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Abstract 

 

A test site for CO2 geological storage is situated in Hontomín (Burgos, northern 

Spain) with a reservoir rock that is mainly composed of limestone (80-85%) and sandstone 

(15-20%). The reservoir rock is a deep saline aquifer that is covered by a very low 

permeability formation which acts as a cap rock. During and after CO2 injection, since the 

resident groundwater contains sulfate, the resulting CO2-rich acid solution gives rise to the 

dissolution of carbonate minerals (calcite and dolomite) and secondary sulfate-rich mineral 

precipitation (gypsum or anhydrite) may occur. These reactions that may imply changes in 

the porosity, permeability and pore structure of the repository could vary the CO2 storage 

capacity and injectivity of the reservoir rock. 

Therefore, better knowledge about the overall process of gypsum precipitation at 

the expense of carbonate mineral dissolution in CO2-rich solutions and its implications 

for the hydrodynamic properties of the reservoir rocks is necessary. A first aim of this 

thesis is to better understand these coupled reactions by assessing the effect that P, pCO2, T, 

mineralogy, acidity and solution saturation state exert on these reactions. To this end, 

experiments using columns filled with crushed limestone or dolostone are conducted under 

different P–pCO2 conditions (atmospheric: 1–10
-3.5

 bar; subcritical: 10–10 bar; and 

supercritical: 150–34 bar), T (25, 40 and 60 °C) and input solution compositions (gypsum-

undersaturated and gypsum-equilibrated solutions). The CrunchFlow and PhreeqC (v.3) 

numerical codes are used to perform 1D reactive transport simulations of the experiments to 

evaluate mineral reaction rates in the system and quantify the porosity variation along the 

column. 

Within the range of P–pCO2 and T of this study only gypsum precipitation takes place and 

this only occurs when the injected solution is equilibrated with gypsum. Under the P–pCO2–T 

conditions, the volume of precipitated gypsum is smaller than the volume of dissolved 

carbonate minerals, yielding always an increase in porosity (Δ  up to ≈ 4%). 

A decrease in T favors limestone dissolution regardless of pCO2 owing to increasing 

undersaturation with decreasing temperature. However, gypsum precipitation is favored at 

high T and under atmospheric pCO2 conditions but not at high T and under 10 bar of pCO2 



conditions. The increase in limestone dissolution with pCO2 is directly attributed to pH, 

which is more acidic at higher pCO2. 

Limestone dissolution induces late gypsum precipitation (long induction time) in contrast to 

dolostone dissolution, which promotes rapid gypsum precipitation. Moreover, owing to the 

slow kinetics of dolomite dissolution with respect to that of calcite, both the volume of 

dissolved mineral and the increase in porosity are larger in the limestone experiments than in 

the dolostone ones under all pCO2 conditions (10
-3.5

 and 10 bar). 

By increasing pCO2, carbonate dissolution occurs along the column whereas it is localized in 

the very inlet under atmospheric conditions. This is due to the buffer capacity of the carbonic 

acid, which maintains pH at around 5 and keeps the solution undersaturated with respect to 

calcite and dolomite along the column.  

1D reactive transport simulations reproduce the experimental data (carbonate dissolution and 

gypsum precipitation for different P–pCO2–T conditions). Drawing on reaction rate laws in 

the literature, the reactive surface area to fit the models to the experimental data is used. The 

values of the reactive surface area are much smaller than those calculated from the geometric 

areas, given by the transport control of the dissolution reactions. 

Given that Hontomín reservoir rock is a fractured system, understanding reaction-

induced changes in fracture hydrodynamic properties as a result of contact with acidic fluids 

is essential for predicting subsurface flows, such as leakage, injectability, and fluid 

production. Considering this, the second aim of this thesis is to characterize the overall 

evolution of a fracture in contact with CO2-rich solutions under different flow rates. 

Also, the geochemical response of two fractured Hontomín reservoir rocks (limestone and 

sandstone) to injection of a CO2-rich solution is compared. Hence, a set of percolation 

experiments which consist of injecting CO2-rich solutions through fractured limestone and 

sandstone cores are performed under P = 150 bar and T = 60 ºC at different flow rates 

ranging from 0.2 to 60 mL/h and sulfate-rich and sulfate-free solutions.  

