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Abstract

Designing parallel codes is hard. One of the most important roadblocks to parallel
programming is the presence of data dependencies. These restrict parallelism and,
in general, to work them around requires complex analysis and leads to convoluted
solutions that decrease the quality of the code.

This thesis proposes a solution to parallel programming that incorporates data
dependencies into the model. The programming model is able to handle that informa-
tion and to dynamically find parallelism that otherwise would be hard to find. This
approach improves both programmability and parallelism, and thus performance.

While at the time of this publication this problem has already been solved in
OpenMP 4, this research begun before the problem was even being considered for
OpenMP 3. In fact some of the contributions of this thesis have had an influence on
the approach taken in OpenMP 4. However, the contributions go beyond that and
cover aspects that have not been considered yet in OpenMP 4.

The approach we propose is based on function-level dependencies across disjoint
blocks of contiguous memory. While finding dependencies under those constraints is
simple, it is much harder to do so over strided and possibly partially overlapping
sets of data. This thesis also proposes a solution to this problem. By doing so we
increase the range of applicability of the original solution and increase the span
of applicability of the programming model. This aspect is not currently covered in
OpenMP 4.

Finally, we present a solution to take advantage of the performance characteristics
of Non-Uniform Memory Access architectures. Our proposal is at the programming
model level and does not require changes in the code. It automatically distributes
the data and does not rely on data migration nor replication. Instead it is based
exclusively on scheduling the computations. While this process is automatic, it can
be tuned through minor changes in the code that do not require any change in the
programming model.

Throughout the thesis we demonstrate the effectiveness of the proposal through
benchmarks that are either hard to program using other paradigms or that have
different solutions. In most cases our solutions perform either on par or better than
already existing solutions. This includes the implementations available in well known
high performance parallel libraries.
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Chapter 1

Introduction

The computing landscape in the last recent years has changed radically. In the past
multiprocessors were a specialty reserved only for high performance computing
facilities. Today multicores have become mainstream and are present even on mobile
devices. While this could be considered a hardware revolution, it will not be fully
effective until it is accompanied by a software revolution that allows to exploit it to
its full potential.

To make multicore programming widely accepted, parallel programming must
become simple and effective. Data dependencies are one of the aspects that compli-
cate the development of parallel applications. Most parallel programming models
are not aware of data dependencies. Instead, the coder must perform the analysis of
those and must adapt the code to them according to the desired performance goals.
This task is complex, tedious, prone to errors, and those errors in turn are hard to
diagnose.

Since most parallel programming models do not handle data dependencies,
programmers usually have to structure their code in parts that launch parallel
work and must isolate them by placing barriers between them. In addition to the
effort required to do that, the final result can be suboptimal since barriers restrict
parallelism.

The programming model that we present in this thesis has been designed to
simplify parallel programming. It approaches this objective in two directions. First,
through minimalism in the language and the number of parallelism constructs.
And second, by moving complexity to the runtime. More specifically, the runtime
handles the data dependencies, manages the distribution of data, and schedules the
computations. The programmer only has to define the computation units that will
run in parallel and has to synchronize those with the rest of the code.

1.1 Contributions

The main contributions of this thesis are organized in three chapters numbered 3, 4
and 5. The first presents the general programming model. The second extends it to
support strided and overlapping data accesses. And finally the third optimizes it to
exploit the performance characteristics of NUMA architectures.
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1.1.1 General Programming Model

Chapter 3 presents the SMP superscalar (SMPSs) parallel programming model. At
the language level it consists of a set of annotations added to regular C that make it
capable of supporting parallelism. The key aspect that differentiates it over other
models is that it relies on a powerful runtime that handles data dependencies, and
thus removes that burden from the programmer. The main contributions of the
chapter are the following:

A dependency-aware parallel programming model We propose a parallel pro-
gramming model that is dependency-aware and that takes advantage of this knowl-
edge to simplify the development of parallel applications and that has the potential
to perform better than dependency-unaware programming models due to its ability
to find more parallelism. Its main characteristics are the following:

Simple and task based While many parallel programming models provide
several means to parallelize an application, the solution that we propose only relies
on tasks, that we define as regular functions with an additional annotation to extend
the information about their parameters. By using only one parallelism construct we
strive to make the model simple through minimalism.

Address space independent The design of the language is such that tasks
must specify all the information about the data that they access. This allows the
runtime to abstract the address space, which allows the model to be applied to
environments with separated address spaces. While this thesis only covers shared
memory, the model has been successfully applied to distributed environments.

Unconstrained parallelism versus potential parallelism While traditional
parallel programming models are based on specifying the computations that must be
able to run in parallel, the model that we present allows to specify the computations
that have the potential to run in parallel. This difference is crucial. The actual
parallelism is determined by the data dependencies between the tasks, and by the
order in which they are satisfied.

Long and dynamic parallel span Dependency-unaware programming models
usually cope with dependencies by using barriers. These limit the potential window
in which a computation must be executed. By being dependency-aware, the pro-
gramming model we propose removes the limitations imposed by barriers over the
parallel span of the tasks. Instead tasks can execute as soon as their dependencies
have been fulfilled, and can be delayed as long as other tasks are also available.
This enables the model to exploit distant parallelism that would otherwise not be
available. In addition longer parallel spans increase the amount of parallelism that
is available, and thus potentially reduce starvation.

A dependency-aware scheduler We propose a scheduling algorithm that follows
data dependencies to favor the reuse of data already in the cache of the processors.
This improves the performance of applications in which the cost of the task first-access
data cache misses is significant.
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A set of benchmarks parallelized with the programming model We describe a
set of benchmarks that consist of a few embarrassingly parallel benchmarks and
others that have data dependencies and that are either hard to implement or do not
generate enough parallelism in other programming models.

An evaluation of the performance and programmability The benchmarks are
compared with implementations in other programming models and with the im-
plementations within high performance libraries. The evaluation covers both the
performance and how the problem is solved in each model.

1.1.2 Extensions to Support Strided and Overlapping Data Ac-
cesses

Chapter 4 discusses extensions to the programming model to add support for finding
dependencies between strided and possibly overlapping data accesses. Its main
contributions are the following:

Extensions to the programming syntax To support the specification of the data
accesses of a task, we present an extension to the annotations that allows to specify
accesses over multidimensional rectilinear subsets of the data. It allows the program-
mer to cope with non-blocked data layouts, and dependencies that span a dynamic
number of subsets of the data. Thus, it makes the model suitable to a wider set of
applications.

A compact representation for sets of addresses To perform the data dependency
analysis that the extended syntax enables, we propose an internal compact repre-
sentation for a set of addresses, and an efficient algorithm to construct it from its
representation in the language. The compact representation allows to calculate the
intersection between two sets with a complexity equal to the number of bits of an
address.

A data structure to perform data dependency analysis efficiently Data depen-
dency analysis consists in checking the relations between accesses to the same data.
To perform this efficiently, we design a data structure based on the compact repre-
sentation to hold the state required to calculate data dependencies, that allows to
perform intersection look-ups and replacements efficiently.

An evaluation of the performance and programmability We extend the evalua-
tion started in the previous chapter with versions of the benchmarks that use flat
multidimensional arrays and additional benchmarks that are not possible without the
extensions. Where possible we compare them to the blocked implementations, alter-
native implementations with other programming models and highly tuned parallel
library implementations.

1.1.3 Extensions to Exploit NUMA

Finally, chapter 5 proposes extensions to exploit the characteristics of NUMA systems
within the programming model. The main contributions in this area are the following:
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A model of data distribution We demonstrate that the elements of the syntax
of the SMPSs programming model with region support are enough to define data
distributions. The proposal differs from previous work in that the user only needs to
define the units of distribution through the use of data initialization tasks and does
not require to specify their placement nor where to run the computations. This is
instead determined by the runtime.

A runtime policy for data placement We propose a simple data placement policy
to allow the automatic distribution of data within the runtime. The policy is dynamic
and balances the amount of data placed in each memory. The final data distribution
is determined by this policy in conjunction with the units of distribution defined by
the data initialization tasks in the program code.

A NUMA-aware scheduling policy We design a scheduler that exploits NUMA
affinity by favoring the execution of tasks in the cores that are local to the memo-
ries that contain most of its data. As a side effect the scheduler also balances the
homogeneous usage of the memory bandwidth. This part also demonstrates that the
data structure proposed in the previous chapter to calculate data dependencies over
strided data accesses can be reused for other purposes.

Analysis of the effects of data distribution and NUMA-aware scheduling over
performance We expand the evaluation of the previous chapter by analyzing the
effects that NUMA aspects have over performance. First we analyze the effects of
data distribution with several distribution shapes. Second, we analyze the effects
of NUMA affinity by using several policies and evaluate the effectiveness of the
NUMA-aware scheduling policy over alternative schedulers. Finally we compare
against NUMA-unaware schedulers and competing implementations.

1.2 Thesis Organization

This thesis is organized in five main chapters and six appendixes. Their respective
contents are the following:

Background Chapter 2 describes the state of the art at the beginning of this thesis
and previous work that is related to some of the solutions that we propose.

A dependency-aware task-based programming model Chapter 3 presents the
general programming model, its implementation and evaluates its performance.

Strided and overlapping data accesses Chapter 4 extends the programming
model to support data dependency analysis between tasks that access strided an
possibly overlapping data.

Exploiting Non-Uniform Memory Access Chapter 5 is centered on improving
performance of the programming model with the extensions of the previous chapter
on NUMA architectures.
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Conclusions, impact and future work Chapter 6 highlights the conclusions that
derive from the previous chapters, presents the impact of the contributions of this
thesis and sets up future directions that complement the work presented in this text.

SMPSs extensions to the C99 grammar Appendix A summarizes the complete
set of grammar rules that extend C99 with the annotations that define the language
including the extensions to support strided and overlapping data accesses.

Compiler and runtime integration Appendix B discusses the interface used by
the runtime of the programming model without any extension and overviews the
compilation steps to support the language and runtime.

Additional benchmarks for the block-based programming model Appendix C
extends the evaluation of the programming model of chapter 3 with additional
benchmarks.

Compiler and runtime interface extensions for region support Appendix D
presents the extensions to the runtime interface and compiler to support strided and
overlapping data accesses.

Additional benchmarks for the region-based programming model Appendix
E extends the evaluation of the programming model presented in chapter 4 with
additional benchmarks and presents versions of the ones in chapter 3 and appendix
C using flat arrays.

Additional benchmarks for the NUMA-aware runtime Finally, appendix F presents
the performance evaluation of regions-based benchmarks under the NUMA-aware
runtime that do not appear in chapter 5. These benchmarks did not improve their
performance significantly or their improvement diminished as the problem size was
bigger.
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Chapter 2

Background

This chapter overviews the state of the art on the areas covered by the contributions
of this thesis. These have been classified into three main topics: parallel programming
models for shared memory, techniques to exploit unstructured parallelism, and tech-
niques to exploit non-uniform memory access (NUMA) architectures. The analysis
is centered on the programming models from the point of view of the programmer
and explores the memory model, the control flow model and the elements of the
language.

Note that since this thesis started in 2005, the research presented in this document
has already had an impact on current programming languages, and thus while some
contributions may be taken today for granted, they were at most at their early
planning stages when this research was conducted.

2.1 Parallel programming models for shared memory

For our discussion of parallel programming we are interested on one hand on control
flow and address space, and on the other on data distribution and data location
awareness. These aspects are considered throughout this thesis and we consider that
they play an important role in the programmability of parallel systems.

Regarding the aspects that define how the programmer sees the control flow
and the address space, we are interested in the differences between local-view and
global-view as presented by [Chamberlain et al., 2007], how the user sees the address
space, and how it can be accessed. Local-view corresponds to models in which the
code only has direct access to the address space of the current thread or process.
Global-view programming models have a unique and complete view of the address
space. All these aspects have a direct impact on the simplicity of the programming
model and are related to the programming model presented in chapter 3.

Regarding data distribution and data-location awareness the most relevant topics
are how the data is placed, which data distribution shapes are possible, and how the
placement of the units of work are related to the location of the data they access.
These aspects are related to the contents of chapters 4 and 5, and have a direct
relation to the performance that can be achieved and the effort necessary to achieve
it.

While parallel programming models can be specifically aimed at either distributed
processing and shared memory, in many cases distributed models are also used in
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shared memory systems. Of special notice is the use of MPI on NUMA systems to
make good use of memory affinity.

2.1.1 MPI

The Message Passing Interface (MPI), standarized by the [Message Passing Interface
Forum, 2009], is a library-based interface used for programming parallel applications
using message passing.

This paradigm is typically used in distributed systems. However, it is also used in
NUMA systems since it moves computations close to the memory of the data they
access and thus can be beneficial for performance.

MPI is one of the most used message passing standards for High Performance
Computing on distributed systems.

Control Flow and Address Space

While MPI allows many forms of parallelism, in most cases it is used for SPMD
(Single Program Multiple Data) programming. That is, a single program is launched
at several locations in parallel, and each instance, the MPI process, processes part of
the data and communicates with the rest of the MPI processes using the facilities
provided by the model, in this case the MPI API.

In MPI, processes can only access their local data. In general, to access remote
data, MPI processes must explicitly perform data transfers between local and remote
address spaces. However, MPI also provides limited support for global operations in
the form of reductions, and synchronization primitives like barriers.

To parallelize an application using the SPMD paradigm, the global data must
be manually divided in parts that are local to each process, and each process must
perform the calculations that correspond to its local data, and communicate with
other processes. Communication can be either one-sided or two-sided. In the first
case, processes initiate data copies from one address space to another, one of them
being their own address space. Two-sided communication requires the processes
of each address space to submit in a coordinated way matching pairs of send and
receive operations according to the direction of the data copy.

The combination of an SPMD model with an explicit communication philosophy
makes it a pure local-view model, and makes programs that use MPI hard to under-
stand and hard to debug. Moreover, the order of the messages is a critical aspect
when programming in MPI, since a bad ordering may lead to dead-locks.

Data Distribution and Location-Awareness

MPI does not provide any high-level primitives to distribute the data nor any means
to inquire about its location. Instead, the data must be manually placed by the
programmer, and the accesses must be always performed locally. Data placement
and computation placement must be controlled manually by the programmer.

Orthogonality

While MPI is a complete programming model, due to its distributed nature, it can be
combined with shared memory programming models. For instance, [Rabenseifner,
2003], [Lusk and Chan, 2008], and many others propose parallelizing the code that
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runs on each node by using OpenMP, instead of running as many MPI tasks as cores
within a node.

Similarly, MPI can also be combined with the programming model that this thesis
presents. While OpenMP is helpful in reducing the unnecessary data copies between
MPI processes of the same node, [Marjanović et al., 2010] demonstrates that SMPSs
further simplifies overlapping computations with communications and can help to
accelerate the critical path.

2.1.2 Partitioned Global Address Space models

Partitioned Global Address Space models, abbreviated as PGAS, replace the distrib-
uted memory model used in message passing by a global address space. However,
while the address space is unique, it is divided in parts that are distributed across the
computing nodes. Hence, while computations that only involve data that is local can
be executed as-is, computations involving remote memory require communication.
An overview of the status of the PGAS landscape has been recently presented by
[El-Ghazawi and Smith, 2013].

Execution Model

The most common execution model used in the PGAS models is the SPMD. Unified
Parallel C (UPC) by [UPC Consortium, 2005], Co-Array Fortran (CAF) by [Numrich
and Reid, 1998], X10 by [Charles et al., 2005] and Titanium by [Yelick et al., 1998]
use SPMD as their base execution model. X10 additionally supports submitting
asynchronous units of work to remote nodes.

Chapel by [Chamberlain et al., 2007], similarly to OpenMP 3.0 by [OpenMP
Architecture Review Board, 2008], combines the fork-join model with asynchronous
units of work.

Address Space

While all PGAS models have a partitioned and unique address space, they differ on
how it can be accessed. The distinction between local and remote accesses can be
exposed in the language syntax or hidden under a homogeneous syntax. In UPC, X10,
Chapel and Titanium, the syntax does not differentiate between local and remote data.
However, while UPC, X10 and Chapel allow to directly express references for remote
data, Titanium requires to get references to remote data through communications.
In addition X10 does not allow to access remote data directly, instead it forces to
send the computation to the location of the data. In CAF, data declarations and data
accesses explicitly contain information about their location.

For performance reasons, UPC, CAF and Titanium also have a specific syntax for
data that is local.

Data Distribution

Data in UPC and CAF is distributed in rectilinear subsets of fixed dimensions. That is,
arrays are declared as being partitioned in equally sized rectilinear chunks. The X10
and Titanium languages, since they follow the SPMD paradigm, distribute the data
implicitly like MPI. Chapel allows more flexibility by allowing arbitrary distributions
that can be defined programmatically.
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Data and Computation Co-Location

The SPMD model, as used by UPC, CAF, X10 and Titanium, lets the user determine
where computations take place. In that sense, the user is responsible for placing
computation and distributing data in a way that is suitable for the desired perfor-
mance goals. While UPC, CAF and Titanium allow to freely access remote data, X10
is more constrained. In X10, the user code must send computations to the location
where the data that is written is stored. Remote data that is read is sent as a copy
when the computation is sent to its destination.

In Chapel, computations can be sent manually to specific nodes, and are sent
automatically in parallel global operations. Parallel zippered iterations are also sent
automatically to the corresponding location as defined by the work of [Chamberlain
et al., 2011].

Orthogonality

All the PGAS programming models mentioned in this text have parallel programming
primitives similar to the tasks of SMPSs. However, they do not have the information to
calculate the dependencies nor the dependency semantics of SMPSs. In this sense, the
contributions of chapters 3 and 4 are orthogonal and thus their task-like constructs
could be extended to incorporate those contributions.

2.1.3 Cilk

Cilk by [Frigo et al., 1998] is a minimal extension of the C programming language
that adds nested task parallelism.

Execution Model

Cilk has a sequential main control flow. Tasks are asynchronous computation units
that are instantiated either in the main control flow or within the control flow of
other tasks. They execute asynchronously in the different execution locations.

To allow using data generated by tasks, Cilk includes a synchronization primitive
that guarantees that all tasks instantiated in the context before the synchronization
point have been executed after the synchronization point has been crossed. This
allows Cilk programs to have a certain amount of dependency control between tasks.

Cilk supports spawning tasks within tasks. This is called task nesting and allows it
to express in a simple manner parallelism in recursive algorithms. While expressing
a recursive algorithm as a decomposition up to the most elemental operation may be
desirable in terms of elegance, the cost of spawning tasks below a certain threshold
can be prohibitive. For this reason, the Cilk programming model incorporates the
notion of fast task, that corresponds to the tasks generated at a certain level of the
recursion, that are not further decomposed into smaller tasks. Instead, those tasks
handle task spawns as regular function calls, and ignore further synchronization
primitives.

This model achieves parallelism in two ways. First, by decomposing problems
recursively, it effectively parallelizes the generation of work. And second, the work is
parallelized at the granularity of the fast tasks and at the granularity of the processing
performed by their parent tasks.
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Address Space, Data Distribution and Computation Co-Location

Cilk is based on a shared memory model with a single address space. Some works
like the ones of [Peng et al., 2000] and [Blumofe et al., 1996] analyze the model
on top of Distributed Shared Memory (DSM). [Amos, 2006] discusses the model
when applied to Cache Coherent NUMA (ccNUMA). While it presents mechanisms
for data distribution and computation co-location, its results sections does not show
significant performance improvement over NUMA-unaware data and computation
placement.

Orthogonality

Cilk tasks are similar to SMPSs tasks, but allowing nesting. However, they do not
have the information required to calculate dependencies nor the dependency seman-
tics of SMPSs. While nesting is a form of dependency, it is orthogonal to the data
dependencies that this thesis proposes. Therefore both can types of dependencies
can coexist. In this sense, the contributions of chapters 3 and 4 are orthogonal and
thus Cilk tasks could be extended to incorporate those contributions.

2.1.4 OpenMP 3.0

OpenMP 3.0 by the [OpenMP Architecture Review Board, 2008] is a standardized
programming model for shared memory multiprocessors. When this thesis started,
the standard was in version 2.5 and did not contain task-based parallelism. It only had
primitives for fork-join style parallelism. In version 3.0 it added primitives for Cilk-
style tasks. Most recently, the [OpenMP Architecture Review Board, 2013] published
version 4.0 of the standard, which incorporates some of the ideas contributed in this
thesis in chapter 3. For this reason, in this thesis when comparing to OpenMP we
only do so against version 3.0 instead of the most recent one.

Execution Model

OpenMP has a fork-join model combined with asynchronous units of computation.

Address Space, Data Distribution and Computation Co-Location

OpenMP is a shared memory model and thus has only one address space. While
[Bircsak et al., 2000] present extensions to the language to add NUMA support, these
have not been considered in further versions of the standard. [Nikolopoulos et al.,
2000] present a transparent mechanism that does not involve any change in the
syntax and that is based on page migration. However, to this author’s knowledge,
such mechanism has yet to have an impact on commercial OpenMP frameworks.

Orthogonality

The OpenMP 3.0 tasks are very similar to the Cilk tasks. Therefore the applicability of
the contributions of this thesis are the same. While nesting is a form of dependency,
it is orthogonal to same level data dependencies. Therefore, the contributions of
chapters 3 and 4 could be incorporated into OpenMP 3.0 tasks. In fact, OpenMP
4 tasks already does incorporate the contributions of chapter 3, and in part an
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alternative to the syntax proposed in chapter 4. However, it still does not include
support for strided and partially overlapping data dependencies.

2.1.5 Sequoia

Sequoia is a parallel language based on asynchronous computation decomposition
that is aware of the memory hierarchy.

Execution Model

Similarly to Cilk, it has a main execution control control flow that spawns asynchro-
nous units of computation with recursion.

Address Space

Sequoia has a single global address space.

Data Distribution and Computation Co-Location

In Sequoia data moves transparently across the different levels of the memory
hierarchy. While to this author’s knowledge, it is NUMA-unaware, many of the ideas
and techniques used in its implementation for the Cell/B.E. also apply to NUMA
architectures.

Orthogonality

Sequoia tasks are very similar to the Cilk tasks. Therefore the applicability of the
contributions of this thesis is the same. While nesting is a form of dependency, it
is orthogonal to same level data dependencies. Consequently the contributions of
chapters 3 and 4 could be incorporated into Sequoia.

2.2 Unstructured Parallelism

Unstructured parallelism is naturally present in algorithms that deal with highly
dynamic data structures. For instance, algorithms that operate over sparse matrices,
graphs or trees. Usually, the units of parallel computation are discovered as these data
structures are traversed, which makes them difficult to parallelize using constructs
designed for structured parallelism.

2.2.1 Tasking and Task Nesting

Unstructured parallelism can be exploited by decoupling the execution of actual
computation from the place it is instantiated. In this thesis we refer to the spawned
unit of computation as task. By decoupling instantiation from execution, the main
control flow can instantiate tasks dynamically without waiting for their execution,
thus generating parallelism.

To preserve the correctness of the code against reordering between task code and
out-of-task code, task-based programming models provide synchronization mecha-
nisms. The barrier is the most commonly implemented synchronization primitive. It
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guarantees that after crossing it, all previously instantiated tasks within its scope
will have already been finished.

Task nesting allows tasks to be created within the scope of the execution of
other tasks. Tasks instantiated within the scope of a parent task may or may not
need to be executed within that scope depending on the programming model. Some
programming models add implicit barriers to the end of each task to guarantee
nested execution, and others detach children tasks and require manual barriers to
force it. This model is the basic parallel paradigm used by [Frigo et al., 1998] in
Cilk and was added to OpenMP in version 3.0 [OpenMP Architecture Review Board,
2008].

2.2.2 Futures

Futures have been proposed by [Baker and Hewitt, 1977; Chatterjee, 1989; Friedman
and Wise, 1978], among others, as a way to parallelize programs composed of
functions without side-effects. Futures decouple the point in which a function is
invoked from the time it is executed. The outputs of such functions are populated
with promises for their future values which can be passed on to other functions.

Functions instantiated using futures, also known as called-by-future, may be
executed in parallel at any time and may also be delayed. [Friedman and Wise,
1978] use the term suspension to describe the act of delaying a task, and coercion to
the act of starting it. Whenever a value is needed, if the value has not been calculated
already, it is coerced by forcing the execution of the function that calculates it. This
action may result in further coercion of other values.

Future-based models have similarities to task nesting models. Function calls in
future-based models are similar to tasks since they can be delayed, and can call other
functions, hence leading to semantics similar to task nesting. Coercion, which can
be transparent, is similar to partial barriers in task-based models. However, due to
the recursive nature of coercion, future-based models have similar capabilities to
dependency-aware models. When used exclusively with functions free of side effects,
futures allow exploiting as much parallelism as the model proposed in this thesis
plus task nesting. However, when implemented on Object Oriented languages, since
method calls may alter the state of the target object, they are not free of side effects.
This creates a series of shortcomings:

Less potential parallelism or convoluted mutual exclusion Objects can have
several method calls outstanding. They can be either served sequentially or in parallel.
Serving them sequentially reduces the potential amount of parallelism that can be
extracted, and blocks the generation of further work. Serving them in parallel might
require using mutual exclusions (to avoid concurrent modification, inconsistent state,
...), which makes it complex since the user then has to deal with potential distributed
dead-locks. However, as noted by [Friedman and Wise, 1978], these problems can
be eliminated by changing the semantics of assignment to make it non-destructive.

More opportunities for deadlocks [Ábrahám et al., 2009] describe how futures,
when used with side effects, can lead to deadlocks.

Additionally, futures do not preserve the semantics of sequential execution, which
can lead to inconsistent results between executions. Our model does preserve se-
quential execution semantics in the general case, and only violates it in reductions.
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2.2.3 Dependency Analysis

Dependence analysis has been a hot topic for many years in the field of automatic
parallelization. Initially [Banerjee, 1976, 1988; Wolfe, 1993] used it at compile time
for finding loop-carried dependencies between array accesses to parallelize loops.
Their effectiveness has been analyzed by [Blume, 1992; Eigenmann et al., 1998].

Dependence analysis evolved to cover parallelism beyond loop iterations. [Bala-
sundaram and Kennedy, 1989] used a summarized representation for data accesses
called the Data Access Descriptor. By using summaries, the authors were able to ex-
tend data dependence analysis across loop nests and subroutines. This technique was
also extended by [Girkar and Polychronopoulos, 1992] to find task-level parallelism
using the Hierachical Task Graph.

2.2.4 Dependency-Aware Programming Models

Several authors have proposed adding extensions to handle dependencies to OpenMP.
[Sinnen et al., 2008] proposed adding a pair of new constructs called tasks and task
similar to the sections and section constructs. However the new constructs had a
name and a clause to specify dependencies by name. The scheduling they proposed
is static and is decided at compile time. However, the semantics of these directives
do not prevent scheduling the tasks at run time.

A similar model has been proposed by [Gonzalez et al., 2000, 2003]. However, this
model does not limit dependencies to section-like constructs. Their syntax allows to
specify dependencies between work-sharing constructs, and even refer to particular
iterations. They also present an implementation that schedules at run time.

While the proposals of both [Sinnen et al., 2008] and [Gonzalez et al., 2000] allow
to program with dependencies, they leave the burden of finding out the dependencies
to the programmer, who must specify them explicitly. This is a major difference with
the model of this thesis.
[Abdelrahman and Huynh, 1996; Huynh, 1996] presented a task-based program-

ming model with nesting. The model is dependency-aware thanks to a combination
of compiler analysis and run time constraint checks. The compiler recognizes ac-
cesses to arrays and includes code in each task that verifies that an access does not
violate the semantics of the sequential execution. Otherwise, it suspends the task
until that access can be performed safely. In that sense, it is similar to future-based
models. However it allows functions with side-effects without indeterminism by
forcing sequential execution semantics.

While this thesis is centered on the design of the programming model and its
applicability to shared memory multiprocessors, the model is also applicable to
distributed memory systems. In particular [Bellens et al., 2006; Perez et al., 2007]
have applied it to the Cell Broadband Engine processor in the form of Cell superscalar
(CellSs), and [Perez et al., 2006] have applied it to a Grid environment. Selected
contributions from this thesis have also been proposed as an extension to OpenMP
by [Duran et al., 2008, 2009] which further guided the changes in OpenMP 4 to
include tasks with dependencies.
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Chapter 3

A Dependency-Aware
Task-Based Programming
Model

3.1 Introduction

Parallelizing applications, beyond those that are embarrassingly parallel, is a complex
endeavor. The presence of dependencies imposes limitations and is a great contributor
to the complexity of the analysis and the solutions.

Parallelizing codes, in many cases requires a certain level of code restructuring.
Often, the code has to be reordered in a form that is suitable to be parallelized. In
some others, restructuring is needed to achieve good performance.

When parallelizing in the traditional forms, the programmer must think about the
order of the execution, and the interactions between the code that runs in parallel. These
aspects tend to make parallel programming complex and hard to debug. Moreover,
the solutions to these problems usually add elements that are extraneous to the
underlying algorithm.

These sort of shortcomings can be solved in some cases by using already parallel
domain-specific frameworks. However, these exist only for certain domains, and
only cover a limited subset of problems. An thus, do not solve the need for a general
solution.

Parallelizing compilers have the potential to provide a general solution. However,
to this date they have not been widely accepted. Some of the issues that limit their
effectiveness are due to the design of the target programming languages. The most
common programming languages used in parallelizing compilers make it difficult to
determine pointer aliasing and the range of data that is accessed at compile time.
Moreover, they lack the information to aid the compiler in deciding whether to
parallelize a section of code and which granularity to use.

Traditional parallel programming models rely on the programmer to specify the
parts of the code that must or can always run in parallel to other parallel parts of
the code. Throughout this document we call their instances parallel execution units.
These are defined with precision and typically amount to small spans of the code. For
instance, the OpenMP standard provides several parallel constructs that are added to
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C and Fortran that determine the parallel execution units. They can be either single
statements, blocks of code or groups of loop iterations. OpenMP 3 also provides
some dynamism through the instantiation of tasks, these are restricted to run in
parallel to other tasks and parallel execution units. In this document we refer to the
execution span as the span during which a parallel execution unit must start and
finish. The OpenMP 3 tasks, although they are dynamically created, have a typically
small execution span.

Partitioned Global Address Space programming models (PGAS) like Co-Array
Fortran by [Numrich and Reid, 1998], Chapel by [Chamberlain et al., 2007], Titanium
by [Yelick et al., 1998] or X10 by [Charles et al., 2005] also rely on the programmer
to decide which parts of the code must or can always run in parallel, and these
typically have a small execution span too.

The programming model we present in this chapter, SMP superscalar (SMPSs),
relies on the programmer to specify the parts of the code that could run in parallel to
the rest of the code. This contrasts with most parallel programming models which
specify the parts of the code that must run in parallel to a small and concrete part of the
code. Unlike other programming models, the execution span in SMPSs is only bound
by explicit barriers, and those are infrequent. While other programming models use
barriers to guarantee correct executions, SMPSs uses a much finer approach. Instead,
it uses data dependencies between its parallel execution units.

To make the programming model as simple as possible, it only has the task as
parallel construction. Although the foundations of the model do not require it, in
SMPSs tasks are always functions. They can be invoked at any time in the code, and
thus they are instantiated dynamically.

In OpenMP 3, tasks within a parallel span can always execute in parallel. This
forces the programmer to determine data dependencies and to isolate parts that can
run in parallel from parts that cannot. SMPSs does not impose that restriction, and
thus reduces the effort needed to produce a correct parallel program. Instead, the
programmer indicates that tasks are the units that could run in parallel and specifies
enough information for the SMPSs runtime to detect the dependencies. With that
information, the runtime produces valid parallel executions.

By basing the execution span on the data dependencies, it can become larger
than that of a model that constrains it with barriers. As a consequence, parallel
execution units that would otherwise have disjoint execution spans, can enlarge it
and thus increase the potential parallelism of the application. This effect is described
in more detail in the evaluation section.

The programming model consists of an execution model, that is discussed in
section 3.2, and a set of annotations that extend standard sequential programming
languages with the capabilities of the execution model. This is presented in section
3.3. Due to the dynamism of the model, the role of the compiler is very limited.
Instead, all the features of the model are implemented in the runtime, which is
described in section 3.4. Section 3.5 presents the features of the model and the
runtime that help in debugging and profiling applications. And finally section 3.6
presents and measures the performance of a set of applications under the program-
ming model and compares it to that of other programming models and highly tuned
parallel libraries. The evaluation is further extended in appendix C with additional
benchmarks that have been left out of this chapter for brevity.
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3.2 Execution Model

The SMPSs execution model is based on the execution in parallel of the parallel
execution units while preserving the semantics of the unannotated sequential code.
During the program initialization, the model spawns a set of worker threads that it
uses to execute the tasks. The main thread runs the main code as if it was a sequential
program. As it finds task calls, it instantiates them, calculates their dependencies
and continues running the main code. As the dependencies are satisfied, the task
instances get scheduled to the worker threads. These are kept alive until the program
finishes.

Parallel Execution Unit

In SMPSs, unlike other programming models, there is only one parallel execution
unit: the task. Tasks are functions that have been added an annotation that indicates
that it is a task. The annotation also includes information that allows to find their
data dependencies at run time.

Dynamic Creation of Work

Like in OpenMP, SMPSs tasks are instantiated dynamically within the program. Since
their parameters cannot be determined during compile time, the dependencies are
determined at run time. This flexibility allows the programming model to handle the
parallelization of codes whose units of computation heavily depend on their input
data. For instance, sparse algorithms typically have unstructured parallelism that
depends on the sparseness of the data they handle.

Control Flow and Asynchronism

Task invocations have asynchronous semantics. After their instantiation, the main
program control flow can continue running, and the actual task invocation may be
delayed. Task invocations can run in parallel to other tasks and to the main program
control flow.

By calculating the task dependencies through their parameters, the runtime
guarantees safe data accesses between tasks of only the data passed by parameters.
That is, it does not guarantee concurrent access safety between the tasks and the
main control flow nor over data other than the one passed by parameter to the tasks.

Thus, to achieve inter-task data concurrent access safety, all the data must be
passed by parameters to the tasks. However, to achieve data concurrency safety
between the tasks and the main control flow, the programming model provides two
synchronization primitives.

Parallel Execution

By executing tasks only when their dependencies have been satisfied, the runtime
can guarantee that the execution generates the same result as the original sequential
code. Moreover, since more than one task may have its input dependencies satisfied
at a given time, there is potential to run them in parallel.
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Out-of-Order Execution

Data dependencies determine a partial order of execution that must be followed to
produce valid results. However, in many of the valid schedules are not just parallel,
but have tasks executed in a different order than that of their instantiation.

Parallel Span

Since some parts of the main program may not be executed in parallel to some
tasks or have ordering issues, the programming model provides two synchronization
primitives to limit the parallel span of tasks. One is a global barrier which forces all
previously instantiated tasks to be executed. The other is a partial synchronization
point, which is finer grained. This one forces all tasks that access a given set of data
to be executed.

In other parallel programming models that use barriers to isolate the parallel
execution units that can coexist, the parallel execution units that are instantiated
between each pair of barriers typically have parallel spans that essentially cover the
span between the two barriers.

In our programming model, since dependencies determine when task instances
can be started, the parallel spans are not structured in barrier generations, and in
fact they are typically very different from task instance to task instance. Tasks can
start to execute from the time that their input dependencies have been satisfied,
which could be as soon as when they are instantiated, and must have finished before
crossing a full barrier, or a partial synchronization point over any of the data accessed
by the given task.

Address Space Independence

Task declarations include additional information that allows the runtime to calculate
dependencies. This information is in essence the directionality of the task parameters.
That is, whether a parameter is read, written or read and written. Tasks must only
access the data passed to them as parameters to prevent accesses that violate the
semantics of the sequential execution.

By following this approach, it is possible to run the tasks over data allocated
on different addresses than those of their instantiation, as long as the actual data
definitions are transferred from one memory location to the other. This allows the
model to work in a manner that is independent of the address space.

While SMPSs is a programming model for shared memory multiprocessors, it
can be used on distributed memory systems too due to these properties. This has
been demonstrated by [Perez et al., 2006].

Renaming

Address space independence enables more aggressive techniques to improve par-
allelism. Renaming is a technique that removes so called false dependencies. It has
been successfully used in out-of-order superscalar processors, as decribed by [Smith
and Sohi, 1995], and optimizing compilers, as described by [Kuck et al., 1981]. False
dependencies occur when some form of storage is first read and then written, or
when it is written and then written a second time. In both cases, to preserve the
correct semantics, the operations must be performed sequentially. However, in each
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case renaming moves the second operation to a different storage location, and thus
it removes the dependency.

In processors, register renaming allows instructions that would be delayed due
to false dependencies to be executed earlier by using a different register than the
one that produces the false dependency. In optimizing compilers, variable renaming
allows to reorder statements that share a variable that produces a false dependency.

3.3 Language Syntax and Semantics

SMPSs is an extension to existing sequential programming languages that adds
parallel capabilities. Similarly to OpenMP by the [OpenMP Architecture Review
Board, 2008], it consists of a set of annotations that are added on top of sequential
programming languages that add information related to the parallelization. This
approach simplifies the reuse of already existing highly tuned kernel libraries, and
the parallelization of already existing codes. This thesis only covers the syntax for
C99, although a similar syntax has also been produced for Fortran.

The grammar rules of this thesis are written using the Backus-Naur Form (BNF).
Terminals appear in bold face, and non-terminals appear between angle brackets.
Each rule is identified by a number in parenthesis followed by the symbol it defines.
Rules may have one or more subrules that satisfy it. The symbol of each rule is
followed by an arrow (→), and one line for each possible subrule. Subrules begin
with a group of numbers in parenthesis that correspond to the rule number followed
by a period and the subrule number. The first subrule then continues with the
sequence of terminals and non-terminals that satisfies it. The rest continue first with
a vertical bar that signifies that it is an alternative and then the sequence that satisfies
it.

3.3.1 Initialization and Finalization

The execution model of SMPSs consists of a main control flow that traverses the
main code and instantiates the tasks, and a set of worker threads that execute them.
The start and finish directives determine the points where the worker threads are
forked and joined respectively. Their grammar rules are the following:

(1) 〈start-directive〉 →
(1.1) #pragma css start

(2) 〈finish-directive〉 →
(2.1) #pragma css finish

These directives may appear anywhere that a C99 statement may appear.

3.3.2 Tasks

The main parallelism construct in SMPSs is the task. A task is a function that has
been annotated with information about how it accesses its parameters. The grammar
of the task construct is the following:
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(3) 〈task-construct〉 →
(3.1) 〈task-declaration〉
(3.2) | 〈task-definition〉

(4) 〈task-declaration〉 →
(4.1) 〈task-pragma〉 〈function-declaration〉

(5) 〈task-definition〉 →
(5.1) 〈task-pragma〉 〈function-definition〉

(6) 〈task-pragma〉 →
(6.1) #pragma css task 〈opt-task-clauses〉 〈new-line〉

(7) 〈opt-task-clauses〉 →
(7.1) 〈task-clauses〉
(7.2) |

(8) 〈task-clauses〉 →
(8.1) 〈task-clauses〉 〈task-clause〉
(8.2) | 〈task-clause〉

(9) 〈task-clause〉 →
(9.1) input ( 〈task-parameter-list〉 )
(9.2) | output ( 〈task-parameter-list〉 )
(9.3) | inout ( 〈task-parameter-list〉 )
(9.4) | reduction ( 〈task-parameter-list〉 )
(9.5) | highpriority

(10) 〈task-parameter-list〉 →
(10.1) 〈task-parameter〉
(10.2) | 〈task-parameter〉 , 〈task-parameter-list〉

(11) 〈task-parameter〉 →
(11.1) 〈identifier〉 〈opt-task-parameter-dimensions〉

(12) 〈opt-task-parameter-dimensions〉 →
(12.1) 〈task-parameter-dimensions〉
(12.2) |

(13) 〈task-parameter-dimensions〉 →
(13.1) 〈task-parameter-dimensions〉 〈task-parameter-dimension〉
(13.2) | 〈task-parameter-dimension〉
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1 #pragma css task input(N, a) output(b)
2 void add_one(int N, int const a[N], int b[N]) {
3 for (int i = 0; i < N; i++)
4 b[i] = a[i] + 1;
5 }

Listing 3.1: Task defintion example.

(14) 〈task-parameter-dimension〉 →
(14.1) [ 〈expression〉 ]

A C99 translation unit can contain calls to (3) tasks defined in the same translation
unit and tasks defined externally. External tasks are declared by placing the task
pragma before their function declaration (4). Local tasks are defined by placing the
task pragma before their function definition (5).

The task pragma (6) consists in the #pragma css task text, a space separated
list of clauses (8), and an end of line delimiter. The input (9.1), output (9.2), and
inout (9.3) clauses define the kind of accesses of a task over each of its parameters.
They indicate the parameters that are only read; only written; and read and written,
respectively. Each parameter must appear exactly one time in one of these clauses.

The parameters in those clauses are separated by commas (10) and consist of
(11) the name of the parameter and optionally (12) the dimensions of the parameter
(13), which have the same syntax as in C99 (14). The optional dimensions allow to
specify the dimensions of array parameters that are passed as pointers.

The highpriority clause (9.5) indicates that during scheduling, the task must
have higher priority than other tasks without the clause.

Due to the asynchronous nature of tasks, and for simplicity, the return type of a
task must be void. Additional parameters passed as output pointers can be used for
the same purpose.

Listing 3.1 shows a task definition that takes an array a of N elements and sets
an array b of the same size to the same values as a plus 1. Notice that since N and a
are only read by the task, they appear in the input clause. Since b is writen and its
initial value is discarded, it appears in the output clause.

3.3.3 Reductions

SMPSs supports task-based reductions. Task instances that perform an inout access
over a parameter may be run in parallel if instead of including the parameter on an
inout clause, they do it on the reduction clause (9.4). The syntax of the parameters
of this clause is identical to the one of the directionality clauses (10). All consecutive
task instances that perform a reduction update over the same data are not serialized
due to their dependencies over that data. Instead, the run-time allows them to run
in parallel.

While the compiler could be used to automatically protect the accesses to the
reduction parameter, as an initial implementation, any mutual exclusion to these
memory locations must be explicitly programmed by using either compiler intrinsics,
external libraries or the mutual exclusion primitives provided to that effect.
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1 #pragma css task input(BS, a, b) reduction(result)
2 void dot_product_task(int BS, double a[BS], double b[BS], double ∗result) {
3 double partial_value = 0.0;
4 for (int i = 0; i < N; i++)
5 partial_value += a[i] ∗ b[i];
6

7 #pragma css lock(result)
8 ∗result += partial_value;
9 #pragma css unlock(result)

10 }
11

12 void dot_product(int N, double a[N], double b[N], double ∗result) {
13 ∗result = 0.0;
14 for (int j = 0; j < N; j += BS)
15 dot_product_task(BS, &a[j], &b[j], result)
16 }

Listing 3.2: Dot product implemented using a reduction.

The syntax of the mutual exclusion primitives is the following:

(18) 〈lock-directive〉 →
(18.1) #pragma css mutex lock ( 〈expression〉 )

(19) 〈unlock-directive〉 →
(19.1) #pragma css mutex unlock ( 〈expression〉 )

The first primitive (18) starts a mutual exclusion and the second one (19) termi-
nates it. Both use a C99 integer expression to discriminate between mutual exclusions
or exclusions to different data. The value of the expression can be arbitrary but must
be consistent between the lock and unlock primitives and between exclusions to the
same data. Both primitives may appear wherever a C99 statement may appear.

Listing 3.2 shows an implementation of the dot product using a reduction.
The code calculates result =

∑N
i=1 ai · bi in tasks that perform partial dot prod-

ucts of BS elements at a time. That is, the algorithm is implemented as result =
∑N/BS

j=1

∑BS
i=1 ai+ j·BS · bi+ j·BS. The outer sum corresponds to the loop that starts at line

14 and is implemented as a reduction in lines 7–9. The inner partial sum is performed
over a local variable and corresponds to the loop that starts at line 4. In this case
the reduction part is implemented using the mutual exclusion primitives. To identify
uniquely the mutual exclusion we use the address of the result.

3.3.4 Synchronization

Tasks are asynchronous with respect to the main control flow. Data read by already
instantiated tasks cannot be reliably modified in the main control flow until those task
instances that access that data have finished. Similarly, data written by instantiated
tasks cannot be reliably read in the main control flow until those task instances have
finished.
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Synchronization primitives provide means to suspend the execution of the main
control flow until all or some tasks have finished. Their grammar is the following:

(20) 〈barrier-directive〉 →
(20.1) #pragma css barrier

(21) 〈waiton-directive〉 →
(21.1) #pragma css wait on ( 〈waiton-expression-list〉 )

(22) 〈waiton-expression-list〉 →
(22.1) 〈conditional-expression〉
(22.2) | 〈conditional-expression〉 , 〈waiton-expression-list〉

The barrier primitive (20) stops the main control flow until all previously in-
stantiated tasks have finished. This primitive has been used in our evaluation to
reliably measure the time that it takes to instantiate and execute the tasks of the
computations and to discard the time taken by the data initialization.

The wait on primitive (21) stops the main control flow until all task instances
that access a specific set of data have finished. The data is specified as a comma
separated list of addresses that point to the beginning of each target data (22).
The 〈conditional-expression〉 used in production (22) corresponds to the same non-
terminal symbol defined in the C99 standard. This primitive is useful for accessing
data generated by previous tasks from within the main code.

Listing 3.3 shows the skeleton of a minimization algorithm. The algorithm
initializes its data using tasks in the first loop. In this case, the implementation also
measures the time that it takes to execute the minimization. The barrier in line
6 guarantees that the timer is started in line 7 after the initialization tasks have
finished. Similarly the barrier in line 19 guarantees that the timer is stoped in line
20 after all the previous tasks have finished.

The code skeleton assumes that target_variable stores the result of the mini-
mization. The minimize function is an arbitrarily complex function that uses tasks
to perform the minimization. These update the values stored in target_variable
to reflect the minimization status at that point. To check if the minimization has
finished, the code must access the contents of target_variable, and since the main
control flow depends on its contents, the access must be performed after the variable
has received its last value. The wait on primitive in line 13 guarantees that the
following line can access the variable in isolation and that it will contain its latest
updated value.

3.3.5 Compiler and Runtime Integration

To implement the language, the programming environment has a compiler and a
runtime library. The role of the compiler is to transform the program code into calls
to the runtime, which in turn is responsible of handling all of the languages features.
Appendix B.2 that starts in page 195 contains a detailed description of the internal
programming interface of the runtime, the correspondence between that and the
language and the functioning of the compiler.
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1 void minimization_algorithm(int N, int BS, ...) {
2 for (int i = 0; i < N; i += BS) {
3 initialization_task(BS, ...)
4 }
5

6 #pragma css barrier
7 start_timer();
8

9 bool finised = false;
10 while (!finished) {
11 minimize(..., target_variable);
12

13 #pragma wait on(target_variable)
14 if (have_finished(target_variable)) {
15 finished = true;
16 }
17 }
18

19 #pragma css barrier
20 end_timer();
21 }

Listing 3.3: Minimization algorithm skeleton.

3.4 Runtime

The runtime is where most of the programming model functionality resides. The
transformed code calls its functions to perform the task instantiation and synchro-
nization, and the runtime calls the task code to perform the actual task execution.

The runtime is responsible of the task instantiation, the dependency calculation,
the scheduling, the actual task execution and the synchronization.

3.4.1 Dependency Analysis

The task instantiation order and their accesses define a partial order that is determined
by the creation and consumption of data definitions.

A task instance that writes to a memory location creates a new definition. A
following task instance in sequential order that reads that memory location consumes
that definition. This relation is a data dependency relationship. A task instance that
reads a memory location followed by another that writes to that memory location
also establishes a dependency relationship, since the read must be performed before
the write to allow it to access the correct definition. Two tasks instances that write
to the same memory location also have a dependency relationship, since to preserve
sequential semantics, further task instances that read the memory location need to
read the correct definition. These dependency relationships are called Read-after-
Write (RaW), Write-after-Read (WaR) and Write-after-Write (WaW) respectively.

To detect dependencies, the runtime keeps a map of which task instance produces
the last definition of a memory position at a given time and which task instances
consume it. For simplicity, it is assumed that the program only accesses contiguous
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and non-overlapping segments of memory. These restrictions are relaxed in chapter
4. Under those conditions, the runtime can keep track of the producer and consumers
of the last definition of each segment of memory by indexing it by its base address.
This data structure can be implemented using any indexing strategy. For instance,
it could be implemented using a search tree indexed by the base address of the
memory segment and containing the producer and consumers of the last definition
of the segment.

Given a task instance that reads a segment of memory with the above restrictions,
a RaW dependency can be detected by finding the last writer to that memory segment.
A further task instance that writes to that segment will have a WaR dependency over
it. To enable that check in the future, the runtime adds this task instance to the list
of readers of the last definition of that memory segment.

Given a task instance that writes to a memory segment with the above restrictions,
WaR dependencies can be detected by finding the readers of the last definition of that
memory segment, and a WaW dependency can be detected by finding the writer of
the last definition of that memory segment. To enable detecting further dependencies
against this task, and since the task creates a new definition, the memory segment
has its last writer set to this task, and the list of readers cleared.

Combined read and write accesses can be handled similarly to a read access
followed by a write access. The only difference lies in avoiding adding the task as a
reader of the memory segment, to prevent creating a self-dependency.

Limitations

This dependency analysis strategy has two main limitations. First, it is restricted to
contiguous and non-overlapping memory segments. And second, it has unnecessary
dependencies. This thesis covers the first limitation in chapter 4, and the second in
the following section.

3.4.2 Data Renaming

RaW dependencies are also called true dependencies, because they cannot be avoided
without resorting to speculation. In contrast, WaW and WaR dependencies are called
false dependencies because they can be removed without resorting to speculation.

False dependencies occur between accesses to different definitions of a common
memory location. By moving these definitions to different memory locations, these
dependencies disappear. A write followed by another write to the same memory
location does not produce a dependency when the second write is moved to a
different location. Similarly, a read followed by a write to the same memory location
does not produce a dependency when the write is moved to a different location.

To implement renaming, the runtime must be made aware of data definitions.
These may either reside in their original memory segment or may need to be allocated
in a different memory location.

To execute a task, the runtime must be able to map the definitions of its parameters
to their actual memory addresses. Parameters that are only written, may have their
definitions stored in their original locations if these do not already hold another live
definition. Otherwise, the runtime needs to allocate new space for the definition.

Parameters that are only read must point to the memory used by the task that
created their definition. Parameters that are read and written have two definitions:
a definition they consume, and a definition they create. However, since the task
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implementation expects a parameter to only have one base address, the runtime must
use a single base memory location. If the task is the only reader of the read definition,
its memory can be reused for the write definition. Otherwise, a new location must
be used for the write definition. In the latter case the runtime has to copy the read
definition data over to the write definition location and use it as the storage of the
parameter.

Definitions become dead when they no longer have any pending accesses and
they correspond to memory segments that have younger definitions. As they become
dead, the runtime deallocates their memory.

Synchronization primitives force the last definition of a memory segment to
be copied back to its original memory location. This effectively makes the original
memory segment the storage of the last definition. While barriers affect all the last
definitions, the “wait on” primitives affect only the last definition of the memory
segments that appear in their “on” clause.

3.4.3 Reductions

The scope of reductions is determined by the accesses to the target memory segment
of the reduction. A reduction is started by a task instance that performs a reduction
access over a memory segment. It spans all following task instances that perform the
same access and is finished by a synchronization or by the first task instance that
performs a different access over the same memory segment. As defined in section
3.3.3, task instances that participate in the same reduction do not have dependencies
between them due to the reduction access.

Whenever a reduction is initiated, the runtime performs the same actions as in
the inout case. However, instead of setting the task instance as the writer of the new
definition, it adds the task instance as a “parallel updater” and sets a mark in the
definition that indicates that a reduction has been started. Further task instances that
perform a reduction over the same memory segment, recover the read definition for
finding their RaW dependencies, and add themselves to the list of parallel updaters
of the last definition.

The locking primitives accept arbitrary numbers to identify memory segments.
Internally they map the identifiers to mutexes. These can be implemented using
standard locking libraries, platform intrinsics, or atomic operation compiler exten-
sions. The identifier mapping can be performed using hashing to a preallocated set
of mutexes, or using a dynamic data structure to allow allocating and deallocating
them on demand.

This thesis evaluates an implementation that uses a static hash table with preal-
located mutexes.

3.4.4 Synchronization

Synchronization primitives perform two actions: they wait until a set of tasks finishes
and they copy back the last definition of a set of memory segments to its original
location. Barriers wait all tasks in the system and copy back all the last definitions of
all memory segments that have been created.

Partial barriers wait for the task instances that access the last definition of each
memory segment specified in the on clause, and the task instances that access their
original memory location. Then they copy back the data from the last definition, to
their original memory location.
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3.4.5 Scheduling

One of the main goals when scheduling under SMPSs is to exploit data locality. In that
regard the scheduler takes advantage of the graph information to schedule dependent
tasks sequentially to the same core so that output data is reused immediately.

The scheduler has two main ready lists, one for high priority tasks and one for
normal priority tasks. The tasks of the high priority list get scheduled by the worker
threads as soon as they become idle, and independently of any locality consideration.
The tasks of the normal priority list are scheduled only when the high priority queue
is empty. Whenever the main thread instantiates a task without any input dependency,
it moves it into the main ready list or the high priority list where it can be scheduled
by the worker threads.

