density distribution.

tially lifts the degeneracy. Γ turns out to be negative, which implies that
a positive sign is favoured for the product ρ1ρ2ρ3. Such a situation corre-
sponds to raising the density on one of the four sites in the unit cell while
lowering it on the other three, as is indeed to be expected in a phase that
breaks spatial symmetry to reduce the nearest-neighbour interaction energy.
The presence of the other third-order terms (of order one to three in the
D̃j) does not affect this line of reasoning, since those terms are significantly
smaller than the Γρ-term.

Phase boundary shift / nature of the phase transition

The third-order term does two other things, beside reducing the eightfold
degeneracy to fourfold: it induces a shift in the phase boundary, and renders
the phase transition first order. Choosing the sign configuration where all
ρj > 0 (any other of the four would also do, but this one is easiest to
work with), and assuming that the higher-order terms favour all three DWs
being present with equal magnitude, the terms from the Ginzburg-Landau
expansion that involve only ρ’s can be written as

F ≈ F0 +
a|ρ|2

2
+
b|ρ|3

3
+
c|ρ|4

4
, (4.41)
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where b < 0 and c > 0. Extremising F from Eq. (4.41) with respect to |ρ|
yields

|ρ|(a+ b|ρ|+ c|ρ|2) = 0. (4.42)

The non-symmetry-broken solution |ρ| = 0 is always present. However, for
small enough a, another real solution to Eq. 4.42 exists, which at a = 0
reduces to |ρ| = −b/c. The energy of this solution is given by

F ≈ F0 +
b

3

(
−b
c

)3

+
c

4

(
−b
c

)4

= F0 −
b4

12c3
< F0. (4.43)

Around a = 0, this solution changes linearly with a. Hence, for small
but positive a, it still has a lower energy than the |ρ| = 0 solution. As
a consequence, breaking the spatial symmetry becomes favourable already
before a = 0, and |ρ| jumps to a finite value, rendering the transition first
order. Schematic plots of F (ρ) for various signs and relative magnitudes of
a and b are shown in fig. 4.11.

Figure 4.11: Schematic plots of F (ρ). Left: positive second-order coeffi-
cient (a > 0), negative but small third-order coefficient (b < 0); no phase
transition. Center: positive second-order coefficient (a > 0), negative third-
order coefficient (b < 0) large enough to drive a first-order phase transition.
Right: negative second- and third-order coefficients (a < 0 and b < 0): the
deepest minimum has a positive value for ρ.
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4.3.3 Phase diagram

Due to the presence of two parameters for each of the three modulation
directions (the modulating fraction ρj and the self-energy coefficient Dj,j),
calculating all higher-order terms is beyond the scope of this project. Since
an estimate of the magnitude of the phase boundary shift induced by the
third-order terms requires knowledge of at least the fourth-, but possi-
bly also fifth- and sixth-order terms, we will limit ourselves to the conclu-
sions that a shift occurs and that the transition is driven first-order. In
fig. 4.12, we present a phase diagram based on the quadratic terms from
the Ginzburg-Landau expansion (i.e. where the transition is indicated by
the second-order coefficient a turns negative), with a qualitative indication
of the transition type and accuracy of the phase boundary location.

4.4 Modulated currents

In this section, we investigate a third type of symmetry breaking, that in-
volves both spatial modulation and time-reversal symmetry breaking. Note,
however, that it is not just a combination of the previous two phases dis-
cussed: it features a qualitatively different symmetry-broken state. It in-
volves currents running through the system, but unlike those discussed
in section 4.2, they are not spatially homogeneous, but modulate instead.
Fig. 4.13 sketches the difference between the spatially homogeneous cur-
rents discussed in section 4.2 and the modulating ones here.

The main reason to look for a state that breaks both spatial and tempo-
ral symmetry is the tendency towards spatial symmetry breaking discussed
in section 4.3, combined with the mechanism that led to time-reversal sym-
metry breaking in the homogeneous system. The effective momentum-space
attraction is still present even in the density wave, but it favours different
momentum-space density distributions than it does in the spatially homo-
geneous phase (this is related to the argument at the end of section 4.3
about the competition between the density wave and the staggered cur-
rents). This type of symmetry breaking is more complicated, and therefore
less straightforward to generate an intuitive picture for, so we will sim-
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Figure 4.12: The phase diagram for the density wave. Left: ν versus T/J ;
interaction strengths used are U/J = 0.5, 1.0, 1.5, 2.0 (yellow, green, red,
and blue lines, respectively). Smaller interaction strengths lead to smaller
regions of parameter space where the density wave occurs. The dashing
of the lines indicates a first-order phase transition. Right: U/J versus ν;
temperatures used are T/J = 0, 0.2 (blue and red lines, respectively). At
T = 0, the density wave occurs for arbitrarily weak interaction strengths.
The only phases shown are the density wave (DW) and absence thereof (N);
for the other phases investigated here, see sections 4.2 and 4.4.

ply investigate the time-reversal symmetry breaking contributions from the
spatially modulating mean-field terms, which were neglected in section 4.3.

4.4.1 Spatially modulating current contributions

Spatially modulating one-particle correlation functions

In section 4.3, we have started our investigation from one-particle correla-
tion functions of the form 〈c†k+Qck〉, but proceeded to take only some of
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Figure 4.13: Left: the homogeneous currents along one particular lattice
direction. Right: the modulated currents along the same lattice direction,
modulated along Q1 = (0, 2π/

√
3a). Note that only one current direc-

tion is depicted here, which by itself would violate the continuity equation.
However, six such modulating currents will appear in the symmetry-broken
phase, in such a combination that no density build-up or depletion takes
place.

the Fourier components into account:

ρj =
∑
k

〈
c†k+Qj

ck

〉
eik·0

Dj,j = Re
∑
k

〈
c†k+Qj

ck

〉
eik·ej .

(4.44)

It is clear that a number of other Fourier components might also have finite
values:

Dj,l = Re
∑
k

〈
c†k+Qj

ck

〉
eik·el with j 6= l

Jj,j = Im
∑
k

〈
c†k+Qj

ck

〉
eik·ej

Jj,l = Im
∑
k

〈
c†k+Qj

ck

〉
eik·el with j 6= l.

(4.45)



80 CHAPTER 4. FRUSTRATED SPINLESS FERMIONS

In particular, it is noteworthy that even if Jj,j or Jj,l is finite, there is no
need for ρj to also be finite. In other words, it is quite possible to have

finite one-particle correlation functions 〈c†k+Qck〉 that break translational
symmetry, without having a density wave.

Spatially modulating current contributions

As we have seen in Eq. (4.12), the currents are given by

Jr−r′ = 2Jr−r′ Im
〈
c†rcr′

〉
. (4.46)

However, in section 4.2, where that result was derived, only one-particle cor-
relation functions corresponding to a spatially homogeneous density distri-
bution were evaluated: 〈c†kcp〉 was assumed to be proportional to 〈c†kck〉δk,p.
In section 4.3, we introduced three extra terms to be taken into account.
Applying the same strategy to the calculation of the currents, we Fourier
transform and insert Eq. (4.37):

Jr−r′ = 2Jr−r′ Im
∑
k,p

ei(k·r−p·r
′)
〈
c†kcp

〉
= Jr−r′

∑
k

[
2nk sin[k · (r− r′)]

− i
∑
l

〈
c†k+Ql

ck

〉(
eik·(r−r

′)eiQl·r − e−ik·(r−r′)eiQl·r′
)]

=Jr−r′,0 +
∑
l

Jr−r′,Ql
.

(4.47)

Now, let us take a closer look, in real space, at what terms like Jr−r′,Ql

represent. Considering only the term where l = 1 (remember, Q1 =
(0, 2π/a

√
3)) from the last line of Eq. (4.47), and comparing the current

from site r0 = (0, 0) to site r1 = (1,
√

3)a/2 to the one from site r1 to site
r2 = (2,

√
3)a, we find:

Jr1−r0,Q1 = − i J3

∑
k

〈
c†kck−Q1

〉(
e−ik·(r1−r0)eiQ1·r0 − eik·(r1−r0)eiQ1·r1

)
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= − i 2J3

∑
k

〈
c†kck−Q1

〉
cos(k · r1) (4.48)

Jr2−r1,Q1 = i 2J3

∑
k

〈
c†kck−Q1

〉
cos(k · r1).

Here, we have made use of the fact that Q1 · r0 = 0, that Q1 · r1 = π, and
that Q1 · r2 = 2π. We conclude that the sign of the current contribution
from 〈c†kck+Qj

〉 modulates with wavevector Qj . Note that due to this
modulation, the current along any particular lattice vector is no longer
constant across the system - the spatial homogeneity of the currents has
been broken. If this current would appear by itself, it would violate the
continuity theorem, as illustrated in fig. 4.14. However, when combined
with similar contributions that modulate with the same wavevector but
correspond to a different current direction, this violation disappears.

Next, let us consider the current from site r0 = (0, 0) to site r3 = (1, 0)
and that from r1 to r4 = (3,

√
3)a/2.

Jr3−r0,Q1 = − i J1

∑
k

〈
c†kck−Q1

〉(
e−ik·(r3−r0)eiQ1·r0 − eik·(r3−r0)eiQ1·r3

)
= 2J1

∑
k

〈
c†kck−Q1

〉
sin(k · r3) (4.49)

Jr4−r1,Q1 = − 2J1

∑
k

〈
c†kck−Q1

〉
sin(k · r3).

Hence, we conclude that the spatially inhomogeneous current contributions
whose direction is parallel to the nesting vector, i.e. of the type Jr3−r0,Q1 ,
also modulate with the same wavevector, as was to be expected. It will
turn out, however, that these contributions are energetically unfavourable
in the parameter regime we are interested in.

4.4.2 Order parameters

In order to see whether these modulating currents are in fact energetically
favourable, we once again revisit the mean-field free energy and perform
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Figure 4.14: The current patterns that modulate with wavevector Q1 =
(0, 2π/

√
3a). From left to right: the contributions shown in Eq. (4.48); the

analogue along lattice vector e2; the currents that run orthogonal to the
direction in which they modulate; and the energetically favourable combi-
nation of the leftmost two images (see section 4.4.2).

yet another Ginzburg-Landau expansion. This time, we have to deal with
nine different order parameters: there are currents along each of the three
lattice directions that can modulate with each of the three nesting vectors.
The details of the calculations are presented in appendix A.2; here we give
the second-order terms:

F ≈ F0 +
3∑
j=1

(
λMCJ 2

j,Qj
+
[
Jj′,Qj

Jj′′,Qj

] [ αMC γMC

γMC αMC

] [
Jj′,Qj

Jj′′,Qj

])
,

(4.50)

where j′ and j′′ are different from each other and from j. We see immedi-
ately that at second-order level, like in the case of the density wave analysis,
terms corresponding to different nesting vectors Qj decouple. Furthermore,
it turns out that λMC > 0 in the entire parameter regime investigated here,
implying that, as mentioned above, contributions of the type Jj,j do not
enter into the ground state. Hence, only the terms Jj,l with j 6= l are of
importance now. (Note that we are not investigating terms like Dj,l as
defined in Eq. (4.45), because they do not couple to any order parameters
of interest, at least at second-order level.)

From the structure of the 2 × 2 matrix in Eq. (4.50), we may immedi-
ately conclude that Jj,l and Jj,l′ (where l 6= l′ and l, l′ 6= j) will take finite
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values simultaneously, with equal magnitude and opposite sign, as long as
γMC > αMC. An illustration is provided in the rightmost panel of fig. 4.14;
fig. 4.15 shows the combined current pattern. It turns out that these cur-
rents do indeed occur, in a region of parameter space that largely overlaps
with the density wave (see the phase diagram in fig. 4.16). The combined
effect of the contributions related to all three nesting vectors adds up to a
pattern of currents running around the triangular plaquettes of a kagomé
lattice formed by removing one out of every four sites of the triangular
lattice (see fig. 4.15). The expectation is that if both the density wave

Figure 4.15: The modulated currents add up to a kagomé pattern. Differ-
ent sign combinations for the three individual contributions lead only to a
shifted pattern and/or reversed currents.

and the modulated currents are present, the kagomé lattice on which these
currents appear will consist of the low-density sites in the DW phase. An
intuitive physical argument can be made based on the continuity equation:
If the currents do not avoid the high-density sites, their magnitude has to
be adjusted to avoid net density build-up or depletion, i.e. violations of
the continuity theorem. Since nothing in the Ginzburg-Landau coefficients
suggests such an adaptation of the current strengths would be energetically
favourable (the terms are identical for all current directions), and the conti-
nuity theorem can be satisfied by confining the currents to the low-density
kagomé lattice, we have every reason to expect that this will indeed happen.
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Degeneracy

Like in the case of the density wave, there are three order parameters gov-
erning the modulated currents (each consisting of a combination (Jj,l,−Jj,l′).
Each of these three order parameters may take a positive or a negative sign,
resulting in an eight-fold degeneracy. Unlike the density wave, however, this
degeneracy is not expected to be lifted. To begin with, there is a four-fold
degeneracy due to the fact that the unit cell of this phase contains four
sites. The remaining two-fold degeneracy is related to the operation of
changing the signs of all three order parameters. Now recall that in the
case of the density wave, changing the signs of all three order parameters
gave rise to a qualitatively different density distribution, since the numbers
of high- and low-density sites were not equal. In the case of the modulated
currents, however, changing the signs of all three order parameters simply
inverts the directions of the currents, but does not alter their distribution or
magnitude. Hence, we expect the eight-fold degeneracy for the modulated
currents to remain in place.

The trilinear term that appears for the static density wave is required to
partially lift the degeneracy of the three separate density modulation order
parameters. Since this degeneracy is expected to remain present at the
level where only the modulated currents are considered, all trilinear terms
related to the modulated currents from the Ginzburg-Landau expansion are
expected to vanish. This expectation is confirmed easily by considering the
summand:

ΓJ ∝
∑
k

tanh(βωk/2)

(ωk − ωk+Qj
)(ωk − ωk+Qj′ )

sin(k · e1) sin(k · e2) sin(k · ε3) = 0,

(4.51)

since the fraction multiplying the sines is even, but the product of three
sines itself is odd. However, there are some mixing terms between the
modulated currents and the static DW at third-order level, that do not
vanish; an example is

ΓJJ ρ ∝
∑
k

tanh(βωk/2)

(ωk − ωk+Qj
)(ωk − ωk+Qj′ )

sin(k · el) sin(k · el′). (4.52)
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Given a sign configuration for the density wave order parameters ρj , such
trilinear terms as shown in Eq. (4.52) will lead to favoured sign configura-
tions of the modulated currents. Evaluating the signs of those terms shows
that as expected, the modulated currents will be confined to the low-density
kagomé sublattice.

4.4.3 Phase diagram

Based on the second-order Ginzburg-Landau term, the modulated current
phase is expected to occur in roughly the same region of parameter space
as where the DW is expected. The modulated currents do not appear
for arbitrarily weak interactions, unlike the DW (see fig. 4.16). The re-
gion where they occur grows faster than that of the DW as the interaction
strength is increased. Around U ≈ 0.8J , a region appears where the mod-
ulated currents are energetically favourable but the static DW is not. For
strong enough interactions, the two time-reversal symmetry breaking pat-
terns start to occur simultaneously in a small region at intermediate filling.
The phase diagram is shown in fig. 4.16; see fig. 4.17 for a phase diagram
that combines the different phases.

4.5 Summary and discussion of mean-field results

In sum, our mean-field analysis predicts three different symmetry-breaking
phases. Fig. 4.17 shows two surfaces within the three-dimensional (T/J , ν,
U/J) diagram, at U/J = 2 and at T = 0. For the simplest possible imple-
mentation of the above-mentioned system (a triangular lattice with frus-
trated hopping and nearest-neighbour interactions), we have found three
different candidate phases breaking either translational symmetry, or time-
reversal symmetry, or both. Since the different symmetry-breaking patterns
are predicted to occur simultaneously in certain parameter ranges, a short
discussion of such a combined phase follows below.
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Figure 4.16: The phase diagram for the modulating currents. Left: ν
versus T/J ; interaction strengths used are U/J = 0.5, 1.0, 1.5, 2.0. Smaller
interaction strengths lead to smaller regions of parameter space where the
currents occur. The solid lines indicate a second-order phase transition.
Right: U/J versus ν; temperatures used are T/J = 0, 0.2. At T = 0, the
modulating currents occur for arbitrarily weak interaction strengths. The
only phases shown are the ones with modulated currents (MC) and without
(N); for the density wave and staggered currents, see sections 4.3 and 4.2,
respectively.

