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SUMMARY 

 

Cancer is a dynamic disease in which cells proliferate, differentiate and migrate by 

accessing to reminiscent genetic and epigenetic programs of embryogenesis. This process is 

driven by the crosstalk between cancer cells and tumor microenvironment, which comprises a 

three-dimensional (3D) extracellular matrix (ECM) together with stromal cells (fibroblasts, cells 

from vasculature system and cells from immune system). Effector biomolecules and enzymes 

(e.g. cytokines, growth factors and proteases) are continuously secreted by cancer and stroma 

cells, influencing phenotypically each other and modifying the structure and composition of 

ECM. These environmental changes lead to cell plasticity and heterogeneity during cancer. In 

tissue engineering field, researchers try to deconstruct this complex tumor microenvironment 

into simpler and predictable 3D cell models in order to analyze the role of specific chemical, 

mechanical and/or physical signals in disease progression. 

 

The most critical tumor stage is local invasion and metastasis, which accounts for 

approximately 90% of all cancer deaths. In the present thesis, 3D cell models were developed to 

recapitulate the transition from a 2D to a 3D milieu that cancer cells experience when they 

escape from epithelial layer and invade mesenchymal connective tissue. Experiments revealed 

that 3D cultures compromised epithelial organization, inducing different mesenchymal-like 

phenotypes depending on composition and stiffness of scaffold. Therefore, cells showed the 

capacity to adapt to changing microenvironmental conditions. Moreover, 3D cultures induced 

E-cadherin downregulation, suggesting the disruption of epithelial cell-cell adhesions and the 

activation of early stages of epithelial to mesenchymal transition. Its expression pattern was 

influenced by the presence and concentration of ECM binding motifs. E-cadherin regulatory 

mechanisms were characterized at epigenetic and transcriptional level. 

 

3D cell models can also help in the discovery and therapeutic assessment of cancer 

medicines. Part of this thesis work was focused on photodynamic therapy research. 3D cultures 

emerged as powerful platforms for photosensitizers screening processes since they could 

recreate molecular gradients for drug and oxygen. These conditions induced the development 

of a protective microenvironment for cells located in the core of the culture, accounting for the 

low therapeutic efficacy found in clinical practice. In a different part of the thesis, cancer drugs 

targeting receptor tyrosine kinases activity were studied. Results evidenced that cells developed 

different survival strategies to evade or escape from drugs action depending on the composition 

of scaffold. We hypothesized that ECM could provide cells with access to a large and redundant 

spectrum of signaling pathways, complementing the activity of the blocked cellular receptors. 

Therefore, cancer cells presented an adaptive behavior supported by the dynamic and complex 

tumor microenvironment. These findings reinforced the necessity to develop 3D cultures to 

study cell resistance mechanisms.
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RESUMEN 

El cáncer es una enfermedad dinámica en la cual las células proliferan, se diferencian y 

migran accediendo a programas genéticos y epigenéticos reminiscentes de la embriogénesis. 

Este proceso está dirigido por la comunicación bidireccional entre las células cancerígenas y el 

microambiente tumoral que está formado por una matriz extracelular (ECM) tridimensional (3D) 

y células del estroma (fibroblastos, células del sistema inmune y células del sistema vascular). 

Muchas biomoléculas y enzimas (ej. citoquinas, factores de crecimiento y proteasas) son 

continuamente secretadas por las células cancerígenas y del estroma, influenciando 

fenotípicamente ambos tipos celulares y modificando la estructura y composición de la ECM. 

Esta serie de cambios ambientales provocan plasticidad y heterogeneidad celular durante el 

cáncer. En el campo de la ingeniería de tejidos, los investigadores intentan deconstruir el 

complejo microambiente tumoral en modelos celulares 3D más simples y predictivos con el 

objetivo de analizar el papel específico de señales químicas, mecánicas y/o físicas en la 

progresión de la enfermedad.    

 

La etapa más crítica del cáncer es la invasión y metástasis, la cual provoca 

aproximadamente el 90% de muertes. Durante la presente tesis, se desarrollaron modelos 3D 

para recapitular la transición del microambiente 2D al 3D que experimentan las células 

cancerígenas cuando se escapan de la monocapa epitelial e invaden el tejido conectivo 

mesenquimal. Los experimentos demostraron que los cultivos 3D eran capaces de romper la 

organización epitelial, induciendo diferentes fenotipos tipo-mesenquimales dependiendo de la 

composición y rigidez de la matriz. Por lo tanto, las células mostraban capacidad para adaptarse 

a entornos cambiantes. Además, los cultivos 3D provocaban la disminución de la expresión de 

la E-cadherina, sugiriendo la disociación de las adhesiones epiteliales célula-célula y la activación 

de los primeros estadios de la transición epitelial-mesenquimal. Este patrón de expresión estaba 

influenciado por la presencia y concentración de motivos de unión de la ECM. Los mecanismos 

de regulación de E-cadherina se caracterizaron a nivel epigenético y transcripcional. 

 

Los cultivos 3D también pueden contribuir al descubrimiento y evaluación terapéutica 

de nuevos tratamientos contra el cáncer. Parte de esta tesis se focalizó en investigar la terapia 

fotodinámica. Los cultivos 3D emergieron como valiosas plataformas en procesos de cribado de 

fotosensibilizadores ya que pudieron recrear los gradientes moleculares de fármaco y oxígeno. 

Estas condiciones crearon un microambiente protector para las células localizadas en la parte 

interior del cultivo, causando una baja eficacia terapéutica y, por lo tanto, mimetizando las 

limitaciones actuales de la práctica clínica. En otra parte de la tesis, se estudió la actividad de 

fármacos anticancerígenos dirigidos a inhibir receptores de tirosina quinasas. Los resultados 

evidenciaron que las células desarrollaron distintas estrategias de supervivencia para escaparse 

o evadir el efecto de los fármacos dependiendo de la composición de la matriz. Se formuló la 

hipótesis que la ECM podía proporcionar a las células acceso a una gran y redundante red de 

cascadas de señalización que complementaban la actividad de los receptores bloqueados. Por 

lo tanto, las células cancerígenas presentaron un comportamiento adaptativo sostenido gracias 

al dinámico y complejo microambiente tumoral. Estos descubrimientos reforzaban la necesidad 

de desarrollar cultivos 3D para estudiar los mecanismos de resistencia a los fármacos.  
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RESUM 

El càncer és una malaltia dinàmica durant la qual les cèl·lules proliferen, es diferencien i 

migren accedint a programes genètics i epigenètics reminiscents de l’embriogènesis. Aquest 

procés està dirigit per la comunicació bidireccional entre les cèl·lules cancerígenes i el 

microambient tumoral que està format per una matriu extracel·lular (ECM) tridimensional (3D) 

i cèl·lules de l’estroma (fibroblasts, cèl·lules del sistema immune i cèl·lules del sistema vascular). 

Moltes biomolècules i enzims (p. ex. citoquines, factors de creixement i proteases) són 

contínuament secretats per les cèl·lules cancerígenes i de l’estroma, influenciant fenotípicament 

ambdós tipus cel·lulars i modificant l’estructura i composició de l’ECM. Aquests canvis 

ambientals provoquen plasticitat i heterogeneïtat cel·lular durant el càncer. En el camp 

d’enginyeria de teixits, els investigadors intenten deconstruir el microambient tumoral en 

models cel·lulars 3D més simples i predictius que permetin analitzar el paper de senyals químics, 

mecànics i/o físics en la progressió de la malaltia.  

 

L’etapa més crítica del càncer és la invasió i metàstasis, la qual provoca aproximadament 

el 90% de morts. Durant la present tesis, es van desenvolupar models 3D per recapitular la 

transició del microambient 2D al 3D que experimenten les cèl·lules cancerígenes quan s’escapen 

de la monocapa epitelial i envaeixen el teixit connectiu mesenquimal. Els experiments van 

demostrar que els cultius 3D van ser capaços de trencar l’organització epitelial, induint diferents 

fenotips tipus-mesenquimal dependent de la composició i rigidesa de la matriu. Per tant, les 

cèl·lules mostraven capacitat per adaptar-se a entorns canviants. A més, els cultius 3D 

provocaven la disminució de l’expressió de l’E-cadherina, suggerint la dissociació de les 

adhesions epitelials cèl·lula-cèl·lula i la conseqüent activació dels primers estadis de la transició 

epitelial-mesenquimal. Aquest patró d’expressió estava molt influenciat per la presència i 

concentració dels motius d’unió de la ECM. Els mecanismes de regulació d’E-cadherina es van 

caracteritzar a nivell epigenètic i transcripcional.  

 

Els cultius 3D també poden contribuir al descobriment i avaluació terapèutica de nous 

tractaments contra el càncer. Part d’aquesta tesis es va focalitzar en investigar la teràpia 

fotodinàmica. Els cultius 3D van emergir com valuoses plataformes per processos de cribratge 

de fotosensibilitzadors ja que van aconseguir recrear els gradients moleculars de fàrmac i 

oxigen. Aquestes condicions van crear un microambient protector per les cèl·lules localitzades 

en la part interior del cultiu, causant una baixa eficàcia terapèutica i, per tant, mimetitzant les 

limitacions actuals de la pràctica clínica. En una altra part de la tesis, es va estudiar l’activitat de 

fàrmacs anti-cancerígens dirigits a inhibir receptors de tirosina quinases. Els resultats van 

evidenciar que les cèl·lules desenvolupaven diferents estratègies de supervivència per escapar-

se o evadir de l’efecte d’aquests fàrmacs depenent de la composició de la matriu. Es va formular 

la hipòtesis que la ECM podia proporcionar a les cèl·lules accés a una gran i redundant xarxa de 

cascades de senyalització que complementaven l’activitat dels receptors bloquejats. Per tant, 

les cèl·lules cancerígenes presentaven un comportament adaptatiu sostingut gràcies al dinàmic 

i complex microambient tumoral. Aquesta sèrie de descobriments reforçava la necessitat de 

desenvolupar cultius 3D per estudiar els mecanismes de resistència dels fàrmacs. 
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1.1 BACKGROUND 

1.1.1 HALLMARKS OF CANCER 

Cancer is a major devastating disease, being a public health problem that involves more 

than 14 million of new cases1 and 8 million of deaths2 per year worldwide. Cancer is a multistep 

process characterized by a sustained proliferative signaling, growth suppressors evasion, cell 

death resistance, immortal replication, angiogenesis induction and invasion and metastasis 

activation. Therefore, the hallmarks of cancer comprise a minimum of six biological capabilities, 

which organize and rationalize disease complexity3.  

 

From the 1990s, pioneering experiments have revealed that the biology of cancer 

cannot be understood by simply enumerating the genetic alterations accumulated in cells. 

Instead, it must encompass the evolving crosstalk with the microenvironment4,5, which is the 

compartment that provides the connective tissue framework. Tumor microenvironment 

comprises the extracellular matrix (ECM), an intricate network of fibrous proteins (e.g. collagen, 

elastin, laminin and fibronectin) and proteoglycans (e.g. hyaluronic acid and heparin sulphate). 

It also contains a wide variety of non-epithelial cells including fibroblasts, cells from 

inflammatory system (lymphocytes, macrophages and mast cells) and cells from vasculature 

system (endothelial cells, pericytes and smooth muscle cells), which are known as stromal cells6. 

This complex milieu provides multiple signaling to cancer cells (Figure 1.1), being classified as 

chemical, mechanical and physical cues7,8. Some relevant examples are cited: 

 

 

1. Chemical cues: recognition and binding of growth factors, cytokines, proteases, ECM 

adhesion motifs, etc.  

 

2. Mechanical cues: crosslinking and remodeling of the ECM that modifies its stiffness 

value and cell cytoskeleton dynamics. 

 

3. Physical cues: three-dimensionality experienced by cells, establishment of molecular 

gradients that cause hypoxia and necrosis within the core of the tumor. 

 

 

Cancer cells respond to these chemical, mechanical and physical stimuli by activating a series 

of epigenetic and transcriptional events that change their phenotype. In parallel, they 

reorganize the structure and composition of the ECM and release diffusible molecules, 

establishing a bidirectional communication network with the microenvironment5. Indeed, 

experimental evidence has demonstrated that the reintroduction of a normal physiological 

stroma context can phenotypically revert tumors in vitro9,10. Therefore, microenvironment 

steers plasticity to cancer cells.  
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Figure 1.1. Microenvironment contributes to tumor progression. (A) In a normal stage, a well-differentiated 
stratified epithelium is separated by a basement membrane from the stromal compartment. During transition to a 
tumor stage, epithelium becomes hyperplastic (abnormal proliferation) and disrupts basement membrane. Then, 
cancer cells produce a wide range of proteases and growth factors that modify their surrounding milieu. 
Consequently, the number of inflammatory cells increases. Moreover, fibroblasts differentiate into myofibroblasts, 
resulting in the expression of specific pro-migratory ECM components and the secretion of additional proteases and 
growth factors to amplify signaling in the proliferative and invasive cascade. (B) At the molecular level, multiple 
physical, mechanical and chemical factors of the microenvironment modulate cell biology. Cells, in turn, modify their 
local milieu to form a permissive and supportive framework for disease progression, enabling processes such as 
angiogenesis, invasion and metastasis. Therefore, there is a bidirectional communication between cells and 
microenvironment. Adapted from Mueller et al.5 and Yamada et al.7 



3D cancer models 

 

5 

1.1.2 CANCER CELL MODELS 

The development of in vitro cell models is essential for understanding cancer biology. 

Their main function consists in deconstructing the tumor in simpler and more predictive systems 

in order to identify both intrinsic genomic signature and extrinsic chemical, mechanical and/or 

physical factors that drive human pathophysiology.  

 

Following this paradigm, cancer research has traditionally relied on two-dimensional 

(2D) cultures, also known as monolayer11. They are based on growing cells on rigid and flat 

substrates (e.g. Petri dishes and culture flasks). 2D cultures have provided valuable information 

concerning the identification of many oncogenes and tumor-suppressor genes, being genome-

centered models5. However, it is commonly accepted that cells are cultured in physiologically 

constrained conditions on these substrates.  

 

Cells are attached to substrates that force them to polarize and increase their exchange 

area to the culture media. As a result, they are exposed to an excessive nutrition and 

oxygenation and molecular gradients cannot be reproduced. Furthermore, production of ECM 

proteins is strongly modified –in composition, configuration and amount- due to differences in 

the surface receptors orientation and clustering, preventing cells from receiving the proper 

signals that arise from the ECM8. Specifically in the field of cancer, poorly adherent cells 

(metastatic cells) cannot form tight focal adhesions to plastic and, therefore, cannot be cultured 

properly in monolayer. Thus, the most aggressive cells are excluded from classical molecular 

characterization and drug screening processes12. 2D cultures also activate an immortalization 

process through multiple passages, which result in the selection of cancer cells that rapidly 

proliferate. These cells misrepresent the whole tumor, since they are specifically susceptible to 

therapies that target rapidly dividing cells13. 

 

To avoid these experimental inconsistencies, in vitro cell models should integrate some 

microenvironmental cues while retaining the reproducibility and the capacity of cellular level 

imaging. A basic premise is the introduction of the third dimension for cell and ECM 

communication network, which dramatically affects integrin recognition, cell contraction and 

associated intracellular signaling (Figure 1.2). These three-dimensional (3D) cultures can bridge 

the gap between simplistic 2D cultures and extremely complex animal models14.  
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Figure 1.2. Cell morphology in 2D versus 3D microenvironments. (A) Cells expanded in 2D cultures are unnaturally 
polarized and they only establish partial contact with the adjacent cells and ECM. (B) When grown in 3D cultures, cells 
regain the 3D communication network that arises from cell-cell and cell-ECM interactions. Hence, they receive 
multiple environmental cues (mechanical, chemical and physical cues) that directly influence cellular identity and 
function. An example is illustrated by fibroblasts cultured on planar fibronectin, 2D (C) or in a mesenchymal cell-
derived matrix, 3D (D). The differences in overall cellular architecture are evidenced through the staining of 
fibronectin matrix (blue), α integrin-positive adhesion structures (white) and nuclei (magenta). In 2D cultures, 
fibroblasts adopt a spread-out and flat morphology, whereas in 3D they have a stellate morphology that resembles 
in vivo pattern. Scale bar of 10 µm. Adapted from Yamada et al.7 

  

Knowledge from cell biology, materials science and bioengineering need to converge in 

order to successfully breakthrough in the development of 3D cultures. The integration of these 

disciplines resulted in the creation of tissue engineering (TE) field15. The main goal of TE is to 

give a comprehensive insight into the natural environment of cells and design a set of biomedical 

tools (e.g. biomaterials, biodevices and bioreactors) that could precisely reproduce it 

(biomimetics).  

 

 In cancer research, the first step in the application of biomimetic principles has been 

focused on the generation of multicellular spheroids. They re-establish tumour architecture 

pattern, particularly hollow cores that contain quiescent and hypoxic cells. Interestingly, 

experiments have demonstrated that they exhibit higher anticancer drug resistance as 

compared to conventional 2D cultures,  better mimicking the in vivo situation16. However, these 

spheroids have important limitations, since they grow as independent cellular aggregates and 

show reduced interactions with an extracellular milieu17.  

 

 Considering that microenvironment controls tumour progression, ECM analogues have 

been developed to embed cells in a 3D context and display some of the appropriate physical, 

chemical and mechanical cues. Pioneering work has been based on the use of biomaterials from 
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natural origin, principally collagen (main structural protein of the ECM) and Matrigel 

(reconstituted basement membrane (BM) isolated from Engelbreth–Holm–Swarm mouse 

sarcomas). In 1992, Mina J. Bissell group demonstrated that the phenotype of breast cancer cells 

was exclusively re-established in 3D cultures. This was the first demonstration of the ability of 

cancer cells to in vitro recapitulate the structural and functional differentiation characteristics 

of in vivo tumours18. In 1997, the same group reported the reversion of tumour phenotype after 

culturing cells in 3D cultures and treating them with integrin blocking antibodies. Results showed 

a significant role of integrins and, therefore, ECM receptors in directing polarity and cell 

phenotype19 (Figure 1.3). 

 

 

 

Figure 1.3. Tumor phenotype in 3D cultures. Tumour phenotype was exclusively re-established in 3D cultures. 
Immunofluorescence of normal breast acini (1a-c) and carcinoma colonies (1a’-c’) in Matrigel scaffold. (1a) Apical 
accumulation of sialomucin in normal acini. (1a’) Basal expression of sialomucin in carcinoma cultures. (1b) Type IV 
collagen staining around fully developed normal acini. (1b') No BM was present around carcinoma cells. (1c) Cortical 
accumulation of keratin K18 in normal acini. (1c’) Cortical and apical accumulation of keratin k18 in carcinoma 
colonies. The coordinated loss of BM around cells and the lack of polarity are two distinguishable features of cancer 
cells as compared to normal cells. (2) β1-inhibitory antibody treatment of cancer cells leaded to reverted acini. (2a–
a’’) S-1 (2a) and T4- β1 reverted acini (2a’’) showed basally localized nuclei (propidium iodide, red) and organized 
filamentous F-actin (FITC, green), while T4-2 colonies had pleomorphic nuclei and disorganized actin filaments (2a’). 
(2b–b’’) In S-1 (2b) and T4- β1 reverted acini (2b’’), E-cadherin (FITC, green) and β-catenins (Texas red) were co-
localized at cell–cell junctions. Antibody-treated cancer cells showed the same morphology than normal cells, 
characterized by an organized cytoskeleton and co-localized cadherins and catenins expression at the cell-cell 
junctions. From Petersen et al18 and Weaver et al.19 

 

These experiments revealed that 3D cultures were capable of re-establishing the 

crosstalk between cancer cells and the surrounding stroma. However, this paradigm shift has 

been largely disregarded by both academia groups and pharmaceutical companies. 

Approximately 70-80% of cancer biologists still routinely use 2D cultures, which hamper the 

discovery and assessment of new therapeutic approaches20.  
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1.1.3 TISSUE ENGINEERING IN CANCER RESEARCH 

1.1.3.1 Scaffolds Design: Capturing Pathophysiology in vitro  

The main challenge in TE is the design of biomaterials capable of recreating the in vivo 

microenvironment. Therefore, scaffolds are essentially inspired on the ECM in order to give to 

the cells the appropriate signals that guide their growth, proliferation, differentiation, invasion 

or apoptosis. 

  

ECM is composed by two classes of macromolecules: fibrous proteins and 

proteoglycans. Fibrous proteins mainly comprise collagen, elastin, laminin and fibronectin. 

Collagen and elastin display a mechanical function by conferring strength and elasticity to the 

ECM respectively. Laminin and fibronectin act as adhesive molecules. They expose specific 

binding motifs that are recognized by other ECM macromolecules (collagen fibers and 

proteoglycans) and cellular adhesion receptors motifs (integrins-binding sequences). Therefore, 

they contribute to organize the matrix and mediate cellular attachment to it.  

 

Secondly, proteoglycans consist of a protein core with covalently attached 

polysaccharide chains (glycosaminoglycans, GAGs), such as hyaluronic acid or heparin sulphate. 

The function of these macromolecules derives from the physicochemical characteristics of 

GAGs, which are characterized by a high density of negative charges that attract a cloud of 

cations (most notably Na+) and cause a large amount of water stuck into the ECM. As a result, 

proteoglycans form a hydrated gel that exerts two functions. It provides swelling pressure to the 

tissue and enables it to withstand compressional forces. As a gel of variable pore size and charge 

density, it can regulate the traffic of soluble biomolecules and modulate the signaling activity21.   

 

Cells continuously sense and respond to extracellular signals through cell adhesion 

molecules (integrins, selectins, cadherins, immunoglobulin superfamily and proteoglycans). 

These motifs provide transient and stable communication channels among cell-cell and cell-

ECM, creating a cytoplasmic and cytoskeletal-matrix fibers continuum respectively. Importantly, 

cells are responsible for secreting the whole range of proteins and polysaccharides that 

consecutively assemble into the organized ECM network. Cells also have the capacity to degrade 

the matrix by secreting proteolytic enzymes, which cause cell migration and tissue remodeling. 

Therefore, ECM emerges as a dynamic structure that has a unique composition in each tissue, 

working as a specific tissue signature to maintain the cellular identity and function.  

 

 

ECM physical signaling 

ECM is characterized by a highly porous nanostructure that provides anchorage to cells 

and controls diffusion of any soluble effector molecule. At microscopic level, a critical parameter 

during the design of TE scaffolds is their internal architecture, particularly pore size and 

interconnectivity. ECM has a pore size between 50 and 500 nm, 1,000 orders of magnitude 
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smaller than an average mammalian cell size (50-5,000 µm), which causes cells to sense a truly 

3D milieu. In parallel, pores are flexible enough to ensure cell penetration, proliferation and 

migration through the formation of non-covalent interactions between matrix fibers22. At 

macroscopic level, tumors have a dense ECM and a poorly organized vasculature, which impose 

a physiological barrier for mass transport of oxygen, nutrients and waste products23. This 

inaccessibility cause hypoxia and quiescence in the cells buried within the core of the tumor. 

This characteristic can be in vitro reproduced through scaffold dimensions.  

 

 

ECM chemical signaling 

ECM exerts chemical signaling to cells through two mechanisms: (i) the binding of 

soluble signaling molecules and (ii) the exposure of ECM recognition sequences. First, ECM binds 

a wide variety of growth factors, cytokines and enzymes, modulating their diffusion and local 

concentrations. These soluble molecules can be secreted by the cell itself (autocrine signals), by 

other cells located in close vicinity (paracrine signals) or far apart, reaching the target through 

bloodstream network (endocrine signals). Regarding cancer biology, key soluble effector 

molecules have been identified. For instance, matrix-degrading enzymes cause the breakdown 

of the BM and the continuous remodeling of ECM components, especially members of the 

matrix metalloproteinase (MMP) family. The release of growth factors enhances vascular 

permeability and promotes new vessel formation. Moreover, they are able to induce 

inflammation and modify the repertoire of infiltrating T lymphocytes. Relevant examples are the 

vascular endothelial growth factor (VEGF), epithelial growth factor (EGF) and fibroblast growth 

factor (FGF)21.  

 

Secondly, ECM exposes specific adhesion receptors that are recognized by cellular 

adhesion proteins (integrins). As a result, ECM forms transient and stable interactions with cells, 

being dynamically integrated with their intracellular signaling pathways and participating in cell 

phenotype determination24.   

 

 

ECM mechanical signaling 

ECM can have different composition, concentration and/or hierarchical organization of 

fibrous proteins and proteoglycans, resulting in different stiffness values. Cells sense these 

mechanical properties by continuously pushing and pulling on the ECM through cell-matrix 

adhesions (integrins). Cells respond to the resistance opposed by the microenvironment by 

balancing their internal tension, through Rho/ROCK (Rho-associated coiled-coil containing 

protein kinase) signaling pathway. In particular, Rho proteins modulate contraction of the 

actomyosin cytoskeleton and expression of ECM specific ligands. Therefore, mechanical signals 

from ECM alter cellular internal organization and ECM-cell interactions, inducing the activation 

or inhibition of genes involved in critical physiological processes as proliferation, migration and 

differentiation. This process of converting a mechanical stimulus in a cellular response is known 

as mechanotransduction25,26 (Figure 1.4). 
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Figure 1.4. ECM mechanical signaling. ECM fibers composition, concentration and degree of crosslinking dictate 
matrix stiffness. This external resistance is balanced with the internal cellular tension by modulating cytoskeleton 
organization and ECM-cell adhesions. (B) Cell differentiation depends on matrix stiffness. The fluorescent intensity of 
differentiation markers was represented versus substrate compliance (kPa). Data revealed that maximal lineage 
specification was achieved at the stiffness value typical of each tissue. (C) Matrix stiffness regulates epithelial 
morphogenesis. Images of cancer cells colonies grown in 3D BM-crosslinked polyacrylamide (PA) gels. These cultures 
recapitulated the range of stiffness between normal (150 Pa) and malignant tissue (5000 Pa). Cancer cells colonies 
grown on a soft BM-PA gel showed cell-cell localized β-catenin, basally polarized β4 integrin and an assembled BM. 
Increasing matrix stiffness destabilized cell-cell junctions and perturbed tissue polarity (diffusive localization of β-
catenin, β4 integrin and BM). Adapted from Discher et al.26, Engler et al.27 and Paszek et al.28 

 

Most tumours are characterized by progressively become a stiffer tissue and, 

consequently, are frequently detected through physical palpation as a rigid mass. For instance, 

breast cancer tissue can be 10 times stiffer than healthy tissue28. This phenomenon is produced 

by an elevated deposition and remodelling of ECM components, mainly fibrilar collagen and 

hyaluronic acid. The link between cancer and matrix stiffness has been largely studied. Matrix 

stiffness perturbs epithelial architecture by increasing ROCK-generated cytoskeletal contractility 

and clustering integrins to promote focal adhesions (FA). Moreover, the FA kinase (FAK)-Rho 

signaling loop cause the hyperactivation of PI3 kinase (PI3K)29 and mitogen-activated protein 

kinase (MAPK)30 pathways, which enhance cell growth and drive a clinically relevant 

proliferation signature.  
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1.1.3.2 Natural Scaffolds: Using Nature Sources 

TE scaffolds can be divided into two categories depending on their origin: synthetic or 

natural biomaterials. Natural biomaterials are ECM components directly extracted from plants, 

animals or human tissues. Up to date, collagen31, reconstituted BM32 and hyaluronic acid33 

constitute the gold standard for developing 3D cultures in cancer research.  

 

Collagen is the major component of the ECM of all connective tissues, representing 

approximately 25% of the total dry weight of mammals. It provides structural support and 

establishes interactions with other matrix proteins and cellular receptors, participating in cell 

organization. Four different integrins (α1β1, α2β1, α10β1 and α11β1) can bind to collagen and 19 

genetically distinct collagen types are described. All of them are characterized by having a triple 

helix structure, formed by repeating GXY sequences within each chain (X is a proline and Y a 

hydroxyproline). The most abundant collagen is Type I and it is composed of two α1(I) and one 

α2(I) chains to give a molecular organization of two [α1(I)]2α2(I). In tumor microenvironment, 

collagen has an ubiquitous nature due to its overexpression by stromal fibroblasts in a process 

known as desmoplastic reaction (DR)34. For instance, DR accounts for up to 90% of the tumor 

volume in pancreatic cancer. 

 

The main advantages of natural biomaterials are their easy accessibility, 

biocompatibility and capacity to integrate a wide spectrum of the ECM signals that actively 

participate in tumor progression, mainly cell adhesion binding motifs. These matrices have 

produced important conceptual advances such as the expression of genes (pro-angiogenic 

factors, MMPs, epithelial-mesenchymal transition [EMT] markers, etc.) and the acquisition of 

drug resistance at similar levels than tumours35–37. Therefore, they are able to recreate the in 

vivo cellular response more precisely.  

 

However, the simultaneous presence and the often unknown character of ECM signals 

make difficult to analyze the effect of specific factors. An example is the coupling between 

mechanical, physical and chemical properties. Characteristic tumor stiffness values can be easily 

recreated by increasing concentration or crosslinking density of these biomaterials. But, in 

parallel, they suffer modifications of fiber architecture, pore size and integrins presence, altering 

cell behavior independently of differences in mechanical properties28. Another drawback of 

natural biomaterials is that the same ECM component can be very variable in its composition, 

depending on the specie origin and industrial processing (extraction and purification steps). 

Consequently, the reproducibility of experiments is reduced8. 
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1.1.3.3 Synthetic Scaffolds: Learning From Nature 

A further step in cancer biology has involved the development of synthetic biomaterials 

as TE scaffolds. They are formed by non-instructive building blocks that provide both (i) a 

reproducible cellular microenvironment and (ii) the flexibility to individually tune a physical, 

mechanical or chemical feature. Therefore, they allow scientists to study the function and 

mechanism of specific factors during disease progression. Paradoxically, these advantages make 

this class of biomaterials far more challenging because they do not contain signaling motifs. 

Unless functionalization is performed (incorporation of bioactive sequences or molecules), 

scaffolds only serve to hold and guide cells in a 3D space until they produce their own 

physiological matrix environment8,38. Synthetic scaffolds can be mainly classified in microfiber 

polymers and nanofiber hydrogels.  

 

The most popular polymeric scaffolds in cancer research are polyethylene glycol (PEG)39, 

poly(lactide-co-glycolide) (PLG)40, poly(lactic-co-glycolacid) (PLGA)40 and polylactic acid (PLA)41. 

From the chemical perspective, these polymers can be covalently functionalized with integrin 

binding sites (arginine-glycine-aspartate, RGD sequences) or proteolytic degrading sites (MMPs 

target sequences). Moreover, they can be conjugated with  specific soluble biomolecules 

(growth factors, angiogenic factors, cytokines, etc.), which are controllably released based on 

proteinase activity42. From the mechanical perspective, the stiffness of these synthetic 

biomaterials can be precisely tuned by changing concentration or cross-linking density without 

introducing an array of confusing cues (i.e. changes in cell ligand density). Up to date, only few 

studies based on varying the stiffness of synthetic PEG polymer scaffolds have been published 

and, therefore, more research is needed in this field43. Interestingly, results show that ECM 

stiffness per se can initiate tumour progression through modulation of integrin dynamics. From 

the physical perspective, polymeric scaffolds show a pore size between 50-500 µm, which is in 

the same order of magnitude than an average mammalian cell (10-100 µm). Consequently, cells 

do not experience a truly 3D microenvironment since scaffold pores should be significantly 

smaller than cells. Pore size is the main drawback of polymers22. 

 

The second class of synthetic scaffolds are nanofiber hydrogels. They contain biologically 

inspired sequences, being classified as peptide amphiphiles44, β-hairpin peptides45 and self-

assembling peptides46.They are characterized by having a pore size between 5-200 nm (1000 

times smaller than mammalian cells). As a result, cells grow in a 3D milieu, mimicking the 

architecture of ECM (Figure 1.5). 
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Figure 1.5. Applying biomimetic design principles to synthetic scaffolds. Synthetic scaffolds enable the 
deconstruction of the in vivo cellular microenvironment in order to understand the physical, mechanical and chemical 
signals that govern tumour progression at the molecular level. Nanofiber biomaterials consist of non-instructive 
building blocks that can be functionalized with epitopes, as bioactive sequences (e.g. adhesion cellular sites and 
proteases sensitive sites) and/or signalling molecules (e.g. growth factors). Synthetic scaffolds undergo an assembly 
process in response to controlled physical or chemical agents (pH, temperature, catalysts, etc.), rendering an ordered 
structure and embedding cells. Cells receive multiple environmental cues that arise from the 3D milieu, which can 
modulate cell-cell and cell-ECM interactions and initiate self-organization programs. For instance, cells can synthetize 
and deposit their own ECM together with the recruitment of morphogens. As consequence, synthetic scaffolds can 
activate cell programs, such as EMT in cancer pathophysiology. 

