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Chapter 1: The Magnetotelluric Method 

This chapter presents the generalities on the magnetotelluric method. It is a description 

of the basis of the method and its ruling equations, how it is applied and the problems that must 

be overcome to succeed at doing so. Special care has been taken in describing its current 

research status and its latest developments. 

1.1 Introduction 

The magnetotelluric method or magnetotellurics (MT) is an electromagnetic 

geophysical exploration technique that images the electrical properties (distribution) of the 

Earth.

The source of energy in the magnetotelluric method is the natural electromagnetic field. 

When this external energy, known as the primary electromagnetic field, reaches the Earth’s 

surface, part of it is reflected, whereas the remainder penetrates into the Earth, which acts as a 

conductor, inducing an electric field (known as telluric currents) that at the same time produces 

a secondary magnetic field. 

Magnetotellurics is based on the simultaneous measurement of the total electromagnetic 

field time variations at the Earth’s surface ( ( )E t  and ( )B t ).

The electrical properties (e.g. electrical conductivity) of the underlying materials can be 

determined from the relationship between the components of the measured electric and 
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magnetic field variations, or transfer functions. These are the horizontal electric (Ex and Ey) and 

the horizontal (Bx, By) and vertical (Bz) magnetic components. 

According to the behaviour of electromagnetic waves in conductors, the penetration of 

an electromagnetic wave depends on the oscillation frequency. Hence, the frequency of the 

electromagnetic fields being measured determines the study depth. 

The origins of MT are attributed to Tikhonov (1950) and Cagniard (1953), who 

established the theoretical basis of the method. In half a century, important developments in 

formulation, instrumentation and interpretation techniques have yielded MT to be a competitive 

geophysical method, suitable to image a broad range of geological targets. A review of its 

historical evolution can be found in Dupis (1997). 

1.2 Governing Equations 

The electromagnetic fields within a material in a non-accelerated reference frame can be 

completely described by Maxwell’s equations. These can be expressed in differential form and 

with the International System of Units (SI) as: 

BE
t

,  Faraday’s law        (1.1a) 

DH j
t

, Ampere’s law        (1.1b) 

· VD ,  Gauss’s law        (1.1c) 

· 0B ,  Gauss’s law for magnetism      (1.1d) 

where E (V/m) and H (A/m) are the electric and magnetic fields, B (T) is the magnetic 

induction, D (C/m2) is the electric displacement and V (C/m3)  is the electric charge density 

owing to free charges. j and /D t  (A/m2) are the current density and the displacement 

current respectively. 

The vectorial magnitudes in Maxwell’s equations can be related through their 

constitutive relationships: 

j E ,           (1.2a) 

D E ,           (1.2b) 

B H .           (1.2c) 
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,  and  describe intrinsic properties of the materials through which the 

electromagnetic fields propagate.  (S/m) is the electrical conductivity (its reciprocal being the 

electrical resistivity 1/ ( ·m)), (F/m) is the dielectric permittivity and (H/m) is the 

magnetic permeability. These magnitudes are scalar quantities in isotropic media. In anisotropic 

materials they must be expressed in a tensorial form. In this work, it will be assumed that the 

properties of the materials are isotropic. 

The electrical conductivity of Earth materials has a wide variation (up to ten orders of 

magnitude) (Figure 1.1) and is sensitive to small changes in minor constituents of the rock. 

Since conductivity of most rock matrices is very low (10-5 S/m), the conductivity of the rock 

unit depends in general on the interconnectivity of minor constituents (by way of fluids or 

partial melting) or on the presence of highly conducting minerals such as graphite (Jones, 1992). 

Figure 1.1: Electrical conductivity of Earth materials (modified from Palacky, 1987). 

In a vacuum, the dielectric permittivity is  = 0 = 8.85·10-12 F/m. Within the Earth, this 

value ranges from 0 (vacuum and air) to 80 0 (water), and it can also vary depending on the 

frequency of the electromagnetic fields (Keller, 1987).  
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For most of the Earth materials and for the air, the magnetic permeability  can be 

approximated to its value in a vacuum, 0 = 4 ·10-7 H/m. However, in highly magnetised 

materials this value can be greater, for example, due to an increase in the magnetic susceptibility 

just below the Curie point temperature (Hopkinson effect, e.g. Radhakrishnamurty and Likhite, 

1970).

Across a discontinuity between two materials, named 1 and 2, the boundary conditions 

to be applied to the electromagnetic fields and currents described by Maxwell’s equations are: 

2 1ˆ ( ) 0n E E ,          (1.3a) 

2 1ˆ ( ) Sn H H j ,          (1.3b) 

2 1ˆ·( ) Sn D D ,          (1.3c) 

2 1ˆ·( ) 0n B B ,             (1.3d) 

2 1ˆ·( ) 0n j j ,              (1.3e) 

where n  is the unit vector normal to the discontinuity boundary, Sj (A/m2) is the current 

density along the boundary surface and S (C/m2) is the surface charge density. In the absence 

of surface currents, and considering constant values of  and , only the tangential component of 

E  and the normal component of j are continuous, whereas both the tangential and normal 

components of B  are continuous across the discontinuity. 

Due to the nature of the electromagnetic sources used in MT, the properties of the Earth 

materials and the depth of investigations considered, two hypotheses are applicable: 

a) Quasi-stationary approximation: Displacement currents ( /D t ) can be 

neglected relative to conductivity currents ( j ) (eq. 1.1b) for the period range 

10-5 s to 105 s (1) and for not extremely low conductivity values. Therefore, the 

propagation of the electromagnetic fields through the Earth can be explained as 

a diffusive process, which makes it possible to obtain responses that are 

volumetric averages of the measured Earth conductivities. 

b) Plane wave hypothesis: The primary electromagnetic field is a plane wave that 

propagates vertically towards the Earth surface (z direction) (Vozoff, 1972). 

                                                          
1 In MT, the terms angular frequency ( ), frequency (f) and period (T) are employed.  is mainly used in 
Maxwell’s equations and in both the time and the frequency domains. f (s-1=Hz) and T(s) are used mostly 
in the frequency domain, and the choice of using one or another depends usually on the studied frequency 
(or period) range. In this thesis,  will be used mainly for theoretical developments and T for data 
treatment. The relationships between these three magnitudes are:  = 2 f and T=1/f.
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The searched solutions of the electromagnetic fields from Maxwell’s equations can be 

expressed through a linear combination of harmonic terms: 

( )
0 · i t k rE E e ,          (1.4a) 

( )
0 · i t k rB B e ,          (1.4b) 

where  (rad/s) is the angular frequency of the electromagnetic oscillations, t (s) is the time, 

k (m-1) and r (m) are the wave and position vectors respectively. In both expressions, the first 

term in the exponent corresponds to wave oscillations and the second term represents wave 

propagation. 

Using these harmonic expressions of the electromagnetic fields (eqs. 1.4a and 1.4b) and 

their constitutive relationships (eqs. 1.2a to 1.2c), if MT hypothesis a) (quasi-stationary 

approximation) is applied, Maxwell’s equations in the frequency domain are obtained: 

E i B ,           (1.5a) 

0B E ,          (1.5b) 

· VE ,           (1.5c) 

· 0B ,           (1.5d) 

where the value of the  magnetic  permeability ( ) is considered equal to the value in a vacuum 

( 0).

In the absence of charges, the right term of eq. 1.5c vanishes, and the electric and 

magnetic field solutions depend solely upon angular frequency ( ) and conductivity ( ).

Finally, using hypothesis b) (plane wave) and applying the boundary conditions (eqs. 

1.3a to 1.3e) across discontinuities, the solutions of Maxwell’s equations can be obtained.  

In the case of an homogeneous structure, the components of the electric and magnetic 

fields take the form: 

0· · ·i t i z z
k kA A e e e  ,           (1.6) 

with 0 / 2  (m-1). The first factor of the equation is the wave amplitude, the second and 

third factors (imaginary exponentials) are sinusoidal time and depth variations respectively and 
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the fourth is an exponential decay. This decay can be quantified by the skin depth, , the value 

of z for which this term decays to 1/e (Vozoff, 1991): 

0

2 500 ( )T m .           (1.7) 

The skin depth permits the characterisation of the investigation depth, which, as can be 

seen, increases according to the square root of the product of medium resistivity and period. 

Although it has been defined for homogeneous media, its use can be extended to heterogeneous 

cases as well (e.g. geologic structures). 

1.3 Magnetotelluric Transfer Functions 

Magnetotelluric transfer functions (MTFs) or magnetotelluric responses are functions 

that relate the registered electromagnetic field components at given frequencies. 

The MTFs depend only on the electrical properties of the materials and not on the 

electromagnetic sources. Hence, they characterise the conductivity distribution of the underlying 

materials according to the measured frequency. 

