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Summary

Although the methodology used to perform the research contained in this thesis is

firmly within the fields of physics, the motivation is interdisciplinary in nature. The

initial open question that inspired this PhD research was, how might noise in nature

have a constructive role? In some systems the influence of noise is not restricted to

destructive and thermodynamic effects, but can have positive outcomes.

This thesis is focused on the study of stochastic and nonlinear dynamics in opti-

cal systems. First, we study experimentally the dynamics of a Brownian nanometer

particle in an optical trap subjected to an external forcing. Specifically, we consider

the effects of parametric noise added to a monostable or bistable optical trap and

discovered a new effect which we named stochastic resonant damping (SRD). SRD

concerns the minimization of the output variance position of a particle held in a

harmonic trap, when an external parametric noise was added to the position trap.

We compared the classical stochastic resonance (SR) with SRD and found that they

are two phenomena which coexist in the same system but in different regimes. The

experimentally studied monostable system showed a maximum in the signal to noise

ratio, a clear signature of a resonance. We also developed a new technique to increase

10-fold the detection range of the quadrant photodiode that we used in this study,

which exploits the channel crosstalk.

Second, we study the stochastic dynamics of a type of semiconductor laser (SCL),

known as vertical-cavity surface-emitting laser (VCSEL), that exhibits polarization
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bistability and hysteresis, either when the injection current or when the optically in-

jected power are varied. We have shown how these properties can be exploited for

logic operations due to the effect of the spontaneous emission noise. Two logical input

signals have been encoded in three levels of optically injected power from a master

laser, and the logical output response was decoded from the emitted polarization of

the injected VCSEL. Correct and robust operation was obtained when the three levels

of injected power were adjusted to favor one polarization at two levels and to favor

the orthogonal polarization at the third level. We numerically demonstrated that the

VCSEL-based logic operator allows to reproduce the truth table for the OR and NOR

logic operators, while the extension to AND and NAND is straightforward. With this

all-optical configuration we have been able to reduce the minimum bit time required

for correct operation from 30 ns, obtained in a previous work with an optoelectronic

configuration, to 5 ns.

The third focus of this thesis is the study of the chaotic nonlinear dynamics of

a SCL optically injected, in the regime where it can display sporadic huge intensi-

ties pulses, referred to as Rogue Waves (RWs). We found that, when adding optical

noise, the region where RWs appear becomes wider. This behavior is observed for

high enough noise; however, on the contrary, for very weak noise we found that noise

diminishes the number of RW events in certain regions. In order to suppress or in-

duce extreme pulses, we investigated the effects of an external periodic modulation of

the laser current. We found that the modulation at specific frequencies modifies the

dynamics from chaotic to periodic. Depending on the parameter region, current mod-

ulation can contribute to an increased threshold for RWs. Therefore, we concluded

that the modulation can be effective for suppressing the RWs dynamics.

Then, we have structured this Thesis in the following way:

Chapter 1 sets the historical background of the main phenomena associated with

noise. We pay particular attention to those that are related with our research, such as

Stochastic Resonance, Logical Stochastic Resonance and Coherence Resonance. For

the latter, we describe the underlying physical mechanism. These notions become

indispensable to understand what happen in the other physical situations described

in chapters 2/4 and 5.

Chapter 2 is entirely dedicated to noise phenomena in optical traps. We give a
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soft-background about how optical tweezers are composed, and how can they be used

as a tool to study statistical physics. Then, we explain in detail our experimental

outcomes: Stochastic Resonant Damping and its comparison with classical stochastic

resonance, and the experimental observation of a maximum in the SNR in a monos-

table optical trap. Finally, we describe a technique that we invented to analyse the

data in order to reach a 10-fold increase in the detection range.

With chapter 3 we start to analyse the nonlinear dynamics in optically injected

semiconductor laser systems. We introduce the spin-flip model, which has been ex-

tensively employed to perform numerical analysis in chapter 4. Moreover chapter 3

intends to give a strong enough background for the interpretation of the nonlinear

output dynamics, which has been extensively used in chapter 5. Finally, we give the

main motivations for the popular optical injection technique.

In chapter 4 we show the results of the numerical simulations of noise controlled

Vertical-Cavity Surface-Emitting Laser (VCSEL)s dynamics in an (Optical Injection

or Optically Injected (OI)) configuration. We introduce a general form of multimode

rate equations for VCSELs, then we illustrate the spin-flip model for the circularly

polarized and linearly polarized fields, for the two preferred oscillation modes. We

describe the effects of bistability and the hysteresis, for both an opto-electronic and

an all-optical configuration. Finally, we demonstrate how an OI VCSEL can be used

as a stochastic logic gate, describing our numerical results and all implications in

possible real applications.

In chapter 5 we introduce the concept of extreme event, and we describe the out-

put dynamics as a function of the input parameters, also under the influence of noise

and studying its effects when it is varied. Interestingly enough, during this research

we detect the phenomenon of coherence resonance, which is given by a more periodic

behaviour. Importantly, we employe a periodic external modulation of the bias cur-

rent to control the output response, and our findings bring us to new insights into the

chaotic behavior of OI SCL, at high frequency regime.

Chapter 6 is dedicated to summarize the main results presented in this Thesis and

to discuss the various possible future research lines. Finally, we list the publications

and conferences where we presented our results, and the bibliography cited in all

pages of this thesis.
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Summary

We hope that this thesis can contribute to a better understanding of the different

stochastic and nonlinear dynamics in nature and in semiconductor lasers, taking into

account all the positive synergies that can sometimes occur between nonlinearity and

noise.
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1
Introduction to stochastic

effects in nonlinear systems

1.1 Introduction

This Chapter is intended to set the context for the original work contained in this

thesis. First of all, we set an historic background about noise phenomena, and then

we focus on resonance phenomena in nonlinear systems such as stochastic, logic and

coherence resonance. We briefly explore their history, highlighting in which research

fields they have been observed. Moreover we elucidate the theoretical mechanism

underlying each of these phenomena.

1.2 General overview about stochastic phenomena

Noise is ubiquitous in nature as well in many technological fields. Although often

it is considered as a drawback to eliminate, in some specific cases, it can help to

create some dynamics otherwise impossible to generate. Successively, we report some

findings in different fields from the last decades where positive outcomes of noise have

been observed.

In signal transmission a bistable medium with a nonzero value of noise intensity

can be considered as an information channel, where string of bits also nonperiodic

can be transmitted (17). On the other hand, random fluctuations, when they interact
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with certain system’s nonlinearities, can give rise to spatial order. Many experimental

observations of self-organized behavior arising out of noise have been described (18).

In (19), the joint action of two noise sources has been studied, in the framework of

doubly stochastic effects where ordering occurs. This concept has been applied to sev-

eral basic noise-induced phenomena: stochastic resonance, noise-induced propagation

and coherence resonance. Moreover, it has been shown that non equilibrium phase

transitions might be controlled by correlation time and length of a coloured noise

(20). Noise-induced phase transitions to excitability, noise-sustained structures in ex-

citable media, and domain growth of spatial structures in their way towards steady

state, have been reported where noise is essential for their appearance (21, 22). The

joint action of noise and coupling resulted in a stabilization of the system. This regime

also showed characteristic traits of stochastic resonance and wave propagation (23).

In biophysics the mechanism of motor protein motion in cytoskeleton has been

successfully modeled by Brownian ratchets: the motor protein kinesin can be driven

by the action of both the thermal noise and an additive colored noise, whose finite

correlation time corresponds to the kinesin binding events and subsequent energy

release through hydrolysis (24), (25), (26). Numerous studies have also discussed both,

at the single-cell level and in cellular populations , the important influence of

noise on intercellular coupling (27). In (28) noise is also employed in the dynamics of

cortical neuronal networks, where it induces up/down dynamics when noisy inputs are

applied to low-degree (nonhub) network nodes, but not when they act upon network

hubs.

In (29) the interplay between an externally added noise and the intrinsic noise of

systems that relax fast towards a stationary state was analyzed theoretically and it

was found that increasing the intensity of the external noise could reduce the total

noise of the system. This is similar to the mechanism of noise-induced activation (30),

(31), in which a minimal averaged residence time occurs at an optimal time-scale of

the modulation of a potential barrier.

In chaotic laser systems, the role of noise is essential, is essential to estab-

lish secure communications, which have been developed by using chaos and nonlinear

dynamics. Moreover, communication through the use of chaotic waveforms as carri-

ers of information has been demonstrated by several groups, both in free space and

through fiber channels. Information signals transmitted and received include digi-

tal and analog waveforms, and several different encoding and decoding schemes have

been recently proposed and demonstrated (32). Intensity and phase correlations in

the noise-driven dynamics of two coupled lasers have also been investigated. These
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correlations induce noise reduction phenomena which are robust against frequency

detuning and for pump power well above threshold (33). In (34) it has been found

that weak near resonant injection leads to complex dynamics, which consist in sud-

den irregular pulses. These bursting dynamics can be interpreted as the result of the

wandering of the laser frequency through the (small) injection locking range of the

system. Also numerical studies by a simple and general model for a two-level laser

system describes how the chaotic behaviour could be suppressed by a slow periodic

modulation current (35, 36). Also, the effect of spontaneous emission noise on the

light circulating in a ring cavity with a nonlinear absorbing medium was studied by

means of a set of stochastic delay-differential equations, where noise fluctuations were

found to be amplified as the system was approaching to the first bifurcation (37).

1.3 Stochastic Resonance

In the last two decades the phenomenon of Stochastic Resonance (SR) has been pre-

dictor in nonlinear sciences. SR is often described as a counter-intuitive phenomenon.

This is largely due to its historical background, since in the first decade and a half

since its “discovery” in 1980, virtually all research into SR considered only systems

driven by periodic-most often a sine wave input signals and broadband noise. In such

systems, a natural measure of the systems performance is the output SNR, or also,

often the ratio of the output Power Spectral Density (PSD) at the input frequency,

to the output noise floor PSD. In general it is implicitly assumed that noise is a prob-

lem, usually with good reason. Hence, observations of presence of noise in a system

providing the maximum output SNR are often seen to be highly counter-intuitive.

The concept of stochastic resonance was originally put forward in the seminal

papers by Benzi and collaborators (38, 39, 40) wherein they addressed the problem

of the periodically recurrent ice ages. The suggestion that SR might rule the period-

icity of the primary cycle of recurrent ice ages was raised independently by Nicolis

(41, 42, 43, 44). A statistical analysis of continental ice volume variations over the

last 106 years shows that the glaciations sequence has an average periodicity of about

105 yr. Since its introduction, SR it has been a very attracting subject, increasing the

attention from several fields of science such as electronic circuits (45, 46, 47), differ-

ential equations (48), lasers (49, 49, 50, 51) in the adiabatic limit (44, 52, 53) and in

the full non adiabatic regime (44, 54), neural models (55, 56, 57), physiological neural

populations (58, 59, 60), or enhancement of the evoked responses in the peripheral

nervous system (61, 62). In biology SR has been demonstrated in mechanoreceptor
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neurons located in the tail fan of crayfish (61) and in hair cells of crickets (63, 64). It

has also been described in networks (65), chemical reactions (66), ion channels (67),

in the behavior of feeding paddlefish (68, 69, 70), ecological models (71), cell biol-

ogy (72, 73), financial models (74), psychophysics (where SR has also been used as a

measuring tool to quantify the ability of the human brain to interpret noise contam-

inated visual patterns (55, 75, 76, 77, 78, 79)), carbon-nanotube transistors (80, 81),

nanomechanical oscillators (82, 83), organic semiconductor chemistry (84), and even

in social systems (85).

Most recently, the notion of SR has been extended into the domain of microscopic

and mesoscopic physics by addressing the quantum analog of SR (86, 87, 88, 89) and

also into the world of spatially extended, pattern-forming systems (spatiotemporal

SR) (90, 91, 92, 93, 94, 95). Stochastic resonance has also been observed through

monostable media where harmonic signal were induced by external fluctuations (6, 47,

96). In the last two decades several papers and reviews about SR have been written

(2, 97), in order to give a deep and complete description of the simple mechanism

hidden by this counterintuitive phenomenon. Let us briefly resume how and when

the SR takes place. SR is a rather paradoxical concept, which characterize a new

group of effects, where addition of a right amount of noise causes an enhancement of

the order degree of the system (98). Randomness is usually considered as a disturb

or something deleterious for the systems, nevertheless it can act as a positive factor

under some specific conditions. SR can be observed by means of the addition of the

right amount of noise to a weak input signal, than the detection of the output signal

is improved. Further increasing the noise strength, however, causes the system to

show a worse response. Therefore, noise can be employed to improve the formation of

regular signal structures, to increase the coherence degree, to enhance signal-to-noise

ratio, etc., improving the overall system performance rather than deteriorating it.

Commonly in the scientific community, a direct measure of SR is associated with

the maximization of the SNR curve or even to the statistics of the resident time,

which exhibits peaks at the Kramers rate and its multiples as shown in Figure 1.2.

Although all that being true, it is convenient to clarify that these two criteria are

generally adopted when a “periodic” signal is masked from a background of noise.

Therefore, the detection is improved by means a certain amount of noise, which helps

the weak signal to overcome the threshold. However, other kind of measures are used

for aperiodic signals such as the mutual information or correlation functions.
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Finally, the basic ingredient to observe SR are:

• a weak periodic (or aperiodic) signal,

• a detection threshold (or potential barrier),

• an internal source of noise which drives the state-variable to defeat the thresh-

old, or the barrier in the case of a double well bistable system.

Then, the response of the system exhibits a resonance function of the noise, which

is due to the synchronization between the coherent input signal and the stochastic

process governed by the noise. SR does not depend on the physical nature of the

system it is rather a distinctive feature of nonlinear systems, where the noise can

control its characteristic time scales. As mentioned, SR was initially considered to

be restricted to the case of periodic input signals. However, now it is used as an all

encompassing term, whether or not the input signal is a periodic sine-wave, a peri-

odic broadband signal, or aperiodic. An appropriate measure of the output response

depends on the task at hand, and of the form of the input signal. For example, for

periodic signals and broadband noise, SNR is often used, but for random aperiodic

signals, mutual information or correlation based measures are more appropriate.
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1.4 Mechanism of Stochastic Resonance

The mechanism of SR can be explained considering a heavily damped particle of

mass m and viscous friction γ, moving in a symmetric doublewell potential V (x)

(Figure 1.1). The particle is subject to fluctuational forces that are, for example,

induced by coupling to a heat bath. Such a model is archetypal for investigations

in reaction-rate theory (99). The fluctuational forces cause transitions between the

neighboring potential wells with a rate given by the famous Kramers rate (100), i.e.,

rk =
ω0ωB
2πγ

e
−∆V

D (1.1)

with ω2
0 = V ′′(xm)

m being the squared angular frequency of the potential in the

potential minima at ±xm, and ω2
B = V ′′(xb)

m the squared angular frequency at the

top of the barrier, located at xb; ∆V is the height of the potential barrier separating

the two minima. The noise strength D = kBT is related to the temperature T. If

we apply a weak periodic forcing to the particle, the double-well potential is tilted

asymmetrically up and down, periodically raising and lowering the potential barrier,

as shown in Figure 1.1. Although the periodic forcing is too weak to let the particle roll

periodically from one potential well into the other one, noise induced hopping between

the potential wells can become synchronized with the weak periodic forcing. This

statistical synchronization takes place when the average waiting time Tk(D) = 1/rk

between two noise-induced interwell transitions is comparable with half the period TΩ

of he periodic forcing. This yields the time-scale matching condition for SR, i.e.,

2Tk(D) = TΩ (1.2)

In short, SR in a symmetric double well potential manifests itself by a synchro-

nization of activated hopping events between the potential minima with the weak

periodic forcing (52). For a given period of the forcing TΩ, the time-scale matching

condition can be fulfilled by tuning the noise level Dmax to the value determined by

Eq. 1.2.

Initial studies of SR focused on systems driven by a periodic signal, and hence
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Figure 1.1: double well potential. The trace represent the jiggling trajectory of
the particle in time. Below: description diagram of a noisy bistable system with
a potential modulation
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used a signal-to-noise ratio based measure for comparison between the input and out-

put of the system. It has been pointed out that for the more general case of aperiodic

signals other performance measures are necessary, such as cross-correlation or infor-

mation theoretical tools.

Figure 1.2: Residence time distributions
N(T) for the symmetric bistable system.
Reproduced from (1)

SR has been measured in many

different ways. Examples include

SNR (38), spectral power amplifica-

tion ((101, 102), correlation coefficient

(103), mutual information (63), Kull-

back entropy (104), channel capacity

(105), Fisher information (68), φ di-

vergences (106, 107), and mean square

distortion (108). It has also been anal-

ysed in terms of residence time distri-

butions (1, 109) as shown in Figure 1.2

and of Receiver Operating Character-

istic (ROC) curves (110, 111, 112),

which are based on probabilities of de-

tecting a signal, or falsely detecting a

non-existing signal (113). It was first

thought that SR occurs only in bistable dynamical systems, generally driven by a

periodic input signal, Asin(ω0t + φ), and broadband noise. Since the input to such

systems is a simple sinusoid, the SNR is a natural measure to use, with the following

usual definition,

SNR =
P (ω0)

SN (ω0)
(1.3)

where P (ω0) is the input signal power and SN (ω0) is the power of the PSD noisy

background at the frequency of ω0. SR occurs when the ratio of the output power at

frequency ω0 to the background noise PSD at ω0, is maximized by a nonzero value of

noise intensity.

Although SNR has been the first estimator of SR, researcher in the last decades
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have noticed that in many practical situation it is meaningless, specially for an aperi-

odic input signal. However, for our experimental research, where we add an harmonic

component at a given frequency, we always computed SNR as estimator of SR. In the

next Section we provide a general expression for the Signal to Noise Ratio derived

from the Langevin equation for a brownian particle in a potential V (x) and with a

driving periodic input signal, as an estimator of SR.

1.4.1 Langevin equation

We consider the overdamped motion of a Brownian particle in a bistable potential in

the presence of noise and periodic forcing:

ẋ(t) = −V ′(x) +A0cos(Ωt+ φ) + ε(t) (1.4)

Where V (x) denotes the reflection symmetric quartic potential

V (x) = −a
2
x2 +

b

4
x4 (1.5)

A0 and Ω are the amplitude and frequency of the harmonic input signal, and

ε(t) denotes a zero-mean, Gaussian white noise with intensity D and autocorrelation

function

〈ε(t)ε(0)〉 = 2Dδ(t) (1.6)

In the absence of periodic forcing, x(t) fluctuates around its local stable states

with a statistical variance proportional to the noise intensity D. Noise-induced hopping

between the local equilibrium states with the Kramers rate:

rk =
1√
2π
e−

∆V
D (1.7)
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enforces the mean value 〈x(t)〉 to vanish. In the presence of periodic forcing,

the reflection symmetry of the system is broken and the mean value 〈x(t)〉 does not

vanish. This can be intuitively understood as the consequence of the periodic biasing

towards one or the other potential well. An important quantifier of SR is based on

the power spectrum. More in specific we are interested in the SNR. Therefore, we

define the phase averaged power spectral density S(ω)

Sω =

+∞∫
−∞

e−iωτ 〈〈x(t+ τ)x(t)〉〉dτ (1.8)

where the inner brackets denote the ensemble average over the realizations of

noise and the outer brackets indicate the average over the input initial phase φ. For a

bistable system, S(ω) may be described as the superposition of a background power

spectral density and a structure of delta spikes centered at ω = (2n + 1)Ω with

n = 0,±1,±2, ..... Thanks to the approximation A0xm � ∆V , where xm represents

the minima of the bistable system (located at ±xm), we are led to separate x(t) into

a noisy background (which coincides, apart from a normalization constant, with the

unperturbed output signal) and a periodic component with 〈x(t)as〉, with amplitude

x̄, and phase lag φ̄ where

〈x(t)as〉 = x̄cos(Ωt− Φ̄) (1.9)

x̄(D) =
A0〈x2〉0
D

2rk√
4r2
k + Ω2

(1.10)

Φ̄(D) = arctg

(
Ω

2rk

)
(1.11)
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where 〈x2〉0 is the D-dependent variance of the stationary unperturbed system

(A0 = 0). From 1.10 we can see the direct dependence from the noise strength, thus

the periodic response of the system can be manipulated by changing the noise level.

Moreover, from a first closer analysis of 1.10, we notice that the amplitude x̄ before

increase with the noise level, up to reach a maximum, and then decreases again (see

Fig. 1.3). By decreasing the driving frequency Ω, the position of that peak moves to

smaller noise strength. This is the famous phenomenon of “stochastic resonance”.

An alternative quantifier of SR is defined by the spectral amplification η, as the

ratio between the integrated power stored in the delta spikes of the spectral density at

±Ω, p1 = πx̄2(D), and the total power of the modulation signal pA = πA2
0. Therefore:

η =
p1

pA
= [x̄(D)/A0]2 (1.12)

Considering small force amplitudes, SN (ω) does not deviate much from the power

spectral density S0
N (ω), of the unperturbated system. Therefore, for a bistable system

with relaxation rate 2rk, the hopping contribution S0
N (ω) is:

S0
N (ω) =

4rk < x2 >0

(4r2
k + ω2)

(1.13)

It could be convenient also to extract the relevant phase-averaged power spectral

density S(ω) Then, on adding the power spectral density of either component, we

obtain:

S(ω) =
(π

2

)
x̄(D)2 [δ(ω − Ω) + δ(ω + Ω)] + SN (ω) (1.14)

Then considering SN (ω) = S0
N (ω) + O(A2

0), SR can be envisioned as a particu-

lar problem of signal extraction from background noise SN (ω). We adopt here the

following definition of the signal-to-noise ratio (see Fig. 1.3)
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Figure 1.3: Characterization of stochastic resonance. (a) A typical power spec-
tral density (Sν) vs frequency n for the case of the quartic double-well potential.
(b) Strength of the first delta spike, Eq. 1.14 , and the SNR, Eq. 1.15 , vs D (in
units of ∆ V). Reported from (2)

SNR = 2

[
lim∆ω→0

Ω+∆ω∫
Ω−∆ω

S(ω)dω

]
SN (Ω)

(1.15)

48



Chapter 1 - Intr. to stochastic effects in nonlinear systems

1.5 Coherence Resonance

The problem presented by Stochastic Resonance phenomenon is to investigate the

response of a bistable system to a periodic external force in the presence of noise.

However, in many nonlinear systems the coherent motion of the system is not stimu-

lated by an external force, but by the intrinsic dynamics of the nonlinear systems. For

instance, limit cycles are very important dynamic states in self-organization processes

of nonlinear systems in physics, chemistry, biology, and other fields. By adding an

external control parameter beyond a critical value, the limit cycle of the system can be

eliminated. However the intrinsic circulation of the system may still exist, and it can

manifest in the transient process towards the equilibrium state. This transient cir-

culation turns into an asymptotic coherent oscillation by introducing noise. For this

phenomenon the term of: “Coherence Resonance” has been coined. Although the

name of Coherence resonance phenomenon was firstly adopted in 1997 by Pikovsky

and Kurths (3), Gang et al. in 1993 (114) were the first to to discover it. From then,

many theoretical and experimental verification have been extensively investigated.

Coherence resonance has been shown for a wide variety of systems such as stochastic

and chaotic systems (115, 116), different formulations of FitzHugh-Nagumo model

(3, 117), Belousov-Zhabotinsky reaction equations (118, 119), coupled Morris-Lecar

models (120). Experimental evidence of coherence resonance phenomena is found in

optical systems (121), electrochemical systems (122, 123), chaotic diode lasers (124),

and semiconductor lasers (125). We briefly announce some works in optics and nonlin-

ear systems, where CR has been observed: In (3), noise activates the system producing

a sequence of pulses. The coherence of these noise-induced oscillations is shown to be

maximal for a certain noise amplitude. In (121) it is shown that the regularity of the

excitable pulses in the intensity of a laser diode with optical feedback increases when

adding noise, up to an optimal value of the noise strength. While in (126) stochastic

dynamics in a neural bistable system has been explored, where two spatially cou-

pled noise sources (one was multiplicative and another additive) have been used in

order to induce coherence resonance. Moreover, they experimentally confirmed that

behaviour by using a nonlinear electronic circuit. Moreover, it has been found the

strict relation between the correlation and the amplitude of the noise, and a coher-

ent solution was selected by the system at intermediate values of feedback-coupling

strength (127, 128). While in (129) Coherence Resonance (CR) it has been observed

as clusters of ion channels generate neuronal action potentials depending of their size.

It has been observed by numerical simulations in chemical reaction model and in the
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Swift-Hohenberg model of fluid convection (130). Coherent oscillations have been

also observed by building synthetic genetic network making use of an appropriate

electronic elements linked in the same way as the original biochemical system (131).

1.5.1 Mechanism of Coherence Resonance

The phenomenon of CR appears in systems with a noise-induced limit cycle. A period

of noise-induced limit cycle can be divided in two parts:

• First an activation time (Ta), which is the time needed for the phase trajectory

to escape from the stable equilibrium to the excited state.

• Second an excursion time (Te), needed to return to the equilibrium state.

The Arrhenius law rules the activation time, which is a function of the intensity

noise, as: < Ta >∝ exp(∆/D2) where the parameter ∆ is a threshold of excitation

and D the noise strength. In the case of weak noise D2 � ∆, the period of noise-

induced activation is dominated from the activation time and the statistic spiking

is Poissonian. Then, large interspike intervals are detected for weak noise and the

coefficient of variation approaches to 1. On the other hand for large noise the period

is dominated by the excursion time and the Coefficient of Variation increases with

the noise CV ∝ D. Coherence resonance occurs for an intermediate noise intensity:

where noise is weak enough to result in large fluctuations of the excursion time and

large enough so that the activation time is short and the period is dominated by the

excursion time.

The prototype model used in numerical simulations to show the coherence reso-

nance, is based on the Fitz Hugh-Nagumo model:

ε
dx

dt
= x− x3

3
− y (1.16)

dy

dt
= x+ a+Dξ(t) (1.17)

where Dξ(t) is the noise term. Integrating this equation system a chaotic dy-

namics is found, with intensity pulses becoming much more regular at a well defined

amount of noise strength. To quantify this behaviour usually the correlation function

is taken into account:
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C(τ) =
< ỹ(t)ỹ(t+ τ) >

< ỹ2 >
(1.18)

One can see from fig. 1.4 that the correlations are indeed much more pronounced

for the moderate noise. To describe this effect the characteristic correlation time is

usually calculated as follows:

τc =

∫ ∞
0

C2(t)dt (1.19)

The process described from the above model, can be viewed as a sequence of

pulses having durations tp. it is convenient to look at the normalized fluctuations of

pulse durations:

Rp =

√
V artp
< tp >

(1.20)

As we already said, physically, the appearance of coherence resonance is deeply

related to the excitable nature of the Fitz HughNagumo system. The system has two

characteristic times: the activation time ta and the excursion time te. The activation

time is the time needed to excite the system from the stable fixed point x = −a,

y = a3/3; while the excursion time is the time needed to return from the excited state

to the fixed point. The pulse duration tp is the sum of these times tp = ta + te. The

crucial point is that these times and their fluctuations have a different dependence on

the noise amplitude. The activation time decreases rapidly with the noise amplitude

according to the Kramers (Arrehnius) formula < ta >∼ exp(const × D−2). It can

be also shown that for small noise V ar(ta) ≈< ta >
2. Thus for small noise, where

ta � te and the period is dominated by the activation time tp ≈ ta, the fluctuations of

the pulse durations are relatively large: Rp ≈ Ra ≈ 1. For large noise the contribution

of the activation time ta to the period is negligible, here the excursion time dominates

tp ≈ te.
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Figure 1.4: The dynamics of the Fitz HughNagumo system (Eqs. 1.16-1.17) for
a=1.05, ε = 0.01, and different noise amplitudes: (c) D= 0.02, (b) D= 0.07, and
(a) D = 0.25. The mean durations of pulses are 7, 4, and 3.5, respectively.(d)-
(e)-(f) are the respective autocorrelation function of (a)-(b)-(c). The activation
and the excursion times for one pulse are depicted. Reproduced from (3)

Figure 1.5: Correlation time tc (solid line) and the noise-to-signal ratio R
(Eq. 1.20, dashed line) vs noise amplitude for the Fitz HughNagumo sys-
tem.Reproduced from (3)
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1.6 Logical Stochastic Resonance

LSR was first reported by Murali and coworkers in Ref. (132). The main motiva-

tion for research performed in this direction, is due to the continuous shrinking in

size of the computational devices and platforms, which does not allow to completely

suppress or eliminate intrinsic fundamental noise. Therefore, an understanding of the

cooperative behaviour and the background noise is needed, for the design the nonlin-

earity of the medium and the background between for the design and development

of future computational concepts and devices. In nonlinear systems the interplay be-

tween bistability and noise can result in non-trivial noise-induced effects which can

be potentially exploited for applications (2, 132, 133, 134). A recent example is the

numerical demonstration of a stochastic logic gate using a vertical-cavity surface-

emitting laser (VCSEL) that exploits the interplay between polarization bistability,

noise, and pump current modulation (133, 135). VCSELs emit linearly polarized light

with the direction of the polarization along one of two orthogonal directions associ-

ated with crystalline or stress orientations. Some VCSELs display, when the pump

current increases, a Polarization Switching or Power Switching (PS) to the orthog-

onal polarization. The PS is often accompanied by hysteresis (15) and it has been

shown that the switching points and the size of the hysteresis region depend on the

pump current sweep rate (136, 137). When a VCSEL is subjected to optical injec-

tion, such that only the suppressed polarization receives injection, for appropriated

injection parameters a polarization switching from the solitary laser polarization (in

the following referred to as X) to the orthogonal one (Y) can also occur (138), either

when the optical injection strength is increased (134, 139), or when the wavelength

of the injected light is varied (140, 141). With this configuration, which has been

referred to as orthogonal injection, polarization bistability and hysteresis cycles have

also been observed, which can be exploited for all-optical buffer memories (142, 143).

In the implementation of a VCSEL-based stochastic logic gate proposed in Ref (133),

two logic inputs were encoded in an aperiodic three-level signal (i.e., the sum of two

aperiodic square waves representing the two inputs) that was directly applied to the

laser pump current, and the logic output was decoded from the polarization state of

the emitted light (e.g., the output is a logic 0 if the laser emits the X polarization or

a logic 1 if it emits the Y polarization). In Ref. (133) it was shown that the laser

gives the correct logic response with a probability that was controlled by the level of

noise, and that was equal to one in a wide range of noise levels. This phenomenon,

which has been referred to as logic stochastic resonance (LSR) (132, 133, 135, 144),
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Figure 1.6: Schematic of a noisy nonlinear system forced by an input signal
yielding a logic output.

is receiving a lot of attention because it occurs in several natural stochastic bistable

systems (145, 146, 147).

Moreover, noise and nonlinearities have been exploited to build robust and tun-

able genetic regulatory networks that are capable of performing assigned operations,

through the application of the logical stochastic resonance paradigm (146).

1.6.1 Mechanism of Logical Stochastic Resonance

Basically, the LSR is an application of the stochastic resonance phenomenon in some

systems which present other peculiar effects. In some optical or electronic devices the

intrinsic noise can play a certain role in order to switch between states. By means of

a defined choice of initial threshold conditions the output response of these devices

can be expressed as a logical combination of the input parameters (132) (see fig1.6).