 

Self-assembling peptides are the most used nanofiber scaffolds for TE applications. 

Molecular self-assembly is the spontaneous organization of molecules into well-defined 

arrangements because of non-covalent interactions occurring under thermodynamic 

equilibrium conditions. Nature commonly uses this mechanism to form highly organized and 

stable macromolecular entities, such as DNA double-helix annealing and BM assembly46. 

Following this principle, self-assembling peptides are composed of natural aminoacid 

sequences, which alternate hydrophilic and hydrophobic residues. Under the appropriate 

conditions, they spontaneously self-assemble to face the hydrophobic residues between them 

and the same for hydrophilic residues, forming a network of interweaving nanofibers. This 

process is driven by ionic side-chain interactions in addition to conventional β-sheet backbone 

hydrogen bonding. The non-covalent interactions between nanofibers enable cells to freely 

grow, migrate and establish intercellular contacts47. A promising self-assembling peptide is 

RAD16-I (commercially available as BDTM PuraMatrixTM). It is a 16-aminoacid peptide, having the 

following sequence:  AcN-(RADA)4-CONH2 (R arginine, A alanine and D aspartic acid). RAD16-I is 

inspired in zuotin, a yeast protein initially identified for its ability to bind left-handed Z-DNA. 

Through adjustment of the pH to neutrality or upon increase of the ionic strength to 

physiological solutions, RAD16-I self-assembles forming nanofibers of 10-20 nm diameter and 

50-200 nm pore size48,49 (Figure 1.6). 
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Figure 1.6. Self-assembling peptide RAD16-I. (A,B) Schematic model of self-assembling process. RAD16-I is an 
amphiphilic oligopeptide that presents alternatively repeating units of positively charged and negatively charged side 
groups. Under the appropriate conditions (strong ionic strength or neutral environments as physiological solutions), 
the peptide spontaneously self-organizes in anti-parallel arrangement to form a network of interweaving nanofibers 
of 10-20 nm diameter and 50-200 nm pore size. This process is driven by ionic side-chain interactions in addition to 
conventional β-sheet backbone hydrogen bonding. The non-covalent interactions between nanofibers enable cells to 
freely grow, migrate and established intercellular (C) Scanning electron microscopy of the nanofiber network. The 
molecular architecture of RAD16-I recreates natural ECM, in which cells experience a truly 3D milieu. Adapted from 
Alemany-Ribes et al.50 and Genové et al 51. 

 

Several experimental models show the potential of RAD16-I as TE scaffold. Particularly, 

it is proved to support growth and proliferation of a wide variety of cells as chondrocytes47, 

neuronal cells52, osteoblasts53, endothelial cells54 and hepatocytes55; as well as differentiation of 

progenitor cells to osteogenic56, neural57 and hepatic58 lineage. Furthermore, it has been 

functionalized through solid-phase synthesis extension at the C-termini using short peptide 

sequences that act as recognition site for cellular adhesion, spreading and migration. Up to date, 

laminin-binding sequences (YIGSR, IKVAV, PDSGR) and collagen binding-sequences 

(PRGDSGYRGDS)51,55,59 have been used to trigger different cell responses. However, the 

application of self-assembling peptide in cancer research remains poorly explored.     

 

Each TE scaffold provides specific physical, chemical and mechanical cues, inducing a 

different cellular response. Hallmark experiments have largely demonstrated that culturing the 

same cells in different biomaterials results in changes in their morphology, proliferation rate, 

migratory potential and EMT gene expression60. For this reason, the selection of the scaffold is 

a key point when planning the experiments and it depends on multiple factors: (i) the application 

of the 3D model (comprehension of disease mechanism, development of drug screening 

processes, establishment of gene signatures to predict the prognosis of personalized cancer 

cases, etc.), (ii) the tissue of origin and tumor ethology and (iii) the concrete step of tumor 

progression to be recreated. As a result, data gathered from 3D culture models should be 

interpreted in the context of each experimental design. 
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1.1.3.4 Scaffolds Selection: Recreating Cancer Step By Step  

As previously described, tumorigenisis is a multistage process characterized by limitless 

cellular proliferation, sustained angiogenesis and tissue invasion and metastasis. Considering its 

definition, tumor progression cannot be entirely recreated in vitro as it engages multiple cellular 

programs. Consequently, scaffolds are carefully designed depending on which step is modelled. 

 

 

Limitless cellular proliferation 

Significantly, 90% of cancers have an epithelial origin61. Epithelial tissues show some 

distinguishing microscopic features, such as cell polarity, specialized intercellular interactions 

and attachment to an underlying BM. This ordered architecture is necessary for the proper 

control of cellular proliferation and differentiation and is disrupted during the pathogenesis of 

epithelial tumors7,62. When cancer cells grow in 2D cultures, they acquire upper (dorsal) and 

lower (ventral) surfaces and, thus, experience an artificial epithelial polarity. Three-

dimensionality can restore tumor morphology, independently of matrix composition and 

stiffness63.  

 

Seminal experiments reveal that integrin blocking antibodies can revert the malignant 

phenotype of cancer cells in 3D cultures19,64. Furthermore, it is reported that cells undergo 

minimal or no proliferation when cultured in non-instructive PEG hydrogel, compared to PEG 

functionalized with integrin binding sites (RGD sequences) or Matrigel59. Therefore, tumor 

architecture and function are orchestrated and maintained through ECM adhesion receptors. In 

particular, proliferation depends on the activation of integrin β1 family, which in turn 

phosphorylates FAK signaling pathway65,66. These findings are consistent with previous work 

involving animals. For instance, in transgenic mouse models for mammary or pancreatic cancer, 

knockdown of β1 integrin results in the inhibition of proliferation of mammary cancer cells and 

senescence of pancreatic beta cancer cells67.  

 

 

Sustained angiogenesis 

Angiogenesis is the formation of new capillaries from pre-existing ones68. In cancer, this 

process is activated when the tumor demand for oxygen and nutrients surpasses the local 

supply, typically at a diameter between 1-2 mm. Tumor vasculature is required for cell growth 

and dissemination. Its architecture is characterized by a poor organization, due to the imbalance 

between pro- and anti-angiogenic factors and the stress generated by the uncontrolled 

proliferation rate that forces vessels to move apart69. As a result, tumor shows hypoxia, a low 

pH and a high interstitial fluid pressure, which provides a hostile and resistant 

microenvironment. Intensive research has been directed to the development of anti-angiogenic 

strategies in order to prevent tumor progression (i.e. thalidomine, Herceptin, AZD2171, etc.)23.  
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Multiple studies demonstrate that the culture of cancer cells within scaffolds can neither 

promote nor support angiogenesis per se, strongly suggesting that stromal cells are an essential 

requirement in the formation of a capillary-like microvasculature70. 3D matrices constitute an 

advantageous framework to co-culture cancer cells with stromal cells. In fact, culturing cancer 

cells, endothelial cells and fibroblasts within collagen results in the recruitment and 

differentiation of endothelial cells to develop blood vessel-resembling structures. Cell-matrix 

interactions between endothelial cells and collagen induce the migration of endothelial cells 

towards the collagen-embedded layer of fibroblasts and cancer cells. Besides, cell-cell 

interactions cause the differentiation of endothelial cells into capillaries-like structures, through 

the delivery of pro-angiogenic factors in a spatiotemporal controlled manner70,71. Synthetic 

scaffolds like PEG and PLG are used for immobilization and subsequent release of chemical cues 

that may be involved in angiogenesis, making such systems powerful platforms to study tumor-

dependent changes in angiogenic sprouting72.  

 

Finally, smart platforms located in the frontier between in vitro and in vivo conditions 

are introduced. An important case is the arterio-venous loop based on the microsurgical 

implantation of small caliber vessels in matrices of different composition. For instance, arterial 

explants from umbilical cords are embedded in Matrigel to study their interaction with cancer 

cells. These explants led to capillary-like structures autonomously, without stimulation with 

exogenous growth factors17,73. The dynamic observation of cancer cells that recruit, interact and 

stimulate the growth of new vessels can promote the understanding of tumor-driven 

angiogenesis.  

 

 

Tissue invasion and metastasis 

Metastasis is a poorly understood mechanism of tumor spreading62. During metastatic 

process, cells gain the capacity to degrade their BM and invade surrounding tissue. 

Subsequently, metastatic cells enter the lymphatic and circulatory systems in order to 

disseminate and undergo growth in distant parts of the body. This cascade of events is only 

possible if cells lose their epithelial phenotype and acquire a mesenchymal phenotype that 

switches on proteolysis and motility programs. This conversion is known as epithelial-

mesenchymal transition (EMT) and involves changes in cellular architecture and function74. Due 

to its clinical relevance, a major effort has been directed to develop new models to capture 

specific steps of metastasis and, therefore, discover new insights of the molecular mechanism 

that drive metastasis.  

 

One of the first questions to be addressed is how cells can migrate throughout the ECM. 

Experiments with natural scaffolds evidence that cancer cells overexpress ECM degrading 

enzymes (MMPs, hyaluronases, etc.) compared to normal cells75,76. For this reason, synthetic 

biomaterials like PEG are a neutral microenvironment to precisely tune structural cues, in this 

case MMP-sensitive motifs39,77. Results show that cells are able to tunnel through the matrix via 

proteolytic degradation executed by MMPs, resulting in its continuously remodeling. However, 

clinical studies demonstrate the incomplete therapeutic window covered by MMPs inhibitors in 
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cancer progression. 3D cultures are also used to identify other mechanisms responsible for the 

migratory capacity of cancer cells. Notably, synthetic scaffolds (PEG and RAD16-I)43,60 and 

natural scaffolds (collagen)78 can recreate micro-tunnels of the same size and topography as 

those produced by metastatic cells. These opened paths are used by MMPs-deficient cells to 

migrate using an amoeboid phenotype, displacing matrix fibers by actomyosin-based 

mechanical forces. Therefore, bioengineering tumor microenvironment can lead to the 

discovery of the synergism between proteolytic degradation and amoeboid movement for 

migration.  

 

In a second stage, the molecular mechanisms that direct the circulation of cancer cells 

through the bloodstream are investigated using microfluidic platforms. Specifically, 3D cultures 

based on Matrigel79 or collagen80,81 scaffolds are subjected to continuous flow. These systems 

enable the analysis of fluidic forces (shear stress) as modulators of EMT process during 

tumorigenisis. Furthermore, methodologies are developed to produce endothelialized networks 

within 3D scaffolds in these microfluidic circuits82,83. Their main objective is to characterize the 

processes activated by cancer cells under shear stress conditions: adhesion with endothelial 

cells and degradation of the BM to undergo metastatic growth (extravasation). 

 

Finally, colonization of cancer cells to a secondary metastatic site is evaluated by 

mimicking the host cellular niche. The location of metastasis is not random; each type of cancer 

tends to spread to a particular tissue or organ at a higher rate than expected by statistical 

chance. It is postulated that a non-permissive microenvironment, in which cancer cells are 

unable to properly adhere, triggers their dormancy84. For this reason, the modelling of the new 

microenvironment is a useful tool for understanding the mechanisms mediated by the ECM and 

neighboring cells that explain this specificity in metastasis location. For instance, the three most 

commonly diagnosed cancer types (prostate, lung and breast) tend to metastasize in the bone. 

Consequently, research is directed to the design of biomimetic organic collagen85 and inorganic 

hydroxyapatite (HA)85 that form bone. Results show that cancer cells mineralize in an active and 

regulated process similar to osteoblasts. Therefore, cells possess osteomimetic capabilities 

through the expression of bone marker proteins that allow them to adapt and flourish within 

the bone microenvironment (Figure 1.7 and Table 1.1). 
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Figure 1.7. Tissue engineering scaffolds depend on the specific tumour step. Design parameters for 3D biomaterials 
depend on the tumour stage and the corresponding cellular programs that are recreated.  Tumorigenisis is a 
multistage process defined by particular genetic and epigenetic hallmarks: (1) Normal tissue. (2) Primary tumour with 
limitless cellular proliferation. (3) Invasive tumour characterized by ECM degradation and migration (epithelial to 
mesenchymal transition, EMT). (4) Blood circulation that comprises (5) intravasation into lymph and blood vessels to 
allow cell passive transport to distant organs; extravasation to degrade the BM of lymph and blood vessels to colonize 
a secondary site and metastatic growth through mesenchymal to epithelial transition (MET). (6) Sustained 
angiogenesis takes places within primary, invasive and metastatic tumour site. The figure illustrates the most actual 
and relevant biomaterials (from both natural and synthetic origin) used to model each tumour stage.  
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TUMOR STAGE 
3D CULTURES 

NATURAL SCAFFOLDS SYNTHETIC SCAFFOLDS 

LIMITLESS 
PROLIFERATION 

They provide a wide range of ECM receptors, 
basically adhesion and proteolytically 

remodeling complexes: Matrigel19,32,64, 
collagen86 and hyaluronic acid33,87. 

 
They enable to modulate stiffness by 

increasing concentration or cross-linking 
density. In parallel, they suffer changes in 
pore size, fiber architecture and adhesion 
sites: collagen28,30 and hyaluronic acid88. 

They are blank environments to 
systematically explore the role of ECM 

receptors: PEG versus PEG-RGD sites and -
MMP sensitive sites59,77. 

 
They can independently tune stiffness, 

without introducing an array of confusing 
ECM signals: PEG77 and RAD16-I89. 

 

SUSTAINED 
ANGIOGENESIS 

Culturing cancer cells within 3D matrices is 
representative of pre-vascularized stages of 

tumor progression. 
 

The interaction between cancer cells, 
endothelial cells and fibroblasts within a 3D 
collagen environment is required for micro-

vasculature formation70. 
 

Alternatively, arterials explants can be 
implanted into 3D matrices of different origin 

(collagen, Matrigel) containing cancer 
cells17,73. 

They enable the immobilization and 
subsequent release of angiogenic factors, in 
a controlled spatial and temporal manner: 

PLG40,72. 

ECM 
DEGRADATION 

AND MIGRATION 

They provide suitable platforms to perform 
invasion assays and study the expression of 

ECM degrading enzymes: Matrigel76, 
collagen75,76 and hyaluronic acid33. 

 
They can recreate micro-tunnels for 

proteolytically inactive cells and study 
alternative mechanisms to ECM remodeling: 

collagen78. 
 

They can determine stiffness contribution on 
cancer invasive phenotype, in parallel to 

physical modifications of the matrix: 
collagen28,30 and hyaluronic acid88. 

They are blank environments to 
systematically explore the role of ECM 

degrading enzymes: PEG versus PEG-MMP 
sensitive sites59,77. 

 
They enable to investigate the existence of 
migration mechanisms alternative to ECM 

remodeling: PEG43 and RAD16-I60. 
 

The isolated impact of stiffness on migration 
can be studied: PEG43 and RAD16-I89. 

BLOOD 
CIRCULATION 

They are used in microfluidic platforms. 
 

Microchannels coated with stromal beds of 
Matrigel79,80 and collagen80,81 to evaluate 

hydrodynamic forces impact on EMT. 
 

Endothelialized networks82,83 within fluidic 
circuits to characterize adhesions between 

cancer and endothelial cells and BM 
degradation  

 
They can enable analyzing what chemical 

cues participate in the control of cancer cells 
circulation through the bloodstream. 

 
They can let to determine what adhesion 

complexes are needed to activate 
extravasation. 

METASTATIC 
GROWTH 

The biomaterial used depends on the 
metastatic growth site. 

 
In general, the 3D matrix should contain 

bioactive motifs through which cells are able 
to adhere or they enter into a dormancy 

state84. 

They are blank environments to 
systematically explore the role of adhesion 

sites: PEG versus PEG-RGD sites59,77. 
 

Table 1.1. The most representative 3D scaffolds used to model the different stages of tumor progression. 
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1.1.3.5 Cells Selection: Maintaining Tumor Identity 

Apart from the continuous research in 3D scaffolds, a major challenge in cancer biology 

is the optimization of cell source in order to provide an accurate tissue engineering toolbox for 

identification and characterization of new therapeutic approaches. In vitro models are based on 

immortal cancer-derived cell lines. They constitute the most common means of studying cancer 

pathophysiology due to their accessibility, ease of culture and homogeneity. However, genomic 

studies demonstrate that cell lines only reflect a limited part of the gene expression profile that 

characterize the tumor in vivo, emerging as unreliable predictive preclinical models90,91. There 

are multiple reasons that explain this misrepresentation.  

 

First, cell lines have been grown for several years or decades in 2D cultures, imposing a 

strong selective pressure on them and making adaptation only possible by changes at DNA level. 

As they are distributed in many laboratories, the same cell line might have undergone various 

selection steps due to differences in feeding and passage techniques91.  Second, stroma is an 

active participant in tumor progression5,6. Finally, analyses reveal a high degree of genomic 

heterogeneity across cancer patients population, accounting for the variable clinical-response 

to treatment. A unique cell line does not capture this complexity90.  

 

The scientific community has more reliable cellular approaches, including mainly clinical 

biopsies or the parallel analysis of large panels of cell lines. Biopsies are obtained at the time of 

surgical resection and cells are freshly harvested and cultured in 2D or 3D conditions. The 

complex mixture of cells that are part of the tumor milieu can be preserved, recreating the 

crosstalk between stromal and cancer cells more precisely. This new methodology is the first 

step to personalized medicine, making possible the evaluation of drug sensitivity and resistance 

on a patient-by-patient basis. However, this platform is not representative of a tumor class since 

it only incorporates the genetic information of an individual patient92,93.  

 

The second strategy is focused on the establishment of cellular platforms in which each 

type of tumor is represented by a large number of cell lines. The most popular are National 

Cancer Institute 60 (NCI60) and Center for Molecular Therapeutics 1000 (CMT1000) platforms. 

For instance, these Centers have 6 and 51 cell lines for studying breast cancer respectively. This 

cell collection captures the genomic diversity of human cancers, correlating underlying 

genotypes with drug response. The obtained data can create molecular signatures that are 

clinically useful for both predicting drug sensitivity and elucidating mechanisms of drug action. 

The major limitation is the logistical challenge associated with the culture of large cancer cell 

lines panels, which considerably limits the throughput of the platform with respect to the 

number of compounds that can be realistically tested in a given period of time90.  
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1.2 HYPOTHESIS AND GENERAL AIMS 

This project was based on exploring different three-dimensional (3D) cell models for 

cancer research. Our working hypothesis was that 3D cultures could fulfill the need of reliable 

in vitro approaches to better comprehend the molecular mechanisms that rule both disease 

progression and therapies action. 

 

Biomaterials characterized by different composition and stiffness values were used to 

developed 3D models and results were compared with conventional monolayers. The general 

aim was to deconstruct the complex tumor milieu and analyze the contribution of different 

microenvironmental cues in cancer biology. In particular, the following objectives were pursued: 

 

 

(1) To analyze the role of environmental signals in the activation of epithelial to 

mesenchymal transition, a cell program required for initiating invasion tumor stage 

(Chapter 3).  

 

(2) To design and develop 3D cell models for assessing both mode of action and 

efficacy of cancer treatment approaches as photodynamic therapy (Chapter 4). 

 

(3) To study the molecular mechanisms that cancer cells engage in order to escape 

from drugs action and become resistant (Chapter 5). 
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1.3 CONTENT OF DISSERTATION 

The first chapter was primarily focused on the cellular and molecular mechanisms that 

underlie early steps of epithelial to mesenchymal transition (EMT) and activate tumor invasion. 

3D cells models could recapitulate the transition from a 2D to a 3D microenvironment that 

experience cancer cells when escape from epithelial layer and invade mesenchymal connective 

tissue. Moreover, these models allowed us to modify the chemical and mechanical properties 

of cellular microenvironment and analyze their potentiality to induce EMT. For this reason, self-

assembling peptide RAD16-I and natural collagen type I were used as scaffolds at two working 

concentrations to culture pancreatic cancer cells. The effect of different surrounding 

compositions and stiffness values was evaluated in terms of (i) cell phenotype and (ii) cell-cell 

adhesions expression and regulation (E-cadherin, EMT marker) and was compared to 

conventional monolayer cultures.  

 

The second chapter was based on developing different 3D cell models for predicting the 

outcome of cancer photodynamic therapy (PDT). Biomimetic approaches were designed and 

characterized to progressively incorporate increasing levels of biological complexity. In a first 

stage, the self-assembling peptide RAD16-I was used to mimic tumor architecture in terms of 3D 

cell-cell and cell-ECM communication networks together with a core of cells under hypoxic 

conditions. In a second stage, collagen was used to incorporate extracellular matrix (ECM)-

binding motifs such as integrins- and metalloproteinases-recognition sequences. Finally, co-

cultures between cancer cells and fibroblasts were performed to enable paracrine signaling 

between both cell types. Results gave insight into the influence of these micoenvironmental 

cues in PDT mechanism and efficacy. Part of the experimental procedures were performed with 

Dr. María García Díaz and Ester Boix Garriga (group of Dr. Santiago Nonell from IQS School of 

Engineering) and Dr. Pilar Acedo Núñez (group of Dr. Ángeles Villanueva from Universidad 

Autónoma de Madrid). 

 

Finally, the third chapter explored the contribution of extracellular milieu to mechanisms 

of drug resistance. In particular, the effect of targeted cancer drugs as receptor tyrosine kinases 

inhibitors (TKIs) was assessed in different 3D cell models of pancreatic cancer cells and 

fibroblasts stromal cells. The expression pattern of specific blocked receptors was analyzed 

before and after drug treatment and compared to conventional monolayer cultures. Data 

reflected the diversity of strategies that survival cells developed to escape from drug action. 

Cells showed plasticity to adapt to changing pressures and dependence on the surrounding 

microenvironment. TKIs were synthetized by group of Dr. Ignacio Borrell from IQS School of 

Engineering. 
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2.1 2D CULTURE OF MAMMALIAN CELLS 

Human pancreatic adenocarcinoma (PANC-1) cell line was purchased from American Type 

Culture Collection (ATTC, CRL-1469). Human cervical adenocarcinoma (HeLa) cell line was 

purchased from ATTC (CCL-2). Green Fluorescent Protein (GFP)-labelled HeLa cell line was 

purchased from Cell Biolabs (AKR-213). Primary human normal dermal fibroblasts (hNDF) were 

kindly provided by Dr. Jesús Otero from Hospital Central de Asturias (Spain). GFP-labelled human 

foreskin fibroblasts (HFF) were kindly provided by Dr. Ángel Raya from Institute for 

Bioengineering of Catalonia (IBEC, Spain).  

 

Cells were grown on traditional plastic flasks (75cm2 of area) with culture medium 

consisting of Dulbecco's Modified Eagle's medium high glucose (4.5g/L) (DMEM, E15-009; PAA) 

supplemented with 10% (v/v) fetal bovine serum (FBS, DE14-801F; Lonza), 1% (v/v) L-glutamine 

(M11-044; PAA) and 1% (v/v) penicillin-streptomycin (L11-010; PAA). Cultures were maintained 

at 37ºC in a humidified incubator equilibrated with 5% carbon dioxide (CO2). All experiments 

were performed at 70 to 80% cell confluence using passages between 5 and 20. 

 

 

 

2.2 3D CULTURE OF MAMMALIAN CELLS 

2.2.1 3D CULTURE TECHNIQUE IN RAD16-I BIOMATERIAL 

Self-assembling peptide RAD16-I (BDTM PuraMatrixTM, 354250; BD Biosciences) was 

commercially available at a concentration of 10.0 mg/mL. To prepare RAD16-I scaffolds, the 

stock solution was diluted to a concentration two-fold higher than the desired one in 10% 

sucrose. In the present thesis, the final working concentrations of RAD16-I scaffold were 5.0, 3.0 

and 1.5 mg/mL. Therefore, for encapsulations at 5.0 mg/mL, the stock solution was directly 

used. For encapsulations at 3.0 mg/mL peptide, 6.0 mg/mL peptide was prepared by diluting 

600 µL of stock solution with 400 µL of 25% sucrose. For encapsulations at 1.5 mg/mL peptide, 

3.0 mg/mL peptide was prepared by diluting 300 µL of stock solution with 700 µL of 14% sucrose. 

All these data is summarized in Table 2.1.  

 
 

RAD16-I (Final 

concentration) 

RAD16-I (Stock 

concentration) 

RAD16-I (Commercial 

concentration 10 mg/mL) 

Sucrose 

concentration 

Sucrose 

volume 

5.0 mg/mL 10.0 mg/mL 1000 µL  0 µL 

3.0 mg/mL 6.0 mg/mL 600 µL 25% (w/v) 400 µL 

1.5 mg/mL 3.0 mg/mL 300 µL 14% (w/v) 700 µL 

Table 2.1. Protocol for the preparation of RAD16-I scaffolds. 
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Then, 9 mm diameter cell culture inserts (PICM01250; Millipore) were placed inside 6-

well culture plates and their membrane was wet with 500 µL of culture medium. In the particular 

case in which encapsulations are forced to attach to the insert, the membrane was not wet prior 

to the loading of cells and peptide mixture. Therefore, spontaneous contraction of the 

encapsulation was mechanically blocked. Mammalian cells were harvested by trypsinization 

from the 2D culture flasks and suspended in 10% (w/v) sucrose to get a final concentration of 

2·106 cells/mL. For co-culturing experiments, the cell suspension of 2·106 cells/mL contained 

1·106 cells/mL of each cell type (50:50). 10% sucrose is an isotonic and nonionic solution that 

mantains physiological osmotic pressure and avoids RAD16-I self-assembling process during the 

mixing step.  

 

Equal volumes of cell suspension and liquid peptide solution were mixed to obtain a final 

suspension of 2·106 cells/mL in 5.0, 3.0 and 1.5 mg/mL of RAD16-I. The suspension was loaded 

into the inserts, using different volumes (80 or 40 µL) depending on the experiment. The peptide 

was left gelling for approximately 20 minutes. During this waiting time, the higher ionic strength 

and the neutral pH of the medium, which was in contact with cell suspension and RAD16-I 

through the insert membrane, induced the spontaneous self-assembling of the peptide. Finally, 

a total volume of 500 µL of culture medium was added into the insert in consecutive small 

portions, favoring the leaching of the sucrose. The remaining medium in the well, rich in sucrose, 

was aspirated and replaced with fresh medium. Change of medium was done every day by 

removing 500 µL from the well and adding 500 µL of fresh medium into the insert. A schematic 

representation of the protocol is shown in Figure 2.1 

 

 

 

 

Figure 2.1. Schematic representation of the protocol for cell encapsulation in RAD16-I peptide. First step consists in 
wetting the membrane of the insert with culture medium. Then, cells are mixed with the liquid solution of self-
assembling peptide. The mixture is loaded into the insert and medium diffuses into the suspension through the 
membrane, which induces the spontaneous self-assembling of RAD16-I. Washing steps are performed with culture 
medium in order to favor the leaching of the sucrose. Finally, the well and the insert are filled with medium. 
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2.2.2 3D CULTURE TECHNIQUE IN COLLAGEN BIOMATERIAL 

Natural type I collagen (354249; BD Biosciences) was extracted from rat tail and 

commercially available at a concentration of 10.0 mg/mL. In the present thesis, the final working 

concentrations were 5.0, 3.0 and 1.5 mg/mL. To prepare 5.0 mg/mL collagen scaffolds, 1 μL of 

Phenol Red was mixed with 99 μL of phosphate buffered saline 10x (PBS), 800 μL of collagen 

type I 10.0 mg/mL and 100 μL of tissue culture water in order to obtain 1 mL of 8.0 mg/mL 

collagen solution. To prepare 3.0 mg/mL collagen scaffolds, 1 μL of Phenol Red was mixed with 

99 μL of 10x PBS, 600 μL of collagen type I 10.0 mg/mL and 300 μL of tissue culture water in 

order to obtain 1 mL of 6.0 mg/mL collagen solution. To prepare 1.5 mg/mL of collagen scaffolds, 

1 μL of Phenol Red was mixed with 99 μL of PBS 10x, 300 μL of collagen type I 10.0 mg/mL and 

600 μL of tissue culture water in order to obtain 1 mL of 3.0 mg/mL collagen solution. All these 

data is summarized in Table 2.2. 

 

 

Collagen (Final 

concentration) 

Collagen (Stock 

concentration) 

Collagen (Commercial 

concentration 10 mg/mL) 
H2O PBS 10x 

Phenol 

Red 

5.0 mg/mL 8.0 mg/mL 800 µL 100 µL 99 µL 1 µL 

3.0 mg/mL 6.0 mg/mL 600 µL 300 µL 99 µL 1 µL 

1.5 mg/mL 3.0 mg/mL 300 µL 600 µL 99 µL 1 µL 

Table 2.2. Protocol for the preparation of collagen scaffolds. 

 

 

All solutions were brought to alkalinity to induce the gelation of collagen, using sodium 

hydroxide until the pH ranged from 8 to 9, which was checked with a pH test paper. 

Consequently, the color of the solution shifted from yellow to pink due to the presence of the 

Phenol Red pH indicator. This step was performed in ice to avoid collagen gelation before mixing 

it with cells, since the self-assembling process goes more slowly at colder temperatures.  

 

Following collagen preparation, mammalian cells were harvested from the 2D culture 

flasks by trypsinization and suspended in PBS 1x to a final concentration of 2·106 cells/mL. For 

co-culturing experiments, the cell suspension of 2·106 cells/mL contained 1·106 cells/mL of each 

cell type (50:50). To obtain the required concentrations of collagen scaffolds, the following 

mixtures were performed: for 5.0 mg/mL, 50 μL of collagen 8.0 mg/ml and 30 μL of cell 

suspension; for 3.0 mg/mL, 40 μL of collagen 6.0 mg/ml and 40 μL of cell suspension; for 1.5 

mg/mL, 40 μL of collagen 3.0 mg/ml and 40 μL of cell suspension. These volumes referred to the 

preparation of a single construct (80 μL). Constructs of 40 μL were also prepared, following the 

same volume-concentration ratios. Finally, 80 or 40 μL of the suspension were loaded into 48 

well culture plates. Collagen was left gelling for approximately 30 minutes at 37oC. After 

gelation, 700 μL of medium were added on top of the construct. A change of medium was 

performed every day by removing 500 μL from the well and adding 500 μL of fresh medium. 
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2.3 3D CULTURE CHARACTERIZATION 

2.3.1 CELL MORPHOLOGY ASSESSMENT 

Cell morphology and organization within the 3D cultures were evaluated by 

fluorescence microscopy. In particular, nuclei and actin filaments were stained with 4’,6-

diamidino-2-phenylindole (DAPI, D1306; Molecular Probes) and phalloidin-

tetramethylrhodamine B isothiocyanate (Phalloidin-TRITC, P1951; Sigma) dyes respectively. In 

particular, DAPI is a blue fluorescent probe that selectively binds to the minor groove of double 

stranded DNA, where its fluorescence is approximately 20-fold greater than in the unbound 

state. Phalloidin is attached to TRITC and binds polymeric F-actin and inhibits microfilament de-

polymerization, revealing the distribution of actin filaments and enabling the visualization of the 

cytoskeleton.  

 

Cells were cultured in the 3D scaffolds during 1 and 10 days. Then, 3D cultures were 

washed with PBS and fixed with 1 % (w/v) paraformaldehyde (PFA) for 1 hour. After the fixation 

protocol, they were incubated in 0.1 % (v/v) Triton x-100 in PBS for 30 minutes to permeabilize 

the cell membrane. Finally, they were incubated during 25 minutes with Phalloidin-TRITC (ext 

540/em 570 nm) and 5 minutes with DAPI (ext 364/em 454 nm), both reagents at a final 

concentration of 0.1 μg/ml in PBS. After washing steps with PBS, samples were examined under 

a Zeiss Axiovert inverted microscope (Axiovert 200M; Carl Zeiss Inc.) with the Zeiss ApoTome 

system. 

 

Cell morphology and organization was also analyzed by field emission gun–scanning 

electron microscopy (FEG-SEM). 3D cultures were washed with PBS, fixed with 5% (w/v) 

gluteraldehyde for 1h. Then, samples were submitted to a dehydration process, which included 

several immersions in ethanolic solutions during 10 minutes: once in 30% (v/v) ethanol, twice in 

50% (v/v) ethanol, three times in 70% (v/v) ethanol, three times in 90% (v/v) ethanol, three times 

in 96% (v/v) and three times in 100% (v/v) ethanol. Samples were dried using a CO2 critical point 

dryer (Polaron, CPD Jumbo E-3100), where ethanol was slowly exchanged by CO2. Then, they 

were sputter-coated with a gold and platinum alloy using Emitech SC7620 (60 s, 18mA and 

chamber pressure 0.2 mbar) and examined with a FEG-SEM (JEOL JSM-7100F) at 13 kV. 