Variation in fracture volume induced by calcite dissolution and gypsum precipitation is 

measured by means of X-ray computed microtomography (XCMT) and aqueous chemistry. 

The influence of the flow rate on fracture evolution is accurately evaluated. By increasing the 

flow rate, under the same pH and far from equilibrium conditions, the volume of dissolved 

calcite per time increases, confirming that calcite dissolution in the fracture is transport 



controlled. In addition, the formation of more uniform geometries under fast flow rates seems 

to favor calcite dissolution.  

The formed dissolution patterns vary from face dissolution to wormhole formation and 

uniform dissolution by increasing the flow rate (i.e., Pe from 1 to 346). Variation in fracture 

permeability is also measured and is found to be highly dependent on the flow rate and 

developed dissolution pattern. Fracture permeability always increases regardless the sulfur 

content of the injected solution. 

On the basis of the obtained experimental results, limestone and sandstone reservoir rocks 

can be evaluated to identify the most favorable geological context within the reservoir for 

injection and storage of CO2. In addition, 2D reactive transport models that reproduce the 

variation in aqueous chemistry and fracture geometry of the experiments are performed to 

estimate flow and reaction kinetics parameters.  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Resum 

 

Una planta pilot per a l'emmagatzematge geològic de CO2 es troba a Hontomín 

(Burgos). El reservori és un aqüífer salí profund, format principalment per roca calcària (80-

85%) i gres (15-20%), que està situat entre dues capes de molt baixa permeabilitat que actuen 

com a roques segell. La dissolució de CO2 a l'aigua del reservori provocarà una disminució 

del pH i, en conseqüència, la dissolució dels carbonats presents en el reservori. Tenint en 

compte que l’aigua resident és rica en sulfat, és possible la precipitació de minerals 

secundaris (guix o anhidrita). Aquestes reaccions poden provocar canvis en la porositat, la 

permeabilitat i l’estructura de por del reservori que, a la vegada, poden afectar la seva 

injectivitat i capacitat d'emmagatzematge. 

Per tant, cal aprofundir en el coneixement sobre els processos acoblats de 

precipitació de guix i dissolució de carbonats (calcita i dolomita) en solucions riques en 

CO2 dissolt i les seves implicacions en les propietats hidrodinàmiques de la roca 

reservori. Un primer objectiu d'aquesta tesi és poder comprendre millor aquestes reaccions 

acoblades mitjançant l'avaluació de l'efecte que exerceixen la pressió P, la pressió parcial de 

CO2 pCO2, la temperatura T, la mineralogia, l’acidesa i l’estat de saturació de la solució sobre 

aquestes reaccions. Amb aquest objectiu, s'han realitzat una sèrie d'experiments utilitzant 

columnes plenes de roca calcària o dolomia triturada sota diferents condicions de P-pCO2 

(atmosfèrica: 1-10-3.5 bar; subcrítica: 10-10 bar, i supercrítica: 150-34 bar), T (25, 40 i 60 ° 

C) i composició de la solució d'entrada (solucions subsaturades o equilibrades amb guix). Els 

codis numèrics CrunchFlow i PhreeqC (v.3) s'han utilitzat per realitzar simulacions de 

transport reactiu dels experiments en columna amb l'objectiu d'avaluar les velocitats de 

reacció en el sistema i quantificar la variació de la porositat al llarg de la columna. 

En les condicions de P-pCO2-T estudiades, la precipitació de guix únicament té lloc quan la 

solució injectada està en equilibri amb guix. A més, el volum de guix precipitat és menor que 

el volum de carbonat dissolt, originant sempre un augment de porositat (Δ  fins ≈ 4%). 

Una disminució en la T afavoreix la dissolució de la calcària independentment de la pCO2 

degut a l'augment de la subsaturació. No obstant, la precipitació de guix està afavorida a alta 

T per condicions atmosfèriques, originant-se l’efecte contrari per condicions subcrítiques. 