As for stochastic resonance, a right amount of noise can be exploited in order to

synchronize the response. So that one can obtain very reliable logic circuit elements

exploiting nonlinearity and tuning the noise strength. Logical Stochastic Resonance

(LSR) has been extensively explored by means electronic circuits (132, 148). This

behaviour has been also numerically found in semiconductor laser systems (133, 144).

Let us consider two logic inputs I1 and I2, which are encoded by 4 logical com-

binations. The output response in a bistable system in the case of an OR logic gate

will be determined by the state of the system. In other words, the output can be con-

sidered a logical 1 if it is in one well, and logical 0 if its in the other well. Therefore,

when the system switches wells, the output is toggled. It has been demonstrated that

one observes, for a given set of inputs (I1, I2), a logical output from this nonlinear

system, in accordance with the truth tables of the basic logic operations 1.1.
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Table 1.1: Scheme of the AND, NAND, OR, NOR logical operations.

Logic inputs (I1, I2) AND NAND OR NOR
outputs outputs outputs outputs

(0,0) 0 1 0 1
(1,0) 0 1 1 0
(0,1) 0 1 1 0
(1,1) 1 0 1 0

Figure 1.7: (a) Response in quadrature of the
resonator as a function of the driving frequency
for different values of the drive amplitude. (b)
Response in quadrature of the resonator as a
function of the drive amplitude for a fixed fre-
quency (3.158 MHz) in the bistable regime. (c)
Micrograph of the resonator and experimental
setup. Reported from (4)

It has been demonstrated that

in a reasonably wide band of

moderate noise intensity, the sys-

tem produces the desired logi-

cal outputs reliably. At this

level the SR phenomenon provide

a maximum in the probability

of success operations (132, 148).

In (4) a nanomechanical device,

operating as a reprogrammable

logic gate, and performing fun-

damental logic functions such as

AND/OR and NAND/NOR was

engineered and experimentally re-

alized. The logic function could

be programmed (e.g., from AND

to OR) dynamically, by adjusting

the resonator’s operating param-

eters (see the schematic in Fig.

1.7).

Concluding, SR, CR, and

LSR have been observed in many

optical nonlinear systems (121, 124, 125, 126, 127, 128),(133, 134) and in the following

chapters we present our results, which focus on stochastic resonant damping (Chap-

ter 2, (149, 150)), stochastic logic gates (Chapter 4 (144)) and stochastic control of

extreme pulses (Chapter 5, (151)).
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2
Resonance phenomena in

noisy systems by optical trap

technique

2.1 Introduction

In this chapter, we illustrate the base principles of the optical trapping and calibration

techniques, which have been the main tool employed in the first part of this thesis,

in order to investigate some counterintuitive effects of noise, such as the SR and the

Stochastic Resonant Damping (SRD), which will be presented in the next sections of

this chapter.

Besides, we give some concept descriptions of the Photonic Force Microscope

(PFM), which has been extensively used to study noise phenomena in nature (152,

153, 154, 155). More specifically, in this work the PFM has been used to trap nano and

micrometer polystyrene beads with an infrared laser and also to detect in real time

the position of the particle by interferometry of the light scattered by the particle.

This has subsequently allowed us to study the random walk of the particle when it is

submitted to a definite optical potential.

Thus, the results of this chapter include the main outcomes on resonance phe-

nomena, such as maximization of the SNR detected in a monostable potential (156),

resonance in a double well optical potential, the SRD (149)(157) and the comparison
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between the classical SR and the SRD (149). Finally, we reveal the novel technique

that we used in almost all the cited previous works, to detect large displacements

of the bead, up to 1500 nm, by using a QPD which usually only allows to detect

displacements up to 150 nm (150).

2.2 Experimental techniques

2.2.1 Optical tweezers

In optics, a general assumption is that light photons carry linear momentum. This

momentum can be transferred to an object upon collision; this phenomenon is called

radiation pressure on the object. The radiation pressure exerted by typical light

sources on a microscopic object can not be observed, because it is many orders of

magnitude too small to get any measurable effect. Although later, Ashkin in 1970

(158) demonstrated that for an object of microscopic dimension (< 100µm) it can

have considerable effects.

He used a focused argon laser of λ = 0.51µm with 20 mW power, to trap mi-

crometer polystyrene particles. Particles on the side of the beam seemed to be drawn

inward to the focus, and were propelled further forward from there. When the laser

beam was translated in a direction perpendicular to the axis of radiation, the particles

stayed in the focus. From then, it has been realized that light can effectively exert a

real force on microsphere particle, with a refractive index significantly different from

that of the embedding medium, otherwise the gradient force does not come to be

enough in order to trap the object inside its focus. The research further focussed on

creating even atom traps (159, 160, 161), which of course, because the dimensions, it

is still today quite a difficult task. Therefore, we know that a focused laser beam can

be used to trap micrometer objects in a three dimensional landscape potential (158).

A coherent laser beam focused by means of a high numerical aperture objective it is

called optical trap or optical tweezers. Theoretically this effect is determined by the

size of the trapped object and the wavelength λ of the light focused on. Therefore,

depending on the object size d and the wavelength of the light λ, three different trap-

ping regimes are considered (Figure 2.1):

1. Rayleigh regime, when d� λ;

2. an intermediate regime, when d is comparable to λ;
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3. ray optics regime, when d� λ.

Figure 2.1: Trapping regimes. Trapping regimes and typical objects that are
trapped in optical manipulation experiments.

Unfortunately in many practical cases, the object is trapped by a source with

wavelength similar to its size. In such cases an approximative approach between the

two limits is used to obtain a quantitative estimate for the trapping forces (see (162)).

2.2.1.1 Ray optics regime

When the dimension of the object is much larger than the wavelength λ of the light,

the geometrical optics can be applied. This regime can be easily explained in terms of

refraction of light rays between media with different refractive indices ((158)(163)(164)

and (165)). Figure 2.2 shows qualitatively the origin of the trapping force in the ray

optics regime. The gradient restoring force (Figure 2.2a) can be explained considering

that if the rays p1 and p2 reach the object with different intensity, then the momentum
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changes (∆p1,∆p2) will also be different in magnitude, causing a net reaction force

on the refracting medium in the direction of the highest intensity. The displacement

of the laser beam’s axis is counteracted by the x-projection of this force related with

∆px.

Figure 2.2: Principle of optical trapping of a microsphere. [a] A trapped bead
in the laser focus, slightly displaced in a direction perpendicular to that of the
laser light. Incoming rays with different intensities (arrows) are refracted by the
transparent bead. Because of momentum conservation, the direction of the force
on the bead is opposite to the momentum change of the photon field. The net
force is composed of the inward gradient force Fgrad and an upward component.
[b] Forces acting on a bead positioned slightly above the laser focus. Due to
refraction of high incident angle rays, the net force on the bead is in the downward
direction. This force can overcome the upward pointing scattering force Fscat (not
shown).

As can be seen in Figure 2.2b, the axial gradient force is also caused by momentum

transfer upon refraction, resulting in a restoring force towards the focus. However,

part of the incoming light is reflected rather than refracted - the scattering force. This

light momentum reflection causes the object to be pushed out of the focus beam. If

the scattering force along the +z-direction is compensated by the gradient force along

the -z-direction, then the object is stably trapped. In (166) the optical forces on a

dispersive sphere due to a light ray of power P have been computed, using the Fresnel

reflection and transmission coefficients R and T (see (167)). For the scattering force
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they found

Fs =
n1P

c

{
1 +R cos 2Θ− T 2 cos(2Θ− 2φ) +R cos 2Θ

1 +R2 + 2R cos 2φ

}
û‖ (2.1)

≡ n1PQs
c

û‖

where Θ and φ are the angles of incidence and refraction, n1 is the index of

refraction of the suspending medium, “c” the speed of light and û‖ a unit vector

parallel to the incident ray. The term n1
P
c represents the momentum per second of

the light ray. The angles φ and Θ are related via Snellius‘refraction law: n2

n1
= sin Θ

sinφ ,

with n2 the refractive index of the object. In the same way, the gradient force is found

as

Fg =
n1P

c

{
R sin 2Θ− T 2 sin(2Θ− 2φ) +R sin 2Θ

1 +R2 + 2R cos 2φ

}
û⊥ (2.2)

≡ n1PQg
c

û⊥

The force exerted by a single ray of power P, is given by the vectorial addition of

these two trapping force components:

Ftot =
n1P

c
2

√
Q2
s +Q2

g ≡
n1P

c
Q

(
Θ,

n2

n1
, R, T

)
(2.3)

The total force is obtained by summing the forces over all rays passing through

the object. Ashkin worked out these calculations for a laser beam with a Gaussian

profile (164).

61



Chapter 2 - Res. phen.a in noisy systems by optical trap tech.

r

Figure 2.3: Forces in the Rayleigh. Scattering and gradient forces in the
Rayleigh regime.

2.2.1.2 Rayleigh regime

For the case d � λ we must consider the Rayleigh regime. The trapped objects are

considered as point dipoles, so that the electromagnetic field is constant on the scale

of the particle. A schematic is shown in Figure 2.3. The scattering force on the

particle, is given by:

Fs = n1
〈S〉σ
c

(2.4)

where 〈S〉 is the time-averaged Poynting vector of the electromagnetic wave and

σ = σ
(
d, λ, n2

n1

)
the scattering cross section of a particle of diameter d. The gradient

force acting on the dipole induced by the electromagnetic wave (168):

Fg =
α

2
∇〈E2〉 (2.5)

where E is the electric field and α = α(d3, n2

n1
) the polarizability of the object.
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2.2.1.3 Optimization of trapping force

Considering the ray optics approach, it is obvious that the trapping force can be

enlarged by increasing the laser power P, the refractive index of the surrounding

medium n1, or the Q-values. The laser power can not be increased beyond a certain

limit due to unavoidable damages to the optics or/and the system (biomaterials in

biophysical application). Increasing the refractive index is hardly ever an option, as

most samples require an aqueous solvent of n1 ≈ 1.3. Another parameter that can

be optimized is the geometric Q-values. The angle Θmax is a parameter depended

on the optics used. Specifically, it is determined from the microscope objective used

to focus the laser beam into the sample chamber. Usually, one of the specifications

of an objective is the numerical aperture (or NA, see references (169), (167)). This

is a measure for the solid angle over which the objective lens can spread light. It is

defined as:

NA = n3 sin Θmax (2.6)

Table 2.1: Table of refractive index of plastic and polystyrene.

Material Index n2

Silica (SiO2) 1.37 - 1.47

Polystyrene 1.57

where Θ is one-half the angular aperture (Figure 2.4) and n3 is the refractive

index of the immersion medium. Usually, the value of n3 varies between 1.0 for air

and ≈1.5 for most immersion oils. The NA of the objectives in the setups used to

perform the experiments was 1.3 and 1.35. Additionally, the beam diameter d is

another parameter which also influences Θmax. As indicated in the Figure 2.4, an

expanded beam yields a larger Θmax and therefore a stronger intensity gradient in

the focus. To optimize the trapping quality with a Gaussian profile beam, the beam

should overfill the back aperture of the objective lens. The highly convergent rays

increase the gradient compared to when the aperture is just filled. The gradient force

Fg, is largely increased by these convergent rays.
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Moreover, the ratio n2/n1 determines how strong the incident rays are refracted,

and then how strong the trapping force is.

The balance of the gradient and scattering forces such as required, yields an

optimal refractive index of n2= 1.69 (see (170), (162)). In the table 2.1 the refractive

indices of the most used materials are listed. Polystyrene particles trap better than

do silica particles, which is true considering a beam sufficiently expanded.

In many applications the objects size and the wavelength of the trapping light are

often of the same order of magnitude, thus neither the ray optics nor the Rayleigh

approach can be applied. The laser wavelengths that we used in our setup were λ=

1064 nm, and λ= 785 nm and the bead diameters for the experiments described here

were either d = 600 nm or 2.1 µm.

Figure 2.4: Objective NA and overfilling. [a] When the trapping laser does not
(over)fill the back aperture of the objective, the highest-angle rays are smaller
than Θmax and thus the high NA is not fully exploited. [b] The scattering force
is more efficiently counteracted by an expanded beam. The parameters used in
Eq. 2.6 are depicted.
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2.2.2 Force detection and calibration

Figure 2.5: Back-focal-plane interferom-
etry. Configuration for the detection of lat-
eral displacement of a trapped sphere from
the trap center. The condensers BFP is
imaged onto a QPD. Reading out the dif-
ferential signals (I1 + I3) − (I2 + I4) and
(I1+I2)−(I3+I4) (both normalized by the
total intensity), displacement signals for x
and y are obtained, respectively.

The theoretical prediction of the force

exerted by the laser beam upon the

trapped object is an hard task, or in

some cases even impossible to do it.

Despite many limitations, it is pos-

sible to use the light scattered from

the object, in order to accurately mea-

sure the trapping force. Additional

forces are generated when the rays in-

cident on the object, which push or

pull it from the center trap. In (5) a

model based on far-field interference of

the outgoing laser light with the scat-

tered light from the trapped particle

has been developed. The lateral dis-

placement of the particle induces an

intensity shift. The movement of the

trap around in the sample does not af-

fect the intensity distribution. Only

the motion of the trapped object af-

fects the interference pattern created.

So that, if the plane is imaged onto

a quadrant photodiode, which can de-

tect changes in the intensity distribu-

tion over the plane, the position of

the particle can be measured. This

method is known as back-focal-plane

interferometry, and from now on we will refer always to this for the detection of the

position of the particle(Figure 2.5).

Figure 2.5 illustrates the configuration for the detection of the lateral displacement

from the trap center. In Figure 2.6 the intensity shifts as combination of the output

signals from the four segments of the quadrant diode are defined. Considering a

micrometer spherical object with diameter d, displaced of δ from the center of a beam

of focal waist diameter ω0, the following expression for the detector response can be
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derived ((5)).

Iy+ = I1 + I2,

Iy− = I3 + I4,

}
Dy =

Iy+ − Iy−
Iy+ + Iy−

Ix+ = I2 + I4,

Ix− = I1 + I3,

}
Dx =

Ix+ − Ix−
Ix+ + Ix−

Figure 2.6: Intensity distribution signals Dx and Dy constructed from the light
intensities Ij on the four individual segments of a quadrant photodiode.

Dx =
Ix+ − Ix−
Ix+ + Ix−

≈ 32
√
π
n1α

λω2
0

H

(
δ

ω0

)
(2.7)

H(u) = exp(−2u2)

∫ u

0

exp(t2)dt

Figure 2.7: Detector response for ω0

= 0.53 µm and d = 0.5 µm. Reported
from (5)

Where the terms α and λ represent

the susceptibility and the wavelength of

the laser. The expression was derived

in the Rayleigh approximation (see sec-

tion 2.2.1.2). However, it has been found

a good agreement of the observed re-

sponse also for particles with size in be-

tween the two regimes. In Figure 2.7

the response function from equation 2.7

for a 0.5 µm sphere diameter and a fo-

cal beam waist ω0 = 0.53 µm, which is

the actual value for our objective and

an unexpanded beam of 1.0 µm diam-

eter is plotted. For small displacements

(| δ |≤ 0.15µm), the response is approx-

imately linear. The slope of the linear
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range is a function of the bead diameter d, and scales as d3, but its width is hardly

affected by this parameter. By the application of a known force to the trapped bead,

one can calibrate the detector to physically relevant units of force or displacements.

This procedure will be explained in the next section.

2.2.2.1 Brownian motion and power spectral density

In order to measure the forces causing the displacements of the trapped object, the

intensity shifts in the back focal plane can be used. Applying forces of known mag-

nitude to the bead, it is possible to calibrate the detector response. One method

consists in moving the sample in which the bead is trapped, at a constant velocity,

then the bead will be dragged out of the trap due to the viscous force of the fluid on

the bead. The force on the bead can be calculated by the following equation:

F = 3πηdν = γν (2.8)

where η and ν are the viscosity and velocity of the fluid along a bead of diameter

d, and γ is the drag coefficient. A more accurate calibration procedure is to make

use of the diffusive Brownian motion of the bead due to the continuous and random

bombardment by solvent molecules, which establishes a free diffusion regime of the

particle. Then, after a time t, the mean square displacement of the spatial coordinate

x will be (see (171), (172)):

V ar(x) = 〈x2(t)−
〈
x(t)〉2

〉
=

2kBT

γ
t = 2Dt (2.9)

with D the diffusion constant, T the temperature and kB Boltzmann’s constant.

Therefore, a bead held in an optical trap will feel both the diffusional forces due to

the solvent molecules and the restoring force from the optical trap which confines

its motion towards the laser focus. Considering that displacement and the confining

force have a linear correspondence by means a factor k, the Langevin equation (see

(172)) for the bead’s motion becomes
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F (t) = γ
dx

dt
+ kx (2.10)

(Note that for very low Reynolds number < (about 10−4 in this case) the inertial

forces have been neglected.) F (t) is the random thermal force, with a power spectrum

SF (f), which contains the contribution to F (t) of motions at different frequencies.

Figure 2.8: Power spectrum plus fit. The ‘noise’ is in fact the Brownian motion
of the bead in the trap. The corner frequency f0 of this spectrum is ∼ 1000
Hz, taken with a 2.1 µm polystyrene bead. This yields a trap stiffness of 125
pNµm−1

The power spectrum, for an idealized Brownian motion (this is ‘white noise) has

a constant value (see (171)):

SF (f) = |F2(f)|= 4γkBT (2.11)

where F(f) is the Fourier transform of F (t). Therefore the power spectrum of the

displacement fluctuations given by the Langevin equation 2.10 —writing ξ(f) as the

Fourier transform for x(t)— is found to have a Lorentzian shape (see (171)):
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Sx(f) = |ξ2(f)|= kBT

γπ2(f2
c + f2)

(2.12)

where, fc ≡ k/2πγ is introduced as a characteristic frequency of the trap. At

frequencies f � fc, the power spectrum is grossly constant, S(f) = S0 = 4γkBT/k
2.

At f � fc, it falls off like 1/f2. For this reasons fc is known as the corner frequency.

The high frequency behavior is characteristic of free diffusion, meaning that at short

time scales the particle does not feel the confinement of the trap. A typical power

spectrum is shown in Figure 2.8

2.2.2.2 Conversion to physical units

By fitting of the observed power spectrum of a trapped particle it is possible to

determine the values of S0 and fc (Figure 2.8), and these numbers can be used to find

the trap stiffness k:

k =
2kBT

πS0fc
or k = 2πγfc (2.13)

The stiffness k has the same units [N/m] of a spring constant in a mechanical

oscillator. Moreover, it must be noticed that the provided output signal is a voltage

proportional to the displacement of the bead (section 2.2.2). Therefore it is essential

to determine the conversion factor from voltage to nanometers in order to define

exactly the bead displacements.

The Stokes formula for the viscous drag coefficient on a bead (γ = 3πηd), which

gives γ from first principles, can be used to calibrate the response R[m/V ] of the

detector if bead diameter and solvent viscosity are known:

R[m/V ] =

[
kBT

π2γSV0 f
2
c

]1/2
25◦C
=

[
5.0 · 10−20m3/s

SV0 f
2
c d

]1/2

(2.14)
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where room temperature of 25◦C and the viscosity of water at that temperature

have been substituted. The quantity SV0 is the low-frequency limit of the power

spectrum of the voltage data.

To convert the data to forces, R should be multiplied by the trap stiffness k.

Note that the power spectrum has 1/frequency units, which is due to the fact that

the spectra are divided by their frequency resolution δf , to meet the normalization

criterion

N/2∑
i=1

S(fi)δf =
〈
x2(t)− 〈x(t〉2

〉
= V ar(x) (2.15)

with N the number of samples (see: (171)).
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Figure 2.9: Basic PFM setup. The main components are: laser, high-NA
objective (O), sample, quadrant photo-detector (QPD), and CCD camera. Other
optical components: telescope (L1, L2), Dichroic Mirror DM, mirror (M), and
illuminating light source (LED).

2.2.3 The Photonic Force Microscope

In this section we briefly describe how a PFM is structured. A typical PFM setup

comprises an optical trap to hold a probe - a dielectric or metallic particle of microm-

eter size - and a position sensing system. In the case of biophysical applications the

probe is a small dielectric bead tethered to the cell or molecule under study. In a

PFM it is possible to distinguish three main parts (Figure 2.9):

• Trapping,

• Position detection,

• Imaging.
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2.2.3.1 Trapping optics

Figure 2.10: The trapping optics is
constituted by two lenses which ex-
pand the laser beam to overfill an
high-NA objective (O), which focused
create the optical trap inside the liq-
uid solution where the object to be
trapped is suspended. Besides, a
dichroic mirror (DM) is used to reflect
the NIR beam and allowing to pass the
visible light direct to the CCD camera
and the detection beam.

As discussed in section 2.2.1 an optical

trap is a 3-dimensional landscape poten-

tial generated by a strongly focusing laser

beam. The main optical components to

build this part (Figure 2.10) are: laser,

telescope, objective and sample. Usually,

in most applications, the laser has a wave-

length in the near-infrared regime, because

NIR light is less damaging to biological

cells and molecules than visible and ultra-

violet light. A couple of lenses forms a tele-

scope in order to expand the laser beam

and getting the objective overfilled (see

section 2.2.1.3). The sample chamber is

made of two very thin slide glasses (around

100 µm), because the focus point is very

close to the objective. Usually the object to be trapped is a polystyrene particle

and it is suspended in an aqueous solution sealed between the two glass slides. By a

nano-positioning system the trapped object can be moved in all 3 dimensions. The

refracted rays exert a very small force of the order of pico-Newton on it, drawing it

towards the region of highest intensity. The optical potential is harmonic close to

the focal point and the attractive force is proportional to the stiffness of the trap

times the bead displacements from the center focus beam: Fopt = k(x − x0). The

trap stiffness k: (1) is directly proportional to the power in the light beam; (2) for

a given power beam, the trap stiffness increases with a decrease of the size of the

focused spot. The intensity of the trap decreases proportionally with a increase of

the size spot of the focused beam; (3) the trap is weakest in the direction of the beam

propagation, in fact depending on how much light is reflected at the bead surface, the

force due to the reflection can easily push the sphere out of a weak trap. Further-

more, in presence of damping, if the trap depth is not significantly greater than the

kinetic energy characteristic of the Brownian fluctuations, the particle will easily es-

cape. In order to optimize and making stronger possible the optical trap the objective

must be overfilled by the NIR collimated laser beam, and the objective must have an

high-Numerical Aperture (high-NA) (2.2.2).
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Figure 2.11: Imaging optics. An
objective C (usually called condenser)
focuses a white or green light (LED)
on the sample. The light is then recol-
lected by a second objective (O) and
projected onto a CCD camera con-
nected to a monitor.

Figure 2.12: Detection optics. A
QPD, connected to an acquisition sys-
tem, receives the forward scattered
laser light by a trapped particle, af-
ter it is collimated by an objective (O)
and collected by a condenser C.

2.2.3.2 Imaging optics

Figure 2.11 shows the imaging optical section, which is necessary to observe in real

time the trapped object. The light for the imaging is provided by a Light Emitted

Diode (LED) lamp, and is collected by a condenser C and directed orthogonally

towards the trapping region. The objectives O and C are on the same axis, as well as

the light is projected on a CCD camera which is connected to a Personal Computer

(PC) for imaging recording and to visualize in real time the position of the particle.

In order to not saturate the camera due to the high intensity of the trapping beam,

color filters are required.

2.2.3.3 Detection optics

As explained in section 2.2.2, the scattered light usually provided by the same trapping

laser beam is collected from a condenser and directed into a QPD, which converts in

voltage signal the pattern of the forward scattered light due to the changes in the

particle’s position [Figure 2.12].
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2.2.3.4 Acousto-Optic Deflection

In order to create different potential shape, in the path from the IR laser to the ob-

jective O an AOD, is inserted with the aim to steer the beam light and then modulate

the position of the optical trap, up to a few tens of kilohertz. The physical principle

which acousto-optic deflectors are based on is called photo-elastic effect. It establishes

that an elastic deformation of a solid body under strain causes a change of its refrac-

tive index. An acoustic wave can be considered as a local compression and expansion

of the medium it is travelling through. Therefore, an acoustic wave travelling in a

crystal will modulate the refractive index. In (173, 174) an extensive description is

given, including the general case of anisotropic crystals — with a different index in

all crystal directions. We will summarize the main results shown there. The refrac-

tive index n of a crystal with sound velocity v, will vary depending of the frequency

(f = ω/2π) and wavelength (Λ = v/f) of a plane acoustic wave with wave vector K

(with |K| K = ω/v):

δn = δn0 sin(ωt−K · r) (2.16)

Figure 2.13: Light scattering off the
wavefronts of a plane acoustic wave trav-
eling through a crystal. The figure shows
the case for Bragg diffraction, where the
incidence angle should be the Bragg angle
θB given by equation 2.18 The total beam
deviation equals 2θB

. Reproduced from (174)

This behaves like an optical grat-

ing of spacing Λ, traveling along its

direction with a speed v. However, be-

cause of the speed of light being much

larger than the speed of sound, the

grating can be considered static with

respect to an incoming light beam.

Figure 2.13 shows a typical configura-

tion to illustrate the acousto-optic ef-

fect. An acoustic wave (usually in the

radiofrequency region) is introduced

in a crystal by a piezoelectric trans-

ducer, which converts an electric volt-

age to mechanical deformations (or

vice versa).

An incident light beam (vacuum

wavelength λ, wave vector K = 2π
λ K̂)

diffracts on the acoustic wavefronts.

Depending on the physical parameters
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of the configuration (light incidence

angle, L, Λ, λ), two types of diffraction can occur. To distinguish, the following

dimensionless parameter Q is often used:

Q =
LK2

nk
= 2π

λL

nΛ2
(2.17)

The case of Q � 1 is known as the Raman-Nath diffraction. The beam light

arrives with normal incidence on the crystal surface. This kind of diffraction is char-

acterized by the generation of many beams with comparable intensity. The diffracted

light rays can not destructively interfere because the length L of the medium is so

small compared with the other length scale.

On the other hand when Q � 1 the Bragg diffraction is obtained. The Bragg

angle θB provides the condition for which only the first diffracted order is the result

of constructive interference:

θB = arcsin
λ

2nΛ
≈ λ

2nΛ
=

λf

2nv
(2.18)

The total deflected angle is equal to 2θB (typically a few tenths of milliradiants)

and it is proportional to the acoustic frequency. The diffraction efficiency η of the

first order, has been obtained in ref. (174), and it is given by:

η =
I1
I

= sin2

{
2.22

λ

√
M2Pa

L

H

}
(2.19)

where Pa is the average energy flow or acoustic power (in J/s), L/H is the length

to height aspect ratio of the sound field, and M2 the acousto-optic figure of merit,

which is completely determined by the crystal’s material properties. The efficiency of

the first diffracted order can approach 100 %.

Nevertheless, this is a result valid only for the ideal Bragg case of Q � 1. Prac-

tically, the crystals interactions limits the Q-value, then the higher orders are not
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fully suppressed. Beside, if the beam steering is obtained by Bragg diffraction, then

the Bragg angle for ideal operation changes (2.18), this implies that the first-order

efficiency decreases accordingly (equation 2.19). Therefore power stability of the

deflected beam is enhanced at the expense of the diffraction efficiency. By using

anisotropic crystals, it is possible to reduce this efficiency decrease. In that crystals

the diffraction efficiency can be stable over a relatively wide acoustic frequency band

(. one octave).

2.3 Introduction to the experimental theoretical out-

comes

In this section we give the phenomenological description of the nonlinear dynamics of

a micro or nanometric dielectric particle catched inside a landscape optical potential,

created by an IR laser steered by means of an Acousto-Opto Deflector (AOD: see

section 2.2.3.4). We have dedicated section 2.4 to theoretically derive and experi-

mentally demonstrate the new effect discovered from us, named Stochastic Resonant

Damping (SRD), which is in contrast with the phenomenon of stochastic resonance

(SR). The SRD concerns a minimization of the variance of the detected output po-

sition, while the SR refers to a maximization of the SNR. Thus, in section 2.5, we

report the experimental demonstration of the two phenomena (SR vs SRD), which

coexist in the same system, but at different regimes. Afterwards, in section 2.6, we

show that a maximization of the SNR can be observed even in a monostable optical

system. We consider this phenomenon directly related with the stochastic resonance

(SR). Therefore, we determine that such a behaviour is the same as that SR observed

in a bistable system. Finally, in section 2.7 we give the details about the technique

developed in order to exactly detect the position of the particle beyond the practical

limit imposed by the sensitivity range of the electronic device used for this purpose

(see section 2.2.2). This method exploits the channel crosstalk to 10-fold increase the

spatial detection range, from 150 nm up to 1500 nm.
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2.3.1 Optical setup

The optical trapping setup illustrated in Figure 2.14 is a PFM as the general one

described in section 2.2.3, but with some modifications and additional elements to

perform our experiments. In the next sections, we always refer to this optical geometry

to describe the physical results obtained.

Figure 2.14: Experimental setup: O and
C are objective and condenser, respectively;
DM1, DM2, and DM3 are dichroic mirrors; M
is mirror; AOM/D is acousto-optic modulator/
deflector; L1 and L2 are lenses of an optical sys-
tem which conjugates the output plane of the
AOM/D and the input plane of the objective
O; PH is a pinhole;

In this experimental assay a

micrometer polystyrene particle is

considered as the probe in the

PFM geometry. The particle’s

forward scattering light is de-

tected by a proper device. A

NIR laser beam (Microlaser 785

nm, 30 mW at the sample) steer-

able along the x-direction by an

AOD (AOM/D ISOMET LS55

NIR) was inserted into the beam

path in order to create a mov-

able optical trap. Two lenses,

L1 and L2 were inserted along

the IR light path, which conju-

gate the output plane of the AOD

and the input plane of the objec-

tive O. The AOM/D input volt-

age was controlled by an arbitrary

waveform generator (Tabor Elec-

tronics, WW 5062). The trap

position depends linearly on the

beam deflection, which we control

through the AOD input voltage.

The probe position detection is realized by a red beam (635 nm) proceeding from

a low noise laser (Coherent, Lablaser 635 nm, ultralow noise), which is focused by

a microscope objective (O, 100×, numerical aperture(NA) =1.3, Nikon). The for-

ward scattered light was collected by a 40× objective (C, 40×, NA=0.75, Olympus

UPlanFI) and detected by a Quadrant Photo Detector (QPD labeled as New Focus

2911). Besides, the sample probe was fixed on a piezoelectric stage which allows for
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3D nanometric displacements. The resulting sum and differential signals are then

transferred through an analog to digital conversion card to a computer for analysis

(National Instruments 6270 A/D converter card). The white light proceeding from

the LED into the probe, was collected by the objective, reflected by a dichroic hot

mirror (cutoff wavelength 580nm, Thorlabs, FM02), and focused by a 200 mm lens

onto a CCD camera (Rister, CCD 3035) [Figure 2.14]. The magnified image was

then displayed on a Liquid Crystal Display (LCD) screen. We calibrated the trap

displacement for small deflection angles, when the QPD response is linear, by using

standard optical tweezers calibration techniques, (175)(176)(177), and then we lin-

early extrapolated the position of the trap to larger trap displacements (see section

2.7)(150).
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2.4 Stochastic Resonant Damping: theory and ex-

periments

2.4.1 Introduction

The presence of noise is ubiquitous in natural, social, and technological phenomena,

ranging from nanoscopic systems such as biomolecules and nanodevices to macro-

scopic systems such as financial markets and human organizations. Noise introduces

disorder and random fluctuations into any type of system; and often this is deleterious

for the system’s performance.