 

 

2.3.2 3D VIABILITY ASSESSMENT 

Cell viability was examined using LIVE/DEAD® Viability/Cytotoxicity Kit for mammalian 

cells (L3224; Invitrogen). In particular, calcein acetomethyl ester (calcein-AM) is transported into 

cells through their membrane. There, ubiquitous intracellular esterases removed the 

acetomethoxy group, leading to calcein that produces green fluorescence. On the other hand, 

ethidium homodimer‐1 only enters cells with damaged membrane. There, it binds to nucleic 

acids and undergoes an enhancement of its fluorescence.  
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Cells were cultured in the 3D scaffolds during 1 and 10 days. Then, 3D cultures were 

washed with PBS and covered with calcein-AM (ex 494/em 517 nm) and ethidium homodimer-

1 (ex 528/em 617 nm) for 15 minutes, both reagents at a final concentration of 2 μM in PBS. 

Then, constructs were washed with PBS in order to remove the excess of reagents and were 

examined under a Zeiss Axiovert inverted microscope (Axiovert 200M, Carl Zeiss Inc.) with the 

Zeiss ApoTome system.  

 

 

2.3.3 MECHANICAL PROPERTIES ASSESSMENT 

3D cultures were washed with PBS and fixed with 2% (w/v) PFA during 1 hour. A 

compression assay was performed in DMA Q800 (TA Instruments), using Dynamic Mechanical 

Assay (DMA) Multi-Frequency-Strain mode and a frequency sweep test. The conditions of the 

assay were: Amplitude= 1 μm, Preload force= 0.001 N and Frequency= 1 Hz. Construct diameter 

and thickness were measured for each sample. Results were obtained with TA Instrument 

Explorer software and analyzed with TA Universal analysis software. 

 

 

 

2.4 GENE EXPRESSION BY REAL TIME RT-PCR  

Real time reverse transcription polymerase chain reaction (Real Time RT-PCR) was 

performed in order to analyze gene expression in 2D and 3D cultures. The first step was RNA 

extraction, followed by complementary DNA (cDNA) synthesis and Real Time RT-PCR reactions. 

 

 

2.4.1 RNA EXTRACTION AND PURIFICATION 

2D and 3D cultures were washed with PBS. Then, they were lysed with RNA lysis buffer 

(12‐6834-02; Peqlab) with immediate inactivation of endogenous and exogenous RNases.  

Constructs were disrupted by pipetting up and down with the micropipette or a pestle and 

stored at -80ºC. Then, RNA was isolated and purified with PeqGold Total RNA kit (12‐6834-02, 

Peqlab), according to manufacturer’s instructions. Briefly, the kit provided a quick method for 

total RNA isolation based on the reversible binding characteristics of RNA to PerfectBind silica 

filters in centrifugation columns.  

 

The amount and purity of RNA was determined by measuring its absorbance at 230, 260, 

280 and 320 nm with the spectrophotometer. In particular, RNA absorbs at 260 nm because of 

the double bonds of their nitrogenous bases. The quantification by this technique may be 

affected by scattering of light and impurities such as protein, phenol or other contaminants that 

also absorb near 260 nm. For this reason, some correction parameters are introduced. 

Absorbance at 320 nm corrects light scattering due to dust particles. Absorbance at 230 nm gives 
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information about contamination by chemicals: alcohol, phenol, guanidinium from the lysis 

buffer that can cause overestimation of RNA concentration. So, A260/A230 ratio could be 

calculated as indicated in Equation 2.1. To ensure a good RNA quantification, the ratio value 

should be in the range of 2-2.4.  

 

 

A260/A230 = (A260 – A320) / (A230 – A320) 

Equation 2.1. Relationship between nucleic acids and chemical impurities. 

 

Absorbance at 280 nm gives information about protein contamination. For this reason, 

A260/A280 ratio was used to assess the purity of RNA (Equation 2.2). The ratio value should be 

in the range of 1.8-2.1.  

 

 

A260/A280 = (A260 – A320) / (A280 – A320) 

Equation 2.2. Relationship between nucleic acids and proteins. 

 

The concentration of nucleic acid could be determined using Lambert-Beer’s law, which 

predicts a linear change in absorbance with concentration (Equation 2.3).  

 

 

A = ε · l · C 

Equation 2.3. Lambert-Beer’s law 

 

Where A is absorbance, ε is the molar extinction coefficient, l is the light path traversed 

(1 cm with a standard cuvette) and C is the concentration of the absorbent substance. Although 

the extinction coefficient of nucleic acids depends on the particular sequence of nucleotides, 

some values could be estimated depending on nucleic acids type (Table 2.3).  

 

 

Nucleic acids Extinction coefficient (cm-1 · M-1) 

Double stranded DNA 0.02 

Single stranded DNA 0.03 

RNA 0.025 

Table 2.3. Extinction coefficient for different nucleic acids. 

 

 

Consequently, the RNA amount was calculated as follows (Equation 2.4):  

 

 

[RNA] / μg·ml-1 = (A260 – A320) x (1/0.025) x dilution factor 

Equation 2.4. RNA concentration. 
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2.4.2 cDNA SYNTHESIS 

First, RNA was purified from genomic DNA with the Turbo DNA-free kit (AM1907; 

Applied Biosystems), according to manufacturer’s instructions. Briefly, TURBO DNase Buffer and 

TURBO DNase were added to RNA sample and mixed gently. Then, samples were incubated at 

37°C for 20–30 minutes. DNase Inactivation Reagent was added and incubated during 5 minutes 

at room temperature. Samples were centrifuged and transferred to a fresh tube.  

 

cDNA was synthesized using a reverse transcriptase enzyme with the High Capacity 

cDNA Reverse Transcription Kit (4368814; Applied Biosystems), according to manufacturer’s 

instructions. First, a master mix was prepared mixing MultiScribe™ Reverse Transcriptase, 

Reverse Transcriptase Buffer, dNTPs Mix and Primer Mix. Then, RNA was mixed with the 

corresponding volume of master mix. The reaction for cDNA synthesis was performed at 42°C 

and was then inactivated at 95°C. Primer Mix contained a specially optimized mix of oligo-dT 

and random primers that enable cDNA synthesis from all regions of RNA transcripts, even from 

5' regions.  

 

 

2.4.3 REAL TIME RT-PCR REACTIONS 

Real Time RT-PCR reactions were performed with LightCycler® 480 Real-Time PCR 

System (Roche), using the iQ™ SYBR® Green Supermix (170-8882; Bio‐Rad) as fluorescent 

reporter. SYBR® Green binds to double-stranded DNA and upon excitation emits fluorescence. 

Primers were designed using Primer Blast software from National Center for Biotechnology 

Information (NCBI). The following considerations were taken: a melting temperature around 

60oC, maximum of CG content of 60% (optimum between 40-50%), ending with cytosine or 

guanine bases, maximum of 3-4 dimmers and hairpins, 15-30 base pair of primer length and 

200‐80 base pair of PCR product length. Primers sequences are shown in Table 2.4: 

 

 

Gene symbol F/R Primer sequence (5' to 3') Length (bp) Tm (ºC) 

CDH1 F AGCCAAAGACAGAGCGGAAC 20 60 

 R AAGCAGGCACTTGGGGATTC 20 60 

SNAI1 F TAGCGAGTGGTTCTTCTGCG 20 60 

 R AGGGCTGCTGGAAGGTAAAC 20 60 

ZEB2 F CCCAGGAGGAAAAACGTGGT 20 60 

 R CTGGACCATCTACAGAGGCTT 21 60 

VEGF F TTGCTGCTCTACCTCCACCATGC 23 60 

 R GATGTCCACCAGGGTCTCGATTG 23 60 

IGFBP3 F CGGGTGTCTGATCCCAAGTTCC 22 60 

 R GTGTCTTCCATTTCTCTACGGCAGG 25 60 

VEGFR2 F CAAGTGGCTAAGGGCATGGA 20 60 
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 R ATTTCAAAGGGAGGCGAGCA 20 60 

FGFR2 F CGCTGGGGAATATACGTGCT 20 60 

 R AGTCTGGCTTCTTGGTCGTG 20 60 

IGFR1 F AGCCTCCTGTGAAAGTGACG 20 60 

 R GTAGTAAGATGCCGGGCTCC 20 60 

Table 2.4. Real Time RT-PCR primer sequences. Primers belong to human E-cadherin (CDH1), snail zing finger 1 
(SNAI1), zinc finger E-box-binding 2 (ZEB2), vascular endothelial growth factor (VEGF), insulin-like growth factor-
binding protein 3 (IGFBP3), VEGF receptor 2 (VEGFR2), fibroblast growth factor receptor 2 (FGFR2) and IGF receptor 
1 (IGFR1).  

 

 

Real-time RT-PCR was run with the following parameters: 1 cycle of 10 minutes at 95oC 

in order to activate the hot-start iTaq™ DNA polymerase, 40 cycles consisting in 15 seconds at 

94oC for denaturation of the double stranded cDNA, 15 seconds at 60oC for primer annealing 

and 15 seconds at 72oC for extension. Finally, melting curve analyses and agarose 

electrophoresis were performed to test the specificity of PCR products. Relative gene fold 

variations were determined by the comparative CT method (2-ΔΔCt)1.  Expression of the target 

genes was normalized to housekeeping gene (ribosomal protein 27L, RPL27). The selection of a 

candidate housekeeping gene was critical when performing Real Time RT-PCR experiments.  

 

 

2.4.4 HOUSEKEEPING GENES SELECTION 

Housekeeping gene expression was used to standardize the amount of biological 

material between samples. Therefore, its expression pattern should remain unaffected by 

experimental conditions, being 2D versus 3D microenvironments. For this purpose, different 

housekeeping genes were selected:  18S ribosomal RNA (18S) and ribosomal proteins L22, L27, 

L30 (RPL22, RPL27 and RPL30). Mammalian cells were grown in 2D and 3D cultures (RAD16-I and 

collagen scaffold). Then, RNA was extracted, cDNA was synthetized and Real Time RT-PCR 

reactions were performed.  

 

It has been reported that 18S or 28S rRNA molecules do not represent good candidates 

for housekeeping genes, because mRNA and rRNA fractions are imbalanced. In particular, the 

total RNA fraction of a sample contains only a relatively small percentage of mRNA (10%), 

whereas rRNA molecules are predominant. In addition, certain biological factors and drugs may 

affect rRNA transcription. On the other hand, ribosomal proteins as S13, L27, L30, L22 showed 

an enhanced stability among a multitude of different experimental conditions2,3. In this 

particular study, the most stable HKGs under 2D versus 3D cultures conditions were RPL27 and 

RPL22 (Figure 2.2). 
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Figure 2.2. Selection of the optimal housekeeping gene for comparing 2D and 3D cultures. PANC-1 cells were 
cultured in different conditions (monolayers, RAD16-I scaffold and collagen scaffold). RNA was extracted and purified 
and cDNA synthesis was performed. Finally, Real Time RT-PCR reactions were run using 6 biological replicates for each 
condition. The obtained cycle threshold was compared for the candidate housekeeping genes (18S, RPL22, RPL27 and 
RPL30). 

 

2.5 METHYLATION-SPECIFIC PCR 

2.5.1 DNA EXTRACTION AND PURIFICATION 

2D and 3D cultures were washed with PBS and lysed with DNA lysis buffer (56304; 

Qiagen), working with denaturing conditions (56ºC) and the presence of Proteinase K.  Samples 

were disrupted by pipetting up and down with a micropipette or a pestle. Next, RNA was 

degraded using RNase A enzyme (19101; Qiagen). DNA was isolated and purified with the 

QIAamp DNA Micro Kit (56304; Qiagen), according to manufacturer’s instructions. Briefly, 

samples were transferred to QIAamp MinElute Column, where DNA was adsorbed into the silica 

gel membrane. Consecutive washes were performed to wash out cellular debris and proteins, 

among other contaminants and DNA was eluted. The quantity and purity of DNA was 

determined by the absorbance at 230 nm, 260 nm, 280 nm and 320 nm wavelengths. 
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 Bisulfite assay was based on the chemical modification of DNA sequence by converting 

all the unmethylated cytosines to uracils. The methylated cytosines were protected from this 

reaction (Figure 2.3).  

 

 

 

Figure 2.3. Schematic overview of bisulfite reaction. Genomic DNA is thermally denatured and bisulfite reagent is 
added. Unmethylated cytosines are sulphonated and deaminated, being converted to sulphonated uracils, which are 
subsequently desulphonated. Methylated cytosines are protected from this chemical conversion. 

 

This treatment was performed with the EpiTect® Bisulfite kit (59104; Qiagen), according 

to manufacturer’s instructions. Briefly, bisulfite reactions were prepared by adding the 

appropriate amount of DNA, bisulfite reagent, DNA protect Buffer and DNAse-free water. 

Reactions were performed with a thermal cycler and the following parameters: 5 minutes at 

99ºC for denaturation, 25 minutes at 60ºC for incubation, 5 minutes at 99ºC for denaturation, 

85 minutes at 60ºC for incubation, 5 minutes at 99ºC for denaturation and 175 minutes at 60ºC 

for incubation. During these steps, DNA suffered a thermal denaturation followed by a 

subsequent unmethylated cytosine sulfonation and deamination, converting unmethylated 

cytosines to uracils. Next, bisulfite reactions were cleaned-up form bisulfite salts and other 

chemicals by adsorption of DNA to EpiTect spin columns and consecutive washing steps with 

buffers. Membrane-bound DNA was desulfonated, removing desulfonation reagent through 

more washing steps. Finally, converted DNA was eluted from the spin column.  

 

 

2.5.2 METHYLATION-SPECIFIC PCR 

Methylation-specific PCR experiments were performed with Cristina Castells Sala as part 

of her PhD thesis. 

 

  DNA was amplified with a PCR reaction. The primers belong to the promoter region of 

the target gene (CDH1 gene) and did not contain any CpG island. The parameters were the 

following: 1 cycle of 10 minutes at 95oC in order to activate the hot-start DNA polymerase, 40 
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cycles consisting in 45 seconds at 94oC for denaturation, 45 seconds at 53oC for primer annealing 

and 90 seconds at 72oC for extension. PCR reaction was performed using Platinium Taq 

Polymerase (10966018; Invitrogen). This polymerase has a nontemplate-dependent terminal 

transferase activity that adds a single adenosine to the 3’ ends of PCR products, required for 

molecular cloning. Resulting PCR products were analyzed using 2% (w/v) agarose gels (Table 

2.5). 

 

 

Gene symbol F/R Primer sequence (5' to 3') Lenght (bp) Tm (ºC) 

CDH1met F GTAATTTTAGGTTAGAGGGTTA 22 58 

 R CTCCAAAAACCCATAACTAAC 21 58 

Table 2.5. Primer sequences for methylation-specific PCR. 

 

 

2.5.3 DNA CLONING AND SEQUENCING 

Molecular cloning of DNA sequences was performed with the TOPO TA Cloning Kit 

(K4500-01; Invitrogen), according to manufacturer’s instructions. The kit provided a linearized 

vector with a single 3’-thymine overhanging and a Topoisomerase I enzyme covalently bound to 

it. On the other hand, the obtained DNA sequences had a single adenosine overhanging in 3’ 

ends due to terminal transferase activity of the Platinium Taq Polymerse used during 

methylation-specific PCR. Therefore, ligation reaction was performed by simply mixing the PCR 

products with the vector.  

 

Next, pCR II-TOPO plasmid was transformed into competent E.coli bacteria (DH5α-

TOP10 E.coli Competent Cells, K4500-01; Invitrogen). For this purpose, the ligation probe was 

incubated with the competent bacteria during 30 minutes. During this time, DNA gets closer to 

bacteria membrane, which is positively charged because of the calcium method used for making 

them competent. Then, a heat shock was applied to permeabilize cell membrane and allow the 

entry of plasmid. Finally, bacteria were grown overnight on LB-Glucose (0.2%(w/v))-Ampicillin 

(100 μg/mL) plate.  

 

The third step in molecular cloning consisted in the selection of bacterial cells with 

internalized plasmids. The plasmid had two selections genes: one for ampicillin resistance and 

the other for β-galactosidose production. During the ligation step, DNA was inserted disrupting 

β-galactosidose enzyme in two peptides, LacZα and LacZΩ. They are not active by themselves, 

but together they reassemble into the functional enzyme. The LB plate contained ampicillin and 

5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal). This reagent is a substrate for β-

galactosidose, which is able to hydrolyze it and yield an insoluble blue compound. Therefore, 

positive cells were able to grow in ampicillin plate and showed a blue color.  

 

Positive bacterial cells were analyzed through Colony PCR. Briefly, some cells were 

selected for each experimental condition (2D, RAD16-I scaffold and collagen scaffold after 1- 
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and 10-day culture). These clones were directly added to the PCR reaction using a pipette tip. 

The reaction contained the Platinum Taq Polymerase, dNTPs and primers for the plasmid (Sp6 

Promoter as forward primer and T7 Promoter as reverse primer) (Table 2.6). PCR products were 

analyzed with 2% (w/v) agarose gel. 

 

 

Gene symbol F/R Primer sequence (5' to 3') Lenght (bp) Tm (ºC) 

Sp6 Promoter F GCCAAGCTATTTAGGTGACACTATAG 26 50 

T7 Promoter R GAATTGTAATACGACTCACTATAGGG 26 50 

Table 2.6. Primers sequence for PCR colony reaction. 

 

 

Finally, a liquid bacterial culture was performed for the selected clones. Plasmids were 

isolated with the GenEluteTM Plamid Miniprep kit (PLN350; Sigma Aldrich). Briefly, bacterial cells 

were lysed and samples were added to a binding column. Consequently, plasmid DNA was 

adsorbed to the silica matrix. Consecutive washing steps were performed and DNA was eluted.  

 

 Desired plasmids were send to sequence (Macrogen). To analyze the sequences, BiQ 

Analyzer software (Max Plank Institute) was used. In particular, CDH1 promoter region from 

NCBI database was aligned with the obtained DNA sequences.    

 

 

 

2.6 PROTEIN EXPRESSION BY WESTERN BLOT 

Western Blot was performed in order to analyze protein expression in 2D and 3D 

cultures. Samples were washed with PBS and lysed with protein lysis buffer, composed of 

radioimmunoprecipitation assay (RIPA) and a protease inhibitor cocktail (1836153; Roche). 

Constructs were disrupted by pipetting up and down with the micropipette or a pestle. In the 

case of obtaining not homogeneous samples, constructs were sonicated for 5 minutes. Then, 

they were stored at -20ºC.  

 

 Running gel was prepared based on 10% sodium dodecyl sulphate (SDS)-

polyacrylamide gel (PAGE) solution and placed in the electrophoresis support to let it 

polymerize. Next, solution for stacking gel was prepared and placed on top of running gel. 

Electrophoresis buffer was prepared and the inner and outer electrophoresis cavities were 

filled with it. Total protein content from 2D and 3D samples was determined by bicinchoninic 

acid (BCA) Protein Assay (23227; Thermo Scientific), using bovine serum albumin (BSA) as 

calibration standards. Samples were aliquot containing 15 mg of protein each one. Then, they 

were mixed with protein loading buffer containing β-mercaptoethanol and heated at 95ºC 

during 10 minutes.  
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Samples were loaded into the wells of stacking gel. Constant voltage (150 V) was applied 

to the system, controlling running time through bromophenol front. Proteins of the gel were 

transferred onto polyvinylidene difluoride (PVDF) membrane for approximately 2 hours at 40 V 

and incubated in blocking buffer NaCl⁄Tris-Tween supplemented with 5% (w⁄v) skimmed milk 

for 2 hours. Then, membranes were incubated with primary antibody solution (E-cadherin, 

dilution 1:2500, 610181; BD Biosciences) for 2 hours at room temperature or overnight at 4ºC. 

After three washes of 10 minutes each in NaCl⁄Tris-Tween, membranes were incubated with 

anti-rabbit IgG horseradish peroxidase (HRP)-linked secondary antibody for 2 hours. Reactive 

bands were revealed using enhanced chemiluminescence reagents (luminol). 

 

 

 

2.7 PHOTODYNAMIC THERAPY 

2.7.1 PHOTOSENSITIZERS CONDITIONS 

The cationic 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine was purchased 

from Sigma Aldrich (TMPyP, 323497). Zinc(II)-phthalocyanine was purchased from Sigma Aldrich 

(ZnPc, 341169). It was encapsulated in liposomes of 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocoline (POPC) and 1,2-dioleoyl-sn-glycer-3-[phosphor-L-serine] (OOPS), using a molar 

ratio of ZnPc: POPC: OOPS 1:90:10. Liposomes were developed by QLT Phototherapeutics, 

sponsored by Ciba Geigy (Novartis) and kindly provided by Professor Giulio Jori from Padua 

University (Italy). Photosensitizers were suspended in FBS-free culture medium at the final 

concentration indicated in Table 2.7. 

 

 

Photosensitizers (PS) [PS]/M 
Incubation 

/ hours 

Light fluence 

/J·cm-2 

Irradiation 

wavelength/nm 

TMPyP proof of concept 5·10-4-1·10-1 24 6 and 18 520-550 

TMPyP in vitro 1·10-6 1 3.6 620-645 

TMPyP in vivo 3.5·10-6 3 70 620-645 

ZnPc in vitro 5·10-8 1 3.6 620-645 

ZnPc in vivo 9·10-7 3 70 620-645 

Table 2.7. Photosensitizers and light conditions used for photodynamic therapy 

 

 

 

2.7.2 PHOTOSENSITIZERS UPTAKE 

Cell internalization of photosensitizers (PSs) was determined by fluorescence 

spectroscopy and flow cytometry. For this purpose, cells were grown during 4-6 days in 3D 
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cultures and incubated in the dark with TMPyP and/or ZnPC at the corresponding concentrations 

(Table 2.7). 

 

For fluorescence spectroscopy experiments, 2D and 3D cultures were washed with PBS 

and cells were lysed with 2% (w/v) sodium dodecyl sulphate in Milli-Q water. The resulting 

suspensions were centrifuged. The extent of PS uptake was assessed by measuring the 

fluorescence of the supernatants and normalizing them to their protein content with BCA assay. 

Appropriate controls were performed to ensure that signals were originated from PS molecules 

internalized by cells. 

 

For flow cytometry experiments, 2D and 3D cultures were washed with PBS. Then, 2D 

and RAD16-I cultures were digested with trypsin (0.05 %/0.02 % trypsin‐EDTA; Invitrogen) 

during 5 and 15 minutes respectively. On the other hand, collagen cultures were digested with 

collagenase (1 mg/mL; Sigma) during 15 minutes. All digested 3D cultures were pipetted up and 

down. Both enzymes were neutralized with the double volume of culture media. The resulting 

cellular suspensions were centrifuged and analyzed on a flow cytometer (BD FACSCanto II; BD 

Biosciences). In particular, TMPyP was measured using a 420-nm laser for excitation and a 650-

nm filter for detection. ZnPc was measured using a 670-nm laser for excitation and 680-nm filter 

for detection.  

 

 

2.7.3 PHOTOSENSITIZERS LOCATION 

Cell location of PSs was determined by fluorescence microscopy. For 2D cultures, cells 

were grown on round coverslips (25 mm diameter) towards 80-85% confluence. For 3D cultures, 

cells were grown during 4-6 days in RAD16-I and collagen scaffolds. Both cultures were 

incubated in the dark with TMPyP and/or ZnPC at the corresponding concentrations. After some 

washing steps with PBS, cultures were incubated with Hoechst dye (33342; Molecular Probes) 

at a final concentration of 2.5 mg/mL during 30 minutes for nuclei staining. Finally, cultures were 

washed with PBS and examined under two-photon excitation microscopy (TCS-SP5; Leica). All 

images were uniformly adjusted for brightness and contrast. 

 

 

2.7.4 PHOTOSENSITIZING REACTIONS 

For 2D cell cultures, cells were seeded in 48-well plates and cultured toward 80%–85% 

confluence. For 3D cell cultures cells were grown during 4-6 days in RAD16-I and collagen 

scaffolds. To select the PS working concentration, both cultures were incubated in the dark with 

FBS-free culture media containing the concentration depicted in Table 2.7. Then, cultures were 

washed with PBS and cellular viability was assessed by MTT assay 24h after treatment. Dark 

cytotoxicity experiments yielded a survival cell fraction higher than 85%, demonstrating that 



Materials and methods 

 

45 

incubation with PSs at the working concentrations did not induce significant cell death without 

irradiation. 

 

Photodynamic treatments were carried out after PS incubation in the dark during the 

incubation time depicted in Table 2.7. Cultures were washed with PBS and irradiated with the 

appropriate light fluences (from 6 to 70 J/cm2) using a green or a red light LED source (520–550 

nm; 620-645 nm for TMPyP and ZnPc respectively) at a fluence rate of 29 mW/cm2.  Cell viability 

was assessed by LIVE/DEAD® Viability/Cytotoxicity Kit (Invitrogen, previously explained), MTT 

assay and flow cytometry 24h after treatment. To decouple oxygen and drug gradients, 

additional photodynamic treatments were performed in an oxygen-saturated atmosphere 

during illumination by bubbling a stream of oxygen through the culture media of the 3D cultures.  

 

For MTT assay, cell viability was examined incubating samples with 3-[4,5-

dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT, M5655; Sigma). It is a water 

soluble tetrazolium salt, which yields a yellowish solution when prepared in PBS or culture 

medium. This dissolved MTT is converted into insoluble purple formazan crystals by cleavage of 

the tetrazolium ring by dehydrogenase enzymes. Therefore, this reaction only takes place when 

mitochondrial dehydrogenases are active, being used as a measure of viable cells. Formazan 

crystals can be solubilized using dimethyl sulfoxide (DMSO) and measured 

spectrophotometrically at 550 nm (Figure 2.4).  

 

 

 

Figure 2.4. Reduction of MTT to formazan. This reaction is catalyzed by dehydrogenase enzymes and enables the 
assessment of cellular viability through spectrophotometry. 

 

First, a MTT stock solution (10 mg/mL) was prepared with PBS, filtered through a 0.2 µm 

filter and stored at 2-8ºC. Then, MTT stock solution was dissolved with culture medium to a final 

concentration of 0.5 mg/mL. Then, it was incubated with 2D and 3D cultures during 3 hours at 

37ºC. Following the incubation period, MTT solution was removed and formazan crystals 

solubilized with DMSO. Specifically, RAD16-I cultures were lysed by adding 300 μL of DMSO and 

pipetting up and down. In the case of collagen cultures, a mixture of 250 μL DMSO and 50 μL of 

collagenase was added. All solutions were let shaking for a minimum time of 15 minutes. Finally, 

their absorbance was read at 562 nm for triplicate. Three control wells of DMSO alone were 

included as blanks for absorbance readings. Cell viability was obtained from absorbance values, 

using Equation 2.5. 
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Cell viability = (Abssample – Absblank)/(Abscontrol – Absblank)*100 

Equation 2.5. Cell viability by MTT assay. 

 

For flow cytometry experiments, cell viability was examined using Sytox Blue Dead Cell 

Stain (S34857; Molecular Probes). In particular, this dye cannot cross intact cell membrane and 

only enters to damaged cells, where binds to the double stranded DNA and increases its 

fluorescence. 2D and RAD16-I cultures were digested with trypsin and collagen cultures with 

collagenase, as previously explained. The resulting cellular suspensions were centrifuged. Then, 

collected cells were analyzed with a flow cytometer (BD FACSCanto II; BD Biosciences). In co-

culture samples, cells were distinguished through fluorescence of GFP, analyzing the intrinsic 

viability of the two cell populations. The lasers and filters used are depicted in Table 2.8. 

 

 

Fluorescent  

dye 
Laser 

Excitation  

wavelength/nm 

Emission 

wavelength/nm 
PMT name 

TMPyP 405 420 650 V660 

ZnPc 640 670 680 R660 

Sytox Blue 405 444 480 V515 

GFP 488 489 510 B530 

Table 2.8. Excitation and emission wavelength for flow cytometry experiments. PMT is photomultiplier tube. 

 

 

2.7.5 SINGLET OXYGEN MEASUREMENTS  

Singlet oxygen (1O2) measurements were performed with Dr. María García Díaz as part 

of her PhD thesis.  

 

For 2D cultures, cells were grown in 75 cm2 flasks towards 80% confluence. They were 

incubated in the dark with the appropriate concentration and time incubation of PS (Table 2.7. 

Photosensitizers and light conditions used for photodynamic therapy). Cultures were washed 

with PBS, trypsinized and re-suspended in 1.5 mL of PBS or deuterium PBS (d-PBS) to a final 

concentration of 4·106 cells/mL. Cell suspensions were continuously stirred during the 

measurements.  

 

For 3D cultures, cells were grown in RAD16-I and collagen scaffolds as previously 

described. They were incubated in the dark with the appropriate concentration and time 

incubation of PS (Table 2.7. Photosensitizers and light conditions used for photodynamic 

therapy). They were washed with PBS and carefully transferred to a 1-cm quartz cuvette. For 

deuterium oxide (D2O)-based measurements, 3D cultures were incubated with d-PBS for 20 

minutes before measurements to exchange the extracellular H2O with D2O. For control 

measurements, RAD16-I and collagen scaffolds without cells were obtained by inducing the self-

assembling process of both peptides directly in a 0.4-cm quartz cuvette wall. Then, PSs were 
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incubated and the cuvette was washed several times with PBS or d-PBS until no signal measured 

in supernatant fluid.   

 

Absorption spectra of PS in different culture models were recorded on a Cary 6000i UV-

Vis-NIR spectrophotometer (Agilent Technologies). Fluorescence emission spectra were 

recorded in a Fluoromax-4 spectrofluorimeter (Horiba Jobin-Ybon). Fluorescence decays were 

recorded with a time-correlated single photon counting system (Fluotime 200, PicoQuant) 

equipped with a red sensitive photomultiplier. Excitation was achieved by means of a 405 nm 

picosecond diode laser working at 10 MHz repetition rate. The counting frequency was always 

below 1%. Fluorescence lifetimes were analyzed using PicoQuant FluoFit 4.0 data analysis 

software. 1O2 phosphorescence was detected by means of a customized PicoQuant Fluotime 200 

system. 

 

In particular, phosphorescence of 1O2 was determined through the following kinetic 

model:  PS absorbs light energy that results in the development of PS excited states (PS*), from 

which energy transfer to nearby oxygen molecules can occur, ultimately yielding 1O2 as 

illustrated in Equation 2.6:   

 

PS + ℎν → 1PS* 
1PS*→ 3PS* 

3PS* + O2 → PS + 1O2 

Equation 2.6. Mechanism of singlet oxygen photosensitization. Absorption of light by a photosensitizer PS promotes 
it to its singlet electronic excited state (1PS*). Radiationless processes change its spin from singlet to triplet (3PS*), 
which then transfers its energy to ambient dioxygen molecules yielding 1O2.   

 

1O2 molecules may diffuse away from the site of production and oxidize susceptible 

substrates before it decays, a process that is complete within a few microseconds in biological 

media. A small fraction (10-5-10-7) of 1O2 molecules can undergo radiative decay emitting a 

photon in the near infrared (NIR). This extremely weak phosphorescence, centered at 1275 nm, 

provides the means for the most direct and unambiguous method for 1O2 detection. The time-

resolved measurement of this NIR emission is now a very well-established technique for 

monitoring 1O2
4. The production and decay of 1O2 in a pulsed photosensitisation process obeys 

a biexponential kinetic model (Equation 2.7):   

 

 

[1O2]t = [1O2]0 · (τΔ/τΔ-τT) · (e-t/τΔ – e-t/ τT) 

Equation 2.7. Singlet oxygen kinetic model 

 

Where τT is the lifetime of 3PS* and τ∆ is the lifetime of 1O2, and [1O2]0 is the 

concentration of 1O2 produced by the laser pulse.   
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On the other hand, for time-resolved phosphorescence measurements of PS, samples 

were irradiated at 532 nm and the signal obtained was fitted in Equation 2.8. 

 

 

[3PS]t = K1 · e-t/ τT 

Equation 2.8. Photosensitizer kinetic model 

 

Where K1 reflects the concentration of triplet excited states of PS.  

 

 

 

2.8 RECEPTOR TYROSINE KINASES INHIBITORS 

Three tyrosine kinase inhibitors and a placebo were kindly provided by Dr. José Ignacio 

Borrell from Grup d’Enginyeria Molecular (GEM) in IQS School of Engineering (Spain). 

Experiments were performed under blind conditions, without knowing the identity of the 

different molecules. 

 

For 2D cultures, cells were grown toward 30%-50% confluence and drugs were incubated 

during 24 and 48 hours. For 3D cultures, the tyrosine kinase inhibitor that induced more cell 

death in 2D cultures was selected and experiments were performed after 24 hours of drug 

incubation. Cells were grown during 6 days within RAD16-I and collagen scaffolds in order to 

assure that cells were already adapted to the 3D culture system.  