Interaction between staggered currents and density wave

Since there are regions where the second-order theory predicts both the
staggered currents and the density wave to be present, a natural question
to ask is whether the two effects reinforce each other, or compete. Based
on simple physical arguments, one expects competition: The staggered cur-
rents modify the shape of the Fermi surface, reducing the degree of nesting.
Since the nesting condition implies that the density wave does not intro-
duce large kinetic energy costs, combining the staggered currents and the
density wave requires stronger interactions. Conversely, the density wave
comes about because the interaction term couples momentum states near
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Figure 4.17: The combined phase diagram at U/J = 2 (left) and at T =
0 (right). Solid (dashed) lines correspond to second (first) order phase
transitions. The large dot on the phase boundary for the staggered currents
indicates the tricritical point, where the transition order changes.

the Fermi surface, thus delocalising the momentum-space density distribu-
tion and weakening the effect of the attractive momentum-space interaction
discussed in section 4.1.2 (recall that it relied on a distribution localised
around the two minima of the single-particle dispersion relation). Thus,
the staggered currents are seen to be less favourable if a density wave is
present.

To test this physical argument mathematically, we return to the free
energy and consider interaction terms like ρ2

jJ 2
l (lower orders vanish). The

details of the calculations are presented in section A.1.4, but the main con-
clusion is that the combined coefficients of these terms are positive, which
confirms our expectation. Quantitative statements on the effect this inter-
action has on the phase boundary require reliable estimates of the magni-
tude of the order parameters, which are unavailable for the density wave
(see the discussion of the phase boundary above). A qualitative point worth
remarking on is that since the density wave transition is first order (the ar-
guments leading to that conclusion are unaffected by the interaction with
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the staggered currents), the Ginzburg-Landau coefficient of the quadratic
term for the staggered currents is expected to jump, when the density wave
transition occurs. As a consequence, the phase transition for the staggered
currents itself could also be driven first order, where it borders the density
wave and is not already first order. It is indeed generally the case that a
phase transition where one type of ordering disappears and another appears
is first order. The two phases could also occur simultaneously, in which case
the order of the staggered current transition is expected to be unaffected
by the presence of the density wave.

Combination of staggered and modulating currents - trimerisa-
tion

It is interesting to note that the modulated currents add up to a pattern that
is not staggered, but instead has the same current running around every
triangular plaquette of the kagomé lattice. The hexagons of the kagomé
lattice have twice the opposite current running around them. The staggered
currents (see fig. 4.4) that occur at lower fillings, and compete with the DW,
are also expected to compete with the modulated currents. Uniform density
distributions are conserved by both current patterns. Combining them
leads to a pattern of currents that breaks translational symmetry, where
neighbouring triangles no longer have equal amounts of current running
around them (see fig. 4.18). Although there is a region in parameter space
where both current patterns are favourable based on simple, second-order
Ginzburg-Landau considerations (see fig. 4.17), it is uncertain whether this
combination will occur at all, since the two patterns should compete by
the same mechanisms that lead to the repulsion between the staggered
currents and the DW. The combined current pattern that would result
from both phases occurring together, features a four-site unit cell, with
different current magnitudes for each plaquette involved.

Given the predicted repulsion, the expectation is that where the stag-
gered currents and the density wave or modulated currents overlap in pa-
rameter space, the phase boundary will shift, and no intermediate phase
occurs. Of course, more quantitative analysis is needed to make more defi-
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Figure 4.18: The staggered and modulating currents combined lead to a
trimerised pattern. The size of the arrowheads indicates the relative current
strenghts. Note that due to the expected competition between the two types
of symmetry breaking, the occurrence of such a current pattern is actually
relatively unlikely.

nite statements about this region - in case the predicted repulsion turns out
to be very weak, it could be overcome by a sufficiently strong interparticle
interaction U .

4.6 Exact diagonalisation of small systems

Although the mean-field results seem reasonable because they can be ex-
plained by simple intuitive physical arguments, an exact calculation is use-
ful as a complementary study. We perform exact diagonalisations on small
systems with periodic boundary conditions, to investigate whether the stag-
gered currents appear in the ground state as predicted by the mean-field
treatment done above. The main results are that the staggered currents do
indeed occur more or less as predicted - there will always be some differ-
ences due to finite-size effects - and that a clear tendency towards density
wave formation is observed. In the case of the density wave, certain finite-
size effects are more persistent than in the staggered-current case, which
can be understood from the fact that the density wave has a larger unit
cell, and that therefore the diagonalised systems are effectively smaller for
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the density wave than for the currents.
We describe the algorithms and code used in the appendix; see section

A.3. Below, we discuss in detail the finite-size effects that play a role in
our investigations, and the results obtained.

4.6.1 Finite-size effects

There are, of course, numerous finite-size effects that play a role in the exact
diagonalisation. They come from two sources: the lattice we are using is
finite, and the number of particles. The most general one, that plagues
all exact diagonalisation studies, is that finite systems do not exhibit true
phase transitions. Below, we discuss a number of effects that are specific
to our investigation.

Discretisation gap of kinetic energy

In the non-interacting case, the finiteness of the lattice translates into a
finite number of momentum eigenstates with discrete energies. This in turn
leads to an effective gap for the occurrence of the staggered currents. The
small size of the particle number adds to this gap, since it sets a minimum
value for the current density: the smallest amount of current that can be
produced is associated with transferring one particle to a momentum state
with higher kinetic but lower interaction energy. If there are e.g. only four
particles, states with small current densities are likely to be missed even if
they are calculated to be favourable in the thermodynamic limit. Table 4.2
gives an illustration, albeit in a 3-particle scenario: in order to increase the
staggered current density, the system has to go from partial to complete
momentum space imbalance; there is no intermediate step.

Staggered current bias

If the number of particles is odd but the momentum states available are
evenly distributed around the two spectrum minima, the kinetic energy
cost to inducing staggered currents is much lower than if the number of
particles is even. Considering the non-interacting case, it is easy to see
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that there are two (or an integer multiple of two, if there are degenerate
single-particle momentum states near the minima of the spectrum) degen-
erate ground states, and that both can be chosen to break time-reversal
symmetry. In the case of an even number of particles, the degeneracy of
the non-interacting ground states is only half that of the odd particle num-
ber case. This effect also disappears in the thermodynamic limit, since the
current density induced by an imbalance of one particle between the two
minima vanishes as the total particle number goes to infinity.

In order to minimise the discretisation gap of the kinetic energy, the lattice
can be chosen such that the degeneracy of the single-particle momentum
states is minimal (every energy around the minima will occur once for each
minimum, so there is always some degeneracy). Furthermore, in case the
ground state has a bias towards the presence of staggered currents, evi-
dence for the system’s tendency towards spontaneous time-reversal sym-
metry breaking can be found in the occurrence of additional imbalance
between the two minima. See the figures in tables 4.2 and 4.3 for an illus-
tration: the lowest-energy state in the non-interacting case already features
momentum-space imbalance and therefore breaks time-reversal symmetry,
as mentioned above. However, interactions favour a configuration as shown
on the right, which is more imbalanced than the left one.

DW frustration and degeneracy

The finite size of the lattice, especially in combination with the periodic
boundary conditions that are employed, can also frustrate the kagomé DW.
To avoid this frustration, the lattice must be composed of four-site unit
cells. Such a lattice never frustrates the staggered currents, since those are
spatially homogeneous. For small enough systems (e.g. the smallest non-
trivial one that does not frustrate the DW, 2×4 sites with 2 particles), states
exist that simultaneously correspond to the absolute minimum of both the
kinetic and the interaction energies (see section A.3.3; we will call them
‘absolute minimal energy states’). Such states feature a density wave that
is formed by superimposing momentum modes of minimal (and hence equal)
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kinetic energy. The existence of these states is related to the degeneracy
of the momentum eigenstates around the Fermi surface, which becomes
less relevant as the system grows. At system sizes where this degeneracy
effect becomes negligible, the calculational cost becomes prohibitive. Hence,
this finite-size effect cannot be avoided in the current investigation. It
should be noted that the absolute minimal energy states do feature density
modulations, but not exactly of the type expected. However, at slightly
larger systems (e.g. 4× 4 sites with 4 particles), the density waves formed
by the system are approaching the expected type more closely already.

4.6.2 Results

Staggered currents

Since exact diagonalisation can provide us with both the complete spec-
trum and the actual state, there are many ways to look for evidence of the
predicted effects. For the staggered currents, we have chosen to investigate
the energy spectrum. Here, we are showing results from a 5 × 9 lattice,
described in table 4.2, with three particles, corresponding to a filling factor
of 1/15 (recall that the staggered currents were predicted to occur for low
fillings).

Fig. 4.19 shows the 10 lowest-energy states in the system described
above (each state is doubly degenerate: mirroring a state in momentum
space yields a different state with the same energy).

At zero interaction, the spectrum is easy to understand, since it is com-
pletely determined by the momentum eigenstates (the single-particle ener-
gies are shown in Table 4.2). The lowest-energy three-particle states can
be shown to correspond to occupying the two lowest and first higher state;
the two lowest and second higher; etc., as shown in Table 4.3. As soon
as a weak interaction is switched on, certain states become energetically
relatively more favourable. These turn out to be states that correspond
to a higher imbalance than the necessary division of two particles in one
minimum and one in the other, i.e. states with larger staggered currents.
The non-interacting states from table 4.3 can be identified by comparing
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State 1 2 3 4 5 6 7 8

En -2.842 -2.842 -2.666 -2.666 -2.610 -2.610 -2.445 -2.445

Table 4.2: Properties of the 5 × 9 lattice discussed in the text. Top left:
real-space representation, with site numbering. Top right: corresponding
single-particle spectrum with all momentum eigenstates indicated by red
dots. The eight lowest energy states are circled. Bottom: table of the eight
lowest single-particle eigenenergies.

energies. The eight-fold degeneracy of the fifth lowest in energy is lifted
by the interactions, favouring the configuration shown on the right and its
time-reversed counterpart. Of course, the interaction term mixes kinetic
eigenstates, but the evolution of the various non-interacting states can eas-
ily be seen in the spectrum near U/J = 3 (see arrow).

Density wave

To find indications for the presence of a density wave, we have followed two
strategies: simply evaluating the ground state density distribution, and
investigating the degeneracy of the ground state. Based on the four-fold
degeneracy of the density wave, one might expect a fourfold degenerate
ground state. Considering the modulated currents, at high enough inter-
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Figure 4.19: The 10 lowest energy states of the exact diagonalisation spec-
trum of a system of 5 × 9 lattice sites with 3 particles on them (every
line is twofold degenerate). The energies are in units of J , and the in-
teraction strength is plotted on the horizontal axis. The evolution of the
state with maximal staggered current density from an excited state to the
ground state can clearly be seen. The arrows indicate the interactions-
driven process where states with larger staggered currents cross states with
less: Without interactions, the maximal staggered current density has the
highest energy in the plot. Almost immediately, it drops below the next
highest energy state; near U/J = 3, it becomes the ground state.

actions one might even expect an eight-fold degeneracy. However, neither
were found quite as expected: a density wave pattern is present, but dif-
ferent than the isotropic kagomé one that was predicted by the mean-field
theory, and the ground state degeneracy is lower than the expected four to
eight. One possible reason for these discrepancies is the existence of states
that simultaneously minimise the kinetic and interaction energy, which are
found in very small systems (e.g. 2×4 sites with 2 particles), where the low-
est kinetic energy states have momenta that lie on the bowtie of the Fermi
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Occupied
∑
E Degeneracy

1,2,3 -8.350 2: 1,2,4
1,2,5 -8.294 2: 1,2,6
1,3,4 -8.175 2: 2,3,4
1,2,7 -8.129 2: 1,2,8
1,3,5 -8.119 8: (1/2),(3/4),(5/6)

Table 4.3: Left: table of the energies of the lowest-energy non-interacting
three-particle states in the 5×9 lattice. The degeneracy of each energy level
is also listed, as are the occupied kinetic single-particle eigenstates for each
three-particle state (see table 4.2). Center: one of the two lowest-energy
non-interacting three-particle states represented in the first Brillouin zone.
Right: one of the two states that evolve into the lowest-energy ones in the
presence of a sufficiently strong interaction (see fig. 4.19) - with maximal
staggered current density.

surface (see fig. 4.3 for the bowtie, and section A.3 for the density pattern).
As the system size grows, momentum states are added at lower energies and
the successors to these states no longer fully avoid the interaction, but still
have most of their momentum-space density on the bowtie-shaped Fermi
surface, simply because there are very few states located within the bowtie.
The development towards the thermodynamic-limit situation where the mo-
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mentum space density is not mainly (or only) located on the Fermi surface
is too slow for the system size to remain manageable. However, even these
states, which develop into the expected density wave at large enough sys-
tem sizes, already feature density waves, although slightly different from
the ones we expect.

Figure 4.20: The density wave patterns found in the ground state of a 4×4
lattice with 4 particles, at various interaction strengths. Higher densities
are represented by darker coloring; the scale runs from 0 to 0.5 particles on
a site. Left: U = 0, no discernible order is present; the density fluctuations
are due to the large ground state degeneracy combined with the fact that
the algorithm randomly picks a superposition. Center: U/J = 0.1, some
density modulation is present. Right: U/J = 1, the modulation pattern
becomes stronger.

Fig. 4.20 shows the density patterns found in a lattice of 4×4 sites with
4 particles and periodic boundary conditions for U/J = 0, 0.1, and 1. Note
that the density wave spontaneously chooses a direction (the direction is
different for every diagonalisation, and has been aligned in the figures for
easier comparison). Another potential, although perhaps less plausible,
explanation is that the higher-order terms in the Ginzburg-Landau expan-
sion in fact lead to a preference for configurations where one nesting vector
dominates.

In conclusion, we see that although the exact diagonalisation studies
are plagued by finite-size effects, indications of the physics predicted by the
mean-field calculations are still present.
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4.7 Realisations

The system discussed in this chapter has two ingredients: long-range inter-
action and kinetic frustration. Below, we discuss various ways of realising
both ingredients in cold atomic gases loaded into optical lattices.

4.7.1 Long-range interactions

The main candidates for long-range interacting ultracold gases are dipo-
lar atoms or heteronuclear molecules, which have both been discussed in
the introductory chapters. The most relevant point for this chapter is the
fact that they extend beyond nearest-neighbour: if, for example, the NN
interaction strength is given by Unn = 2J , then in a triangular lattice, the
next-nearest neighbour interaction strength Unnn ≈ 0.4J . Such additional
interaction terms have two effects: the effective attractive momentum-space
interaction is renormalised, and interaction-assisted hopping processes be-
yond NN can be induced. If we can approximately ignore the extra hop-
ping terms in the mean-field Hamiltonian, the only effect that remains is
the possibility of stabilising more exotic density patterns by the additional
interaction terms. If the additional hopping processes can not be ignored,
more calculations are needed to assess the effects of the currents that could
be induced between non-neighbouring sites.

In Ref. [37], a Bose-Fermi mixture was considered in the Mott-insulating
regime. The bosons can be bound to the fermionic holes, and are then
shown to have NN density-density interactions. Longer-ranged interactions
are negligibly weak in this case, since the mechanism relies on second-order
hopping processes. Hence, this realisation is attractive option as far as
limiting the interaction-induced effects to the ones described here. The
downside, however, is the extra experimental difficulty of creating a Bose-
Fermi mixture loaded into the same lattice [53].



98 CHAPTER 4. FRUSTRATED SPINLESS FERMIONS

4.7.2 Kinetic frustration

Kinetic frustration in a triangular lattice can be achieved by inverting the
band structure. To do so, one can change the sign of an odd number of
hopping matrix elements, or study holes instead of particles.

As discussed in the introductory chapters, shaking the lattice allows
one to modify the sign and magnitude of the hopping coefficients. This
strategy has been applied successfully in one-dimensional [19] and cubic
lattices [25], and recently in two-dimensional triangular ones as well (see
Ref. [14, 10]). All experiments performed so far involve bosonic gases, but
since the renormalisation of the hopping terms is a single-particle effect, it
does not depend on particle statistics.

To obtain an expression for the Hamiltonian in terms of holes, we note
that for a filling factor between 0 and 1, nh = 1− np, where nh is the hole
density and np is the particle density. Fourier transforming the hopping
term and considering the interaction term in real space, we find

H =
∑
k

εknp,k +
∑
r6=r′

V (r− r′)np,rnp,r′

=
∑
k

εk(1− nh,k) +
∑
r6=r′

V (r− r′)(1− nh,r)(1− nh,r′)

= −
∑
k

εknh,k +
∑
r6=r′

V (r− r′)nh,rnh,r′

+
∑
k

εk +
∑
r6=r′

V (r− r′) + 2
∑
r6=r′

V (r− r′)nh,r︸ ︷︷ ︸
constants

.