We report the theoretical study and the experimental observation of the situation

when the confinement effort is increased at a fixed intrinsic and parametric noise

level. Counter-intuitively, we show that in most cases an increased confinement effort

over a certain threshold leads to a poorer system’s performance. More specifically,

we show that the minimum output variance is typically, but not always, achieved

for a finite confinement effort, and therefore to increase the confinement effort over

this threshold value leads to a poorer performance. This feature derives from the

interplay between the intrinsic noise, whose characteristic frequency depends on the

confinement effort, and the parametric noise of the confinement effort exerted on the

system. We name this effect stochastic resonant damping because of its similarities

to stochastic resonance; however, while stochastic resonance is concerned with the

maximization of the SNR (2), stochastic resonant damping is concerned with the

minimization of the system’s output variance. We use a mathematical model that

is linear and exactly solvable, but the main characteristics are also observed under

more arbitrary conditions. We experimentally verify our prediction on a physical

model system based on a colloidal particle held in an oscillating optical trapping

potential. We finally show how stochastic resonant damping can be useful for the

study of phenomena in various fields.
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2.4.2 Mathematical Model

We consider a system whose behavior can be described by the following Langevin

equation

ẋ(t) + C[x(t)− x0(t)] = Dh(t). (2.20)

The intrinsic noise is driven by a white Gaussian random process h(t) such that

< h(t) >= 0 and < h(t + τ)h(t) >= δ(τ); D determines the intensity of the noise.

The system is constrained by the restoring term C[x(t) − x0(t)], whose equilibrium

position x0(t) can vary over time either deterministically or randomly. The value C

defines the confinement effort, i.e. a measure of the effort applied to the system for

its confinement.

The choice of this model is motivated by the fact that it is exactly solvable and

readily experimentally implementable. This permits us to directly compare theoreti-

cal and experimental results. As we will see in more detail in the experimental section,

Eq. (2.20) describes an overdamped Brownian motion in the presence of an oscillating

harmonic potential: x(t) is the position of a Brownian particle with diffusion coeffi-

cient D2/2 in the presence of a harmonic trapping potential characterized by a fixed

stiffness proportional to C and an oscillating center x0(t). In the case this potential

is generated by an optical trap, C is proportional to the optical trapping power and

inversely proportional to the viscosity.

We are interested in studying the output variance σ2
x of the system with modu-

lation of the trap position as a function of C for a given x0(t). x0(t) can be either a

deterministic or a stochastic function. Solving (2.20) in the Fourier domain leads to:

X(f) =
DH(f) + CX0(f)

C + i2πf
, (2.21)

where H(f), X(f), and X0(f) are the Fourier transform of h(t), x(t), and x0(t).

In absence of modulation, i.e. x0(t) ≡ 0, the PSD is: Px(f) =< H(f)†H(f) >=

D2/(C2 + 4π2f2), where the dagger represents complex conjugation. It describes the
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intrinsic system noise in the presence of a confinement potential and is characterized

by the cutoff frequency fc = C/2π.

Using Parseval’s theorem we obtain

σ2
x =

D2

2C
+

∫ +∞

−∞

C2

C2 + 4π2f2
< |X0(f)|2> df, (2.22)

where the first term represents the intrinsic noise contribution, and the second

term the parametric noise contribution. It follows straightforwardly that the total

variance in the externally modulated system always exceeds the intrinsic noise. The

output response depends on the power spectral density of x0 describing the movement

of the equilibrium position.

First we consider the case when x0(t) is a white Gaussian random process with

< |X0(f)|2>= N2; then

σ2
x =

D2 +N2C2

2C
(2.23)

For increasing confinement effort C, the output variance initially decreases and

then it increases. This behavior can be explained as follows: while the confinement

effort C increases, the intrinsic noise cutoff frequency fc increases as well and there-

fore more components of the parametric noise have pronounced effect on the system.

However, in this case the power of the noise is infinite, while in the real cases it is

finite. In particular, the output variance in this case diverges for C tending to infinity,

while this never happens for real noises that do have a cutoff frequency. Therefore,

in the following examples we will consider noises with finite variance.

In the case of the equilibrium position moves harmonically,

< |X0(f)|2>= A2
[

1
2δ(f − f0) + 1

2δ(f + f0)
]

(notice that its variance is normalized

to A2) and

σ2
x =

D2

2C
+A2 C2

C2 + 4π2f2
0

. (2.24)
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In Fig. 2.15(a) the system variance σ2
x as a function of C and the forcing frequency

f0 is represented. The σ2
x diverges for vanishing C, because the confinement is lost.

For very low forcing frequencies (f0 <<
C
2π ) as well as for high forcing frequencies

(f0 >> C
2π ) σ2

x monotonically decreases with increasing the confinement effort C.

However, there is a range of frequencies f0 when a minimum of the output variance

can be achieved for a finite value of C.

This effect, which we name stochastic resonant damping, is similar to stochastic

resonance. Both indeed are due to a pseudo-resonance between the forcing frequency

f0 and a packet of frequencies from the range of intrinsic frequencies of the system

noise, whose cutoff is fc = C/2π. The difference is that stochastic resonance is con-

cerned with a maximum in the SNR, while stochastic resonant damping is concerned

with a minimum of the output variance. Interestingly enough, the two phenomena

may occur simultaneously in the same system, although typically in quite different pa-

rameter regimes; this should be object of further studies. At a modulation frequency

f0 = 1Hz the squeezing of the output variance is observed at C = 2, corresponding

to the intrinsic system noise cutoff frequency fc = 1/πHz. Fig. 2.16 illustrates the

counterintuitive aspects of stochastic resonant damping : while the effort made

to increase the confinement is increased the system output variance first diminishes

(comparison between Fig. 2.16(i) and 2.16(ii) and then starts growing again (com-

parison between Fig. 2.16(ii) and 2.16(iii). Hence, in this simple case of harmonic

modulation of the equilibrium position the system reveals a unexpected behavior:

the more effort (over a certain threshold) is exerted to confine the system, the less

confinement is achieved.

Noises occurring in nature are typically more complex than a harmonic modula-

tion.

Biological transport phenomena work in the presence of thermal noise and in-

ternal, generally correlated, random noise of biological origin, such as the hydrolysis

mechanism Adenosine triphosphate (ATP) (25). It is therefore important to analyze

also the movement of the equilibrium position of the system governed by a colored

noise. We therefore consider the simplest case of a colored Gaussian forcing with

PSD < |X0(f)|2>= A2f0/π(f2
0 + f2) (notice that its variance is again A2 and f0 is

its characteristic frequency). The system variance is now

σ2
x =

D2

2C
+A2 C

C + 2πf0
. (2.25)
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In Fig. 2.15(b) the system variance σ2
x as a function of C and the characteristic

frequency f0 is represented. The overall behavior is similar to the one presented in

Fig. 2.15(a) for harmonic forcing. The value of the confinement effort Copt which

provides a minimal variance as a function of the characteristic frequency f0 and the

noise power A2 of x0:

Copt =

{
+∞ for f0A

2 < D2/4π

2πf0D/(2
√
πf0A−D) for f0A

2 ≥ D2/4π
(2.26)

In Fig. 2.15(b) the thick curve shows the behavior of Copt.

Until now we have only considered a noise of constant intensity, i.e. A2 =

constant. If we now explore how output the variance σ2
x varies as a function of

the noise intensity A2, the σ2
x increases with the increase of the noise intensity A2.

We find that the variance minima becomes deeper as the noise intensity grows. The

depth of the variance minima can be defined as σ2
x(Copt)/σ

2
x(C = +∞). Hence, the

present result is more evident for highly noisy systems.
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Figure 2.15: Output system vari-
ance σ2

x as a function of the confine-
ment effort C (D = 1, A = 1) for
harmonic (a) and colored Gaussian
(b) parametric noise for various values
of the frequency f0: from bottom to
top f0 = 100, 31, 10, 3, 1 (thick curve),
0.3, 0.1, 0.03, 0.01Hz. The thick line
indicates the σ2

x minima. The shaded
area represent the range of accessible
output variance for a given value of
the confinement effort. The additional
axis shows the system intrinsic noise
cutoff frequency fc. Insets: a typical
example of x0 in time and frequency
domain (f0 = 1).

Figure 2.16: Intrinsic system output
(gray filled area) and system output in
the presence of a sinusoidal modula-
tion (f0 =1, D=1, A=1) (red dashed
curve) for three states of the system,
indicated by dots in Fig. 2.15(a)
for the modulation frequency f0=1Hz:
(i) C=0.4 (fc=0.064 Hz), (ii) C=2
(fc=0.32 Hz) corresponding to the ab-
solute variance minimum, and (iii)
C=10 (fc=1.6 Hz). The output vari-
ance always exceeds the intrinsic vari-
ance.
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2.4.3 Experimental Verification

As we anticipated above, a paradigmatic system that behaves according to the pre-

sented theory is a Brownian particle held in an oscillating trapping potential. We

have therefore used such a physical system in order to verify our predictions. We

implemented this system using the optical trap whose instantaneous center position

is controlled by steering the focussed optical beam. We employed the same opti-

cal configurations described in sections 2.3.1. For further details see (149). When

equation (2.20) describes the Brownian motion of a particle in an oscillating poten-

tial, the parameters have the following physical meaning: C = k/γ, where k is the

stiffness of the trap, γ is the friction coefficient of the particle, D =
√

2kBT/γ,

kB = 1.3807 ·10−23 J/K is the Boltzmann constant, γ=6πrη is the friction coefficient

of the particle, r is the radius of the particle, η is the viscous coefficient of the liquid,

and T is the absolute temperature of the system.

2.4.4 Experimental Setup

The optical geometry of the PFM employed for these experiments is the same of sec-

tion 2.3.1 The sample solution was prepared by adding a small amount of polystyrene

beads (radius r = 295nm, Kisker-Biotech GmbH) to a 10% sodium dodecyl sulphate

sterile aqueous solution. A drop (about 10µl) of the resulting solution was placed

between two coverslips (thickness 80µm) separated by a 50µm spacer and sealed

with water insoluble silicone vacuum grease to prevent evaporation. This sample was

placed onto a custom-made sample holder on top of an inverted microscope equipped

with an oil immersion microscope objective (×100, NA = 1.25, Comar). The sample

was illuminated from the top with white light for visualization by means of a CCD

camera. The particle concentration was sufficiently low to guarantee that there was

only a single particle within the field of view. A single bead was trapped by focus-

ing the optical beam with the objective near the upper coverslip surface in order to

increase the drag force acting on the particle and therefore to have a more stable

trapping. This optical beam was produced by a laser (λ = 785nm, maximum power

95mW , MicroLaserSystem). Nanometer position detection was achieved using the

forward scattered light of a second beam, produced by a low-noise laser (λ = 635nm,

maximum power 5mW ); its power at the sample was kept low in order to not affect

the trapping of the probe.

The forward scattering of the detection beam was collected by a condenser ob-

jective (×40, NA = 0.75, UPlanFI) and projected onto a Quadrant Photo Detector
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(QPD, New Focus 2911). The QPD measured the changes in the interference pattern

and converted them into three signals proportional to the position of the particle in

the trap. These signals were sampled and acquired into a computer by an acquisition

card (62621E, National Instruments). The sampling rate was fs = 2 kHz. This is

sufficiently higher than the corner frequency of the system fc and permits us to ac-

quire the dynamics of the particle motion for the optical trap calibration (176). In the

study of the variance, since we are measuring the particle position distributions, we do

not need to follow the dynamics of the particle. Therefore we can use a sampling rate

that is much slower than the noise characteristic frequency. The modulation of the

position of the optical potential was achieved by an AOD (AOM/D ISOMET LS55

NIR). This was inserted along the 785nm laser beam path and was used to steer it

along the x direction. The y position of the trap was unaffected. The AOM/D input

voltage was controlled by an arbitrary waveform generator (Tabor Electronics WW

5062) which allowed charging arbitrary signals. The power of the 785nm beam before

the objective was adjusted between 3mW to 35mW by the AOD.
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2.4.4.1 Colored Gaussian noise generation

A noisy sequence with any PSD can be generated starting from a sequence of in-

dependent normally distributed random variables ζn∆T , i.e. < ζn∆T >= 0 and

< ζn∆T ζ(n+m)∆T >= δ(m), where n and m are integers and ∆T is the sampling

time. The most general approach involves: (1) to apply the Fourier-transformation

to the signal ζnT ; (2) to multiply the resulting signal by a frequency-domain filter with

the desired PSD; (3) to perform the inverse Fourier-transformation of the resulting

signal. The resulting signal has the desired PSD. A mathematically equivalent ap-

proach can be followed in time-domain by applying a time-domain filter. To generate

the colored Gaussian noise, we used a Finite Impulse Response (FIR) filter of the first

order:

x0,(n+1)∆T = αx0,n∆T +A/
√

1− α2ζ(n+1)∆T , (2.27)

where A is the variance of x0,n∆T , and α is its autocorrelation. This filter produces

a low-pass signal whose cutoff frequency depends on the value of T and α: f0 =

− lnα/∆T .

2.4.4.2 Data analysis

First for each value of the trapping power a series of data was acquired in absence of

modulation with a sampling rate fs = 2kHz. The stiffness of the optical trap was

measured in the x and y directions using the autocorrelation function method (176).

Furthermore, we have verified that no cross-correlation between the two direction

exists, which shows that the modulation does not introduce a rotational force field

and that the results along the y direction are independent from the data along the

x direction (176), (178). The values of the stiffness constant were found to be linear

with the trapping optical power: kx ≈ ky. In the calibration process the value of the

friction coefficient of the particle γ takes into account the correction of the viscosity

coefficient due to the proximity of the surface (175).

For each data point in Figures 2.17, 2.19 and 2.18 (see below), 12 datasets of

10000 samples were acquired with a sampling rate fs = 2 kHz. The values of the

output variance σ2
x and σ2

y are the average over these datasets. The error bars were

calculated as the standard deviation of the measurements.
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2.4.5 Experimental Results

Figure 2.17: (a) Experimental and theoretical σ2
x as a function of the laser

power in the presence of harmonic modulation of the trap center. From the bot-
tom to the top the various sets of values correspond to f0 = 5, 50, 500, 5000, Hz.
The bar represent one standard deviation. The solid lines represent the the-
oretical prediction for the experimental parameters (k = 0.4 pN/µmmW ×
TrappingPower [mW ], γ = 1.1 · 10−8Ns/m, A = 100nm). The disagreement be-
tween experimental data and theoretical results for right end of the 5Hz dataset
is observed because for such values of the confinement effort and intrinsic noise
frequency the trapping potential is not harmonic anymore. (b) Data for the non-
modulated direction y. The two additional axes show the value of the confinement
effort and the corresponding cutoff frequency of the intrinsic noise.

Fig. 2.17a illustrates the experimental results obtained with sinusoidal mod-

ulation of the trap center: x0(t) =
√

2A sin(2πf0t) with A = 100nm and f0 =

5, 50, 500, 5000Hz. The continuous lines represent the theoretical prediction accord-

ing to Eq. (2.24). The experimental results are in very good agreement with the

theoretical predictions for all the range of the trapping power, except for very low

values. The maximal value of the dip at the dependence was found at the modulation

frequency f0 = 50Hz at the confinement effort of C = 300 s−1 when the corner fre-

quency of the intrinsic noise of the system is fc = 60Hz. As for the theoretical results,
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the modulation frequency to observe the stochastic resonant damping is higher than

fc. Hence, the stochastic resonant damping has a measurable value, when the exter-

nal source of modulation induced the movement of the probe with frequencies that

are not present in the spectrum of the unmodulated internal motion. To understand

what physical quantities produce such phenomenon, we can give an intuitive picture

of the situation. When there is stochastic resonant damping in an overdamped system

the frequency of the intrinsic noise is such that in the time it takes the center of the

trapping potential to move from one side to the other the particle has time to follow

it only partially. Again this picture makes clear that stochastic resonant damping,

such as stochastic resonance, is not a real resonance but only a pseudo-resonance.

The trap was modulated only along the x direction, and the y movement of the

particle was used to monitor for the same experimental condition the behavior of the

system in the presence of only the intrinsic noise. As expected the system variance

σ2
y (Fig. 2.17b) increases with decreasing confinement effort and this behavior is

independent from the modulation.

Fig. 2.19b illustrates the experimental results for the correlated Gaussian mod-

ulation of the trap center. In this case the trap position moves as illustrated in the

inset of Fig. 2.15b with A = 70nm and f0 = 5, 50, 500, 5000Hz.
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There is very good agreement between the theoretical and experimental results.

Again, as Fig. 2.19b shows, for the unmodulated direction the variance grows with de-

creasing confinement effort. Finally, in Fig. 2.18 the dependencies of the confinement

with the noise amplitude are presented for A = 55, 70, 85nm. As it was mentioned in

the theoretical part, the stochastic resonant damping decreases with decreasing noise

amplitude.

As it can be seen in all the experimental figures, the agreement between experi-

mental data and theoretical results gets worse for very low noise frequency and high

confinement effort. For such parameters the optical trap cannot anymore be approx-

imated as an harmonic potential, the system tends to become bistable, and Kramers

transitions take place.

2.4.6 Conclusions

Usually in the presence of a background noise an increased effort put in controlling

a system stabilizes its behavior. Rarely it is thought that an increased control of

the system can lead to a looser response and, therefore, to a poorer performance.

Strikingly there are many systems that show this weird behavior. Examples can be

drawn from physical, biological (179), and social systems (180). In scanning probe mi-

croscopy techniques, such as Atomic Force Microscope or Photonic Force Microscope,

an increased control over the probe position does not necessarily improve resolution.

On ecosystems the implementation of conservation policies can have unintended and

perverse consequences (179). Analogously, on social systems enforcement does not

always achieve the desired effect, such as has been shown on ethnic/cultural con-

flicts (180) and economical systems (181, 182). We propose a simple and general

mechanism underlying such behaviors: such a mechanism, named stochastic resonant

damping, can be provided by the interplay between the background noise and the

control exerted on the system.
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Figure 2.18: Experimental σ2
x as a

function of the noise amplitude. Var-
ious sets of values are presented for
A = 55, 70, 85nm. The bars rep-
resent one standard deviation. The
solid line represent the theoretical
prediction for the experimental pa-
rameters (k = 0.7 pN/µmmW ×
TrappingPower [mW ], γ = 1.9 ·
10−8Ns/m). The two additional axes
show the value of the confinement ef-
fort and the corresponding cutoff fre-
quency of the intrinsic noise.

Figure 2.19: Experimental and theo-
retical σ2

x as a function of the trapping
power obtained with colored Gaus-
sian forcing of the equilibrium posi-
tion. Various sets of values are pre-
sented for f0 = 5, 500, 50, 5, Hz. The
bars represent one standard deviation.
The solid line represent the theoret-
ical prediction for the experimental
parameters (k = 0.7 pN/µmmW ×
TrappingPower [mW ], γ = 1.9 ·
10−8Ns/m, A = 70nm). The dis-
agreement between experimental data
and theoretical results for right end
of the 5Hz dataset is observed be-
cause for such values of the confine-
ment effort and intrinsic noise fre-
quency the trapping potential is not
harmonic anymore. The two addi-
tional axes show the value of the con-
finement effort and the corresponding
cutoff frequency of the intrinsic noise.
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2.5 Stochastic Resonant Damping versus Stochastic

Resonance

After having detected the new phenomenon that we called SRD, as described in the

previous Section, we performed further experiments and numerical modelling with the

aim of comparing, or contrasting, this phenomenon with that of the SR (157, 183) As

previously pointed out, while SR is concerned with the maximization of the SNR, the

SRD is concerned with the minimization of the output variance. We experimentally

observed how in a system characterized by a harmonic potential only the SRD is

present; there is no SR because the SNR diverges and therefore no maximum is

present. In contrast, in a system characterized by a non harmonic potential, both SR

and SRD may be found, however typically in different regimes. The experiments were

performed by studying the behavior of a brownian particle in an optical potential.

2.5.1 Theoretical model and simulations of Stochastic Reso-

nance in a double well system

In order to clearly elucidate that SRD and SR are two different effects coexisting in

the same system, we performed some simulations of a brownian particle jiggling in a

double well potential. An analytical formula of the SNR in a double well potential

under the right hypothesis, has been obtained in previous works. Now let’s consider

the theoretical description of a double well system, where we suppose the particle is

trapped and jiggling from one well to the other.

D =
KBT

γ
(2.28)

ẋ(t) = −k
γ
V ′(x) + ε(t) (2.29)

V (x) = − (x− x0)2

2
+

(x− x0)4

4
(2.30)

where :

x0 = A0 cos(Ωt+ φ) (2.31)

〈ε(t)ε(0)〉 = 2Dδ(t) (2.32)
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Figure 2.20: Panel (a) displays the numerical results of the Langevin equation
for a monostable system described from the equation 2.20, while panel (b) shows
the numerical results of the system from the equations set 2.28. In both situa-
tions, the center trap is modulated sinusoidally. The blue, green, red, blue-light
and magenta curves (from the highest variance values to the lowest) represent
modulation frequencies 1, 3, 5, 10, 20 Hz.

In the model (2.28) ε represents the thermal noise, k is the trap stiffness, and

γ the friction coefficient of the particle in the medium. V (x) is the mathematical

description of the potential, which corresponds to an infinite double well system. x0

is the center of the entire system, which is modulated sinusoidally.

We computed the Langevin equation 2.29 for a double well potential modulated

by a sinusoidal external forcing at different frequencies. Our simulation shows clearly

that SRD phenomenon is found in another frequency regime than SR (Figure 2.20). As

it can be seen, at low frequencies (1 or 3 Hz) the output position variance decreases

monotonically, contrarily the SNR shows a maximum for a certain trap stiffness.

Another scenario is given for the SRD, which presents a minimum in the output

variance at the frequencies of 20 or 10 Hz, whereas for the SR no maximum can be

observed.
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Figure 2.21: Concept of the double well optical landscape. The particle is
jiggling from one well to the other. Dashed line indicate the movement of the
center of 100 nm. The distance from the minimums is fixed at 240 nm. The sides
graphs show the shapes changes due to the stiffness.

2.5.2 SR in a double well potential moved harmonically

Figure 2.22: Power spectral density and traces of
features SR. The particle is jiggling in a double well
potential where the center trap is modulated sinu-
soidally at 0.2 Hz for three different powers (from
the top to the bottom 3, 7, 12 pN/nm).

As explained in Chapter 1),

the phenomenon of Stochas-

tic Resonance (SR) has been

extensively investigated in

many systems (31, 38, 49, 52,

63, 86, 92, 94, 152, 184, 185).

In the last decade, numer-

ous experiments by means op-

tical tweezers has been ef-

fectively conducted in order

to observe kramers transi-

tions and resonant phenom-

ena. SR usually takes place

in a bistable system, where a

weak periodic signal applied

in counter-phase to the depth

of each well, can be boosted

by adding a right amount of
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noise to the signal. The fre-

quencies in the noise corresponding to the original signal’s frequencies will resonate,

amplifying only the original weak signal (45, 186, 187). With this work, we experimen-

tally observed the phenomenon of SR in a double well system created by an optical

potential as described in section 2.3.1. At difference to many other investigations, we

apply a variant strategy to impose the resonance conditions, as shown in Figure 2.21.

Figure 2.23: SNR of a double well optical poten-
tial versus the power stiffness “K”, at three different
frequency. Blue 200 Hz, red 20 Hz, black 0.2 Hz.

We modulated sinusoidally

the center of the system with

an amplitude (A) kept fixed

at 100 nm, frequency of 0.2

Hz, the interwell distance was

kept fixed at 240 nm with a

potential barrier depending of

the stiffness “K” (usually also

depending from the distance

between traps). The peak ap-

pearing in the power spectral

density at the modulation fre-

quency is a direct measure of

signal to noise ratio. The

stiffness value (K) is referred

to each well. For a very low

stiffness, the power of the in-

trinsic noise (Brownian mo-

tion) becomes stronger, then

the particles could not feel

anymore the modulation. The potential barrier is not high enough to prevent the

free diffusion of the particle. Therefore, at stiffness from 1 to 2 pN, there is no

modulation signal detected. At the modulation frequency applied the power spectral

density appear flat. At K equal 3 pN/nm as shown in Figure 2.22(a), a strong signal

is detected, which can be interpreted as a fingerprint of SR, because synchronized

hopping events occur between the two wells. This assumption is confirmed when fur-

ther increasing the stiffness to 7 pN/nm Figure 2.22(b), the delta spike measures 5

db, due to the fact that the signal is almost completely destroyed. The bottom plot

in Figure 2.22(c) shows that the SNR measured is 11 db, so that for strong modu-

lation in each well, no frequent hopping event occurs, because the potential barrier
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is so high compared with the intrinsic noise power. The complete description of the

behaviour at different frequencies is reported in Figure 2.23, where it is possible to

observe a clear maximum in the SNR at 5 pN and 20 Hz. While at 0.2 and 200 Hz

only a monotonic behaviour is observed.

2.5.3 Experimental Results and discussion

A polystyrene particle of 0.6 µm diameter in a distilled water solution was trapped

by a 785 nm IR laser beam. As described in section 2.2.3.4 an AOD was inserted in

the optical path which steered the beam in x and y directions. An external sinusoidal

forcing moved the center of the optical

Figure 2.24 shows our experimental results about a Brownian particle trapped in

a single and double well potential modulated as described in the previous section. We

compare Stochastic Resonant Damping with the classical Stochastic Resonance. We

know that SRD is concerned with the minimization of the output variance, whereas

SR is concerned with the maximization of the SNR.

The panel (a) clearly shows that in a single well the SNR is a monotonic function

of the trap stiffness. Although the curve for lower frequency at higher K seems to go

slightly down, no evidence of a maximum in the SNR is observed.

In (c) the output variance with the relative standard deviation is calculated. As

the behaviour of the blue curve shows, a minimum in the output variance is observed,

which is the main effect of SRD. Any curve in this plot has a small variance, even at

0.2 Hz where the hopping from the two wells starts to manifest.

The (b) plot shows SNR for a symmetric double well potential where the center

is steered sinusoidally. A maximum is observed at 5 pN/nm of the 0.2 Hz curve.

Decreasing still more the trap stiffness the SNR can only decrease, because the traps

become weaker and the intrinsic noise is more powerful than the modulation strength.

The (d) panel displays the output variance of the double well potential for any

stiffness values. The standard deviation takes higher values due to the shape of the

potential. Actually, in the double well, the barrier not always allows a transition to

the other state. This fact is evident looking the curves at lower frequency where the

particle feels more the external forcing. At higher frequencies the Brownian motion
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does not feel strongly the potential movements, because that frequency starts to be

out of the sensitivity range represented by the plateau region in the PSD, just before

the corner frequency (Figure 2.8).

From these results we can conclude that both phenomena SRD and SR are present

in the double well system. Contrarily, in the single well potential we detected only the

SRD, while SR was not observed. We want to highlight that our findings show clearly

that SRD is still a more general effect than SR, and it works at different frequency

regimes.
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Figure 2.24: Experimental evidence of Stochastic Resonance vs Stochastic Res-
onant Damping: (a) SNR as a function of the trap stiffness for a single well sys-
tem.(b) SNR as a function of K for a double well potential. (c) System output
variance σ2

x for a single well. (d) System variance as a function of the trap stiff-
ness for a double well potential. In each subplot, different curves are plotted for
different values of the frequency f0 of the external modulated forcing (blue 200
Hz, red 20 Hz, black 0.2 Hz).
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2.6 Maximum in the Signal-to-Noise ratio in a monos-

table system

In the last decades, a long debate about the possibility to observe Stochastic Reso-

nance in a monostable system, has been undertaken. A theoretical work of Vilar and

Rub́ı in 1996 (6), has been a source of inspiration. The main results of that work

are shown in Figures 2.25 2.26, which proved that SR can be achieved by means of a

proper modulation of the potential shape. Actually, in Figures 2.25(a)(b), it is shown

that the SNR for the three potential configurations is a divergent function. Anyway,

for low noise, from 10−2 to 1, they have a distinct behaviour, thus it is normal to

think that an oscillating potential between these three configurations, can present a

maximum in the SNR function. As confirmed in the same work, the dynamics of a

ferromagnetic particle under a modulated external magnetic field, exhibit a maximum

in the signa-to-noise ratio as depicted in Fig. 2.26. Others works, which confirm the

existence of stochastic resonance even in monostable systems, have been published

by (96, 188). In the next sections we have experimentally proved that a maximum in

the SNR can also be obtained in a nonlinear system represented by a paradigmatic

brownian particle held in a cuartic monostable optical landscape.
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Figure 2.25: (a) Potentials V1(x), V2(x), V3(x) for the maximum value of ht(d)
(solid line) and for the minimum value (dashed line).(b) Behavior of the SNR for
the three potentials.(c) Power spectrum corresponding to V1(x) for noise strength
D=0.1 and D=1000). Reported from (6)

Figure 2.26: Potential energy of the ferromagnetic particle as a function of θ
for the maximum value of ht(d) (solid line) and for the minimum (dashed line).
(b) SNR for the previous values of the parameters obtained through computer
simulations. (c) Power spectrum for noise strength D= 0.05, 0.15, 0.35, and 1.
Reported from (6)
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2.6.1 Mathematical description of a particle held in an oscil-

lating cuartic optical potential

A mathematical description of a particle held in an oscillating monostable potential,

can be provided by the classical langevin equation, which is often used to model

dynamical systems such as a brownian particle in a given potential V (x). In the

equation 2.33 the term k represents the trap stiffness, γ is the coefficient friction

and, considering the low Reynolds number (10−4), we neglected the inertial term.

The right-side of the eq. 2.33 η(t) is a noise term driven from a gaussian random

process. Furthermore, we consider the potential V (x) as time-space dependent, with

V1(x) in the case of an harmonic potential, while V2(x) when it is proportional to x4.

Besides, we assume that the center of the optical potential is a sinusoidal oscillating

at frequency f0, where ω0 = 2πf0 and amplitude A 2.36.

γẋ+ k
dV (t)

dx
= η(t) (2.33)

V1(x) =
1

2
(x− x0)2 (2.34)

where V1(x) is an harmonic potential centered at x0.

V2(x) =
1

4
(x− x0)4 (2.35)

where V2(x) is a potential proportional to x4 and centered in x0.

x0 = A sin(ω0t) (2.36)

2.6.2 Experimental procedures and Data analysis

The AOD inserted in the optical path, was driven by an input voltage signal proceed-

ing from an arbitrary waveform generator. The latter was programmed by a custom

built labview program, in order to modulate the deflection beam (see Fig. 2.14). For

the data analysis, we employed the power spectral density method as described in sec-

tion 2.2.2.1. At each position of the optical trap the PSD of the acquired time-series

(sampling frequency fs = 2 kHz, number of samples Ns=100000) was calculated and

fitted to the theoretical Lorentzian shape, getting the value for the calibration param-

eters. The stiffness of the optical trap was measured in the “x” and “y” directions

using the autocorrelation function method (176). Furthermore, we have verified that

no cross-correlation between the two direction exists, which proves that the modu-
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lation does not introduce a rotational force field and that the results along the “y”

direction are independent from the data along the “x” direction (176), (178). The val-

ues of the stiffness constant were found to be linear with the trapping optical power:

kx ≈ ky.

In the calibration process the value of the friction coefficient of the particle γ

takes into account the correction of the viscosity coefficient due to the proximity of

the surface (175).

