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ABSTRACT

Limit analysis is relevant in many practical engineering areas such as

the design of mechanical structure or the analysis of soil mechanics. The

theory of limit analysis assumes a rigid, perfectly-plastic material to model

the collapse of a solid that is subjected to a static load distribution.

Within this context, the problem of limit analysis is to consider a contin-

uum that is subjected to a fixed force distribution consisting of both volume

and surfaces loads. Then the objective is to obtain the maximum multiple

of this force distribution that causes the collapse of the body. This multiple

is usually called collapse multiplier. This collapse multiplier can be obtained

analytically by solving an infinite dimensional nonlinear optimisation prob-

lem. Thus the computation of the multiplier requires two steps, the first

step is to discretise its corresponding analytical problem by the introduc-

tion of finite dimensional spaces and the second step is to solve a nonlinear

optimisation problem, which represents the major difficulty and challenge

in the numerical solution process.

Solving this optimisation problem, which may become very large and

computationally expensive in three dimensional problems, is the second im-

portant step. Recent techniques have allowed scientists to determine upper

and lower bounds of the load factor under which the structure will collapse.

Despite the attractiveness of these results, their application to practical ex-

amples is still hampered by the size of the resulting optimisation process.

Thus a remedy to this is the use of decomposition methods and to parallelise
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the corresponding optimisation problem.

The aim of this work is to present a decomposition technique which can

reduce the memory requirements and computational cost of this type of

problems. For this purpose, we exploit the important feature of the un-

derlying optimisation problem: the objective function contains one scaler

variable λ. The main contributes of the thesis are, rewriting the constraints

of the problem as the intersection of appropriate sets, and proposing efficient

algorithmic strategies to iteratively solve the decomposition algorithm.
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1
Introduction

Limit analysis aims to directly determine the collapse load of a given

structural model without resorting to iterative and incremental analysis.

Computational techniques in limit analysis are based on the so-called limit

theorems, which are based on the minimization of the dissipation energy

and the maximization of the load factor, and they furnish lower and upper

bounds of the collapse load [14]. Assuming a rigid-perfectly plastic solid

subject to static load distribution, the problem of limit analysis consists in

finding the maximum multiple of this load distribution that will cause the

collapse of the body. As it will be explained in Section 1.1, the analytical

load factor results from solving an infinite dimensional saddle point problem,

where the internal work rate is minimized over the linear space of kinemat-

ically admissible velocities for which the external work rate equals unity.

Then load factor be also obtained by the maximum load over an admissible

set of stresses in equilibrium with the applied loads [33, 34, 37].

The aim of this work is to first present a general methodology to decom-

pose optimisation problems, and to apply this methodology to the optimi-

sation problems encountered in limit analysis.

The second part is to propose a decomposition technique which can al-

leviate the memory requirements and computational cost of this type of

problems.

This work has been motivated by the computational cost of the optimisa-

tion program in practical applications. It has been found that the memory

requirements and CPU time of the up-to-date available software to solve

optimisation problems, such as MOSEK[2], SDPT3[46], SeDuMi[45] or spe-

cific oriented software [32] are still not affordable if we want to analyse other

15



16 CHAPTER 1. INTRODUCTION

than academical problems. Then using decomposition methods seems an ap-

pealing technique for these analyses. For instance, Table 1.1 and Figure 1.1

show the number of elements and corresponding number of degrees of free-

dom (dof) for the lower bound (LB)1 and upper bound (UB) problem, in

two and three dimensions. As it can be observed, the number of dof in three

dimensions is always higher than in two dimensions for similar number of

elements, and becomes prohibitive for not so large meshes.

One of the possible solution is to parallelise the solution of the systems

of equations, which is inherent in all optimisation process. Although this

venue may alleviate the CPU time of the resolution process, the memory

requirements may still remain too large. For this reason, we propose to

partition ab initio the domain of the structure, and solve the optimisation

process in a decomposed manner. In doing this, there is no need to solve

nor to store the system of equations of the optimisation problem for the full

domain.

In this Chapter, we introduce limit analysis of structures and briefly de-

scribe discrete forms that give rise to the lower bound optimisation problem.

1.1. Optimisation Problems in Limit Analysis

Let Ω denote the domain of a body assumed to be made of a rigid-

perfectly plastic material, subjected to load volumetric load λf(gravity),

with λ an unknown load factor to be determined. Its boundary ∂Ω, consists

of a Neumann part ΓN and a Dirichlet part ΓD, which are such that ∂Ω =

ΓN ∪ ΓD and ΓN ∩ ΓD = ∅.
The body velocities are equal to zero at the Dirichlet boundary, while the

Neumann boundary is subjected to the traction field λg, see Figure 1.2.

The objective of limit analysis is to compute the maximum value λ∗ of the

load factor at which the structure will collapse, and if possible, the velocity

1Discretisation of the problem in a particular fashion, i.e. combination of appro-
priately selected interpolations for both the stresses and velocities results in
estimating of the maximum multiple of the load factor that causes the collapse
of the body, either from below or from above. The optimisation problem that
approaches to the solution from below is so-called Lower Bound (LB) prob-
lem and also the optimisation problem which approaches to the solution from
above is called Upper Bound (UB) problem [34, 37].
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2D 3D

# elements dof(LB) dof(UB) # elements dof(LB) dof(UB)

267 3309 4005 542 15719 25619

321 3989 4861 679 3433 2848

408 5097 6241 1144 32033 50597

598 7505 9265 3089 89582 154772

1723 21629 27205 4185 100441 95995

3110 39033 49369 8730 211672 360163

5644 70945 89897 24133 579193 565801

9283 84637 111665

24654 223588 296398

Table 1.1.: Number of elements and corresponding number of degrees of free-

dom (dof) in two- and three-dimensional analysis.

0 0.5 1 1.5 2 2.5

x 10
4

0

1

2
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x 10

5

Number of elements in two and three dimension space 

do
f

dof (LB) 2D
dof (UB) 2D
dof (LB) 3D
dof (UB) 3D

Figure 1.1.: Number of elements and corresponding number of degrees of

freedom (dof) in two- and three-dimensional analysis

field u∗ and tensor stress field σ∗, which allow us to identify the collapse

mechanism. The admissibility condition for the stress field is expressed by

the membership condition σ ∈ B, where the set B depends on the plastic
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Figure 1.2.: Illustration of Neumann and Dirichlet parts of the domain Ω.

criteria adopted, and will be defined by the following general form:

B := {σ|q(σ) ≤ 0}.

The work rate of external loads associated with a velocity u = u(x) is

given by the following linear functional:

L(u) =

∫

Ω

f · u dΩ +

∫

ΓN
g · u dΓ.

The velocity belongs to an appropriate space Y , to be specified in Sub-

section 1.1.1.

The work rate of the symmetric stress field σ associated with u is given

by the bilinear form:

a(σ,u) =

∫

Ω

σ : ε(u) dΩ +

∫

Γ

JuK · σn dΓ

=

∫

Ω

σ : ε(u) dΩ +

∫

Γ

JuK⊗̄n : σ dΓ,

where ε(u) = 1
2 [(∇u) + (∇u)T ], is the symmetric velocity gradient, and the

operator ⊗̄ is a symmetrized dyadic product: a⊗̄b = 1
2(a ⊗ b + b ⊗ a),

and Γ denotes the internal surface of domain Ω where the velocity field is

discontinuous. The symbol JuK, denotes the jump of field u on dΓ. The rate

of dissipated energy D(u) is defined as:

D(u) = sup
σ∈B

a(σ,u).

With these definitions at hand the upper and lower bound theorems may

be stated as follows:
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1.1.1. Lower Bound Theorem

If for a given load factor λ̄ the stress field is in static equilibrium, i.e. at

all points of the domain Ω

a(σ,u) = λ̄L(u) ∀u ∈ Y,

and σ satisfies the Neumann boundary condition i.e. σn = λg, and the

admissibility condition σ ∈ B, thus λ̄ will not be larger than the optimal

load factor λ∗ [14]. The set Y is the set of (not necessarily continuous)

velocities such that the integrals in the expressions of a(σ,u) and L(u)

remain bounded [15].

1.1.2. Upper Bound Theorem

A load factor that equalizes the rate of dissipated energy D(u) to the ex-

ternal work rate L(u) with a velocity field u that is kinetically admissible[14,

15] i.e. satisfies the Dirichlet boundary condition and associative law, will

not be less than the optimal load factor λ∗. The associative law imposes

that D(u) <∞, i.e.
ε(u) ∈ ∂f(σ)

JuK⊗̄n ∈ ∂f(σ),

where ∂f(σ) is the subgradient of f at σ, defined as

∂f(σ) = {d|(σ − σ∗) · d ≥ f(σ)− f(σ∗) ∀σ∗}.

1.1.3. Saddle Point Problem

The lower and upper bound theorems of limit analysis allow us to compute

the optimal load factor as two different optimisation problems:

LB : λ = sup
a(σ,λ)=λL(u), ∀u∈Y

σ∈B

λ = sup
λ,σ∈B

inf
u∈Y

(λ+ a(σ,u)− λL(u))

= sup
λ,σ∈B

inf
u∈Y

(a(σ,u) + λ(1− L(u)))

= sup
σ∈B

inf
L(u)=1
u∈Y

a(σ,u). (1.1.1)

UB : λ = inf
D(u)=λL(u)

u∈Y

λ = inf
L(u)=1
u∈Y

D(u) = inf
L(u)=1
u∈Y

sup
σ∈B

a(σ,u). (1.1.2)
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The comparison of the results in (1.1.1) and (1.1.2) shows that the UB

problem is the dual of the LB problem. Consequently, due to weak duality

we have:

λ = sup
σ∈B

inf
L(u)=1
u∈Y

a(σ,u) ≤ inf
L(u)=1
u∈Y

sup
σ∈B

a(σ,u) = λ.

If strong duality holds, the inequality above turns into equality. In this

case, we denote λ∗ = λ = λ = a(σ∗,u∗), where σ∗ and u∗ are the optimal

values of the stress and velocity field at the optimum. In addition, we can

obtain bounds of the optimum value λ∗ by evaluating the bilinear form

a(σ,u) at nonoptimal fields.

To be more specific, let us assume that the following optimisation problem

are computed exactly:

sup
σ∈B

a(σ,u) = a(σ∗,u), ∀u ∈ Y s.t L(u) = 1, (1.1.3)

inf
u∈Y
L(u)=1

a(σ,u) = a(σ,u∗), ∀σ ∈ B. (1.1.4)

In terms of equations (1.1.3) and (1.1.4) we have:

λ− = a(σ,u∗) ≤ a(σ∗,u∗) ≤ a(σ∗,u) = λ−, (1.1.5)

where σ is in static equilibrium and σ ∈ B, while L(u) = 1 and u satisfies

the associative law, that is, the fields σ and u are primal and dual feasible,

respectively.

1.2. Lower Bound (LB) Problem

1.2.1. The Finite Element Triangulation

When analysing the problem above in plane stress or plane strain, we will

consider the following triangular finite element discretisetion. Let τh denote

the triangulation, where h represent the typical size of the elements. The

mesh τh consists of ne (number of elements) triangular elements Ωe that

form a partition of the body, such that Ω = ∪nee=1Ωe, with all the element

being pairwise disjoint: Ωe ∩ Ωe′ = ∅ ∀ e, e′ ∈ τh. The boundary of the

element Ωe is denoted by ∂Ωe. Let ξ be the set of all the edges in the mesh,

which is decomposed into the following three disjoint sets: ξ = ξO ∪ ξD ∪ ξN
where ξO, ξD and ξN are sets of interior edges, Dirichlet boundary and
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Neumann boundary respectively. Mixed boundary, (edges with Dirichlet

and Neumann conditions), are not considered here, but the extension of the

problem statement to these situations dose not pose any further complexity.

1.2.2. Discrete Spaces for Lower Bound Problem

We will introduce a set of statically admissible spaces, that is, discrete

spaces σLB ∈ XLB and uLB ∈ Y LB that preserve the first inequality in

(1.1.5).

• XLB : Piecewise linear stress field interpolated from the nodal values

σi,e, i = 1, · · · , nn; e = 1, · · · , ne (nn is the number of nodes per ele-

ment, and ne the number of elements). Each element has a distinct set

of nodal values, and thus discontinuities at each elemental boundary

∂Ωe−e′(between element e and e′) are permitted.

• Y LB : constant velocity µe,LB at each element. Additionally, a linear

velocity field νξ,LB is introduced at each interior boundary ξO and

external boundary of ξN . We denote by uLB the complete set of

velocities, i.e. uLB = (µLB,νLB).

These spaces are depicted in Figure 1.3.

3.2 Lower bound (LB)

3.2.1 Statically admissible spaces

We will introduce a set of statically admissible spaces, that is, discrete spaces
ΣLB ∋ σLB and VLB ∋ µLB that preserve the first inequality in (23). Re-
calling the derivations in (20), this is equivalent to satisfy the following in-
equality:

sup
a(σLB ;µLB)=yℓ(µLB), ∀uLB∈VLB

σLB∈BLB

y ≤ sup
a(σ;µ)=yℓ(µ), ∀µ∈V

σ∈B

y (24)

This inequality is guaranteed if the following two conditions hold:

a) σ ∈ B ⇒ σLB ∈ BLB

b) a(σLB;µLB) = yℓ(µLB), ∀uLB ∈ VLB ⇒ a(σ;µ) = yℓ(µ), ∀µ ∈ V.

We will show that these conditions are indeed satisfied when resort-
ing to the following interpolation spaces (see their representation in a two-
dimensional case in Figure 1),

• ΣLB: Piecewise linear stress field interpolated from the nodal values
σe,LB

i , i = 1, . . . , nn; e = 1, . . . , ne, with a set of complete Lagrangian
functions I i, i.e.

∑nn
i Ii = 1 (nn is the number of nodes per ele-

ment, and ne the number of elements). Each element has a distinct set
of nodal values, and thus discontinuities at each elemental boundary
∂Ωe−e′ (between elements e and e′) are permitted.

• VLB: Constant velocity µe,LB at each element e. Additionally, a linear
velocity field νe−e′,LB is introduced at each interior boundary ∂Ωe−e′

and external boundary of ΓN .

µLB νLB

YLB :XLB :

σLB

(linear)

(constant)

+

(linear)

Figure 1: Interpolation spaces ΣLB and VLB.

In the plasticity criteria considered here, we will use a set BLB = B, with
B convex, and impose the condition at the nodes, i.e. σLB ∈ B. Therefore,

17

Figure 1.3.: Scheme of the lower bound discrete spaces XLB and Y LB used

for the stresses and velocities, respectively. [37]

1.2.3. Implementation

The static equilibrium condition

a(σLB;uLB) = λL(uLB), ∀ uLB ∈ Y LB, (1.2.1)
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is rewritten, after using the integration rules for discontinuous functions1:

a(σLB;µLB,νLB) = −
∫

Ω

µLB · (∇ · σLB) dΩ

+
∑

∂Ωξ
e′
e

∫

∂Ωξ
e′
e

νLB · JσKLB · n dΓ +

∫

ΓN

νLB · σLB · n dΓ,

L(µLB,νLB) =

∫

Ω

µLB · f dΩ +

∫

ΓN

νLB · g dΓ.

(1.2.2)

Consequently, due to the arbitrariness of the constant velocity µLB and

the linear velocity νLB the static equilibrium condition is equivalent to the

following equations:





∇ · σLB + λf = 0, in Ω

σLB · n = 0, in Γ

σLB · n = λg, in ΓN

σLB ∈ B.

(1.2.3)

The primal and dual LB problems may be obtained by inserting the

discrete space XLB and Y LB in primal optimisation problems and using

the bilinear and linear forms a(σLB,uLB) and L(uLB). In this case the

condition in (1.2.1), is equivalent to the following equations:





∇ · σe,LB + λf e = 0 in Ωe , ∀ e = 1, · · · , ne
(σe,LB − σe′,LB) · nξe

′
e = 0, ∀ ξe′e ∈ ξO

σe,LB · nξNe = λgξ
N
e ∀ ξNe ∈ ξN

σe,LB ∈ B in Ωe, ∀ e = 1, · · · , ne

(1.2.4)

In Appendix A, it is shown that the equations in (1.2.4) may be trans-

formed into a set of linear constraints. The membership condition be also

rewritten, using a change of variable into a Lorentz cone membership. The

1We recall that whenever the product of functions fg is discontinuous, we have
that,

∫
Ω(f ′g + g′f) =

∫
∂Ω fg dΓ +

∑
e−e′

∫
∂Ωe−e′ JfgK dΓ, where the sum is

performed on all the boundaries where fg discontinuous.
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resulting discrete optimisation problem is deduced in (A.4.9) and recast here:

λ∗LB = max
λ,x4,x1:3

λ




Aeq1P F 1 Aeq1P

Aeq2P 0 Aeq2P

Aeq3P F 3 Aeq3P

0 0 R








x4

λ

x1:3





=





0

0

0

b




,

x4 is free, λ ≥ 0, x1:3 ∈ K,
|x4| = 3ne, |λ| = 1, |x1:3| = 9ne,

(1.2.5)

where

σ = Px4 + Qx1:3. (1.2.6)

The first, second, third and fourth rows of the matrix are respectively

the equilibrium constraints, inter-element equilibrium equations, boundary

Neumann conditions and the membership constraints given in (1.2.3). K is

the outer product of Lorentz cones Ln with n = 3, that is K = Ln1 × Ln2 ×
· · · × Lnr . It follows that K is a convex cone. The matrices appearing in

(1.2.5) are explicitly deduced in Appendix A.

The size of the optimisation problem in (1.2.5) as it has been explained,

is proportional to the number of elements. If we want to obtain an accurate

value of λ∗LB, (i.e. value of λ∗LB that is close to λ∗), we must increase the

number of elements, which causes the increase of the size of the problem.

Since our sources like memory are limited, we are not able to increase the

number of elements as mush as we want to. Consequently, to solve larger

problem, we resort here to decomposition methods.

The development of general decomposition techniques has given rise to

numerous approaches, which include Benders decomposition [19, 26], prox-

imal point strategies [13], dual decomposition [10, 25], subgradient and

smoothing methods [38, 39], or block decomposition [36], among many oth-

ers. In the engineering literature, some common methods inherit either

decomposition methods for elliptic problems [29], or proximal point strate-

gies [30], or methods that couple the solutions from overlapping domains

[41], which reduce their applicability.

The accuracy of dual decomposition and subgradient techniques strongly

depend on the step-size control, while the accuracy of proximal point and

smoothing techniques depend on the regularisation and smoothing param-

eters, which are problem dependent and not always easy to choose. Also,
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and from the experience of the authors, Benders methods have slow converge

rates in non-linear optimisation problems due to the outer-linearisation pro-

cess. These facts have motivated the development of the method presented

here, which is specially suited for nonlinear optimisation, and in particular

exploits the structure of the problems encountered in engineering applica-

tions. We aim to solve a convex optimisation problems that can be written

in the following form:

λ∗ = max
x1,x2,λ

λ

f1(x1, λ) = 0 (1.2.7a)

f2(x2, λ) = 0 (1.2.7b)

g1(x1) + g2(x2) = 0 (1.2.7c)

x1 ∈ K1 ⊆ <n1 , x2 ∈ K2 ⊆ <n2 , λ ∈ <, (1.2.7d)

where f1 : <n1 × < → <m1 ,f2 : <n2 × < → <m2 , g1 : <n1 → <m and

g2 : <n2 → <m are given affine functions, and K1, K2 are nonempty closed

convex sets.

The optimisation problem in (1.2.7) has one important feature, which is

a requirement of the method presented here: the objective function con-

tains one scalar variable λ. We remark though that other problems with

more complicated objectives may be also posed in the form given above,

and therefore may be also solved with the method proposed in this thesis.

We also point out that this particular form is a common feature in some

problems in engineering such as limit analysis [33, 35, 37] or general plastic

analysis [29, 30, 31], where λ measures the bearing capacity of a structure

or the dissipation power when it collapses. The primal problem in (1.2.7)

is written as a maximisation of the objective function, in agreement with

the engineering applications, but in contrast to the standard notation in

optimisation. We will keep the form in (1.2.7), but of course, the algorithm

explained in this thesis may be also described using standard notation.