(4.53)

We see that the sign of the dispersion is inverted, since the kinetic term
is linear in the density, and that the sign of the interactions remains the
same, since the interaction term is quadratic in the density. Another way
of obtaining this result is to simply replace c†k → dk and ck → d†k where d†k
is the creation operator for a hole if the band-insulating state (filled band)
plays the role of the vacuum. The inverted sign of the dispersion relation
corresponds to inverting the sign of all three of the hopping coefficients
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(remember, an odd number of hopping matrix elements has to have an
inverted sign, so changing all three signs does the trick).

4.8 Summary

Summarising, we have shown that a kinetically frustrated lattice gas of
single-species fermions with long-ranged density-density interactions fea-
tures a rich phase diagram in the weakly interacting regime.

The analysis was performed based on a mean-field decomposition of the
quartic interaction term in the lattice Hamiltonian. The order parameters
for the various phases are single-particle observables constructed out of the
correlation functions 〈c†kcp〉. An interesting aspect of all phases that were
studied is the vectorial nature of the order parameters - three for each type
of symmetry breaking, in the system under investigation. In the case of
the density wave, the fact that three order parameters were present led to
the appearance of a third-order term in the Ginzburg-Landau expansion,
which drives the transition first order. This term plays clear role in the
physical characterisation of the way the spatial symmetry is broken: it lifts
the apparent degeneracy between two different types of density waves. The
two time-reversal symmetry breaking phases do not feature such apparent
degeneracies, and hence only even-order terms appear.

The time-reversal symmetry breaking manifests itself in the form of
currents running through the system. Two distinct patterns occur in the
kinetically frustrated triangular lattice, one mimicking the one found in
Ref. [14] and one being confined to a kagomé sublattice. The latter occurs
only if the Fermi surface is nested, and is therefore found in the vicinity
of filling factor ν = 1/4. It could be interpreted as the analogue of the
spatially uniform staggered currents, occurring on the effective kagomé lat-
tice that emerges as a consequence of the nested Fermi surface. A more
thorough argument for this proposition would require a detailed study of
the effective single-particle spectrum obtained after taking the symmetry-
breaking single-particle correlators 〈c†k+Qck〉 into account. Interestingly,
the currents on the kagomé sublattice also occur for densities slightly lower
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than those required for the density wave itself.
The three phases interact and compete with each other, since there are

regions in parameter space where two (or even all three) are predicted to
occur simultaneously. The staggered currents can be expected to repel the
two spatially symmetry-broken phases, as can be seen from intuitive phys-
ical arguments as well as mixing terms in the Ginzburg-Landau expansion
of the free energy. The two spatially symmetry-broken phases, the density
wave from section 4.3 and the modulated currents from section 4.4, couple
to each other in a complicated way, due to the presence of third-order mix-
ing terms. The large number of order parameters to be taken into account
led evaluating all higher-order terms to be beyond the scope of the present
project; hence, we do not have quantitative predictions on how the phase
boundaries are affected by these interaction effects. There are, in princi-
ple, two main possibilities: either the different types of symmetry breaking
repel each other, or they hybridise and occur simultaneously.

Additional support for the predicted symmetry breaking comes from
exact diagonalisation studies. Finite-size effects prevent us from reproduc-
ing anything like a proper phase diagram, but clear indications for the
occurrence of staggered currents are found in the low-energy spectrum. By
comparing the exact low-energy spectrum to the momentum eigenstates
and their energies, the eigenstates of the full Hamiltonian can be linked to
non-interacting states, revealing which configurations in momentum space
are most favourable with respect to the interaction energy. A tendency to-
wards spatial symmetry breaking is also found, although not with the same
degree of isotropy as expected based on the second-order Ginzburg-Landau
expansion of the mean-field free energy. A number of possible explanations
for this difference is given, based on finite-size effects in the exact diagonal-
isation studies, and higher-order terms in the Ginzburg-Landau expansion
of the mean-field calculations.



Chapter 5

Supersolid phases of dipolar
bosons in optical lattices
with a staggered flux

Abstract

In this chapter1, we present the theoretical mean-field zero-temperature
phase diagram of a Bose-Einstein condensate (BEC) with dipolar interac-
tions loaded into a square optical lattice with a staggered flux. Apart from
uniform superfluid, checkerboard supersolid and striped supersolid phases,
we identify several supersolids with staggered vortices. By allowing for
different phases and densities on each of the four sites of the elementary
plaquette, more complex configurations are found.

1This chapter is based on the publication Supersolid phases of dipolar bosons in op-
tical lattices with a staggered flux, Phys. Rev. A 83, 013627 (2011) by O. Tieleman,
A. Lazarides, and C. Morais Smith.
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5.1 Introduction

Supersolidity, a topic of long-standing interest in the condensed matter
community, is commonly defined as the simultaneous presence of diagonal
and off-diagonal long-range order in the system [44]. The most prominent
candidate for experimental realisation is solid 4He [89, 90]; other realisations
have been suggested in the domain of ultracold atomic gases, such as rapidly
rotating Fermi-Fermi mixtures [91] and dipolar bosonic gases in optical
lattices [56]. In an optical lattice, one clearly has diagonal long-range order,
since the density at the minima of the lattice potential is higher than at
the maxima; however, this type of long-range order is imposed externally.
To preserve the analogy to bulk supersolids, where the diagonal order is
spontaneously present in the system, we define a supersolid in an optical
lattice as a phase with both long-range off-diagonal and diagonal order,
where the diagonal order breaks the translational symmetry of the lattice
[92]. Recently, dipolar atoms or molecules in optical lattices have been
predicted to feature such supersolidity. Refs. [59, 93] present analytical and
numerical analyses of dipolar atoms in square lattices with only nearest-
neighbour (NN) hopping. Other examples include square lattices with NN
and next-nearest-neighbour hopping [94] and triangular lattices [92].

Uniform magnetic fields for ultracold atomic gases have been mimicked
by applying rotation [95, 91] and by generating gauge fields using position-
dependent optical coupling between internal states of the atoms [96, 97].
Analogous to superconductors in magnetic fields, these systems exhibit vor-
tices. A staggered gauge field for neutral atoms has also been proposed
[15], leading to a staggered-vortex superfluid phase [30]. In this chapter,
we describe how a dipolar bosonic gas subjected to a staggered gauge field
exhibits a supersolid phase which features vortices. In contrast to Ref. [91],
we study the gas in a lattice and do not have a rotating trap.

We analyse the interplay between NN interactions and an artificial stag-
gered magnetic field in a system of bosons in a two-dimensional square op-
tical lattice. In order to perform this analysis, we generalise and combine
the methods used in Refs. [56], [30], and [29], to allow for the description
of phases with a higher degree of broken symmetry than discussed in those
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three references. We present a phase diagram containing combinations of
the uniform and staggered-vortex phases found in Ref. [30] and the super-
solid phases found in Ref. [56], as well as a region, where two phases coexist
and the system will phase separate. We find that several continuous and
discontinuous phase transitions between different superfluid and supersolid
phases can be driven in two ways: by changing the NN interaction strength
or by changing the applied flux. Apart from the presence or absence of
density modulations, we discuss the existence of another type of structure
in the system, which arises when the many-body wavefunction exhibits
phase differences between neighbouring lattice sites. The vortices studied
in Refs. [30] and [29] are a realisation of a non-trivial, although relatively
simple phase structure.

This chapter is structured as follows: In section 5.2, we introduce the
system and briefly discuss its constituent components. In section 5.3, we
present the methods used to determine the phase diagram, which is dis-
played and discussed in sections 5.4 and 5.5. In section 5.6 we show exper-
imental signatures of the phases found. Section 5.7 concludes the chapter
by summarizing and discussing the results.

5.2 The system

We consider a system of dipolar bosons in a two-dimensional square op-
tical lattice [56] with staggered flux [29]. Below, we briefly explain the
consequences of a staggered flux (section 5.2.1) and dipolar interactions in
a lattice (section 5.2.2) for the phases found in the system. We work at
T = 0 and consider only Bose-condensed phases, since we are interested in
the combined effects of a staggered flux and NN interaction in a superfluid.
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The Hamiltonian we investigate is

H =Hflux +Hon−site +Hdip

= − J
∑
r∈A,l

(
ei(−1)lφa†rbr+el + H.c.

)
+
U

2

∑
r∈A⊕B

nr(nr − 1)

+
∑
r∈A

∑
σ=±1

(
Vxnrnr+σe1 + Vynrnr+σe2

)
.

(5.1)

Here, J represents the hopping strength between neighboring sites; φ is the
phase picked up at each tunnelling process, which is related to the mag-
nitude of the flux through a plaquette; U the on-site interaction strength;
and Vx and Vy the anisotropic NN interaction strengths. The lattice is rep-
resented as two interspersed square sublattices, A and B. The operators ar
(a†r) and br′ (b†r′) are destruction (creation) operators acting on sites in the
sublattices A and B, respectively; note that there is only one type of par-
ticle being created and destroyed. The operator nr is the number operator
for site r, irrespective of the sublattice in which it is located. The lattice
vectors el, l ∈ {1, 2, 3, 4} are defined by e1 = −e3 = ex and e2 = −e4 = ey.

5.2.1 Staggered flux

The term Hflux breaks the symmetry between the sublattices A and B, as
can be seen in Fig. 5.1(a). It can be represented as a synthetic magnetic field
which alternates in sign between neighboring plaquettes. For the details of
the derivation of this hopping term, we refer the reader to Refs. [30] and [15].
The phase diagram of bosons with on-site interactions in such a lattice is
presented in Ref. [30]; we reproduce it in Fig. 5.1(b). The main conclusions
from Ref. [30] which will be important for this chapter are the following: For
strong on-site interactions (large U), a Mott-insulating phase is found. By
reducing U , a second-order phase transition into a superfluid phase occurs
at some critical value of U/J ; the value of (U/J)c depends on φ as shown
in Fig. 5.1(b). For |φ| < π/4, i.e. small flux, the zero-momentum superfluid
phase is unaltered; for π/4 < |φ| < 3π/4, the system features a staggered-
vortex superfluid phase, where the vortex cores are located at the centers of
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Figure 5.1: (a) The division into sublattices A and B caused by the stag-
gered flux. (b) The phase diagram for bosons with on-site interactions in
an optical lattice with staggered flux as found by the authors of Ref. [30]
(for unit filling factor). Legend: SF = conventional superfluid; SVSF =
staggered-vortex superfluid; SSSF = staggered-sign superfluid.

the plaquettes and the sign of the vorticity alternates between plaquettes.
This phase comes about due to the development of a second minimum in the
single-particle spectrum, at a finite momentum, which becomes the global
minimum if π/4 < |φ| < 3π/4. Condensation in this minimum introduces
phase differences of π/2 between the lattice points, in such a pattern that a
particle tunnelling around a plaquette picks up a phase of ±2π, depending
on the direction of tunnelling and the plaquette. Note the periodicity in the
φ-dependence of (U/J)c. We find that the same periodic pattern emerges
in the Vx-φ-diagrams that we present in sections 5.4 and 5.5, respectively,
in spite of the fact that we are studying different phase transitions. We will
confine ourselves to considering the weakly interacting limit, since our aim
here is to study the interplay between the supersolidity found in Ref. [56]
and the staggered-vortex patterns found in Ref. [30].
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5.2.2 Dipolar interaction

As discussed in the introductory chapters, the interaction energy between
two polarized dipoles is given by

vdd(r) = d2gdd
1− 3 cos2 ζ

r3
, (5.2)

where ζ is the angle between the polarisation axis and the displacement
vector r. Loading the dipoles into a deep lattice and approximating the
dipolar interaction by cutting it off at NN distance, the only displacement
vectors that we have to consider are e1 and e2, the lattice vectors in the x-
and y-directions. The NN dipolar interaction strengths in the two relevant
directions are given by

Vx = d2gdd
1− 3 sin2 ϑ cos2 ϕ

a3
,

Vy = d2gdd
1− 3 sin2 ϑ sin2 ϕ

a3
,

(5.3)

where a is the lattice spacing, ϑ is the inclination, and ϕ is the azimuthal
angle. At ϕ = π/4, the interaction strength is isotropic and can be varied
continuously from repulsive (ϑ = 0) to attractive (ϑ = π/2), being zero at
ϑ = sin−1

√
2/3. By varying the azimuthal angle, we can tune the ratio

between Vx and Vy to any desired value. We note that tuning the NN
interactions to zero will make the next-nearest-neighbor interactions more
relevant; however, in this chapter, we focus on the regime where only the
on-site and NN interactions are significant. By tuning U , ϑ and ϕ, we can
cover the complete Vx/U -Vy/U -plane, providing us with complete control
over the two relevant quantities for the purposes of our analysis. In the NN
approximation, the Hamiltonian for the dipolar interaction thus takes the
form

Hdip =
1

2

∑
r,σ=±1

(
Vxnrnr+σe1 + Vynrnr+σe2

)
. (5.4)

In Ref. [56], the phase diagram of dipolar bosons in a square optical lattice
is presented, which we reproduce in Fig. 5.2 and briefly discuss here. At
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Figure 5.2: The phase diagram for dipolar bosons in a square optical lattice,
at J/(νU) = 0.1. The black and blue lines were also found by the authors
of Ref. [56]. Legend: SF = homogeneous superfluid, CSS = checkerboard
supersolid, SSS = striped supersolid. SSS1 (SSS2) has the stripes in the
y-(x-)direction. The solid black lines are second-order phase boundaries,
the dashed black lines first-order phase transitions, and the dotted blue
(grey) lines represent the existence of metastable states, which are labelled
in blue (grey) and between brackets. The red (grey) dashed lines are our
finding, and represent the SSS-CSS phase boundary for the case of strong
flux, φ = π/2; see the discussion in section 5.5.

mean-field-level, the authors identify three types of superfluid phases: a
conventional superfluid one (SF), for weak NN interactions; one with a
density modulation in a checkerboard pattern (checkerboard supersolid -
CSS), for strong enough repulsive Vx ≈ Vy; and one with a striped pattern
(striped supersolid - SSS), where only one of the NN interaction parameters
dominates. Both the checkerboard and striped superfluids have long-range
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diagonal as well as off-diagonal order, i.e. they break both translational and
local U(1)-gauge symmetry. These properties justify the epithet supersolid,
as discussed in the introduction.

The checkerboard and striped phases are intuitively easy to understand.
Consider the case where Vx = Vy: here, the NN interaction energy is re-
duced by arranging the atoms in a checkerboard-modulated density pattern,
since there are fewer pairs of nearest neighbors in such a configuration. Sim-
ilarly, if Vy is negative (or positive but small) and Vx is positive and of the
order of U , the NN interaction energy is reduced by a striped configuration.
As a final remark, taking longer-range interactions into account does affect
the phase diagram to some extent, but the basic structure of checkerboard
and striped phases remains intact [56].

5.3 The method: mean-field

Below, we explain how to obtain the phase diagram presented in sections 5.4
and 5.5. We use the Bogolyubov approximation to describe the condensate,
which is justified if J � U, Vx, Vy [56]; we calculate the ground state energies
and excitation spectra of all the phases we identify. The excitation spectrum
is required to check the dynamical stability of the phases we find: since we
are dealing with bosons, a negative or complex excitation spectrum implies
that the ground state above which the spectrum is calculated is not the
real ground state of the system.

We will be working in the limit of high filling factor ν and strong hop-
ping (or weak interaction), such that we can consider every lattice point to
contain a condensate, and still have a small J/(νU), where ν is the filling
factor. The ratio J/(νU) is required to be small for the density modu-
lations to appear; if the energy gain from wavefunction overlaps between
neighboring sites is too large, the system will ignore the NN interactions
and simply remain in a superfluid state with homogeneous density.
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5.3.1 Two-sublattice formalism

As described in section 5.2.1, the staggered flux divides the square lattice
into two interpenetrating square sublattices, necessitating a two-sublattice
description of the system, which is developed below. In the next subsection,
we introduce another subdivision, into four sublattices, in order to allow
for more complex density and phase distributions around the elementary
plaquette.