 

For 2D and 3D cultures, different drug concentrations were tested (0 μM, 1 μM, 5 μM, 

10 μM, 50 μM and 100 μM). A stock solution of the different inhibitors was prepared by diluting 

them with DMSO. Control wells with a solution of 100 μL DMSO, which corresponded to the 

highest volume of solvent used, were added in order to demonstrate that the presence of DMSO 

did not induce significant cell death. To perform drug incubation, culture medium was removed 

and fresh culture medium supplemented with the inhibitor was added. Finally, cell viability was 

assessed by the LIVE/DEAD® Viability/Cytotoxicity Kit for mammalian cells (L3224, Invitrogen) 

and MTT assay. 

  

 

 

2.9 STATISTICAL ANALYSIS  

All data were expressed as mean values ± standard deviation (SD). Statistical differences 

were analyzed with GraphPad Prism 5. Unpaired Student’s t test was used to test the significance 

level between two sets of measurements. The level of significance was *p<0.05, **p<0.01, 

***p<0.001. 
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3.1 BACKGROUND 

3.1.1 TISSUE INVASION AND METASTASIS 

Metastasis accounts for approximately 90% of all cancer deaths1. This process occurs 

when invading cancer cells penetrate basement membrane (BM) and endothelial walls from 

systemic vasculature, disseminate via circulation, exit the bloodstream and finally grow in 

distant organs and tissues (colonization)2. The fulfillment of this sequence depends on the 

reciprocal reprogramming of both cancer cells and surrounding tissue structures. Cells need to 

continuously reorganize their adhesion complexes and cytoskeletal dynamics in order to survive, 

proliferate and migrate under diverse structural milieu3. In parallel, cells can remodel 

extracellular matrix (ECM) to render highly linearized and oriented collagen fibrils that act as 

highways or activate the formation of new blood vessels4,5. 

 

Every step in the metastatic cascade requires the interactive engagement between cells 

and stroma, leading to plasticity and reciprocity6. Thus, metastasis might be envisaged as an 

evolutionary process in which genetically heterogeneous cells are driven to evolve by changing 

environmental pressures7. It is estimated that only 0.01% of the cancer cell population is able to 

undergo all the architectural and functional changes required to generate final metastasis8. The 

first requirement for cells is the acquisition of invasive capabilities. Cells need to leave their 

primary tumor site, comprising 90% of cases the epithelium9.  

 

Epithelial cells form layers kept together by specialized membrane structures (tight 

junctions, adherens junctions, desmosomes and gap junctions) that result in a lateral belt. 

Moreover, cells are polarized and show an asymmetric organization with two distinct cellular 

regions: the apical (top) and basolateral (bottom) regions. The apical surface forms a direct 

barrier against the external environment, protecting tissues and organs. Conversely, the 

basolateral surface is in contact with BM. It is a sheet of dense ECM of 100-300 nm of thickness 

that is mainly composed by a highly ordered and crosslinked type IV collagen and intercalated 

laminin complexes, providing structural support to the epithelium. Cells are tightly joined with 

BM through the localized expression of adhesion molecules such as cadherins and integrins.  

 

This organization limits the movement of cells to the two-dimensional (2D) space of the 

epithelial plane. In order to escape from their epithelial neighbors, cells need to change their 

adhesion properties. Particularly, they downregulate cell-cell contacts and remodel cell-ECM 

contacts in order to define a front-back polarity with a leading edge enriched in integrins and 

matrix metalloproteinases (MMPs). To modify adhesion complexes repertoire, cells undergo a 

dramatic remodeling of the actin cytoskeleton and the disruption of the basal-apical polarity. 

Significantly, these new features define a mesenchymal phenotype, which allows cells to 

degrade BM and move through the three-dimensional (3D) space of ECM10. Therefore, the initial 

morphogenetic step in the metastatic cascade is the transition from an epithelial to a 

mesenchymal phenotype (Figure 3.1). 
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Figure 3.1. Transition from a 2D to a 3D microenvironment. (A) In a healthy stage, epithelial cells grow forming layers 
on top of BM and showing a 2D configuration. During tumor progression, cells gain the capacity to degrade BM via 
the action of MMPs and invade the 3D ECM. This 2D to 3D transition is possible through the downregulation of cell-
cell adhesion molecules, disruption of polarity, remodeling of actin cytoskeleton and activation of proteases. 
Collectively, these changes in cell architecture and function result in the acquisition of a mesenchymal-like phenotype 
in a process known as epithelial to mesenchymal transition (EMT). (B-C) Confocal immunofluorescence images of 
EMT. (B) Murine mammary cells were treated with MMP-3 (B’) to induce EMT. Cells were stained with anti-phalloidin 
antibody (red) and DAPI (blue) to visualize actin microfilaments and nuclei respectively. (C) Murine mammary cells 
were treated with transforming growth factor-β (TGF-β) (C’) to induce EMT. Cells were stained with anti-E-cadherin 
(green) and anti-vimetin (red) antibody to visualize the proteins that form cell-cell adhesions of epithelial cells and 
intermediate filaments from the cytoskeleton of mesenchymal cells respectively. Adapted from Rowe et al.11 and 
Thiery et al.12 

 

 

3.1.2 EPITHELIAL TO MESENCHYMAL TRANSITION 

Epithelial to mesenchymal transition (EMT) was reported by Frank Lillie in 1908, but the 

first detailed description was done in the late 1960s by Elisabeth Hay13. It is a highly conserved 

cellular program reminiscent of embryogenesis. It governs the formation of the three germ 

layers (ectoderm, mesoderm and endoderm) during gastrulation. In a later developmental 

stage, it participates in the formation of numerous tissues and organs, such as neural crest, 

heart, musculoskeletal system, craniofacial structures and the peripheral nervous system. In 

adults, cells access this fundamental program during wound healing and pathological conditions 

as tumor metastasis. The reversible process has been also characterized, MET (mesenchymal to 

epithelial transition). MET occurs during somitogenesis, kidney development and coelomic-

cavity formation. In cancer disease, cells undergo MET during the establishment of secondary 

tumor sites in order to efficiently adhere to the microenvironment and begin to proliferate14,15.   

 

The term EMT encompasses a broad spectrum of cellular changes and does not 

necessarily refer to a complete lineage switch. Indeed, the precise changes that occur during 

EMT are determined by the integration of the signals that govern this process. In particular, EMT 

is triggered by an interplay of extracellular cues, including components of the ECM (collagen and 

hyaluronic acid) as well as soluble growth factors (members of the transforming growth factor 
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β [TGFβ], fibroblast growth factor [FGF], epithelial growth factor [EGF], hepatocyte growth 

factor [HGF], insulin-like growth factor [IGF] families). These signals induce changes in integrin 

and receptor tyrosine kinase expression that exert a stringent control of multiple intracellular 

regulatory circuits, such as transcription factors, members of small GTPase family (Ras, Rho and 

Rac) and Src tyrosine-kinase family12,16. Ultimately, these effectors orchestrate the disassembly 

of junctional complexes and the remodeling of cytoskeletal organization. Significantly, they all 

converge on the dissociation of epithelial cell-cell adhesion molecules, emerging epithelial-

cadherin (E-cadherin) as the central complex7. Indeed, the expression pattern of E-cadherin is 

used for the diagnosis and prognosis of cancer. 

 

 

3.1.2.1 E-Cadherin: A Central Player in EMT 

Cells continuously sense and respond to extracellular signals through cell adhesion 

molecules (integrins, selectins, cadherins, immunoglobulin superfamily and proteoglycans). 

They provide transient and stable communication channels among cell-cell and cell-ECM, 

creating a cytoplasmic and cytoskeletal-matrix fibers continuum respectively. Therefore, 

adhesion molecules contribute to the formation and integrity of different tissues and also play 

an important role in cell signaling17. 

 

Cadherins form a type of cell-cell adhesions called adherens junctions (AJs). They are 

responsible for maintaining cell architecture and polarity along with limiting their movement 

and proliferation. Cadherins are a superfamily of transmembrane glycoproteins, whose 

extracellular domains mediate Ca2+ dependent adhesions via homophilic interactions with 

adjacent cells. Their conserved cytoplasmic domains form a protein complex with catenins that 

anchor them to actin cytoskeleton in order to transmit the adhesion signal. Hence, the clustering 

of cadherin-catenin complexes on adjacent cells leads to the localized actin remodeling that is 

required for AJs assembly18,19.  

 

E-cadherin (encoded by CDH1 gene) is the prototypical member of type-1 classical 

cadherins. It was first discovered as a cell adhesion protein in early mouse embryo 

blastomeres20. Targeted knockout of CDH1 gene in mice was reported to be lethal as embryos 

could not generate an epithelium, which is required for the development of multicellular 

organisms21. E-cadherin has five extracellular domain repeats, a single transmembrane domain 

and a cytoplasmic domain for binding catenin proteins, namely p120-catenin, β-catenin and α-

catenin that is directly linked to the actin cytoskeleton22. E-cadherin regulation is an example of 

the tight and precise control of genes involved in EMT (Figure 3.2). 
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Figure 3.2. Cycle of epithelial plasticity during metastatic cascade. (A) During metastatic cascade, epithelial cells 
acquire some capabilities of mesenchymal cells to degrade BM, invade ECM, enter the lymphatic and circulatory 
systems (intravasation) and exit them (extravasation). On the other hand, the transition from mesenchymal to 
epithelial cells is activated when cells adhere to distant tissues and organs and proliferate, forming secondary tumor 
sites (colonization). Different effectors of EMT and MET have been identified, including numerous extracellular 
signals. During these transitions, cell-cell and cell-ECM adhesions are continuously remodeled. Significantly, E-
cadherin plays a central role in the formation of the adherens junctions that maintain the integrity of epithelial layer 
and, therefore, emerge as the main marker of metastasis. (B) Schematic representation of E-cadherin-mediated cell–
cell adherens junctions. E-cadherin is a single-pass transmembrane protein, whose extracellular domain mediates 
Ca2+ specific homophilic interactions with neighboring cells. The intracellular domain of E-cadherin associates with 
catenins and actin cytoskeleton. Adapted from Thiery et al.12 and Canel et al.22 

 

Genetic and epigenetic alterations are at the core of E-cadherin regulation. Genetic 

mechanisms include mutations and loss of heterozygosity of the wild type allele, which cause 

the uniform and irreversible loss of E-cadherin expression. This pattern occurs in a very low rate 

of cancer cases, basically in lobular breast23 and diffusive gastric24 carcinomas. They are 

characterized by invading very efficiently, but forming loosely dispersed structures (micro-

metastases)25. Conversely, epigenetic alterations provide a dynamic mechanism for modulating 

E-cadherin expression, facilitating the phenotypic plasticity that drives metastatic progression. 
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3.1.3 EPIGENETICS IN CANCER PLASTICITY 

Epigenetics is defined as the study of mitotically and/or meiotically heritable changes in 

gene function that cannot be explained by changes in DNA sequences26. Genomic regions can 

undergo transitions from an open, transcriptionally active conformation (eurochromatin) to a 

densely compacted, transcriptionally inactive conformation (heterochromatin) and vice versa. 

These transitions are vital to set the different expression patterns required during embryonic 

life, development or adult stage and rely on the control of histones and DNA. In particular, the 

epigenetic landscape includes a variety of covalent modifications that affect the methylation 

status of DNA and the post-translational status of histones, determining the structural 

configuration of chromatin27.      

   

Histones are the main protein moieties of chromatin. Their function is to package and 

order DNA structure. They can suffer a variety of post-transcriptional modifications of their N-

terminal tails, including deacetylation, methylation, phosphorylation, sumoylation, 

ubiquitination and ADP ribosylation. The most frequent mechanism for histone modification is 

deacetylation, which involves the removal of acetyl groups by histone deacetylases (HDAC) 

enzymes. The deacetylated histone state helps to maintain nucleosomes in a compacted and 

transcriptionally silent state28.  

 

DNA can be covalently modified by the addition of a methyl group in a cytosine base in 

a process known as DNA methylation. The reaction is catalyzed by DNA methyltransferase 

(DNMT) enzyme, which transfers the methyl group from S-adenosyl-l-methionine (SAM) to the 

fifth carbon of a cytosine (C) located 5′ to a guanine (G) in a CpG dinucleotide, forming a 5-

methyl cytosine. Most CpG islands are found in the proximal promoter regions in mammalian 

genome and are, generally, unmethylated in active genes. In cancer, the hypermethylation of 

some specific promoter regions is a well-categorized epigenetic alteration and is associated with 

the inappropriate transcriptional silencing of key tumor-suppressor genes29. This transcriptional 

repression can be explained due to the steric inhibition of transcription activator complexes 

together with the recruitment of protein complexes formed by methyl-CpG-binding proteins 

(MBPs) and HDACs.  Therefore, there is a link between the ‘histone code’ and the ‘DNA code’ 

(Figure 3.3). It is the combined presence of a myriad of modifications in a spatial and temporal-

dependent controlled manner that ultimately programs the appropriate genome expression 

profile for each cellular identity27. Moreover, these methylation covalent modifications can 

predispose DNA to mutational events. For instance, 5-methyl cytosine is itself mutagenic since 

it can undergo spontaneous hydrolytic deamination, causing cytosine to thymine transitions29. 

 

 



Chapter 3 

 

58 

 

Figure 3.3. Epigenetic alterations confer plasticity to cancer cells. (A) The epigenetic landscape includes a variety of 
covalent modifications that affect the methylation status of DNA and the post-translational status of histones, 
determining the structural configuration of chromatin and, therefore, controlling the transcriptional outcome of the 
cell. These mechanisms play a central role during development and pathological states as cancer. (B) Experimental 
evidence links “DNA code” with  “histone code”. The image shows a schematic representation of a CpG-methylated 
promoter in a transcriptionally repressed state. In particular, most candidate CpG sites of the promoter are 
methylated and bound by methyl-cytosine-binding proteins (MBPs). These proteins are present in complexes that 
include histone deacetylases (HDACs). Consequently, histones are deacetylated and organized into regularly spaced 
and tightly compacted nucleosomes (heterochromatin). Transcription activator complexes, consisting of a 
transcription factor (TF), a co-activator protein (CA) and a protein with histone acetyltransferase (HAT) activity, cannot 
access to the promoter region by steric inhibition. Adapted from Qiu30 and Jones et al.29 

 

The epigenetic silencing of E-cadherin has emerged as the major regulatory mechanism 

during metastatic cascade. The E-cadherin gene is reported to be hypermethylated in a wide 

range of carcinomas, including lung, liver, stomach and bladder31. It has also been reported the 

presence of transcription repressor complexes formed by histones deacetylases (HDAC1 and 

HDAC2) and factors from the snail (SNAI1 and SNAI2), zinc finger E-box-binding homeobox (ZEB1 

and ZEB2) and basic helix-loop-helix (bHLH:E47 and TWIST) families.  

 

Complex signaling networks influence the expression of these repressors. Different 

growth factors (e.g. FGF, EGF, bone morphogenetic protein [BMP], platelet derived growth 

factor [PDGF]) can function in autocrine loops in cancer cells. In parallel, many signals derived 

from the ECM have been identified. Among these, laminin 5 has been described to be 

mechanistically dependent on active integrin α3. Angiogenic factors as VEGF and reactive 

oxygen species have been reported to be upregulated after a hypoxic situation. Finally, 

inflammatory components such as cyclooxygenase 2 (COX2) can act through nuclear factor κB 

(NFκB) and some interleukins7  (Figure 3.4). 
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Figure 3.4. Epigenetic alterations implicated in E-cadherin regulation. (a) Snail, ZEB and bHLH factors act as 
transcriptional repressors of E-cadherin, modulating cell-cell adhesions configuration. Overview of the main signaling 
pathways implicated in the expression of Snail, bHLH and ZEB factors, including extracellular cues from the 
microenvironment. (b) Schematic representation of the link between these transcriptional repressors and histones 
modification machinery. Snail, bHLH and ZEB factors recruit histone deacetylates as HDAC1, HDAC2 and HDAC3 and, 
therefore, mediate post-transcriptional modifications of histones and chromatin structure. Some relevant growth 
factors and signaling pathways abbreviations: AMF (autocrine mobility factor), BMP (bone morphogenetic protein), 
COX (cyclooxygenase), DN-LRP5 (dominant negative low density lipoprotein receptor-related protein 5), EGF 
(epidermal growth factor), FGF (fibroblast growth factor), FRZB (frizzled-related protein), FSH (follicle stimulating 
hormone), HGF (hepatocyte growth factor), HMG (high mobility group), MAPK (mitogen activated protein kinase), 
MTA3 (metastasis-associated gene 3), PDGF (platelet derived growth factor), PEG2 (prostaglandin E2), PGI 
(phosphoglucose isomerase), PKA (protein kinase A), SCF (stem cell factor), sFRP3 (secreted frizzled-related protein 
3), TGFβ (transforming growth factor β), VEGF (vascular endothelial growth factor). From Peinado et al.7 

 

The characterization of E-cadherin regulation has provided important insights into the 

signaling pathways involved in metastasis. However, more research is needed to unravel this 

process at the molecular level, giving particular attention to microenvironment contribution. A 

major challenge to study E-cadherin expression underlies in in vitro capturing EMT process. A 

cancer model that can help to fulfil this objective is pancreatic cancer. 
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3.1.3.1 Pancreatic Cancer: A Model for Capturing EMT 

Pancreatic cancer, also known as pancreatic ductal adenocarcinoma (PDAC), is one of 

the most aggressive types of cancer. PDAC is the fifth most common cause of cancer-related 

deaths, even though it represents less than 2% of cancer cases. In fact, the annual death rate 

equals the annual incidence of this disease. The bad prognosis for PDAC can be explained by its 

asymptotic nature in early stages, lack of sensitive diagnostic tools and high metastatic 

potential32. Less than 20% of patients show localized and potentially curable tumors33.  

 

A rational progression for this disease has been proposed: PDAC originates in the ductal 

epithelium, evolves to pre-malignant lesions (pancreatic intraepithelial neoplasms PanINs 1a/b, 

2 and 3 grades) and finally originates invasive carcinoma. This process occurs parallel to the 

accumulation of genetic alterations involving early mutations in the KRAS2 gene and 

overexpression of the HER-2/neu gene followed by later mutations in p16, p53 and DPC4 

genes33–36.  

 

Recent publications have suggested that EMT and dissemination can precede primary 

tumor formation in PDAC37. Clinical observations have given rise to a new paradigm for 

metastasis. As previously explained, the classical model treats metastasis as the final step in a 

progressive Darwinian sequence in which cells invade and disseminate late in tumor evolution38. 

An alternative model considers metastasis as an inherent feature of the tumor, very early in its 

natural history39. Some studies of PDAC have suggested that EMT, bloodstream entry and 

seeding of distant organs can occur at a stage of tumor progression previously thought to be 

pre-invasive, based on standard histological examination37. More research is needed in this 

direction.  

 

Research in PDAC has been focused on genome-centered models. However, the 

contribution of tumor microenvironment remains unclear, with special attention to invasion and 

metastatic steps. A schematic overview with the most relevant data concerning genetic and 

epigenetic alterations is presented in Figure 3.5. However, all these experiments have been 

performed in 2D cultures or histological sections of tumors without analyzing the specific role 

of microenvironmental cues. In the present thesis, the regulation of E-cadherin (main marker of 

EMT cell program) has been studied in different 3D tissue engineering scaffolds. 
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Figure 3.5. Schematic representation of E-cadherin regulation in pancreatic cancer. Loss or reduction of E-cadherin-
mediated cell-cell adhesions is reported between 42-60% of the cases. It exists different levels of regulation at gene 
and/or protein level. Briefly, genetic alterations include mutations and loss of heterozygosity, leading to a permanent 
inactivation of the protein. In pancreatic cancer, both mechanism have been rarely described, correlating with the 
reversible definition of epithelial-mesenchymal transition. Epigenetic alterations include covalent modifications of 
DNA and histones, which ultimately affect chromatin structure. In pancreatic cancer, aberrant hypermethylation of 
the promoter region has been found in approximately 5% of cases. On the other hand, the most common signature 
on histones to silence genes is their deacetylation, which functions through the formation of protein complexes 
including HDAC and transcriptional repressors. In pancreatic cancer, Snail and ZEB factors have been reported to 
recruit HDAC1, HDAC2 and HDAC3 to regulate E-cadherin expression. At protein level, the main mechanism is based 
on the disruption of the functional complexes that form E-cadherin with β-catenin through tyrosine phosphorylation 
and desphosphorylation of β-catenin. The references cited in this figure are the following: 1.Hong et al. 39; 
2.Iacobuzio-Donahue et al. 40 and Thiery et al.15; 3. Aghdassi et al.41 and Winter et al.42; 4. Aghdassi et al.41 and Winter 
et al.42, 5. Aghdassi et al.41, von Burstin et al.43, Shields et al.44; 6. von Burstin et al.43 and 7. Aghdassi et al.41, Imamichi 
et al.45 
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3.2 HYPOTHESIS AND SPECIFIC AIMS 

The main motivation of this chapter was to study the contribution of tumor 

microenvironment during tissue invasion and metastasis in pancreatic cancer.  

 

Our working hypothesis was that three-dimensional (3D) cultures could help to 

recapitulate the cell movement from a 2D to a 3D milieu that occurs during epithelial to 

mesenchymal transition (EMT) when cancer cells escape from their epithelial layer and invade 

mesenchymal connective tissue. These 3D cultures allowed us to change different chemical and 

mechanical properties of the scaffolds in order to evaluate the influence of these extracellular 

signals on EMT activation. In particular, EMT was monitored through E-cadherin expression 

patter, since this protein mediates epithelial cell-cell adhesions. The specific aims of this 

chapter were the following:  

 

 

(1) To characterize pancreatic cancer cells plasticity through 3D cultures of different 

composition and stiffness.  

 

(2) To study the microenvironmental control of E-cadherin dynamic expression and 

regulation in different 3D cancer models. E-cadherin is the main marker of EMT 

program during invasion and metastasis steps. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 MORPHOLOGICAL ASSESSMENT OF 3D CANCER MODELS 

Different 3D models of a pancreatic ductal adenocarcinoma (PANC-1) cell line were 

developed in order to study the contribution of the microenvironment on cellular phenotype 

during tumor progression. Pancreatic cancer was selected as a study model due to its metastatic 

capacity, which is associated with the bad prognosis of this disease. Indeed, recent data suggests 

that epithelial to mesenchymal transition (EMT) and cellular dissemination leading to metastatic 

cascade could occur in parallel or prior to the formation of an identifiable primary tumor37.  

 

Cells were encapsulated in collagen type I and self-assembling RAD16-I peptide scaffolds 

at two different concentrations of 1.5 mg/mL and 5.0 mg/mL in order to evaluate the effect of 

composition and stiffness from the surrounding milieu. First, the macroscopic morphology of 3D 

cultures was characterized with a stereoscopic microscope (Figure 3.6):  

 

 

 

Figure 3.6. Morphologic assessment of 3D cultures at macroscopic level. Cells were encapsulated in RAD16-I and 
collagen scaffolds at two different concentrations (1.5 and 5.0 mg/mL). The resulting geometry was a disk of 8 mm of 
diameter and 500 µm of thickness. Collagen 1.5 mg/mL scaffolds suffered a spontaneous contraction process.  

 

The geometry of the 3D cultures was a disk of approximately 8 mm diameter and 500 

µm thickness. These dimensions were optimal for recreating tumor architecture. Many types of 

tumors are characterized by having a hypoxic and quiescent core. In these 3D cultures, the 

distance between surface exposed- and deeply buried-cells was around 250 µm, relevant 

dimensions for being subjected to mass transport limitations (the oxygen diffusion limit is 

approximately of 200 µm)47.  
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Significantly, collagen scaffolds at a concentration of 1.5 mg/mL suffered a spontaneous 

asymmetric contraction process, showing an oval shape with average dimensions of 6 x 2 mm. 

Collagen contraction has been previously described in cancer biology as a self-organization 

process in which cells strongly interact with collagen fibrils through integrin signaling and form 

an extensive communication network capable of dragging the hydrogel48. Furthermore, cells 

could probably secrete metalloproteinases to degrade collagen making their microenvironment 

less stiff. Conversely, this morphological pattern was not observed when the concentration of 

the hydrogel was 5.0 mg/mL. Increasing the concentration of collagen is transduced in stiffening 

the matrix (studied in detailed below). Probably, cells could no longer overcome the surrounding 

resistance to drag the hydrogel with them. These results are consistent with recent publications, 

which state the dependence between matrix contraction and stiffness49,50. Indeed, stiffness has 

been shown to promote the remodeling of cell-matrix adhesions. Therefore, these findings 

reinforced the formation of a communication network between cells and collagen matrix 

through integrins (mainly α2β1 in PANC-1 cells), as previously reported51. This morphological 

phenomenon could be further studied by incubating samples with integrin inhibitors.  

 

Regarding RAD16-I scaffold, the contraction process was not observed at any 

concentration. This biomaterial does not provide specific recognition sites for integrins and, 

therefore, cells are were able to directly adhere to its nanofibers. Moreover, cells could not 

degrade RAD16-I matrix due to the lack of metalloproteinases-specific recognition sites. 

 

 

 

3.3.2 MECHANICAL ASSESSMENT OF 3D CANCER MODELS  

After macroscopic morphological assessment, the mechanical properties of 3D cultures 

were characterized by dynamic rheology (Dynamic-Mechanical Analysis, DMA).  In particular, 

samples were deformed under an oscillating stress within a range of frequencies and the 

resultant sinusoidal strain was evaluated. The stress/strain ratio equals the complex viscoelastic 

modulus (G*), which can be defined as (Equation 3.1): 

 
 

G* = G’ + iG’’ 
Equation 3.1. Viscoelastic modulus equation 

 

G’ (storage modulus) represents the elastic component, measures the energy stored and 

is related to the stiffness of the sample. On the other hand, G’’ (loss modulus) represents the 

viscous component, measures the energy converted to heat and is related to the ability of the 

sample to dissipate the energy through molecular motion52. In this case, the storage modulus of 

the 3D cultures was determined as a measure of matrix stiffness (Figure 3.7): 
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Figure 3.7. Mechanical assessment of 3D cultures. The storage elastic modulus (G’) was determined by dynamic 
rheology and related to sample stiffness. Values represent the mean ± SD of six measurements from collagen and 
RAD16-I scaffolds, using concentrations of 1.5 and 5.0 mg/mL. *p<0.05 and ***p<0.001, (n=6). 

 

The obtained mechanical properties were in agreement with the literature. Sieminski et 

al.53 reported a storage modulus of approximately 100 Pa (1.5 mg/mL) and 1300 Pa (5.0 mg/mL) 

for RAD16-I biomaterial. Paszek et al.54 obtained an average value of 170 Pa (1.0 mg/mL) and 

1600 Pa (4.0 mg/mL) for collagen type I biomaterial.  

 

The compliance of collagen and RAD16-I scaffolds at 1.5 mg/mL matched that of 

pancreatic normal tissue (ranging from 100-500 Pa)55,56. When the concentration raised to 5.0 

mg/mL, collagen and RAD16-I scaffolds showed a storage modulus of approximately 3000 and 

1500 Pa respectively, close to stiffness values for several types of tumours54,57.  Therefore, 

results suggested that cells were able to sense the mechanical signaling that accompanies tumor 

progression due to the elevated deposition and remodeling of extracellular matrix (ECM) 

components.  

 

For collagen scaffolds, global measures of stiffness values did not necessarily represent 

the real local value around cells due to the potential degradation of nanofibers by cells. 

Conversely, for RAD16-I scaffolds, cells could not degrade them due to the lack of 

metalloproteinases-recognition sequences, suggesting that stiffness was more stably 

maintained and probably global stiffness values did represent local ones over time. Therefore, 

we decided to continue working with the concentration of 5.0 mg/mL. The comparison between 

both concentrations could help to unravel the influence of tissue stiffness on E-cadherin 

regulation. The morphological effects are described in the next section. 
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3.3.3 CELL PHENOTYPE AND PLASTICITY IN 3D CANCER MODELS 

Cell morphology and organization within the 3D cultures were characterized. In 

particular, nuclei and actin microfilaments of the cytoskeleton were stained with DAPI (blue) 

and Phalloidin-TRITC (red) dyes respectively.  

 

The fluorescence microscope used to examine 3D cultures was equipped with the 

ApoTome system (Zeiss Company). This system created optical sections through the elimination 

of scattered light of out-of-focus planes. It was based on structured illumination, projecting a 

grid into the focal plane and moving it in a very precise manner. A mathematical algorithm 

calculated a resolved optical section from at least three single images with different grid 

positions58  (Figure 3.9).  

 

 

 

Figure 3.8. Optical sectioning and 3D reconstruction. Cell morphology and organization were evaluated through DAPI 
(blue) and Phalloidin-TRITC (red) staining. (A) Conventional fluorescence acquired without using the optical sectioning 
ApoTome system revealed the 3D distribution of cells. Fluorescence emission from both directions above and below 
the focal plane occurred and was captured. (B) One optical sectioning was acquired using the ApoTome system. 
Fluorescence emission from out-of-focus plane was eliminated through a mathematical algorithm based on structural 
illumination, such that only cells within a single optical section were shown. (C) Maximum Intensity Projection (MIP) 
of 10 optical sections. (D) 3D reconstruction in a volume render. The optical sections above were translated into a 3D 
volume render. Scale bar of 200 µm. 
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Optical sectioning was performed in all 3D cultures. These fluorescent images allowed 

us to analyze the influence of different microenvironmental cues (matrix composition and 

stiffness) on tumor phenotype (Figure 3.9).  

 

 

 

Figure 3.9. Cell morphology and organization in a 3D environment after 1 day of culture. The influence of different 
microenvironmental signals (matrix stiffness and composition) on cancer cell phenotype was analyzed. In particular, 
cells were grown within the synthetic self-assembling RAD16-I and the natural collagen type I hydrogels, using 
concentrations of 1.5 mg/mL and 5.0 mg/mL. After 1-day culture, samples were fixed and stained for actin 
microfilaments (phalloidin, pseudo-colored in yellow to increase contrast) and nuclei (DAPI, blue). Scale bar of 50 µm. 

 

The first day after encapsulation, cells exhibited a round morphology shared by any 

of the culture conditions assayed in this work. They had prominent and irregular nuclei, 

distinguishing feature of the genomic instability and abnormal division patterns commonly 

observed in cancer cells. Moreover, their actin filaments were assembled into cortical thin 

bundles, following the particular cytoskeleton organization of epithelial cells. During the 

next culture days, they started to extend cellular processes characteristic of cells undergoing 

proliferation and cytoskeleton remodeling (Figure 3.10).    

 

 



Chapter 3 

 

68 

 

Figure 3.10. Cell morphology and organization in a 3D environment after 10 of day culture. Theinfluence of different 
microenvironmental signals (matrix stiffness and composition) on cancer cell phenotype was analyzed. In particular, 
cells were grown within the synthetic self-assembling RAD16-I and the natural collagen type I hydrogels, using 
concentrations of 1.5 mg/mL and 5.0 mg/mL. After 10-day culture, samples were fixed and stained for actin 
microfilaments (phalloidin, pseudo-colored in yellow) and nuclei (DAPI, blue). Scale bar of 50 µm. 

 

After 10 days of culture, cells grew forming spheroid clusters. However, different cellular 

phenotypes could be observed depending on matrix composition and stiffness. These data 

demonstrated the remarkable plasticity of cancer cells.  

 

Regarding collagen scaffold 1.5 mg/mL (<100 Pa), most of the cells maintained their 

actin filaments assembled in cortical thin bundles. However, stiff values (approximately 3000 

Pa) promoted the remodeling of actin filaments that began to fill the intracellular space. These 

structures formed stress fibers, a distinctive feature of mesenchymal cells59. Furthermore, in 

both concentration conditions, cells adopted a more elongated and spindle-shape morphology 

relative to 2D and RAD16-I cultures. Significantly, collagen scaffold at 5.0 mg/mL induced the 

scattering of cancer cells, detaching them from clusters and causing the acquisition of 

protrusions on the cellular surface. Previous publications have described these protrusions as 

the cellular engines that enable migration since they focalize cell-matrix adhesions containing 

integrin clusters and proteolytic activity60,61. Therefore, culturing cancer cells in 3D collagen 

cultures compromised epithelial tissue organization and induced the development of a more 

mesenchymal-like phenotype as observed in morphological assessment. Remarkably, matrix 

stiffening exacerbated phenotypic transitions as EMT since cells showed increased invasive 

morphologies. 
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RAD16-I scaffolds do not have the intrinsic cell-matrix adhesion motifs essential for cell 

anchoring and signaling. In this case, fluorescent images from 1 to 10 days showed that cells 

grew and interacted with each other to form colonies. Therefore, cells were able to adapt to 

RAD16-I milieu (studied in more detail in section 3.3.5. CHARACTERIZATION OF E-CADHERIN 

EXPRESSION). Parallel to the collagen case, stiffening of RAD16-I scaffold (approximately 2000 

Pa) induced similar actin cytoskeleton dynamics characterized by the assembling of actin 

filaments predominantly filling the intracellular space. However, cells did not spread to the same 

extent and did not form protrusions. Lack of protrusions was related to the incapacity of cells to 

degrade RAD16-I nanofibers and extend matrix remodeling processes. Images revealed that 

RAD16-I stiffness per se could recapitulate some cellular features of EMT as enhanced cell 

contractility (cytoskeletal dynamics). However, the acquisition of an elongated and spindle-

shape morphology was not observed as in the collagen scaffold.  