The main contributions of the thesis are: (i) rewriting the constraints in

(1.2.7) as the intersection of appropriate sets, (ii) decomposing this form of

the algorithm into a master problem and two subproblems, (iii) applying

some results of proximal point theory to this new form of the optimisation

problem, and (iv) proposing efficient algorithmic strategies to iteratively

solve the decomposition algorithm. We prove the convergence properties of

the algorithm, and numerically test its efficiency.
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The structure of the thesis is as follows. Some requisite background re-

sults are presented in Chapter 2. Chapter 3 describes some common method-

ologies to decompose general optimisation problems, and to particularise

them to the problems encountered in limit analysis, which have the struc-

ture of second order conic programming. Chapter 4 address the main con-

tributions and numerical results. Chapter 5 presents the main conclusions

and future work.





2
Cone Programs

Here is the definition of a cone program, in a somewhat more general

format than we would need for our work. This will introduce symmetry

between the primal and the dual program.

Remark 2.1 Refer to Appendix B for definition of cone.

Definition 2.1 Let K ⊂ <n, L ⊂ <m be closed convex cones, b ∈ <m,

c ∈ <n, A : <n → <m a linear operator. A cone program is a constrained

optimisation problem of the form:

min
x
c · x

Ax− b ∈ L
x ∈ K.

(2.0.1)

For L = {0}, we get cone programs in equality form.

Following the linear programming case, we call the cone program feasible

if there is some feasible solution, a vector x̄ with Ax̄− b ∈ L, x̄ ∈ K. The

value (optimal value) of a feasible cone program is defined as

inf{c · x : Ax− b ∈ L, x ∈ K}, (2.0.2)

which includes the possibility that the value is +
¯
∞.

An optimal solution is a feasible solution x∗ such that c ·x∗ ≤ c ·x for all

feasible solutions x. Consequently, if there is an optimal solution, the value

of the cone program is finite, and that value is attained, meaning that the

infinitum (2.0.2) is a minimum.

27
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2.1. Cone Programming Duality

For this section, let us call the cone program (2.0.1) the primal program

and name it (P ):
(P ) min

x
c · x

Ax− b ∈ L
x ∈ K.

(2.1.1)

Then we define its dual as the cone program

(D) max
y
b · y

c−ATy ∈ K∗

y ∈ L∗.
(2.1.2)

Formally, this does not have the cone program format (2.0.1), but we

could easily achieve this if necessary by rewriting (D) as follows.

(D) min
y
− b · y

c−ATy ∈ K∗

y ∈ L∗,
(2.1.3)

where K∗ and L∗ are the dual sets of K and L respectively, (see Appendix

B for definition of dual set).

Having done this, we can also compute the dual of (D) which takes us

(not surprisingly) back to (P ).

For the dual program (D) which is now a maximisation problem, value

(optimal value) is defined through suprimum in the canonical way.

The primal and dual problem are related via the Weak Duality Theorem

that has several useful consequences.

Theorem 2.1 (Weak Duality). If x is feasible in (P ) and y is feasible in

(D), then the objective function of (P ) evaluated at x is not less than the

objective function of (D) evaluated at y.

Proof 1 To demonstrate this result, one need only remember the definition

of dual cone. Since x ∈ K and c−ATy ∈ K∗ then we have

x · (c−ATy) ≥ 0⇒ (Ax) · y ≤ cx. (2.1.4)
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On the other hand, since y ∈ L∗ and Ax− b ∈ L then

(Ax− b) · y ≥ 0⇒ b · y ≤ (Ax) · y, (2.1.5)

consequently, in view of (2.1.4) and (2.1.5) we have

b · y ≤ c · x.

�

One consequence is that any feasible solution of (D) provides a lower

bound on the optimal value of (P ); and any feasible solution of (P ) provides

an upper bound on the optimal value of (D). This can be useful in es-

tablishing termination or error control criteria when devising computational

algorithms addressed to (P ) and (D) ; if at some iteration feasible solutions

are available to both (P ) and (D) that are close to one another in value,

then they must be close to being optimal in their respective problems.

From Theorem 2.1, it also follows that (D) must be infeasible if the

optimal value of (P ) is −∞ and, similarly, (P ) must be infeasible if the

optimal value of (D) is +∞.

Definition 2.2 An interior point (or Slater point) of the cone program

(2.0.1) is a point x ∈ K with the property that

Ax− b ∈ int(L).

Let us remind the reader that int(L) is the set of all points of L that have

a small ball around it that is completely contained in L.

Theorem 2.2 (Strong Duality). If the primal program (P ) is feasible, has

finite optimal value γ, and has an interior feasible point x0, then the dual

program (D) is feasible and has finite optimal value β = γ.

Proof 2 See [27].

The strong Duality Theorem 2.2 is not applicable if the primal cone pro-

gram (P ) is in equality form (L = {0}), since the cone L = {0} has no

interior points. But there is a different variant constraint qualification that

we can use in this case.
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Theorem 2.3 If the primal program

(P ) min
x
c · x

Ax− b = 0

x ∈ K,

is feasible, has finite value γ and has a point x0 ∈ int(K) such that Ax0 = b,

the dual program

(D) max
y
b · y

c−ATy ∈ K∗,

is feasible and has finite value β = γ.

Proof 3 See [27].

We remark that for general L, just requiring a point x0 ∈ int(K) with

Ax0 − b ∈ L is not enough to achieve strong duality.

In the next section, we consider the problem of finding a best approxima-

tion pair, i.e., two points which achieve the minimum distance between two

closed convex sets in <n. The method under consideration is termed AAR

for averaged alternating reflections and produces best approximation pairs

provided that they exist.

2.2. Method of Averaged Alternating Reflection

(AAR Method)

2.2.1. Best Approximation Operators

Definition 2.3 Let C be a subset of <n, let x ∈ <n, and let p ∈ C. Then

p is a best approximation to x from C (or a projection of x onto C) if

‖x− p‖ = dC(x) := inf{‖z − x‖ : z ∈ C}. (2.2.1)

If every point in <n has at least one projection onto C, then C is prox-

imal. If every point in <n has exactly one projection onto C, then C is a

Chebyshev set. In this case, the projector (or projection operator) onto C

is the operator, denoted by PC , that maps every point in <n to its unique

projection onto C.
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Theorem 2.4 Let C be a nonempty closed convex subset of <n. Then C is

a Chebyshev set and, for every x and p in <n,

p = Pcx⇔ [p ∈ C and (∀y ∈ C), (x− p) · (y − p) ≤ 0]. (2.2.2)

Proof 4 See [24].

3.2 Best Approximation Properties 47

which establishes the characterization. ⊓⊔

•

•

•

C

x

y

p

Fig. 3.1 Projection onto a nonempty closed convex set C in the Euclidean plane. The

characterization (3.6) states that p ∈ C is the projection of x onto C if and only if the
vectors x− p and y − p form a right or obtuse angle for every y ∈ C.

Remark 3.15 Theorem 3.14 states that every nonempty closed convex set
is a Chebyshev set. Conversely, as seen above, a Chebyshev set must be
nonempty and closed. The famous Chebyshev problem asks whether every
Chebyshev set must indeed be convex. The answer is affirmative if H is finite-
dimensional (see Corollary 21.13), but remains an open problem otherwise.
For a discussion, see [100].

The following example is obtained by checking (3.6) (further examples will
be provided in Chapter 28).

Example 3.16 Let C = B(0; 1). Then

(∀x ∈ H) PCx =
1

max{‖x‖, 1} x. (3.9)

Proposition 3.17 Let C be a nonempty closed convex subset of H, and let
x and y be in H. Then Py+Cx = y + PC(x− y).
Proof. It is clear that y+PC(x− y) ∈ y+C. Using Theorem 3.14, we obtain

(∀z ∈ C) 〈(y + z)− (y + PC(x− y)) | x− (y + PC(x− y)〉
= 〈z − PC(x− y) | (x− y)− PC(x − y)〉
≤ 0,

Figure 2.1.: Projection onto a nonempty closed convex set C in the Eu-

clidean plane. The characterization (2.2.2) states that p ∈ C is

the projection of x onto C if and only if the vectors x− p and

y−p form a right or obtuse angle for every y ∈ C.([6],page 47)

Remark 2.2 Theorem 2.4 states that every nonempty closed convex set is

a Chebyshev set.

Example 2.1 Let C = {x : ‖x‖ ≤ 1}. Then

(∀x ∈ <n) PCx =
1

max{‖x‖, 1}x. (2.2.3)

A natural extension of the Definition 2.3 is to find a best approximation

pair relative to (C,W ) where C and W are subsets of <n. i.e., to

find (c̄, w̄) ∈ C ×W such that ‖c̄− w̄‖ = inf
c∈C
w∈W

‖c−w‖ := d(C,W ).

(2.2.4)
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If W = {w}, (2.2.4) reduces to (2.2.1) and its solution is PCw. On the

other hand, when the problem is consistent, i.e., W ∩ C 6= ∅, then (2.2.4)

reduces to the well-known convex feasibility problem for two sets [5, 18] and

its solution set is {(x,x) ∈ <n×<n|x ∈ W ∩C}. The formulation in (2.2.4)

captures a wide range of problems in applied mathematics and engineering

[17, 28, 43].

2.2.2. Nonexpansive Operators

Nonexpansive operators play a central role in applied mathematics, be-

cause many problems in nonlinear analysis reduce to finding fixed points of

nonexpansive operators. In this section, we discuss nonexpansiveness and

several variants. The properties of the fixed point sets of nonexpansive op-

erators are investigated, in particular in terms of convexity.

Definition 2.4 Let D be a nonempty subset of <n and let T : D → <n.

Then T is

(i) firmly nonexpansive if

(∀x ∈ D), (∀y ∈ D) : ‖T (x)− T (y)‖2+‖(I − T )(x)− (I − T )(y)‖2

≤ ‖x− y‖2,

(ii) nonexpansive if

(∀x ∈ D), (∀y ∈ D) : ‖T (x)− T (y)‖ ≤ ‖x− y‖.

It is clear that firm nonexpansiveness implies nonexpansiveness.

Proposition 2.1 Let C be a nonempty closed convex subset of <n. Then

(i) the projector PC is firmly nonexpansive,

(ii) 2PC − I is nonexpansive.

See [6] for a proof of this lemma. The transformation 2PC − I is named

the reflection operator with respect to C and will be denoted by RC . See

Figure 2.2 for an illustration of the reflection operator .
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Figure 2.2.: Illustration of reflection operator, RC = 2PC − I.

Definition 2.5 The set of fixed points of an operator T : X → X is denoted

by Fix T , i.e.,

Fix T = {x ∈ X|T (x) = x}. (2.2.5)

It is convenient to introduce the following sets, which we will use through-

out this section,

C = Z −W = {z −w|z ∈ Z,w ∈ W},
v = PC(0), G = W ∩ (Z − v), H = (W + v) ∩ Z,

(2.2.6)

where Z and W are nonempty closed convex subsets of <n and Z −W
denotes the closure of Z −W . See Appendix B for a brief introduction to

convex sets.

Note also that if W ∩ Z 6= ∅, then G = H = W ∩ Z. However, even

when W ∩ Z = ∅, the sets G and H may be nonempty and they serve as

substitutes for the intersection. In words, vector v joins the two sets Z and

W at the point that are at the minimum distance and ‖v‖ measures the gap

between the sets W and Z.

Proposition 2.2 From the definitions in (2.2.5)-(2.2.6), the following iden-

tities hold:

(i) ‖v‖ = inf ‖W − Z‖.

(ii) G = Fix (PWPZ) and H = Fix (PZPW ).

(iii) G+ v = H.
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The proof can be found in [4], Section 5.

Proposition 2.3 Suppose that (wn)n∈N and (zn)n∈N are sequences in W

and Z, respectively. Then

zn −wn → v ⇐⇒ ‖zn −wn‖ → ‖v‖.

Also, assume that zn −wn → v. Then the following identities hold:

(i) zn − PW (zn)→ v, and PZ(wn)−wn → v.

(ii) The weak cluster points of (wn)n∈N and (PW (zn))n∈N (resp.(zn)n∈N
and (PZ(wn))n∈N ) belong to G (resp.H). Consequently, the weak clus-

ter points of the sequences

((wn, zn))n∈N , ((wn), PZ(wn))n∈N ((PW (zn), zn)n∈N )

are best approximation pairs relative to (W,Z).

(iii) If G = ∅ or, equivalently, H = ∅, then

min{‖wn‖, ‖zn‖, ‖PW (zn)‖, ‖PZ(wn)‖} → ∞.

These results are proved in [7].

Proposition 2.4 Let T1 : <n → <n and T2 : <n → <n be firmly nonexpan-

sive and set

T3 =
(2T1 − I)(2T2 − I) + I

2
.

Then the following results hold:

(i) T3 is firmly nonexpansive.

(ii) Fix T3 = Fix (2T1 − I)(2T2 − I).

2.2.3. Averaged Alternating Reflections (AAR)

Definition 2.6 We define the so-called Averaged Alternating Reflections

(AAR) operator, denoted by T and given by,

T =
RWRZ + I

2
, (2.2.7)
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with RW and RZ the reflection operations illustrated in Figure 2.2.

Note that throughout this section, we assume thatW and Z are nonempty

closed convex subsets of <n.

In view of Proposition 2.1 and 2.4, and since RZ and RW are firmly

nonexpansive, we infer that T is firmly nonexpansive and

Fix T = Fix RWRZ .

Proposition 2.5 Let W and Z be nonempty closed convex subsets of <n
and let T be the operator in (2.2.7). Then the following results hold:

(i) I − T = PZ − PWRZ .

(ii) W ∩ Z 6= ∅ if and only if Fix T 6= ∅.

Proof 5 (i):

T =
RWRZ + I

2
=

2PWRZ −RZ + I

2
=

2PWRZ − 2PZ + I + I

2
= PWRZ − PZ + I ⇒ I − T = PZ − PWRZ .

(ii): Assume that x ∈ W ∩ Z. Clearly, we then have that PW (x) = x and

PZ(x) = x, which in turn imply that RW (x) = x and RZ(x) = x. Using

the definition in (2.2.7), it follows that

T (x) = x,

so that Fix T 6= ∅.
Conversely, if x ∈ Fix T , then T (x) = x, and then according to (i), we

have, that PZ(x) = PWRZ(x), and therefore PZ(x) ∈ Z and PZ(x) ∈ W ,

which is equivalent to PZ(x) ∈ W ∩ Z. �

We now recall the well known convergence results for the method of Av-

eraged Alternating Reflections (AAR).

Proposition 2.6 (Convergence of AAR method). Consider the following

successive approximation method: Take t0 ∈ <n, and set

tn = Tn(t0) = T (tn−1), n = 1, 2, . . .
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where T is defined in (2.2.7), and W,Z are nonempty closed convex subsets

of <n. Then the following results hold

(i) Fix T 6= ∅ ⇐⇒ (Tn(t0))n∈N converges to some point in Fix T.

(ii) Fix T = ∅ ⇐⇒ ‖Tn(t0)‖ → ∞, when n→∞.
(iii) (‖PZ(tn)− PWPZ(tn)‖) converges to inf ‖W − Z‖, and

(‖PZ(tn)− PWRZ(tn)‖) converges to inf ‖W − Z‖.

(iv)
‖tn‖
n
→ inf ‖W − Z‖.

Proof 6 (i) and (ii) are demonstrated in [3, 40, 12] and (iii) in [7], while

(iv) is demonstrated in [42].

We will resort to these results in Chapter 4, where decomposition tech-

nique based on the AAR method is presented.



3
Decomposition Techniques

3.1. Introduction

The size of an optimisation problem can be very large and it is not hard to

encounter practical problems with several hundred thousands of equations or

unknowns (see Table 1.1). In order to solve such problems, it is convenient

to design some special techniques. Decomposition is a general approach to

solving a problem by breaking it up into smaller ones and solving each of

the smaller ones separately, either in parallel or sequentially in conjunction

with a master problem that couples the subproblems. (When it is done

sequentially, the advantage comes from the fact that problem complexity

grows more than linearly). Decomposition in optimisation is an old idea,

and appears in the early works on large-scale linear problems (LPs) in the

1960s [23]. A good reference on decomposition methods is Chapter 6 of

Bertsekas [9]. The original primary motivation for decomposition methods

was to solve very large problems that where beyond the reach of standard

techniques, possibly using multiple processors.

The idea of decomposition comes up in the context of solving linear equa-

tions, but goes by other names such as block elimination, Schur complement

methods, or (for special cases) matrix inversion lemma (see [11]). The core

idea, i.e., using efficient methods to solve subproblems, and combining the

results in such a way as to solve the larger problem, is the same as the one

exploited here when decomposing an optimisation problem, although the

techniques are slightly different.

The original primary motivation for decomposition methods was to solve

very large problems that were beyond the reach of standard techniques,

37
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possibly using multiple processors [23, 8]. This remains a good reason to use

decomposition methods for some problems. But other reasons are emerging

as equally (or more) important. In many cases decomposition methods

yield decentralized solution methods. Even if the resulting algorithms are

slower (in some cases, much slower) than centralized methods, decentralized

solutions might be prefered for other reasons. For example, decentralized

solution methods can often be translated into, or interpreted as, simple

protocols that allow a collection of subsystems to coordinate their actions

to achieve global optimality [44].

Problems for which the variables can be decomposed into uncoupled sets

of equations are called separable. As a general example of such a problem,

suppose that variable x can be partitioned into subvectors x1,x2, · · · ,xk,
the cost function is a sum of functions of xi, and each constraint only involves

the local subvectors xi. Then, evidently we can solve each problem involving

xi separately, and re-assemble the solutions into x.

A more interesting situation occurs when there is some coupling or inter-

action between the subvectors, so the problems cannot be solved indepen-

dently. For these cases there are techniques that solve the overall problem

by iteratively solving a sequence of smaller problems. There are many ways

to do this. In this Chapter we review some well-known decomposition tech-

niques [19, 8, 23] and illustrate their efficiency with some simple examples

and some problems in limit analysis. These results will motivate the pro-

posed method in Chapter 4.

The efficiency and applicable of a decomposition technique depends on

the structure of the problem at hand. Two basic structures arise in prac-

tice, problems with complicating constraints and problems with complicat-

ing variables structures to be described next.

3.1.1. Complicating Constraints

Let us assume a linear optimisation problem where the primal variables

have been partitioned into different blocks. Complicating constraints involve

variables from different blocks, which drastically complicate the solution of

the problem and prevent its solution by blocks. The following example illus-

trates how complicating constraints impede a solution by blocks. Consider
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the problem:

min
xi,yi

a1x1 +a2x2 +a3x3 +b1y1 +b2y2

a11x1 +a12x2 +a13x3 = e1

a21x1 +a22x2 +a23x3 = e2

b11y1 +b12y2 = g1

b21y1 +b22y2 = g2

d11x1 +d12x2 +d13x3 +d14y1 +d15y2 = h1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, y1 ≥ 0, y2 ≥ 0.

(3.1.1)

If the last equality is not enforced, i.e., it is relaxed, the above problem

decomposes into the following two subproblems:

Subproblem 1:

min
x1,x2,x3

a1x1 + a2x2 + a3x3

a11x1 + a12x2 + a13x3 = e1

a21x1 + a22x2 + a23x3 = e2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Subproblem 2:

min
y1,y2

b1y1 + b2y2

b11y1 + b12y2 = g1

b21y1 + b22y2 = g2

y1 ≥ 0, y2 ≥ 0

Since the last equality constraint in (3.1.1) involves all variables, prevent-

ing a solution by blocks, this equation is a complicating constraint.