Each worker thread has its own ready list that contains tasks whose last input
dependency has been removed by that thread. Whenever a thread has finished
running a task, it removes it from the graph and moves all tasks that have become
ready to its ready list.

Threads look for ready tasks first in the high priority list. If it is empty, then they
look for them in their own ready list. If they do not succeed, they proceed to check
out the main normal priority list. In case of failure, they proceed to steal work from
other threads in creation order starting from the next one.

Threads consume tasks from their own list in LIFO order, they get tasks from the
main list in FIFO order, and they steal from other threads in FIFO order. This policy
allows them to consume the graph in a pseudo-depth-first order as long as they can
can get ready tasks, and to perform task stealing in a pseudo-breadth-first order. The
Cilk scheduler by [Frigo et al., 1998] has a very similar policy. To preserve some
locality of reference in the presence of task stealing, whenever a thread finishes
running a task, it protects against stealing one of the tasks that it liberates.

Since renaming removes all the false dependencies and only leaves true depen-
dencies, all the predecessors of a task are always the generators of its input data. By
executing tasks in depth-first order, the scheduling algorithm favors running tasks in
the threads that have just generated one of its input parameters.

This policy also favors keeping each thread on a different region of the graph and
thus to keep them accessing the same data and consequently has the potential to
produce lower cache coherency overhead. As long as a thread can find ready tasks in
the zone that it is exploring (thread ready list), or there are unexplored zones in the
graph (main ready list), it will not steal tasks and thus it will keep the working-sets
independent. Work-stealing in FIFO order tries to minimize the effect on the cache
of the victim thread by choosing the task that has spent most time on the queue and
thus that has more probability of having most of its input data already evicted from
cache.

The main ready list is a point of distribution of tasks in areas of the graph that
are not being explored. Tasks that are free when instantiated are inserted into one
of the main ready lists according to their priority.

The main thread also contributes to run tasks. Whenever it reaches a blocking
condition (a synchronization point, a memory limit, or a graph size limit), it behaves
as a worker thread until an unblocking condition is reached.
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3.5 Debugability

The ability to inspect the behavior of the code of an application is an important
aspect towards productivity. In this sense, the model facilitates debugging through
the design of the language and through runtime features.

3.5.1 Language Transparency

The primitives that compose the language are based on C pragmas. Due to the
design of the language, a code with the pragmas removed is a valid sequential
version of the code. Since in C, compilers that do not implement some pragmas
are allowed to ignore them, it is possible to obtain a regular sequential executable
by compiling the code with a regular C compiler. Sequential versions can then be
used with conventional debugging tools to resolve potential issues not related to the
parallelization.

This approach is also used in OpenMP, although in OpenMP it is slightly violated
by some runtime functions that are available directly to the user.

3.5.2 Integrated Tracing

The runtime implemented in this thesis has integrated tracing capabilities. For
performance reasons, the runtime has a version without tracing, one with tracing
and another with tracing and the possibility of gathering hardware counters. The
version used by an application is specified by a flag when invoking the linker.

Tracing records events during the execution of an application and generates a file
with those events, their time of occurrence, and the thread in which they occurred.
This file is in Paraver format and can be analyzed using the tool with the same name
by [Labarta et al., 1996].

Traces contain information about internal aspects of the runtime, and aspects
directly related to the application. Some of them are:

• Execution of a task instance

– Time interval of the execution

– Type of task

– Task instantiation order

• Intervals of idleness

• Intervals of runtime execution

With the aid of the Paraver tool, this information allows to measure and visually
inspect among others the following metrics:

• Task granularity

• Runtime overhead

• Unbalance

• Task instance reordering
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• Amount of parallelism

These metrics help in diagnosing performance problems due to the parallelization.
For instance they allow detecting lack of parallelism and suboptimal task granularity.

Additionally, traces may also contain hardware counter information. Some of
the most useful hardware counters may measure:

• Instructions Per Cycle (IPC)

• Cache access information

• Memory access information

• Number of integer instructions of a task instance

• Number of floating point operations of a task instance

• Instruction mix of a task instance

• Other information related to the functional units (e.i. branch information)

• Actual cycles spent running a task instance

Hardware counter metrics are useful for analyzing task performance. They can be
inspected visually along the time line. They can also be compared between different
task types. Moreover, Paraver allows to find correlations between the metrics.

The integrated tracing system has been used to obtain detailed measurements
in this thesis. These help understand the performance of the applications, their
characteristics, and the effects of the scheduling policies.

3.6 Evaluation

This section evaluates the programming model and its implementation in SMP
superscalar. The evaluation is centered on the main aspects: programmability and
performance. It consists of a selection of 5 algorithms that have been implemented
in SMP superscalar, other programming models and, in some cases, preexisting high
performance parallel libraries. In addition to an evaluation of the programming
model, we also evaluate the scheduling policy by comparing it to three other policies.

Hardware Configuration

The performance measurements have been obtained on an SGI Altix 4700 computer
with 128 cores and 512 GB of memory. It is composed of 32 NUMA nodes, each
with 2 dual core 1.6 GHz Itanium2 processors and local memory. The nodes are
interconnected through a ccNUMA link. The measurements have been performed
inside a cpuset of 32 cores on 8 nodes with all memory pages bound to those nodes.

Figure 3.1 shows the scheme of a NUMA node. It consists of 2 dual core processors
that share a 128-bit wide front side bus (FSB) that connects them to an SGI Super-
Hub ASIC (SHub). The FSB operates at 533 MHz and is capable of transferring 8.5
GB/s. The SHub acts as a crossbar that connects the FSB the local memory and to
the other NUMA nodes through 2 NUMAlink 4 interfaces. The local memory bus has
4 channels and is capable of transferring 17 GB/s. Each NUMAlink 4 port interface
is capable of transferring 3.2 GB/s in each direction. The nodes are interconnected
by those interfaces by a network of router ASICs.
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Figure 3.1: Hardware configuration of a node of the experimental platform.

Compilers and Libraries

The codes have been compiled using GCC 4.6.1 as the native compiler for SMP
superscalar and for the OpenMP versions. In some specific cases where GCC did not
produce efficient code we have used ICC 11.0 instead. The implementations of the
linear algebra algorithms use BLAS by [Dongarra et al., 1990]. The SMPSs and the
OpenMP versions use it in sequential mode for small calculations performed in the
tasks, and the parallel BLAS implementations use it in parallel mode to solve whole
algorithms. In all cases we have used MKL BLAS version 10.1.1.019.

For the OpenMP versions, either with the GCC or the ICC compiler, we always
use the Intel ICC OpenMP runtime, which implements both its own OpenMP runtime
API and the GCC OpenMP runtime API.

Scheduling Policies

To verify the effectiveness of the scheduling policy, we compare it against three other
policies. The first one randomizes the order of task execution. Instead of having
each thread free and consume tasks in LIFO order, the random policy places each
liberated task in a random thread queue at a random position. Task consumption
remains identical to the original policy. In the figures of this section we label it as
random. By comparing to this policy we can verify if the standard policy is better
than the mean produced by random orders.

In addition to the random policy, we have included a variant that also uses the
task protection mechanism of the original scheduler that is described in section 3.4.5
(page 27). Whenever a thread liberates tasks as a result of having executed their
last predecessor, this scheduler keeps one of them protected. Instead of adding it
to a random thread queue, the thread keeps it for itself and executes it next. In the
figures we label it as random + PT (random with Protected Task). By comparing it
to the standard policy we can verify if the task protection mechanism is enough to
generate schedules that perform better than random schedules.
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Finally we include a FIFO policy. Similarly to the standard policy, it also uses
one queue per thread. However, instead of consuming the last queued task, threads
always consume the first queued task of their own queue, the global queue and other
thread queues. This policy allows threads to keep running tasks of a certain part
of the graph similarly to the standard policy, but may be less effective at exploiting
locality.

Measurement Methodology

Performance in SMPSs is essentially determined by individual task performance, par-
allelism, and runtime overhead. Since all these aspects depend on the problem size,
the number of threads and the task granularity, we have measured the benchmarks
with several configurations of these parameters.

Each configuration has been executed 30 times, and the values in the summary
tables indicate their means. To illustrate the variability of the metrics, we also show
violin plots of the metrics. They show the probability density of the metric at different
values.

Since the hardware has Non-Uniform Memory Access (NUMA) characteristics,
data placement has an important effect on the performance that we can achieve.
In chapter 5 we analyze those subjects. However, in this chapter we try to homog-
enize NUMA effects by allocating memory pages in round robin order across the
local memories of the cores used in each experiment. That is, CPUs are assigned
sequentially to the NUMA nodes one at a time until filled, and the experiments have
their data page-wise interleaved across the memories of the nodes on which the
CPUs have been assigned.

The main performance metrics have been obtained by running each benchmark
without instrumentation. However, we also analyze the finer grained information
to help us explain the reasons that lead to such performance. These aspects have
been obtained by running the applications a second time with instrumentation. On
SMPSs, we obtain these metrics by using the tracing mechanisms integrated in the
framework. On OpenMP programs and libraries, we have obtained them by writing
a preloaded library that intercepts the ICC and GNU internal OpenMP runtime API.
The library keeps track of the state of the threads and measures performance metrics
by reading hardware counters when needed.

We have tried to keep the comparison between programming models as fair as
possible. For this reason all codes are written in C and share a common implementa-
tion of the computational kernel that has been compiled using the same compiler.
In cases where the kernel was external, we have used either the same exact library
in all cases, or a sequential variant and parallelized variant of the same library and
version number.

The purpose of this approach is to isolate the experiments from the effects of
compiler maturity and the ability of the programming language to be optimized.
Instead we try to measure only the effects that each programming model have over
the parallelization. However, it is not always possible to isolate the measurements
from the actual performance of the kernels. In fact in some cases it not. In particular
in some codes SMPSs achieves more parallelism that the rest. This allows us to
decompose the problems into bigger tasks, which potentially perform better due to
better cache utilization.
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1 #pragma css task input(size, b, c, alpha) output(a)
2 void triad(long size, double a[size], double b[size], double c[size], double

alpha) {
3 for (long i = 0; i < size; i++)
4 a[i] = b[i] + alpha∗c[i];
5 }

Listing 3.4: Triad task code.

Set of Benchmarks

In this chapter we have selected a set of 5 benchmarks to demonstrate the effec-
tiveness of the programming model. The first two are the STREAM triad and the
matrix multiplication. While those algorithms do not exploit de potential of the
programming model, they serve us as simple examples to show the syntax. However,
for brevity we describe their implementation in SMPSs here and leave the evaluation
of their performance to appendix C.

The following subsections describe each benchmark, how it has been imple-
mented, how it performs, and compares it to other implementations. In addition we
demonstrate that the overhead of data dependency analysis in those cases does not
incur in significant overhead compared to other programming models.

3.6.1 Triad

The STREAM benchmark by [McCalpin, 1995] is a synthetic benchmark that measures
sustainable memory bandwidth and the computation rate for simple vector kernels.
In particular, the triad kernel has been chosen by [Luszczek et al., 2006] to measure
the memory bandwidth of supercomputers in the HPC Challenge benchmark suite.

Algorithm

This benchmark measures the memory bandwidth and double precision floating
point computation rate for the following operation over a constant α and three
arrays named a, b and c:

a← b+αc

Parallelization with SMPSs

Since the kernel is embarrassingly parallel, to parallelize it we can tile the operation
over N elements into chunks of BS elements and divide the data according to those.
Listings 3.5 and 3.4 show the main code and the triad task respectively.

The main code in figure 3.5 performs and measures the whole vector operation
ten times and reports the memory bandwidth of the fastest repetition. To include
the cost of the runtime in the measurement, each repetition is isolated by barriers
and the time measurement spans from the start of task creation to the end of the
barrier at the end of the repetition.

Line 1 of figure 3.4 indicates that triad is a task; that it receives as inputs, the
size of the subvectors (size), the subvectors b and c, and the constant alpha; and
that it writes to subvector a. Note that we specify the size of the subvectors in their
declaration in line 2.
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1 for (int rep = 0; rep < NTIMES; rep++) {
2 START_TIME();
3 for (long i = 0; i < N; i += BS)
4 triad(BS, &a[i], &b[i], &c[i], alpha);
5 #pragma css barrier
6 STOP_TIME();
7 total_time[rep] = GET_TIME();
8 }
9 find_best_bandwidth(total_time, NTIMES);

Listing 3.5: Triad main code.

Appendix C shows a detailed analysis of the performance of this algorithm under
the SMPSs model and alternative implementations.

3.6.2 Matrix multiplication

Algorithm

The matrix multiplication algorithm we evaluate is the standard matrix multiplication
for double precision floating point numbers that given two matrices A and B of M×K
and K×N elements respectively, calculates a third matrix C = A×B of M×N elements.
Each element Ci j of the result can be calculated as follows:

Ci j =
K
∑

k=1

AikBk j (3.1)

To make the code more reusable, the implementation calculates the generalized
matrix-matrix multiplication as specified by the dgemm function from BLAS. This
form calculates C ′ = αA× B + βC , where α and β are floating point numbers. The
operation stores the result C ′ in the original location of C .

Parallelization with SMPSs

The standard matrix multiplication can be parallelized by dividing the matrices
logically and by decomposing the operation into smaller operations over the resulting
submatrices. The following equations show two possible decompositions:

C =

�

C11 C12

C21 C22

�

=

�

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

�

=

�

A11 A12

A21 A22

�

×
�

B11 B12

B21 B22

�

= A× B

(3.2)
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C =

�

C11 C12

C21 C22

�

=

�

A1∗B∗1 A1∗B∗2
A2∗B∗1 A2∗B∗2

�

=

�

A1∗
A2∗

�

×
�

B∗1 B∗2
�

= A× B

(3.3)

The first is a decomposition by blocks, and the second by panels, where Ai∗ is
the i-th horizontal panel of A, and B∗ j is the j-th vertical panel of B.

We have implemented the SMPSs version by decomposing the multiplication by
blocks of a fixed number of elements per dimension (NBS, MBS and KBS for the
N , M and K dimensions respectively). Since the programming model only supports
whole arrays of non-overlapping contiguous subarrays, the matrices are stored in
memory in blocks that correspond to each submatrix. Further discussion about how
to remove this limitation is presented in the chapter 4.

Since we implement the generalized form of the algorithm, our decomposition
differs slightly from equation 3.2. If we apply the decomposition to the generalized
form we obtain:

C ′ = αA× B + βC

= α

�

A11 A12

A21 A22

�

×
�

B11 B12

B21 B22

�

+ β

�

C11 C12

C21 C22

�

=

�

αA11B11 +αA12B21 + βC11 αA11B12 +αA12B22 + βC12

αA21B11 +αA22B21 + βC21 αA21B12 +αA22B22 + βC22

�

=

�

((βC11) +αA11B11) +αA12B21 ((βC12) +αA11B12) +αA12B22

((βC21) +αA21B11) +αA22B21 ((βC22) +αA21B12) +αA22B22

�

(3.4)

Thus, each submatix C ′i j can be calculated as follows:

C ′i j = βCi j +α
K
∑

k=1

AikBk j

= βCi j +αAi1B1 j +αAi2B2 j + . . .+αAiK BK j

= 1(. . . 1(β(Ci j) +αAi1B1 j) +αAi2B2 j . . .) +αAiK BK j

(3.5)

which gives us a common operation (kernel) that is applied recursively and has the
following form:

c′i jk = µkc′i j(k−1) +αAikBk j (3.6)

where

µk =

¨

β if k = 1

1 otherwise

c′i j0 = Ci j

c′i jK = C ′i j

(3.7)

The SMPSs generalized matrix multiplication is implemented by calculating each
submatrix of C ′ using the kernel from equation 3.6. Listing 3.6 shows the main code.
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1 void tiled_dgemm(
2 int MBS, int NBS, int KBS,
3 int M, int N, int K,
4 double ALPHA,
5 double const A[M/MBS][K/KBS][MBS][KBS],
6 double const B[K/KBS][N/NBS][KBS][NBS],
7 double BETA, double C[M/MBS][N/NBS][MBS][NBS])
8 {
9 for (int i=0; i<M/MBS; i ++)

10 for (int j=0; j<N/NBS; j++) {
11 if (BETA == 0.0)
12 dgemm_nobeta_tile(MBS, NBS, KBS, ALPHA, A[i][0], B[0][j],

C[i][j]);
13 else
14 dgemm_tile(MBS, NBS, KBS, ALPHA, A[i][0], B[0][j], BETA,

C[i][j]);
15 }
16 for (int k=1; k<K/KBS; k++)
17 for (int i=0; i<M/MBS; i ++)
18 for (int j=0; j<N/NBS; j++)
19 dgemm_tile(MBS, NBS, KBS, ALPHA, A[i][k], B[k][j], 1.0, C[i][j]);
20 }
21

22 #pragma css task input(MBS, NBS, KBS, ALPHA, A, B) output(C)
23 void dgemm_nobeta_tile(int MBS, int NBS, int KBS,
24 double ALPHA, double const A[MBS][KBS], double const B[KBS][NBS],
25 double C[MBS][NBS])
26 {
27 static const double dzero = 0.0;
28 dgemm_("N", "N", &NBS, &MBS, &KBS, &ALPHA, B, &NBS, A, &KBS,

&dzero, C, &NBS);
29 }
30

31 #pragma css task input(MBS, NBS, KBS, ALPHA, BETA, A, B) inout(C)
32 void dgemm_tile(int MBS, int NBS, int KBS,
33 double ALPHA, double const A[MBS][KBS], double const B[KBS][NBS],
34 double BETA, double C[MBS][NBS])
35 {
36 dgemm_("N", "N", &NBS, &MBS, &KBS, &ALPHA, B, &NBS, A, &KBS,

&BETA, C, &NBS);
37 }

Listing 3.6: Double precision generalized matrix-matrix multiplication in SMPSs.
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1 for (int iter=0; iter < L; iter++)
2 for (long i=1; i <= N; i++)
3 for (long j=1; j <= N; j++)
4 A[i][j] = 0.2 ∗ (A[i][j] + A[i−1][j] + A[i+1][j] + A[i][j−1] + A[i][j+1]);

Listing 3.7: Sequential implementation of the Gauss-Seidel algorithm for the 2D heat
transfer problem.

The tiled_dgemm function implements the main algorithm. The two nested loops
in lines 9 and 10 traverse dimensions M and N in steps of MBS and NBS elements
respectively and use the kernel to compute the values of c′i j1. The three nested loops
in lines 16, 17 and 18 calculate c′i j2, . . . , C ′i j . The intermediate values of c′i jk and the
result C ′i j are stored in the same location as Ci j .

The kernel is implemented in tasks dgemm_nobeta_tile and dgemm_tile. They
take as input the dimensions of each submatrix, the α and β parameters, and the
submatrix of A and B. Since the value of Ci j , the intermediate values, and the result
share the same memory location, the directionality of the C parameter for k = 1 is
inout when β 6= 0 and output when β = 0. The dgemm_tile task implements the
first case and the dgemm_nobeta_tile task implements the second.

Appendix C shows a detailed analysis of the performance of this algorithm under
the SMPSs model and alternative implementations.

3.6.3 Gauss-Seidel 2D Heat Transfer

Algorithm

Stencil algorithms are a class of iterative algorithms that consist in updating the
elements of an array according to a pattern. They perform a sequence of sweeps
through the data, which is an array of a certain number of dimensions that represents
a regular grid. The stencil determines for each element, the surrounding elements
that are used to update its value.

The Gauss-Seidel method is an algorithm for determining the solutions of a
system of linear equations with largest absolute values in each row and column
dominated by the diagonal element. When the method is applied to the following
2D heat-transfer problem

Ï2T (x , y) = 0, x ∈ [0, 1], y ∈ [0, 1] (3.8)

the system of equations can be solved using a 5 point 2D stencil algorithm. Listing
3.7 shows a sequential implementation of the algorithm.

The Jacobi method is a similar algorithm that serves the same purpose, however
it converges more slowly. One notable difference between them is that while at each
iteration the Gauss-Seidel method uses the results of the current and the previous
iteration, the Jacobi method only uses the results of the last iteration. This difference
makes the Jacobi method easier to parallelize, since the calculations within an
iteration are independent between themselves. In contrast, the Gauss-Seidel method
has dependencies within one iteration. For instance, the accesses to A[i−1][j] and
A[i][j−1] for i 6= 1 and j 6= 1 correspond to values updated during the same iteration
of the outermost loop.
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Figure 3.2: Shape of the stencil and order of the updates.
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Figure 3.3: Relation between the iteration numbers and the wavefronts that can be
updated in parallel.

Figure 3.2 shows the layout of the stencil on the left and the update order on
the right. The order of the updates and the shape of the stencil allow parallelism
in the form of wavefronts. Figure 3.3 shows the progression of the wavefronts over
a small matrix. The elements of a each diagonal are independent and thus can be
updated in parallel. Moreover, the iterations of the outer loop can be pipelined in
the form shown in the figure to allow several wavefront updates in parallel.

Wavefront parallelism is a recurrent topic in the research community. Some of
the most frequently covered aspects include the scheduling of the wavefronts and
the effective use of the memory hierarchy (see [Hoisie et al., Winter 2000] and
[Kerbyson et al., 2011]).

Parallelization with SMPSs

The Gauss-Seidel algorithm, and in particular the case exposed in listing 3.7, is
defined in terms of element-wise operations. Since the sequential code consists of a
series of loops that traverse the data in a regular manner, we can tile these accesses
and derive a blocked version from it. Listing 3.8 shows a tiled version with tiles
of size BS×BS elements. Notice that the loop that iterates over ii has been moved
inside to the loop that iterates over j.

Transforming the tiled version into a parallel version is almost straightforward.

1 for (int iter=0; iter < L; iter++)
2 for (long i=1; i <= N; i+=BS)
3 for (long j=1; j <= N; j+=BS)
4 for (long ii=0; ii < BS; ii++)
5 for (long jj=0; jj < BS; jj++)
6 A[i+ii][j+jj] = 0.2 ∗ (A[i+ii][j+jj] + A[i+ii−1][j+jj] +

A[i+ii+1][j+jj] + A[i+ii][j+jj−1] + A[i+ii][j+jj+1]);
Listing 3.8: Tiled version of the sequential implementation of the Gauss-Seidel
algorithm for the 2D heat transfer problem.
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1 #pragma css task input(N, BS, top, left, bottom, right) inout(A)
2 void gs_tile(long N, long BS, double A[BS][BS], double top[BS][BS], double

left[BS][BS], double bottom[BS][BS], double right[BS][BS]) {
3 for (long i=0; i < BS; i++)
4 for (long j=0; j < BS; j++)
5 A[i][j] = 0.2 ∗ ( A[i][j]
6 + (i > 0L ? A[i−1][j] : top[BS−1][j])
7 + (i < BS−1L ? A[i+1][j] : bottom[0][j])
8 + (j > 0L ? A[i][j−1] : left[i][BS−1])
9 + (j < BS−1L ? A[i][j+1] : right[i][0]) );

10 }
11

12 void gauss_seidel(long N, long BS, double A[N/BS][N/BS][BS][BS]) {
13 for (int iters=0; iters<L; iters++)
14 for (long i=1; i < N/BS−1; i++)
15 for (long j=1; j < N/BS−1; j++)
16 gs_tile( N, BS, A[i][j], A[i−1][j], A[i][j−1], A[i+1][j], A[i][j+1] );
17 }

Listing 3.9: SMPSs version of the Gauss-Seidel algorithm for the 2D heat transfer
problem.

First, we transform the matrix into a blocked matrix or a hypermatrix. Then we
move the loops that traverse the tile into its own function, and finally we convert
that function into a task. Listing 3.9 shows the resulting code. Notice that due to the
conversion of the data layout from a flat matrix into a matrix by blocks, the call to
the outlined function and the expression that calculates the updated value are more
complex. These limitations are eliminated in chapter 4.

The SMPSs programming model is able to exploit wavefront parallelism in a
generic manner, while the solutions found in the literature are specifically tailored
for that kind of parallelism. Figure 3.4 shows the task graph that our implementation
generates when the data is divided in 6 by 6 blocks (BS = N/6) and we iterate
over it 6 times (L=6). Each node represents a task instance and has number that
corresponds to its instantiation order. To illustrate the ability to automatically exploit
wavefront parallelism, the node colors represent the outer loop iteration of each
task instance. Notice that the central row shows that for this problem size, there is
parallelism between tasks of each iteration of the outer loop.

In our tests we have found that the Intel compiler (ICC) optimizes the gs_tile task
much better than GCC. For this reason we have used ICC in all the implementations
of this algorithm. Unless stated otherwise, the measurements have been performed
with 16 outer loop iterations.

Parallelization with OpenMP

To compare the performance of the algorithm in SMPSs to other approaches we
have made an implementation in OpenMP 3 with tasks. Since OpenMP 3 does not
provide means to parallelize with dependencies, the OpenMP version is written to
follow the parallelism of a single wavefront. Listing 3.10 contains the code.

Notice that to achieve parallelism the matrix traversal has had to be split into two
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Figure 3.4: Graph of 6 iterations of then SMPSs Gauss-Seidel with data divided in
6 by 6 blocks showing the relation between the task instantiation order, the outer
loop iteration and the parallelism.
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1 void gs_tile(long N, long BS, double A[BS][BS], double top[BS][BS], double
left[BS][BS], double bottom[BS][BS], double right[BS][BS]) {

2 for (long i=0; i < BS; i++)
3 for (long j=0; j < BS; j++)
4 A[i][j] = 0.2 ∗ ( A[i][j]
5 + (i > 0L ? A[i−1][j] : top[BS−1][j])
6 + (i < BS−1L ? A[i+1][j] : bottom[0][j])
7 + (j > 0L ? A[i][j−1] : left[i][BS−1])
8 + (j < BS−1L ? A[i][j+1] : right[i][0]) );
9 }

10

11 void gauss_seidel(long N, long BS, double A[N/BS][N/BS][BS][BS]) {
12 for (int iters=0; iters<L; iters++) {
13 for (long i=1; i < N/BS−1; i++)
14 #pragma omp parallel for
15 for (long j=1; j <= i; j++)
16 #pragma omp task untied
17 gs_tile( N, BS, A[i][j], A[i−1][j], A[i][j−1], A[i+1][j], A[i][j+1] );
18

19 for (long i=1; i < N/BS−1; i++)
20 #pragma omp parallel for
21 for (long j=1+1; j < N/BS−i; j++)
22 #pragma omp task untied
23 gs_tile( N, BS, A[i][j], A[i−1][j], A[i][j−1], A[i+1][j], A[i][j+1] );
24 }
25 }

Listing 3.10: Tiled OpenMP version of the Gauss-Seidel algorithm for the 2D heat
transfer problem.

doubly nested loops that traverse the matrix in inverse diagonal direction. These kind
of transformations are not necessary in the SMPSs version. Moreover, the OpenMP
version does not exploit the existing parallelism between wavefronts. To do so, the
code would need further complex changes. On the other hand, it can generate the
tasks in parallel, whereas the SMPSs version cannot.

While we can construct an OpenMP version using a flat data layout format, the
performance of the physically blocked layout is significantly better. To make the
comparison more reliable we have used the blocked data layout.

Determining the Tile Dimensions

The tile size of this algorithm size determines the computational cost of each task,
the amount of data that the task traverses, and the potential number of concurrent
waveforms. Figure 3.5 shows the performance of the SMPSs implementation with
several problem sizes and decomposition granularities. Each panel corresponds to
a set of measurements with a fixed number of cores. The vertical axis determines
the matrix side size, and the horizontal axis is the block side size BS. The figure
shows the mean performance of 30 executions of each configuration measured as
the number of updates per second per core.
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Figure 3.5: Performance of the SMPSs Gauss-Seidel implementation with several
matrix and blocking sizes.
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Figure 3.6: Mean time that each thread is kept busy running tasks in the SMPSs
Gauss-Seidel implementation with several matrix and blocking sizes.

The measurements indicate that scalability is poor with more than 4 cores, which
is the number of cores per NUMA node. This is due to memory placement issues that
this chapter does not cover. The diagonal configurations with 4 or more cores also
exhibit bad performance. Figure 3.6 shows that those configurations are limited by
the amount of parallelism that is available.

For each problem size and number of cores we have selected the tile size with
greatest mean performance without tracing. Table 3.1 summarizes the performance
metrics of these configurations. Notice that with one thread, despite the runtime
overhead, the problem still benefits from tiling.

Scheduling

Figure 3.7 shows the mean floating point performance of the SMPSs implementa-
tion under several strong scalability scenarios with the four schedulers. Each panel
corresponds to a matrix side size N. The horizontal axis indicates the number of
cores and the vertical axis the performance in mega element updates per second
with a logarithmic scale. The right side of the figure shows the performance of the
configurations with 32 cores using a linear scale. Each point represents the mean
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Cores Na BSb Tasks MU/sc IPCd FPCe Ovh.f

(%)
Eff.g

(%)
Idle
(%)

Tr.O.h

(%)

1 1024 512 64 59.9 1.84 0.19 0.93 99 0 0
1 2048 512 576 59.0 1.81 0.19 1.06 98 0 0
1 4096 512 3136 58.0 1.77 0.18 1.08 98 0 1
1 8192 1024 3136 58.0 1.77 0.18 0.44 99 0 0

2 1024 512 64 116.1 1.83 0.19 1.26 95 3 0
2 2048 512 576 117.3 1.80 0.19 1.51 98 0 0
2 4096 1024 576 115.9 1.77 0.18 0.55 99 0 0
2 8192 1024 3136 116.2 1.77 0.18 0.58 99 0 0

4 1024 512 64 115.3 1.82 0.19 1.15 47 51 0
4 2048 512 576 229.1 1.79 0.19 2.53 96 2 0
4 4096 512 3136 227.6 1.76 0.18 2.49 97 0 0
4 8192 1024 3136 230.3 1.76 0.18 0.89 98 0 0

8 1024 512 64 107.9 1.74 0.18 1.06 23 76 0
8 2048 512 576 416.5 1.72 0.18 4.57 90 7 0
8 4096 512 3136 437.0 1.70 0.18 4.70 96 2 0
8 8192 1024 3136 448.3 1.74 0.18 1.57 97 2 0
8 16384 1024 14400 453.7 1.74 0.18 1.59 98 0 0

16 1024 512 64 104.5 1.69 0.18 1.01 11 88 0
16 2048 512 576 633.2 1.55 0.16 7.12 77 21 0
16 4096 512 3136 802.6 1.63 0.17 8.68 93 5 0
16 8192 512 14400 834.8 1.63 0.17 9.00 96 1 0
16 16384 1024 14400 854.0 1.65 0.17 2.83 97 1 0

32 1024 512 64 100.2 1.64 0.17 1.02 5 94 0
32 2048 512 576 542.6 1.26 0.13 6.85 40 59 1
32 4096 512 3136 956.5 1.03 0.11 13.85 87 10 0
32 8192 512 14400 1033.0 1.04 0.11 15.07 94 4 0
32 16384 512 61504 1048.2 1.04 0.11 14.74 94 4 0

a Matrix side size..
b Submatrix side size.
c Mega element updates per second.
d Mean instructions per cycle while running tasks.
e Mean floating point operations per cycle while running tasks.
f Time that the main thread spends generating tasks and idle.
g Mean time that threads spend running tasks.
h Increment of the execution time when enabling tracing.

Table 3.1: Best submatrix side sizes for the SMPSs Gauss-Seidel implementation and
their performance characteristics.
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Figure 3.7: Strong scalability of the SMPSs Gauss-Seidel implementation with several
matrix sizes under each scheduling policy and performance with 32 cores.
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performance of the experiments with the block sizes that produced the best mean
performance for each case with the default scheduler. Due to the time that it takes
to generate these measurements, the biggest problem size has only been executed
with more than 4 cores.

The figure shows that the smallest problem size does not scale well beyond 2
cores, the following one only scales up to 16 cores, and the rest do scale up to 32
cores.

It also indicates that all schedulers have similar performance characteristics.
The reason is that none of the schedulers is able to exploit data reuse effectively.
The numbers that appear in the graph shown previously in figure 3.4 indicate the
task instantiation order. Since they correspond to a matrix divided in 6× 6 blocks
(N/BS = 6), each task instantiation number has also a numeric correspondence to
the block that it updates. That is, two task instances t i and t j update the same block
if and only if i ≡ j (mod (N/BS)2). However, the paths that traverse the tasks that
update one block, for instance the first block (tasks 1, 37, 73, 109, 145 and 181), are
multiple and contain tasks that update other blocks. Moreover, the amount data read
from the surrounding blocks is very small. These conditions preclude the scheduler
from following one of the successors in a greedy manner.

Figure 3.8 shows that the level-3 cache miss ratio is in most configurations
around 50% which confirms that behavior. The figure is a violin plot of the mean
level-3 data cache miss ratio while running tasks. Each row of panels corresponds
to a matrix size. Each column of panels corresponds to a number of cores, and the
horizontal axis groups the measurements with each scheduler. The violins shown
in each panel are an estimation of the density of the metric, in this case the cache
miss ratio. Wide sections correspond to miss ratios with high frequency, and narrow
sections correspond to miss ratios with low frequency. Horizontal lines indicate that
the given configuration has very low variability.

In all cases performance decreases with the number of cores. Since this is a
memory intensive application and NUMA aspects are not being considered yet, as
we increase the number of cores, we reduce the mean memory affinity and thus the
memory latency increases.

Table 3.2 summarizes the mean values of the main performance metrics of the
Gauss-Seidel decomposition with each scheduler.
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Figure 3.8: Average task level-3 cache miss ratio of the SMPSs Gauss-Seidel imple-
mentation with several matrix sizes under each scheduling policy.
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Cores Na MU/sb MU/sb MU/sb MU/sb IPCc IPCc IPCc IPCc Eff.d

(%)
Eff.d

(%)
Eff.d

(%)
Eff.d

(%)

1 1024 59 59 59 59 1.8 1.8 1.8 1.8 99 98 98 99
1 2048 58 58 58 58 1.8 1.8 1.8 1.8 99 99 99 99
1 4096 57 57 57 56 1.8 1.8 1.8 1.7 99 99 99 99
1 8192 58 57 58 56 1.8 1.8 1.8 1.7 99 99 99 99

2 1024 115 115 114 115 1.8 1.8 1.8 1.8 95 95 95 95
2 2048 116 115 116 115 1.8 1.8 1.8 1.8 98 98 98 98
2 4096 115 114 114 114 1.8 1.8 1.8 1.7 99 99 98 99
2 8192 116 113 115 114 1.8 1.7 1.8 1.7 99 99 99 99

4 1024 114 113 114 114 1.8 1.8 1.8 1.8 47 47 47 47
4 2048 227 225 227 227 1.8 1.8 1.8 1.8 96 96 96 96
4 4096 226 220 226 223 1.8 1.7 1.8 1.7 97 98 97 98
4 8192 229 224 229 228 1.8 1.7 1.8 1.7 98 99 98 99

8 1024 107 104 107 104 1.7 1.7 1.7 1.7 23 23 23 23
8 2048 412 404 412 410 1.7 1.7 1.7 1.7 90 91 90 91
8 4096 433 417 434 428 1.7 1.6 1.7 1.7 96 97 96 97
8 8192 446 438 446 445 1.7 1.7 1.7 1.7 97 98 97 98
8 16384 452 439 452 450 1.7 1.7 1.7 1.7 98 99 98 99

16 1024 103 100 104 101 1.7 1.6 1.7 1.6 11 11 11 11
16 2048 632 596 630 602 1.5 1.5 1.5 1.5 77 75 77 76
16 4096 798 763 797 786 1.6 1.5 1.6 1.6 93 93 93 93
16 8192 830 786 828 822 1.6 1.5 1.6 1.6 96 96 96 97
16 16384 850 828 850 849 1.7 1.6 1.6 1.6 97 97 97 98

32 1024 99 96 100 96 1.6 1.6 1.7 1.6 5 5 5 5
32 2048 536 530 567 515 1.3 1.2 1.3 1.2 40 40 40 40
32 4096 956 929 946 945 1.0 1.0 1.0 1.0 87 88 88 88
32 8192 1035 995 1017 1028 1.0 1.0 1.0 1.0 94 94 93 93
32 16384 1037 1029 1015 1038 1.0 1.0 1.0 1.0 94 94 93 95

Scheduler: Default Random Random + PT FIFO
a Matrix side size.
b Mega element updates per second.
c Mean instructions per cycle while running tasks.
d Mean time that threads spend running tasks.

Table 3.2: Performance summary of the scheduler on the SMPSs Gauss-Seidel decomposition.

46



3.6. Evaluation

Cores

M
eg

a 
el

em
en

t 
up

da
te

s 
pe

r 
se

co
nd

100

200

400

800

1 2 4 8 16 32

 : 
N

10
24

1 2 4 8 16 32 1 2 4 8 16 32

100

200

400

800

 : 
N

20
48

100

200

400

800

 : 
N

40
96

100

200

400

800

 : 
N

81
92

100

200

400

800

 : Iterations 1

 : 
N

16
38

4

 : Iterations 4  : Iterations 16

SMPSs OpenMP

Figure 3.9: Strong scalability of each parallel implementation of Gauss-Seidel with
several matrix sizes and 1, 4 and 16 outer loop iterations.

Performance of the Implementations

Figure 3.9 shows the mean element update rate of the SMPSs and the OpenMP
implementations under several strong scalability scenarios and with 1, 4 and 16
outer loop iterations. Each column of plots corresponds to executions with a fixed
number of outer loop iterations, and each row of plots corresponds to a problem
size. In all cases the SMPSs version scales better than the OpenMP version.

With just one outer loop iteration, the SMPSs version is able to absorb part of
the unbalance that is present in the OpenMP version due to the barrier between
wavefronts. By taking into account dependencies, the SMPSs version can start to
execute tasks of a wavefront before the previous one has finished. As we increase the
number of outer loop iterations, the SMPSs version is able to exploit the parallelism
that lies between the tasks of those iterations.

Figure 3.10 shows the performance improvement of the SMPSs implementation
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Performance improvement of SMPSs vs. OpenMP (%)
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Figure 3.10: Performance gained by the SMPSs implementation of the Gauss-Seidel
algorithm compared to the OpenMP implementation.

with respect to the OpenMP implementation. A 0% improvement indicates that
both implementations perform equally, and a 100% improvement indicates that the
SMPSs version performs two times as fast. Row of panels contains plots for a fixed
number of outer loop iterations, and each column corresponds to a fixed number of
cores. Each plot shows the mean performance for several problem sizes and block
sizes for a fixed number of cores and outer loop iterations. Notice that the SMPSs
version performs up to 4 times as fast with 16 and 32 cores when running 16 outer
loop iterations. This improvement is the result of the increased parallelism. Figure
3.11 shows that the SMPSs executions are able fill up the cores with work up to 4
times as much as the OpenMP version.

Table 3.3 summarizes the mean values of the main performance metrics of each
Gauss-Seidel implementation with 16 outer loop iterations.
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Cores Na BSb BSb MU/sc MU/sc FPCd FPCd Eff.e

(%)
Eff.e

(%)

1 1024 512 512 59.9 59.0 0.19 0.19 99 98
1 2048 1024 1024 58.8 58.9 0.19 0.19 99 99
1 4096 1024 1024 57.7 58.0 0.18 0.18 99 99
1 8192 1024 1024 58.0 58.0 0.18 0.18 99 99

2 1024 512 256 115.3 90.0 0.19 0.18 95 80
2 2048 512 256 116.2 101.1 0.19 0.18 98 89
2 4096 1024 256 115.7 107.0 0.18 0.18 99 93
2 8192 1024 512 116.0 110.0 0.18 0.18 99 95

4 1024 512 256 114.8 128.5 0.19 0.17 47 60
4 2048 512 256 227.9 168.6 0.19 0.18 96 76
4 4096 512 256 226.6 193.0 0.18 0.18 97 86
4 8192 1024 512 229.6 203.0 0.18 0.18 98 89

8 1024 512 256 107.1 127.8 0.18 0.15 23 35
8 2048 512 256 412.9 210.8 0.18 0.15 90 56
8 4096 512 256 433.4 287.7 0.18 0.16 96 71
8 8192 1024 256 446.4 343.4 0.18 0.17 97 82
8 16384 1024 512 452.1 384.3 0.18 0.17 98 87

16 1024 512 256 103.7 116.0 0.18 0.13 11 18
16 2048 512 256 632.2 242.9 0.16 0.13 77 37
16 4096 512 256 798.4 375.0 0.17 0.14 93 55
16 8192 512 256 830.2 505.2 0.17 0.14 96 70
16 16384 1024 256 850.8 622.1 0.17 0.15 97 81

32 1024 512 256 99.6 107.1 0.17 0.12 5 9
32 2048 512 256 536.8 224.4 0.13 0.12 40 19
32 4096 512 256 957.0 429.9 0.11 0.11 87 38
32 8192 512 256 1035.3 595.4 0.11 0.10 94 59
32 16384 512 256 1037.8 753.8 0.11 0.10 94 74

Implementation: SMPSs OpenMP
a Matrix side size.
b Block side size
c Mega element updates per second.
d Mean floating point operations per cycle while running tasks.
e Mean time that threads spend running tasks.

Table 3.3: Performance summary of the Gauss-Seidel implementations.
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Parallel efficiency improvement of SMPSs vs. OpenMP (%)
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Figure 3.11: Parallel efficiency improvement by the SMPSs implementation of the
Gauss-Seidel algorithm compared to the OpenMP implementation.

3.6.4 Cholesky

Algorithm

The Cholesky algorithm decomposes a real symmetric positive definite matrix A into
a product of a lower triangular matrix L by its transposed LT . The algorithm takes a
matrix A as input and generates a lower triangular matrix L such that:

A= LLT (3.9)

Given the definition of the matrix multiplication, the individual elements of A
and L are such that:

Ai j =
j
∑

k=1

Lik LT
jk =

j
∑

k=1

Lik Lk j =
j−1
∑

k=1

Lik Lk j + Li j L j j (3.10)

from which we can isolate the values of the diagonal of L:

L j j =

√

√

√

√A j j −
j−1
∑

k=1

L jk Lk j (3.11)

and the values below the diagonal:

Li j =
A j j −

∑ j−1
k=1 Lik Lk j

L j j
(3.12)
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Parallelization with SMPSs

The Cholesky decomposition can be implemented in-place. That is, the result L can
be stored at the same memory location as A. Most implementations of the algorithm
are in-place, since the algorithm is typically used to solve linear systems of equations
and after the decomposition, the original values of A are no longer needed.

The algorithm has several variants that differ in the order in which the result is
calculated. [Dongarra and Walker, 1993] propose a methodology to derive blocked
algorithms from their element-wise versions. One of the possible blockings of the
Cholesky algorithm is presented by [Andersen et al., 2005], and is the one that we
parallelize in this section.

In our implementation we use matrices of N by N elements and we operate
over it in submatrices of BS by BS elements. Similarly to the matrix multiplication
code, we have laid it out in memory in blocks that match the sub-matrix dimensions.
In listing 3.11 we show the main code and its tasks. It has four tasks, and all are
implemented as simple calls to the LAPACK and BLAS libraries.

While previous algorithms generated regular graphs, the Cholesky parallelization
generates a complex graph. Figure 3.12 shows the tasks of the Cholesky algorithm
when the matrix is divided in 8 by 8 blocks (BS = N/8). Each node represents a task
instance and has a color that corresponds to its type. The node numbers indicate
their instantiation order.

Figure 3.13 shows an identical graph that has each node colored according to its
instantiation order. The right side of the legend indicates the outer loop iteration
that creates each task. The figure illustrates the presence of parallelism between
distant parts of the code. Notice that the task instances in the third, fourth and fifth
rows are from distant outer iterations. For instance, the fifth row shows that task 17,
that is the first task of iteration j=1, can run in parallel with task 113, which belongs
to iteration j=6.

While this algorithm consists of one main function that creates all the tasks,
neither the programming model nor the runtime do limit the ability to detect distant
parallelism to a single function. A more complex program could make use the result
of the Cholesky decomposition as part of its calculation. In such scenario, the tasks of
the Cholesky decomposition would also run in parallel to the following computations
as the blocks of the result are calculated.

Parallelization with OpenMP

To evaluate the performance of the SMPSs implementation, we have also imple-
mented a similar version using OpenMP 3 tasks. Listing 3.12 shows the main code
and its tasks. This version, as opposed to the SMPSs version, generates tasks in
parallel. However, since OpenMP 3 does not track dependencies, the tasks of the
outer loop that could have interdependencies have been isolated by the implicit
barriers of the parallel loops. Moreover, the OpenMP version uses flat matrix instead
of the blocked layout of the SMPSs version.

Both the SMPSs version and the OpenMP version use the BLAS and LAPACK
functions from the MKL library in sequential mode.
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1 void cholesky(int N, int BS, double A[N/BS][N/BS][BS][BS]) {
2 for (int j = 0; j < N/BS; j++) {
3 for (int k = 0; k < j; k++)
4 for (int i = j+1; i < N/BS; i++)
5 dgemm_tile(BS, A[k][i], A[k][j], A[j][i]);
6 for (int i = 0; i < j; i++)
7 dsyrk_tile(BS, A[i][j], A[j][j]);
8 dpotrf_tile(BS, A[j][j]);
9 for (int i = j+1; i < N/BS; i++)

10 dtrsm_tile(BS, A[j][j], A[j][i]);
11 }
12 }
13

14 #pragma css task input(BS) inout(A) highpriority
15 void dpotrf_tile(int BS, double A[BS][BS]) {
16 int info;
17 dpotrf_("L", &BS, A, &BS, &info);
18 }
19

20 #pragma css task input(A, B, BS) inout(C)
21 void dgemm_tile(int BS,
22 double const A[BS][BS], double const B[BS][BS], double C[BS][BS])
23 {
24 double const done=1.0, dmone=−1.0;
25 dgemm_("N", "T", &BS, &BS, &BS, &dmone, A, &BS, B, &BS, &done, C,

&BS);
26 }
27

28 #pragma css task input(T, BS) inout(B)
29 void dtrsm_tile(int BS, double const T[BS][BS], double B[BS][BS]) {
30 double const done=1.0;
31 dtrsm_("R", "L", "T", "N", &BS, &BS, &done, T, &BS, B, &BS);
32 }
33

34 #pragma css task input(A, BS) inout(C)
35 void dsyrk_tile(int BS, double const A[BS][BS], double C[BS][BS]) {
36 double const done=1.0, dmone=−1.0;
37 dsyrk_("L", "N", &BS, &BS, &dmone, A, &BS, &done, C, &BS);
38 }

Listing 3.11: Double precision blocked Cholesky decomposition in SMPSs.
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Figure 3.12: Graph of the Cholesky algorithm when executed over a matrix composed
of 8 by 8 blocks (BS = N/8).
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1 void cholesky(int N, int BS, double A[N][N]) {
2 for (int j = 0; j < N; j+=BS) {
3 #pragma omp parallel for
4 for (int k= 0; k< j; k+=BS)
5 for (int i = j+BS; i < N; i+=BS)
6 #pragma omp task untied
7 dgemm_tile(&A[k][i], &A[k][j], &A[j][i], BS, N);
8 #pragma omp parallel for
9 for (int i = 0; i < j; i+=BS)

10 #pragma omp task untied
11 dsyrk_tile(&A[i][j], &A[j][j], BS, N);
12 dpotrf_tile(&A[j][j], BS, N);
13 #pragma omp parallel for
14 for (int i = j+BS; i < N; i+=BS)
15 #pragma omp task untied
16 dtrsm_tile(&A[j][j], &A[j][i], BS, N);
17 }
18 }
19

20 void dpotrf_tile(double ∗A, int BS, int N) {
21 int info;
22 dpotrf_("L", &BS, A, &N, &info);
23 }
24

25 void dgemm_tile(double ∗A, double ∗B, double ∗C, int BS, int N) {
26 double const done=1.0, dmone=−1.0;
27 dgemm_("N", "T", &BS, &BS, &BS, &dmone, A, &N, B, &N, &done, C,

&N);
28 }
29

30 void dtrsm_tile(double ∗T, double ∗B, int BS, int N) {
31 double const done=1.0;
32 dtrsm_("R", "L", "T", "N", &BS, &BS, &done, T, &N, B, &N);
33 }
34

35 void dsyrk_tile( double ∗A, double ∗C, int BS, int N) {
36 double const done=1.0, dmone=−1.0;
37 dsyrk_("L", "N", &BS, &BS, &dmone, A, &N, &done, C, &N);
38 }

Listing 3.12: Double precision Cholesky decomposition in OpenMP with tasks.
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Parallel Library Version

The Cholesky algorithm is implemented in the LAPACK API as the potrf family of
functions. To compare with a highly optimized version, we have chosen to use the
implementation provided by the MKL library in parallel mode. The code consists of
a single call to dpotrf over a flat matrix. By using the same library as in the other
versions we guarantee that the underlying kernel computations are the same and
thus we are evaluating the programming models and parallelization instead of the
quality of the kernels.

Determining the Submatrix Dimensions

Like the case of the Gauss-Seidel algorithm, the value of the submatrix dimensions
BS also determines the number of tasks of the problem decomposition and the
computational weight of each task. Big submatrices generate few tasks with long
computations, while small submatrices generate more and shorter tasks. These
parameters have an impact on the parallelism, the efficiency of the tasks and the
runtime overhead.

Figure 3.14 shows the floating point performance of our implementation. Each
panel corresponds to a set of measurements with a fixed number of cores. The vertical
axis determines the matrix side size (N), and the horizontal axis is the submatrix
side size (BS). The figure shows the mean performance of 30 executions of each
configuration with respect to the theoretical hardware peak measured in floating
point operations per second.

Compared to the previous algorithms, Cholesky has a much more complex de-
pendency structure and its graph is much more narrow with respect to the blocking
size. As a result, its amount of parallelism is much more constrained by the blocking
size as demonstrated by the diagonal gradients present in figure 3.14 which show
low performance. This effect is confirmed by the average idle time graph in figure
3.15, which shows high idleness in those cases.

The blocking size has also an effect on the overhead of the main thread. Figure
3.16 shows that metric. Notice that with submatrices of 128 by 128 elements it is
always higher than with other configurations, and that it grows with the number of
cores and starts to be noticeable with 8. Despite the increased overhead, figure 3.15
shows that it is not enough to cause starvation, and is not the reason for the low
parallelism in the diagonal configurations.

The mean task floating point operations per cycle are shown in figure 3.17. The
executions with 128 by 128 element submatrices have also lower task floating point
performance than the rest and this difference also grows with the number of cores.
This explains the lower total performance shown in figure 3.14 with 16 and 32 cores
for those configurations.

Table 3.4 summarizes the performance of the best submatrix configurations.
Notice that with one thread some of the matrix sizes have better performance when
decomposed into more than one task (BS < N), than when solved only by the MKL
library (BS= N). The tracing overhead remains low in all cases, and thus all columns
after the Gigaflops per second can be considered reliable.

56



3.6. Evaluation

Floating point performance (% of peak)

Submatrix side size

M
at

ri
x 

si
de

 s
iz

e

1024
2048
4096
8192

16384
32768

12
8

25
6

51
2

10
24

20
48

40
96

81
92

 : Cores 1
12

8
25

6
51

2
10

24
20

48
40

96
81

92

 : Cores 2

12
8

25
6

51
2

10
24

20
48

40
96

81
92

 : Cores 4

12
8

25
6

51
2

10
24

20
48

40
96

81
92

 : Cores 8

12
8

25
6

51
2

10
24

20
48

40
96

81
92

 : Cores 16

12
8

25
6

51
2

10
24

20
48

40
96

81
92

 : Cores 32

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Figure 3.14: Performance of the SMPSs Cholesky implementation with several matrix
and blocking sizes.