L'augment de la pCO2 comporta un augment en la dissolució de calcària, fet que és 

directament atribuït a l'efecte del pH, que és més àcid a major pCO2. 

La dissolució de calcària comporta un retard en la precipitació de guix (llarg temps 

d'inducció), al contrari del que passa amb la dissolució de dolomia que promou una ràpida 

precipitació de guix. A més, a causa de la lenta cinètica de dissolució de la dolomita amb 

respecte a la de la calcita, el volum de mineral dissolt i l'augment de porositat són majors en 

els experiments amb calcària sota totes les condicions de pCO2 estudiades. 

La dissolució del carbonat es produeix al llarg de tota la columna quan la pCO2 és alta (10 

and 34 bar) i, en canvi, es localitza a l'entrada de la columna sota condicions atmosfèriques. 

Aquesta diferència és deguda a la capacitat tampó de l'àcid carbònic, ja que manté el pH al 

voltant de 5 i la solució subsaturada pel que fa a la calcita i a la dolomita al llarg de la 

columna. 

Les simulacions de transport reactiu (1D) reprodueixen les dades experimentals (dissolució 

de carbonat i precipitació de guix per a les diferents condicions de P-pCO2-T). En base a les 

lleis de velocitat de reacció que es troben en la literatura, s'han fet servir els valors de les 

àrees reactives per realitzar l'ajust del model a les dades experimentals. Aquests valors són 

bastant inferiors als inicialment calculats a partir de les àrees geomètriques, ja que les 

reaccions de dissolució estan controlades pel transport. 

La roca reservori a Hontomín està significativament fracturada. Per tant, entendre els 

canvis en les propietats hidrodinàmiques de les fractures, induïts per reaccions de 

dissolució/precipitació, és essencial per predir els possibles fluxos subterranis tals com fuites, 

injectivitat o producció de fluids. Tenint en compte això, el segon objectiu d'aquesta tesi és 

caracteritzar l'evolució de fractures en contacte amb solucions riques en CO2 a diferents 

cabals. També es compara la resposta geoquímica a la injecció de CO2 de les dues roques 

principals del reservori (calcària i gres). Així doncs, es realitza un conjunt d'experiments de 

percolació que consisteixen en injectar solucions riques en CO2 (sense sulfat i riques en 

sulfat) a través de roques de calcària i gres fracturades, sota P = 150 bar i T = 60 ºC i a 

diferents cabals compresos entre 0,2 i 60 ml/h. La variació del volum de fractura, induïda per 

la dissolució de calcita i la precipitació de guix, es mesura mitjançant microtomografia de 

raigs X (XCMT) i la química de la solució. S'avalua també la influència del cabal en 

l'evolució de la fractura i s'obté que el volum de calcita dissolta per unitat de temps augmenta 

augmentant el cabal, la qual cosa confirma que la dissolució en la fractura està controlada pel 



transport. També s’observa que la formació de geometries més uniformes a cabals més ràpids 

pot afavorir la dissolució de la calcita. 

Els patrons de dissolució varien de 'face dissolution' a 'wormhole' i a 'uniform dissolution' a 

mesura que s'augmenta el cabal (és a dir, número de Péclet Pe d'1 a 346). S’observa que la 

variació de permeabilitat de la fractura depèn del cabal i del patró de dissolució desenvolupat. 

La permeabilitat de la fractura sempre augmenta, independentment del contingut de sulfat de 

la solució d'entrada. 

En base als resultats experimentals obtinguts amb les roques d’Hontomín, s'avalua quin seria 

el context geològic més favorable en el reservori per a la injecció i emmagatzematge del CO2. 