Decomposition procedures are computational techniques that indirectly

consider the complicating constraints and solve a set of problems with smaller

size. The price that has to be paid for such a size reduction is the amount

of subproblems to be solved. In other words, instead of solving the original

problem with complicating constraints, two problems are solved iteratively:

a simple so-called master problem, and a set of subproblems, similar to those

included in the original one but without complicating constraints.
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3.1.2. Complicating Variables

In linear problems, the complicating variables are those variables prevent-

ing a solution of the problem by independent blocks. For instance, let us

consider the following problem:

min
xi,yi,λ

a1x1 +a2x2 +a3x3 +b1y1 +b2y2

a11x1 +a12x2 +a13x3 +d11λ = e1

a21x1 +a22x2 +a23x3 +d21λ = e2

b11y1 +b12y2 +d31λ = g1

b21y1 +b22y2 +d41λ = g2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, y1 ≥ 0, y2 ≥ 0, λ ≥ 0

If variable λ is given the fixed value λfixed ≥ 0 the problem decomposes

into the two subproblems:

Subproblem 1:

min
y1,y2

a1x1 + a2x2 + a3x3

a11x1 + a12x2 + a13x3 = e1 − d11λ
fixed

a21x1 + a22x2 + a23x3 = e2 − d21λ
fixed

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Subproblem 2:

min
y1,y2

b1y1 + b2y2

b11y1 + b12y2 = g1 − d31λ
fixed

b21y1 + b22y2 = g2 − d41λ
fixed

y1 ≥ 0, y2 ≥ 0.

In the subsequent sections we will describe some decomposition methods:

primal decomposition, dual decomposition, and Benders decomposition. We

apply these techniques to some illustrative toy problems.

Before, we introduce an iterative method for solving optimisation prob-

lems called projected subgradient method. This method will be employed

in the reminder of the present Chapter.
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3.2. Projected Subgradient Method

We aim to solve the following constrained optimisation problem:

min
x
f(x)

x ∈ C,
where f : Rn → R, and C ⊆ Rn are convex. The projected subgradient

method consists on given a feasible candidate xk, obtain a feasible next

iterate xk+1 as,

xk+1 = P(xk − αkgk), (3.2.1)

where P is an operator that projects its argument on C, and gk ∈ ∂f(xk),

with ∂f(xk) the set of all subgradients of function f at point xk. For

instance if C is the set of linear equality constraints, that is C = {x|Ax =

b}, then the projection of z onto C reads,

P(z) = z −AT (AAT )−1(Az − b)
= (I−AT (AAT )−1A)z + AT (AAT )−1b.

(3.2.2)

In this case, after using Axk = b, the update process in (3.2.1) yields,

xk+1 = P(xk − αkgk)
= xk − αk(I−AT (AAT )−1A)gk,

where αk is a step size. There are some rules for choosing appropriately αk
which will be considered below.

Note that if P is the identity projection, then the method turns into the

subgradient method, which does not enforce the feasibility of xk+1.

3.3. Decomposition of Unconstrained Problems

3.3.1. Primal Decomposition

We will consider the simplest possible case, an unconstrained optimisa-

tion problem that splits into two subproblems. (But note that the most

impressive applications of decomposition occur when the problem is split

into many subproblems.) In our first example, we consider an unconstrained

minimization problem, of the form :

min
x
f(x) = min

x1,x2,y
f1(x1,y) + f2(x2,y) (3.3.1)



42 CHAPTER 3. DECOMPOSITION TECHNIQUES

where the variable is x = (x1,x2,y). Although the dimensions do not

matter here, it is useful to think of x1 and x2 as having relatively high

dimension, and y having relatively small dimension. The objective is almost

block separable in x1 and x2; indeed, if we fix the subvector y, the problem

becomes separable in x1 and x2, and therefore can be solved by solving the

two subproblems independently. For this reason, y is called the complicating

variable, because when it is fixed, the problem splits or decomposes. In

other words, the variable y complicates the problem. It is the variable that

couples the two subproblems. We can think of x1(x2) as the private variable

or local variable associated with the first (second) subproblem, and y as the

public variable or interface variable or boundary variable between the two

subproblems. Indeed, by rewriting (3.3.1) as:

min
y

(
min
x1

f1(x1,y) + min
x2

f2(x2,y)

)
, (3.3.2)

we observe that the problem becomes separable when y is fixed. This sug-

gests a method for solving the problem (3.3.1). Let gi(y) denote the inner

optimum in the previous expression,

gi(y) = min
xi

fi(xi,y) (i = 1, 2). (3.3.3)

Note that if f1 and f2 are convex, so are g1 and g2. We refer to (3.3.3)

as subproblem(i), (i = 1, 2).

Then the original problem in (3.3.1) is equivalent to the following master

problem:

min
y
g1(y) + g2(y).

If the original problem is convex, so is the master problem. The variables

of the master problem are the complicating or coupling variables of the

original problem. The objective of the master problem is the sum of the

optimal values of the subproblems.

A decomposition method solves the problem (3.3.1) by solving the mas-

ter problem, using an iterative method such as the subgradient method de-

scribed in Section 3.2. Each iteration requires solving the two subproblems

in order to evaluate g1(y) and g2(y) and their gradients and subgradients.

This can be done in parallel, but even if it is done sequentially, there will be
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substantial savings if the computational complexity of the problems grows

more than linearly with problem size.

Lets see how to evaluate a subgradient of g1 at y, assuming the problem

is convex. We first solve the associated subproblem, i.e., we find x̄1(y) that

minimizes f1(x1,y). Thus, there is a subgradient of f1 of the form (0, q1),

and not surprisingly, q1 is a subgradient of g1 at y. We can carry out

the same procedure to find a subgradient q2 ∈ ∂g2(y). Then q1 + q2 is a

subgradient of g1 + g2 at y.

We can solve the master problem by a variety of methods, including

subgradient method (if the functions are nondifferentiable). This basic de-

composition method is called primal decomposition because the master al-

gorithm manipulates (some of the) primal variables.

When we use a subgradient method to solve the master problem, we

obtain the following primal decomposition algorithm:

Repeat

• Solve the subproblems in (3.3.3), possibly in parallel. Set y = yk.

– Find x̄1 that minimizes f1(x1,y
k), and a subgradient q1 ∈ ∂g1(yk).

– Find x̄2 that minimizes f2(x2,y
k), and a subgradient q2 ∈ ∂g2(yk).

• Update complicating variable,

yk+1 = yk − αk(qk1 + qk2).

Here αk is a step length that can be chosen in any of the standard

ways [9].

When a subgradient method is used for the master problem, and both g1

and g2 are differentiable, the update has a very simple interpretation. We

interpret q1 and q2 as the gradients of the optimal value of the subproblems,

with respect to the complicating variable y. The update simply moves the

complicating variable in a direction of improvement of the overall objective.

The basic primal decomposition method described above can be extended

in several ways. We can add separable constraints, i.e., constraints of the

form x1 ∈ C1 and x2 ∈ C2. In this case (and also, in the case when domfi
is not all vectors) we have the possibility that gi(y) = ∞ (i.e., y /∈ domgi)

for some choices of y. In this case we find a cutting-plane that separates y

from dom gi, to use in the master algorithm.
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3.3.2. Dual Decomposition

We can apply decomposition to the problem (3.3.1) after introducing

some new variables, and working with the dual problem. We first rewrite

the problem as

min
x1,x2,y

f1(x1,x2,y) + f2(x1,x2,y) = min
x1,x2,y1=y2

f1(x1,y1) + f2(x2,y2)

We have introduced a local version of the complicating variable y, along

with a consistency constraint that requires the two local versions to be equal.

Note that the objective is now separable, with the variable partition (x1,y1)

and (x2,y2). Now we form the dual problem. The Lagrangian is equal to:

L(x1,y1,x2,y2,v) = f1(x1,y1) + f2(x2,y2) + v · (y1 − y2)

= f1(x1,y1) + f2(x2,y2) + v · y1 − v · y2,

which is separable. The dual function is given by

q(v) = q1(v) + q2(v),

where

q1(v) = inf
x1,y1

f1(x1,y1) + v · y1,

q2(v) = inf
x2,y2

f2(x2,y2)− v · y2.
(3.3.4)

Note that q1 and q2 can be evaluated completely independently, e.g, in

parallel. The dual problem reads:

max
v

q1(v) + q2(v), (3.3.5)

with the dual variable v. This is the master problem in dual decomposition.

The master algorithm solve this problem using a subgradient method or

other methods.

To evaluate a subgradient of −q1 or −q2 is easy. We find x̄1 and ȳ1 that

minimize f1(x1,y1)+v ·y1 over x1 and y1. Then a subgradient of −q1 at v

is given by −ȳ1. Similarly, if x̄2 and ȳ2 minimize f2(x2,y2)−v ·y2 over x2

and y2 , then a subgradient of −q2 at v is given by ȳ2. Thus, a subgradient

of the negative dual function −q is given by ȳ2− ȳ1, which is nothing more

than the consistency constraint residual.

If we use a subgradient method to solve the master problem, the dual

decomposition algorithm has the following form:

Repeat
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• Solve the subproblems in (3.3.4), possibly in parallel. Set v = vk.

– Find xk1 and yk1 that minimize f1(x1,y1) + vk · y1.

– Find xk2 and yk2 that minimize f2(x2,y2)− vk · y2.

• Update dual variables.

vk+1 = vk + βk(yk1 − yk2).

Here βk is a step size which can be chosen in several ways.

If the dual function q is differentiable, then we can choose a constant step

size, provided it is small enough. Another choice in this case is to carry out

a line search on the dual objective. If the dual function is nondifferentiable,

we can use a diminishing nonsummable step size, such as βk = α
k [8], which

satisfies the following properties.

lim
k→∞

βk = 0,

∞∑

k=1

βk =∞.

At each step of the dual decomposition algorithm, we have a lower bound

on P ∗, the optimal value of the original problem, given by

P ∗ ≥ q(v) = f1(x1,y1) + v · y1 + f2(x2,y2)− v · y2,

where x1, y1, x2 and y2 are the iterates. Generally, the iterates are not

feasible for the original problem, i.e., we have y2 − y1 6= 0. (If they are

feasible, we have maximized q.) A reasonable guess of a feasible point can be

constructed from this iterate as (x1, ȳ), (x2, ȳ), where ȳ =
(y1+y2)

2 . In other

words, we replace y1 and y2 (which are different) with their average value.

(The average is the projection of (y1,y2) onto the feasible set y1 = y2).

This gives an upper bound on P ∗, given by P ∗ ≤ f1(x1, ȳ) + f2(x2, ȳ).

A better feasible point can be found by replacing y1 and y2 with their

average, and then solving the two subproblems (3.3.3) encountered in primal

decomposition, i.e., by evaluating g1(ȳ) + g2(ȳ). This gives the bound

P ∗ ≤ g1(ȳ) + g2(ȳ).

There is one subtlety in dual decomposition. Even if we do find the

optimal dual solution v∗, there is the question of finding the optimal values
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of x1, x2, and y. When f1 and f2 are strictly convex, the points found in

evaluating q1 and g2 are guaranteed to converge to optimal, but in general

the situation can be more difficult. (For more on finding the primal solution

from the dual, see ([11], section 5.5.5).

As in the primal decomposition method, we can encounter infinite values

for the subproblems. In dual decomposition, we can have qi(v) = ∞. This

can occur for some values of v, if the functions fi grow only linearly in yi. In

this case we generate a cutting-plane that separates the current price vector

from domgi(ȳ), and use this cutting-plane to update the price vector.

3.4. Decomposition with General Constraints

Up to now, we have considered the case where two problems are separable,

except for some complicating variables that appear in both problems. We

can also consider the case where the two subproblem are coupled through

constraints that involve both set of variables. As a simple example, suppose

our problem has the form :

min f1(x1) + f2(x2)

x1 ∈ C1, x2 ∈ C2

h1(x1) + h2(x2) ≤ 0.

(3.4.1)

Here C1 and C2 are feasible sets of the subproblems. The function h1 :

<n → <p and h2 : <n → <p have components that are convex. The

subproblems are coupled through p constraints that involve both x1 and

x2. We refer to these as complicating constrains (since without them, the

problem involving x1 and x2 can be solved separately).

3.4.1. Primal Decomposition

To use primal decomposition, we can introduce a variable t ∈ <p that

represent the amount of the resources allocated to the first subproblem. As

a result, −t is allocated to the second subproblem. Then subproblems are,

min
xi
fi(xi)

hi(xi) ≤ (−1)i+1t (i = 1, 2),

xi ∈ Ci.
(3.4.2)
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Let gi(t) denote the optimal value of the subproblem (3.4.2). Evidently

the original problem (3.4.1) is equivalent to the master problem of

min
t
g(t) = g1(t) + g2(t),

over the allocation vector t. Subproblems in (3.4.2) can be solved separately,

when t is fixed.

We can find a subgradient for the optimal value of each subproblem from

an optimal dual variable associated with the coupling constraints. Let p(z)

be the optimal value of the convex optimisation problem

p(z) = min
x

f(x)

h(x) ≤ z
x ∈ X, (X is a closed convex set),

and suppose ẑ ∈dom(p). Let µ̂ be an optimal dual variable associated with

the constraint h(x) ≤ ẑ. Then, −µ̂ is a subgradient of p(z) at ẑ. To see

this, we consider the value of p at an arbitrary point z such that z ∈dom(p):

p(z) = max
µ≥0

min
x∈X

(f(x) + µ · (h(x)− z))

≥ min
x∈X

(f(x) + µ̂ · (h(x)− z))

= min
x∈X

(f(x) + µ̂ · (h(x)− ẑ − z + ẑ))

= min
x∈X

(f(x) + µ̂ · (h(x)− ẑ)) + µ̂ · (ẑ − z)

= p(ẑ) + (−µ̂) · (z − ẑ).

It follows that −µ̂ is a subgradient of p at ẑ (see[8]). Consequently, in

order to find a subgradient of g, we solve the two subproblems, we find the

optimal vectors x1 and x2, as well as the optimal dual variables µ1 and µ2,

associated with the constraints h1(x1) ≤ t and h2(x2) ≤ −t, respectively.

Then we have that µ2 − µ1 ∈ ∂g(t). It is also possible that t /∈ dom(g). In

this case we can generate a cutting plane that separates t from dom(g), for

use in the master algorithm.

Primal decomposition, using a subgradient method algorithm, can be

achieved following the next steps:

Repeat

• Solve the subproblems in (3.4.2), possibly in parallel.
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– Find an optimal x1 and µk1.

– Find an optimal x2 and µk2.

• Update resource allocation,

tk+1 = tk − αk(µk2 − µk1).

with αk an appropriate step size. At every step of this algorithm we

have points that are feasible for the original problem.

3.4.2. Dual Decomposition

Dual decomposition for this example is straightforward. We form the

partial Lagrangian,

L(x1,x2;µ) = f1(x1) + f2(x2) + µ · (h1(x1) + h2(x2))

= (f1(x1) + µ · h1(x1)) + (f2(x2) + µ · h2(x2)),

which is separable for a some µ, so we can minimize over x1 and x2 sepa-

rately, given the dual variable µ to find q(µ) = q1(µ) + q2(µ). For example,

to find qi(µ); (i = 1, 2), we solve the subproblem

qi(µ) = min fi(xi) + µ · hi(xi)
xi ∈ Ci.

(3.4.3)

A subgradient of q at µ is h1(x1) + h2(x2), where x1 and x2 are any

solutions of subproblems. The master algorithm updates µ based on this

subgradient.

If we use a projected subgradient method to update µ we get a very

simple algorithm.

Repeat

• Solve the subproblems in (3.4.3), possibly in parallel.

– Find an optimal xk1

– Find an optimal xk2

• Update dual variables:

µk+1 = (µk + βk(h1(xk1) + h2(xk2)))+.
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At each step we have a lower bound on P ∗, given by

q(µ) = q1(µ) + q2(µ) = f1(x1) + f2(x2) + µ · (h1(x1) + h2(x2)).

The iterates in the dual decomposition method need not be feasible, i.e.,

we can have h1(x1) + h2(x2) ≤ 0. At the cost of solving two additional

subproblems, however, we can (often) construct a feasible set of variables,

which will give us an upper bound on P ∗. When h1(x1) + h2(x2) � 0, we

define

t =
h1(x1)− h2(x2)

2
, (3.4.4)

and solve the primal subproblems (3.4.2). As in primal decomposition, it

can happen that t /∈ domg. But when t ∈ domg, this method gives a feasible

point, and an upper bound on P ∗.

Note that for the dual problem we can find a subgradient as follows.

Consider the following optimisation problem in general:

min
x

f(x)

g(x) ≤ 0

h(x) = 0

x ∈ X, X is a nonempty set.

Its dual problem is given by,

max
µ,λ

q(µ,λ)

µ ≥ 0,λ free,

where q(µ,λ) is defined as follows:

q(µ,λ) = min
x∈X

L(x;µ,λ)

with

L(x;µ, λ) = f(x) + µ · g(x) + λ · h(x) = f(x) +

{
µ

λ

}
·
{
g(x)

h(x)

}
.

Assume that for (µ̂, λ̂), some vector x̂ minimizes L(x, µ̂, λ̂) over X that

is:

q(µ̂, λ̂) = min
x∈X

L(x; µ̂, λ̂) = f(x̂) +

{
µ̂

λ̂

}
·
{
g(x̂)

h(x̂)

}
,
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then we have:

q(µ,λ) ≤ f(x̂) +

{
µ

λ

}
·
{
g(x̂)

h(x̂)

}

= f(x̂) +

{
µ

λ

}
·
{
g(x̂)

h(x̂)

}
+

{
µ̂

λ̂

}
·
{
g(x̂)

h(x̂)

}
−
{
µ̂

λ̂

}
·
{
g(x̂)

h(x̂)

}

= q(µ̂, λ̂) +

{
g(x̂

h(x̂

}
· (
{
µ

λ

}
−
{
µ̂

λ̂

}
).

It means that: {
g(x̂)

h(x̂)

}
∈ ∂q(µ̂, λ̂).

Except for the details of computing the relevant subgradients, primal

and dual decomposition for problems with coupling variables and coupling

constraints seem quite similar. In fact, we can readily transform each into the

other. For example, we can start with the problem with coupling constraints

(3.4.1), and introduce new variables y1 and y2, that bound the subsystem

coupling constraint functions, to obtain

min
x1,y1,x2,y2

f1(x1) + f2(x2)

h1(x1) ≤ y1

h2(x2) ≤ y2

y1 + y2 = 0

x1 ∈ C1, x2 ∈ C2.

(3.4.5)

We now have a problem that is separable, except for a consistency con-

straint, that requires two (vector) variables of the subproblems to be equal.

Any problem that can be decomposed into two subproblems that are

coupled by some common variables, or equality or inequality constraints,

can be put in this standard form, i.e., two subproblems that are independent

except for one consistency constraint, that requires a subvariable of one to

be equal to a subvariable of the other. Primal or dual decomposition is then

readily applied; only the details of computing the needed subgradients for

the master problem vary from problem to problem.
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3.5. Decomposition with Linear Constraints

In this section we apply decomposition methods described previously for

a toy linear problem and we compare our results for different choices of the

step sizes (α or β).

3.5.1. Splitting Primal and Dual Variables

Let us consider the parallelisation of the following linear optimisation

problem:

(P ) c · x∗ = min
x
c · x

Ax = b

x ≥ 0,

(3.5.1)

whose dual is:

(D) b · y∗ = max
y
b · y

ATy ≤ c.

3.5.2. Primal Decomposition

We split the primal x variables as x = (x1,x2) which allows us to rewrite

the problem in (3.5.1) as,

min
x1,x2

c1 · x1 + c2 · x2

A1x1 + A2x2 = b = b1 + b2

x1 ≥ 0 , x2 ≥ 0.

(3.5.2)

The problem above is equivalent to

min
t

min
x1,x2

c1 · x1 + c2 · x2

A1x1 − t = b1

A2x2 + t = b2

x1 ≥ 0, x2 ≥ 0, t is free.

(3.5.3)

This problem can be written as mint f1(t) + f2(t) where f1(t) and f2(t)
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are the solution of the following subproblems:

f1(t) = min
x1

c1 · x1 f2(t) = min
x2

c2 · x2

A1x1 = b1 + t A2x2 = b2 − t
x1 ≥ 0, x2 ≥ 0,

(3.5.4)

the Lagrangian functions of these subproblems are given by:

L1(x1, t;y1,w1) = c1 · x1 + y1 · (b1 + t−A1x1)−w1 · x1,

L2(x2, t;y2,w2) = c2 · x2 + y2 · (b2 − t−A2x2)−w2 · x2.

For a fixed master variables t, the optimum values of the slave variables xi
may be obtained as the solution of the following two subproblems, (i = 1, 2),

fi(t) = min
xi
ci · xi
Aixi = bi + (−1)i+1t

xi ≥ 0.