2.6.3 Experimental outcomes

Figure 2.27: Experimental realization of an opti-
cal x4 potential by an AOD.

Here, we report our experi-

mental observation of a max-

imum in the Signal to Noise

Ratio in a nonlinear monos-

table optical landscape po-

tential (See Figure 2.27) (156)

created by an AOD, as al-

ready described in section

2.3.1. In order to character-

ize our optical trap we per-

formed a 3D position fluctua-

tion analysis applying Boltz-

mann statistics to the move-

ment of an optically trapped

600 nm polystyrene bead.

The IR laser beam instead of

remaining fixed (usually in a

static harmonic optical trap

it is focused onto one fixed

point) is linearly steered at

50 KHz, forward an backward

along a distance of 200 nm. The latter procedure allows us to create an homogeneous

optical landscape for the diffusion particle. The application of sufficiently strong sig-

nal “x0” drives the system out of the linear regime, going into the nonlinear region.

Therefore, the SNR increases at the higher-order harmonics, i.e., it results in a maxi-

mum of the SNR (Figure 2.28). Besides, it must be said that an experimental optical
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potential is intrinsically non linear, due to the very short focus distance into the flu-

idic chamber, and the numerical aperture of the objective. We use this nonlinearity

to observe a maximum in the SNR. This is not a proper SR (such as from definition),

because the intrinsic noise is not used in a cooperative way with the modulation sig-

nal in order to switch to another state, and no optical barrier is present. However,

a maximum in the Signal to Noise Ratio has been observed, as never experimentally

performed but only theoretically investigated (6, 96, 188).

In this experiment we modulate sinusoidally the center of the trap at a certain

frequency and amplitude to detect a peak in the SNR. We determine that frequency

about the corner frequency of the PSD of the particle position in the stationary optical

potential. At each frequency we recorded the particle trace for 11 different amplitudes

ranging from 80 to 640 nm. Figure 2.28 depicts the power spectral densities of the out-

put intensity detected, at three different amplitude modulations Amod = 100, 240, 650

nm, and frequency modulation of 20 Hz, which correspond to the points 1, 2, 3 in

Figure 2.29. Finally, as displayed in Figure 2.28(a), we observed a clear maximum in

the SNR of 38 db, for a modulation amplitude of 240 nm (Figure 2.29(a)). The same

experiment was performed at 2 and 200 Hz but no evident maxima were observed.

(Figure 2.29(b)).
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Figure 2.28: Power Spectral Den-
sities for three amplitude sinusoidal
modulation (from the top to the bot-
tom A=100,240,650 nm)

Figure 2.29: (a) SNR as a function
of the modulation amplitude at 20 Hz
frequency modulation. (b) SNR as a
function of the modulation strength
for three different frequencies (2, 20,
200 Hz).
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2.7 10-fold increasing detection range in position

sensing for photonic force microscope

2.7.1 Introduction

Since 1993 the PFM (189)(190) has become an important tool to measure forces and

torques in microscopic systems and it has been used in many areas such as biophysics,

colloidal physics, and hydrodynamics of small systems. A typical PFM setup com-

prises an optical trap (191)(192) that holds the probe particle, and a position sensing

system, which uses the scattering of a beam illuminating the probe. The PFM relies

on the analysis of the probe thermal fluctuations. (175)(176) The probe randomly

moves due to the Brownian motion in the potential well formed by the optical trap.

Near the center of the trap, the optical trapping potential is parabolic and the restor-

ing force is linear in the displacement. The restoring force of the optical trap in

each direction may be deduced from the three-dimensional (3D) position fluctuation

spectrum. After this calibration procedure the measurement of an external force is

reduced to the measurement of the position of the probe, in the range where the

parabolic approximation is valid. The 3D position of the probe can be measured

through the scattering of an auxiliary beam (detection beam) that illuminates the

probe. The PFM has measured forces down to few femtonewtons, (193) and it has

been lately applied to the measurement of torques in the range of few fN nm pro-

duced by vortex beams (194) or microscopic hydrodynamic flows (195). Usually the

probe position is determined by measuring the Forward Scattering (FS) light trans-

mitted through the probe. Backfocal plane interferometry with a QPD enables the

3D tracking of a trapped probe with nanometer precision at sampling rates up to

megahertz (196)-(197). As pointed out in subsection 2.2.2 a QPD is a four-element

photodiode array which gives three output signals-Vx, Vy, and Vz-proportional to the

light intensity impinging upon it and associated with the displacement of the probe in

the trap. In order to track the probe position unambiguously, the dependence of the

output signals on the probe displacement must be known. Usually it is supposed that

this dependence is linear, i.e., Vx(x)=Sxx, Vy(y)=Syy, and Vz(z)=Szz, where (x, y,

z) is the probe position and Sx, Sy, Sz are the conversion factors between the output

QPD voltages and displacements [with units of (length/voltage)]. However, usually

the linearity range of the QPD detection is limited to a few hundreds of nanome-

ters. For many biophysical applications of the PFM, in particular, in the study of

molecular motors, this range is not sufficient. One of the options in this case may
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be the tracking of the probe position by video microscopy which makes for a more

computationally expensive and slow data processing.

Figure 2.30: Concept of the
detection. We record the QPD
signals Vx and Vz while we scan
the probe along the direction x
through the detection beam. The
QPD gives three signals that are
proportional to the probe position
in the trap: Vx=(V I + V III) −
(V II + V IV ), V y = (V I + VII)−
(VIII +VIV ), and Vz = VI +VII +
VIII + VIV , where V I, VII , VIII ,
and VIV are the signals associated
to the four quadrants of the QPD.

Another problem arises due to a cross-talk

between the three signals as an intrinsic fea-

ture of the Mie scattering(198). Here, we de-

scribe a technique that we have designed and

implemented, which we have used in all the

experiments reported in previous sections and

has allowed us to increase by one order of mag-

nitude the detection range for available PFM

systems. This technique takes advantage of

the unavoidable cross-talk between the out-

put signals of the QPD and does not assume

that the output signals are linear in the probe

displacement. We demonstrate an increase in

the detection range from 150 to 1400 nm for a

trapped polystyrene sphere with radius 300 nm

as probe. The main idea for the position de-

tection calibration is the following. We record

two QPD signals, say, Vx and Vz, while we scan

the probe across the detection beam along the

x-direction with known steps using an optical

trap generated by a second beam. In this way

we associate the detector signals (Vx ,Vz) to a

given known probe position x (Figure 2.30a).

This gives us the calibration curve, i.e., a para-

metric plot Vx(xtrap) versus Vz(xtrap). Now for

any output (V ∗x ,V ∗z ) signals we can determine

the probe position maximizing the likelihood

function.(199)
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2.7.2 Experimental procedures and Results

The experimental optical setup is the same of section 2.3.1 We calibrated the trap

displacement for small deflection angles, when the QPD response is linear by using

standard optical tweezers calibration techniques, (175)(176)(177) and then we linearly

extrapolated the position of the trap to larger trap displacements. We steered the

trap position by applying a sinusoidal signal xtrap(t) = A sin(2πf0t) with various

amplitudes A=18, 180, and 720 nm, and f0=1 Hz. The frequency f0 was kept low

enough to permit the probe to be in a quasistationary state, i.e., f0 � fc, where fc is

the corner frequency of Brownian motion of the probe in the trap. In Figure 2.31(a)-

Figure 2.31(c) we show the resulting signals Vx and Vz as functions of time. Due to

the thermal fluctuations of the probe near the trap position only the probe position x

averaged over time coincides with the position of the trap xtrap, i.e., ,< x >= xtrap.

Therefore we need to average the recorded output signals. In Figs. 2.31(d)-2.31(f)

we show the averaged signals < Vx > and < Vz > as functions of the trap position,

when the signals were acquired during 60 s. These signals have variances σ2
x and σ2

z

and correlation coefficient ρ2 = σ2
xz/σxσz which depend on xtrap. When the steering

amplitude is small [A=18 nm, Figs. 2.31a and 2.31d] the signal Vx is linear in the

displacement and the signal Vz is uncorrelated with Vx.
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Figure 2.31: Experimental data. [(a)(c)] Vx (solid line) and Vz (dash line)
signals obtained by moving the probe sinusoidally. [(d)(f)] Averaged signals 〈Vx〉
(solid line) and 〈Vz〉 (dash line) in function of the probe position x. The dotted
lines represent the signals of the photo-detector if its response would be linear.
The amplitude of the sinusoidal movement of the trap center is [(a) and (d)]
A=18 nm, [(b) and (e)] A=180 nm, and [(c) and (f)] A=720 nm.
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Figure 2.32: Calibration curve (solid line) 〈Vx〉(xtrap), 〈Vz〉(xtrap) parameter-
ized on the trap position xtrap (dots).

Figure 2.33: Variances of 〈Vx〉 and 〈Vz〉
depend on the position of the trap.

However, when the steering am-

plitude is increased up to A=180 nm

[Figs.2.31(b) and Figs.2.31(e)] the sig-

nal Vx is distorted and a cross-talk

between the signals Vx and Vz is ob-

served. These effects become domi-

nant when the steering amplitude is

increased even further [A=720 nm,

Figs. 2.31(c) and 2.31(f)]: the data

do not give a reasonable estimation

of the probe position anymore. If

we continuously change the trap po-

sition by means of AOD, we can now

plot the parametric curve for the PFM

[< Vx >(xtrap) and < Vz >(xtrap)]

shown in Fig. 2.32. In Fig. 2.32 we

demonstrate how the calibration curve

can be used to measure unknown probe x-positions. For a given value of the QPD

signals (V ∗x ,V ∗z ), we apply a maximum likelihood estimator in order to find the best

estimation of the probe position x∗. We assign the estimated particle position to

the position value xtrap that maximizes the probability of obtaining the given QPD

signals, i.e., that maximizes the likelihood function (199) where 〈Vx〉, 〈Vz〉, σx, σz,

and ρ were defined above and they are functions of the trap position. We measured

the variances of (〈Vx〉) and (〈Vz〉) as a function of the trap position and we found that

they are not constant and the variance of (〈Vx〉) is larger than the variance of (〈Vz〉)
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(Fig. 2.33). Furthermore, a slight correlation between the two signals was observed,

especially for large excursions of the particle position.

Figure 2.34: Calculated probe position x∗

(gray line) for the signals presented in 2.31.
The known trap center position (black line)
is shown for comparison. The amplitude of
the sinusoidal movement of the trap center
are (a) A1 =18 nm, (b) A2=180 nm, and (c)
A3=720 nm.

In Fig. 2.34 the reconstructed

time dependencies of the probe po-

sition corresponding to the data pre-

sented in Fig. 2.31 are shown.

For comparison the known trap cen-

ter position is also depicted. Now

the probe position may be measured

with high accuracy over all the range

of the steering amplitude of 1400

nm for a trapped probe with a ra-

dius of 300 nm. This represents

a one order of magnitude improve-

ment over the case when only the

linear dependencies of the QPD sig-

nals from the probe displacement are

used. The results obtained by max-

imizing the likelihood function are

similar to the ones obtained by using

the minimization of the Euclidean

distance(see footnote).1

However, the former delivers

much better results especially near

the extremes of the probe position

excursions.

2.7.3 Final comments

The method uses the cross-talk be-

tween the signals of the QPD, which

1

L(xtrap) =
e−[1/2(1−ρ2)][[(V ∗x −〈Vx〉)2/σ2

x]−([2ρ(V ∗x −〈Vx〉)(V ∗z −〈Vz〉)]/σxσz)+[(V ∗z −〈Vz〉)2/σ2
z ]]

2πσxσz
√

(1− ρ2)
(2.37)
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is normally considered as a nuisance. The experimental setup described is only one

out of many possible realizations of this method. We have considered the FS detec-

tion with a QPD; however, the same method can be used also when experimental

constraints prevent access to the forward-scattered light, forcing one to make use of

the backward scattered light (200) or with other kinds of photodetectors, such as

position sensing detectors. (201) Although we have used an optical trap controlled

by an AOD to move controllably the probe across the detection beam and to get a

calibration curve, other means can be used to achieve the same purpose: a galvomir-

ror, a dielectric mirror, a piezostage moving a probe stuck on a surface, a fluid flow.

Finally, although we used the Vx and Vz signals of the QPD, other kind of signals

can be considered: two beams at different wavelengths or the forward and backward

scattering of the same beam.
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3
Semiconductor Laser with

Optical Injection

3.1 Introduction

In this chapter we give a brief description of the working regimes that can appear in

a SCL when it operates under OI. First of all, we briefly introduce the most common

SCL which is known as the edge-emitting semiconductor laser (EEL), and then we

consider a new type of SCL emerged in the last years, called vertical-cavity surface-

emitting laser VCSEL, which is becoming a key component for telecommunication

systems. Mostly, we report results obtained by different researchers in the last years,

which will allow us to estimate the present degree of knowledge about the properties

of the laser light generated in these systems. This will allow us to better understand

and put in proper context the configuration, model and results that we have obtained

on optically injected semiconductor lasers, which are described in detail in the next

Chapters. It must be taken into account that different investigations of optically

injected semiconductor lasers have considered different operation regimes (and even

slightly different laser models), and have explored different parameter space regions.

For this reason, it will often be difficult to establish direct relationships between

results obtained by different authors. In the last subchapters of this chapter different

results will be analysed separately.

Before going on, let us previously point out that in this chapter we describe the

behaviour of OI semiconductor lasers, focusing particularly on the locking conditions
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and on the types of dynamics that can be generated, as a function of the input param-

eters, frequency detuning and injection ratio. The output dynamics behaviour can be

interpreted and understood by using tools like power, optical and regenerative spec-

tra. These methods are usually employed in experimental work. While, more often

for theoretical calculations, bifurcation maps are used which highlight the different

operation regimes. Moreover, we explain the advantage of the OI technique, such as

enhancement bandwidth and chirp frequency suppression.

3.1.1 Historic overview and types of semiconductor laser

3.1.1.1 Basic physical principles of laser

In a semiconductor the forbidden energy gap between the valence band and the con-

duction band, is from 0.1 to 3 eV. The thermal excitation and/or the absorption of a

photon whose energy h̄ω is larger than the bandgap energy generates charge carriers in

semiconductors: a valence band electron is excited to the conduction band and leaves

behind a vacancy that effectively behaves as a positively charged free particle called

hole. Conduction band electrons and valence band holes (electron-hole pairs) may

recombine and release their energy in either nonradiative or radiative processes. Non-

radiative recombination corresponds to the release of the electron-hole energy through

heating (interaction with lattice photons). Radiative recombination corresponds to

the release of the electron-hole energy through the emission of a photon. Radiative

processes include spontaneous and stimulated emissions. Spontaneously generated

photons are emitted in random directions and with a random phase relatively each

other, hence they correspond to the emission of an incoherent light. On the other

hand, Einstein reported in 1917 that an incoming photon of energy h̄ω may stimulate

the recombination of an electron hole pair and the emission of a second photon with

energy h̄ω, keeping the polarization, phase and propagation direction of the incoming

photon (202).

Stimulated emission processes form the basis of LASER operation, whose acronym

means Light Amplification by Stimulated Emission of Radiation. Stimulated emis-

sion received little attention from experimentalists during the 1920’s and 1930’s when

atomic or molecular spectroscopy was of central interest for many physicists. Later,

in the 1940’s, experiments to demonstrate stimulated emission were at least discussed

informally but they seemed only rather difficult demonstrations and not quite worth-

while. Any amplification was swamped by losses due to other competing processes

and their use for amplification seems not to have been seriously considered until the
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works of Basov (203), Weber (204), and Gordon, Zeiger and Townes (205). In 1954,

these last researchers demonstrated population inversion in a system of ammonia

molecules. Their system emitted in the microwave spectrum. Shortly after this, in

1958 (206), it was realized that the same laser principle could be used for the in-

frared and visible parts of the light spectrum. The first laser operation in the visible

spectrum was reported by Maiman in 1960 (207). It was with the ruby laser, which

exploits transitions between states of Cr3+ ions in an AL2O3 crystal.

Shortly afterwards, several researchers considered the possibility of laser emission

from band to band transitions in semiconductors. In 1962, laser emission was demon-

strated in p-n junctions by a number of laboratories (208, 209, 210, 211). In 1963

Kroemer and Alferov (212, 213) suggested that the semiconductor laser (SCL) could

be improved by clamping of a semiconductor between two semiconductor layers with

wider a bandgap. This was the first theoretical proposal of heterostructure lasers,

with two different semiconductor materials. In these years it was difficult to match

the lattice constants of the two semiconductor materials to built an heterostructure.

In 1969, a semiconductor pulsed laser that could operate at room temperature was

built (214). Only in 1970, the first heterostructure working at room temperature

was built (215). In later devices, partially reflecting mirrors were formed from par-

allel cleaved semiconductor facets to form a Fabry-Perot cavity typically 500 µm in

length. In 1975, a laser with emission wavelength of 1.1 µm was built, and until

1979 the wavelength of the emitted light was continuously increased up to 1.5 µm

(216, 217, 218, 219, 220).

The simplest structure model of a semiconductor laser is a Positive doped-Negative

doped (PN) junction, as showed in figure 3.1. A positive voltage is applied to the P

side of the junction with respect to the N side. Because the semiconductor on the

two sides has the same bandgap, the energy bands are continuous across the junction.

The current applied in the PN junction produces the injection of electrons from the

conduction band of the n-type material to the conduction band of the p-type material,

while holes move in the opposite direction, in the valence band.

When an electron and a hole are located in the same region, recombination phe-

nomena can be produced, giving rise to spontaneous emission, which is necessary to

start the stimulated emission. The key of lasing is the transition of an electron from

an occupied state at high energy to an empty state at lower energy, due to stimulated

emission. The cleaved facets act as a mirror, reflecting the photons into the cavity,

where they interact with the excited electrons. The cavity is designed in a fashion to

resonate at the frequency corresponding to that of the stimulated-emission transition,
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amplifying the photons that propagate in the same direction. When the amplification

is higher than the losses, lasing occurs. This occurs at a given threshold value of the

pump current, and light is emitted in the plane of the junction.

Figure 3.1: Schematic edge-emitting semiconductor laser diode. Lasing occurs
in the plane of the junction.

The most common types of semiconductor lasers, according to the material com-

position, are depicted in figure 3.2; they are:

• Homostructure: it is a PN junction, made of the same semiconductor material

(only the doping changes in the two sides of the junction). In the recombination

region the concentration of carriers is quite low. The current threshold is very

high.

• Heterostructure: there are two junctions, each one made of different semi-

conductor materials. This structure effectively reduces the current threshold.

The active region is sandwiched between two oppositely doped semiconductors

with higher bandgap and lower refractive index compared with the active layer.

Electrons and holes are confined into the active layer where they can recombine

more efficiently. On the other hand the difference in refractive index produces

a waveguide effect, concentrating the generated light in the central region. All

that leads to a much higher gain than in homostructure lasers.

In an heterostructure the active layer is about 100 nm. When this layer is still

reduced, the structure becomes a Quantum Well (QW). In this kind of laser the

vertical variation of the energy is quantized (221). Therefore the conduction and

valence bands are divided in subbands, which implies that for a given current, more

bands are excited, so that the gain amplification factor is higher and it is easier to

reach the transparency (minimum number of carriers to have gain equal to the losses),
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Figure 3.2: Schematic heterostructure (left) and homostructure (right) SCL.
In heterostructure laser a layer of low bandgap materials (gray) is sandwiched
between two layers of high bandgap material (white). Homostructure is a p-n
union of the same type semiconductor materials.

and the current threshold becomes lower which allows higher modulation speed. As

a result, quantum well lasers have narrower laser linewidth.

On the other hand, semiconductor lasers can also be classified according to their

geometrical configuration, in particular according to the propagation direction with

respect to the plane of the active area. The optical field can propagate and exit

perpendicular or parallel to the junction plane. Then, heterogeneous semiconductor

lasers can be classified into edge-emitting lasers, if the light is emitted through a

surface plane perpendicular to the junction plane, or surface emitting laser VCSEL,

Vertical Cavity Surface Emitting Laser) if the light is emitted through a surface plane

parallel to the junction plane (the mirrors are built parallel to the junction plane).

We describe this type of laser in the next subsection.
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3.1.1.2 Vertical Cavity Surface Emitting Laser VCSEL

3.1.1.3 Advancement of VCSEL

Figure 3.3: Schematic of VCSEL.

As pointed out above, in VCSEL

lasers the mirrors are grown parallel

to the juntions plane, so that the gen-

erated laser light crosses the juntions

perpendicularly to them, Fig. 3.3.

Nowadays, the total annual mar-

ket of lasers is dominated by diode

lasers, which represent over a billion

dollars. The market of diode lasers

includes telecommunications, optical

storage (Compact Disc (CD) players,

CD-ROM), image recording (includ-

ing printing applications) and other

markets such as applications of diode

lasers for bar-code scanning, instru-

mentation, medicine, solid-state laser pumping. So far (but this is changing), any

of these applications has been almost exclusively served by conventional EELs. So,

why VCSEL should take a primary place in this market? The answer is mainly based

on wether VCSELs, thanks to their unique features, will reach equal or superior per-

formances than EELs, but at a much lower cost. Most importantly is whether the

special features of VCSELs will allow new applications not easily addressed by EELs.

Special technological features of VCSELs, which allowed them to replace EELs in

many applications, and to open up new applications are:

1. Epitaxial growing of mirror facets.

unlike EELs lasers, to implement the mirrors several epitaxial layers are re-

quired during the construction process of VCSEL, which for sure represent an

extra cost. Nevertheless, once the growing facility is developed, numerous ad-

vantages appear. The cleaving of mirror facets of EELs is not required. The

narrow band reflective layers yield a narrow emission spectrum in a well-defined

longitudinal mode, hence avoiding the demanding processing steps required for

incorporating frequency selective gratings in conventional EELs.

2. Surface emission.
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The emitted light, in VCSELs is perpendicular to the active layer. This prop-

erty makes the devices well suited for fabrication in arrays, including two dimen-

sional arrays, and allow on-wafer testing, which has been a significant aspect

towards the use of VCSELs for low cost parallel data communications. Even

if EELs can be turned into surface emitters by the incorporation of turning

mirror gratings, VCSELs are better choice since they take less wafer area and

extra processing steps are not required. The surface emission also makes easy

the integration of VCSELs with other optoelectronic circuits, as well as the

monolithic incorporation of microlenses on the surface.

3. Low threshold. VCSELs present a small active region which allows very

small threshold current, of the order of mA or even less. On the other hand,

VCSEL output power is in general around 1 mW at most. In low power systems

(i.e. those which require only mW optical power), having a low threshold is

important as it allows to increase the response speed of the device, decrease

the turn-on delay, and decrease the power consumption. The combination of

low threshold and high efficiency at power less than mW is better met with

VCSELs than with EELs.

4. Circular beam.

In conventional EELs, the output beam cross section is elliptical, with a large

emission angle in the direction perpendicular to the layers and a small emission

angle in the direction parallel to the layers. By contrast, VCSELs, with their

circular aperture, put out a circular beam with lower divergence, which greatly

simplifies the coupling into fiber cores and the coupling to optical components

such as lenses.
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Figure 3.4: Typical setup of a CW master laser and a follower laser coupled by
an optical isolator

3.2 Semiconductor Laser with Optical Injection

OI is a method to add a further degree of freedom to the system, which can lead

to different working regimes with specific properties. The injection locking system is

very simple, as shown in Fig. 3.4. In order to achieve this goal, light from an external

source, which usually is another laser named “master laser” Master Laser (ML), is fed

into the active layer of the laser that is going to generate the light (we are going to

call it the “slave laser”, Slave Laser (SL)), to pump it. It is important to notice that

the output dynamics we are going to study refers only to the output light emitted

from the slave laser (the master laser emits in a steady state regime with constant

intensity). Therefore the SL is the main laser to be considered. Usually, the two lasers

are prepared to emit approximately at the same wavelength range, under appropriate

conditions of frequency detuning and injection strength. Besides, in order to prevent

mutual coupling between the two lasers, an optical isolator is inserted (Fig. 3.4).

As we will discuss below, depending on the strength of the master laser and on the

operating conditions of the slave laser, the last one can either lock its frequency to

that of the ML, or to bring about more complicated dynamics.

Considering the vastity and diversity of laser types (222, 223, 224, 225, 226,

227), due to differences in the active media, originated from the fact that the α

parameter (linewidth enhancement factor) has a non-zero definite value (228), and

the continuously evolving cutting edge technology, it is difficult to give an idea of the

enormous complexity involved in modeling laser dynamics.

The technique of the injection locking was discovered and used more than 30 years

ago (229). It is of great interest in semiconductor laser design and technology, because
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it was shown that it can significatively improve the coherence of the emitted signal.

More in specifics, it can lead to reduction of the mode hopping and mode par-

tition noise, reduction of the laser linewidth (α) and of the frequency chirping, and

enhancement of the bandwidth modulation.

Essentially, as described below, it is possible to summarize the dynamics of an

optically injected semiconductor laser in three regimes (223):

• “Stable locking region” in this parameter region the frequency of the SL is

locked to the ML, and this corresponds to the “steady state” of the SL system.

There are two conditions to be satisfied in order to locking occur:

1. the detuning between the wavelength of the injected light and the wave-

length of the light emitted by the free-running laser should be small

enough

2. the injected power should be larger enough.

• “Non locking region” Simply the SL does not manage to lock to the fre-

quency of the ML. Anyway, the nonlinear interaction can bring to interesting

wave mixing effects between the ML frequency component and that of the SL,

which are amplified inside the SL active medium.

• “Destabilized locking” in which the stationary locked state is destabilized

to a more complex dynamics such as time periodic dynamics, period doubling,

quasi periodic or chaotic behaviors.

With the OI, dynamical states including period-1 oscillation (P1), period-2 oscil-

lation (P2), chaos oscillation (CO), and stable locking (L) have been observed and

applications in photonic microwave signal generation (227, 230), laser stabilization

(231, 232, 233), and bandwidth enhancement (10, 11, 12, 234, 235, 236) have been

explored. Interestingly in (237) it has been studied the chaotic regimes in injection-

locked semiconductor lasers and they calculated the stability diagrams discriminating

regular from chaotic laser emissions and indicating where multistability was to be ex-

pected. The response of an optically injected Quantum-dot semiconductor laser has

been studied both experimentally and theoretically in (233). Moreover, in (238) they

demonstrated that optically injected semiconductor quantum-dot lasers operated in

the frequency-locked regime exhibit the phenomenon of coherence resonance.

In (239) the injected quantum cascade laser have been investigated analytically

on the basis of current estimates of the laser parameters. Also recently, the dynam-

ics of an optically injected quantum-dot laser accounting for excited states has been
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investigated, showing that the noise strength could act as ingredient to make the pul-

sation more periodic (240, 241), and that the dynamics often lead to the appearance

of single and double-pulses excitability at one boundary of the locking region (242).

Besides, various works in the last years have analyzed experimentally and theoreti-

cally the injection locking properties of VCSEL lasers (140, 243, 244, 245, 246, 247),

where they have also intensively studied the polarization dynamics, which shows phe-

nomena such as polarization switching accompanied by four-wave mixing, frequency

pushing or chaotic regimes.

Optical injection was originally developed to stabilize the injected slave laser, so

that it may be surprising that the laser is destabilized by the injection. This occurs

because the optical injection represents the introduction of an extra degree of freedom,

so that the perturbed laser is a candidate for a chaotic system.

Considering a typical bifurcation map of the output slave laser (3.11) as a function

of the frequency detuning between master and slave, with a fixed optical injection

rate, it is possible to identify on it stable and unlocking oscillations, as well as various

unstable oscillation states. Therefore, in order to investigate the characteristics of

optical injection locking, it is necessary to do first a linear stability analysis.

3.3 Rate equations and steady state solutions

The rate equations for the amplitude, phase and carrier density for a semiconductor

laser optically injected takes the following form (8):

dA(t)

dt
=

1

2
g[N(t)−Nth]A(t) + κAinjcosφ(t) (3.1)

dφ(t)

dt
=

α

2
g[N(t)−Nth]− κAinj

A(t)
sinφ(t)−∆ωinj (3.2)

dN(t)

dt
= J − γnN(t)− γp + g[N(t)−Nth]A(t)2 (3.3)

Where the variable A is the slowly varying field amplitude, φ is the phase difference

between the internal and the injected fields, expressed such as φ(t) = ϕ(t)−∆ωinjt−
ϕinj,c where ϕ(t) and ϕinj,c are the temporal phase of the total field inside the cavity

and the constant injected phase, while ∆ωinj is the frequency detuning between the

two lasers. N is the carrier number, α is the linewidth enhancement factor, g the
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linear gain coefficient, Nth is the threshold carrier number for the solitary operation,

γp and γn are the photon and carrier decay rates, and J is the pump current. Ainj , is

the injected field amplitude. The condition of injection locking is namely explained

by the equation 3.2. That equation describes a phase change of the slave laser induced

by the resonance shift and the coupling between the internal and the injected fields.

Therefore, when the sum of the relative changes in frequency is equal to the detuned

frequency ∆ωinj , the laser is injection-locked. Defining the amounts A(t) = As,

φ(t) = φs, and Nth − Ns = ∆Ns, that are the steady state values, and substituting

into 3.2, we obtain the following injection locking conditions:

∆ωinj −
α

2
g∆Ns + κ

Ainj
As

sinφs = 0 (3.4)

The term α
2 g∆Ns is a frequency red-shift, caused by the change of the optical fre-

quency of the laser oscillation after the optical injection. Then, from 3.4 the resonance

between the two fields in the steady state is given by:

ωres = ∆ωinj −∆ωshift = −κAinj
As

sinφs (3.5)

Therefore the steady state solutions have been determined exactly from (236, 248):

A2
s =

A2
inj −

γn
γp∆Ns

1 + g∆Ns

γp

(3.6)

φs = sin−1

{
− ∆ωinj

κ
√

1 + α2

As
Ainj

}
− tan−1α (3.7)

∆Ns = −2κ

g

Ainj
As

cosφs (3.8)
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3.3.1 Stability analysis

The stability analysis is often used to study the resonance response in nonlinear sys-

tems, and it has been frequently applied in the analysis of semiconductor lasers with

optical injection. The standard procedure consists in calculating the complex eigen-

values characterizing the (linear) response of the system to a small perturbation of the

steady-state solution (10, 248, 249, 250). Let us thus consider a steady state solution

xs (with x=A, φ, and N) which, after a small perturbation, becomes (7):

 λ+ zcosφs zAssinφs − 1
2gAs

− zsinφs

As
λ+ zcosφs .α2 g

2As(γp − 2zcosφs) 0 λ+ γn + gA2
s

×
δAδφ
δN

 =0

where z = κAinj/As. The solution of the equations require to have the determi-

nant equal to zero:

D(λ) = λ3 + (γR + 2zcosφs)λ
2 +

[
ω2
R

(
1− 2zcosφs

γp

)
+ z2 + 2γRzcosφs

]
λ+

+ γRz
2 + zω2

R

(
1− 2zcosφs

γp

)
× (cosφs − αsinφs) = 0 (3.9)

where ωR =
√
gγpA2

s and γR = γN + gA2
s correspond to the angular frequency

and the damping rate of the relaxation oscillation of the free running laser. Dividing

λ in real and imaginary parts such as λ = γ + iω, we can solve the equation 3.9.