A més a més, es realitzen models de transport reactiu (2D) dels experiments de percolació 

amb fractures per estimar els paràmetres cinètics i de flux. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Resumen 

 

Una planta piloto para el almacenamiento geológico de CO2 se ubica en Hontomín 

(Burgos). El reservorio es un acuífero salino profundo que se compone principalmente de 

roca caliza (80-85%) y arenisca (15-20%). Éste está situado entre dos capas de muy baja 

permeabilidad que actúan como rocas sello. La disolución de CO2 en el agua presente en el 

reservorio provocará una disminución del pH y, en consecuencia, la disolución de los 

carbonatos presentes en el reservorio. Además, como la solución residente es rica en sulfato, 

es posible la precipitación de minerales secundarios (yeso o anhidrita). Estas reacciones 

pueden provocar cambios en la porosidad, permeabilidad y estructura de poro del reservorio 

que, a su vez, pueden hacer variar  su inyectabilidad y capacidad de almacenamiento.    

Por todo ello, es necesario profundizar en el conocimiento sobre los procesos 

acoplados de precipitación de yeso y disolución de carbonatos (calcita y dolomita) en 

soluciones ricas en CO2 disuelto y sus implicaciones en las propiedades hidrodinámicas 

de la roca reservorio. Un primer objetivo de esta tesis es comprender mejor estas reacciones 

acopladas mediante la evaluación del efecto que ejercen la presión P, la presión parcial de 

CO2  pCO2, la temperatura T, la mineralogía, la acidez y el estado de saturación de la 

solución sobre estas reacciones. Con este objetivo, se han realizado una serie de experimentos 

utilizando columnas llenas de roca caliza o dolomía triturada bajo diferentes condiciones de 

P-pCO2 (atmosférica: 1-10
-3.5

 bar; sub-crítica: 10-10 bar, y supercrítica: 150-34 bar), T (25, 

40 y 60 ° C) y composición de la solución de entrada (soluciones sub-saturadas o equilibradas 

con respecto al yeso). Los códigos numéricos CrunchFlow y PhreeqC (v.3) se han utilizado 

para realizar simulaciones de transporte  reactivo de los experimentos en columna con el 

objetivo de evaluar las velocidades de reacción en el sistema y cuantificar la variación de la 

porosidad a lo largo de la columna. 

En las condiciones de P-pCO2-T estudiadas, la precipitación de yeso únicamente tiene lugar 

cuando la solución inyectada está en equilibrio con yeso. Además, el volumen de yeso 

precipitado es menor que el volumen de carbonato disuelto, originando siempre un aumento 

de porosidad (Δ  hasta ≈ 4%). 

Una disminución en la T favorece la disolución de la caliza independientemente de la pCO2 

debido al aumento de la sub-saturación. Sin embargo, hay un aumento en la precipitación de 



yeso a alta T para condiciones atmosféricas, viéndose el efecto contrario para condiciones 

sub-críticas. El aumento de la pCO2 conlleva un aumento en la disolución de caliza, hecho 

que es directamente atribuido al efecto del pH, que es más ácido a mayor pCO2. 

La disolución de caliza conlleva un retraso en la precipitación de yeso (largo tiempo de 

inducción), lo contrario que ocurre con la disolución de dolomía que promueve una rápida 

precipitación de yeso. Además, debido a la lenta cinética de disolución de la dolomita con 

respecto a la de la calcita, el volumen de mineral disuelto y el aumento de porosidad son 

mayores en los experimentos con caliza bajo todas las condiciones de pCO2 estudiadas. 

La disolución del carbonato se produce a lo largo de toda la columna cuando la pCO2 es alta 

(10 and 34 bar) y, en cambio, se localiza en la entrada de la columna bajo condiciones 

atmosféricas.  Esta diferencia es debida a la capacidad tampón del ácido carbónico, ya que 

mantiene el pH alrededor de 5 y mantiene la solución sub-saturada con respecto a la calcita y 

a la dolomita a lo largo de la columna. 

Las simulaciones de transporte reactivo (1D) reproducen los datos experimentales (disolución 

de carbonato y precipitación de yeso para las diferentes condiciones de P-pCO2-T). En base a 

las leyes de velocidad de reacción que se encuentran en literatura, se han usado los valores de 

las áreas reactivas para realizar el ajuste del modelo a los datos experimentales. Estos valores 

son bastante inferiores a los inicialmente calculados a partir de las áreas geométricas, debido 

a que las reacciones de disolución estás controladas por el transporte.  