Mean thread idle time (%)

Submatrix side size

M
at

ri
x 

si
de

 s
iz

e

1024
2048
4096
8192

16384
32768

12
8

25
6

51
2

10
24

20
48

40
96

81
92

 : Cores 1

12
8

25
6

51
2

10
24

20
48

40
96

81
92

 : Cores 2

12
8

25
6

51
2

10
24

20
48

40
96

81
92

 : Cores 4

12
8

25
6

51
2

10
24

20
48

40
96

81
92

 : Cores 8

12
8

25
6

51
2

10
24

20
48

40
96

81
92

 : Cores 16
12

8
25

6
51

2
10

24
20

48
40

96
81

92

 : Cores 32

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Figure 3.15: Average time taken by each thread idling in the SMPSs Cholesky
implementation with several matrix and blocking sizes.
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Figure 3.16: Percentage of time time that the main thread spends managing tasks
when running the SMPSs Cholesky implementation with several matrix and blocking
sizes.
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Cores Na BSb Tasks GFc IPCd FPCe Ovh.f

(%)
Eff.g

(%)
Idle
(%)

Tr.O.h

(%)

1 1024 512 4 5.5 5.55 3.54 0.26 99 0 0
1 2048 512 20 5.8 5.69 3.69 0.18 99 0 0
1 4096 512 120 6.0 5.79 3.80 0.16 99 0 0
1 8192 512 816 6.1 5.86 3.87 0.16 99 0 0
1 16384 512 5984 6.1 5.90 3.90 0.16 99 0 0

2 1024 128 120 10.6 5.61 3.54 5.93 92 3 3
2 2048 128 816 11.2 5.71 3.68 6.40 94 0 3
2 4096 256 816 11.8 5.79 3.78 1.00 98 0 0
2 8192 512 816 12.1 5.86 3.87 0.20 99 0 0
2 16384 512 5984 12.2 5.90 3.90 0.20 99 0 0

4 1024 128 120 18.6 5.49 3.46 8.52 81 13 5
4 2048 128 816 21.9 5.70 3.67 10.06 92 2 3
4 4096 256 816 23.2 5.78 3.78 1.52 97 1 0
4 8192 256 5984 24.0 5.84 3.84 1.44 98 0 0
4 16384 512 5984 24.4 5.89 3.90 0.28 99 0 0

8 1024 128 120 26.6 4.96 3.13 13.41 66 28 3
8 2048 128 816 39.8 5.45 3.50 17.80 87 6 3
8 4096 128 5984 43.7 5.57 3.62 16.69 93 1 3
8 8192 256 5984 47.1 5.80 3.81 2.56 97 1 0
8 16384 512 5984 48.3 5.86 3.88 0.44 98 1 0
8 32768 512 45760 48.8 5.88 3.90 0.44 99 0 0

16 1024 128 120 30.5 4.13 2.61 17.30 45 51 4
16 2048 128 816 63.8 4.93 3.17 31.35 78 15 3
16 4096 128 5984 81.0 5.32 3.45 33.02 90 3 3
16 8192 256 5984 91.9 5.73 3.77 4.73 96 2 0
16 16384 512 5984 94.4 5.82 3.85 0.74 97 2 0
16 32768 512 45760 96.3 5.83 3.87 0.73 98 1 0

32 1024 128 120 27.4 3.39 2.14 15.84 25 72 2
32 2048 128 816 77.6 3.81 2.45 49.38 62 31 1
32 4096 128 5984 131.0 4.63 3.00 69.31 84 8 3
32 8192 256 5984 171.2 5.61 3.69 9.06 92 6 0
32 16384 256 45760 183.0 5.68 3.74 9.30 96 2 0
32 32768 512 45760 186.2 5.72 3.80 1.33 97 2 0

a Matrix side size..
b Submatrix side size.
c Gigaflops per second.
d Mean instructions per cycle while running tasks.
e Mean floating point operations per cycle while running tasks.
f Time that the main thread spends generating tasks and idle.
g Mean time that threads spend running tasks.
h Increment of the execution time when enabling tracing.

Table 3.4: Best submatrix side sizes for the SMPSs Cholesky implementation and
their performance characteristics.
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Mean task FP operations/cycle
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Figure 3.17: Mean floating point operations per cycle while running each task of the
SMPSs Cholesky implementation with several matrix and blocking sizes.

Scheduling

Figure 3.18 shows the mean floating point performance of the Cholesky under
several strong scalability scenarios with each scheduler. The measurements have
been performed with the submatrix sizes that produced the best mean performance.
Horizontal lines on the left panels correspond to the theoretical peak for 1, 2, 4, 8
and 16 cores respectively. The right side of the figure shows the mean performance
of the configurations with 32 cores with a linear scale.

The difference between the schedulers grows with the number of cores and the
problem size. In all cases the random scheduler has the worst performance and the
rest have similar performance. However, the difference decreases as we increase
the problem size until disappearing at the biggest one. The reason is that as we
increase the problem size, the task size can also increase, and thus reduce the impact
of the bad reuse of the cache between tasks that the random scheduler produces.
The default scheduler and the random scheduler with the protected task mechanism
perform almost identically. This result suggests that the protection mechanism is the
factor that produces those results.

Since the Cholesky graph is more narrow than the previous ones, more parallelism
requires greater reductions in block size than in the previous cases. Therefore, as
we increase the number of cores, we must reduce granularity and as a consequence
task IPC decreases and so does the total performance relative to the hardware peak.
Figure 3.19 shows the average task floating point operations per cycle. Notice that
the protected task mechanism is enough to reach the best performance.

Table 3.5 summarizes the mean values of the main performance metrics of the
Cholesky decomposition with each scheduler.
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Figure 3.18: Strong scalability of the SMPSs Cholesky implementation with several
matrix sizes under each scheduling policy and performance with 32 cores.
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Cores Na GFb GFb GFb GFb FPCc FPCc FPCc FPCc Eff.d

(%)
Eff.d

(%)
Eff.d

(%)
Eff.d

(%)

1 1024 5.5 5.5 5.5 5.5 3.5 3.5 3.5 3.5 99 99 99 99
1 2048 5.8 5.8 5.8 5.8 3.7 3.7 3.7 3.7 99 99 99 99
1 4096 6.0 6.0 6.0 5.9 3.8 3.8 3.8 3.8 99 99 99 99
1 8192 6.1 6.1 6.1 6.1 3.9 3.9 3.9 3.9 99 99 99 99
1 16384 6.1 6.1 6.1 6.1 3.9 3.9 3.9 3.9 99 99 99 99

2 1024 10 10 10 10 3.5 3.5 3.5 3.5 92 92 91 92
2 2048 11 11 11 11 3.7 3.7 3.7 3.7 95 96 95 97
2 4096 11 11 11 11 3.8 3.8 3.8 3.8 98 98 98 98
2 8192 12 12 12 12 3.9 3.9 3.9 3.9 99 99 99 99
2 16384 12 12 12 12 3.9 3.9 3.9 3.9 99 99 99 99

4 1024 17 17 17 18 3.5 3.4 3.5 3.4 81 83 82 84
4 2048 21 20 21 21 3.7 3.6 3.7 3.6 92 92 92 93
4 4096 23 22 22 22 3.8 3.7 3.8 3.8 97 97 97 97
4 8192 23 23 23 23 3.8 3.8 3.8 3.8 98 98 98 99
4 16384 24 24 24 24 3.9 3.9 3.9 3.9 99 99 99 99

8 1024 25 24 25 25 3.1 3.0 3.1 3.0 66 65 65 67
8 2048 38 36 37 37 3.5 3.3 3.5 3.4 87 86 86 87
8 4096 43 43 43 43 3.7 3.7 3.7 3.7 92 93 92 93
8 8192 46 46 46 46 3.8 3.7 3.8 3.8 97 98 98 98
8 16384 48 48 48 48 3.9 3.9 3.9 3.9 98 99 98 99
8 32768 48 48 48 48 3.9 3.9 3.9 3.9 99 99 99 99

16 1024 29 25 29 26 2.6 2.5 2.7 2.5 45 41 44 43
16 2048 61 53 59 56 3.2 2.8 3.1 2.9 78 76 77 77
16 4096 78 67 77 74 3.5 3.0 3.4 3.3 90 89 90 90
16 8192 91 87 90 90 3.8 3.6 3.8 3.7 96 96 96 96
16 16384 94 94 93 94 3.9 3.8 3.9 3.9 97 97 97 97
16 32768 95 96 96 96 3.9 3.9 3.9 3.9 98 99 99 99

32 1024 26 23 26 23 2.1 2.1 2.2 2.1 25 22 25 22
32 2048 76 62 74 66 2.5 2.1 2.4 2.2 62 60 61 61
32 4096 126 88 122 111 3.0 2.2 2.9 2.7 84 81 83 83
32 8192 170 154 168 166 3.7 3.3 3.6 3.6 92 91 92 92
32 16384 181 162 182 180 3.7 3.4 3.8 3.7 96 96 96 96
32 32768 185 185 185 185 3.8 3.8 3.8 3.8 97 97 97 97

Scheduler: Default Random Random + PT FIFO
a Matrix side size.
b Gigaflops per second.
c Mean floating point operations per cycle while running tasks.
d Mean time that threads spend running tasks.

Table 3.5: Performance summary of the scheduler on the SMPSs Cholesky decomposition.
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Performance of the Implementations

Figure 3.20 shows the mean floating point performance of the three implementations
under several strong scalability scenarios. The measurements have been selected
from the ones with submatrix sizes that produced the best mean performance,
except for the parallel MKL version, which has its own blocking controlled by the
implementation itself. In all cases the SMPSs implementation has better absolute
mean performance and better strong scalability. Notice that in most cases the MKL
parallel version does not scale from 16 to 32 cores.

In all cases performance decreases with the number of cores, since the amount of
work per core is smaller and so is the potential IPC. Figure 3.21 shows the average
floating point operations of the useful sections of time (that is, not idling nor executing
the runtime) and figure 3.22 shows the mean fraction of time that threads spend
running the algorithm. Despite the fact that in many cases the MKL version has the
best parallel efficiency, its number of floating point operations per cycle is lower and
thus its total performance is worse. Moreover, it is the implementation with least
variability. This might be a result of using a static scheduling policy as opposed to
the SMPSs and the taskified OpenMP implementations.

While the SMPSs version is capable of finding distant parallelism, the MKL does
not, and thus to increase the amount of parallelism it must decompose the problem
into smaller parts. This explains the useful time ratio of the MKL version and its
lower floating point operations per cycle.

Another important aspect is that for a given block size, the SMPSs implementation
can find more parallelism than the OpenMP version. Figure 3.23 shows the average
difference in parallel efficiency between the two versions at each problem size and
decomposition granularity. Notice that in most configurations, the SMPSs version
has at least 40% more parallel efficiency than the OpenMP version.

Table 3.6 summarizes the mean values of the main performance metrics of each
Cholesky implementation.
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Figure 3.20: Strong scalability of each parallel implementation of Cholesky with
several matrix sizes and performance with 32 cores.
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Figure 3.21: Average floating point operations per cycle of each implementation of
the Cholesky while running effective work with several matrix sizes.
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Figure 3.22: Fraction of time that threads spend running the code of the Cholesky
with several matrix sizes.
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Figure 3.23: Improvement in parallel efficiency between the SMPSs version of
Cholesky and the OpenMP version with several matrix sizes at several decomposition
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Cores Na BSb BSb GFc GFc GFc FPCd FPCd FPCd Eff.e

(%)
Eff.e

(%)
Eff.e

(%)

1 1024 512 1024 5.5 5.3 5.3 3.5 3.4 3.4 99 99 99
1 2048 512 1024 5.8 5.1 5.0 3.7 3.3 3.3 99 99 99
1 4096 512 1024 6.0 5.0 5.2 3.8 3.2 3.3 99 99 99
1 8192 512 2048 6.1 5.7 5.5 3.9 3.6 3.5 99 99 99
1 16384 512 2048 6.1 5.9 5.7 3.9 3.8 3.6 99 99 99

2 1024 128 1024 10 5.3 8.1 3.5 3.4 2.8 92 49 96
2 2048 256 128 11 7.8 9.3 3.7 2.8 3.1 95 93 98
2 4096 256 256 11 9.6 10 3.8 3.2 3.4 98 96 99
2 8192 512 512 12 10 11 3.9 3.6 3.5 99 97 99
2 16384 512 512 12 11 11 3.9 3.7 3.6 99 99 99

4 1024 128 512 17 5.1 16 3.5 3.3 3.1 81 24 91
4 2048 128 128 21 11 17 3.7 2.1 2.8 92 88 97
4 4096 256 256 23 15 19 3.8 2.8 3.3 97 91 97
4 8192 256 256 23 19 21 3.8 3.3 3.4 98 96 98
4 16384 512 512 24 21 21 3.9 3.6 3.5 99 97 99

8 1024 128 256 25 5.2 19 3.1 1.8 1.9 66 23 85
8 2048 128 128 38 13 27 3.5 1.5 2.5 87 77 92
8 4096 256 256 43 21 35 3.7 2.1 3.1 92 81 93
8 8192 256 512 46 30 38 3.8 2.9 3.3 97 82 92
8 16384 512 512 48 39 41 3.9 3.3 3.4 98 94 98
8 32768 512 512 48 43 43 3.9 3.5 3.5 99 98 99

16 1024 128 256 29 4.9 18 2.6 1.7 1.1 45 12 70
16 2048 128 128 61 14 42 3.2 1.1 2.2 78 55 88
16 4096 128 128 78 28 62 3.5 1.4 2.8 90 80 91
16 8192 256 512 91 39 74 3.8 2.6 3.1 96 61 96
16 16384 512 512 94 60 79 3.9 2.8 3.2 97 85 98
16 32768 512 512 95 77 82 3.9 3.2 3.3 98 95 99

32 1024 128 256 26 4.4 2.5 2.1 1.5 0.6 25 6 10
32 2048 128 128 76 15 10 2.5 1.0 1.3 62 32 20
32 4096 128 128 126 32 48 3.0 1.0 1.4 84 64 75
32 8192 256 256 170 59 101 3.7 1.8 2.1 92 66 96
32 16384 256 512 181 80 128 3.7 2.4 2.6 96 68 97
32 32768 512 512 185 116 144 3.8 2.6 2.9 97 88 99

Implementation: SMPSs OpenMP MKL
a Matrix side size.
b Submatrix side size.
c Gigaflops per second.
d Mean floating point operations per cycle while running tasks.
e Mean time that threads spend running tasks.

Table 3.6: Performance summary of the Cholesky implementations.
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3.6.5 Strassen-Winograd

Algorithm

The Strassen algorithm by [Strassen, 1969] performs a matrix multiplication with
O(N2.807) complexity, where N is equal to the matrix side size in the case of square
matrices. The Strassen-Winograd algorithm by [Winograd, 1971] is an improved
version of the original algorithm and is the one we evaluate.

Given two matrices A and B of sizes M ×K and K ×N respectively, the algorithm
calculates their product C by dividing them by submatrices as follows:

�

C11 C12

C21 C22

�

=

�

A11 A12

A21 A22

�

×
�

B11 B12

B21 B22

�

(3.13)

where the submatrices of A have (M/2)× (K/2) elements and the submatrices of
B have (K/2)× (N/2) elements. The algorithm calculates the result through the
following submatrix operations:

S1 = A21 + A22

S2 = S1 − A11

S3 = A11 − A21

S4 = A12 − S2

T1 = B12 − B11

T2 = B22 − T1

T3 = B22 − B12

T4 = T2 − B21

P1 = A11B11

P2 = A12B21

P3 = S4B22

P4 = A22T4

P5 = S1T1

P6 = S2T2

P7 = S3T3

U1 = P1 + P2 = C11

U2 = P1 + P6

U3 = U2 + P7

U4 = U2 + P5

U5 = U4 + P3 = C12

U6 = U3 − P4 = C21

U7 = U3 + P5 = C22

(3.14)

The submatrix products P1, . . . , P7 can be calculated by applying the algorithm
recursively.

While the algorithm uses a total of 22 temporary submatrices, the additional
space can be reduced dramatically. [Boyer et al., 2009] show several schedules of
the temporary space for the matrix multiplication and the generalized form shown
previously in section 3.6.2 (C ′ = αA× B + βC). However, those versions reuse the
temporary storage and the storage of the result several times. Since these changes
generate false dependencies, if we used one of them, the runtime would automatically
rename the reuses and as a result keep using the same space as the original version.

Nevertheless, the algorithm allows some reuse of the temporary storage and the
result storage without introducing false dependencies. The algorithm we evaluate is
a variant that uses 12 temporary submatrices and also reuses the storage of the result.
Figure 3.24 shows a graph of its operations and operands. The nodes correspond
to the operations and have their inputs and outputs as input and output edges
respectively. The edges are labeled with their storage location.

To simplify the evaluation, we have restricted it to the cases in which the matrices
are square (M = N = K) and as a consequence also the submatrices (BSM = BSN =
BSK).

Parallelization with SMPSs

Similarly to the matrix multiplication and Cholesky, the Strassen-Winograd imple-
mentation operates over blocked matrices. The intermediate matrix multiplications
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Figure 3.24: Operations, data flow and storage of the Strassen-Winograd variant
with 12 temporary submatrices.
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1 add_iterative(..., a_21, a_22, s1); // S1 := A21 + A22
2 subtract_iterative(..., s1, a_11, s2); // S2 := S1 − A11
3 subtract_iterative(..., a_11, a_21, s3); // S3 := A11 − A21
4 subtract_iterative(..., b_12, b_11, t1); // T1 := B12 − B11
5 subtract_iterative(..., b_22, t1, t2); // T2 := B22 − T1
6 subtract_iterative(..., b_22, b_12, t3); // T3 := B22 − B12
7 subtract_iterative(..., a_12, s2, s4); // S4 := A12 − S2
8 subtract_iterative(..., t2, b_21, t4); // T4 := T2 − B21
9 strassen_multiply(..., a_11, b_11, p1); // P1 := A11 ∗ B11

10 strassen_multiply(..., a_12, b_21, c_11); // P2 := A12 ∗ B21 [−> C11]
11 strassen_multiply(..., s4, b_22, c_12); // P3 := S4 ∗ B22 [−> C12]
12 strassen_multiply(..., a_22, t4, c_21); // P4 := A22 ∗ T4 [−> C21]
13 strassen_multiply(..., s1, t1, c_22); // P5 := S1 ∗ T1 [−> C22]
14 strassen_multiply(..., s2, t2, p6); // P6 := S2 ∗ T2
15 strassen_multiply(..., s3, t3, p7); // P7 := S3 ∗ T3
16 accumulate_iterative(..., p1, c_11); // C11 := P1 + P2[C11]
17 accumulate_iterative(..., p1, p6); // U2 := P1 + P6 [−> P6]
18 accumulate_iterative(..., p6, p7); // U3 := U2[P6] + P7 [−> P7]
19 add_iterative(..., p6, c_22, u4); // U4 := U2[P6] + P5[C22]
20 accumulate_iterative(..., u4, c_12); // C12 := U4 + P3[C12]
21 invert_and_accumulate_iterative(..., p7, c_21); // C21 := U3[P7] − P4[C21]
22 accumulate_iterative(..., p7, c_22); // C22 := U3[P7] + P5[C22]

Listing 3.13: Recursive branch of the Strassen-Winograd implementation in SMPSs.

are solved recursively until the multiplication involves one block per matrix, which
is solved as a standard matrix multiplication. All other operations are decomposed
into block operations in an iterative manner.

Listing 3.13 shows the recursive branch of the Strassen-Winograd implementation.
Line numbers correspond to the numbers of the nodes from figure 3.24. Comments
on the right indicate the operation and show the actual storage in square brackets if
different to the actual mathematical definition in equations 3.14.

The recursion is controlled by the matrix size and the block size. When the
strassen_multiply function is called with a matrix that has the same size as the block
size, then it is implemented as a normal matrix multiplication task instantiation,
otherwise it decomposes it using the code shown in listing 3.13. All calculations
that are not multiplications are implemented by functions that decompose those
operations by blocks.

Parallelization with OpenMP

To compare the performance of the algorithm in SMPSs to other approaches we have
made a second implementation in OpenMP using tasks and nesting. Listing 3.14
shows the code of its recursive branch. Note that since this is a Strassen-Winograd
implementation, there is some memory reuse, and thus, there are dependencies
between the calculations of the decomposition that are not present in the original
Strassen algorithm. Hence, the implementation contains 6 barriers, whereas the
original Strassen would have required only 3. The tasks and the barriers match
the rows of the graph in figure 3.24. For each multiply operation in the graph, the
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1 #pragma omp task untied
2 add_iterative(..., a_21, a_22, s1);
3 #pragma omp task untied
4 subtract_iterative(..., a_11, a_21, s3);
5 #pragma omp task untied
6 subtract_iterative(..., b_12, b_11, t1);
7 #pragma omp task untied
8 subtract_iterative(..., b_22, b_12, t3);
9 #pragma omp task untied

10 strassen_multiply(..., a_11, b_11, p1);
11 #pragma omp task untied
12 strassen_multiply(..., a_12, b_21, c_11);
13

14 #pragma omp taskwait
15

16 #pragma omp task untied
17 subtract_iterative(..., s1, a_11, s2);
18 #pragma omp task untied
19 subtract_iterative(..., b_22, t1, t2);
20 #pragma omp task untied
21 strassen_multiply(..., s1, t1, c_22);
22 #pragma omp task untied
23 strassen_multiply(..., s3, t3, p7);
24 #pragma omp task untied
25 accumulate_iterative(..., p1, c_11);
26

27 #pragma omp taskwait
28

29 #pragma omp task untied
30 subtract_iterative(..., a_12, s2, s4);
31 #pragma omp task untied

32 subtract_iterative(..., t2, b_21, t4);
33 #pragma omp task untied
34 strassen_multiply(..., s2, t2, p6);
35

36 #pragma omp taskwait
37

38 #pragma omp task untied
39 strassen_multiply(..., s4, b_22, c_12);
40 #pragma omp task untied
41 strassen_multiply(..., a_22, t4, c_21);
42 #pragma omp task untied
43 accumulate_iterative(..., p1, p6);
44

45 #pragma omp taskwait
46

47 #pragma omp task untied
48 accumulate_iterative(..., p6, p7);
49 #pragma omp task untied
50 add_iterative(..., p6, c_22, u4);
51

52 #pragma omp taskwait
53

54 #pragma omp task untied
55 accumulate_iterative(..., u4, c_12);
56 #pragma omp task untied
57 invert_and_accumulate_iterative(..., p7,

c_21);
58 #pragma omp task untied
59 accumulate_iterative(..., p7, c_22);
60

61 #pragma omp taskwait

Listing 3.14: Recursive branch of the Strassen-Winograd implementation in OpenMP.

OpenMP code has a task that may be a recursive Strassen-Winograd task or a simple
block multiplication task. For each of the others, it has a task that implements the
operation iteratively with tasks over the blocks. Dependencies are respected by
placing an OpenMP taskwait directive between the rows of the graph.

The recursion is controlled by the same parameters as in the SMPSs implementa-
tion. However, the OpenMP version takes advantage of task nesting by using tasks
to launch the strassen_multiply function. Moreover, the tasks that decompose the
operations that are not matrix multiplications are generated in parallel, similarly to
the previous algorithms. Finally, since OpenMP does not require to physically block
the matrices, they are stored using a standard flat layout in memory.

Both versions use MKL in sequential mode for the submatrix operations.

Determining the Submatrix Dimensions

Like in previous algorithms, the value of the submatrix side size BS also determines
the number of tasks of the problem decomposition and the computational weight
of each task. Figure 3.25 shows the floating point performance of the SMPSs im-
plementation in terms of the standard matrix multiplication. That is, the values are
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Figure 3.25: Performance of the SMPSs Strassen implementation with several matrix
and blocking sizes.

calculated as if the algorithm performed 2N3 floating point operations. Hence the
value can be above the hardware peak. To explain the performance displayed in this
figure we analyze several aspects and metrics that affect the final performance.

The graph of the Strassen algorithm is complex like the Cholesky one, but it
widens faster when we decrease the blocking size. For instance, the graph with just
one recursion level is identical to the one in figure 3.24. However, when we go
through two recursion levels, we obtain the graph in figure 3.26, which is so wide
that it has been rotated to make it fit in the page (dependencies go from left to right).

Figure 3.27 indicates that several configurations cause starvation. The diagonal
configurations correspond to executions with just one matrix multiplication for
the cases with 1 and 2 cores, with just one recursion level for 4 and 8 cores, and
for two levels of recursion with 16 and 32 cores. In those cases, the amount on
parallelism is too small. Figure 3.28 shows that the rest of the configurations with
poor performance and high idle time occur when the main thread has a high amount
of overhead.

The mean task floating point operations per cycle are shown in figure 3.29. As
opposed to the previous experiments, the Strassen’s task floating point performance
improves steadily when we increase the submatrix size.

Table 3.7 summarizes the performance of the best submatrix sizes. Notice that
with one thread the best submatrix size for matrices is always smaller than the
whole matrix size. Thus, the Strassen algorithm is faster than the regular matrix
multiplication for every problem size that we tried.

Scheduling

Figure 3.30 shows the mean floating point performance of the application under
several strong scalability scenarios with each scheduler. Each point corresponds to
the submatrix size that produced the best mean performance. None of the scheduling
policies scales well for the smallest matrix size, and in general they perform similarly.
These results indicate that either the schedulers are too simple to exploit data reuse
effectively, or that the dependencies do not allow it.

Table 3.8 summarizes the mean values of the main performance metrics of the
Strassen algorithm with each scheduler.
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Node Task

accumulate
add
invert_and_accumulate
multiply
subtract

Figure 3.26: Task graph of the SMPSs Strassen implementation with matrices divided
into 4× 4 submatrices, laid out from left to right.
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Mean thread idle time (%)
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Figure 3.27: Average time taken by each thread idling in the SMPSs Strassen imple-
mentation with several matrix and blocking sizes.
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Figure 3.28: Percentage of time time that the main thread spends managing tasks
when running the SMPSs Strassen implementation with several matrix and blocking
sizes.
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Figure 3.29: Mean floating point operations per cycle while running each task of the
SMPSs Strassen implementation with several matrix and blocking sizes.
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Cores Na BSb Tasks GFc IPCd FPCe Ovh.f

(%)
Eff.g

(%)
Idle
(%)

Tr.O.h

(%)

1 1024 512 22 6.1 5.32 3.51 0.75 99 0 0
1 2048 512 214 6.5 5.04 3.32 1.02 98 0 0
1 4096 512 1738 7.2 4.88 3.21 1.19 98 0 0
1 8192 512 13126 8.0 4.77 3.13 1.30 98 0 0

2 1024 512 22 10.9 5.22 3.45 1.12 91 7 0
2 2048 512 214 12.7 4.97 3.28 1.67 98 0 0
2 4096 512 1738 14.0 4.80 3.15 1.93 98 0 0
2 8192 1024 1738 15.6 5.14 3.40 0.71 99 0 0

4 1024 256 214 18.5 4.11 2.67 8.35 94 1 0
4 2048 512 214 23.3 4.74 3.12 2.94 96 2 0
4 4096 1024 214 26.0 5.10 3.37 1.11 96 3 0
4 8192 1024 1738 29.6 4.93 3.26 1.34 99 0 0

8 1024 512 22 27.5 4.78 3.15 2.95 64 34 0
8 2048 512 214 39.0 4.32 2.84 5.81 92 5 0
8 4096 1024 214 46.7 4.78 3.16 2.35 93 5 0
8 8192 1024 1738 54.8 4.68 3.09 2.70 98 0 0
8 16384 2048 1738 61.6 5.09 3.38 1.28 98 0 0

16 1024 256 214 29.2 2.99 1.94 26.66 79 15 0
16 2048 512 214 58.2 3.91 2.57 11.08 84 13 1
16 4096 1024 214 73.8 4.32 2.86 4.86 84 14 0
16 8192 1024 1738 93.7 4.17 2.75 6.18 97 1 0
16 16384 2048 1738 119.1 5.00 3.32 2.87 97 1 0

32 1024 256 214 23.6 2.67 1.74 29.80 39 57 -1
32 2048 512 214 65.8 3.41 2.24 18.79 68 29 1
32 4096 1024 214 97.9 3.52 2.33 10.46 74 24 1
32 8192 2048 214 140.4 4.61 3.06 5.73 74 25 2
32 16384 2048 1738 209.8 4.69 3.11 7.53 94 4 1

a Matrix side size..
b Maximum submatrix side size for addition and subtraction tasks
c GFlops.
d Mean instructions per cycle while running tasks.
e Mean floating point operations per cycle while running tasks.
f Time that the main thread spends generating tasks and idle.
g Mean time that threads spend running tasks.
h Increment of the execution time when enabling tracing.

Table 3.7: Best submatrix side sizes for the SMPSs Strassen implementation and
their performance characteristics.
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Figure 3.30: Strong scalability of the SMPSs Strassen implementation with several
matrix sizes under each scheduling policy and performance with 32 cores.

76



3.6. Evaluation

Cores Na GFb GFb GFb GFb FPCc FPCc FPCc FPCc Eff.d

(%)
Eff.d

(%)
Eff.d

(%)
Eff.d

(%)

1 1024 6.1 6.1 6.1 6.1 3.5 3.5 3.5 3.5 99 98 98 98
1 2048 6.5 6.5 6.5 6.5 3.3 3.3 3.3 3.3 98 98 98 98
1 4096 7.2 7.1 7.1 7.1 3.2 3.2 3.2 3.2 98 98 98 98
1 8192 7.9 7.9 7.9 7.9 3.1 3.1 3.1 3.1 98 98 98 98

2 1024 10 10 10 10 3.4 3.5 3.5 3.4 91 89 89 90
2 2048 12 12 12 12 3.3 3.2 3.3 3.2 98 98 97 98
2 4096 13 13 13 13 3.2 3.1 3.1 3.1 98 98 98 98
2 8192 15 15 15 15 3.4 3.4 3.4 3.4 99 99 99 99

4 1024 18 17 18 18 2.7 2.6 2.6 2.7 94 93 92 93
4 2048 23 23 23 22 3.1 3.1 3.1 3.1 96 96 96 95
4 4096 26 26 26 26 3.4 3.4 3.4 3.4 96 97 97 97
4 8192 29 29 29 29 3.3 3.3 3.3 3.3 99 99 99 99

8 1024 27 26 27 26 3.2 3.1 3.2 3.1 64 64 64 64
8 2048 39 38 38 38 2.8 2.8 2.8 2.8 92 91 92 92
8 4096 46 46 44 46 3.2 3.2 3.2 3.2 93 93 92 92
8 8192 54 54 54 54 3.1 3.1 3.1 3.1 98 98 98 98
8 16384 61 62 61 61 3.4 3.4 3.4 3.4 98 98 99 98

16 1024 29 27 28 28 1.9 1.8 2.0 1.9 79 75 73 75
16 2048 57 56 57 56 2.6 2.5 2.6 2.5 84 83 84 84
16 4096 73 75 75 74 2.9 2.9 2.9 2.9 84 86 86 85
16 8192 92 93 92 93 2.8 2.8 2.7 2.8 97 97 97 97
16 16384 118 118 116 118 3.3 3.3 3.3 3.3 97 97 97 97

32 1024 23 23 25 23 1.7 1.7 1.8 1.6 39 37 37 38
32 2048 64 65 67 64 2.2 2.2 2.3 2.2 68 68 68 67
32 4096 95 97 95 97 2.3 2.4 2.4 2.3 74 74 72 74
32 8192 136 140 139 139 3.1 3.1 3.1 3.1 74 74 74 74
32 16384 207 210 206 208 3.1 3.2 3.1 3.1 94 94 94 94

Scheduler: Default Random Random + PT FIFO
a Matrix side size.
b GFlops.
c Mean floating point operations per cycle while running tasks.
d Mean time that threads spend running tasks.

Table 3.8: Performance summary of the scheduler on the SMPSs Strassen implementation.
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Performance of the Implementations

Figure 3.32 shows the mean floating point performance of both implementations
under several strong scalability scenarios. The measurements have been selected
from the ones with submatrix sizes that produced the best mean performance. In
all cases the SMPSs implementation scales better than the OpenMP version. By
taking advantage of dependencies, SMPSs is able to find parallelism that cannot be
exploited through task nesting.

Performance decreases with the number of cores with both implementations,
since the amount of work per core is smaller and so is the potential IPC. Figure 3.33
shows the average task floating point operations per cycle and figure 3.34 shows
the mean fraction of time that threads spend running tasks. Both figures show that
parallelism and floating point operation per cycle decrease as the number of cores
increases. However, since the SMPSs implementation finds more parallelism, it can
keep threads busy during more time and thus it can choose bigger block sizes when
the problem is big enough, and improve its task performance as a result. Figure 3.31
shows in detail for each problem and blocking size the effective parallelism gained
by using dependencies in SMPSs instead of task nesting with OpenMP.

Table 3.9 summarizes the means of the main performance metrics of each imple-
mentation. Notice that the SMPSs version when running with more than one core
has more parallel efficiency in all cases, and for the biggest problems uses bigger
submatrices than the OpenMP version. These results show that task dependencies
are able to extract more parallelism than task nesting and can perform better as a
result, despite the additional overhead of calculating them.

Parallel efficiency improvement of SMPSs vs. OpenMP (%)
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Figure 3.31: Effective parallelism improvement of the Strassen algorithm in SMPSs
with dependencies compared to OpenMP with task nesting.
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Figure 3.32: Strong scalability of each implementation of Strassen with several
matrix sizes and performance with 32 cores.
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Figure 3.33: Average floating point operations per cycle of each implementation of
Strassen while running effective work with several matrix sizes.
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Figure 3.34: Fraction of time that threads spend running the Strassen code on each
implementation with several matrix sizes.
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Cores Na BSb BSb GFc GFc FPCd FPCd Eff.e

(%)
Eff.e

(%)

1 1024 512 1024 6.1 6.1 3.51 3.88 99 99
1 2048 512 1024 6.5 6.4 3.32 3.64 98 99
1 4096 512 1024 7.2 7.1 3.21 3.51 98 99
1 8192 512 1024 7.9 7.9 3.13 3.43 98 99

2 1024 512 256 10.9 8.5 3.45 2.77 91 83
2 2048 512 512 12.8 10.4 3.28 3.20 98 83
2 4096 512 512 14.0 12.7 3.15 3.10 98 92
2 8192 1024 512 15.5 14.9 3.40 3.02 99 97

4 1024 256 256 18.6 10.8 2.67 2.49 94 60
4 2048 512 256 23.3 14.0 3.12 2.32 96 74
4 4096 1024 512 26.1 18.0 3.37 2.88 96 72
4 8192 1024 512 29.5 23.4 3.26 2.82 99 83

8 1024 512 256 27.4 11.4 3.15 2.12 64 40
8 2048 512 512 39.1 15.1 2.84 2.76 92 37
8 4096 1024 512 46.4 21.1 3.16 2.59 93 49
8 8192 1024 512 54.7 27.9 3.09 2.52 98 58
8 16384 2048 512 61.8 35.0 3.38 2.48 98 65

16 1024 256 256 29.1 12.0 1.94 1.91 79 24
16 2048 512 512 57.3 16.9 2.57 2.64 84 22
16 4096 1024 512 73.3 25.2 2.86 2.42 84 32
16 8192 1024 512 92.8 33.6 2.75 2.31 97 40
16 16384 2048 512 118.8 43.3 3.32 2.26 97 46

32 1024 256 256 24.0 11.4 1.74 1.82 39 12
32 2048 512 512 64.9 17.0 2.24 2.58 68 11
32 4096 1024 512 96.0 27.0 2.33 2.30 74 19
32 8192 2048 512 136.9 38.3 3.06 2.13 74 26
32 16384 2048 512 207.5 50.8 3.11 2.02 94 33

Implementation: SMPSs OpenMP
a Matrix side size.
b Submatrix side size
c GFlops.
d Mean floating point operations per cycle while running tasks.
e Mean time that threads spend running tasks.

Table 3.9: Performance summary of the Strassen implementations.
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Chapter 4

Strided and Overlapping Data
Accesses

4.1 Introduction

Productivity is an important aspect of High Performance Computing. It is usually
defined as a relation between the time and effort that it takes to develop a code, and
the performance of the solution. The SMPSs programming model has been designed
to find a balance between those two factors. On one hand, it reduces the development
effort by providing just one parallel construct, by following the sequential execution
semantics, by basing the parallelization in code annotations and by moving the effort
analyzing data dependencies form the programmer to the programming model. On
the other hand, it strives to obtain more performance by trading the overhead of
data dependency analysis in exchange of potentially more parallelism. All these
aspects have already been covered in the previous chapter.

Despite these advantages, the model has tight requirements on data layout and
data access that limit its performance and applicability. First, the data that the tasks
access must be contiguous in memory. And second, those accesses must be performed
over segments of contiguous memory that do not overlap.

These restrictions affect the data layout of applications. For instance, the pro-
grammer may need to physically block the data. This is the case of several of the
test cases of the previous chapter, that use hyper-matrices instead of plain matrices.

The limitations also affect how the code accesses the data. For instance, the Gauss-
Seidel task from the previous chapter in listing 3.8 (page 37) has many parameters
and its code is more complex than its sequential version due to the data blocking.
The need to make data layout changes and the complexity that it introduces could
be avoided by providing means to handle flat data structures.

Using the same blocking size for all tasks has also an impact on performance. This
is usually the case of applications that have tasks with very different computational
costs. On one hand, raising the blocking size may improve the performance of fast
tasks, but it may make the slower tasks too small and too few, which may cause
imbalance. On the other hand, a blocking size tuned to the parallelism of slow tasks,
may produce too many of the faster tasks that may be too fast and lead to too much
runtime overhead. This case affects the HPL benchmark that we evaluate in this
chapter.
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Allowing different tasks to use different granularities even if they operate over
the same data would compensate the computational complexity mismatch and its
effects. In practice this requires non fixed blocking sizes and overlapping accesses.

Finally, some algorithms may be hard to express using a fixed and contiguous
memory layout. This sort of algorithms includes cases with several phases that
accesses the data in a different ways. For instance a matrix may be accessed by rows,
by columns and by tiles at different stages of the algorithm. This is the case of the
Fast Fourier Transform implementation we present in the evaluation section using
the Matrix Fourier Algorithm decomposition.

The rest of this chapter is structured as follows. Section 4.2 discusses how to
extend the syntax to allow expressing strided and overlapping data accesses. Section
4.3 explores how to represent such information within the runtime. Section 4.4
explores how to use that representation to organize the information needed to calcu-
late data dependencies efficiently. And section 4.5 evaluates the benchmarks of the
previous chapter under the new conditions and extends the analysis with algorithms
that could not be expressed or that had compromised solutions. In addition, appendix
D shows the changes needed in the runtime API and the compiler to support regions
respectively. For brevity most of the benchmarks of the previous chapter have been
moved to appendix E.

Thus, the contributions of this chapter are (1) the SMPSs language extensions,
(2) a compact representation of a set of memory addresses, (3) an algorithm to check
for intersections between two sets, (4) a searchable and updatable data structure
to store information about memory data sets with an efficient intersection search
operation, and (5) an evaluation of the performance obtained on a set of algorithms
under SMPSs with such extensions.

4.2 Language-Level Array Regions

Some programming languages include the means to specify subsets of arrays. How-
ever, their purpose and semantics are different from one to the other. In Fortran,
programmers can pass a subset of an array to a function, which in turn can use a
different indexing to access it. While the syntax is fully specified, the semantics are
implementation-specific. In many implementations, passing an array subset has the
semantics of a partial copy to a temporary array, and thus changes to that data get
discarded when the function call finishes. In others it does not have copy semantics,
and thus the changes are reflected on the original data.

Partitioned Global Address Space (PGAS) languages also allow the programmer
to specify subsets of an array, but they play a more central role. Their purpose is to
define how arrays are distributed between the different memories; to define iteration
spaces; and to establish the breadth of global array operations.

In this section we refer to array subset as array regions. In the Fortran literature
they are referred to as array sections. In the PGAS area, the Chapel language by
[Chamberlain et al., 2007] and Titanium by [Yelick et al., 1998] call them domains.
The X10 language by [Charles et al., 2005] calls them regions.

In SMPSs, array regions are useful for defining partial accesses to arrays. For
instance, a task may update a limited number of columns of a matrix each time.
Without array regions, the programmer cannot specify that kind of access and is
forced to either declare the matrix as a flat matrix and to declare the accesses as
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full matrix accesses, or to resort to using barriers. Both cases limit the ability of the
model to extract parallelism.

PGAS languages define array regions as language-level classes that must conform
to a standard interface that defines the operations that the region must have. These
interfaces include set-like operations like the intersection. This approach is very
flexible since it allows the scope and behavior to be unrestricted. However, it comes
at the expense of too much overhead for our purposes. For instance, most operations
related to array regions consist in traversing them. Therefore, the cost of an intersec-
tion operation between arbitrary regions, which in X10 consists in generating all the
indexes of one array region, checking their inclusion in the other, and adding them
as a list to the result, is usually in line with the cost of their traversal.

In SMPSs, array regions are used for determining dependencies, and thus their
main operation is the intersection. Since a solution similar to the one used by
PGAS languages incurs in too much overhead, the solution must constrain the
expressiveness to allow the intersection operation to be implemented more efficiently.

To this degree, an SMPSs array region is defined as one range of values for each
dimension, that determines the indexes of the elements contained in the region.

To support the specification of array accesses, the grammar has been extended
as follows:

(11) 〈task-parameter〉 →
(11.1) 〈identifier〉 〈opt-task-parameter-dimensions〉 〈opt-region〉

(12) 〈opt-task-parameter-dimensions〉 →
(12.1) 〈task-parameter-dimensions〉
(12.2) |

(13) 〈task-parameter-dimensions〉 →
(13.1) 〈task-parameter-dimensions〉 〈task-parameter-dimension〉
(13.2) | 〈task-parameter-dimension〉

(14) 〈task-parameter-dimension〉 →
(14.1) [ 〈expression〉 ]

(15) 〈opt-region〉 →
(15.1) 〈region-specifiers〉
(15.2) |

(16) 〈region-specifiers〉 →
(16.1) 〈region-specifiers〉 〈region-specifier〉
(16.2) | 〈region-specifier〉
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(17) 〈region-specifier〉 →
(17.1) { }
(17.2) | { 〈expression〉 }
(17.3) | { 〈expression〉 .. 〈expression〉 }
(17.4) | { 〈expression〉 : 〈expression〉 }

In the new grammar, parameters may have region specifiers (15) in addition to
the optional dimension specifiers (11). A region specifier is a list of dimension range
specifiers (16), one for each dimension and in the same order as the dimension
specifiers.

Dimension range specifiers indicate the indexes accessed in the given dimension.
They appear in the same order as the dimensions, and have four different forms.
The first form (17.1) indicates that the dimension is fully accessed. A single element
can be specified (17.2). A subset of the dimension can be specified as a pair of first
element and last inclusive element (17.3) or as a pair of first element and length
(17.4).

Since array regions allow to specify partial array accesses, as opposed to full-array
accesses, a task instance may access several parts of an array with several types of
access. Each appearance of a parameter in a directionality clause declares a region
access.

Listing 4.1 contains a matrix multiplication similar to the one evaluated in the
previous chapter, but performed over a flat matrix. Figure 4.1 contains a representa-
tion of its data accesses. A, B and C (line 9) are matrices of N ×N doubles. The code
operates in regions of L× L elements inside the matrices. These are analogous to the
blocks in the previous chapter. The matmul task receives pointers to the beginning of
each region (line 14). The directionality clauses in line 1 indicate that the task reads
a region of L × L elements of a, starting from a[0][0], an identical one from b, and
that it reads and writes another one for c. The only data that produces dependencies
is matrix C. The innermost loop in line 13 will generate chains of tasks since each
iteration updates the same part of C.

While previous versions of SMPSs would require using hyper-matrices, by en-
abling regions this is no longer necessary. Moreover, by applying to regions the same
principles as the Variable Length Arrays described by the [International Organiza-
tion for Standardization and International Electrotechnical Commission, 1999], the
region size (and thus the size of the task) can be determined at run time or even
dynamically. This can be done by passing L as a parameter to the task and it does
not require any change to the data layout.

Tasks may have more than one region access per parameter. Listing 4.2 shows a
version of the Gauss-Seidel benchmark of the previous chapter but this time using
a flat matrix and regions instead of a blocked matrix. The gauss_seidel task has 5
different regions that are also represented in figure 4.2(a). The regions that appear
in the input clause correspond to the top row, the bottom row, the left column, and
the right column of the stencil respectively. The inout clause contains the region of
the inner square.

Figure 4.2(b) represents the regions accessed by a task over the whole array
at some point during the execution. Careful inspection of the figure and the code
reveals that each task call has at least two of the outer regions overlapping the inner
square of its neighbor tasks (the task immediately to the north, south, east or west),
and its inner square overlapping an outer region of those tasks. Those overlaps
determine the dependencies between the task invocations.
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Figure 4.1: Structure and regions used in the matmul_task.

1 #pragma css task input(a{0:L}{0:L}, b{0:L}{0:L}) inout(c{0:L}{0:L})
2 void matmul(double a[N][N], double b[N][N], double c[N][N]) {
3 for (int i=0; i < L; i++)
4 for (int j=0; j < L; j++)
5 for (int k=0; k < L; k++)
6 c[i][j] += a[i][k] + b[k][j];
7 }
8

9 double A[N][N], B[N][N], C[N][N];
10 ...
11 for (int i=0; i < N; i+=L)
12 for (int j=0; j < N; j+=L)
13 for (int k=0; k < N; k+=L)
14 matmul(&A[i][k], &B[k][j], &C[i][j]);

Listing 4.1: A matrix multiplication example that uses regions.

1 #pragma css task \
2 input(a{0}{1:L}, a{L+1}{1:L}, a{1:L}{0}, a{1:L}{L+1}) \
3 inout(a{1:L}{1:L})
4 void gauss_seidel(double a[N][N]) {
5 for (int i=1; i<=L; i++)
6 for (int j=1; j<=L; j++)
7 a[i][j] = 0.2 ∗ (a[i][j] + a[i−1][j] + a[i+1][j] + a[i][j−1] + a[i][j+1]);
8 }
9

10 double data[N][N];
11 ...
12 for (int it=0; it < NITERS; it++)
13 for (int i=0; i<N−2; i+=L)
14 for (int j=0; j<N−2; j+=L)
15 gauss_seidel(&data[i][j]);

Listing 4.2: An example showing code that uses regions to specify accesses over a
stencil.
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Figure 4.2: Regions used in the gauss_seidel task: (a) from the point of view of the
task; and, (b) from the point of view of the caller.

Notice that in both examples we pass pointers to a starting position within the
array and we are not restricted to always pass the base address. In a similar way, the
language does not impose other restrictions on other techniques used in plain C like
pointer arithmetic or altering the array dimensions.

While the declaration of the Gauss-Seidel task is more complex when using
regions than when using the blocked layout (see page 38), it improves the pro-
grammability of the code of the task. More specifically where the blocked code had
a conditional for every access to an element of the halo that surrounds the element
that is updated, the version using region does not, and thus it is simpler and closer
to the original sequential code.

4.3 Data Structures to Describe and Operate over Ar-
ray Regions

The C language, due to its reliance on pointers, has some features that are typically
not found in other languages. For instance, it allows pointer arithmetic, decaying
arrays into pointers, passing pointers to positions inside an array, or even addressing
parts of an array by dropping some of its most significant dimensions. While these
characteristics may be seen as violating good coding rules, they are used in practice.
For instance, a multidimensional Fast Fourier Transform (FFT) implementation in C
may perform unidimensional FFTs followed by transpositions that operate on the
same data but in two dimensions.

The need to handle those cases in SMPSs complicates data dependency analysis,
since the addresses of the arrays passed to the tasks may actually point to a location
different to the beginning of the array, and the dimensions of the array may differ
from one task call to the other. This complexity originates from trying to make the
internal representation a direct projection of language, that is, a representation based
on a base addresses and the dimension sizes and indexes.

Chapel, Titanium and X10 only support “good coding rules” in relation to arrays.
Therefore, their array indexing has a unique and direct correspondence to their
elements. Because of this, the correspondence between their array region specifica-
tion and the actual elements is also unique, which allows them to have an internal

88



4.3. Data Structures to Describe and Operate over Array Regions

representation that is also based in the index domain, and thus closely resembles
that of their language-level syntax. In contrast, since we are willing to support the
whole range of C operations over arrays, the correspondence between indexes and
elements is not unique, and that forces our internal representation to depart from the
index domain representations and thus to differ significantly from its language-level
representation.

4.3.1 Compact Array Region Representations

Compact array region representations have been previously proposed in the area of
autoparallelizing compilers. However, like the representations of Chapel, Titanium
and X10, they also rely on knowing the base address of the arrays.

The Triplet representation described by [Havlak and Kennedy, 1991] is similar
to the SMPSs language-level representation. The Linear Memory Access Descriptor
(LMAD) by [Paek et al., 2002] improves the Triplet representation by converting it
into a linearized form. This way, it can detect dependencies even when the array
dimensions change.

Both representations are used at compile time to model the accesses performed
by statements across an iteration space and to determine the possible independence
between them. In some cases the analysis can also span several function invocations.
Being compile time techniques, they require knowing which specific array is being
accessed in every case. This makes handling pointer arithmetic difficult, and for
non-linearized representations, it makes array reshaping difficult too.

Hybrid methods like the extended LMAD presented by [Rus et al., 2002] combine
symbolic analysis at compile time with symbolic substitution and run time combi-
nation of regions. However, they are used for fork-join parallelism instead of more
unstructured parallelism models.

The work of [Paek et al., 1998] overviews some of the most used array region
representations in the area of autoparallelizing compilers, including the Data Access
Descriptor published by [Balasundaram and Kennedy, 1989], which has similar
capabilities to the Triplet representation.

While in many cases the information provided by the code annotations can be
generated automatically through compiler analysis, our proposal differs from the
representations used in autoparallelizing compilers in that (1) it is used exclusively
at run time, (2) it is used for finding the actual dependencies instead of just testing
for independence, (3) it does not rely on knowledge about the specific array being
accessed, which allows it to accept pointer arithmetic and array reshaping, and (4) it
is used over a bigger search space (an average SMPSs program may have thousands
of in-flight tasks at any given time).

The SMPSs array region language syntax restricts the possible shapes to just mul-
tidimensional rectangles (also called hyper-rectangles). Therefore, data structures
that support range-like operations could be candidates for their internal represen-
tation. For instance, since the region is always rectilinear, the lowest and highest
indexes of each dimension are enough to represent the region inside the array. This
representation is compact and can be organized into a Space Partitioning Tree (SPT).
For instance, the kd-tree that [Bentley, 1975] proposes would allow to check effi-
ciently for overlaps. However, such representations cannot handle pointer arithmetic,
arrays that degenerate into pointers, and arrays that change their dimensions. In
addition, using the lowest and highest indexes of a region as a representation binds
the representation to the base address of the array and its dimensions, since each
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array would define a different origin and coordinate system and would thus require
its own SPT.

The Cache Snoop Filters presented by [Salapura et al., 2007] are used in proces-
sors to reduce the effect in performance and power of the cache coherence signaling.
Their purpose it to detect whether an address is within a certain set of addresses.
The solution they propose is to represent these sets using pairs of registers that store
a base address and a bit mask. The low-level array region representation proposed
in this thesis is based on that representation.

4.3.2 The SMPSs Array Region Representation

This thesis proposes a linearized representation based on the actual addresses of the
elements that it covers. Linearization relative to the beginning of the array was first
proposed by [Burke and Cytron, 2004]. Our proposal differs in that it is absolute and
therefore does not depend on the base address of the array. This approach unties
the representation from the base address of the array and its dimensions.

The low-level representation is very similar to the stream registers used in the
cache snoop filters described by [Salapura et al., 2007]. We define R(N) as the set
of all possible regions of width N , where N indicates the number of binary digits of
the representable addresses. A region r ∈R(N) is defined by an ordered sequence
of digits r = 〈rN , rN−1, . . . , r1〉, such that the value of each digit can be either 0, 1, or
X. The digits are ordered from most significant digit rN to least significant digit r1.

Regions are a generalization of numbers written in binary form (in this case
memory addresses), that allow representing sets of values. Any address can be
represented as a region by simply expressing it in binary form and interpreting it as
a region description. The X digit value has a similar meaning to the one used logic
synthesis of digital circuits: the value of the digit can be either 0 or 1.

Given a certain N and two regions a, b ∈R(N) we define several properties. For
simplicity, we use subindexes to refer to the digits of a region by position. First, a
region can only be expressed in a unique way as shown in equation 4.1. Second, a
region can be a subset or a superset of another. Equation 4.2 shows the necessary
conditions. Since an address is also a region, equation 4.2 also defines whether an
address belongs to a region. Equation 4.3 defines the existence of intersection. In
that case, equation 4.4 defines how to calculate it. Equations 4.3 and 4.4 can be
deduced from 4.1 and 4.2.

a = b ⇐⇒ ∀i ai = bi (4.1)

a ⊇ b ⇐⇒ ∀i ai = bi ∨ ai = X (4.2)

a ∩ b 6=∅ ⇐⇒ ∀i ai = X ∨ bi = X ∨ ai = bi (4.3)

a ∩ b 6=∅=⇒∀i (a ∩ b)i =















0 if ai = bi = 0

1 if ai = bi = 1

ai if bi = X
bi if ai = X

(4.4)

Figure 4.3 depicts a bidimensional array with a region. The grid represents the
elements of the array and the gray positions indicate the elements specified by the
range. Figure 4.3(a) contains the language representation and figure 4.3(b) the
low-level representation, considering an 8 bit wide address space, that the base
address of a is 0, and that the array is stored in row-major order.
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Figure 4.3: A region: (a) high-level representation; and, (b) low-level representation
considering that the address of a is 0 and the elements are 1 bit wide.

4.3.3 Converting a Language-Level Region into the Internal Rep-
resentation

In order to use the low-level representation, there must be a conversion process
from the language representation. Let M be the number of dimensions, 1 being the
contiguous dimension and M the most strided one. For simplicity we assume that
all dimension ranges are zero based, that is, that each has a size d and its range is
of the form {0 : l}. We also consider that b is the base address and that the size d
and range length l of the contiguous dimension are expressed in terms of bytes (as
opposed to elements).

By definition a digit with value X can have values 0 and 1 in the set of addresses of
the region. Any other non-X digit position must have the same value in all addresses.
A naïve approach would generate all possible addresses and check for digits that
change their value.

A more efficient approach is to check digit positions of the base address to which
we must add 1 to calculate an address of the set and to consider their propagation
when they generate carries through the more significant digits. For instance, for a
unidimensional array with base b = 0010 and range length l = 0011, digits b1 and
l1 generate an X. Digits b2 and l2 generate an X but also propagate to the following
digit, thus generating another X. The result of this algorithm is 0XXX.