The Lagrangian function of problem (3.5.3) is given by:

L(x1,x2;y1,y2,w1,w2) = c1 · x1 + c2 · x2 + y1 · (b1 + t−A1x1)

+ y2 · (b2 − t−A2x2)−w1 · x1 −w2 · x2

= c1 · x1 + y1 · (b1 −A1x1) + c2 · x2

+ y2 · (b2 −A1x1) + t · (y1 − y2)

= L1(x1, t;y1,w1) + L2(x2, t;y2,w2),

with

Li(xi, t;yi,wi) = ci · x1 + yi · (bi + (−1)i+1t−A1x1)−wi · xi, (i = 1, 2).

It then follows that we can rewrite the optimum primal objective c · x∗
as,

c · x∗ = c1 · x∗1 + c2 · x∗2 = min
t

2∑

i=1

min
xi

max
yi,wi

Li(xi, t;yi,wi).

After observing the equation above, we have that ∇tL = (y1−y2), which

allows us to update the master variables with the following descent method,

tk+1 = tk − αk(yk1 − yk2) = tk + αk(yk2 − yk1).
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We point out that the feasibility of the subproblems in (3.5.4) may be

affected by the value of αk. Given a descent direction yk2−yk1, the maximum

of αk that preserves the feasibility of each subproblem may be obtained by

solving the following optimisation problems, (i = 1, 2):

αki = max
α

α

Aixi = bi + (−1)i+1(tk + α(yk2 − yk1))

xi ≥ 0, α ≥ 0,

and use α = min(αk1 , α
k
2).We can set αk = bα where b is the step size

coefficient.

3.5.3. Dual Decomposition

We recall the same problem in (3.5.1) with the splitting in (3.5.2). Dual

decomposition for this example is straightforward. We form the Lagrangian

as,

L(x1,x2;y,w1,w2) = c1 · x1 + c2 · x2 + y · (b1 −A1x1 + b2 −A2x2)

−w1 · x1 −w2 · x2

= (c1 · x1 + y · (b1 −A1x1)−w1 · x1)

+ (c2 · x2 + y · (b2 −A2x2)−wT
2 x2),

so we can minimize over x1 and x2 separately given the dual variable y, to

find g(y) = g1(y) + g2(y) where g(y) is given as,

g(y) = min
x1,x2

L(x1,x2;y,w1,w2) = min
x1,x2

L1(x1;y,w1) + L2(x2;y,w2).

In order to find g1(y) and g2(y), respectively, we solve the following two

subproblems:

g1(y) = min
x1≥0

c1 · x1 + y · (b1 −A1x1) = min
x1≥0

(c1 −AT
1 y)x1 + y · b1.

g2(y) = min
x2≥0

c2 · x2 + y · (b2 −A2x2) = min
x2≥0

(c2 −AT
2 y)x2 + y · b2.

The master algorithm updates y based on subgradient as follows

yk+1 = yk + βk(b1 −A1x1 + b2 −A2x2) = yk + βk(b−Ax).
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As before, this update may yield infeasible dual variables yk+1. For this

reason, the value of βk may be found by solving the following optimisation

problems:
max
βi

0

cTi −AT
i (yk + βi(b−Ax)) ≥ 0, i = 1, 2,

and choose β = bmin(β1, β2) where b is a coefficient,(b ∈ (0, 1)). We point

out that in fact, the optimal solution of the problem above can be simply

obtained by computing βki as,

βki = min
j

(ci −AT
i y

k)j
(b−Ax)j

(3.5.5)

where (a)j denotes component j of vector a and AT
i is row i of matrix AT .

Subgradient methods are the simplest and among the most popular meth-

ods for dual optimisation. As it is known they generate a sequence of dual

feasibility points, using a single subgradient at each iteration. As explained

in previous sections, the simplest type of subgradient method is given by:

µk+1 = PX(µk + βkgk),

where gk denotes the subgradient g(xµk), PX(.) denotes projection on the

closed convex set X, and βk is a positive scalar step size. Note that when

the dual function is differentiable, the new iteration improve the dual cost

but when it is not differentiable, the new iteration may not improve the dual

cost for all values of step size; i.e. for some k, we may have

q(PX(µk + βgk)) < q(µk), ∀ β > 0.

However, if the step size is small enough, the distance of the current

iterate to the optimal solution set is reduced.

The following provides a formal proof and also provides an estimate for

the range of appropriate step sizes. We have

‖µk+1 − µ∗‖2 = ‖µk + βkgk − µ∗‖2

= ‖µk − µ∗‖2 − 2βk(µ∗ − µk)Tgk + (βk)2‖gk‖2,

and by using the subgradient inequality,

(µ∗ − µk)kgk ≥ q(µ∗)− q(µk),
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we obtain

‖µk+1 − µ∗‖2 ≤ ‖µk − µ∗‖2 − 2βk(q(µ∗)− q(µk)) + (βk)2‖gk‖2.

If −2βk(q(µ∗)− q(µk)) + (βk)2‖gk‖2 < 0 that is:

0 < βk <
2(q(µ∗)− q(µk))

‖gk‖2 ,

where q(µ∗) = q∗ is the optimal dual value, we have that:

‖µk+1 − µ∗‖ < ‖µk − µ∗‖.

In practice the value of q∗ is not known, in which case we estimate q∗

with value qk, and choose βk:

βk = γk
qk − q(µk)
‖gk‖2 + 1

0 < γ1 ≤ γk ≤ γ2 < 2, ∀ k ≥ 1.

(3.5.6)

The value qk is equal to the best function value max1≤j≤k q(µ
j) achieved

up to the kth iteration plus a positive amount δk which is adjusted based

on the progress of the algorithm, i.e. qk = max1≤j≤k q(µj) + δk.

The parameter δk is updated according to

δk+1 =

{
ρδk if q(µk+1) > qk,

max{bδk, δ} if q(µk+1) ≤ qk,
(3.5.7)

where δ, b and ρ are fixed positive constants with b < 1 and ρ ≥ 1. This step

size rule is called Dynamic step size rule [9].

3.5.4. Benders Decomposition

Benders decomposition is a method for solving certain largescale optimi-

sation problems. Instead of considering all decision variables and constraints

of a largescale problem simultaneously, Benders decomposition partitions

the problem into multiple smaller problems. Benders decomposition is a

useful technique when dealing with complication variables. We recall the
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partitioned problem in (3.5.3),

(P ) min
t

min
x1,x2

c1 · x1 + c2 · x2 (D) max
y1,y2

b1 · y1 + b2 · y2

A1x1 = b1 + t AT
1 y1 ≤ c1

A2x2 = b2 − t AT
2 y2 ≤ c2

x1 ≥ 0, x2 ≥ 0, t is free. y1 = y2.

(3.5.8)

and rewrite it as the following master problem:

min
t free

α1(t) + α2(t) = α(t)
(3.5.9)

and the two following subproblems,(i = 1, 2)

αi(t) = min
xi
ci · xi = max

yi
(bi + (−1)i+1t) · yi

Aixi = bi + (−1)i+1t ATi yi ≤ ci
xi ≥ 0 yi free.

(3.5.10)

For a given (nonoptimal) tk ∈ domα, we find optimal values xki and yki
of the subproblems in (3.5.10). Since we are minimizing on t, we have that∑

i ci · xki = α1(tk) + α1(tk) = α(tk) is an upper bound of c · x∗, i.e.

c · x∗ ≤
∑

i

ci · xi· = α1(tk) + α1(tk) = α(tk). (3.5.11)

For given values of xki and yki , we compute optimal values of the master

problem in (3.5.9), but imposing only the feasibility of the dual subproblems.

Since the dual variables yki are feasible, and the feasibility region of the dual

subproblem is independent of t, the master problem is rewritten as:

min
α1,α2,t

α1 + α2

(b1 + t) · yk1 ≤ α1

(b2 − t) · yk2 ≤ α2

t free.

(3.5.12)

Since we are minimizing on αi, and the feasibility of dual subproblems is

retained, the optimal values of (bi + (−1)i+1) · yki are lower bounds of the
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subproblems, and consequently,
∑

i αi is a lower bound of c·x∗. The process

is then stopped whenever
∑

i ci · xki −
∑

i αi ≤ TOl. The fact that
∑

i αi
is a lower bound can be also verified by analyzing the lagrangian function:

c · x∗ = max
wi,yi

min
t

min
x1,x2

ci · xi + yi · (bi −Aixi + (−1)i+1t)−wi · xi

≥ min
t

min
x1,x2

ci · xi + (bi −Aixi + (−1)i+1t) · yki − xi ·wk
i

∣∣
wk
i≥0

= min
t

(bi + (−1)i+1t) · yki
∣∣
ci≥AT

i y
k
i

.

(3.5.13)

Therefore in view of (3.5.13), we have that,

max
AT

1 y1≤c1
AT

2 y2≤c2

min
t∈domα

yi · (bi + (−1)i+1t) =

max
AT

1 y1≤c1
AT

2 y2≤c2

min
t∈domα

y1·(b1+t)≤α1

y2·(b2−t)≤α1

α1 + α2 = c · x∗ (3.5.14)

In practice, in order to increase the lower bound, the conditions in (3.5.10)

are completed for all the values of yki found throughout the iterations. This

is a relatively small increase on the size of the master problem.

3.6. Simple Linear Example

In the following, we illustrate through an example how the step size men-

tioned in the previous sections affects the progress of convergence. Let us

consider the parallelisation of the following linear optimisation problem:

min
x

[
1 1 1 1 1 1

]
x

[
4 4 3 2 1 1

1 2 3 4 1 1

]
x =

[
1

1

]

x ≥ 0.

(3.6.1)

3.6.1. Primal Decomposition

We solve this problem through primal decomposition method described in

Section 3.5.2 and update the t through subgradient method using different

step sizes αk. Figure 3.1 shows exact global optimal solution with a black
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dash line, and the global optimal solution at each iteration with squares. As

it may be observed, for b = 1 we have oscillation, and for b = 1
10 , oscillation

is removed but the rate of convergence is severely affected.
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Figure 3.1.: Convergence of global objective function using primal decom-

position for different rules of the step-size b.

3.6.2. Dual Decomposition

Now we illustrate dual decomposition explained in Section 3.5.3, with the

same example used earlier. Like in the previous example, we choose different

values for coefficient b for updating y in the master problem and compare
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with each others. Figure 3.2 shows exact global optimal solution with a
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Figure 3.2.: Convergence of global objective function using dual decomposi-

tion for different rules of the step-size b.

black dash line, and global optimal solution at each iteration with squares.

As it can be observed the convergence is strongly affected by the value of

b, the larger it is, the more oscillations are obtained, and the smaller it is,

the slower is the convergence rate. For b = 1
2 has been found a reasonable

compromise, although the value b = 1
j ensure convergence [9].

We illustrate the use of the dynamic step size rule with the same exam-

ple shown in Section 3.6. In figure 3.3 the black dash line indicates global

optimal solution for the original problem, the white squares indicate the

global optimal solution at each iteration obtained from the sum of the opti-

mal solutions of subproblems, i.e. q(µ) = q1(µ) + q2(µ), and black squares
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correspond to qk.
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Figure 3.3.: Dual decomposition using dynamic step size rule.

3.6.3. Benders Decomposition

We illustrate Benders decomposition with the same simple example in

equation (3.6.1). Figure 3.4 shows the lower bound and upper bound of

the optimal solution as a function of the number of iterations. After 10

iterations, the gap between the upper bound and lower bound is equal to

0.2e− 13.

3.7. Decomposition of Limit Analysis

Optimisation Problem

The general decomposition techniques described in the previous sections

are here adapted to optimisation problem encountered in limit analysis.
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Figure 3.4.: Evolution of upper and lower bound using Benders

decomposition.

3.7.1. Decomposition of LB Problem

As described in Chapter 1, the lower bound (LB) problem of limit analysis

may be stated as the following optimisation problem (see (1.2.5)):

min
σ,λ
− λ

Aeq1σ + F eq1 = 0

Aeq2σ = 0

Aeq3σ + λF eq3 = 0

σ ∈ B.

(3.7.1)

We translate the ideas of decomposition techniques explained in the previous

sections to (LB) problem of limit analysis.

Decomposition of LB problem corresponds to the split of the stress vari-

ables σ into two sets σ1 and σ2. In view of equation (1.2.6), it means

that the variable x = (x4,x1:3) is split into two variables x1 and x2 where

x1 = (x1
4,x

1
1:3) and x2 = (x2

4,x
2
1:3).

As described in Chapter 1 the equation Aeq1σ + λF eq1 = 0 in (1.2.5) is

related to the equilibrium constraint. In view of the structure of matrix Aeq1

in (A.1.4) and how it is built, we can decompose the matrix Aeq1 into two



62 CHAPTER 3. DECOMPOSITION TECHNIQUES

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

−t

σ1, λ1

t

σ2, λ2

Figure 3.5.: Decomposition of global problem into two subproblems. The

global variables are the boundary traction t at the fictitious

Neumann condition and global load factor λ.

matrixes Aeq1,1 and Aeq1,2. In other words the equality Aeq1σ+λF eq1 = 0

can be split into two equalities as follows:

Aeq1,1σ1 + λF eq1,1 = 0,

Aeq1,2σ2 + λF eq1,2 = 0.
(3.7.2)

The split of σ into two vectors σ1 and σ2, it leads to the decomposition

of the domain into two parts, with a common boundary that couples the

common nodes. It means that the vectors σ1 and σ2 are decomposed into

two vectors σ1 = (σ1,1,σ1,2) and σ2 = (σ2,1,σ2,2) such that the vectors

σ1,1 and σ2,2 are coupled. In other words, in view of the structure of matrix

Aeq2 the equation Aeq2σ = 0 in (1.2.5), which is related to the inter-element

equilibrium constraint, can be decomposed into three equations as follows:

Aeq2,1σ1 = 0,

Aeq2,2σ2 = 0,

Beq2,1σ1 + Beq2,2σ2 = 0.

(3.7.3)

We note that the last equation in (3.7.3) is a complicating constraint.

The equation A3σ + λF eq3 = 0, in view of the structure of matrix Aeq3 in
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equation (A.3.1) can be decomposed as,

Aeq3,1σ1 + λF eq3,1 = 0,

Aeq3,2σ2 + λF eq3,2 = 0.
(3.7.4)

Consequently, we can rewrite the optimisation problem in (1.2.5) as,

min
xi,λ
− λ

(Aeq1,iP)xi4 + (Aeq1,iQ)xi1:3 + λF eq1,i = 0

(Aeq2,iP)xi4 + (Aeq2,iQ)xi1:3 = 0

(Aeq3,iP)xi4 + (Aeq3,iQ)xi1:3 + λF eq3,i = 0

Rix
i
1:3 = bi

(Beq2,1P)x1
4 + (Beq2,1Q)x1

1:3 + (Beq2,2P)x2
4 + (Beq2,2Q)x2

1:3 = 0

xi1:3 ∈ Ki,

xi4, λ are free, (i = 1, 2).
(3.7.5)

The last equation in the previous optimisation problem (3.7.5) is a com-

plicating constraint. The variables x1 and x2 can be regarded as local

variables, while the variable λ can be regarded as a global variable. In order

to decompose the problem in (3.7.5) we first introduce a variable t such that

(Beq2,1P)x1
4 + (Beq2,1Q)x1

1:3 = t,

Then, we can rewrite the optimisation problem in the following form:

min
t,xi,λ

− λ

(Aeq1,iP)xi4 + (Aeq1,iQ)xi1:3 + λF eq1,i = 0

(Aeq2,iP)xi4 + (Aeq2,iQ)xi1:3 = 0

(Aeq3,iP)xi4 + (Aeq3,iQ)xi1:3 + λF eq3,i = 0

Rix
i
1:3 = bi

(Beq2,iP)xi4 + (Beq2,iQ)xi1:3 = (−1)i+1t

xi1:3 ∈ Ki

xi4, t, λ are free, (i = 1, 2).

(3.7.6)

Note that since the complicating constraint in optimisation problem (3.7.5)

is built through the common boundary, the coupling constraint can be in-

terpreted as a fictitious Neumann condition for each subdomain.



64 CHAPTER 3. DECOMPOSITION TECHNIQUES

Let y = (t, λ), xi = (xi4, x
i
1:3) and Ci, (i = 1, 2) be local constraints that

are defined as follows:

Ci =





[
xi

y

]
:

(Aeq1,iP)xi4 + (Aeq1,iQ)xi1:3 + λF eq1,i = 0

(Aeq2,iP)xi4 + (Aeq2,iQ)xi1:3 = 0

(Aeq3,iP)xi4 + (Aeq3,iQ)xi1:3 + λF eq3,i = 0

Rix
i
1:3 = bi

(Beq2,iP)xi4 + (Beq2,iQ)xi1:3 = (−1)i+1t

xi1:3 ∈ Ki, x
i
4; t, λ are free.





(3.7.7)

Then, problem (3.7.6) reads:

min
x1,x2,y

f1(x1,y) + f2(x2,y)

(x1,y) ∈ C1, (x
2,y) ∈ C2,

(3.7.8)

where fi(x
i,y) = −λ2 .

In the above problem, The variable y is a public or so to speak a com-

plicating variable and the variable xi is called a private variable or local

variable.

We now apply primal and dual decomposition for the optimisation prob-

lem in (3.7.8).

3.7.2. Primal Decomposition (LB)

In primal decomposition, at each iteration we fix the public variable y.

Thus by fixing the variable y, the optimisation problem (3.7.8) is separable.

Each subproblem can separately find optimal values for its local variables

xi. Let us denote, qi(y) the optimal value of the following subproblem:

qi(y) = min
xi
fi(x

i,y)

(xi,y) ∈ Ci,
(3.7.9)

with variable xi, as a function of y. The original problem (3.7.8) is equiva-

lent to the primal master problem

min
y
q(y) = q1(y) + q2(y), (3.7.10)

with variable y. In order to find a subgradient of q, we find gi ∈ ∂qi(y)(which

can be done separately), then we have

g = g1 + g2.
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3.7.3. Dual Decomposition (LB)

By introducing the new variables ti, λi, yi = (ti, λi), i = 1, 2, and z =

(t, λ) we can rewrite the optmisation problem at (3.7.8) in the following

form:
min

x1,x2,y1,y2,z
f1(x1,y1) + f2(x2,y2)

y1 − z = 0

y2 − z = 0

(x1,y1) ∈ C1, (x2,y2) ∈ C2.

(3.7.11)

We form the partial Lagrangian of problem (3.7.11),

L(x1,x2,y1,y2, z;v1,v2) =f1(x1,y1) + f2(x2,y2) + v1 · (−y1 + z)+

v2 · (−y2 + z) = (f1(x1,y1)− v1 · y1)+

(f2(x2,y2)− v2 · y2) + (v1 + v2) · z,

where vi is the Lagrangian multiplier associated with yi − z = 0. To find

the dual function, we first minimize over z, which results in the condition

v1 + v2 = 0. In other words,

q(v1,v2) = min
x1,x2,y1,y2

(x1,y1)∈C1

(x2,y2)∈C2

min
z

(f1(x1,y1)− v1 · y1) + (f2(x2,y2)− v2 · y2) + (v1 + v2) · z,

then

q(v1,v2) = min
x1,y1,x2,y2

(x1,y1)∈C1

(x2,y2)∈C2

v1+v2=0

(f1(x1,y1)− v1 · y1) + (f2(x2,y2)− v2 · y2).

We define qi(v
i), (i = 1, 2) as the optimal value of the subproblem

qi(v
i) = min

xi,yi
(fi(x

i,yi)− vi · yi)

(xi,yi) ∈ Ci,
(3.7.12)

as a function of vi. A subgradient of qi at vi is just −yi, an optimal value

of yi in the subproblem (3.7.12).
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Therefore the dual of the original problem (3.7.11) is

max q(v1,v2) = q1(v1) + q2(v2)

ET

{
v1

v2

}
= 0,

with variable v1, v2 and ET = [I I]. We can solve this dual decomposition

master problem using a projected subgradient method. The projection onto

the feasible set
{

(v1,v2)|v1 + v2 = 0
}

, is using expression in (3.2.2) given

by:

P = I− E(ETE)−1ET .