La roca reservorio en Hontomín está significativamente fracturada. Por lo tanto, 

entender los cambios en las propiedades hidrodinámicas de las fracturas, inducidos por 

reacciones de disolución/precipitación, es esencial para predecir los posibles flujos 

subterráneos como fugas, inyectabilidad o producción de fluidos. Teniendo en cuenta esto, el 

segundo objetivo de esta tesis es caracterizar la evolución de fracturas que estén en 

contacto con soluciones ricas en CO2 a diferentes caudales. Además, se compara la 

respuesta geoquímica a la inyección de CO2 de las dos rocas principales del reservorio (caliza 

y arenisca). Para ello, se realiza un conjunto de experimentos de percolación que consisten en 

inyectar soluciones ricas en CO2 (sin sulfato y ricas en sulfato) a través de rocas de caliza y 

arenisca fracturadas. Todos ellos bajo P = 150 bar y T = 60 ºC y a diferentes caudales 

comprendidos entre 0,2 y 60 mL/h. La variación del volumen de fractura, inducida por la 

disolución de calcita y la precipitación de yeso, se mide mediante micro-tomografía de rayos 

X (XCMT) y la química de la solución. Se evalúa también la influencia del caudal en la 



evolución de la fractura, obteniéndose que aumentando el caudal el volumen de calcita 

disuelta por unidad de tiempo aumenta, confirmando así que la disolución en la fractura está 

controlada por el transporte. También se observa que la formación de geometrías más 

uniformes a caudales más rápidos puede favorecer la disolución de calcita. 

Los patrones de disolución varían de ‘face dissolution’ a ‘wormhole’ y a ‘uniform 

dissolution’ a medida que aumenta el caudal (es decir, números de Péclet Pe de 1 a 346). Se 

mide también la variación de permeabilidad de la fractura encontrando que su evolución 

depende del caudal y del patrón de disolución desarrollado. La permeabilidad de la fractura 

siempre aumenta independientemente del contenido de sulfato de la solución de entrada.                        

En base a los resultados experimentales obtenidos con las rocas de Hontomín, se evalúa cuál 

sería el contexto geológico más favorable en el reservorio para la inyección y 

almacenamiento del CO2. Además, se realizan modelos de transporte reactivo (2D) de los 

experimentos de percolación con fracturas para estimar los parámetros cinéticos y de flujo.  
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Chapter 1  

Introduction 

1.1 Background and objectives 

Energy is a key input into almost all activities and is fundamental to society 

wellbeing. However, as recently reported by the International Energy Agency (IEA), its use 

represents by far the largest source of greenhouse gas (GHG) emissions (83% in 2011; IEA 

2013). Smaller shares correspond to agriculture, producing mainly CH4 and N2O from 

domestic livestock and rice cultivation, and to industrial processes not related to energy, 

producing mainly fluorinated gases and N2O.  

Fossil fuels currently supply 81% of the energy consumed globally and CO2 resulting 

from the oxidation of carbon in fuels during combustion dominates the total GHG emissions 

(65% in 2010; Fig. 1.1). Total anthropogenic GHG emissions have risen more rapidly from 

2000 to 2010 than in the previous three decades and have reached human history record in 

2010 (49 ± 4.5 GtCO2eq/yr; Fig. 1.1). The global economic crisis 2007-2008 has temporarily 

reduced global emissions but not changed the longer-term trend. Whereas more recent data 

are not available for all gases, initial evidence suggests that growth in global CO2 emissions 

from fossil fuel combustion has continued with emissions increasing by about 3% between 

2010 and 2011 and by about 1–2% between 2011 and 2012 (IPCC, 2014). These high levels 

of GHG emissions are the direct source of the global climate change. 

The United Nations Framework Convention on Climate Change (UNFCCC) provides 

a structure for intergovernmental efforts to tackle the challenge posed by climate change. The 
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Convention’s ultimate objective is to stabilize GHG concentrations in the atmosphere at a 

level that would prevent dangerous anthropogenic interference with the climate system.  