The MTFs used in this thesis are the Impedance and Magnetotelluric Tensors and the 

Geomagnetic Transfer Function. 

1.3.1 Impedance Tensor and Magnetotelluric Tensor 

The impedance tensor, Z ( ) ( ), is a second-rank tensor (2x2 components). It relates 

the horizontal complex components of the electric ( E ) and magnetic ( 0/H B ) fields at a 

given frequency ( ) (Cantwell, 1960): 

0

0

( ) ( ) /
·

( ) ( ) /
x xx xy x

y yx yy y

E Z Z B
E Z Z B

.         (1.8) 

Weaver et al. (2000) introduced the term magnetotelluric tensor, M ( ) (m/s), which 

uses B  instead of H  to define the relationships between the field components: 
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( ) ( )
·

( ) ( )
x xx xy x

y yx yy y

E M M B
E M M B

.          (1.9) 

In this thesis the use of the magnetotelluric tensor (MT tensor) is preferred, since it 

defines most of the parameters utilized (2).

The components of M , Mij (ij=xx,xy,yx,yy), are also complex magnitudes. Their 

expressions are Mij=Re(Mij)+i·Im(Mij) in Cartesian form and i
ij ijM M e  in polar form. 

From the modulus and phase of the polar expression of Mij, two scalar magnitudes, 

which are real and frequency-dependent, are defined: 

1) The apparent resistivity, which is an average resistivity for the volume of Earth 

sounded at a particular period: 

20( ) ( ) ( · )ij ijM m .         (1.10)  

2) The impedance phase (or simply phase) is the phase of the Mij component. It 

provides additional information on the conductivity of structures: 

Im
( ) arctan

Re
ij

ij
ij

M

M
.           (1.11)  

1.3.2 Geomagnetic Transfer Function 

The Geomagnetic Transfer Function (also known as the tipper vector or, tipper), T , is a 

dimensionless complex vectorial magnitude, Re( ) ·Im( )T T i T , and is defined as the 

relation between the vertical and the two horizontal components of the magnetic field: 

( )
( ) ( ), ( ) ·

( )
x

z x y
y

B
B T T

B
.        (1.12) 

                                                          
2 Z  and M  are related to H  and B  through 0Z M . In the literature and in the usual codes 

sometimes M is used instead of Z , although it is referred to as Z .
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The tipper vector can be decomposed into two real vectors in the xy plane, 

corresponding to its real and imaginary parts. These real vectors are called induction vectors or 

induction arrows, and represent a projection of the vertical magnetic field on the horizontal xy 

plane. They are used to infer the presence of lateral variations in conductivity. 

Re Rere x yT ( )= T , T ,         (1.13) 

( ) Im , Imim x yT T T .         (1.14) 

The graphical representation of the real induction arrows can be reversed (Parkinson 

convention) or non-reversed (Schmucker or Weise convention). Using the Parkinson convention 

the real induction arrow points to concentrations of currents, i.e., to more conductive zones. 

1.4 Earth MT Dimensionality Models 

The MT transfer functions, and particularly the relationships between their components, 

are reduced to specific expressions depending on the spatial distribution of the electrical 

conductivity being imaged. These spatial distributions, known as geoelectric dimensionality, 

can be classified as 1D, 2D or 3D. Other particular expressions of the transfer functions can be 

obtained when data are affected by galvanic distortion, a phenomenon caused by minor scale 

(local) inhomogeneities near the Earth’s surface. 

This section presents a summary of the characteristics of the different types of 

geoelectric dimensionality, regarding its geometry, the behaviour of the electromagnetic fields 

through them and the expressions of the related transfer functions. Galvanic distortion is also 

explained along with the type of transfer functions associated with this phenomenon. 

1.4.1  1D 

In this case the conductivity distribution is depth dependent only ( = (z)=1/ (z)) and 

Maxwell’s equations can be analytically solved by properly applying the boundary conditions 

(eqs. 1.3a to 1.3e). The solutions are electromagnetic waves, with the electromagnetic field 

always orthogonal to the magnetic field, that travel perpendicular to the surface of the Earth in a 

constant oscillation direction. They attenuate with depth depending on their period and 

conductivity values (eq. 1.7). 

As a result, the MT transfer functions are independent of the orientation of the measured 

axes and are a function only of the frequency. 
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The magnetotelluric tensor is a non-diagonal tensor (diagonal elements = 0) with its two 

components equal in modulus but with opposite signs: 

1

0 ( )
( )

( ) 0D

M
M

M
,        (1.15a) 

with the corresponding resistivity and phases: 

20( ) ( ) ( )xy yx M m ,       (1.15b) 

Im
( ) arctan

Re
M
M

,       (1.15c) 

( )yx xy .        (1.15d) 

The simplicity of the components of the magnetotelluric tensor allows working with 

only two scalar frequency-dependent quantities: These being the scalar apparent resistivity and 

phase:

( ) ( ) ( )app xy yx m ,      (1.15e) 

( ) ( )app xy .        (1.15f) 

For the particular case of a half-space homogeneous Earth with conductivity  ( = 1/ ),

the MT tensor is frequency-independent and takes the form of eq. 1.15a, with 

0Re( ) Im( ) / 2M M . The apparent resistivity is equal to the resistivity of the medium, 

. The impedance phase is 45o.

With regard to the tipper, there is not a net component of the vertical magnetic field, Bz,

due to the assumption that the incidence of the electromagnetic fields is perpendicular to the 

Earth’s surface, and the fact that in a 1D model these fields do not change direction with depth. 

Therefore, the two components of the tipper, Tx and Ty are zero. 

1.4.2  2D 

In a two-dimensional Earth the conductivity is constant along one horizontal direction 

while changing both along the vertical and the other horizontal directions. The direction along 

which the conductivity is constant is known as the geoelectrical strike or strike. In the following 
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description, it is considered that the strike direction is parallel to the x axis (x  x’, i.e.  = 0o) of 

the reference frame used in an MT survey (Figure 1.2) and therefore the variations of  occur 

along y and z axes: (y,z). 

In these cases, there is an induced vertical magnetic field, Bz, and Maxwell’s equations 

can be decoupled into two modes, each one relating 3 different electric and magnetic 

perpendicular components: 

Mode xy (Ex, By, Bz), also known as Transversal Electric (TE) mode, with 

currents (electric fields) parallel to the strike direction: 

x
y

E i B
z

,         (1.16a) 

x
z

E i B
y

,         (1.16b) 

0
yz

x

BB E
y z

.        (1.16c) 

Mode yx (Bx, Ey, Ez), or Transversal Magnetic (TM) mode, with currents 

perpendicular to the strike: 

y z
x

E E i B
z y

,        (1.17a) 

0
x

y
B E
z

,         (1.17b) 

0
x

z
B E
y

.         (1.17c) 

The magnetotelluric tensor M  in 2D models is non-diagonal and may be expressed as: 

2

0 ( ) 0 ( )
( )

( ) 0 ( ) 0
xy TE

D
yx TM

M M
M

M M
,    (1.18a) 

where Mxy (Ex/By) and Myx (Ey/Bx) come from TE and TM sets of equations respectively, and 

usually have opposite signs. 

The values of the apparent resistivities and phases for xy and yx have different values 

and can be computed from eqs. 1.10 and 1.11. Since Mxy and Myx have opposite signs, xy and yx 

phases belong to the 1st and 3rd quadrants. 
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The tipper is different from zero, and is related to the horizontal component y of the 

magnetic field, i.e., to the TE mode (eq. 1.16c): 

2 ( ) 0, (0, / )D y z yT T B B .      (1.18b) 

Both the real and imaginary induction arrows are oriented perpendicular to the strike 

direction (in this case x), and, according to Parkinson convention, point towards the zone of 

maximum conductivity. 

In a 2D Earth, the measurements are, in general, not performed in the strike reference 

frame (x  strike direction) because this is not known a priori. As a consequence, the 

magnetotelluric transfer functions cannot be expressed as in eqs. 1.18a and 1.18b. 

However, it is possible to rotate the measuring axes an angle  (strike angle) through the 

vertical axis, so the diagonal components of the magnetotelluric tensor become zero and the 

new x’ axis is parallel to the geoelectrical strike. In the rotated reference frame (x’, y’, z) the 

rotated transfer functions are M’ and T’:

'( ) · ( )· TM R M R ,         (1.19) 

'( ) · ( )T R T ,          (1.20) 

where R  is a clockwise rotation matrix: 

cos sin
sin cos

R  ,         (1.21) 

and TR  its transpose. 

In the rotated reference frame (x’, y’, z), TE and TM modes can be equally defined 

according to the strike direction. 