Obviously the stability condition for the steady state solution is that the real part γ

be negative. The imaginary part ω gives the oscillation frequency of the relaxation

oscillations around the steady-state solution. The obtained stable region in parameter

space is represented in Fig. 3.6 (“stable locking” region).

Just as a double check that our results bring to the solution for the steady state

analysis, we consider a very small fluctuation in the carrier δN with respect to the

varying field A. In such a way, the carrier is fixed to its steady state and the pertur-

bation of the carrier is mostly negligible compared with the field (because they are

adimensional amounts): δN � δA and δφ. Therefore we can assume δN = 0, and the

characteristic equation 3.9 (The stability conditions associated with the determinant

of the first sub-matrix 3) reduces to the simple form:
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λ2 + 2zcosφsλ+ z2 = 0 (3.10)

then is easy obtain the analytical solution:

λ = −zcosφs + izsinφs (3.11)

Figure 3.5: Carrier fluctuations normal-
ized by the averaged value in injection-
locked semiconductor laser modulated at
resonance frequency for (a) different injec-
tion rates at ∆f= 0.5 GHz and (b) dif-
ferent detuned frequencies at rinj = 40%.
Reported from (7)

The imaginary solution (i.e. the

resonance frequency) is now the same

expression of 3.5. In this case even the

damping rate is given analytically, by

the real part. This fact explains how

damping can be enhanced from the

strong injection current. From these

theoretical results we can deduce the

following scenario. Strong optical in-

jection implies:

1. the carrier fluctuations are neg-

ligible compared with that of

the field.

2. the interactions between carrier

and field are weak. This fact

causes the reduction of the re-

laxation oscillations frequency.

3. the enhanced resonance is caused

by a transient interference due

to the shifted cavity resonance,

in the entire injection-locked

SCL.

In order to examine the above as-

sumptions in (7) it has been numer-

ically confirmed such a behaviour of
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the carrier density by small modulation current. They calculated the fluctuation of

the carrier density δN = Nmax − Nave, where Nave is the average carrier density.

Then, they modulated the current at 1% of the bias current and then it has been var-

ied the injection ratio rinj from 0 to 100%. As shown in figure 3.5 for the condition

of solitary laser (rinj = 0) the carrier density fluctuations have a maximum order of

10−4.

The fluctuations decrease with the increased injection ratio up to reach 10−6.

For strong injection of 40% the variation of the fluctuations with the detuning is

shown in Fig. 3.5(b). In this case the fluctuations are independent from the detuning

and fixed to be 4 x 10−6. At positive frequency detuning and closer to the Hopf-

bifurcation boundary the fluctuations show some dependence from the frequency de-

tuning. Therefore, these results conclude that the field-carrier coupling is mostly sup-

pressed in strong injection locking regime, except for the Hopf-bifurcation boundary.

Furthermore, carrier density fluctuations are considered as the main factor triggering

the frequency chirp problem. Frequency chirp is a fluctuation of optical frequency oc-

curring in laser diodes with high speed digital modulation of current and is considered

to be the main cause limiting the bit rate for digital transmission (11, 249, 251, 252).

Chirp can be considered resulting from the carrier fluctuations because carrier fluctua-

tions alter the cavity resonance conditions during modulation, generating fluctuations

in the optical frequency of the emitted light. We will discuss about the chirp problem,

giving the definition and dependence of the laser parameters in section 3.7.

3.3.2 Injection locking conditions

In order to determine the condition of optical injection locking in real laser systems

the following expression (related with equation 3.7), obviously must be less than unity.

sin(φs + tan−1α) = − ∆ωinj

κ
√

1 + α2

As
Ainj

≤ 1 (3.12)

(3.13)

Then we obtain:
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|∆ω|≤ ∆ωL = κ
√

1 + α2
Ainj
As

(3.14)

Successful optical injection occurs at a frequency satisfying the above relation for

the injection fraction Ainj/As (in the following also named rinj). Using the relation

3.14 inside the characteristic equation 3.9 we obtain the following equation:

δn =
2α∆ω ± 2

√
∆ω2

L −∆ω2

g(1 + α2)
(3.15)
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Figure 3.6: Locking and unlocking re-
gions in the phase space of frequency de-
tuning versus injection ratio. SL: stable
locking. NL: nonlinear dynamics. FWM:
Four-Wave Mixing. The FWM boundaries
are obtained from the steady-state analysis
of 3.12, and the SL boundary is calculated
from the stability analysis of 3.15. The di-
agrams are drawn for pump current J =
1.3Jth , where J is the threshold current.
Reported from (7, 8).

For equation 3.15 two solutions

exist for the same photon number Ss.

One solution corresponds to a stable

solution and the other is the unstable

one. Figure 3.6, displays the areas of

optical injection locking in the phase

space defined by the frequency detun-

ing between master-slave laser versus

the injection ratio.

The solid curves show the bound-

ary between Four-Wave Mixing (FWM)

and stable or unstable locking regimes.

As we said, in the non locking regions

various interesting dynamics can be

observed, such as chaotic oscillations

and four-wave mixing when the detun-

ing is not so far from zero.

The dashed line, denotes the

boundary between the stable (left)

and unstable (right) locking areas. In

the latter we can observe roads to

chaos for certain parameter ranges.

The asymmetric feature of stable lock-

ing is due to the non zero value of α.
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3.4 Nonlinear dynamics induced by optical injec-

tion

It is well established that a variety of perturbations over the laser system can bring

the output laser to become unstable and yield oscillatory or chaotic output. Of all

those perturbations, optical injection is the one which allows the greatest degree of

control and most direct access to the mechanisms that lead to the instabilities. Ex-

ternal optical injection allows one to perturb the slave output laser with a completely

independent optical field. Besides, we know that for a laser operating at a given bias

current, external optical injection can induce stable locked output, multiwave mixing,

oscillatory power output due to the undamping of the carrier field resonance of the

system, and chaotic dynamics depending on the offset frequency and amplitude of

the external optical field (Figure 3.6). In the next section we are going to observe

the laser dynamics in a specific case: that of a Distributed Feedback (DFB) laser

subjected to optical injection when the injection ratio is increased, and the frequency

detuning is fixed at 2GHz (Figures 3.93.10 reported from (9)).

3.4.1 Experimental mapping technique

In order to map the laser dynamics, in (9) three DFB lasers at 1557 nm have been

used, as the schematic in figure 3.7. One laser was employed as master, optically

injected to the slave laser by an optical circulator, and a third laser was a probe laser

which was used to combine directly the output slave laser with its own output and

even could be injected together with the master optical field into the slave laser. By

means of this setup, three different optical spectra could be generated:

• If the probe laser is turned off, then the detected signal is a measure of the

amplitude modulation of the slave laser and the spectrum analyzer measures

the amplitude (power) spectrum.

• If the probe laser is on, but the frequency shifted output of the Acousto-Optic

Modulator is blocked, then the probe laser acts as a local oscillator for a hetero-

dyne measurement of the optical spectrum of the slave laser. To generate the

optical spectrum the frequency of the microwave analyzer is fixed (generally at

33 MHz), then the bias current of the probe laser is ramp varied, which shifts

its optical frequency. The optical spectrum is generated as the probe laser

is sweept across the frequency components of the slave laser.
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Figure 3.7: Schematic of the apparatus used to build the spectra after shown.
Reported from (9)

• Injecting simultaneously the frequency shifted output from the probe laser into

the master laser, then a regenerative amplification spectrum can be gener-

ated. For this purpose it is essential to set the analyzer to match the frequency

offset with a very narrow resolution (typically 10 KHz).

These three spectra yield complementary information about the free running and

optically injected laser. Clearly, nonlinear dynamics, as frequency-mixing, chaos,

instable locking or stable locking, could be obtained, observing the features appearing

in these spectra. We next analyse some of these behaviours.
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3.4.2 Optical injection induced dynamics

The mapping was made by relating a particular output dynamics to the spectral

features displayed at a given injection level and offset frequency. In figure 3.8 it is

shown the transition from free-running output to limit cycle dynamics as the injection

strength is increased. Optical spectra are displayed to the left side while on the right

side the regenerative spectra are represented. At relatively low injection the laser

becomes locked to the master signal and the weak probe beam is no longer amplified

at the free running frequency. As the injection is increased the sidebands become

stronger until the Hopf bifurcation is passed and the laser output becomes unstable.

Because there were no identified abrupt changes in the spectra to mark the boundary

of the Hopf bifurcation, a criteria must be defined. They observed (as figure 3.8

shows), a change in level between the right and left parts around a power peak in

the regenerative spectrum. This excursion (or discontinuity) indicates that the probe

has a perturbing effect on the strong spectral characteristics of the signal, which is

strongly blocked by the master laser. Therefore, this change with weakly resonant

simultaneous oscillation at different optical frequencies is interpreted as an indicator of

Hopf bifurcations. Associated with this transition there are sidebands approximately

15÷ 20 dB below the resonant, locked feature in the optical spectrum.

Then, to distinguish the boundary regimes, the main information comes from the

optical and power spectrum:

In Fig. 3.9(a) for a small level of the injection of 0.14, the output intensity of

the slave laser shows four-wave and multiwave mixing components, because the slave

laser remains unlocked. Besides, it shows a side peak in the spectrum due to the

regenerative amplification, and the relaxation oscillation appears at a frequency of

4.7 GHz.

When the injection strength is increased to 0.33 (Fig 3.9(b)), the multiwave

mixing effects become distinct. The relaxation oscillation component becomes non-

vanishing and the oscillation close to the relaxation oscillation frequency is excited,

and even the spectrum is much broadened, as well the features associated with the re-

laxation resonance sharpen and strengthen. The multiwave mixing effect is recognized

as a phase-modulation like Adler frequency pulling towards locking (253).

As Fig. 3.9(c) shows, the frequency pulling multiwave components disappear at

the injection strength of 0.41, and all the multiwave frequencies are pulled to the

injection frequency. Therefore, a sharp and enhanced component of the relaxation

oscillation is observed, and the laser shows a stable oscillation under these condi-
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Figure 3.8: Spectra with injection at the free-running optical frequency showing
the transition from stable to limit cycle dynamics. The left column contains the
optical spectra and the right column consists of the regenerative amplification
spectra. The Injection Field is proportional to the square root of the injected
power. The free-running regenerative amplification spectrum has been corrected
for background noise and the variation of local oscillator power during the scan so
that it can be compared to the model calculation, shown as a thin line. Reported
from (9)
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tions.

In Fig. 3.9(d), the injection ratio is still increased to 0.52, and an incommensurate

frequency is encountered. The background of the spectrum becomes broader and

frequencies in the range 8-9 GHz start to appear. This is the typical onset of quasi

periodic bifurcation and chaos, also predicted from numerical simulations (254).

The spectrum background becomes much broadened at injection strength of 0.77,

as shown in Fig. 3.10(e). At the relaxation frequency component we can observe two

visible peaks, which indicates that the emission corresponds to period-3 oscillation

and chaotic dynamics.

In Figure 3.10(f) the laser shows period-2 oscillation and the relaxation oscil-

lation spectrum becomes a single peak.

When the injection strength is large enough (1.3 in Fig. 3.10(g)), the laser os-

cillates with period-1 oscillation, with the main frequency corresponding to the

relaxation oscillation. The higher harmonics of the period-1 oscillation are also visi-

ble.

Finally, at strong injection of 3.01 (Fig. 3.10(h)) the laser is completely locked

to a certain frequency and show period-1 oscillation. At these high injection levels

the resonance frequency is a function of the injection level and offset frequency of

the master laser. Increasing still more the injection ratio is expected the laser to

reestablish the stable locked operation.
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This phenomenon is related with the cutoff frequency for the modulation band-

width of the laser. Typically, these dynamics are not always the same, and depend

on the frequency detuning. They exhibit chaotic routes when the absolute value of

the frequency detuning is within several GHz.

Figure 3.11: Mapping of the ob-
served dynamics based on the experi-
mentally measured spectra of the DFB
laser under optical injection when bi-
ased at twice the threshold current.
The full diamonds mark the sad-
dle node bifurcation between stable
and unlockedlocked operation while
the open diamonds mark the unlock-
inglocking transition in a region of
bistability (see (9)). Squares mark the
Hopf bifurcation between stable and
limit cycle operation. The triangles
bound regions of period two operation.
Within the period two regions are re-
gions of complex dynamics marked by
the shaded lines and crosses and a re-
gion of period four operation that is
bounded by the circles. At injection
levels below the saddle node bifurca-
tion line and at low offset frequen-
cies, multiwave mixing and Adler-type
frequency pulling to locking are ob-
served in the lightly shaded regions.
Reported from (9)

The observed dynamics based on the

previous observations of the regenerative,

optical and amplitude spectra are mapped

in figure 3.11 (reported from (9)). Stable

injection locking is achieved for certain re-

gions of the parameter space, but chaotic

routes evolve when the laser is into the un-

stable region or unlocking regions. The

laser is operating in single mode. Note

that the axes in Fig. 3.11 are differ-

ent than in Fig. 3.6. The full-diamonds

marks represent the boundary between

the stable and unstable operations, while

the empty-diamonds show the unlocking-

locking transition in a region of bistability

and torus bifurcation. The square symbol

marks close to zero detuning indicate the

Hopf bifurcation boundary between stable

locked and limit cycle dynamics. The tri-

angles denote the boundaries for regions

of period-2 dynamics. These period-2 re-

gions include complex dynamics and they

are shown by the shaded lines and crosses

in the figure. Bounded by the circles is

a region of period-4 operation. At in-

jection levels below the saddle node bi-

furcation line and at low offset frequen-

cies, multiwave mixing and Adler-type fre-

quency pulling to locking are observed in

the lightly shaded regions.
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Figure 3.9: Experimental optical frequencies and rf power spectra correspond-
ing to chaotic bifurcation in semiconductor lasers under optical injection. Left
side are the optical spectra and in the right side the rf power spectra. The relax-
ation oscillation frequency at the solitary oscillation is 4.7 GHz. The injection
current rate is changed as (a) 0.14, (b) 0.23, (c) 0.41 (d) 0.52. Reported from (9)
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Figure 3.10: Experimental optical frequencies and rf power spectra correspond-
ing to chaotic bifurcation in semiconductor lasers under optical injection. Left
side are the optical spectra and in the right side the rf power spectra. The relax-
ation oscillation frequency at the solitary oscillation is 4.7 GHz. The injection
current rate is changed as (e) 0.77, (f) 1.02, (g) 1.30 (h) 3.01. Reported from (9)
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3.5 Influence of side mode excitation

Figure 3.12: Bifurcation diagram as a
function of the injection ratio at a fre-
quency detuning of 2 GHz. (a) Bifurction
diagram for large gain defect µd=0.1. The
laser oscillates at a single mode. (b) Bi-
furcation diagram for small gain defect of
µd=0.001. Reported from (9)

Generally, numerical calculations are

a good method to compare with ex-

perimental results and to aim the re-

search. In this case, in order to map

the laser dynamics the bifurcation di-

agrams are especially suited and they

can confirm the observed behaviour.

Now, we briefly inspect the chaotic

routes by numerical simulation per-

formed in (9), taking into consider-

ation the effects of side mode exci-

tation. The chaotic evolution is ob-

served for a frequency detuning of 2

GHz with respect to the free running

frequency. Considering a large value

of the gain defect of the secondary

mode, µd = 0.1 (Fig. 3.12(a)), the

laser is assumed to oscillate at a single

mode. The laser evolves from period-

doubling to chaotic oscillations, then

it takes an inverse period-doubling

road, and finally it reduces to the

period-1 state. For low values of the

gain parameter, µd = 0.001 (Fig.

3.12(b)), the laser shows evidence of

power leaking out of the principal

which leads to a strong change in the

dynamics. Under this condition the

laser shows no typical chaotic bifurca-

tion.

With this work, the authors have found an excellent agreement with the experi-

mental data. Therefore the proper rate equation model is an excellent tool to predict

the nonlinear laser dynamics.
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3.6 Enhancement of modulation bandwidth by strong

optical injection

The relaxation oscillation frequency limits the bandwidth of an optical injected laser.

However, in the case of a strong optically injection and under stable injection locking

conditions, the modulation bandwidth of the slave laser is greatly enhanced. Although

the laser noise is suppressed, the strong injection gives rise to frequency chirping in

the laser oscillation, which is critical in laser operations (249). Depending in which

parameter region it is working, a large modulation current can lock or unlock the laser.

An enhancement of the bandwidth has been also demonstrated (7, 11, 235). For weak

optical injection the cutoff frequency is enhanced ten percent at most. Under strong

optical injection, the bandwidth is greatly enhanced up to several time the relaxation

frequency of the free running laser.

An enhancement in the bandwidth of an optically injected laser is very useful

considering the broadband light in the wide field of optical communications.

The enhancement of the modulation bandwidth in a semiconductor laser under

strong optical injection has been numerically studied by means of the rate equations

approach. The modulation response for a small signal to the bias injection current

using a linear stability analysis has been investigated.

Figure 3.13 shows how the strong injection enhance the bandwidth. The cutoff

frequency for the free running solitary laser is 3.4 GHz, while at strong injection of

Sinj/Ss=0.44 the cutoff frequency becomes 12.6 GHz. The full bandwidth is enhanced

four times compared with that of the free running laser. To obtain the equivalent

modulation bandwidth of 12 GHz for the solitary free running laser, it would require

the bias injection current to be seven times larger than that of the free running

state. Which corresponds to 13 times the injection current threshold and it might

damage the laser. Therefore, the technique of injection current is effective for greatly

enhancing the bandwidth of a semiconductor laser.

We follow the analysis of bandwidth enhancement by optical injection reported

in (10).

They conducted a linear stability analysis and obtained the approximate solution:

(3.16)

νenhanced =
1

2
√

3π

[
Ke − (

Ka

Ss

2

)

+

{(
Ka

Ss

2)
−4Ke

(
Ka

Ss

)2

+K2
e −6KaKbαG

2
n(ns−n0)

}
1/2

]1/2
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where the parameters in the above equation are given by:

Ke =

(
κinj
τin

)2
Sm
Ss

(3.17)

Ka = 2kc
√
SmSscos(φs − φm) =

= −g(ns − n0)(1− εsSs)−
1

τph
Ss −Rsp (3.18)

Kb = kc

√
Sm
Ss

sin(φs − φm) =
1

2
αg(ns − n0)−∆ω (3.19)

Where we considered:

the photon number Sm = |Em|2= A2
m for the injected power, such as for the slave

laser Ss = |Es|2= A2
s. The phases φs and φm are generally time dependent functions,

but the master laser is under steady-state operation therefore its phase can be imposed

to be zero (φm = 0). ∆ω is the detuning between master and laser frequencies, τin

is the round trip time of the light in the laser cavity, Rsp is the effective rate of the

spontaneous emission, εs is the gain compression coefficient, τph is the photon life

time, n0 is the carrier number for transparency, and κinj is the injection coefficient.

The enhancement of the cutoff frequency is linear with the injection current, and

it is explained by the interference between the optical frequency of the original laser

oscillation and the shifted frequency due to strong optical injection. Therefore, the

bandwidth enhancement is strongly dependent on the frequency detuning between

the master and slave lasers.
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Figure 3.13: Experimental modulation response of a semiconductor laser at
J=2.4Jth. (a) free running laser; (b) very weak injection of Sinj/Ss = 0.011;(c)
Sinj/Ss = 0.092; (d) Sinj/Ss = 0.44. Where Sinj is the injected photon number
and Ss steady state value of the free running laser. Reported from (10)

3.6.1 Origin of modulation bandwidth enhancement

The intrinsic modulation bandwidth of an SCL is approximately proportional to the

relaxation oscillation frequency (ωr).

The relaxation frequency can be increased by a proper design of the laser pa-

rameters. From the mathematical expression of the relaxation oscillation frequency

(ωR =
√
gγpA2

s), it seems that the bandwidth can be increased indefinitely, in princi-

ple by indefinite increase of the bias drive current. Unfortunately, facet damage and

excessive heating will limit this increase of bandwidth. The technique of the injec-

tion locking reduces effectively any damage due to high current and heating because

the bandwidth is increased by the beating frequency. It may be noted that injection

locking also reduces chirp.

Recently, it has been investigated about the origin of the enhancement of the

bandwidth in semiconductor laser by strong optical injection (7, 10). The expansion

of the broadband has been realized by the interference between the slave solitary laser

and the shifted frequency after the injection. The carrier density in the slave laser

increase due to the strong optical injection. This change induces a variation in the

optical frequency of the slave laser oscillations. In general, for a Fabry-Perot (FP)

laser cavity, the m− th longitudinal mode is given by the following expression:
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ν0 =
c

2nl
×m (3.20)

where c is the light velocity in vacuum, n is the refractive index and l is the

cavity length. Typically the refractive index n depends on the carrier number N in

the cavity, namely n(N).

The ∆ωshift of the laser angular frequency is given by:

∆ω(N) =
α

2
g∆N (3.21)

therefore the change in the optical frequency is proportional to the carrier density

∆N . The injection locked laser can operate at a frequency which depends from

its cavity resonance condition. Once the field corresponding to the shifted cavity

resonance ωshift is excited an interference between the two components of the angular

frequencies ωshift and ωinj occurs. Then a frequency beat is induced between the two

frequencies in the output of the slave laser. Figure 3.14 illustrates the resonance and

emission frequencies in single-mode semiconductor lasers.

The frequency ω0 and ωinj are angular frequencies for solitary and injected fields

without injection. When the laser is injection-locked the slave laser emits at the

injected frequency ωinj . Due to the optical injection the carrier density is reduced

from its threshold value, thus the cavity resonance is shifted to lower frequency by

∆ω(N). The latter does not mean that the laser can not operate at a frequency

different from its cavity resonance condition, namely, operating at ωinj , not at ωshift.

Then, we can assume that this frequency detuning can influence the bandwidth (248).

Therefore, here we suppose that a transient field, corresponding with the shifted cavity

resonance, can be generated and interfere with the locked field. The laser output can

exhibit a damping oscillation due to the beating between the detuned frequency and

the injected one. The oscillation of the mode rapidly decays out, because sufficient

gain is not allocated, thus this is a transient field. The oscillation angular frequency

of the slave laser is restored to ωinj . The laser can exhibit damping oscillation at the

beat frequency due to such transient interference. Therefore, the resonance angular

frequency produced by the interference is given by:
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Figure 3.14: Resonant condition of a semiconductor laser in the presence of op-
tical injection. (a) Spectrum before optical injection. ω0 is the angular frequency
of the solitary laser, ωinj is the frequency of the shifted light, and ∆ωinj is the
frequency detuning between them. (b) Cavity resonant condition under injection
locking. ωshift is the cavity resonance frequency shifted from ω0 by ∆ωshift(n)
due to optical injection. Reported from (7)
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ωres = ∆ωinj −∆ω(N) = −κ
√
Ainj
As

sinφS (3.22)

Under strong optical injection, the cutoff frequency is linearly proportional to the

injection ratio, in accordance with 3.21.

3.7 Frequency Chirping suppression by strong op-

tical injection

As we said, a change in the carrier density causes a change in the refractive index of the

gain medium. Therefore, this change in the index induces a frequency chirping, which

can be a big limitation in the bandwidth and thus in the bit rate for communications

applications.

A measure of frequency chirping has been given in (255), which is defined as

follows:

CPR =
1

2πRp

∣∣∣∣dφdt
∣∣∣∣ (3.23)

Where Rp is the modulation response. It has been found that frequency chirping

originates from the α parameter, which has a non zero value in SCL laser (249). A

stability analysis allows us to find the relation between the linewidth enhancement

factor α and the CPR. This relation is expressed as follows:

1

2πRp

∣∣∣∣dφdt
∣∣∣∣ ≈ fmα

√
f2
m + (u− v/α)2

f2
m + (u+ v/α)2

(3.24)

where u and v are given by:
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u =
κinj

2πτin

∣∣∣∣AmAs
∣∣∣∣ cosφL (3.25)

v =
κinj

2πτin

∣∣∣∣AmAs
∣∣∣∣ sinφL (3.26)

and φL is the phase of the intracavity laser field relative to the injection field.

Than, an effective linewidth enahancement factor can be defined, as:

αeff ≈ α

√
f2
m + (u− v/α)2

f2
m + (u+ v/α)2

(3.27)

where for the case of solitary laser (v = 0 and u = 0) is reduced to the original α.

Moreover, it is confirmed that a positive shift of the detuned frequency further reduces

the frequency chirping. This fact can be seen in figure 3.15, where the injection locking

of the laser at ∆ν =-10 GHz reduces the effective chirping more than the injection

locking at ∆ν=-18 GHz.

Figure 3.15: Effective chirping parameter. Dash-dotted curve: Injection locking
at ∆ν=1 GHz. Solid curve: Injection locking at ∆ν=-10 GHz. Dashed curve:
Injection locking at ∆ν=-18 GHz. Dotted curve: Free-running. Reported from
(11)
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When the power of the intrinsic noise is significantly high, then is no longer

possible to use the simple relation from CPR and α. Therefore, the measure of the

frequency chirping is better quantified directly from the CPR 3.23. However, when

the modulation index is small reduction of the chirp coefficient is not guaranteed, and

the chirp is dominated by the laser noise, following the same behaviour as the power

noise. Therefore, an injected semiconductor laser operating in the stable locking

regime has better modulation characteristics than a free running state.
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3.8 High frequency chaotic oscillation by strong op-

tical injection

Figure 3.16: (a-b) Time series and (c-
d) power spectra (respectively for (a) and
(b)) of chaotic oscillations in the transmit-
ter laser with and without optical injection.
Reproduced from (12)

Typically, in a SCL the chaotic carrier

frequency is near the relaxation oscil-

lation frequency of the solitary laser,

and obviously plays an important role

in the chaotic dynamics. In particular,

it can influence the bandwidth of the

chaotic signal, which can be important

for instance for secure communication

systems (32, 256, 257). In this kind

of applications the generation of a fast

chaotic carrier signal is essential for an

high bit rate of the transmitted mes-

sage (258).

Figure 3.16 shows the time series

of chaotic oscillations and power spec-

tra with and without optical injection,

numerically calculated by (12). The

power spectrum in the case without

optical injection presents a corner fre-

quency around 2.7 GHz, while it is ev-

ident that in the case of strong opti-

cal injection the bandwidth is greatly

expanded, up to about 10 GHz. How-

ever, it is difficult to calculate analyt-

ically the exact enhanced bandwidth

of the carrier frequency.

The review, performed in this chapter, of published results concerning the opti-

cally injected semiconductor laser will allow us to better understand and better place

in proper context the results that we have obtained about this class of laser and that

are described in detail in the following chapter.
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All optical implementation of

Stochastic Logic Gate

In this chapter we present the results of our numerical simulations of VCSELs dy-

namics in an optically injected (OI) configuration (144). We introduce a general form

of multimode rate equations for VCSELs, then we illustrate the spin-flip model for

the circularly polarized and the linearly polarized rate equations for the two preferred

oscillation modes. We describe the effects of bistability and the hysteresis, for both

an opto-electronic and an all-optical configuration. Finally, we demonstrate how an

OI VCSEL can be used as a stochastic logic gate, describing our numerical results

and all implications in possible real applications.

4.1 Theoretical model for VCSELs

It is well known that VCSELs offer numerous advantages, but we must say that

they also present some inconvenient, in particular they present unstable features in

their operation, even without any external perturbation. Their spatial structure and

polarization modes make them to often present chaotic oscillations. On the other hand

spatial hole burning and multi-transverse mode oscillations bring the laser output to

exhibit polarization switchings (PSs).

The field equations for a VCSEL are similar to those for an edge-emitting laser,

exception for the spatial terms, which must take into account the different structure
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and propagation geometry. Considering a certain polarization mode, the field equation

is given by (see: (8)):

dEj(t)

dt
=

1

2
(1 + iα)Gnj{n(r, φ, t)− nth,j}Ej(t) (4.1)

where n(r, φ, z, t) is the space dependent carrier density expressed as a function

of the cylindrical coordinates (r, φ, z) and nth,j is the threshold carrier density for the

j−th mode. Ej is the field amplitude for the laser oscillation of the j−th component,

and the total complex amplitude is given by

Etotal(r, φ, z, t) =
1

2

M∑
j=1

êjEj(t)ψj(r, φ)A0 sin(βzz)e
+iωth,jt + c.c. (4.2)

where M is the total number of spatial modes, êj is the polarization vector for

the j − th mode, ψj is the eigen-function for the j-th mode, βz is the propagation

constant along the z direction, and A0 is the normalization coefficient. Since the

carrier diffusion in the radial direction must be taken into account for the VCSEL

oscillation, the rate equation for the carrier density is given by

d

dt
n(r, φ, t) = D∇2

Tn(r, φ, t) +
J(r, φ)

ed
− n(r, φ, t)

τs

− Γd
d

M∑
j=1

Gnj{n(r, φ, t)− n0}|Ej(t)ψj(r, φ)|2 (4.3)

where D is the coefficient for carrier diffusion, the subscript T denotes the opera-

tion for the transverse coordinates, and Γd is the confinement factor for the longitu-

dinal direction in the active layer, given by

Γd =

∫ d

0

|A sin(βz)|2dz (4.4)
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Considering the thickness of the active layer d small compared with the laser

cavity L, then Γd < 1. In the derivation of the carrier density we should consider the

depletion term and take into account the interference terms for the external product

of the vector polarizations. But the beating frequency between the i and j terms is

of the order of several GHz, thus the corresponding term into the equation 4.3 can be

neglected. The eigen-function for the modes “i-j” for a particular VCSEL structure

is a function of the polar coordinate. For example for a weak index-guide cylindrical

structure with two polarization states corresponding to the LP01 mode, they can be

expressed in function of the Bessel function of the first kind J0(z) and the modified

Bessel function of the second kind K0(z), taking the following form:

ψj(r, φ) =


J0(u1,j/Ra)
J0(u1j) , for R ≤ Ra

K0(w1,j/Ra)
K0(w1j) , for r > Ra

(B.F.)

where Ra is the radius of the active region and u1j and w1j are the first roots of

the eigen-value equation for the j-th polarization mode.

ujJ1(uj)

J0(uj)
=

wjK1(w)

K0(wj)
(4.5)

they have a relation of u2
1j +w2

1j = V 2
j . Vj is the normalized frequency defined by

Vj =
2πRa

√
η2

1j − η2
j

λ
(4.6)

where λ is the wavelength of light in vacuum and η1j and ηj are the refractive

indices for the j-th mode in the active area and the clad region.

4.1.1 The spin-flip model

The general model above is able to describe the multi-transverse mode dynamics of

the laser, but on the other hand some details concerning the polarization behaviour

need a more specific description. In order to properly describe polarization effects in

VCSELs, we must take into account that left and right circularly polarizations of laser

light 4.2 are related to the spin states in the valence and conduct bands. This relation

149



Chapter 4 - All optical implementation of SLG

with the spin states is at the origin of the polarization oscillation, which includes a rich

variety of polarization dynamics including polarization switching. A specific model

has been proposed from (15, 259, 260, 261), which takes into account the interaction

with spin states and the spin dynamics (although it can only be applied when the

laser is operating at the lowest order spatial mode). This model, which is called

Spin-Flip model (SFM), couples the polarization state with the magnetic sublevels

of the valence and conduction bands. With it, it can be shown that laser dynamics

depend significantly on the value of the relaxation rates. Polarization switching can

be described by taking into account the population difference between carrier density

with negative and positive spin values. With this model the results for the lower

order spatial mode are entirely coincident with the full equation model, where all the

modes are considered, and easily explained. For higher orders we should refer to the

equation from the previous section.