 

 

Fig. 1.1 Total annual anthropogenic GHG emissions (GtCO2eq/yr) by groups of gases 1970-2010: 

CO2 from fossil fuel combustion and industrial processes; CO2 from Forestry and Other Land Use 

(FOLU); methane (CH4); nitrous oxide (N2O); fluorinated gases covered under the Kyoto Protocol 

(HFC-PFC-SF6). Average annual growth rate for each decade is highlighted with the brackets (IPCC, 

2014). 

 

The Conference of Parties (COP) in 2010 further recognized that deep cuts in global GHG 

emissions are required, with a view to hold the increase in global average temperature below 

2 ºC above preindustrial levels (IEA, 2013). Consequently, given that continued global 

economic growth will further increase energy consumption needs, meeting climate challenge 

will require changes in energy consumption and in the technologies used to produce energy 

(Global CCS Institute, 2013). However, the deployment of existing and new low-carbon 

technologies is not an immediate process and may take several decades. Therefore, bridge 

technologies are needed. Carbon Capture and Sequestration (CCS) may indeed be one of such 

bridge technologies that will permit the reduction of CO2 emissions over the coming decades 

while a change in the energy market occurs (IEA, 2010).  
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CCS technology consists of the separation of CO2 from industry and energy-related 

sources, transport to a storage location and long-term isolation from the atmosphere. 

Geological storage options for CO2 include depleted oil and gas reservoirs, use of CO2 in 

enhanced oil recovery (CO2-EOR), use of CO2 in enhanced coal bed methane recovery, deep-

unminable coal seams and deep-saline aquifers. The latter have received particular attention 

due to their high CO2 storage capacity and wide availability throughout the world (Bachu and 

Adams, 2003). However, CO2-EOR projects currently dominate geological storage. 

Nowadays, all twelve projects in operation are in industries that separate CO2 as part of their 

normal procedures – natural gas processing, fertilizer production, hydrogen production, and 

synthetic natural gas – and nine of these projects use the captured CO2 for enhanced oil 

recovery (EOR).  The remainder is dedicated to storage in geological formations containing 

brine or non-potable water (Global CCS Institute, 2013).  The storage capacity of the twelve 

projects in operation totals 25 Mt/yr and the remaining projects in planning (45 projects) have 

the potential to store 84 Mt/yr. 

The European Energy Programme for Recovery (EEPR) was established in 2009 to 

address both Europe’s economic crisis and European energy policy objectives. Almost €4 

billion were assigned to co-finance EU energy projects that would boost the economic 

recovery, increase the security of energy supply and contribute to the reduction of greenhouse 

gas emissions. The three sectors meeting these conditions were gas and electricity 

infrastructure, offshore wind energy and carbon capture and storage (CSS) projects. One of 

these CCS projects, namely The Compostilla project, is leaded by a three partner consortium 

(Endesa, CIUDEN (CIUDad de la ENergía foundation) and Foster Wheeler Energia Oy 

(FWEOy)), and is located in Ponferrada, northern Spain. The project is in charge of three 

Technology Development Plants (TDPs) at pilot scale: the CO2 capture and transport TDPs in 

Cubillos del Sil (León, Spain) and the CO2 geological storage TDP in Hontomín (Burgos, 

Spain).  

This thesis falls within the context of CO2 geological storage in Hontomín. The 

Hontomín reservoir formation for CO2 storage is a deep saline aquifer in Mesozoic 

sedimentary sequences that is covered by a very low permeability formation which acts as a 

cap rock. At the storage TDP, it is programmed to inject less than 100000 tonnes of CO2 into 

a 1500-meter-deep dome-like saline aquifer over a period of five years. Five existing wells 

(H1-5) were used to characterize the structure of the geological formation and two new wells 

were drilled, one for CO2 injection (H-I) and another one for monitoring (H-A). 
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The 100-meter-thick host reservoir rock is mainly composed of limestone (80-85%) 

and sandstone (15-20%) and has an upper impermeable seal made up of marls, that should 

prevent escape of CO2 to the surface, and a lower-impermeable seal mainly composed of 

anhydrite-containing rock (Fig. 1.2). CO2 will be stored at depth to ensure an optimal use of 

the pore space available for storage. Density of CO2 under a normal geothermal gradient 

increases rapidly with depth until about 800 meters where CO2 becomes supercritical  (total 

pressure P > 74 bar and temperature T > 31 ºC) and has a liquid-like density (about 500-800 

kg/m
3
) that provides the potential for efficient utilization of underground storage space and 

improves storage security.  