The retrieval of the strike angle from the MT tensor can be done using several methods 

that will be reviewed in the next chapter. It is important to note that this retrieval has 90o of 

ambiguity, which can be solved through the information given by the tipper vector, the variation 

of MT responses along different locations and geology. 
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Figure 1.2: Sketch of an Earth model with reference frame axes used in an MT survey and in the analyses 
of their responses. (x, y, z): measurement system coordinates. x and y are the horizontal axes, where x 
usually points towards North and y points towards East. The z axis points vertically inward. Commonly, a 
reference frame rotated around the z axis (x’, y’, z) is also used.  indicates the angle between the x’ and 
x axes. 

1.4.3  3D 

This is the most general type of geoelectrical structure. Here, the conductivity changes 

along all directions (  = (x,y,z)). In this case, Maxwell’s equations can not be separated into 

two modes. 

MT transfer functions take the general forms with all components non-zero (eqs. 1.9 to 

1.14), because Mxx and Myy are not null. There is not any rotation direction through which the 

diagonal components of the magnetotelluric tensor or any component of the tipper vector can 

vanish.

1.4.4 The Galvanic Distortion Phenomenon 

Distortion in magnetotellurics is a phenomenon produced by the presence of shallow 

and local bodies or heterogeneities, which are much smaller than the targets of interest and skin 

depths. These bodies cause charge distributions and induced currents that alter the 

magnetotelluric responses at the studied or regional scale (Kaufman, 1988; Chave and Smith, 

1994). In the case that these bodies are of the same proportions as the interest depth, they can be 

modeled in a 3D environment. 

Distortion can be inductive or galvanic. Inductive distortion is generated by current 

distributions, has a small magnitude and decays with the period. Under the condition 

(quasi-stationary approximation) it can be ignored (Berdichevsky and Dmitriev, 1976). 
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Galvanic distortion is caused by charge distributions accumulated on the surface of 

shallow bodies, which produce an anomalous electromagnetic field. This anomalous magnetic 

field is small, whereas the anomalous electric field is of the same order of magnitude as its 

regional counterpart and is frequency-independent (Bahr, 1988; Jiracek, 1990). Hence the 

galvanic distortion is treated as the existence of an anomalous electric field, aE .

Mathematically, the effect of this electric field on the transfer functions can be 

represented by a 2x2 real, frequency-independent and non-dimensional matrix, C (Berdichevsky 

and Dmitriev, 1976): 

1 2

3 4

C C
C

C C
.          (1.22) 

The elements of C depend on the geometry and position of the distorting body as well 

as on the resistivity contrast between the body and the surrounding medium (Jiracek, 1990). 

The magnetotelluric tensor that accounts for the measurement of the regional and 

distorted fields is then: 

( ) · ( )m RM C M ,          (1.23) 

where Mm is the measured tensor and MR is the regional tensor, which corresponds to the 

regional structure. Also, Mm can have been measured in a reference frame rotated an angle 

with respect to the regional reference frame: 

( ) · · ( )· T
m RM R C M R .         (1.24) 

The effects of galvanic distortion depend on the type of dimensionality of the regional 

media. 

In the case of a 1D regional Earth, galvanic distortion produces a constant displacement 

of the apparent resistivity along all frequencies. This is known as static shift, and does not affect 

the phases. A static shift also occurs in a 2D Earth with one of the measurements axes aligned 

with the strike direction. Although it seems to be a minor problem, static shift represents one of 

the main handicaps in the analysis of MT responses. There is no a general analytical or 

numerical way to model the cause of static shift and thus to correct it by using MT itself. This 

makes it necessary to use information from other methods that are less affected (TEM) or to 

compare the responses with geological information. Some proposals to correct static shift can be 
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found in Jones (1988) and Ogawa (2002), and new methods are being developed (Ledo et al.,

2002a;  Tournerie et al., 2004; Meju, 2005).  

In contrast, if distortion affects a 2D tensor rotated a certain angle  from the strike 

direction, or a 3D structure, both phases and resistivities are affected with a dependence on the 

frequency. 

Since the main target of interest in a MT survey is the regional structure and not the 

distorting bodies, different decomposition techniques exist to remove the effects of distortion 

and recover the regional responses. 

There are different methods to correct galvanic distortion over one-dimensional and 

two-dimensional structures (Zhang et al., 1987; Bahr, 1988; Groom and Bailey, 1989 and 

Smith, 1995). These methods consider a galvanic distortion affecting a 2D regional structure, 

with the magnetotelluric tensor measured in a reference frame that is rotated an angle  from the 

regional strike: 

2· · ( )· T
m DM R C M R .         (1.25) 

In the method proposed by Groom and Bailey (1989) the distortion is described by the 

contribution of four effects, represented by the gain (g) parameter, which accounts for the static 

shift, and the twist ( t), shear ( e) and anisotropy ( s) angles or their tangents (t, e and s

respectively): 

(1 )(1 ) (1 )( )
·

(1 )( ) (1 )(1 )
s te s e t

C g
s e t s te

.       (1.26) 

Alternatively, Smith (1995) uses two gain parameters, g1 and g2, and two distortion 

angles, 1 and 2:

1 1 2 2

1 1 2 2

cos sin
sin cos

g g
C

g g
.         (1.27) 

The relationships between both sets of parameters are: 

1
2

(1 )g g s ,           (1.28) 

1
2

t e .           (1.29) 
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An alternative decomposition of the galvanic distortion matrix is shown in Appendix F. 

The aim of these decomposition methods is to solve a linear system of equations (8 

equations) that allow determining the values of the distortion parameters, the strike angle and 

the regional magnetotelluric tensor components (9 parameters in total). The gain (static shift) 

remains unknown and additional information is necessary to retrieve its value. McNeice and 

Jones (2001) developed the Multisite Multifrequency tensor decomposition code (Strike), 

which, based on a statistical approach, retrieves twist and shear distortion parameters in 

accordance with a 2D regional model with a unique strike direction. 

In three-dimensional geoelectric structures it is not easy to perform the decomposition 

unless the characteristics of the distortion are well known. In these cases, several approaches 

have been proposed to correct galvanic distortion over regional 3D structures (Ledo et al., 1998; 

Garcia and Jones, 1999; Utada and Munekane, 2000). 

In the most general cases, it is not possible to discern whether data are affected or not 

by galvanic distortion and the type of regional structure. Further analyses must be carried out to 

obtain such information, commonly based on the use of the invariant parameters of the 

magnetotelluric tensor. 

1.5 Electromagnetic Sources in MT 

“The dependence of MT on natural fields is both its major attraction and its greatest 

weakness” (Vozoff, 1991). 

The electromagnetic oscillations of interest in magnetotellurics have a period range 

from about 10-5 s to 105 s, which belong to the lowest part of the known electromagnetic 

spectrum, from the long radio waves (  1 km) to  1010 km (Figure 1.3). These frequencies 

permit range of investigation depths from ten meters to hundreds of kilometres. The natural 

phenomena that generate the electromagnetic fields with these frequencies are thunderstorm 

activity world-wide and the interaction between the solar wind and the Earth’s magnetosphere.  

For periods shorter than 1s, lightning discharges are the main source of electromagnetic 

waves. The energy released from lightning at a frequency of about 8 Hz (Schuman resonance) 

and its multiple harmonics up to 2000 Hz are trapped in an insulating waveguide between the 

conductive Earth and the conductive ionosphere, such that this energy can travel for long 

distances. It is estimated that occurrences of lightning somewhere in the world (from 100 to 

1000 per second) is sufficient to have a continuous energy source at any location over the 

Earth’s surface (Malan, 1963; Kaufman and Keller, 1981; Vozoff, 1991). In MT, measurements 

in the range from 105 Hz to 1 Hz are referred to as Audiomagnetotellurics (AMT). 
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Figure 1.3: Schematic representation of the known electromagnetic spectrum. The box corresponds to the 
part of the spectrum used in magnetotellurics, where the MT sources, targets and investigation depths are 
indicated.

For periods from 1 s to 105 s, the electromagnetic activity is dominated by hydro-

magnetic waves in the Earth’s magnetosphere, mainly generated by the solar wind (Campbell, 

2003; McPherron, 2005). The solar wind consists of highly energetic ions ejected from the Sun 

and its magnetic field, which interact with the Earth’s magnetic field, changing its intensity and 

geometry. Within the Earth’s magnetosphere, the ionosphere is an atmospheric layer between 

100 km and 1000 km of altitude. It is highly conductive because its particles are ionised by 

ultraviolet and other solar radiation. The interaction between the solar wind and gases in the 

ionosphere result in several processes (McPherron, 2002) that produce an electromagnetic field. 

The field travels through the lower layers of the atmosphere and reaches the Earth surface. This 

interaction is also responsible for the Northern and Southern lights, visible at high latitudes. At 

these latitudes, auroral effects must be corrected to satisfy the MT method hypotheses (Pirjola, 
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1992; Garcia et al., 1997). When MT measurements are made at low latitudes, the effects of the 

equatorial electrojet, an Eastward current caused by the Earth’s magnetic field being horizontal 

at these latitudes (Padilha, 1999; Campbell, 2003), can be important and must be corrected also. 