 

 

 

3.3.4 CELL VIABILITY OF 3D CANCER MODELS 

Next, cell viability was analyzed through a qualitative assay based on the use of Calcein-

AM (green) and Ethidium homodimer-1 (red) dyes that stained live and dead cells respectively. 

Figure 3.11 shows the 3D reconstruction of the culture through different optical sections 

obtained in a pseudo-confocal microscope. 

 

 

 

Figure 3.11. 3D reconstruction of the cellular viability in cancer models. The image corresponds to a 3D 
reconstruction from optical sections taken with a semi-confocal microscope. After 10-day culture, 3D cultures were 
stained with calcein dye for live cells (green) and ethidium homodimer-1 for dead cells (red). Scale bar of 50 µm. 
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Cell viability staining and further 3D reconstruction was performed for all the 

experimental conditions (RAD16-I and collagen scaffolds at concentrations of 1.5 and 5 mg/mL) 

(Figure 3.12):  

 

 

 

Figure 3.12. Cellular viability of the different 3D cancer models. PANC-1 cells were grown in RAD16-I and collagen 
scaffolds. After 10-day cultures, they were stained with calcein dye for live cells (green) and ethidium homodimer-1 
for dead cells (red). The majority of cell population remained alive along the whole 3D culture period. Fluorescent 
images from optical sections were taken and stacked to perform a 3D reconstruction of the constructs.  

 

In terms of cell viability, RAD16-I 5.0 mg/mL scaffolds showed the highest cellular death 

ratio. Two different hypotheses were formulated. First, RAD16-I stock solution could be acid for 

cells (concentration of 10 mg/mL delivered at pH=3). When liquid RAD16-I biomaterial came into 

contact with the culture medium, pH value was adjusted to physiological conditions (pH=7) in 

order to induce the self-assembling process of the peptide. Therefore, cells were exposed to 

acidic conditions only for a few minutes. Second, RAD16-I could provide a constrained 

microenvironment to cells as demonstrated by the measured stiffness values. Cells in these 
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scaffolds were not able to degrade and remodel the matrix. In any case, most of the cells were 

alive, revealing that all tissue engineering scaffolds and concentrations used for this work were 

suitable for 3D cultures. 

 

In the case of collagen 5.0 mg/mL scaffold, cell colonies were smaller compared to the 

other culturing conditions. This data was in agreement with morphology fluorescence images, 

which revealed that cells detached from clusters and acquired a mesenchymal-like phenotype  

   

 

 

3.3.5 CHARACTERIZATION OF E-CADHERIN EXPRESSION 

Cells were moved from a 2D to a 3D microenvironment through their culture in RAD16-

I and collagen scaffolds. This event could resemble the cellular mechanisms involved in invasion 

during tumor progression (EMT). During this step, cells downregulate the expression of cell-cell 

adhesions in order to escape from their epithelial neighbors and invade the 3D stromal ECM. 

The effect of microenvironment on triggering the EMT program was analyzed through the 

expression pattern of E-cadherin (CDH1 gene), a key epithelial cell-cell adhesion molecule, using 

different 3D scaffolds (Figure 3.13).  

 

 

 

Figure 3.13. Effect of the microenvironment on E-cadherin (CDH1 gene) expression. Cells were grown in 2D and 3D 
(RAD16-I and collagen type I) cultures during 1- and 10-day culture. The expression of E-cadherin was assessed by 
Real Time RT-PCR experiments, selecting conventional monolayer cultures as the calibrator. Results showed the role 
of microenvironmental signals on cell-cell adhesions. *p < 0.05 and ***p < 0.001, (N=2, n=6). 

 

The first day after encapsulation, E-cadherin expression was significantly downregulated 

in RAD16-I scaffolds, between 10- and 12-fold relative to confluent 2D and collagen 1.5 mg/mL 

cultures. This expression pattern was observed in all RAD16-I culture conditions (1.5 and 5.0 
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mg/mL). A possible explanation for this phenomenon came from the lack of both anchoring and 

signaling motifs provided by the self-assembling peptide. Therefore, cells probably identified 

RAD16-I as a hostile and non-instructive milieu through which they were not able to establish 

communication channels.  

 

Cells increased E-cadherin expression after 10 days of culture in RAD16-I scaffold. In 

particular, they showed similar levels to confluent monolayers (2-fold downregulation). This 

data suggested that cells could decorate RAD16-I scaffold through the synthesis of their own 

physiological ECM. These results could be in agreement with previous reports that 

demonstrated the capacity of cancer cells of secreting laminin62,63 and fibronectin64 when they 

fail to properly adhere to their surrounding milieu, partially replacing the role of stromal cells as 

fibroblasts. More research is needed to confirm this working hypothesis. For instance, 

immunofluorescence of fibronectin and Collagen I proteins together with Western Blot analysis 

of phosphorylated versus unphosphorylated focal adhesions could be performed at day 1 and 

10 of RAD16-I cultures.  

 

The next experiment consisted in daily transferring the supernatant from collagen 

cultures to RAD16-I cultures. Accordingly, RAD16-I cultures could receive all the soluble 

paracrine factors (e.g. growth factors, cytokines) that cancer cells released due to the evolving 

crosstalk with collagen. Importantly, no effect in E-cadherin expression was observed, 

reinforcing the critical role of integrins in tumor phenotype.   

 

The first day after encapsulation, cells showed different E-cadherin expression levels 

depending on collagen experimental conditions. Cells grown in collagen 1.5 mg/mL scaffold 

downregulated E-cadherin between 2- and 3-fold relative to 2D cultures. This pattern probably 

responded to the different configuration that epithelial cells acquired in a 3D milieu relative to 

2D. Indeed, these values were the same than the ones obtained for RAD16-I cultures at 10 days. 

Interestingly, cells grown in collagen 5.0 mg/mL downregulated E-cadherin expression 6- to 8-

fold relative to 2D cultures. This data suggested a more pronounced disassembly of epithelial 

cell-cell adhesions, in agreement with fluorescence microscopy characterization. The 

differences observed between both concentrations responded to mechanical properties 

(stiffness value) and chemical properties (concentration of integrin adhesion sites). These cues 

have been reported to drive EMT through integrin clustering and cytoskeleton dynamics54,65.  

 

After 10 days of culture, cells grown in collagen at 1.5 mg/mL scaffold mimicked E-

cadherin expression levels relative to collagen 5.0 mg/mL scaffold (between 6- and 8-fold change 

of 2D cultures). This pattern correlated with the spontaneous contraction of collagen 1.5 mg/mL. 

It has been reported that contraction induces the reorganization of matrix fibrils, enhancing the 

density of integrin-binding motifs48. Therefore, the increase in cell-matrix adhesion sites 

probably caused that collagen scaffolds at 1.5 mg/mL could partially mimic the internal structure 

of collagen at higher concentrations (5.0 mg/mL). At the microscopic level, cells did not adopt a 

mesenchymal-like phenotype as pronounced as in collagen 5.0 mg/mL (Figure 3.10). These 

differences between E-cadherin expression and morphological assessment could indicate that 
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E-cadherin is a good marker for the initial steps of EMT, but additional information is required 

in order to monitor more precisely the serial of events that occur during the progressive 

acquisition of a mesenchymal-like phenotype.  

 

To confirm the relevance of integrin signaling, collagen contraction was mechanically 

blocked by attaching the construct to the culture plate. Cultures showed the same E-cadherin 

expression levels than collagen 1.5 mg/mL at day 1, being 2-fold downregulated relative to 2D 

cultures. Therefore, data revealed that the density of integrins was critical for EMT and invasion 

progression.   

     

 

 

3.3.6 MECHANISMS OF E-CADHERIN REGULATION 

Dynamic deregulation of cell adhesions can be explained through epigenetic alterations. 

Two main mechanisms emerge at the core of the pathological state: DNA methylation and 

histones deacetylation, which directly influence the chromatin structure27.   

  

First of all, the methylation state of CDH1 promoter was analyzed in all experimental 

conditions (2D, RAD16-I and collagen cultures). To avoid miss-interpretations, the presence of 

mutations in CDH1 promoter sequence was studied prior to any methylation-specific treatment. 

The obtained sequences were compared to the National Center for Biotechnology Information 

(NCBI) database (Figure 3.14). 

 

 

 

Figure 3.14. Schematic overview of CDH1 promoter region. Relevant DNA sequences are highlighted in the promoter 
region: CpG islands, transcription start site (TSS), TATA boxes and affinity regions for SNAI1 transcription regions. 
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All samples showed one single nucleotide polymorphism (SNP) at nucleotide -160 (CDH1 

-160C>A) of E-cadherin promoter region. This allelic variation was located around the 

transcription start site (TSS). Based on literature, this SNP only alters the transcriptional activity 

of the promoter and correlates with the susceptibility of developing cancer. For this reason, it is 

identified as a predisposition locus66,67. All samples showed this SNP and, thus, differences in E-

cadherin expression among microenvironmental conditions were not caused by genetic 

alterations within the promoter region.  Next, epigenetic alterations were analyzed.  

 

The methylation of CpG islands in E-cadherin promoter was investigated. Briefly, DNA 

was extracted and submitted to bisulfite treatment in order to distinguish methylated from non-

methylated cytosines. Samples were PCR-amplified and cloned for sequencing (Figure 3.15).  

 

 

 

 

Figure 3.15. Regulation of E-cadherin expression through DNA methylation patterns. Schematic representation of 
the methylation state of cytosines in CpG islands located in CDH1 promoter region. The blue color indicates the non-
methylated CpGs; the yellow, the methylated CpGs and the grey, the not presented CpGs (N=2, n=5-6). Methylation 
experiments were performed with Cristina Castells-Sala (group of Dr. Carlos E. Semino from IQS School of 
Engineering). 
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Bisulfite sequencing experiments revealed that any significant hypermethylation of E-

cadherin promoter did not occur during different culture conditions. Therefore, results 

suggested that covalent modification of DNA sequence did not emerge as a regulatory 

mechanism for E-cadherin expression in pancreatic cancer, confirming previous publications42.  

 

The second epigenetic mechanism involved in cancer disease is the covalent 

modification of histones, being their deacetylation the most common signature for dynamic 

gene silencing. Histones deacetylases (HDAC) are the enzymes responsible for catalyzing this 

chemical reaction. They usually form protein complexes with transcriptional repressors. In the 

case of E-cadherin, these repressors are members of the snail, zinc finger E-box-binding 

homeobox (ZEB) and basic helix-loop-helix (bHLH) families. Therefore, the epigenetic 

modification of histones was studied through the expression of transcriptional repressors. In 

particular, the expression of SNAI142,44,45 and ZEB242,46 genes is reported to be upregulated in 

pancreatic cancer (Figure 3.16). 

 

 

 

Figure 3.16. Effect of the microenvironment on E-cadherin transcriptional repressors: SNAI1 and ZEB2 genes. Cells 
were grown in 2D and 3D (RAD16-I and collagen type I) cultures during 1- and 10-day culture. The expression of SNAI1 
and ZEB2 genes was assessed by Real Time RT-PCR, using conventional monolayer cultures as a calibrator. Results 
showed the role of microenvironmental signals on the regulation of cell-cell adhesions. *p<0.05 and ***p<0.001, 
(N=2, n=6). 

 

After 1 day of culture, SNAI1 and ZEB2 genes were significantly upregulated in RAD16-I 

cultures, showing approximately 5-fold change relative to 2D cultures. These results correlated 

with E-cadherin downregulation. It has been largely demonstrated that snail1 and ZEB2 recruit 

HDAC1/2 proteins7. Therefore, this data suggested the existence of a link between the 

epigenetic modification of histones and the disassembly of cell-cell adhesions, being induced by 

tumor microenvironment. After 10 days of culture, both transcriptional repressors were 

expressed at similar levels than 2D cultures, in agreement with E-cadherin results in RAD16-I 

scaffold.  
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Regarding collagen cultures, SNAI1 and ZEB2 genes were not upregulated despite E-

cadherin downregulation after 1- and 10-days of culture. Different hypotheses can explain the 

obtained pattern and experiments are under development to continue investigating the role of 

tumor microenvironment in E-cadherin expression. 

 

 

3.3.7 FUTURE DIRECTIONS 

First, SNAI1 and ZEB2 could be upregulated in different time points than E-cadherin 

downregulation. For this reason, future research includes Real Time RT-PCR assays between 1 

and 10 days of culture (e.g. 3, 5 and 7 days). Secondly, other transcriptional repressors could be 

involved in cell-cell adhesion disruption (slug, ZEB1, bHLH) in collagen scaffolds. Collagen 

provides integrin-recognition sequences and, therefore, E-cadherin regulatory mechanisms can 

differ from RAD16-I scaffold. To elucidate in more detail the role of integrin signaling, next step 

can consist in the functionalization of RAD16-I scaffold, for instance with RGD sequences.  

 

On the other hand, the level of protein expression of E-cadherin and transcriptional 

repressors (snai1 and ZEB2) can be studied. Preliminary Western Blot experiments were 

performed in order to detect the presence of E-cadherin protein. However, results were not 

normalized to cell protein content and, thus, were not quantified (Figure 3.17). More research 

is needed in this direction.  

 

 

 

Figure 3.17. E-cadherin protein levels in different microenvironments. Cells were grown in RAD16-I and collagen 
scaffolds during 1 and 10 days of culture. The expression of E-cadherin protein was analyzed through Western Blot 
without normalizing samples with protein content. The main objective of the experiment was the detection of E-
cadherin at protein level.  
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3.4 CONCLUDING REMARKS 

Cancer is caused by the accumulation of multiple and consecutive genetic alterations 

together with the evolving crosstalk with the surrounding microenvironment68. The influence of 

microenvironment has been largely disregarded by cancer biologists. They routinely use two-

dimensional (2D) cultures for studying the mechanisms involved in this disease, being genome-

centered models. The development of three-dimensional (3D) cultures that integrate multiple 

physical, mechanical and chemical cues from the extracellular matrix (ECM) is crucial to get 

closer to the real scenario and continue advancing in research.  3D cultures are particularly 

useful for recapitulating the 2D to 3D transition experienced by cancer cells during invasion. This 

tumor stage is only possible if cells lose their epithelial phenotype, which results in the 

disruption of intercellular adhesions (E-cadherin) and the dramatic remodeling of actin 

cytoskeleton. Consequently, cells acquire a mesenchymal phenotype that switches on motility 

programs in a process known as epithelial to mesenchymal transition (EMT)15. Different 3D 

cancer models were developed to study the contribution of tumor microenvironment on 

triggering EMT cell program. Tissue engineering scaffolds based on self-assembling peptide 

RAD16-I and natural collagen type I biomaterials were used to provide cells with different 

compositions and stiffness.  

 

Cells showed different phenotypes depending on the experimental culture conditions, 

demonstrating their plasticity. This property enabled cells to adapt to the evolving 

microenvironment. RAD16-I scaffolds provided a 3D and non-instructive milieu since they did 

not contain any cell-ECM recognition sequence. Cells were able to extend processes in these 

scaffolds: they grew in spheroids clusters and interacted with each other as demonstrated by E-

cadherin upregulation from 1- to 10-day culture. Therefore, results suggested that cancer cells 

could activate mechanisms in order to adapt to a microenvironment in which they fail to 

properly adhere. Perhaps they could synthetize some ECM components in agreement with 

previous reports69. However, more research is needed in this direction. On the other hand, 

stiffening of RAD16-I scaffold caused the remodeling of actin cytoskeleton. Cells could balance 

the exogenous mechanical properties with their endogenous cytoskeleton contractility, 

compromising epithelial morphology. However, cells did not show distinguishing features of a 

mesenchymal-like phenotype, such as a spindle-shape morphology or protrusions probably 

because they could not degrade RAD16-I nanofibers. Therefore, RAD16-I could not completely 

recapitulate the EMT program due to the lack of ECM-binding motifs as integrin- and 

metalloproteinases-recognition sequences, revealing their key role in metastatic cascade. 

 

Collagen scaffolds helped us to go a step further, revealing that the presence and 

concentration of ECM binding motifs was critical. Collagen at 5.0 mg/mL cultures could 

recapitulate the disruption of epithelial morphology, the disassembly of cell-cell adhesions and 

the acquisition of protrusions to migrate as individual cells. During disease progression, EMT is 

accompanied by the desmoplastic reaction (upregulation of type I collagen). Therefore, data 

suggested that collagen at 5.0 mg/mL scaffolds could mimic tumor microenvironment in terms 

of physical (3D architecture), mechanical (elastic modulus of 3000 Pa) and chemical (presence 
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of integrins sites) cues. In fact, these parameters are interconnected since the stiffening of the 

matrix is achieved by increasing its concentration and, in parallel, enhancing integrin-binding 

sites density. Collagen 1.5 mg/mL scaffolds could recapitulate these morphological features of 

EMT when scaffolds suffered a spontaneous contraction process. Thus, recreating only some 

variables was not sufficient to induce EMT, as demonstrated by RAD16-I (3D milieu) and collagen 

1.5 mg/mL (integrins) scaffolds.  

 

The role of tumor microenvironment was also investigated in the mechanisms that 

regulate E-cadherin expression. At the genetic level, the presence of a single nucleotide 

polymorphism (SNP) was detected at nucleotide -160C>A relative to the transcriptional start 

site. Previous research correlates this SNP with lower transcriptional activity of gene 

promoter66,67. All samples (100% of cases) showed this allelic variation. Results suggested that 

the differences observed in E-cadherin expression among different microenvironmental 

conditions were not caused by genetic mechanisms within the promoter region.   

 

Regarding epigenetic alterations, no significant hypermethylation of CDH1 promoter 

region was reported. Therefore, DNA covalent modifications did not emerge as a primary E-

cadherin regulatory mechanism in pancreatic cancer cells (PANC-1). Methylation experiments in 

3D cultures were previously reported in breast25 and squamous70 cancer, but this was the first 

study relative to pancreatic cancer.  

 

On the other hand, the upregulation of transcriptional repressors as SNAI1 and ZEB2 was 

described in RAD16-I cultures, being irreversibly correlated with E-cadherin expression levels. 

This pattern was not detected in collagen cultures, so further research is needed to elucidate 

the mechanisms involved in E-cadherin regulation in this milieu. Different tumor 

microenvironments could work in distinct ways to regulate epigenetic modifications. In 

particular, more time points for Real Time RT-PCR experiments and different transcriptional 

repressors (slug, ZEB1, bHLH) could be analyzed. All these transcription repressors form protein 

complexes with histones deacetylases (HDAC) enzymes, which are required for covalently 

modify histones.  

 

It has been described that DNA and histones covalent modifications can act as a gradient 

of epigenetic gene silencing during cancer progression, dictating the grade of reversibility in E-

cadherin expression71. Therefore, the detection of SNAI1 and ZEB2 transcriptional repressors 

along with the absence of significant hypermethylation of gene promoter probably suggested 

that E-cadherin remained in a transient silenced state in pancreatic cancer. These findings could 

correlate with the high metastatic capacity that characterizes pancreatic cancer, which easily 

disseminates and establishes secondary tumor sites. However, further experiments with 3D 

cultures are needed to better describe this epigenetic landscape.
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4.1 BACKGROUND 

4.1.1 PHOTODYNAMIC THERAPY 

Photodynamic therapy (PDT) is a clinically approved procedure for the treatment of 

diseases characterized by uncontrolled cell proliferation, principally cancer1. Up to date, it shows 

successful results in a variety of cancer types including skin, bladder, lung, breast, esophagus 

and cervix2. PDT is also used in other fields of medicine with a particular interest in 

ophthalmology (macular degeneration and choroidal neovascularization)3,4, dermatology (acne, 

actinic keratosis and psoriasis)5 and antimicrobial therapies (antibiotic-resistant localized 

infections)6.  

 

PDT involves the interaction of three independent and individually non-toxic factors: a 

photoactive dye called photosensitizer (PS), visible light and molecular oxygen. The principle of 

this therapy relies on the administration of the PS, followed by the irradiation of the diseased 

area with light of appropriate wavelength. In the presence of molecular oxygen, highly cytotoxic 

reactive oxygen species (ROS) are generated, leading to the selective destruction of cancer cells.  

 

Mechanistically, PS absorbs a photon when it is irradiated with light of the appropriate 

wavelength and an electron is promoted from the ground state (S0) to an electronically excited 

state (S1*). This short-lived specie can release its energy through light emission (fluorescence), 

internal conversion to heat or intersystem crossing to form a more stable triplet state (T1*). The 

relative long lifetime of the triplet state allows the interaction of the excited PS with the 

surrounding molecules, performing two classes of reactions defined as Type I and Type II 

mechanisms. In the Type I mechanism, PS reacts directly with an organic molecule from the 

cellular microenvironment, transferring a hydrogen atom or an electron to form radical species. 

These free radicals further react with molecular oxygen and lead to ROS such as superoxide 

anion (O2
-), hydrogen peroxide (H2O2) or hydroxyl radicals (HO·). Alternatively, the Type II 

mechanism is initiated by the energy transfer between the triplet excited state of the PS and 

nearby oxygen molecules, generating the singlet excited state of oxygen that is referred as 

singlet oxygen (1O2). The majority of PSs operate via a Type II mechanism. During this process, 

PS is regenerated and acts in a catalytically manner. As consequence, many cycles of 1O2 

production can occur for each PS molecule7 (Figure 4.1).  

 

Singlet oxygen is the major cytotoxic agent involved in PDT and its presence induces 

tumor regression by three mechanisms: direct killing of cancer cells, damage to 

microvasculature and triggering of a local immune response8.  
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Figure 4.1. Principle of photodynamic therapy (PDT). Schematic overview of the Jablonski diagram of photosensitizer 
(PS) excited states and their interaction with molecular oxygen. During PDT, PS is administrated and the diseased area 
is irradiated with light of appropriate wavelength. Consequently, PS absorbs a photon, promoting an electron from 
the ground state (S0) to an electronically excited state (S1*). PS excited state can release its energy by undergoing 
intersystem crossing to form a more stable triplet state (T1*). This triplet state can undergo electron transfer to 
organic molecules of the surrounding milieu generating superoxide, hydrogen peroxide and hydroxyl radicals (Type I 
reaction) or can undergo energy transfer to molecular oxygen producing highly cytotoxic singlet oxygen (Type II 
reaction). All these highly cytotoxic reactive oxygen species trigger the selective destruction of cancer cells. 

 

PDT causes an acute cellular stress response that leads to the activation of multiple 

signaling pathways and ultimately evokes to any of the three main death mechanisms: 

apoptosis, necrosis or autophagy-associated cell death. The type and extent of photodamage 

mainly depend on PS subcellular localization since 1O2 lifetime is very short (<0.04 µs) and limits 

its radius of action (10-55 nm)9. PSs can associate with plasma membrane or intracellular 

membranes of the endoplasmic reticulum, mitochondria, lysosomes and/or Golgi apparatus. In 

these locations, PDT triggers the photo-oxidation of unsaturated lipids, which damages 

membranes, allows leakage of cellular contents and/or inactivates transport systems. As a 

result, affected cells produce a variety of cytokines and stress proteins that act over neighboring 

cells10.  

  

Tumors require the formation of new blood capillaries from pre-existing ones 

(angiogenesis)11. These capillaries display two main functions: (i) supply of nutrients and oxygen 

to fulfill the metabolic requirements of proliferating cancer cells and (ii) establishment of a 

transport network to enable the colonization of metastatic cancer cells. This process is driven 

by the tight release both spatially and temporally of pro-angiogenic factors. They are responsible 

for stimulating endothelial cells to migrate, proliferate and differentiate in a new lumen-

containing vessel. Subsequently, endothelial cells generate a new basement membrane and 

secrete more growth factors for the recruitment of supporting cells that ensure the stability of 

the new vessel (i.e. pericytes)12. Endothelial cells are highly sensitive to PDT effects and, 
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therefore, this therapy has the potential to damage or destroy tumor blood vessels1. Indeed, the 

combination of PDT with drugs capable of inhibiting pro-angiogenic factors, such as vascular 

endothelial growth factor (VEGF) and angiopoietin 2 (Ang2), has been successfully applied in 

clinic. Good results account for the simultaneous damage of the vasculature network together 

with the inhibition of neo-angiogenesis processes13,14. 

 

Another important aspect of PDT is its capacity to stimulate the immune system in order 

to recognize and destroy any remaining cancer cell, from either primary tumor or distant 

metastasis. This response is caused by the emission of alarm/danger signals, also called damage-

associated molecular patterns (DAMPs). DAMPs are retained in cells under normal conditions, 

but exposed on their surface or released in response to damage or stress. Some examples 

include endoplasmic reticulum chaperon CRT, heat-shock protein HSP90 and nuclear protein 

HMGB115. PDT induces the presence of these alarm signals by triggering an acute inflammatory 

response. DAMPs are recognized by dendritic cells and neutrophils, which mature and home to 

the regional lymph nodes. There they present antigens to the T lymphocytes that migrate to the 

tumor in order to kill cancer cells. Therefore, PDT mediates the formation of T-cell adaptive 

immunity and induces an immunogenic cell death8 (Figure 4.2). 

 

 

 

Figure 4.2. Mechanism of action of photodynamic therapy in cancer. Singlet oxygen can directly kill cancer cells by 
the induction of necrosis, apoptosis or autophagy after an acute stress response. Simultaneously, it can cause the 
destruction of the vasculature network in tumor microenvironment and the stimulation of the immune system. In 
particular, cancer dead cells express a spatiotemporally defined combination of damage-associated molecular 
patterns (DAMPs). These endogenous signals are recognized by dendritic cells and neutrophils, which are home to 
the regional lymph nodes and present antigens to the T lymphocytes. Therefore, DAMPs mediated the formation of 
T-cell adaptive immunity. From Castano et al.8 
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4.1.1.1 Practical Considerations of Photodynamic Therapy   

The use of PDT as cancer therapy is particularly attractive because of its dual selectivity. 

First, PS is preferentially accumulated in the tumor rather than the healthy tissue. Second, its 

activation can be confined by restricting the illumination to a specific area. The exact 

mechanisms that account for PS preferential location are not fully understood, but reveal the 

important contribution of the abnormal tumor physiology: poor lymphatic drainage, leaky and 

permeable vasculature, low pH and high number of receptors for low-density lipoprotein that 

mediated drug intracellular transport1.  

 

Furthermore, PDT does not induce significant levels of resistance in cancer cells. Only 

two mechanisms are described based on the variation of cellular antioxidant levels and the 

expression of enzymes capable of detoxifying ROS1. Finally, PDT is immunostimulatory, being 

located at the opposite end of immunosuppressive chemotherapy and radiotherapy. Both 

therapies are toxic to bone marrow, which is the source of cells from the immune system8.  

  

Paradoxically, the advantage of selectivity turns into an intrinsic limitation when treating 

metastatic lesions due to the impossibility of irradiating the whole body with appropriate doses1. 

Another disadvantage of PDT comes from its low therapeutic efficacy that can be explained 

through the non-homogeneous oxygen distribution (hypoxia in the core of the tumor) together 

with oxygen depletion during the photodynamic reaction7. Pain and a persistent skin 

photosensitivity are also described.  

 

 

4.1.1.2 Approved Photosensitizers and Perspectives  

Nowadays, only four PS agents are approved for PDT: (i) porfimer sodium, an 

hematoporphyrin derivate commercially available as Photofrin® and PhotoBarr®; (ii) temoporfin 

or 5,10,15,20-tetra(m-hydroxyphenyl)chlorin (m-THPC) as Foscan®; (iii)  5-aminolevulinic acid 

(ALA) and its methyl ester (M-ALA) as Levulan® and Metvix® respectively; and (iv) verteporfin or 

benzoporphyrin derivative monoacid ring A (BPD-MA) as Visudyne®16,17. However, none of them 

fulfils all the demands required for standardized applications in oncology. They present low 

selectivity between tumour and healthy tissue and a low therapeutic efficacy. Furthermore, 

porfimer sodium and temoporfin induce a pronounced and lengthy skin photosensitivity1,16.  

 

Based on these considerations, concerted efforts are made towards the development 

of new PSs with the overall aim of improving therapeutic outcomes for patients. Current 

examples include members of porphyrins, chlorins, bacteriochlorins, purpurins, 

phthalocyanines, naphthalocyanines, texaphyrins and porphycenes families17. In the present 

thesis, two PSs are used: zinc phthalocyanine (ZnPc) and cationic porphyrin 5,10,15,20-

tetrakis(N-methyl-4-pyridilium)-21H, 23H-porphine (TMPyP).  
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ZnPc is a promising PS because of its high optical absorption coefficient in the 600- to 

800-nm therapeutic window (optimal tissue penetration). Moreover, the incorporation of a 

diamagnetic metal (Zn) into the phthalocyanine macrocycle causes a long-life triplet state, 

resulting in efficient photosensitization reactions. However, ZnPc is extremely hydrophobic and 

prone to self-aggregate in aqueous solutions. This property makes necessary the use of specific 

carriers for its delivery into biological systems18. ZnPc is usually formulated in liposomes 

composed of palmitoyl-oleoyl-phosphatidylcholine (POPC) and di-oleoyl-phosphatidylserine 

(OOPS) in a ratio of ZnPc:OPOC:OOPS at 1:90:10 (w/w/w). It is developed by QLT 

Phototherapeutics and sponsored by Ciba Geigy (Novartis). Significantly, ZnPc is the first 

phthalocyanine reaching clinical trials (Phase I/II, Switzerland) for PDT19. 

 

TMPyP shows different absorption peaks like all porphyrins. Its maximum is located in 

Soret band (424 nm), but has an additional peak at 630 nm wavelength. It is hydrophilic and has 

an elevate quantum yield for singlet oxygen production, making it very interesting for singlet 

oxygen investigations20,21 (Figure 4.3).   

 

 

 

Figure 4.3. Chemical structure of ZnPc and TMPyP photosensitizers. (A) ZnPc is a phthalocyanine that has a high 
optical absorption coefficient in 600-800 nm. It is hydrophobic, making necessary the use of carriers like liposomes 
for its cellular delivery. (B) TMPyP is a cationic porphyrin that has different absorption peaks, having its maximum in 
Soret band (424 nm). It is very hydrophilic and can be directly delivered.  

 

Therefore, a major challenge in PDT is the development of new PSs. However, drug 

discovery is an inefficient process. It is estimated that only 8% of candidates that enter Phase I 

trials receive final approval from American Food and Drug Administration (FDA)22. This high 

failure rate is in part related with the continued use of cellular systems that alter or miss many 

important tissue-related functions, impairing their predictive power. A current demand for both 

academia groups and pharmaceutical industry is to set up models that reproduce the phenotype 

of the target tissue more precisely in order to obtain reliable biomedical data that correlates 

with in vivo tests.   
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4.1.2 TISSUE ENGINEERING AND PHOTODYNAMIC THERAPY 

In drug development processes, early biological-activity assessment has traditionally 

depended on two-dimensional (2D) cultures and animal models23. 2D cultures have provided 

valuable information on cellular responses after drug treatments. However, it is commonly 

accepted that the flat and hard plastic substrates are not representative of the cellular 

microenvironment. At the opposite end of experimental platforms, animal models can display 

the integrated responses that result from complex interactions between tissues and organs. 

Inconveniently, they fail to capture important facets of human responses, are very costly, time-

consuming and ethically controversial24.  

 

There is a high demand for models that capture the complexity of human tissues while 

retaining the ability for high-throughput screening and cellular level imaging. As a result, three-

dimensional (3D) cultures are under development. They provide the third dimension that is 

essential to (i) reproduce the molecular gradients that exist in tissues for any soluble component 

such as oxygen and drugs and (ii) integrate multiple cues that arise from extracellular matrix 

(ECM) and neighboring cells24.  

 

3D cultures can help to bridge the gap between 2D cultures and animal models. They 

can be used to study the molecular mechanisms underlying human diseases and/or predict 

drugs outcome (Figure 4.4). 