It can be verified that

P

{
v1

v2

}
=

1

2

{
v1 − v2

v2 − v1

}
.

3.7.4. Benders Decomposition(LB)

As it can be verified, the lower bound (LB) problem of limit analysis

could be stated as the following structure:

min− λ
A1x1 + λF 1 = b1

A2x2 + λF 2 = b2

B1x1 + B2x2 = 0

x1 ∈ K1,x2 ∈ K2, λ is free,

(3.7.13)

where K1 and K2 are closed convex cones.

As before, we shall use a free complicating variable t to rewrite the pre-

vious equations as the following two sets of coupled equations,

min
x1,x2,λ

− λ




A1x1 + λF 1 = b1

B1x1 + t = 0

x1 ∈ K1



A2x2 + λF 2 = b2

B2x2 − t = 0

x2 ∈ K2.

(3.7.14)
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The LB optimisation problem can be then restated as the two subprob-

lems,

(Pi) min
xi

0 (Di) max(bi − λkF i) · yiλ + (−1)itk · yit
yiλ : Aixi = bi − λkF i −(AT

i yiλ + BT
i yit) ∈ K∗i

yit : Bixi = (−1)itk

xi ∈ Ki.

(i = 1, 2)

(3.7.15)

where tk and λk are the solution of the following master problem:

min
t,λ,α1,α2

− λ+ α1 + α2

α1 ≥ (b1 − λF 1) · yk1λ − t · yk1t
α2 ≥ (b2 − λF 2) · yk2λ + t · yk2t

, k = 1, 2, . . .
(3.7.16)

The inequality constraints in the previous optimisation problem are ap-

plied for all the available optimal dual variables yit and yiλ of the sub-

problems obtained by using different values of tk and λk, k = 1, 2, . . . in

subproblem (3.7.15). The initial values t0 = 0 and λ0 = 0 may be em-

ployed.

The inequality constraint αi ≥ (bi − λF i) · ykiλ + (−1)it · ykit in (3.7.16)

which is obtained by optimal dual variables yit and yiλ of subproblem

(3.7.15) is so called optimality cut. The optimality cut is obtained when

the primal subproblem (Pi) (3.7.15) is feasible and finite. If primal subprob-

lem (Pi) for (λk, tk) is not feasible then in term of the Frakas Lemma B.5,

the dual subproblem (Di) (3.7.15) is infinite, it means that, there exists ȳkit
and ȳkiλ such that

−(AT
i ȳ

k
iλ + BT

i ȳ
k
it) ∈ K∗i and (bi − λkF i) · ȳkiλ + (−1)itk · ȳkit > 0.

(3.7.17)

Since K∗i is a cone then we have

β(bi − λkF i) · ȳkiλ + β(−1)itk · ȳkit > 0, ∀β > 0,

− β(AT
i ȳ

k
iλ + BT

i ȳ
k
it) ∈ K∗i .
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Thus, when β tends to +∞, the objective function of dual subproblem

(Di) (3.7.15) tends to +∞. In other words, dual subproblem (Di) (3.7.15)

is finite if and only if

(bi − λkF i) · yiλ + (−1)itk · yit ≤ 0, when − (AT
i yiλ + BT

i yit) ∈ K∗i .

Consequently we append these constraints which are so called feasibility

cuts to the master problem to ensure that the dual is always bounded.

By modifying the primal subproblem (Pi) in (3.7.15) as follows, we obtain

either feasibility cut or optimality cut :

(Pi) : min s+
i + s−i + e ·w+

i + e ·w−i
yiλ : Aixi + s+

i F i − s−i F i = bi − λkF i

yit : BT
i xi + Iw+

i − Iw−i = (−1)itk

xi ∈ Ki, s
+
i ≥ 0, s−i ≥ 0,w+

i ≥ 0,w−i ≥ 0

(3.7.18)

(Di) : max(bi − λkF i) · yiλ + (−1)itk · yit
− (AT

i yiλ + BT
i yit) ∈ K∗i

− 1 ≤ F iyiλ ≤ 1

− e ≤ yit ≤ e

(3.7.19)

where e is a vector that all components are equal 1.

If the optimal solution of primal problem (Pi) (3.7.18) is zero, then we

have optimality cut, and if it is strictly positive, we have feasibility cuts.

The full master problem with feasibility and optimality cuts is obtained as

follows :

min
t,λ,α1,α2

− λ+ α1 + α2

α1 ≥ (b1 − λF 1) · yk1λ − t · yk1t
α2 ≥ (b2 − λF 2) · yk2λ + t · yk2t

, k = 1, 2, . . .

0 ≥ (b1 − λF 1) · ȳl1λ − t · ȳl1t
0 ≥ (b2 − λF 2) · ȳl2λ + t · ȳl2t

, l = 1, 2, . . .

(3.7.20)

Now we apply the Benders decomposition method for the following differ-

ent sizes of LB problem with the same structure defined in (3.7.13). The size

of the problems are given in Table 3.1, where n and m denote the number

of rows and and columns of matrix A in (1.2.5), and nT is the total number
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Problem n m nT
a 96 97 20

b 368 385 101

c 2240 2401 700

Table 3.1.: Size and total master iterations of each problem solved using

SDPT3 [47].

of master iterations. The problems have been solved using the optimisation

software SDPT3 [47]. Figure 3.6 shows exact global optimal solution and

optimal solution of master problem at each iteration respectively.

As it can be observed, the number of iteration increases dramatically due

to nonlinearity of the conic constraints, which can not be properly repre-

sented with the linear feasibility and optimality cuts. This fact motivates,

the use of the proposed method in the next Chapter.
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Figure 3.6.: Benders decomposition, apply to the LB limit analysis problem.



4
AAR-Based Decomposition Algorithm for

Non-linear Convex Optimisation

4.1. Alternative Definition of Global Feasibility

Region

The objective of this section is to provide a description of a decomposition

method that exploits the results of the AAR method given in Chapter 2. The

method is suitable for convex optimisation problems that have the structure

given in (1.2.7), which we aim to transform into the computation of the

minimal distance between two feasible sets. For this aim, we rewrite problem

(1.2.7) by introducing a new complicating variable t as follows:

λ∗ = max
x1,x2,λ,t

λ

f1(x1, λ) = 0

f2(x2, λ) = 0

g1(x1) = t

g2(x2) = −t
x1 ∈ K1, x2 ∈ K2, λ ∈ <.

(4.1.1)

We next define the feasibility region of this problem with the help of the

following definitions:

Definition 4.1 Consider the following two feasibility regions:

X1(λ) = {x1|f1(x1, λ) = 0} ∩K1,

X2(λ) = {x2|f2(x2, λ) = 0} ∩K2,
(4.1.2)

71
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and also let λ = λ̄ be a given real value. Then, we define the following

feasibility sets for variable t:

Z(λ̄) = g1(X1(λ̄)) = {g1(x1)|x1 ∈ X1(λ̄)},
W (λ̄) = −g2(X1(λ̄)) = {−g2(x2)|x2 ∈ X2(λ̄)}.

(4.1.3)

Throughout the subsequent sections, the sets Z(λ) and W (λ) defined in

(4.1.3) are assumed closed and convex. In addition, the functions f1,f2, g1

and g2 are affine maps.

By using definitions (4.1.2) and (4.1.3), the optimisation problem in

(4.1.1) may be recast as,

λ∗ = max
λ
λ

Z(λ) ∩W (λ) 6= ∅.
(4.1.4)

The algorithm proposed in this Chapter is based on the form (4.1.4). In

brief, the algorithm consists on updating the value of λ̄ (master problem)

and analysing in the subproblems whether the intersection between the sets

Z(λ̄) and W (λ̄) is empty or not, or equivalently, whether d(W (λ̄), Z(λ̄)) > 0.

According to the definitions in Section 2.2 we have that:

d(W (λ), Z(λ)) = inf
x1∈X1(λ)
x2∈X2(λ)

||g1(x1) + g2(x2)|| (4.1.5)

where Xi(λ), i = 1, 2 is defined in (4.1.2).

In order to determine this and compute upper bounds of the global prob-

lem in (4.1.1), we will need the following two propositions:

Proposition 4.1 Let λ0 and λ̄ be given real values such that (x01,x02, t0, λ0)

is a feasible solution for problem (4.1.1), and λ0 < λ̄. After using the defi-

nition in (4.1.3), the following relation holds:

Z(λ̄) ∩W (λ̄) 6= ∅ ⇐⇒ λ̄ ≤ λ∗.

Proof 7 First suppose that Z(λ̄)∩W (λ̄) 6= ∅ and t̄ belongs to Z(λ̄)∩W (λ̄),

thus there exist x1 ∈ X1(λ̄) and x2 ∈ X2(λ̄) such that g1(x1) = t̄ and

−g2(x2) = t̄. Therefore, in view of (4.1.2), (x1,x2, λ̄, t̄) is a feasible solu-

tion for problem (4.1.1), and consequently λ̄ ≤ λ∗.

Conversely, let λ0 < λ̄ < λ∗. Hence, there exists γ ∈ (0, 1) such that

λ̄ = (1− γ)λ0 + γλ∗. Since (x01,x02, t0, λ0) and (x∗1,x
∗
2, t
∗, λ∗) are feasible
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solutions for problem (4.1.1) and since the feasible region of problem (4.1.1)

is convex, it follows that the convex combination of these two points is a

feasible solution for problem (4.1.1). Formally, we have that

(1− γ)(x01,x02, t0, λ0) + γ(x∗1,x
∗
2, t
∗, λ∗)

= ((1− γ)x01 + γx∗1, (1− γ)x02 + γx∗2, (1− γ)t0 + γt∗, (1− γ)λ0 + γλ∗))

= ((1− γ)x01 + γx∗1, (1− γ)x02 + γx∗2, (1− γ)t0 + γt∗, λ̄),

which shows that (1− γ)t0 + γt∗ belongs to Z(λ̄) ∩W (λ̄), i.e.

Z(λ̄) ∩W (λ̄) 6= ∅.

�

Proposition 4.2 Let (t̄, λ̄) be an arbitrary given vector and ∆s̄i, i = 1, 2,

be optimal solutions of the following optimisation problems:

∆s̄i = max
xi,∆w,∆si

∆si

f i(xi, λ̄+ ∆si) = 0

gi(xi) = (−1)i+1(t̄+ ∆wi)

xi ∈ Ki, ∆wi ∈ <nm , ∆si ∈ <,

(4.1.6)

with i=1,2. Then λ∗ ≤ λ̄+ ∆s̄i.

Proof 8 There exists a real value ∆s∗ and a vector ∆w∗ such that

λ∗ = λ̄+ ∆s∗;

t∗ = t̄+ ∆w∗.
(4.1.7)

Since (x∗1,x
∗
2, t
∗, λ∗) is a feasible solution for problem (4.1.1), and in view

of (4.1.7) we have that





f i(x
∗
i , λ
∗) = 0

gi(x
∗
i ) = (−1)i+1t∗

x∗i ∈ Ki

⇒





f i(x
∗
i , λ̄+ ∆s∗) = 0

gi(x
∗
i ) = (−1)i+1(t̄+ ∆w∗)

x∗i ∈ Ki, ∆w∗ ∈ <nm , ∆s∗ ∈ <.

But since ∆s̄i is an optimal solution of problem (4.1.6), it follows from

(4.1.7) that

∆s∗ ≤ ∆s̄i ⇒ λ̄+ ∆s∗ ≤ λ̄+ ∆s̄i ⇒ λ∗ ≤ λ̄+ ∆s̄i.

�
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It will become convenient to consider the dual form of the global problem

(1.2.7),

q∗ = inf
y1,y2,y3

q(y1,y2,y3) (4.1.8)

where

q(y1,y2,y3) = sup
x1,x2,λ

y1 · f1(x1, λ) + y2 · f2(x2, λ)

+ y3 · (g1(x1) + g2(x2)) + λ

x1 ∈ K1, x2 ∈ K2, λ ∈ <.

(4.1.9)

4.2. Definition of Subproblems

Let λ0 and λ̄ be given real values such that (x01,x02, λ0) is a feasible

solution for (1.2.7) and λ0 < λ̄, which means that W (λ̄) and Z(λ̄) are

nonempty (closed convex) sets. Take t0 and set

tn = Tn(t0) = T (tn−1), n = 1, 2, 3, · · · ,

where

T =
RWRZ + I

2
= PWRZ − PZ + I, (4.2.1)

is the transformation of the AAR method described in Section 2.2.

We next define the optimisation subproblems that will allow us to retrieve

the projections PZ and PW , required for computing the transformation T . In

view of (2.2.1), PZ(tn) can be obtained by solving the following optimisation

problem:

min
z
‖z − tn‖

z ∈ Z(λ̄),

which is equivalent to the following so-called Subproblem 1 :

min
x1,d

1
‖d1‖

f1(x1, λ̄) = 0

g1(x1)− d1 = tn

x1 ∈ K1.

(4.2.2)
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From the optimal solution of Subproblem 1, d1
n, we can compute the

projection PZ(tn) and reflection RZ(tn) as,

PZ(tn) = g1(x1n) = tn + d1
n, with x1n ∈ X1(λ̄),

RZ(tn) = 2PZ(tn)− tn = tn + 2d1
n.

(4.2.3)

From PZ(tn), the point PWRZ(tn) = PW (tn+2d1
n) is obtained by solving

the following optimisation problem:

min
w
‖w −RZ(tn)‖

w ∈ W (λ̄),

which is equivalent to the following so-called Subproblem 2:

min
x2,d

2
‖d2‖

f2(x2, λ̄) = 0

g2(x2) + d2 = −RZ(tn)

x2 ∈ K2,

(4.2.4)

with RZ(tn) = tn + d1
n, (see 4.2.3).

After solving this problem we have that,

PWRZ(tn) = −g2(x2n) = RZ(tn) + d2
n = tn + 2d1

n + d2
n, with x2n ∈ X2(λ̄)

RWRZ(tn) = 2PW (RZ(tn))−RZ(tn) = tn + 2d1
n + 2d2

n,
(4.2.5)

and according to (4.2.1),(4.2.3) and (4.2.5),

tn+1 = T (tn) = tn + d1
n + d2

n, (4.2.6)

with d1
n and d2

n optimal solutions of (4.2.2) and (4.2.4), respectively. This

iterative process and the associated projections and reflections are illustrated

in Figure 4.1. Since T is nonexpansive, and in view of (4.2.1), (4.2.3),(4.2.5)

and (4.2.6), we have the following results,

(i) tn+1 − tn = d1
n + d2

n = T (tn)− tn =

PW (RZ(tn))− PZ(tn) = −g2(x2n)− g1(x1n). (4.2.7)

(ii) ‖d1
n + d2

n‖ = ‖tn+1 − tn‖ = ‖T (tn)− T (tn−1)‖ ≤
‖tn − tn−1‖ = ‖d1

n−1 + d2
n−1‖. (4.2.8)
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Figure 4.1.: Illustration of the iterative process

According to (4.2.8), the sequence (‖d1
n + d2

n‖)n∈N is decreasing. There-

fore, we can define the following parameter:

α = inf
n≥1
‖d1

n + d2
n‖ = lim

n→∞
‖d1

n + d2
n‖ ∈ [0,∞), (4.2.9)

which measures the distance d(W (λ̄), Z(λ̄)). The next theorem relates α to

the optimal objective λ∗:

Theorem 4.1 Consider Subproblem 1 and Subproblem 2 defined in (4.2.2)

and (4.2.4) respectively. Let λ0 < λ̄, with (x01,x0,2, λ0) a feasible solution

of the global problem in (1.2.7) and λ∗ its optimal solution. Then, with α

defined in (4.2.9), and if λ∗ = q∗, i.e. there is no duality gap in (4.1.8), the

following implications hold:

(i) α = 0 if and only if λ̄ ≤ λ∗.

(ii) α > 0 if and only if λ̄ > λ∗.

Proof 9 (i): If α = 0, we have from (4.2.7) that

lim
n→∞

‖d1
n + d2

n‖ = lim
n→∞

‖g1(x1n) + g2(x2n)‖ = 0. (4.2.10)
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Since (x1n,x2n) ∈ X1(λ̄) × X2(λ̄), the vector (x1n,x2n, λ̄) satisfies the

following conditions:
f1(x1n, λ̄) = 0

f2(x2n, λ̄) = 0

x1n ∈ K1, x2n ∈ K2.

(4.2.11)

Suppose that (y1,y2,y3) is an arbitrary feasible solution for the dual prob-

lem in (4.1.8). Since (x1n,x2n, λ̄) ∈ X1(λ̄)×X2(λ̄)×<, according to (4.1.9)

we have that

q(y1,y2,y3) ≥y1 · f1(x1n, λ̄) + y2 · f2(x2n, λ̄)+

y3 · (g1(x1n) + g2(x2n)) + λ̄ =

y3 · (g1(x1n) + g2(x2n)) + λ̄,

and then

q(y1,y2,y3) ≥ lim
n→∞

y3 · (g1(x1n) + g2(x2n)) + λ̄.

Therefore, in view of (4.2.10), we have that q(y1,y2,y3) ≥ λ̄. On the

other hand, since (y1,y2,y3) is an arbitrary feasible solution for the dual

problem, and due to assumption q∗ = λ∗, we have the following result :

λ̄ ≤ inf
y1,y2,y3

q(y1,y2,y3) = q∗ = λ∗ ⇒ λ̄ ≤ λ∗.

Conversely, assume λ̄ ≤ λ∗. Thus, in view of Lemma 2.6 and Propo-

sitions 2.5 and 4.1, we can infer that the sequence (tn)n∈N converges to a

point in Fix T , i.e.

lim
n→∞

tn = t̄ ∈ Fix T.

Since tn+1 − tn = d1
n + d2

n, we deduce that,

lim
n→∞

d1
n + d2

n = lim
n→∞

tn+1 − tn = t̄− t̄ = 0⇒ α = lim
n→∞

‖d1
n + d2

n‖ = 0.

(ii) Since α ≥ 0, the result in (ii) follows from (i). �

The result of Theorem 4.1 is illustrated in Figure 4.2, which represents

the distance of the sets Z(λ̄) and W (λ̄) for the cases λ̄ ≤ λ∗ and λ̄ > λ∗.

Figure 4.3 also shows the same idea but on the (λ, t) plane. Consequently,

the optimisation problem in (4.1.4) also reads:

λ∗ = max
λ
λ

d(W (λ), Z(λ)) = 0
(4.2.12)
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Note that for a given value of λ̄, from the result in Theorem 4.1(ii),

Proposition 4.1, and Lemma 2.6, we infer the following corollary :

Corollary 1 α > 0 ⇐⇒ ‖tn‖ → ∞.

According to this corollary and Lemma 2.6 (iv), the values of ‖ tnn ‖ and

‖tn‖ could be used to monitor the gap between Z(λ̄) and W (λ̄). We will

though use other parameters to monitor this distance, as explained in the

next section.

Figure 4.2.: Illustration of the sets W (λ̄) and Z(λ̄) for the case λ̄ ≤ λ∗ and

λ̄ > λ∗.

4.3. Algorithmic Implementation of AAR-based

Decomposition Algorithm

As it has been explained in the previous sections, the objective is to solve

an optimisation problem with the structure in (1.2.7), recasted in the form

in (4.1.1).

The master problem computes at each master iteration k a new value of

λk, while the subproblems determine whether this value λk is an upper or
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Figure 4.3.: Illustration of the sets W (λ) and Z(λ) on the (λ, t) plane.

lower bound of λ∗. To determine this, a set of nk subiterations, n = 1, . . . , nk
are required at each master iteration k.

The procedure of the master and subproblems are detailed in next two

subsections, which use the following notation:

• αn = ‖d1
n + d2

n‖, βn = ‖d1
n‖+ ‖d2

n‖.

• ∆αn = αn − αn−1.

Also λklb, λ
k
ub denote algorithmic lower and upper bounds of λ∗ in the

master iteration k, respectively.

4.3.1. Master Problem

The steps that define the master problem are given in Box 1.

M0. Find real values λ0
lb and λ0

ub such that λ∗ ∈ [λ0
lb, λ

0
ub]. Set k = 1.

M1. Set λk = (1− s)λk−1
lb + sλk−1

ub , s ∈ (0, 1) (k = 1, 2, · · · ).