We will perform our calculations in momentum space, where the grand-
canonical version of the Hamiltonian given in Eq. (5.1) reads

H − µN =
∑

k∈BZ1

(
εka
†
kbk + h.c.− µa†kak − µb

†
kbk

)
+

∑
k1,...,k4
∈BZ1

[
U

2Ns

(
a†k1

a†k2
ak3ak4 + b†k1

b†k2
bk3bk4

)

+
2V (k4 − k2)

Ns
a†k1

b†k2
ak3bk4

]
δk1+k2−k3−k4,0,

(5.5)

with

εk = −4J

[
cos(φ) cos

(
kx + ky

2
a

)
cos

(
kx − ky

2
a

)
+ i sin(φ) sin

(
kx + ky

2
a

)
sin

(
kx − ky

2
a

)]
,

(5.6)

and

V (k) = Vx cos(ex · k) + Vy cos(ey · k). (5.7)

N is the particle number operator for the entire system, µ is the chemical
potential, Ns is the number of sites per sublattice, i.e. half the total number
of sites, and BZ1 is the first Brillouin zone. Now, we apply the Bogolyubov
approximation: we replace ak → δk,c 〈a〉+ãk and bk → δk,c 〈b〉+b̃k, where c
is the condensation momentum, and we treat ãk and b̃k as small fluctuations
relative to the average occupations 〈a〉 and 〈b〉. We then require that the
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terms linear in the fluctuations vanish. This requirement yields the values
for the chemical potential and, if present, the density modulation; for the
details, see sections 5.4 and 5.5. The terms of order zero in the fluctuations
represent the ground state energy per particle,

E0 = 2Re(εc 〈a〉 〈b〉∗) + U(| 〈a〉 |4 + | 〈b〉 |4)/2Ns

+ 2V (0)| 〈a〉 |2| 〈b〉 |2/Ns.
(5.8)

The second-order terms can be diagonalised to give the excitation spectrum.
They can be represented in matrix form as

Hex =
1

2

∑
k∈BZ1

A†k


ωk λk γk ζk
λ∗k ωk ζ∗k γ∗k
γ∗k ζk ωk λk
ζ∗k γk λ∗k ωk

Ak =
1

2

∑
k∈BZ1

A†kMkAk, (5.9)

where

A†k =
[
a†k a−k b†k b−k

]
, (5.10)

and ωk, λk, γk, and ζk are functions to be calculated for each specific phase
we describe with this formalism. We diagonalise this quadratic Hamiltonian
by solving (

Mk − Ωk[Ak, A
†
k]
)

= 0, (5.11)

for Ωk, which then is the excitation spectrum.

5.3.2 Four-sublattice description

The method presented above is in fact a simple combination of the ap-
proaches used in Refs. [56] and [30]. It works as long as either the phase
distribution around the elementary plaquette is trivial (i.e. all sites have
the same phase) or the density modulation is absent. If we allow Vx 6= Vy,
striped or otherwise asymmetric phases may occur, in which case the four
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Figure 5.3: The two- and four-sublattice divisions of the square lattice.

sites of the elementary plaquette could all have different densities, or the
phase drops could be distributed unevenly along the plaquette. In such
phases, the two-sublattice formalism does not hold, since the density mod-
ulation and the phase pattern will influence each other, as we show below.
One interesting phenomenon to be investigated here is the competition
between NN interactions favouring stripes on the one hand, and a stag-
gered flux on the other hand, since the staggered flux is associated with
checkerboard-subdivision of the lattice (see section 5.2.1, Fig. 5.1). To
investigate such phenomena, we need a description of the system which
allows the condensate wavefunction to be different at all four sites of the
elementary plaquette. Such a description involves four different sublattices:
we have to split each of the sublattices A and B into two new ones, such
that A = SL1⊕SL3 and B =SL2⊕SL4, as shown in Fig. 5.3. The resulting
equations for the chemical potential and condensate wavefunction cannot
be solved analytically, and have to be solved numerically instead. In this
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representation, the momentum-space Hamiltonian becomes

H =
∑

k∈BZ1

(
εxka
†
1,ka2,k + (εyk)∗a†1,ka4,k + εxka

†
3,ka4,k + (εyk)∗a†3,ka2,k

)
+ h.c.

−µ
∑

k∈BZ1

4∑
i=1

a†i,kai,k +
∑

k1,...,k4

δk1+k2−k3−k4,0

[
U

2N

4∑
i=1

a†i,k1
a†i,k2

ai,k3ai,k4

+
2Vx
N

cos[(k4 − k2) · ex]
(
a†1,k1

a†2,k2
a1,k3a2,k4 + a†3,k1

a†4,k2
a3,k3a4,k4

)
+

2Vy
N

cos[(k4 − k2) · ey]
(
a†1,k1

a†4,k2
a1,k3a4,k4 + a†2,k1

a†3,k2
a2,k3a3,k4

)]
,

(5.12)

where

e
x/y
k = − 2J cos(kx/ya)eiφ. (5.13)

Note that this four-sublattice formalism can in principle be used to describe
all the phases that we will encounter in the system, including the ones
that can be analysed within the two-sublattice formalism; for example, the
checkerboard-modulated phase without vortices has 〈a1〉 = 〈a3〉 = β 〈a2〉 =
β 〈a4〉, where β is a measure for the strenght of the modulation.

Bogolyubov approximation

In the four-sublattice description, the real space unit cell is twice as large as
in the two-sublattice description. As a consequence, the first Brillouin zone
is only half the size, and the number of bands in the excitation spectrum
is doubled. The minimum in the corner of the first Brillouin zone found in
Ref. [30] is mapped to the center of the new first Brillouin zone. Hence, the
minimum of the single-particle spectrum in the four-sublattice description
is always at k = 0, and we use the mean-field ansatz aj,k → δk,0 〈aj〉+ ãj,k.
We obtain four equations for the chemical potential, of the form

µ1 = − 2J
eiφ 〈a2〉+ e−iφ 〈a4〉

〈a1〉
+ Uν| 〈a1〉 |2

+ 2Vxν| 〈a2〉 |2 + 2Vyν| 〈a4〉 |2
(5.14)
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(we omit the other three for brevity; they can easily be deduced from the
Hamiltonian). These four µj can be interpreted as the chemical potentials
of the four sublattices, which are then thought of as macroscopic systems
with an exchange mechanism (the hopping terms). The condition that all
four chemical potentials are equal represents the equilibrium condition in
this picture. Since the expression in Eq. (5.14) is in principle complex, we
have to allow for complex 〈aj〉 in order to be able to make the imaginary
parts of the µj vanish. Representing 〈aj〉 as rje

iθj , the requirement that all
µj are real yields the conditions

r2 sinα1 = r4 sinα4

r3 sinα2 = r1 sinα1

r4 sinα3 = r2 sinα2

r1 sinα4 = r3 sinα3,

(5.15)

where αj = θj+1−θj+φ. The four equations (5.15) can be reduced to three
without loss of generality. A fourth equation comes from the requirement
that the mean-field wavefunction is always single-valued. To satisfy this
requirement, the phase picked up when hopping around a plaquette has to
be an integer multiple of 2π; thus,∑

i

αi − 4φ = 2πn, (5.16)

where n determines the vorticity pattern of the system. Apart from Eqs. (5.15),
we also have the real parts of the chemical potentials, which have to be equal
to each other. They take the form

µ1 = − 2J

r1

(
r2 cosα1 + r4 cosα4

)
+ Uνr2

1

+ 2Vxνr
2
2 + 2Vyνr

2
4,

(5.17)

and similar expressions for µ2, µ3 and µ4. Finally, there is the normalisation
condition,

r2
1 + r2

2 + r2
3 + r2

4 = 4, (5.18)
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bringing us to a total of eight equations in eight unknowns. Of course,
more than one unique solution may still exist. We have to find all unique
solutions, since each represents a different phase of the system, and we want
to compare all phases for stability and ground state energy. Hence, we solve
the eight equations Eqs. (5.15)-(5.18) numerically, in such a way that we
find all solutions. Having found the 〈aj〉, the ground state energy is given
by

E0 = − 4J Re
∑
j

eiφ 〈aj〉∗ 〈aj+1〉+
U

2N

∑
j

| 〈aj〉 |4

+
2Vx
Ns

(
| 〈a1〉 |2| 〈a2〉 |2 + | 〈a3〉 |2| 〈a4〉 |2

)
+

2Vy
Ns

(
| 〈a1〉 |2| 〈a4〉 |2 + | 〈a3〉 |2| 〈a2〉 |2

)
,

(5.19)

where j is to be taken modulo 4.

Excitation spectrum

As before, finding all solutions that represent equilibrium situations is not
enough: we also have to investigate their excitation spectra to assess their
respective dynamical stabilities. In order to derive the excitation spectra,
we collect all terms of second order in the fluctuations, and obtain, quite
generally,

H4sl
ex =

1

2

∑
k∈BZ1

∑
i,j

[
ωijk a

†
i,kaj,k + ωjik a

†
j,kai,k

+ (λijk )∗a†i,ka
†
j,−k + λijk ai,kaj,−k

]
,

(5.20)

where

A†k =
[
a†1,k a1,−k a†2,k a2,−k a†3,k a3,−k a†4,k a4,−k

]
. (5.21)
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In our specific case, ωii and λii do not depend on k: they are given by

ω11
k = 2U | 〈a1〉 |2 + 2Vx| 〈a2〉 |2 + 2Vy| 〈a4〉 |2 − µ
ω22
k = 2U | 〈a2〉 |2 + 2Vx| 〈a1〉 |2 + 2Vy| 〈a3〉 |2 − µ
ω33
k = 2U | 〈a3〉 |2 + 2Vx| 〈a4〉 |2 + 2Vy| 〈a2〉 |2 − µ
ω44
k = 2U | 〈a4〉 |2 + 2Vx| 〈a3〉 |2 + 2Vy| 〈a1〉 |2 − µ
λiik =U(〈ai〉∗)2.

(5.22a)

The hopping terms have the following coefficients:

ω12
k = (ω21

k )∗ = εxk + 2Vx cos(kxa) 〈a1〉 〈a2〉∗

ω23
k = (ω32

k )∗ = εyk + 2Vy cos(kya) 〈a2〉 〈a3〉∗

ω34
k = (ω43

k )∗ = εxk + 2Vx cos(kxa) 〈a3〉 〈a4〉∗

ω41
k = (ω14

k )∗ = εyk + 2Vy cos(kya) 〈a4〉 〈a1〉∗

ω13
k = (ω13

k )∗ = 0

ω24
k = (ω24

k )∗ = 0.

(5.22b)

Lastly, the off-diagonal mixing terms read

λ12
k =λ21

k = 2Vx cos(kxa) 〈a1〉∗ 〈a2〉∗

λ23
k =λ32

k = 2Vy cos(kya) 〈a2〉∗ 〈a3〉∗

λ34
k =λ43

k = 2Vx cos(kxa) 〈a3〉∗ 〈a4〉∗

λ41
k =λ14

k = 2Vy cos(kya) 〈a4〉∗ 〈a1〉∗

λ13
k =λ21

k = 0

λ24
k =λ21

k = 0.

(5.22c)

As before, we diagonalise this Hamiltonian by numerically solving(
M4sl

k − Ω4sl
k [Ak, A

†
k]
)

= 0 (5.23)

for Ω4sl
k , which then gives the excitation spectrum.
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In most regions of parameter space, there is only one dynamically stable
phase. However, there are some regions where two phases are dynamically
stable; here, we compare the ground state energies (which are equal to the
free energies, since we are working at T = 0) to see which phase is favoured.

The phase diagram we find is, in principle, three-dimensional, since we
have the three parameters φ, Vx and Vy. In addition to the Vx/U -Vy/U -
diagram at φ = 0 from Ref. [56], we present three cross sections which
together form a representative sample of the results: the Vx-φ-diagram at
Vy = Vx, the Vx-φ-diagram at Vy = 0, and the Vx/U -Vy/U -diagram at
φ = π/2.

5.4 Quantum phases: symmetric case

In this section, we discuss the symmetric case, where the NN interaction is
equally strong in both directions. This can be achieved by polarising the
dipoles perpendicular to the plane, or at an angle of π/4 relative to the
in-plane lattice vectors. By tuning the inclination, the ratio Vx/y/U can
be tuned without changing U . However, if this technique is employed, the
next-nearest-neighbor interactions will not be isotropic; this is only the case
if the polarisation axis is perpendicular to the plane. As a consequence, the
description presented here will be more accurate if the dipoles are polarised
perpendicularly to the plane.

5.4.1 Weak flux: no vortices

For small values of the flux, 0 ≤ |φ| ≤ π/4, the system does not feature any
vortices in the ground state. It may still exhibit density modulations, since
these are caused by the NN interactions.

Superfluid: homogeneous density

For homogeneous or checkerboard-modulated density distributions, we can
use the two-sublattice formalism, and replace ak → δk,0 〈a〉 + ãk and
bk → δk,0 〈b〉 + b̃k. If the density is homogeneous, we have a conventional
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superfluid (SF) and | 〈a〉 | = | 〈b〉 | =
√
Np/2, with Np being the total num-

ber of particles in the system. Setting the term linear in the fluctuations
zero yields

µSF = ε0 + ν(U + 2Vx + 2Vy). (5.24)

Note that ε0 = −4J cosφ, and hence as φ→ 0, we recover the result found
in Ref. [56]: µSF = −4J+ν(U+2Vx+2Vy). In order to determine where this
superfluid phase is dynamically stable, we consider the excitation spectrum
given by Eq. (5.9). The matrix elements of MSF

k are

ωk = 2ν(U + Vx + Vy)− µSF

λk = νU

γk = εk + ζk

ζk = 2νV (k).

(5.25)

As φ→ 0, the excitation spectrum should reduce to

ΩSF
k =

√
ε̃k[ε̃k + 2ν(U + 2V (k))], (5.26)

with ε̃k = 2J [2 + cos(kxa) + cos(kya)], as found in Ref. [56]. However,
in order to make this comparison properly, we have to map the two-band
excitation spectrum in the Brillouin zone defined by kx ± ky ∈ [−π/a, π/a]
derived above, to the single-band spectrum in the Brillouin zone kx/y ∈
[−π/a, π/a] given in Ref. [56]. This mapping is described in e. g. Ref. [98]:
it is the mapping from the extended to the reduced zone scheme. After
applying this mapping, the two spectra are seen to be identical. In addition,
as Vx → 0 and Vy → 0, the spectrum reduces to the one found in Ref. [30].

Checkerboard supersolid

To describe a phase with a checkerboard-modulated density (checkerboard
supersolid, CSS), we follow the scheme used in Ref. [56]. We assume that
the population density of sublattice A is different from that of sublattice
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B; hence, 〈a〉 6= 〈b〉. Instead of working with 〈a〉 and 〈b〉 directly, we go to
a center-of-mass and relative representation, and write

〈a〉 =
√
Np/2

(√
α+

√
β
)

〈b〉 =
√
Np/2

(√
α−

√
β
)
.

(5.27)

Clearly, if we send β to zero, the density modulation vanishes. Replacing
ak → δk,0 〈a〉 + ãk and bk → δk,0 〈b〉 + b̃k in Eq. (5.5) and requiring the
terms of first order in the fluctuations to vanish yields

µA
ν

=
ε0
ν

√
α−
√
β√

α+
√
β

+ U + 2V (0) + 2
√
αβ[U − 2V (0)],

µB
ν

=
ε0
ν

√
α+
√
β√

α−
√
β

+ U + 2V (0)− 2
√
αβ[U − 2V (0)],

(5.28)

where ν = Np/Ns is the average number of atoms per site (filling factor) and
we have used the fact that that | 〈a〉 |2 + | 〈b〉 |2 = Np and hence α+ β = 1.
Setting µA = µB yields a condition on α and β, which can be solved for the
difference α− β; the result is

α− β =
4J cosφ

ν(2Vx + 2Vy − U)
. (5.29)

Now, we can now write α and β in terms of the parameters J , φ, U , Vx and
Vy:

α =
1

2
+

2J cosφ

ν(2Vx + 2Vy − U)
,

β =
1

2
− 2J cosφ

ν(2Vx + 2Vy − U)
.

(5.30)

With this result, we can calculate the chemical potential, and find µCSS =
2νU . For the checkerboard-modulated case, the matrix elements of MCSS

k
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in Eq. (5.9) are given by

ω
a/b
k = 2Uν

(
1± 2

√
αβ
)

+ 2V (0)ν
(
1∓ 2

√
αβ
)
− µCSS,

λ
a/b
k =Uν

(
1 + 2

√
αβ
)
,

γk = εk + ζk,

ζk = 2νV (k).

(5.31)

As in the homogeneous case, if we take the limit φ→ 0, we recover the re-
sults from Ref. [56]: density modulation, chemical potential, and excitation
spectrum. Note that for 0 < |φ| < π/4, the density modulation is affected
by the flux, even though no vortices appear (see Eq. (5.29)).