Listing 4.3 shows pseudocode to calculate the set of Xs of a low-level representa-
tion. Each digit of the variable mask set to 0 corresponds to an X in the low-level
representation. All other bits of the low-level representation must match the base
address. This implementation iterates through all the dimensions. Each time, the
variable stride contains the stride of the given dimension. The algorithm calculates
the effect of each bit set to 1 in stride when generating the addresses as it jumps
from digit to digit as determined by li .

Although this algorithm is faster than the naïve solution, it has a time complexity
that is linear to the number of bits of an address and to the number of bits set to 1
in the dimension lengths and range lengths.

We can further reduce the cost of generating a low-level representation by using
an approximate solution. Listing 4.4 calculates an approximate mask by determining
the first X and the last X corresponding to each dimension and filling all digits in
between with Xs. The result may have digits set to X that are not set when using the
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1 mask = {1, 1, ..., 1}
2 current_address = base_address
3 stride = 1
4 for each dimension i starting from 1
5 for each bit j of stride equal to 1
6 for each bit k of li equal to 1
7 for k_current from 0 to k−1
8 {mask, current_address} = set_and_propagate(k_current+j,

current_address, mask)
9 stride = stride ∗ di

10

11 function set_and_propagate(i, address, mask)
12 if bit i of address is equal to 1
13 addressi = 0
14 return set_and_propagate(i+1, address, mask);
15 else
16 maski = 0
17 addressi = 1
18 return {mask, address}

Listing 4.3: Pseudocode that given a region in language representation calculates
the mask that corresponds to the X values of its low-level representation.

previous algorithm. For instance, for a dimension with stride 1001, length 10 and
start address 00000, the exact algorithm would return XX0XX, while the approximate
algorithm would return XXXXX.

Approximating the low-level representation in this way does not lead to incorrect
executions, since it does not exclude data that is accessed by the tasks. However, it
can include non accessed data and thus include nonexistent dependencies that may
reduce parallelism.

4.3.4 Aliasing and Alignment Restrictions

The low-level representation, independently of the algorithm used to construct it, can
only represent with total precision certain sets of addresses. The rest can be repre-
sented approximately as a superset of the intended set. When converting a language
level representation into a low-level representation, this kind of approximation can
occur.

For instance a 1D region spanning from 0011 (3) to 0110 (6) would be repre-
sented by 0XXX, which is actually a superset that contains addresses from 0000 (0)
to 0111 (7). We call this effect aliasing.

Given a dimension, we can fix the indexes for all other dimensions and calcu-
late the addresses covered by the range of indexes of this dimension. Under those
conditions and given a base address b, a stride s, and a dimension length l we can
calculate:

addresses(b, s, l) =
⋃

0≤i<l

{b+ s× i} (4.5)

The displacement of the addresses with respect to the base address can be obtained
with addresses(0, s, l). We define changed_bits(b, s, l) as the set of indexes of the
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1 mask = {1, 1, ..., 1}
2 current_address = base_address
3 stride = 1
4 for each dimension i starting from 1
5 find maximum lowest_digit such that bit lowest_digit of (stride−1) is

equal to 1
6 find maximum highest_digit such that bit highest_digit of

(current_address+(length−1)∗stride) is equal to 1
7 for each j from highest_digit to lowest_digit
8 mask j = 0
9 current_address = current_address + (length−1)∗base

10 stride = stride ∗ di

Listing 4.4: Pseudocode that given a region in language representation calculates the
mask that corresponds to a superset of the X values of its low-level representation.

digits that change in addresses(b, s, l), that is:

∀i i ∈ changed_bits(b, s, l) ⇐⇒ ∃x , y ∈ addresses(b, s, l)∧ x i 6= yi (4.6)

Aliasing at this level can happen for two different reasons. First, aliasing can happen
if either the stride or the length are not powers of 2. In that case, the number of
covered addresses is less than the number of combinations introduced by the changed
bits.

The other source of aliasing is the base address. If a digit i that changes in a
range is set to 1 in the base address b, then that bit position generates a carried 1
that is propagated to the next greater significant digit up to a digit that does not
change in addresses(0, s, l) and that it is not 1 in the base. This is the case of the
example shown previously.

A carried 1 due to any of the two types of aliasings can propagate up to the bit
positions corresponding to the following dimension, leading to interdimensional
aliasing. For instance on a bidimensional matrix, interdimensional aliasing can
generate aliasing dependencies between regions without any row and column in
common.

Aliasing can be eliminated or reduced by splitting the language-level region into
several that can be represented with more precision. For instance, in the previous
example, the region could be split into three parts: 0011, 010X, and 0110. This
solution, though, increases the number of low-level regions that must be handled in
the run-time, which can have a big performance impact.

Aliasing can also be avoided entirely by always providing language level regions
that can be represented with total precision. A number of conditions must be met:
first, the base address must be aligned in such a way that all its possibly changing
bits are zero; second, each dimension in the array must be a power of two; and
finally, for each dimension, the length of the accessed indexes must be a power of 2
and the initial index must be a multiple of it.

Aliasing generates additional unnecessary dependencies that we call aliasing
dependencies. They potentially limit the amount of parallelism that can be achieved.
Although it may have a negative impact on performance, aliasing does not eliminate
any dependency and thus preserves the correctness. While the previous conditions
must be met to avoid aliasing, they are not absolutely necessary to obtain good
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ai av
i am

i

0 0 1
1 1 1
X 0 0

Table 4.1: Encoding of digit values of the compact representation as pairs of bit
values.

ai bi av
i am

i bv
i bm

i a ⊇ b

X X 0 0 0 0 1
X 0 0 0 0 1 1
X 1 0 0 1 1 1
0 X 0 1 0 0 0
0 0 0 1 0 1 1
0 1 0 1 1 1 0
1 X 1 1 0 0 0
1 0 1 1 0 1 0
1 1 1 1 1 1 1

Table 4.2: Truth table of the subset relation.

performance. For instance, in many cases, just eliminating interdimensional aliasing
can provide enough parallelism.

4.3.5 Implementing Basic Operations

Our compact representation can be implemented as two bit fields av and am that
encode the digit values of a region a. A first field av called value contains the values
0 and 1 for the digits with those values, and 0 for digits with value X . A second field
am called mask contains value 0 for digits with value X in the region and value 1 for
digits with values 0 and 1. Table 4.1 shows the equivalence between digit values
and their encoding using separate bits for the value and the mask.

Equality of two regions a and b as defined in equation 4.1 can be implemented
by checking that both pairs of bit fields are equal:

a = b ⇐⇒ av = bv ∧ am = bm (4.7)

The subset relation is defined in equation 4.2. The truth table for a single digit is
shown in table 4.2. The relation is true when the function in the table is true for all
digits. If we minimize the truth table and we apply to all digits, we can calculate the
relation using bit-wise logical operations as follows:

a ⊇ b ⇐⇒ (av Ù bv)∧ am = 〈0, 0, . . . , 0〉 (4.8)

The existence of an intersection has been defined in equation 4.3. Its truth table
for one digit when representing the regions using pairs of bit fields is shown in table
4.3. The intersection exists when the function in the table is 1 (true) for all digits. If
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ai bi av
i am

i bv
i bm

i a ∩ b 6=∅

X X 0 0 0 0 1
X 0 0 0 0 1 1
X 1 0 0 1 1 1
0 X 0 1 0 0 1
0 0 0 1 0 1 1
0 1 0 1 1 1 0
1 X 1 1 0 0 1
1 0 1 1 0 1 0
1 1 1 1 1 1 1

Table 4.3: Truth table of the intersection existence.

ai bi av
i am

i bv
i bm

i (a ∩ b)vi (a ∩ b)mi (a ∩ b)i

X X 0 0 0 0 0 0 X
X 0 0 0 0 1 0 1 0
X 1 0 0 1 1 1 1 1
0 X 0 1 0 0 0 1 0
0 0 0 1 0 1 0 1 0
0 1 0 1 1 1 – – ∅
1 X 1 1 0 0 1 1 1
1 0 1 1 0 1 – – ∅
1 1 1 1 1 1 1 1 1

Table 4.4: Truth table of the value and mask of the intersection.

we minimize the truth table and we apply to all digits, we can calculate the relation
using bit-wise logical operations as follows:

a ∩ b 6=∅ ⇐⇒ am ∧ bm ∧ (av Ù bv) = 〈0,0, . . . , 0〉 (4.9)

Equation 4.4 defines the intersection of two regions when it is not empty. When
representing regions using pairs of bit fields we can calculate the value and the mask
of the intersection independently. Its truth table for one digit when representing
the regions using pairs of bit fields is shown in table 4.4. When we minimize both
functions and we apply them to all digits, we can calculate the intersection using
bit-wise logical operations as follows:

(a ∩ b)v = av ∨ bv (4.10)

(a ∩ b)m = am ∨ bm (4.11)
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4.4 Organizing Regions for Fast Insertion, Deletion
and Matching

In the previous chapter we detected data dependencies by identifying each block of
memory by its starting address. However, that characterization is a simplification
that is only valid for disjoint blocks. In general, two tasks have a dependency if they
access the same memory address and the type of access of at least one of them is a
write or an update. The combination of the different kinds of accesses determines
the type of dependency (Read after Write, Write after Read, or Write after Write).
This can be generalized for regions. Two tasks have a dependency if they access
memory regions that intersect and at least one of them is a write or an update.

To calculate them, each region access must be checked against those of previous
tasks. Hence we need a that structure that allows fast insertion, deletion and lookup
of regions. We call this data structure the region tree.

While the history of all previous task accesses is sufficient to calculate dependen-
cies, it is not necessary to keep it fully. Instead only the last writer and the list of
readers of the last definition are needed. All other dependencies are redundant by
transitivity.

4.4.1 A Data Structure for Region Insertion, Removal, and Match-
ing

The region tree indexes that information using the low-level representation as key.
Each region stored in the tree is represented as a path from the root node to a leaf,
and each leaf and its corresponding path from the root corresponds to a unique
region. The sequence of edge values from the root node to each leaf determines the
key. That is, a region a ∈R(N) is represented in the region tree as a path from the
root node to a leaf such that the sequence of traversed edges are labeled with values
aN , aN−1, . . . , a1.

Given a region a ∈ R(N), to look up all intersecting regions, the tree must be
traversed following the edges that could lead to intersecting regions as defined in
equation 4.3. That is, for every digit ai if its value is X, then the search must descend
through all its children, otherwise, it must descend through the edge labeled with the
same value as ai and through the edge labeled with value X. In case of a non-match,
it should abandon that path since it cannot lead to an intersection, as defined in
equation 4.3.

Insertion and removal are very similar to searching. During insertion, the tree is
traversed through the edges that match exactly the digits of the low-level region.
Whenever an edge is missing, it is added. During removal, the corresponding node
is searched, and it is removed together with its predecessors up to a node that has
more than one child.

Traversal speed is dependent on the number of nodes traversed. In the worst
case, the region intersects every region in the tree, for instance 〈X , X , . . . , X 〉, and
the traversal time is in the order of the number of nodes in the tree. In the best case,
the most significant digit does not match and the traversal finishes with no match
below the root of the tree.
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Figure 4.4: A region tree and its contents: (a) low-level representation; (b) graphical
representation; (c) region tree; and, (d) compressed tree.

4.4.2 Improvements

Since the time required for traversal is dependent on the number of nodes in the tree,
we can improve its performance by reducing the number of nodes. We accomplish
this by compressing into one node each subpath containing only nodes with one
child. This approach is similar to the one proposed by [Morrison, 1968] to compress
common parts of strings in radix trees. In this case, since the “alphabet” of the
index is limited to only 3 symbols and a fixed length equal to the address width,
we can represent the common parts in the nodes and use the edges to indicate
the discriminating bits. The implementation that this chapter evaluates uses this
technique.

Figures 4.4(a), 4.4(b) and 4.4(d) show an example of such an arrangement.
Figure 4.4(a) shows three different regions based on an 8 bit-wide address space. A
graphical representation is shown in figure 4.4(b). It shows the regions as if they
were part of an array of 4 by 4 bytes. Figure 4.4(c) shows a region tree with those
regions before applying compression, and figure 4.4(d) shows the tree when we
apply compression. Each leaf contains a small square with the same color as in figure
4.4(a), indicating that the path from the root node to itself represents that region.
The digits of the low-level representation can be obtained by concatenating the digits
in each node and the edges along the path from the root to the leaf.
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4.4.3 Handling Overlaps

By using regions, programs are not restricted to a fixed block size. In fact programs
can determine dynamically the regions and thus their size. Hence, any region access
may fully or partially overlaps previous ones. Since the runtime does not need to
keep the full history of data accesses, overlaps present an additional challenge when
deciding which information can be safely be removed.

The run-time handles new region accesses in two phases. First, it looks up a
new region access a in the region tree T to find possible overlaps (or matches)
with already existing region accesses. This information is used for calculating the
data dependencies. In the second phase, the run-time updates the region tree to
reflect the effects of the new access. By construction, the region tree can hold several
overlapping regions at any given instance. Thus, if the tree already contains the
exact region, it is updated to reflect the new access. Otherwise, the region is added
with such information independently of any overlap.

Regions in the tree that overlap have both current and old information in their
intersection. The old information may produce dependencies that are redundant by
transitivity, however they do not limit parallelism in any way. As tasks are executed,
their information is removed from the tree, reducing those dependencies. To reduce
the amount of unnecessary matches, when a new task writes or updates a region,
any region in the tree fully contained within the new region is removed.

An alternative policy would be to keep only the necessary data to calculate
dependencies. However, to do so would require to handle partial overlaps in a
different way. First, it would require to find the intersection of the accesses, and then
to fragment those in the tree to update only the part that is affected, and thus to
represent in the tree the exact state. This option has not been considered further,
since it would slow task creation in two ways. First to calculate the fragments and to
perform the actual fragmentation. And second, due to the potentially slower lower
lookup due to the increased number of matching region in the tree per lookup.

4.5 Evaluation

This section examines the programmability of the model and its performance. It
extends the evaluation of the previous chapter with region-based solutions and
additional algorithms that are hard to implement without regions.

The hardware, software, configuration and measurement methodology are the
same as in the previous chapter and have been described in section 3.6 that starts on
page 29. The alternative implementations in OpenMP, MPI and the parallel libraries
are also the same as in the previous chapter unless otherwise stated.

The benchmarks that already appeared in the previous chapter have been adapted
to use regions, but for brevity the evaluations of most of them have been moved to
appendix E. The Triad benchmark does not use regions, however in the appendix
we evaluate the impact that supporting regions in the runtime has over the over-
head. The changes in the code of the matrix multiplication and the Gauss-Seidel
codes have already been presented in figures 4.1 and 4.2 in pages 87 and 87. The
Cholesky algorithm has similar changes to the matrix multiplication. Thus, all these
benchmarks in their region-based form are evaluated in the appendix.

The Strassen-Winograd code has also similar changes, but in addition to the
advantages to programmability, it can benefit from having different data sizes for
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each type of task. For this reason, this one is evaluated in this chapter.
Region support enables the implementation of the following region-based bench-

marks: a parallel sorting algorithm called multisort that is based on mergesort, a
Fast Fourier Transform, and an LU decomposition with partial pivoting that we call
HPL. The multisort algorithm uses regions to allow tasks to operate over data in one
dimension with different sizes that have overlapping accesses. The Fast Fourier Trans-
form benchmark makes use of regions to calculate dependencies between tasks that
operate over the same data in two regular but different bidimensional shapes. Finally,
the HPL benchmark requires the use of regions for tasks that access bidimensional
regions with different shapes that overlap and produce irregular dependencies.

4.5.1 Strassen-Winograd

The Strassen-Winograd benchmark has been evaluated in the previous chapter in
section 3.6.5 that starts on page 68. This chapter evaluates a version of the algorithm
using flat matrices instead of blocked matrices.

Parallelization with SMPSs using Regions and two Simultaneous Blocking Sizes

Blocked data layouts impose restrictions on the granularity of the tasks. For instance,
the simple additions and subtractions of the Strassen-Winograd algorithm, when
decomposed into tasks, must be performed on one block per operand. While it is
possible to implement tasks that operate on more than one block per operand, that
would require one type of task for each possible number of blocks per operand.
Therefore, that would not be a clean and scalable solution.

The operations of the Strassen-Winograd algorithm can be classified according to
their performance characteristics in two groups. One group for the multiplications,
and another for the additions and subtractions. While the multiplications have good
temporal locality, the additions and subtractions only have good spatial locality.
Therefore additions and subtractions would benefit from big block sizes, since they
allow to exploit more spatial locality. However, multiplications would not benefit as
much. In fact, smaller blocking sizes would produce more parallelism and shorter
tasks, which in turn has the potential to produce better balanced schedules. Thus, in
such scenarios, it may be desirable to use different logical blocking sizes for each
group.

The regions-based implementation of the algorithm has been written using
different blocking sizes for each group. The algorithm is recursive and at each level
it divides the matrices into four submatrices and performs operations over them.
The implementation of the previous chapter defined the base case of the recursion
as a multiplication that matches the physical size of the block. The regions-based
implementation substitutes physical blocks over hypermatrices by logical blocks
over flat matrices. While additions and subtractions were solved iteratively block by
block, the regions version uses its own independent decomposition size for those
operations. At the lowest levels of the recursion, the decomposition can lead to
submatrices that are smaller than the logical blocking size of those operations. In
those cases, the logical blocking size becomes the size of the submatrices.

Figure 4.5 shows the performance difference between using the same blocking
size for both classes of operations and using different ones. Each column of panels
corresponds to a fixed number of cores, and each row of panels corresponds to a
fixed matrix size. The vertical axis indicates the multiplication block size, and the
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Performance improvement of Independent Blocking Sizes vs. Same Blocking Size (%)
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Figure 4.5: Performance improvement of the region-based Strassen-Winograd with
different blocking sizes for the multiplication tasks than the rest compared to using
the same blocking for all tasks as the multiplication tasks.

horizontal axis the additions and subtraction task size. Colors indicate the perfor-
mance improvement of the given configuration compared to using the multiplication
block size for all tasks.

The lower triangles show the effects of using bigger sizes for the additions and
subtractions than the multiplication, and the upper triangles show the effects of using
bigger multiplications than additions and subtractions. The figure shows that in
general, bigger additions and subtractions perform better, and therefore do not hurt
parallelism too much. The improvement can be as high as 82%. This improvement
comes from the reduction of runtime overhead and the better task performance.

Runtime Overhead

The runtime overhead of the region version is higher than the version run on the
region-unaware runtime, but the difference is much lower than that of the other
codes. Figure 4.6 shows the increment of task management overhead in the main
thread. While it may raise up to 2.3 times the overhead of the blocked version, figure
4.7 shows that the total task management overhead remains below 30% in most
cases, and takes up to 42% only for very small multiplication task sizes.

These figures have been generated with a region tree that uses compression.

100



4.5. Evaluation

Main thread overhead increment of Regions vs. Blocks (%)
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Figure 4.6: Task management overhead increment on the main thread when running
the SMPSs implementation of the Strassen-Winograd algorithm with regions with
several matrix and submatrix sizes compared to the region unaware version.
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Figure 4.7: Task management overhead on the main thread when running the SMPSs
implementation of Strassen-Winograd algorithm with regions with several matrix
and submatrix sizes.
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Main thread overhead reduction of Compressed vs. Bare (%)
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Figure 4.8: Reduction of task management overhead on the main thread when
running the SMPSs implementation of the Strassen-Winograd algorithm with a
compressed region tree compared to an uncompressed region tree, with several
matrix and submatrix sizes.

Compressing the region tree reduces the task management overhead by up to 60%,
as figure 4.8 shows.

Scalability and Other Implementations

Figure 4.9 shows the strong scalability of the benchmark with several problem sizes
under the blocked SMPSs version, the new flat SMPSs version using regions and
the OpenMP 3 version that uses task nesting and barriers. In the previous chapter
we showed that the performance of the Strassen implementation using blocks had
substantially better performance than the OpenMP implementation. When we use
flat matrices and regions, the SMPSs version still has much better scalability due
to its ability to extract more parallelism, and thus to keep threads busy for more
time, and even use bigger tasks. Figure 4.10 shows the effective parallelism of each
version and demonstrates that the SMPSs versions achieve more parallelism.

However, figure 4.9 also shows that the version using regions performs worse
than the version using blocks on the smallest problem sizes. In these cases, tasks are
small and therefore the flat data layout has lower effective spatial locality. Figure
4.11 shows up to 62% higher mean task floating point operations per cycle in the
blocked version compared to the regions-based version.

Table 4.5 summarizes the performance metrics of each implementation. Notice
that while in the previous benchmarks, the blocked data layout was advantageous
performance-wise, in the Strassen-Winograd code the amount of parallelism is such
that the region-aware code can use bigger tasks to recover much of the lost task
performance without loosing too much parallelism. In the cases that the regions
version uses the same blocking sizes as the blocked version, task performance is
clearly the factor that determines its lower performance.
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Figure 4.9: Strong scalability of the region-aware SMPSs Strassen-Winograd algo-
rithm, the region-unaware, the OpenMP version and the MKL parallel version and
performance with 32 cores.
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Figure 4.10: Average parallelism of the Strassen-Winograd algorithm implementa-
tions.
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Figure 4.11: Taks performance improvement of Strassen-Winograd when using the
blocked data layout compared to the flat data layout.
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Cores Na BS1b BS2c BSd BSd GFe GFe GFe FPCf FPCf FPCf Eff.g

(%)
Eff.g

(%)
Eff.g

(%)

1 1024 1024 1024 512 1024 6.1 6.1 6.1 3.9 3.5 3.9 99 99 99
1 2048 1024 1024 512 1024 6.3 6.5 6.4 3.6 3.3 3.6 99 98 99
1 4096 4096 1024 512 1024 6.9 7.2 7.1 3.4 3.2 3.5 99 98 99
1 8192 4096 1024 512 1024 7.8 7.9 7.9 3.4 3.1 3.4 99 98 99

2 1024 512 512 512 256 10 10 8.5 3.4 3.4 2.8 91 91 83
2 2048 2048 512 512 512 12 12 10 3.1 3.3 3.2 98 98 83
2 4096 1024 1024 512 512 13 13 12 3.4 3.2 3.1 98 98 92
2 8192 2048 1024 1024 512 15 15 14 3.3 3.4 3.0 99 99 97

4 1024 512 512 256 256 18 18 10 3.2 2.7 2.5 82 94 60
4 2048 2048 512 512 256 21 23 13 3.0 3.1 2.3 94 96 74
4 4096 1024 1024 1024 512 24 26 17 3.2 3.4 2.9 96 96 72
4 8192 2048 1024 1024 512 28 29 23 3.2 3.3 2.8 98 99 83

8 1024 256 512 512 256 27 27 11 2.4 3.2 2.1 87 64 40
8 2048 1024 1024 512 512 32 39 15 3.3 2.8 2.8 74 92 37
8 4096 4096 1024 1024 512 42 46 21 3.1 3.2 2.6 88 93 49
8 8192 1024 1024 1024 512 51 54 27 3.0 3.1 2.5 98 98 58
8 16384 2048 2048 2048 512 62 61 35 3.4 3.4 2.5 98 98 65

16 1024 1024 256 256 256 24 29 11 1.7 1.9 1.9 64 79 24
16 2048 2048 512 512 512 48 57 16 2.4 2.6 2.6 76 84 22
16 4096 4096 1024 1024 512 69 73 25 2.9 2.9 2.4 80 84 32
16 8192 2048 1024 1024 512 91 92 33 2.8 2.8 2.3 94 97 40
16 16384 2048 2048 2048 512 119 118 43 3.3 3.3 2.3 97 97 46

32 1024 512 256 256 256 21 23 11 1.5 1.7 1.8 33 39 12
32 2048 1024 512 512 512 47 64 16 2.2 2.2 2.6 45 68 11
32 4096 2048 1024 1024 512 93 95 27 2.7 2.3 2.3 59 74 19
32 8192 2048 2048 2048 512 140 136 38 3.1 3.1 2.1 73 74 26
32 16384 4096 2048 2048 512 207 207 50 3.2 3.1 2.0 91 94 33

Implementation: Regions Blocks OpenMP
a Matrix side size.
b Maximum submatrix side size for addition and subtraction tasks
c Submatrix side size for multiplication tasks
d Submatrix side size
e GFlops.
f Mean floating point operations per cycle while running tasks.
g Mean time that threads spend running tasks.

Table 4.5: Performance summary of the Strassen-Winograd algorithm implementations.
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4.5.2 Multisort

The multisort benchmark is a variant of the mergesort algorithm. While the original
algorithm allocates temporary arrays at each recursion level, the algorithm we
present uses only one temporary array. The objective is to minimize the overhead
of memory allocation and page initialization. To this extent, instead of dividing the
problem each time by 2, we divide it by 4.

Listing 4.5 shows its main algorithm. The code sorts the data in the data param-
eter using tmp as temporary storage. Since in practice mergesort is slow for small
arrays, we use the quicksort algorithm for those cases. The threshold is controlled
by the MIN_SORT_SIZE constant. Lines 4–7 perform the recursive calls over each
quarter of the data. Then, lines 9 and 10 merge two quarters each from the data
array into the tmp array. Finally, line 12 merges the two resulting halves from tmp
back into data.

Parallelization with SMPSs using Regions

Parallelizing the multisort code with SMPSs is as simple as converting merge and
basicsort into tasks. However, as [Cormen et al., 2009, pg. 797–798] demonstrate,
the amount of parallelism that can be obtained by parallellizing only the recursion
is small. To achieve more parallelism, the merge function must be also parallelized.

The most commonly used solution in the literature, for instance the one that
[Cormen et al., 2009, pg. 798–803] use, consists in finding the median value of one
of the input arrays and to use its value to divide both arrays into two parts that
can be merged in pairs independently. This formula can be applied recursively as
needed.

However, that approach requires that the input arrays are accessible before
deciding the pivot. With task nesting models this can be achieved by placing a barrier
before the merge. In that case, lines 8 and 11 of listing 4.5 would contain barriers.
While task nesting is orthogonal to tasks with dependencies, this chapter only covers
solutions based on dependencies alone, and thus does not apply that solution.

Since at task instantiation time the values of the two input arrays of the merge
function are not available, instead of deciding a pivot based on their contents, we
delay finding the pivot, and instead decide which part of the output will be calculated
by each task. With that information, the tasks scan the input arrays to find the pivot.
Listing 4.6 shows the main merge code. Parameters first and length determine the
portion of the result that is generated.

When the merge task starts, its input values are available and thus it can traverse
them to determine the pivoting indexes. These are named leftFirst and rightFirst
and are calculated by the find_pivot function in listing 4.7. The pivots are searched
using binary search in both arrays until we find the position in both that corresponds
to the starting position for first in the result array.

Listing 4.8 shows the task declarations of the whole benchmark. Notice that while
the tasks do not make extensive use of the regions syntax, they have dependencies
over overlapping data regions with different sizes. These are determined by the n
value passed to the calls to the merge and basicsort functions in listing 4.5.

Figure 4.12 shows the task graph for an execution over an array of size N de-
composed in 4 parts for the basic sort tasks (MIN_SORT_SIZE=N/4) and for the
merge tasks (MIN_MERGE_SIZE=N/4). As we reduce the size of the merge tasks,
the graph grows in depth and in complexity.
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1 void multisort(long n, T data[n], T tmp[n]) {
2 if (n >= MIN_SORT_SIZE∗4L) {
3 // Recursive decomposition
4 multisort(n/4L, &data[0], &tmp[0]);
5 multisort(n/4L, &data[n/4L], &tmp[n/4L]);
6 multisort(n/4L, &data[n/2L], &tmp[n/2L]);
7 multisort(n/4L, &data[3L∗n/4L], &tmp[3L∗n/4L]);
8

9 merge(n/4L, &data[0], &data[n/4L], &tmp[0], 0, n/2L);
10 merge(n/4L, &data[n/2L], &data[3L∗n/4L], &tmp[n/2L], 0, n/2L);
11

12 merge(n/2L, &tmp[0], &tmp[n/2L], &data[0], 0, n);
13 } else {
14 // base case
15 basicsort(n, data);
16 }
17 }

Listing 4.5: Main code of the multisort algorithm.

1 void merge(long n, T left[n], T right[n], T result[n∗2], long first, long length) {
2 if (length <= MIN_MERGE_SIZE) {
3 // Base case
4 merge_task(n, left, right, result, first, length);
5 } else {
6 merge(n, left, right, result, first, length/2);
7 merge(n, left, right, result, first + length/2, length/2);
8 }
9 }

Listing 4.6: Recursive implementation of the merge algorithm that delays the pivoting
to the task and divides the work according to the result.

1

5 6

2 3

7 8

4

9 1011 12

Node Task

basicsort
merge_task

Figure 4.12: Graph of the multisort algorithm when executed over an array that is
decomposed in 4 subarrays for the basic sort tasks and the merge tasks.
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1 int pivots_are_aligned(T ∗left, T ∗right, long n, long leftFirst, long rightFirst) {
2 if (leftFirst == 0 || rightFirst == 0 || leftFirst == n || rightFirst == n)
3 return 1;
4

5 if (left[leftFirst] <= right[rightFirst] && right[rightFirst−1] <= left[leftFirst])
6 return 1;
7 if (right[rightFirst] <= left[leftFirst] && left[leftFirst−1] <= right[rightFirst])
8 return 1;
9

10 return 0;
11 }
12

13

14 void find_pivot(T ∗left, T ∗right, long n, long first, long ∗leftFirst, long
∗rightFirst) {

15 ∗leftFirst = first/2L;
16 ∗rightFirst = first/2L;
17

18 if (first == 0)
19 return;
20

21 long jumpSize = min(first/2L, n − first/2L) / 2L;
22 while (1) {
23 if (pivots_are_aligned(left, right, n, ∗leftFirst, ∗rightFirst)) {
24 return;
25 } else if (left[∗leftFirst] > right[∗rightFirst]) {
26 ∗leftFirst −= jumpSize;
27 ∗rightFirst += jumpSize;
28 } else {
29 ∗leftFirst += jumpSize;
30 ∗rightFirst −= jumpSize;
31 }
32 jumpSize = (jumpSize+1L)/2L;
33 }
34 }

Listing 4.7: Function to find the pivots of the merge task.

1 #pragma css task input(n) inout(data)
2 void basicsort(long n, T data[n]);
3

4 #pragma css task input(n, first, length, left, right) output(result{first:length})
5 void merge_task(long n, T left[n], T right[n], T result[n∗2], long first, long

length);
Listing 4.8: Tasks of the multisort benchmark.
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Main thread overhead time (%)
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Figure 4.13: Task management overhead on the main thread when running the
SMPSs implementation of the multisort algorithm with several problem sizes and
several combinations of sort and merge task sizes.

Runtime Overhead

Figure 4.13 shows the overhead of the main thread. To show the effects of the
blocking size of the merge and sorting tasks, each panel shows the value for a fixed
number of cores and a fixed problem size. The vertical axis determines the size of
the merge tasks in megaelements, and the horizontal axis shows the size of the sort
tasks, also in megaelements. Each vertical group of panels corresponds to a fixed
number of cores, and each horizontal group corresponds to a fixed problem size (N)
expressed in megaelements.

The runtime overhead on the main thread is in most cases below 5%. Only
when running with 32 cores with very small merge tasks, the overhead gets above
20%. However, as shown in figure 4.14, that amount of overhead does not reduce
significantly the amount of time that threads spend running tasks. Instead, the low
parallelism is caused by too big blocking sizes.

The previous figures have been generated with a region tree that uses compres-
sion. Compression improves the task management overhead compared to executions
with uncompressed region trees. Figure 4.15 shows the reduction of task manage-
ment overhead. Compression reduces the overhead at least 28%, and up to 66%.
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Time running tasks (%)
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Figure 4.14: Percentage of time time that threads are busy executing task in the
SMPSs implementation of the multisort algorithm with several problem sizes and
several combinations of sort and merge task sizes.
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Main thread overhead reduction of Compressed vs. Bare (%)
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Figure 4.15: Reduction of task management overhead on the main thread when
running the SMPSs implementation of the multisort algorithm with a compressed
region tree compared to an uncompressed region tree, with several problem sizes
and several combinations of sort and merge task sizes.
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Figure 4.16: Strong scalability of the region-aware SMPSs multisort algorithm and
the OpenMP version, and performance of both with 32 cores.

Scalability and Other Implementations

The multisort algorithm is a recursive algorithm and thus it easily fits in task nesting
models. We have ported the SMPSs version to OpenMP 3. In the SMPSs version we
expand the recursion until the last level, and solve only the base cases with tasks.
To preserve its correctness, we take advantage of dependencies to run the partial
merge tasks of each nesting level in a valid order.

In the OpenMP version we use the same base code, but instead of only having a
flat set of tasks with dependencies, we rely on task nesting. Listing 4.9 show its main
code. The core includes barriers to guarantee that data dependencies are respected.

Figure 4.16 shows the strong scalability of the problem with several problem sizes
under each implementation. Both perform almost identically. This is a surprising
result, since dependency analysis does not uncover additional parallelism but incurs
in additional overhead, and the OpenMP version generates the work in parallel by
using task nesting.

Table 4.6 summarizes the performance metrics of each implementation.
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1 void multisort(long n, T data[n], T tmp[n]) {
2 if (n >= MIN_SORT_SIZE∗4L) {
3 // Recursive decomposition
4 #pragma omp task untied
5 multisort(n/4L, &data[0], &tmp[0]);
6 #pragma omp task untied
7 multisort(n/4L, &data[n/4L], &tmp[n/4L]);
8 #pragma omp task untied
9 multisort(n/4L, &data[n/2L], &tmp[n/2L]);

10 #pragma omp task untied
11 multisort(n/4L, &data[3L∗n/4L], &tmp[3L∗n/4L]);
12

13 #pragma omp taskwait
14

15 #pragma omp task untied
16 merge(n/4L, &data[0], &data[n/4L], &tmp[0], 0, n/2L);
17 #pragma omp task untied
18 merge(n/4L, &data[n/2L], &data[3L∗n/4L], &tmp[n/2L], 0, n/2L);
19

20 #pragma omp taskwait
21

22 #pragma omp task untied
23 merge(n/2L, &tmp[0], &tmp[n/2L], &data[0], 0, n);
24 } else {
25 // base case
26 #pragma omp task untied
27 basicsort(n, data);
28 }
29 #pragma omp taskwait
30 }
31

32 void merge(long n, T left[n], T right[n], T result[n∗2], long first, long length) {
33 if (length <= MIN_MERGE_SIZE) {
34 #pragma omp task untied
35 merge_task(n, left, right, result, first, length);
36 } else {
37 merge(n, left, right, result, first, length/2);
38 merge(n, left, right, result, first + length/2, length/2);
39 }
40 }

Listing 4.9: Code of the multisort benchmark in OpenMP with task nesting.
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Cores Na BS1b BS2c BS1b BS2c Mels/sd Mels/sd IPCe IPCe Eff.f

(%)
Eff.f

(%)

1 32 16 16 16 16 9.8 9.8 2.39 2.39 99 99
1 64 8 16 16 1 8.7 8.7 2.30 2.31 99 99
1 128 16 16 16 1 8.2 8.3 2.25 2.27 99 99

2 32 8 8 8 16 17.2 18.2 2.33 2.30 93 99
2 64 16 1 16 1 16.3 17.1 2.31 2.27 93 99
2 128 16 1 16 1 15.5 16.2 2.27 2.23 93 99

4 32 8 1 8 1 34.4 33.6 2.22 2.16 98 99
4 64 16 1 8 2 32.6 31.7 2.17 2.11 99 99
4 128 16 2 16 1 31.0 30.0 2.13 2.06 99 99

8 32 1 1 2 1 44.1 45.0 1.52 1.53 96 97
8 64 2 1 2 1 42.4 43.2 1.50 1.51 97 98
8 128 4 1 4 2 40.5 40.6 1.47 1.47 97 98

16 32 1 1 1 1 71.5 72.6 1.25 1.25 94 96
16 64 4 1 4 1 70.1 70.6 1.24 1.25 96 97
16 128 8 1 4 1 67.7 68.0 1.23 1.22 97 98

32 32 1 1 1 1 85.4 82.5 1.06 1.06 67 64
32 64 1 1 1 1 99.4 100.3 0.93 0.92 94 97
32 128 1 1 2 1 97.6 98.5 0.93 0.93 97 98
32 256 2 2 4 1 95.1 95.7 0.92 0.92 97 99

Implementation: SMPSs regions OpenMP
a Megaelements.
b Megaelements per sort task.
c Megaelements per merge task.
d Megaelements sorted per second.
e Mean instructions per cycle while running tasks.
f Mean time that threads spend running tasks.

Table 4.6: Performance summary of the multisort algorithm implementations.

114



4.5. Evaluation

4.5.3 Fast Fourier Transform

The Fast Fourier Transform (FFT) is a class of algorithms that have O(n log(n))
complexity that calculate the Discrete Fourier Transform of a sequence of floating
point complex numbers. The FFT is typically calculated by using a divide-and-conquer
approach. FFTs of large number of elements are usually calculated by decomposing
the problems into smaller problem sizes and then recomposing the original result
from the results of the smaller FFTs.

The FFT can be decomposed using several strategies. Some are only suitable
when the number of elements n is a prime number; others only apply to powers of
2; others to composed values; and others work in the general case. Each variant has
its requirements and its trade-offs. This topic has been addressed by [Arndt, 2011,
pages 410–439] among others.

In this section we parallelize the FFT over double precision complex numbers
using the 6-step Matrix Fourier Algorithm described by [Bailey, 1989]. This decom-
position strategy is simple and in-place (does not require temporary storage). While
this is a unidimensional FFT, the algorithm operates over the data as if it was a
bidimensional matrix. The 6 phases consist of 3 transpositions, 2 smaller FFTs over
all rows and a multiplication of all elements by so called twiddle factors. Figure 4.17
shows the order of the phases and how they access the data.

In our implementation, for performance reasons, we have fused the multiplication
phase (3) with one transposition phase (4). Furthermore, to simplify the algorithm
we have restricted the data lengths to powers of 4. This way we can lay out the data
as a square matrix with a side size that is a power of 2.

Each phase of the algorithm is embarrassingly parallel. Therefore, when this
algorithm is parallelized with other programming models, it is usually done following
a fork-join strategy. Each phase forks a number of workers that compute independent
units of work and then joins them using an implicit or explicit barrier. In SMPSs,
the barriers between phases are not necessary since the model can handle the
dependencies by itself.

Parallelization with SMPSs using Regions

Let n be the length of the transform and m its square root, which corresponds to the
side size of the matrix.

To parallelize the transposition phases we divide the matrix into square sub-
matrices and perform the transposition by swapping and transposing symmetrical
submatrices around the matrix diagonal, and just transposing the submatrices of the
diagonal. That is, given a matrix A its transposition can be calculated as follows:

1. Transpose 2. Row FFTs 3. Twiddle 4. Transpose 5. Row FFTs 6. Transpose

Figure 4.17: Phases of the 6-step Fast Fourier Transform decomposition algorithm.
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trsp_swap
trsp_blk

tw_trsp_swap
tw_trsp_blk

fft1d
(round 1)

fft1d
(round 2)

trsp_swap
trsp_blk

Figure 4.18: Tasks and data layout of the SMPSs version of the FFT.
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A11 and A22 would be transposed in-place, and A21 and A22 would be replaced by
the transposed of each other. While this formulation leads to a recursive solution, we
have implemented it in an iterative form. The code transposes the matrix in blocks
of size tr_bs instead of m/2. Listing 4.10 shows the main code of the FFT. Lines 3–7
contain the first transposition. The trsp_blk task transposes in-place a submatrix of
the diagonal, and the trsp_swap task takes two submatrices around the diagonal
and swaps each by the transposed of the other. Their declarations appear in listing
4.11.

The phase that multiplies the matrix by the twiddle factors does not have any
data layout restrictions. Thus, for performance reasons, we have merged it with
the transposition phase that follows it. These phases are the third and fourth of
the original 6-step algorithm in figure 4.17. The combined phase performs both
operations using the same data layout and access patterns as the transposition phase.
The code of the phase appears in lines 14-18 of listing 4.10. The tasks, tw_trsp_blk
and tw_trsp_swap follow the same data access pattern as the regular transposition
tasks, and therefore they have analogous declarations.

The phases that perform the smaller FFT on each row have been parallelized
by converting into tasks groups of FFTs that operate over several contiguous rows.
These phases appear in lines 10-11 and 21-22 in listing 4.10. The row FFTs are
grouped in panels of fft_bs rows and are calculated by the fft1d tasks.

Notice that the data is operated in two different shapes. The transposition phases
and the combined phase operate over the matrix in submatrices of tr_bs by tr_bs
elements, while the small row FFT phases operates over the matrix in submatrices of
fft_bs by m elements. Figure 4.18 shows the data access patterns of the tasks of an
execution. In this figure m is 4096, the number of rows per FFT task fft_bs is 256
and the transposition block size fft_bs is 512.

By taking advantage of data dependencies, SMPSs is capable of overlapping the
phases of the algorithm. Figure 4.19 shows an execution trace generated with these
parameters and 4 cores. Each horizontal colored bar shows a time line of the tasks
that a thread has executed. Each color corresponds to a different task, and small flags
indicate the beginning and ending of tasks. Notice that tasks from adjacent phases
get executed concurrently. This property has the potential to reduce the unbalance
that could otherwise appear if there had been barriers between the phases.

To implement the fft1d task we relied on an external sequential implementation
of the FFT. The rest of the tasks were fully implemented. In this sense, we manually
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1 void fft (double _Complex A[m][m]) {
2 // 1. Transpose
3 for (long i=0; i<m; i+=tr_bs) {
4 trsp_blk (&A[i][i]);
5 for (long j=i+tr_bs; j<m; j+=tr_bs)
6 trsp_swap (&A[i][j], &A[j][i]);
7 }
8

9 // 2. First FFT round
10 for (long j=0; j<m; j+=fft_bs)
11 fft1d(&A[j][0]);
12

13 // 3 & 4. Twiddle and Transpose
14 for (long i=0; i<m; i+=tr_bs) {
15 tw_trsp_blk (i, &A[i][i]);
16 for (long j=i+tr_bs; j<m; j+=tr_bs)
17 tw_trsp_swap (i, j, &A[i][j], &A[j][i]);
18 }
19

20 // 5. Second FFT round
21 for (long j=0; j<m; j+=fft_bs)
22 fft1d(&A[j][0]);
23

24 // 6. Transpose
25 for (long i=0; i<m; i+=tr_bs) {
26 trsp_blk (&A[i][i]);
27 for (long j=i+tr_bs; j<m; j+=tr_bs)
28 trsp_swap (&A[i][j], &A[j][i]);
29 }
30 }

Listing 4.10: Main code of the 6-step Fast Fourier Transform algorithm in SMPSs.

1 #pragma css task inout(panel{0:fft_bs}{})
2 void fft1d (double _Complex panel[m][m]);
3

4 #pragma css task inout(block{0:tr_bs}{0:tr_bs})
5 void trsp_blk(double _Complex block[m][m]);
6

7 #pragma css task inout(block1{0:tr_bs}{0:tr_bs}, block2{0:tr_bs}{0:tr_bs})
8 void trsp_swap(
9 double _Complex block1[m][m],

10 double _Complex block2[m][m]);
Listing 4.11: Declaration of the FFT and transposition tasks of the 6-step Fast Fourier
Transform in SMPSs.
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Main thread

Worker 1

Worker 2

Worker 3

Time

trsp_swap
trsp_blk

tw_trsp_swap
tw_trsp_blk

fft1d
(round 1)

fft1d
(round 2)

Figure 4.19: Execution trace of the SMPSs version of the FFT with m = 4096,
tr_bs= 512, fft_bs= 256 and 4 cores.

unfolded the loops of the transpositions and did not cache the twiddle factors. For
the sequential FFTs we used the Fastest Fourier Transform on the Web (FFTW) by
[Frigo and Johnson, 2005]. This is a library that implements automatically tuned
FFT decompositions. The library also provides threaded and MPI versions of the
algorithms. We used the sequential calls of version 3.2.2 for the SMPSs case, and in
all cases we used “patient” planning.

Performance and Runtime Overhead

To evaluate the performance of the solution, we have measured it with several prob-
lem sizes and task granularities. Figure 4.20 shows the floating point performance
that we obtained. Notice that the implementation does not scale linearly with the
number of cores. The reason is that the FFT algorithms are memory bandwidth
demanding and our experiments have a level-3 data cache miss ratio that ranges
from 40% to 53%. This problem is made worse by the fact that this chapter does
not cover NUMA aspects. Therefore, as the number of NUMA nodes increases, the
NUMA affinity decreases and thus performance degrades. This is further confirmed
in figure 4.21 which shows that the memory latency increases with the number of
cores, and in the worst case it is 7 times higher than in the best case.

The runtime overhead on the main thread is in 76% of the cases below 10%.
Figure 4.22 show the metric. Only when running with 32 cores, it gets above 30%
and at most 57%, and only for the smallest FFT tasks or transposition tasks. However,
as shown in figure 4.23, that amount of overhead is not enough to produce starvation.
Instead, starvation only occurs when task granularity is too coarse.

The previous figures have been generated with a region tree that uses compres-
sion. Compression improves the task management overhead compared to executions
with uncompressed region trees. Figure 4.24 shows that the task management over-
head can be reduced by up to 57%.

Scalability and Other Implementations

To rank the performance of the SMPSs implementation we have compared it against
a parallel version using threads and another using MPI. All three rely on the FFT
implementation from FFTW. The SMPSs version uses FFTW version 3.2.2 compiled
without threading. The threaded version uses the same version compiled with thread-
ing enabled. And the MPI version uses the MPI implementation of FFTW version
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Floating point performance (% of peak)
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Figure 4.20: Performance of the SMPSs FFT implementation with several problem
sizes and blocking sizes.
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Mean task memory latency (Kcycles)
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Figure 4.21: Mean task memory latency of the SMPSs FFT implementation with
several problem sizes and blocking sizes.
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Main thread overhead time (%)
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Figure 4.22: Task management overhead on the main thread when running the
SMPSs implementation of the FFT algorithm with several problem sizes and several
FFT and transpose task sizes.
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Time running tasks (%)
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Figure 4.23: Percentage of time time that threads are busy executing task in the
SMPSs implementation of the FFT algorithm with several problem sizes and FFT
and transpose task sizes.
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Main thread overhead reduction of Compressed vs. Bare (%)
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Figure 4.24: Reduction of task management overhead on the main thread when
running the SMPSs implementation of the FFT algorithm with a compressed region
tree compared to an uncompressed region tree, with several problem and blocking
sizes.
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3.3alpha1, since version 3.2.2 does not provide any. All of them have been run with
“patient” planning.

Since this chapter does not cover NUMA aspects, the SMPSs version and the
threaded version have the data page-wise interleaved across the NUMA nodes. The
MPI version has the data distributed as defined by the FFTW MPI interface.

Figure 4.25 shows the strong scalability of the problem with several problem
sizes under each implementation. The MPI version has the potential to exploit
NUMA affinity at the expense of the overhead of data copies. The overhead is only
significant when going from 1 to 2 and 4 cores, since in those cases the data copies
are redundant. However, this degrades the global scalability of the algorithm, since
the redundancy remains within each node. Nevertheless, for the smallest problem
sizes it manages to achieve better performance with 32 cores than the rest.

The threaded FFTW version, which uses its own internal threading and work
distribution mechanism, in some cases performs worse than the SMPSs version, and
in the others it scales worse. Only for the smallest problem size with 1 and 2 cores it
outperforms SMPSs.

The SMPSs version with just one core is faster with 40962 and 81922 elements
than the other two implementations. This suggests that our 6-step implementation,
even with the overhead of task creation and data dependency calculation, is either
a better algorithm than the one that FFTW chooses for that size, or that it is more
optimized. For the smallest problem size, the situation is the reverse. However, the
scalability of the SMPSs version in that case is better than that of the threaded FFTW,
and manages to match it with 4 cores and surpass it with more.

Table 4.7 summarizes the performance metrics of each implementation. Note
that the threaded FFTW interface with 1 thread does not use the internal threading
infrastructure, and thus we do not have metrics for its parallel efficiency, which
should be close to 100%.
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Figure 4.25: Strong scalability of the region-aware SMPSs FFT algorithm and the
OpenMP version, and performance of both with 32 cores.
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Cores Na BS1b BS2c GFd GFd GFd IPCe IPCe Eff.f

(%)
Eff.f

(%)

1 1024 128 128 0.7 0.9 1.0 2.0 1.7 96 ∅
1 2048 128 128 0.7 0.7 0.7 1.9 1.7 96 ∅
1 4096 512 4096 0.7 0.7 0.7 1.9 1.7 99 ∅
1 8192 256 4096 0.8 0.6 0.6 2.1 1.6 99 ∅

2 1024 128 128 1.4 1.6 0.8 1.9 1.5 95 96
2 2048 64 128 1.3 1.2 0.7 1.8 1.5 96 99
2 4096 512 512 1.4 1.3 0.7 1.8 1.7 99 98
2 8192 512 1024 1.5 1.3 0.7 2.0 1.7 99 98

4 1024 128 128 2.4 2.3 1.4 1.8 1.3 92 91
4 2048 256 128 2.3 2.1 1.0 1.6 1.3 96 98
4 4096 512 256 2.4 2.2 1.0 1.6 1.5 98 98
4 8192 512 512 2.7 2.2 1.1 1.8 1.5 98 98

8 1024 128 128 3.5 2.7 3.1 1.3 1.0 90 76
8 2048 128 128 3.7 3.4 2.2 1.3 1.2 96 94
8 4096 256 512 4.1 3.5 1.6 1.4 1.1 97 98
8 8192 256 256 4.6 3.9 1.9 1.5 1.2 97 98

16 1024 64 128 4.0 2.0 5.1 0.8 1.0 84 48
16 2048 128 128 5.5 4.4 4.5 1.0 1.0 95 82
16 4096 256 256 6.4 5.3 3.9 1.1 0.9 97 92
16 8192 128 1024 7.4 6.0 3.6 1.3 1.0 96 94

32 1024 32 128 3.9 1.3 7.5 0.6 0.6 73 33
32 2048 32 128 6.0 3.7 9.1 0.6 0.8 92 51
32 4096 32 128 8.1 5.9 7.9 0.8 0.7 95 79
32 8192 128 128 9.8 7.3 6.4 0.8 0.7 97 81

Implementation: SMPSs regions FFTW Threads FFTW MPI
a Matrix side size. The actual size of the FFT is this value squared.
b FFT panel height.
c Transposition block side size.
d Gigaflops per second.
e Mean instructions per cycle while running tasks.
f Mean time that threads spend running tasks.

Table 4.7: Performance summary of the FFT algorithm implementations.
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4.5.4 High Performance Linpack

High Performance Linpack (HPL) is a benchmark that solves a system of linear
equations of order n

Ax = b (4.13)

where A∈ Rn×n is the coefficient matrix, b ∈ Rn is the right-hand side, and x ∈ Rn is
the solution. The benchmark solves the system by first performing the LU factorization
with partial pivoting of A as follows:

A= P LU (4.14)

where P is the pivoting matrix, L is a lower triangular matrix with unit diagonal
elements, and U is an upper triangular matrix. Then the algorithm applies the
pivoting matrix to b:

b? = P b (4.15)

From equations 4.13 and 4.14 we obtain

P LU x = b (4.16)

If we apply the permutation matrix to each side

PP LU x = P b (4.17)

and since the permutation matrix is such that PP = I , we obtain

LU x = b? (4.18)

If we define
y = U x (4.19)

we can calculate y from
Ly = b? (4.20)

by forward elimination. Finally we calculate x from

U x = y (4.21)

by backwards substitution.

Parallelization with SMPSs

The algorithm we presented is the same that the dgesv function from the LAPACK
library by [Anderson et al., 1990] implements. This function performs the LU de-
composition from equation 4.14 by calling the LAPACK dgetrf function. Then it
pivots the b vector as in equation 4.15 by calling the dlaswp function. The forward
elimination operation from equation 4.20 corresponds to a call to function dtrsm,
and the backwards substitution from equation 4.21 corresponds to another call to
the same function.

To demonstrate support for incremental parallelization and the ability to leverage
existing codes, we have based our implementation on that structure and we have
made it parallel by parallelizing the code of some of these functions. The main code
is shown in listing 4.12.
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1 // LU factorization
2 tiled_dgetrf(NB, N, N, N, A, IPIV);
3

4 // Solve the system with the LU factorization
5 pivot_vector(N, B, IPIV); // Pivot vector B
6 tiled_dtrsv(NB, N, A, B, 0); // Forward elimination
7 tiled_dtrsv(NB, N, A, B, 1); // Backwards substitution

Listing 4.12: Main code of the SMPSs implementation of the High Performance
Linpack benchmark.

In the listings of this benchmark, all functions whose name begins with tiled_ are
functions that decompose a problem into several task calls. Most of those tasks have
been implemented as direct calls to the BLAS and LAPACK linear algebra libraries. By
using this approach, we can leverage optimized sequential versions of those libraries
(i.e. MKL, GotoBLAS, SGI SCSL, ...) as part of our parallel program. Modularity and
capability of reuse are important capabilities for productivity and performance. The
tiled_dtrsv function is implemented in such a way. The decomposition of simple
linear algebra functions using tasks with regions has already been covered in this
text.

