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A B S T R A C T

Communication via air routes is an important issue in a world organized around a web-like
city network. In this context, the robustness of network infrastructures, e. g. air transport
networks, are a central issue in transport geography. Disruption of communication links
by intentional causes (e. g., terrorist attack on an airport) or unintentional (e. g., weather
inclemency) could be a serious drawback for countries, regions and airlines. Policymakers
and the management of airlines and alliances should be able to reduce the effects of such
interruptions in order to ensure good communication through air transport (i. e., maximize
the robustness of their network at a reasonable cost). The literature review of the study
of air transport route networks through an analysis of complex networks has highlighted
a lack of contributions to the study of the topology and the robustness of such networks,
which contrasts with advances undertaken for other transport networks or communica-
tion systems. The literature survey suggests areas in which research should be undertaken,
based on the existing literature in other areas and from three different perspectives: global
route networks, airline alliances and airlines. The aim of this research is to develop a better
understanding of air traffic and, in particular, to be able to assess the potential damage of
any airport being inoperative for a continent, country or airline.

This thesis analyzes the topology and robustness of 3 proposed levels of study character-
ized by different units of analysis: global route networks, airline alliances route network and air-
lines route network. The different levels do not only represent different network magnitudes
in number of nodes (airports) and links (routes), but also represent different approaches. In
Chapter 2 robustness of the global air transport network (L1) will be analyzed and criteria
based on Bonacich power centrality will be presented in order to assess attack vulnerability
of complex networks. One of the outcomes of this study will be a list of the most critical
airports for the vulnerability of the entire air transport network. In Chapter 3 robustness
of alliances route network (L2) will be assessed comparing the robustness of the three ma-
jor airline alliances (Star Alliance, oneworld and SkyTeam). To perform this analysis, one
new node selection criterion based on the efficiency of networks and one new method of
assessing vulnerability will be presented. This analysis will lead also to a comparison of
the robustness of the three alliances. Finally, in Chapter 4 robustness of 10 FSCs and 3
LCCs route network (L2) will be analyzed. The studied FSCs belong to the different airline
alliances showed in Chapter 3 thus allowing the comparison among levels. This chapter out-
lines a comparison of the differences in robustness between FSCs and LCCs. In Chapter 5 a
summary and discussion of conclusions obtained for each level will be carried out.
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Part I

I N T R O D U C T I O N

Communication via air routes is an important issue in a world organized around
a web-like city network. In this context, the robustness of network infrastruc-
tures, e. g. air transport networks, are a central issue in transport geography.
Disruption of communication links by intentional causes (e. g., terrorist attack
on an airport) or unintentional (e. g., weather inclemency) could be a serious for
countries, regions and airlines. Policymakers and the management of airlines
and alliances should be able to reduce the effects of such interruptions in order
to ensure good communication through air transport (i. e., maximize the robust-
ness of their network at a reasonable cost). The literature review of the study of
air transport route networks through an analysis of complex networks has high-
lighted a lack of contributions to the study of the topology and the robustness
of such networks which, contrasts with advances undertaken for other trans-
port networks or communication systems. This survey suggests areas in which
research should be undertaken, based on the existing literature in other areas
and from three different perspectives: global route networks, airline alliances
and airlines in order to develop a better understanding of air traffic and, there-
fore, to be able to assess the potential damage of any airport being inoperative
for a continent, country or airline.





1A I R T R A N S P O RT N E T W O R K S

Air transport is one of the many networked systems that human societies depend upon, as
they do on telecommunications, transportation, electricity, water, etc. [1]. These infrastruc-
tures, and particularly air transport, have contributed to the shift of the organization of the
global economy from "spaces of places" to "spaces of flows" [2, 3]. This change may lead
to a new organization of the global space around a "world city network" [4]. The current
transport geography shapes and is shaped by the evolution of the network of large cities,
mostly connected by the air transport network [5, 6, 7].

Therefore, the global economy has a growing dependence on network based infrastruc-
tures that can be described as a set of physical entities located on the surface of the earth.
The functionality of these entities can be modelled as a set of nodes and edges connecting
them [8]. One of the mentioned infrastructures is the air transport network, which can be
schematically represented as a flight network. The flight network nodes are airports, which
are connected when a direct flight is scheduled between them [9]. The assessment of the
robustness of air transport networks when facing random errors and intentional attacks
is, therefore, an important issue on the field of transport geography research. There is a
growing concern in the transport geography community about the understanding of the
operability and functionality of critical infrastructure systems [10] like the air transport
network under severe disruption.

The investigation of complex networks began with the purpose of defining new concepts
and measures that allowed to characterize the topology of real networks. The result was the
identification of the principles of statistical properties of real networks. However, over the
last decade new lines of research have emerged. On the one hand, to address the complexity
of the network structure multiple types of networks have been defined and studied. Some
examples of networks are weighted networks (i. e., networks with weighted links) [11] and
spatial networks (i. e., networks with links that depend on the Euclidean distance between
the nodes) [12]. On the other hand, the approach of the studies on this field has changed
due to advances in the analysis of complex networks. Currently, the main interest lies in
investigating the dynamic behavior of networks. The concepts of robustness, resilience, dy-
namic collective synchronization or propagation processes were coined as a response to the
needs caused by this this new scenario [13].

The theoretical developments around complex networks has helped us to gain under-
standing around a large number of phenomena, from social networks, economy and com-
munication to financial markets and computer science [14]. There have been a number of
applications of complex networks theory to transportation networks, such as streets [15, 16],
railways [17], subways [18] and the power grid [19]. Until recently, the analysis of the air
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4 air transport networks

transport network has dealt extensively with the study of the global air transport network’s
topology [20, 21, 22, 23, 24]. The insights gained on topology of real complex networks
have allowed the application of techniques of analysis of robustness facing errors and at-
tacks [25, 26].

A common feature of the studies mentioned above is that they are focused in methodol-
ogy, rather than on organizational considerations. In order to gain insight on the structure
and robustness of air transport networks, it can be argued that organizational considera-
tions regarding air transport should be taken into account. In this chapter, it is proposed a
framework to study the topology and robustness of the different air transport networks that
takes into account the organizational complexities of this industry. The aim of this study is
to introduce new lines of research resulting from the application of the complex networks
methodology for studying the robustness of networks in the commercial aviation sector.
This framework allows the definition of specific solutions for specific regions, airlines or
alliances on the network structures the air routes should have in order to minimize the
impact of an emergency on one or more of its airports. As a result, the most critical airports
to fight against the complete disruption of the activity of a country or an airline can be
identified.

Through the discussion of the existing literature, it will be introduced the main lines
of research that could help to a better understanding of air traffic from different levels of
analysis: global route network, airline alliances, airlines and airports.

1.1 theoretical framework

1.1.1 The air transport industry

The airline industry has evolved from a mosaic of individual, protected companies to a
liberalized system of global business organizations. In the last decade, changes in regulatory
regimes in the air transport sector (e. g., the nine freedoms of the air [27]) have driven
new strategies for airlines, which were already common in other sectors, such as alliances,
mergers or takeovers. This is a consequence of the evolution of an industry that has been
characterized by its low profitability and progressive increase of internal competition [28].

Until 1978, governments, national flag carrier airlines and national airports dominated
international air transport. In 1979, the US domestic market began to liberalize. As a result
Low-Cost Carriers began to appear, mergers occurred, charges fell, the hub-and-spoke struc-
ture emerged and demand rose [29]. Ten years later, Europe began deregulation with three
packages (1988, 1990 and 1993) but it was not until 1997 that the deregulation was com-
plete. The hub-and-spoke network was adopted by flagship carriers while new Low-Cost
Carriers configured their routes as point-to-point. In this context, airline alliances began to
appear. Airline alliances are the result of the need to consolidate traffic from several airports
to undertake intercontinental routes, whose demand is growing due to economic globaliza-
tion [30, 31].
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Recently a new deregulation process has started, the Open Skies agreements [32]. On
April 30, 2007, the first Open Skies agreement was set. It included the US and EU and allows
flights by European or American airlines from anywhere in Europe to anywhere in the
United States without restrictions. Currently, the US-EU agreement has new amendments
(2010 and 2011) and other Open Skies agreements have been signed between US-Australia,
US-Switzerland and US-Japan (2008). As it can be seen, the airline industry is in constant
evolution and this affects its structure and characteristics. As a result of the deregulatory
measures there are currently three business models in the aviation sector [33]: Full-Service
Carrier (FSC), Low-Cost Carrier (LCC) and Charter Carrier.

Full-Service Carriers (FSCs) are the former national flag carriers, which as a result of
the deregulatory processes have a business model based on a great variety of links (i. e.,
domestic, international and intercontinental) and services, hub-and-spoke networks, yield
management, vertical product differentiation and the creation of alliances. These carriers are
also known as traditional or legacy carriers.

The creation of alliances is crucial to the airlines as none of them has its own global net-
work. The main reason for airlines to cooperate or form alliances is cost reduction [34, 35].
Being a member of a partnership is an important factor in both the routing strategy of the
airline in the long term and the network configuration adopted by alliance partners and
competitors. In 2012, the three major alliances (Star Alliance, oneworld and SkyTeam) ac-
counted for 60 percent of global air traffic measured in available seat-kilometres for the total
of scheduled passengers [36] and so their impact on market dynamics is important. Thus,
airlines route network should be developed taking into account the continuous structural
changes occurring to the global route network due to multiple new agreements on route
sharing and mergers.

Due to the hub-and-spoke strategy followed by FSCs, the establishment of hubs is an-
other very important point. Hubs are organized in order to allow airline flight connections
by coordinating the scheduled arrival and departure of flights. The coordination of sched-
ules should not only take into account flights operated by the airline but also all routes,
including those operated by other airlines. To understand the strategy of the airlines in the
design of connectivity between hubs and schedule coordination has been the objective of
several empirical and theoretical studies [37, 38, 39, 40].

Low-Cost Carriers (LCCs) are airlines with a business model based on having a compet-
itive cost advantage through the use of secondary airports, point-to-point networks, basic
services, payment for auxiliary services and a single airplane model. Although it is not an
implicit feature, LCCs tend not to establish any kind of alliance with other LCCs or FSCs.
Finally, Charter Carrier airlines operate unscheduled flights based generally on specific
consumer demand for tourist destinations.

The structure of the global route network can be seen as a complex transportation net-
work consisting of various airline network structures (e. g., hub-and-spoke and mixed point-
to-point, multihubs). Studies tend to focus on the analysis of hub-and-spoke and point-to-
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point typologies but it must be kept in mind that they do not represent the entire airline
transport network. These typologies are not unique to air route networks, the hub-and-
spoke network can be found in biological networks [41] and point-to-point networks in
wireless networks [42].

1.1.2 Topology and robustness of air transport networks

The are different viewpoints in which one can study the network strategies followed by
airlines. There are studies on the effect on prices deriving from the existing connections
between airlines [34, 35] or on the connectivity levels and the competitive position of air-
ports [43]. Another approach is the analysis of the route network architecture through com-
plex network analysis [9, 21, 24].

Those studies that have characterized the topology of air route networks and those that
have analyzed the network robustness under errors and attacks should be reviewed in order
to asses the state of the art of air route networks in continents, countries and airlines.

As shown in Table 1.1, the literature is very recent and has been developed mainly in the
field of methodology. The study of complex networks, as shown throughout this chapter,
has been developed in parallel in other areas in greater depth. In particular, it must be high-
lighted the thorough literature analysis of complex networks conducted in [13] which has
enabled the observation and comparison of different characteristics and properties between
real networks in various fields, and the recent surveys of applications of complex network
theory [14].

Guimerà and colleagues [20, 21] have studied the airport network structure across the
world, finding that the degree and betweenness centrality distributions follow a truncated
power law distribution, given that airports have limitations to the number of connections
they can offer. To model the real network, the authors used a variant of the models from [12,
71]. Both of them include the standard growth mechanism for the addition of links be-
tween already existing nodes, the current base for studying route networks using com-
plex networks. Only a model that includes geopolitical constraints, such as the fact that
most cities are only allowed to make connections to other cities within the same country,
can generate nodes with high and lower intermediation values, as observed in the real
airport network [20, 21]. With the development of this comprehensive study, complex net-
works analysis has started to be used more frequently in the airline industry. In particular,
most new studies have regional scope, as in the case of Italy [22], India [23], US [48] and
China [24, 46, 57]. The intensive study of the topology of air route networks has shown
different network structures. For instance, [21] obtained a scale-free network structure with
a small-world property, [22] obtained a small-world network structure with a fractal small-
world property and [23] obtained a small-world network.

Empirical research has found that FSCs route networks behave like scale-free networks
[54] and random networks are useful for describing point-to-point connections [33]. LCCs
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Year Authors Published in Level

2003 Li-Ping et al. [44] Chinese Physics Letters L1*

2004 Barrat et al. [11] Proceedings of NAS L1

Guimerà & Amaral [20] The European Physical Journal B L1

Chi & Cai [45] International Journal of Modern Physics B L1*

Li & Cai [46] Physical Review E L1*

2005 Guimerà et al. [21] Proceedings of NAS L1

2007 Guida & De Maria [22] Chaos, Solitons & Fractals L1*

2008 Bagler [23] Physica A L1*

Hu & Di Paolo [47] NICSO L1

Xu & Harriss [48] GeoJournal L1*

2009 Cento [33] Contributions to economics L3

Han et al. [49] Physica A L3

Lacasa et al. [50] Physica A L1*

Reggiani et al. [51] Networks, Topology and Dynamics L3

Zanin et al. [52] 23rd European Conference on MS L1*

2010 Liu et al. [53] Physics Procedia L1*

Reggiani et al. [54] European Journal of Information Systems L3

Zhang et al. [55] Physica A L1*

2011 Wang et al. [24] Journal of Transport Geography L1*

Dang & Li [56] JTSEIT L1*

Liu et al. [57] TRR: Journal of the Transportation Research Board L1

Mo & Wang [58] Proceedings 2011 International Conference TMEE L1*

Wilkinson et al. [59] Natural Hazards L1*

Zeng et al. [60] JTSEIT L1*

2012 Cai et al. [61] Chinese Physics B L1*

Dang & Peng [62] JTSEIT L1*

Grady et al. [63] Nature communications L1

Jia & Jiang [64] Physica A L1*

Lin [65] Journal of Transport Geography L1*

Sawai [66] IEEE Congress on Evolutionary Computation L1

Wang & Wen [67] 24th CCDC L1*

2013 Zanin & Lillo [9] The European Physical Journal Special Topics L1

Cardillo et al. [68] Scientific Reports L1*

Fleurquin et al. [69] Scientific Reports L1*

2014 Zhang et al. [70] Physica A L1

Table 1.1: Literature study of air route networks as complex networks. * Regional
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do not connect all their airports nor have a hub, but they rather base their route network
structure on point-to-point routes. This network structure can only be used on short-haul
routes due to the smaller size of their aircrafts and reduced flight time. The lack of hub
airports should indicate fairly similar concentrations in all airports leading to a very differ-
ent type of network to those of scale-free. However, the network model for point-to-point
connections according to [47, 57] is described as a small-world network [72, 73].