 

 

 

Figure 4.4. Rethinking drug screening processes. 3D cultures can recreate the complex cellular microenvironment 
more precisely than traditional 2D cultures due to the incorporation of the third dimension for cell growth. 
Consequently, multiple cues that arise from ECM-cell and cell-cell interactions are integrated in 3D cultures. 
Moreover, molecular gradients for soluble molecules (i.e. oxygen and drugs) are captured. At the opposite end of the 
experimental continuum, animals do not capture important facets of human behavior and they are not feasible for 
high-throughput applications since they are costly, time-consuming and ethically controversial. 
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In drug discovery field, the most commonly used 3D cultures are spheroids and scaffold-

based cultures22. They provide tissue-specific information at different and complementary levels 

of complexity. However, their optimization and exploitation in PDT pre-clinical research remains 

largely unexplored.  

 

 

4.1.2.1 Cellular Spheroids for Photodynamic Therapy 

Spheroids are compact cellular clusters based on the natural tendency of many cell types 

to aggregate. They contain both surface exposed and deeply buried cells. Therefore, they 

establish zones of proliferating cells in the outside and quiescent cells in the inside due to 

nutrient and oxygen gradients. These systems capture many aspects of the pathophysiology 

milieu in human tumor tissues25. Sutherland and collaborators26,27 were pioneers in using 

spheroids in cancer research. They characterized their morphology through growth rate and 

oxygenation studies.  

 

In PDT field, the group of De Witte28–31 used spheroids to mimic bladder carcinoma and 

evaluate PDT outcome compared with classical 2D cultures. Cells were grown until aggregates 

reached 450-500 µm in diameter, mimicking mass transport limitations occurring in vivo 

(diffusion limit for oxygen and drugs states in 150-250 µm)24,32. 3D cultures showed a 

heterogeneous distribution of PS with high concentrations at the periphery that decreased 

rapidly in the inner spheroidal regions. As a consequence of poor drug penetration and oxygen 

depletion, spheroids showed a dramatically low phototoxicity28. Finally, they studied the cellular 

mechanisms underlying PDT with a special focus on PS location. They demonstrated that drug 

accumulation inversely correlated with the expression of intercellular adhesion proteins (E-

cadherin)29–31.  

 

Spheroids have led to major conceptual advances in understanding discrepancies in PDT 

mechanisms and efficacy between 2D cultures and in vivo experiments. However, they are 

limited by slow spontaneous aggregation and uncontrolled final size and shape, which 

importantly difficult a precise control of oxygen and compounds gradients25,33.  

 

 

4.1.2.2 Scaffold-Based Cultures for Photodynamic Therapy 

Scaffold-based cultures are considered a good alternative to spheroids, offering two 

important advantages. First, scaffolds can be designed to specifically incorporate environmental 

signals depending on the tumor tissue and stage. Secondly, scaffold architecture and dimensions 

can be precisely defined to control the spatial distribution of drug and oxygen24. As previously 

mentioned, Bissell and collaborators34,35 were pioneers in using scaffold-based models in cancer 

research.  
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In PDT field, the group of Hasan32,36,37 developed a 3D cervical cancer model to mimic 

the avascular metastatic tumors that coat surfaces of the peritoneal cavity. Briefly, cells were 

cultured on the surface of MatrigelTM and grown until achieving a population of nodules larger 

than 200 µm in diameter. They used this model as a platform to screen drug candidates capable 

of breaking the protective microenvironment created by hypoxia. For this purpose, they 

developed two different strategies. First, they proposed the use of PSs that could impart 

cytotoxicity across Type I and II photodamage mechanisms and, thus, were able to treat hypoxic-

resistant cells through Type I reaction32. The second strategy was based on the synergic effect 

of combining PDT with chemotherapeutic drugs37. During other studies, they co-cultured cancer 

and stromal cells (fibroblasts and endothelial cells) in Matrigel to study the contribution of cell-

cell interactions in treatment response36,38. 

 

A further step towards the development of 3D models for PDT research can be the use 

of synthetic scaffolds in order to flexibly tune different ECM properties and analyze their intrinsic 

role in treatment response. Secondly, the contribution of stromal cells in PDT can be extensively 

studied. It has been largely demonstrated that the crosstalk between cancer and stromal cells 

drives tumor progression39. For instance, fibroblasts are responsible for the synthesis, 

deposition and modelling of much of the ECM components. Moreover, they are a source of 

paracrine growth factors that induce cancer cell growth40,41. Therefore, these cells act as active 

participants in disease progression rather than passive bystanders.  
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4.2 HYPOTHESIS AND SPECIFIC AIMS 

The main motivation of this chapter was to study the contribution of tumor 

microenvironment in photodynamic therapy (PDT) response.  

 

Our working hypothesis was that three-dimensional (3D) cultures could help us to 

evaluate the role of specific extracellular signals in the mechanism and efficacy of this cancer 

therapy. For this reason, these cultures were designed to sequentially incorporate increasing 

levels of biological complexity. The specific aims of this chapter were the following: 

 

 

(1) To develop a 3D cell model that allowed us to analyze the influence of 3D 

architecture in PDT outcome. 

 

(2) To develop a 3D cell model that allowed us to analyze the influence of extracellular 

matrix (ECM) signaling motifs in PDT outcome. 

 

(3) To develop a 3D cell model that allowed us to analyze the influence of the crosstalk 

between cancer and stromal cells (fibroblasts) in PDT outcome.  
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4.3 RESULTS AND DISCUSSION 

4.3.1 DEVELOPMENT OF 3D CELL MODELS FOR DRUG TESTING 

Different three-dimensional (3D) cell models with increasing levels of biological 

complexity were developed. The main purpose was to analyze how cells respond to changes in 

microenvironmental signaling and isolate the effects of specific extracellular matrix (ECM) 

properties and stromal cells on therapy testing.  

 

The first model was based on culturing human normal dermal fibroblasts (hNDF) in the 

self-assembling peptide RAD16-I. This hydrogel provided a non-instructive and defined milieu to 

cells, allowing us to study the influence of 3D architecture in photodynamic therapy (PDT) 

outcome. Fibroblasts were selected as cell source since one of the main therapeutic targets for 

PDT are skin afflictions, such as non-melanoma skin cancer, actinic keratosis, keloid disease, 

psoriasis, acne or rosacea42,43. Moreover, they are the major constituents of tumor stroma, being 

a 3D model that can be further used to examine the effects of co-cultures with cancer cells41.  

 

 Cell morphology and organization in the 3D cultures were characterized. In particular, 

nuclei and actin microfilaments of the cytoskeleton were stained with DAPI (blue) and 

Phalloidin-TRITC (yellow, pseudo-color) dyes respectively (Figure 4.5).  

 

 

 

Figure 4.5. Fibroblasts morphology and organization in a 3D environment. Fibroblasts were grown in the synthetic 
self-assembling RAD16-I. After 5-day culture, samples were fixed and stained for actin microfilaments (phalloidin, 
pseudo-colored in yellow) and nuclei (DAPI, blue). These fluorescent images correspond to different optical sections 
of the same 3D culture, revealing a dense and intricate cellular network. Scale bar of 50 µm. 

 

Fibroblasts embedded in the 3D milieu spread and adopted an in vivo-like lengthened 

shape. Furthermore, they established many intercellular contacts. At the edge of the construct, 

they oriented in the same direction (first image) suggesting a self-organization process. This 

cellular elongation and network formation was developed due to the permissive 
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microenvironment provided by RAD16-I hydrogel, which is characterized by having non-covalent 

interaction between its nanofibers.  

 

Further morphological evaluation was performed through field emission gun scanning 

electron microscopy (FEG-SEM). Optical sections of different structural parts of the 3D cultures 

were taken (internal core, surface and edge) as revealed in Figure 4.6 

 

 

 

Figure 4.6. FEG-SEM analysis of 3D cultures. Optical sections of different locations in the same 3D culture are shown: 
internal core (A-B), surface (C-D) and edge (E-F). FEG-SEM images revealed cell morphology and organization 
complementary to immunofluorescence microscopy. Scale bar is indicated in the images.    

 

FEG-SEM images also showed a continuous and intricate cellular network along different 

regions of the 3D culture. A cohesive layer of elongated and highly oriented cells was observed 

at both the surface and the edge, being in agreement with fluorescence microscopy. Close-up 

of FEG-SEM images showed the development of membrane protrusions (i.e. filopodia) and 

fenestrations (image B, D and F) between cell-cell and cell-matrix that were responsible for the 

establishment of a communication continuum.  
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Cell viability was analyzed through a qualitative assay based on the use of Calcein-AM 

(green) and Ethidium homodimer-1 (red) dyes that stained live and dead cells respectively. 

Figure 4.7 shows different optical sections and their corresponding 3D reconstruction obtained 

in a pseudo-confocal microscope: 

 

 

 

Figure 4.7. Cell viability of 3D cultures. (A-B) Individual optical sections were taken at different magnitudes. (C) At 
macroscopic level, the morphologic assessment of 3D cultures was performed through a stereoscopic microscope. 
(D) Next, the 3D reconstruction of viability images was performed. Scales bars of (A) 200 µm, (B) 50 µm and (C) 2mm.   

 

Fibroblasts remained alive during all culture period. The resulting geometry of the 3D 

model was a disk of approximately 5 mm diameter by 0.5 mm thickness, relevant dimensions 

for being subjected to oxygen and drug limitations since oxygen diffusion limit is approximately 

200 µm24. Next, photosensitizer (PS) and oxygen gradients were precisely characterized in this 

3D culture and correlated with the architecture of the scaffold. 
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4.3.2 DRUG AND OXYGEN GRADIENTS IN 3D CELL MODELS 

4.3.2.1 Efficiency of Drug Uptake   

2D cultures are characterized by uniformly rich nutrition and oxygenation, while tissues 

experience mass transfer effects for any soluble agent. Indeed, this situation is worsened in 

tissues originated from abnormal cellular proliferation (PDT main therapeutic targets) as they 

have a primitive vascular network that causes an inefficient delivery of oxygen and drugs. Thus, 

3D cultures were designed to mimic these diffusion limitations occurring in vivo.  

 

TMPyP was the selected PS since it is water soluble and both fluorescent and 

phosphorescent, essential characteristics to study mass transport phenomena. The extent of 

TMPyP uptake was analyzed through fluorescence spectroscopy of cellular lysates at different 

incubation times ranging from 30 minutes to 48 hours. Experiments were performed with two 

different concentrations of TMPyP (Figure 4.8). 

 

 

 
 

Figure 4.8. Photosensitizer uptake profile through fluorescence spectroscopy. 2D and 3D cultures were incubated 
with 10 and 100 µM of TMPyP at different times. The extent of TMPyP uptake was determined through fluorescence 
emission normalized with protein content. Error bars are standard deviation. **p<0.01 and ***p<0.001. (N=2, n=6) 
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Both concentrations showed the same kinetics profile of TMPyP cellular uptake. It was 

characterized by a significantly lower drug uptake in cells growing in 3D cultures relative to 2D 

ones. As a result, a question was raised: Do cells internalized less drug or fewer cells participated 

in the process? To address this issue, 3D cultures were incubated with TMPyP, digested to obtain 

intact cells and then flow cytometry was performed. This assay allowed us to assess the drug 

content in each individual cell (Figure 4.9). 

 

 

 

Figure 4.9. Photosensitizer uptake profile through flow cytometry. (A) The individual cellular content of TMPyP PS 
was evaluated by flow cytometry: TMPyP-positive cells (red) and -negative cells (green). (B) Data from flow cytometry 
was quantified. Drug incorporation and mean fluorescence in 3D cultures were analyzed and plotted as percentages 
relative to 2D cultures. Total TMPyP uptake was also expressed as percentage number of positive cells multiplied by 
their mean fluorescence. Error bars correspond to standard deviation. **p<0.01 and ***p<0.001. (N=3, n=9). 

 

Interestingly, only 60% of fibroblasts incorporated TMPyP molecules in 3D cultures 

versus 100% in 2D cultures. Moreover, the amount of TMPyP in those cells was 40% lower. 

Therefore, the decrease in drug uptake was related to the sum of two effects: fewer cells 

internalized drug and from these less amount of drug was detected.  

 

Then, the subcellular location of the PS in 2D and 3D cultures was studied by confocal 

fluorescence microscopy. In particular, TMPyP showed intrinsic fluorescence at 650 nm (green, 

pseudo-colored) and cell nuclei were stained with Hoechst dye (blue) (Figure 4.10).  

 



3D models for photodynamic therapy 

 

99 

 

Figure 4.10. Confocal microscopy of TMPyP location in 3D cultures. Images were registered after TMPyP incubation, 
both before and after irradiation. They correspond to the overlay of TMPyP fluorescence signal (green, pseudo-
colored) and nuclei staining (blue). All experiments were performed with 100 mM TMPyP. Scale bars of 20 µm. 

 

In both cultures, TMPyP initially localized in cytoplasmic vacuoles and re-localized in the 

nucleus after irradiation. This behavior was consistent with literature reports44 and was further 

confirmed by time-resolved fluorescence measurements (see below section 4.3.4 MECHANISITC 

INSIGHTS INTO PHOTODYNAMIC THERAPY). On the other hand, the fluorescence signal intensity 

was lower in 3D, in agreement with flow cytometry and cell uptake results. Next, oxygen 

availability was studied.  

 

 

 

4.3.2.2 Efficiency of Oxygen Diffusion 

The cellular response to PDT is also governed by oxygen diffusion. Oxygen level within 

the 3D culture was characterized by the expression of two hypoxia-responsive genes through 

real-time RT-PCR. Specifically, vascular endothelial growth factor-A (VEGF-A) and insulin-like 

growth factor-binding protein 3 (IGFBP3) were selected (Figure 4.11).  
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Figure 4.11. Oxygen availability in 3D cultures. Expression levels of two oxygen-responsive genes was determined 
through real-time RT-PCR. Quantification is reported as fold increase (ΔΔCt) relative to 2D cultures. Error bars are 
standard deviation. ***p<0.001, (N=2, n=6). 

 

Cells grown in 3D cultures upregulated the expression of both hypoxia markers. The 

mRNA fold induction increased by a factor of 2–4 relative to 2D cultures, reaching similar levels 

than tissues exposed to systemic hypoxia45. The situation would be aggravated during PDT 

treatments due to oxygen consumption.  

 

Therefore, 3D cultures could recreate mass transport limitations occurring in vivo, 

distancing from the artificial situation of rich oxygenation and nutrition present in 2D cultures. 

Hypoxic and TMPyP-free cells were probably buried in the inner part of the scaffold. Finally, 

photosensitization experiments were performed to determine the effect of limited oxygen and 

TMPyP diffusion on PDT response. 

 

 

 

4.3.3 CELL RESPONSE TO PHOTODYNAMIC THERAPY 

Photosensitization experiments were performed in 2D and 3D cultures under the same 

conditions of drug incubation and light irradiation. Oxygen and TMPyP mass transport effects 

were further decoupled by circulating an oxygen stream during irradiation. Cell viability was 

assessed by MTT assay 24h after PDT treatment. None experimental condition was cytotoxic 

without irradiation, yielding a survival cell fraction higher than 85%. (Figure 4.12). 
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Figure 4.12. Effect of photodynamic therapy in 3D cultures. (A) Cells were subjected to PDT, working with different 
TMPyP concentrations and light doses. The resulting cellular viability was assessed by MTT assay and compared 
between both culture models to study the effect of drug and oxygen gradient (N= 3, n =9). (B) MTT assay showed the 
survival pattern in 3D cultures. (C) Oxygen gradient was decoupled from drug gradient by circulating an oxygen 
stream. Error bars are standard deviation. *p< 0.05, **p <0.01, ***p <0.001. 

 

Cells responded differently to PDT depending on their microenvironment. 3D cultures 

were more resistant to photosensitizing reactions, being consistent with previous reports28,37. 

They exhibited a radial survival pattern in which the core of the culture maintained a larger 

percentage of living cells. Oxygen and TMPyP mass transport effects were further decoupled by 

circulating an oxygen stream during irradiation. Complete cell death was observed under 

conditions in which cell viability had been 80% in the absence of gas flow. This data indicated 

that the high cellular survival observed under static conditions was due to low oxygen 

concentration in the core of the culture, which limited cytotoxic action of therapy.  

 

Therefore, total death was only observed using a 20-fold higher TMPyP concentration 

or maintaining a continuous flow of oxygen during PDT treatments, despite the demonstrated 

presence of free-drug and/or hypoxic cells that could not undergo photosensitization. This 

apparent paradox encouraged us to formulate the hypothesis of a death-signaling cascade that 

could be triggered to break the protective microenvironment created by oxygen and drug 

limitations, inducing neighboring cell death46. These results needed further in-depth studies to 

determine the nature of these phenomena. Whenever this protective barrier was not exceeded, 

3D cultures yielded a heterogeneous population of cells in which a niche more resistant to PDT 

was localized in the core of the construct. Thus, this 3D cell model aptly reproduced one of the 

most important factors compromising the efficacy of PDT in clinical practice: mass transfer 

limitations. Moreover, it enabled us to address mechanistic studies concerning mode of action 

of PDT due to its capacity of cellular imaging.  
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4.3.4 MECHANISITC INSIGHTS INTO PHOTODYNAMIC THERAPY 

Spectroscopic and photophysic measurements were performed to elucidate whether 

mass transfer limitations affected the intrinsic mechanism of action of PDT. First of all, 

normalized steady-state and time-resolved fluorescence emission spectra of TMPyP provided 

direct evidence about drug microenvironment and accessibility to oxygen. Secondly, time-

resolved phosphorescence of singlet oxygen (1O2) centered at 1275 nm monitored the 

production and fate of this reactive oxygen species (ROS) within the cell, offering a powerful tool 

for studying oxygen-cell interactions47 (Figure 4.13). 

 

 

 

 

Figure 4.13. TMPyP and singlet oxygen measurements. (A) Normalized steady-state and (B) time-resolved 
fluorescence emission spectra of TMPyP (N= 5, n =10). (C) Time-resolved singlet oxygen phosphorescence at 1275 nm 
(N= 5, n =10). Data was obtained working with three different conditions: RAD16-I scaffold without cells, 2D cultures 
and 3D cultures. Spectroscopic and photophysic experiments performed with Dr.María García (group of Dr. Santi 
Nonell from IQS School of Engineering). This figure is also shown in her thesis. 
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The fluorescence emission spectra of TMPyP in 2D and 3D cultures showed two well-

resolved bands in contrast to the structure-less broad band typically observed in water and 

RAD16-I self-assembling hydrogel. These results indicated that TMPyP was internalized by cells 

in both types of culture and was hardly retained by the nanofibers. The fact that the lifetime was 

slightly longer in RAD16-I scaffold than the typical value obtained in buffered solution (4.6 ns) 

would indicate that TMPyP was partially attracted by the negative charges of RAD16-I peptide 

sequence, restraining the rotation and vibration of the molecules. Secondly, TMPyP showed a 

multiexponential decay kinetics in 2D and 3D cultures (lifetime 1.5, 5.7 and 12 ns) as opposed to 

the monoexponential decay in RAD16-I aqueous-like environments (lifetime 5 ns). These results 

further confirmed drug internalization in multiple subcellular sites, mainly nuclear DNA48,49 and 

lysosomes50 consistently with literature data and microscope results.  

 

Regarding ROS, time-resolved phosphorescence at 1245 nm unambiguously 

demonstrated the production of cytotoxic 1O2 upon excitation of TMPyP in 2D and 3D cultures. 

This was the first experimental observation of 1O2 phosphorescence in a 3D culture. As in the 

case of TMPyP, a biexponential behavior was found in both types of culture in contrast to the 

monoexponential decay obtained for RAD16-I scaffold.  

 

Next, TMPyP triplet and 1O2 lifetimes were quantified through time-resolved 

phosphorescence.  In addition to water, spectroscopic measurements were performed in the 

presence of deuterated solvents (D2O) and bovine serum albumin (BSA). D2O has the capacity to 

increase 1O2 lifetime. On the other hand, BSA is an efficient extracellular 1O2 quencher since it 

cannot penetrate cell membranes. A summary of lifetimes is given in Figure 4.14. 

 

 

 

 

Figure 4.14. Triplet state kinetics from phosphorescence measurements. (A) TMPyP triplet state and (B) singlet 
oxygen lifetimes were registered in H2O, D2O and D2O with 0.77 mM BSA in three different experimental conditions: 
RAD16-I scaffold without cells, 2D cultures and 3D cultures (N= 5, n =10). Error bars are standard deviation. 
Spectroscopic and photophysic experiments performed with Dr.María García (group of Dr. Santi Nonell from IQS 
School of Engineering). This figure is also shown in her thesis.  
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TMPyP triplet state showed two lifetimes (τ1 and τ2). Based on literature data, the longer 

lifetime was assigned to molecules bound to nuclear DNA50, being indicative of poor oxygen 

accessibility to TMPyP. The shorter lifetime was assigned to molecules in the lysosomes. 

Interestingly, lysosomal population had a longer lifetime in 3D cultures than in 2D ones, 

suggesting that TMPyP was less accessible to oxygen and produced ROS with lower efficiency. 

These findings were consistent with the different cellular response to PDT observed between 

both culture types and the enhancing effect of the oxygen stream on cell death.  

 

On the other hand, the kinetics of 1O2 decay reflected the localization, mobility and 

reactivity of this ROS. Advantage was taken of the well-known deuterium isotope effect on 1O2 

lifetime (tΔ) to reveal differences in its kinetics between both culture types. The higher tΔ value 

was obtained for RAD16-I scaffold, which ruled out any significant quenching effect by the 

nanofiber peptide. tΔ in 3D cultures was lower than in 2D ones, being assigned to 1O2 quenching 

effect by the secreted ECM proteins. These results were confirmed by externally adding proteins 

as BSA. In the presence of this extracellular quencher, 1O2 lifetime decreased further down. 

Taken together, these results indicated that major differences between 2D and 3D cultures came 

from dynamic mass transfer effects rather than intrinsic PDT mechanism of action.  

 

 

 

4.3.5 INCREASING BIOLOGICAL COMPLEXITY TO 3D CELL MODELS 

The non-instructive and defined milieu of RAD16-I scaffold demonstrated that 3D 

architecture compromised PDT efficacy due to the establishment of molecular gradients without 

altering therapy mechanism. The second step consisted in increasing the level of complexity of 

3D cultures in order to analyze the role of other extracellular signals in drug screening processes. 

In particular, different chemical cues were sequentially investigated: (i) ECM binding sequences 

through collagen scaffolds (i.e. integrin recognition sites and proteolytic degrading sites) and (ii) 

paracrine factors through co-cultures between fibroblasts and cancer cells. The selected cancer 

cells were human cervical adenocarcinoma cells (HeLa) because they have been extensively used 

for pre-clinical research in PDT18,20,21,51. 

 

Therefore, six different cell models were developed: (i) fibroblasts in RAD16-I scaffolds, 

(ii) fibroblasts in collagen scaffolds, (iii) cancer cells in RAD16-I scaffolds, (iv) cancer cells in 

collagen scaffolds, (v) co-cultures of cancer cells and fibroblasts in RAD16-I scaffolds and (vi) co-

cultures of cancer cells and fibroblasts in collagen scaffolds (Table 4.1). Data gathered from 

these experiments could help us to optimize a suitable model for drug screening processes in 

PDT, balancing between cell complexity and analysis simplicity.  
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 Fibroblasts Cancer cells 

RAD16-I X  

RAD16-I  X 

RAD16-I X X 

Collagen X  

Collagen  X 

Collagen X X 

Table 4.1. 3D cell models with increasing levels of biological complexity. 

 

 

Individual cell models of cancer cells and fibroblasts were previously described and 

characterized (section 3.3.3 CELL PHENOTYPE AND PLASTICITY IN 3D CANCER MODELS and 

section 4.3.1 DEVELOPMENT OF 3D CELL MODELS FOR DRUG TESTING). They allowed us to study 

the influence of environmental cues on cell phenotype. In this particular section, research was 

focused on the morphological assessment of co-cultures. Nuclei and actin microfilaments of the 

cytoskeleton were stained with DAPI (blue) and Phalloidin-TRITC (yellow pseudo-color) dyes 

respectively. Cell populations were distinguished through Green Fluorescent Protein (GFP, red 

pseudo-colored) (Figure 4.15). 

 

 

 

Figure 4.15. Morphological assessment of fibroblast and cancer cells co-cultures in RAD16-I scaffold. (A) Cancer 
cells, (B) fibroblasts labelled with green fluorescent protein (GFP, pseudo-colored in red) and (C-D) co-cultures of 
cancer cells and fibroblasts. After 5-day culture, samples were stained for actin microfilaments (phalloidin, pseudo-
colored in yellow) and nuclei (DAPI, blue). Scale bar of 50 µm.  
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In 2D cultures, cancer cells exhibited epithelial features: polygonal shape, actin filaments 

assembled in cortical thin bundles and growth pattern of spheroid clusters. The culture in a 3D 

microenvironment promoted some of the morphological changes that accompanied epithelial-

mesenchymal transition (EMT). In particular, cancer cells showed a more spindle-shape 

phenotype and stress fibers were located intercrossing the cell extent. All these changes were 

more pronounced in collagen scaffold (images not shown, see section 3.3.3 CELL PHENOTYPE 

AND PLASTICITY IN 3D CANCER MODELS) than RAD16-I scaffold.   

 

Fibroblasts were labelled with green fluorescent protein (GFP) in order to distinguish 

different cell populations during co-culture experiments. They elongated and showed a 

characteristic spindle-shape phenotype. Moreover, they created a continuous cellular network 

that promoted cell-cell and cell-ECM interactions (section 4.3.1 DEVELOPMENT OF 3D CELL 

MODELS FOR DRUG TESTING).  

 

Finally, co-cultures were examined. The presence of fibroblasts induced the scattering 

of cancer cells, detaching them from clusters. Indeed, cancer cells seemed to move along 

fibroblasts network52. Therefore, the crosstalk between both cell populations could enhance the 

perturbation of epithelial pattern and the recapitulation of some morphogenetic steps of EMT 

program. Conversely, fibroblasts did not suffer any phenotypic changes after culturing them 

with cancer cells. Significant morphological differences in co-cultures between collagen and 

RAD16-I scaffolds were not observed (data not shown).  

 

PDT experiments were performed in these different cell models and key parameters as 

drug uptake and therapy cytotoxicity were evaluated. Obtained results were correlated with the 

different environmental signals that cells received as observed during morphological 

assessment.   

 

 

 

4.3.6 PHOTODYNAMIC THERAPY TO DIFFERENT 3D CELL MODELS 

4.3.6.1 Photosensitizer Uptake and PDT Cytotoxicity: Influence of ECM Binding Motifs 

All experiments were performed with two synergic PSs: the liposomal Zinc(II)-

phthalocyanine (ZnPc) and the cationic 5,10,15,20-tetrakis(N-methyl-4-pyridilium)-21H, 23H-

porphine (TMPyP). This specific PDT treatment was previously studied in 2D cultures of 

established cancer cell lines (human and murine)53 and mice models (C57BL/6 mice)54. 

Therefore, data obtained from 3D cultures could be compared to traditional models in order to 

optimize a 3D platform for drug screening processes.  

 

First, the extent of PSs uptake was examined in RAD16-I and collagen cultures. Samples 

were incubated with TMPyP and/or ZnPc and flow cytometry was performed (Figure 4.16). 
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Figure 4.16. Photosensitizer uptake profile in RAD16-I and collagen cultures. Individual cellular content of TMPyP 
and ZnPc PSs was evaluated by (A)  flow cytometry and (B) quantified in different 3D cell models (N=2, n=6). Error 
bars are standard deviation. ***p<0.001. Uptake experiments were performed with Dr.Pilar Acedo (group of Dr. 
Ángeles Villanueva from Universidad Autónoma de Madrid). This figure is also shown in her thesis. 

 

Interestingly, less than 6% of cell population was capable of internalizing TMPyP 

molecules. These results belonged to all experimental cases, independently of cell type, scaffold 

or drug formulation. This low percentage differed from previous results related to TMPyP 

(section 4.3.2.1 Efficiency of Drug Uptake) because the initial drug concentration was not 100 

µM. Instead, it was 3·10-3 µM, conditions used for synergic experiments in 2D cultures and mice 

models54. On the other hand, ZnPc penetrated 3D cultures more efficiently. In collagen, this drug 

reached all the target cellular population. In RAD16-I, 60% of cells internalized synergic ZnPc 

whereas only 20-30% internalized individual ZnPc. There were no significant differences in 

uptake results between cultures of cancer cells and fibroblasts. 

 

3D cultures evidenced the difference in cellular internalization between TMPyP (free 

drug) and ZnPc (liposomal drug), demonstrating the efficacy of nanocarriers to increase local 

drug concentration. The major advantage of liposomes could come from the activation of 
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receptor-mediated endocytosis as an active target transport, in contrast to the passive 

membrane diffusion that free drugs experiment. In particular, ZnPc is encapsulated in 

POPC/OOPS liposomes, which provide a vehicle for the direct transfer of PSs to lipoprotein 

receptors according to literature55,56. This approach could also allow PSs to bypass the activity of 

drug resistance transporters that actively pump drugs out of the cells by means of being 

protected within an endosome57,58.  

 

RAD16-I and collagen scaffolds showed the same 3D architecture, guarantying the 

establishment of similar molecular gradients. This property is essential when working with free 

drugs whose mechanism of transport is passive diffusion. However, RAD16-I and collagen 

scaffolds did not have the same molecular composition.  RAD16-I scaffold provided a non-

instructive microenvironment for cells while collagen scaffold had a wide range of ECM binding 

motifs (mainly integrin-recognition sites) that mediated crucial transduction cascades for tumor 

progression. Results suggested that collagen upregulated the expression of lipoprotein 

receptors, causing an increase in PSs intracellular concentration. This regulation was reflected 

when working with nanocarriers as vehicle drugs, since they promoted a receptor-mediated 

endocytosis. More research would be necessary to corroborate this working hypothesis. For 

instance, the functionalization of RAD16-I with integrin recognition sites could be performed. 

 

Finally, the synergistic potential of TMPyP and ZnPc-combined therapy was reflected 

through increased uptake in RAD16-I, compared with the individual ZnPc. POPC/OOPS liposomes 

were negatively charged and we hypothesized that could develop electrostatic repulsion with 

the negative nanofibers of RAD16-I and collagen biomaterials. Then, cationic TMPyP molecules 

could bind to the liposomal formulation, blocking their unspecific repulsion with nanofibers and 

enhancing their transport. Indeed, previous spectroscopic mechanistic measurements indicated 

the attraction between TMPyP molecules and RAD16-I scaffold (see section 4.3.4 MECHANISITC 

INSIGHTS INTO PHOTODYNAMIC THERAPY).  

 

TMPyP- and ZnPc-mediated photosensitization experiments were performed to 

determine the effects of 3D models on PDT response. In particular, results gave insight on the 

influence of ECM binding motifs on therapy efficacy. Conditions of drug incubation and light 

irradiation were the same than 2D cultures (termed in vitro conditions)53 and mice (termed in 

vivo conditions)54. Cellular viability was assessed by flow cytometry and MTT assay 24 hours after 

treatment (Figure 4.17). 
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Figure 4.17. Effect of photodynamic therapy in RAD16-I and collagen scaffolds. (A) Cellular viability was assessed by 
MTT assay and flow cytometry. Conditions of drug incubation and light irradiation were the same than 2D cultures 
(termed in vitro conditions) and mice (termed in vivo conditions) (N=2, n=6). (B) MTT assay showed the survival 
pattern in 3D cultures. Error bars are standard deviation. ***p<0.001. Cellular viability experiments were performed 
with Dr.Pilar Acedo (group of Dr. Ángeles Villanueva from Universidad Autónoma de Madrid). This figure is also shown 
in her thesis. 

 

The PSs concentration and light irradiation used in 2D cultures (in vitro termed 

conditions) did not induce significant cell death in neither collagen nor RAD16-I scaffolds. 

Conversely, experimental conditions optimized for mice (in vivo termed conditions) showed 

percentages of approximately 75% of cell death. Therefore, data suggested that 3D cultures 

could bridge the gap between 2D cultures and animal models in drug screening. 

 

Results obtained for in vivo photosensitization experiments were deeply studied. As 

expected, TMPyP did not induce cell death individually. Uptake experiments revealed that this 

drug was not internalized by target cells. Then, the effect of individual ZnPc was analyzed. Cell 

death was not observed in RAD16-I scaffold, in contrast to collagen scaffold that showed 

percentages of approximately 60% of cell death. The increased efficiency of ZnPc-

photosensitization experiments detected in collagen scaffold correlated with uptake 

experiments, in which all cell population internalized the drug. The difference between RAD16-

I and collagen scaffolds could be explained through the regulation of lipoprotein-receptor 

expression that could modulate the cellular uptake of PSs. Finally, the effect of the synergic was 

assessed. The combination of drugs significantly potentiated their individual effect in both 

scaffolds, obtaining a cellular death of approximately 75%. Two main hypotheses could explain 
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this data: the different location of PSs within the 3D culture and/or the enhanced internalization 

of ZnPc in the synergic formulation. As demonstrated in uptake experiments, TMPyP could not 

enter the cell, generating 1O2 in the extracellular milieu whereas ZnPc effect was intracellular. 