Around 1 s, in the limit between thunderstorm activity and solar wind – ionosphere 

interaction, there is a narrow period range (0.2 s - 2 s), known as the dead band, in which the 

power spectrum of the natural electromagnetic field has a minimum (Figure 1.4) that produces 

low-amplitude MT signals. 

Figure 1.4: Power spectrum of natural magnetic field variations. The inset depicts the minimized signal 
power in the dead band. (Modified from Junge, 1996). 

To these two natural sources, other electromagnetic signals can be added, known as 

noise. In terms of data processing, noise can be defined as that part of the data which cannot be 

explained by the framework of a theory (Junge, 1996). In general, any factor, which makes the 

MT method assumptions invalid, is considered noise. The sources of electromagnetic noise can 

be instrumental, environmental (seismic, electromagnetic signals of no interest in Earth studies, 

biological) as well as cultural or man-made noise (electric devices, power stations and lines, 

railways, electric fences, radio and TV transmitters...). The effects of noise could be minimised 

by the use of filters in the acquisition instruments, accurate signal processing methods (see 

section 1.7) and the use of one or more remote references (Gamble et al., 1979). 

Below 10-4 s, the natural electromagnetic signal is very weak and other types of 

electromagnetic sources are needed in order to effectively explore the shallow subsurface. This 
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is achieved by Controlled Source Audio Magnetotellurics (CSAMT), consisting of the use of 

antennas radiating at short periods, such that MT theory assumptions are fulfilled (Zonge and 

Hughes, 1991). 

1.6 Instrumentation 

The equipment necessary for MT data acquisition consists of sensors that measure the 

electric and magnetic field components (channels) and one data logger that controls and 

performs the acquisition process and the data storage. 

The electric field components Ex and Ey are indirectly measured through the potential 

difference V  between two electrodes separated a distance d along the desired direction: 

/iV E d . Both electrodes stay in contact with the soil and are connected to the data logger 

that closes the circuit and stores the measured signal. The separation between the electrodes 

must guarantee enough voltage to be registered by the data logger, and also account for the fact 

that the voltage decreases as a function of period. The sensitivity of the acquisition systems used 

at present allows a separation of 10 m – 20 m for AMT frequencies and 50 m – 100 m for the 

rest. In any case, the choice of the distance is many times limited by the topography of the 

terrain. Within the AMT frequency range steel electrodes are used. Outside this range the 

electrodes must be non-polarisable to avoid additional electrochemical currents. Normally, these 

electrodes consist of a KCl or PbCl2 solution in a ceramic container that is designed to ensure a 

good contact between the outside wires and the soil. 

For the magnetic field, the most commonly used sensors are induction coils. According 

to the Faraday-Lenz law, under a magnetic flux time variation, an electromotive force (emf (V)) 

is induced in a coil. Coils must be oriented along the direction of the component to be measured 

(usually Bx, By and Bz). The number of loops in the magnetometers must be in agreement with 

the induced emf, which decreases along with the period. Nowadays, the same size coil is valid 

for a broad range of periods, and the data must be posteriorly calibrated according to their 

sensitivity to the different voltage values. At very long periods, another type of magnetic sensor, 

the flux magnetometer, is used. 

The data logger (e.g. Figure 1.5) is the control unit of the MT measuring system. It 

controls the acquisition process, filters and amplifies the sensors signals and converts these data 

into digital format through an A/D converter. 

The sensors’ signals are stored in the data logger using a certain sampling frequency, 

which, according to Nyquist theorem, must be at least twice the value of the highest frequency 

to be evaluated. In order to avoid an oversampling of the longest period data to save disk space 
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and aliasing, the data acquisition process is separated into several frequency bands, each one 

with a different sampling frequency. This acquisition in data bands also permits adaptation of 

the A/D converter to the signal amplitudes and to the sensors’ sensitivities at the given band.  

Figure 1.5: Metronix ADU-06 data logger. 

Table 1.1: presents the recording bands of the Metronix ADU-06 system, one of the 

systems used in this study. In this system, the data at a given band can be obtained by the use of 

low-pass filters during recording (bands HF, LF1, LF2 and Free) or by a posterior sampling of 

the final time series (bands LF3, LF4 and LF5). 

Band Sampling frequency/period Frequency/period range 

HF 40960 Hz 20000 Hz – 500 Hz 

LF1 4096 Hz 1000 Hz - DC 

Free 128, 256, 512, 1024 or 2048 Hz 60, 120, 240, 480 or 960 Hz to DC 

LF2 64 Hz 30 Hz – DC 

LF3 2 Hz 0.9 Hz – DC 

LF4 2 s or 16 s 5s or 35s to DC 

LF5 8 s, 64 s or 512 s 20s, 150s or 1200s to DC 

Table 1.1: Recording bands for the Metronix ADU-06 system, indicating their corresponding sampling 
frequency/period and recorded ranges. 
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1.7 Time Series Processing 

1.7.1. General overview 

The MT transfer functions are obtained from time series processing of the acquired data. 

Commonly, processing is carried out separately for each measured band, involving three main 

steps: 1) data set up and preconditioning, 2) time to frequency domain conversion and 3) 

estimation of the magnetotelluric transfer functions. 

1) Data set up and preconditioning

The recorded time series are divided into M segments containing N samples each. The 

value of N is chosen depending on the recorded band such that each segment contains an 

elevated number of periods. In addition, each band must be divided into a sufficient number of 

segments for further statistical estimation of the transfer functions. 

Once the segments have been defined, they are inspected in order to identify and 

remove trends and noise effects (spikes). This is performed manually and/or automatically using 

specific software.

2) Time to frequency domain conversion

From each segment, the measured channels Ei (i=x,y) and Bj (j=x,y,z) are converted 

from time to frequency domain using the Discrete Fourier Transform (Brigham, 1974) or 

Cascade Decimation (Wight and Bostick, 1980), both based on the Fast Fourier Transform 

(FFT), or using the Wavelet transform (Zhang and Paulson, 1997; Trad and Travassos, 2000; 

Arango, 2005). Hence, a raw spectrum with N/2 frequencies is obtained. From these, evaluation 

frequencies, equally distributed in a logarithmic scale, optimally 6-10 per period decade, are 

chosen. The final spectra are smoothed by averaging over neighbouring frequencies using a 

Parzen window function. Each field component must be calibrated according to the instrument 

sensitivity at a given frequency. The auto and cross spectra of a segment k, which are the 

products of the field components and their complex conjugates, are then obtained for each 

frequency: Eki( )·E*
ki( ), Bkj( )·B*

kj( ), Eki( )·B*
kj( ) and Bkj( )·E*

ki( ). These are stored in 

the so-called spectral matrix, which contains the contributions from all the segments at a 

specific frequency. 
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3) Estimation of the magnetotelluric transfer functions

The evaluation of the MT transfer functions from eqs. 1.9 and 1.12 needs at least two 

independent observations of the corresponding field components in the frequency domain, 

which can be obtained from two segments:   

  ( ) ( )· ( ) ( )· ( )x xx x xy yE M B M B ,       (1.30) 

  ( ) ( )· ( ) ( )· ( )y yx x yy yE M B M B ,       (1.31) 

  ( ) ( )· ( ) ( )· ( )z x x y yB T B T B .        (1.32) 

However, to solve these equations accurately, a larger number of segments is required, 

due to the presence of noise in the measured data as well as the fact that two segments may not 

contain all the evaluation frequencies. Hence, the transfer functions are evaluated after 

multiplying eqs. 1.30 to 1.32 by the conjugates of the horizontal magnetic field (Bx*( ) and 

By*( )). This allows obtaining six independent equations whose parameters are elements of the 

spectral matrix. The conjugates Bx*( ) and By*( ) are used, instead of other possible 

combinations of field components, as they have the highest degree of independence (Vozoff, 

1972) and provide the most stable results: 

* * * *

1

x x y y x y y x
xx

E B B B E B B B
M

DET
,        (1.33) 

* * * *

2

x x x y x y x x
xy

E B B B E B B B
M

DET
,        (1.34) 

* * * *

1

y x y y y y y x
yx

E B B B E B B B
M

DET
,        (1.35) 

* * * *

2

y x x y y y x x
yy

E B B B E B B B
M

DET
,        (1.36) 

* * * *

1

z x y y z y y x
x

B B B B B B B B
T

DET
,        (1.37) 

* * * *

1

x x z y x y z x
y

B B B B B B B B
T

DET
,        (1.38) 

where * * * *
1 x x y y x y y xDET B B B B B B B B  and * * * *

2 y x x y y y x xDET B B B B B B B B .
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Cross and power spectra <AB*> are constructed from the individual segments k, through 

a variety of methods, all of which perform a segment selection to obtain an optimal estimation 

of the transfer functions. 