Recent studies have pointed out that the air transport network is a multilayer network,
meaning that it is the result of the simultaneous presence of different subnetworks orga-
nized in separate layers [68]. From this point of view, the air transport network is the
result of the aggregation of the route network of all the airlines. The analysis of the current
literature studying air route networks as complex networks allows establishing different
dimensions or levels of study characterized by different units of analysis. Therefore, and
given that each level has different characteristics and properties, three levels of study are
proposed: the global route network (L1), the airline alliance network (L2) and a particular airline
network (L3) as shown in Figure 1.1. The different levels do not only represent different
network magnitudes in number of nodes (airports) and links (routes), but also represent
different approaches.

The study of the global route network –first level: L1– looks at the competitive envi-
ronment for airlines and the general framework of air transport development. Due to the
size of the global route network and that it is a spatial network (i. e., restricted by its geo-
graphical characteristics), the network must be analysed both globally and regionally. The
literature contains examples of both global [21] and regional [23] analyses. The analysis of
the robustness of networks at L1 can be of interest for policy makers whose objective is to
increase the security of the air transport network, allowing the detection of critical airports
to prevent major collapses of the network, which can have a significant impact in global
economy. For instance, [59] have studied the impact of the eruption of the Icelandic volcano
Eyjafallajökull on the global transport network, and [45] have analyzed the robustness of
the US airport network to errors and attacks.

As indicated previously, air transport networks at the L1 are the result of several layers
of airlines route network. Airlines network constitute the third level (L3) of the framework.
In the study of an airline network (L3) the specific properties and characteristics of airlines
can be appreciated [49, 51, 54], regardless of the competitive environment.

The air networks of alliances constitute the second level (L2) of the framework. The par-
ticipation on alliances can contribute to an improvement in network robustness for the
member airlines thanks to the resulting codesharing agreements. The network of an airline
alliance is the route network operated by its members and the routes of other airlines with
which they have codesharing agreements. Therefore, L2 networks are also multi-layered,
since they are an aggregation of L3 networks. As shown in Table 1.1, this level has not
been developed in any study using complex networks although airline alliances have been
extensively studied in the literature on air transport management [31, 34, 35]. This level
represents the network structure of airline alliances and enables us, as in the case of airlines
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Figure 1.1: Study levels

L1
L2

L3
L3

(L3), to determine the properties of an organizational network. The analysis of robustness of
L2 and L3 networks can be of interest for airline management, of companies and alliances.
The increase of the reliability and security of airlines and alliances network can help these
organizations to maintain and increase their levels of profitability in the long run. Finally,
the classification in different levels will allow to link characteristics for each level and to
study the effects that exist between them.

1.1.3 Models of real networks and robustness

To study the transport network of airlines they have to be modelled as complex networks.
In order to construct the model it must, firstly, be taken into account that the network
topology determines the dynamics of complex connectivity [41] and, secondly, that it is a
network in which the relationships are influenced by the Euclidean distances between air-
ports. Therefore, the air route network or airport network is a spatial network as its nodes
(i. e., airports) occupy a position in Euclidean space and its links (i. e., routes) are real phys-
ical networks. Spatial networks are strictly constrained by their geographical features [74].
Some important examples in the study of spatial networks include networks of informa-
tion/communication [75, 76], networks of ants colonies [77], electric power networks [78],
neural networks [79] and transport networks. The analysis of transport networks is a prime
example on where to find studies on urban networks [16], trains and subways [18] and
airports and air routes [21, 24].
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Another important feature is that networks can be considered either weighted or un-
weighted. On weighted networks, a real number (i. e., the weight) is associated to each
link [13]. Together with a complex topological structure, many real networks show a consid-
erable heterogeneity in terms of capacity and strength of their connections, which would go
unnoticed if they were modeled as an unweighted network. Examples of this are the exis-
tence of strong or weak ties between individuals in social networks [80, 81], irregular flows
in metabolic reaction pathways [82], varying transmission capabilities of electrical signals
in neural networks [80, 83, 84] or the inequality in traffic via the Internet [75].

Ignoring this diversity in such interactions would mean overlooking most of the infor-
mation on complex networks, which is in many cases, available and useful for its charac-
terization. By way of example, it is very different to study an airline’s route network by
only considering the transit links between airports or to study the route frequency between
these airports. These cases represent unweighted and weighted networks respectively. In
the study of air routes networks there are examples of analysis of both unweighted net-
works [54, 57] and weighted networks [11, 20, 21, 46].

Complex networks analysis has found a common feature of topology of interactions in
systems as diverse as communications systems [75, 85] social [72, 86, 87] and biological [41,
88, 89, 90]. The behavior of most communication systems, including air transport networks
can be modelled with the scale-free (SF) network [91]. These and most of real networks
usually have the small-world (SW) property (i. e., a low average path length) [72, 73].

During the growth of complex networks, new nodes tend to connect to existing nodes
that are well connected [72]. Consequently, the hubs (i. e., well connected nodes) tend to
reinforce themselves leading to a scale-free (SF) network (see Figure 1.2.Ba). The SF network,
introduced in [91], incorporates two mechanisms in which many real networks have proven
to be based: growth and preferential attachment. Growth explains the dynamic nature of the
networks which grow through the addition of new nodes. Preferred attachment explains
how new nodes enter the network by connecting to those nodes with most links (i. e., high
degree). As a result, in SF networks the degree k (number of connections of each node) has
a power law k−γ distribution (see Figure 1.2.Bb).

The exponent value γ depends on the attributes of the individual systems and it is crucial
in detecting the exact topology of the network, in particular the existence of hubs. As [41]
highlighted, the hub-and-spoke model corresponds to a SF network when γ = 2, while
2 < γ ≤ 3 indicates a hierarchy of hubs. When γ > 3, the SF network behaves as a
random network and the effect of the hubs in the network is diluted. In the case of different
typologies of air route networks, when γ = 2 we would find a pure hub-and-spoke network
and when γ > 3 we would find a point-to-point network. Following the definitions of FSC
and LCC, the FSCs network should have lower values of γ than LCCs.

Finally, there is a third widely studied and developed network model introduced in [92],
the random (RN) network (see Figure 1.2.Aa). Its main difference to a scale-free network
is that in a random network any connection between two nodes is equally likely to occur.
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Figure 1.2: Random (A) and scale-free (B) networks. Aa: Graph of RN network. Ba: Graph of SF
network where the grey nodes represent hubs. Ab: Degree distribution of a RN. Bb: Degree
distribution of a SF network (graph log-log). Source: [41]
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Box 2 | Network models

Network models are crucial for shaping our understanding of complex networks and help to explain the origin of observed network
characteristics. There are three models that had a direct impact on our understanding of biological networks.

Random networks 
The Erdös–Rényi (ER) model of a random network14 (see figure, part A) starts with N nodes and connects each pair of nodes with probability p,
which creates a graph with approximately pN(N–1)/2 randomly placed links (see figure, part Aa). The node degrees follow a Poisson distribution
(see figure, part Ab), which indicates that most nodes have approximately the same number of links (close to the average degree <k>). The tail
(high k region) of the degree distribution P(k) decreases exponentially, which indicates that nodes that significantly deviate from the average are
extremely rare. The clustering coefficient is independent of a node’s degree, so C(k) appears as a horizontal line if plotted as a function of k (see
figure, part Ac). The mean path length is proportional to the logarithm of the network size, l ~ log N, which indicates that it is characterized by the
small-world property.

Scale-free networks
Scale-free networks (see figure, part B) are characterized by a power-law degree distribution; the probability that a node has k links follows 
P(k) ~ k –γ, where γ is the degree exponent. The probability that a node is highly connected is statistically more significant than in a random graph,
the network’s properties often being determined by a relatively small number of highly connected nodes that are known as hubs (see figure, part
Ba; blue nodes). In the Barabási–Albert model of a scale-free network15, at each time point a node with M links is added to the network, which
connects to an already existing node I with probability Π

I
= k

I
/Σ

J
k

J
, where k

I
is the degree of node I (FIG. 3) and J is the index denoting the sum over

network nodes. The network that is generated by this growth process has a power-law degree distribution that is characterized by the degree
exponent γ = 3. Such distributions are seen as a straight line on a log–log plot (see figure, part Bb). The network that is created by the
Barabási–Albert model does not have an inherent modularity, so C(k) is independent of k (see figure, part Bc). Scale-free networks with degree
exponents 2<γ<3, a range that is observed in most biological and non-biological networks, are ultra-small34,35, with the average path length
following � ~ log log N, which is significantly shorter than log N that characterizes random small-world networks.

Hierarchical networks
To account for the coexistence of modularity, local clustering and scale-free topology in many real systems it has to be assumed that clusters
combine in an iterative manner, generating a hierarchical network47,53 (see figure, part C). The starting point of this construction is a small cluster
of four densely linked nodes (see the four central nodes in figure, part Ca). Next, three replicas of this module are generated and the three external
nodes of the replicated clusters
connected to the central node of
the old cluster, which produces a
large 16-node module. Three
replicas of this 16-node module
are then generated and the 16
peripheral nodes connected to
the central node of the old
module, which produces a new
module of 64 nodes. The
hierarchical network model
seamlessly integrates a scale-free
topology with an inherent
modular structure by generating
a network that has a power-law
degree distribution with degree
exponent γ = 1 + �n4/�n3 = 2.26
(see figure, part Cb) and a large,
system-size independent average
clustering coefficient <C> ~ 0.6.
The most important signature of
hierarchical modularity is the
scaling of the clustering
coefficient, which follows 
C(k) ~ k –1 a straight line of slope
–1 on a log–log plot (see figure,
part Cc). A hierarchical
architecture implies that sparsely
connected nodes are part of
highly clustered areas, with
communication between the
different highly clustered
neighbourhoods being
maintained by a few hubs 
(see figure, part Ca).
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An RN network cannot be considered a real network model [13] but rather a standard
model studied in mathematical graph theory. In contrast to SF networks, RN networks show
homogeneous patterns, dispersed and without clusters. Their degree distribution, unlike SF
networks, follows a Poisson law (see Figure 1.2.Ab). In air transport, RN networks can be
useful to describe point-to-point connections [33]. In an ideal point-to-point route structure,
all airports would be linked to most of the others so the diameter would be reduced, which
would make the SW property appear.

Topology analysis will help understand the network’s characteristics and properties that
will influence its dynamic behavior. This may allow the study of phenomena such as ro-
bustness, resilience, collective synchronization dynamics or propagation processes [13]. The
literature on the dynamic behavior of air transport networks, while limited, has focused its
attention in the study of robustness. [47, 57] used robustness in their application of the
genetic algorithm to optimize an airline’s route network. [50] made a more detailed study
of jamming transition phenomena in the European route network. More recently, [69] has
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analyzed the problem of delay propagation in the US airport network and [70] has applied
a dynamic fluctuation model that quantitatively describes and reproduces the real airport
network.

Air traffic is part of a dynamic environment, where airports and routes can be closed
temporarily for various reasons such as environmental accidents, security alerts, strikes or
terrorist attacks, etc. resulting in high costs for airlines and countries. For example, in 2010
the strike by air-traffic controllers in Spain is estimated to have cost airlines $134m [93]
whereas snow and strikes cost easyJet £31m in the same year [94]. The alternative for air-
lines, depending on the cause of the malfunction, could be to seek a replacement route for
their clients, using other airlines’ routes or waiting for the route or airport to be operational
again.

The analysis of robustness in air transport can evaluate the effect of errors (e. g., inclement
weather) or attacks (e. g., terrorism) on a route network. The study of the robustness enables
the evaluation of the capacity for networks to avoid a malfunction when some fraction of
its components is damaged [13]. In this way, we can analyze network resilience, tolerance
to attacks and congestion caused by any malfunction. Therefore, and due to its applications
to aviation, we will focus on the analysis of robustness.

The study of a network’s robustness facing random failures and intentional attacks was
one of the first issues to be explored in the literature on complex networks [25, 26]. The
problem can be explored in two different ways. The first, known as static robustness, is
the action of isolating nodes without the need to redistribute any quantity transported by
the network. This is the case, for example, of a social network in which relations between
individuals in the system are cut. The second, dynamic robustness, takes into account the
dynamics of flow redistribution. As an example, when an Internet router goes down, the
packets it should transmit are diverted through alternative routes. The two types of robust-
ness are similar, but while the first can be treated analytically, for example, by using tools
of statistical physics such as percolation theory [95], the analytical process in the second
case is more complex and in almost all cases numerical simulation has to be used.

As discussed, static robustness ignores flow redistribution as nodes or links are elimi-
nated in the network. Tolerance to static errors is defined as the capacity of the system to
maintain its connectivity features following some random disconnection of nodes or links.
Furthermore, we refer to an attack as when the removal process is directed at a particular
class of nodes or links, for example, well connected nodes. As well as numerical simula-
tions [25, 26] a number of analytical approaches have been proposed [95, 96, 97, 98] to
study tolerance to errors and attacks in complex networks.