Let us now briefly introduce the spin-flip model for lower order oscillation polar-

ization modes. This is the model that we have used in our work to be described below,

in this chapter. In Figure 4.1 the four-level model for the polarization dynamics of

a quantum well semiconductor laser is represented. The magnetic quantum number

in the lower edge conduction band is Jz = ±1/2, in accordance with the up and

down spin states. On the other hand the quantum number for the heavy holes for the

valence band have values Jz = ±3/2.

Conservation of angular momentum entails that photons emitted from state 1/2

to state 3/2 have left circular polarization light, while photons emitted from -1/2

to -3/2 have right circular polarization. In the model, a parameter γs takes into

account the mixing effect between population of states with the same modulus of J

but different sign of Jz.

It is well known that for VCSELs there are two preferred modes of linear po-

larization which coincide with the crystal axes. These two modes have a frequency

splitting associated with the birefringence of the medium. These two modes can be

modelled by the parameter of linear phase anisotropy γp, which represents the effect

of different indexes of refraction for the orthogonal linearly polarized modes. On the

other hand the two modes can have slightly different gain-to-loss ratios, which are

related with the anisotropic gain properties of the crystal. These differences can be

modelled by the parameter γa.

The SFM is defined for the slow-varying complex field E+ and E− corresponding

to the orthogonal circular polarizations (see: (8)), the total carrier density N , and

the carrier difference n:
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Figure 4.1: Four level model for polarization dynamics in QW VCSELs.

dE±
dt

= k(1 + iα)[(N ± n− 1)E±]− (γa + iγp)E∓, (4.7)

dN

dt
= γn[µ−N(1 + |E+|2+|E−|2)− n(|E+|2−|E−|2)], (4.8)

dn

dt
= −γsn− γn[N(1 + |E+|2+|E−|2) + n(|E+|2−|E−|2)], (4.9)

Where the variable N = N+ + N− represents the total carrier number, given

by the sum of the carrier populations with opposite spin in excess of its value at

transparency, normalized to the value of that excess at the lasing threshold. The

amount n is defined as n = N+−N−, which takes into account the difference between

the carrier numbers of the two magnetic sublevels, and it is normalized in the same

way as N . Moreover, k is the field decay rate, γn is the decay rate of the total carrier

population, γs is the spin-flip rate, α the linewidth enhancement factor, γa and γp

are linear anisotropies representing dichroism and birefringence, and µ is the injection

current parameter normalized such that the threshold in the absence of anisotropies is

at µth = 1. The projection of the circularly polarized states over the linearly polarized

states is given by:

Ex =
E+ + E−√

2
, Ey = −iE+ + E−√

2
(4.10)

Then, substituting eq. 4.10 into equations 4.7-4.9, we obtain the SFM equations in

terms of the orthogonal linearly polarized states. Therefore, the SFM rate-equations

for orthogonal linearly polarized fields are (15):
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dEx
dt

= k(1 + iα)[(N − 1)Ex ± inEy]∓ (γa + iγp)Ex +
√
βspγnNξx, (4.11)

dEy
dt

= k(1 + iα)[(N − 1)Ey ± inEx]∓ (γa + iγp)Ey +
√
βspγnNξy, (4.12)

dN

dt
= γn[µ(t)−N(1 + |Ex|2) + |Ey|2)− in(EyEx

∗ − ExE∗y)], (4.13)

dn

dt
= −γsn− γn[n(|Ex|2) + |Ey|2) + iN(EyEx

∗ − ExE∗y)], (4.14)

where Ex and Ey are linearly polarized slowly-varying complex amplitudes, and

ξx,y are uncorrelated Gaussian white noises with zero mean and unit variance. All

the rest parameters have been defined in the previous section 4.1.1.

Although the SFM model makes strong simplifications regarding the dynamics of

real VCSELs, many detailed comparisons between experimental measurements and

simulations (262),(263),(264),(265), (266),(267),(268),(269),(270), have demonstrated

that the model can indeed successfully capture the main features of the polarization-

resolved nonlinear dynamics of VCSELs (stochastic polarization switching, current-

induced polarization switching, two-mode emission, bistability and hysteresis phe-

nomena). To characterize the mixing of the populations with different spin, this

model introduces the spin-flip rate γs as a phenomenological parameter. The latter

is even considered as a coupling parameter between the two populations of carriers

in each pair of levels. For very slow mixing (i.e. γs = γn) the equations 4.11 can

be decoupled in two sets of independent equations, one for E+, N+ and another for

E−N−. In the limit of γs → ∞, corresponding to an instantaneous mixing between

the two populations, the orthogonal polarizations become independent of n and cou-

pled through the same population N. The parameters γa and γp, as already said,

represent the anisotropies, dichroism and birefringence. The frequency splitting of

the linearly polarized modes is modeled by the parameter γp. Its value corresponds

to the frequency detuning above and below a central frequency, then the frequency

difference between the two modes x and y is given by 2γp. While γa is the dichroism,

which takes into account the different gain for the polarization modes of the cavity,

the asymmetric position of the modes in the gain-frequency curve and different asym-

metric geometries of the cavity (271). This parameter can be positive or negative

depending on which mode has a larger gain-to-loos ratio. VCSELs can have different

behaviours depending on the parameters and can show relatively large dispersion.
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Table 4.1: Typical VCSEL parameters and values used in this chapter.

Parameter Symbol Range of values Values used
Linewidth α 2 to 5 3

Field decay rate k 100 to 400 ns−1 300 ns−1

Carrier decay rate γn 0.5 to 2 ns−1 1 ns−1

Spin-flip rate γs 1 ns−1 to 100 ns−1 50 ns−1

Amplitude anisotropy γa > −1 ns−1 to < 1 ns−1 0.5 ns−1

Phase anisotropy γp 1 to 150 ns−1 30ns−1

Bias current µ 0 to 3 2.5
Noise strength D 10−6 ns−1 to 10−3 ns−1 10−6 ns−1

4.1.2 Steady state solutions of the Spin-Flip Model

The steady state solutions for the orthogonal linear polarizations can be expressed as

Ex,y = Qx,ye
i(ωx,yt+ψx,y)+iθ, N = N0, n = n0 (4.15)

where θ is an arbitrary phase that can be set to zero and ψ is a relative phase

between the polarizations. Therefore, by substituting eq. 4.15 into equations 4.11 we

obtain the solutions for the x polarization

Qx =

√
µ−N0

N0
, (4.16)

ωx = −γp + γaα, ψx = 0, (4.17)

N0,x = 1 +
γa
k

n0 = 0, (4.18)

and for y polarizations is given by:

Qy =

√
µ−N0

N0
, (4.19)

ωy = γp − γaα, ψy = 0, (4.20)

N0,y = 1 +
γa
k

n0 = 0, (4.21)
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Figure 4.2: Polarizatyion stability diagram in the parameter space (γp, µ) for
(a) γa = 0.5 and (b) γa = −0.2 ns−1. Reproduced from (13)

Observing these solutions it is clear that the amplitude anisotropy gives slightly

different threshold solutions for the x and y polarizations. Figure 4.2 represents the

stability map of the two polarization modes in the parameter space of γp and bias

current µ. As shown in Fig. 4.2(a)(b), is easy to infer that for a fixed γp (along the

dashed line) and varying the current µ, the stable output polarization mode can be

either x or y and even between these two regions an intermediate region is found with

bistability, where both modes can coexist. Increasing the bias current the first mode

to turn on is the x mode, but when the current value is set to the boundary area

then a small amount of spontaneous noise can allow to switch to the other modes y.

Instead, for decreasing the bias current, considering the stable mode is the y one, then

at the boundary of the bistable region, small spontaneous noise makes to switch to

the other mode x. The section width of the bistable region between the two different

stable regions, makes the VCSEL to exhibit hysteresis, which is an interesting feature

that we exploit in order to build the stochastic OR logic gate illustrated in details in

the next section.

Although the SFM model above described is a combination of phenomenological

and detailed theoretical analysis of the light-matter interactions, it has a certain

number of simplifications which must be considered and mentioned. Firstly, it is

considered that the dipole polarizations have a much faster relaxation rate than the

other characteristic time scales of the system and thus they can be adiabatically

eliminated. Besides, we employed the simplest version of the SFM model which does

not take into account the transverse modes of the emitted light, thus we restrict

our study at low pump currents regime, not very far from the threshold, where the
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fundamental transverse mode dominates. Furthermore the model also neglects the

thermal effects in the carrier and gain. Finally, the anisotropies are considered parallel,

i.e. on the same axis x or y for simplicity. Therefore, the contribution of both

parameters can be expressed, in the model, as a function of the same polarization.
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4.2 Polarization switching and bistability

Figure 4.3: Polarization Resolved (PR)
light-current characteristics of a solitary
VCSEL. Reproduced from (14)

Because of the differences in the re-

fractive index, the semiconductor ma-

terial shows differences in its response

for the polarization components for

the principal axis and the orthogonal

axis. These differences are included

in the distortions and birefringence of

the material, which are very small, of

the order of 10−3÷10−4. For an edge-

emitting laser these differences can be

ignored due to the strongly asymmet-

ric configuration for the TE and TM

modes in the active layer, which make

the laser to operate only at the Trans-

verse Electric (TE) mode. However

those differences play a crucial role

in VCSELs lasers, because they have

a relatively symmetric circular disk

structure. Then, an ambiguity exists

for the polarization direction of the laser oscillation. Therefore, an interesting feature

of VCSELs is related to the stability of the two orthogonal linear polarization modes.

At a low bias injection current, the fundamental transverse mode (higher frequency

mode) starts to lase, then the orthogonal mode (lower frequency mode) grows up after

a polarization switching point. Thus the main oscillation mode switches again from

x to y mode well above the switching point 4.3. Nevertheless, stochastic polarization

switching can also occur, which has been interpreted in terms of Kramers hopping in

an effective 1D double well potential (262, 272).

In order to explain the physical mechanism about the described polarization

switching (PS), several methods have been proposed, such as the one based on the

different modal gain due to thermal effects, or another based on the diverse optical

frequencies in birefringent media, and even on the combination of the birefringence

and the spatial-hole burning. The first one explains the PS as an effect due to the

increased pump current, which produces a self-heating of the device. Then a red shift

of the cavity mode frequencies occurs as well as a red shift of the gain spectrum, which

156



Chapter 4 - All optical implementation of SLG

is larger than the red shift of the cavity resonances. As a consequence, the mode with

larger gain changes. A second explanation is proposed in (273, 274). They consider

that at low pump current one mode is suppressed because the cavity losses are larger

than the material gain, while the orthogonal mode has a positive net gain. At high

pump currents, the PS occurs when the modes exchange the sign of the net gain.

Unfortunately, these theories do not explain some experiments involving hysteresis

and PS at constant temperature (275, 276). An alternative way to explain the PS

and the hysteresis has been developed from (15, 259, 277). They explain these phe-

nomena as a combined effect of birefringence and saturable dispersion associated with

the α factor. Therefore, the phenomenon of polarization switching can be described

as follows: for low bias injection current, the carrier density has a maximum value at

the center of the disk facet emitting light, and smoothly decreases towards the edge

of the disk. When the injection current is increased, then the carrier density takes

a maximum at a certain distance from the center, and in this way the orthogonal

mode is excited and the original one is suppressed. Then the laser is switched from

x−mode to y −mode 4.3.

Figure 4.4: (Color online) Numerical calculated L-I curve for γa=0.5 and γp=30
GHz. (a) ∆T = 200 ns; (b) ∆T = 0.25 ns; circles identifies the dynamic for
increasing current, while triangle identifies the dynamic for decreasing current.
The green curve below the L-I characteristic is the current-time dependence.

As explained in section 4.1.2, usually the polarization switching does not appear

at a given current value, but it occurs at two different currents depending on whether

we are increasing or decreasing the bias current. Therefore the polarization mode

describes an hysteresis cycle, as shown in Fig. 4.4. It can be seen that for increasing

current, the polarization switches on at a given value, whereas for decreasing current,
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the same polarization mode switches off at a different current value. Besides, it

is interesting to observe that the hysteresis cycle changes its size, depending on the

velocity of the ramp current. Thus, the polarization switching is well reproduced from

the simulations. Moreover, we are interested in the optical features of the output light

as the bias current is changing. Figure 4.5(a), reported from (15), describes the light-

current characteristic for the case γp = 2γ, where the light polarization changes at

several bias current values. The average intensity for each polarization mode versus

the value of the injection current it is plotted. As already discussed, two different

L-I curves are obtained depending on which mode is selected, as the laser is brought

above the threshold.

The x-polarized state is retained up to µ = 1.1, where it loses its stability to

elliptically polarized emission. After a further increase in the injection current, the

output changes to the y-polarized state at µ = 1.2. The switching involves intermedi-

ate states of different polarization, such as an elliptically polarized state (an example

is labeled by β) and some other complex time-dependent intensity solutions (an ex-

ample is labeled by γ). Each emission state can be also characterized by the optical

spectrum (spectrum of the electric field amplitude). For the linearly polarized state

(α and δ) and the elliptically polarized state (β), the spectra have one well-defined

peak.

For the solution with time-varying intensities (γ) each of the spectra for the

linearly polarized field amplitudes has a main peak (at the same frequency in the

two cases) and many equally spaced sidebands, which is the signature of the periodic

modulation of the intensity (and phase) for each component.

The Re(Ex) versus the Re(Ey) plots are shown beside the lightcurrent charac-

teristics for the labeled states and clearly identify the different types of polarization;

a curve or line is obtained because the solutions have a nonzero optical frequency

relative to the rotating reference frame selected for the slowly varying amplitudes of

the model.

The hysteresis cycle is also present for a VCSEL configuration master-slave, which

we have considered in our Thesis work, and will be presented in the next Section.

Figure 4.6 displays the numerically calculated polarization mode x and y curve where

the intensity of the two modes is a function of the injected power Einj . From these

curves it is evident that at zero injected power only the x̂-polarization mode turns

on, while the ŷ-mode is almost zero. Also is displayed the schematic of the potentials

referring to the polarization modes, around the cross over current points, because this

phenomenon is strongly affected by the strength of the spontaneous emission noise.
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Figure 4.5: (a) Light-current characteristic for the intensity of each linearly
polarized mode (solid dots: x̂-polarized; open circles: ŷ-polarized) and the as-
sociated fractional polarization (FP). Re(Ex) versus Re(Ey) plots; (b) optical
spectra of the field amplitudes Ex (solid line) and Ey (dashed line) for the solu-
tions labeled on the light-current characteristic, and N-1 versus n. Reproduced
from (15)
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Thus an asymmetric bistable potential well describes the physical situation 4.6.

Figure 4.6: (Color online) Numerically calculated polarization resolved versus
injection power curve. The red curve represents the x polarization mode, while
the blue curve is the y mode. Red squares and blue dots represent the dynamics
for increasing injected power. For both curves triangles indicate the dynamics
for decreasing injected power. On the top a schematic of the optical potential
referring to the polarization modes. The laser parameters are as in Table 4.1
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4.3 Numerical results for all optical implementation

of Stochastic Logic Gate

We study numerically the dynamics of a vertical-cavity surface emitting laser (VC-

SEL) with optical injection and show that the interplay between polarization bistabil-

ity and noise yields a reliable logic output connected to two logic inputs. Specifically,

by encoding the logic inputs in the strength of the light injected into the suppressed

polarization mode of the VCSEL (the so-called “orthogonal” injection), and by de-

coding the output logic response from the polarization state of the emitted light, we

demonstrate an all-optical stochastic logic gate that exploits the ubiquitous presence

of noise. It gives the correct logic output response for as short as 5 ns bit times

when the dimensionless spontaneous emission coefficient, βsp, is within the range

10−4÷10−1. Considering that typical values of βsp in semiconductor lasers are in the

range 10−5 ÷ 10−4, the VCSEL-based logic gate can be implemented with nowadays

commercially available VCSELs, exploiting either their intrinsic noise, or external and

background noise sources.

4.3.1 Introduction

In nonlinear systems the interplay between bistability and noise can result in non-

trivial noise-induced effects which can be potentially exploited for applications (2,

132, 133, 134). A recent example is the numerical demonstration of a stochastic

logic gate using a vertical-cavity surface-emitting laser (VCSEL) that exploits the

interplay between polarization bistability, noise, and pump current modulation (133)

VCSELs emit linearly polarized light with the direction of the polarization along one

of two orthogonal directions associated with crystalline or stress orientations. Some

VCSELs display, when the pump current increases, a polarization switching (PS) to

the orthogonal polarization. The PS is often accompanied by hysteresis (15) and

it has been shown that the switching points and the size of the hysteresis region

depend on the pump current sweep rate (136),(137). When a VCSEL is subjected

to optical injection, such that only the suppressed polarization receives injection,

for appropriated injection parameters a polarization switching from the solitary laser

polarization (in the following referred to as X) to the orthogonal one (Y) can also occur

(138), either when the optical injection strength is increased (134)(139), or when the

wavelength of the injected light is varied (140),(141). With this configuration, which

has been referred to as orthogonal injection, polarization bistability and hysteresis
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cycles have also been observed, which can be exploited for all-optical buffer memories

(142),(143).

In the implementation of a VCSEL-based stochastic logic gate proposed in Ref

(133), two logic inputs were encoded in an aperiodic three-level signal (i.e., the sum of

two aperiodic square waves representing the two inputs) that was directly applied to

the laser pump current, and the logic output was decoded from the polarization state

of the emitted light (e.g., the output is a logic 0 if the laser emits the X polarization

or a logic 1 if it emits the Y polarization). In Ref (133). it was shown that the laser

gives the correct logic response with a probability that was controlled by the level of

noise, and that was equal to one in a wide range of noise levels. This phenomenon,

which has been referred to as logic stochastic resonance (LSR) (132), is receiving

a lot of attention because it occurs in several natural stochastic bistable systems

(145),(146),(147).

The aim of the present work is to demonstrate an all-optical implementation

of the VCSEL-based logic gate. With this aim we use the spin-flip model (15) to

simulate the polarization-resolved nonlinear dynamics of a VCSEL under orthogonal

optical injection. We demonstrate the phenomenon of LSR, by which the laser gives

the correct logic response (encoded in the polarization of the emitted light), to two

logic inputs that are encoded in the injection strength. We find that the all-optical

configuration can work almost one order of magnitude faster than the electro-optical

counterpart described in (133). The model rate-equations are described in Sec. 4.1.1,

and the results of the simulations are presented in Sec. 4.3.4. We show that for

adequate parameters the polarization of the light emitted by the VCSEL switches

between the X and Y polarizations in response to changes in the optical injection

strength into the Y polarization. Three injection levels allow for codifying the two

logic inputs and then obtaining the logic output of an OR gate (or of an AND gate)

in the form of the emitted polarization, as displayed in Table 4.2.

Table 4.2: Input/output combinations for an OR gate: the input is codified
with the injection strength on the Y polarization; the response is decoded from
the output polarization.

OR Logic Gate Output Laser Response Signal level that
Inputs Output codifies the input
1 1 1 Y mode Level 3

1/0 0/1 1 Y mode Level 2
0 0 0 X mode Level 1
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Key model parameters are the angular frequency detuning between the lasers, δω,

the strength of the optical power injected into Y polarization, Pinj = |Einj |2, the bit

time Tbit, and the dimensionless spontaneous emission coefficient, βsp., which will also

be referred to as the noise strength. We show that an optimal value of the detuning

∆ω allows operating the VCSEL-based logic gate with minimum switching injection

power (i.e., minimum Pinj). We show that, as can be expected in a LSR phenomenon,

an adequate value of βsp, allows for the correct operation of the logic gate, i.e., the

laser emits the correct output polarization only when the noise strength is within a

certain range of values, which depends on Tbit. If the noise is below this optimal range,

errors occur in logic output, which are due to delays in the polarization switching; if

the noise is stronger than the optimal range, errors can also occur due to the emission

of both polarizations simultaneously. Typical values of the spontaneous emission

coefficient in semiconductor media are of the order of 10−4 ÷ 10−5 (278),(8), and

our simulations demonstrate that the VCSEL-based logic gate can correctly process

bits with a bit-time of the order of 4 − 5 ns when the noise strength is within the

range of 10−4÷10−1. Therefore, the VCSEL-based logic gate proposed here could be

implemented with nowadays commercially available VCSELs, exploiting either their

intrinsic noise, or external and background noise sources.

4.3.2 Spin-Flip Model for optically injected VCSELs

Considering an optical injection on the orthogonal polarization mode, the Spin-Flip

model previously described takes a sightly modified form:

dEx
dt

= k(1 + iα)[(N − 1)Ex ± inEy]∓ (γa + iγp + i∆ω)Ex +

+
√
βspγnNξx, (4.22)

dEy
dt

= k(1 + iα)[(N − 1)Ey ± inEx]∓ (γa + iγp − i∆ω)Ey +

+ κEinj +
√
βspγnNξy, (4.23)

dN

dt
= γn[µ(t)−N(1 + |Ex|2) + |Ey|2)− in(EyEx

∗ − ExE∗y)], (4.24)

dn

dt
= −γsn− γn[n(|Ex|2) + |Ey|2) + iN(EyEx

∗ − ExE∗y)], (4.25)

Where all the parameters take the same meaning that those in section 4.1.1. The

optical power injected into the Y polarization is represented by Pinj = Einj The
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model equations are written in the reference frame of the injected field, and thus

the detuning ∆ω is the difference between the optical frequency of the injected field

and the frequency intermediate between the X and the Y polarization. Without

optical injection and with γa = 0, the angular optical frequencies of the X and the Y

polarizations are −γp and +γp respectively, and therefore, ∆ω = −γp (∆ω = +γp)

means that the injected field is resonant with the X (Y) polarized mode of the solitary

VCSEL (134).

4.3.3 Encoding scheme of the logical response

In this section we analyze how two logic inputs can be encoded in a three level

aperiodic modulation directly applied to the injected power from the master laser

which is fed into the active layer of the slave laser. Then we characterize the laser

logic response. The equations 4.22 have been integrated using the explicit Euler

method with a time step of 10−1 ps, short enough to ensure the convergence of the

integration method. The dynamics is studied in terms of the intensity for the two

orthogonal polarizations |Ex|2, |Ey|2, and the total intensity as |Et|2= |Ex|2+|Ey|2.

As said, the two logic inputs are encoded in the injected power via a three-level signal,

with the injection levels defined as follows (see Fig. 4.7). Lets consider that Einj(t)

is the sum of two aperiodic square-waves, E1(t) + E2(t), that encode the two logic

inputs.

Since the logic inputs can be either 0 or 1, we have four distinct input sets: (0,

0), (0, 1), (1, 0), and (1, 1). Sets (0, 1) and (1, 0) give the same value of Einj , and

thus, the four input sets reduce to three Einj values. Then, it is more convenient to

introduce as parameters Ec and ∆E, such that the three injection levels are Ec−∆E,

Ec, and Ec + ∆E. For simplicity we chose Ec = ∆E, and therefore the 3 injection

levels reduce to 0, ∆E, and 2∆E. The duration of a bit is defined as Tbit = T1 + T2,

where T1 is the time interval during which the injected power is constant and T2 is

the duration of the ramp (up or down) to the injected power encoding next bit (with

T2 � T1, as shown in Fig. 4.7). As will be discussed in the next sections, the value

of T1 strongly influences the reliability of the VCSEL logic gate, but the value of T2

does not affect significantly the operation, as long as T2 � T1.

The laser response is determined by the polarization of the emitted light. We chose

the parameters such that the laser emits either the x or y polarization (parameter

regions where there is anti-correlated polarization coexistence or elliptically polarized

light are avoided). The laser response is considered a logical 1 if, for instance the
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Figure 4.7: Time trace of the injected field amplitude within a bit.

x polarization is emitted, and a logical 0, if the y polarization is emitted. Which

polarization represents a logic 1, and which represents a logic 0, depends on the logic

operation, as will be discussed latter.

In this way the polarization emitted at the three injected powers (Einj), encod-

ing the four possible combinations of the two logic inputs, allows to implement the

operation OR, AND, NOR, NAND, according to the table 4.5. It is evident that by

detecting one polarization a logic response is obtained and, by detecting the orthog-

onal component, the negation of that logic response is obtained. We thus focus only

on the operation OR and AND. In the section about the numerical results we study

only the OR logic gate, the AND logic can be easily extrapolated from our outcomes.

There are two ways to associate the four possible logic inputs (0,0), (1,0), (0,1),

(1,1) to three injected power strengths. The first one is schematically illustrated in

Fig. 4.8, which we will refer all time for simplicity. The AND logic can be imple-

mented by the three level current labels as EI , EII , EIII , while the levels EII , EIII ,

EIV , can lead to an OR logic operation. Table 4.3 briefly illustrates this criterion.

The idea consists in assuming that the output response is encoded by (i.e) the output

polarization which encodes the value 1 if the Y mode is on, otherwise is it 0. Let’s

describe the OR logic operation considering the only input combination (0,0) whose

result is zero. This combination can be associated to the state EII . The interesting

feature which is the main idea behind the LSR is the possibility to tune and reliably

control the transition between the two modes by the noise strength. Table 4.5 illus-

trates the relationship between the logic inputs, where the current levels encode these

inputs, while the expected laser polarization gives the output response.

The main vantage of this scheme is that ∆E can be chosen constant for the three

transitions, and by just changing the mean injected power (Em) it is possible to

change from AND to OR logic or viceversa. As we commented before, the hysteresis
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Table 4.3: First scheme: Relationship between the two inputs and the output
of the logical operations, and the encoding power levels.

Logic inputs AND: OR:
Injected Output Logic Injected Output Logic
power mode output power mode output

(0,0) EI y 0 EII y 0
(1,0)/(0,1) EII y 0 EIII x 1

(1,1) EIII x 1 EIV x 1

Table 4.4: Second scheme: Relationship between the two inputs and the output
of the logical operations, and the encoding power levels.

Logic inputs AND: OR:
Injected Output logic Injected output logic
power mode output power mode output

(0,0) EIV x 0 EII y 0
(1,0)/(0,1) EIII x 0 EIII x 1

(1,1) EII y 1 EIV x 1

cycle has a shape and size which depend on the velocity of the injected power. This

fact implies that for the encoding scheme, it does not allow very fast modulation for

the AND operation, due to the fact that PS for decreasing injected power disappears

(133). A second encoding possibility can be implemented (Table 4.4 illustrates this

second criterion) where the power injected levels are the same EIV , EIII , EII , for

both logic operations. Also the encoding criterion changes, in the sense that the lower

power level EII encodes the input (0,0) for the OR operation, while it encodes the

input (1,1) for the AND operation: the highest power level EIV encodes the input

(1,1) for OR and encodes (0,0) for AND. the middle power level encodes (1,0) and

(0,1) for both operations. Because the AND and OR operations are implemented

with the same three current levels, such a encoding method allows high performance

for both logic operations.

4.3.4 Results

The laser parameters used in the simulations of the model 4.22, which are kept con-

stant unless otherwise specifically indicated, are: k = 300 ns−1, µ = 2.5, α = 3,

γa = 0.5 ns−1, γs = 50 ns−1, γp = 30 rad/ns, γn = 1 ns−1. For these parameters

166



Chapter 4 - All optical implementation of SLG

Figure 4.8: Schematic representations of the effective potential at four different
pump current values, corresponding to the labels I to IV in Fig. The solid square
indicates the three values that can be used for implementing a logic AND; the
dashed square indicates the three values that can be used for implementing a
logic OR.

Table 4.5: Relationship between the two inputs and the output of the logical
operations.

Logic inputs AND NAND OR NOR
(0,0) 0 1 0 1

(1,0)/(0,1) 0 1 1 0
(1,1) 1 0 1 0
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Figure 4.9: Time trace of the intensity of the X polarization (red line) for three
noise levels (a), (b) βsp = 105; (c),(d) βsp = 0.1; and (e), (f) βsp = 1; Tbit = 5ns,
other parameters are as indicated in the text. The black dashed line represents
the three-level injection strength and the stars mark bits with wrong logic output.
The panels (b), (d) and (f) indicate a zoom of (a), (c) and (e).

the solitary laser emits the X polarization. Unless otherwise indicated, the injection

parameters are ∆ω = 12 rad/ns, ∆E = 0.0015, Tbit = 5 ns, and T2 = 0.5 ns. Figure

4.9 shows a typical time-trace of the X polarization (red solid line) when a three level

signal varies the injection strength (black dashed line). The dynamics is shown for

three noise levels (βsp = 10−5 in Fig. 4.9(a), βsp = 0.1 in Fig. 4.9(c) and βsp = 1

in Fig. 4.9(e)). Notice that the X polarization turns on when the injected signal is

in level 1 (i.e., no optical injection) and turns off in the other two levels, when the

Y polarization turns on. The intensity of the Y polarization (not shown for clarity)

is either off (when the X polarization is on) or displays fast oscillations (when the X

polarization is off). In Fig. 4.9, the asterisks indicate the bits when the laser emits

the wrong polarization. The criterion used to determine whether the laser emits the

right polarization to a given input is as follows: The laser logic output response is

considered correct if, when X is the polarization that has to be emitted according to

Table 4.2, 80% or more of the total power is emitted in the X polarization; and in

the bits when Y is the correct polarization, 20% or less of the total power is emitted

in the X polarization. In other words, the response of the laser is determined only by

detecting the intensity of the X polarization, being above or below a certain value. In

Fig. 4.9(b) it can be observed that a wrong bit is due to the delay in the switching,
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Figure 4.10: Probability of success of an OR logic gate as function of the bit
time (a), (b) and as a function of the noise strength (c), (d). The red, black and
blue lines indicate the probability calculated using the 90/10, 80/20 and 70/30
criteria respectively (see text for details). ∆E is 0.0015 in panels (a), (c); and
0.005 in (b), (d), the bit time is 7 ns in panels (c), (d), other parameters are as
indicated in the text.

as there are oscillations during the switching, but with larger noise the polarization

switching is faster Fig. 4.9(d), but increasing still more the noise strength it plays

a worst effect with delays in switching off the polarization mode Fig. 4.9(f). Figure

4.10 displays the probability of success of the OR logic gate as a function of the bit

time (Figs. 4.10(a) and 4.10(b)) and as a function of the noise strength (Figs. 4.10(c)

and 4.10(d)). The success probability was calculated over seven realizations of 500

bits and using 3 criteria for determining if the laser logic output response is correct:

90/10; 80/20 and 70/30, where the first number indicates the minimum percentage

of light emitted in the X polarization during a bit, if X is the correct polarization,

and the second number, the maximum percentage emitted in X if X is the wrong

polarization.

As a function of the bit time, in Figs. 4.10(a) and 4.10(b) one can observe

that for the less strict criterion (70/30, blue line) the probability grows to one for

smaller bit times as compared to the more restrictive criteria (80/20 and 90/10,
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black and red lines respectively). One can also observe that the minimum bit time,

with the 80/20 criterion as employed in (133), is about 5 − 7 ns depending on the

noise strength, which is significantly lower than that found in (133), where the logic

inputs were applied as a direct modulation of the pump current, which was about

20− 30 ns. As a function of the noise strength, one can observe in Figs. 4.10(c) and

4.10(d) that, for the 70/30 and 80/20 criteria, the probability of a correct response

has a wide flat region where P = 1. Considering the criteria 80/20, in Fig. 4.10(c)

the plateau with P = 1 occurs for βsp = 10−4 − 0.1, which clearly demonstrates

the robustness of the correct operation of the logic gate. Figure 4.11 displays the

probability of correct logic operation represented with color code, in a two-dimensional

parameter space: as function of the noise strength and the bit time, in Figs. 4.11(a)

and 4.11(b); and as a function of the bit time and the injection strength, in Figs.