5.4.2 Strong flux: staggered-vortex phase

As was found in Ref. [30], under the influence of a strong flux, π/4 < |φ| <
3π/4, the system goes to a staggered-vortex superfluid (SVSF) phase. This
corresponds to condensation in the single-particle state with momentum
(±π/a, 0) or (0,±π/a), i.e. in the corners of the first Brillouin zone 2.
To describe this region of parameter space, we need the four-sublattice
formalism presented in section 5.3.2. Although the description is different,
the ansatz is still informed by earlier findings: we expect a combination of
the staggered-vortex pattern from Ref. [30] and, for appropriately strong
NN interactions, the checkerboard-modulated density from Ref. [56]. For a
homogeneous density distribution, the ansatz is quite simple:

〈aj〉 = νei(j−1)π/2, (5.32)

where we have defined the phase of the mean-field wavefunction at sublat-
tice SL1 to be zero. For the discussion of the staggered-vortex checkerboard
supersolid (SVCSS), there is a general point that is worth noting: in cases
where the density modulation is invariant under exchange of the two lat-
tice vectors, the vortices do not interfere with the density modulation. This

2Note that although the condensation momenta do not look identical, they actually
are, since the relevant reciprocal lattice vectors are those of the A and B sublattices,
which do translate these condensation points into each other.
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can be seen from Eq. (5.15): as long as r1 = r3 and r2 = r4, the condi-
tions on the phase drops do not depend on the wavefunction amplitudes.
Since the checkerboard pattern has this symmetry, we can try to guess the
modulation strength from the two-sublattice formalism. The ansatz would
be:

ak →
√
Np/2δk,π

(√
α+

√
β
)

+ ãk

bk → i
√
Np/2δk,π

(√
α−

√
β
)

+ b̃k.
(5.33)

Performing the same analysis as for the weak-flux case, we find that the
density modulation strength is given by

α− β =
4J sinφ

ν(2Vx + 2Vy − U)
(5.34)

Hitherto, the two formalisms work equally well. However, the excitation
spectrum can only be calculated in the four-sublattice formalism; the mean-
field values for the four sublattices are

〈a1〉 =
√
Np/2(

√
α+

√
β)

〈a2〉 = − i
√
Np/2(

√
α−

√
β)

〈a3〉 = −
√
Np/2(

√
α+

√
β)

〈a4〉 = i
√
Np/2(

√
α−

√
β).

(5.35)

By inserting these values for 〈aj〉 into Eqs. (5.19) and (5.22), we find the
corresponding ground state energy and excitation spectrum.

5.4.3 Phase diagram

Now we have all the information required to determine the cross section of
the phase diagram along the line Vx = Vy. In order to obtain the phase
boundaries, we calculate the parameter values where the density modula-
tion vanishes, where the excitation spectra become unstable, and where
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the ground state energies of two phases are equal. These three phenomena
happen simultaneously at the SF-CSS and SVSF-SVCSS phase boundaries
(see Fig. 5.4). Since the relevant order parameter for this phase transi-
tion is the density modulation, which vanishes continously at the border,
this is a second-order phase transition. At the SF-SVSF and CSS-SVCSS
boundaries, the ground state energies of the uniform and staggered-vortex
phases become equal. The relevant order parameter for these transitions is
the (staggered) number of vortices per plaquette, which jumps from zero
to unity; hence, these are first-order phase transitions.

Fig. 5.4 shows the Vx = Vy cross section of the phase diagram. The
combination of flux and NN interactions leads to a phase boundary with
the same shape as observed in Ref. [30] in the MI-SF phase diagram. The
phase transition from the homogeneous-density phase to the checkerboard
phase is continuous, independently of the flux; the phase transition from
the uniform to the staggered-vortex phase is discontinuous, independently
of the density modulation.

In conclusion, this cross-section of the phase diagram shows a relatively
straightforward superposition of the phases found in Refs. [56] and [30].
Beyond the results found in those references, we note a few aspects: The
symmetry in the line φ = π/4 goes further than the shape of the phase
boundary, since the strength of the density modulation is also symmetric.
The origin of this symmetry can be found in Eqs. (5.29) and (5.34): the
cosine from the uniform SF and CSS phases is replaced by a sine in the
staggered-vortex phases. The SF-CSS transition can also be induced by
changing φ, provided Vx and Vy are in the right range. The critical value of
Vx/U shifts with J/νU , but the phase boundaries retain their periodicity
in φ, within the approximation used here.

5.5 Quantum phases: asymmetric case

In Eqs. (5.15) and (5.17), we see the interplay between the phase and density
distributions. As noted in section 5.4.2, both a homogeneous density and a
checkerboard pattern are possible within the ansatz employed in Ref. [30], in
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Figure 5.4: Cross section of the phase diagram for Vx = Vy and J/(νU) =
0.1. Dashed (solid) lines are first (second) order phase transitions. Legend:
SVSF = homogeneous staggered-vortex superfluid; SVCSS = staggered-
vortex checkerboard supersolid.

which all phase drops are assumed to be equal. If, however, r1 6= r3 and/or
r2 6= r4, as in the case of stripes or four different densities on the four
sites of one plaquette, the phase distribution is influenced by the density
modulation, and we have to allow for phase drops taking other values than
integer multiples of π/2. We indeed find such solutions, in the striped phase
for 0 < φ < π/2. The mean-field wavefunction values 〈aj〉 are determined
by numerically solving Eqs. (5.15)-(5.18).
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5.5.1 Phase diagram cross section I: Vy = 0

We obtain the phase diagram in the same manner as in section 5.4: by cal-
culating where the density modulations vanish, where the excitation spectra
develop instabilities, and by comparing ground state energies. Along the

Figure 5.5: Cross section of the phase diagram for Vy = 0 and J/(νU) =
0.1. Legend: SSS = striped supersolid; SVSSS = staggered-vortex striped
supersolid; FR = forbidden region, phase separation. Dotted blue (grey)
lines represent the existence of metastable states, which are labelled in blue
(grey) and between brackets.

line Vy = 0, we find a variety of phases (see Fig. 5.5.1). The superposition of
the CSS phase from Ref. [56] with the staggered-vortex phase from Ref. [30]
is there, as well as the uniform and staggered-vortex superfluids without
density modulation. The striped supersolid (SSS) and staggered-vortex
striped supersolid (SVSSS) phases are not simple combinations of earlier
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found phases, however: they break the symmetry within the sublattices A
and B, i.e. between sublattices SL1 and SL3, and SL2 and SL4, respec-
tively. The density modulates in a striped pattern, but the phase drops are
different on all four edges of the elementary plaquette. Note again the high
degree of symmetry in the line φ = π/4: the dynamical stability diagram
is completely symmetric, as well as the density modulation strength, also
for the striped phase. Apart from the phase distribution, which cannot
be symmetric, it is only the ground state energy difference between the
checkerboard and striped phases that is different between the two regions
|φ| < π/4 and |φ| > π/4. In the staggered-vortex region, the checkerboard
phase has a lower ground state energy than the striped phase, which can be
understood as a consequence of the matching between the sublattice divi-
sions associated with the flux and the density modulation. The flux breaks
the symmetry between sublattices A and B (for details see Ref. [30]), thus
introducing a checkerboard pattern, which competes with the striped pat-
tern introduced by the NN interactions.

Also note the shape of the second-order phase boundary, in this case
between the homogeneous and striped phases. It shows the same pattern
as the boundary between the homogeneous and checkerboard phases (see
Fig. 5.4), and the SF-MI boundary in the absence of NN interactions (see
Fig. 5.1). This shape can be understood from the effect of the flux on
the hopping energy in the ground state: it is modified by cosφ in the
uniform superfluid, and sinφ in the staggered-vortex superfluid, resulting in
a minimum at φ = π/4. Since it is the hopping term in the Hamiltonian that
favors the superfluidity in the SF-MI phase transition, and the homogeneity
in the SF-CSS and SF-SSS transitions, the reduction in hopping energy
makes phases which break the phase coherence or homogeneous density
distribution more favorable.

There is one region, close to φ = π/4, where we do not find any dynam-
ically stable phases (FR - forbidden region). This result is a consequence
of our approach, which assumes the existence of a well-defined chemical
potential for the whole system, and hence a uniform macroscopic density
distribution, since we are not working in a trap. If we drop the assump-
tion of a well-defined chemical potential, we effectively allow the system to
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separate into parts with different densities. Shifting the density changes
the parameter J/νU , which changes the critical values of Vx/U in such a
way that any point in the forbidden region can be made to lie within the
two closest neighboring stable regions. Hence, if the parameters are tuned
to lie in the forbidden region, our calculations predict that the system will
phase separate. Note that there are actually two different forbidden regions,
since the phases the system will separate into are different for |φ| < π/4
and |φ| > π/4.

5.5.2 Phase diagram cross section II: φ = π/2

Finally, a comment on the two cross sections of constant φ (see Fig. 5.2).
We show the cases where φ = 0 and φ = π/2, i.e. the centers of the uniform
and the staggered-vortex phases. As mentioned above, the phase diagram
has a high degree of symmetry in the line φ = π/4, the only differences
being the phase distribution and the ground state energies of the striped
and checkerboard phases. In Fig. 5.2, we see that the CSS-SSS phase
boundary shifts, but nothing else. Intermediate cross sections would also
reveal the forbidden region discussed above, and the disappearance of the
striped phase near φ = π/4.

5.6 Experimental signatures

A good starting point for experimental detection of the various phases dis-
cussed in this chapter is the momentum distribution n(k), since most of
the phases have a unique momentum distribution, as will be discussed be-
low. Experimentally, the momentum distribution is accessible through the
technique of time-of-flight measurement [1], which converts the momen-
tum distribution into a spatial one by suddenly turning off the lattice and
allowing the cloud to expand ballistically. n(k) is given by [30]

n(k) = |w(k)|2
∣∣∣∣∑

P

eik·P
∣∣∣∣2 4∑
µ,ν=1

eik·(rν−rµ)
〈
a†rµarν

〉
. (5.36)
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Figure 5.6: The momentum distributions for the (a) SF, (b) CSS, and (c)
SSS phases.

Here, P runs over all plaquettes, i.e. P = 2a(nx, ny), with integer nx/y,
and rµ and rν run over the four sites of the plaquette. The last factor is
the one that distinguishes between the phases, since all configurations are
invariant under translation by P. To calculate it, we follow Ref. [30] and
approximate the N -particle state on the lattice by a coherent state with
on average N particles. Now the calculation becomes very simple, since in
this approximation, 〈

a†rµarν

〉
≈ 〈aµ〉 〈aν〉 , (5.37)

for which we have explicit results (see sections 5.3-5.5). Using the same
parameters as in Ref. [30], we obtain the signatures shown in Figs. 5.6 and
5.7. In Fig. 5.6, we see that supersolidity manifests itself in the momentum
distribution by replacing the peaks from the homogeneous SF by a smaller
peak and ‘satellite peaks’ displaced by the characteristic vectors of the den-
sity modulation. Fig. 5.7 shows that the same replacement takes place in
the staggered-vortex phases. Unfortunately, this implies that the SVSF and
SVCSS phases look exactly the same, since the peaks of the SVSF momen-
tum distribution are displaced from each other by exactly the characteristic
vectors of the CSS density modulation. In Fig. 6, we see another curiosity:
the two striped phases, with stripes in the x- and y-directions, are indistin-
guishable for φ = π/2, where the phase drops along the plaquette are equal.
For different values of φ, the two striped phases are distinguishable. Also,
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Figure 5.7: The momentum distributions for the (a) SVSF, (b) SVSSS at
φ = 7π/20, and (c) SVSSS at φ = π/2 phases. The SVCSS phase has
exactly the same signature as the SVSF phase.

as discussed in sections 5.3 and 5.5, the phase distribution is asymmetric
for φ /∈ {0, π/2} in the striped phase. This asymmetry reflects the interplay
between NN interactions and applied flux, and is a continuous function of
φ.

5.7 Discussion & conclusions

In this chapter, we have analysed the interplay between NN interactions
and a synthetic staggered magnetic field in a system of bosons in a two-
dimensional square optical lattice. We have used the Bogolyubov approx-
imation to obtain the theoretical mean-field phase diagram of the system.
The equilibrium condition that traditionally gives the value of the chemi-
cal potential was replaced by a set of conditions that give the density and
phase modulations between the lattice sites, as well as the chemical po-
tential. The excitation spectrum allowed us to determine the dynamical
stability of the phases encountered in the system.

Our analysis resulted in a rich phase diagram featuring various super-
fluid and supersolid phases. Apart from the conventional and staggered-
vortex superfluids and the checkerboard and striped supersolids found be-
fore, the system turns out to feature phases which combine a staggered-
vortex phase configuration and supersolidity. Where the density modula-
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tion is invariant under exchange of the lattice vectors, it does not influ-
ence the phase configuration; in case of an asymmetric density modulation,
the phase drops around the plaquette are also distributed asymmetrically.
Lastly, we have identified a forbidden region, where the system cannot form
a stable state with the same average density in all areas. In this region of
parameter space, our calculations predict that the system will phase sepa-
rate.

We observe that even a rather crude approximation to the dipolar in-
teraction, where the long tail is cut off beyond the NN range, combined
with the staggered flux, leads to a very rich phase diagram. Apart from
the expected ‘superposition’ of density modulations and a staggered-vortex
pattern, another layer of structure emerges: the phase drops do not have
to be distributed homogeneously along the elementary plaquette.

We also see that many of the phase transitions can be driven by tuning
either the NN interaction strengths or the flux, which is a consequence of
the fact that the flux modifies the hopping energy. Thus, it affects both the
vorticity, which is a discrete variable, and the density modulation, which
is a continuous variable. This is yet another example of the interesting
physics that comes with the possibility of generating an artificial staggered
magnetic field in an optical lattice.

Potentially interesting questions that were beyond the scope of this
project include taking into account the effects of the long tail of the dipolar
interaction and the effects of finite temperatures on the supersolid phases.
Since our work was exploratory in nature, we have not been able to address
these problems, but they would certainly be relevant for experimental tests
of the predicted phases. Another point left unaddressed here is the full
periodicity in φ of the phase diagram. Fig. 5.1 shows the 2π-periodic nature
of the system, while we have only considered values of φ between 0 and
π/2 in this chapter. Note that since the two staggered-vortex phases are
identical, the system is symmetric under φ → −φ. Thus, we have studied
half of the phase diagram’s entire period. The other half is expected to
feature phases and phenomena similar to those already discussed here, as
can be deduced from the nature of the density and phase distributions
found.



Chapter 6

Incommensurability effects
for strongly interacting
bosons in a 1D optical lattice

Abstract

In this chapter1, we investigate quantum phase transitions occurring in a
system of strongly interacting ultracold bosons in a 1D optical lattice. After
discussing the commensurate-incommensurate transition, we focus on the
phases appearing at incommensurate filling. We find a rich phase diagram,
with superfluid, supersolid and Mott insulator (kink-lattice) phases. Su-
persolids generally appear in theoretical studies of systems with long-range
interactions; our results break this paradigm and show that they may also
emerge in models including only short-range (contact) interactions, pro-
vided that quantum fluctuations are properly taken into account.

1This chapter is based on the publication Strongly interacting bosons in a one-
dimensional optical lattice at incommensurate densities, Phys. Rev. A 84, 023620 (2011)
by A. Lazarides, O. Tieleman, and C. Morais Smith.
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6.1 Introduction

In the previous chapters, we have dealt with 2D systems. Here, we go
one dimension lower, and study a gas of bosonic atoms trapped in a one-
dimensional lattice. In one dimension, a number of interesting effects occur,
related to the fact that the particle statistics (bosonic or fermionic) do not
play as large a role as they do in higher dimensions. One such example is
the Tonks-Girardeau gas, where bosons avoid spatial overlap and acquire
fermionic properties due to strong repulsive interactions. This peculiar
state of matter has been experimentally realized in 1D [99]. On the other
hand, the low-energy behaviour of many fermionic systems is accurately
described by bosonic models, obtained from a procedure called bosonisation
[100].

Recently, a new type of quantum phase transition was observed in 1D
in the very strongly interacting regime: for an arbitrarily weak optical
lattice potential commensurate with the atomic density of the Bose gas, a
quantum phase transition into an insulating, gapped state, was observed,
with the atoms pinned at the lattice minima [62]. Theoretical studies of
1D systems based on the sine-Gordon model indeed predict that above a
critical interaction strength, the superfluid should become a Mott insulator
even for a vanishingly weak optical lattice [64].

The quantum sine-Gordon model has been intensively studied in con-
densed matter and high-energy physics because it is an exactly solvable
quantum field theory, which is able to capture non-linear effects due to the
presence of the cosine term [101]. The experiment in Ref. [62] has then
extended the phase diagram for bosons in one dimension from the Hub-
bard regime, which occurs for weakly interacting atoms, into the strongly
interacting regime of the sine-Gordon model, thus revealing a new class of
quantum phase transitions.

In this chapter, we show that another interesting regime can be reached
if the density is incommensurate with the optical lattice. The system is then
described by the Pokrovsky-Talapov model, which is a driven sine-Gordon
model. In this model, the SF-MI transition may be approached in two
different ways, either by tuning the interaction strength at constant lattice
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depth and commensurate period, as already realized experimentally [62],
or by tuning the density or lattice parameter away from commensurability.
We study the excitations of the system in the incommensurate phase and
show that a supersolid phase may arise. In addition, for sufficiently large
lattice strengths, a MI phase is stabilized even at non-unit filling.