Therefore, the combination of both PSs could damage the target cells together with the 

protective microenvironment. Second, TMPyP molecules could enhance the receptor-mediated 

endocytosis of liposomal ZnPc by blocking its repulsion with the nanofibers from both scaffolds. 

 

Importantly, both scaffolds predicted a similar cell response to PDT when drugs 

intracellular concentration was higher than a certain threshold value. PDT is based on the 

generation of ROS that cause an acute stress response through the photo-oxidation of proteins 

and unsaturated lipids. Therefore, this therapy triggers an unspecific cell damage without 

affecting specific signaling cascades modulated by the microenvironment. Difference in 

molecular composition between RAD16-I and collagen type I was only evident for uptake 

experiments when drug was vehicle with nanocarriers for active transport. 

 

 

 

4.3.6.2 PDT Uptake and Cytotoxicity: Influence of Co-cultures Crosstalk 

Next step consisted in studying the influence of the crosstalk between cancer cells and 

fibroblasts on PDT response. In particular, results gave insight on the contribution of paracrine 

signaling on therapy efficacy.  Conditions of drug incubation and light irradiation were the same 

than 2D cultures (termed in vitro conditions)53 and mice (termed in vivo conditions)54. Cellular 

viability was assessed by flow cytometry and MTT assay 24 hours after treatment in terms of 

drugs uptake and cytotoxicity (Figure 4.18). 

 

 

 

Figure 4.18. Photosensitizer uptake and PDT cytotoxicity in co-cultures. (A) The content of TMPyP and ZnPc in co-
cultures was evaluated by flow cytometry and compared to individual cell cultures (N=2, n=6). (B) Co-cultures were 
subjected to PDT with the conditions shown in Table 2.7. and cellular viability was assessed by flow cytometry and 
MTT. Obtained results were compared to individual cell cultures (N=2, n=6). Error bars are standard deviation. 
***p<0.001. Uptake and cellular viability experiments were performed with Dr.Pilar Acedo (group of Dr. Ángeles 
Villanueva from Universidad Autónoma de Madrid). This figure is also shown in her thesis. 
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Co-cultures did not affect drug uptake (data related to TMPyP is not shown). Regarding 

cytotoxic experiments, the only difference in therapy efficacy was observed when fibroblasts 

were co-cultured with cancer cells in collagen scaffolds, being more resistant than individual 

ones. These findings reinforced the contribution of ECM binding motifs on the modulation of 

tumor signaling cascades, which could induce a more aggressive cell phenotype. Consequently, 

cancer cells could have greater capacity to stimulate the transformation of fibroblasts into 

cancer-associated fibroblasts through paracrine signaling. These results gave insight on the 

importance of targeting the microenvironment during cancer treatments. 

 

Co-culture models were performed using normal fibroblasts instead of cancer-

associated fibroblasts (CAFs) or interface zone fibroblast (INFs). Under the same experimental 

conditions, CAFs and INFs have a greater capacity than NFs to interact with cancer cells, 

reciprocally modulating their behavior60.  
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4.4 CONCLUDING REMARKS  

Photodynamic therapy (PDT) is a clinically approved procedure for the treatment of 

diseases characterized by uncontrolled cell proliferation, mainly cancer. It causes a selective 

cytotoxic activity towards cancer cells by the combined effect of three components: a 

photosensitizer (PS), light and oxygen. PDT overcomes two relevant drawbacks of conventional 

chemotherapy and radiotherapy by inducing low levels of cellular resistance and stimulating 

host immune response. However, PSs show low selectivity and efficacy, requiring the design and 

synthesis of new agents1. Drug screening processes have traditionally depended on two-

dimensional (2D) cultures, which do not properly recreate the target tissue and impair 

biomedical data22.  

 

The main objective of the present chapter was the development and characterization of 

three-dimensional (3D) models with increasing levels of biological complexity in order to analyze 

the contribution of specific environmental signals on PDT-mediated cell response. In particular, 

3D cultures were based on cervical cancer cells and fibroblasts grown within the synthetic self-

assembling peptide RAD16-I and the natural collagen type I.  

 

Cellular phenotype in 3D cultures was carefully studied. In comparison to 2D cultures, 

cervival cancer cells grown in collagen and RAD16-I scaffolds exhibited a more spindle-shape 

morphology and cytoskeleton filaments intercrossed cell extent rather than being aligned along 

cell membrane. All these distinguishing features conferred a more mesenchymal-like 

phenotype. On the other hand, fibroblasts had an in vivo-lengthen morphology and created an 

intricate cell network that promoted cell-cell and cell-extracellular matrix (ECM) interactions in 

the 3D context provided by RAD16-I and collagen scaffolds. Finally, co-cultures between cervical 

cancer cells and fibroblasts caused the scattering of cancer cells, detaching them from clusters 

and promoting their presence along fibroblast network. Therefore, co-cultures exacerbated the 

epithelial to mesenchymal transition of cancer cells.   

 

 First, the influence of 3D architecture was studied through synthetic scaffolds (RAD16-

I) that provided a non-instructive and defined milieu. Results demonstrated that oxygen and 

drugs were not able to diffuse along all the 3D culture, establishing molecular gradients and 

developing a protective microenvironment. Total cell death was only observed using a 20-fold 

higher photosensitizer (PS) concentration or maintaining a continuous flow of oxygen relative 

to 2D cultures. Therefore, 3D cultures could reproduce the existence of a heterogeneous cell 

population with resistant cancer cells located within the core of the culture, which explained 

PDT inefficacy in clinical practice. At mechanistic level, the production and decay of cytotoxic 

singlet oxygen was observed in a 3D culture for the first time. Significantly, the mechanism of 

action of the therapy was maintained between 2D and 3D cultures, revealing that mass transfer 

effects accounted for major differences in PDT outcome. All data suggested that introduction of 

three-dimensionality in drug screening processes was required for obtaining valuable 

biomedical data. 
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  Next step consisted in analyzing the contribution of ECM binding motifs on PDT response 

through natural scaffolds (collagen) compared to synthetic ones (RAD16-I). Collagen is the major 

component of tumor microenvironment and has a wide range of integrin- and 

metalloproteinases- recognition sequences that can drive disease progression through the 

regulation of signaling pathways. For instance, integrins act as communication channels 

between extracellular matrix (ECM) and cellular cytoplasm, transducing mechanical and 

chemical cues. Results suggested that ECM signaling could mainly affect drug uptake processes 

when they were regulated by active transport mechanisms such as liposomes-mediated 

endocytosis. Consequently, cellular viability experiments were simultaneously affected in these 

cases. However, when the predicted uptake values were similar, the obtained PDT cytotoxic 

activity was the same between RAD16-I and collagen scaffolds. This finding could be explained 

because PDT is based on an acute and general stress cellular effect and it is not directed to 

specific signaling pathways. Indeed, data indicated that the introduction of ECM binding motifs 

was required for mimicking cell processes that depended on signaling cascades regulated by 

tumor microenvironment such as active transport mechanisms.  

 

Finally, the crosstalk between different cell populations (cancer cells and fibroblasts) 

was evaluated. Results suggested that cancer cells induced the transformation of fibroblasts 

through paracrine signaling, making them more resistant to PDT. This effect was exclusively 

observed in collagen scaffolds, reinforcing the role of ECM adhesion motifs in tumor cascades. 

However, co-culture models were performed using normal fibroblasts instead of cancer-

associated fibroblasts (CAFs) or interface zone fibroblast (INFs). Publications have reported that 

CAFs and INFs have a greater capacity to interact with cancer cells, reciprocally modulating their 

phenotype60. Therefore, more research should be focused in this direction.  
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5.1 BACKGROUND 

5.1.1 CANCER THERAPEUTICS AND RESISTANCE 

Chemotherapeutic agents are designed to inhibit specific hallmark capabilities of cancer 

cells. In particular, they are directed towards cancer signaling pathways, including abnormal 

proliferation, evasion from growth suppressors, resistance to cell death, replicative immortality, 

angiogenesis or metastasis1 (Figure 5.1). However, most patients show inefficient clinical 

response accompanied by almost-inevitable relapses. This outcome can be explained though 

drug resistance phenomena. 

 

 

 

Figure 5.1. Therapeutic targets for cancer research. The diversity and complexity of cancer is rationalized by 
organizing this disease in different biological capabilities, including sustained proliferative signaling, growth 
suppressors evasion, cell death resistance, immortal replication, angiogenesis induction and invasion and metastasis 
activation. Different drug candidates are designed to interfere with these specific capabilities, as exemplified with 
telomerase inhibitors, cyclin-dependent kinase inhibitors and vascular endothelial growth factor (VEGF) signaling 
inhibitors. From Hanahan et al.1 

 

Research on drug resistance is commonly performed at the intracellular level. Cells are 

exposed to chemotherapeutic agents and the survival clones are selected in order to identify 

the altered genes by molecular biology techniques2,3. These studies reveal the existence of three 

major mechanisms that account for drug resistance: (i) decrease in water-soluble drugs uptake 

through modulation of transporters expression; (ii) increase in energy-dependent efflux of 

hydrophobic drugs that can easily enter the cells by diffusion through the plasma membrane 

and (iii) changes in intracellular signaling pathways that affect the potential of drugs to kill cells, 

including the activation of DNA repair, the reduction of apoptosis, the alteration of drug 

metabolism and detoxification2,4.   
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The most used cellular strategy to evade drugs is the increased efflux of a broad class of 

hydrophobic agents. This action is mediated through a family of energy-dependent transporters 

known as adenosine triphosphate (ATP)-binding cassette (ABC) transporters. They are 

transmembrane proteins that use the energy of ATP hydrolysis to catalyze the translocation of 

substrates across cell membranes against a concentration gradient. Therefore, they act as 

intricate molecular pumps. The human genome contains 49 ABC genes, arranged in eight 

subfamilies based on the sequence and organization of their ATP-binding domain5 (Figure 5.2). 

 

 

 

Figure 5.2. Intracellular mechanisms of cancer drug resistance. Cells are able to evade drugs action using different 
strategies. The most important include decreased drug influx, increased drug efflux predominantly via ATP-driven 
extrusion pumps, activation of DNA repair, altered drug metabolism, secondary mutations in drug targets or/and 
activation of downstream or parallel signal transduction pathways. The discovery of these cellular mechanisms 
constitute a genome-centered model for drug resistance. From Yin et al.4 

 

5.1.1.1 Tumor Microenvironment: A Therapeutic Target 

Cancer biologists have largely disregarded the contribution of tumor microenvironment 

to drug resistance. During the 2000s, pioneering experiments by Valerie M. Weaver group 

demonstrated that extracellular signaling mediated cell adhesion and organization, modifying 

cell responsiveness to chemotherapeutics6,7. In particular, different 3D models of normal and 

cancer breast cells were resistant to cytotoxic agents were they were arranged in polarized 

structures. However, the same cells were sensitive to the treatment when their polarity was 

disrupted through anti-E-cadherin antibody (focal adhesions). Further experiments revealed 

that apoptosis resistance was activated through α6β4 integrins and nuclear factor kB (NFkB) 

transcription factor signaling (Figure 5.3)8. These data reinforced the relevance of recapitulating 

tumor milieu and cellular context during drug screening processes in order to obtain reliable 

biomedical data.  
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Figure 5.3. Cell adhesion and organization within extracellular matrix mediate drug resistance. Normal S-1 acini 
were treated with E-cadherin blocking antibody to perturb polarity. Conversely, tumorigenic T4-2 colonies were 
treated with β1-integrin blocking antibody to restore polarity. Immunofluorescence of β4 integrin (Texas Red) and 
laminin-5 (FITC) showed that polar organized S-1 and reverted T4-2 had basally localized integrins and basally secreted 
laminin in contrast with disrupted S-1 and disorganized T4-2 structures. Apoptotic labeling indices calculated for cells 
incubated with etoposide (50 µM), TNF-α (100 nM), anti-FAS antibody (2 µg/mL) or nothing (basal). Results revealed 
that polarized mammary structures were resistant to apoptosis. From Weaver et al.8 

 

As previously mentioned, tumor progression is envisioned as a plastic process due to the 

changing environmental pressures9. Cancer cells continuously release cytokines, growth factors 

and proteases that induce inflammation and a reactive tumor stroma. In parallel, stromal cells 

remodel the structure and composition of the extracellular matrix (ECM) and secret more 

paracrine signaling molecules that enhance tumor growth, impose metabolic stress and drive 

disease progression10. Therefore, cancer cells co-evolve in order to adapt to diverse structural 

and molecular ECM conditions, re-defining cell adhesion complexes, cytoskeletal dynamics and 

motility programs. Over time, these changes drive cell heterogeneity and allow them to gain 

access to different signaling pathways of the microenvironment, having multiple consequences 

on chemotherapy1,9,10.     

 

First, microenvironment provides cells with access to multiple, redundant and 

overlapping signaling pathways. In particular, the presence of different receptors available for 

cell-matrix adhesion, the divergent degree of ECM remodeling capability and the range of 

invasion-guiding framework lead to combinatorial states or possibilities that allow flexible 

modes of disease progression11,12.  
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As a result, the therapeutic inhibition of a specific pathway can trigger the activation of 

alternative and parallel mechanisms in order to reestablish the targeted biological capability1. 

For instance, breast cancers overexpress human epidermal growth factor receptor (HER)-2 in 

20% of clinical cases. Two drugs for the treatment of these tumors are the monoclonal antibody 

trastuzumab (T) and the HER2 tyrosine kinase inhibitor lapatinib (L) that inhibit this receptor. 

However, both compounds show a limited efficacy due to the development of resistance. 

Experiments demonstrate that survival cells activate a signaling pathway that drives growth 

alternatively to HER tyrosine kinase. In particular, they increase the levels of β1 integrin 

phosphorylation, which signals downstream kinases as Focal Adhesion Kinase (FAK) and Src 

kinase13.   

 

Cancer cells can also reduce their dependence on a specific biological capability and 

become dependent on another1. For instance, tumors activate invasion and local metastasis as 

a response of anti-angiogenic therapies. Thus, initial hypoxic cancer cells gain access to normal 

and pre-existing vasculature14.   

 

The second contribution of the microenvironment to drug resistance arises from the 

phenotypical and functional heterogeneity among cancer cells. The environmental differences 

within a tumor drives adaptive cellular programs as epithelial to mesenchymal transition 

(EMT)15. Recent data interrelates EMT with the emergence of dedifferentiated cells with stem 

cell (SC)-like properties1,15.  

 

Cancer SCs (CSCs) show resistance to chemotherapy due to their intrinsic properties: (i) 

quiescence; (ii) ABC-transporter expression; (iii) self-renewal retaining mutations and (iv) 

capacity to differentiate and generate the cellular heterogeneity of the originating tumors. 

Therefore, tumors are organized into a hierarchy of subpopulations harboring diverse genetic 

backgrounds5,15. CSC population have been identified in several cancer types, including 

neuroblastoma, breast cancer, lung cancer, pancreatic cancer and glioblastoma16. However, 

many questions remain unanswered concerning their origin. For instance, do CSCs arise from 

normal SCs or from adult cells that dedifferentiate to acquire the capacity for self-renewal? 

Intensive research is focused on the CSC field (Figure 5.4).  

 

The connection between EMT program, CSCs and drug resistance has been reported. 

For instance, cancer cells characterized by the expression of EMT markers and the loss of their 

epithelial phenotype are more resistant to chemotherapeutics (e.g. oxaliplatin and paclitaxel) 

than epithelial cancer cells17. 
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Figure 5.4. Models of cancer drug resistance. The presence of cancer stem cells (SCs) can explained the resistance of 
tumors to chemotherapy and radiotherapy. Cancer SCs can arise from normal SCs or normal adult cells that suffer a 
dedifferentiation process. This process has been interrelated with reminiscent developmental programs such as 
epithelial-mesenchymal transition (EMT). EMT is triggered by the evolving tumor microenvironment in order to drive 
cellular adaptation. Consequently, cells can acquire SC features as self-renewal and differentiation capacity. From 
Moitra et al.5 

 

Models of cancer drug resistance require continuous adjustments and refinements. To 

summarize, data suggests that new pharmacological agents should target multiple core hallmark 

capabilities. Moreover, they should disrupt microenvironment-guided signaling pathways to 

inhibit the EMT program and cancer SC maintenance, which means the differentiation state of 

the tumor.  

 

During the present thesis, the contribution of tumor microenvironment on drug 

resistance has been examined using tyrosine kinase inhibitors as anticancer therapeutics.  

 

 

 

5.1.2 TYROSINE KINASES INHIBITORS 

Tyrosine kinases (TKs) are enzymes that catalyze the transfer of the γ-phosphate group 

from adenosine triphosphate (ATP) to tyrosine residues of the target proteins. Phosphorylation 

of tyrosine residues modulates enzymatic activity, since it stabilizes the receptor conformation 

in an active state and creates binding sites for the recruitment of downstream signaling proteins 

(e.g. growth proteins, cytokines and hormones). Therefore, they are critical components of 

signal transduction and cellular regulation. There are two classes of TKs: non-receptor tyrosine 

kinases (NRTKs) and receptor tyrosine kinases (RTKs)18,19. 
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NRTKs, also termed cellular TKs, are located in the cytoplasm, nucleus or intracellular 

side of the plasma membrane. They are components of the signaling cascades triggered by RTKs 

or by other cell surface receptors, such as the G protein-coupled receptors and immune system 

receptors. Examples of NRTK include Src, the Janus kinases (Jaks) and Abl18,20.  

 

On the other hand, RTKs are transmembrane glycoproteins that transduce extracellular 

signals to the cytoplasm. Activation of RTKs is typically accomplished through ligand-binding to 

their extracellular domain, inducing homo/heterodimerization and auto-phosphorylation of 

tyrosine residues. RTKs mediate numerous signaling pathways within cells, leading to cell 

proliferation, differentiation, migration or metabolic changes (Figure 5.5). Of the 90 unique TK 

genes identified in the human genome, 58 encode RTKs21,19.  

 

 

 

Figure 5.5. Mechanism of action of receptor tyrosine kinases. RTKs are composed of an extracellular ligand binding 
domain, a transmembrane domain, an intracellular tyrosine kinase domain and additional amino acid sequences that 
function as regulatory domains. Ligand binding induces receptor dimerization and auto-phosphorylation, meaning 
one subunit of the dimer phosphorylates the opposite subunit. Phosphorylated tyrosines function to recruit 
intracellular signaling proteins, many via their SH2 domains. 

 

RTKs have been identified as oncogenes. During tumor progression, their 

hyperactivation leads to the continuous functioning of downstream signaling cascades that 

block cellular apoptosis, promote cellular proliferation and enhance angiogenesis. This RTKs 

dysregulation is achieved through (i) overexpression of the enzymes that increases the dynamics 

of the receptor homo/heterodimerization in the absence of the ligand; (ii) autocrine stimulation 

or (iii) activating mutations that stabilize the receptor active conformation22. Some relevant RTKs 

in the cancer field are vascular endothelial growth factor receptor (VEGFR), insulin-like growth 

factor receptor (IGFR) and fibroblast growth factor receptor (FGFR).  
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5.1.2.1 Vascular Endothelial Growth Factor Receptor 

VEGFR is a class III transmembrane protein tyrosine kinase, which possesses seven 

immunoglobulin-like (Ig) sequences in the extracellular domain and a kinase insert in the 

intracellular domain23. There are three types of VEGFR, VEGFR2 is overexpressed with a 

frequency of approximately 93% in pancreatic cancer, also known as pancreatic ductal 

adenocarcinomas (PDAC)24. VEGFR2 plays a central role in the regulation of pathologic blood 

vessel growth and maintenance. Indeed, blockade of the VEGFR2 signaling pathway by a TKI 

significantly inhibits angiogenesis and lymphatic metastasis of PDAC as shown in the pancreas 

of nude mice. It also induces a phenotypic shift from a highly malignant to a premalignant, non-

invasive tumor phenotype25,26. VEGF expression is regulated by hypoxia, an aggressive 

microenvironmental condition found in most cancer cases.  

 

 

5.1.2.2 Insulin-Like Growth Factor Receptor 

IGFR is a class II transmembrane protein tyrosine kinase, which is comprised of two 

extracellular α-subunits, ligand-binding domains and two transmembrane tyrosine kinase β-

subunits. There are two types of IGFR, IGFR1 activates intracellular signaling cascades 

responsible for cell survival, proliferation and motility: mitogen activated protein kinase (MAPK) 

and phosphoinositide-3-kinase (PI3K) pathways. As a result, its dysregulation leads to an 

abnormal cell growth27–29. Moreover, IGFR1 expression is usually associated with abundant 

stroma. These findings suggest that its signaling system might be correlated with the hallmark 

desmoplastic reaction characteristic of PDAC30.  

 

 

5.1.2.3 Fibroblast Growth Factor Receptor 

FGFR is a class V transmembrane protein tyrosine kinase. Four FGF receptor genes have 

been identified in mammals (FGFR1 to FGFR4), which comprise an extracellular domain 

composed of two or three Ig loops, a transmembrane segment and an intracellular tyrosine 

kinase. Ligand-binding specificity of the receptor is mediated by the second and third Ig-loop. 

For FGFR1-FGFR3, the third Ig loop is encoded by two exons, an invariant exon termed IIIa and 

one of two exons, termed IIIb and IIIc respectively, to which the IIIa exon is spliced (alternative 

splicing of C-terminal). This generates two receptor isoforms with quite different ligand-binding 

specificities31. A genetic linkage analysis has associated these three members of the FGFR gene 

family as the underlying cause of several diseases, including cancer32.  The isoform FGFR2(IIIb) is 

found mainly in epithelia and is activated by four known ligands, which are synthesized 

predominantly in the tissue mesenchyme. Its dysregulation correlates with increased venous 

invasion33–35. 
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5.1.2.4 Tyrosine Kinase Inhibitors  

Constitutive activation of TKs in cancer cells can be blocked by selective tyrosine kinases 

inhibitors (TKIs). Several classes of TKIs have been developed as promising cancer drugs, such as 

heat shock proteins, immunoconjugates, antisense RNAs, peptide drugs, small molecule 

inhibitors and monoclonal antibodies (mAbs), being the last two the most relevant agents. mAbs 

bind with high affinity to the extracellular domain of the RTK to avoid the binding of the ligand 

and, therefore, the activation of the intracellular signal transduction pathway.  

 

Small molecules TKIs block the phosphorylation reaction mediated by these kinases. 

They show two different mechanisms of action: (i) binding of the ATP-binding site within the 

intracellular catalytic domain of the kinase; (ii) binding outside of the ATP-binding site, modifying 

the tridimensional structure of the receptor and disrupting the interaction between the ATP and 

the kinase pocket in an allosteric manner22,36. They can target both receptor and non-receptor 

TKS. The main drawback of TKIs is that they generate cellular resistance20.   

 

In the present thesis, we have tested the effect of three small TKIs molecules based on 

the pyrido[2,3-d]pyrimidine scaffold37,38 within 3D cultures of pancreatic cancer. In particular, 

their activity was assessed by analyzing cellular viability together with the expression levels of 

the RTKs that act as therapeutic targets and are known to be deregulated in pancreatic 

cancer24,35 (Figure 5.6).   

 

  

 

Figure 5.6. Novel drug candidates for pancreatic cancer. Small molecule tyrosine kinases inhibit the phosphorylation 
of tyrosine residues and, therefore, are designed as anti-cancer drugs. An example of TKIs consists in pyrido[2,3-
d]pyrimidine scaffold. These molecules are kindly provided by Dr. José Ignacio Borrell (IQS School of Engineering). 
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5.2 HYPOTHESIS AND SPECIFIC AIMS  

The main motivation of this chapter was to study the contribution of tumor 

microenvironment on drug resistance using in vitro models of pancreatic cancer cells.  

 

Our working hypothesis was that three-dimensional (3D) cultures could allow us to study 

the ability of different extracellular cues in triggering survival strategies for cancer and stromal 

cells after drug treatment. In particular, the comparison between synthetic and natural scaffolds 

helped us to unravel the critical role of extracellular matrix (ECM)-mediated signaling pathways 

in these processes. The specific aims for this chapter were the following:  

 

 

(1) To characterize the efficacy of cancer drugs as tyrosine kinases inhibitors in 3D 

cultures. 

 

(2) To study the resistance mechanisms triggered by cancer and stromal cells 

depending on the received microenvironmental signals through 3D cultures. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 MORPHOLOGICAL ASSESSMENT OF 3D CANCER MODELS 

A major challenge in cancer research is the development of resistance to drugs as 

tyrosine kinases inhibitors (TKIs). During this project, the contribution of the microenvironment 

to this cellular program was studied through three-dimensional (3D) cultures, using different 

tissue engineering scaffolds.  

 

Pancreatic ductal adenocarcinoma cells (PANC-1) and human normal dermal fibroblasts 

(hNDF) were selected to evaluate the direct effect of TKIs to a cancer and stromal cell line 

respectively. Both models have been previously developed and characterized in detail in chapter 

3 section 3.3.3. CELL PHENOTYPE AND PLASTICITY IN 3D CANCER MODELS and chapter 4 section 

4.3.1 DEVELOPMENT OF 3D CELL MODELS FOR DRUG TESTING. Cells were encapsulated in 

collagen type I and self-assembling peptide RAD16-I. First of all, the macroscopic morphology of 

3D cultures was characterized with a stereoscopic microcope (Figure 5.7).  

 

 

 

Figure 5.7. Morphologic assessment of 3D cultures at macroscopic level. Cells were encapsulated in RAD16-I and 
collagen scaffolds. All 3D cultures should have the same dimensions to avoid differences in drug diffusion. For this 
reason, the spontaneous contraction of the cultures was mechanically blocked and the resulting geometry was a disk 
of 4 mm of diameter and 500 µm of thickness.  

 

At the macroscopic level, all 3D models should have the same dimensions since the 

efficacy of TKIs strongly depends on mass transport effects. Fibroblasts and PANC-1 cells grown 

in collagen scaffolds were able to contract these biomaterials spontaneously, diminishing their 

diameter. Cultures were performed on top of a Teflon membrane of a culture insert in order to 

block this process mechanically. In this way, the hydrogels underwent self-assembling in the 
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surface of the membrane and, therefore, they could not contract over culture time. They formed 

a dense disk with approximately 4 mm of diameter and 0.5 mm of thickness. 

 

Next, cellular morpholy and organization in 3D cultures (RAD16-I and collagen scaffolds) 

were examined by nuclei and actin filaments staining (Figure 5.8).  

 

 

 

Figure 5.8. Cell morphology and organization of 3D cultures of cancer cells and fibroblasts. Cancer cells (PANC-1) 
and fibroblasts (hNDF) were grown in the synthetic self-assembling RAD16-I and the natural collagen type I hydrogels. 
After 7-day culture, samples were fixed and stained for actin microfilaments (phalloidin, pseudo-colored in yellow) 
and nuclei (DAPI, blue). Scale bar of 50 µm.  

 

Fibroblasts showed an in vivo-like elongated morphology. Furthermore, the 3D 

microenvironment promoted continuous intercellular interactions that evolved during culture, 

in contrast to conventional monolayers, better mimicking fibroblasts architecture in connective 

tissues. Phenotipically, no significant differences were detected between collagen and RAD16-I 

scaffolds.  

 

Cancer cells had prominent and irregular nuclei, characteristic of abnormal divisions. 

Actin filaments were organized in both cortical thin bundles and stress fibers filling the internal 

cellular area. Therefore, cells showed a cytoskeletal architecture that resembled some aspects 

of a mesenchymal-like phenotype. Indeed, actin remodeling emerges as the primary mechanism 

responsible for confering phenotypic plasticity and enabling processes as epithelial-

mesenchymal transition (EMT) and metastasis. Cells cultured in collagen scaffolds adopted a 

more elongated and spindle-shape morphology than in RAD16-I scaffolds.  
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Cells remained alive during the whole 3D culture period in both collagen and RAD16-I 

scaffolds. Therefore, cells were grown in suitable conditions when trying to recreate the in vivo 

cellular milieu. Further experiments directed to unravel the molecular mechanism of TKIs 

resistance could be performed.  

 

 

 

5.3.2 CELLULAR RESPONSE TO TYROSINE KINASES INHIBITORS 

Three TKIs and a placebo were kindly provided by the group of Dr. José Ignacio Borrell 

(Grup d’Enginyeria Molecular, IQS School of Engineering, Ramon Llull University). All the 

experiments were performed under blind conditions, without previous knowledge of the 

identity or the activity of these molecules.  

 

First, the effect of the four TKIs was assessed by cellular viability in 2D cultures of cancer 

cells (PANC-1) and stromal cells (hNDF). In particular, MTT assay was performed 24h and 48h 

after treatment (Figure 5.9). 

 

 

 

Figure 5.9. Assessment of the activity of tyrosine kinases inhibitors in 2D cultures. PANC-1 cells and fibroblasts were 
grown on conventional monolayers and treated with different drug concentrations, ranging from 1 µM to 100 µM 
during 24 and 48 hours. The resulting cellular viability was analyzed by MTT assay (N=2, n=6). 
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Results suggested that TKI3 (grey colour) was the most effective inhibitor against PANC-

1 cells, showing a viability rate around 40% in both 24h and 48h experiments. TKI1 (red colour) 

gave similar results as TKI3, but the viability rate of PANC-1 was slightly higher (around 60%). 

However, TKI2 (blue colour) and TKI4 (green colour) did not have a significant effect against 

PANC-1 cells. Importantly, these experiments suggested that any of the studied TKIs did not 

induce cell death to fibroblasts, since they mantained a cellular population between 80-100% 

after drug treatment. 

 

The cellular effect of TKIs was compared to their kinase inhibition profile obtained 

through a radiometric protein kinase assay (33PanQinase® Assay from ProqinaseTM company, 

http://www.proqinase.com). This test was based on incubating the compounds at a 

concentration of 10 µM in front of a panel of tyrosine kinases. Briefly, these enzymes transfer a 

γ-phosphate group from ATP to their substrate (e.g. protein, peptide), generating 

phosphorylated protein/peptide and ADP as products. In this case, the chemical reaction was 

monitored using ATP molecules that contained a radiolabelled phosphate (33P-ATP). The 

phosphorylated and non-phosphorylated substrates were distinguished by counting 

radioactivity. Table 5.1 shows the obtained data, kindly provided by Dr. José Ignacio Borrell 

(Grup d’Enginyeria Molecular, IQS School of Engineering, Ramon Llull University). 

 

 

Compound 

ID 

ALK 

C1156Y 

(GST-HIS-

tag) 

ALK 

F1174L 

(GST-HIS-

tag) 

ALK 

F1174S 

(GST-HIS-

tag) 

ALK 

L1196M 

(GST-HIS-

tag) 

ALK 

R1275Q 

(GST-HIS-

tag) 

ALK wt 

(GST-HIS-

tag) 

AXL DDR2 
EGF-R 

L858R 

INH 1 23 28 25 22 18 18 40 0 14 

INH 2 13 10 14 7 7 9 32 24 21 

INH 3 10 6 11 3 4 4 23 73 43 

INH 4 92 108 107 105 99 85 102 103 110 

          

Compound 

ID 

EGF-R 

T790M 

EGF-R 

T790M/L

858R 

EPHA2 ERBB2 ERBB4 
FGF-R1 

wt 
FGF-R2 

FGF-R3 

wt 
FGF-R4 

INH 1 36 31 0 40 21 -2 0 8 26 

INH 2 31 22 7 41 16 11 9 34 28 

INH 3 30 34 19 34 29 12 3 31 20 

INH 4 110 118 86 85 106 104 97 114 103 

          
Compound 

ID 
IGF1-R MET wt MKNK1 MKNK2 RET wt ROS VEGF-R1 

VEGF-

R2 
VEGF-R3 

INH 1 21 62 83 84 2 62 15 2 32 

INH 2 15 51 26 56 23 41 39 18 40 

INH 3 6 47 91 116 23 70 19 8 40 

INH 4 114 101 92 91 159 104 81 101 109 

Table 5.1. Evaluation of the inhibitory potential of the four selected drugs. The effect of the TKIs was determined 
by a radiometric protein kinase assay (33PanQinase® Assay from ProqinaseTM company, http://www.proqinase.com) 
and classified in function of their efficacy (green, yellow and red). 

http://www.proqinase.com/
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TKI4 was identified as the placebo. This behaviour was consistent with viability assays 

(Figure 5.9) and ELISA-based assays (Table 5.1). On the other hand, TKI3 was selected as the 

best candidate to continue experiments of viability and drug resistance with 3D cultures since it 

triggered the most effective cell response with 2D cultures. 