4.11(c) and 4.11(d). Figures 4.11(a) and 4.11(b) are done with two injection strengths

(respectively ∆E = 0.0015 and ∆E = 0.005), and Figs. 4.11(c) and 4.11(d), with two

noise levels (βsp = 10−4 and 0.1 respectively). The squares in Fig. 4.11(a) indicate

the parameters used in Figs. 4.9(a), 4.9(c) and 4.9(e), and show that for a noise

level of βsp = 10−5 the minimum bit time with probability of correct operation equal

to 1 is 7 ns, counterintuitively with βsp = 0.01 the minimum bit time decreases to

4 ns, and thus noise can improve the speed of the logic gate. Figure 4.11(b) shows

that, with large enough optical injection, correct operation of the logic gate can be

obtained even when the laser is under the influence of very strong noise, higher than

βsp = 1 (notice the difference in the right-top corner of Figs. 4.11(a) and 4.11(b)).

In Figs. 4.11(c) and 4.11(d), which display the success probability as a function

of the bit time and ∆E, for weak (βsp = 10−4) and for strong (βsp = 0.1) noise

respectively, one can observe that if the injection strength is below a threshold at

about ∆E = 0.001, the laser does not give the correct logic response, regardless of

the bit time or the noise strength. The region with probability equal to 1 is wider in

Fig. 4.11(d) (starting with bit times as low as 3 ns) than in Fig. 4.11(c) (that starts

at 6 ns), because moderated noise levels (βsp up to 0.01) are beneficial by reducing

the switching delay and allowing for correct operation with shorter bit times. In order

to demonstrate that the correct operation does not require a fine tuning of the laser

parameters, in Fig. 4.12 we present the success probability as a function of various

parameters: in captions (a) and (b), as a function of the injection strength and the

frequency detuning, for two bit times (7 and 5 ns); in caption (c), as a function of

the birefringence and spin-flip parameters, and in caption (d) as a function of the

dichroism and the pump current parameters. In Fig. 4.12(a) where we used a bit
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Figure 4.11: Probability of correct operation (in color code) as a function of
the noise strength and the bit time (a), (b); and as a function of bit time and
the modulation amplitude (c), (d). The probability is calculated over 500 bits
using the 80/20 criterium of success logic OR operation. The parameters are
∆E = 0.0015 (a), ∆E = 0.005 (b), βsp = 10−4 (c) and βsp = 0.1 (d), other
parameters as in the text.

time of 7 ns, there is a wide red area where the success probability if equal to 1. But

with a bit time of 5 ns (Fig. 4.12(b)), this red region becomes more narrow. One

can also notice that this region is very similar to the stable injection locking region

in a laser with cw optical injection. Since γp = 30 rad/ns and the optical frequency

of the Y polarization ≈ γp, in the red region the injected field is resonant with the Y

polarization). Figures 4.12(c) and 4.12(d) show that the correct operation of the logic

gate is robust to variations of the birefringence, dichroism, the spin-flip rate and the

pump current parameters, as a wide red region is observed corresponding to a success

probability equal to one.

171



Chapter 4 - All optical implementation of SLG

Figure 4.12: Success probability, P, as a function of the optical injection pa-
rameters (the injection modulation amplitude and the frequency detuning) for
two bit times, 7 ns (a) and 5 ns (b); P as a function of the laser parameters (the
birefringence and the spin-flip rate) (c), (the dichroism and the pump current)
(d). The probability is calculated over 500 bits using the 80/20 criterium of
success logic OR operation. The parameters are δE = 0.003, βsp = 10−4, other
parameters are as indicated in the text.
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4.3.5 Conclusions

In this chapter we briefly introduced the VCSEL laser, and gave the mathematical

expressions that describe the rate equations and the SFM. We also explained what

the bistability phenomenon and the hysteresis cycle consist in, as well how its charac-

teristics could be exploited. Then, we have shown that in a VCSEL with orthogonal

optical injection, there is a wide region of noise strengths where the probability of suc-

cess of logic gate operation function is equal to 1. We also demonstrated that intrinsic

laser noise and external noise can be exploited for improving the performance of the

logic gate, giving a reliable and correct logic response, evenly robust to variations of

the laser parameters. For too low or too high noise strength, some mistakes occur (see

Fig. 4.9), which are due to either turn-on or turn-off delays. In the opto-electronic

stochastic logic gate proposed in (133), the minimum bit time for successful opera-

tion was about 30− 40 ns, whereas in the optical implementation proposed here, the

probability equals 1 for much shorter bit times, as 5−7 ns (see Fig. 4.11). Therefore,

the all-optical implementation presents a clear advantage for applications where noise

is unavoidable and fast switching is required.
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5
Rogue Waves in a

semiconductor laser with

optical injection and current

modulation

5.1 Introduction

For centuries, tales of giant oceanic waves which suddenly appear and disappear in

calm and safe seas, have been told. In the mid-1990s, one of these phenomena was

recorded: for the first time an entire oil platform was “swallowed” by a rogue wave.

After that episode, now it is retained that an unprecise number of maritime disas-

ters were caused by these freak waves which disappear without leaving any trace.

These phenomena of fast rising wall of water and fast falling down are generally

named Rogue Waves (Rogue Wave (RW)s). Again, once not long ago we lived in an

economy of financial growing and prosperity. Although politics, and some experts

ensured us about the infinite resources of our planet, this new era could not last too

long. Countless small and medium-sized financial bubbles have occurred over the

years, which have inevitably driven the financial market towards well defined world

economics-crash. As oceanic RWs, financial-crashes can be considered as extreme

events. Many of these extreme events follow a typical trajectory as a fast exponen-
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tial function which in some way describes exactly when an extreme events can occur.

The term of Rogue Waves, as in oceanography, is also used in many other fields to

describe extreme events. For example they have been observed in nonlinear optics,

or in electronic circuits (279, 280). Nowadays, modern high-power multimode Conti-

nous Wave (CW) lasers are extensively investigated, because the complex dynamics

of the output intensity exhibits irregular intensity fluctuations. The latter occurring

on time scale of the order of the inverse of the laser linewidth enhancement factor.

The analysis of the probability density function reveals the existence of extreme and

rare events which have a probability higher than that predicted by Gaussian statis-

tics (281, 282, 283, 284). An intensive research about the generation of optical Rogue

Waves in laser systems has been initiated, and there is a widespread and rising in-

terest in the observation of extreme optical events. However, up to now, not many

experimental evidences have been reported. Recently, some experimental observa-

tions of optical Rogue Waves in several types of laser (Ti-sapphire, VCSELs) have

been made (16, 284, 285). These extreme events have been interpreted and described

as a collision of “breathers” (286, 287), and specific conditions for their formation have

been reported in (288, 289). They demonstrated that two key elements are required

for the formation of RWs; namely, granularity, (i.e.) fragmentation of the wave field

into a large number of elementary objects of still finite size, named speckless, and

inhomogeneity, which means clustering of speckless in spatial domains with different

average intensities. Numerical simulations and theoretical studies predict their exis-

tence in VSCELs, Ti:sapphire, Raman and mode-locked fiber lasers (290, 291, 292).

Also numerical studies by simple equation model describe how the chaotic behaviour

could be suppressed by a periodic modulation current (35, 36, 293). An experimental

demonstration of control of nonlinear dynamics by slow parametric modulation in a

loss-modulated CO2 laser is also given in (294). As well as an experimental sup-

pression of chaos has been achieved in an optically pumped far-infrared 15NH3 laser

which displays Lorenz-like chaos (293).

The main characteristics of a Rogue Wave is a very high amplitude, with fast rise

and fast falling side, which imply that the system must be highly nonlinear. Besides,

the appearance of RWs as directly connected with the existence of a modulational

instability has been investigated by employing the nonlinear Schrodinger Nonlinear

Schrödinger (NLS) equations (295). In spite that behaviour has been confirmed for

large scale, that equation can not explain ocean waves in short scale (287, 296).

One open question is about the role of noise in the occurrence of these extreme

events. Could RWs be observed even in the pure deterministic case? and under
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which conditions?. It has been proved that even in the absence of noise RWs can be

detected. They develop in a certain regions of input parameters, where the dynamics

is completely chaotic (16). In (16) they calculated the Lyapunov exponent stability

map 5.1a, which displays regions where deterministic chaos, hopf bifurcation from

period-1 to period-2 oscillations have been observed together with stable and unstable

locking. At the same time, they numerically calculated the number of Rogue Waves

for the deterministic case (noise strength D=0) 5.1b, and they found that the domain

where the RWs developed corresponds with the chaotic region predicted from the

Lyapunov exponent 5.1a. In the chaotic region one can observe irregular oscillations

and sporadic very high pulses, which by a defined criterium can be identified as RWs.

A major challenge is to predict them and, if possible, to control them, making safer

environments and systems. It is useful to point out that these phenomena, as opposed

to tsunamis or solitons, can disappear in a short spatial length and not necessarily

propagate for large distance. An interesting question that we have addressed is if

these events could be totally or partially suppressed by a weak periodic perturbation.

In this chapter we study the complex generation dynamics of RWs and the associated

statistical behavior in the specific case of an optically injected (OI) semiconductor

laser with a periodic external forcing via a direct modulation of the bias laser pump

current. As it will be shown, we have found that the interplay of intrinsic noise and

external modulation can significantly modify the probability of RW occurrence. By

shedding light into the role of periodic forcing in a physical system that generates

RWs, our findings could be helpful to build future prediction and control models.
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(a) Lyapunov exponents as func-
tion of slave laser pump current and
the master-laser frequency detuning.
The color code indicates negative ex-
ponents as gray scale and positive ex-
ponents as black-white (yellow-red)
scale.

(b) Number of RWs “N” vs the
slave laser pump current and the fre-
quency detuning, over a time series
of 10µs, with D=0.

Figure 5.1: Both figures are reproduced from (16)
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5.2 Rate equation model for a seminconductor laser

with optical injection and current modulation

A rate equations model for an optically injected single-mode laser which describes well

the dynamics induced by optical injection is the following set of equations (16, 297).

dE

dt
= κ(1 + iα)(N − 1)E + i∆ωE (5.1)

+
√
Pinj +

√
Dξ(t)

dN

dt
= γN (µ(t)−N − |E|2) (5.2)

µ(t) = µ0 + µmodsin(ω0t) (5.3)

where E and N are the complex field amplitude and carrier density for the laser

(which we will call the “slave” laser), Pinj is the injection strength (coming from

another laser kept all the time in a steady state regime, which we will call the “master”

laser), ∆ω = ωs−ωm is the detuning between the two lasers, D is the noise strength,

and ξ is a complex Gaussian white noise representing spontaneous emission. Other

parameters are the field decay rate, κ, the carrier decay rate, γN , the line-width

enhancement factor, α, and the injection current, µ. The bias current µ can be

sinusoidally modulated with an amplitude µmod and frequency of fmod = ω0/2π. The

parameters kept fix in all simulations are: Pinj = 60 ns−2, κ = 300 ns−1, γn = 1 ns−1,

and α = 3. The frequency detuning is defined as ∆ν = ∆ω/2π. These equations are

equivalent, for a single-mode laser, of those used in the previous chapter, for a VCSEL

with two orthogonal polarized modes. Then, the frequency (Ωro) of the (Relaxation

Oscillation (RO)s) can be calculated as (8):

fro '
√

2kγ(µ− 1)

2π
(5.4)
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We will use this expression in the next section in order to calculate the frequency

relaxation oscillation component for the free running laser, and taking it as reference

for our discussions.

5.3 Statistical description

The major feature of the Rogue Waves is their unpredictable appearance, thus a

method to detect them can be based on the analysis of the probability density function

of the output amplitudes (Probability Density Function (PDF)), which turns out to

be the more appropriate measure for our purpose. Systems that exhibit rogue waves

have long-tailed PDFs. In this work, to define a RW, we use a criterium for which an

intensity pulse is detected as a RWs only if its maximum value is higher than a defined

threshold. Any other values will be not considered as RW, then they will not provide

neither information to the statistics that we will develop here. We define the threshold,

τ , as the mean value of the total intensity in the temporal range considered, plus a

number (const=6 or 8) of variances σI of the probability density function (PDFs)of

pulse amplitudes. 5.5.

τ = < I > +const · σI (5.5)

Where < I > represent the intensity mean value, and const is a factor that

multiplies the PDF intensity variance σI . In previous works, the factor const, it has

taken values from 2 to 8. In the calculations below we have used “const” equal to 6.

Despite we calculated the threshold (τ) by means the intensities values, all the next

calculations concerning the detection events refer to amplitude values. This difference

is due to practical reasons whose for high noise strength and without any filtering to

the dynamic, can bring to real differences between the two ways to calculate the

threshold. Otherwise, however not appreciable differences can be noticed.

In Fig. 5.2 are reported two examples of the output temporal dynamics of a

semiconductor laser optical injected. Although Fig. 5.2(a) for a given set of input

parameters (frequency detuning between master and slave laser and, slave injection

current) does not shows any RWs, Fig. 5.2(c), for another input parameters, exhibit

a chaotic dynamic with pulses much higher than the defined threshold. We will apply

always in the next calculation this criterium to define the RWs occurrences.
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Figure 5.2: Output time traces (a-c), and corresponding probability function
of the amplitudes detected over the threshold (b-d). The red dot line correspond
with the threshold defined with “const” equal to 6. While for the blue dot line
“const” is equal to 8. The figure (a) and (c) are relative to the set of input
parameters ∆ν=0 GHz, µ = 1.8, and (b) and (d) to the set ∆ν=-1.86 GHz,
µ = 1.96
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5.4 Numerical Results

In order to investigate the spectral features of our system, we calculate the power

spectral density (PSD) of the system response. The PSD function is defined as the

module square of the real part of the fourier spectrum of the output intensity |χ(f)|2,

thus it can be considered as an amplitude spectrum such as the one described in

chapter 3. The power spectral density gives us information about the characteristic

time scales of the system. In particular, we expect the PSD to give us information

about which frequencies for the modulated bias current could more efficiently induce

or suppress RWs, depending of the input parameters (∆ν, µ, fmod, Amod). First of

all, and as a milestone for the future development, we will analyze the PSD for the free

running (or solitary) lasers, where we expect to obtain a power spectrum with a peak

at the relaxation oscillation frequency (which is given analytically by the equation

5.4). Then we will introduce the optical injection (OI) and we will discuss about some

different regimes that can be observed, always referring to the amplitude spectra and

to the temporal series. We want to identify the chaotic nonlinear region (see chapter

3), as thanks to a previous work we know that Rogue Waves can be detected in that

region (16). Subsequently, we will focus on the influence of a periodic modulation of

the bias current of the slave laser, which could dramatically change the dynamics. It is

fine to remark that, although some regions with period-one or period-two oscillations

can have very high peak intensities, the given definition of a RW, as a phenomenon

with a deviation above Gaussian prediction, allow us to not consider these oscillations

as RWs. Interestingly, we will condense our observations by mapping the detected

RWs in the parameter subspace defined by the frequency detuning ∆ν versus the

bias current µ, at different strengths of noise, including the case of absence of noise.

And finally, we will apply a periodic modulation to the bias current µ of the slave

laser, and we will study how frequency and amplitude modulation can influence the

occurrence of these extreme events.

5.4.1 Relaxation oscillation frequency of the free running laser

We now study the intensity fluctuations of the free running slave laser; therefore, in

this subsection the terms representing optical injection and current modulation in

equations 5.3 have been removed. As previously said, we now study the situation

with the slave laser as free running or solitary laser, so that for this configuration

the terms relative to the optical injection (Einj , ∆ω) and to the modulation current

(Amod, fmod) in the equations 5.3 have been removed. Figure 5.3 displays the PSD
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of the system just described in the absence of bias current modulation and without

optical injection (Einj = 0), at three different bias currents (µ1 = 1.8, µ2 = 2.4,

µ3 = 3). From panel (a) it can be noticed how the PSD exhibits a peak at the

frequency corresponding to the relaxation oscillation frequency. The peak is shifted in

frequency as the bias current is increased. It is important to notice that the main peak

(labeled with the arrow) is shifted proportionally to the bias current, as suggested by

equation 5.4. In fact, for the currents µ1 = 1.8, µ2 = 2.4, µ3 = 3 the theory predicts a

peak located respectively around 3.48, 4.61, 5.51 GHz. The inset in panel (a) displays

the time trace for a current µ of 1.8, where the relaxation fluctuations around the

mean value of 0.8 are highlighted. Panel (b) displays the time traces for a longer time

of 800 ns, and from this figure it is evident that the intensity fluctuations due to the

relaxation oscillations are very small compared with the mean output power, which

can basically be considered constant for the three bias currents respectively at 0.8,

1.4, and 2.

(a) (b)

Figure 5.3: Numerical calculated Power Spectral Density (a) and respective
temporal series (b), without OI (Einj = 0) and in the absence of periodic current
modulation Amod=0%, fmod=0. Constant bias current with value of µ=1.8; 2.4;
3; respectively red, blue, green curves. Frequency detuning between master and
slave ∆ν = 0 GHz; Power injected Einj = 0.

5.4.2 Dynamic regimes with optical injection and without cur-

rent modulation

Now lets consider the situation where the free running laser (the slave laser) is optically

injected from a master laser. Therefore, in the slave-laser equations 5.3 the terms
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proportional to the injected power Einj and frequency detuning ∆ω must be added,

but still considering a constant value of the bias current. As done in the previous

section, we observe the output dynamics for three fixed bias currents 1.8, 2.4, 3. For

each one of them, we calculate the PSD and the respective time traces as shown

in figure 5.4 and 5.5. Figures 5.4a-5.4b were obtained setting the injected power

at Einj = 60 and ∆ν = 0.22 GHz, while for the curves shown in figures 5.5a-5.5b

another set parameters has been chosen Einj = 60 and ∆ν = −0.24 GHz, both with

noise strength of 10−4. These two sets of parameters will also be used for further

calculations in our work. The input parameters from the master laser have been

chosen in a fashion that more dynamics could be revealed. In fact from Fig. 5.4 we

clearly see that for input current of 1.8 the power spectral density exhibits a peak

at the relaxation oscillation frequency of the solitary laser and two further peaks

at lower frequencies which indicate period-3 oscillations as the panel (e2) of Figure

3.10. At current of 2.4 as predicted from the Lyapunov exponent in figure 5.1a it is

found chaos, where irregular oscillations dominate the dynamics, and some sporadic

pulses can be boosted, and in some case detected as RWs. Interestingly enough, at

µ = 2.4 the shape of the PSD has changed, as the two peaks at frequencies lower than

the relaxation oscillation frequency have disappeared. We want to remark this fact

because this is the typical shape feature of chaos concurrently with extreme events.

At higher current of µ = 3, period-1 oscillations appear, in fact the time trace reveals

a dynamics locked to the relaxation oscillation of the solitary laser, and a huge peak

in the PSD at 5.5 GHz is exhibited. For each case figures 5.4-5.5 also report the

behaviour with a noise strength of 10−2, which clearly reveals an increase in the

power background which leads to the detection of more RWs due to the nonlinear

nature of the system.
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(a) Noise strength D=10−4 (b) Noise strength D=10−4

(c) Noise strength D=10−2 (d) Noise strength D=10−2

Figure 5.4: Numerical calculated Power Spectral Density (a-c) and respective
temporal series (b-d), without periodic current modulation Amod=0%, fmod=0.
Constant bias current with value of µ=1.8; 2.4; 3; respectively red, blue, green
curves. Frequency detuning between master and slave ∆ν = 0.22 GHz; Power
injected Einj = 60.
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(a) Noise strength D=10−4 (b) Noise strength D=10−4

(c) Noise strength D=10−2 (d) Noise strength D=10−2

Figure 5.5: Numerical calculated Power Spectral Density (a-c) and respective
temporal series (b-d), without periodic current modulation Amod=0%, fmod=0.
Constant bias current with value of µ=1.8; 2.4; 3; respectively red, blue, green
curves. Frequency detuning between master and slave ∆ν = −0.24 GHz; Power
injected Einj = 60.
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5.4.3 Dynamics at strong current modulation

Finally, in this section we study the effects of a strong modulation of the bias current,

for the slave laser. Thus, we must add the periodic component into the term of the bias

current µ, making the set equations 5.3 fully equipped for our future analysis. The

main goal of this section is to answer to the following questions: Applying a strong

periodic bias current modulation at a certain frequency, will the dynamics change

with respect to the case of constant bias current? and how does it changes? Could

we inhibit the generation of RWs? Lets compare the two cases, with strong periodic

modulation of the bias current and with bias constant current. For our purpose we

again consider three bias current values of 1.8, 2.4 and 3, at which we know from

the previous analysis that correspond relaxation oscillation frequencies of 3.5, 4.5, 5.5

GHz, respectively. Moreover we have also considered a lower modulation frequency

of 2.5 GHz. First of all we apply a strong sinusoidal modulation current, with an

amplitude of 16% of the bias current µ, at the frequencies of 2.5 and 3.5 GHz. Figures

5.6a-5.6b-5.6c-5.6d display the PSD and the respective time traces for the usual three

bias currents (µ=1.8, 2.4, 3). In order to visually compare, we report below in Figures

5.6e-5.6f, the PSD and traces for the case without modulation already discussed in the

previous section. We must take into account, as previously revealed, that 3.5 GHz was

the relaxation oscillation frequency for the bias current of 1.8. Therefore, it could be

natural to expect, as main effect of the modulation current at 3.5 GHz, a change of the

dynamics corresponding to this latter curve (red curves in Figures 5.6c-5.6d). Despite

the modulation frequency coincides with the relaxation oscillation frequency of the

free running laser with bias current of 1.8, the dynamics does not show any appreciable

change. However, the PSD exhibits several very narrow peaks corresponding to the

frequency components at multiples of the modulation frequency at all the three bias

currents considered and both modulation frequencies of 2.5 and 3.5 GHz. Surprisingly,

the case relative to the bias current of 3 (the green curve in Figures 5.6c-5.6d), it has

dramatically changed. The change can even be evidenced from the time trace, which

clearly shows as for the bias current µ = 3 the dynamic behaviour slough from periodic

to chaotic. However, the output dynamics corresponding to the case µ = 1.8 displays

more regular chaos, which could help to boost some RWs. From this bias current,

the PSD displays the main components of the modulation frequency but without

other ripples which actually make the dynamic more regular. These features of the

power spectra under current modulation have a particular interest and they will be

retrieved in the results shown in the next sections. Using the same conditions we
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also calculated the power spectral density for frequency modulations of 4.5 and 5.5

GHz (Figures 5.7). As in the previous cases we observe that the dynamics which it

is more affected corresponds to the bias current of 3. However, it is clear how the

dynamics of the bias current µ = 2.4 exhibits peaks at 4.5 GHz, as well as its multiple

components 9, 13.5 GHz. Moreover, it is noticed that in between these peaks other

ripples appear, making all the PSD as a waves-bed. In this case, observing the time

traces it is evident that the effect of the modulation is to suppress RWs, because the

threshold will be higher. Though the dynamics for a current of 1.8 exhibits a peak at

4.5 and 5.5 GHz, no evidence of dramatic changes from the PSD or temporal traces are

observed. Therefore, we can infer that the distance in frequency between the periodic

modulation and the nearer periodic solution is proportional to the chaos degree of the

system. The relation between the chaotic regime and the frequency modulation can

be deeper investigated by means more sophisticated tools such as bifurcation maps

and Poincaré section. In this way more direct links between the the output optical

field and carrier density could be highlighted. Especially, because we know that an

injected field leads to a frequency shift (∆ωshift) proportional to the variation of

carrier density (δn, as extensively explained in chapter 3). Therefore, modulating the

bias current entails that we are introducing a further complexity degree, in this way

we obtain a modulated frequency shift such as:

∆ωshift ∼
α

2
gAmodsin(2πfmod) ∗ δn (5.6)

This equation evidences how complex dynamics can be induced from an external

periodic forcing. Therefore, it could be ambitious to figure out the output dynamics

under different input conditions. Nevertheless we, at least, will try to do observations

to identify some strong guide lines.
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(a) fmod=2.5 GHz (b) fmod=2.5 GHz

(c) fmod=3.5 GHz (d) fmod=3.5 GHz

(e) Amod=0% (f) Amod=0%

Figure 5.6: Numerical calculated Power Spectral Density and respective tem-
poral series with OI in the cases of modulation bias current and with constant
bias current. Average currents values of µ=1.8; 2.4; 3; respectively red, blue,
green curves. Noise strength D = 10−4; ∆ν=0.22 GHz; Einj = 60; Amod=16%
of the µbias;
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(a) fmod=4.5 GHz (b) fmod=4.5 GHz

(c) fmod=5.5 GHz (d) fmod=5.5 GHz

(e) Amod=0% (f) Amod=0%

Figure 5.7: Numerical calculated Power Spectral Density and respective tem-
poral series with OI in the cases of modulation bias current and with constant
bias current. Average currents values of µ=1.8; 2.4; 3; respectively red, blue,
green curves. Noise strength D = 10−4. ∆ν=0.22 GHz; Einj = 60; Amod=16%
of the µbias;
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In Figures 5.8 and 5.9 we consider the case with frequency detuning ∆ν of -0.24

GHz. Interestingly and contrarily to the case with frequency detuning of 0.22 GHz,

the dynamics corresponding to the bias current of 1.8 (Figures 5.8a-5.8b-5.8c-5.8d) at

the frequency modulation of 2.5 and 3.5 GHz makes the PSD to exhibit periodicity

and quasi-periodicity . The dynamics corresponding to the bias current of 2.4 does not

display significative changes with respect to the case without modulation. However,

the PSD exhibits peaks at the modulation frequency and its multiple frequencies. On

the other hand the dynamics at the bias current of µ=3 reveals a strong mutation, the

output response switching from periodic (without modulation) to chaotic oscillations

(with modulation). Increasing more the modulation frequencies at 4.5 and 5.5 GHz

(Figures 5.9a-5.9b-5.9c-5.9d), at current of µ=3 (green curves) we can observe again,

as in the case with ∆ν = 0.22 GHz, a switch from periodic to chaotic oscillations

dynamics. The PSD function reveals a dramatic change, and for the modulation

frequency of 4.5 GHz the power spectrum exhibits peaks at 5 and 9 GHz, which could

appear because of some frequency shift of the characteristic time scale of the system.

Although the dynamic is not significatively changed, at bias currents of 1.8 and 2.4

we observe spikes at the modulation frequency and its multiple frequencies. As well,

interestingly in absence of modulation, a peak around 2 GHz at current of 1.8 is

disappearing due to the modulation.

Remarks

Concluding, thanks to this first analysis, we can remark that the effect of the mod-

ulation current is important to change the output dynamics. It can force the dynamics

towards periodic oscillation or, contrarily, into a pseudo-chaos region depending basi-

cally on the input parameters: frequency detuning ∆ν, bias current µ, and obviously

strength and frequency of the applied modulation. We can not discard the possibility

that more complex entanglement for example between the frequency shift (given from

the change of the carrier density δn) and the frequency of the injected optical field

could play a primarily role to select a route to chaos. On basis to this approach it

seems promising to further investigate increasing the insight into the routes which

define the generation of optical RWs. However, we must say that the generation of

optical RWs is not caused by the drastic dynamic change from periodic behaviour

to chaos due to the modulation, but rather to a power spectral concentration at the

expenses of other components. Let us illustrate that by highlighting figures 5.6a-5.6c

where, at bias current of 1.8, the modulation leads to a power spectral concentra-
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tion at 3.5 GHz, making extreme events to arise. Contrarily, at ∆ν = −0.24 GHz

(Figures 5.8a-5.8c) that behaviour is suppressed by the applied periodic modulation.

Therefore, depending on the input parameters region, the modulation current can

provide a background potential which favours developing RWs or a frequency power

distribution leading to periodic oscillations. Especially, we highlight the case where

the modulation provokes suppression of RWs as in Figures 5.7a-5.7c. Observe that

the depression immediately after the peak is pulled up from the modulation spike.

Therefore, we can conclude that the current modulation can effectively suppress the

RWs dynamics in the sense that the energy absorbed from the high pulses can be

equilibrated by an increase in the spectral components which have yielded energy

during the process. Just to give a phenomenological description about the role of

the modulation, we can think of a boat in a calm sea where at some moment RWs

appears. By adding an external periodic forcing near to the characteristic frequency

of the background waves (but not exactly at that frequency), then the sea will become

more agitated at expenses of the Rogue Waves. In other words, the calm and safe

environment will be destroyed by the modulation, but at least you will not be killed

by an anomalous wave.

From the other hand, our findings leaded that the applied modulation can induce

RWs. With a full understanding of this process it could create mechanisms of dis-

charge of the stored energy as a sort of lightning rods. One method would be the

introduction of instability which would aim the system out of the defined paths for

the establishment of a rogue waves. More concretely it could prevent these phenom-

ena simply inducing them periodically on a smaller time scale. Then, extreme events

could be used to produce energy in a controlled form. From our results RWs could

be modulated and controlled with a periodic forcing, then in order to understand if

it is still an exergonic process a detailed analysis of the energetic approach to define

a ratio between the provided energy and the output response could be developed.
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(a) fmod=2.5 GHz (b) fmod=2.5 GHz

(c) fmod=3.5 GHz (d) fmod=3.5 GHz

(e) Amod=0% (f) Amod=0%

Figure 5.8: Numerical calculated Power Spectral Density and respective tem-
poral series of the output intensity with OI, in the cases of modulation bias
current and with constant bias current. Average currents values of µ=1.8; 2.4; 3;
respectively red, blue, green curves. Noise strength D = 10−4. ∆ν=-0.24 GHz;
Einj = 60; Amod=16% of the µbias;
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(a) fmod=4.5 GHz (b) fmod=4.5 GHz

(c) fmod=5.5 GHz (d) fmod=5.5 GHz

(e) Amod=0% (f) Amod=0%

Figure 5.9: Numerical calculated Power Spectral Density and respective tem-
poral series with OI, in the cases of modulation bias current and with constant
bias current. Average currents values of µ=1.8; 2.4; 3; respectively red, blue,
green curves. Noise strength D = 10−4. ∆ν=-0.24 GHz; Einj = 60; Amod=16%
of the µbias;
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5.4.4 RWs maps in the parameter space (∆ν, µ), without mod-

ulation

Figures 5.10 reveal the RWs-dynamics in the parameter space current µ versus fre-

quency detuning ∆ν as the noise strength is varying from 0 to 10−2 , for the system

without current modulation (in the next subsection the influence of modulation will

be considered). As we already said in the introduction, because of the medium-

nonlinearity present in the semiconductor laser, optical RWs can appear even in the

absence of noise (D=0), which we will refer to as deterministic optical RWs (16), and

as shown in figure 5.10(a). The parameters region where RWs manifest is strictly

related with the chaotic region in the parameter space frequency detuning (∆ν) ver-

sus injection ratio for the OI laser, as confirmed by the calculation of the Lyapunov

exponent in (16).

Interestingly enough, for a small amount of noise, of 10−4, no evidence of an

increase in the occurrence of RWs has been detected such as shown in panel 5.10(b).