6.1.1 Approach

Our approach to studying this system is as follows: First, following previ-
ous works [63, 64, 62], we formulate the underlying 1D interacting boson
problem in terms of a quantum sine-Gordon field theory, with the deviation
of the number density from commensurate values driving the appearance
of kinks in the field. We then show that a previous result [64], in which a fi-
nite threshold for the commensurate-incommensurate MI-SF transition was
found, is incorrect, and obtain the correct result, Qc = 0. We next study the
incommensurate regime, in which the excess particles appear as kinks of the
sine-Gordon field, having an effective mass and effective interactions differ-
ent from the bare particles. We extract these two parameters exactly from
the underlying field theory and finally apply a functional renormalization
group (RG) approach to the path integral formulation of the many-body
statistical density matrix to obtain the ground state properties of the sys-
tem. The RG transformation shows that quantum fluctuations renormalize
the interactions between the kinks to a power law form, which corresponds
to the Calogero-Sutherland model [102]. This finally allows us to propose
a phase diagram for the incommensurate regime (see Fig. 6.3). When the
lattice potential is strong enough, the system is a MI. However, the MI
phase here is actually a lattice of kinks, and the number of particles per
site is not fixed. At intermediate values of the lattice potential, we predict
the emergence of a supersolid phase. As discussed in chapter 5, supersolid
phases usually occur in model Hamiltonians which include long-range inter-
actions, and have a characteristic wavelength which is an integer multiple
of the lattice spacing [32, 103, 56, 57, 104]. The most striking feature of
the system studied in this chapter is that while the original Hamiltonian
contains only local interactions, the supersolid phase appears due to the
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finite-range nature of the interaction between the excitations. In addition,
the periodicity of the supersolid phase found here is unrelated to that of
the lattice. This makes the appearance of this supersolid phase qualita-
tively different from the situations usually found in the literature, where
the characteristic wavelength of the supersolid is an integer multiple of the
lattice spacing.

6.2 Model

The microscopic description of a trapped gas of cold bosons in 1D with
contact interactions and in the presence of a single-particle potential V (x)
is

H =

∫ ∞
−∞

dx

[
ψ†(x)

(
− ~2

2m
∇2 + V (x)

)
ψ(x)

+
g

2

∫ ∞
−∞

dxψ†(x)ψ†(x)ψ(x)ψ(x)

]
,

(6.1)

where g is the strength of the δ-function interaction, ψ (ψ†) are bosonic
annihilation (creation) operators, and m is the atomic mass. The parameter
characterizing the strength of the interactions is the Lieb-Liniger parameter
γ = mg/~2n0, where n0 is the average density.

Density operator

Below, we will write ψ(x) =
√
n(x) exp(−iθ(x)), with n(x) the density and

θ(x) the (real) phase. Before continuing, let us cast the density operator in
a more pratical form:

ρ(x) =
∑
j

δ(x− xj) =
∑
n

∂xχ(x)δ[χ(x)− 2πn], (6.2)

where the field χ(x) takes the value 2πn at the position of the nth particle
(see Ref. [100] for some details on how to obtain this form). Using the
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Poisson summation formula to express the delta functions yields

ρ(x) =
∂xχ(x)

2π

∑
p

eipχ(x). (6.3)

Now we divide χ by 2 and subtract out its increase due to the average
density:

φ(x) = χ(x)/2− πρ0x. (6.4)

This last step allow us, after only a few more steps of symbol manipulation,
to obtain the following, final form for the density operator [63, 64]:

n(x) =

(
n0 −

1

π
∂xφ(x)

) ∞∑
p=−∞

e2ip[πn0x−φ(x)]. (6.5)

The field χ obeys the boundary condition
∫
dx∂xχ(x) = 2πN , and conse-

quently, φ must obey
∫
dx∂xφ(x) = 0. Eq. (6.5) yields an expression for

the bosonic operators in Eq. (6.1) in terms of the new field φ. The ap-
propriate bosonic commutation relations are satisfied if [∂xφ(x), θ(x′)] =
−iπ~δ(x − x′); that is, θ and ∂xφ/π are canonically conjugate variables.
From Eq. (6.5), it follows that kinks in the φ field correspond to particle-
like excitations: the kinks are where ∂xφ(x) deviates from its average value
of zero. This fact will be of great importance to us later on. In order to
make proper comparisons to earlier work, it is also important to note that
the field φ of Eq. (6.5) is non-compact; that is, it is not a periodic field;
φ+ 2π 6= φ.

Action

In the long-wavelength limit, and in the presence of an optical lattice cre-
ating a single-particle potential V (x) = (V/2) cos(4πx/λ), the system of
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Eq. (6.1) may be described by an action of the form

S[φ] =

∫ β

0
dτ

∫ ∞
−∞

dx
1

8πK

[
(∂xφ)2 + (∂τφ)2

]
+
u

2

∫ β

0
dτ

∫ ∞
−∞

dx cos[φ(x)−Qx],

(6.6)

where we have now set ~ = 1, scaled lengths such that the speed of sound
is unity, and finally scaled φ→ φ/2. Here, β = 1/kBT , u = n0V , while K
is the usual Luttinger liquid parameter. For bosons interacting via contact
potentials, K may be expressed in terms of γ; for large γ, K ≈ (1 + 2/γ)2,
while for smaller interaction strengths γ it is given by K ≈

√
γ − γ3/2/(2π).

We have also only kept the most relevant (least quickly oscillating in space)
terms and written Q = 2π (n0 − 2/λ) as the deviation of the average density
from its commensurate value.

In the zero-temperature, β →∞ limit, Eq. (6.6) is formally equivalent
to the classical Pokrovsky-Talapov model studied in Ref. [105]. It is also
related to previous work on quantum Hall bilayer systems [106, 107, 108,
109, 110], with the important difference that the boundary conditions in
the present case are

∫
dx ∂xφ = 0, while in Refs. [107, 65, 105] (amongst

numerous others), there is no such restriction on φ. This is crucial to the
position of the commensurate-incommensurate transition, and is due to the
fact that we are working at fixed particle number.

Since kinks correspond to excess particles above the commensurate den-
sity (see Fig. 6.1), fixing the particle density must fix the number density
of kinks uniquely. But from its definition, Q is directly proportional to
this excess particle density, so that the kink density must be proportional
to Q itself. This immediately implies that Qc = 0, at least at zero tem-
perature. Mathematically, this is a consequence of the boundary condition
at the edges of the system, which implies that the commensurate phase
cannot exist unless Q = 0. For any Q > 0, a finite kink density appears,
representing the excess particles, which are bosons. Note that, as far as
the effective description of these kinks as particles is concerned, there is no
lattice; the lattice only comes in in the derivation of the effective mass and
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interactions between the kinks.

!xΦ!Π

Figure 6.1: Q > 0; the dashed line is ∂xφ, the solid line is the periodic
potential, and the corresponding particle positions are indicated. Notice
how kinks (indicated by localized deviations from a straight line for ∂xφ)
correspond to particles in excess of the commensurate particle density.

6.3 Kink-kink interactions

By taking into account the effects of quantum fluctuations, we shall now
show that the bosonic particles represented by the kinks in the φ field may
be mapped to a Calogero-Sutherland model (CSM), the various phases of
which have been studied thoroughly. This will allow us to predict the
behaviour of the system for finite Q.

The full analytical expression for the bare interaction between two kinks
in a sine-Gordon model is given in Ref. [66]; its limiting forms are

Vbare(r)→

{
8
πξ exp(−x/ξ), r � ξ

π/(2r), r � ξ.
(6.7)

The effective width of the kinks is ξ = 1/
√

2πKn0V , so that this poten-
tial amounts to an impenetrable core plus a finite-range repulsion. Their
effective mass is [111, 107]

σ =
2Γ(η/2)√

πΓ((η + 1)/2)

πuΓ
(

1
η+1

)
Γ
(

η
η+1

)
1/2(η+1)

(6.8)
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with η = 1/(2K−1−1) and Γ is the Γ function. The mass vanishes whenever
either V → 0 or K → 2, corresponding to a critical γc ≈ 3.5, as observed
experimentally in Ref. [62].

To study the system of interacting kinks, we employ the statistical den-
sity matrix in imaginary time and position representation [112, 113]. This
is given by

ρ(R,R;β) =

∫ ∏
j

Dxj exp(−S[{xn}]/~) (6.9)

where {xn(τ)} denotes the set of positions of the particles at time τ , R =
{r1, r2, . . . , rN} denotes the set of positions of the particles at τ = 0 and
τ = β (see below) while Dxj denotes functional integration over xj ; finally,

S[{xn}] =
1

2

∫
dτ

[
−σ
∑
n

(∂τxn)2 +
∑
n,m

V (xn − xm)

]
. (6.10)

In Eq. (6.10), the integral runs from zero to β and there is an ultravi-
olet cutoff Λτ = 2π/∆τ with ∆τ a discretisation step size [112]. Note
that Eq. (6.9) and Eq. (6.10) describe the ρ appropriate for distinguish-
able particles; for bosonic particles, one symmetrises in the end, so that
ρB(R,R′;β) =

∑
P ρ(R,PR′;β), with P labelling the permutation.

We begin by estimating the temperature dependence of the critical in-
commensurability Qd above which exchange effects become important. The
worldlines of the particles are of length β in the time-like direction, and the
“width” of the path in the space-time direction will be w ∝

√
~2β/σ. If

the average inter-kink distance, proportional to Q−1, is larger than this,
quantum effects are not important; the condition for the statistics to be
important is therefore Q

√
~2β/σ > 1, up to a numerical factor. This de-

fines a critical Qd ∝
√
kBTσ/~2. Below this Qd, the kinks behave like free

bosons; above it, the system is in a degenerate state, and we expect the
effects described below to be evident. Furthermore, since σ vanishes on the
lines V = 0 and K = 2, Qd also vanishes there.
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Figure 6.2: Finite T behaviour of Qd, the deviation of the filling factor from
unity at which the quasiparticles reach degeneracy; this is at an arbitrary
but finite T .

6.3.1 Renormalisation group arguments

Next, we concentrate on the T = 0 or β → ∞ limit, corresponding to
infinitely long strings; in this limit, the degeneracy condition is always
satisfied. We shall employ a renormalization group (RG) technique applied
directly to the density matrix of Eq. (6.9). Details of this will be presented
elsewhere [114]; here, we shall only outline the derivation and describe our
conclusions.

As usual, we split the xi into two parts, one composed of Fourier modes
in a thin shell close to the cutoff, Λτ/b < q < Λτ and the other with
q < Λτ/b, with b = exp(ε) and ε small. It is then possible to extend the
Wegner-Houghton approach [115, 116] to the many-body case, obtaining
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the flow equation for the potential

∂εV = V +
1

2
x∂xV + ~Λτ log

(
1

2
σΛ2

τ + ∂x,xV

)
. (6.11)

The first two terms on the right hand side are obtained by rescaling both
xi and τ so as to restore the cutoff and keep the effective mass constant;
they are therefore independent of the precise RG scheme employed and are
responsible for the functional form of the fixed points. The last term is the
fluctuation correction and fixes the proportionality constant for the fixed
point potentials. Finally, notice that the coarse-graining is done in the τ
direction; thus, information on lengthscales comparable to the kink density
is still present in the fixed point potentials.

The physics of the system is determined by the fixed point potentials
of Eq. (6.11). For bare (initial) potentials that diverge at the origin, these
may be determined numerically; for x� ~/Λτσ, their behaviour is

Vfp =
~2

2σ

λ(λ− 1)

x2
, (6.12)

where we have written the coefficient of x−2 as ~2λ(λ − 1)/2σ in order to
make contact with the conventional notation in the literature (see below).
We are thus dealing with a system of bosons interacting via an inverse
square power law; this is the celebrated Calogero-Sutherland model [102],
the ground-state wavefunction and low-energy spectrum of which are known.
We concentrate here on its ground-state properties, which have been stud-
ied using numerical techniques [117]. The authors of Ref. [117] find (quasi-
)long-range off-diagonal order for 0 < λ < 2, while they find (quasi-)long-
range diagonal order for λ > 1. The system is thus in a condensed, SF state
for 0 < λ < 1, in a SS state, characterised by the simultaneous presence
of diagonal and off-diagonal long-range order for 1 < λ < 2, and in a crys-
talline, MI state characterised by strong diagonal correlations for 2 < λ.
Therefore, the phase in which the system is for incommensurate densities
(Q 6= 0) depends on the range in which the λ corresponding to the potential
in Eq. (6.7) lies.
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6.3.2 Phase diagram

To map out the phase diagram, we note that local analysis of the fixed
point ordinary differential equation, Eq. (6.11) with the left hand side set
to 0, indicates that the fixed point potentials, Vfp, have the property that
∂Vfp/∂σ > 0 (for all x). An increase in σ therefore results in an increase in
λ of Eq. (6.12). In addition, at K = 1 and V = 0 (hard-core free bosons),
λ = 1 [118]. Based on these two pieces of information, and the expression
for σ given in Eq. (6.8), we propose the phase diagram in Fig. 6.3 for
T = 0. Starting from the point K = 1, V = 0, an increase of V causes a
rapid increase of σ, which corresponds to an increase in λ so that λ > 1
which corresponds to SS. As V is further increased, λ reaches the value
λ = 2 at V = Vc,m, at which point phase coherence is lost, the structure
factor displays a sharp peak [117], and the system is in the MI state. This
MI state is unusual in that the filling factor is not an integer; it corresponds
to the kinks forming a lattice, and is not directly related to the underlying
lattice. On the other hand, starting from any point on the K = 1 line
and increasing K corresponds to decreasing σ, thus decreasing λ from its
value at K = 1. As a result, the line Vc,m curves upwards as K increases.
Starting from Vc,0(K = 1) = 0 and increasing K, λ must decrease below
1 so that the diagonal order is suppressed; thus, the line Vc,0 separating
the SF from the SS region also curves upwards. As K → 2, or γ → 3.5,
the effective mass of Eq. (6.8) vanishes for any V ; this results in a rapid
decrease of λ, so that both lines curve upwards sharply.

It is important to note that the presence of the SS phase represents an
order out of disorder effect: quantum fluctuations, which at first sight one
would expect disorder the system, result in a strengthening of the repulsion
which in turn causes the system to order.

Let us briefly discuss the differences between the phases just described
in terms of experimentally accessible quantities. The main distinguishing
features of these phases are the diagonal and off-diagonal correlations [117].
Off-diagonal long-range order may be observed using time-of-flight measure-
ments, which therefore allow to distinguish the SF and SS phase-coherent
phases from the MI phase; in the latter phase correlations drop quickly and
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Figure 6.3: T = 0 phase diagram for a filling factor slightly above unit fill-
ing. SF, SS and S indicate superfluid, supersolid and solid (Mott insulating)
phases, respectively.

the time-of-flight image is smeared. On the other hand, techniques for mea-
suring density variations would distinguish between the SS and MI phases
on one hand and the SF phase on the other; single-site addressability is
possible [119, 120, 121], which may alllow to detect density modulations.

6.4 Conclusions

In summary, we have shown that the incommensurability-induced Mott
insulator-superfluid transition occurs for arbitrarily small incommensura-
bility, in contradiction to an earlier result in the literature [64]. We have
also studied the system of bosonic quasiparticles which appears as soon
as commensurability is lost; calculating the effective interactions between
them, as well as their effective mass, and using an RG transformation, we
have argued that quantum fluctuations drive the interactions to change to
an inverse square form (a Calogero-Sutherland model). Based on known
results for the Calogero-Sutherland model, we propose a phase diagram
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for the current system of strongly interacting bosons in a weak optical lat-
tice, featuring MI, SS, and SF phases. The SS phase is notable because it
emerges from a model with local interactions only, and, like the MI, has a
periodicity unrelated to that of the underlying lattice.

Although the experimental setup of Ref. [62] allows, in principle, to
tune the density and to investigate also the commensurate-incommensurate
quantum phase transition, up to now only the commensurate regime has
been studied. We hope that our work will trigger further experiments into
this fascinating and largely unexplored regime.



Chapter 7

Summary and outlook

This final chapter consists of a brief summary of the research presented
above, and an outlook on future research that it will hopefully inspire.

7.1 Summary

The research described in this thesis concerns current and fascinating top-
ics such as supersolids, spontaneous time-reversal symmetry breaking, and
dynamical control of ultracold atoms in optical lattices.

In chapter 3, we have seen how periodically driving a non-separable
square lattice potential along its diagonal leads to a modification of both
the single-particle spectrum and the Mott insulator-superfluid phase bound-
ary. The minimum of the single-particle spectrum, which determines the
momentum state where the bosons condense, is split up into two inequiva-
lent ones, which migrate from the center to the corner of the Brillouin zone
as the driving parameter is ramped up. The critical interaction strength
for the MI-SF phase transition drops to almost zero, and increases again as
the BEC momentum reaches the corner of the Brillouin zone, following a
trajectory that can be explained by considering how various hopping matrix
elements are renormalised by Bessel functions (cf. [17, 19]).