Furthermore, dynamic robustness is more complex, since the links or nodes may have
restrictions on their capacity and the load is often highly variable in space and time. Cur-
rent studies in other fields have dealt, using dynamic effects, with the problem avalanches
of broken nodes [99, 100] and congestion in communication systems [90, 101], providing
indications for actions that can be taken to decrease undesirable effects [13].
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As previously explained, the topology of networks must be known in order to analyze
their dynamic behavior. [26] studied how Internet properties changed when some of its
nodes were disconnected from a sample of the World Wide Web. On the World Wide
Web the giant component remains unchanged despite high random removal rates of nodes,
while, if the nodes are isolated as an attack, the size of the resulting fragments decreases
rapidly. Furthermore, [102] simulated a series of attacks on a SF network showing that such
attacks would cause the system to collapse. In these examples, the response to attacks or
failures of an SF network is quite different than the response of a RN graph of the same
size and average degree. For random failures, in SF networks the size of the largest com-
ponent decreases slowly and no threshold is observed, contrarily to RN networks. On the
other hand, the response of SF networks to attacks is similar to the response to attacks and
failures in the RN network, with a lower critical value than the value observed in the RN
graph. As in the case of [26], for the analysis of the route network the network topology
must be taken into account in order to understand the effects that errors or attacks might
have.

1.2 discussion and future lines

The study of network route robustness has been a recurring study topic in recent years.
However, there is an approach that has had limited analysis: the airline management ap-
proach (L2 and L3) and the government policy approach (L1). In the levels described above,
it can be seen how levels L2 and L3, alliances and airlines, focus their attention on compa-
nies or organizations. As shown in Table 1.1 the study of the alliance network (L2) has not
been developed yet. On the other hand, some research has been carried on the airlines (L3),
in companies such as Lufthansa [51, 54] and other European airlines [33, 49]. The analysis of
business networks (i. e., companies or alliances) robustness could influence the decisions to
open new routes or negotiate new codesharing agreements. On the other hand, the analysis
of the robustness of route networks in a specific region (L1), whether they are continents
or countries, would help to make better decisions at the policy-making level. For instance,
European policymakers could be interested to know which airports are the most impor-
tant in maintaining stable air communication. It might also be known which non-European
airports could pose a problem for the flow of their air routes.

Because the current literature is mainly focused on complex network theory development,
the studies conducted up to the present date have used the global air route network as a
special case of a complex network. Since the aviation route network can be modelled and
adequately characterized as a complex network, it can be argued that it is time to apply
complex network analysis on aviation organizations: alliances and airlines. The analysis of
topology of these networks can help to see how the airlines’ own networks and alliances
are made up, allowing for the evaluation of their characteristics (e. g., robustness) and their
influence on these companies. These developments can be of vital importance at all levels
of study, from those studies centred on airlines to those focusing on the overall policy envi-
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ronment. Consistent with the literature review, future lines of research will be formulated
following the levels outlined.

1.2.1 L1: Global route network

The global route network has been the most studied network. This network consists of
all currently active airports. Studies have examined network topology, but some criteria of
analysis have had less or limited treatment. An increased knowledge of the airline routes
network topology would enable to assess more completely the influence of different airports
in the robustness of the global network and their impact on the connection of different
regions. In other complex networks, this analysis has been carried out through centrality
studies. Concepts such as the number of nodes to which a particular node is connected
(degree centrality), the number of links to reach the rest of nodes (closeness centrality)
or how intermediary a node is (intermediation centrality) in a network are some of the
most widely used due to their ease of interpretation. However, [33] introduces network
concentration measurements such as the Gini index or others used in the social media such
as Freeman’s centrality index and Bonacich’s centrality. Along these lines there is still a long
way to go on the implementation of new measures of complex networks used elsewhere.

Some of the examples seen in social networks are the intermediation flow centrality and
Bonacich’s power. The focus of flow centrality expands the notion of intermediation. It
assumes that nodes will use all routes that connect them rather than only geodesic routes.
Lets suppose that an airline wants to offer a route between two distant points, but an
intermediary airport blocks the geodesic path between them. If another route exists, the
two nodes will probably use it, even if it is longer or less efficient. Such behavior can be
effectively modelled through flow centrality. Bonacich [103] proposed that both the notions
of centrality and power are functions of node’s links to its environment. A node will have
high Bonacich centrality if connected to nodes of high centrality, and high Bonacich power
when connected to low power nodes. Note that Bonacich’s power should not be confused
with Bonacich’s centrality.

The robustness analysis of the global network should be carried out taking into account
the characteristics of spatial networks, through a detailed study of the global network and
its regions. On one hand, this study would provide great value for the analysis of complex
networks, and on the other hand, it could be assessed how the different countries or regions
studied would be affected by airport closures. As an example, the closure of London’s
airspace might not have the same impact on European air traffic as the closure of Barcelona’s
airspace. It would also be shown which airports, in case of an error or a deliberate attack,
would affect the global network most. Following this a debate would ensue about whether
these airports should have greater controls or if their route volumes should be reduced in
order to alleviate the inherent risk.
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1.2.2 L2: Airline alliances network

Currently, there are three airline alliances (i. e., Star Alliance, oneworld and SkyTeam). These
three alliances accounted for 60% of global air traffic in 2012. The main activities within the
alliance are creating codesharing agreements and buying fleet and fuel in bulk. The aim of
an alliance is that the whole network of the member airlines appears to be an extension of
each partners’ routing system [104]. Through codesharing agreements the airlines work in
order to provide a continuous service, so passengers cannot distinguish between making
an interline flight with one or more airlines. This is achieved by the already mentioned
coordination of flight schedules to reduce downtime, ensuring the proximity of gates at
airport transfers and merging the alliance partners’ frequent flyer programs.

With the extensive use of this practice, codesharing agreements have become the hallmark
of the alliance revolution in the commercial aviation industry [34]. Coordination among
member airlines of the alliance and the adequate control of their routes leads to a significant
increase in the scope and frequency of the routes offered to customers. In Table 1.1 it can
be seen that at this level there have been no studies of complex networks, whereas alliances
and codesharing agreements have been studied from other approaches [34, 35].

Therefore, it is interesting to study the topology of what might be considered "mega-
airline carriers" in the same way as there have been in the study of airlines (L3). The network
of an airline alliance is defined as the route network operated by its members and the
routes of other airlines with which they have codesharing agreements. In this way, the real
route network offered by alliances is taken into account, not only those routes operated by
alliance members. The topology study may offer insight into the properties of networks as
to, for example, assess whether the networks of individual members are complementary or
redundant.

At this level, the study of route network robustness takes a business stance. How robust
is the network of each alliance? Do members of these alliances see their route network
increase in robustness thanks to their membership, and to what extent? Alliances route
network analysis can provide a lot of information about the position of its members in such
networks. Through previous analysis of the topology of these networks it can be determined
how these alliances are constructed and evaluated, among other things, whether belonging
to an alliance increases the robustness of the airline route network.

As an example, if members of the alliance were selected only to increase the total range
of their routes, and codesharing agreements among its members were only on routes not
operated by them (i. e., complementary routes), the alliance would not provide robustness to
its members; but if on the other hand, members do not close similar routes and codesharing
arrangements are also made on routes operated by the airlines (i. e., redundant routes),
robustness could be seen to increase as well as its relevant benefits. This would only be
an example because, as explained above, these characteristics depend on various network
attributes.
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1.2.3 L3: Airlines network

The last proposed level of analysis is individual airlines network. Consistent with alliances
network (L2), airline network can be defined as the route network the airline operates and
routes of other airlines with which it has codesharing agreements. At this level, [51, 54] have
undertaken a case study of Lufthansa. Also, [33, 49] evaluated the structural properties of
various European airlines through complex networks analysis.

In order to assess the robustness of airline routes and thus ensure their stable traffic
development, the airline’s topology should be analyzed first. If it is taken into account that
the network topology of a FSC network is hub-and-spoke, its network topology should be
SF. Similarly, an LCC, due to its network typology being mainly point-to-point, might be
considered RN or an SF with a low preferred connection (i. e., a high γ). These assumptions
should be analyzed in order to determine the influence of the closure of a major or a
secondary airport on airline operations.

Finally, the study of robustness would allow airlines to resolve questions such as: Are
LCCs, those airlines which do everything possible to keep the aircraft in the air, protected
against failure or an attack on their network? If they are compared with FSCs, is their
network more robust than FSCs as part of an alliance or not? Do FSCs and LCCs adopt
the same network structures regardless of their geographical base? Previously, the airlines’
network topology should be examined because, if the FSCs network are SF with a higher
preferred connection than LCCs, current studies of complex networks would indicate that
FSCs would have a less robust network structure against attacks than LCCs.

1.3 conclusions

Air transport networks are one of the critical infrastructures of today’s world economy,
and there is a need to better understand the functioning of these networks under severe
disruption events [10]. This work has identified the main research areas in air transport
geography derived from the study of robustness of complex networks. The literature review
has shown that in recent years air route networks have begun to be modelled and analyzed
as complex networks but from a very theoretical point of view. In this review three levels
of study are presented through two new applied approaches: the airline management focus
(airline alliances L2, and airlines L3) and the government policy focus (global air transport
network L1).

These approaches help to see and structure important practical implications inherent to
the dynamic analysis of air route networks. As with the study of robustness, the effect
that either terrorist attacks or inclement weather may have on the proper operation of an
airline or the aviation relations between two regions can be assessed. Consequently, a line
of research has been proposed which follows the lead taken in other areas where the study
of complex networks has been more extensive (e. g., neural network study) but within the
field of air transport geography.
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This approach represents a first step in the study of complex networks applied to air
transport and will allow for better understanding of air route network structures. This will
make possible to evaluate and enable a restructuring of the system of air transport with the
aim to avoid serious collapses, both at the airline level as in the regional level, when faced
by errors or attacks at airports in an increasingly crowded market.





Part II

R O B U S T N E S S A N A LY S I S

The robustness analysis of each level shows how vulnerable and fragile the
global, alliance and airline network are when facing unintentional errors and
intentional attacks. Several approaches has been considered introducing new
concepts from other areas and new ones self-developed.
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2.1 abstract

The assessment of the impact of disruption of the air transport network by intentional
(e. g., terrorist attack on an airport) or unintentional causes (e. g., weather inclemency) is
crucial for the management of the global transportation system. The potential impact of air
traffic disruptions will be assessed through an analysis of the vulnerability of the global
air transport network (ATN). The behavior of the ATN against intentional airport closure
depends on its topological properties. The aim of this research is to analyze the impact of
the closure of a sequence of airports on the reliability of the entire ATN. That analysis can
provide insight about how to reduce the effects of such disruptions in order to ensure good
communication through air transport (i. e., maximize the robustness of the global network).

2.2 introduction

The air transport network (ATN) is one of the most important and critical infrastructures
of today’s global economy. Together with the Internet, which has lowered dramatically
the costs of dissemination of knowledge, the continuing expansion of the air transport
has contributed to the globalization of the economy, and has increased the possibilities of
mobility of people and merchandises worldwide. ATN is responsible of the mobility of
millions of people every day: from November 2011 to November 2012 24, 848 commercial
connections between 3, 712 airports were scheduled (source: SRS database). But in spite of
its critical importance, the ATN can be vulnerable to incidents with some airports at the
brink of failure.

Failures or inefficiencies on flight operation cause high economic costs. Some minor inci-
dents, such as low clouds, can lower landing rates as much as 28% [21]. The eruption of the
Icelandic volcano Eyjafallajökull on March 14, 2010 caused serious restrictions on European
air traffic, causing 10 million delays in European airports [105], with estimated losses for
affected companies of $1.7b [106]. The cost for airlines of the 2010 controllers strike in Spain
have been estimated to be of $134m [93]. Disruptions of the ATN can be the source of huge
losses, and can affect seriously global mobility.

The ATN is the result of concurrent actions of airline companies and alliances trying to
maximize their profit, and also of a sequence of events arising from geographical, political
and economic factors. Therefore, in spite of the potential consequences of ATN disruptions,
it has not been designed to be resilient facing unintentional errors (e. g., bad weather) and
intentional attacks (deliberate actions trying to disrupt ATN connectivity). The analysis of

21
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the ATN can benefit from the results of extant research on complex networks. This literature
has defined generic models for real networks, such as Erdős-Rényi random (RN) graphs [92],
Watts-Strogatz small-world (SW) network [72] or Barabási-Albert scale-free (SF) networks [91].

Extant research has examined the reliability facing errors and attacks (i. e., the ability of
a system or component to perform its required functions under stated conditions) not only
of complex network models, but also of real networks. Tolerance to static errors is defined
as the capacity of the system to maintain its connectivity following some random node
isolation (i. e., disconnection of all connections to a particular node) or link disconnection.
On the other hand, in an attack isolation process is directed at a particular class of nodes or
links, for example, well connected nodes.

Numerical simulations [25, 26] as well as a number of analytical approaches have been
proposed [95, 96, 97, 98] to study tolerance to errors and attacks in complex networks. Sev-
eral studies [45, 107] have investigated how some network properties such as size of giant
component, clustering coefficient C, average shortest path length L and global efficiency E
are affected when a fraction f of the nodes is isolated.

In homogeneous networks, such as in the RN model, there is no significant difference
in the behavior of the network as to whether the nodes are selected randomly or accord-
ing to a preference criterion (e. g., degree or betweenness centrality). But in heterogeneous
networks, such as the SF model, network properties deteriorate dramatically when they
are subjected to attacks [107]. The fraction of the nodes to be disconnected in an attack
to observe a significant network disruption can vary according to the preference criterion
adopted in network isolation. In air transportation, [47] and [57] used robustness analysis
as in their application of the genetic algorithm to optimize an airline’s route network. [50]
made a more detailed study of jamming transition phenomena in the European route net-
work. More recently, [108] measured the weighted network robustness of Virgin America
by computing the algebraic connectivity.

As the global ATN is a SF network with SW property [21], it can be possible to alter
effectively its connectivity properties with the isolation of a reduced fraction of airports.
In this study, the effectiveness of several criteria of node selection to attack effectively the
ATN will be assessed. The criteria of selection can be defined in terms of decreasing order
of several measures of centrality (degree, betweenness or Bonacich power), or with alternative
strategies based on the assessment of the critical damage caused by the disconnection of a
node [76] or by node parameters obtained through modal analysis [19]. Such analysis can
reveal the airports whose isolation would affect ATN connectivity. Following this a debate
would ensue about whether these airports should have greater controls or if their route
volumes should be relaxed in order to alleviate the inherent risk.