The following is a summary of the most common methods for estimating TFs: 

The first methods utilised least squares (LS) (Sims et al., 1971), which minimises the 

quadratic sum of the difference between the measured fields and those computed from the MT 

transfer functions, assuming equally distributed Gaussian errors. These methods failed since the 

errors highly depend on the strength of the signal and are extremely sensitive to the presence of 

noise.

The magnetic remote reference acquisition method was introduced by Gamble et al.

(1979) as a way to eliminate uncorrelated noise in the recorded fields. It is based on the fact that 

the magnetic field is stable over large distances and that the local noise recorded in the magnetic 

and electric fields can be detected and removed. It consists of the simultaneous recording of 

local and remote magnetic fields. The transfer functions are estimated as in eqs. 1.33 to 1.38, 

using the remote magnetic fields as the conjugate components. 

Robust processing (Huber, 1981) consists of identifying and removing outliers to make 

estimates more “robust”, which means that the estimates are not greatly affected by these 

outliers and respond slowly to the addition of more data. In the processing of magnetotelluric 

data, different robust methods have been developed: 

- Egbert and Booker (1986) developed a robust method, similar to LS, with a 

weighting based on the errors, and the introduction of a “loss function” (Huber, 

1981), which reduced the effect of outliers. 

- Jones and Jödicke (1984) presented a coherence rejection technique, based on the 

maximisation of the field coherences (relationships between the estimated and 

predicted field components), using the jacknife approach (see chapter 3). A similar 

method is the variance minimisation technique (Jones et al., 1989). 

- Chave and Thomson (2004) developed a code to estimate the MT transfer functions 

(BIRRP: Bounded Influence Remote Reference Processing) which introduced the 

use of a bounded influence estimator to compare the measured and computed fields, 

and a hat matrix function to reduce the effects of outliers.  

These three types of methods have been recently adapted to the use of single and 

multiple remote references. 

The errors of the transfer functions are commonly estimated assuming that noise 

contributions are random and that the cross and power spectra from the individual segments 

follow a Gaussian distribution.
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The variances of the MT tensor components are evaluated as (Bendat and Piersol,1971): 

2
0 68

4var 1
4

* *
i i j j

ij .
j

E E B B
M F

DET
,        (1.39) 

where  is the number of degrees of freedom, F0.68(1- 2) is the upper limit of the Fisher-

Schnedecor distribution for a given probability (68%), and 2 denotes the squared bivariate 

coherency between the predicted (P) and registered (R) field components: 

* *
2

* *
( , )

RP PR
R P

RR PP
.         (1.40) 

The error bars of the real and imaginary parts of the MT tensor components are equally 

determined to be the square root of the variance, which can be represented as a circle in the 

complex plane (Bendat and Piersol, 1971): 

1/ 2(Re ) (Im ) ( ) (var( ))ij ij ij ijM M M M .       (1.41) 

Through an error propagation process, the errors of the apparent resistivities and phases 

can also be estimated: 

( )
( ) 2 0.4 ( )

ij ij

ij
ij ij

ij

M
T M M

M
,       (1.42) 

arcsin ij
ij

ij

M

M
.             (1.43) 

A similar development leads to the error estimation of the tipper components. 

Commonly, the error bars of the apparent resistivities are obtained as log ( ij) rather 

than ij, which produce symmetrical error bars in a logarithmic plot. The errors of the phases are 

also are approximated, to remove the arcsine dependence:  

log 0.87log 2 ij
ij ij ij

ij ij

d M
M M

d M M
,          (1.44) 
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0.71( ) ( )ij ij
ij

M
M

   . (3)          (1.45) 

1.7.2. Common processing techniques 

At present, different processing software schemes are available, which implement some 

of the techniques explained above. In these, step 1) (data set up and preconditioning) is 

generally done automatically, using some of the windowing functions. The use of Cascade 

Decimation to transform the data from time to frequency domain (step 2) is almost generalised 

nowadays, as it presents important advantages over conventional FFT: less memory 

requirements, ability to compensate for rejected data in the time series, optimal results for broad 

band series and the conversion to frequencies in logarithmic scale. 

With regard to the estimation of the MT transfer functions, robust methods with single 

(Jones et al., 1989) and multiple (SAMTEX, 2004) remote references have been proven to give 

the best estimates. 

However, when the data are highly affected by noise, these techniques may lead to 

similar, yet non-very satisfactory results, especially in the tipper function. It must be taken into 

account that each set of data has its particular characteristics and it is necessary to carefully 

inspect the time series, remove noisy segments in different ways and change some parameters in 

the windowing functions and the transfer functions estimation. Tools for quality control can be 

the coherency and the smoothness of the estimated functions.  

                                                          
3 Proof: 
Departing from the error of tan ij ( tan ( ) / ( ) /ij ij ijIm M Re M y x ):
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M
. QED. 
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1.8 Modelling and Inversion of MT Data 

The conductivity distribution of the Earth in the region of interest is usually obtained 

through a modelisation process. In MT, a model consists of a region with a particular 

conductivity distribution, which can be 1D, 2D or 3D depending on the conductivity variations 

along different directions. The model parameters are the conductivity values at different model 

positions. The model responses are normally the resistivities and phases measured at the Earth’s 

surface as a consequence of the electromagnetic fields travelling through these conductivity 

distributions, according to Maxwell’s equations, although other functions can be used. 

Depending on the dimensionality and complexity associated with the magnetotelluric 

transfer functions, 1D, 2D and 3D models are constructed using different modelling techniques. 

Nowadays, the forward modelling can be solved efficiently for any dimensionality 

model, analytically in simple cases and numerically in general. One of the most used codes in 

2D is PW2D (Wannamaker et al., 1987), which uses the finite elements algorithm to compute 

the model responses, and is characterised by high numerical stability. In 3D, the Mackie et al.

(1993) code solves the integral form of Maxwell’s equations using the finite differences 

method. The Pek and Verner (1997) code uses finite differences to solve the forward modelling 

problem for anisotropic structures. 

Inversion schemes search the relationships between the measured data and the model 

responses, modifying the model until an agreement is approached. In many cases these are a 

combination of forward modelling plus minimisation (or maximisation) algorithms. OCCAM 

1D and 2D inversion codes (Constable et al., 1987) are based on the minimisation or 

maximisation of a certain function using a Lagrange multiplier. In 2D, the RRI (Rapid 

Relaxation Inversion) (Smith and Booker, 1991), RLM2DI (Mackie et al., 1997) and REBOCC 

(Siripunvaraporn and Egbert, 2000) codes are in common usage. Pedersen and Engels (2005) 

developed the application of the REBOCC code (DetREBOCC) to invert the determinant of the 

impedance tensor. 

In relation to 3D conductivity models, MT inversion is still in the development stage, 

although several algorithms tested with synthetic data and simple models have already led to 

satisfactory results. 3D inversion codes will be available in the near future (Mackie and 

Madden, 1993; Newman and Alumbaugh, 2000; Zhdanov et al., 2000; Sasaki, 2001). One of 

these codes is Siripunvaraporn et al. (2005), based on the data-space method, as an extension of 

the Occam approach, which has recently been officially released to public. Meanwhile, 3D MT 

interpretation is done by trial-and-error forward model fitting. 
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Chapter 2: Geoelectric Dimensionality and 

Rotational Invariants of the Magnetotelluric 

Tensor 

In the previous chapter the concept of geoelectric dimensionality was introduced. This 

chapter investigates further into its characterisation. It introduces the rotational invariants of the 

magnetotelluric tensor and presents the most common methods used to obtain a description of 

the dimensionality and the recovery of the regional tensor. Moreover, at the end of the chapter, 

the main problems and limitations existing in the dimensionality characterisation are discussed. 

Finally, the different aspects of the work performed in this thesis, which allow totally or 

partially solving some of these problems and limitations, are indicated. 

2.1. Introduction 

As explained in chapter 1, analysis of dimensionality is a powerful tool that may 

provide information such as variation of strike direction with depth, which can be correlated 

with different processes and structure in the Earth’s crust and mantle (e.g. Marquis et al., 1995). 

Depending on the result of dimensionality analysis, MT data may be interpreted as being either 

one, two or three-dimensional. A proper dimensionality interpretation is important since a two-

dimensional interpretation of three-dimensional data can be acceptable in some cases while not 

in others (Wannamaker, 1999; Park and Mackie, 2000; Ledo et al., 2002b; Ledo, 2005). 