M3. Solve Subproblems in Box 2 to determine whether λk ≤ λ∗ or

λ∗ < λk.
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M4. If |λkub − λklb| ≤ ελ

• λ∗ ≈ λk,

• Stop.

Else

• k = k + 1,

• Go to M1,

End.

Box 1. Master problem

In step M1, λ0
lb is a feasible solution for problem (4.1.1), which means that

it exists a vector t such that t ∈ Z(λ0
lb) ∩W (λ0

lb), with W (λ0
lb) and Z(λ0

lb)

defined in (4.1.3). λ0
ub is an arbitrary upper bound for λ∗ that can be ob-

tained via any possible way. In this article, we use Proposition 4.2 to obtain

an upper bound of λ∗: we solve two subproblems defined in (4.1.6), and we

obtain two upper bounds λ0
1ub and λ0

2ub. Then we set λ0
ub = min(λ0

1ub, λ
0
2ub).

In step M1, if X1(λk−1
ub ) 6= ∅ and X2(λk−1

ub ) 6= ∅ defined in (4.1.2), we

clearly have that X1(λk) 6= ∅ and X2(λk) 6= ∅, since f1,f2, g1, g2 are affine

functions and K1, K2 are convex sets. The constant value s = 1
2 has been

employed for the update of λk in Box 1, Step M1.

4.3.2. Subproblems

The iterative process of each subproblem is summarised in Box 2.

S1. Set λ̄ = λk, tk0 = tk−1, n = 0.

S2. Solve Subproblem 1 defined in (4.2.2). Obtain d1
n and set tkn =

tkn + 2d1
n.

S3. Solve Subproblem 2 defined in (4.2.4). Obtain d2
n and set tkn =

tkn + 2d2
n.

S4. Set βn = ‖d1
n‖+ ‖d2

n‖ and αn = ‖d1
n + d2

n‖.
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S5. If βn < βn−1 or αn ≤ ε0, then λk ≤ λ∗:

• λklb = λk, λkub = λk−1
ub . Update ∆k.

• Go to Box 1.M1.

Else if βn > βn−1 and αn >
∆k−1

k and
|∆αn|
|αn| < ε1, then λk > λ∗:

• λklb = λk−1
lb , λkub = λk. Update ∆k.

• Go to Box 1.M1.

Else

• tkn =
tkn−1+tkn

2 , n = n+ 1,

• Go to S2.

End

Box 2. Subproblems 1 and 2.

The algorithm in Box 2 uses the control parameters βn, αn and ∆k to

detect whether λk is an upper bound or a lower bound of λ∗ . Indeed, the

numerical results show that βn decreases when λk is a lower bound of λ∗.

The values of βn satisfy in fact the following corollary:

Corollary 2 Assume that λ̄ is a given real value and W = W (λ̄), Z = Z(λ̄)

defined in (4.1.3). Then the following relations hold.

(i) : If 0 ∈ int(W ∩ Z) then limn→∞ βn = 0.

(ii) : If limn→∞ βn = 0 then W ∩ Z 6= ∅.

Proof 10 (i) : Since 0 ∈ int(W ∩ Z), then W ∩ Z 6= ∅, and it follows that

Fix PW 6= ∅,Fix PZ 6= ∅, and also Fix PWPZ = Fix PW ∩Fix PZ . According

to the AAR method, since W ∩ Z 6= ∅, we have that

lim
n→∞

tn = t̄ ∈ Fix T.

On the other hand, since 0 ∈ int(W ∩ Z), then Fix T = W ∩ Z [7], and

therefore we have in turn that,

PZ(t̄) = t̄, PW (t̄) = t̄, RZ(t̄) = 2PZ(t̄)− t̄ = t̄. (4.3.1)
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In view of (4.2.3), (4.2.6) and (4.3.1) , the following results can be de-

rived:
lim
n→∞

d1
n = lim

n→∞
PZ(tn)− tn = PZ(t̄)− t̄ = 0

lim
n→∞

d2
n = lim

n→∞
tn+1 − tn − d1

n = 0.
(4.3.2)

Consequently, in view of (4.3.2), we infer that

lim
n→∞

βn = lim
n→∞

‖d1
n‖+ ‖d2

n‖ = 0. (4.3.3)

(ii) : For each iteration n we have that αn = ‖d1
n+d2

n‖ ≤ ‖d1
n‖+‖d2

n‖ = βn.

Therefore,

0 = lim
n→∞

βn ≥ lim
n→∞

αn = α ≥ 0, (4.3.4)

which implies that α = 0. Consequently, in view of Proposition 4.1 and

Theorem 4.1, we infer that W ∩ Z 6= ∅. �

We note that the update of λk in step M1 of the master problem mimics

the update process of the bisection method. Other faster updates could be

envisaged, but at the expense of estimating more accurately the distance be-

tween the sets W (λk) and Z(λk). In our implementation of the subproblems,

we just detect from the trends of βn and αn whether the set W (λk)∩Z(λk)

is empty or not, but do not actually compute the distance d(W (λk), Z(λk)).

The accurate computation of the distance would require far more subiter-

ations, and in the authors experience, this extra cost does not compensate

the gain when more sophisticated updates for λk are implemented.

The algorithms in Box 1 and 2 use three tolerance parameters: ελ, ε0 and

ε1. Their meaning is the following:

• ελ: this is the desired tolerance for the objective λ, and it is such that

λ∗ ∈ [λlb, λub], with |λub − λlb| < ελ.

• ε0: is a tolerance for d(W (λk), Z(λk)). If d(W (λk), Z(λk)) < ε0, we

will consider that W (λk) ∩ Z(λk) 6= ∅.

• ε1 is used to detect when the sequence αn (generated by the solution

of subproblems) has converged
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In all our numerical tests, we have used the values (ελ, ε0, ε1) = (10−3, 5∗
10−4, 10−2). The vectors (tk,xk1,x

k
2) resulting from the subproblems for

the highest (latest) value of λklb furnish the algorithmic approximations of

(t∗,x∗1,x
∗
2). In addition, the algorithm in Box 2 uses the parameter ∆k to

control the convergence of αn, which is an approximation to d(W (λk), Z(λk).

We suggest two possible updates:

U1:

• If λk ≤ λ∗, then ∆k = λk−1
ub − λk.

• If λk > λ∗, then ∆k = λk − λk−1
lb .

U2:

• If λk ≤ λ∗, then ∆k = ∆k−1.

• If λk > λ∗, then ∆k = s||d1
n − d2

n||.

Figure 4.4 illustrates the update proposed in U1. The update given in U2,

will be justified in the next section.

(a)

(b)

Figure 4.4.: Updating parameter ∆k. (a): λk is considered as an upper

bound, (b): λk is considered as a lower bound.
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4.3.3. Justification of Update U2 for ∆k

The aim of the update suggested here is to avoid obtaining false lower

bounds, false upper bounds, or endless loops. Indeed, large values of ∆k, will

prevent the algorithm from stopping when λk is an upper bound (endless

loop), and small values of ∆k may give false upper bounds, i.e. a value

λk < λ∗ that is detected as an upper bound.

Throughout this subsection, λlb and λub denote a feasible lower bound

and an upper bound of problem (4.1.1) respectively. Note that we may have

that λlb = λ∗.

Proposition 4.3 Let us denote by α(λ) the distance between two sets Z(λ)

and W (λ) defined in (4.1.3), as a function of λ i.e.

α(λ) = d(Z(λ),W (λ)) = inf
x1∈X1(λ)
x2∈X2(λ)

||g1(x1) + g2(x2)||, (4.3.5)

where X1(λ) and X2(λ) are defined in (4.1.2). Then the following hold:

(i) If λs = (1− s)λlb + sλub with s ∈ (0, 1), then α(λs) ≤ sα(λub).

(ii) α(λ) is strictly increasing on [λ∗, λub].

(iii) limλ→λ∗ α(λ) = 0 with λ ∈ (λ∗, λub].

(iv) Let s ∈ (0, 1) be a constant parameter that has been used to generate

a sequence (λkub)k∈N of upper bounds of λ∗ in the following manner:

λ0
ub = λub

λkub = (1− s)λlb + sλk−1
ub , k = 1, 2, · · ·

(4.3.6)

Then α(λkub) ≤ (s)kα(λub).

(v) α(λ) is a convex function on [λ∗, λub].

Proof 11 (i) :Let (x1ub,x2ub) ∈ X1(λub)×X2(λub) and (x1lb,x2lb) ∈ X1(λlb)×
X2(λlb) with g1(x1lb) + g2(x2lb) = 0. Set :

(xi, λs) = (1− s)(xilb, λlb) + s(xiub, λub) (i = 1, 2). (4.3.7)

According to the definition of the set Xi(λs), the vector xi obviously be-

longs to Xi(λs), (i = 1, 2).
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Since the functions g1 and g2 are both affine maps then we have:

g1(x1) + g2(x2) =

g1((1− s)x1lb + sx1ub) + g2((1− s)x2lb + sx2ub) =

(1− s)(g1(x1lb) + g2(x2lb)) + s(g1(x1ub) + g2(x2ub)) =

s(g1(x1ub) + g2(x2ub)).

(4.3.8)

Thus in view of (4.3.8) and (4.3.5) we have that :

α(λs) ≤ ||g1(x1) + g2(x2)|| = s||g1(x1ub) + g2(x2ub)||,

and since xiub is an arbitrary element of Xi(λub),

α(λs) ≤ sα(λub).

(ii) Assume that λ∗ < λ1 < λ2 ≤ λub. Then there exists s ∈ (0, 1)

such that λ1 = (1 − s)λ∗ + sλ2, and according to (i) we have that α(λ1) ≤
sα(λ2) < α(λ2), i.e. α(λ) is strictly increasing on [λ∗, λub].

(iii) The results in (iii) and (iv) easily follow from (i).

(v) Fix λ1 and λ2 in (λ∗, λub], and t ∈ (0, 1). Set λ = (1 − t)λ1 + tλ2.

Now let (z1, z2) ∈ X1(λ1)×X2(λ1) and (w1,w2) ∈ X1(λ2)×X2(λ2). Then

according to the definition of the set Xi(λj) :

(1− t)zi + twi ∈ Xi(λ), (i = 1, 2). (4.3.9)

It follows from definition of α(λ) in (4.3.5), that

α(λ) ≤ ||g1((1− t)z1 + tw1) + g2((1− t)z2 + tw2)||. (4.3.10)

Since gi, (i = 1, 2) is an affine map, we have that:

||g1((1− t)z1 + tw1) + g2((1− t)z2 + tw2)|| =
||(1− t)(g1(z1) + g2(z2)) + t(g1(w1) + g2(w2))|| ≤
(1− t)||g1(z1) + g2(z2)||+ t||g1(w1) + g2(w2)||.

(4.3.11)

Thus, in view of (4.3.10) and (4.3.11),

α(λ) = α((1− t)λ1 + tλ2) ≤ (1− t)α(λ1) + tα(λ2),

i.e. α(λ) is convex. �
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According to Proposition 4.3 (i), parameter ∆k is approximately pro-

portional to the distance between two sets W (λk) and Z(λk). Figure 4.5,

illustrates this fact.

Therefore, in view of Proposition 4.3 (i), we could update the parameter

∆k as follows. Let λk be a convex combination of λk−1
lb and λk−1

ub , i.e. λk =

(1− s)λk−1
lb + sλk−1

ub , with constant s ∈ (0, 1) then:

• If λk > λ∗, set α(λk) ≈ ||d1
nk + d2

nk ||, and ∆k = sα(λk).

• If λk ≤ λ∗, we set ∆k = ∆k−1.

Figure 4.5.: Updating parameter ∆k, when λk is an upper bound.

In other words, when λk is an upper bound, we update ∆k based on the

distance between two sets W (λk) and Z(λk) instead of using the distance

between λk−1
lb and λk−1

ub , as illustrated in Figure 4.4.

In fact some other value s̄ < s could be used to update ∆k when λk > λ∗,

i.e. ∆k = s̄α(λk), s̄ < s.
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4.4. Mechanical Interpretation of AAR-based

Decomposition Method

Consider the following global form of the problem in (1.2.5):

λ∗ = max
σ,λ

λ





∇ · σe,LBi + λf ei = 0 in Ωe
i ,∀ e = 1, · · · , nei

(σe,LBi − σe
′,LB
i ) · nξ

e′
e

i = 0, ∀ ξe′e ∈ ξOi
σe,LBi · nξ

N
e

i = λgξ
N
e ∀ ξNe ∈ ξNi

σe,LBi · nξ
N
e

i = (−1)it ∀ ξNe ∈ ξN̄i
σe,LBi ∈ B in Ωe

i , ∀ e = 1, · · · , nei

(i = 1, 2)

(4.4.1)

where ξN̄i indicates the fictitious Neumann, at each subdomain that is, the

common domain of the two subdomains (see Figure 4.6). t is in fact the

traction vector t = σ · n along this common boundary. By solving the

following two subproblems, where t is left as a free variable, not necessarily

equal of each subdomain, we obtain upper bounds for λ∗ :

λ∗i = max
σ,λ,t

λ





∇ · σe,LBi + λf ei = 0 in Ωe
i ,∀ e = 1, · · · , nei

(σe,LBi − σe
′,LB
i ) · nξ

e′
e

i = 0, ∀ ξe′e ∈ ξOi
σe,LBi · nξ

N
e

i = λgξ
N
e ∀ ξNe ∈ ξNi

σe,LBi · nξ
N
e

i = (−1)it ∀ ξNe ∈ ξN̄i
σe,LBi ∈ B in Ωe

i , ∀ e = 1, · · · , nei,

(4.4.2)

that is, λ∗ ≤ λ∗i , i = 1, 2. At each master iteration, we choose a value of

the load factor λk, and detect whether, there exists a common value of the

traction t such that the global domain is in equilibrium. In other words,

we detect whether the two subdomain can be in equilibrium for the given

load factor λk. More specifically, we set λ = λ̄ and solve the following two

optimisation problems sequentially, in order to detect if λ̄ ≤ λ∗ or λ∗ < λ̄.
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Figure 4.6.: Decomposition of global problem into two subproblems. The

global variables are the boundary traction t at the fictitious

Neumann condition and global load factor λ.

Subproblem 1

‖d1
n‖ = min

σ,d1
‖d1‖




∇ · σe,LB1 + λ̄f e1 = 0 in Ωe
1 ,∀ e = 1, · · · , ne1

(σe,LB1 − σe
′,LB

1 ) · nξ
e′
e

1 = 0, ∀ ξe′e ∈ ξO1
σe,LB1 · nξ

N
e

1 = λ̄gξ
N
e ∀ ξNe ∈ ξN1

σe,LB1 · nξ
N
e

1 = tn + d1 ∀ ξNe ∈ ξN̄1
σe,LB1 ∈ B in Ωe

1, ∀ e = 1, · · · , ne1.

(4.4.3)
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Subproblem 2

‖d2
n‖ = min

σ,d2
‖d2‖




∇ · σe,LB2 + λ̄f e2 = 0 in Ωe
2 ,∀ e = 1, · · · , ne2

(σe,LB2 − σe
′,LB

2 ) · nξ
e′
e

2 = 0, ∀ ξe′e ∈ ξO2
σe,LB2 · nξ

N
e

2 = λ̄gξ
N
e ∀ ξNe ∈ ξN2

σe,LB2 · nξ
N
e

2 = −tn − 2d1
n − d2 ∀ ξNe ∈ ξN̄2

σe,LB2 ∈ B in Ωe
2, ∀ e = 1, · · · , ne2.

(4.4.4)

Update t :

tn+1 = tn + d1
n + d2

n.

If tn+1 = tn i.e. ||d1
n−d2

n|| = 0, then a common traction field t = tn that

equilibrates the two subdomains has been found and λk ≤ λ∗. Otherwise, if

for all n, ||d1
n + d2

n|| > 0, no common value of t can be found for the chosen

load factor λk and therefore λ∗ < λk.

Note: The algorithm that computes the approximate value of λ∗ has

been implemented both in MATLAB and FORTRAN90.

In the next section the AAR-based decomposition method is illustrated

and is applied for problems in limit analysis.

4.5. Numerical Results

4.5.1. Illustrative Example

We illustrate the AAR-based decomposition technique explained in pre-

vious section with a toy nonlinear convex problem given by,

λ∗ = max
λ,x1,x2

λ

A1x1 + λF 1 = b1

A2x2 + λF 2 = b2

G1x1 + G2x2 = b

x1 ∈ K1, x2 ∈ K2, λ ∈ <,

(4.5.1)

where K1 and K2 are second-order cones and x1 ∈ <4, x2 ∈ <4. The values

of matrix Ai,Gi and vectors F i, bi and b are given next, and the optimal
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value of this problem is λ∗ = 1.1965.

max
λ,x1,x2

λ

A1︷ ︸︸ ︷[
1 −1 0 0

1 0 0 1

]
x1 + λ

F 1︷︸︸︷{
1

1

}
=

b1︷ ︸︸ ︷{
1.2

2.4

}

A2︷ ︸︸ ︷[
−1 1 0 0

1 0 0 1

]
x2 + λ

F 2︷︸︸︷{
1

1

}
=

b2︷ ︸︸ ︷{
3.2

0.2

}

G1︷ ︸︸ ︷[
0 2 1 0

0 2 0 1

]
x1 +

G2︷ ︸︸ ︷[
0 2 1 1

0 2 0 1

]
x2 =

b︷ ︸︸ ︷{
1.2

6.2

}
=

b3︷ ︸︸ ︷{
−0.8

3.2

}
+

b4︷︸︸︷{
2

3

}

x1 ∈ K1,x2 ∈ K2, λ ∈ <

By selecting arbitrary vectors b3 and b4 such that b = b3 + b4 and

introducing a new variable t, the problem (4.5.1) is written in the following

form,
max

λ,x1,x2,λ,t
λ

A1x1 + λF 1 = b1

G1x1 − b3 = t

A2x2 + λF 2 = b2

G2x2 − b4 = −t
x1 ∈ K1, x2 ∈ K2, λ ∈ <, t ∈ <m.

(4.5.2)

In view of (4.5.2), for any given λ = λ̄, we have the two feasible sets

defined in (4.1.3), which now take the following form :

Z(λ̄) = {t |G1x1 − b3 = t, A1x1 + λ̄F 1 = b1 for some x1 ∈ K1},
W (λ̄) = {t |G2x2 − b4 = −t, A2x2 + λ̄F 2 = b2 for some x2 ∈ K2}.

For solving this problem we first take (λ0
lb, t) = (0,0) and, according to

Proposition 4.2, after solving the two optimisation problem in (4.1.6), we

obtain two upper bounds (λ1ub, λ2ub) = (1.2000, 3.2000). Then we set λ0
ub =

min{λ1ub, λ2ub} = 1.2000, and consequently λ∗ ∈ [λ0
lb, λ

0
ub] = [0, 1.2000].

The algorithm comes to an end when |∆k| = |λkup − λklb| < ελ = 10−3.
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The numerical results of the algorithm are reported in Table 4.1. It can

be observed that after a total of 24 subiterations, the gap between the λ∗ and

the approximate value of λ∗ is 3×10−4. Figure 4.7 shows the optimal solution

of the toy problem and λk as a function of the number of subiterations.

Toy Problem

λ∗ = 1.1965

k λk−1
lb λk−1

ub λk
|λ∗−λk|
|λ∗| nk ∆k−1

1 0 1.2000 0.6000 0.4985 2 1.2000

2 0.6000 1.2000 0.9000 0.2478 2 0.6000

3 0.9000 1.2000 1.0500 0.1224 2 0.3000

4 1.0500 1.2000 1.1250 0.0597 2 0.1500

5 1.1250 1.2000 1.1625 0.0284 2 0.0750

6 1.1625 1.2000 1.1812 0.0127 3 0.0375

7 1.1812 1.2000 1.1906 0.0049 2 0.0187

8 1.1906 1.2000 1.1953 0.0010 2 0.0094

9 1.1953 1.2000 1.1977 0.0010 2 0.0047

10 1.1953 1.1977 1.1965 0.0000 2 0.0023

11 1.1965 1.1977 1.1971 0.0005 3 0.0012

12 1.1965 1.1971 λ∗ ' 1.1968 0.0003
∑12

k=1 nk = 24 0.0007

Table 4.1.: Results of toy problem by using AAR-based decomposition

method. Number in bold font indicate upper bounds of λ∗.