2.3 methods

The static robustness of the ATN under attacks will be analyzed isolating airports using
an adaptive strategy. First, the airport to be isolated is the one with the highest value of
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a particular measure. Once the airport is disconnected, the measure is recalculated for all
airports of the resulting network to find the new airport to be disconnected. It should
be noticed that all the connections of the airport will be disconnected, but neither the
airport nor the passengers will disappear [109]. Based on extant research, the effectiveness
(measured in terms of reduction of the size of the giant component) of attacks based on five
different measures: degree, betweenness, modal analysis, damage and Bonacich power has been
compared. The first two measures, degree and betweenness, are two standard measures of
node centrality. The degree ki of a node i is the number of edges incident with the node, and
is defined as:

ki = ∑
j

aij (1)

where aij corresponds to the elements of the graph adjacency matrix A. For each pair
(i, j) of airports connected by at least one route the corresponding element aij equals 1, and
0 otherwise. The betweenness bi of a node i is the number of times that a node appears
between the shortest paths of two other nodes quantifying the importance of a node [13],
and is defined as:

bi = ∑
i 6=j

njk(i)
njk

(2)

where njk is the number of shortest paths connecting j and k, while njk(i) is the number of
shortest paths connecting j and k and passing through i. In the context of the ATN, degree
can be seen as a measure of connectedness, and betweenness as a measure of the centrality
of each airport. The third measure, modal analysis, was proposed in [19], where is reported
that this measure is more effective to attack the power grid than degree or betweenness.
Modal analysis is based on the analysis of the eigenvalues of the graph Laplacian. [19]
defines the modal connectivity matrix Γ as:

Γ = L′Φ (3)

where L′ stands for the transposed Laplacian and Φ is a matrix composed of the Lapla-
cian eigenvectors. Modal contributions to each node are determined as:

wi = ∑
j

∣∣γij
∣∣ (4)

where γij corresponds the modal connectivity matrix Γ elements. The modal contribution
is a measure of the load each node receives, thus the modal contribution wi can be used to
rank the nodes according to their busyness [19]. The fourth measure, damage was introduced
in [76]. The critical damage of a node i is the reduction of the giant component obtained
when i is disconnected. Finally, the fifth measure the Bonacich power analysis for assessing
attack vulnerability of complex networks is introduced. Bonacich [103] proposes a family
of centrality measures as:

ci(α, β) = ∑
j
(α + βcj)Aij (5)
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where A is the adjacency matrix. α is a scaling constant and β reflects the effects of the
centrality of its neighbors on a node’s centrality. Considering λ as theA’s largest eigenvalue,
when |β| < 1/λ = κ, the matrix solution to 5 is:

c(α, β) = α(I − βA)−1A1 (6)

where I is an identity matrix and "1" is a column vector of ones. This family of measures
allows us to analyze two types of network status just varying the parameter β that reflects
how the status of a node is affected by the status of its neighbors [103]. On the one hand, for
access to information, popularity, or social status this effect would be positive, sometimes
named as collaborative networks. For β = +κ the measure is the same as the eigenvector
centrality. On the other hand, for networks with a power-dependence orientation, having
weak neighbors with no alternative exchange partners is a source of power [110], sometimes
named competitive networks. Knowing that the ATN is a power-dependence network, it has
been considered the Bonacich power of the network for β = −κ.

2.4 the global network of airports

The global ATN has been analyzed in [20, 21], where the nodes are the cities with airports,
and two cities are connected if at least one non-stop commercial airline route between
them exists. It had been found that ATN defined in that way is a SF network with SW
property, i. e. a low average path length and a high clustering coefficient. The ATN had also
a multi-community structure, whose emergence can be explained in terms of geographical
and geopolitical factors. The network properties of the ATN make it resilient to errors, but
specially vulnerable to intentional attacks.

Attacks to the global network of airports will be simulated in this work. Airports are con-
sidered as nodes rather than cities, given that airports are the likely target of an intentional
attack. To define the network, all connections between airports from November 2011 to
November 2012 have been retained from the SRS database complied by IATA. This leads to
a network of N = 3, 712 airports, with 24, 848 connections between them. As the vast major-
ity of connections are reciprocal, the airport ATN is treated as an undirected network [21].
It has been also considered as an unweighted network because the purpose of this study
is to assess the effect of a total disconnection of an airport from the global network. This
network has an average shortest path length of L = 3.94, and a clustering coefficient of
C = 0.64. These values are of the same order as the ones obtained by [21] for the cities ATN
in 2000. So the airport ATN 2012 like the cities ATN in 2000, has a low value of L having
the SW property, together with a high value of C.

In Figure 2.1 are depicted the degree and betweenness cumulative distributions of the
ATN. The degree distribution (i. e., the probability that the degree of a given node has
value k) follows a truncated power-law distribution, similar to the distribution reported
in [21] for the network of cities. The betweenness distribution has a starker truncation than
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Figure 2.1: ATN degree (k) and betweenness (b) cumulative distributions
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the one reported in the network of cities, revealing the existence of a small subset of airports
with anomalously large values of betweenness centrality.

Figure 2.2 shows the existence of nodes with high values of betweenness (i. e., central
nodes) and with low values of degree (i. e., low-connected nodes). This phenomenon is even
more evident if Bonacich centrality is used as a measure of connectedness, and Bonacich
power as a measure of centrality. This is a distinctive feature of the ATN, and a result
of the socioeconomic, geopolitical [21] and operational factors that have determined ATN
evolution. That fact shows that ATN has a multicommunity structure, with communities
defined on the grounds of geographical and geopolitical constraints [21].

2.5 results

Figure 2.3 shows the variation of the size of the giant component of the ATN as a function
of the number of airports isolated for the network for each criterion (it is also provided the
% of the global network that represents the global airports). It has also been assessed the
behavior of the ATN when suffering errors, i. e. random isolation of airports. A simulation
of the behavior of the ATN facing errors has been run 5, 000 times, and in Figure 2.3 it
is also reported the average size of the giant component as a function of the number of
airports isolated.

Unsurprisingly, taking into account the degree distribution reported in Figure 2.1, the
ATN is much more resilient to errors than it is to attacks. The random isolation of the
13% of airports of the network reduces the size of the giant component by 22%. The same
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Figure 2.2: Betweenness as a function of the degree and Bonacich power as a function of the Bonacich
centrality for the ATN. Note: all measures are normalized
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number of airports can be enough to disconnect completely the whole ATN, as can be seen
in Figure 2.3 for betweenness disconnection. With 3, 200 airports operative, the size of the
largest network connected has decreased from 3, 677 to just 40 airports.

A distinctive feature of the ATN is that the betweenness criterion is more effective than
the degree to reduce the size of the giant component. In fact, Figure 2.3 shows that when the
2.5% of airports are isolated with the betweenness criterion, a steep fall of the size of giant
component occurs. From that value of f on, betweenness is the most effective criterion. For
values of f < 0.025, the damage criterion is the most effective to reduce the size of giant
component. But while this criterion starts being the most effective, it ends up being the
worst one for high values of f .

To compare damage and betweenness, in Table 2.1 are listed the 15 first airports to be
disconnected following both criteria and plotted on Figure 2.4. Only the ANC and FAI
airports are present in both damage and betweenness lists. These two airports are in Alaska,
depicted in black in Figure 2.4, and are the only two hubs that connect Alaska to the rest
of the world. If these two airports were disconnected, Alaska would be almost completely
isolated to the entire ATN.

The damage criterion tends to select airports that act as hubs of relatively isolated net-
works of airports. A clarifying example of it could be that PPT, HIR and MNL (i. e., 4th,
5th and 9th on damage disconnection) are in fact the hubs of French Polynesia, Solomon
Islands and Philippines respectively. None of them has a deep impact on the ATN core.
It is assumed that the ATN core includes the largest geopolitical air transport networks:
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Figure 2.3: Vulnerability of ATN
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Betweenness Damage

Top Airport Giant size Airport Giant size

1 FRA 3, 674 ANC 3, 619

2 ANC 3, 616 FAI 3, 506

3 CDG 3, 615 SEA 3, 475

4 AMS 3, 614 PPT 3, 447

5 DXB 3, 613 HIR 3, 423

6 FAI 3, 500 BOG 3, 401

7 PEK 3, 499 KTM 3, 381

8 LAX 3, 494 YVR 3, 364

9 LHR 3, 493 MNL 3, 348

10 YYZ 3, 490 PER 3, 333

11 NRT 3, 489 THR 3, 320

12 ICN 3, 488 YQQ 3, 308

13 PVG 3, 486 MAO 3, 297

14 HKG 3, 485 AEP 3, 287

15 BKK 3, 481 ALG 3, 277

Table 2.1: Top 15 disconnections for betweenness and damage measures. Airports (IATA code) and
size of the giant component

US, Europe and China. Therefore, critical damage criterion tends to select airports that link
relatively unconnected groups of airports (and that might be the reason why it is more ef-
fective for low values of the fraction of isolated airports f ), while the betweenness criterion
is more effective selecting airports that disconnect the entire ATN, therefore being the most
effective for higher values of f .

In Figure 2.5 it can be observed that the evolution of the characteristic path length (L)
as a function of f is quite different for the damage and betweenness criteria than to the
other three. While damage and betweenness tend to reduce the giant component isolating
network communities, the other criteria perform a global attack of the network: that is the
reason why in the degree, Bonacich power and modal criteria L peaks to a high maximum
for values of f around 0.1, falling dramatically afterwards. The difference between damage
and betweenness can be seen through the average degree 〈k〉 vs f graph. The value of 〈k〉
falls slower with damage than for other criteria, because damage tends to choose small
hubs, whose disconnection isolates small communities.

On the other hand, betweenness takes advantage of the multicommunity structure of
the ATN to select strategic, important hubs, disconnecting large regions from the giant
component faster than other criteria. Finally, the efficiency E decreases with a similar rate
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Figure 2.4: Top 15 disconnections for betweenness (blue) and damage (red) measures. Overlapped top
15 airports (black) and the rest of them (grey)

for all criteria. It is interesting to note that, for most values of f , the criteria most effective
in reducing giant component size are the ones with lower efficiency.

2.6 conclusions

In this study, the resilience of the ATN facing intentional attacks has been assessed. This
network is resilient facing unintentional errors (i. e., random isolation of nodes), but has
proven to be fragile facing intentional attacks. The isolation of a small fraction of selected
nodes can cause serious problems to the functioning of the global ATN. This behavior can
be explained by the characteristics of the ATN. The ATN is a SF network, with a truncated
power-law distribution, thus less resistant to attacks than homogeneous networks. Further-
more, the ATN has additional properties that make it different to other SF networks, such
as the presence of central airports with a reduced number of connections. The presence of
these airports can be explained by the socioeconomic and political factors [21], and also by
operational reasons (for instance, the adoption of hub-and-spoke route configurations by
Full-Service Carriers).

It has been assessed the effectiveness of five criteria of node selection to simulate attacks
using an adaptive strategy, in terms of reduction of size of giant component as a function
of the fractions of isolated nodes. In Figure 2.3 can be seen that the damage criterion is
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Figure 2.5: Evolution of network basic characteristics. Quantities measured are: clustering coeffi-
cient C, characteristic path length L, efficiency E, average degree 〈k〉

0 5 10 15

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

C

% disconnected airports

0 5 10 15

5
10

15

L

% disconnected airports

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

E

% disconnected airports

0 5 10 15

2
4

6
8

10
12

〈k
〉

% disconnected airports

Betweenness 
Degree
Modal Analysis 
Damage 
Bonacich Power 



2.6 conclusions 31

the most effective for f < 0.025, and that the betweenness criterion overcomes damage for
higher values of f . The list of the first airports isolated with each criterion (see Table 2.1
and Figure 2.4) shows that while the betweenness criterion selects airports belonging to the
ATN core (i. e., US, Europe and China), damage criterion selects airports belonging to more
peripheral communities of the ATN.

It has also been introduced the Bonacich power criterion to select the nodes to isolate in
an intentional attack. Although it is not the most effective criterion to disconnect the ATN,
for most of the values of f beats the degree criterion. The Bonacich power criterion needs
to be tested on other networks to determine its true potential. For instance, it would be
interesting to apply this criterion to simulate attacks to networks where the degree criterion
is more effective than betweenness, e. g. the power grid analyzed in [19]. The modal analysis
criterion has proven to be the most effective to attack power grid networks [19], but it is
not so effective when used in the ATN. It just proven to be effective when more of the 10%
of airports are disconnected. This fact shows that different SF networks can have different
properties regarding its strength facing intentional attacks.

The results of the comparison of effectiveness of criteria of node selection to attack the
ATN shows that this network has a multicommunity structure where central airports (i. e.,
airports with the highest betweenness centrality) are the most critical infrastructures of the
network in terms of its resilience facing attacks. This structure has emerged due to not only
socioeconomic and geopolitical factors, but also for operational reasons. The most central
airports are the hubs of Full-Service Carriers, whose routes have a hub-and-spoke structure.

The study of ATN robustness can help to improve its reliability, since it can help to detect
the critical airports in the ATN structure. It can also help to devise strategies to increase
network robustness, using improvement analysis techniques [76]. This research also suggest
new directions to research ATN robustness. It would be interesting, for instance, to asses
the dynamic robustness in the ATN. The closure of a set of airports may not cause a big
damage per se, but the need to relocate the flights using other airports can cause the closure
of these, thus provoking a cascading effect. There is evidence of this to happen, for instance
in the case of the eruption of the Eyjafallajökull volcano [59]. Studies of static and dynamic
robustness can also be of interest for airlines as it will be shown in Chapter 4. The use of
the hub-and-spoke network configuration by Full-Service Carriers can make these airlines
particularly easy to attack and they might consider to organize their route networks on a
multihub-and-spoke basis to gain resilience facing intentional attacks.
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3.1 abstract

The aim of this study is to analyze the robustness of the route network of the three major
airline alliances (i. e., Star Alliance, oneworld and SkyTeam). Firstly, it is proposed a nor-
malization of a multi-scale measure of the vulnerability in order to perform the analysis
in networks with different sizes (i. e., number of nodes). It is also proposed an alternative
node selection criterion to study robustness and vulnerability of complex networks, based
on the efficiency of a network. And lastly, it is described a new procedure –the inverted
adaptive strategy– for sorting the nodes in order to anticipate the breakdown of a network.
Finally, the robustness of the three alliances network is analyzed with (1) the normalized
multi-scale measure of the vulnerability, (2) the adaptive strategy based on four different
criteria and (3) the inverted adaptive strategy based on the efficiency criterion. Results show
that Star Alliance has the most resilient route network, followed by SkyTeam and oneworld.
Besides, the inverted adaptive strategy based on the efficiency criterion –inverted efficiency–
shows a great success on quickly breaking networks similar to betweenness criterion but
with even better results.