Most of the methods used to decipher the dimensionality of the geoelectric structures 

are based on the rotational invariants, i.e., sets of parameters computed from the observed MT 
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tensor that do not depend on the direction of the measuring axes. Different sets of rotational 

invariants have been proposed to assert particular categories of dimensionality (Swift, 1967; 

Berdichevsky and Dmitriev, 1976; Bahr, 1988; Bahr, 1991; Lilley, 1993, 1998a, 1998b). Fischer 

and Masero (1994) argued the existence of eight invariants, seven independent and one 

dependent and, later, Szarka and Menvielle (1997) determined a full set of MT tensor invariants 

and suggested their use for a compact dimensionality interpretation. Weaver et al. (2000) 

provided a method whereby dimensionality was characterised in terms of the annulment of 

some of the invariants. Other authors (Romo et al., 1999) use invariant parameters defined from 

the geomagnetic transfer function to characterise 2D and 3D responses. 

Alternatively, Caldwell et al. (2004) introduced the magnetotelluric phase tensor, 

defined as the relationship between the real and imaginary parts of the MT tensor. It is a 

practical tool to obtain information about the dimensionality of the regional structure, since it is 

not affected by galvanic distortion. However, because of this, its applications are limited, since 

it is not possible to recover the regional responses. 

2.2. Fundamental Rotational Invariants of the Magnetotelluric Tensor 

Under a rotation of an arbitrary angle  around the z-axis, a reference frame xyz is 

transformed into x’y’z. Accordingly, the magnetotelluric tensor can be defined in the new 

reference frame: '( ) · ( )· TM R M R  (eq. 1.19). 

Figure 2.1: Reference frames used to define the magnetotelluric tensor components: xyz are the axes of 
the original frame. x’y’z are the new axes after a  clockwise rotation, around the z-axis. 
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For instance, if the rotation is clockwise, the components of 'M  are expressed as: 

' 2 2cos sin sin cosxx xx yy xy yxM M M M M ,     (2.1a) 

' 2 2sin cos cos sinxy xx yy xy yxM M M M M ,     (2.1b) 

' 2 2sin cos sin cosyx xx yy xy yxM M M M M ,     (2.1c) 

' 2 2sin cos sin cosyy xx yy xy yxM M M M M .     (2.1d) 

An important rotation-related property of the tensor is its 180o periodicity: 

' ( )( ) ( )( )ij ijM M ; (ij=xx,xy,yx,yy) .        (2.2) 

The rotational properties of the magnetotelluric tensor are those of a 2x2 complex tensor 

containing eight real and independent variables. Szarka and Menvielle (1997) suggested a set of 

seven independent real-valued rotational invariants based on three complex magnitudes 

traditionally used in magnetotellurics: 

1) The trace: 

1 xx yyS M M .          (2.3a) 

2) The difference between off-diagonal elements: 

2 xy yxD M M .          (2.3b) 

3) The determinant: 

det xx yy xy yxM M M M M .         (2.3c) 

S1 and D2 are two of the four modified impedances (Vozoff, 1991), each one containing 

two rotational real-valued invariants: Re(S1), Im(S1) and Re(D2), Im(D2) respectively. From 

det(M) three independent real-valued invariants can be defined: det(Re(M)), det(Im(M)) and 

Im(det(M)). This makes a total of seven real and independent rotational invariants. 

Other sets of invariants can be defined as a function of these basic invariants. The seven 

rotational invariants, or just some of them, have been and are still widely used to study 

particular properties of the MT tensor and other magnitudes related to the measured 

electromagnetic fields. 
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2.3 Two-Dimensionality and Strike Direction: Swift’s Angle and Skew 

As stated in chapter 1, when the measured tensor corresponds to a structure with 2D 

geoelectric dimensionality, the measuring axes (x, y, z) can be rotated an angle  (strike angle) 

such that one of the new axis (x’ or y’) matches the strike direction of the geoelectric structure. 

Accordingly, the tensor M’ takes a non-diagonal form. 

The strike angle can be determined for a perfectly 2D MT tensor by setting equations 

2.1a and 2.1d equal to zero. In nature, most 2D MT tensors are not strictly non-diagonal and 

other strategies are necessary in order to obtain a reliable approximation of the strike direction. 

The most common approximation is based on the maximisation of the non-diagonal 

components of the MT tensor and the minimisation of the diagonal ones, using the sum of the 

squared modulus of these components (Vozoff, 1972): 

2 2' '( ) ( ) maximumxy yxM M ,        (2.4a) 

2 2' '( ) ( ) minimumxx yyM M .        (2.4b) 

The resulting strike angle is known as Swift’s angle (Swift, 1967): 

1 2
2 2

1 2

2·Re( · )tan(4 ) D S
D S

,                 (2.5) 

where 1 xx yyD M M  and 2 xy yxS M M  are the remaining modified impedances (Vozoff, 

1991), which are not rotational invariants. 

From the modified impedances S1 and D2, a rotational invariant, the Swift’s skew, can 

be defined. It relates the diagonal and non-diagonal components of the MT tensor and quantifies 

how accurately the MT tensor can represent a 2D structure: 

1

2

S
D

.             (2.6) 

If its value is small, the 2D hypothesis is valid and, hence, Swift’s angle indicates the 

strike direction. Otherwise, the tensor corresponds to another type of structure. 
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2.4 Bahr Parameters 

Bahr (1991), with modifications of Szarka (1999), proposed the use of four rotational 

real-valued invariant parameters to classify the types of the geoelectric dimensionality and 

distortion types that can affect it. These parameters were derived from the impedance tensor 

(Z= 0·M), and its modified impedances (S1=Zxx+Zyy, S2= Zxy+Zyx, D1= Zxx-Zyy, D2= Zxy-Zyx):

1

2

S
D

, (Swift’s Skew),             (2.7a)

1
2

1 2 1 2

2

, ,D S S D
D

,             (2.7b) 

1
2

1 2 1 2

2

, ,D S S D
D

, (Regional skew or Phase sensitive skew)    (2.7c) 

2 2
1 2

2
2

D S
D

,              (2.7d)

where Re Im Re ImA,B = A · B - B · A .

Bahr parameters are dimensionless.  and  are normalised to unity whereas  and 

can have values greater than one in the presence of galvanic distortion. 

 is the Swift’s Skew (see section 2.3) and  is a measure of the phase difference 

between the components of the magnetotelluric tensor.  indicates if the magnetotelluric tensor 

can be described by a superimposition model (the product of a small 3D heterogeneity matrix 

with the regional 1D or 2D MT tensor, 3D/1D or 3D/2D), which is also a measure of three-

dimensionality.  is related to two-dimensionality. 

The quantification of these parameters, according to Bahr (1991), allows deciphering 

the geoelectric dimensionality cases (1D, 2D and 3D) and the types of distortion models defined 

by Larsen (1977) and Bahr (1988). The Larsen (1977) model consists of a galvanic distortion 

over a 1D structure (3D/1D). The model defined by Bahr (1988), known as superimposition 

model, consists of a galvanic distortion over a two-dimensional structure: 3D/2D. 

The recommended threshold values of these parameters proposed such as to infer the 

types of geoelectric dimensionality and distortion are summarised in Table 2.1. 

In two-dimensional cases (2 and 4) the strike angle, , is obtained by the expression: 

1 2 1 2

1 1 2 2

, ,
tan 2

, ,
S S D D
S D S D

,           (2.8) 
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which is determined from the condition that a 2D MT tensor expressed in the strike reference 

frame, affected or not by galvanic distortion, has the same phase values in each of the MT 

tensor columns. This angle is the so-called phase-sensitive strike. 

Case Bahr Parameter 
Values

DIMENSIONALITY/ 
DISTORTION TYPE 

1  < 0.1;  < 0.1 1D

2  < 0.1;  > 0.1 2D

3  > 0.1;  = 0 3D/1D (Larsen model) 

4  > 0.1;  0;  < 0.05 3D/2D (Bahr model)

5  > 0.1;  0;  > 0.3 3D

Table 2.1: Bahr method criteria to characterise the geoelectric dimensionality and distortion types. 

Among these 2D cases, Bahr (1991) also suggested the possibility that the condition 

cited above is not fulfilled. Instead there is a non-zero phase difference value for each column, 

which must be minimised when the axes are rotated to the strike direction. This model is known 

as an extension of the superimposition model, which is called the delta ( ) technique, and is 

valid under the condition 0.1 <  < 0.3. 

In the literature, Bahr parameters have been used sometimes incorrectly, when 

justifying that the data are 2D if  < 0.3; whereas it has been demonstrated (e.g. Ledo et al.,

2002b) that  > 0.3 is a sufficient condition for 3D, but that the contrary is not true (  < 0.3 

does not imply that the structure is 2D). Simpson and Bahr (2005) also cite this common misuse 

of the regional skew .

2.5 WAL Rotational Invariant Parameters 

Weaver et al. (2000) presented a new formulation of the rotational invariant parameters 

of the MT tensor. The set of invariants (WAL hereafter) was redefined in the way that the 

invariants, with the exception of two, are non-dimensional, each one having a clear graphical 

representation and their vanishing has a physical interpretation, specifically the geoelectric 

dimensionality.