However, the tiled_dgetrf function is more complex. Listing 4.13 shows the
original implementation in Fortran of the dgetrf function from LAPACK. And listing
4.14 shows the SMPSs version. Notice that the code is almost a direct translation
from Fortran to C with calls to regular functions replaced by their tiled counterparts.
These are implemented similarly to the tiled matrix multiplication and consist of
single and double nested loops that call to BLAS and LAPACK tasks.

For performance reasons, the base case and the current panel are handled by
calls to tasks that call the dgetrf function instead of dgetf2. The first is a level-3
function and has better performance due to better cache use. Whereas, the second
is a level-2 function and in general has lower performance.

The algorithm accesses horizontal and vertical subpanels of the matrix at different
stages. Figure 4.26 shows the sequence of regions accessed over matrix A and the
pivoting vector IPIV for a given iteration. The sequence from left to right matches
the order of the actual operations. Solid colors indicate that the data is updated, and
stripped areas that the data is only read. Colors indicate the type of task that updates
an area or that has updated it. Notice that the regions are partially overlapping and
a given position may be accessed as part of an horizontal panel, a vertical panel and
a square in the same iteration. These aspects make this algorithm very hard to write
using a tiled data layout, and thus it makes good use of regions.

The granularity of the main decomposition is controlled by the NB parameter,
which determines the width of vertical panels and the height of horizontal panels.
The other dimensions are dynamic and depend on how many iterations have been
executed or how many are left. That is, some are j and some are N−j or N−j−NB.
The tiled_dlaswp function in turn is decomposed into tasks that operate over vertical
panels that are NB elements wide. The tiled_dtrsm function uses tasks of NB by NB
elements. And finally the tiled_dgemm function also uses tasks that operate over
blocks of the same size.

Our implementation of the algorithm also includes a verification phase that has
also been parallelized using the same strategy. The verification is the one proposed
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1 subroutine dgetrf(m, n, a, lda, ipiv, info)
2 integer info, lda, m, n, ipiv(∗)
3 double precision a(lda, ∗) Function Declaration

4 nb = ilaenv(...) Determine Block Size

5 if(nb.le.1 .or. nb.ge.min(m, n)) then
6 call dgetf2(..., a, ipiv, ...) Direct Case

7 else
8 do 20 j = 1, min(m, n), nb Main Loop Header

9 jb = min(min(m, n)−j+1, nb)
10 call dgetf2(..., a(j, j), ipiv(j), ...) Handle Current Panel

11 do 10 i = j, min(m, j+jb−1)
12 ipiv(i) = j − 1 + ipiv(i)
13 10 continue Adjust Pivots

14 call dlaswp(..., a, ipiv, ...) Left-Side Row Swaps

15 if(j+jb.le.n) then
16 call dlaswp(..., a(1, j+jb), ipiv, ...) Right-Side Row Swaps

17 call dtrsm(..., a(j, j), a(j, j+jb), ...) Compute U Rows

18 if(j+jb.le.m) then
19 call dgemm(..., a(j+jb, j), a(j, j+jb), a(j+jb, j+jb))
20 end if

Update Trailing Matrix

Listing 4.13: LU decomposition as implemented by LAPACK.
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1 void tiled_dgetrf(integer NB, integer M, integer N,
2 integer LDA, double A[N][LDA], integer IPIV[])
3 { Function Declaration

4 integer jb = min(min(M, N), NB); Determine Block Size

5 if (M <= NB || N <= NB)
6 dgetrf_tile(..., A, IPIV); Direct Case

7 else
8 for (integer j=0; j < min(M, N); j += jb) { Main Loop Header

9 jb = min(min(M, N)−j, jb);
10 dgetrf_tile(..., &A[j,j], &IPIV[j]); Handle Current Panel

11 if (j != 0) {
12 tiled_add_scalar(jb, ..., &IPIV[j]); Adjust Pivots

13 tiled_dlaswp(jb, ..., A, IPIV);
14 } Left-Side Row Swaps

15 if (j+jb < N) {
16 tiled_dlaswp(jb, ..., &A[j+jb,0], IPIV); Right-Side Row Swaps

17 tiled_dtrsm(jb, ..., &A[j,j], &A[j+jb,j]); Compute U Rows

18 if (j+jb < M)
19 tiled_dgemm(jb, ...,
20 &A[j,j+jb], &A[j+jb,j], &A[j+jb,j+jb]);

Update Trailing Matrix

Listing 4.14: LU decomposition as implemented in SMPSs.
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dgemmdlaswpdgetrf add_scalar dtrsm

j jb
j

inout region input region

Figure 4.26: Regions accessed by the tasks of one iteration of the LU decomposition
over the matrix and the pivoting vector.

by [Luszczek et al., 2006] and consists in verifying that the error of the solution is
within a given maximum determined by the arithmetic precision.

Performance and Blocking

When we execute the algorithm as is, we achieve a level of performance that is
below our expectations. Figure 4.27(a) shows an execution trace with 32 cores
with a matrix of 8192× 8129 elements and a block size NB of 1024 elements. Each
horizontal set of colored bars indicates what kind of task a given thread was executing
at a given time. Small notches on top of each bar delimit when a task begins and
when it ends. Notice that most segments of each row are white. This indicates that
threads spend more time idle than running tasks.

The algorithm is such that every task of an iteration depends either directly or
indirectly form the first dgetrf task of that iteration. The dgetrf task, in turn, depends
on some of the dgemm tasks of its previous iteration. Thus, whenever the dgetrf
task gets delayed, it becomes a bottleneck, and threads starve. Therefore, to achieve
acceptable effective parallelism, the dgetrf task must be executed as soon as possible
and it must be proportionally small enough compared to the rest of the remaining
work of the iteration so that it can finish before the rest that runs in parallel.

In figure 4.27(a), the granularity is too coarse to achieve good parallelism. When
we reduce NB to 512, the effective parallelism grows from 18% to 40%. However,
that value is still too low. If we reduce NB by half again, we obtain the trace in
figure 4.27(b). Note that the time scale is different for each case. The new trace
has 75% effective parallelism. This improvement comes at the expense of more
runtime overhead and lower task performance. On one hand, the total number of
tasks becomes almost 40 times as many as in the first trace. This raises the runtime
overhead from less than 1% of the time to 17%. Since tasks perform less computation,
their floating point operations per cycle decrease by 30% on average.

Small tasks also produce scheduling contention which causes the fourth dgetrf
task to be delayed, hence the unbalance in the first third of the execution.

The difference between both traces shows that as we reduce the blocking size, the
ratio between the duration of the dgemm tasks and the dgetrf tasks grows. Therefore,
the blocking strategy that we follow is too coarse for the dgetrf task, and too thin
for the dgemm decomposition.

To alleviate the first symptom, we need to decompose the dgetrf_tile calls. How-
ever, since the tiled_dgetrf function itself is a valid decomposition, we can alter the
function to make it recursive. Therefore, we add a recursion level parameter that
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Figure 4.27: Execution traces of HPL: (a) with coarse granularity; (b) with thin
granularity; and (c) with adaptive granularity.
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we set and control to allow two levels of recursion. Then we change the condition in
line 3 of listing 4.14 to include a check for the base case, and we replace the call in
line 10 to itself.

To alleviate the second symptom, we need to reduce the amount of tasks generated
at each iteration without hurting the potential parallelism. Notice that the dgetrf
task is usually the bottleneck. Therefore, to keep threads as busy as possible we
need to generate enough tasks, and to execute the dgetrf tasks as soon as possible.
Each dgetrf task depends directly on the dgemm tasks that update its region in the
previous iteration. From now on, we will refer to that region as the critical region.

The key to making the dgetrf tasks execute as soon as possible is to make the
tasks that update the critical region also run as early and as fast as possible. To do
that, we can set the granularity of those tasks to maximize the parallelism of the
region. That is, we make it so that we generate a number of tasks close to the number
of threads.

To avoid generating too many small tasks, we adapt the granularity of the other
regions to minimize the amount of tasks and to maintain enough parallelism. That
is, for each decomposition, we generate also a number of tasks similar to the number
of threads for the updates outside of the critical region.

To implement the new granularity policy, we have changed the code to use
two granularity variables that are calculated at each iteration. A first one, called
jb determines the size of the tasks of the critical region. And a second one jb2
determines the size of the rest of the tasks. To control them we set a maximum block
size maxBS and a minimum block size minBS, and derive the actual block sizes of
each part from those, the amount of calculations of the current iteration and the
number of threads nthr.

Listing 4.15 shows the new code. In line 5 we calculate the block size for the
first dgetrf task and use it to decide whether to solve it with the base case or to
decompose it. Line 10 determines the block size of the current iteration by taking
into account the size of the matrix that will be updated. In line 11 we replaced the
regular call to the dgetrf task by a recursive call. In line 17 we calculate the second
blocking size that we use for only the dgemm tasks after the critical region.

Figure 4.27(c) shows an execution trace with the new code. Notice that the
duration of the dgetrf tasks is much closer to the duration of the dgemm tasks.
Moreover, as the algorithm advances, the duration of the tasks gets smaller to
increase the amount of parallelism.

These changes allows us to reduce the time that threads spend idle. Figure
4.28 shows the effective parallelism increment. For simplicity, the figure takes the
best performing minimum block size of the optimized version and matches the
maximum block size with the block size of the unoptimized version. Notice that the
effective parallelism of the optimized version can be up to 12 times as much as the
unoptimized one.

The additional parallelism comes at the expense of lower task floating point
performance. Figure 4.29 shows the difference which can be as high as 44% less
floating point task performance. Despite this, the total performance of the algorithm
remains up to 10 times higher, as figure 4.30 shows.

Figure 4.31 shows the effect of the maximum and minimum blocking sizes
have on the absolute performance. Notice that the minimum blocking size is the
most dominating factor since it has the deepest impact on parallelism. However,
the maximum blocking size, through modest improvements allows us to to further
achieve better performance than would be possible by using the same value for both.
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1 void tiled_dgetrf(integer maxBS, integer minNB, integer M, integer N,
2 integer LDA, double A[N][LDA], integer IPIV[], integer RL)
3 {
4 integer S = min(M, N); Function Declaration

5 integer jb = calculate_small_step(S, nthr, maxBS, minNB);
6 if (S <= jb || RL == 0)
7 dgetrf_tile(..., A, IPIV); Base Case

8 else
9 for (integer j=0; j < S; j += jb) { Main Loop Header

10 jb = calculate_small_step(S−j, nthr, maxBS, minNB);
Critical Region Block Size

11 tiled_dgetrf(maxBS, minNB, ..., &A[j,j], &IPIV[j], RL−1);
Solve Current Panel Recursively

12 if (j != 0) {
13 tiled_add_scalar(jb, ..., &IPIV[j]); Adjust Pivots

14 tiled_dlaswp(jb, ..., A, IPIV);
15 } Left-Side Row Swaps

16 if (j+jb < N) {
17 integer jb2 = calculate_big_step(S−j, nthr, jb, maxBS, minNB);

Block Size of the Rest

18 tiled_dlaswp(jb, ..., &A[j+jb,0], IPIV); Right-Side Row Swaps

19 tiled_dtrsm(jb, ..., &A[j,j], &A[j+jb,j]); Compute U Rows

20 if (j+jb < M)
21 tiled_dgemm(jb, jb2, ...,
22 &A[j,j+jb], &A[j+jb,j], &A[j+jb,j+jb]);

Update Trailing Matrix

Listing 4.15: LU decomposition as implemented in SMPSs with recursion and dynamic
granularity.
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1 void tiled_dgemm(
2 integer smallStep, integer bigStep,
3 integer M, integer N, integer K,
4 double ALPHA, integer LDA, double A[K][LDA],
5 integer LDB, double B[N][LDB],
6 double BETA, integer LDC, double C[N][LDC]
7 ) {
8 integer j_s = min(smallStep, N);
9 for (integer j = 0; j < N; j += j_s) {

10 j_s = find_step_progression(j == 0, N − j, j_s, bigStep);
11 for (integer l = 0; l < K; l += smallStep) {
12 integer l_s = min(smallStep, K−l);
13 integer i_s = min(smallStep, M);
14 for (integer i = 0; i < M; i += i_s) {
15 i_s = find_step_progression(j == 0, M − i, i_s, bigStep);
16 dgemm_tile(i_s, j_s, l_s, ALPHA, LDA, &A[l][i], LDB, B[j][l],

BETA, LDC, C[j][i]);
17 }
18 }
19 }
20 }

Listing 4.16: Tiled matrix multiplication used in the LU decomposition with dynamic
block size.
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Figure 4.28: Effective parallelism improvement when running the optimized HPL
implementation compared to the unoptimized code.
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Effective Flops/cycle improvement of Adaptive vs. Unoptimized (%)
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Figure 4.29: Task floating point performance degradation when going from the
unoptimized HPL implementation to the optimized code.
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Figure 4.30: Absolute performance improvement when going from the unoptimized
HPL implementation to the optimized code.
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Floating point performance (% of peak)

Minimum Block Size

M
ax

im
um

 B
lo

ck
 S

iz
e

512

1024

2048

4096

64 12
8

25
6

51
2

 : 
N

20
48

64 12
8

25
6

51
2 64 12
8

25
6

51
2 64 12
8

25
6

51
2 64 12
8

25
6

51
2 64 12
8

25
6

51
2

512

1024

2048

4096

 : 
N

40
96

512

1024

2048

4096

 : 
N

81
92

512

1024

2048

4096

 : 
N

16
38

4

512

1024

2048

4096
 : Cores 1

 : 
N

32
76

8

 : Cores 2  : Cores 4  : Cores 8  : Cores 16  : Cores 32

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Figure 4.31: Performance of the SMPSs HPL implementation with several problem
sizes and blocking sizes.

137



Chapter 4. Strided and Overlapping Data Accesses

Scalability and Other Implementations

Since the SMPSs HPL is an implementation of an already existing algorithm, to
evaluate its performance we take as reference the original Linpack TPP benchmark.
This is a highly optimized MPI version of the algorithm that is used for evaluating
the performance in the top 500 supercomputer list.

The reference MPI implementation has look-ahead coded by hand. That is, where
the SMPSs version overlaps the dgetrf tasks with the dgemm tasks of the previous
outer iteration automatically by taking benefit of data dependencies, the MPI version
has that behavior coded by hand.

The MPI version also uses a block-cyclic distribution with small block sizes,
which improves the balance of this specific problem according to [Dongarra and
Walker, 1993]. However, this data distribution leads to a decomposition similar to
the LAPACK level-2 dgetf2, which has less locality and is more complex. Moreover,
this forces the MPI version to have more frequent communications than a level-3
style implementation would require.

To compare with another shared memory implementation, we have made a third
implementation. The code consists of a direct call to dgetrf and two calls to dtrsv.
We link this code with the parallel version of the MKL library, which in turn uses
OpenMP.

To make the comparison fair, we used the same MKL version for the BLAS
and LAPACK functions called in the tasks, the MPI version, and the direct MKL
implementation. Figure 4.32 shows the strong scalability of the problem with several
problem sizes under each implementation. The SMPSs and the MPI implementations
scale and perform on par on most cases. Only for the two smallest problem sizes,
the SMPSs version scales worse with more than 8 cores. The general parity of
both implementations is a surprising result, since the reference implementation is
highly tuned and takes benefit of memory affinity, whereas the SMPSs version is
NUMA-unaware.

The parallel MKL version achieves similar performance up to 8 cores, but with
more it scales worse.

Table 4.8 summarizes the performance metrics of each implementation. In ad-
dition, in the executions for matrices with 16384 elements or more, the SMPSs
and the MPI implementations perform similarly, and the difference is always below
10 GFlops. Notice that with 32 cores, the parallel MKL implementation has less
parallel efficiency and lower effective floating point instructions per cycle. These
symptoms seem to indicate that it does not use look-ahead to reduce the unbalance,
and instead relies in a finer-grained decomposition to compensate for it. In addition
all the parallel MKL executions with 2 threads produced incorrect results, whereas
the same implementation of the operations was used for all other implementations
and number of threads.
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Figure 4.32: Strong scalability of the SMPSs HPL algorithm and the reference MPI
implementation, and performance of both with 32 cores.
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Cores Na BS1b BS2c GFd GFd GFd FPCe FPCe Eff.f

(%)
Eff.f

(%)

1 2048 512 1024 5.2 5.1 5.2 3.3 3.3 99 99
1 4096 512 2048 5.6 5.5 5.7 3.5 3.6 99 99
1 8192 128 4096 5.9 5.7 5.9 3.7 3.7 99 99
1 16384 128 2048 6.0 5.9 6.0 3.8 3.8 99 99

2 2048 128 2048 9.0 8.6 ∅ 3.0 ∅ 93 ∅
2 4096 256 4096 10 9.8 ∅ 3.4 ∅ 96 ∅
2 8192 128 4096 11 10 ∅ 3.6 ∅ 97 ∅
2 16384 512 4096 11 11 ∅ 3.8 ∅ 97 ∅

4 2048 128 512 16 15 14 2.8 2.5 90 93
4 4096 128 2048 19 17 19 3.2 3.2 95 96
4 8192 256 512 21 19 21 3.4 3.5 97 98
4 16384 512 1024 22 21 23 3.6 3.7 98 98

8 2048 128 512 24 25 27 2.4 2.7 82 82
8 4096 128 2048 33 30 32 2.8 2.9 91 89
8 8192 128 4096 40 36 38 3.3 3.2 95 93
8 16384 256 2048 43 40 42 3.5 3.5 97 95
8 32768 256 2048 46 43 45 3.7 3.7 98 97

16 2048 128 512 29 36 34 1.9 2.3 63 63
16 4096 128 1024 53 56 45 2.4 2.4 87 77
16 8192 256 1024 69 67 53 3.0 2.5 91 83
16 16384 256 2048 82 77 68 3.4 3.0 95 89
16 32768 256 2048 89 84 80 3.6 3.4 98 92

32 2048 128 512 23 34 1.5 1.4 1.0 37 27
32 4096 128 512 56 92 41 1.8 1.4 65 63
32 8192 128 2048 106 123 61 2.4 1.7 88 73
32 16384 256 2048 142 145 79 3.0 2.1 92 77
32 32768 128 2048 169 164 115 3.4 2.8 97 81

Implementation: SMPSs regions MPI MKL
a Matrix side size.
b Minimum submatrix side size
c Maximum submatrix side size
d Gigaflops per second.
e Mean floating point operations per cycle while running tasks.
f Mean time that threads spend running tasks.

Table 4.8: Performance summary of the HPL algorithm implementations.
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Chapter 5

Exploiting Non-Uniform
Memory Access

5.1 Introduction

Performance is one of the main driving factors behind the development of High Per-
formance Computing applications. The main aspects that determine the performance
of parallel applications are the overheads added by the programming paradigm and
runtime, the level of parallelism that is achieved, and the performance of the units
of computation. The previous chapters of this thesis cover the first two aspects of
the SMPSs programming model. This chapter analyzes task performance from the
point of view of memory affinity in Non-Uniform Memory Access (NUMA) systems
and proposes techniques to take advantage of them.

The ability to benefit from the potential computational performance of processors
is hindered in many applications by the performance gap between the memory system
and the execution units of the processor. Some of the physical characteristics of
memory system can be improved to achieve better performance. However, changes
in this area are limited by physical constraints and cost-effectiveness.

Non-Uniform Memory Access (NUMA) systems increase the total system memory
bandwidth by adding more memory buses and physically connecting them in groups.
In this text we will refer to NUMA node as a group of processors and memory at are
connected directly. Each node consists of one or more memory buses connected to one
or more processors and memories that are considered local, and an interconnection
network that connects them to the other nodes. For brevity, in the rest of this text
we will refer to the local memory of a NUMA node, as a memory.

The interconnection network allows processors from one node to access the
memory of other nodes. However, the performance of these accesses depends on
the characteristics of the interconnect, and thus is different to that of local memory.
Because of this, the location of the data and the location of the computation that
accesses it are important factors that determine the performance of applications in
NUMA systems.

This chapter concentrates on NUMA systems that have identical cores and iden-
tical nodes. Thus, we differentiate between local memory and remote memory. A
memory is local to a core when its accesses have the least latency on that core.
All others are considered remote memories. Those in turn may also have different
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varying performance characteristics.

5.2 Previous Work

Previous research on software techniques to exploit the performance of NUMA sys-
tems has covered mainly operating systems and programming models. An overview
of the techniques for operating systems has been published by [LaRowe Jr., 1991].
Most research concentrates on strategies to manage the data, and more specifically on
data migration and data replication, and few cases consider moving the computation
to the data.

Previous work on programming models includes the work of [Nikolopoulos et al.,
2000], which proposes a solution in which the OpenMP runtime monitors page
usage and determines page migration and duplication. This research is similar to
the research done at the operating system level and applies most of their ideas at
the runtime level.

While most of the operating system level solutions, and the transparent OpenMP
solution base their strategy on managing the data and do not consider moving the
computation to where the data is, the proposal of this chapter for SMPSs is based in
the later. This approach has potential in SMPSs because the number of ready tasks
at any given time may be orders of magnitude higher than the number of cores. This
aspect notably reduces the potential to increase unbalance caused by moving the
computation to the data.

NUMA extensions to the OpenMP language have been proposed by [Bircsak
et al., 2000]. Their proposal includes directives to force page migration, allows to
declare data distributions similarly to High Performance Fortran by [Rice University,
1993], and includes directives to specify computation placement. In this sense,
these directives could be considered a mechanism to let the programmer move the
computation to where the data is. While the SMPSs scheduling that this chapter
proposes is also based on moving the computation to the data, it is not controlled by
the programmer and does not rely on user annotations. Another difference is that
the proposal for OpenMP uses compiler transformations to allow distributions at
granularities smaller than the page.

While distributed systems are different to NUMA systems, some of the ideas and
programming languages of distributed systems apply to NUMA systems and achieve
better performance than classical NUMA-unaware shared memory programming. The
Message Passing Interface (MPI) by the [Message Passing Interface Forum, 2009] is
a library standard for distributed programming that is also used in NUMA systems to
exploit their performance characteristics. The programming languages that follow the
Partitioned Global Address Space (PGAS) paradigm are also tailored for distributed
systems. However, their design includes features to handle the distribution of data
and computation, that also apply to NUMA systems.

5.3 Data Distribution in Parallel Programming Lan-
guages

In NUMA systems the location of the data and the computation that accesses it have
an influence on the performance of the applications. In this text we will refer to
the mapping between the language-level data declarations and the memories as the
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data distribution. This concept is analogous to the identically named one used in
distributed programming models. However, since we are targeting shared memory
multiprocessors, all data can be accessed independently of its distribution, whereas
in distributed models only local data can be accessed directly.

5.3.1 Granularity, Architectural Limitations and Remapping

The memory of current computers is organized in pages. The page size determines
the boundaries at which data can be handled at the physical and virtual levels. For
instance, a virtual page may only be valid or invalid as a whole, and a physical page
can only be located in one NUMA node. These constraints affect how the data can
be distributed at least at the operating system level.

Most PGAS programming languages abstract the indexing of data structures
to cope with those limitations. For instance, an array that may be distributed in a
block cyclic pattern, may have the indexes that correspond to one node mapped to a
contiguous block of memory. To access the data, the compiler adds code to convert
the user-side indexing into the indexing required by the actual layout. This can
be a source of overhead and complicates the reuse of already compiled codes and
libraries, which should be either adapted or recompiled with those transformations.

While data layout changes, if abstracted, can be advantageous for programmabil-
ity, they can also be advantageous for performance. For instance, the official LINPACK
code by [Dongarra, 1988] can distribute the data at sub-page granularity. In this case,
this aspect is not transparent and makes the code dependent on the data distribution.
However, the implementation takes advantage of this knowledge to improve its
performance. The data is laid out in such a way that at each outer iteration, each
class of linear algebra operations can be executed in a single call to the BLAS/LAPACK
library; whereas if the data was not coalesced, it would require several calls. In
addition, the contiguous layout improves spatial locality. These aspects have been
described by [Dongarra and Walker, 1993, sec. 7.1.2].

For simplicity and to allow the reuse of external libraries, this study does not
include the re-indexing of language-level data structures.

5.3.2 Declaring Distributed Data

Programming language support for data distribution can be decomposed into the
means they provide to declare distributed data, and the means to access it.

The distribution of data can be either explicit at the point of its declaration,
or it can be implicit. The Chapel language by [Chamberlain et al., 2007] provides
a global-view of the memory and uses explicit data distributions. In contrast, Se-
quoia++ by [Houston et al., 2008], also follows the global-view paradigm, but
handles the location of the data dynamically, and thus leaves it out of the control of
the programmer.

The Titanium language by [Yelick et al., 1998] and the X10 language by [Charles
et al., 2005] follow the Single Program Multiple Data (SPMD) execution model and
provide a local or fragmented-view of the data, and thus only allow to declare local
data. Therefore, their data distribution is implicit like in MPI.

The Unified Parallel C (UPC) language by the [UPC Consortium, 2005] and Co-
Array Fortran (CaF) by [Numrich and Reid, 1998] are also SPMD languages. However,
they provide a global-view of the data, and therefore require the specification of the
data distribution within their declarations. The implications and differences between
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local-view and fragmented-view programming paradigms have been further analyzed
by [Chamberlain et al., 2007, sec. 2.2.1].

Explicit distribution declarations consist of an assignment of a collection of subsets
of the data to the nodes. In this text we will refer to those as units of distribution.
When they have a shape that conforms to a shape predefined by the language, the
mapping is usually part of the variable declaration. Most languages have predefined
forms to declare data distributed in cyclic and block-cyclic forms.

However, some languages allow to define other data distributions by making
them and the elements that compose them first-class objects. The units of distribution
can be defined by implementing a standard interface, and then they can be used to
define the new distributions. This is the case of the Chapel language.

5.3.3 Accessing Distributed Data

The syntax and the conditions necessary to access distributed data are two key factors
of the design of data distribution support in parallel programming models.

Chapel and UPC allow to access distributed data transparently and do not impose
any restrictions. Titanium also allows transparent access, but requires to get the
reference through the communication mechanism first.

X10 allows to express accesses to remote data with the same syntax as local
data, but requires the computation to be executed at the location where the data
resides. CaF allows to access distributed data without restrictions, however its syntax
explicitly differentiates local accesses from possibly remote accesses.

In Sequoia++, data is transparently copied from and to the tasks automatically.
However, tasks can only access the data that they specify in their parameters. This
condition, and execution model is similar to the CellSs model by [Bellens et al., 2006;
Perez et al., 2007], which is based on the model of this thesis.

5.4 A Data Distribution Proposal for SMPSs

The SMPSs programming model provides a simple programming environment with
few language constructs but with a powerful runtime. Our proposal for data distri-
bution in SMPSs relies on on-demand page placement and initialization tasks. This
allows us to preserve the simplicity of the model and to move the complexity into
the runtime.

5.4.1 Delayed Memory Allocation

Modern operating systems decouple memory allocation requests from the actual
allocation. When the user code allocates memory, the operating system marks the
corresponding part of the logical memory map of the process as reserved and unini-
tialized, but does not assign it physical pages. Instead, the first attempt to access
each page produces a page fault that the operating system serves by assigning it
a new physical memory page. This way, the operating system assigns the memory
pages on demand. We refer to this mechanism as allocation on first-touch.

While the page faults incur in some overhead, this mechanism has also benefits.
First, it allows processes to reserve more memory than they actually need at low cost.
This mechanism and its implications is explained by [Rodrigues, 2009]. And second,
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delaying the actual page allocation enables dynamic page placement policies that
depend on the locations of the first access.

5.4.2 Page Placement

To allocate a memory page, the operating system uses a page placement policy to
decide in which NUMA node to allocate it. A common default is to allocate the pages
locally on first-touch. Another is to interleave the placement between the nodes
in round-robin. This policy is simple and balances the use of memory bandwidth.
However, local placement on first-touch can perform better under some scenarios.
These aspects are reviewed by [Marchetti et al., 1995].

Codes in which the thread or process that initializes each part of the data is the
one whose performance is most dependent on its accesses can benefit from the policy
if it is combined with pinning threads or processes to the cores. For instance, MPI
applications usually benefit, since all their accesses are local. OpenMP applications
can also benefit by using static scheduling, and using initializations that are scheduled
to the same threads that will later access it.

5.4.3 Declaring a Data Distribution

The definition of a data distribution consists of the units of distribution, and the
mapping between them and the memories. In this proposal, instead of declaring
both, we only allow the user specify the former, and let the runtime determine the
latter.

The units of distribution are defined by initializing the data in parallel with tasks.
An initialization task is a task that has in its outputs data that it initializes for the first
time. That data is the unit of distribution and will be placed together in one node.
Instead of forcing a mapping between the initialized data and the NUMA node, the
mapping is left to the scheduling policy. This aspect is a major difference between
our solution and the previous work.

To illustrate this, listing 5.1 shows three tasks that initialize differently shaped
regions of a bidimensional array and a function that initializes three arrays using
those. All three arrays are of N by N elements. The first is initialized by horizontal
panels of BS rows. The second is initialized by vertical panels of BS columns. And
the third is initialized by blocks of BS by BS elements. Notice that this code is a
standard SMPSs initialization and that it defines three data distributions by just
using the regular elements of the language.

In the rest of this text we will differentiate between initialization tasks and regular
tasks. The first corresponds to task instances that initialize memory addresses for
the first time, and the second corresponds to the rest of the task instances.

5.4.4 Distributing the Data

While initialization tasks define the units of distribution, their scheduling determines
the placement of the units of data distribution, and thus the mapping to the nodes.
Since data placement can have a deep impact on the performance of regular tasks,
the runtime automatically detects whether a task is an initialization task and applies
different scheduling strategies to each case. The detection is described in section
5.4.7. The following paragraphs discuss the scheduling of initialization tasks, and
therefore data distribution.
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1 #pragma css task input(BS, N) output(data)
2 void horizontal_init_task(int N, int BS, double data[BS][N]);
3

4 #pragma css task input(BS, N) output(data{}{0:BS})
5 void vertical_init_task(int N, int BS, double data[N][N]);
6

7 #pragma css task input(BS, N) output(data{0:BS}{0:BS})
8 void block_init_task(int N, int BS, double data[N][N]);
9

10 void init(int N, int BS, double horiz_data[N][N], double vert_data[N][N],
double block_data[N][N]) {

11 for (int i=0; i < N; i += BS)
12 horizontal_init_task(N, BS, &horiz_data[i][0]);
13

14 for (int j=0; j < N; j += BS)
15 vertical_init_task(N, BS, &vert_data[0][j]);
16

17 for (int i=0; i < N; i += BS)
18 for (int j=0; j < N; j += BS)
19 block_init_task(N, BS, &block_data[i][j]);
20 }

Listing 5.1: Initialization of three bidimensional arrays using tasks by panels of rows,
by panels of columns and by blocks.

Both scheduling algorithms consist of two parts: a part that inserts the task in a
queue, and a part that retrieves the task from a queue. The first determines what to
do with tasks as they become ready. This part selects the preferred NUMA node on
which to run the task, and the queue of that node that will contain it. The second
part determines which task to run when a thread becomes idle.

The placement policy has been designed to balance the distribution homoge-
neously between the NUMA nodes. To this end, the scheduler maintains a count of
the bytes allocated in each memory and assigns initialization tasks greedily to the
memory with the least bytes allocated, and on tie, also the best affinity according to
the regular task scheduling policy.

Initialization tasks are inserted in a dedicated queue of the NUMA node. After
their insertion, the scheduler updates the number of bytes allocated in that node,
and updates a data structure that holds the information about the data that has
been initialized and its placement. This queue is only consumed by the threads of
the node, and thus initialization tasks are always run by a core that is local to its
memory. The runtime relies on the first-touch local page placement policy to enforce
the placement of data on the node that runs the initialization task.

Due to the dynamic nature of the programming model, tasks that initialize more
than one array can be in flight at any given time. For instance the initialization
tasks of the three arrays in listing 5.1 can be scheduled together. While the policy
distributes the whole set of data homogeneously, it does not guarantee the same
effect on each individual array. To avoid this problem, each block of memory allocated
as a single block of memory could have its distribution balanced independently. That
is, to distribute all the data allocated by each single call to malloc independently of
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each other. In our current implementation we do not do so. Instead we place barriers
in the application code between the initialization of each array to accomplish the
same result.

While the data placement policy is restricted to homogeneous distributions,
others could be added by extending the syntax of the language. These aspects are
out of the scope of this chapter.

5.4.5 NUMA-aware Scheduling

Tasks that do not initialize any set of memory for the first time are considered regular
tasks. These are scheduled using a different algorithm since they do not contribute
to the distribution of data, but can take advantage of it.

The original scheduler discussed in chapter 3 has per thread queues. These consist
of one queue for high priority tasks, and one for normal priority tasks. Each thread
inserts the tasks that it releases in one of its queues, and consumes tasks from its
queues as long as they are not empty. The purpose of this design is to exploit the
temporal locality inherent to the data dependencies by executing successors as soon
as they are freed.

The new scheduler is focused on exploiting NUMA affinity. In that sense, it
substitutes per thread queues by per NUMA node queues. The queues of a node are
local for its threads and remote for the rest. Their purpose is to hold tasks that are
most affine to that node. Where the old scheduler accessed the queues of the thread,
the NUMA-aware scheduler accesses the queues of its NUMA node.

Like the regular SMP scheduler, the NUMA-aware scheduler has also different
queues for high-priority tasks and normal-priority tasks, in addition to the queues of
the data initialization tasks.

When a task becomes free, the runtime calculates its affinity. This procedure also
determines if the task is an initialization task or a regular task. If it is an initialization
task, it schedules it using the data distribution policy. Otherwise it sends the task to
a queue of the node that contains most of its data. If the task only accesses data for
which it does not have information, it sends it to a global queue.

The NUMA scheduler has a task protection mechanism similar to the one of the
original scheduler. When freeing up successors, if one is most affine to the node of the
thread, the thread will reserve it for itself. Identically to the original scheduler, the
objective is to exploit the potential data cache reuse inherent to a data dependency
and to prevent excessive task stealing. To further prevent excessive task stealing, the
scheduler also keeps track of threads that are idle. During task stealing, threads skip
nodes with idle threads.

Threads attempt to retrieve ready tasks by checking several sources in LIFO order
until they succeed. Threads check first the initialization task queue of their node.
Then they attempt to get a high priority task, and then a normal priority task. High
priority tasks and normal priority tasks are looked up in the same order. First the
thread checks the protected task, then the queue of their node, then the global queue,
and finally it attempts to steal from the queues of the other NUMA nodes.

While the purpose of this scheduling policy is to maximize memory affinity, by
doing so, it also favors homogeneous memory bandwidth usage. The effectiveness
of both aspects depends on the scheduler, the data dependency structure of the
algorithm, and the distribution of the data.

147



Chapter 5. Exploiting Non-Uniform Memory Access

5.4.6 Calculating Memory Affinity

In this text we call memory affinity the degree to which the data used in a computation
is local to the place where the computation is performed. That is, if we execute a
task on a core and all the data that it accesses is local, we say that the execution of
the task on that core has an affinity of 100%. On the other hand, if all the data is
located on remote nodes, we say that it has 0% affinity.

Modeling affinity and its effects is complex since performance ultimately depends
of the real accesses to the memory after discounting the effects of data caches. For
simplicity this study does not take into account the effects of the cache, and does not
consider the actual memory performance metrics of the code nor the architecture.
Instead it considers that all data is accessed a uniform number of times and assumes
that local accesses are always faster than remote accesses.

5.4.7 Handling NUMA Information

To calculate the affinity of a task and to determine the new memory that it initializes,
the runtime must have the means to retrieve the placement of the memory pages
that the task accesses.

While in Linux the get_mempolicy system call allows to query that information,
its interface only allows to retrieve the NUMA node of a single page at a time. The
Linux move_pages system call also allows to query that information but this time
for multiple pages. However, its interface requires to generate a list that contains
the starting address of every page that the task accesses.

Fortunately the location of each page is determined as its corresponding ini-
tialization task is assigned to a node. Thus, to avoid the overhead incurred by the
system calls, the runtime keeps a record as the information is generated. To store and
retrieve it efficiently, it has to map regions to NUMA nodes. The region tree presented
in chapter 4 is a data structure that maps regions to information needed to calculate
data dependencies. To map regions to NUMA nodes, we use a data distribution tree
that uses the same indexing but that stores NUMA node identifiers in its leaf nodes.

To determine whether a task is an initialization task and to calculate its affinity,
the runtime analyzes each region access. Since data allocation happens at page size
granularity, it rounds regions to the page granularity by setting the least significant
p digits to X , where p is the logarithm in base 2 of the page size.

This scheme works even with initializations that have smaller granularity than
the page size. When a task initializes a page for the first time, even if partially, the
runtime records it as placed. Any following initialization that touches the page will
not be detected as the first initialization since the memory will already have been
placed. Instead, the regular scheduling algorithm will favor its execution in the same
node.

Our implementation calculates memory affinity as the number of bytes that tasks
access in each memory over the total number of bytes that they access, and the new
memory as the number of bytes that they initialize for the first time.

5.5 Evaluation

This section explores how NUMA affinity affects the performance of a set of bench-
marks, and how the scheduler that this chapter proposes improves it. For consistency,
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the benchmarks, the hardware, the software and the measurement methodology are
the same as in the previous chapter. In all cases the variants are the region-based
ones unless otherwise specified.

To evaluate data distribution strategies, the initialization code of each benchmark
has been changed to allow several unit of distribution shapes, and the code has been
run under the NUMA-aware scheduler that this thesis proposes.

For brevity this section only presents the evaluation of the benchmarks whose
performance was sensitive to NUMA affinity. The performance of the benchmarks
that include matrix multiplications is dominated by the computational complexity
of those operations, and thus they do not benefit from NUMA-affine scheduling in
big problem sizes. For brevity, these have been moved appendix F. The affected
benchmarks are the matrix multiplication, Cholesky, Strassen-Winograd and HPL.

5.5.1 Additional Schedulers

To evaluate the benefits of the NUMA-aware scheduler, the evaluation includes mea-
surements made with the NUMA-unaware scheduler with memory pages interleaved
across the NUMA nodes used by the threads in each experiment. This setup has
already been described in page 27. In the rest of this text we will refer to it as the
NUMA-unaware scheduler. This scheduler represents a compromise solution that
ignores NUMA and tries to avoid too much penalization without programming effort.

However, memory interleaving is not the worst case scenario. In addition, we
have made measurements with two more schedulers. One penalizes NUMA affinity,
and the other the homogeneous distribution of memory bandwidth. These “bad”
schedulers represent policies in the opposite direction to the NUMA-aware scheduler
and together with the NUMA-unaware executions allow us to evaluate the sensibility
of a given code to those parameters.

The first “bad” scheduler is the (computation) Misplacing scheduler, that favors
the execution of tasks in the NUMA nodes with the worst memory affinity. And
the second one is the (memory bandwidth) Unbalancing scheduler, that favors the
execution of tasks that have most of their data located on the NUMA nodes that have
the most data in use at the given moment.

The difference between the misplacing scheduler and the NUMA-aware scheduler
is the order in which they extract tasks from the queues. When the NUMA scheduler
gathers local tasks, the misplacing scheduler steals tasks, and the other way around.
In addition, to further reduce NUMA affinity, the misplacing scheduler steals tasks
in two phases. First it scans the remote node queues for tasks for which the node is
the least affine. If it fails to get one, then it attempts to steal one for which it is not
the most affine.

The unbalancing scheduler attempts maximize the memory bandwidth usage of
the most used node and to minimize the rest. To increase the number of memory
accesses to the NUMA node with the most loaded memory, it keeps an estimation of
the bandwidth usage of each memory. This value is constructed as the sum of the
affinities of the running tasks. That is, if the system is only running one task and all
its data is located on a single node, then that node will have a load of 1, and the
rest will have 0 load. If there is only one task that has half of its data in one node,
and half in another, these two will have 0.5 load, and the rest will have 0 load.

To determine which task to execute, the thread orders the NUMA nodes according
to their memory load in decreasing order and attempts to get tasks from the queues
in that order.
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1 #pragma css task input(size) output(a, b, c)
2 void init_segment(long size, double a[size], double b[size], double c[size]);
3

4 void init(long N, long BS, double a[N], double b[N], double c[N]) {
5 for (long i = 0; i < N; i+= BS)
6 init_segment(BS, &a[i], &b[i], &c[i]);
7 }

Listing 5.2: Initialization task declaration and function of the NUMA-aware Triad
implementation.

5.5.2 Triad

The triad benchmark is the simplest code that we evaluate. The code performs
simple arithmetic operations over the elements of three unidimensional arrays. Its
implementation and performance are presented in the extended benchmarks of the
previous chapter that appear in the appendix E in page 225.

Units of Distribution

Since its data is unidimensional, this benchmark has very few possibilities to explore
data layouts. For simplicity, we have chosen a layout that matches the data blocks
that the tasks use. That is, if the arrays have N elements and we operate in subarrays
of BS elements, then we initialize them in subarrays of BS elements too.

To achieve the maximum affinity the three arrays must be distributed identically.
Therefore, the main arrays cannot be initialized independently. Instead we initialize
each subarray triplet together in a task. Listing 5.2 shows the task declaration and
the initialization loop.

Effectiveness of the NUMA Scheduling Policy

To validate the effectiveness of the runtime placement we have measured the perfor-
mance of the code with the NUMA-aware scheduler and the other three reference
schedulers. Figure 5.1 shows the strong scalability of each case with several problem
sizes, and table 5.1 shows the performance values numerically. These results show
that exploiting NUMA is crucial to achieve good performance in this benchmark.
The penalty for not doing so is so high that the performance of the executions using
an interleaving placement policy is almost identical to the executions that only use
one memory at a time (the unbalancing scheduler), or the executions that run the
tasks on a non affine node (the misplacing scheduler).

Performance Compared to Other Implementations

To compare the performance of the NUMA-aware implementation to other program-
ming models, we have made an implementation using MPI. In this case, the timed
section of the code begins after a global barrier, includes the local triad and a second
barrier.

Figure 5.2 shows the strong scalability with three problem sizes with the NUMA-
unaware scheduler, the NUMA-aware scheduler, and the MPI implementation. The
NUMA-aware SMPSs version and the MPI version perform almost on par. Table
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Cores Na BSb GB/sc GB/sc GB/sc GB/sc Aff.d

(%)
Aff.d

(%)
Aff.d

(%)

1 32 16 4.8 4.8 4.7 4.8 100 100 100
1 64 32 4.8 4.9 4.8 4.8 100 100 100

2 32 16 5.2 5.2 5.2 5.2 100 100 100
2 64 32 5.2 5.2 5.2 5.2 100 100 100

4 32 8 5.1 5.1 5.1 5.1 100 100 100
4 64 8 5.1 5.1 5.1 5.1 100 100 100

8 32 4 10.2 7.3 7.0 6.6 50 42 11
8 64 8 10.3 7.2 6.8 6.8 50 46 12
8 128 16 10.3 7.1 6.9 6.9 50 40 16

16 32 2 20.1 9.8 9.6 8.9 25 21 4
16 64 4 20.2 9.9 9.5 8.7 25 19 3
16 128 8 20.3 9.9 9.7 8.9 25 24 5

32 32 1 36.9 11.4 11.9 10.6 12 10 2
32 64 2 38.9 11.4 12.1 10.9 12 10 1
32 128 4 39.9 11.5 12.0 11.1 12 10 2

Memory Nodes: NUMA Interleaved Unbalancing Misplaced
a Megaelements per array.
b Submatrix side size.
c Gigabytes per second.
d Mean memory affinity.

Table 5.1: Performance summary of Triad with four schedulers with
different NUMA policies.
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Figure 5.1: Strong scalability of the SMPSs triad benchmark under three different
memory affinity scenarios.

5.2 summarizes the performance metrics of each implementation. Notice that the
performance of the MPI version for any given number of cores does not vary with
the problem size. In contrast, in SMPSs, the overhead gets proportionately smaller
as we increase the number of cores, and as a consequence performance improves.
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Cores Na GB/sb GB/sb GB/sb IPCc IPCc Eff.d

(%)
Eff.d

(%)

1 32 4.8 4.8 4.9 1.5 1.5 99 99
1 64 4.9 4.8 4.9 1.5 1.5 99 99

2 32 5.2 5.2 5.2 0.8 0.8 99 99
2 64 5.2 5.2 5.2 0.8 0.8 99 99

4 32 5.1 5.1 5.2 0.4 0.4 99 99
4 64 5.1 5.1 5.2 0.4 0.4 99 99

8 32 7.4 10.2 10.3 0.3 0.4 98 99
8 64 7.7 10.3 10.3 0.3 0.4 98 99
8 128 7.5 10.3 10.3 0.3 0.4 99 99

16 32 9.8 20.1 20.6 0.2 0.4 94 96
16 64 9.9 20.2 20.6 0.2 0.4 94 97
16 128 9.9 20.3 20.6 0.2 0.4 95 98

32 32 11.4 36.9 41.0 0.1 0.4 94 82
32 64 11.5 38.9 41.2 0.1 0.4 96 91
32 128 11.5 39.9 41.2 0.1 0.4 97 95

Implementation: SMPSs Interleaved SMPSs NUMA MPI
a Megaelements per array.
b Gigabytes per second.
c Mean instructions per cycle while running tasks.
d Mean time that threads spend running tasks.

Table 5.2: Performance summary of the Triad implementations.
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Figure 5.2: Strong scalability of the NUMA-unaware SMPSs triad, the NUMA-aware
SMPSs triad, and the MPI implementation and performance with 32 cores.

5.5.3 Gauss-Seidel 2D Heat Transfer

The blocked version of the Gauss-Seidel 2D heat transfer benchmark has been
presented and evaluated in the section that starts in page 36. Its regions-based
version has been presented in the previous chapter in page 87 and it has been
evaluated in an appendix in page 235. This chapter evaluates the NUMA aspects of
the regions-based version.

Units of Distribution

This algorithm operates over a bidimensional array. The tasks update non overlapping
square regions and read a halo around them of one element wide/high that overlaps
the square regions that other tasks update. To establish the shape of the units of
distribution we consider only the updated region as the basic shape.

We have tried three distributions. One that initializes the matrix in horizontal
panels as wide as the matrix and as high as the updated region; one that does the
equivalent with vertical panels; and one that initializes them in blocks with the
same shape as the updated region. Throughout this chapter we will call them the
horizontal distribution, the vertical distribution, and the blocked distribution.

In this benchmark the blocked distribution allows the NUMA scheduler to favor
the affinity of the region that is updated since it contains most of the data of the task.
While the halos can reside on remote nodes, they represent a small fraction of the
total data, and thus should not affect task performance significantly. The horizontal
distribution and the vertical distribution reduce the amount of potentially remote
data in the halo in half, but are also more restrictive for the scheduler.
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Effects of Data Placement on Performance

To validate the effectiveness of the runtime placement and its effect on performance,
we have made measurements with the NUMA-unaware scheduler with memory
interleaving and with the NUMA-aware scheduler with the three data distributions.
Since the complexity of the algorithm is linear to the amount of data, we expect that
memory affinity will have a measurable effect on performance.

Figure 5.3 shows the performance and strong scalability of each case with the best
blocking size for each problem size, and table 5.3 shows the absolute numbers. Notice
that the NUMA-aware executions perform in general better than the NUMA-unaware
executions. And despite the fact that the blocked distribution has the potential to
allow more memory affine schedules than the rest, the overall best performer is the
horizontal distribution.

The reason for the lower than expected performance of the blocked distribution
and the overall low performance of the vertical distribution is the architecture page
size. In the experimental machine, the virtual page size is set to 16384 bytes. Since
the problem operates over double precision floating point numbers, the minimum
effective unit of distribution is at least 2048 elements wide. Initializations with
narrower widths end up allocated in contiguous clusters that are as wide as a page.
While the runtime takes this into consideration, this problem cannot be avoided
without array reindexing.

The blocked distribution suffers from this effect horizontally, but not vertically.
However, the consequences for the vertical distribution are critical since it is con-
strained to just one dimension. When the problem size is narrower than one page per
memory, the data cannot be successfully distributed between all of them, and thus
the execution suffers from lower memory bandwidth and lower potential affinity.

Figure 5.4 shows the mean task memory affinity in each case. Notice that the hori-
zontal distribution is the one that achieves the best affinity in most configurations and
that it is closely followed by the blocked distribution. The vertical distribution is the
worst one that is NUMA aware, and the NUMA-unaware execution has homogeneous
affinity for any given number of cores since the memory pages are interleaved.

As a result of exploiting the memory affinity, the horizontal execution achieves
up to 70% more mean task memory bandwidth as shown in figure 5.5, and up to
90% less mean task memory latency as shown in figure 5.6. These effects when
combined allow in some cases to achieve up to 70% more mean task floating point
operations per cycle, as shown in figure 5.7.

Effectiveness of the NUMA Scheduling Policy

To further study the effects of NUMA on this code we have made additional executions
with the “bad” schedulers and the data distributed in horizontal panels. Figure 5.8
shows the strong scalability of each case. The blocking size used in the measurements
of the NUMA scheduler and the NUMA-unaware scheduler are the ones that generated
the fastest results in each case. The blocking size of the unbalancing and misplacing
executions are the same as the ones of the NUMA-unaware scheduler.

As already shown in the earlier scalability figure, this problem is sensible to
memory affinity. The new plot shows that interleaving the memory pages to avoid
taking into account NUMA affinity is only slightly better than attempting to get the
worst performance out of it, and is far from the performance of a NUMA-aware
execution.
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Figure 5.3: Strong scalability and performance with 32 cores of the NUMA-unaware
Gauss-Seidel algorithm, the executions with a blocked data distribution, the execu-
tions with horizontal distribution, and the executions with vertical distribution.
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Cores Na MU/sb MU/sb MU/sb MU/sb Aff.c

(%)
Aff.c

(%)
Aff.c

(%)
Aff.c

(%)

1 2048 55 55 55 55 100 100 100 100
1 4096 58 58 58 58 100 100 100 100
1 8192 59 59 59 59 100 100 100 100
1 16384 59 59 59 59 100 100 100 100

2 2048 106 106 106 106 100 100 100 100
2 4096 112 112 112 112 100 100 100 100
2 8192 115 115 115 115 100 100 100 100
2 16384 118 118 117 118 100 100 100 100

4 2048 185 185 185 185 100 100 100 100
4 4096 205 205 205 205 100 100 100 100
4 8192 218 216 216 216 100 100 100 100
4 16384 224 225 225 225 100 100 100 100

8 2048 235 226 305 221 50 88 99 69
8 4096 325 328 367 320 50 95 99 90
8 8192 380 379 406 380 50 97 98 94
8 16384 416 407 435 411 50 98 98 98
8 32768 437 434 450 433 50 98 98 98

16 2048 202 210 307 209 25 99 99 82
16 4096 493 512 585 464 25 79 88 59
16 8192 646 669 720 663 25 85 88 76
16 16384 729 747 806 743 25 96 97 89
16 32768 793 806 869 809 25 97 97 97

32 4096 505 573 902 467 12 95 99 54
32 8192 793 1003 1146 852 12 84 99 55
32 16384 966 1317 1455 1276 12 88 93 71
32 32768 1054 1486 1604 1485 12 91 93 92

Distribution: Interleaved Blocked Horizontal Vertical
a Matrix side size.
b Mega element updates per second.
c Mean memory affinity.

Table 5.3: Performance summary of Gauss-Seidel with several data distribu-
tions.
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Mean task memory affinity (%)
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Figure 5.4: Mean memory affinity of the Gauss-Seidel tasks when running with the
NUMA-unaware scheduler, and the three distributions.

Memory bandwidth increment of Horizontal vs. Interleaved (%)
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Figure 5.5: Memory bandwidth improvement of the Gauss-Seidel task when the
data is distributed horizontally compared to the executions with the interleaved
distribution.
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Memory latency reduction of Horizontal vs. Interleaved (%)
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Figure 5.6: Mean memory latency of the Gauss-Seidel task when the data is distrib-
uted horizontally compared to the executions with the interleaved distribution.

Effective Flops/cycle improvement of Horizontal vs. Interleaved (%)
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Figure 5.7: Mean floating point operations per cycle improvement of the Gauss-Seidel
task when the data is distributed horizontally compared to the executions with the
interleaved distribution.
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Figure 5.8: Strong scalability and performance with 32 cores of the Gauss-Seidel
algorithm with memory overloading scheduler, the misplacing scheduler, the NUMA-
unaware scheduler, and the NUMA scheduler.
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Performance Compared to Other Implementations

To compare the performance of the NUMA-aware implementation to other program-
ming models, we have made additional measurements with the blocked implemen-
tation from chapter 3 that starts in page 36, and the OpenMP version of the same
section.

Figure 5.10 shows the strong scalability of each implementation with several
problem sizes with the best performing block size in each case. The series labeled
“Interleaved” corresponds to the NUMA-unaware executions. The series labeled
“Blocked Layout” corresponds to the implementation from the blocks-based program-
ming model with the memory interleaved, and the “OpenMP” series corresponds to
an equivalent one to the regions version, but using OpenMP and barriers.

The OpenMP version is the worst performer, since it cannot generate enough
parallelism, big enough tasks, and cannot benefit from NUMA affinity.