3.2 introduction

The coordination of airline activities in alliances has been one of the major traits of this
industry since the beginning of the 90s, and in the last decade most of the Full-Service
Carriers and regional airlines have participated in an airline alliance. Airlines can join al-
liances for several reasons. First, alliance members can benefit from economies of scale and
density: without increasing the investment in aircrafts, alliance members can extend their
route network and offer a wider range of frequency to customers in selected routes. Further-
more, alliance members can explore more easily ways to collaborate with other members
through codesharing, joint-ventures or even merger and acquisitions [111]. Finally, alliance
members can benefit from the joint offering benefits to customers (e. g., frequent-flyer pro-
grams) or from the joint purchase of supplies such as fuel. In respect to consumer welfare,
airline alliances lower the fares of interline flights, which compensates the fare raises in
interhub flights [34, 35]. Though, It must be noted that competence of alliance members
in coordinating routes and fares is an important requirement for passengers benefits to
materialize [112].

When an airline joins an alliance, the reliability of the services offered to customers de-
pends not only on the flights the airline operates, but also on the operations of the rest of

33
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alliance members, since most of the routes offered by alliances are operated on a hub-and-
spoke basis. Then, although airline alliances have been formed for operational and compet-
itive reasons, the ascription to an alliance can determine the robustness of the incumbent
airline networks.

The aim of the present study is to analyze the vulnerability of the airline alliances route
network (AARNs) to errors (i. e., random isolation of an airport) and attacks (i. e., isolation
of well-connected airports with the aim of causing the maximum damage to the route
network). This assessment is performed by two different approaches: first, using a multi-
scale measure of vulnerability [109], and second, examining the effect of the disconnection
of a fraction f of well-connected nodes on the size of the giant component. This study
can shed light on the robustness of real networks, not only for the special case of airline
alliances, but also for networks sharing similar topological properties.

3.3 methods

3.3.1 Vulnerability

In [109], Boccaletti and colleagues developed a multi-scale measure of the vulnerability of
a graph G introducing the coefficient p at the characteristic formula of the average edge
betweenness as:

bp(G) =

(
1
|E| ∑

l∈E
bp

l

)1/|p|

(7)

where |E| is the number of edges, and bl is the betweenness of the edge l calculated as:

bl = ∑
i 6=j

nij(l)
nij

(8)

where nij(l) is the number of geodesics (i. e., shortest paths) from node i to node j that
contain the edge l, and nij is the total number of shortest paths.

If one wants to compare the vulnerability of two networks G and G′ with similar struc-
tural properties, one first has to compute b1. If b1(G) < b1(G′), then G is more robust (less
vulnerable) than G′. If b1(G) = b1(G′), then one has to compute bp for values of p > 1 until
bp(G) 6= bp(G′). Then, the network with the least value of bp will be the most robust one.
In general it has to be considered the full multi-scale sequence of betweenness coefficients
(bp(G))p≥1 in order to get a sharp approach to the robustness of the network [109].

This procedure can be used to assess differences in vulnerability between airline alliance
route networks (AARNs). As has been shown in Table 3.1, AARNs have a really different
number of nodes and edges, so the measures of vulnerability have to be normalized in
order to be able to compare graphs. One possible normalization procedure can be defined
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using the graphs of N nodes with minimum and maximum vulnerability: the complete and
the string graphs, respectively. A complete graph of N nodes is a fully connected graph
where each node has N − 1 edges. It is easy to see that the complete graph is the graph
with the minimum vulnerability, being b(Gcomplete) = 1. On the other hand, a path graph
of N nodes can be defined as a string of nodes attached to its neighbors. Each node has
two edges excepting the two end nodes of the string that just have one. This graph has the
maximum vulnerability among all graphs of N nodes. With this graphs, [113] proposed a
normalization for b(G) as:

bnor(G) =
b(G)− b(Gcomplete)

b(Gpath)− b(Gcomplete)
=

b(G)− 1
N(N+1)

6 − 1
(9)

This normalization can be extended for other scales of vulnerability where p 6= 1. Consid-
ering the multi-scale approach on a complete graph, one can easily see that (bp(Gcomplete))p≥1 =

1. For the path graph, although it is known that b1(Gpath) =
N(N+1)

6 , this simplification can-
not be extended for p > 1. Despite of that, it is easy to see that bp(Gcomplete) ≤ b(G) ≤
bp(Gpath). As a consequence, the normalization of the multi-scale measure of the vulnera-
bility of a graph is defined as:

bpnor (G) =
bp(G)− bp(Gcomplete)

bp(Gpath)− bp(Gcomplete)
=

bp(G)− 1
bp(Gpath)− 1

(10)

where Gpath and Gcomplete have the same number of nodes than G.

3.3.2 Size of giant component

An alternate method to assess robustness is to examine the decrease of the size of the giant
component when a fraction f of nodes is isolated. To select the nodes to isolate, several
node selection criteria can be adopted. In this study, the robustness to intentional attacks
for each AARN attacks will be analyzed using six different node selection criteria: degree,
betweenness, modal analysis, damage, Bonacich power and inverted efficiency. For the first five
criteria, an adaptive strategy is adopted: each time a node is isolated, the measure for node
selection is recalculated for all still connected nodes, and the node with the highest value
is selected to be disconnected in the following step. These five criteria have been described
in Chapter 2. In this analysis, a new way for analyzing the robustness of a network is used,
the inverted efficiency. For this purpose, two new features are introduced altogether: the use
of the efficiency for assessing the robustness of a complex network and how to invert the
adaptive strategy.
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3.3.2.1 Efficiency

Latora and colleagues [80, 83] introduced the efficiency of a network as an indicator of its
own traffic capacity as:

E =
1

N(N − 1) ∑
i 6=j

1
dij

(11)

In the analysis carried in Chapter 2, it can be observed that the decrease of the efficiency
of the network has an evolution similar to the decrease of the size of giant component.
Therefore, a promising criterion of node selection for maximizing attack effectiveness could
be selecting the node whose disconnection causes the maximal decrease of efficiency. If an
adaptive strategy is used, the decrease of efficiency caused for the isolation of each of the
remaining nodes must be recalculated for the next iteration. Note that efficiency, as damage
criterion, is a network measure, while the other criteria are based in node measures. While
for damage criterion the node to be selected is the one whose isolation maximizes this
measure, for the efficiency criterion is the one that minimizes it.

Figure 3.1: Example of the inverted adaptive strategy. Grey circles: activated; white squares: desactivated
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3.3.2.2 The inverted adaptive strategy: Inverting the procedure

When following an adaptive strategy, the usual (direct) procedure to attack a network con-
sists on starting with the connected network, and then disconnecting nodes one by one
–selected following a criterion recalculated for each disconnection– that might bring a de-
crease of the size of giant component as large as possible, recalculating the value of the
criterion for all remaining nodes each time a node is isolated. For each criterion it is pos-
sible to construct an inverted procedure, beginning with an isolated network and adding
–activating– nodes keeping the giant component as small as possible. The edges considered
for computing the size of the giant component are those between activated nodes, and the
process ends when all nodes of the original network are activated. The direct adaptive strat-
egy starts with the original network and wants to disconnect as soon as possible the most
central or important nodes, while the inverted adaptive strategy (IAS) presented starts from
an empty network and wants to connect the most important nodes as late as possible.

A good starting point for an IAS is to compute the betweenness centrality for the nodes
of the whole network, and select for activation the nodes with betweenness centrality equal
to zero. These nodes are among the last ones to be disconnected with the usual direct
procedures, and the network obtained considering the edges linking these nodes should
have a giant component of value zero or one. The node selection procedure will be different
for criteria based on node measures and on network measures:

• Node measures: for node measures such as degree or betweenness, the node to be
selected in each step is the one that, when activated, has the smallest value of the
measure among the non-activated nodes.

• Network measures: in the straight version of the network measures criteria, the node to
be disconnected is the one that whose disconnection either maximizes (e. g., damage)
or minimizes (e. g., efficiency) the chosen measure. For the IAS, the node to be acti-
vated will be the one whose activation minimizes (e. g., damage) or maximizes (e. g.,
efficiency) the chosen measure, respectively.

In the first activations of the IAS there can be a lot of draws between nodes. A possible
criterion for breaking draws is to select the node with the lowest value of betweenness cen-
trality in the initial network. For illustrating purposes, Figure 3.1 exemplifies this procedure,
showing each step of an IAS based on the degree criterion. The graph of study is the one
showed in Figure 3.1a. The first step is to take its nodes and generate an empty graph (see
Figure 3.1b), where all of them are deactivated. To initiate the process, the betweenness for
all nodes of the original graph is calculated: bi = (26, 0, 0, 0, 0, 25, 8, 0, 0, 0). Then, all nodes
with zero betweenness are activated (see Figure 3.1c).

Following the IAS, in each iteration the non-activated node with minimum degree has to
be activated. For instance, in the first iteration the non-activated nodes are A, F and G (see
Figure 3.1c). If A were activated, its resulting degree would be 4 with A-B, A-C, A-J and A-I
connections. In the same way, the degrees of F and G would be 2 (F-E and F-D) and 1 (G-H)
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in this iteration, respectively. As G is one of the nodes with minimum degree, it is the node
to be activated in the first iteration (see Figure 3.1d), only adding the the connection G-H.

For the second iteration, the non-activated nodes are only A and F. If activated, A would
have a degree of 4 and F a degree of 3. Therefore, F is the node to activate in the second
step (see Figure 3.1e). Finally, there is just A left to activate (see Figure 3.1f), and the process
ends since all nodes have been activated.

3.4 results

3.4.1 Topology of alliances route networks

The three current global airline alliances (Star Alliance, SkyTeam and oneworld) have been
included in the study. These three alliances offer around 9, 136 routes, which represents a
36% of the routes of the global ATN (see Chapter 2). It must be said, though, that the routes
offered by alliances represent around two-thirds of total industry capacity [111]. Therefore,
routes operated by alliances are among the most important, in terms of passengers and
revenue, of the whole airline industry.

An AARN has been constructed for each alliance, in which the edges are the routes
where at least one of the alliance members acts as marketing airline, and the nodes are the
airports covered by the set of routes. Codesharing flights have been included considering
that alliances are formed by airlines from all around the world and it would be difficult
to find some area where they would not been operating. Therefore, it has been considered
that alliances have no spoke airports that depends from an intermediate hub. Airports are
selected as nodes rather than cities, given that airports are the likely target of an intentional
attack. The set of marketed routes is the route portfolio that the alliance offers to customers,
therefore it makes more sense to assess the robustness of this set instead of the smaller set
of operated routes.

N E 〈k〉 L C ν

Star Alliance 1, 150 4, 240 7.37 3.24 0.77 < 0

SkyTeam 896 3, 226 7.20 3.13 0.74 < 0

oneworld 741 1, 670 4.51 3.28 0.71 < 0

Table 3.1: Main topological properties of AARNs. The quantities measured are: number of vertices N,
number of edges E, characteristic path length L, clustering coefficient C, average degree 〈k〉,
and type of correlations.

To define the network, it has been considered a time horizon that lasts from November
2011 to March 2012 as all alliances have a stable number of members. In this period had
taken place three changes of alliance membership: Ethiopian Airlines (ET) became mem-
ber of Star Alliance in December 2011; in April 2012 bmi British Midland (BD) left Star
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Figure 3.2: Degree (k) and betweenness (b) cumulative distributions for each alliance
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Alliance; and Air Berlin (AB) entered oneworld. Therefore, routes marketed by each AARN
between December 2011 and March 2012 define the edges of each network that link the
airports operated. These routes are obtained from the SRS database complied by IATA. As
the majority of connections are reciprocal, the three alliance networks have been treated as
an undirected network [21]. The AARNs have been considered as unweighted networks,
since the purpose of this research is to assess the effect of a total disconnection of airports
from the alliance network.

Table 3.1 reports the values of the main topological properties for the three alliances.
When compared with the global ATN, the AARNs have smaller values of average path
length and L and higher values of clustering coefficient C (as reported in Chapter 2, the
ATN has L = 3.94 and C = 0.64). Thus, all the AARNs have the small-world property and
also a high clustering coefficient.

Figure 3.2 reports the degree and betweenness cumulative distributions for each AARN,
in a log-log scale. The three AARNs have a similar cumulative degree distribution (that
is, the probability that a given node has a degree of value k), which follows a truncated
power-law distribution, but with a less stark truncation than the obtained for the global
ATN. Similarly, the cumulative betweenness distribution is similar for the three AARNs,
and also follows a truncated power-law distribution, thus showing the presence of a sub-
set of airports with high values of betweenness centrality for each alliance. Degree and
betweenness cumulative distributions of alliances can be smoother than the ones for the
global ATN for two reasons: on the one hand, a large set of airports with low degree (i. e.,
with few connections) present in the global ATN are not covered by airline alliances, and
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Figure 3.3: Betweennes (b) as a function of degree (k) for each alliance
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on the other hand, each alliance has a subset of airports with high number of connections
and high betweenness centrality, as compared with the global ATN which includes all of
them.