4.5.2. Example 2

We consider an optimisation problem with the same structure as in (4.5.1):

λ∗ = max
λ,x1,x2

λ

A1x1 + λF 1 = b1

A2x2 + λF 2 = b2

G1x1 + G2x2 = 0

x1 ∈ K1, x2 ∈ K2, λ ≥ 0.

(4.5.3)
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Figure 4.7.: Evolution of λk for the toy problem.

In this case, K1 and K2 are given by

K1 = <n1 ×K11 ×K12 × · · · ×K1p, p ≥ 1,

K2 = <n2 ×K21 ×K22 × · · · ×K2q, q ≥ 1,

where Kij are three-dimensional second-order cones, and matrices Ai, and

vectors F i, bi are those resulting from a discretised limit analysis problem

similar to those in [33, 37]. The problem (4.5.3) can be written in the general

standard form:
λ∗ = max

x
c · x

Ax = b

x ∈ K,
(4.5.4)

where K is a convex cone and x = (x1,x2, λ).

Now we apply the AAR-based decomposition method for problems with

different size given in Table 4.2, where n,m denote the number of rows

and columns of matrix A in (4.5.4), and
∑

k=1 nk is the total number of

subiterations.

The problems have been solved using the optimisation software Mosek

[1] and SPT3 [47]. In all the cases, the former required less CPU time

and yielded more accurate results (smaller gap between primal and dual
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problems). For the larger problem 5, SDPT3 failed to give accurate results

after the master iteration k = 2.

Problem n m
CPU Time [s]

∑
k=1 nk

SDP3 MOSEK SDP3 MOSEK

1 2240 2401 163 30 45 45

2 4368 4705 281 84 43 42

3 8880 9601 913 243 40 42

4 12768 13825 1754 543 47 49

5 14979 16225 * 707 * 48

Table 4.2.: Size, CPU time and total subiterations of each problem solved

using Mosek [1] and SDPT3 [47].

Like in the toy problem, we have used Proposition 4.2 in order to obtain

an upper bound of λ∗ at the master iteration zero λ0
ub. The numerical results

of problems 1-5 are reported in Tables 4.3-4.7, respectively. Figure 4.8 shows

λ∗, λk and βn related to Problem 3 as a function of number of subiterations.

For the other problems, similar trends of these variables have been obtained.

Figure 4.9 shows the error of the objective λk as a function of the master

iterations. The linear convergence trend is characteristic of the bisection

method employed for the update of λk in step M1, Box 1. Other more

sophisticated updates have been tested (secant method for instance), but

their efficient implementation required far more subiterations. Despite this

more sophisticated updates gave rise to fewer master iterations, the total

number of iteration, (master and subiterations) was much larger than those

reported in the examples. We note that the use of Benders decomposition,

and for the same convergence tolerance, these nonlinear problems required

more than 200 iterations in all cases, for example, Problem 3 needed more

than 800 iterations. Furthermore, in contrast to our method, the number of

iterations of the Benders implementation scaled with the problem size.

We finally highlight that although the detection of upper bounds required

in general more than four iterations, the detection of lower bounds only
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Problem 1

λ∗ = 0.5008

k λk−1
lb λk−1

ub λk |λ∗−λk|
|λ∗|

nk ∆k−1

SDPT3 MOSEK

1 0 0.7071 0.3536 0.2940 2 2 0.7071

2 0.3536 0.7071 0.5303 0.0589 13 13 0.3536

3 0.3536 0.5303 0.4419 0.1176 2 2 0.1768

4 0.4419 0.5303 0.4861 0.0293 2 2 0.0884

5 0.4861 0.5303 0.5082 0.0148 5 4 0.0442

6 0.4861 0.5082 0.4972 0.0073 2 2 0.0221

7 0.4972 0.5082 0.5027 0.0038 10 10 0.0110

8 0.4972 0.5027 0.4999 0.0017 2 2 0.0055

9 0.4999 0.5027 0.5013 0.0010 5 6 0.0028

10 0.4999 0.5013 0.5006 0.0004 2 2 0.0014

0.5006 0.5013 λ∗ ' 0.5010 0.0003 45 45 0.0007

Table 4.3.: Numerical results of Problem 1

Problem 2

λ∗ = 0.5044

k λk−1
lb λk−1

ub λk |λ∗−λk|
|λ∗|

nk ∆k−1

SDPT3 MOSEK

1 0 0.7071 0.3536 0.2990 2 2 0.7071

2 0.3536 0.7071 0.5303 0.0514 14 14 0.3536

3 0.3536 0.5303 0.4419 0.1238 2 2 0.1768

4 0.4419 0.5303 0.4861 0.0362 2 2 0.0884

5 0.4861 0.5303 0.5082 0.0076 6 6 0.0442

6 0.4861 0.5082 0.4972 0.0143 2 2 0.0221

7 0.4972 0.5082 0.5027 0.0033 2 2 0.0110

8 0.5027 0.5082 0.5055 0.0021 5 5 0.0055

9 0.5027 0.5055 0.5041 0.0006 2 2 0.0028

10 0.5041 0.5055 0.5048 0.0008 6 5 0.0014

0.5041 0.5048 λ∗ ' 0.5044 0.0001 43 42 0.0007

Table 4.4.: Numerical results of Problem 2
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Problem 3

λ∗ = 0.5063

k λk−1
lb λk−1

ub λk |λ∗−λk|
|λ∗|

nk ∆k−1

SDPT3 MOSEK

1 0 0.7071 0.3536 0.3017 2 2 0.7071

2 0.3536 0.7071 0.5303 0.0475 14 15 0.3536

3 0.3536 0.5303 0.4419 0.1271 2 2 0.1768

4 0.4419 0.5303 0.4861 0.0398 2 2 0.0884

5 0.4861 0.5303 0.5082 0.0039 8 7 0.0442

6 0.4861 0.5082 0.4972 0.0180 2 2 0.0221

7 0.4972 0.5082 0.5027 0.0071 2 2 0.0110

8 0.5027 0.5082 0.5055 0.0016 2 2 0.0055

9 0.5055 0.5082 0.5069 0.0011 4 6 0.0028

10 0.5055 0.50569 0.5062 0.0002 2 2 0.0014

0.5062 0.5069 λ∗ ' 0.5065 0.0004 40 42 0.0007

Table 4.5.: Numerical results of Problem 3

Problem 4

λ∗ = 0.5071

k λk−1
lb λk−1

ub λk |λ∗−λk|
|λ∗|

nk ∆k−1

SDPT3 MOSEK

1 0 0.7071 0.3536 0.3028 2 2 0.7071

2 0.3536 0.7071 0.5303 0.0458 14 15 0.3536

3 0.3536 0.5303 0.4419 0.1285 2 2 0.1768

4 0.4419 0.5303 0.4861 0.0414 2 2 0.0884

5 0.4861 0.5303 0.5082 0.0022 15 16 0.0442

6 0.4861 0.5082 0.4972 0.0196 2 2 0.0221

7 0.4972 0.5082 0.5027 0.0087 2 2 0.0110

8 0.5027 0.5082 0.5055 0.0032 2 2 0.0055

9 0.5055 0.5082 0.5069 0.0005 2 2 0.0028

10 0.5069 0.5082 0.5075 0.0008 4 4 0.0014

0.5069 0.5075 λ∗ ' 0.5072 0.0002 47 49 0.0007

Table 4.6.: Numerical results of Problem 4
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Problem 5

λ∗ = 0.5074

k λk−1
lb λk−1

ub λk |λ∗−λk|
|λ∗|

nk ∆k−1

MOSEK

1 0 0.7071 0.3536 0.3032 2 0.7071

2 0.3536 0.7071 0.5303 0.0452 14 0.3536

3 0.3536 0.5303 0.4419 0.1290 2 0.1768

4 0.4419 0.5303 0.4861 0.0419 2 0.0884

5 0.4861 0.5303 0.5082 0.0017 16 0.0442

6 0.4861 0.5082 0.4972 0.0201 2 0.0221

7 0.4972 0.5082 0.5027 0.0092 2 0.0110

8 0.5027 0.5082 0.5055 0.0038 2 0.0055

9 0.5055 0.5082 0.5069 0.0011 2 0.0028

10 0.5069 0.5082 0.5075 0.0003 4 0.0014

0.5069 0.5075 λ∗ ' 0.5072 0.0004 48 0.0007

Table 4.7.: Numerical results of Problem 5

required two iterations in most of the case. This would justify the choice of

low value of s in the update of λk in Box 1, step M1.
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5
Conclusions and Future Research

5.1. Conclusions

This thesis has focused on the study of decomposition techniques for prob-

lems encountered in limit analysis. Some techniques have been introduced,

such as primal, dual and Benders decomposition. We have applied and

compared these techniques using a toy problem and optimisation problem

in limit analysis.

We have also tested these techniques in the lower bound problem of limit

analysis, with some reduced domains. The Benders decomposition can be

easily adapted to limit analysis but, the number of iterations of Benders

method appears to scale with the dimension of the interface.

In this thesis we have proposed a method to decompose convex nonlin-

ear problems that contain only one complicating variable in the objective

function. This type of problems includes many engineering applications in

plastic structural analysis.

The method consists on interpreting the optimisation problem as the

maximisation (or minimisation) of the variable subjected to a nonempty

intersection set. The numerical results show that the total number of iter-

ations does not scale with the number of variables. The extension of the

method for a larger number of subproblems requires the application of the

AAR method for a larger number of sets.

Working on this thesis gave rise to the flowing publications :

Articles

99
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• N. Rabiei, J.J. Muñoz. AAR-based decomposition method for lower

bound limit analysis. International Journal for Numerical Methods in

Engineering (INT J NUMER METH ENG). (In preparation)

• J.J. Muñoz, N. Rabiei. Solution of lower bound limit analysis with

AAR-based decomposition method. Engineering and Computational

Mechanics (ICE). (Submitted)

• N. Rabiei, J.J. Muñoz. AAR-based decomposition algorithm for non-

linear convex optimisation. Computational Optimization and Appli-

cations.(Springer). (Submitted)

Book Chapters

• J.J. Muñoz, N. Rabiei, A. Lyamin and A. Huerta. Computation of

bounds for anchor problems in limit analysis and decomposition tech-

niques. Book title: Direct Methods for Limit States in Structures

and Materials. Spiliopoulos, Konstantinos; Weichert, Dieter (Eds).

Springer , 2014.

Presentations

• N. Rabiei, J.J. Muñoz. AAR-based decomposition method for limit

analysis. 11th World Congress on Computational Mechanics (WCCM

XI), Barcelona, Spain, July 2014.

• N. Rabiei, J.J. Muñoz. AAR-based decomposition algorithm for non-

linear convex optimisation. 20th Conference of the international feder-

ational of operational research societies (IFORS), Barselona,Spain,13th-

18th july 2014.

• N. Rabiei, A. Huerta and J.J. Muñoz. Decomposition techniques

in computational limit analysis. (COMPLAS XII), 3-5 Sept 2013,

Barcelona, Spain.

• N. Rabiei,J.J. Muñoz. Decomposition techniques for computational

limit analysis. Conference on numerical methods in engineering (CNM),

Bilbao,spain,Jun.2013.

• J.J. Muñoz, N. Rabie. A. Lyamin, A. Huerta. Computation of bounds

for anchor problems in limit analysis and decomposition techniques.
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Third International workshop on Direct Methods . Feb. 2012, Athens,

Greece.

• N. Rabiei, J.J. Muñoz. Decomposition techniques for computational

limit analysis. 12th conference on Numerical Methods in Applied

Mathematics, Science and Engineering (NMASE), Barcelona, Spain,

2013.

• N. Rabiei, J.J. Muñoz. Computation of bounds for anchor problems

in limit analysis and decomposition techniques. 11th conference on

Numerical Methods in Applied Mathematics, Science and Engineering

(NMASE), Barcelona, Spain, 2012

5.2. Future Work

We next discuss some open ideas for future research derived form the

work performed:

Extension the algorithm to three dimensions.

In order to apply the AAR-based decomposition technique in real

three-dimensional cases, we propose the following stages:

• Implementation of the AAR-based decomposition technique to

an existent three-dimensional lower problem.

• Apply the technique to simple three-dimensional cases such as

the plane vertical cut.

• Consider more realistic and complex three-dimensional problems

already analysed in the literature [21, 22].

We note that the extension of the algorithm does not require any substan-

tial modifications, since the structure of the optimisation problem remains

unaltered.

Finding more robust stopping criteria.

According to Proposition 4.3, when the distance between λlb and λub
is small, depending on the tolerances employed, the method may give

us wrong lower bounds. In other words, it is possible that the method

considers an upper bound λk as a lower bound (false lower bound

candidate for some values of the parameters). For this reason, we aim
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to obtaining robust stopping criteria, which will result in an improved

accuracy.

Obtaining optimal dual variables for global problem.

In order to apply the adaptive remeshing strategy described in [16, 37],

the stress and velocity fields (σ,u) are both required, which cor-

respond to the primal and dual variables, respectively. Thus using

AAR-based decomposition method, could not shed information about

optimal dual variables which correspond to velocity field. Possible

solutions to this is to consider the primal solution in order to build

a reduced global problem, which does not contain the inactive con-

straints, or to employ the AAR-based technique presented here, but

updated to the dual problem.

Early detection of upper bound λub
From the trends of the convergence plots in Figure 4.8, it seems de-

sirable to either reduce the number of iterations when λ∗ < λk, or

to approach λ∗ from below, that is, to obtain as many lower bounds

as possible. This is equivalent to using small values of s in the up-

date process of λ. Further study of optimal value of s are therefore

necessary.



A
Deduction of Lower Bound Discrete Problem

A.1. Equilibrium Constraint

Since we are in a two-dimensional problem, in each point of the domain

the stress tensor is defined by 3 components: σ11,σ22,σ12. to simplify

future expressions,we will use the following convention σ1 = σ11,σ2 =

σ22,σ3 = σ12. within each triangle Ωe, a local expression of the interpolation

XLB is given by:

σe =

3∑

i=1

σi,eNe
i , ∀ e = 1, · · · , ne (A.1.1)

with ne the number of elements, and

σi,e =

[
σi,e1 σi,e3

σi,e3 σi,e2

]
, σe =

[
σe1 σe3
σe3 σe2

]
∀ e = 1, · · · , ne , (i = 1, 2, 3).

Henceforth we will use the alternative form of the stress tensors, i.e.

σi,e = (σi,e1 , σi,e2 , σi,e3 )T . The equation ∇ · σe + λf e = 0 results in the

following equation:
{
∂σe1(X)
∂x1

+
∂σe3(X)
∂x2

∂σe3(X)
∂x1

+
∂σe2(X)
∂x2

}
+ λ

{
fe1
fe2

}
=

{
0

0

}
. (A.1.2)

Using the linear interpolation in (A.1.1), we obtain:




3∑
a=1

(σa,e1
∂Ne

a(X)
∂x1

+ σa,e3
∂Ne

a(X)
∂x2

)

3∑
a=1

(σa,e3
∂Ne

a(X)
∂x1

+ σa,e2
∂Ne

a(X)
∂x2

)





+ λ

{
fe1

fe2

}
=

{
0

0

}
. (A.1.3)
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In order to simplify this expression, we use the following notation Na
a,i =

∂Ne
a(X)
∂xi

, i = 1, 2. Note that, since the shape functions are linear, their deriva-

tives are constant on each element. In matrix form, and grouping all the

nodal stress components in a single vector, the equation in (A.1.3) reads:

[
Ne

1,1 0 Ne
1,2 Ne

2,1 0 Ne
2,2 Ne

3,1 0 Ne
3,2

0 Ne
1,2 Ne

1,1 0 Ne
2,2 Ne

2,1 0 Ne
3,2 Ne

3,1

]

σ1,e

σ2,e

σ3,e





+ λ

{
fe1
fe2

}
=

{
0

0

}
,

or equivalently,

Beσe + λF eq1,e,

with σe = (σ1,e,σ2,e,σ3,e)T .

Let σ denote the vector collecting the nodal stress components for all the

elements in the mesh and F eq1 be a global volume force vector. The vector σ

has 9×ne dimensions and F eq1 is a 2×ne dimensional vector. Likewise, we

construct a global matrix Aeq1, with dimensions (2×ne, 9×ne), that consists

of the elemental matrices Be. The assembly process is straightforward since

the equation for the elements are uncoupled. Consequently, Aeq1 results in

a very sparse block diagonal matrix, where 0 is a zero matrix of dimensions

(2, 9).

Aeq1 =




B1 0 · · · · · · 0

0 B2 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · · · · · · · Bne




(A.1.4)

Then the first constraint in equation (1.2.4) is given by:

Aeq1σ + Feq1λ = 0. (A.1.5)

A.2. Inter-element Equilibrium Constraints

In this section we address the practical implementation of equation (σe−
σe
′
) · nξe

′
e = 0, ∀ ξe′e ∈ ξ0. Note that the equations must hold for all the
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points in the edge ξ under consideration. The stress at each side of the the

edge is given by,

σe = σe,1Ne
1 + σe,2Ne

2 ,

σe
′
= σe

′,3Ne′
1 + σe

′,4Ne′
2 .

(A.2.1)

Inserting this interpolation into the equation (σe − σe′) · nξe
′
e = 0 for a

given ξe
′
e ∈ ξO, we obtain the following two scalar equations:

[(σe,11 − σ
e′,3
1 )n1 + (σe,13 − σ

e′,3
3 )n2]Ne

1 + [(σe,21 − σ
e′,4
1 )n1 + (σe,23 − σ

e′,4
3 )n2]Ne

2 = 0

[(σe,13 − σ
e′,3
3 )n1 + (σe,12 − σ

e′,3
2 )n2]Ne′

1 + [(σe,23 − σ
e′,4
3 )n1 + (σe,22 − σ

e′,4
2 )n2]Ne′

2 = 0

Clearly, a sufficient condition for the above equation to hold over all the

points in the edge ξe
′
e is to nullify the 4 coefficients of Ne

i and Ne′

i :

(σe,11 − σ
e′,3
1 )n1 + (σe,13 − σ

e′,3
3 )n2 = 0,

(σe,21 − σ
e′,4
1 )n1 + (σe,23 − σ

e′,4
3 )n2 = 0,

(σe,13 − σ
e′,3
3 )n1 + (σe,12 − σ

e′,3
2 )n2 = 0,

(σe,23 − σ
e′,4
3 )n1 + (σe,22 − σ

e′,4
2 )n2 = 0,

or in the matrix form:



n1 0 n2 0 0 0 −n1 0 −n2 0 0 0

0 0 0 n1 0 n2 0 0 0 −n1 0 −n2

0 n2 n1 0 0 0 0 −n2 −n1 0 0 0

0 0 0 0 n2 n1 0 0 0 0 −n2 −n1








σe,1

σe,2

σe
′,3

σe
′,4





= 0,

If we permute row 2 and row 3 and as well we define

N =

[
n1 0 n2

0 n2 n1

]
, Be′

e =

[
N 0

0 N

]
, (A.2.2)

then we have

[
N 0 −N 0

0 N 0 −N

]




σe,1

σe,2

σe
′,3

σe
′,4





= 0,

Be′
e

{
σe,1

σe,2

}
−Be′

e

{
σe
′,3

σe
′,4

}
= 0 ∀ξe′e ∈ ξO.

(A.2.3)
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Therefore the second constraint in equation (1.2.4) is given by

Aeq2σ + 0λ = 0. (A.2.4)

A.3. Boundary Element Equilibrium Constraints

Exactly the same procedure is followed for the third equation σe ·nξNe =

λgξ
N
e , ∀ξNe ∈ ξN , which after using discretisation in (A.2.1) reads

(σe,11 n1 + σe,13 n2)Ne
1 + (σe,21 n1 + σe,23 n2)Ne

2 = λge1,

(σe,13 n1 + σe,12 n2)Ne
1 + (σe,23 n1 + σe,22 n2)Ne

2 = λge2.

Now, in order to guarantee the satisfaction of the equations above at all

points of the edge, it is sufficient to force the four coefficients to be equal to

λge. That is:

σe,11 n1 + σe,13 = λge1,

σe,21 n1 + σe,23 = λge1,

σe,13 n1 + σe,12 = λge2,

σe,23 n1 + σe,22 = λge2.