Notice that while NUMA affinity is important to achieve good performance, the
blocked layout measures show that the data layout has also an important impact
for the smallest problem sizes. Figure 5.9 shows the floating point performance
difference between the NUMA-aware executions with the flat layout and the NUMA-
unaware executions with the blocked layout. With 32 cores the effect of NUMA
is bigger than that of the blocked layout. With less cores, the blocked layout im-
proves performance over the flat layout more than NUMA-awareness for the smallest
problem sizes.

Table 5.4 summarizes those findings numerically.

Effective Flops/cycle improvement of NUMA vs. Blocked Layout (%)
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Figure 5.9: Mean Gauss-Seidel task performance difference between the NUMA-
aware execution with the flat layout and horizontal distribution and the NUMA-
unaware execution with blocked data layout.
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Figure 5.10: Strong scalability and performance with 32 cores of the Gauss-Seidel
algorithm with the NUMA-aware scheduler, with the NUMA-unaware scheduler, the
NUMA-unaware scheduler with blocked data layout, and the OpenMP implementa-
tion.

162



5.5. Evaluation

Cores Na MU/sb MU/sb MU/sb MU/sb FPCc FPCc FPCc Eff.d

(%)
Eff.d

(%)
Eff.d

(%)

1 2048 55 55 59 55 0.2 0.2 0.2 99 99 99
1 4096 58 58 58 58 0.2 0.2 0.2 99 99 98
1 8192 59 59 58 59 0.2 0.2 0.2 99 99 99
1 16384 59 59 58 59 0.2 0.2 0.2 99 99 99

2 2048 106 106 118 78 0.2 0.2 0.2 96 96 97
2 4096 112 112 117 87 0.2 0.2 0.2 96 96 98
2 8192 115 115 116 97 0.2 0.2 0.2 96 96 99
2 16384 117 118 117 102 0.2 0.2 0.2 99 99 99

4 2048 185 185 225 104 0.2 0.2 0.2 94 94 94
4 4096 205 205 229 137 0.2 0.2 0.2 94 94 97
4 8192 216 218 229 161 0.2 0.2 0.2 94 95 98
4 16384 225 224 232 179 0.2 0.2 0.2 98 98 98

8 2048 305 235 366 77 0.1 0.1 0.2 79 73 82
8 4096 367 325 429 135 0.2 0.1 0.2 85 93 94
8 8192 406 380 435 204 0.2 0.2 0.2 94 94 96
8 16384 435 416 450 266 0.2 0.2 0.2 95 95 97
8 32768 450 437 456 319 0.2 0.2 0.2 95 95 98

16 2048 307 202 342 68 0.2 0.1 0.2 39 34 40
16 4096 585 493 732 119 0.1 0.1 0.2 81 85 86
16 8192 720 646 807 219 0.2 0.1 0.2 86 86 94
16 16384 806 729 833 348 0.2 0.2 0.2 94 87 96
16 32768 869 793 853 475 0.2 0.2 0.2 95 95 97

32 2048 307 178 322 62 0.2 0.1 0.2 19 16 19
32 4096 902 505 728 108 0.2 0.1 0.1 58 55 69
32 8192 1146 793 998 198 0.2 0.1 0.1 66 87 89
32 16384 1455 966 1049 363 0.2 0.1 0.1 86 89 94
32 32768 1604 1054 1059 559 0.2 0.1 0.1 88 91 93

Implementation: NUMA Interleaved Blocked Layout OpenMP
a Matrix side size.
b Mega element updates per second.
c Mean floating point operations per cycle while running tasks.
d Mean time that threads spend running tasks.

Table 5.4: Performance summary of the Gauss-Seidel implementations.
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5.5.4 Multisort

The multisort benchmark has been evaluated in the previous chapter in the sec-
tion that starts in page 106. This chapter evaluates the effects of NUMA on its
performance.

Units of Distribution

This algorithm has two types of tasks: the tasks that sort small subarrays using the
quicksort algorithm, and the tasks that merge presorted pairs of subarrays of the
data. The first type accesses the array in contiguous and non-overlapping segments
that have the size of the sorting block size. The second, does not have such a well
defined access pattern. Instead it performs a scan over a wide range of data and
then consumes a portion of it, that is also variable. Therefore, the affinity that the
runtime calculates of the merge task is not representative of the actual data accesses,
and thus, the NUMA-aware scheduler may be ineffective for this case.

The data accesses of the original mergesort algorithm match the recursion struc-
ture of the algorithm. These can be represented as an inverted binary tree, where
each node below the first level corresponds to a merge function that consumes all
the data that its parents produce. For this reason we propose to distribute the array
in equally sized segments that total the number of NUMA nodes. This way, there
will be as many subtrees as NUMA nodes whose data is completely located in only
one node, and thus their corresponding tasks will have a chance of having 100%
affinity despite the inability to calculate affinity reliably.

Effects of Data Placement on Performance

To validate the effectiveness of the runtime placement and its effect on performance,
we have made measurements with the NUMA-unaware scheduler with memory
interleaving and with the NUMA-aware scheduler with the proposed data distribu-
tion. Since this is a sorting code, its performance is highly dependent on memory
bandwidth, and thus it is expected that memory affinity will have an important
impact on it.

Figure 5.11 shows the performance and strong scalability of each case with the
best blocking size for each problem size, and table 5.5 shows the numerical data.
The NUMA-aware scheduling scales better than the NUMA-unaware scheduling and
is up to 37% faster. However, scalability degrades in both cases when going from
4 to 8 cores, which corresponds to the transition from 1 to 2 NUMA nodes. This
suggests that the NUMA-aware scheduler is not benefiting from all the potential
memory affinity.

Figure 5.12 shows the mean task memory affinity, which is much lower for the
NUMA-aware executions that can be achieved. Each vertical panel corresponds to
executions with the number of cores indicated on top, and each horizontal panel
corresponds to executions with the problem size indicated on the left in megaele-
ments. This data suggests that this benchmark may be suffering from excessive task
stealing, which penalizes memory affinity.
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Figure 5.11: Strong scalability and performance with 32 cores of the Multisort
algorithm, with the NUMA-unaware scheduler with memory interleaving, and with
the NUMA-aware scheduler with the one block per node distribution.
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Cores Na BS1b BS2c BS1b BS2c Mels/sd Mels/sd Eff.e

(%)
Eff.e

(%)
Aff.f

(%)
Aff.f

(%)

1 32 16 16 16 4 9.8 9.9 99 99 100 100
1 64 8 16 16 16 8.7 8.7 99 99 100 100
1 128 16 16 16 16 8.2 8.2 99 99 100 100

2 32 8 8 8 8 17.2 16.8 93 93 100 100
2 64 16 1 8 16 16.3 15.9 93 93 100 100
2 128 16 1 16 16 15.5 15.1 93 93 100 100

4 32 8 1 4 1 34.4 34.0 98 99 100 100
4 64 16 1 8 1 32.6 32.1 99 99 100 100
4 128 16 2 16 4 31.0 30.6 99 99 100 100

8 32 1 1 2 1 44.1 46.2 96 89 50 60
8 64 2 1 4 1 42.4 46.8 97 93 50 61
8 128 4 1 4 1 40.5 46.4 97 96 50 61

16 32 1 1 2 2 71.5 96.3 94 86 25 60
16 64 4 1 2 4 70.1 92.9 96 86 25 60
16 128 8 1 8 1 67.7 89.9 97 95 25 44

32 32 1 1 1 1 85.4 118.1 67 57 12 37
32 64 1 1 2 2 99.4 114.2 94 57 12 37
32 128 1 1 1 1 97.6 116.3 97 90 12 23
32 256 2 2 2 1 95.1 120.8 97 93 12 24

Distribution: Interleaved By Memory Node
a Megaelements.
b Megaelements per sort task.
c Megaelements per merge task.
d Megaelements sorted per second.
e Mean time that threads spend running tasks.
f Mean memory affinity.

Table 5.5: Performance summary of the Multisort implementations.
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Mean task memory affinity (%) (MN distribution)
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Figure 5.12: Mean task memory affinity when running Multisort with the NUMA-
aware scheduler with several number of cores, problem sizes, and blocking sizes for
the quick sort tasks and merge tasks.

Effectiveness of the NUMA Scheduling Policy

To further study the effects of NUMA on this code we have made additional executions
with the “bad” schedulers and the data distributed by NUMA nodes. To further
check if task stealing is reducing the ability to exploit affinity, we have made an
additional set of executions with the NUMA-aware scheduler with task stealing
disabled. Figure 5.13 shows the strong scalability of each case. The blocking size
used in the measurements are the ones that generated the fastest results for the
NUMA-aware scheduler.

As already shown in the earlier scalability plot, this problem is sensible to memory
affinity. The new plot shows that interleaving the memory pages to avoid taking into
account NUMA affinity is almost as bad as the worst case scenarios, and that task
stealing in this case is hurting performance.

Performance Compared to Other Implementations

To compare the performance of the NUMA-aware implementation to other program-
ming models, we have made additional measurements with the OpenMP version
from chapter 4 that starts in page 112, and the OpenMP version of the same section.

Figure 5.14 shows the strong scalability of each implementation with several
problem sizes with the best performing block size in each case. The series labeled
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Figure 5.13: Strong scalability and performance with 32 cores of Multisort with
the memory overloading scheduler, the misplacing scheduler, the NUMA-unaware
scheduler, the NUMA scheduler, and the NUMA scheduler with task stealing disabled.
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Figure 5.14: Strong scalability and performance with 32 cores of the multisort al-
gorithm with the NUMA-aware scheduler, with the NUMA-unaware scheduler, the
NUMA-unaware scheduler with blocked data layout, and the OpenMP implementa-
tion.

“Interleaved” corresponds to the NUMA-unaware executions, and the “OpenMP” series
corresponds to a version using OpenMP and task nesting. The NUMA-unaware and
the OpenMP versions perform almost identically despite the different programming
model paradigms. The NUMA-aware version performs noticeably better.

Table 5.6 summarizes those findings numerically.
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Cores Na Mels/sb Mels/sb Mels/sb IPCc IPCc IPCc Eff.d

(%)
Eff.d

(%)
Eff.d

(%)

1 32 9.9 9.8 9.8 2.4 2.4 2.4 99 99 99
1 64 8.7 8.7 8.7 2.3 2.3 2.3 99 99 99
1 128 8.2 8.2 8.3 2.2 2.2 2.3 99 99 99

2 32 16 17 18 2.3 2.3 2.3 93 93 99
2 64 15 16 17 2.2 2.3 2.3 93 93 99
2 128 15 15 16 2.2 2.3 2.2 93 93 99

4 32 33 34 33 2.2 2.2 2.2 99 98 99
4 64 32 32 31 2.1 2.2 2.1 99 99 99
4 128 30 30 29 2.1 2.1 2.1 99 99 99

8 32 46 44 45 1.7 1.5 1.5 89 96 97
8 64 46 42 43 1.7 1.5 1.5 93 97 98
8 128 46 40 40 1.7 1.5 1.5 96 97 98

16 32 96 71 72 1.9 1.2 1.3 86 94 96
16 64 92 70 70 1.8 1.2 1.2 86 96 97
16 128 89 67 68 1.7 1.2 1.2 95 97 98

32 32 118 85 82 1.7 1.1 1.1 57 67 64
32 64 114 99 100 1.7 0.9 0.9 57 94 97
32 128 116 97 98 1.2 0.9 0.9 90 97 98
32 256 120 95 95 1.2 0.9 0.9 93 97 99

Implementation: NUMA Interleaved OpenMP
a Megaelements.
b Megaelements sorted per second.
c Mean instructions per cycle while running tasks.
d Mean time that threads spend running tasks.

Table 5.6: Performance summary of the multisort implementations.
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5.5.5 Fast Fourier Transform

The FFT benchmark has been evaluated in the previous chapter starting in page 115.
This chapter evaluates how NUMA affects its performance.

Units of Distribution

The implementation that this section evaluates is based on the 6-step matrix Fourier
decomposition. This algorithm operates over the data as if it was a bidimensional
array, and consists of several phases. The data accesses of those can be classified in
two groups. One group corresponds to the phases that apply a base FFT algorithm
over each row of the matrix. And the other, corresponds to the phases that perform
the matrix transposition, and the matrix transposition combined with the twiddle
factor multiplication.

For the first group, a distribution in horizontal panels would favor the memory
affinity of the FFT tasks. The distribution can match the actual shape of the FFT
tasks.

The tasks of the second group operate either over square blocks of the diagonal, or
over pairs of square blocks that are located symmetrically with respect to the diagonal.
All these are non-overlapping and have constant size. To favor their affinity, each pair
should be placed together in the same memory. None of the initialization strategies
of the previous benchmarks produce a distribution that meets those constrains.
Therefore we define a new distribution that places each pair along the diagonal in
the same NUMA node. We will refer to it as the pairwise distribution.

Listing 5.3 shows the task declarations and the initialization function to distribute
the data in a pairwise manner. The initialization function starts at line 15 and uses
two tasks. The task declared in line 1 initializes a pair of blocks, and the task declared
in line 9 initializes one block (of the diagonal).

For completeness the evaluation includes measurements with the data distributed
in vertical panels, which should produce an affinity close to the interleaved execu-
tions; and executions with the blocked distribution. Figure 5.15 shows the strong
scalability that was achieved with each distribution and with the NUMA-unaware
scheduler with memory interleaving, and table 5.7 shows the data numerically.

The worst performing distribution is the vertical distribution due to two factors.
First, its distribution does not favor memory affinity for any of the tasks. For the
panel FFT, it has similar affinity to the interleaved distributions, and for the rest, in
most cases it will be affine to only one of the blocks.

The second factor is the page size. Since it is set to 16KB, to cover at least
one page, the vertical panels must be at least 1024 elements wide. Therefore, to
cover the 8 nodes, the problem must have at least 8192× 8192 elements. Thus, all
measurements with N below 8192 suffer from reduced memory bandwidth under
the vertical distribution.

The blocked and the pairwise distributions perform similarly. While they are
constrained by the memory page size, they are not as constrained as the vertical
distribution. Their almost identical performance suggests that memory affinity does
not affect significantly the performance of the transposition tasks. Perhaps because
a big blocking size can hide part of the latency of the remote accesses.

Finally, the best scaling distribution is the horizontal distribution. This one favors
the memory affinity of the FFT tasks, and is not constrained by the page size.
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Figure 5.15: Strong scalability of the FFT algorithm with the NUMA-unaware sched-
uler with memory interleaving, and with the NUMa-aware scheduler with the hori-
zontal distribution, the vertical distribution, the blocked distribution and the pairwise
distribution.
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1 #pragma css task input(N, BS) \
2 output(block1{0:BS}{0:BS}, block2{0:BS}{0:BS})
3 void initBlockPair(
4 long N, long BS,
5 double _Complex block1[N][N],
6 double _Complex block2[N][N]
7 );
8

9 #pragma css task input(N, BS) output(block{0:BS}{0:BS})
10 void initBlock(
11 long N, long BS,
12 double _Complex block[N][N]
13 );
14

15 void initByPairs(long N, long BS, double _Complex data[N][N]) {
16 for (long i = 0; i < N; i+=BS) {
17 for (long j = 0; j < i; j+=BS)
18 initBlockPair(N, BS, &data[i][j], &data[j][i]);
19 initBlock(N, BS, &data[i][i]);
20 }
21 }

Listing 5.3: Initialization code to distribute a matrix symmetrically along the diagonal.

Figure 5.16 shows the performance improvement of the horizontal distribution
compared to the NUMA-unaware executions. Notice that with 32 cores, there is at
least one blocking size combination for each problem size that performs at least 25%
better with the NUMA scheduler than with the NUMA-unaware scheduler. However,
the minor differences between the schedules when running under only one memory
make the some of the executions with 1 and 2 cores perform worse under the NUMA
scheduler than under the NUMA-unaware scheduler.
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Figure 5.16: Performance improvement when going from the NUMA-unaware sched-
uling to the NUMA-aware scheduling with the horizontal distribution under the
FFTW code.

174



5.5. Evaluation

Cores Na GFb GFb GFb GFb GFb Aff.c

(%)
Aff.c

(%)
Aff.c

(%)
Aff.c

(%)
Aff.c

(%)

1 1024 0.7 0.7 0.7 0.7 0.7 100 100 100 100 100
1 2048 0.7 0.7 0.7 0.7 0.7 100 100 100 100 100
1 4096 0.7 0.7 0.7 0.7 0.8 100 100 100 100 100
1 8192 0.8 0.7 0.8 0.8 0.8 100 100 100 100 100

2 1024 1.4 1.3 1.3 1.3 1.3 100 100 100 100 100
2 2048 1.3 1.3 1.3 1.3 1.3 100 100 100 100 100
2 4096 1.4 1.4 1.4 1.4 1.4 100 100 100 100 100
2 8192 1.5 1.5 1.5 1.5 1.5 100 100 100 100 100

4 1024 2.4 2.3 2.3 2.3 2.3 100 100 100 100 100
4 2048 2.3 2.2 2.2 2.2 2.2 100 100 100 100 100
4 4096 2.4 2.4 2.5 2.5 2.5 100 100 100 100 100
4 8192 2.7 2.7 2.7 2.7 2.7 100 100 100 100 100

8 1024 3.5 3.7 2.8 3.5 3.6 50 82 74 82 83
8 2048 3.7 4.0 3.8 3.8 3.8 50 84 64 70 71
8 4096 4.1 4.3 4.1 4.2 4.3 50 84 64 66 70
8 8192 4.6 4.8 4.5 4.8 4.8 50 84 64 65 72

16 1024 4.0 4.7 2.3 4.0 4.2 25 62 77 65 63
16 2048 5.5 7.0 3.7 5.8 6.1 25 76 47 56 61
16 4096 6.4 7.6 5.3 6.9 7.3 25 76 45 47 53
16 8192 7.4 8.3 6.4 8.1 8.4 25 77 43 48 56

32 1024 3.9 4.8 2.1 4.1 4.1 12 51 72 53 52
32 2048 6.0 8.2 3.6 6.7 7.0 12 58 40 38 42
32 4096 8.1 11 6.7 9.2 9.6 12 73 28 42 47
32 8192 9.8 13 8.5 11 11 12 73 29 41 45

Distribution: Interleaved Horizontal Vertical Blocks Pairwise
a Matrix side size. The actual size of the FFT is this value squared.
b Gigaflops per second.
c Mean memory affinity.

Table 5.7: Performance summary of the FFT distributions.
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Figure 5.17: Strong scalability of the FFT algorithm with memory load unbalancing
scheduler, the misplacing scheduler, the NUMA-unaware scheduler and the NUMA-
aware scheduler.

Effectiveness of the NUMA Scheduling Policy

To evaluate how much memory affinity and memory load balancing affect perfor-
mance on this code, we have selected the horizontal distribution and made additional
measurements with the “bad” schedulers. Figure 5.17 shows the scalability of each
case with the same blocking size as the NUMA scheduler.

The performance with the “bad” schedulers is not significantly different to the
performance with the NUMA-unaware scheduler with memory interleaving. However,
all three cases scale much worse than the executions with the NUMA-aware scheduler.
These results show that NUMA affinity is important in this code to achieve good
performance, and that an interleaved memory placement is not a good compromise
between simplicity and performance in this case.

Performance Compared to Other Implementations

To compare the performance of the NUMA-aware implementation against other pro-
gramming models, we compare it against the additional versions already presented
in the evaluation of the previous chapter starting in page 118.
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Figure 5.18: Strong scalability and performance with 32 cores of the FFT algorithm
with several variants under SMPSs, the threaded FFTW implementation and the MPI
FFTW implementation.

Figure 5.18 shows the strong scalability of each implementation with several
problem sizes with the best performing block size where applicable. The series
labeled “Interleaved” corresponds to the NUMA-unaware executions with memory
page interleaving. The series labeled “FFTW Threads” corresponds to the threaded
implementation that the FFTW provides with the memory pages interleaved. The
“NUMA” series corresponds to executions with the NUMA-aware scheduler and
the horizontal distribution. Finally, the series labeled “FFTW MPI” corresponds to
executions using the MPI version of the FFTW.

Notice that while the MPI version is the best performer for the two smallest prob-
lem sizes, the NUMA-aware executions perform significantly better for the bigger
problem sizes, despite the fact that the MPI version is a highly tuned implementa-
tion. Moreover, even the NUMA-unaware executions with the biggest problem size
manages to perform better than the MPI version.

Table 5.8 summarizes the performance of those experiments numerically.
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Cores Na GFb GFb GFb GFb FPCc FPCc FPCc Eff.d

(%)
Eff.d

(%)
Eff.d

(%)

1 1024 0.7 0.9 0.7 1.0 0.5 0.5 0.5 96 ∅ 97
1 2048 0.7 0.7 0.7 0.7 0.5 0.4 0.5 96 ∅ 99
1 4096 0.7 0.7 0.7 0.7 0.5 0.3 0.5 99 ∅ 99
1 8192 0.8 0.6 0.7 0.6 0.6 0.3 0.5 99 ∅ 99

2 1024 1.4 1.6 1.3 0.8 0.5 0.4 0.5 95 96 97
2 2048 1.3 1.2 1.3 0.7 0.5 0.3 0.4 96 99 98
2 4096 1.4 1.3 1.4 0.7 0.5 0.3 0.5 99 98 99
2 8192 1.5 1.3 1.5 0.7 0.5 0.3 0.5 99 98 99

4 1024 2.4 2.3 2.3 1.4 0.5 0.4 0.4 92 91 94
4 2048 2.3 2.1 2.2 1.0 0.4 0.3 0.4 96 98 98
4 4096 2.4 2.2 2.4 1.0 0.4 0.3 0.4 98 98 99
4 8192 2.7 2.2 2.7 1.1 0.5 0.3 0.5 98 98 98

8 1024 3.5 2.7 3.7 3.1 0.3 0.3 0.4 90 76 89
8 2048 3.7 3.4 4.0 2.2 0.3 0.3 0.4 96 94 94
8 4096 4.1 3.5 4.3 1.6 0.4 0.2 0.4 97 98 97
8 8192 4.6 3.9 4.8 1.9 0.4 0.3 0.4 97 98 98

16 1024 4.0 2.0 4.7 5.1 0.2 0.2 0.3 84 48 81
16 2048 5.5 4.4 7.0 4.5 0.3 0.2 0.3 95 82 92
16 4096 6.4 5.3 7.6 3.9 0.3 0.2 0.3 97 92 96
16 8192 7.4 6.0 8.3 3.6 0.3 0.2 0.4 96 94 95

32 1024 3.9 1.3 4.8 7.5 0.1 0.1 0.2 73 33 61
32 2048 6.0 3.7 8.2 9.1 0.2 0.2 0.2 92 51 84
32 4096 8.1 5.9 11 7.9 0.2 0.2 0.3 95 79 92
32 8192 9.8 7.3 13 6.4 0.2 0.2 0.3 97 81 95

Implementation: Interleaved FFTW Threads NUMA FFTW MPI
a Matrix side size. The actual size of the FFT is this value squared.
b Gigaflops per second.
c Mean floating point operations per cycle while running tasks.
d Mean time that threads spend running tasks.

Table 5.8: Performance summary of the FFT implementations.
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Chapter 6

Conclusions, Impact and
Future Work

6.1 Conclusions

In this thesis we have presented solutions to problems that appear when programming
parallel applications. The first is a general one, and the other two are successive
refinements over the first.

First, we have presented a parallel programming model that uses annotations
on top of regular C to make it capable of supporting parallelism. The key aspect
that differentiates it over other models is that it relies on a powerful runtime that
handles data dependencies, and thus removes that burden from the programmer.

Second, we have proposed an extension to the syntax of the language and to the
dependency analysis algorithm to support strided and overlapping sets of data. This
extension allows the programming model to cover a wider spectrum of applications
and data layouts.

Finally, we have proposed a methodology to exploit NUMA affinity within the
runtime. One of its key aspects is that it reuses the elements of the language to
define the units of data distribution, and relies on runtime policies to determine
their placement. These two aspects define together data distributions.

In the following sections we discuss in detail the conclusions that derive from
the work performed in each area.

6.1.1 Simplifying programming parallel applications with data
dependencies

The first group of contributions of this thesis addresses the programmability of
parallel applications with data dependencies and has been presented in chapter 3.

Programming model First, we have proposed a simple programming model that
presents very few language elements and that moves as most of the complexity
to the runtime. By implementing and comparing the performance to alternatives
using other programming models and high performance implementations, we have
shown that despite the minimalism, the programming model we propose has several
advantages.
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Easier parallelization Code can be more easily parallelized since the program-
mer does not need to think in terms of data dependencies. Moreover, some codes are
closer to their sequential implementation than it is possible in other programming
models, which require code restructuring to achieve parallelism.

Less imbalance The model is capable of finding more parallelism that other
programming models. The availability of more parallelism reduces thread starvation
and therefore also imbalance.

Better task performance Applications can take advantage of the additional
parallelism that the programming model obtains to make tasks bigger. Doing this
potentially allows them to make better use of locality and thus to improve their
performance.

Scheduling The scheduler that we presented follows data dependencies to favor the
reuse of data already in the cache of the processors. This improves the performance of
applications in which the cost of the task first-access data cache misses is significant.
In our evaluation we have compared its performance against three other scheduling
policies. The results show that in most cases, the task protection mechanism is
enough to preserve the benefits of reusing the data in the cache and its effect prevails
over the rest of the aspects of the scheduling policy.

Applications We have presented a set of benchmarks that range from embarrass-
ingly parallel, to benchmarks with complex dependencies. The simplicity of their
code and their performance demonstrate that making the programming model aware
of data dependencies simplifies coding and improves performance. In embarrassingly
parallel codes we have shown that our implementation does not incur in too much
overhead despite the fact that it analyzes data dependencies at run time. In codes
with dependencies we have show that the overhead is offset by the improvement in
performance.

The Strassen-Winograd code, which fits naturally in task nesting programming
models has shown that our proposal is capable of extracting much more parallelism
than task nesting. The Gauss-Seidel benchmark has shown that the model is capable
of exploiting the parallelism between several wavefronts. But equally important is
that the model removes the synchronism in the advance of the waveform. That is,
it starts executing tasks of the following step of the waveform before the tasks of
the current have finished. This demonstrates that by being dynamic, the model is
capable of exploiting unforeseen parallelism.

6.1.2 Handling dependencies over strided and overlapping data
accesses

The second group of contributions of this thesis relates to adding support for appli-
cations that have dependencies between strided and overlapping data accesses. This
has been discussed in chapter 4.

The main contributions of this part of the thesis are extensions of the program-
ming syntax to support the specification of the strided data accesses, a compact
representation to summarize a set of addresses, a data structure to perform data
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dependency analysis efficiently and an extended evaluation. The benefits of the
approach that we proposed are the following:

Improved programmability By extending the language with support for strided
and partially overlapping accesses, applications can use flat arrays. This simplifies
writing and porting already existing codes. Moreover, by using and internal repre-
sentation that is independent of array bounds and indexing, we have shown that it is
possible to allow the full range of operations that C allows over arrays and pointers.
More specifically, the address-based representation allows pointer arithmetic and
decaying arrays into pointers. This removes restrictions and thus simplifies porting
and reusing already existing codes.

Increased range of applicability By allowing data dependencies over strided
and overlapping data accesses, the model allows to parallelize a wider range of
applications that could not take advantage of data dependency aware parallelization
with the blocked model.

Moderate overhead Our analysis shows that despite the additional overhead, re-
gion support in most cases does not hurt performance significantly. Nevertheless,
in many cases the tiled data layout has better task performance than the strided
layout and thus performs better. The evaluation also compares to alternative im-
plementations with other programming models and highly tuned parallel library
implementations. Where we used flat data layouts, the SMPSs performed at least on
par to the alternative implementations, and in some cases it performed substantially
better.

Better adaptation to task performance characteristics The extended model al-
lows tasks to have different blocking sizes for each type of task. This allows to chose
a blocking size that better adapts to the parallelism, the runtime overhead and the
performance characteristics of the task. In some codes, this has an important impact
on performance.

Better adaptation to the amount of parallelism Blocking size freedom allows
the programmer to use different task granularities depending of the expected amount
of parallelism of each part of the code. For instance, the amount of work between the
earliest and the latest iterations of an algorithm may produce very different number
of tasks. By adapting task granularity at each iteration, programmers can reduce
overhead in parts with too many tasks, and to increment parallelism in parts with
too few tasks.

In addition we have presented a set of codes that were not possible to program
without supporting dependencies over strided and partially overlapping sets of data,
or that at least had only compromised solutions that negated the advantages of the
programming model. The new codes perform on par and in some cases surpass the
performance of highly tuned implementations.
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6.1.3 Exploitation of NUMA

The third group of contributions is related to making the programming model
aware of NUMA and to improve the performance of applications running under
that environment. These aspects have been covered in chapter 5 and lead to the
following conclusions:

Data distribution does not require special syntax We have demonstrated that
the syntax and concepts of the previous chapter are enough to support the distribution
of data. Similarly to how SPMD programming models define their data distributions
implicitly by allocating each set of data in a different instance of the program, the
solution we propose takes advantage of data initialization tasks to define the units
of distribution.

Data placement can be dynamic We have demonstrated that on algorithms that
do not have special requirements about the exact distribution of the data, the actual
placement can be decided by the runtime and thus does not need to be defined by
the programmer. Instead the programmer only needs to define the units of data
distribution, and the runtime can perform the actual placement with a simple policy
that favors placements that equalize the amount of data in each node.

Dynamic data placement can perform better By determining the placement of
data dynamically, and by following scheduling policies that favor the execution of
tasks in NUMA-affine nodes, temporary data is more likely to end up placed in
the same NUMA node as one of the inputs of the task that creates it. This way, the
placement of the input data is propagated to temporary data. Thus, the runtime places
together data that is correlated. In addition, since placement occurs on-demand,
temporary data is always initialized in the local memory, and thus its initialization
has maximum affinity.

An abundance of tasks allows scheduling the computations While most of the
previous work is based on data centered techniques, our solution is based on sched-
uling the computations. Since the programming model is in many cases capable of
extracting more parallelism than dependency-unaware alternatives, restricting the
execution of tasks to certain nodes is less likely of producing starvation. This allows
us to approach the problem from the point of scheduling instead of from the point
of data management. In addition, task stealing further reduces unbalance.

The region tree data indexing is reusable While the region tree data structure
defined in the previous chapter was used to calculate data dependencies, in the
chapter dedicated to NUMA we demonstrate that it can also be used to index a
cache of the location of the data. This cache is necessary since the operating system
interfaces to query the location of data are inadequate for strided ranges.

In addition, the evaluation section has analyzed the sensitivity of a set of bench-
marks to NUMA affinity, and the effectiveness of the NUMA-aware scheduling policy.
The analysis also includes an evaluation of the effects of the shape of the units of
distribution on performance. Moreover, where possible, we compare our solutions
to alternative implementations of the benchmarks using other programming models,
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and high performance reference implementations. The evaluation has lead to the
following conclusions:

Some codes do not benefit with our current configuration Due to the limita-
tions on the hardware used in the evaluation, the measurements only cover executions
with up to 8 NUMA nodes and 32 cores. Under these conditions, the performance
of some benchmarks does not benefit significantly from NUMA affinity. Most of
these cases involve matrix multiplication tasks that already use a highly tuned code.
Moreover, in some codes, with small problem sizes, a tiled layout seems to be more
beneficial to performance that NUMA affinity. However, we expect that NUMA affinity
would have a bigger impact with more nodes.

Some codes perform better than highly optimized alternatives In all cases,
the NUMA-aware SMPSs implementation performs on par or better than OpenMP
and high performance library implementations. Moreover, for big problem sizes,
it manages to outperform FFTW with threads, FFTW with MPI, and the reference
implementation of High Performance Linpack.

Some codes respond very badly to interleaved page placement The most band-
width demanding benchmarks of the evaluation represent vector to vector operations,
stencil algorithms, sorting algorithms and Fast Fourier Transforms. The measure-
ments show that they are very sensitive to NUMA affinity, and that ignoring NUMA
by interleaving the placement of the memory pages does not scale well.

Page-level distribution can be too restrictive Data distribution in its current
form only allows page-level data distribution. Abstract array indexing, like some
other programming languages do, allows to decouple data distribution from the
page size, and thus enables sub-page distributions. This restriction affects specially
the distribution across the contiguous dimension, and in this case, since we are using
C, vertical distributions, and to a lesser extent, blocked distributions. Under bad
conditions, data cannot be distributed between all the nodes.

Best distribution shape candidates The analysis of the shapes of the units of
distributions shows that in most cases the distribution shape that performs the best is
the distribution in horizontal panels, and that it is closely followed by the distribution
by blocks. Notice that the codes are written in C, and thus the horizontal panels
correspond to regions whose contiguous dimension is fully covered.

6.2 Publications Produced

The work contained in this thesis has generated publications in each of the three
main topics.

6.2.1 General Programming Model

The general programming model was first published by [Perez et al., 2006] in a form
tailored for Grids and shared memory. It is further refined by [Bellens et al., 2006;
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Perez et al., 2007], which targets the Cell B.E. processor. Its final form for shared
memory is published by [Perez et al., 2008].

Josep M. Perez, Rosa M. Badia, and Jesus Labarta. Including SMP in
grids as execution platform and other extensions in GRID superscalar.
In Second IEEE International Conference on e-Science and Grid Computing
2006 (e-Science ’06), December 2006. doi: 10.1109/E-SCIENCE.2006.261144.

Pieter Bellens, Josep M Perez, Rosa M Badia, and Jesus Labarta. Cellss:
a programming model for the Cell BE architecture. In Proceedings of
the ACM/IEEE SC 2006 Conference, Tampa, FL, USA, Nov 2006. ISBN
0-7695-2700-0. doi: 10.1109/SC.2006.17.

Josep M. Perez, Pieter Bellens, Rosa M. Badia, and Jesus Labarta.
CellSs: Making it easier to program the Cell Broadband Engine processor.
IBM Journal of Research and Development, 51(5):593–604, September
2007. ISSN 0018-8646. doi: 10.1147/rd.515.0593.

Josep M. Perez, Rosa M. Badia, and Jesus Labarta. A dependency-
aware task-based programming environment for multi-core architectures.
In Causal Productions, editor, Proceedings of the 2008 IEEE International
Conference on Cluster Computing, pages 142–151, September 2008. ISBN
978-1-4244-2639-3. doi: 10.1109/CLUSTR.2008.4663765.

6.2.2 Extensions to Support Strided and Overlapping Data Ac-
cesses

The support for strided and possibly overlapping data accesses was published by
[Perez et al., 2010].

Josep M. Perez, Rosa M. Badia, and Jesus Labarta. Handling task de-
pendencies under strided and aliased references. In Proc. of the 24th ACM
Int. Conf. on Supercomputing, ICS ’10, pages 263–274, New York, NY, USA,
2010. ACM. ISBN 978-1-4503-0018-6. doi: 10.1145/1810085.1810122.

It was used as a basis for a submission to the Class 2 HPC Challenge Competition
2010 held as part of the Supercomputing 2010 conference. The submission obtained
a honorable mention.

Josep M. Perez, Rosa M. Badia, and Jesus Labarta. SMPSs Submission
to HPCC 2010 Class 2 Competition. Honorable mention in HPC Challenge
2010 Class 2 Awards. ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’10, New
Orleans, LA, USA, Nov 2010.

6.2.3 Exploiting Non-Uniform Memory Access

The work related to exploiting the performance of NUMA architectures is still pending
publication.

Josep M. Perez, Rosa M. Badia, and Jesus Labarta. Exploiting NUMA
Locality with Task-Based Programming Models. To be submitted.
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6.3 Impact and Future Work

6.3.1 The Programming Model under Other Environments

While the work of this thesis is centered around shared memory multiprocessors, the
programming model has been successfully used in other environments. First, [Perez
et al., 2006] demonstrate its usage in a mixed environment called GridSs consisting
of local shared memory processors and the computing resources provided by a
Grid. This environment constitutes a mixture of shared memory and heterogeneous
distributed computers.

The model has also been successfully used on the Cell Broadband Engine (Cell
B.E.) architecture. [Bellens et al., 2006; Perez et al., 2007] demonstrate the usage
and performance on a single node containing 2 processors of that architecture. The
Cell B.E. processor described by [Chen et al., 2007] consists of a main core and
8 coprocessors. The main core is in-order and has a Power ISA. It is capable of
executing 2 simultaneous threads. The coprocessors are called SPUs or SPEs, and
have an exclusively SIMD ISA. Each SPU has a local embedded memory. While the
main processor functions as a regular processor that accesses the main memory, the
SPUs can only operate over their local memory. They can access other memories
only through DMA data copies from or to their embedded memory.

The CellSs programming model that [Bellens et al., 2006; Perez et al., 2007]
propose runs the main program in the main processor and the tasks in the SPUs. In
this sense, it demonstrates the feasibility of the model over a distributed architec-
ture. Moreover, due to the limited amount of memory of the SPUs and their use of
SIMD instructions, CellSs tasks are usually very fine grained. Therefore, that work
demonstrates the suitability of the model for very fine grained tasks.

The COMP Superscalar model (COMPSs) presented by [Tejedor and Badia, 2008],
is based on the same principles but tailored for applications written in the Java
language that must run in parallel in distributed environments. These can be clusters,
grids and clouds. COMPSs enhances the model with support for object orientation
features, and web services. A key difference to the work of this thesis is that COMPSs
uses futures to support changing the state of the objects asynchronously.

The whole set of programming models and the environment-specific implemen-
tations have been labeled as StarSs by [Labarta, 2010].

The model can also be exported to other emerging technologies. Graphical
Processor Units have also been the target of the work by [Ferrer et al., 2011]. In that
case, the implementation is based on the OmpSs model, which in turn is based on
the work of this thesis. This is further explained in the following section.

6.3.2 Impact on Standards

The OmpSs model by [Duran et al., 2008] is the first attempt at introducing the
concepts of the programming model of this thesis into OpenMP. While this work
is based on the annotation of functions, the OpenMP tasks are regular blocks of
code. In this sense, the OmpSs syntax differs from the SMPSs syntax to cover this
difference. In addition, the OmpSs proposal also covers distributed systems. While
the proposals of GridSs, CellSs and CompSs consider data and dependencies together,
the OmpSs proposal decouples both concepts. In that sense, OmpSs adds primitives
to declare data transfers, whereas the other distributed models also based on this
thesis used the directionality information to determine them.
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The work in OmpSs has been used as test ground for the inclusion of data depen-
dencies in OpenMP tasks. The OpenMP 4 specification by the [OpenMP Architecture
Review Board, 2013] is the first version to include dependencies between tasks.
While OmpSs includes the work developed in chapter 4 to support dependencies
over strided and overlapping subarrays, the OpenMP 4 specification has the syntax
to support them, but [OpenMP Architecture Review Board, 2013, pg. 117, lin. 14-15]
restricts its usage to the same as the original model explained in chapter 3:

“List items used in depend clauses of the same task or sibling tasks must
indicate identical storage or disjoint storage”.

6.3.3 Future and Derived Work

Improved Reductions

While the reductions presented in this thesis are complete, they are just a stop gap to
avoid the serialization that otherwise would occur by using inout accesses. A more
flexible design would automatically construct reduction trees and thus would scale
better.

Reductions are the most important bottleneck that we find when we parallelize
applications. Some algorithms are resistant to minor precision errors. Some of the
ongoing work is related to taking advantage of that fact to reduce the unbalance
produced by reductions.

Some optimization algorithms when parallelized can obtain additional speedups
by bounding their work based on the current optimum solutions calculated by the
other threads. This is an aspect that could be exploited within reductions that have
that kind of behavior.

The work on improved reductions has already been started by [Ciesko et al.].

Dynamic Data Reshaping, Data Replication and Renaming

While the work presented in chapter 4 allows to program with flat arrays, the blocked
data layout has better locality and in many cases achieves better task performance.

Regions in SMPSs are determined at run time. This allows the programmer to
parametrize the array sizes and the regions. In fact all our benchmarks receive as
parameters the dimensions of the problem and the dimensions of the block size.
These determine the dimensions of the data and the area covered by the task regions,
which is passed by parameter and thus determined at the task creation time.

This approach to writing code enables us to take one step further: dynamic data
reshaping. That is, while tasks receive their data assuming a certain shape, if the task
parameters define the shape of the data, the compiler can emit alternative versions
of the tasks that accept data with a different shape that the runtime can determine
dynamically. These alternative versions receive the parameters that determine the
data shape with the values that correspond to the actual shape that the runtime
passes to them.

By doing this, the runtime receives the task invocations over flat arrays and
can transform the layout of the data to a blocked one, which has better spatial
locality an thus more potential task performance. Since data accesses can be partially
overlapping, this can lead to several tasks accessing different subsets of the data
that intersect. To cover that case, this mechanism can be coupled with the ability to
manage more than one replica of the data.
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Allowing data replicas in that way has two advantages. First, it allows us to
exploit NUMA affinity through replication to the memories of the nodes where the
computation takes place. And second, it would allow us to re-export the programming
model back to distributed environments, this time with region support.

Moreover, data replication and reshaping are good foundations to allow the imple-
mentation of region-aware data renaming, which allows to uncover the parallelism
that currently cannot be exploited due to “false” dependencies.

More Accurate NUMA and Data Access Modeling

The model used for determining the NUMA-aware scheduling policy presented in
chapter 5 presents a series of shortcomings. First, it assumes that each byte of the
parameters of a task is accessed a uniform number of times, and does not take into
account the effects of data caches nor the order of the accesses. These factors can
have a dramatic impact of the task performance, since they determine the sensitivity
of the performance of a task to NUMA affinity. Therefore should be taken into
consideration. The solution could be either based on user-provided information,
compiler-generated information, or on information extracted through profiling.

Second, the scheduling algorithm assumes a one level NUMA system with iden-
tical nodes, uniform local memory performance and uniform remote memory per-
formance. The model could be enhanced to take into account cases in that are less
restrictive. Both this and the first point would affect the metric used to determine
where to assign tasks to memories and how to perform task stealing.

Task Nesting and the Parallel Generation of Work

While tasks in OpenMP allow nesting, the programming model we presented in this
thesis does not. Task nesting allows to parallelize the generation of work, and thus
has the potential to reduce the task creation bottleneck. In fact, all the benchmarks
of this thesis that have been written in OpenMP take advantage of the generation of
tasks in parallel, either through nesting or through other outer parallel constructs.

Another benefit is that nesting allows to extract some parallelism in the presence
of dependencies. However, handling dependencies directly allows us to extract more
parallelism. These aspects have been demonstrated in the Strassen benchmarks that
start in page 102.

While task nesting and dependency handling may seem orthogonal aspects, they
can be combined to achieve the same amount of parallelism as dependency handling
and to allow the parallel generation of work at the expense of additional overhead.
To this end, the programming model needs to be extended in two ways. First it needs
to allow task nesting as a form of work decomposition in such a way that parent tasks
specify the total data accesses of their contents, which includes that of their children.
And second, it needs to allow to specify whether a task will further decompose the
problem into other tasks, or it will truly make use of their parameters. Alternatively,
the first direct access to each parameter within a task could be guarded by a wait on
pragma to signify the need to access to that memory.

By doing this, the runtime could send potentially decomposable tasks to be
executed in parallel before their data dependencies are satisfied. This would allow
them to further decompose the problem and generate the information required
to calculate the input dependencies to their inner subtasks, and the information
required to calculate their output dependencies.
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By matching the input and output dependency information of the inner subtasks
across the outer tasks, it is possible to calculate the dependencies between all of the
subtasks as if they were not created at an inner nesting level. However, it is not clear
whether it would still be beneficial after discounting the additional overhead.

188



Appendix A

SMPSs Extensions to the C99
Grammar

A.1 Initialization and Finalization

(1) 〈start-directive〉 →
(1.1) #pragma css start

(2) 〈finish-directive〉 →
(2.1) #pragma css finish

A.2 Task

(3) 〈task-construct〉 →
(3.1) 〈task-declaration〉
(3.2) | 〈task-definition〉

(4) 〈task-declaration〉 →
(4.1) 〈task-pragma〉 〈function-declaration〉

(5) 〈task-definition〉 →
(5.1) 〈task-pragma〉 〈function-definition〉

(6) 〈task-pragma〉 →
(6.1) #pragma css task 〈opt-task-clauses〉 〈new-line〉

(7) 〈opt-task-clauses〉 →
(7.1) 〈task-clauses〉
(7.2) |

(8) 〈task-clauses〉 →
(8.1) 〈task-clauses〉 〈task-clause〉
(8.2) | 〈task-clause〉
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(9) 〈task-clause〉 →
(9.1) input ( 〈task-parameter-list〉 )
(9.2) | output ( 〈task-parameter-list〉 )
(9.3) | inout ( 〈task-parameter-list〉 )
(9.4) | reduction ( 〈task-parameter-list〉 )
(9.5) | highpriority

(10) 〈task-parameter-list〉 →
(10.1) 〈task-parameter〉
(10.2) | 〈task-parameter〉 , 〈task-parameter-list〉

(11) 〈task-parameter〉 →
(11.1) 〈identifier〉 〈opt-task-parameter-dimensions〉 〈opt-region〉

(12) 〈opt-task-parameter-dimensions〉 →
(12.1) 〈task-parameter-dimensions〉
(12.2) |

(13) 〈task-parameter-dimensions〉 →
(13.1) 〈task-parameter-dimensions〉 〈task-parameter-dimension〉
(13.2) | 〈task-parameter-dimension〉

(14) 〈task-parameter-dimension〉 →
(14.1) [ 〈expression〉 ]

(15) 〈opt-region〉 →
(15.1) 〈region-specifiers〉
(15.2) |

(16) 〈region-specifiers〉 →
(16.1) 〈region-specifiers〉 〈region-specifier〉
(16.2) | 〈region-specifier〉

(17) 〈region-specifier〉 →
(17.1) { }
(17.2) | { 〈expression〉 }
(17.3) | { 〈expression〉 .. 〈expression〉 }
(17.4) | { 〈expression〉 : 〈expression〉 }

A.3 Mutual exclusion

(18) 〈lock-directive〉 →
(18.1) #pragma css mutex lock ( 〈expression〉 )

(19) 〈unlock-directive〉 →
(19.1) #pragma css mutex unlock ( 〈expression〉 )

A.4 Synchronization
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(20) 〈barrier-directive〉 →
(20.1) #pragma css barrier

(21) 〈waiton-directive〉 →
(21.1) #pragma css wait on ( 〈waiton-expression-list〉 )

(22) 〈waiton-expression-list〉 →
(22.1) 〈conditional-expression〉
(22.2) | 〈conditional-expression〉 , 〈waiton-expression-list〉
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Appendix B

Compiler and Runtime
Integration

The programming environment consists of a compiler and a supporting runtime
library. Since the programming model is highly dynamic, the compiler does not
perform dependency analysis. Instead, it relays the information of the programming
primitives to the runtime. The runtime receives the actual information and performs
the task instantiation, the dependency calculation, the scheduling, the task invocation
and the synchronization.

B.1 Runtime Interface

The Interface between the transformed code and runtime is bidirectional. On one
hand, the transformed code must invoke runtime services like task instantiation and
synchronization. On the other hand, the runtime must be able to invoke the task
implementations.

B.1.1 Runtime Initialization and Finalization

The application must initialize the runtime before using it. The function for initializ-
ing it is the following:

void css_init(void);

It initializes the internal data structures and forks the worker threads. This
function corresponds to the start primitive described in section 3.3.1.

Before exiting, the application must finalize the runtime by calling the following
functions:

void css_finish(void);

This function executes a barrier, joins the worker threads, and frees up the
resources used by the runtime. It corresponds to the finish primitive described in
section 3.3.1.
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B.1.2 Task Implementation Registration

To allow tasks to execute asynchronously, the runtime must be able to invoke task
implementations. Since constructing arbitrary function calls programmatically from
C is complex and non-portable, a standard interface has been defined for all tasks
that is flexible enough to allow any number of parameters and types.

For each task implementation we define an additional function called the adapter
that has the standard interface, from now on the adapter interface. Its purpose is to
call the actual task implementation by passing the parameter values in the format
determined by the actual task implementation prototype.

The type declaration of the adapter in C is the following:

typedef void (∗function_adapter) (void ∗parameters[]);
That is, adapters are functions that return void and receive a unique parameter

that is an array of pointers to void. The array contains an address for each parameter
from left to right. Values and C structs are passed to the adapter as a pointer to
the actual value or struct. Arrays are passed as a pointer to the first element, and
pointers are passed as-is.

The adapter passes scalar values and structs by dereferencing their pointers in
the parameter array, and passes arrays and pointers by passing the pointers stored
in the parameter array.

Adapters must be registered within the runtime to allow it to perform the actual
task invocations. The registration function is the following:

void css_registerTask(char const ∗name, function_adapter adapter);
It takes the name of the task and a pointer to the adapter function. The name is

used by the runtime to identify the task types when it generates execution traces.
This is discussed in section 3.5.2 in page 28. The adapter is used to invoke the task
implementation asynchronously.

During initialization, all adapters must be registered. Tasks are also identified by
a number that corresponds to their registration order, starting from 0.

B.1.3 Task Instantiation

Task invocations are notified to the runtime by calling the following function:

void css_addTask(unsigned int functionId, unsigned int flags, unsigned int
parameterCount, css_parameter_t const ∗parameters);

It receives a task identifier that has been determined by the adapter registration
order, flags, the number of parameters and an array with the actual parameter de-
scription. The only flag currently available is the high priority flag, which corresponds
to a call to a task that has the highpriority clause.

The parameter descriptor is the following:

typedef struct {
long flags;
size_t size;
void ∗address;

} css_parameter_t;
The value of the flags field indicates the directionality of the parameter and if it

is the target of a reduction. The possible values and semantics are the following:
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Flag Value Semantics

1 An input parameter
2 An output parameter

1+2 An inout parameter
1+4 An input parameter that is a constant

1+2+8 An inout parameter that is the target of a reduction

The size field indicates the size in bytes of the data, and the address field points
to the data.

B.1.4 Synchronization

The runtime provides the following functions for synchronization:

void css_barrier(void);
void css_waitOn(unsigned int variableCount, void ∗∗addresses);
The first one executes a full barrier and corresponds to the barrier directive

described in section 3.3.4.
The second one corresponds to the wait directive described in the same section.

Its first parameter is the number of variables in the on clause. The second parameter
is an array which one entry for each object over which the user code must wait. Each
entry is a pointer that corresponds to the base address in case of a scalar or a struct,
and a pointer to the first element of the block in case of an array.

B.2 Compiler

The compiler is a source-to-source compiler that relies on a standard C99 compiler
for the actual compilation. It also serves as a front end for linking the application
transparently with the runtime library.

During compilation it translates C code extended with the programming model
annotations into standard C99 code with calls to the runtime library. The compilation
process consists of three phases. First it analyzes the code. Then it performs the code
transformation using the data gathered during the analysis. And finally, It uses the
platform native compiler to generate the actual object files.

B.2.1 Code Analysis

During the analysis phase, the compiler visits the task pragmas to extract their
information. First, it parses the pragma. Then it verifies that it is semantically correct.
Finally it extends the symbol the function with the task information. More specifically,
it adds a field that identifies the function as a task, the parameter information, and
whether the task has high priority. For each parameter, it stores its directionality and
its dimensions.

B.2.2 Code Generation

During the code generation phase, the compiler eliminates the directives of the
programming language and generates calls to the runtime where needed. In addition
it generates the code necessary to invoke the tasks from within the runtime.
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1 double ∗a, ∗b, ∗c; long BSIZE;
2

3 #pragma css start
4 for (long i = 0; i < N; i+= BSIZE)
5 initialize_segment(BSIZE, &a[i], &b[i], &c[i], 0.0, 2.0, 1.0);
6

7 #pragma css barrier
8 for (long i = 0; i < N; i += BSIZE)
9 triad(BSIZE, &a[i], &b[i], &c[i], scalar);

10

11 #pragma css finish

Listing B.1: Main code of the triad benchmark.

1 #pragma css task input(size, a_scalar, b_scalar, c_scalar) output(a, b, c)
2 void initialize_segment(long size, double a[size], double b[size], double c[size],

double a_scalar, double b_scalar, double c_scalar);
3

4 #pragma css task input(size, b, c, scalar) output(a)
5 void triad(long size, double a[size], double b[size], double c[size], double

scalar);
Listing B.2: Declaration of the tasks used by the triad benchmark.

Listings B.1 and B.2 show a version of the triad benchmark that we will use to
illustrate the code conversion process. Listing B.3 shows the main code after applying
the compiler transformations.