In chapter 4, a kinetically frustrated single-species Fermi gas with long-
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range interactions in a triangular lattice was shown to spontaneously break
both time-reversal and translational symmetry, under suitable conditions
specified by filling factor, temperature, and nearest-neighbour interaction
strength. An extensive study of the mean-field free energy revealed the
physical mechanisms responsible for breaking the various symmetries, as
well as the interactions between these mechanisms. For low densities, a
phase was discovered where the system features staggered currents run-
ning around the elementary plaquettes of the lattice, analogous to a recent
bosonic result [14, 10]. At filling factors around 1/4, the system develops a
density wave. For sufficiently strong interactions, the density wave is com-
plemented by a pattern of currents that is confined to the low-density sites
(different from the staggered currents at low densities), thus leading to a
combined time-reversal and translational symmetry-broken phase. Exact
diagonalisation studies were found to corroborate the mean-field results.

In chapter 5, a mean-field study of a bosonic lattice model with nearest-
neighbour interactions and a staggered gauge field revealed a variety of
phases, including a supersolid, a staggered-vortex superfluid, and a staggered-
vortex supersolid. By adjusting the Bogolyubov approximation to a translational-
symmetry-broken state with a four-site unit cell, we found that the phase
distribution around the elementary plaquette was influenced by the density
modulation; in other words, the currents induced by the staggered gauge
field respond to the local density as well. Predictions for time-of-flight ex-
periments were included, indicating signature momentum distributions for
the various predicted phases.

In chapter 6, we have seen how, in a 1D Bose gas with strong local
interactions, incommensurability between the lattice potential and parti-
cle density immediately induces the transition from a Mott insulator to a
superfluid, and can lead to translational symmetry-broken phase even in
spite of the absence of long-range interactions in the original Hamiltonian.
Without special features in the interactions that favour breaking the lattice
symmetry, a density wave and even a supersolid phase nonetheless emerge,
whose periodicities are unrelated to that of the underlying lattice. The
physical mechanism behind this unexpected result is the effective interac-
tion between the quasiparticles that are automatically present in the model
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if the density is incommensurate with the lattice. Renormalisation group
arguments show that quantum fluctuations lead to a long-range quasipar-
ticle interaction proportional to the inverse distance squared, revealing the
well-known Calogero-Sutherland model (CSM) as an effective description of
the quasiparticle system. Known results for the CSM allowed us to propose
a phase diagram for the original system of a strongly, but locally interacting
bosonic gas in a weak optical lattice.

The four above-mentioned research projects, although each within the
general topic of ultracold atomic gases in optical lattices with long-range in-
teractions and/or periodic driving, are a relatively diverse collective. They
combine bosonic and fermionic gases, weak and strong interactions, per-
turbative and mean-field approximations, effective field theories and exact
diagonalisations. The main overall conclusion is that long-range interac-
tions and high-frequency periodic driving lead to a very diverse range of
fascinating phenomena in ultracold lattice gases.

7.2 Outlook

The research presented in chapters 3-6 will hopefully stimulate both ex-
perimental and theoretical research on the systems that were proposed to
realise these phases. A variety of follow-up questions arises regarding the
quantum phases and phase transitions discovered, some of which we will
briefly sketch here.

An example of an experimental follow-up research project would be
an experimental test of the predicted phases in the kinetically frustrated
triangular lattice (chapter 4). The technically most accessible route would
be to impose a triangular lattice (which has been generated, see e.g. [9, 10] -
the shaking in Ref. [10] is not even required) on a dipolar fermionic gas, such
as the one realised in Ref. [122], with a filling factor just below unity. In
such a set-up, the holes experiece kinetic frustration, and inherit the long-
range interactions from the fermionic particles. Given the pace at which
these areas of research develop, such an experiment is certainly conceivable
in the relatively near future.
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Another prediction that would merit testing is the supersolid phase in
the 1D strongly interacting incommensurable Bose gas in a weak optical
lattice. Experiments on strongly interacting 1D Bose gases have been per-
formed at commensurability (see Ref. [62]), implying that the same set-up
could be used to test the density-wave predictions. In a recent publica-
tion, a high degree of control over the filling factors has been demonstrated
(see Ref. [123]), bringing the possibility to test a commensurability-driven
transition within experimental reach.

Apart from experimental follow-up research, numerous avenues for the-
oretical investigation also present themselves. One particularly interesting
direction is suggested by the observation that many of the effects discussed
in this thesis occur in regimes characterised by weak interactions, leav-
ing the fascinating physics of strongly correlated systems unexplored. The
project presented in chapter 5 has already been followed up elsewhere with
an investigation into the strongly-interacting regime [124]. Investigating
the hard-core limit of the model presented in chapter 3 is likely to reveal
fascinating frustrated spin models. Starting from the results of chapter 4,
further research on fermions in shaken lattices is expected to be a very
fertile area, as exemplified by Ref. [16]. The effects of periodic driving on
the system described in chapter 6 constitute another area of research with
potentially very interesting results.

The specific projects mentioned above are only examples, and by no
means a complete overview of the follow-up questions that could be ad-
dressed. We may conclude that the research in this thesis provides many
starting points for interesting new projects.



Appendix A

Calculational details for
kinetically frustrated
spinless fermions

A.1 Density wave

Returning to Eq. (4.37), the quantities to be investigated are the averages

〈c†k±Qck〉 where Q is one of the three nesting vectors defined in section
4.3.1. Those vectors vectors happen to satisfy the condition that 2Qj is
always a reciprocal lattice vector, such that Qj = −Qj under reciprocal

lattice symmetry. Hence, the two ω±Qk -terms from Eq. (4.37) are in fact
equivalent, and we only obtain one.

Order parameter

Defining

ρaQj
=
∑

k∈BZ1

〈
c†k+Qj

ck

〉
eik·a, (A.1)
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and formulating the order parameter equation (4.38) in momentum space,
we find

ρj =
∑

k∈BZ1

〈
c†k+Qj

ck

〉
= ρ0

Qj
, (A.2)

and similarly, the total density N = ρ0
0, and the current Jj = 2 Im ρ

aj
0 . For

later use, we define

Jj,l = 2Jj Im ρ
ej
Ql

(A.3a)

Dj,l = 2Jj Re ρ
ej
Ql

(A.3b)

A.1.1 Mean-field Hamiltonian

The mean-field Hamiltonian is given by

HMF =
∑
k

ξkc
†
kck

+
∑
k,p,q

V (k)
(〈
c†pcp+k

〉
c†qcq−k +

〈
c†qcq−k

〉
c†pcp+k

−
〈
c†pcq−k

〉
c†qcp+k −

〈
c†qcp+k

〉
c†pcq−k

−
〈
c†pcp+k

〉〈
c†qcq−k

〉
+
〈
c†pcq−k

〉〈
c†qcp+k

〉)
(A.4)

(the subscript MF will be omitted from here on, since the entire calculation
takes place within the mean-field approximation). Inserting Eq. (4.37) and
investigating the term for Qj = Q yields∑

k,p,q

V (k)
(
δ−k,Qn

Q
p+kc

†
qcq−k + δk,Qn

Q
q−kc

†
pcp+k

− δp−q+k,Qn
Q
q−kc

†
qcp+k − δq−p−k,QnQp+kc

†
pcq−k

)
= 2

∑
k,p

[
V (Q)nQp−Q − V (Q− p + k)nQp−Q

]
c†kck+Q

= − 2
∑
k,p

[
V (k− p−Q)− V (Q)

]
nQp c

†
k−Qck =

∑
k

ωQ
k c
†
k−Qck,

(A.5)
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where

ω
Qj

k = 2V (Qj)
∑

p∈BZ1

〈
c†p+Qj

cp

〉
− 2

∑
p∈BZ1

V (k− p + Q)
〈
c†p+Qj

cp

〉
.

(A.6)

With the help of Eq. (A.1), we can rewrite ω
Qj

k as

ω
Qj

k = 2V (Qj)ρ
0
Qj
− U

∑
l

(
ρelQj

e−i(k−Qj)·el + ρ−elQj
ei(k−Qj)·el

)
, (A.7)

where a are the displacement vectors. Let us, for later use, cast it in terms
of ρj and the six other parameters defined in Eq. (A.3):

ω
Qj

k = 2V (Qj)ρj − U
∑
l

(
ρ
ej
Qj
e−i(k−Qj)·el + ρ−alQj

ei(k−Qj)·el
)

= 2V (Qj)ρj − U
∑
l

[
(Dj,l + iJj,l)e−i(k−Qj)·el

+ (Dj,l − iJj,lei(k−2Q)j ·el
]

= 2V (Qj)ρj − U
∑
l

[
Dj,l

(
e−ik·eleiQj ·el + eik·el

)
+ iJj,l

(
e−ik·eleiQj ·el − eik·el

)]
.

(A.8)

We have already made use of the fact that 2Q · a = 0 under the reciprocal
lattice symmetry for any of the nesting vectors Q and any nn (or other)
lattice vector a. However, we also know that for Q ‖ a, the inner product
Q · a = 0, and that in the other two cases, Q · a = π.

ω
Qj

k = 2V (Qj)ρj − 2U
[
Dj,j cos(k · ej) + Jj,j sin(k · ej)

]
− 2iU

∑
l 6=j

[
Dj,l sin(k · el)− Jj,l cos(k · el)

]
.

(A.9)
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The total mean-field Hamiltonian can now be cast into the form

H =
∑
k

[
ωkc

†
kck +

∑
j

(
ω
Qj

k c†k−Qj
ck + ω

−Qj

k c†k+Qj
ck

)]
+ constant

=
∑
k

[
ωkn̂k +

∑
j

(
ω
Qj

k n̂
−Qj

k + ω
−Qj

k n̂
Qj

k

)]
+ constant. (A.10)

Although the last line shows a physically intuitive form for the Hamiltonian,
it is not diagonal, which we need to calculate the free energy corresponding
to this mean-field approximation, given by

F = − 1

β
lnZ. (A.11)

The constant term in H shows up unchanged in the free energy, but to
calculate the contribution from the parts that are quadratic in the c(†)-
operators, we need the eigenstates of the Hamiltonian. First, let us rewrite
the constant term:

C =
∑
k,p,q

V (k)
(
−
〈
c†pcp+k

〉〈
c†qcq−k

〉
+
〈
c†pcq−k

〉〈
c†qcp+k

〉)
(A.12)

= −N2V (0)−
∑
j

ρ2
jV (Qj) +

U

4

∑
j

[
J 2
j +D2

j +
∑
l

(
J 2
j,l +D2

j,l

)]
.

A.1.2 Partition function / Green’s function method

Now we turn to diagonalising the mean-field Hamiltonian from Eq. (A.10).
One approach would be to write it in matrix form such that all terms
related to each other by a momentum shift of one of the Qj are in the
same matrix. This results in a 4 × 4-matrix, of which the eigenvalues
are unfortunately not easily obtainable in tractable form by analytical cal-
culations. To get around this problem, we will use perturbation theory,
treating the DW-related terms in the Hamiltonian as a perturbation. To
take the temperature dependence of the free energy into account, we will
use the imaginary-time formalism. We will base the following derivations
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on Ref. [125]; the formalism can also be found in most other textbooks on
statistical field theory.

Green’s function method

We start by a Legendre transform from Hamiltonian to action, replacing the
operators ck by Grassmann fields φk(τ) that depend on imaginary time τ .
For the details and the reasoning that leads to this point, see e.g. Ref. [125],
chapter 7. The action obtained this way from the mean-field Hamiltonian
in Eq. (A.10) reads:

S[φ, φ∗] =

∫ ~β

0
dτ

∑
k∈BZ1

[
φ∗k(τ)

(
∂

∂τ
+ ωk

)
φk(τ) +

∑
j

ω
Qj

k φ∗k(τ)φk+Qj
(τ)

]
+ ~βC. (A.13)

Next, we perform a Fourier transform with respect to imaginary time τ ,

φ(τ) =
1√
~β

∞∑
n=−∞

φ̃ne
−iωnτ , (A.14a)

ωn = 2π(2n+ 1)/~β, (A.14b)

S[φ, φ∗] =
∑
k,n

[
φ∗k,n(−i~ωn + ωk)φk,n +

∑
j

ω
Qj

k φ∗k,nφk+Qj ,n

]
+ ~βC

=S0[φ, φ∗] + SW [φ, φ∗] + ~βC, (A.14c)

after the partition function reads

Z =

∫
DφDφ∗ e−S[φ,φ∗]/~ =

∫
DφDφ∗ e−S0[φ,φ∗]/~e−SW [φ,φ∗]/~e−βC .

(A.15)

We can write the spatially homogeneous part as follows:

Z0 =

∫
DφDφ∗ exp

{
−1

~
∑
k,k′

∑
n,n′

φ∗k,nG
−1
k,k′,n,n′φk′,n′

}
, (A.16)
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where G is a diagonal matrix in both Matsubara frequency space and mo-
mentum space, mathematically speaking a Green’s function:

(−i~ωn + ωk)Gk,k′,n,n′ = −~δk,k′δn,n′ . (A.17)

In the quadratic and diagonal case, it is rather easy to find the expression
for G: we simply have to multiply the required Kronecker deltas with the
appropriate coefficient:

Gk,k′,n,n′ = Gk,nδk,k′δn,n′ =
−~

−i~ωn + ωk
δk,k′δn,n′ . (A.18)

Inserting this last identity into the equation for Z0 above does indeed give
the result we expected; all of this is rather trivial. The point is that now,
we have the whole problem formulated in terms of fields, path integrals,
and Green’s functions.

Spatially homogeneous part

Now, let us first consider what this means for the staggered currents. Set-

ting ω
Qj

k = 0, we also have SW = 0, and the free energy yields:

F = − 1

β
lnZ0 + C = − 1

β
ln

∫
DφDφ∗ e−S0[φ,φ∗]/~ + C

=
∑

k∈BZ1

ln(1 + e−βωk) + C.
(A.19)

We had found this before, so performing the Ginzburg-Landau expansion
in the order parameters for the time-reversal symmetry breaking phase
transition will not yield any different results from what we already had.

Perturbation theory

Now for the density wave. Instead of setting SW = 0 in Eq. (A.15), we
treat it perturbatively by expanding the exponential:

Z = e−βC
∫
DφDφ∗ e−S0[φ,φ∗]/~

∞∑
n=0

(−SW )n

~nn!
. (A.20)
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This identity for the partition function can be rewritten as

Z = e−βCZ0

∞∑
n=0

(−1)n 〈SnW 〉0
~nn!

. (A.21)

Now we can apply Wick’s theorem to calculate the averages. We will go up
to fourth order (i.e. to n = 4 in Eq. (A.21)), because we are interested in
terms of up to order four for the Ginzburg-Landau expansion. For 〈SW 〉0,
we find

〈SW 〉0 =
∑
j

∑
k,n

ω
Qj

k

〈
φ∗k,nφk+Qj ,n

〉
=
∑
j

∑
k,n

ω
Qj

k Gk,k+Qj ,n,n = 0
(A.22)

since Gk,k′,n,n′ ∝ δk,k′δn,n′ as can be seen in Eq. (A.18). (See Ref. [125],
chapter 8 for the details of how to evaluate the quadratic average.) For the
second-order term, we find〈

S2
W

〉
0

=
∑
j,j′

∑
k,n

∑
k′,n′

ω
Qj

k ω
Qj′

k′

〈
φ∗k,nφk+Qj ,nφ

∗
k′,n′φk′+Q′j ,n

′

〉
0

= −
∑
j,j′

∑
k,n

∑
k′,n′

ω
Qj

k ω
Qj′

k′

〈
φ∗k,nφk′+Q′j ,n

′

〉
0

〈
φ∗k′,n′φk+Qj ,n

〉
0

= −
∑
j,k

ω
Qj

k ω
Qj

k+Qj

∑
n

Gk,nGk+Qj ,n (A.23)

= −
∑
j,k

|ωQj

k |
2∆k,j ,

where we have defined

∆k,j =
∑
n

Gk,nGk+Qj ,n =
tanh(βωk+Qj

/2)− tanh(βωk/2)

ωk − ωk+Qj

. (A.24)

In the first step, we have omitted terms that would yield zero by virtue of
the result for 〈SW 〉0, while in the last step, we made use of the fact that
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(ωQ
k )∗ = ωQ

k+Q. For the third-order term, we find

〈
S3
W

〉
0

=
∑
j,j′,j′′

∑
k,n

∑
k′,n′

∑
k′′,n′′

ω
Qj

k ω
Qj′

k′ ω
Qj′′

k′′ ×

×
〈
φ∗k,nφk+Qj ,nφ

∗
k′,n′φk′+Q′j ,n

′φ∗k′′,n′′φk′′+Q′′j ,n
′′

〉
0

=
∑
j,j′,j′′

∑
k,n

∑
k′,n′

∑
k′′,n′′

ω
Qj

k ω
Qj′

k′ ω
Qj′′

k′′ ×

×
(
Gk,k′+Q′,n,n′Gk′,k′′+Q′′,n′,n′′Gk′′,k+Q,n′′,n

+Gk,k′′+Q′′,n,n′′Gk′′,k′+Q′,n′′,n′Gk′,k+Q,n′,n

)
= 2

∑
j 6=k 6=l

∑
k,n

ω
Qj

k ωQk
k+Qj

ωQl
k+Qk

Gk+Qj ,nGk+Ql,nGk+Qk,n

= 12
∑
k

ωQ1

k ωQ2

k+Q1
ωQ3

k+Q2
Ξk,

(A.25)

where we have again omitted terms that would yield zero after the first
step, and analytically performed the sum over the Matsubara frequencies:

Ξk =
∑
n

Gk+Qj ,nGk+Ql,nGk+Qk,n

= 3
− tanh(βωk/2)

(ωk − ωk+Qj
)(ωk − ωk+Ql

)
.