 

 

Fig. 1.2 Scheme of The Compostilla Project (left) and stratigraphic column of the Hontomín site 

(right; GEOMODELS, University of Barcelona).Depth of CO2 injection in the reservoir is between 

1414-1530 m. 

 

Once in the reservoir, four trapping mechanisms can contribute to CO2 retention over 

long periods (IPCC, 2005): stratigraphic trapping, solubility trapping, capillary trapping, and 

mineral trapping. The relative importance of these processes is expected to change over time 

as CO2 migrates and reacts with the rocks and fluids. First, supercritical CO2 is lighter and 

much less viscous than resident saline water (30-40% less viscous). Therefore, it will tend to 
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float until it reaches a low permeability, high-entry-pressure and mechanically stable cap rock 

that traps it. As a result, a CO2-phase bubble will tend to form at the aquifer top (stratigraphic 

trapping). Then, the dissolution of CO2 into the pore water can lead to trapping by solubility. 

The amount of gas that can dissolve into the water depends on several factors, most notably 

temperature, pressure and salinity of the brine (e.g., Koschel et al., 2006; Oldenburg, 2007; 

Spycher et al., 2003). At the conditions expected for most geological sequestration (ambient 

to 100 ºC and a few hundred bars of total pressure), CO2 solubility increases with increasing 

pressure (i.e., depth) but decreases with increasing temperature and salinity. A consequence 

of dissolution is that the CO2- rich water is 1-2% denser than the resident saline water (Yang 

and Gu, 2006) and it tends to move downwards to the bottom of the reservoir. Given that CO2 

dissolution may be rate-limited by the magnitude of the contact area between the CO2 and the 

fluid phase, this downflow of dissolved CO2-rich water will certainly contribute to CO2 

dissolution (Hidalgo and Carrera, 2009). Another trapping mechanism occurs after injection 

stops. Groundwater tends to fill back to the pore space and a sizable amount of CO2 will 

remain trapped as residual CO2 bubbles (capillary trapping). Finally, mineral trapping can 

take place when dissolved CO2 reacts with minerals in the geologic formation, promoting 

precipitation of carbonate minerals (Oelkers et al., 2008). Mineral trapping is attractive 

because it could immobilize CO2 for very long periods (Gunter et al., 1997). However, the 

process is thought to be comparatively slow because it depends on dissolution of silicate 

minerals, so the overall impact may not be realized for at least tens to hundreds of years 

(Benson and Cole, 2008). 

This thesis deals with the interaction between the saline solution and the reservoir 

rock at Hontomín when injection of supercritical CO2 is performed. The resident saline 

groundwater is sulfate-rich, equilibrated with calcite, dolomite and gypsum, with neutral pH 

and an ionic strength of 0.6 M (Table 1.1). Injection of supercritical CO2 will lead to the 

formation of a CO2-rich acid solution which will promote the dissolution of carbonate 

minerals (e.g., Gherardi et al., 2007; Nogues et al., 2013; Smith et al., 2013) and in minor 

proportion dissolution of silicate minerals (e.g., Bertier et al., 2006; Fisher et al., 2010; 

Wigand et al., 2008). Since the resident groundwater contains sulfate, secondary sulfate-rich 

mineral precipitation (gypsum or anhydrite) may occur. These reactions imply changes in the 

porosity, permeability and pore structure of the repository rocks.  
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Table 1.1 Average composition of the Hontomín groundwater (± 10%) in terms of total concentration 

(mol/kgw) and pH. It was provided by CIUDEN after extraction from the H-2 well. 