In matrix form, and using the previous definitions of N and B in (A.2.2),

[
N 0

0 N

]{
σe,1

σe,2

}
+ λ





−ge1
−ge2
−ge1
−ge2





= 0,

Be

{
σe,1

σe,2

}
+ λ





−ge1
−ge2
−ge1
−ge2





= 0, ∀ ξNe ∈ ξN .

Consequently the third equilibrium constraint in equation (1.2.4) may be

expressed as,

Aeq3σ + λF eq3 = 0. (A.3.1)
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A.4. Membership Constraints

In this work we consider von Mises type in plane strain, which is given

by the following membership constraint:

(σ1 − σ2)2 + 4σ2
3 ≤

4

3
σ2
y ,

where σy is a material parameter. We use this constraint for each node, i.e.

σe,i,LB ∈ B in Ωe, (∀ e = 1, · · · , ne, i = 1, 2, 3),

with B = {σ|(σ2 − σ2)2 + 4σ2
3 ≤ 4

3σ
2
y}.

On the whole we have 3 × ne inequalities. A convenient way to impose

the inequality above is to force the vector ( 2√
3
σy, 2σ

e,i
3 , σe,i1 − σ

e,i
2 ) to belong

to the Lorentz cone Ln with n = 3. Since second-order cone constraints are

directly imposed through the decision variables, we can introduce a vector

xe,i of additional variables as follows:




xe,i1 =
2√
3
σy

−2σe,i3 + xe,i2 = 0

−σe,i1 + σe,i2 + xe,i3 = 0

(A.4.1)

We will force each vector xe,i to belong to Ln such that Ln is:

Ln =



x ∈ <

n|x1 ≥

√√√√
n∑

j=2

x2
j



 .

The imposition of (A.4.1) over all the mesh requires 9×ne equations. In

matrix notation, for each node we have:




0 0 0

0 0 −2

−1 1 0








σe,i1

σe,i2

σe,i3





+




1 0 0

0 1 0

0 0 1








xe,i1

xe,i2

xe,i3





=





√
2σy

0

0




,

then the global system can be written as follows:

Asocσ + Ix1:3 = bsoc,
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where σ is the usual vector of known nodal stresses, I is a (9× ne, 9× ne)
identity matrix, x1:3 is a vector of 9×ne additional variables ordered in the

same way as σ. The 9 × ne dimensional vector bsoc and (9 × ne, 9 × ne)

block diagonal matrix Asoc have the following forms:

bsoc =





b

b
...
...

b





, Asoc =




M 0 · · · · · · 0

0 M 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · · · · · · · M



,

where

b =





√
2σy

0

0




, M =




0 0 0

0 0 −2

−1 1 0


 . (A.4.2)

By recasting all the previous matrix constraints in a single matrix equa-

tion, we obtain the discrete lower bound problem:

λLB = maxλ






Aeq1 ... F eq1 ... 0

Aeq2 ... 0
... 0

Aeq3 ... F eq3 ... 0

Asoc ... 0
... I








σ

λ

x1:3





=





0

0

bsoc





σ free λ ≥ 0, x1:3 ∈ K

,
(A.4.3)

where K = Ln×· · ·×Ln. The solution of (A.4.3) corresponds to the desired

lower bound λ∗LB. Note that, this problem is a conic program and has the

standard form required by most optimisation packages.

The global lower bound matrix defined in (A.4.3) has dimensions 2ne +

4|ξ0|+4|ξN |+9ne; 9ne+1+9ne, and involves the vector of nodal stresses σ,

the collapse multiplier λ and the vector of additional variables xsoc. While

it was natural and easy to build the linear system of equation using those

variable, they are not optimal for solving the lower bound problem since they

lead to matrices that are much larger than strictly required. This increases

unnecessarily the computational time and memory requirements involved in

the solution process. with the purpose of optimisation the computational
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cost od solving the problem, we have introduced a change of variables that

enables us to reduce substantially the number of equations and variables

involved. Note that σ in (A.4.3) is a free vector, that is, nothing is im-

posed directly on the nodal stresses, which are not required to belong to any

particular cone. On the other hand, the imposition of the yield condition

requires that, for each node, some affine combinations of the stresses belongs

to Lorentz cone Ln. This is the reason why we introduced the additional

variables xsoc. So we get rid of the nodal stress variables σ by directly

formulating the equilibrium equations in terms of the additional variables

xsoc. For plane strain our goal can be achieved as follows:





xe,i1 =
2√
3

−2σe,i3 + xe,i2 = 0

−σe,i1 + σe,i2 + xe,i3 = 0

−σe,i1 + xe,i4 = 0

∀ e = 1, · · · , ne, i = 1, 2, 3

(A.4.4)

Considering (A.4.4), we can write an equivalent expression for plane

strain:





σe,i1

σe,i2

σe,i3





=





1

1

0




xe,i4 +




0 0 0

0 0 −1

0 1
2 0








xe,i1

xe,i2

xe,i3





σe,i = pxe,i4 + Qxe,i1:3,

(A.4.5)
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and write σ = Px4 + Qx1:3 where:

P =




p 0 · · · · · · 0

0 p 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · · · · · · · p



, x4 = (xe,i4 )

(e = 1, · · · , ne; i = 1, 2, 3)

Q =




Q 0 · · · · · · 0

0 Q 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · · · · · · · Q



, x1:3 = (xe,i1:3), xe,i1:3 =





xe,i1

xe,i2

xe,i3




,

(e = 1, · · · , ne; i = 1, 2, 3).

Using the matrix notation, the equilibrium constraints can be written as:

Aeq1Px4 + Aeq1Qx1:3 + λF eq1 = 0,

Aeq2Px4 + Aeq2Qx1:3 = 0,

Aeq3Px4 + Aeq3Qx1:3 + λF 3 = 0.

(A.4.6)

To impose the membership constraints in the three nodes of all the ele-

ments, it is still necessary to add the remaining nodal equation in (A.4.4)

for plane strain. This is accomplished as follows:

xe,i1 =
2√
3
σy =⇒

[
1 0 0

]




xe,i1

xe,i2

xe,i3





=
2√
3
,

Rxe,i1:3 =
2√
3
, where R =





1

0

0



 , xe,i1:3 =





xe,i1

xe,i2

xe,i3




,

(A.4.7)

which results in the following global matrix equation:

Rx1:3 = b,
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where

R =




R 0 · · · · · · 0

0 R 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · · · · · · · R



, x1:3 =

{
xe,i1:3

}
, b =





2√
3

2√
3
...
...
2√
3





. (A.4.8)

Finally, the transformed version of (A.4.3) results in the following opti-

misation problem, which is the one we will actually solve. For plane strain:

λLB = maxλ



Aeq1P F 1 Aeq1P

Aeq2P 0 Aeq2P

Aeq3P F 3 Aeq3P

0 0 R








x4

λ

x1:3





=





0

0

0

b





x4 is free, λ ≥ 0, x1:3 ∈ K
|x4| = 3ne, |λ| = 1, |x1:3| = 9ne.

(A.4.9)

As the reader will observe, the size of problem above depends on number

of elements and dimension of space. By increasing the number of elements

or dimension of space, the size of the problem to become greater.





B
Background on Convex Sets

B.1. Sets in <n

Throughout this thesis, <n is a real linear space with scalar (or inner)

product. The associated norm is denoted by ‖.‖ and the associated distance

by d, i.e.,

(∀x ∈ <n)(∀y ∈ <n) ‖x‖ = (x · x)
1
2 and d(x,y) = ‖x− y‖. (B.1.1)

The identity operator on <n is denoted by I.

Let C and D be subsets of <n, and let z ∈ <n. Then C+D = {x+y|x ∈
<n,y ∈ <n}, z + C = {z} + C, C − z = C − {z}, and, for every λ ∈ <,

λC = {λx|x ∈ C}. If Λ is a nonempty subset of <, then ΛC =
⋃
λ∈Λ λC

and Λz = Λ{z} = {λz|λ ∈ Λ}. In particular, C is a affine subspace if

C 6= ∅ and (∀λ ∈ <), C = λC + (1− λ)C. (B.1.2)

The four types of line segments between two points x and y in <n are

[x,y] = {(1− α)x+ αy|0 ≤ α ≤ 1},
(x,y] = {(1− α)x+ αy|0 < α ≤ 1},
[x,y) = {(1− α)x+ αy|0 ≤ α < 1},
(x,y) = {(1− α)x+ αy|0 < α < 1},

(B.1.3)

and (x,y] = [y,x).
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B.2. The Extended Real Line

One obtains the extended real line [−∞,+∞] = < ∪ {−∞} ∪ {+∞} by

adjoining the elements −∞ and +∞ to the real line < and extending the

order via (∀ ξ ∈ <) −∞ < ξ < +∞. Given ξ ∈ <, (ξ,+∞] = (ξ,+∞) ∪
{+∞}; the other extended intervals are defined similarly.

Throughout this thesis, for extended real numbers, positive means ≥ 0,

strictly positive means > 0, negative means ≤ 0, and strictly negative means

< 0. Moreover <+ = [0,+∞) = {ξ ∈ <|ξ ≥ 0} and <++ = (0,+∞) = {ξ ∈
<|ξ > 0}. Likewise, if n is a strictly positive integer, the positive orthant is

<n+ = [0,+∞)n and the strictly positive orthant is <n++ = (0,+∞)n. The

sets <− and <−−, as well as the negative orthants, <n− and <n−−, are defined

similarly.

B.3. Convex Sets and Cones

Definition B.1 A subset C of <n is convex if ∀α ∈ (0, 1), αC+(1−α)C =

C or, equivalently, if

(∀x ∈ C) (∀y ∈ C) (x,y) ∈ C, (B.3.1)

where (x,y) is the line segments between two points x and y. In particular,

<n and ∅ are convex.

Example B.1 In each of the following cases, C is a convex subset of <n.

(i) C is a ball.

(ii) C is an affine subspace.

(iii) C =
⋂
j∈J Cj , where (Cj)j∈J is a family of convex subsets of <n.

Definition B.2 A subset K of <n is called a cone if it is closed under

strictly positive scalar multiplication, i.e.

K = <++K. (B.3.2)

Hence, <n is a cone and the intersection of family of cones is a cone. A

convex cone is a cone which is a convex set.
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Fact B.1 Let K ⊂ <n, L ⊂ <m be closed convex cones. Then

K ⊕ L := {(x,y) ∈ <n ⊕<m|x ∈ K,y ∈ L},
is again a closed convex cone, the direct sum of K and L.

Remark B.1 If not stated otherwise,(x,y) denotes the direct sum of spaces,

and not the segment.

Let us remind the reader that <n⊕<m is the set <n×<m, turned into a

Hilbert space via

(x,y) + (x́, ý) := (x+ x́,y + ý),

λ(x,y) := (λx, λy),

(x,y) · (x́, ý) := x · ý + y · ý.
Two of the most important convex cones are the positive orthant and

the strictly positive orthant of <n. These cones are useful in the theory of

inequalities.

In the following we describe two concrete closed convex cone.

B.3.1. The Ice Cream Cone in <n(The Quadratic Cone)

This cone is defined as

Cq = {(x1,x) ∈ < × <n−1 : ‖x‖ ≤ x1}, (B.3.3)

and is also known as the quadratic cone, Lorenz cone, and the second-order

cone. See Figure B.1 for an illustration in <3 that (hopefully) explains the

name. It is closed because of the ≤, and its convexity follows from the the

triangle inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

B.3.2. The Rotated Quadratic Cone

Another important closed convex cone that appears in conic optimisation

formulation is the rotated quadratic cone, which is defined as follows:

Crq = {(x1, x2,x) ∈ < × <× <n−2|2x1x2 ≥
n∑

j=3

x2
j , x1, x2 ≥ 0} (B.3.4)

Remark B.2 x = (x1, x2, x3, · · · , xn) ∈ Crq if and only if y = (y1, y2.y3, · · · , yn) ∈
Cq where y1 = x1+x2√

2
, y2 = x1−x2√

2
, and yi = xi, j = 3, · · · , n. In other

words, the rotated quadratic cone is identical to the quadratic cone under a

linear transformation.
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Figure B.1.: The ice cream cone [20]

B.3.3. Polar and Dual Cones

Definition B.3 Let C be a subset of <n. The polar cone of C is

C◦ = C	 = {u ∈ <n|x · u ≤ 0 ∀x ∈ C}, (B.3.5)

and the dual cone of C is C⊕ = −C	, i.e.

C∗ = C⊕ = {u ∈ <n|x · u ≥ 0 ∀x ∈ C}. (B.3.6)

If C is a nonempty convex cone, then C is self-dual if C = C∗. See Figure

B.2 for an illustration of dual and polar cone of a set.

Let us illustrate this notion on the examples that we have seen earlier.

What is the dual of the positive orthant <n+? This is the set of u such that

x · u ≥ 0 ∀x ≥ 0.

This set certainly contains the positive orthant {u ∈ <n |u ≥ 0} itself, but

not more: Given u ∈ <n with ui < 0, we have u · ei < 0, where ei is the

i-th unit vector (a member of <n+), and this proves that u is not a member

of the dual cone of (<n+)∗. It follows that the dual cone of <n+ is <n+ : the

positive orthant is self-dual.
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For the even more trivial cones, the situation is as follows.

C = {0} ⇒ C∗ = <n,
C = <n ⇒ C∗ = {0}.

Proposition B.1 The quadratic and rotated quadratic cone are self-dual

i.e.

(i) (Cq)
∗ = Cq.

(ii) (Crq )∗ = Crq .

Proof 12 We first will show that the quadratic code is contained in the dual

cone. Since all vectors in the quadratic cone have first component nonnega-

tive we have:

z · x ≥ 0⇔ z1x1 ≥ −z2x2 − · · · − znxn

−z2x2 − · · · − znxn ≤ |(z2, · · · , zn) · (x2, · · · , xn)|
= ‖(z2, · · · , zn)‖‖(x2, · · · , xn)‖|cos(θ)|
≤ z1x1,

thus Cq ⊂ (Cq)
∗. Next we show that the dual cone is contained in the

quadratic cone. If z ∈ (Cq)
∗ then for all x ∈ C:

z1x1 ≥ −z2x2 − · · · − znxn
= −(z2, · · · , zn) · (x2, · · · , xn)cos(θ)

= −‖(z2, · · · , zn)‖‖(x2, · · · , xn)‖cos(θ),
now choose the member x∗ of C so that |x∗1| = 1, sign(x∗1) = sign(z1),

‖(x∗2, · · · , x∗n)‖ = 1 and cos(θ) = −1 then z1x1 = |z1| and we obtain:

|z1| ≥ ‖(z2, · · · , zn)‖,
thus z ∈ Cq and (Cq)

∗ ⊂ Cq, Therefore (Cq)
∗ = Cq.

(ii). In view of Remark B.2, since the rotated quadratic cone is identical

to the quadratic cone under a linear operator then is self-dual. �

We conclude this section with the following intuitive fact: the dual of a

direct sum of cones is the direct sum of the dual cones. This fact is easy but

not entirely trivial. It actually requires a small proof, see [27].

Proposition B.2 Let K ⊂ <n, L ⊂ <m. Then

(K ⊕ L)∗ = K∗ ⊕ L∗.
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(a) (b)

Figure B.2.: (a) A set C and its dual cone C∗, (b) A set C and its polar

cone C◦

B.4. Farkas Lemma, Cone Version

Under any meaningful notion of duality, you expect the dual of the dual

to be the primal (original) object. For cone duality (Definition B.3), this

indeed works.

Proposition B.3 Let K ⊂ <n be a closed convex cone. Then (K∗)∗ = K.

Maybe surprisingly, the proof of this innocent-looking fact already re-

quires the machinery of separation theorems that will also be essential for

cone programming duality below. Separation theorems generally assert that

disjoint convex sets can be separated by a hyperplane.

B.4.1. A Separation Theorem for Closed Convex Cones

Theorem B.1 Let K ⊂ <n be a closed convex cone, b ∈ <n\K. Then

there exists a vector y ∈ <n such that

y · x ≥ 0,∀x ∈ K, b · y < 0.

The statement is illustrated in Figure B.3 (left) for <2. The hyperplane

h = {x ∈ <2|y · x = 0} (that passes through the origin) strictly separates b

from K. We also say that y is a witness for b /∈ K.
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Proof 13 See [27]. �

Figure B.3.: A point b not contained in a closed convex cone K ⊂ <2 can

be separated from K by a hyperplane h = {x ∈ <2|y · x = 0}
through the origin (left). The separating hyperplane resulting

from the proof of Theorem B.1(right).

Using this result, we can now show that (K∗)∗ = K for any closed convex

cone.

Proof of Proposition B.3.

For the directionK ⊂ (K∗)∗, we just need to apply the definition of

duality: Let us choose b ∈ K. By definition of K∗, y · b = b · y,∀y ∈
K∗; this in turn shows that b ∈ (K∗)∗. For the other direction, we let

b /∈ K. According to Theorem B.1, we find a vector y such y · x ≥
0,∀x ∈ K and b · y < 0. The former inequality shows that y ∈ K∗,
but then the latter inequality witnesses that b /∈ (K∗)∗.

B.4.2. Adjoint Operators

We will now bring a linear operator into the game. Let V and W be

Hilbert spaces and let A : V → W be a linear operator from V into W . If

V and W are finite dimension, then A can be represented as a matrix. But

even in the general case, A behaves like a matrix for our purposes, and we

will write Ax instead of A(x) for x ∈ V . Here is the generalization of the

transpose of a matrix.
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Definition B.4 Let A : V → W be a linear operator. A linear operator

AT : W → V is called an adjoint of A if

y ·Ax = ATy · x ∀x ∈ V,y ∈ W

If V and W are finite dimension, there is an adjoint AT of A. In general,

if there is an adjoint, then it is easy to see that it is unique which justifies

the notation AT .

In order to stay as close as possible to the familiar matrix terminol-

ogy, we will also introduce the following notation. If V1, V2, · · · , Vn and

W1,W2, · · · ,Wm are Hilbert spaces with linear operators Aij : Vj → Wi,

then we write the matrix



A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...

Am1 Am2 · · · Amn


 (B.4.1)

for the linear operator Ā : V1⊕V2⊕· · ·⊕Vn → W1⊕W2⊕· · ·⊕Wm defined

by

Ā(x1,x2, · · · ,xn) = (

n∑

j=1

A1jxj ,

n∑

j=1

A2jxj , · · · ,
n∑

j=1

Amjxj).

A simple calculation then shows that

AT =




AT
11 AT

21 · · · AT
m1

AT
12 AT

22 · · · AT
m2

...
...

. . .
...

AT
1n AT

2n · · · AT
mn


 (B.4.2)

just as with matrices.

Proposition B.4 Let A be a linear operator from <n into <m, and let C

be a nonempty closed convex cone in <m. Then the following hold :

(i) (A−1(C))	 = AT (C	).

(ii) (AT )−1(C) = (A(C	))	.

Proof 14 See [6].
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B.4.3. Farkas Lemma

Proposition B.5 Let K ⊂ <n be a closed convex cone, and C = {Ax|x ∈
K}. Then C̄, the closure of C, is a closed convex cone.

Proof 15 By definition, the closure of C is the set of all limit points of C.

Formally, b ∈ C̄ if and only if there exists a sequence (yk)k ∈ N such that

yk ∈ C for all k and limk→∞ yk = b. This yields that C̄ is a convex cone,

using that C is a convex cone. In addition, C̄ is closed. �

The fact b ∈ C̄ can be formulated without reference to the cone C, and

this will be more convenient in what follows.

Definition B.5 Let K ⊂ <n be a closed convex cone. The system

Ax = b,x ∈ K,

is called subfeasible if there exists a sequence (xk)k∈N such that xk ∈ K for

all k ∈ N and

lim
k→∞

Ax = b.

Here is Farkas lemma for equation systems over closed convex cones.

Proposition B.6 Let K ⊂ <n be a closed convex cone, and b ∈ <m. The

system Ax = b,x ∈ K is subfeasible if and only if every y ∈ <m with

ATy ∈ K∗ also satisfies b · y ≥ 0.

Proof 16 See [27].
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