A distinctive feature for Star Alliance is shown in Figure 3.3, which compares the between-
ness and the degree of each airport for each alliance. The graph of Star Alliance shows a
similar pattern to the on observed for the global ATN (also considering nodes as airports,
like in Chapter 2, or nodes as cities link in [21]): the appearance of nodes with a high value
of betweenness and a low value of degree. In the other two graphs, though, it can be ob-
served a strong correlation between degree and betweenness, with no airports showing the
pattern of low degree and high betweenness. On the other hand, Star Alliance has a more
continuous distribution of degree and betweenness, while the other two alliances have air-
ports with values of degree and betweenness much higher than the rest (i. e., one in the
case of oneworld and three for SkyTeam).

3.4.2 Robustness of airline alliances route network

Figure 3.4 depicts the multi-scale vulnerability measures for the three alliances for values
of p ranging from 1 to 50. In order to compare the vulnerability of each alliance, the val-
ues of the multi-scales measures have been normalized following the procedure described
in Section 3.3.1. The results show that Star Alliance is the alliance with lowest values of
vulnerability, followed by SkyTeam and oneworld, respectively. Therefore, according to this
measure, oneworld seems to have the most vulnerable network and Star Alliance the most
robust one.

Figure 3.5 shows an alternative assessment of the robustness of the alliances route net-
work: the evolution of the size of the giant component when a fraction f of the nodes is



3.4 results 41

Figure 3.4: AARNs multi-scale vulnerability comparison
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isolated. The criteria used to select the nodes are the ones described in Section 3.3.2: be-
tweenness, degree, Bonacich power, damage, modal analysis and inverted efficiency. As all node
criteria disconnect the networks for f > 9%, this value has been adopted as the threshold
for Figure 3.5. At a first glance, it can be seen that while node selection criteria give dif-
ferent results for Star Alliance and SkyTeam, the results of all criteria are quite similar for
oneworld. A possible explanation of the behavior of oneworld comes from its topological
properties: Figure 3.3 shows that oneworld is the alliance whose betweenness and degree
are most correlated as all nodes with high degree have also high betweenness. It can also
be observed that oneworld appears as the least robust network, as for f ' 2.5 the giant
component has decreased significantly.

As for Star Alliance and SkyTeam, node selection criteria offer different results, with a
similar pattern than the one obtained for the global ATN in Chapter 2. The most effective
criteria to select nodes to attack Star Alliance and SkyTeam networks turn out to be be-
tweenness and inverted efficiency (see Figure 3.5). In fact, it can be observed that inverted
efficiency anticipates the significant falls of size of giant component obtained with between-
ness. For values of f around 2% and 2.5% inverted efficiency is the most effective criteria
in both networks. The greater performance of betweenness in front of the rest of criteria,
except inverted efficiency for Star Alliance and SkyTeam can also be explained in terms of
the degree vs betweenness graphs in Figure 3.3. Figure 3.6 shows the detailed decrease of
the size of giant component for f ≤ 2%. For low values of f , damage is the most effective
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Figure 3.5: Vulnerability of AARNs f ≤ 9%

Star Alliance SkyTeam oneworld
# disconnected airports

si
ze

 o
f t

he
 g

ia
nt

 c
om

po
ne

nt
 (

#
 a

ir
po

rt
s)

% disconnected airports

0 2 4 6 8

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

0 20 40 60 80 100 120

0 2 4 6 8

0
20

0
40

0
60

0
80

0
10

00

0 20 40 60 80

0 2 4 6 8

0
20

0
40

0
60

0
80

0

0 20 40 60 80

Betweenness
Degree
Bonacich Power
Damage
Modal
E inv

way of attacking all AARN. More precisely, in all cases damage overcomes the rest of node
selection criteria until the first break is obtained through betweenness of inverted efficiency.

The topology of Star Alliance replicates, to some extent, a property observed in [21] for
the global ATN: the existence of central (i. e., high betweenness), low-connected (i. e., low
degree) nodes. This property is less salient in the case of SkyTeam, but nevertheless thus
alliance has also a multicommunity structure where there are some central airports with a
connectedness lower than expected, considering its network centrality.

From the results of the analysis reported in Figure 3.5, the most robust AARN to inten-
tional attacks is the Star Alliance network, followed by SkyTeam and oneworld. Using the
betweenness or inverted efficiency node selection criteria, the first network break –a signif-
icant decrease of the size of giant component– occurs for values of f ' 1.5% for oneworld,
of f ' 2% for SkyTeam and f ' 2.5% for Star Alliance (for the first two alliances, the
first break can be observed in detail in Figure 3.6). When attacked, the size of giant com-
ponent of Star Alliance falls abruptly with one single break, while for the other alliances
the disruption of the giant component occurs in two steps. Interestingly, the results of rank-
ing the robustness of alliances by decrease of size of giant component are the same of the
standardized multi-scale vulnerability (see Figure 3.4).

3.5 conclusions

The airline alliances are an idiosyncratic mode of coordinating airline operations that al-
lows airlines to provide customers worldwide mobility through collaboration with other
airlines. The routes marketed by any of the members of the alliance define the airline al-
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Figure 3.6: Vulnerability of AARNs. Detail: f ≤ 2%
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liance route network, or AARN. Although any alliance covers all the global air transport
network (ATN), all of the three alliances have global reach and their routes are among the
most important of the ATN, in revenue and passengers transported. The AARNs are net-
works with a truncated power-law distribution, the small-world property (i. e., low average
path length) and high clustering coefficient. The Star Alliance network is the most similar
to the global ATN, since it includes central airports (i. e., airports with high betweenness
centrality) with low connectedness (i. e., with low degree). For SkyTeam and oneworld is
observed a strong correlation between node degree and betweenness.

The robustness of AARNs has been analyzed through two methods: the multi-scale mea-
sure of vulnerability, defined in [109], and the study of the effect on the size of giant compo-
nent of the isolation of a fraction f of the airports covered by the alliance following several
node selection criteria. In order to allow network vulnerability comparison, a normalization
procedure has been defined for the multi-scale vulnerability. To perform the later analysis,
the inverted adaptive strategy (IAS) for defining node selection criteria has been defined.
Rather than starting with the connected network and trying to disconnect it as soon as pos-
sible, IAS starts with a disconnected network, and adds new nodes in order to connect the
original network as late as possible. From the results of the robustness analysis of the global
ATN in Chapter 2, it has been considered convenient to define a IAS in the analysis based
on reducing network efficiency.

Both methods of assessing network vulnerability coincide in that the most robust AARN
is the Star Alliance route network, followed by SkyTeam and oneworld. In all cases, the
node selection criterion based in damage is the most effective for low values of f (around
2%), while betweenness and inverted efficiency are the most effective for higher values of
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f (between 2% and 9%). The later criteria disconnect the networks through breaks (abrupt
reductions of giant component). In fact, betweenness and inverted efficiency are the most
effective for values of f when the first break occurs. The merit of the inverted efficiency
criterion is that breaks appear before the betweenness criteria, therefore the former being
the most effective for some ranges of f . Interestingly, Star Alliance has a single break of
the giant component for f ' 2.5%, while in the other two AARNs two breaks occur, of a
relative size half of the value of the break of Star Alliance.

Airline alliances have appeared for economic and operational reasons, since they allow
airlines benefit from economies of scale and density. A deeper insight of how AARNs are
formed can include criteria based on robustness in the decisions shaping alliance evolution.
Airlines seeking in which alliance participate should take into account the gain or loss of
robustness of their marketed route network after joining the alliance. On the other hand,
alliances seeking partners should balance the gain of coverage of the network with the
variation of robustness of their AARN.

The results of the analysis reported in this study allow to compare the results of the
robustness of the alliance route networks with the global ATN, analyzed in Chapter 2. As
indicated in Chapter 1, the next step is to assess the robustness of individual airlines route
network. It must be noted that individual airlines have features that should make their
network different from the AARNs and the global ATN. First, airlines route networks do
not have the global scope of alliances, and it must also be considered that the airline route
network could depend on the business model adopted by each airline.
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4.1 abstract

Network strategies adopted by airline carriers have been a recurring subject in air trans-
port research. Disruption of communication via air routes by intended causes (e. g., terror-
ist attack on an airport) or unintended (e. g., weather) could be a serious drawback for the
operations of the affected airlines. Airlines should be able to reduce the effects of such inter-
ruptions in order to ensure good communication through air transport (i. e., maximize the
robustness of their network at a reasonable cost). To do this, a complex network approach
provides a network robustness analysis. As showed in Chapter 1, the literature review of
the study of air transport route networks through an analysis of complex networks has
highlighted a lack of contributions to the study of the dynamic behavior of such networks.
This behavior, however, has been analyzed for other transport networks or communication
systems. Since airline carriers have different network strategies –especially considering the
use of hub airports where traffic intensifies and therefore exists greater risk to an attack on
the hub– the aim of this research is to study how airline carriers respond to intended and
unintended airport closures depending on their network configurations.

4.2 introduction

The air transport industry is one of the most dynamic industries in the global economy
and with one of the toughest competition. The liberalization of the airline sector [114]
has produced very distinct business models among the airlines [115], being the design of
their route networks a strategic factor, in addition to others such as the cost structure and
principal services.

Most of the times the airlines make the election of operating a route based on the existing
supply and demand volumes. The robustness of its network is considered of secondary
importance, although it can provide great improvement to the stability and security of the
operation of the carrier. Many domestic airlines are often associated with the image of a
country or region and produce a huge economic impact on its national and international
economy. Collapse or critical error of airline network can produce high financial costs for
the airline and all its geographical area of influence [20].

The examination of flight networks (i. e., networks where the airports act as nodes con-
nected if at least one direct route between them exists) through complex networks tech-
niques can provide a deeper understanding of the behavior of airline networks when fac-
ing random errors and intentional attacks. Recent articles have analyzed the topology of the

45
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air transport network in order to understand their distribution and characteristics. These
studies have assessed the behavior of both global and regional air traffic networks [21, 22].
Other studies have analyzed the robustness of the air transport network in order to deter-
mine which airports can be critical if they cease operations [47, 50, 57]. However, airlines
(the main users of such airports) have been rather unnoticed in the literature with just a few
studies [33, 54]. Currently, there are two predominant business models: Full-Service Carriers
(FSC) and Low-Cost Carriers (LCC). These types of carriers are characterized by having, re-
spectively, hub-and-spoke (HS) and point-to-point (PP) network configurations, although in
the last case the model has size limitations due to network route density issues [116]. Given
the differences in network topology their behavior in front of the malfunction of airports,
its robustness, should be quite different.

The aim of this study is to study the robustness of airline networks when facing attacks
and errors. In order to compare the robustness of the point-to-point and hub-and-spoke
network configurations, the set of airlines to be studied will include Full-Service Carriers
and Low-Cost Carriers.

4.3 robustness of configurations of airline networks

The business models and strategies of airlines strongly define their network structure. Tra-
ditional airline network analysis measures its topology variables depending on traffic dis-
tribution or concentration of frequencies [117, 118, 119]. One objective of these studies is
to relate, compare and resemble an airline network to the HS and PP configurations. LCC
adopt a PP network configuration because they connect city pairs that offer high load fac-
tors and therefore optimize their operability. On the other hand, FSC often develop a HS
configuration, offering more destinations by using one or more strategic hubs where large
passenger flows concentrate. This allow FSC to get a profitable load factor on routes apply-
ing economies of scale [120].

Both HS and PP configurations can be described schematically through a network of four
nodes, as shown on Figure 4.1. The HS configuration is represented on the right. It consists
of a central node or hub H connected to the other nodes, thus only three routes are needed
to bond the four destinations. The PP configuration is shown on the left and it uses a total
of 6 routes to connect all possible node pairs. Generalizing these concepts for n airports
to connect all their destinations, the PP configuration requires n(n− 1)/2 routes while the
basic HS configuration works with only n − 1 [120]. It is also important to consider the
temporal distribution of each model, a fact directly related to the schedule of flights for
each airline. The hub of the HS configuration concentrates a high traffic density in space
and time [119].

In the scheme proposed on Figure 4.1, the HS configuration concentrates a larger volume
of flights and passenger traffic in the switching times. For example, for being able to go
from B to A and from C to A one must call at H. Therefore, it is necessary to coordinate
the arrivals of the first section and the exit of the second at the hub. This would give
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enough time to operate the connection without hindering the operability of the airline. The
PP traffic model is temporally and spatially more dispersed because airlines adopting this
configuration often operate from airports where planes sleep. The reasons for this strategy
are both economic and political due to the lack of volume of demand on certain routes, the
absence of slots at airports and rotation need to optimize the operational fleet [120].

Figure 4.1: HS and PP configurations. Source: [120]
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modern carriers’ network design and, if possible, to account for differences
between LCC and FSC networks in Europe. This is a relatively new research
attempt with a few notable earlier exceptions. First, the problem of measuring the
network configuration is addressed in terms of the HS versus the PP network and
not only the hub concentration. Second, both the spatial and the temporal dimen-
sions are assessed and combined in one picture in order to reach a broader and
more complete description of the network configuration. Third, the paper applies
empirical methods originating from social network analysis, i.e. the Freeman
index and what is called the Bonacich approach.

The paper is organized as follows. The second section provides some basic defi-
nitions of airline networks. The third section explores the network configurations
of European FSCs and LCCs over the last 8 years. It reviews different measures of
spatial configuration, i.e. the traditional measures used by the transport literature,
such as the Gini concentration index, and those developed by social network anal-
ysis (the Freeman and the Bonacich centrality indexes). Finally, an operational
measure is provided to capture time-based centrality that is called the ‘connectiv-
ity ratio’. The fourth section presents the overall results of the analysis. The fifth
section concludes the paper.

Network Definitions: A Review

There is no unique or even widely used definition of what exactly constitutes an
HS or a PP network. Instead, a number of definitions coexist. From a network
design perspective the HS or PP network can be described by using a simple
network of four nodes. Figure 1 depicts two ways of connecting the nodes. On
the left the nodes are fully connected through PP relations; on the right there is an
HS relation. Airport H is the hub through which the other airports are connected.
Note from Figure 1 that it takes three routes to connect all the nodes in the HS
system, whereas this takes six routes in the PP network. Generalizing the exam-
ple, given n airports, the possible number of city-pair combinations is: n(n – 1)/2.
Hence, the pure PP system requires n(n – 1)/2 routes to cover all combinations,
whereas the HS system allows carriers to cover the same airport combinations
with only n – 1 routes.
Figure 1. Point-to-point network versus a hub-and-spoke networkFrom an air traffic management perspective, HS and PP structures are related
not only to spatial concentration, but also to temporal concentration.