1 task_registration__cssgenerated();
2 css_init();
3 for (long i = 0;i < N; i += BSIZE)
4 {
5 long int parameter_0__cssgenerated = BSIZE;
6 double parameter_4__cssgenerated = 0.0;
7 double parameter_5__cssgenerated = 2.0;
8 double parameter_6__cssgenerated = 1.0;
9 css_parameter_t parameters__cssgenerated[7];

10 parameters__cssgenerated[0].flags = CSS_IN_SCALAR_DIR;
11 parameters__cssgenerated[0].size = sizeof(long int);
12 parameters__cssgenerated[0].address = &parameter_0__cssgenerated;
13 parameters__cssgenerated[1].flags = CSS_OUT_DIR;
14 parameters__cssgenerated[1].size = (BSIZE) ∗ sizeof(double);
15 parameters__cssgenerated[1].address = &a[i];
16 parameters__cssgenerated[2].flags = CSS_OUT_DIR;
17 parameters__cssgenerated[2].size = (BSIZE) ∗ sizeof(double);
18 parameters__cssgenerated[2].address = &b[i];
19 parameters__cssgenerated[3].flags = CSS_OUT_DIR;
20 parameters__cssgenerated[3].size = (BSIZE) ∗ sizeof(double);
21 parameters__cssgenerated[3].address = &c[i];
22 parameters__cssgenerated[4].flags = CSS_IN_SCALAR_DIR;
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23 parameters__cssgenerated[4].size = sizeof(double);
24 parameters__cssgenerated[4].address = &parameter_4__cssgenerated;
25 parameters__cssgenerated[5].flags = CSS_IN_SCALAR_DIR;
26 parameters__cssgenerated[5].size = sizeof(double);
27 parameters__cssgenerated[5].address = &parameter_5__cssgenerated;
28 parameters__cssgenerated[6].flags = CSS_IN_SCALAR_DIR;
29 parameters__cssgenerated[6].size = sizeof(double);
30 parameters__cssgenerated[6].address = &parameter_6__cssgenerated;
31 css_addTask(initialize_segment_task_id__cssgenerated, CSS_NO_FLAG, 7,

4, parameters__cssgenerated);
32 }
33

34 css_barrier();
35 for (long i = 0; i < N; i += BSIZE)
36 {
37 long int parameter_0__cssgenerated = BSIZE;
38 css_parameter_t parameters__cssgenerated[5];
39 parameters__cssgenerated[0].flags = CSS_IN_SCALAR_DIR;
40 parameters__cssgenerated[0].size = sizeof(long int);
41 parameters__cssgenerated[0].address = &parameter_0__cssgenerated;
42 parameters__cssgenerated[1].flags = CSS_OUT_DIR;
43 parameters__cssgenerated[1].size = (BSIZE) ∗ sizeof(double);
44 parameters__cssgenerated[1].address = &a[i];
45 parameters__cssgenerated[2].flags = CSS_IN_DIR;
46 parameters__cssgenerated[2].size = (BSIZE) ∗ sizeof(double);
47 parameters__cssgenerated[2].address = &b[i];
48 parameters__cssgenerated[3].flags = CSS_IN_DIR;
49 parameters__cssgenerated[3].size = (BSIZE) ∗ sizeof(double);
50 parameters__cssgenerated[3].address = &c[i];
51 parameters__cssgenerated[4].flags = CSS_IN_SCALAR_DIR;
52 parameters__cssgenerated[4].size = sizeof(double);
53 parameters__cssgenerated[4].address = &(scalar);
54 css_addTask(triad_task_id__cssgenerated, CSS_NO_FLAG, 5, 2,

parameters__cssgenerated);
55 }
56

57 css_finish();

Listing B.3: Main code of the triad benchmark after the transformations applied by
the compiler.

Runtime Initialization and Finalization

The start pragma appears at the beginning of the program and initializes the SMPSs
runtime. The compiler translates it into two function calls as follows:

task_registration__cssgenerated();
css_init();
These appear in lines 1 and 2 of the transformed code in listing B.3. The first

function is a function generated during link time that registers the task adapters
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on the runtime as explained in sections B.1.2 and B.2.3. The second initializes the
runtime and is explained in section B.1.1.

The compiler translates the finish pragma into a call to css_finish(). The function
call appears in line 57 of listing B.3.

Task Adapters

To allow the runtime to invoke task implementations using a standard function
prototype, tasks are called indirectly through adapter functions as described in
section B.1.2. The compiler generates them.

Functions from external libraries can be declared as tasks. Since they may be
precompiled using other compilers, the SMPSs compiler must be able to generate
their adapters even if their definition is not available.

They could be generated when linking the application. However, that approach
is complex since it would need to capture the task declarations during compilation,
including the types they use and the parameter directionality, and then generate the
adapters.

Instead, in every C translation unit the compiler generates a task adapter for
every task that is called within it. To avoid problems due to duplication, the compiler
declares them as weak symbols. During link time, only one instance of each adapter
gets referenced. More information about weak symbols can be found in the ELF
specification by the [T.I.S. Committee, 1995].

The body of the adapter code contains a call to the task implementation. Each
parameter of the task corresponds to a position in the array that is passed to the
adapter as a parameter. The array has type void ∗∗ and contains in each position the
base address of the array, for array parameters, or a pointer to the data, if a scalar or
a C struct.

For arrays and pointers, the parameter is passed as is. For scalars and C structs,
the array element is cast into a pointer to the correct type and then dereferenced.

Listing B.4 shows the adapters generated for the tasks declared in listing B.2.

Task Invocation

During the code conversion phase, the compiler searches task invocations in the code
and substitutes them with calls to the css_addTask runtime function as described
in section B.1.3. The substitution consists of a C99 compound-statement containing
the declaration and initialization of the data structures that must be passed to
css_addTask, and the actual call. Listing B.3 shows the two task call substitutions.
The first task call has been replaced by the compound-statement that starts in line 4,
and the second by the one in line 36.

The data structures consist of one css_parameter_t C struct per parameter. The
value of its flags field is determined by the directionality clause that contains the
parameter. The address field corresponds to the base address of the parameter. If the
parameter is a constant, then it is substituted by a variable that is initialized with the
same value. Since C99 and SMPSs support variable length arrays, the dimensions of
an array parameter can be expressions containing other parameters. This is the case
of the triad example.

Thus, when generating the value of the size field of the css_parameter_t C struct,
the compiler generates an expression on which it replaces the parameter names
that may appear by their corresponding expressions in the task call. Hence, the size
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1 void __attribute__((weak)) initialize_segment_adapter__cssgenerated(void
∗∗parameter_data) {

2 initialize_segment(
3 ∗((long int ∗) parameter_data[0]),
4 parameter_data[1],
5 parameter_data[2],
6 parameter_data[3],
7 ∗((double ∗) parameter_data[4]),
8 ∗((double ∗) parameter_data[5]),
9 ∗((double ∗) parameter_data[6])

10 );
11 }
12

13 void __attribute__((weak)) triad_adapter__cssgenerated(void
∗∗parameter_data) {

14 triad(
15 ∗((long int ∗) parameter_data[0]),
16 parameter_data[1],
17 parameter_data[2],
18 parameter_data[3],
19 ∗((double ∗) parameter_data[4])
20 );
21 }

Listing B.4: Adapters of the tasks of the triad benchmark.

variable that appears in the array dimensions of the task declarations gets replaced
by its actual value BSIZE in the size expressions in lines 14, 17, 20, 43, 46 and 49
of listing B.3.

Arrays with variable length can only be used if their length is defined at the time
of the task instantiation. That is, their dimension expressions cannot depend on task
invocations that may be still pending.

The css_addTask runtime function receives as first parameter an identifier that
corresponds to the task that must be instantiated. Since until linking the application
the compiler does not have information about other tasks used or defined in other C
translation units, the compiler declares a variable with external linkage that has a
name derived from the task name and that contains the task identifier. Hence, the
calls to css_addTask in lines 31 and 54 of listing B.3 receive as first parameter such
a variable.

B.2.3 Linking

The runtime identifies tasks by a sequential number starting from 0. Since the
tasks of a program cannot be known in advance, identifiers and registering the task
implementations can be delayed to link time.

During compilation, the compiler adds an additional table to the object files
that it generates. The table contains one entry for each task known to the compiler
with its name. During linkage, the linker gathers the task tables of each object and
generates a new one that contains one entry for each task in the application. The
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1 extern void initialize_segment_adapter__cssgenerated(void ∗∗);
2 extern void triad_adapter__cssgenerated(void ∗∗);
3

4 int const initialize_segment_task_id__cssgenerated = 0;
5 int const triad_task_id__cssgenerated = 1;
6

7 void task_registration__cssgenerated(void)
8 {
9 css_registerTask("initialize_segment",

&initialize_segment_adapter__cssgenerated);
10 css_registerTask("triad", &triad_adapter__cssgenerated);
11 }

Listing B.5: Link time code generated for the triad benchmark.

order of the task table determines the identifier of each task and their registration
order.

The linker generates additional code to define the task identifiers and also the
task_registration__cssgenerated function, which registers the adapters. These codes
are simple and only require the task names.

Listing B.5 shows the task identifier definitions and the definition of the adapter
registration function for the triad example.
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Additional Block-Based
Benchmarks

This appendix evaluates the performance of the triad and matrix multiplication
benchmarks with the block-based programming model presented in chapter 3 and
extends its evaluation section that starts in page 29.

C.1 Triad

The purpose, the algorithm and its parallelization in SMP superscalar have been
shown in the sections that start in page 32.

While this benchmark is embarrassingly parallel, it is also shows that it can be
made parallel with SMPSs in a simple manner and despite the overhead of calculating
dependencies, it achieves performance comparable to OpenMP.

Since this benchmark does not use any already programmed high performance
library to solve it, the performance we achieve is heavily dependent on the compiler.
The binaries of the triad benchmark that the ICC compiler produces are more than 4
times faster than those produced by GCC. For this reason we have used ICC in the
SMPSs version and in the alternative implementations.

Parallelization with OpenMP

To compare the performance of the algorithm in SMPSs to other programming
models we have made an equivalent implementation in OpenMP with tasks. Listing
C.1 shows the main code of the OpenMP implementation. Since OpenMP allows to
create tasks in parallel, it uses a parallel loop in line 3 to spawn the tasks in line 5.
The triad function is identical to the SMPSs task with the task declaration directive
removed.

Compared to the SMPSs version, OpenMP is slightly simpler to program since it
does not require specifying the task parameter directionalities and does not require
outlining the task code to a separate function.
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1 for (int rep = 0; rep < NTIMES; rep++) {
2 START_TIME();
3 #pragma omp parallel for
4 for (long i = 0; i < N; i += BS)
5 #pragma omp task untied
6 triad(BS, &a[i], &b[i], &c[i], alpha);
7 STOP_TIME();
8 total_time[rep] = GET_TIME();
9 }

10 find_best_bandwidth(total_time, NTIMES);
Listing C.1: Main triad code in OpenMP with tasks.

Determining the Task Size

One of the key factors that determine the performance of a parallel application
is the granularity of the parallel unit. In SMPSs, the parallel unit is always the
task, and in this case its granularity is determined by the subvector size. Since the
OpenMP version also uses tasks and the same kind of parallelization, the procedure
to determine the task size is identical for both cases. In the following paragraphs we
discuss the impact of these issues on the SMPSs version.

The Triad problem is a linear and embarrassingly parallel problem, hence, the best
subvector size is expected to be the one that assigns only one task per thread. That
is, N/P with P equal to the number of threads. While in this case that is a sensible
option, in the implementation of the rest of the algorithms, task granularity has
deeper correlation to several performance factors. For consistency and completeness
we have measured the performance with 1, 2, 4, and 8 tasks per thread.

Figure C.1 shows the memory bandwidth achieved with those configurations.
Each panel corresponds to a set of measurements with a fixed number of cores. The
vertical axis determines the vector size (N) in megaelements, and the horizontal
axis is the subvector size BS, also in megaelements. The figure shows the mean
performance of 30 executions of each configuration in gigabytes per second per node.
The task granularity of this application does not affect performance substantially as
long as there is enough work for all threads.

Notice that since this chapter does not cover NUMA aspects, as we increase
the number of cores, performance per node decreases. Figure C.2 shows the mean
memory bandwidth that the application consumes. This metric is derived from the
level 3 cache miss frequency that we obtained when running the application with
a version of the runtime that traces the execution and measures hardware counter
metrics. The figure shows that the effective memory bandwidth grows sublinearly to
the number of cores, which explains the bad scalability of memory bandwidth per
core.

Table C.1 summarizes the performance metrics of the subvector size that achieves
the best performance for each number of cores and problem size. In addition to the
problem size, the decomposition parameters and the performance, the table also
shows information gathered on executions with tracing turned on. The relevant
columns are the instructions per cycle (IPC), floating point operations per cycle
(FPC), main thread overhead, parallel efficiency, and idle time ratio. The IPC column
measures the mean effective IPC, and has been calculated as the total number of
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Figure C.1: Performance of the SMPSs Triad implementation with several vector and
subvector sizes.
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tion with several vector and subvector sizes.
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Cores Na BSb Tasks GB/sc IPCd FPCe Ovh.f

(%)
Eff.g

(%)
Idle
(%)

Tr.O.h

(%)

1 32 32 10 4.73 1.51 0.25 0.04 99 0 -1
1 64 32 20 4.82 1.53 0.26 0.04 99 0 -1

2 32 16 20 5.23 0.83 0.14 0.06 99 0 0
2 64 32 20 5.23 0.83 0.14 0.03 99 0 0

4 32 8 40 5.15 0.41 0.07 0.08 99 0 0
4 64 16 40 5.15 0.41 0.07 0.04 99 0 0

8 32 4 80 9.06 0.29 0.05 0.25 99 0 0
8 64 8 80 9.13 0.29 0.05 0.13 99 0 0
8 128 16 80 9.17 0.29 0.05 0.07 99 0 0

16 32 2 160 11.20 0.21 0.03 0.68 94 5 0
16 64 4 160 11.45 0.21 0.03 0.35 95 4 0
16 128 8 160 11.58 0.21 0.03 0.18 95 4 0

32 32 1 320 11.91 0.12 0.02 1.76 95 3 0
32 64 1 640 12.43 0.12 0.02 1.84 96 3 0
32 128 1 1280 12.73 0.12 0.02 1.94 97 2 0

a Megaelements per array..
b Submatrix side size.
c Gigabytes per second.
d Mean instructions per cycle while running tasks.
e Mean floating point operations per cycle while running tasks.
f Time that the main thread spends generating tasks and idle.
g Mean time that threads spend running tasks.
h Increment of the execution time when enabling tracing.

Table C.1: Best submatrix side sizes for the SMPSs Triad implementation and
their performance characteristics.

task instructions executed divided by the total number of cycles executing tasks in
each thread. The FPC metric has been calculated in a similar way and measures the
floating point operation rate. The main thread overhead column measures the time
that the main thread spends in the runtime. Parallel efficiency measures the mean
time that threads spend executing tasks. The idle time column shows the mean time
threads spend idling. The tracing overhead has been calculated as the difference
in performance, in this case in GB/s, between the runs with tracing enabled and
the runs without tracing. In all cases it is within 2% which demonstrates that the
tracing mechanism does not introduce a have impact on the performance of these
executions.

Scheduling

Since this benchmark is embarrassingly parallel and does not reuse data, the sched-
uling policy does not affect the performance that we achieve. The choice of the
scheduling policy has not yielded statistically significant differences between the
executions when the rest of the parameters remained unchanged.

204



C.1. Triad

Cores

G
ig

ab
yt

es
 p

er
 s

ec
on

d 
(l

og
 s

ca
le

)

6.144

8.192

10.24

12.288

1 2 4 8 16 32

 : 
N

32

6.144

8.192

10.24

12.288

 : 
N

64

6.144

8.192

10.24

12.288

 : 
N

12
8

Cores

G
ig

ab
yt

es
 p

er
 s

ec
on

d 
(l

in
ea

r 
sc

al
e)

32

5

10

5

10

5

10

SMPSs OpenMP

Figure C.3: Strong scalability of each parallel implementation of Triad with several
vector sizes and performance with 32 cores.

Performance of the Implementations

The OpenMP version of the algorithm has also been executed with the same problem
sizes and granularity and from these we have selected the best performing cases of
each implementation. Figure C.3 shows the strong scalability of both implementations
on three problem sizes. Each panel corresponds to a problem size N measured in
gigaelements. The horizontal axis indicates the number of cores and the vertical
axis the number of gigabytes per second with a logarithmic scale. The right side of
the figure shows the performance of the configurations with 32 cores using a linear
scale.

Table C.2 summarizes the mean values of the main performance metrics of each
Triad implementation. Notice that the task IPC dominates the performance difference
between the OpenMP and the SMPSs versions. This might be related to how each
schedules its tasks.
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Cores Na GB/sb GB/sb IPCc IPCc Eff.d

(%)
Eff.d

(%)

1 32 4.80 4.85 1.51 1.52 99 99
1 64 4.88 4.91 1.53 1.54 99 99

2 32 5.23 5.22 0.83 0.83 99 99
2 64 5.23 5.22 0.83 0.83 99 99

4 32 5.15 5.15 0.41 0.41 99 99
4 64 5.15 5.15 0.41 0.41 99 99

8 32 9.04 9.23 0.29 0.37 99 99
8 64 9.14 9.24 0.29 0.37 99 99
8 128 9.17 9.24 0.29 0.37 99 99

16 32 11.19 11.70 0.21 0.23 94 98
16 64 11.45 11.74 0.21 0.23 95 98
16 128 11.60 11.75 0.21 0.23 95 99

32 32 12.02 13.00 0.12 0.13 95 97
32 64 12.55 13.08 0.12 0.13 96 98
32 128 12.85 13.12 0.12 0.13 97 98

Implementation: SMPSs OpenMP
a Megaelements per array.
b Gigabytes per second.
c Mean instructions per cycle while running tasks.
d Mean time that threads spend running tasks.

Table C.2: Performance summary of the Triad implemen-
tations.
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C.2 Matrix multiplication

The matrix multiplication algorithm and its parallelization have already been ex-
plained in the sections that start in page 33. In this appendix we evaluate its perfor-
mance.

Parallelization with OpenMP

To compare the performance of the algorithm in SMPSs to other programming
environments, we have made a parallel implementation using OpenMP tasks. The
SMPSs and the OpenMP versions use MKL in sequential mode for the submatrix
operations, which allows us to compare them in terms of the programming model
without regard to the underlying kernel implementation.

The OpenMP implementation is shown in listing C.2. Notice that the matrices
are stored continuously in memory, as opposed to the SMPSs version, which stores
them by blocks. Since OpenMP does not allow task dependencies, we have grouped
each whole task chain of the SMPSs version into a single task. That is, we have used
the decomposition by panels from equation 3.3 instead of the decomposition by
blocks from equation 3.2. Another difference is that the OpenMP version generates
the tasks in parallel.

This version has been compiled with GCC. However, it has been linked with
the Intel OpenMP runtime, which is required by the MKL library even in sequential
mode. Nevertheless, the Intel OpenMP runtime also implements the GCC internal
OpenMP runtime API.

Parallel Library Implementation

To complete the comparison, we have included an implementation of the algorithm
using an already parallel version of the algorithm. The MKL parallel version is
implemented as a single call to the dgemm function which is implemented in parallel
within the MKL library.

Determining the Submatrix Dimensions

The values of the submatrix dimensions MBS, NBS and KBS determine the number
of tasks of the problem decomposition and the computational weight of each task.
Big submatrices generate few tasks with big computational weight, while small
submatrices generate many tasks with small computational weight.

The performance of the algorithm depends on the ability to keep the cores
executing tasks and the performance of the tasks themselves. Both aspects depend
on their granularity. A big number of tasks may provide more parallelism than a
smaller one, however, the performance of the tasks may be lower due to less potential
exploitation of data locality. Moreover, a big number of low computational weight
tasks may turn task creation into a bottleneck.

Given the matrix dimensions M , N and K and their respective submatrix dimen-
sions MBS, NBS and KBS that divide them into m, n and k segments, the algorithm
in listing 3.6 generates m × n chains of dependent tasks, each with k tasks that
calculate a submatrix of C .

While for a given problem size, it may be simple to find analytically the biggest
submatrix size that generates enough task chains to keep all cores busy, the per-
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1 void tiled_dgemm(
2 int MBS, int NBS, int KBS,
3 int M, int N, int K,
4 double ALPHA, double const ∗A, double const ∗B,
5 double BETA, double ∗C)
6 {
7 #pragma omp parallel for
8 for (int i=0; i<M; i += MBS)
9 for (int j=0; j<N; j+= NBS)

10 #pragma omp task untied
11 for (int k=0; k<K; k += KBS) {
12 if (k==0) {
13 if (BETA == 0.0)
14 dgemm_nobeta_tile(MBS, NBS, KBS, M, N, K, ALPHA,

&A[k+i∗K], &B[j+k∗N], &C[j+i∗N]);
15 else
16 dgemm_tile(MBS, NBS, KBS, M, N, K, ALPHA,

&A[k+i∗K], &B[j+k∗N], BETA, &C[j+i∗N]);
17 } else {
18 dgemm_tile(MBS, NBS, KBS, M, N, K, ALPHA, &A[k+i∗K],

&B[j+k∗N], 1.0, &C[j+i∗N]);
19 }
20 }
21 }
22

23 void dgemm_nobeta_tile(int MBS, int NBS, int KBS, int M, int N, int K,
24 double ALPHA, double const ∗A, double const ∗B, double ∗C)
25 {
26 static const double dzero = 0.0;
27 dgemm_("N", "N", &NBS, &MBS, &KBS, &ALPHA, B, &N, A, &K,

&dzero, C, &N);
28 }
29

30 void dgemm_tile(int MBS, int NBS, int KBS, int M, int N, int K,
31 double ALPHA, double const ∗A, double const ∗B,
32 double BETA, double ∗C)
33 {
34 dgemm_("N", "N", &NBS, &MBS, &KBS, &ALPHA, B, &N, A, &K,

&BETA, C, &N);
35 }

Listing C.2: Double precision generalized matrix-matrix multiplication in OpenMP.
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formance of the MKL code used in the tasks does not increase consistently with
submatrix size. For this reason we have measured the performance with several sub-
matrix sizes. Moreover, to simplify the evaluation, the problem has been reduced to
square matrices and square submatrices. That is, M = N = K , and MBS=NBS=KBS.

Figure C.4 shows the floating point performance of our implementation. Each
panel corresponds to a set of measurements with a fixed number of cores. The vertical
axis determines the matrix side size N , and the horizontal axis is the submatrix
side size NBS. The figure shows the mean performance of 30 executions of each
configuration with respect to the theoretical hardware peak measured in floating
point operations per second.

Most configurations perform at higher than 85% of the peak floating point perfor-
mance. However, with 2, 8 and 32 cores there are configurations in the diagonal with
lower performance. To highlight the reasons, we have measured all configurations
with tracing. Figure C.5 shows the average idle time per thread. Notice that the
diagonal configurations with 2, 8 and 32 cores spend about 50% of their time idling
due to too few task chains. This explains the drop in floating point performance.

Figure C.4 also shows a drop in floating point performance for the experiments
with 16 and 32 cores when using submatrices of 128 elements per side. While
these configurations have the greatest amount of parallelism, they suffer from high
management overhead due to the low amount of computational cost per task and
low task performance due to low data reuse. Figure C.6 shows the overhead of task
management in the main thread. Notice that the overhead with submatrices of 128
by 128 elements is always higher than the other configurations, but it grows with
the number of cores and starts to be noticeable with 8 cores. The mean task floating
point operations per cycle are shown in figure C.7. The executions with 128 by 128
element submatrices have also lower task floating point performance than the rest
and this difference also grows with the number of cores.

Figure C.7 also shows that the floating point performance of the tasks does not
grow smoothly with submatrix size. Instead the best performing submatrix side size
is consistently 512 for all problem sizes and number of cores.

Since the tests of this appendix and the ones of its corresponding main chapter
have been performed with the data interleaved between the NUMA nodes and
without NUMA awareness, task performance decreases with the number of threads.
This effect is greatest for small submatrix sizes, since they have less temporal locality
as shown by their higher cache miss ratio in figure C.8.

To summarize the performance of this application we have selected from each
problem size and number of cores the submatrix size with greatest mean performance
measured as the total floating point operations per cycle without tracing. Table C.3
summarizes the performance of those configurations. Notice that even with one
thread, some configurations that generate more than one task are faster than the
ones that generate only one. On the other hand, the smallest problem size with 32
cores performs best with a submatrix size that only produces tasks that only occupy
half of the cores.

Scheduling

To verify the effectiveness of the scheduling policy on the matrix multiplication,
we compare the performance with the scheduling policy that we presented against
the three other policies described in page 30. Since task granularity can affect the
performance characteristics of the execution, in the following comparisons we have
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Figure C.4: Performance of the SMPSs matrix multiplication implementation with
several matrix and blocking sizes.

Mean thread idle time (%)

Submatrix side size

M
at

ri
x 

si
de

 s
iz

e

512
1024
2048
4096
8192

16384

12
8

25
6

51
2

10
24

20
48

40
96

 : Cores 1

12
8

25
6

51
2

10
24

20
48

40
96

 : Cores 2

12
8

25
6

51
2

10
24

20
48

40
96

 : Cores 4

12
8

25
6

51
2

10
24

20
48

40
96

 : Cores 8
12

8
25

6
51

2
10

24
20

48
40

96

 : Cores 16

12
8

25
6

51
2

10
24

20
48

40
96

 : Cores 32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

Figure C.5: Average time taken by each thread idling in the SMPSs matrix multipli-
cation implementation with several matrix and blocking sizes.
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Figure C.6: Percentage of time time that the main thread spends managing tasks
when running the SMPSs matrix multiplication implementation with several matrix
and blocking sizes.
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Mean task FP operations/cycle
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Figure C.7: Mean floating point operations per cycle while running the tasks of the
SMPSs matrix multiplication implementation with several matrix and blocking sizes.
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Figure C.8: Average level-3 data cache miss ratio while running the tasks of the
SMPSs matrix multiplication implementation with several matrix and blocking sizes.
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Cores Na BSb Tasks GFc IPCd FPCe Ovh.f

(%)
Eff.g

(%)
Idle
(%)

Tr.O.h

(%)

1 512 512 1 6.1 5.93 3.93 0.17 99 0 0
1 1024 512 8 6.2 5.93 3.94 0.16 99 0 0
1 2048 512 64 6.2 5.94 3.94 0.15 99 0 0
1 4096 512 512 6.2 5.94 3.94 0.15 99 0 0

2 512 256 8 11.9 5.84 3.86 0.91 98 0 0
2 1024 512 8 12.3 5.92 3.93 0.19 99 0 0
2 2048 512 64 12.4 5.94 3.94 0.18 99 0 0
2 4096 512 512 12.5 5.94 3.94 0.19 99 0 0

4 512 256 8 22.9 5.75 3.80 1.75 97 1 1
4 1024 256 64 24.0 5.87 3.88 1.49 98 0 0
4 2048 512 64 24.7 5.92 3.93 0.28 99 0 0
4 4096 512 512 24.9 5.93 3.94 0.26 99 0 0

8 512 128 64 40.5 5.42 3.55 15.92 89 5 4
8 1024 256 64 46.1 5.76 3.81 2.96 97 1 0
8 2048 512 64 48.2 5.89 3.91 0.53 99 0 0
8 4096 512 512 49.4 5.91 3.93 0.53 99 0 0
8 8192 512 4096 49.8 5.93 3.93 0.42 99 0 0

16 512 128 64 61.9 5.12 3.35 31.12 84 11 0
16 1024 256 64 81.1 5.66 3.74 5.37 95 3 0
16 2048 256 512 92.5 5.82 3.84 5.44 96 2 1
16 4096 512 512 96.9 5.88 3.90 1.29 99 0 0
16 8192 512 4096 98.7 5.89 3.91 0.78 99 0 0
16 16384 512 32768 99.3 5.89 3.91 0.75 99 0 0

32 512 128 64 58.1 4.88 3.20 34.82 42 54 1
32 1024 128 512 121.8 5.05 3.31 68.27 83 10 0
32 2048 256 512 164.4 5.72 3.78 14.18 94 4 0
32 4096 256 4096 187.4 5.77 3.82 10.47 98 0 0
32 8192 512 4096 192.6 5.80 3.85 1.58 99 0 0
32 16384 512 32768 195.8 5.83 3.87 1.36 99 0 0

a Matrix side size..
b Submatrix side size.
c Gigaflops per second.
d Mean instructions per cycle while running tasks.
e Mean floating point operations per cycle while running tasks.
f Time that the main thread spends generating tasks and idle.
g Mean time that threads spend running tasks.
h Increment of the execution time when enabling tracing.

Table C.3: Best submatrix side sizes for the SMPSs matrix multiplication implemen-
tation and their performance characteristics.
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selected the best granularity for the default scheduler in each case and used it for all
the schedulers.

Figure C.9 shows the mean floating point performance under several strong
scalability scenarios with the four schedulers. Horizontal lines on the left panel
correspond to the theoretical peak for 1, 2, 4, 8, and 16 cores respectively. The
right side of the figure shows the mean performance of the configurations with 32
cores with a linear scale. While most scheduling policies have similar scalability and
performance, only the random policy performs consistently worse, although not by
far. Since the task implementation uses the cache very efficiently, the differences in
task performance are small.

Figure C.10 shows the reduction of the level 3 data cache miss ratio when
replacing the random scheduling policy by the default policy. For block sizes bigger
than 256 elements per side, the difference is very small, since the tasks can take
better advantage of spatial locality. For smaller block sizes, temporal locality has more
impact on the cache miss ratio. In those cases, the default policy, which attempts to
pin task chains to threads, reduces the miss ratio by up to 25%.

The low performance with block side sizes of 128 is due by two circumstances.
First, under those configurations, the task creation rate is slow compared to the task
execution time, as shown previously in figure C.6. And second, the code creates
the task graph in breadth order. That is, when the bottleneck is the task creation,
the code favors parallelism over data reuse. As we duplicate the problem size, the
number of tasks between one and the following in its chain is quadrupled. Therefore,
threads cannot follow the dependency chains since by the time they finish a task,
the following in the chain has not already been created.

Table C.4 summarizes the mean values of the main performance metrics of the
matrix multiplication with each scheduler. They show that the lower performance of
the random scheduler is due to lower parallel efficiency. In this case, since the task
granularity is coarse, the amount of task chains is small, and thus under the random
scheduler, threads have to access several queues before finding one that contains
tasks.
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Figure C.9: Strong scalability of the SMPSs matrix multiplication implementation
with several matrix sizes under each scheduling policy and performance with 32
cores.
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Figure C.10: Data cache miss reduction of the matrix multiplication when changing
the scheduling from the random policy to the default policy.
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Cores Na GFb GFb GFb GFb FPCc FPCc FPCc FPCc Eff.d

(%)
Eff.d

(%)
Eff.d

(%)
Eff.d

(%)

1 512 6.1 6.1 6.1 6.1 3.9 3.9 3.9 3.9 99 99 99 99
1 1024 6.2 6.2 6.2 6.2 3.9 3.9 3.9 3.9 99 99 99 99
1 2048 6.2 6.2 6.2 6.2 3.9 3.9 3.9 3.9 99 99 99 99
1 4096 6.2 6.2 6.2 6.2 3.9 3.9 3.9 3.9 99 99 99 99

2 512 11 10 11 11 3.9 3.9 3.9 3.9 98 88 98 98
2 1024 12 10 12 12 3.9 3.9 3.9 3.9 99 88 99 99
2 2048 12 12 12 12 3.9 3.9 3.9 3.9 99 97 99 99
2 4096 12 12 12 12 3.9 3.9 3.9 3.9 99 99 99 99

4 512 22 22 22 22 3.8 3.8 3.8 3.8 97 97 97 97
4 1024 23 22 23 23 3.9 3.9 3.9 3.9 98 94 98 98
4 2048 24 23 24 24 3.9 3.9 3.9 3.9 99 94 99 99
4 4096 24 24 24 24 3.9 3.9 3.9 3.9 99 98 99 99

8 512 38 34 38 38 3.5 3.4 3.6 3.6 89 82 88 89
8 1024 45 40 46 45 3.8 3.8 3.8 3.8 97 86 97 97
8 2048 48 43 48 48 3.9 3.9 3.9 3.9 99 88 99 99
8 4096 49 47 49 49 3.9 3.9 3.9 3.9 99 96 99 99
8 8192 49 49 49 49 3.9 3.9 3.9 3.9 99 98 98 99

16 512 61 58 62 60 3.4 3.2 3.4 3.3 84 80 81 83
16 1024 80 79 80 80 3.7 3.7 3.7 3.7 95 93 94 95
16 2048 91 83 91 91 3.8 3.7 3.8 3.8 96 90 96 95
16 4096 96 89 96 96 3.9 3.9 3.9 3.9 99 91 99 99
16 8192 98 96 95 98 3.9 3.9 3.9 3.9 99 97 96 99
16 16384 99 98 98 99 3.9 3.9 3.9 3.9 99 99 99 99

32 512 56 50 59 50 3.2 2.7 3.3 2.7 42 40 41 42
32 1024 121 80 104 121 3.3 2.3 3.1 3.3 83 77 73 83
32 2048 163 131 163 162 3.8 3.4 3.8 3.8 94 82 94 94
32 4096 186 159 173 186 3.8 3.4 3.8 3.8 98 94 92 98
32 8192 192 181 180 192 3.8 3.8 3.8 3.8 99 94 92 99
32 16384 195 192 191 195 3.9 3.8 3.8 3.9 99 98 98 99

Scheduler: Default Random Random + PT FIFO
a Matrix side size.
b Gigaflops per second.
c Mean floating point operations per cycle while running tasks.
d Mean time that threads spend running tasks.

Table C.4: Performance summary of the scheduler on the SMPSs matrix multiplication.
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Performance of the Implementations

For both the SMPSs and the OpenMP implementations we have selected the best
performing submatrix sizes for each case. However, since the parallel MKL version
has those parameters automatically set up by the MKL library itself, we have left
them as is.

Figure C.11 shows the mean floating point performance of the three implemen-
tations under several strong scalability scenarios. Horizontal lines on the left panels
correspond to the theoretical peak for 1, 2, 4, 8, and 16 cores respectively. The right
side of the figure shows the mean performance of the configurations with 32 cores
with a linear scale.

In all cases the SMPSs implementation has the best strong scalability. On one
hand the SMPSs version has the additional overhead of finding the dependencies,
which the other two versions do not, and generates the tasks sequentially, as opposed
to the OpenMP version, that generates fewer and in parallel. On the other hand, the
SMPSs version operates over blocked matrices, which have better spatial locality
and thus obtain better IPC. The scalability of the OpenMP and the MKL versions is
similar, however then MKL version exhibits slightly better performance.

Figure C.12 shows the average effective IPC, that is, the IPC while not idling
nor executing the SMPSs/OpenMP runtime. Each row of panels corresponds to a
different matrix size, and their vertical axis indicates their performance relative to
the theoretical hardware peak. Each column of panels corresponds to a number of
cores, and the horizontal axis groups the measurements of each implementation.
The panels contain violin plots. They are an estimation of the density of the metric,
in this case the mean effective IPC of the execution. Wide sections correspond to
Y values with high frequency, and narrow sections correspond to IPC values with
low frequency. Horizontal lines indicate that the given configuration has very low
variability.

The OpenMP and the MKL versions have generally lower effective IPC than the
SMPSs version, due to the different memory layout. The OpenMP version also uses
smaller block sizes in some cases, since they produce better balance. This is reflected
in table C.5, that summarizes the mean values of the main performance metrics of
each implementation.
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Figure C.11: Strong scalability of each parallel implementation of the matrix multi-
plication with several matrix sizes and performance with 32 cores.
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Figure C.12: Average instructions per cycle of each implementation of the matrix
multiplication while running effective work with several matrix sizes.
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Cores Na BSb BSb GFc GFc GFc FPCd FPCd FPCd Eff.e

(%)
Eff.e

(%)
Eff.e

(%)

1 512 512 512 6.1 6.1 6.1 3.9 3.9 3.9 99 99 99
1 1024 512 1024 6.2 6.1 6.1 3.9 3.9 3.9 99 99 99
1 2048 512 2048 6.2 6.1 6.1 3.9 3.8 3.8 99 99 99
1 4096 512 4096 6.2 6.1 6.1 3.9 3.9 3.9 99 99 99

2 512 256 256 11 11 12 3.9 3.8 3.9 98 97 99
2 1024 512 512 12 12 12 3.9 3.9 3.9 99 99 99
2 2048 512 1024 12 11 11 3.9 3.7 3.8 99 99 99
2 4096 512 2048 12 12 12 3.9 3.8 3.9 99 99 99

4 512 256 128 22 21 22 3.8 3.7 3.7 97 94 98
4 1024 256 256 23 22 23 3.9 3.8 3.8 98 98 99
4 2048 512 512 24 20 22 3.9 3.4 3.6 99 99 99
4 4096 512 2048 24 23 23 3.9 3.7 3.8 99 99 99

8 512 128 128 38 34 37 3.5 3.5 3.2 89 90 95
8 1024 256 128 45 41 42 3.8 3.6 3.5 97 95 99
8 2048 512 128 48 35 41 3.9 2.9 3.5 99 98 98
8 4096 512 1024 49 43 45 3.9 3.5 3.7 99 98 98
8 8192 512 2048 49 46 47 3.9 3.7 3.8 99 98 99

16 512 128 128 61 42 50 3.4 3.2 2.6 84 85 86
16 1024 256 128 80 66 68 3.7 3.4 3.2 95 91 94
16 2048 256 128 91 59 68 3.8 2.7 3.1 96 96 97
16 4096 512 1024 96 84 84 3.9 3.5 3.5 99 97 98
16 8192 512 2048 98 90 90 3.9 3.7 3.7 99 97 98
16 16384 512 4096 99 93 93 3.9 3.8 3.8 99 97 98

32 512 128 128 56 43 42 3.2 3.1 1.2 42 41 84
32 1024 128 128 121 70 71 3.3 2.8 1.9 83 90 91
32 2048 256 256 163 83 95 3.8 2.7 2.5 94 93 97
32 4096 256 512 186 145 149 3.8 3.2 3.2 98 95 98
32 8192 512 1024 192 172 171 3.8 3.6 3.5 99 97 97
32 16384 512 2048 195 182 180 3.9 3.7 3.7 99 96 97

Implementation: SMPSs OpenMP MKL
a Matrix side size.
b Submatrix side size
c Gigaflops per second.
d Mean floating point operations per cycle while running tasks.
e Mean time that threads spend running tasks.

Table C.5: Performance summary of the matrix multiplication implementations.
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Appendix D

Compiler and Runtime
Interface Extensions for
Region Support

To support regions, language-level regions must be passed to the runtime where the
region-unaware interface had addresses. In addition, the region-aware interface can
have more than one (region) access per parameter. These changes affect both the
internal runtime interface and the compiler. This appendix describes the extended
runtime interface and the changes to the compiler.

D.1 Extensions to the Interface between User Code
and Runtime

Array regions provide means to specify subsets of an array. As such, they only affect
task instantiation, since they enhance the description of the data accesses, and partial
synchronizations, since they allow to synchronize on more precise sets of data.

Thus, initialization and finalization, which was presented in section B.1.1; task
implementation registration, which appears in section B.1.2; and full barriers, shown
in section B.1.4, remain unchanged under the region-aware runtime.

D.1.1 Task Instantiation

Task calls are notified to the runtime by calling the following function:

void css_addTask(unsigned int functionId, unsigned int flags, unsigned int
parameterCount, css_parameter_t const ∗parameters);

It receives a task identifier that has been determined by the corresponding adapter
registration order, flags, the number of parameters and an array with the actual
parameter description. The only flag currently available is the high priority flag,
which corresponds to a call to a task that has the highpriority clause.

While the task instantiation function prototype is identical to the function used
in region-unaware runtime, the parameter descriptor is substantially different in the
region-aware runtime. The region-unaware parameter descriptor is the following:
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typedef struct {
long flags;
size_t size;
void ∗address;

} css_parameter_t;
It uses the base address and size to determine the parameter address and the

accessed range, and the flags field to determine the directionality and kind of access.
The region-aware parameter descriptor is the following:

typedef struct {
void ∗address;
short region_count;
css_parameter_region_t const ∗regions;

} css_parameter_t;
It also has a field that indicates the base address. However, the accessed ranges

and their directionalities are described by a set of region descriptors. The parameter
descriptor contains a field that indicates the number of regions and a pointer to the
beginning of the region descriptor array.

The region descriptor has the following contents:

typedef struct {
short flags;
short dimension_count;
css_parameter_dimension_t const ∗dimensions;

} css_parameter_region_t;
The flags field is identical to the one previously used in the parameter descriptor

of the region-unaware runtime. It indicates the directionality of the region and if it
is the target of a reduction. The possible values and semantics are the following:

Flag Value Semantics

1 An input region
2 An output region

1+2 An inout region
1+4 An input region that is a constant

1+2+8 An inout region that is the target of a reduction

The dimension_count and dimensions fields are the number of dimensions, and
a pointer to the beginning of an array containing the dimension descriptors starting
from the least significant dimension. Each dimension if described as follows:

typedef struct {
size_t size;
size_t lower_bound;
size_t accessed_length;

} css_parameter_dimension_t;
The fields of the first dimension descriptor are expressed in terms of bytes.

Further dimensions are expressed naturally as times the whole previous dimension.
The size field indicates the whole size of the dimension. The lower_bound and
accessed_length fields represent the first element of the accessed range and the
number of elements.
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D.1.2 Partial Synchronization

Partial synchronization in the region-unaware runtime uses the following function:

void css_waitOn(unsigned int variableCount, void ∗∗addresses);
Its first parameter is the number of variables in the on clause. The second pa-

rameter is an array with one entry for each object over which the user code must
wait. Each entry is a pointer that corresponds to the base address in case of a scalar
or a struct, and a pointer to the first element of the block in case of an array.

Since the region-aware runtime accepts partial synchronization on regions, the
second parameter has been changed to accept region descriptors. The new function
prototype is the following:

void css_waitOn(unsigned int variableCount, css_parameter_region_t const
∗variables);

While the region descriptor has a field containing the directionality, this field is
left unused for partial synchronizations.

D.2 Compiler Extensions

Compilation with region support is very similar to compilation without. The main
extensions are related to the increased information that must be kept about task
parameters and its late expansion during task call replacement.

Since task parameters may have several regions, each task parameter is decorated
by a list of regions instead of just its directionality. And each region is composed by
a directionality and one range description for each dimension, in a similar way to
the data structures used in the task instantiation function.

Task call replacement fills out the data structures required by the region-aware
task instantiation runtime function. While in the region-unaware version, the di-
mension expressions could depend on the actual values of the task invocation, in
the region-aware version, the expressions of the dimension ranges can also depend
on the parameters. Thus, during task call replacement, these expressions which
use the task prototype parameter names have those names replaced by the actual
expressions passed in the invocation.
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Appendix E

Additional Region-Based
Benchmarks

This appendix evaluates the performance of the region-based implementations of
the triad, matrix multiplication, Gauss-Seidel and Cholesky benchmarks. The region-
based model is presented in chapter 4 and this appendix extends its evaluation
section that starts in page 98.

E.1 Triad

The STREAM benchmark by [McCalpin, 1995] is a synthetic benchmark that measures
sustained memory bandwidth and the computation rate for simple vector kernels.
This algorithm has been described in chapter 3 in section 3.6.1 that starts on page
32, and evaluated in appendix C. While the algorithm does not require regions,
this section compares the execution between the region-unaware runtime and the
region-aware runtime to evaluate if the region-aware data dependency analysis has
a negative impact on the runtime overhead.

Runtime Overhead

The runtime overhead of the executions with the region-aware runtime is significantly
higher than the overhead with the region-unaware runtime. Figure E.1 shows the
increment of runtime overhead in the main thread. While the increment ranges
from 64% to 134%, the total task management overhead in the main thread remains
below 4% of the total time.

The figure has been generated with a region tree that uses compression. Com-
pression improves the task management overhead compared to executions with
uncompressed region trees. Figure E.2 shows the reduction of task management
overhead due to compression. The overhead is reduced at least by half in all cases.

Scalability and Other Implementations

Figure E.3 shows the strong scalability of the problem with three problem sizes under
the region-aware SMPSs runtime, the blocked SMPSs runtime and the OpenMP
implementation. The scalability of the region-aware and the blocked SMPSs versions
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Main thread overhead increment of SMPSs regions vs. SMPSs blocks (%)
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Figure E.1: Task management overhead increment on the main thread when running
the SMPSs implementation of triad with regions with several vector and subvector
sizes compared to the region unaware version.

Main thread overhead reduction of Compressed vs. Bare (%)
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Figure E.2: Reduction of task management overhead on the main thread when
running the SMPSs implementation of triad with a compressed region tree compared
to an uncompressed region tree, with several vector and subvector sizes.
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Figure E.3: Strong scalability of the region-aware SMPSs triad, the region-unaware
SMPSs triad, and the OpenMP triad and performance with 32 cores.

is very similar. Both scale well, but perform slightly worse than the OpenMP version
for the smallest problem sizes and highest number of cores. Table E.1 summarizes
the performance metrics of each implementation.

227



Chapter E. Additional Region-Based Benchmarks

Cores Na GB/sb GB/sb GB/sb IPCc IPCc IPCc Eff.d

(%)
Eff.d

(%)
Eff.d

(%)

1 32 4.8 4.8 4.8 1.5 1.5 1.5 99 99 99
1 64 4.8 4.9 4.9 1.5 1.5 1.5 99 99 99

2 32 5.2 5.2 5.2 0.8 0.8 0.8 99 99 99
2 64 5.2 5.2 5.2 0.8 0.8 0.8 99 99 99

4 32 5.1 5.1 5.1 0.4 0.4 0.4 99 99 99
4 64 5.1 5.2 5.1 0.4 0.4 0.4 99 99 99

8 32 9.0 9.0 9.2 0.3 0.3 0.4 99 99 99
8 64 9.1 9.1 9.2 0.3 0.3 0.4 99 99 99
8 128 9.2 9.2 9.2 0.3 0.3 0.4 99 99 99

16 32 11.2 11.2 11.7 0.2 0.2 0.2 94 94 98
16 64 11.4 11.5 11.7 0.2 0.2 0.2 95 95 98
16 128 11.6 11.6 11.8 0.2 0.2 0.2 95 95 99

32 32 11.4 12.0 13.0 0.1 0.1 0.1 94 95 97
32 64 12.5 12.5 13.1 0.1 0.1 0.1 96 96 98
32 128 12.2 12.8 13.1 0.1 0.1 0.1 96 97 98

Implementation: SMPSs regions SMPSs blocks OpenMP
a Megaelements per array.
b Gigabytes per second.
c Mean instructions per cycle while running tasks.
d Mean time that threads spend running tasks.

Table E.1: Performance summary of the Triad implementations.
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E.2 Matrix Multiplication

The matrix multiplication benchmark has been described in the chapter 3 in section
3.6.2 that starts on page 33 and its performance has been evaluated in appendix C
in page 207. This section evaluates a version of the matrix multiplication using flat
matrices instead of blocked matrices.

Parallelization with SMPSs using Regions

Listing E.1 shows the main algorithm and its tasks. Its structure is very similar to the
blocked implementation. Since the matrices are flat, they are addressed differently
than in the blocked version. While in the blocked version we passed pointers to the
beginning of each physical block to the tasks, in the flat version we pass pointers to
the beginning of the logical blocks instead. Hence, the pointers in the task calls of
lines 10, 12 and 17.

Tasks also specify the areas of the matrices that are accessed by using region
specifiers. For instance, the A matrix in both tasks is accessed as an input region
with the A[M][K]{0:MBS}{0:KBS} specification. That is, the matrix dimensions are
M by K, and the tasks access an area of MBS by KBS elements starting from the
base address that is passed to the task.

Runtime Overhead

The runtime overhead of the regions version is significantly higher than the version
run on the region-unaware runtime. Figure E.4 shows the increment of task manage-
ment overhead in the main thread. While it may raise up to 4.5 times the overhead
of the blocked version, figure E.5 shows that the total task management overhead
remains below 5% in most cases, and at most takes 17% of the total time of the
main thread.

These results have been generated with a region tree that uses compression.
Figure E.6 shows the reduction of task management overhead, which can be as high
as 84%.

Scalability and Other Implementations

Figure E.7 shows the strong scalability of the problem with several problem sizes
under the region-aware SMPSs runtime, the blocked SMPSs runtime, the OpenMP
implementation, and the parallel MKL version. The scalability and performance of
the region-aware SMPSs version is similar to the scalability and performance of the
OpenMP version and the parallel MKL version. However, the performance of the
blocked SMPSs version is higher due to the blocked data layout. This is confirmed in
figure E.8, which shows the average thread floating point operations per cycle while
running effective code in each case.

Table E.2 summarizes the performance metrics of each implementation. It further
confirms that the performance differences are essentially due to the data layout.
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1 void tiled_dgemm(
2 int MBS, int NBS, int KBS,
3 int M, int N, int K,
4 double ALPHA,
5 double const ∗A, double const ∗B, double BETA, double ∗C)
6 {
7 for (int i=0; i<M; i += MBS)
8 for (int j=0; j<N; j+= NBS) {
9 if (BETA == 0.0)

10 dgemm_nobeta_tile(MBS, NBS, KBS, M, N, K, ALPHA,
&A[0+i∗K], &B[j+0∗N], &C[j+i∗N]);

11 else
12 dgemm_tile(MBS, NBS, KBS, M, N, K, ALPHA, &A[0+i∗K],

&B[j+0∗N], BETA, &C[j+i∗N]);
13 }
14 for (int k=KBS; k<K; k += KBS)
15 for (int i=0; i<M; i += MBS)
16 for (int j=0; j<N; j+= NBS)
17 dgemm_tile(MBS, NBS, KBS, M, N, K, ALPHA, &A[k+i∗K],

&B[j+k∗N], 1.0, &C[j+i∗N]);
18 }
19

20 #pragma css task input(MBS, NBS, KBS, M, N, K, ALPHA) \
21 input(A[M][K]{0:MBS}{0:KBS}, B[K][N]{0:KBS}{0:NBS}) \
22 output(C[M][N]{0:MBS}{0:NBS})
23 void dgemm_nobeta_tile(int MBS, int NBS, int KBS,
24 int M, int N, int K,
25 double ALPHA, double ∗A, double ∗B, double ∗C)
26 {
27 static const double dzero = 0.0;
28 dgemm_("N", "N", &NBS, &MBS, &KBS, &ALPHA, B, &N, A, &K,

&dzero, C, &N);
29 }
30

31 #pragma css task input(MBS, NBS, KBS, M, N, K, ALPHA, BETA) \
32 input(A[M][K]{0:MBS}{0:KBS}, B[K][N]{0:KBS}{0:NBS}) \
33 inout(C[M][N]{0:MBS}{0:NBS})
34 void dgemm_tile(int MBS, int NBS, int KBS,
35 int M, int N, int K,
36 double ALPHA, double ∗A, double ∗B, double BETA, double ∗C)
37 {
38 dgemm_("N", "N", &NBS, &MBS, &KBS, &ALPHA, B, &N, A, &K,

&BETA, C, &N);
39 }

Listing E.1: Double precision generalized matrix-matrix multiplication in SMPSs
with regions.
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Main thread overhead increment of SMPSs regions vs. SMPSs blocks (%)
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Figure E.4: Task management overhead increment on the main thread when running
the SMPSs implementation of the matrix multiplication with regions with several
matrix and submatrix sizes compared to the region unaware version.
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Figure E.5: Task management overhead on the main thread when running the
SMPSs implementation of matrix multiplication with regions with several matrix
and submatrix sizes.
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Figure E.6: Reduction of task management overhead on the main thread when
running the SMPSs implementation of the matrix multiplication with a compressed
region tree compared to an uncompressed region tree, with several matrix and
submatrix sizes.
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Figure E.7: Strong scalability of the region-aware SMPSs matrix multiplication, the
region-unaware, the OpenMP version and the MKL parallel version and performance
with 32 cores.
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matrix multiplication implementations.
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Cores Na GFb GFb GFb GFb FPCc FPCc FPCc FPCc Eff.d

(%)
Eff.d

(%)
Eff.d

(%)
Eff.d

(%)

1 512 6.1 6.1 6.1 6.1 3.9 3.9 3.9 3.9 99 99 99 99
1 1024 6.1 6.2 6.1 6.1 3.9 3.9 3.9 3.9 99 99 99 99
1 2048 6.1 6.2 6.1 6.1 3.9 3.9 3.8 3.8 99 99 99 99
1 4096 6.1 6.2 6.1 6.1 3.9 3.9 3.9 3.9 99 99 99 99

2 512 11 11 11 12 3.8 3.9 3.8 3.9 98 98 97 99
2 1024 12 12 12 12 3.9 3.9 3.9 3.9 99 99 99 99
2 2048 11 12 11 11 3.7 3.9 3.7 3.8 99 99 99 99
2 4096 12 12 12 12 3.8 3.9 3.8 3.9 99 99 99 99

4 512 21 22 21 22 3.7 3.8 3.7 3.7 96 97 94 98
4 1024 22 23 22 23 3.7 3.9 3.8 3.8 99 98 98 99
4 2048 20 24 20 22 3.4 3.9 3.4 3.6 99 99 99 99
4 4096 23 24 23 23 3.8 3.9 3.7 3.8 99 99 99 99

8 512 34 38 34 37 3.4 3.5 3.5 3.2 92 89 90 95
8 1024 41 45 41 42 3.5 3.8 3.6 3.5 96 97 95 99
8 2048 35 48 35 41 3.2 3.9 2.9 3.5 98 99 98 98
8 4096 44 49 43 45 3.6 3.9 3.5 3.7 98 99 98 98
8 8192 47 49 46 47 3.8 3.9 3.7 3.8 98 99 98 99

16 512 46 61 42 50 3.1 3.4 3.2 2.6 85 84 85 86
16 1024 66 80 66 68 3.3 3.7 3.4 3.2 94 95 91 94
16 2048 61 91 59 68 2.7 3.8 2.7 3.1 96 96 96 97
16 4096 84 96 84 84 3.5 3.9 3.5 3.5 97 99 97 98
16 8192 91 98 90 90 3.7 3.9 3.7 3.7 97 99 97 98
16 16384 95 99 93 93 3.8 3.9 3.8 3.8 97 99 97 98

32 512 44 56 43 42 3.0 3.2 3.1 1.2 43 42 41 84
32 1024 69 121 70 71 2.6 3.3 2.8 1.9 91 83 90 91
32 2048 82 163 83 95 2.7 3.8 2.7 2.5 94 94 93 97
32 4096 143 186 145 149 3.1 3.8 3.2 3.2 98 98 95 98
32 8192 172 192 172 171 3.5 3.8 3.6 3.5 96 99 97 97
32 16384 184 195 182 180 3.8 3.9 3.7 3.7 96 99 96 97

Implementation: SMPSs regions SMPSs blocks OpenMP MKL
a Matrix side size.
b Gigaflops per second.
c Mean floating point operations per cycle while running tasks.
d Mean time that threads spend running tasks.