The WAL invariants were defined from a decomposition of the MT tensor into its real 

and imaginary parts, and by defining the complex parameters i i ii  (i=1,4), which are 
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linear combinations of MT tensor components, 1 / 2xx yyM M , 2 / 2xy yxM M ,

3 / 2xx yyM M  and 4 / 2xy yxM M :

1 3 2 4 1 3 2 4 1 3 2 4

2 4 1 3 2 4 1 3 2 4 1 3

M i .       (2.9) 

Through this decomposition, the expressions of the WAL invariants are as follows: 

1
2 2 2

1 1 4I  (m/s),          (2.10) 

1
2 2 2

2 1 4I  (m/s),             (2.11) 

1
2 2 2
2 3

3
1

I
I

,           (2.12) 

1
2 2 2
2 3

4
2

I
I

,          (2.13) 

4 1 1 4
5

1 2

I
I I

,           (2.14) 

4 1 1 4
6 41

1 2

I d
I I

,             (2.15) 

7 41 23 QI d d / .          (2.16) 

dij (i,j=1-4) and Q are also invariants that depend on parameters i i and on other 

invariants:

1 2

i j j i
ijd

I I
,              (2.17) 

1
2 2 2

12 34 13 24Q d d d d .           (2.18) 

I7 and Q are related in that if Q is too small, then I7 approaches infinity and its value 

remains undetermined. It can be seen that I3 to I6 are normalized and that I3 to I7 and Q are 

dimensionless. 

WAL rotational invariants can be represented, following the works of Lilley in a 

Mohr’s circle diagram (Lilley, 1976, 1993, 1998a, 1998b), whose axes display the M11 (vertical) 

and M12 (horizontal) components of the MT tensor (Figure 2.2). 
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In this graphical representation P1 (Re(M11),Re(M12)) and P2(Im(M11),Im(M12)) are the 

positions of the real and imaginary parts of M11 and M12 while C and D points are located at 

coordinates ( 1, 4) and ( 1, 4) respectively. Through a 180o rotation of the measuring axes, P1

and P2 describe the complete real and imaginary Mohr circles, with centres located in C and D

and radii equal to 
12 2 2

2 3( )  and 
12 2 2

2 3( )  respectively. Hence, a rotation of an angle  is 

translated into a 2  rotation of points P1 and P2.

I1 and I2 are the modulae of C and D position vectors, 1I OC  and 2I OD . I3 and

I4 are the sines of  and  angles, i.e., the ratios between the circles’ radii and I1 or I2: 3 sinI

and 4 sinI . 5 sin( )I  and 6 sin( )I  relate the relative positions between the 

real and imaginary circles. 2 1 and 2 2 are the angles through which P1 and P2 must be rotated 

along the circle to reach the same vertical position as C and D, respectively: 

3
1

2

tan 2  and 3
2

2

tan 2 .      (2.19) 

Consequently, 1 and 2 are, in the order given, the angles through which the 

measurement axes must be rotated so that the real and imaginary parts belonging to the non-

diagonal components of the MT tensor have the same value. I7 is defined as the sine of the 

difference between these two angles: 7 1 2sin( )I .

Invariant Q is defined from a complex relation between the angle obtained from the 

intersection of the prolongation of 1CP  and 2DP , , and angles , ,  and :

1/ 22 2Q sin sin 2sin sin cos( ) .

Invariants I1 and I2 provide information about the 1D magnitude and phase of the 

geoelectric resistivity:  

2 2
1 2

1 0D

I I
,           (2.20) 

2
1

1

arctanD
I
I

.          (2.21) 
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Figure 2.2: Graphical representation of real and imaginary Mohr circles, generated after a complete 
rotation of M12 and M11 components of the MT tensor. Green: real circle and related parameters and 
angles. Red: idem for imaginary. 

Invariants I3 to I7 and Q make it possible to establish criteria (Weaver et al., 2000; 

Weaver, pers. comm.) that are suitable to assess dimensionality and galvanic distortion (Table 

2.2).

In a 1D geoelectric medium (case 1 in Table 2.2), characterised by a MT tensor with 

null diagonal components and equal non-diagonal components with opposite signs, the Mohr 

circles reduce to the two points corresponding to the real and imaginary values of M12. With the 

exception of I1 and I2, all invariants are zero. Apparent resistivity and phase can be directly 

determined from eqs. 2.20 and 2.21. 

For a MT tensor corresponding to a 2D medium (case 2 in Table 2.2), the centres of the 

Mohr circles are also located over the M12 axis, but have non-zero radii values. Along the strike 

direction, P1 and P2 are also located over the M12 axis, so both 1 and 2 are zero. For any other 

direction, the non-zero values of 1 and 2 must be the same (equation 2.19), in order to ensure 

that both real and imaginary diagonal components of the MT tensor become null along the same 

direction, that of the strike. Since 1CP  and 2DP  are parallel the angle  is zero. Therefore, in a 

2D medium, I3 and I4 are non-zero. I5 and I6 are null, because  and  angles are null also. I7 is 

null, although it may be undetermined if Q is very small (if I3  I4).
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Case I3 to I7 and Q values  GEOELECTRIC DIMENSIONALITY 

1 I3 = I4 = I5 = I6 = 0 1D

2
I3  0 or I4  0; I5 = I6 = 0; I7 = 0 or Q = 0 

( 4  0 and 4  0) 
2D

3a I3  0 or I4  0; I5  0; I6 = 0; I7 = 0 
3D/2Dtwist 

2D affected by galvanic distortion 

(only twist) 

3b I3  0 or I4  0; I5  0; I6 = 0; Q = 0 
3D/1D2D 

Galvanic distortion over a 1D or 2D structure 

(non-recoverable strike direction) 

3c
I3  0 or I4  0; I5 = I6 = 0; I7 = 0 or Q = 0 

( 4 = 0 and 4 = 0) 

3D/1D2Ddiag

Galvanic distortion over a 1D or 2D structure 

resulting in a diagonal MT tensor 

4 I3  0 or I4  0; I5  0; I6  0; I7 = 0 
3D/2D

General case of galvanic distortion over a 2D 

structure

5 I7  0 
3D

(affected or not by galvanic distortion) 

Table 2.2: Dimensionality criteria according to the WAL invariants values of the magnetotelluric tensor 
(Modified from Weaver et al., 2000). 

Both 1D and 2D media can be affected by galvanic distortion, which, according to 

WAL invariants, can be grouped into four different cases:  

- Galvanic distortion affecting a 2D medium, produced by a twist of the electric field 

(case 3a in Table 2.2): In this case the galvanic distortion is described by a matrix with 

parameters g1 = g2 and 1 = 2 (e = 0 and t  0). In general, the values of M11 are not null 

and the centres of the Mohr circles are not located over the M12 axis. OC  and OD

have the same orientation, i.e.,  and  are non-zero but have the same value. On the 

contrary,  and  are different. 1 and 2 have the same value ( 1CP  and 2DP  are 

parallel), although it does not correspond to the strike direction. Consequently, =0. 

Hence, I3, I4 (where I3  I4), I5 and Q are non-zero, whereas I6 and I7 are null. 
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- Galvanic distortion over 1D or 2D media with equal phases in E and B polarisations 

(case 3b in Table 2.2): These two situations are indistinguishable, and in the second 

(distortion over 2D media) it is not possible to determine the strike direction. The Mohr 

circles follow the same pattern as in case 3a, with the additional particularity that = .

Consequently, I3, I4 (I3 = I4) and I5 are non-zero, and I6 is null. Given that I3 = I4 and

=0, Q is null and I7 remains undetermined. 

- Galvanic distortion over a 1D or 2D medium, resulting in a diagonal MT tensor (case 

3c in Table 2.2): This is a very particular case of distortion, described by a non-diagonal 

matrix. Mohr circles are analogous to those of the 2D media, with the centres located 

over the M11 axis instead of M12, and 4 = 0. WAL invariants can have the same values 

as in a 2D medium, so case 3c is distinguished from case 3a only by the condition 4 =

0. The strike direction, D, after which the distorted diagonal tensor can be recovered, is 

computed using: 

2 2

3 3

tan 2 D .          (2.22) 

- General case of galvanic distortion over a 2D medium (case 4 in Table 2.2): Mohr 

circles do not follow any particular pattern (the centres are outside of the M12 axis,  and 

, and  and  are non-zero angles and have different values among them), with the 

exception that 1 and 2 have the same value. As a consequence, all invariants but I7 are 

non-zero.