More specifically, in certain region as for example the ones highlighted with the dashed

boxes, apparently the occurrence of RWs decreases, which could be interpreted as a

resonance phenomenon. Particularly, this behaviour could be the fingerprint of the

phenomenon of Coherence Resonance (CR). The CR mechanism depend of the specific

input parameters region, it appears where the noise can play the role of maximizing

the regularity of the oscillations, which makes the dynamics to show more regular

oscillations. This obviously increases the threshold needed to detect such extreme

events.

At an higher noise strength, of 10−3, as shown in Fig. 5.10(c), it is clearly noticed

that the color regions are wider, as compared with the case of lower noise strength.

Further increasing one order of magnitude the noise strength up to 10−2, the number

of RWs becomes more and more pronounced in regions where the number of RWs was

already more significant. At the same time, RWs start also to appear in new areas

which were totally devoid of extreme events, as shown in Fig. 5.10(d).
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Figure 5.10: Number of detected RWs in the parameter space µ, ∆ν, when
no current modulation is applied. The color code is plotted in logarithmic scale
in order to increase the contrast of the regions with a small number of RWs.
(a) Noise strength D = 0, (b) Noise strength D = 10−4, (c) Noise strength
D = 10−3,(d) Noise strength D = 10−2. The two parameters to be used in next
section are labeled as A (µ = 2.4, ∆ν = 0.22 GHz) and B (µ = 2.4, ∆ν = −0.24
GHz).
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5.4.5 RWs maps in the parameter space (fmod Amod)

We choose the two points A and B, corresponding to the input parameters ∆ν = 0.22

GHz and µ = 2.4, which are labeled in Figures 5.10, and, in these operating conditions,

we apply a sinusoidal modulation current. Then, we map the number of RWs detected

in the parameter space frequency modulation (fmod) versus amplitude modulation

(Amod), as it is displayed in Figures 5.11 (Point A)-5.12 (Point B). Moreover, we

add another complexity degree varying the noise strength (D) in four steps: 0, 10−4,

10−3, 10−2, whose respective maps are displayed in Figures 5.11(a)-5.11(b)-5.11(c)-

5.11(d) (and similarly for Fig. 5.12). Lets start to comment Fig. 5.11, arises from

to point A in Fig. 5.10. First of all, we want to highlight that, for zero value of the

modulation amplitude and frequency (lower left-hand-side corner of the figures), the

operating conditions are the same as in the case displayed in Fig. 5.10. Besides, It

is also convenient to remind that as already determined in section 5.2, the relaxation

oscillation frequency for this bias current of µ = 2.4 is of about 4.5 GHz. In order

to compare the relative effects of different levels of modulation, we take as reference

the value of the number of RWs at zero modulation frequency or amplitude. In Fig.

5.11(a), where the noise strength is 0, increasing the modulation frequency up to 5

GHz we observe a dramatic suppression of RWs (white region around 4.5 GHz, for a

wide range of modulation amplitudes), exactly at the relaxation oscillation frequency.

Actually, suppression of the number of extreme events occurs in a wide domain of

modulation frequencies, as all colors different form red (which is the color for the

case of absence of modulation, for which the number of RWs is of the order of 102.5)

correspond to a much lower number of RWs. Fig. 5.11(b) shows, as discussed before,

how for the specific noise strength corresponding to this figure a sort of coherence

resonance phenomenon occurs. Particularly, the region from 0 to 2 GHz and currents

from 4 % to the highest value considered, seems to be the most affected. It reveals

a clear diminishing of the number of RWs, as compared with the case of absence of

noise (Fig. 5.11(a)).

Interestingly, at noise strength of 10−3 Fig. 5.11(c) region with reduction in the

number of RWs becomes narrower again. Finally, in the case with a the strongest noise

of 10−2, the dynamics evolves as predicted from the previous level of noise of 10−3,

that is the number of RWs still continues to increase. The white region corresponding

to the suppression events becomes more narrow around the relaxation oscillation

frequency. What occurs at this frequency value, in all subfigures in Fig. 5.11, is

that the system resonates with the external forcing, exhibiting a multi-wave mixing
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output response, which leads to a pulsed dynamic behaviour with less dispersion in

the pulse peak amplitudes. Thus the threshold value for RWs increases, so that less

RWs will be detected. It is also interesting to notice in all subfigures in Fig. 5.11

that, as at noise strength of 10−3, there are frequency values (as 2.3 or 2.9 GHz) at

which still traces of suppression events remain. Furthermore between 2 and 4 GHz

and for amplitude higher than 16% the occurrence of events becomes higher than in

the case without modulation. Therefore, by this first analysis we can conclude that

the number of RWs can be suppressed in certain ranges of modulation frequencies

and amplitudes. Besides, at high noise strength more RWs events can be induced.

Finally, it is worth pointing out that this increase in the number of RWs with noise

is not monotonous: we expect that, further increasing the noise level, beyond the

values considered in Fig. 5.11, would eventually lead to a reduction in the number of

RWs, as in the limit of very high noise the behaviour should be close to a gaussian

statistical function, so that essentially no peaks would exceed the threshold value we

established for RWs.
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Figure 5.11: Number of detected RWs in the parameter space fmod, Amod.
The color code is plotted in logarithmic scale in order to increase the contrast of
the regions with a small number of RWs. (a) Noise strength D = 0, (b) Noise
strength D = 10−4, (c) Noise strength D = 10−3,(d) Noise strength D = 10−2.
The input parameters used for the master laser are those labeled with A (µ = 2.4,
∆ν = 0.22).

199



Chapter 5 - Rogue Waves in a SCL with OI and current modul.

Let’s now figure out the situation when the frequency detuning is changed at

∆ν = −0.24 and µ = 2.4. This set of parameters is labelled in Figures 5.10 as B. We

have chosen this point because, in the deterministic case (as well as for the lowest

considered noise level), no RWs are detected, as shown in Fig. 5.10(a)-(b). As usual,

Fig. 5.12(a) depicts the deterministic case. We can observe that almost for all the

range of modulation frequencies considered spots of RWs appear (except, as before, for

modulation frequencies near the relaxation oscillation frequency of the free.running

laser -ca. 4.5 GHz-). Moreover, at frequencies of 0.8 and 1.8 GHz some tongues of

detected RWs appear, which could be caused from a sort of modulation-induced chaos

or instabilities. As also happened for the point A, noise strength of 10−4 provokes a

diminishing of RWs occurrences, at least in some parameters region. This coherence

resonance effect is clear in Fig. 5.12(b), just observing that the tongues of the RWs

detected becomes smaller than in Fig. 5.12(a). As the amount of noise is increased

at 10−3, the regions of induced RWs expand, as shown in Fig. 5.12(c). Finally, at the

strongest noise of 10−2, , Fig. 5.12(d), a large number of RWs appear, at almost any

region in the figure. At many of these points the number of RWs is larger than in

the case without modulation with the same noise level (i.e., it is larger than at point

(0,0) in the subfigure, or at point A in Fig. 5.10(d)). The only region where still

no RWs are detected, is located around 4.5 GHz, corresponding, as indicated, with

the relaxation oscillation frequency of the free running laser, but it occurs only in a

reduced range of modulation amplitudes.

200



Chapter 5 - Rogue Waves in a SCL with OI and current modul.

Figure 5.12: Number of detected RWs in the parameter space fmod, Amod.
The color code is plotted in logarithmic scale in order to increase the contrast of
the regions with a small number of RWs. (a) Noise strength D = 0, (b) Noise
strength D = 10−4, (c) Noise strength D = 10−3,(d) Noise strength D = 10−2.
The input parameters used for the master laser are those labeled, in Fig. 5.10,
with B (µ = 2.4, ∆ν = −0.24 GHz).
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5.5 Conclusions

In this chapter we have investigated the nonlinear dynamics of an optical injected laser

subjected to an external periodic forcing, which in our specific case is represented by

a sinusoidal modulation of the laser bias current. We focused our studies into the gen-

eration of extreme events named rogue waves (RWs). They are sudden pulses which

appear as fast rising up to huge intensity as well fast fall down in the order of hundred

picoseconds. Our outcomes are related with the role of noise and modulation (and of

the interplay between them) on the output dynamics. Concerning noise, it usually in-

creases the system’s response. Although noise boost the output intensity, we noticed

that the interplay between noise and modulation can lead, in some circumstances, to

an opposite effect. For small amount of noise of 10−4 a counterintuitive phenomenon

of the type of coherence resonance is observable as a diminishing of the RWs occur-

rences (see Figures 5.12(b)-5.11(b)-5.10(b)). Importantly, we also characterized the

role of the current modulation by the analysis of the Power Spectral Density (PSD)

of the output intensities and the respective temporal dynamics. We observed how the

modulation acts as a forcing at certain modulation frequencies mutating the dynamics

from chaotic to periodic. As well as, depending on the input parameters region, cur-

rent modulation can provide a background potential which favours developing RWs

or otherwise a frequency power distribution leading to periodic oscillations and an

increased threshold for RWs. Therefore, we can conclude that the modulation can

effectively suppress the RWs dynamics in the sense that the energy absorbed from

the high pulses can be equilibrated by an increased of the spectral components which

have yielded energy during the process. Just to give a phenomenological description

about the role of the modulation, we can imagine a boat in a calm sea where at some

instant RWs can appear. By adding an external periodic forcing near the character-

istic frequency of the background waves (but not at exactly at that frequency), then

the sea will become more agitated at expenses of the Rogue Waves power. In other

words, the calm and safe environment will be destroyed by the modulation, but at

least you will not be killed by an anomalous wave.

On the other hand the applied modulation can induce RWs. A full understanding

of this process might allow us to create mechanisms of discharge of the stored energy

as a sort of lightning rods. One method could be the introduction of instability

which would aim the system out of the defined paths for the establishment of rogue

waves. More concretely, it could prevent these phenomena simply by inducing them

periodically on a smaller time scale. Then, extreme events could be used to produce
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energy in a controlled form. Our results indicate that RWs could be modulated and

controlled with a periodic forcing, then a detailed analysis of the energetic approach

to define a ratio between the provided energy and the output response could be

developed. Finally, with this original theoretical work, we have been able to induce

or contrarily suppress RWs in a VCSEL laser by a periodic modulation of the bias

current. Therefore it is interesting to study the temporal edge of prediction of these

phenomena. As future works, we trust that this kind of behaviour can deeper be

investigated even by means other tools, as bifurcation and Poincaré maps. On the

other hand, an experimental confirmation of these behaviours and predictions would

be convenient, and we will push to try to do it somewhere. Obviously, for what

concerns optics, very fast and sensitive instrumentation would be required.
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6
Conclusions: Summary of

results and future work

The work contained in this thesis was devoted to improve the understanding of how

the interplay of stochastic and nonlinear phenomena in optical systems, under specific

constrains, can be exploited in novel ways. The interplay between external determin-

istic forcing and intrinsic nonlinear dynamics in the presence of noise has been ex-

perimentally and numerically investigated. This interaction of noise and nonlinearity

can lead to several resonance phenomena, such as Stochastic Resonance, Coherence

Resonance, and Logic Stochastic Resonance.

In statistical physics, colloidal particles are often referred to as model systems to

address novel concepts in a convenient way. This is particularly true for the study

of noisy phenomena, because colloidal particles are continuously moving randomly

due to the presence of thermal fluctuations. Such fluctuations — responsible for the

Brownian diffusion of the particles— introduce a noisy background. The presence of

some deterministic force acting on the particles can affect the random walk of the

particles producing a drift. As described in Chapter 2, it is possible to make use

of optical forces to introduce deterministic perturbations acting on the particle in a

controllable way. Optically trapped particles can, therefore, be a very powerful tool

to study statistical physics phenomena, relying both on the presence of a natural

intrinsic noisy background and on a finely controllable deterministic force field.

However, noise is ubiquitous in nature and, despite the fact that it is often con-

sidered as a drawback, it is unavoidable for life. An example is further given by the
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semiconductor laser, where spontaneous emissions are indispensable to turn on the

laser. In fact, one of the main point of this thesis is to demonstrate that the com-

bination of nonlinearities and noise can be useful for novel applications where the

nuisances can be employed in a constructive way.

6.1 Summary of results

In Chapter 2 we presented our results related with stochastic resonances phenomena

by using optical trap techniques. We have shown that a maximization of the Signal to

Noise Ratio (SNR) is also observable in a monostable optical system. Despite in this

system no potential barrier is present, we consider this phenomenon directly related

with the classical Stochastic Resonance phenomenon(SR) which is usually observed

in a double well system. About this issue no previous experimental evidence by using

optical trap techniques had never been made.

The main outcome of this chapter comes from the experimental and theoretical

investigation of the dynamics of a brownian particle kept trapped in an harmonic

potential, and where the considered output response was the position of that particle.

It is well known that, in the presence of a background noise, an increased effort put

in controlling a system stabilizes its behavior. Rarely it is thought that an increased

control of the system can lead to a looser response and, therefore, to a poorer per-

formance. We have studied theoretically and experimentally the situation where the

confinement effort is increased at a fixed intrinsic and parametric noise level. We have

shown that, counterintuitively in most cases an increased confinement effort over a

certain threshold leads to a poorer system performance. This feature derives from

the interplay between the intrinsic noise and the parametric noise of the confinement

effort exerted on the system, a kind of a resonance that produces a damping of the

system - henceforth we named it resonant damping.

Afterwards, we have experimentally demonstrated that the Stochastic Resonant

Damping (SRD), and Stochastic Resonance (SR) are two distinct phenomena. While

the SRD concern a minimization of the variance of the detected output position, the

SR refer to a maximization of the SNR. We report the experimental demonstration

about the diversity of the two phenomena, which coexist in the same system but at

different frequency regimes.

Finally, in subchapter 2.7 we have described a detection technique that we devel-

oped in order to exactly define the position of the particle beyond the practical limit

imposed in principle, by the sensitivity range of the electronic device used for this
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purpose. Essentially, this method exploits the channel crosstalk in order to 10-fold

increase the spatial detection range from 150 nm up to 1500 nm. Because the spatial

modulation of the optical potential up to 1 µm, this more powerful technique has

been adopted in all the previous outcomes described in that chapter. The technique

demonstrated in this thesis allows a significant increase of the detection range in 2D

or 3D systems.

One of the aspects that has motivated our research is the technological importance

of semiconductor lasers,as well as their rich variety of nonlinear dynamical phenomena

and the role of spontaneous emission noise in them. Numerical simulations of rate

equations which describe the nonlinear dynamics in an optically injected semiconduc-

tor laser have been implemented to predict and better understand these devices. In

Chapter 3 we presented an introduction to the physics of semiconductor lasers, and

we discussed the most important features of the dynamics of optically injected lasers,

in particular their working regimes and the enhanced bandwidth obtained thanks to

the injected field, which we used in subsequent chapters for the analysis of the results.

In Chapter 4 we demonstrated the phenomenon of Logic Stochastic Resonance

(LSR) in an optically injected semiconductor laser. LSR has been shown to be a

reliable mechanism to obtain a nonlinear logic operator due to the interplay between

bistability, noise and an aperiodic modulation. Our work in Chapter 4 has been de-

voted to exploit bistable and nonlinear effects present in an optically injected VCSEL

laser in order to generate all-optically signals that can codify logical inputs and output

response. VCSEL lasers exhibit bistability and hysteresis cycle in the output polar-

ization modes as the current is increased. In the same way an optically injected laser

shows bistability and hysteresis as the injected power is increased and successively

decreased. In Chapter 4 we have shown how these properties can act as a stochastic

logic operators due to the effect of the spontaneous emission noise. Two logical input

signals have been codified from three levels of the injected power from the driven

laser (master laser). Therefore, the polarization of the emitted light is varied from

the injected power. A logical response encoded in the two orthogonal linear polariza-

tions has been obtained when the injected power modulation is adjusted to favor one

polarization for two modulation levels and to favor the opposite polarization for the

third modulation level. We numerically demonstrated that the VCSEL-based logic

operator allows to reproduce the truth table for the OR and NOR logic operators.

From our results the extension to the rest of operators (AND, NAND) is easy to be
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implemented. With the optically injected configurations we have been able to reduce

the minimum bit time required to perform a correct operation from 30 ns, obtained

for an opto-electronic configuration, to only 5 ns with our all optical logic gate. More-

over, we have demonstrated that VCSELs can act as reliable logic operators in a wide

range of noise strengths, and could be a promising technique for logic operations

under strong background noise.

As extensively investigated and reported in previous works, optically injected

semiconductor lasers (SCLs) show several parameter regions where the dynamics is

chaotic and irregular pulses appear. By using a proper definition, some of these

pulses can be considered as extreme events. In the last years, in optics, as well as

in oceanography, these extreme events have been named Rogue Waves (RWs). The

motivation to study such class of phenomena in semiconductor lasers is because it has

been proved that the laser model could be employed to explain natural phenomena

as that of freak waves. In chapter 5, we have numerically studied, by using the rate

equations for the semiconductor laser, the nonlinear dynamics of a SCL optically

injected underlying the mechanism which provide these huge peak intensities. Ours

findings bring us to conclude that by adding noise, the number of RWs increase, and

the region in the parameter space where they have been detected becomes always

wider. This behaviour is registered for high noise, but for very low noise, of the order

of 10−3, we discovered a sort of coherence resonance which provides a diminishing in

the number of events in certain defined regions of the parameters space.

In order to suppress or induce extreme events, we investigated the effects of an ex-

ternal periodic modulation of the bias current of the free running laser. We observed

how the modulation acts as a forcing at certain modulation frequencies mutating the

dynamics from chaotic to periodic. As well as, depending on the input parameters

region, current modulation can provide a background potential which favours develop-

ing RWs or otherwise a frequency power distribution leading to periodic oscillations

and an increased threshold for RWs. Therefore, we can conclude that the energy

that was concentrated in the high pulses is partially transferred and distributed over

many new spectral components brought about by the modulation. Just to give a phe-

nomenological description about the role of the modulation, we can imagine a boat in

a calm sea, where at some instants RWs can appear. By adding an external periodic

forcing near the characteristic frequency of the background waves (but not exactly at

that frequency), then the sea will become more agitated (many frequencies brought
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about by the beating between those frequencies appear) at the expenses of the Rogue

Waves power. In other words, the calm and safe environment will be destroyed by

the modulations, but at least you will not be killed by an anomalous wave.

In conclusion, with this original work we have theoretically been able to induce

or suppress RWs in a VCSEL laser by a periodic modulation of the bias current.

6.2 Perspectives for future work

We consider that the research presented in this thesis has clarified many aspects of

nonlinear dynamics, but at the same time it has been for us a source of inspiration

for new possible future developments. We propose here a list of possible interesting

aspects that could be developed and could lead to new scenarios:

• The Stochastic Resonant Damping (SRD) has been proven to be a mechanism

able to maximize the confinement of a colloidal particle (to minimize the vari-

ance of its position) only adding an external noise to the position of the trap.

The natural question is: Is it possible to control or stabilize random dynamics

with high variance even in other systems by means the effect of SRD? Therefore

it could be interesting to apply this mechanism in real world problems such as

financial markets, social science, or even in geophysics or climatology.

• The Stochastic Logic Gate has been numerically demonstrated to be imple-

mented in a VCSEL semiconductor laser as a reliable and fast logic operation.

Could it be possible to implement a VCSEL configuration that can consume

less energy obtaining faster transmission? Also, it would be interesting to try

an experimental verification of an all optical logic gate in a VCSELs laser.

• Extreme events in nature are often considered as destructive phenomena. In

principle it is commonly thought that predicting them could prevent disasters,

as economic crises due to financial crashes or oceanic RWs that shoot-down

platform in the sea, or could limit the damages when an earthquake is going

to manifest. Any of these events are essentially due to energy concentration at

some defined characteristic spatial and temporal scales. In this sense, one of

the future challenge could be how to predict them, to avoid disasters that could

come across anywhere. Therefore it would be interesting to study the temporal

edge of prediction of these phenomena. With this information, discharge mech-

anisms of the stored energy could be created, as a sort of lightning rods. One

method could be the introduction of an instability which, would aim the system
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out of the paths defined for the establishment of rogue waves. More concretely

it could prevent these phenomena simply applying a modulation current at a

given frequency near to the relaxation oscillation frequency.

On the other hand, extreme events could also be beneficial. For instance,

they could be used to produce energy in a controlled form. From our results,

RWs could be modulated and controlled with a periodic forcing, then a detailed

analysis of the energetic approach to define a ratio between the provided energy

and the output response could be developed.

Moreover, based on an idea from Pisarchick and at. (294) we would like to

stabilize the chaotic solution at the boundary to the stable one, by means a

slow and strong external modulation.
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Brownian motion

The Brownian motions was described for the first time by the botanist Robert Brown,

in the year 1828. He observed that pollen of different plants was dispersed in water

in a uncounted number of small particles (called pollen grains). The movements of

these pollen grains was perceived as an irregular and continuous swarming motion.

He also found that all kinds of inorganic substances show the same behaviour, then

he was concluding that all matter was built up of ‘primitive molecules’. Before the

theory of Einstein other investigations were been bring up from Weiner (1863), Jevons

(1870), Dancer (1870), Delsaux (1877). However, the first precise investigation was

performed by Gouy in the year 1888. He observed that the motion is more likely the

smaller the viscosity of the liquid. Moreover, he described the matter motion was due

essentially to the thermal molecular fluctuations of the liquid. Exner in the year 1900

was demonstrating that the velocity of the movement decreases with the size of the

particle and increases with the rise of temperature. Einstein was the first in the 1905

to give a correct explanation of the whole problem.

A.1 Diffusion relation

Considering the irregular movement of the particle due to the thermal molecular

liquid movement, this process give rise to diffusion. Then, there are two important

assumptions. Firstly, that each particle displacement is independent from the other

particle movements. Secondly, that for a finite size interval of time the particles

movement must be considered mutually independent process. Therefore considering

211



Appendix

an interval τ so that it will be shorter than the observation time but large enough

such that the motion executed in two consecutive intervals τ are independent. Now,

supposing a solution with n suspended particles, each particle after a time τ , it will

be move of ∆ (with ∆ positive or negative). If dn is the number of particles which

experience a displacement between ∆ and ∆ + d∆ in an interval of time τ , then it is

possible to formulate the following relation:

dn

n
= φ(∆)d∆ (A.1)

where φ(∆) is the probability of jump of magnitude ∆, and it differs from zero only

for very small values of ∆. Moreover it fullfills the phase symmetry condition:

φ(∆) = φ(−∆) (A.2)

Confining the motion in one dimension (x), we specify as ν = f(x, t) the number

of particles per unit volume. Now we calculate, the distribution of the particles a

time t+ τ , from a distribution at time t. After some integrations (see (99, 298, 299)),

we obtain the diffusion differential equation:

∂f(x, t)

∂t
= D

∂2f(x, t)

∂x2
(A.3)

where D is named diffusion coefficient. Moreover, if we suppose that at time

t = 0 alla the particle are concentrated at the point x = 0 then the density of the

distribution will be infinite at this point and zero every where. Then after some

calculations (see (299)) the diffusion distribution in space-time is given by:

f(x, t) =
n√

4πDt
e−x

2/4Dt (A.4)

From the above equation is easy to calculate the square root of the arithmetic

mean of the squares of the displacement:

〈x2〉 = 2Dt (A.5)

Therefore the mean displacement is proportional to the square root of time, which

is a typical feature of brownian motion.
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A.2 Diffusion and mobility

Considering the suspended particles inhomogeneous dispersed in a liquid, and further

we consider the equilibrium state depending from a force k, which acts on the particles

and it depends, only of position but not on time. The dynamic equilibrium condition

can be looked as a superposition of two processing which act in the opposite directions.

• The particle immersed in the liquid experience an opposing force due to the

molecules of the liquid. The balancing between the external force k and the

opposing force, then the particles falls with a constant terminal velocity v0.

Therefore if the opposing force is 6πκρv0, then:

v0 =
k

6πκρ
(A.6)

If the number of particle per unit of volume is ν, then the number of particle

which pass a unit area per unit of time is: νv0.

• The thermal movement of the liquid lead to a diffusion process as result of the

irregular movement. Then, considering D the coefficient of diffusion and µ the

mass of the particle, then the number of particle passing per unit of time in a

unit of volume is:

−D =
∂ν

∂x
(A.7)

Therefore the dynamic equilibrium is given by:

νk

6πκρ
= −D∂v

∂x
(A.8)

At the equilibrium the particles density (ν) under the gravity (k) takes a Boltz-

mann distribution:

ν = ν0exp

[
−k(x− x0)N

RT

]
(A.9)

where is R the universal gas constant and N the Avogadro number. Therefore,

after a substitution of A.9 in A.8

D =
RT

N

1

6πκρ
(A.10)
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Then the coefficient diffusion depends only of the coefficient of the viscosity of

the liquid and the size of the suspended particle. If we name the term 1
6πκρ as

“mobility” of the particle, and we labeled as B, then, the following expression

is the relation between the mobility and the diffusion coefficient.

D =
RT

N
B (A.11)
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Numerical integration

techniques

There are several possible numerical methods to solve the semiconductor laser rate

equations by temporal discretization. Here, we briefly explains some of that, we

employed in this thesis, that are the Heun method (or improved Euler method) or

second order Runge-Kutta.

The Heun method refer to the explicit trapezoidal rule, and it is a numerical pro-

cedure to solve ODE equations (Ordinary Differential Equations), with given initial

conditions.

The Heun method consist to calculate first an intermediate value of the solution

which than will be used for the final approximation. The general form of a first order

ODE system is:

y′(t) = f(t, y(t)) (B.1)

Then since we need a second-order method, we have to expand:

y(t+ h) = y(t) + hy′(t) +
h2

2
y′′(t) +O(h3) (B.2)

The first derivative can be replaced by the right-hand side of B.1, and differentiating

B.1 it is possible to obtain the second derivative:
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y′′(t) = ft(t, y) + fy(t, y)y′(t) (B.3)

= ft(t, y) + fy(t, y)f(t, y), (B.4)

with fy the Jacobian. Neglecting the dependence of y and t when it is appear as

argument to f, the expansion becomes:

y(t+ h) = y(t) + hf(t, y) + h2/2[ft(t, y) + fy(t, y)f(t, y)] +O(h3) (B.5)

= y(t) + h/2f(t, y) + h/2[ft(t, y) + hft(t, y) + hfy(t, y)f(t, y)] +O(h3)(B.6)

We know from the multivariate expansion that:

f(t+ h, y + k) = f(t, y) + hft(t, y) + fy(t, y)k + .... (B.7)

It is evident that the expression of B.5 can be interpreted as:

f(t+ h, y + hf(t, y)) = f(t, y) + hft(t, y) + hfy(t, y)f(t, y) +O(h2) (B.8)

Therefore:

y(t+ h) = y(t) + h/2f(t, y) + h/2f(t+ h, y + hf(t, y)) +O(h3) (B.9)

or the numerical method

yn+1 = yn + h

(
1

2
k1 +

1

2
k2

)
(B.10)

with

k1 = f(tn, yn) (B.11)

k2 = f(tn + h, yn + hk1) (B.12)

The values k1 and k2 are also known as stages of the Runge-Kutta method. They

are different estimations of the slope of the solution. The accuracy of this method

improves quadratically with the step size, while for the Euler method improves only

linearly. This method is named predictor-corrector method where the predictor is
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based on the Euler’s method and the corrector is the trapezoidal method.

The general form of the explicit second-order Runge Kutta methods can be written

as:

y(t+ h) = y(t) + h
[
b1k̃1 + b2k̃2

]
+O(h3) (B.13)

k̃1 = f(t, y) (B.14)

yi+1 = f(t+ c2h, y + ha21k̃1) (B.15)

This correspond to a generalization of the classical Runge-Kutta method since the

choice of the parameters b1 = b2 = 1/2 and c2 = a21 = 1 yields that case. The

coefficients ai,j , bi, and ci are arranged by the Butcher tableaux, as follows:

c A

bT

Therefore the Butcher tableaux, for the classical second-order Runga-Kutta method:

0 0 0

1 1 0

1/2 1/2

Explicit Runge-Kutta methods are characterized by a lower triangular matrix A,

i.e. aij = 0 if j > i. The coefficient ci and aij are connected by the condition:

ci = Σνj=1aij i = 1, 2, ..., ν

This is a condition of consistency for method of order one. For An explicit second

-order method we necessarily have a11=a12=a22=c1 = 0.

Then we can now study the combinations of the coefficients b1, b2, c2 and a21B.10

Therefore, the general second-order Runge-Kutta becomes:

y(t+ h) = y(t) + h [b1f(t, y) + b2{f(t, y) + c2hft(t, y) + ha21fy(t, y)f(t, y)}] +O(h3)

(B.16)

(B.17)= y(t) + (b1 + b2)hf(t, y + b2h
2) [c2ft(t, y) + a21fy(t, y)f(t, y)] +O(h3)

To match the general expansion B.5 we want:

217



Appendix

b1 + b2 = 1

c2b2 = 1/2

a21b2 = 1/2

This is a three equation system for a four unknowns variables. A popular solution

is given by the choice of: b1 = 0; b2 = 1; c2 = a21 = 1/2. This is the modified Euler

method

yn+1 = yn + hk2

with:

k1 = f(tn, yn)

k2 = f(tn + h/2, yn + h/2k1)

with the Butcher tableaux:

0 0 0

1/2 1/2 0

0 1
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namics in scalefree neuronal networks. International Journal of Bifurcation and

Chaos, 22(07):1250175, 2012. 38

[29] J. M. G. Vilar and J. M. Rubi. Noise suppression by noise. Phys. Rev. Lett.,

86:950–953, 2001. 38

[30] C. R. Doering and J. C. Gadoua. Resonant activation over a fluctuating barrier.

Phys. Rev. Lett., 69:2318–2321, 1992. 38

[31] C. Schmitt, B. Dybiec, H. Hänggi, and C. Bechinger. Stochastic resonance vs.

resonant activation. Europhys. Lett., 74:937–943, 2006. 38, 94

[32] Atsushi Uchida, Fabien Rogister, Jordi Garćia-Ojalvo, and Rajarshi Roy. Syn-
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[37] J. Garćia-Ojalvo and R. Roy. Noise amplification in a stochastic ikeda model.

Physics Letters A, 224(12):51 – 56, 1996. 39

[38] A. Sutera Benzi, R. and A. Vulpiani. The mechanism of stochastic resonance.

Journ. Phys. A, 14:L453, 1981. 39, 44, 94

[39] G. Parisi A. Sutera Benzi, R. and A. Vulpiani. Stochastic resonance in climatic

change. Tellus, 34:10, 1982. 39



Bibliography

[40] G. Parisi Benzi R., A. Sutera and A. Vulpiani. A theory of stochastic resonance

in climatic change. SIAM J. Appl. Math., 43:565, 1983. 39

[41] Nicolis C. Solar variability and stochastic effects on climate. Sol. Phys., 74:473–

478, 1981. 39

[42] C. Nicolis. Stochastic aspects of climatic transitions. Tellus, 34:1, 1982. 39

[43] C. Nicolis. Long-term climatic transitions-response to a periodic forcing. Journ.

Stat. Phys., 70:3, 1993. 39

[44] P. Jung and P. Hänggi. Resonantly driven brownian motion: Basic concepts

and exact results. Phisic. Rev. A, 41:2977, 1989. 39

[45] S. Fauve and F. Heslot. Stochastic resonance in a bistable system. Phys. lett.

A, 97A:5, 1983. 39, 95

[46] Chua LO Anishchenko VS, Safonova MA. Stochastic resonance in chua’s circuit

driven by amplitude or frequency-modulated signals. International Journal of

Bifurcation and Chaos, 4:441–446, 1994. 39
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