Table E.2: Performance summary of the matrix multiplication implementations.
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E.3 Gauss-Seidel 2D Heat Transfer

The Gauss-Seidel 2D heat transfer benchmark has been evaluated in chapter 3 under
section 3.6.3 that starts on page 36. This section evaluates a version of the algorithm
using flat matrices instead of blocked matrices.

Parallelization with SMPSs using Regions

Listing E.2 shows the sequential version of the stencil code. In chapter 4, we converted
the matrix into a blocked representation and we adapted the code of the task into
a form suitable for that representation. For reference we reproduce the blocked
version in listing E.3.

For the region-based implementation we preserve the original matrix layout.
Listing E.4 shows the main algorithm and its task. Notice that in the blocked version
(listing E.3) we had to pass a pointer to the beginning of the central block, and one to
each of its surrounding blocks to its north, south, east and west (line 16). In the flat
version (listing E.4) we pass a pointer to the beginning of the area that is accessed
(line 15) and uses several regions to specify the accesses of each area. Figure E.9
illustrates the pointer and the regions.

While the blocked task declaration is simple, the region version is more complex
due to the presence of several regions. In listing E.4 we declare in line 2 the north
and south halos, in line 3 the west and east halos, and the region that is updated in
line 4. However, while the blocked task code contains 4 conditionals, the regions
version does not and in general is closer to the sequential code shown in listing E.2.

Runtime Overhead

The runtime overhead of the regions version is significantly higher than the version
run on the region-unaware runtime. Figure E.10 shows the increment of runtime
overhead in the main thread. While it may raise on average up to 4.3 times the
overhead of the blocked version, figure E.11 shows that the total task management
overhead remains below 10% in most cases, and takes more only for very small task
sizes.

These measurements have been generated with a region tree that uses compres-
sion. Figure E.12 shows the reduction of task management overhead that results
from compressing the region tree. Notice that the overhead get reduced by at least
30% and at most 51%.

1 for (int iter=0; iter < ITERS; iter++)
2 for (long i=1; i <= N; i++)
3 for (long j=1; j <= N; j++)
4 data[i][j] = 0.2 ∗ (data[i][j] + data[i−1][j] + data[i+1][j] + data[i][j−1]

+ data[i][j+1]);
Listing E.2: Sequential implementation of the Gauss-Seidel algorithm for the 2D
heat transfer problem.
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1 #pragma css task input(N, L, top, left, bottom, right) inout(a)
2 void gs_tile(long N, long L, double a[L][L], double top[L][L], double left[L][L],

double bottom[L][L], double right[L][L]) {
3 for (long i=0; i < L; i++)
4 for (long j=0; j < L; j++)
5 a[i][j] = 0.2 ∗ ( a[i][j]
6 + (i > 0L ? a[i−1][j] : top[L−1][j])
7 + (i < L−1L ? a[i+1][j] : bottom[0][j])
8 + (j > 0L ? a[i][j−1] : left[i][L−1])
9 + (j < L−1L ? a[i][j+1] : right[i][0]) );

10 }
11

12 void gauss_seidel(long N, long L, double data[N/L][N/L][L][L]) {
13 for (int iter=0; iter<ITERS; iter++)
14 for (long i=1; i < N/L−1; i++)
15 for (long j=1; j < N/L−1; j++)
16 gs_tile( N, L, data[i][j], data[i−1][j], data[i][j−1], data[i+1][j],

data[i][j+1] );
17 }

Listing E.3: Blocked SMPSs version of the Gauss-Seidel algorithm for the 2D heat
transfer problem.

1 #pragma css task input(N, L) \
2 input(a{0}{1:L}) input(a{L+1}{1:L}) \
3 input(a{1:L}{0}) input(a{1:L}{L+1}) \
4 inout(a{1:L}{1:L})
5 void gs_tile(long N, long L, double a[N][N]) {
6 for (int i=1; i <= L; i++)
7 for (int j=1; j <= L; j++)
8 a[i][j] = 0.2 ∗ (a[i][j] + a[i−1][j] + a[i+1][j] + a[i][j−1] + a[i][j+1]);
9 }

10

11 void gauss_seidel(long N, long L, double data[N][N]) {
12 for (int iter=0; iter < ITERS; iter++)
13 for (long i=L; i < N−L; i+=L)
14 for (long j=L; j < N−L; j+=L)
15 gs_tile( N, L, &data[i−1][j−1] );
16 }

Listing E.4: Region-based SMPSs version of the Gauss-Seidel algorithm for the 2D
heat transfer problem.
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Figure E.9: Regions used in the Gauss-Seidel task: (a) from the point of view of the
task; and, (b) from the point of view of the main code.
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Figure E.10: Task management overhead increment on the main thread when running
the SMPSs implementation of the stencil algorithm with regions with several matrix
and submatrix sizes compared to the region unaware version.
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Figure E.11: Task management overhead on the main thread when running the
SMPSs implementation of stencil algorithm with regions with several matrix and
submatrix sizes.
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Main thread overhead reduction of Compressed vs. Bare (%)
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Figure E.12: Reduction of task management overhead on the main thread when
running the SMPSs implementation of the stencil algorithm with a compressed region
tree compared to an uncompressed region tree, with several matrix and submatrix
sizes.

Scalability and Other Implementations

Similarly to the matrix multiplication case, the performance of the blocked implemen-
tation of the stencil code has different task performance than the flat implementations
due to the different memory layout. In particular, the blocked layout has greater
average task instructions per cycle. To illustrate the difference we have made an
additional set of measurements with the region-unaware runtime. This time, we
have used a flat layout. Since the region-unaware runtime cannot handle that config-
uration, we pass to the task a pointer to the beginning of each “virtual” block. While
the region-aware runtime would allow us to specify a region of L by L elements
starting at each location, the region-unaware does not. So, instead we pretend that
they are all N by N independent arrays, and rely on the fact that the runtime only
checks the base address to find the dependencies and that the problem has a direct,
unique, and non-overlapping correspondence between those base addresses and the
actual region.

The improvement of floating point operations per cycle when changing the
memory layout from the flat representation to blocked representation with the
region-unaware runtime is shown in figure E.13.

Also for reference we have added the other two implementations of the previous
evaluation: the blocked SMPSs version, and the OpenMP version with barriers. Figure
E.14 shows the strong scalability of the problem with four problem sizes under each
implementation. The scalability and performance of the region-aware SMPSs version
is almost identical to that of the flat version using the region-unaware runtime, which
demonstrates that the overhead of handling regions is not significant for this case.
The performance of the original blocked version is higher than the rest due to better
task performance. However its actual parallel efficiency is very similar in all SMPSs
cases. The OpenMP version, like in the previous evaluation, remains the one that
has the lowest parallelism. Figure E.15 shows this metric for each version.

Table E.3 summarizes the performance metrics of each implementation.
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Effective Flops/cycle improvement of blocks vs. blocks (flat) (%)
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Figure E.13: Mean task floating point operations per cycle increment when changing
the memory layout from flat to blocked with the stencil code under the region-
unaware runtime.
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Figure E.14: Strong scalability of the region-aware SMPSs stencil algorithm, the flat
layout code using the region-unaware runtime, the blocked implementation with
the region-unaware runtime, and the OpenMP version; and performance of each
case with 32 cores.
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Figure E.15: Average parallel efficiency of the 4 stencil algorithm implementations.
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Cores Na MU/sb MU/sb MU/sb MU/sb FPCc FPCc FPCc FPCc Eff.d

(%)
Eff.d

(%)
Eff.d

(%)
Eff.d

(%)

1 1024 52 51 59 49 0.2 0.2 0.2 0.2 98 99 99 99
1 2048 57 55 58 55 0.2 0.2 0.2 0.2 99 99 99 99
1 4096 60 57 57 58 0.2 0.2 0.2 0.2 99 99 99 99
1 8192 62 58 58 59 0.2 0.2 0.2 0.2 99 99 99 99

2 1024 98 97 115 65 0.2 0.2 0.2 0.2 95 95 95 65
2 2048 110 102 116 84 0.2 0.2 0.2 0.2 96 93 98 84
2 4096 116 108 115 94 0.2 0.2 0.2 0.2 96 99 99 85
2 8192 120 113 116 102 0.2 0.2 0.2 0.2 96 99 99 93

4 1024 90 89 114 64 0.2 0.2 0.2 0.2 46 46 47 32
4 2048 194 189 227 121 0.2 0.2 0.2 0.2 95 96 96 62
4 4096 217 207 226 156 0.2 0.2 0.2 0.2 97 97 97 80
4 8192 231 220 229 175 0.2 0.2 0.2 0.2 97 97 98 81

8 1024 70 68 107 53 0.1 0.1 0.2 0.1 21 21 23 16
8 2048 318 309 412 111 0.1 0.1 0.2 0.1 90 90 90 36
8 4096 380 362 433 196 0.2 0.2 0.2 0.1 91 91 96 59
8 8192 419 401 446 262 0.2 0.2 0.2 0.1 91 91 97 77
8 16384 444 421 452 312 0.2 0.2 0.2 0.2 97 97 98 79

16 1024 62 61 103 48 0.1 0.1 0.2 0.1 10 10 11 8
16 2048 409 395 632 102 0.1 0.1 0.2 0.1 70 69 77 18
16 4096 595 576 798 206 0.1 0.1 0.2 0.1 92 92 93 38
16 8192 723 696 830 323 0.2 0.1 0.2 0.1 94 94 96 61
16 16384 801 775 850 403 0.2 0.2 0.2 0.1 94 94 97 66

32 1024 57 59 99 44 0.1 0.1 0.2 0.1 5 5 5 4
32 2048 360 364 536 94 0.1 0.1 0.1 0.1 34 34 40 9
32 4096 796 792 956 196 0.1 0.1 0.1 0.1 85 86 87 20
32 8192 931 928 1035 332 0.1 0.1 0.1 0.1 88 88 94 41
32 16384 1046 1026 1037 439 0.1 0.1 0.1 0.1 94 94 94 67

Implementation: regions blocks (flat) blocks OpenMP
a Matrix side size.
b Mega element updates per second.
c Mean floating point operations per cycle while running tasks.
d Mean time that threads spend running tasks.

Table E.3: Performance summary of the stencil algorithm implementations.
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E.4 Cholesky

The Cholesky benchmark has been evaluated in the chapter 3 under section 3.6.4
that starts on page 50. This appendix evaluates a version of the algorithm using flat
matrices instead of blocked matrices.

Parallelization with SMPSs using Regions

Listing E.5 shows the main algorithm and one of its tasks. Its structure is very similar
to the blocked implementation. Since the matrices are flat, they are addressed
differently than in the blocked version. While in the blocked version we passed to
the tasks pointers to the beginning of each physical block, in the flat version we pass
pointers to the beginning of the logical blocks instead.

Tasks also specify the area of the matrix that is accessed by using region specifiers.
For instance, the A matrix in the dpotrf_tile task is accessed as an inout region with
the A[N][N]{0:BS}{0:BS} specification. That is, the matrix dimensions are N by N,
and the task accesses an area of BS by BS elements starting from the base address
that is passed to the task.

By using regions it is possible to adjust the decomposition size of the tasks to
the amount of parallelism they can generate. For instance, the blocking size of the
matrix multiplications in lines 3–5 could be reduced for the latest iterations of j. This
is not possible to do in the blocked version. For simplicity, this aspect has not been
explored for this algorithm, but is explored for the HPL benchmark in section 4.5.4
starting in page 127.

Runtime Overhead

The runtime overhead of the region-aware version is significantly higher than the
version run on the region-unaware runtime. Figure E.16 shows the increment of task
management overhead in the main thread. While it may raise up to 4.4 times the
overhead of the blocked version, figure E.17 shows that the total task management
overhead remains below 10% in most cases, and is only high with many threads and
very small tasks.

These measurements have been generated with a region tree that uses compres-
sion. Figure E.18 shows that compressing the region tree can reduce the runtime
overhead up to 64%. However, it does not help with 32 cores and the smallest task
size.

Scalability and Other Implementations

Figure E.19 shows the strong scalability with several problem sizes under the region-
aware SMPSs runtime, the blocked SMPSs runtime, the OpenMP implementation,
and the MKL parallel version. The scalability of the SMPSs versions is very similar.
However, the blocked version performs better due to the blocked layout. The MKL
version performs similarly to the region-aware SMPSs version with up to 16 threads.
However, its performance drops with 32 threads with problems with 4096 elements
per side or less. The OpenMP version exhibits very poor performance. The difference
between the OpenMP and the MKL version might be due to the MKL version adjusting
the decomposition size at each iteration of the outer loop.
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1 void cholesky(int N, int BS, double A[N][N]) {
2 for (int j = 0; j < N; j += BS) {
3 for (int k = 0; k < j; k += BS)
4 for (int i = j+BS; i < N; i += BS)
5 dgemm_tile( &A[k][i], &A[k][j], &A[j][i], BS, N);
6 for (int i = 0; i < j; i+=BS)
7 dsyrk_tile( &A[i][j], &A[j][j], BS, N);
8 dpotrf_tile( &A[j][j], BS, N);
9 for (int i = j+BS; i < N; i+=BS)

10 dtrsm_tile( &A[j][j], &A[j][i], BS, N);
11 }
12 }
13

14 #pragma css task input(BS, N) inout(A[N][N]{0:BS}{0:BS}) highpriority
15 void dpotrf_tile(double ∗A, integer BS, integer N) {
16 integer INFO;
17 dpotrf_("L", &BS, A, &N, &INFO);
18 }

Listing E.5: Main code of the double precision Cholesky in SMPSs with regions and
one of its tasks.
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Figure E.16: Task management overhead increment on the main thread when running
the SMPSs implementation of the Cholesky with regions with several matrix and
submatrix sizes compared to the region unaware version.
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Main thread overhead time (%)
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Figure E.17: Task management overhead on the main thread when running the
SMPSs implementation of Cholesky with regions with several matrix and submatrix
sizes.
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Figure E.18: Reduction of task management overhead on the main thread when
running the SMPSs implementation of the Cholesky with a compressed region tree
compared to an uncompressed region tree, with several matrix and submatrix sizes.
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Chapter E. Additional Region-Based Benchmarks

Figure E.20 confirms the effects of the data layout on the region-aware and
the region-unaware SMPSs versions. The figure shows the average thread floating
point operations per cycle while running effective code, that is, not idling nor in the
runtime.

Table E.4 summarizes the performance metrics of each implementation.
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Figure E.19: Strong scalability of the region-aware SMPSs Cholesky, the region-
unaware, the OpenMP version and the MKL parallel version and performance with
32 cores.
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Figure E.20: Average thread effective floating point operations per cycle of the 4
Cholesky implementations.
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Cores Na GFb GFb GFb GFb FPCc FPCc FPCc FPCc Eff.d

(%)
Eff.d

(%)
Eff.d

(%)
Eff.d

(%)

1 1024 5.3 5.5 5.3 5.3 3.4 3.5 3.4 3.4 99 99 99 99
1 2048 5.0 5.8 5.1 5.0 3.3 3.7 3.3 3.3 99 99 99 99
1 4096 5.5 6.0 5.0 5.2 3.5 3.8 3.2 3.3 99 99 99 99
1 8192 5.8 6.1 5.7 5.5 3.7 3.9 3.6 3.5 99 99 99 99
1 16384 5.9 6.1 5.9 5.7 3.8 3.9 3.8 3.6 99 99 99 99

2 1024 9.3 10 5.3 8.1 3.3 3.5 3.4 2.8 90 92 49 96
2 2048 9.3 11 7.8 9.3 3.1 3.7 2.8 3.1 95 95 93 98
2 4096 10 11 9.6 10 3.4 3.8 3.2 3.4 96 98 96 99
2 8192 11 12 10 11 3.6 3.9 3.6 3.5 99 99 97 99
2 16384 11 12 11 11 3.7 3.9 3.7 3.6 99 99 99 99

4 1024 15 17 5.1 16 3.2 3.5 3.3 3.1 80 81 24 91
4 2048 16 21 11 17 3.0 3.7 2.1 2.8 90 92 88 97
4 4096 19 23 15 19 3.3 3.8 2.8 3.3 96 97 91 97
4 8192 21 23 19 21 3.6 3.8 3.3 3.4 97 98 96 98
4 16384 22 24 21 21 3.7 3.9 3.6 3.5 99 99 97 99

8 1024 23 25 5.2 19 2.9 3.1 1.8 1.9 64 66 23 85
8 2048 29 38 13 27 2.8 3.5 1.5 2.5 85 87 77 92
8 4096 35 43 21 35 3.1 3.7 2.1 3.1 92 92 81 93
8 8192 40 46 30 38 3.5 3.8 2.9 3.3 93 97 82 92
8 16384 44 48 39 41 3.6 3.9 3.3 3.4 98 98 94 98
8 32768 45 48 43 43 3.7 3.9 3.5 3.5 99 99 98 99

16 1024 25 29 4.9 18 2.4 2.6 1.7 1.1 43 45 12 70
16 2048 42 61 14 42 2.5 3.2 1.1 2.2 75 78 55 88
16 4096 59 78 28 62 3.0 3.5 1.4 2.8 82 90 80 91
16 8192 73 91 39 74 3.1 3.8 2.6 3.1 95 96 61 96
16 16384 85 94 60 79 3.5 3.9 2.8 3.2 96 97 85 98
16 32768 89 95 77 82 3.6 3.9 3.2 3.3 98 98 95 99

32 1024 22 26 4.4 2.5 2.0 2.1 1.5 0.6 22 25 6 10
32 2048 38 76 15 10 2.1 2.5 1.0 1.3 48 62 32 20
32 4096 80 126 32 48 2.8 3.0 1.0 1.4 63 84 64 75
32 8192 134 170 59 101 3.0 3.7 1.8 2.1 90 92 66 96
32 16384 158 181 80 128 3.4 3.7 2.4 2.6 92 96 68 97
32 32768 171 185 116 144 3.5 3.8 2.6 2.9 97 97 88 99

Implementation: SMPSs regions SMPSs blocks OpenMP MKL
a Matrix side size.
b Gigaflops per second.
c Mean floating point operations per cycle while running tasks.
d Mean time that threads spend running tasks.

Table E.4: Performance summary of the Cholesky implementations.
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Appendix F

Additional Benchmarks Using
the NUMA-aware Runtime

This appendix evaluates the performance of the region-based benchmarks that do
not significantly benefit from NUMA-awareness under the evaluation hardware
environment. The NUMA-aware programming model is presented in chapter 5 and
this appendix extends its evaluation section that starts in page 148.

F.1 Matrix Multiplication

The matrix multiplication benchmark with regions has been evaluated in the previous
appendix in section E.2 that starts on page 229. This section evaluates the NUMA
aspects on that implementation.

Units of Distribution

The matrix multiplication operates over three bidimensional arrays. Each matrix is
accessed with different orders. Tasks access the first matrix by columns, the second by
rows, and the third by blocks. For any given column of the first matrix, the algorithm
traverses every row of the second matrix, and updates the value of every position
of the result matrix. This access pattern shows that no unit of distribution can be
applied simultaneously to each matrix to benefit the NUMA affinity of all three
matrices.

We have tried three distributions: a distribution by blocks, a distribution by
horizontal panels and a distribution by vertical panels. In all three cases each matrix
has been initialized independently by separating their initializations with barriers.

Effects of Data Placement on Performance

To validate the effectiveness of the runtime placement and its effect on performance,
we have made measurements with the NUMA-unaware scheduler with memory
interleaving and with the NUMA-aware scheduler with the three data distributions.

Since the matrix multiplication algorithm has a high number of computations per
element, and we are using the highly tuned MKL kernels for the task implementation,
we expect that the NUMA aspects will not have an important effect on performance.
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Effective Flops/cycle improvement of Horizontal vs. Interleaved (%)
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Figure F.1: Average task floating point operations per cycle improvement of the
matrix multiplications distributed horizontally compared to the executions with the
interleaved distribution.

Figure F.2 shows the performance and strong scalability of each case with the
best blocking size for each problem size. Notice that the executions with the smallest
problem sizes perform differently depending on the data distribution, but as we
increase the problem size the performance difference disappears.

Figure F.1 shows the average task flops per cycle when running the problem with
the horizontal distribution compared to the executions with the memory interleaved.
Notice that for many executions, task performance is almost identical, and only in
two cases it is 23% better.

Effectiveness of the NUMA Scheduling Policy

To evaluate how much NUMA affinity and memory load balancing affect the per-
formance of the matrix multiplication, we have selected the horizontal distribution
and made additional measurements with the scheduler that misplaces tasks, and the
scheduler that tries to overload the memories. Figure F.3 shows the scalability of each
case with the same blocking size as the NUMA scheduler. Notice that the “bad” sched-
ulers do not manage to perform significantly lower than the interleaved case. This
shows again that this problem does not benefit at this scale from NUMA-awareness.

Performance Compared to Other Implementations

To compare the performance of the NUMA-aware implementation to other program-
ming models, we have made additional measurements with the blocked implemen-
tation presented in page 33 and evaluated in page 207, the OpenMP version, and
the parallel MKL version.

Figure F.4 shows the strong scalability of each implementation with several
problem sizes with the best performing block size in each case. The series labeled
“Interleaved” corresponds to the NUMA-unaware executions. The series labeled
“Blocked Layout” corresponds to the implementation from the blocks-based program-
ming model with the memory interleaved. The “OpenMP” series corresponds to an
equivalent one to the regions version, but using OpenMP. The series labeled “MKL”
corresponds to the executions using the parallel implementation within the MKL
library.
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Figure F.2: Strong scalability and performance with 32 cores of the NUMA-unaware
matrix multiplication, the executions with a blocked data distribution, the executions
with horizontal distribution, and the executions with vertical distribution.
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Figure F.3: Strong scalability and performance with 32 cores of the matrix multipli-
cation with memory overloading scheduler, the misplacing scheduler, the NUMA-
unaware scheduler, and the NUMA scheduler.
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Figure F.4: Strong scalability and performance with 32 cores of the matrix multi-
plication algorithm with several variants under SMPSs, OpenMP and the parallel
MKL.

Notice that NUMA affinity does not have an impact on performance. Instead,
spatial locality is clearly the most important factor. Figure F.5 shows the floating point
performance difference between the NUMA-unaware executions with the blocked
layout and the NUMA-aware executions with the flat layout and the horizontal
distribution. For block sizes below 1024 elements per side, the executions with the
blocked data layout and the memory interleaved outperform the executions with
the flat layout and the NUMA-aware scheduler.

Table F.1 summarizes the scalability performance of each implementation numer-
ically.
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Effective Flops/cycle improvement of Blocked Layout vs. NUMA (%)
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Figure F.5: Mean matrix multiplication task performance difference between the
NUMA-unaware execution using the blocked data layout compared to the NUMA-
aware execution with the flat data layout and horizontal distribution.
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Cores Na GFb GFb GFb GFb GFb FPCc FPCc FPCc FPCc FPCc

1 1024 6.1 6.1 6.2 6.1 6.1 3.9 3.9 3.9 3.9 3.9
1 2048 6.1 6.1 6.2 6.1 6.1 3.8 3.9 3.9 3.8 3.8
1 4096 6.1 6.1 6.2 6.1 6.1 3.9 3.9 3.9 3.9 3.9

2 1024 12 12 12 12 12 3.9 3.9 3.9 3.9 3.9
2 2048 11 11 12 11 11 3.7 3.7 3.9 3.7 3.8
2 4096 12 12 12 12 12 3.8 3.8 3.9 3.8 3.9

4 1024 23 22 23 22 23 3.8 3.7 3.9 3.8 3.8
4 2048 20 20 24 20 22 3.4 3.4 3.9 3.4 3.6
4 4096 23 23 24 23 23 3.8 3.8 3.9 3.7 3.8

8 1024 42 41 45 41 42 3.6 3.5 3.8 3.6 3.5
8 2048 36 35 48 35 41 3.3 3.2 3.9 2.9 3.5
8 4096 44 44 49 43 45 3.6 3.6 3.9 3.5 3.7
8 8192 47 47 49 46 47 3.8 3.8 3.9 3.7 3.8

16 1024 65 66 80 66 68 3.4 3.3 3.7 3.4 3.2
16 2048 60 61 91 59 68 2.7 2.7 3.8 2.7 3.1
16 4096 84 84 96 84 84 3.5 3.5 3.9 3.5 3.5
16 8192 92 91 98 90 90 3.7 3.7 3.9 3.7 3.7
16 16384 95 95 99 93 93 3.8 3.8 3.9 3.8 3.8

32 1024 73 69 121 70 71 3.0 2.6 3.3 2.8 1.9
32 2048 77 82 163 83 95 2.6 2.7 3.8 2.7 2.5
32 4096 143 143 186 145 149 3.2 3.1 3.8 3.2 3.2
32 8192 172 172 192 172 171 3.6 3.5 3.8 3.6 3.5
32 16384 183 184 195 182 180 3.8 3.8 3.9 3.7 3.7

Implementation: NUMA Interleaved Blocked Layout OpenMP MKL
a Matrix side size.
b Gigaflops per second.
c Mean floating point operations per cycle while running tasks.

Table F.1: Performance summary of the matrix multiplication implementations.
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F.2 Cholesky

The blocked version of the Cholesky benchmark has been evaluated in chapter 3 in
the section that starts in page 50 and in its regions-based version in appendix E in
the section thats starts in page 243. This appendix evaluates how NUMA affects the
performance of the regions-based version.

Units of Distribution

The algorithm operates over a square matrix with tasks that access non-overlapping
square regions. Therefore, this case is suitable for a blocked data distribution that
matches the blocks of the tasks, and for horizontal and vertical distributions with
their respective height and width that matches the block size.

Since this algorithm contains tasks that operate over pairs of blocks that are
aligned horizontally and pairs that are aligned vertically, the horizontal and vertical
distributions could potentially perform better than the blocked distribution.

Effects of Data Placement on Performance

To validate the effectiveness of the runtime placement and its effect on performance,
we have made measurements with the NUMA-unaware scheduler with memory
interleaving and with the NUMA-aware scheduler with the three data distributions.
Since most of the tasks are matrix multiplications, we expect that affinity will not
have a huge impact on performance.

Figure F.6 shows the performance and strong scalability of each distribution with
the best blocking size for each problem size, and table F.2 shows the corresponding
numerical data. Notice that there is barely any difference between the distributions
nor the interleaved execution. In this case, the matrix multiplication task is optimized
so well that the algorithm does not suffer from bad NUMA affinity. Only the smallest
problem size with the horizontal distribution performs worse than the rest. In this
configuration, the the task affinity is similar to the blocked distribution and much
higher than the vertical distribution. However, the MKL library is spending on average
58% more time running the kernel.

Effectiveness of the NUMA Scheduling Policy

To evaluate how much memory affinity and memory load balancing affect perfor-
mance on this code, we have selected the blocked distribution and made additional
measurements with the “bad” schedulers. Figure F.7 shows the strong scalability
of each case with the best blocking size of the NUMA scheduler. Notice that the
interleaved executions perform similarly to the NUMA-aware executions, and that
the “bad” schedulers only perform worse for the smallest problem sizes. This shows
that this problem only needs memory interleaving to perform well at this scale.

For completeness, figure F.8 shows the average task memory affinity of the ex-
ecutions and demonstrates that the dependency structure of the problem is not
preventing the schedulers from making their NUMA affinity policies effective. In-
stead affinity is not affecting performance.
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Figure F.6: Strong scalability and performance with 32 cores of the NUMA-unaware
Cholesky algorithm, the executions with a blocked data distribution, the executions
with horizontal distribution, and the executions with vertical distribution.
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Cores Na GFb GFb GFb GFb Aff.c

(%)
Aff.c

(%)
Aff.c

(%)
Aff.c

(%)

1 2048 5.0 5.0 5.0 5.0 100 100 100 100
1 4096 5.5 5.5 5.4 5.4 100 100 100 100
1 8192 5.8 5.8 5.4 5.8 100 100 100 100
1 16384 5.9 5.9 5.5 6.0 100 100 100 100

2 2048 9.3 9.3 9.2 9.2 100 100 100 100
2 4096 10 10 10 10 100 100 100 100
2 8192 11 11 11 11 100 100 100 100
2 16384 11 11 11 11 100 100 100 100

4 2048 15 16 15 15 100 100 100 100
4 4096 19 19 19 20 100 100 100 100
4 8192 21 21 21 21 100 100 100 100
4 16384 22 22 22 23 100 100 100 100

8 2048 23 23 22 23 50 71 72 56
8 4096 35 36 36 35 50 63 75 55
8 8192 40 41 41 41 50 72 76 75
8 16384 44 45 44 45 50 80 75 78
8 32768 45 46 45 46 50 83 75 80

16 2048 26 26 26 25 25 53 54 44
16 4096 59 60 58 60 25 52 58 33
16 8192 73 76 77 74 25 47 61 46
16 16384 85 87 86 86 25 63 61 62
16 32768 89 91 88 90 25 70 53 63

32 4096 80 80 66 77 12 41 39 22
32 8192 134 136 130 134 12 39 45 24
32 16384 158 160 159 161 12 41 47 41
32 32768 171 175 172 173 12 57 37 52

Distribution: Interleaved Blocked Horizontal Vertical
a Matrix side size.
b Gigaflops per second.
c Mean memory affinity.

Table F.2: Performance summary of Cholesky with four data distribu-
tions.
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Figure F.7: Strong scalability and performance with 32 cores of Cholesky with memory
overloading scheduler, the misplacing scheduler, the NUMA-unaware scheduler, and
the NUMA scheduler.
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Figure F.8: Mean memory affinity of the tasks of the Cholesky code with four sched-
ulers.

Performance Compared to Other Implementations

To compare the performance of the NUMA-aware implementation to other program-
ming models, we have made additional measurements with the blocked implemen-
tation from chapter 3 that starts in page 50, the OpenMP version, and the parallel
MKL version.

Figure F.9 shows the strong scalability of each implementation with several
problem sizes with the best performing block size in each case. The series labeled
“Interleaved” corresponds to the NUMA-unaware executions. The series labeled
“Blocked Layout” corresponds to the implementation from the blocks-based program-
ming model with the memory interleaved. The “OpenMP” series corresponds to an
equivalent one to the regions version, but using OpenMP and barriers. The series
labeled “MKL” corresponds to the executions using the parallel implementation
within the MKL library.

Notice that all the SMPSs versions outperform all the other due to its ability to
exploit more parallelism at a coarser granularity. However, NUMA affinity does not
have an impact on performance. Instead, spatial locality is clearly the most important
factor.

Figure F.10 shows the floating point performance difference between the NUMA-
unaware executions with the blocked layout and the NUMA-aware executions with
the flat layout. For block sizes below 1024 elements per side, the executions with the
blocked data layout and the memory interleaved outperform the executions with
the flat layout and the NUMA-aware scheduler.

Table F.3 summarizes the scalability performance of each implementation numer-
ically.
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Figure F.9: Strong scalability and performance with 32 cores of the Cholesky algo-
rithm with several variants under SMPSs, OpenMP and the parallel MKL.
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execution using the blocked data layout compared to the NUMA-aware execution
with the flat data layout and blocked distribution.
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Cores Na GFb GFb GFb GFb GFb FPCc FPCc FPCc FPCc FPCc

1 4096 5.5 5.5 6.0 5.0 5.2 3.5 3.5 3.8 3.2 3.3
1 8192 5.8 5.8 6.1 5.7 5.5 3.7 3.7 3.9 3.6 3.5
1 16384 5.9 5.9 6.1 5.9 5.7 3.8 3.8 3.9 3.8 3.6

2 4096 10 10 11 9.6 10 3.4 3.4 3.8 3.2 3.4
2 8192 11 11 12 10 11 3.6 3.6 3.9 3.6 3.5
2 16384 11 11 12 11 11 3.7 3.7 3.9 3.7 3.6

4 4096 19 19 23 15 19 3.3 3.3 3.8 2.8 3.3
4 8192 21 21 23 19 21 3.6 3.6 3.8 3.3 3.4
4 16384 22 22 24 21 21 3.7 3.7 3.9 3.6 3.5

8 4096 36 35 43 21 35 3.1 3.1 3.7 2.1 3.1
8 8192 41 40 46 30 38 3.5 3.5 3.8 2.9 3.3
8 16384 45 44 48 39 41 3.6 3.6 3.9 3.3 3.4
8 32768 46 45 48 43 43 3.7 3.7 3.9 3.5 3.5

16 4096 60 59 76 27 62 3.0 3.0 3.7 1.9 2.8
16 8192 76 73 91 39 74 3.2 3.1 3.8 2.6 3.1
16 16384 87 85 94 60 79 3.6 3.5 3.9 2.8 3.2
16 32768 91 89 95 77 82 3.7 3.6 3.9 3.2 3.3

32 4096 80 80 115 30 48 2.7 2.8 3.4 1.8 1.4
32 8192 136 134 170 59 101 3.0 3.0 3.7 1.8 2.1
32 16384 160 158 181 80 128 3.5 3.4 3.7 2.4 2.6
32 32768 175 171 185 116 143 3.6 3.5 3.8 2.6 2.9

Implementation: NUMA Interleaved Blocked Layout OpenMP MKL
a Matrix side size.
b Gigaflops per second.
c Mean floating point operations per cycle while running tasks.

Table F.3: Performance summary of the Cholesky implementations.
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F.3 Strassen-Winograd

The Strassen-Winograd benchmark has been evaluated in the previous chapters. The
blocked variant has been evaluated in section 3.6.5 that starts in page 68, and the
flat variant using regions has been evaluated in section 4.5.1 that starts in page 99.
This section evaluates how NUMA affinity affects its performance.

Units of Distribution

The algorithm has been written to allow different blocking sizes for the matrix
multiplication tasks and the rest of the tasks, which have different algorithmic cost.
It operates over three matrices by non overlapping square blocks. Therefore, this
case is suitable for a blocked data distribution that matches the blocks of the tasks,
and for horizontal and vertical distributions with their respective height and width
that matches the block size. Since there are two blocking sizes, we choose the biggest
one.

The access pattern of the algorithm over the source matrices is similar to the
one of the standard matrix multiplication. Therefore, the same assumptions apply.
However, since Strassen uses temporary matrices, the distribution of those will be
determined dynamically and thus the affinity of the tasks that use these as input will
depend on the place where their predecessors are executed.

Effects of Data Placement on Performance

To validate the effectiveness of the runtime placement and its effect on performance,
we have made measurements with the NUMA-unaware scheduler with memory
interleaving and with the NUMA-aware scheduler with the three data distributions.
Since some tasks are matrix additions and subtractions, we expect that affinity
will have a higher impact on performance than it does with the regular matrix
multiplication algorithm.

Figure F.11 shows the performance and strong scalability of each distribution
with the best blocking size for each problem size, and table F.4 shows the correspond-
ing numerical data. Note that the floating point performance does not reflect the
real number of floating point operations but the equivalent of the regular matrix
multiplication algorithm. Therefore, the rate can have values above the theoretical
hardware maximum.

Figure F.11 and table F.4 show that the three distributions perform almost on par.
However, they scale better than the NUMA-unaware execution. As the problem size
gets bigger, the portion of the time spent running matrix multiplication tasks gets
also bigger, since they have more computational complexity. However, since their
performance is less sensitive to memory affinity, as we increase the problem size,
the performance gap between the NUMA-aware and the NUMA-unaware executions
gets narrower.
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Figure F.11: Strong scalability and performance with 32 cores of the NUMA-unaware
Strassen-Winograd algorithm, the executions with a blocked data distribution, the
executions with horizontal distribution, and the executions with vertical distribution.
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Cores Na GFb GFb GFb GFb Aff.c

(%)
Aff.c

(%)
Aff.c

(%)
Aff.c

(%)

1 1024 6.1 6.1 6.1 6.1 100 100 100 100
1 2048 6.3 6.4 6.4 6.4 100 100 100 100
1 4096 6.9 7.0 7.0 7.0 100 100 100 100
1 8192 7.8 7.8 7.8 7.8 100 100 100 100

2 1024 10 11 11 11 100 100 100 100
2 2048 12 12 12 12 100 100 100 100
2 4096 13 13 13 13 100 100 100 100
2 8192 15 15 15 15 100 100 100 100

4 1024 18 19 19 19 100 100 100 100
4 2048 21 21 21 21 100 100 100 100
4 4096 24 24 24 24 100 100 100 100
4 8192 28 28 28 28 100 100 100 100

8 1024 27 28 29 28 50 67 68 67
8 2048 32 36 37 36 50 63 66 63
8 4096 42 43 44 44 50 63 67 66
8 8192 51 53 52 53 50 72 73 72
8 16384 62 63 63 62 50 66 62 65

16 1024 24 28 29 28 25 50 49 44
16 2048 48 53 53 54 25 46 49 52
16 4096 69 73 71 73 25 45 53 48
16 8192 91 99 99 98 25 57 58 56
16 16384 119 121 118 118 25 47 45 45

32 1024 21 28 27 28 12 41 56 39
32 2048 47 63 63 65 12 36 45 34
32 4096 93 108 106 101 12 44 46 40
32 8192 140 170 169 170 12 38 38 36
32 16384 207 216 219 221 12 36 35 37

Distribution: Interleaved Blocked Horizontal Vertical
a Matrix side size.
b GFlops.
c Mean memory affinity.

Table F.4: Performance summary of Strassen-Winograd with several
data distributions.
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Effectiveness of the NUMA Scheduling Policy

To evaluate how much memory affinity and memory load balancing affect perfor-
mance, we have selected the blocked distribution and made additional measurements
with the “bad” schedulers. Figure F.12 shows the scalability of each case with the
same blocking size as the NUMA scheduler.

Notice that on this problem the “bad” schedulers perform better than the NUMA-
unaware scheduler. While the NUMA-unaware execution interleaves all the data
between the nodes in round-robin, the other two scheduling algorithms have an
effect on the placement of the data. In particular, under the “bad” schedulers, the
temporary arrays get placed in the memories of the NUMA nodes where their are
initializations are executed. Therefore, the accesses to initialize the temporary data
will always be affine and thus it is not possible to enforce the full potential of those
policies. However, this demonstrates that determining the mapping of the units of
distribution dynamically can be beneficial to performance. In fact, the tasks that
initialize the temporary data are the most sensitive to affinity. Hence, the benefit
surpasses the effects that these schedulers have over the affinity of the rest of tasks
and parameters.

Performance Compared to Other Implementations

To compare the performance of the NUMA-aware implementation to other program-
ming models, we have made additional measurements with the blocked implemen-
tation from chapter 3 that starts in page 68, and the OpenMP version of the same
section that uses task nesting.

Figure F.13 shows the strong scalability of each implementation with several
problem sizes with the best performing block size in each case. The series labeled
“Interleaved” corresponds to the NUMA-unaware executions. The series labeled
“Blocked Layout” corresponds to the implementation from the blocks-based program-
ming model with the memory interleaved, and the “OpenMP” series corresponds to
the OpenMP version with task nesting. Notice that all the SMPSs versions outperform
the OpenMP implementation due to their ability to exploit more parallelism at a
coarser granularity.

NUMA has an important impact on performance for the smallest problem sizes.
However it decreases as the problem size increases since the matrix multiplication
tasks become more dominating and are less sensitive to NUMA. Figure F.14 shows the
floating point performance difference between the NUMA-unaware executions with
the blocked layout and the NUMA-aware executions with the flat layout. For block of
256 elements per side, the executions with the blocked data layout and the memory
interleaved outperform the executions with the flat layout and the NUMA-aware
scheduler. However, for bigger block sizes, the NUMA executions perform better.

Table F.5 summarizes the scalability results numerically.
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Figure F.12: Strong scalability and performance with 32 cores the Strassen-Winograd
algorithm with memory overloading scheduler, the misplacing scheduler, the NUMA-
unaware scheduler, and the NUMA scheduler.
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Figure F.13: Strong scalability and performance with 32 cores of the Strassen-
Winograd algorithm with memory overloading scheduler, the misplacing scheduler,
the NUMA-unaware scheduler, and the NUMA scheduler.
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Effective Flops/cycle improvement of Blocked Layout vs. NUMA (%)
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Figure F.14: Difference between the mean Strassen-Winograd task performance of
the NUMA-unaware execution with blocked layout and the NUMA executions with
horizontal distribution.
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Cores Na GFb GFb GFb GFb FPCc FPCc FPCc FPCc Eff.d

(%)
Eff.d

(%)
Eff.d

(%)
Eff.d

(%)

1 1024 6.1 6.1 6.1 6.1 3.9 3.9 3.5 3.9 99 99 99 99
1 2048 6.4 6.3 6.5 6.4 3.6 3.6 3.3 3.6 99 99 98 99
1 4096 7.0 6.9 7.2 7.1 3.5 3.4 3.2 3.5 99 99 98 99
1 8192 7.8 7.8 7.9 7.9 3.4 3.4 3.1 3.4 99 99 98 99

2 1024 11 10 10 8.5 3.5 3.4 3.4 2.8 92 91 91 83
2 2048 12 12 12 10 3.2 3.1 3.3 3.2 97 98 98 83
2 4096 13 13 13 12 3.4 3.4 3.2 3.1 98 98 98 92
2 8192 15 15 15 14 3.3 3.3 3.4 3.0 99 99 99 97

4 1024 19 18 18 10 3.2 3.2 2.7 2.5 87 82 94 60
4 2048 21 21 23 13 2.9 3.0 3.1 2.3 95 94 96 74
4 4096 24 24 26 17 3.3 3.2 3.4 2.9 96 96 96 72
4 8192 28 28 29 23 3.2 3.2 3.3 2.8 97 98 99 83

8 1024 28 27 27 11 3.1 2.4 3.2 2.1 68 87 64 40
8 2048 36 32 39 15 2.8 3.3 2.8 2.8 88 74 92 37
8 4096 43 42 46 21 3.1 3.1 3.2 2.6 89 88 93 49
8 8192 53 51 54 27 3.0 3.0 3.1 2.5 98 98 98 58
8 16384 63 62 61 35 3.5 3.4 3.4 2.5 99 98 98 65

16 1024 28 24 29 11 1.9 1.7 1.9 1.9 64 64 79 24
16 2048 53 48 57 16 2.6 2.4 2.6 2.6 75 76 84 22
16 4096 73 69 73 25 3.0 2.9 2.9 2.4 80 80 84 32
16 8192 99 91 92 33 2.9 2.8 2.8 2.3 97 94 97 40
16 16384 121 119 118 43 3.4 3.3 3.3 2.3 96 97 97 46

32 1024 28 21 23 11 1.9 1.5 1.7 1.8 32 33 39 12
32 2048 63 47 64 16 2.5 2.2 2.2 2.6 48 45 68 11
32 4096 108 93 95 27 2.9 2.7 2.3 2.3 72 59 74 19
32 8192 170 140 136 38 2.9 3.1 3.1 2.1 90 73 74 26
32 16384 216 207 207 50 3.3 3.2 3.1 2.0 93 91 94 33

Implementation: NUMA Interleaved Blocked Layout OpenMP
a Matrix side size.
b GFlops.
c Mean floating point operations per cycle while running tasks.
d Mean time that threads spend running tasks.

Table F.5: Performance summary of the Strassen-Winograd implementations.
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F.4 High Performance Linpack

High Performance Linpack is a benchmark that has been presented in chapter 4 in the
section that starts in page 127. The official implementation of the HPL benchmark
uses MPI and is used to evaluate the performance of the computers that participate in
the Top 500 ranking list. It consists of computation intensive parts and data intensive
parts. Therefore, it is a good reference to validate our ability to exploit NUMA affinity.

Units of Distribution

The HPL benchmark is composed of two algorithms. One calculates the LU factoriza-
tion of a matrix with partial pivoting. This algorithm is the one that takes the most
computation time. The other algorithm uses the result to solve the equation system
for a particular vector.

Its tasks do not access the matrix in perfectly regular blocks as is the case of
Cholesky. Instead, the shape of the regions depends on the type of task, and the
iteration of the outermost loop.

On one hand, the most computationally expensive tasks are the ones that perform
matrix multiplications. And on the other hand, the most memory bandwidth demand-
ing tasks are the ones that perform the partial pivoting. However, the computation
of the blocks of the diagonal are demanding on both ways, since they actually solve
the same problem as the main algorithm, but over a smaller data set.

One of the most bandwidth demanding operations of the algorithm is finding
the pivots, which consist of scanning the columns of the matrix one by one, and
is performed by the task that solves a block from the diagonal. The affinity of this
operation could be favored by distributing the data by vertical panels. This distribu-
tion also favors the affinity of the pivoting operations, since they are performed over
pairs of row segments of the same vertical panels.

For completeness we have measured the performance of the algorithm with the
matrix distributed in horizontal panels, in vertical panels and by blocks. The widths
and/or heights of each case correspond to the task block size.

Effects of Data Placement on Performance

Figure F.15 shows the performance and strong scalability of each distribution with
the best blocking size for each problem size, and table F.6 shows the corresponding
numerical data.

Notice that due to the computational complexity of the problem, as we increase
the problem size, floating point performance becomes the dominating factor. There-
fore, as we increase the problem size, the benefits of exploiting NUMA diminishes,
and both the interleaved distribution and the rest tend to perform similarly. However
for N up to 16386, the vertical distribution performs better than the rest. The second
best performer is the blocked distribution, and then the interleaved executions. The
worst performer is the horizontal distribution.

Since this code uses column-major order, the vertical distribution is the least
affected by the page size granularity, and the horizontal distribution the most affected.
In addition, the vertical distribution favors the NUMA affinity of finding the pivots
and performing the pivoting, which are the most memory bandwidth demanding
operations. The lower performance of the executions with the horizontal distribution
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compared to the execution with interleaving are due to the restrictions that the page
granularity impose over the distribution and thus the total memory bandwidth.

Effectiveness of the NUMA Scheduling Policy

To evaluate how much memory affinity and memory load balancing affect perfor-
mance on this code, we have selected the vertical distribution and made additional
measurements with the scheduler that misplaces tasks, and the scheduler that tries
to overload the memories. Figure F.16 shows the scalability of each case with the
best blocking size of the NUMA scheduler. Notice that except for the smallest prob-
lem size, NUMA affinity has an important impact on performance. For the biggest
problem size, the blocking size is big enough that the multiplication tasks through
the exploitation of temporal locality are much less dependent of NUMA affinity.

Performance Compared to Other Implementations

To compare the performance of the NUMA-aware implementation to other program-
ming models, we have made additional measurements with the official MPI version,
and the parallel MKL version.

Figure F.17 shows the strong scalability of each implementation with several
problem sizes with the best performing block size for the SMPSs versions and the
official MPI version, and the automatically chosen one for the MKL version. The
series labeled “Interleaved” corresponds to the NUMA-unaware executions. The
series labeled “NUMA” corresponds to the SMPSs executions using the NUMA-aware
scheduler and the vertical distribution. The series labeled “MPI” corresponds to the
official implementation made in MPI. The “MKL” series corresponds to the version
that comes with MKL.

Notice that the MPI version has a significant advantage on the two smallest
problem sizes. Under those conditions the overhead in the main thread of the NUMA
executions with 32 cores ranges between 60% and 80%, and the effective parallelism
from 40% to 60%. These parameters clearly show that the NUMA execution is
being slowed down by too much overhead. While the MPI performance is also low,
the communication overhead seems to be offset its ability to generate the work in
parallel. However, for the biggest problem sizes, the NUMA executions manage to
slightly outperform the reference implementation.

The MKL version, does not scale as well as all the others, and therefore with 32
cores it ends up last in every case.

Table F.7 summarizes those findings numerically. Note that the parallel MKL
executions with 2 cores, despite using the same base linear algebra library, did not
produce correct results and therefore have been discarded.
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Figure F.15: Strong scalability and performance with 32 cores of the NUMA-unaware
HPL algorithm, the executions with a blocked data distribution, the executions with
horizontal distribution, and the executions with vertical distribution.
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Cores Na GFb GFb GFb GFb Aff.c

(%)
Aff.c

(%)
Aff.c

(%)
Aff.c

(%)

1 2048 5.2 5.2 5.3 5.1 100 100 100 100
1 4096 5.6 5.7 5.4 5.4 100 100 100 100
1 8192 5.9 6.0 5.7 5.7 100 100 100 100
1 16384 6.0 6.0 5.9 5.9 100 100 100 100

2 2048 9.0 9.1 9.1 8.9 100 100 100 100
2 4096 10 10 10 10 100 100 100 100
2 8192 11 11 11 11 100 100 100 100
2 16384 11 11 11 11 100 100 100 100

4 2048 16 16 16 16 100 100 100 100
4 4096 19 19 19 19 100 100 100 100
4 8192 21 21 21 21 100 100 100 100
4 16384 22 23 23 23 100 100 100 100

8 2048 24 24 20 24 50 83 62 81
8 4096 33 32 32 34 50 68 62 89
8 8192 40 39 39 40 50 65 62 88
8 16384 43 44 43 43 50 65 64 88
8 32768 46 46 46 46 50 66 64 88

16 2048 29 30 20 32 25 79 52 72
16 4096 53 53 45 58 25 54 34 67
16 8192 69 68 69 75 25 43 36 68
16 16384 82 83 82 85 25 45 42 70
16 32768 89 90 90 89 25 47 47 84

32 2048 23 28 17 28 12 76 54 39
32 4096 56 58 44 67 12 44 28 65
32 8192 106 112 93 127 12 37 21 67
32 16384 142 144 133 159 12 33 26 67
32 32768 169 173 171 175 12 35 31 64

Distribution: Interleaved Blocked Horizontal Vertical
a Matrix side size.
b Gigaflops per second.
c Mean memory affinity.

Table F.6: Performance summary of HPL with four data distributions.
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Figure F.16: Strong scalability and performance with 32 cores of HPL with memory
overloading scheduler, the misplacing scheduler, the NUMA-unaware scheduler, and
the NUMA scheduler.
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Figure F.17: Strong scalability and performance with 32 cores of the HPL algorithm
with several variants under SMPSs, OpenMP and the parallel MKL.
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Cores Na GFb GFb GFb GFb FPCc FPCc FPCc Eff.d

(%)
Eff.d

(%)
Eff.d

(%)

1 2048 5.2 5.1 5.1 5.2 3.3 3.3 3.3 99 99 99
1 4096 5.6 5.4 5.5 5.7 3.5 3.4 3.6 99 99 99
1 8192 5.9 5.7 5.7 5.9 3.7 3.6 3.7 99 99 99
1 16384 6.0 5.9 5.9 6.0 3.8 3.7 3.8 99 99 99

2 2048 9.0 8.9 8.6 ∅ 3.0 3.0 ∅ 93 93 ∅
2 4096 10 10 9.8 ∅ 3.4 3.3 ∅ 96 98 ∅
2 8192 11 11 10 ∅ 3.6 3.5 ∅ 97 98 ∅
2 16384 11 11 11 ∅ 3.8 3.7 ∅ 97 99 ∅

4 2048 16 16 15 14 2.8 2.8 2.5 90 91 93
4 4096 19 19 17 19 3.2 3.2 3.2 95 96 96
4 8192 21 21 19 21 3.4 3.5 3.5 97 97 98
4 16384 22 23 21 23 3.6 3.7 3.7 98 98 98

8 2048 24 24 25 27 2.4 2.5 2.7 82 78 82
8 4096 33 34 30 32 2.8 2.9 2.9 91 92 89
8 8192 40 40 36 38 3.3 3.4 3.2 95 94 93
8 16384 43 43 40 42 3.5 3.6 3.5 97 96 95
8 32768 46 46 43 45 3.7 3.7 3.7 98 98 97

16 2048 29 32 36 34 1.9 2.2 2.3 63 59 63
16 4096 53 58 56 45 2.4 2.7 2.4 87 85 77
16 8192 69 75 67 53 3.0 3.2 2.5 91 93 83
16 16384 82 85 77 68 3.4 3.5 3.0 95 96 89
16 32768 89 89 84 80 3.6 3.7 3.4 98 96 92

32 2048 23 28 34 1.5 1.4 1.8 1.0 37 35 27
32 4096 56 67 92 41 1.8 2.3 1.4 65 58 63
32 8192 106 127 123 61 2.4 2.9 1.7 88 87 73
32 16384 142 159 145 79 3.0 3.3 2.1 92 95 77
32 32768 169 175 164 115 3.4 3.6 2.8 97 96 81

Implementation: Interleaved NUMA MPI MKL
a Matrix side size.
b Gigaflops per second.
c Mean floating point operations per cycle while running tasks.
d Mean time that threads spend running tasks.

Table F.7: Performance summary of the HPL implementations.
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