(A.26)

A.1.3 Expansion of F

We can now perform a Ginzburg-Landau expansion of the free energy in
the order parameters. Since ρj is real, only the real part of ωQ

k turns out
to matter for the second-order terms. Furthermore, we note that ∆k =
∆−k, and that hence, only the even part of ( ReωQ

k )2 survives. Consulting
Eq. (A.9), we find that only Dj,j couples to ρj . Hence, to second order, the
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GL expansion takes the form

F ≈F0 +
∑
j

[
ρj Dj

] [ αρDW γDW

γDW αDDW

] [
ρj
D̃j

]
+ Γρρ1ρ2ρ3 + other 3rd and higher order terms.

(A.27)

The quadratic terms have contributions from both the perturbations and
the constant C:

αρDW = − V (Qj)

[
1− 2V (Qj)

∑
k

tanh(βωk+Qj
/2)− tanh(βωk/2)

ωk − ωk+Qj

]

αDDW = − U
[
1− 2U

∑
k

cos2(k · ej)
tanh(βωk+Qj

/2)− tanh(βωk/2)

ωk − ωk+Qj

]
(A.28)

Since C only has terms quadratic in ρj , it does not contribute to any of the
higher-order terms in the GL expansion. For the trilinear term, we find

Γρ = 12V (Q1)V (Q2)V (Q3)
∑
k

− tanh(βωk/2)

(ωk − ωk+Qj
)(ωk − ωk+Ql

)
. (A.29)

The other third-order terms feature between one and three cosines multi-
plying the summand of Γρ, and are all significantly smaller than Γρ itself.

A.1.4 Interaction between SC and DW

We know that all terms of first order in one of the order parameters vanish
(except for the three-way interaction term between the three DWs), so the
first term of interest is the one that is of second order in both the SC and
DW order parameters. This is obtained by expanding the second-order DW
term in terms of J . The first derivative gives:

∂αDW

∂Jl
= 2V 2(Qj)

∑
k

∂

∂Jl
tanh(βωk+Qj

/2)− tanh(βωk/2)

ωk − ωk−Qj

, (A.30)
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which vanishes at J = 0. Let us consider the second derivative:

∂2αjDW

∂J 2
j

=V 2(Qj)
(Uβ)2 sin2(k · ej)
ωk − ωk+Qj

(
xk+Qj

y2
k+Qj

− xk
y2
k

)
∂2αjDW

∂J 2
l

=V 2(Qj)
(Uβ)2 sin2(k · el)
ωk − ωk+Qj

(
xk+Qj

y2
k+Qj

− xk
y2
k

)
− 4V 2(Qj)

βU2 sin2(k · el)
(ωk − ωk+Qj

)2

(
1

y2
k

+
1

y2
k+Qj

)
+ 8V 2(Qj)

U2 sin2(k · el)
(ωk − ωk+Qj

)3
(xk − xk+Qj

),

(A.31)

where

xk = tanh(βωk/2)

yk = cosh(βωk/2).
(A.32)

The combined effect of these terms is a repulsion between the density wave
and the staggered currents. Taking into account the term quadratic in both
Dj,j and Jj/l does not change the nature of this interaction.

A.2 Modulated currents

To calculate the phase boundaries of the modulated currents, we go back

to the evaluation of ω
Qj

k , and consider the parameters Jj,l. Writing out the

whole |ωQj

k |
2-term, we obtain∑

k

|ωQj

k |
2∆k =

∑
n,n′

V T
n (Aj)nn′Vn′ , (A.33)

where

V T =
[
ρj Dj,j Dj,j′ Dj,j′′ Jj,j Jj,j′ Jj,j′′

]
(A.34)
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and Aj is a 7× 7 matrix, which due to the considerations above takes the
form

Aj =



αρρ α j
ρD α j

ρJ
αjDρ αjjDD αjjDJ

αj
′j′

DD αj
′j′′

DD αj
′j′

DJ αj
′j′′

DJ
αj
′′j′

DD αj
′′j′′

DD αj
′j′′

DJ αj
′′j′′

DJ
αjJ ρ αjjJD αjjJJ

αj
′j′

JD αj
′′j′

JD αj
′j′

JJ αj
′j′′

JJ
αj
′′j′

JD αj
′′j′′

JD αj
′′j′

JJ αj
′′j′′

JJ


. (A.35)

This matrix is real and symmetric. Further symmetry considerations allow
us to reduce the number of different matrix elements to 12:

α j
ρJ =αjJ ρ; α j

ρD = αjDρ; αjjJD = αjjDJ ;

αj
′j′

JJ =αj
′′j′′

JJ ; αj
′j′

DD = αj
′′j′′

DD ; αj
′j′

JD = αj
′j′

DJ = αj
′′j′′

JD = αj
′′j′′

DJ ;

αj
′j′′

JD =αj
′j′′

DJ ; αj
′′j′
·· = αj

′j′′
·· .

(A.36)

We have the following identities for the matrix elements of Aj :

αρρ = − [2V (Q)]2
∑
k

∆k

αjρJ = 2V (Q)U
∑
k

sin(k · ej)∆k; αjρD = 2V (Q)U
∑
k

cos(k · ej)∆k

αjjJJ = − 4U2
∑
k

sin2(k · ej)∆k; αjjDD = −4U2
∑
k

cos2(k · ej)∆k

αjjJD = − 4U2
∑
k

sin(k · ej) cos(k · ej)∆k (A.37)

αj
′j′

JJ = − 4U2
∑
k

sin2(k · ej′)∆k; αj
′j′

DD = −4U2
∑
k

cos2(k · ej′)∆k

αj
′j′

JD = − 4U2
∑
k

sin(k · ej′) cos(k · ej′)∆k
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αj
′j′′

JJ = − 4U2
∑
k

sin(k · ej′) sin(k · ej′′)∆k

αj
′j′′

DD = − 4U2
∑
k

cos(k · ej′) cos(k · ej′′)∆k

αj
′j′′

JD = − 4U2
∑
k

sin(k · ej′) cos(k · ej′′)∆k.

Observing that ∆k = ∆−k, we can eliminate more coefficients: the matrix
is given by

Aj =



αρρ α 1
ρD

α1
Dρ αjjDD

αj
′j′

DD αj
′j′′

DD

αj
′′j′

DD αj
′′j′′

DD

αjjJJ
αj
′j′

JJ αj
′j′′

JJ
αj
′′j′

JJ αj
′′j′′

JJ


(A.38)

Clearly, the currents along the modulation direction appear by themselves.
The self-energy terms Dj,j′ and Dj,j′′ only couple to each other and are
hence irrelevant at second order. The self-energy term Dj,j is relevant for
the static density wave, as discussed in the previous section. Finally, the
currents that are not parallel to the modulation direction couple to each
other, and will always appear in equal magnitude.

A.3 Exact diagonalisations

A.3.1 State labelling

On a lattice of M sites, with n particles, there are MCn different Fock
states, each corresponding to n out of the M sites being occupied. If the
particle number were not fixed, one could just treat the list of occupation
numbers as an M -digit binary number. For a fixed number of particles,
however, the number of states can be much lower than 2M . One way to
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number these states would be to sort them by occupied sites, such that the
state with the first n sites occupied gets label 1, the state with the first n−1
sites and site n+ 1 occupied gets label 2, etc. This way, the first M−1Cn−1

states all have site 1 occupied, and the first M−2Cn−2 states all have sites 1
and 2 occupied, etc. To obtain a state number from a configuration (a list
of occupation numbers), one has to start by numbering all sites, in principle
in an arbitrary way. We choose the numbering strategy depicted in fig. A.1,
where we start with the leftmost site of the lowest row, move through the
row to the right, move one row up, etc. Our basis states can therefore be
represented as vectors, with one component for every site. Now there still is
a choice to be made concerning relative signs of different states; we resolve
this by ordering the creation operators by site number. A 3-particle, 8-site
state where the 1st, 4th, and 6th sites are occupied is then defined as

|1, 0, 0, 1, 0, 1, 0, 0〉 = c†6c
†
4c
†
1 |vac〉 , (A.39a)

while

c†4c
†
6c
†
1 |vac〉 = − |1, 0, 0, 1, 0, 1, 0, 0〉 (A.39b)

due to the fermionic anticommutation relation. Having numbered the sites,
one has to go through the following algorithm: Start with n at the total
number of particles, and m at 1. Then,

• for i = [1:M ]

– if site i is empty, m→ m+M−i Cn−1

– if site i is occupied, n→ n− 1

– if n = 0, stop

In this algorithm, there are two counters: n runs through all particles, and
i through all sites. If the first site is empty, the state is not one of the
first M−1Cn−1, so the state number m is increased by M−1Cn−1, and the
problem is reduced to finding the number of a n-particle state on M − 1
sites. If the first site is occupied, the state is one of the first M−1Cn−1,
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and the question becomes finding the number of a (n− 1)-particle state on
M − 1 sites. Thus, going through all sites, one ends up with the number of
the state.

To obtain a configuration from a state number, start with n at 1 and
m at the state number, and go through the following algorithm:

• for i = [1:M ]

– if m >M−i Cn−1, i is empty, m→ m−M−i Cn−1

– if m ≤M−i Cn−1, i is occupied, n→ n− 1

Here, per site, the algorithm checks if the number is higher than all states
that have that site occupied. If it is, the site is labelled empty, and the
problem is reduced to finding the remainder of the state, by subtracting

M−iCn−1 from the state number. If the state number is not higher than all
states that have that site occupied, the site is labelled occupied, and n, the
number of particles that still have to be located, is reduced by 1.

Figure A.1: Left: the 3-particle state with label 2 on a 4× 2 lattice; green
circled sites are occupied. Right: the 3-particle state with label 13 on the
same lattice. The numbering of the sites is indicated in the figure.

A.3.2 Code structure

The following functions are used:

• label2state: takes a state label, system size (total number of sites),
and particle number, and returns occupation vector
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• state2label: inverts the above operation

• Hmatrix int: generates the interaction term in the Hamiltonian

• Hmatrix hop: generates a hopping term, depending on the hopping
direction supplied

• int occ: calculates number of occupied sites between two given sites
(see numbering strategy, fig. A.1) - required to determine fermionic
minus signs

Hmatrix int has an easy task: it only contributes to the diagonal of the
full Hamiltonian. It runs over all states and calculates the interaction
energy associated with each state (using label2state). Hmatrix hop runs
over all states, for each state (using label2state) over all sites, checks if
the site is occupied, if so checks if the adjacent site in the hopping direc-
tion is empty, and if that is the case too, calculates the label of the new
state (with state2label) and the sign of the matrix element (with int occ).
The sign is determined with the help of the ordering convention chosen in
Eq. (A.39): for example, the matrix element linking the 8-site, 3-particle
state |1, 0, 0, 1, 0, 1, 0, 0〉 (label 13, fig. A.1, right panel) to |1, 1, 0, 1, 0, 0, 0, 0〉
(label 2, fig. A.1, left panel) is given by

〈1, 0, 0, 1, 0, 1, 0, 0| J3c
†
6c2 |1, 1, 0, 1, 0, 0, 0, 0〉

= J3 〈vac| c1c4c6c
†
6c2c

†
4c
†
2c
†
1 |vac〉

= − J3 〈vac| c1c4c
†
4c2c

†
2c
†
1 |vac〉 = −J3.

(A.40)

It turns out that the sign of the matrix element is determined by the parity
of the number of occupied sites between the two sites connected by the
hopping term. In the above example, there is one occupied site between
sites 1 and 6 (namely site 4), and therefore the sign is (−1)1 = −1.

The total hopping Hamiltonian is generated by three calls of Hma-
trix hop, one for each principal lattice direction, and then adding these
to their transposes. The full Hamiltonian is a sparse matrix, calculated
by adding the result of Hmatrix int, multiplied by the relevant interaction
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strength, to the total hopping Hamiltonian. This full Hamiltonian is then
fed to eigs, the Matlab implementation of the Lanczös algorithm.

Check

The code has been checked for systems where the full Hamiltonian is easy
to obtain by hand: small systems, and larger non-interacting ones. First,
whether the Hamiltonian that is generated is indeed as it should be. Second,
whether the eigenstates corresponding to those Hamiltonians are indeed as
they should be: their decomposition in configuration-space Fock states,
their energies (which, in the non-interacting case, can be calculated easily
in momentum space). All checks returned satisfactory results.

A.3.3 Small-system states with absolute minimal energy

In a system of 2 particles on a 4× 2 lattice with periodic boundary condi-
tions, there are 8 real-space basis states that completely avoid interaction
energy. They are listed in table A.1.

|2〉 = |1, 0, 1, 0, 0, 0, 0, 0〉 |9〉 = |0, 1, 0, 1, 0, 0, 0, 0〉
|6〉 = |1, 0, 0, 0, 0, 0, 1, 0〉 |13〉 = |0, 1, 0, 0, 0, 0, 0, 1〉
|15〉 = |0, 0, 1, 0, 1, 0, 0, 0〉 |20〉 = |0, 0, 0, 1, 0, 1, 0, 0〉
|24〉 = |0, 0, 0, 0, 1, 0, 1, 0〉 |27〉 = |0, 0, 0, 0, 0, 1, 0, 1〉

Table A.1: The 8 2-particle states in a 4×2 lattice with periodic boundary
conditions that avoid all interaction energy, expressed in the real-space basis
introduced in section A.3.1.

It turns out that the states |2〉−|6〉+|15〉+|24〉 and |9〉−|13〉+|20〉+|27〉,
which are both completely built up out of states that have zero interaction
energy, also minimise the kinetic terms. The fact that states with higher
kinetic energy are not mixed into these states even at finite interactions
originates in the degeneracy of lowest-energy kinetic eigenstates, as well as
the fact that all of those states lie on the Fermi surface, as shown in fig. A.2.
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Figure A.2: The allowed quasimomenta and the bowtie-shaped Fermi sur-
face for the 4× 2 lattice.
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[31] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet,
A. Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger,
Phys. Rev. Lett. 108, 225304 (2012).

[32] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, Rep.
Prog. Phys. 72, 126401 (2009).

[33] C. Trefzger, C. Menotti, B. Capogrosso-Sansone, and M. Lewenstein,
J. Phys. B 44, 193001 (2011).

[34] M. Lu, N.Q. Burdick, and B.L. Lev, arXiv:1202:4444.

[35] K. K. Ni, S. Ospelkaus, D. Wang, G. Quemener, B. Neyenhuis,
M. H. G. de Miranda, J. L. Bohn, J. Ye, and D. S. Jin, Nature
464, 13241328 (2010).

[36] T. Pohl, H.R. Sadeghpour, and P. Schmelcher, Phys. Rep. 484, 181
(2009).



BIBLIOGRAPHY 167

[37] A. Eckardt and M. Lewenstein, Phys. Rev. A 82, 011606(R) (2010).

[38] M.J. Bijlsma, B.A. Heringa, and H.T.C. Stoof, Phys. Rev. A 61,
053601 (2000).

[39] Lih-King Lim, A. Lazarides, A. Hemmerich, and C. Morais Smith,
Phys. Rev. A 82, 013616 (2010).

[40] A. Lazarides, O. Tieleman, and C. Morais Smith, Phys. Rev. A 84,
023620 (2011).
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[49] S. Müller, J. Billy, E.A.L. Henn, H. Kadau, A. Griesmaier, M. Jona-
Lasinio, L. Santos, and T. Pfau, Phys. Rev. A 84, 053601 (2011).
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