Burghouwt and De Wit (2003) explained the spatial configuration by the levels
of concentration of an airline network around one or a few central hubs. This
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However, the design of an airline network is a complex process adapted to maximize the
profitability of the airline. Thus it is not surprising to verify that the FSC and LCC business
models evolve depending on market opportunities. For example, in 2006 Iberia created
Clickair as a LCC following a multi-brand strategy to maintain product differentiation.
That same year Aer Lingus was redefined as a LCC because of the major survival threats it
was facing [33]. But robustness issues, although not usually considered in airline network
development, can affect seriously airline profitability in the long term, and have a relevant
impact in the economy.

The global air transport network is responsible for the movement of thousands of people
daily. Considering its magnitude, any failure and inefficiency on flight operations causes a
high economic cost for many business sectors. The volcanic eruption of Eyjafallajökull on
March 14, 2010 in Iceland restricted the European air traffic and left areas out of operation
for 30 days [105]. It caused about 10 million delays on the operating airports. Economically,
the revenue loss of the affected companies was estimated to be about $1.7b [106]. The conse-
quences of Hurricane Sandy on the US East Coast, an area that holds major hubs connecting
to Europe, resulted in 17, 000 cancelled flights and a loss of $0.5b in airlines revenue [121].
The cost for the airlines of the 2010 Spanish controllers strike is estimated to be $134m [93].
That same year snow and strikes cost easyJet £31m [94]. These examples show the large
economic consequences that affect both states and airlines themselves. Therefore, the ro-
bustness of an airline network and its response to intended attacks or errors in its airports
is vital for the proper development of the sector.
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4.4 methods

A total of 10 FSCs and 3 LCCs (see Table 4.1) route network have been analyzed.

During the summer period, and more precisely in August, there is a higher passenger
traffic affecting directly on passengers relocation, being this period the one with the highest
contribution margins for the airlines. The route networks of scheduled flights of August
2013 have been chosen for the analysis in order to be able to assume this analysis as static
without taking into account the relocation of passengers. The graph of the route network in
this period for each airline has been constructed. In the graph the vertices represent airports
and the edges represent the operated routes scheduled between them. Airports are selected
as nodes rather than cities, given that airports are the likely target of an intentional attack.
Table 4.2 shows the list of selected airlines together with the number of airports (N), number
of connections (E) and other topological properties of their network. The network will be
treated as undirected since just a small number of flights follow a "circular" pattern [21].

Airline Name Alliance Region

LH Lufthansa Star Alliance Europe

UA United Airlines Star Alliance North America

US US Airways Star Alliance North America

AB airberlin oneworld Europe

AA American Airlines oneworld North America

BA British Airways oneworld Europe

AF Air France SkyTeam Europe

MU China Eastern SkyTeam China

CZ China Southern SkyTeam China

DL Delta SkyTeam North America

FR Ryanair LCC Europe

U2 easyJet LCC Europe

WN Southwest Airlines LCC North America

Table 4.1: Airlines analyzed by IATA code

Only flights that are operated for the selected airlines are being considered thus dismiss-
ing the flights operating under codesharing agreements. The aim of this study is to analyze
the robustness of the airline so adding codesharing flights could blur the results. For exam-
ple, by considering the codesharing flights on the network of British Airways, Dallas/Fort
Worth would appear as the airport with the highest degree, followed by London Heathrow,
O’Hare, Miami and London Gatwick airports. However BA is actually not allowed to flight
a route from Dallas/Fort Worth to another American destination. If this airport had been
selected the resulting robustness would have been miscalculated. Disconnecting their real
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hubs (i. e., London Heathrow, London Gatwick and London City) BA would not have been
able to flight any route from Dallas/Fort Worth nor O’Hare nor Miami airports.

The sample of airlines includes FSC belonging to the main three current airline alliances
(i. e., Star Alliance, oneworld and SkyTeam) analyzed in Chapter 3, fulfilling the require-
ments of maximum number of airports, maximum number of passengers per year and/or
maximum income within their alliance as published respectively on their annual report for
2012 [122, 123, 124]. Nevertheless, it must be noticed that airberlin was defined as a LCC
before becoming part of oneworld but in this study has been considered as a FSC. This is
because it belongs to an airline alliance and cooperates with other airlines, a feature uncom-
mon for a LCC. The 3 selected LCC are those that operate a higher number of flights per
year.

N E 〈k〉 L C ν

LH 209 395 3.78 2.18 0.93 < 0

UA 362 933 5.15 2.57 0.91 < 0

US 203 408 4.02 2.26 0.96 < 0

AB 119 361 6.07 2.31 0.51 < 0

AA 272 523 3.85 2.3 0.94 < 0

BA 186 223 2.4 2.87 0.15 < 0

AF 178 258 2.9 2.42 0.46 < 0

MU 182 571 6.27 2.5 0.55 < 0

CZ 178 576 6.47 2.45 0.62 < 0

DL 328 882 5.38 2.38 0.88 < 0

FR 178 1, 396 15.69 2.16 0.44 < 0

U2 131 601 9.18 2.19 0.39 < 0

WN 86 507 11.79 1.97 0.72 < 0

Table 4.2: Main topological properties of airlines route network. The quantities measured are: number
of vertices N, number of edges E, characteristic path length L, clustering coefficient C,
average degree 〈k〉, and type of correlations.

The static robustness analysis in air transport can evaluate the effect of errors (e. g.,
weather inclemencies) or attacks (e. g., terrorism) in a route network. Network robustness
can be assessed through the effect of the isolation of a fraction f of nodes on the size of the
network’s giant component. The network will be robust when the size of giant component
decreases little for relativelt high values of f [19, 113]. The study of the robustness allows to
evaluate the capacity of a network to avoid a malfunction when a fraction of its components
is damaged [13]. Thus, the network resilience (i. e., the tolerance to attacks and congestion
caused by any malfunction) can be analyzed. Although there is a lack of robustness studies
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on the air transport field, the study of the robustness of a network was one of the first issues
to be explored in complex networks literature [26].

In this study the network resilience to random failures and intentional attacks is analyzed.
For the analysis of random failures, 1, 000 iterations of random airport closures for each
airline were simulated. Regarding the study against attacks, the established methodology
has been to determine the order of importance of each airport according to a measure of
centrality, and simulate an isolated attack on the airport with the highest value of that
centrality. After each airport is disconnected the centralities are recalculated so that the
next attack strikes the new most central airport. The centralities used are the degree (i. e.,
number of connections of each node) and betweenness (i. e., number of times a node is
in the shortest path between two nodes). These are two of the standard measures of node
centrality that have been used in Chapter 2 and Chapter 3. With each airport offlined the
largest connected component, or giant component, will be observed in order to see how the
network fragmentation evolves.

4.5 results

4.5.1 Topology

Considering the impact of network topology on robustness, an analysis of degree distribu-
tions of the airline network of the selected airlines has been conducted. Figure 4.2 shows
the cumulative degree distribution plotted in double-logarithmic scale where P(k)cum is
the cumulative probability for a node to have degree k. There are three different behaviors
present, and none of them follows a Poisson distribution as it would be expected for ran-
dom graphs. This simple interpretation allows a distinction of the topological differences
of the business models.

On the top of Figure 4.2 there are the curves for FR, WN and U2. They have the lowest
initial gradient and a concave shape. This means that these carriers will have a more uni-
form network connection distribution. This shallow slope highlights the presence of a high
number of airports with 10 or more connections. This is the characteristic behavior of the PP
configuration. Although having this configuration, LCC also have operating airport bases
with a high number of connections that they use for operating and maintenance purposes.
For instance, Ryanair has around 50% of its airports with ten or more connections while
already having 115 connections in London Stansted.

The next set of airlines, AB, MU, CZ follow a more linear distribution in the double-
logarithmic scale that responds to a power-law degree distribution. airberlin, China Eastern
and China Southern have the highest values of mean degree 〈k〉 right below the first set
of airlines, all of them LCCs (see Table 4.2). These carriers have an intermediate behavior
between the LCCs and the remaining analyzed FSCs.

Finally, the remaining carriers are FSCs. They have a steeper fall as a response to a slightly
increase of the degree. This underlines the existence of many airports with 1 to 5 connec-
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Figure 4.2: Cumulative degree distribution plotted in double-logarithmic scale
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tions and very little with over 100 connections. For instance, the network of British Airways
consists of 186 airports spread over the five continents being London Heathrow airport the
node with the largest degree with 125 destinations followed by London Gatwick with 42
and London City with 20. The connections of the rest of the airports are drastically lower,
having more than a 75% of its airports with just one connection.

Through this, one can observe that FSC seem to have a clearly differentiated topology
from LCC. There are also the carriers with an intermediate behavior, airberlin or some
Chinese carriers such as MU and CZ. As discussed earlier on, airberlin was a LCC before
becoming part of oneworld. Therefore, this airline can have a hybrid behavior, with a busi-
ness model blending low-cost traits with those of full-service carriers [125]. The behavior of
Chinese carriers can be explained by the fact that most point-to-point flights are operated
from a few important airports.
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4.5.2 Robustness

For the first five criteria, an adaptive strategy is adopted: each time a node is isolated, the
measure for node selection is recalculated for all still connected nodes, and the node with
the highest value is selected to be disconnected in the following step.

In order to assess the network robustness of the airlines in study, the behavior of each
one has been analyzed after the progressive closure of airports as a consequence of errors
and attacks. To evaluate the robustness to intentional attacks, two adaptive strategies based
on degree and betweenness centralities have been tested. In an adaptive strategy, each time
a node is isolated, the centrality measure is recalculated for all still connected nodes, and
the node with the highest value is selected to be disconnected in the following step. It has
also been assessed the behavior of the airlines route networks when suffering errors, i. e.
random isolation of airports. A simulation of the behavior of the airlines facing errors has
been run 5, 000 times, and the average size of the giant component as a function of the
number of airports isolated has been retained. The evolution of the decrease of size of giant
component of each airline for the three tests (degree- and betweenness-based attacks and
errors) can be found on Figure 4.3. The number (up) and percentage fraction f (down) of
disconnected airports are depicted on the x axis.

As a consequence of the analysis of the robustness of airlines network against errors or
unintended causes, it can be concluded that there are no major differences between the
behavior of FSC and LCC (see point-dotted line in Figure 4.3). The decrease of the giant
component against errors caused by the disconnection of a fraction of airports equal to
f = 0.05 ranges from 5 to 10% of the initial size. This means that the network is not
particularly vulnerable to unintended attacks. Although there are not major differences
between FSC and LCC behaviors against errors, some minor differences can be observed.
Reviewing the decrease caused by a f = 0.05 disconnection, LCC ranges 5− 5.5% while
FSC ranges 7− 10%. FSC are a little less resilient than LCC against unintended attacks.

The conclusion of the study on the response in front of intended attacks is that, overall,
the best method of attack is the betweenness criterion as shown in Figure 4.3. In most of
the cases, however, there are small differences between the degree and betweenness criteria
attacks because of the network size and its structure. These are networks not as large as
the ones previuosly analyzed in Chapter 2 and Chapter 3. Their size is between 86 to 362
airports (see Table 4.2), where the airport that has the largest number of routes is usually
the busiest. For Lufthansa, US Airways, American Airlines and British Airways the giant
component variation is completely identical for both criteria. The most significant changes
are observed in the curves of China Eastern and Ryanair. It can be observed that they are the
airlines with the most distinct degree and betweenness curves. The maximum differences
on the curves occur on China Eastern, for a given f = 0.104 with a corresponding size of
the degree attack that exceeds in 31 airports the equivalent betweenness attack. And for
Ryanair, the maximal difference are 21 airports for a f = 0.270.
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A comparison of the robustness of the airlines is shown both with an almost total range
of f (see Figure 4.4a) and in more detail for low values of f (see Figure 4.4b) to achieve
better insight in the reduction of the size of the giant component after disconnecting the
first airports. Since the betweenness criterion has turned out to be the best elimination
criterion it will be the one considered from now on to compare the network robustness of
the selected airlines. According to airlines network behavior, the selected airlines can be
grouped in three different categories.

On Figure 4.4a it can be observed that LCC are much more robust and have a higher
tolerance to attacks than FSC. For LCC, to have less than 5% of the network connected
is necessary to disconnect up to a routes fraction of 0.28 for Ryanair (FR) and 0.26 for
Southwest Airlines (WN). For Easyjet (U2) the fraction of nodes to disconnect lowers to
0.17. One can also observe that at the start of the disconnection process (see Figure 4.4b) the
LCC also behave with a higher robustness. After isolating a fraction of nodes f = 0.04, the
giant component of the network of WN, FR and U2 still have the 91%, 84% and 70% of the
initial size, respectively. Given that WN is the airline with a network with the lowest number
of airports and under this perspective the initially most robust one, it can be concluded that
the robustness of the network of an airline is not proportional to its size but to its intrinsic
structure. As explained earlier, the three airlines have a PP route network configuration and
therefore this configuration is more resilient against attacks than HS configuration.

In consequence with Figure 4.4a it is considered that WN and FR fall into the first of the
three categories introduced above. As shown on Figure 4.4a, WN is initially more robust
than FR but around of the 11% of the airports disconnected in their route networks. Despite
the fact of also being a LCC, U2 has a clearly different behavior against this kind of attacks
and is necessary to group it with the second set category of airlines, i. e. China Eastern
(MU), China Southern (CZ) and airberlin (AB).

According to what has been exposed on the degree distribution section, MU, CZ and
AB show a particular behavior as FSC both on the medium (see Figure 4.4a) and low (see
Figure 4.4b) values of f . In order to have the network almost disconnected, i. e. just to a
5% of its original giant component size, these airlines must have a fraction of their airports
disconnected closer to U2 than to the other FSC: f = 0.13 for MU, 0.14 for CZ and 0.12 for
AB. For f = 0.04 the network size is much higher than it is for the carriers of the previous
category, being 56%, 46% and 48% respectively. This can be interpreted as a result of a
network structure laying somewhere in between the PP and HS. Although it is true that
each airline has one or two central airports both in degree and in betweenness measures,
Shanghai and Kunming for MU, Dusseldorf and Berlin-Tegel for AB and Guangzhou for
CZ, the rest of the network has a structure similar to a PP. This means that the decrease of
the size of the giant component against attacks is substantially more gradual than in the
HS configuration.