For cases 3a and 4, the strike angle, named 3, and the distortion parameters, 1 and 2

(see equations 1.27 and 1.29) can be retrieved: 

12 34
3

13 24

tan 2 d d
d d

,          (2.23) 

1

Re ' Im '
tan

Re ' Im '
yy yy

xy xy

M M
M M

,        (2.24) 

2
Re ' Im 'tan
Re ' Im '

xx xx

yx yx

M M
M M

.        (2.25) 
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Finally, for a MT tensor corresponding to a 3D medium (case 5 in Table 2.2), the 

pattern of Mohr circles cannot be included in any of the previous descriptions. In this case, all 

invariants, including I7 and Q are non-zero and have a finite value. However, it is not possible to 

distinguish whether the MT tensor is affected by galvanic distortion or not. 

The main problem when WAL invariants criteria are used with real data is that the 

geoelectric dimensionality may be found to be 3D although other evidence (low MT diagonal 

components’ responses, preferred strike direction among different sites and periods…) suggests 

that a 1D or 2D interpretation would be valid for modelling. This is because invariant values for 

real data are in general never exactly zero due to the presence of noise. Weaver et al. (2000) 

address this problem by introducing a threshold value, beneath which the invariants are taken to 

be zero.

The threshold value they suggest is 0.1. Since WAL invariants I3 to I7 and Q represent 

the sines of angles related to Mohr circles, this threshold corresponds to the sine of 5.7o, which, 

in relation to 90o, represents a 6% error. Although the choice of this threshold is subjective, it 

was tested using a synthetic model with 2% noise, which showed a valid dimensionality pattern 

consistent with the model structures. 

2.6 The Magnetotelluric Phase Tensor 

The magnetotelluric phase tensor (or phase tensor) (Caldwell et al., 2004) was 

introduced as a tool to obtain information about the dimensionality of the regional structure, 

given that it is not affected by galvanic distortion. 

The phase of a tensor with complex components is a real valued tensor, which is 

defined from the generalization of the phase of a complex number, i.e., as the inverse of the 

tangent of the ratio between its imaginary and real parts (Caldwell et al., 2004): 

Thus, for a complex tensor M=X+i·Y:

1X Y .           (2.26) 

In the case of the magnetotelluric or impedance tensor, which is a 2nd rank tensor, 

11 11 12 12

21 21 22 22

X iY X iY
M

X iY X iY
,        (2.27) 

the phase tensor ( ) is expressed as: 
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11 12 22 11 12 21 22 12 12 22

21 22 11 21 21 11 11 22 21 12

/ det( )
X Y X Y X Y X Y

X
X Y X Y X Y X Y

,    (2.28) 

where 11 22 12 21det( )X X X X X .

 is not affected by galvanic distortion, although it is not invariant under rotation. 

In the particular 1D case, the phase tensor takes a diagonal form, with their two 

component values equal to the tangent of the phase (equations 1.15c and 1.15d). As for a 2D 

MT tensor, the phase tensor is also diagonal, but their components have different values, which 

are the tangents of the TE and TM phases. In a general 3D case, the phase tensor displays the 

relationship between the phases of the horizontal components of the electric and magnetic 

fields.

The phase tensor can be represented through a Singular Value Decomposition (SVD) as 

the product of three matrixes: 

0
( )· · ( ) ( ) ( )

0
MaxT T

P P P P P P P P
min

R S R R R ,    (2.29) 

where R( ) ( P - P or = P + P) represents a clockwise rotation, 

cos sin
( )

sin cos
R .         (2.30) 

RT( P - P) and R( P + P) are the eigenvectors of the tensor products T and 

respectively  The expressions of P  and P are derived as (1):

12 21

11 22

arctan / 2P ,         (2.31) 

12 21

11 22

arctan / 2P    (2.32) 

S in eq. 2.29 is referred to as the Singular Matrix, where Max and min are the square 

roots of or  eigenvalues, real numbers which are arranged in descending order in S: 

                                                          
1 The original notation of Caldwell et al. (2004) used the notation and  instead of P and P. In this 
thesis the subscript “P” was added to emphasize that it refers to the magnetotelluric phase tensor notation.  



Chapter 2. Geoelectric Dimensionality and Rotational Invariants 

66

2
2 ( ) ( ) 4det( )

2

T T T

Max
min

Tr Tr
.      (2.33) 

Since  is a 4 real component tensor, it has 4 associated parameters: One, the angle p,

which is not a rotational invariant, and three rotational invariants: P, Max  and min  (eq. 2.29).

P is the skew of the phase tensor. In a two-dimensional medium its value is zero.  

Simpler expressions of Max  and min in terms of the phase tensor components can 

only be obtained for 1D and 2D geoelectric media. These expressions are the tangents of 

regional TE and TM mode phases, and, depending on which has the maximum and minimum 

values could be: 

tanMax TE
min TM

or tanMax TM
min TE

.      (2.34) 

Hence, each of these parameters is related to one of the two directions along which a 

linear polarization of the magnetic field leads to a linear polarization of the electric field. If 

Max  and min  have the same value, there is not a preferential direction and the structure is 1D, 

whereas if Max  and min  are different, these two directions exist and indicate that the structure 

is 2D, as long as P=0. For general 3D cases, Max  and min  are also different and P  0, 

resulting in more complex expressions. In real datasets, the threshold of P to identify 3D cases 

is approximately 3o.

The phase tensor can be represented as an ellipse in which Max  and min  are the major 

and minor axis and P - P is the azimuth of the major axis (Figure 2.3). In the case that 

P=0 this azimuth coincides with P and represents the strike direction or its perpendicular, 

depending on which TE or TM modes has the largest phase value. 

The way in which P, Max  and min  are related is that P has a physical meaning 

only if Max min  is non-zero, i.e., in 2D and 3D cases. If data errors are considered, this 

assertion can be extended to the condition arctan
PMax min , where

P
 is the error in 

the determination of angle P.
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Figure 2.3: Graphical representation of the phase tensor. The lengths of the principal axes are Max

and min and P - P is the azimuth of the ellipse major axis. N and E correspond to x and y coordinates 

axes respectively (Modified from Caldwell et al., 2004). 

Figure 2.4 shows the phase tensor characteristics and representation for 1D and 2D 

types of dimensionality: 1D media are represented by a circle, given that Max min  is equal 

to zero and P has a meaningless value. 2D media are represented by an ellipse with the major 

axis aligned along the strike direction, P. For 3D geoelectrical media, the phase tensor is 

displayed as in Figure 2.3: an ellipse with P different from zero and consequently with an angle 

P that cannot be identified as the strike direction. 

Figure 2.4: Phase tensor properties and representations of particular 1D and 2D dimensionality cases. 

Summarizing, the phase tensor parameters involved in the characterization of 

dimensionality are: Max  and min , which provide the arctangent of TE and TM mode phases; 
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their difference, Max min , which indicates if the structure can be described as 2D; P,

which quantifies the validity of a 2D description, and P, which provides the strike direction. In 

2D media, the error of angle P is also important since, compared to Max min , it allows 

discerning whether a 2D or 3D/2D description is valid or not. 

Since the phase tensor is not affected by galvanic distortion, it preserves information of 

the regional structures. In this way, maps of the elliptical diagrams of the phase tensor at a given 

frequency reflect lateral variations of the regional structures, in which the major axes of the 

ellipses, Max , indicate the direction of the induced current flow (e.g. Caldwell et al., 2004). 

2.7 Problems and Present Limitations on the Determination of 

Dimensionality

As already seen, the determination of geoelectric dimensionality is not a simple nor 

easy task. It is a problem that must be solved through the use of methods such as Bahr and 

WAL parameters and the more recent phase tensor. All these methods, although allowing 

dimensionality characterisation, have some limitations, which make it difficult to solve the 

problem in many cases. 

Firstly, the determination of geoelectric dimensionality corresponding to MT data utilise 

parameters that are affected by the errors in the data responses. It is important to take into 

account the errors of these parameters in the determination of dimensionality and to know to 

which degree the feasibility of the characterised structures is. 

Another important aspect to consider is the fact that in real situations, the 

dimensionality of the data does not fit exactly to the theoretical models described. A 

compromise between both descriptions can be achieved by using threshold values in the 

dimensionality criteria. 

However, the parameters used in the presented methods and the choice of the threshold 

values imply that the dimensionality is not characterised in the same way. Sometimes they 

provide inconsistent results or different types of information, which can lead to incorrect 

hypotheses in modelling and interpretation of the data. 

In this context, the next part of the thesis presents the studies, comparisons and new 

developments carried out on the characterisation of geoelectric dimensionality. These propose 

solutions to partially or totally solve some of these problems and limitations. More specifically, 

these aspects are: Error analysis and threshold values in WAL rotational invariants (Chapter 3), 

Improving Bahr’s invariant parameters using the WAL approach (Chapter 4) and Applications 

of the magnetotelluric phase tensor and comparison with other methods (Chapter 5). 