 

PANC-1 and hNDF cells were cultured independently in RAD16-I and collagen scaffolds, 

previously characterized at the morphological level. Cellular viability was assessed by MTT assay 

in order to evaluate TKI3 activity in a 3D milieu and compare it to the results of 2D cultures 

(Figure 5.10). It is convenient to note that MTT assay depends on the mitochondrial activity of 

cells, since this chemical reagent is reduced to formazan salt by the dehidrogenase enzymes 

present in the mitochondria. To analyze viability results, 2D and 3D cultures were normalized 

with intrisnic controls, not assuming that these microenvironments were equivalent.  

 

 

 

Figure 5.10. Assessment of the activity of tyrosine kinases inhibitors in 3D cultures. PANC-1 cells were grown within 
collagen and RAD16-I scaffolds and treated with different concentrations of the TKI 3, ranging from 1 µM to 100 µM 
during 24 hours. The resulting cellular viability was analyzed by MTT assay. The side effects of the TKIs were studied 
with a 3D culture of normal fibroblasts, as a model of the cellular population that compose the connective tissue. 
(N=2, n=6).   

 

Results showed that none of the 3D cultures were affected by TKI3, using the same 

experimental conditions as 2D cultures (concentrations ranging from 1-100 µM). This behaviour 

was independent of the cell type (PANC-1 and hNDF) and the scaffold (collagen and RAD16-I 

biomaterials). Different hypotheses could explain the therapeutic inefficacy obtained in 3D 

cultures: mass transport limitations (previously studied in chapter 4) and extracellular signaling 

from the tumor microenvironment.  

 

First, 2D cultures are characterized by artificial rich oxygenation and nutrition. In 

contrast, 3D cultures have the capacity to modulate the molecular gradients that exist for any 

soluble component (e.g. oxygen, nutrients, and drugs). They can mimic tumor architecture, in 

which the external cells are more exposed to soluble effector molecules and the inner cells 

remain buried, creating a protective microenvironment.  
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Second, 3D cultures are able to integrate multiple signals (biochemical, biomechanical 

and biophysical) that arise from the extracellular matrix (ECM) and neighbouring cells and are 

partially lost in 2D cultures. Thus, the expresion of key genes involved in disease progression 

(oncogenes and tumor supressor genes) can show similar levels as the in vivo scenario, giving 

cells a more aggressive nature than 2D cultures39,40. Furthermore, tumor microenvironment can 

trigger redudancy in signaling pathways and phenotypical plasticity throughout the activation of 

reminiscent developmental programs like EMT1.  

   

 

 

5.3.3 EFFECT OF INHIBITORS ON RECEPTOR TYROSINE KINASES EXPRESSION 

To understand the difference of viability between 2D and 3D models after TKIs 

treatment, the gene expression of the target receptor tyrosine kinases (RTKs) was assessed. For 

this reason, three receptors were selected based on their role during tumor progression as well 

as their sensitivity to drug treatment (Table 5.1). These receptors were: the vascular endothelial 

growth factor receptor 2 (VEGFR2), the fibroblast growth factor receptor 2 (FGFR2) and the 

insulin-like growth factor receptor 1 (IGF1R). The expression of these three RTKs was quantified 

through Real Time RT-PCR in the different experimental models (RAD16-I with hNDF, RAD16-I 

with PANC-1, type I collagen with hNDF and type I collagen with PANC-1).  

 

 

5.3.3.1 Receptor Tyrosine Kinases Expression on PANC-1 Cells 

The RTKs expression within PANC-1 cell line was examined. Two different comparisons 

were done: 3D against 2D cultures and presence against absence of drugs. First of all, the effect 

of the microenvironment on the expression of the target RTKs was quantified through Real Time 

RT-PCR (Figure 5.11).  

  

 

Figure 5.11. Effect of the microenvironment on receptor tyrosine kinases expression in PANC-1 cells. Cells were 
grown in 2D and 3D (RAD16-I and collagen type I) cultures and the expression of VEGFR2, FGFR2 and IGF1R genes was 
assessed by Real Time RT-PCR. Results showed the role of microenvironmental signals on tumor gene expression. 
(N=2, n=6). 
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Results from Real Time RT-PCR experiments showed an overexpression of the VEGFR2 

gene when cells were cultured in 3D cultures compared to conventional monolayers. In 

particular, the fold induction increased by a relative factor of about 4 times. This pattern 

expression was consistent with the involvement of the VEGFR2 gene in the process of 

angiogenesis. Briefly, angiogenesis is the formation of new blood vessels from pre-existing ones 

in order to supply oxygen and nutrients to the tumor and enable its growth beyond a critical size 

(1-2 mm). It has been largely reported that hypoxia is one of the major factors triggering this 

process41,42.  When cells were embedded within collagen and RAD16-I scaffolds, oxygen was not 

uniformly distributed across the whole culture. Therefore, results suggested the development 

of hypoxia and the overexpression of the VEGFR2 gene in 3D cultures. 

 

The FGFR2 gene was downregulated between 3-4 folds in 3D samples relative to 2D. 

This receptor is present in normal epithelia, contributing to the differentiation and maintenance 

of this phenotype. Indeed, it has been reported that most established carcinoma lines have lost 

the expression of FGFR243,44. The downregulation of this gene suggested that PANC-1 cells began 

to lose their epithelial phenotype in order to acquire mesenchymal characteristics, such as 

migration and invasion capabilities. Thus, 3D cultures could mimic some mechanisms involved 

in the EMT process, consistent with morphological assessment (Figure 5.8). On the other hand, 

cells grown in monolayers were artificially polarized, resembling epithelial organization and 

being limited to 2D space movement.  

 

Finally, the IGF1R gene was downregulated between 4-5 folds in 3D cultures relative to 

2D. IGFR and epithelial growth factor receptor (EGFR) belong to E-cadherin/β-catenin complexes 

that form the cell-cell interactions known as adherens junctions. Data support the crosstalk 

between IGFR and EGFR for activating the invasive phenotype of cancer cells during metastatic 

progression. In particular, IGFR expression decreases, while EGFR increases to cause the 

destabilization of E-cadherin/β-catenin complexes45–47. Thus, RTKs have a different expression 

pattern depending on the specific cancer stage in which they are involved. Being consistent with 

VEGFR2 and FGFR2 results, the IGF1R gene expression suggested that the culture of cancer cells 

within a 3D milieu triggered the loss of the epithelial phenotype and the activation of some EMT 

features. 

 

There were no significant differences between RAD16-I and collagen scaffolds. Data 

indicated that the RTKs expression pattern was caused by the 3D cellular organization that 

increased the communication network between cells and ECM rather than the chemical 

signaling that arose from collagen.  

 

Next, cancer cells were incubated with TKI3 and the survival population was collected in 

order to characterize the expression of the target receptors. Therefore, the mechanisms that 

cancer cells developed to escape from drug action were studied (Figure 5.12). 
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Figure 5.12. Effect of inhibitors on receptor tyrosine kinases expression in the survival PANC-1 population. Cells 
were grown in 2D and 3D (RAD16-I and collagen) cultures and were incubated with TKIs. The cell survival fraction was 
collected to study expression of VEGFR2, FGFR2 and IGF1R genes by Real Time RT-PCR. Results showed the diversity 
of mechanisms that cells used to resist or escape from TKIs effect in cancer treatment. (N=2, n=6). 

 

2D and RAD16-I cultures suffered a significant downregulation of the RTKs expression. 

Particularly, the VEGFR2 mRNA expression decreased by a factor of approximately 40, FGFR2 of 

10-20 and IGF1R of 5 relative to non-treated samples. Conversely, collagen did not show any 

significant modification of the expression pattern of the analyzed kinases. 

 

PANC-1 cells grown in 2D and RAD16-I cultures responded to drug action by stopping 

the transcription machinery engaged in the synthesis of the blocked receptors. We hypothesized 

that cells began to express alternative receptors that participated in similar signaling cascades. 

However, cells grown in collagen cultures resisted or escaped from drug action by regulating 

other survival strategies independently of the silencing of the target receptors. Collagen had a 

wide range of cell-matrix receptors (e.g. integrins-recognition sequences) that could create a 

redundant network of proteins triggering similar signaling pathways (Figure 5.13). Therefore, 

results suggested that cells did not need to begin synthesizing other receptors.  
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Figure 5.13. Redundant network of cellular receptors that complement similar signaling pathways. Collagen has a 
wide range of binding domains of cell-matrix receptors that activate a redundant signaling network o to ensure cell 
function when some RTKs are blocked. This figure shows the complementary role of IGFR and α6β4 integrin receptor. 
Therefore, collagen reflect the mechanisms that cells use to resist or escape from cancer treatments more precisely 
than RAD16-I scaffold, which lacks important microenvironmental cues (e.g. cell adhesion sites and proteolytic 
degrading sites). From Christofori48. 

 

5.3.3.2 Receptor Tyrosine Kinases Expression in Fibroblasts  

The RTKs expression in fibroblasts was examined. It is important to take into account 

that the role of these receptors depends on the cell type. Therefore, it was expected to obtain 

different expression patterns between PANC-1 and hNDF cells (Figure 5.14).  

 

 

 

Figure 5.14. Effect of the microenvironment on receptor tyrosine kinases expression in fibroblasts. Cells were grown 
in 2D and 3D (RAD16-I and collagen type I) cultures and the expression of VEGFR2, FGFR2 and IGF1R genes was 
assessed by Real Time RT-PCR. Results showed the role of microenvironmental signals on fibroblasts gene expression. 
(N=2, n=6). 
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The VEGFR2 gene was upregulated between 2-4 relative folds in a 3D than a 2D milieu. 

This receptor is required for angiogenesis, either in physiological or pathophysiological 

processes (e.g. embryonic development and tumor progression). Multiple cell types and soluble 

effector molecules are engaged in the complex formation of new blood vessels from pre-existing 

ones. In particular, endothelial cells actively recruit fibroblasts for paracrine signaling49,50. 

Considering that 3D cultures induced hypoxia, it was expected that they upregulated the 

VEGFR2 gene in order to activate angiogenesis and, therefore, the supply of oxygen and 

nutrients.  

 

The FGFR pathway regulates cell growth in fibroblasts, since FGFs act as transforming 

factors, mitogens and survival factors. However, FGFRs regulate adhesion and differentiation in 

cancer cells accordingly to published data43,44 and the obtained Real Time RT-PCR results of this 

work. Thus, the role of these receptors depends on the cell type. In the case of fibroblasts, 

RAD16-I cultures induced 4 folds overexpression of FGFR2 gene compared to 2D cultures. This 

receptor was highly overexpressed in collagen cultures, obtaining values that were out of PCR 

margins and were represented separately. It would be necessary to perform a Western Blot in 

order to determine whether this overexpression also occurred at the protein level. These results 

could be explained because the culture of fibroblasts from a 2D to a 3D milieu favored cell-cell 

and cell-ECM interactions and enabled an extensive communication network. This situation 

could mimic the in vivo milieu, promoting ECM synthesis (e.g. glycosaminoglycans and 

proteoglycans) and, in turn, activating cellular growth. In fact, it was previously reported that 

3D cultures upregulated the FGFRs expression in the fibroblasts population51–53.  

 

Finally, the IGF1R gene was upregulated approximately 4 folds in RAD16-I scaffolds and 

15 folds in collagen scaffolds relative to 2D cultures. This expression pattern was in agreement 

with the mitogenic capability of the receptor, acting in a synergic manner with VEGFR and 

FGFR54,55. Therefore, results also suggested that the 3D communication network that established 

fibroblasts in collagen and RAD16-I biomaterials activated cellular growth.  

 

Next, fibroblasts were incubated with TKI3 and the survival population was collected in 

order to characterize the expression of the target receptors. The experiment was performed as 

previously detailed (Figure 5.15). 
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Figure 5.15. Effect of inhibitors on receptor tyrosine kinases expression in the survival fibroblasts population. Cells 
were grown in 2D and 3D (RAD16-I and collagen) cultures and were incubated with TKIs. The cell survival fraction was 
collected to study expression of VEGFR2, FGFR2 and IGF1R genes by Real Time RT-PCR. Results showed the diversity 
of mechanisms that stroma cells used to resist or escape from TKIs effect in cancer treatment. (N=2, n=6). 

 

After the TKIs treatment, 2D cultures showed a downregulation of the VEGFR2, FGFR2 

and IGF1R genes at levels of approximately 20, 6 and 3 folds relative to non-treated samples. 

Conversely, RAD16-I and collagen cultures maintained similar expression levels of RTKs. 

 

Significantly, results suggested that cells embedded both in collagen and RAD16-I 

biomaterials acquired an equivalent mechanism of drug resistance, maintaining the expression 

pattern of the target receptors. We hypothesized that survival cells probably activated 

complementary ECM receptors to trigger similar signaling pathways in order to evade drug 

action. Fibroblasts are responsible for collagen synthesis, deposition and remodeling. Thus, cells 

could produce their own physiological matrix and mask the initial contribution of the chemical 

signaling that arose from collagen, mainly due to the presence of integrins-recognition 

sequences.  

 

Therefore, RAD16-I scaffold emerged as a reproducible and flexible platform for drug 

screening processes in the case of fibroblasts population, having a similar predictive capacity as 

collagen. Therefore, the development of co-cultures between cancer cells and fibroblasts could 

facilitate the use of synthetic scaffolds since fibroblasts could synthesize their own physiologic 

matrix and contribute to the integration of microenvironmental signaling in these platforms.  
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5.3.4 FUTURE DIRECTIONS 

More research is needed to unravel the contribution of tumor microenvironment on 

cancer drug resistance. Experiments are performed to continue studying the hypothesis that 

evolving extracellular pressures can trigger phenotypic plasticity and signal redundancy in 

cancer cells, causing inefficacy of TKIs molecules.   

 

First, experiments are focused on the functionalization of RAD16-I scaffolds with 

integrin-binding domains in order to study their specific role on drug resistance. For this reason, 

RTKs expression before and after the treatment should be quantified. Advantageously, synthetic 

scaffolds provide both a reproducible and flexible microenvironment in order to study chemical 

or mechanical cues in an individual manner and unravel their role in cancer progression and 

treatment cellular response.  

 

The synergism between drugs is also studied in 3D cultures as possible cancer treatment. 

The finding that tumor microenvironment triggers redundancy in cell signaling cascades has 

revealed it as a possible pharmacological target. In particular, the combination of TKIs with 

blebbistatin (BB) is under investigation (Figure 5.16). BB is a small molecule inhibitor of myosin 

II ATPase activity56, a key regulator of the formation and maturation of integrin-mediated 

adhesions through actin fiber contractility57. Therefore, it blocks cell interactions with the 

extracellular milieu.  

 

 

 

Figure 5.16. Morphological assessment of the activity of synergic tyrosine kinases- and myosin II ATPase- inhibitors. 
PANC-1 cells and fibroblasts were treated with 100 μM of TKI3 and 50 μM BB. Samples were fixed, stained for actin 
microfilaments (phalloidin, red) and nuclei (DAPI, blue) and compared with controls of non-treated cultures. Scale 
bar of 50 µm  
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In terms of cancer cells and fibroblasts, genome-centered studies are also under 

performance. The expression of adenosine triphosphate (ATP)-binding cassette (ABC) 

transporters as efflux pump of TKIs is quantified before and after treatment in 3D cultures. 

Therefore, the interaction between genomic and environmental changes in drug resistance can 

be assessed using 3D cultures.  
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5.4 CONCLUDING REMARKS 

A major challenge in cancer research is the acquisition of drug resistance, which causes 

patient relapse. Traditionally, efforts have been focused on single-cell studies to identify genetic 

and epigenetic alterations such as upregulation of efflux pumps (ABC transporters)36. However, 

the development of three-dimensional (3D) cultures can help to study the contribution of tumor 

microenvironment on this cellular program. Consequently, the arsenal of cancer therapeutics 

could strongly increase due to the better characterization of signaling pathways triggered by 

extracellular matrix (ECM) and stromal cells. During this project, different 3D models of 

pancreatic cancer cells and fibroblasts were developed in order to study the resistance of 

tyrosine kinases inhibitors (TKIs).  

 

First, the expression of the target receptor tyrosine kinases (RTKs) was studied in 3D 

cultures. Cancer cells downregulated epithelial markers as the fibroblast growth factor receptor 

II (FGFR2) and insulin-like growth factor receptor I (IGF1R) genes, which are involved in the 

formation of E-cadherin complexes and maintenance of this phenotype. Therefore, results 

suggested a transition from an epithelial to a mesenchymal-like morphology. On the other hand, 

fibroblasts upregulated IGF1R and FGFR2 genes as mitogens and transforming factors receptors. 

This expression pattern could indicate that 3D models favor the formation of an extensive cell 

network that increased cell growth and communication. These results were consistent with 

publications that reported a receptors function depending on cell type.  

 

 TKIs were evaluated as cancer drugs in 2D and 3D cultures. In the present thesis, the 

used inhibitors was based on a pyrido[2,3-d]pyrimidine scaffold and were synthesized by the 

group of Dr. José Ignacio Borrell (IQS School of Engineering). Significantly, the most effective TKI 

induced a cell death of approximately 60% of cancer cell population in 2D cultures, but remained 

inactive in 3D ones (RAD16-I and collagen systems).    

 

The next step consisted in analyzing the mechanisms that survival cancer cells and 

fibroblasts triggered in order to resist drug action. Interestingly, strategies depended on the 

surrounding milieu and, therefore, the extracellular cues received by cells.  

 

Cancer cells grown in both two-dimensional (2D) and RAD16-I cultures downregulated 

the expression of target receptors after TKIs treatment. RAD16-I biomaterial provided a non-

instructive milieu, suggesting that cells needed to express alternative receptors to re-establish 

similar signaling pathways. Conversely, cells grown in collagen cultures showed a different 

behavior and maintained RTKs expression pattern. Collagen biomaterial provided ECM bioactive 

sequences that were recognized by cell receptors (e.g. integrins), which probably induced 

signaling pathways that could complement the inhibited RTKs. Therefore, this scaffold could 

confer redundancy in transduction cascades, enabling phenotypic plasticity when a cancer 

hallmark capability was therapeutic inhibited.  
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Significantly, fibroblasts showed a different therapeutic response to TKIs. Cells grown in 

RAD16-I and collagen cultures did not change the RTKs expression pattern in contrast to 2D 

cultures. Thus, both 3D models showed an equivalent mechanism of drug resistance. Fibroblasts 

are responsible for the synthesis, deposition and remodeling of ECM components. The obtained 

data suggested that they were able to produce their own physiological matrix and decorate 

RAD16-I scaffolds. More research is needed to investigate whether co-cultures with fibroblasts 

and cancer cells could help to integrate the environmental signaling required for tumor 

progression in synthetic scaffolds, emerging as physiological relevant platforms for drug 

screening processes.  

 

3D models could help to understand the mechanisms that confer multidrug resistance 

at both genomic and environmental level. In this case, redundancy in signaling pathways was 

reported through the comparison between natural collagen and synthetic RAD16-I scaffolds. 

Consequently, the microenvironment could emerge as an important therapeutic target that 

should be incorporated in drug screening processes.  
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CONCLUSIONS 
 

 

Three-dimensional models for pancreatic cancer were developed in order to study the 

contribution of microenvironment on early stages of epithelial-mesenchymal transition (EMT) 

during tumor progression: 

 

 Pancreatic cancer cells showed different phenotypes depending on the composition and 

stiffness of tissue engineering scaffolds. Therefore, results revealed their plasticity to 

adapt to different surrounding milieus. The increase in matrix storage modulus could 

disrupt epithelial morphogenesis through changes in cytoskeletal dynamics. The 

presence of extracellular matrix (ECM) signaling sequences caused the cellular 

scattering and the acquisition of protrusions. All these events promoted a more 

mesenchymal-like phenotype of cancer cells.  

 

 Downregulation of E-cadherin was reported in all 3D cancer models. Therefore, the 

transition from a 2D to a 3D milieu could induce the disruption of epithelial cell-cell 

adhesions and the activation of some early stages of the EMT program as observed in 

RAD16-I scaffolds. However, this process was more pronounced in collagen scaffolds, 

revealing the critical role of ECM signaling sequences in terms of both presence and 

concentration.  

 

 The mechanisms that account for dynamic regulation of E-cadherin expression were 

also analyzed. No significant hypermethylation of E-cadherin gene promoter was 

detected in any 3D model of pancreatic cancer. On the other hand, the upregulation of 

SNAI1 and ZEB2 transcriptional repressors was observed.  

 

 

Three-dimensional models for cervical cancer and stromal fibroblasts were developed in 

order to study the contribution of microenvironment on photodynamic therapy (PDT) outcome: 

 

 3D cultures were able to recreate the in vivo limitation of drug and oxygen diffusion, 

creating a protective microenvironment for cells located in the core of the scaffold. 

Experiments demonstrated that mass transfer effects accounted for the lower PDT 

therapeutic efficacy in 3D cultures relative to 2D. For the first time, the production and 

decay of singlet oxygen (reactive oxygen specie and main PDT cytotoxic agent) was 

observed in a 3D culture. 

 

 The cytotoxic outcome of PDT did not strongly depend on the presence of ECM binding 

sequences. These results were explained because the therapy is based on an acute and 

general stress effect to cells and does not target specific signaling cascades.  
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 Co-culture models revealed that fibroblasts could induce the scattering of cancer cells, 

promoting their presence along fibroblasts network and compromising epithelial 

morphology. In collagen scaffolds, fibroblasts in co-cultures were more resistant to PDT 

treatment than individual ones. These finding suggested a crosstalk between tumor 

microenvironment and cancer cells, increasing the aggressiveness of stromal cells.  

 

 

The contribution of tumor microenvironment on drug resistance was studied through 3D 

models of pancreatic cancer and stromal fibroblasts.  

 

 The effect of tyrosine kinases inhibitors (TKIs) as cancer drugs was evaluated in 2D and 

3D cultures. The most effective TKI caused a cell death of approximately 60% of cancer 

cells population in 2D cultures, but remained inactive in 3D cultures.  

 

 After drug treatment, survival cancer cells grown in 2D and RAD16-I cultures 

downregulated the expression of the blocked receptor tyrosine kinases, suggesting that 

the transcription machinery did engage in the synthesis of receptors that could trigger 

complementary signaling pathways. On the other hand, cancer cells grown in collagen 

cultures did not change receptor expression pattern. Collagen has a wide range of cell-

matrix binding receptors, which could create redundancy in signaling pathways.  

 

 Fibroblasts showed the same behavior in RAD16-I and collagen scaffolds after drug 

treatment, maintaining their receptor expression levels. Results suggested that 

fibroblasts were able to produce their own physiological matrix and decorate RAD16-I 

biomaterial.  
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CONCLUSIONES 

 

Se han desarrollado modelos tridimensionales de cáncer de páncreas para estudiar la 

contribución del microambiente durante las primeras etapas de la transición epitelial-

mesenquimal (EMT) en la progresión tumoral: 

 

 Las células pancreáticas tumorales mostraban diferentes fenotipos dependiendo de la 

composición y rigidez de las matrices donde se cultivaban. Por lo tanto, los resultados 

revelaban su plasticidad para adaptarse a diferentes entornos. En concreto, un aumento 

del módulo de almacenamiento de la matriz provocó la perturbación de la morfogénesis 

epitelial a través de cambios en la configuración del citoesqueleto. La presencia de 

secuencias de señalización de la matriz extracelular (ECM) causó la dispersión de las 

células de las colonias tumorales y la adquisición de protrusiones. Este conjunto de 

eventos promovieron un fenotipo más mesenquimal de las células cancerígenas.  

 

 Todos los modelos 3D de cáncer de páncreas mostraron una disminución en la expresión 

de la E-cadherina. Por lo tanto, la transición de un microambiente 2D a uno 3D pudo 

inducir la disociación de las adhesiones epiteliales célula-célula y la activación de las 

primeras etapas del programa EMT tal y como se observó en las matrices sintéticas de 

RAD16-I. Este proceso fue más pronunciado en las matrices naturales de colágeno, 

revelando el papel crítico de las secuencias de señalización de la ECM en términos de 

presencia y concentración.  

 

 Los mecanismos que regulan la expresión dinámica de la E-cadherina también se 

analizaron. No se detectó la hipermetilación del promotor de la E-cadherina en ninguno 

de los modelos 3D de cáncer de páncreas. En cambio, se observó la sobre-expresión de 

represores transcripcionales como los genes SNAI1 y ZEB2.  

 

 

Se han desarrollado modelos tridimensionales de cáncer de cérvix y fibroblastos del 

estroma para estudiar la contribución del microambiente en la respuesta celular de la terapia 

fotodinámica (PDT): 

 

 Los cultivos 3D pudieron recrear la limitación de difusión de fármaco y oxígeno que 

experimentan las células in vivo, creando un ambiente protector para las células 

localizadas en el centro de la matriz. Los experimentos demostraron que los efectos de 

transferencia de masa eran la principal causa de la menor eficacia terapéutica de la PDT 

en los cultivos 3D respeto los 2D. Por primera vez, se detectó la formación y el 

decaimiento del oxígeno singlete (especie reactiva del oxígeno y principal agente 

citotóxico de PDT) en un cultivo 3D.  
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 La respuesta citotóxica de la PDT no mostraba una dependencia fuerte a la presencia de 

secuencias de señalización de la ECM. Estos resultados se podían explicar por el hecho 

que la terapia se basa en un efecto de estrés agudo y general a las células y no está 

dirigida a cascadas de señalización específicas.  

 

 Los modelos de co-cultivos revelaron que los fibroblastos podían inducir una mayor 

dispersión de las células cancerígenas, promoviendo su presencia a lo largo de la red 

celular que forman los mismos fibroblastos y comprometiendo la morfología epitelial. 

En la matriz de colágeno, los fibroblastos de co-cultivos eran más resistentes al 

tratamiento de la PDT que la población individual. Estos datos sugirieron que había una 

comunicación bidireccional entre el microambiente tumoral y las células cancerígenas, 

aumentando la agresividad de las células del estroma.  

 

 

La contribución del microambiente en el fenómeno de la resistencia de fármacos se 

estudió a través de los modelos tridimensionales de cáncer de páncreas y fibroblastos del 

estroma: 

 

 El efecto de inhibidores de tirosina quinasas (TKIs) como fármacos anticancerígenos se 

evaluó en cultivos 2D y 3D. El TKI más potente causó una muerte celular de 

aproximadamente el 60% de las células cancerígenas de los cultivos 2D, mientras que 

se mantuvieron inactivos en los cultivos 3D.  

 

 Después del tratamiento con fármaco, las células cancerígenas supervivientes cultivadas 

en 2D y en matrices de RAD16-I disminuyeron la expresión de los receptores 

bloqueados, sugiriendo que la maquinaria de transcripción se dedicó a la síntesis de 

receptores alternativos que desencadenaban rutas de señalización similares. Por otro 

lado, las células cancerígenas cultivadas en matrices de colágeno no cambiaron su 

patrón de expresión de los receptores bloqueados. Los datos sugerían que el colágeno 

podía proporcionar una red de receptores redundantes a nivel de cascadas de 

señalización debido a la presencia de múltiples motivos de unión célula-matriz.  

 

 Después del tratamiento de fármaco, los fibroblastos mostraron el mismo 

comportamiento en las matrices de RAD16-I y colágeno, manteniendo su patrón de 

expresión de receptores diana. Los resultados sugirieron que los fibroblastos podían 

producir su propia matriz fisiológica y decorar el RAD16-I.  
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CONCLUSIONS 

 

S’han desenvolupat models tridimensionals de càncer de pàncrees per estudiar la 

contribució del microambient durant les primeres etapes de la transició epitelial-mesenquimal 

(EMT) en la progressió tumoral: 

 

 Les cèl·lules pancreàtiques tumorals van mostrar diferents fenotips depenent de la 

composició i rigidesa de la matriu on es cultiven. Per tant, els resultats van revelar la 

seva plasticitat per adaptar-se a diferents entorns. En concret, un augment en el mòdul 

d’emmagatzematge de la matriu va provocar la pertorbació de la morfogènesis epitelial 

a través de canvis de la configuració del citoesquelet. La presencia de seqüències de 

senyalització de la matriu extracel·lular (ECM) va causar la dispersió de les cèl·lules de 

les colònies tumorals i l’adquisició de protrusions. Aquest conjunt d’esdeveniments va 

promoure un fenotip més mesenquimal a les cèl·lules cancerígenes.  

 

 Tots els models 3D de càncer de pàncrees van mostrar una disminució en l’expressió de 

l’E-cadherina. Per tant, la transició d’un microambient 2D a un 3D va poder induir la 

dissociació de les adhesions epitelials cèl·lula-cèl·lula i l’activació de les primeres etapes 

del programa EMT tal i com es va observar en les matrius sintètiques de RAD16-I. Aquest 

procés va ser més pronunciat en les matrius de col·lagen, revelant el paper crític de les 

seqüències de senyalització de la ECM en termes de presència i concentració.  

 

 Els mecanismes que regulen l’expressió dinàmica de l’E-cadherina també es van 

analitzar. No es va detectar l’hipermetilació del promotor de l’E-cadherina en cap dels 

models 3D de càncer de pàncrees desenvolupat. En canvi, es va observar la sobre-

expressió de repressors transcripcionals com els gens SNAI1 i ZEB2.  

 

 

S’han desenvolupat models tridimensionals de càncer de cèrvix i fibroblasts de l’estroma 

per estudiar la contribució del microambient en el resultat de la teràpia fotodinàmica (PDT): 

 

 Els cultius 3D van ser capaços de recrear la limitació de difusió de fàrmac i oxigen que 

experimenten les cèl·lules in vivo, creant un ambient protector per les cèl·lules que 

estan localitzades a la part interior central de la matriu. Els experiments van demostrar 

que els efectes de transferència de massa eren la principal causa de la menor eficàcia 

terapèutica de la PDT en els cultius 3D respecte els 2D. Per primera vegada, es va 

detectar la formació i el decaïment d’oxigen singlet (espècie reactiva de l’oxigen i 

principal agent citotòxic de la PDT) en un cultiu 3D.  

 

 La resposta citotòxica de la PDT no mostrava una dependència forta a la presència de 

les seqüències de senyalització de la ECM. Aquests resultats es podien explicar pel fet 

que la teràpia es basa en un efecte d’estrès agut i general a les cèl·lules, sense estar 

dirigida a cascades de senyalització específiques.  
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 Els models de co-cultius van revelar que els fibroblasts podien induir una major dispersió 

de les cèl·lules cancerígenes, promovent la seva presència al llarg de la xarxa cel·lular 

que creen els mateixos fibroblasts i comprometent la morfologia epitelial. En la matriu 

de col·lagen, els fibroblasts de co-cultius eren més residents a la PDT que la població 

individual. Aquestes dades suggerien que hi havia una comunicació bidireccional entre 

el microambient tumoral i les cèl·lules cancerígenes, augmentant l’agressivitat de les 

cèl·lules de l’estroma. 

 

 

La contribució del microambient en el fenomen de resistència de fàrmacs es va estudiar a través 

dels models tridimensionals de càncer de pàncrees i de fibroblasts de l’estroma: 

 

 L’efecte d’inhibidors de tirosina quinases (TKIs) com fàrmacs anti-cancerígens es va 

avaluar en cultius 2D i 3D. El TKI més potent va causar una mort cel·lular 

d’aproximadament 60% de la població cel·lular dels cultius 2D, però es va mantenir 

inactiu en els cultius 3D.  

 

 Després del tractament de fàrmac, les cèl·lules cancerígenes supervivents cultivades en 

2D i en les matrius de RAD16-I van disminuir l’expressió dels receptors de tirosina 

quinases bloquejats, suggerint que la maquinaria de transcripció va dedicar-se a la 

síntesis de receptors alternatius que poguessin desencadenar rutes de senyalització 

similars. Per una altra banda, les cèl·lules cancerígenes cultivades en les matrius de 

col·lagen no van canviar el seu patró d’expressió dels receptors bloquejats. Aquestes 

dades podrien indicar que el col·lagen proporcionava una xarxa de receptors redundants 

a nivell de cascades de senyalització, degut a la presència de múltiples motius d’unió 

cèl·lula-matriu.  

 

 Després del tractament amb el fàrmac, els fibroblasts van mostrar el mateix 

comportament en les matrius de RAD16-I i col·lagen, mantenint el seu patró d’expressió 

de receptors diana. Els resultats van suggerir que els fibroblasts podien produir la seva 

pròpia matriu fisiològica i decorar el RAD16-I. 
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