The last category of airlines includes the FSC carriers: Lufthansa (LH), United Airlines
(UA) and US Airways (US) from Star Alliance; American Airlines (AA) and British Airways
(BA) from oneworld, and Air France and Delta (DL) from SkyTeam. Those are the airlines
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Figure 4.3: Error and attack vulnerability of each airline transport networks. Plain line: betweenness
attack; Dotted line: degree attack; Point-dotted line: error
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where first attacks have a greater impact. After attacking around f = 0.04, the size of their
network’s giant component plunges to under a 5% of the initial size generating a severe
state of lack of operation capability (see Figure 4.4a). This behavior can be associated to the
HS structure because once the most central nodes are attacked, the network is almost com-
pletely disconnected. Given the fast pace of network breakage, in this case it is important
to assess the damage to lower fractions. For f = 0.01, the decrease of its size is not uniform
and varies in relation to the existence of a single hub or more (i. e., multi-hub-and-spoke
configuration).

From the results, it can be concluded that the FSC have a network configuration that
makes them weak against intentional attacks. For example, Charlotte-Douglas, Phoenix
and Philadelphia are the three main airports of US. They are followed by a less central
airport but with a big difference of centrality from the fifth, the Washington-National. After
attacking the first two ( f = 0.01) the size of the giant component is reduced to 64%, max-
imum robustness of this category, but after attacking the third and fourth ( f = 0.02) it is
reduced to just 6%. On the other extreme there is BA which, as discussed above, centralizes
its operations at Heathrow, followed by Gatwick and London City. By disconnecting only
a fraction of f = 0.01, i. e. the first two airports, the size of its giant component falls to
the 12% of its initial value, the minimum robustness of this category. For f = 0.02, after
closing the third and forth airports, the size drops to 5%. By also considering that an attack
against Heathrow would suppose the closure of the nearby airspace and consequently all
the airports in London, the network of British Airways would be virtually disconnected
and practically inoperative with a single attack.

It is also noteworthy the response to attacks of DL, the airline with the highest number
of airports in its network. After disconnecting its four most central airports, Atlanta, Min-
neapolis St.Paul, Detroit and New York JFK its network still has half of its nodes connected.
Atlanta stands out significantly in terms of degree and betweenness while the other three
airports, with lower indices, share similar values. After the attack on the next three airports
reaching f = 0.02, the size falls to 23%. AF shows a somewhat different behavior. After
the disconnection of its main hub Paris-Charles De Gaulle ( f = 0.01) the size of its giant
component is lowered to 38%. However, subsequent attacks to Paris-Orly and the other
airports downsize the giant component on a much more gradual way, since the degree and
betweenness indices decrease with a significantly lower rate than the other airlines. The
network that remains after isolating Paris-Charles De Gaulle has a structure similar to a PP
configuration, thus having a network structure similar to AB, MU and CZ but with a much
more prominent central hub.

Such considerations can determine that the damage caused by intentional attacks to net-
works with HS configuration is higher than to those with a PP configuration. The less hubs
the airline has, the more severe the damage is. The fact that the hubs are located closer
geographically can increase the potential damage, because of the damages associated with
the disconnection of the nearby airspace as exemplified in [59].
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Figure 4.4: Betweenness attack vulnerability of airline transport networks. a. Global ( f ≤ 25%). b. De-
tail ( f ≤ 4%)
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4.6 conclusions

In this chapter the analysis of the network robustness of thirteen airlines based on error and
attack simulation is performed. This simulation is run to verify if there is any difference on
the behavior of FSC and LCC business models.

The analysis has confirmed that FSC are more sensitive to intentional airport closure than
LCC. That is, disconnecting the FSC hubs causes a bigger harm than the disconnection of
the base airports of a LCC. On top of it, WN and FR, the most important LCC at the
moment turned out to be the most robust against attacks. Within the set of FSC there are
three airlines with a peculiar behavior. These are the Chinese MU and CZ, the only ones in
a region outside of Europe or North America, and AB, which was a LCC before it joined
oneworld, which explains its differentiation.

Whereas Figure 4.4b grants a more realistic approach of an individual attack approach,
Figure 4.4a allows to evaluate the consequences of attacking a higher number of airports.
Comparing the robustness of the set of studied airlines, it can be concluded that it is possible
to attenuate the consequences of attacks by means of disposing of a multi-hub-and-spoke
network. This network should be built by hub airports strategically disposed distant from
each other in order to avoid larger problems related to airspace closure. This distance would
allow an homogenization of the importance and centrality of the network without neither
losing operability, nor the possibility of applying economies of scale. A second action to
increase robustness would be to schedule PP connections on the less central airports to
connect them if one of their hubs fails, achieving with this an structure somewhere between
HS and PP. This second solution should take into account the supply and demand of each
route in order not to hinder the profitability of the airlines.

It is worth mentioning that these considerations are based on topological criteria applied
to complex networks. In the day to day of the airlines there are many other aspects that
define airline strategies [126], that can have an impact on route structure and network strat-
egy. Therefore the application of the proposed solution has to be evaluated deeply and in
detail. In future studies the passenger flux could be taken into account and as a result an in-
terpretation of the traffic loss that supposes the closure of airports may arise. Nevertheless
a similar result should be expected because the most central airports are those that con-
centrate a higher volume of aerial traffic in terms of flights and passengers. Despite these
considerations, further studies on this area will suppose a complement for the evaluation
of the protection, stability and safety of each airline network according to their business
model.
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Currently, the literature analyzing air route networks through a complex network approach
seems to be focused on the study of the topology of regional or global route networks as
shown in Chapter 1. The literature review has allowed the definition of different dimensions
or levels of study characterized by different units of analysis. Therefore, and given that each
level has different characteristics and properties, three levels of study have been proposed:
the global route network (L1), the airline alliance network (L2) and a particular airline network
(L3). They can be separated in two different approaches: the airline management approach
(L2 and L3) and the government policy approach (L1).

The study of the global route network (L1) looks at the competitive environment for air-
lines and the general framework of air transport development. On the other hand, alliances
and airlines network studies (L2 and L3, respectively) focus their attention on companies
or organizations and it allows to determine the properties of organizational networks. The
analysis of business networks (i. e., airlines or alliances) robustness could influence the de-
cisions to open new routes or negotiate new codesharing agreements while the analysis
of the robustness of route networks in a specific region (L1), whether they are continents
or countries, would help to make better decisions on air route development at the policy-
making level. This thesis has analyzed the topology and robustness of these 3 proposed
levels.

In Chapter 2, the resilience of the first level proposed L1 –the global air transport network
(ATN)– facing errors and intentional attacks has been assessed. This network is resilient
facing unintentional errors (i. e., random isolation of nodes), but has proven to be fragile
facing intentional attacks. The isolation of a small fraction of selected nodes can cause
serious problems to the functioning of the global ATN. This behavior can be explained by
the characteristics of the ATN. The ATN is a scale-free (SF) network, with a truncated power-
law distribution, thus less resistant to attacks than homogeneous networks. Furthermore,
the ATN has additional properties that make it different to other SF networks, such as
the presence of central airports with a reduced number of connections. The presence of
these airports can be explained by the socioeconomic and political factors [21], and also by
operational reasons (for instance, the adoption of hub-and-spoke route configurations by
Full-Service Carriers).

Chapter 2 has assessed the effectiveness of five criteria of node selection to simulate
attacks using an adaptive strategy, in terms of reduction of size of giant component as a
function of the fractions of isolated nodes f . The damage criterion is the most effective
for f < 0.025, and that the betweenness criterion overcomes damage for higher values
of f . The list of the first airports disconnected with each criterion has shown that while
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the betweenness criterion selects airports belonging to the ATN core (i. e., US, Europe and
China), damage criterion selects airports belonging to more peripheral communities of the
ATN. The security and performance of the most critical airports found in both criteria –FRA,
ANC, CDG, AMS, FAI, SEA, PPT, etc. (see Table 2.1)– should be properly reviewed due the
great impact that a possible malfunction would have on the entire ATN.

It has also been introduced the Bonacich power criterion to select the nodes to isolate in
an intentional attack. Although it is not the most effective criterion to disconnect the ATN,
for most of the values of f it has beaten the degree criterion. The Bonacich power criterion
should need to be tested on other networks to determine its true potential. For instance, it
would be interesting to apply this criterion to simulate attacks to networks where the degree
criterion is more effective than betweenness (e. g., the power grid). The modal analysis
criterion has proven to be the most effective to attack power grid networks [19], but it has
not been so effective when used in the ATN. It has just proven to be effective when more of
the 10% of airports were disconnected. This fact shows that different SF networks can have
different properties regarding its strength facing intentional attacks.

The results of the comparison of effectiveness of criteria of node selection to attack the
ATN shows that this network has a multicommunity structure where central airports (i. e.,
airports with the highest betweenness centrality) are the most critical infrastructures of the
network in terms of its resilience facing attacks. The most central airports are the hubs of
Full-Service Carriers, whose routes have a hub-and-spoke structure.

Descending one level to L2, Chapter 3 has analyzed the airline alliances route network
(AARNs). It revealed that the AARNs are networks with a truncated power-law distribution,
the small-world property (i. e., low average path length) and high clustering coefficient. The
Star Alliance network has been the most similar to the global ATN, since it includes central
airports (i. e., airports with high betweenness centrality) with low connectedness (i. e., with
low degree). For SkyTeam and oneworld has been observed a strong correlation between
node degree and betweenness.

The robustness of AARNs has been analyzed through two methods: the multi-scale mea-
sure of vulnerability, defined in [109], and the study of the effect on the size of giant compo-
nent of the isolation of a fraction f of the airports, covered by the alliance following several
node selection criteria. In order to allow network vulnerability comparison, a normalization
procedure has been defined for the multi-scale vulnerability. To perform the later analysis,
it has been defined the inverted adaptive strategy (IAS) for defining node selection criteria.
Rather than starting with the connected network and trying to disconnect it as soon as pos-
sible, IAS starts with a disconnected network, and adds new nodes in order to connect the
original network as late as possible. From the results of the robustness analysis of the global
ATN in Chapter 2, it has been considered convenient to define a IAS in the analysis based
on reducing network efficiency.

Both methods of assessing network vulnerability has coincided in that the most robust
AARN is the Star Alliance route network, followed by SkyTeam and oneworld. In all cases,
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the node selection criterion based in damage is the most effective for low values of f (around
2%), while betweenness and inverted efficiency are the most effective for higher values
of f (between 2% and 9%). These results are comparable with ATN robustness results,
where betweenness was the most effective criterion although damage criterion had better
performance for lower airports disconnected. In fact, for AARNs, betweenness and inverted
efficiency has been the most effective for values of f when the first break had occured. The
merit of the inverted efficiency criterion is that breaks appeared before the betweenness
criteria, therefore the former being the most effective for some ranges of f . Interestingly,
Star Alliance had a single break of the giant component for f ' 2.5%, while in the other
two AARNs two breaks occured, of a relative size half of the value of the break of Star
Alliance.

Finally, reaching the last level L3, Chapter 4 has analyzed the network robustness of
thirteen airlines based on error and attack simulation. This simulation has been run to
verify if there is any difference on the behavior of FSC and LCC business models. The
analysis has confirmed that FSC are more sensitive to intended airport closure than LCC.
That is, disconnecting the FSC hubs causes a bigger harm than the disconnection of the base
airports of the LCC. On top of it, Southwest Airlines and Ryanair, the most important LCC
at the moment turned out to be the most robust against attacks. Within the set of FSC there
were three airlines with a peculiar behavior. These were China Eastern and China Southern,
the only ones in a region outside of Europe or North America; and airberlin, which was a
LCC before it joined oneworld, which explains its differentiation.

Following these results it would be possible to attenuate the consequences by means of
disposing of a multi-hub-and-spoke network. This network should be built by hub airports
strategically disposed distant from each other in order to avoid larger problems related
to airspace closure. This distance would allow an homogenization of the importance and
centrality of the network without neither losing operability, nor the possibility of applying
economies of scale. A second action to increase robustness would be to schedule PP con-
nections on the less central airports to connect them if one of their hubs fails, achieving
with this an structure somewhere between HS and PP. This second solution should take
into account the demand of each route in order not to hinder the rentability of the airlines.

As seen in Chapter 1, the study of air transport networks through complex network the-
ory is in an early phase of development, and is a stream of research valued for the scientific
community. This thesis has contributed to the literature defining three levels of analysis
for air transport networks, analyzing the topology of examples of these networks, and per-
forming a study of static robustness to errors and attacks of air route networks at these
three levels. Some of the contributions of this thesis, such as the inverted adaptive strat-
egy and the normalized multi-scale measure of vulnerability defined in Chapter 3, or the
node selection criteria based on efficiency and Bonacich centrality introduced in Chapter 3
and Chapter 2, respectively, can be tested on other real-world networks. This could bring to
the scientific community a deeper understanding of the determinants of static robustness of
complex networks. Future studies on static robustness can take into account the passenger
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flux through airports, to get a more realistic interpretation of the traffic loss that supposes
the closure of airports of high traffic. Nevertheless, a similar result than the one obtained
in the performed analysis should be expected, since the most central airports are those that
concentrate a higher volume of aerial traffic in terms of flights and passengers.

An avenue of further research could be the assessment of dynamic robustness of air
route networks, analyzing phenomena such as cascading failures, congestion or jamming
(e. g., [50, 127]). When studying these phenomena, it should be taken into account that the
disconnection of the first airports could increase network damage (e. g., the closure of an
airport could cause the congestion of others), or its reduction (e. g., passengers could be
relocated in flights to secondary airports).

Therefore, the study of air transport networks through complex network theory is an
interesting and relevant research field. Further studies on this area will transfer findings
obtained in complex network theory to air transport research, and they will be for sure an
important contribution for the protection, stability and safety of passengers, airlines and
the rest of stakeholders of the air transport sector.
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