 

 

Hydrodynamic and geochemical processes responsible for trapping CO2 in geological 

formations over long time frames have been extensively studied (e.g., Bachu and Adams, 

2003; Bachu et al., 1994; Espinoza et al., 2011; Gaus, 2010; Gunter et al., 1997, 2004; 

Johnson et al, 2001; Kaszuba et al., 2005; Knauss et al., 2005; Xu et al., 2005). In deep saline 

aquifers, the interaction between dissolved CO2 in groundwater and carbonate and 

siliciclastic minerals controls the aqueous inorganic system (Bachu and Adams, 2003). 

Uncertainties in the mineral reaction rates may generate unreliable estimations of the CO2-

sequestration capacity. It is essential, therefore, to understand the dissolution and 

precipitation kinetics of the carbonate minerals (calcite, dolomite, magnesite or siderite). 

Several studies have focused on the dependence of dissolution rates of pure carbonate 

minerals on pH, temperature, CO2 partial pressure, presence of inhibitor ions and ionic 

strength (De Giudici, 2002; Gledhill and Morse, 2006; Morse and Arvidson, 2002; Plummer 

et al., 1978; Pokrovsky et al., 2005, 2009; Sjöberg and Rickard, 1984; Xu and Higgins, 

2011). Earlier works have shown that calcite dissolution kinetics is strongly pH dependent at 

high undersaturations and pH ≤ 4, and Pokrovsky et al. (2005, 2009) demonstrated that  the 

effect of CO2 partial pressure is not significant compared with that of pH. Research on the 

influence of reactor inhibitors on calcite dissolution kinetics has shown that calcite 

dissolution is retarded in the presence of aqueous divalent cations at neutral to basic pH 

(Arvidson et al., 2006; Martin-Garin et al., 2003; Morse and Arvidson, 2002), but it does not 

seem to be affected under acidic conditions (Alkattan et al., 2002).  

In the framework of CO2 geological storage, CO2-water-rock interaction at elevated 

temperature and pressure has been studied in detail in closed reactors (Chopping and 

Kaszuba, 2012; Kaszuba et al., 2003, 2005; Lu et al., 2012; Palandri and Kharaka, 2005; 

Rimmelé et al., 2010; Rosenbauer et al., 2005). However, the transport processes that are able 

to control or at least affect the reaction paths during CO2 injection have not been taken into 

account. This transport effect has been studied in reactive flow-through experiments (e.g., 

Luquot et al., 2013; Nogues et al., 2013; Noiriel et al., 2004, 2005, 2009). Luquot and Gouze 

(2009) performed percolation experiments under different P-T-pCO2 conditions that are 

Ca SO4
2-

Mg K Na Cl
-

HCO3
-

pH

4.62E-02 2.07E-02 3.72E-02 1.23E-02 4.14E-01 5.35E-01 4.90E-03 ≈ 6.9
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found in deep saline aquifers. The results enabled them to describe mass transfer processes at 

different distances from the injection well. Smith et al. (2013) conducted core-flood 

experiments at 30 bar of pCO2 and 60 °C with dolostone and limestone cores to gain insight 

into the effect of physical and chemical heterogeneity on the development of distinct reaction 

fronts. Elkhoury et al. (2013) performed experiments and numerical simulations to shed light 

on the influence of coupled geochemical alteration and mechanical deformation on calcium 

carbonate fracture geometry. However, in none of these studies was the importance of the 

coupled reactions of carbonate dissolution and gypsum precipitation assessed since the 

injected solutions consisted of sulfate-free brines. Singurindy and Berkowitz (2003) studied 

the effect of simultaneous calcium carbonate dissolution and gypsum precipitation on the 

evolution of hydraulic conductivity and flow patterns using columns experiments. 

Atanassova et al. (2013) evaluated the inhibitory effect of gypsum precipitation on calcite 

dissolution in acid, sulfate-rich solutions in flow-through experiments. However, these two 

studies were limited to atmospheric pCO2 conditions.  

Therefore, experimental knowledge about the overall process of gypsum precipitation 

at the expense of carbonate mineral dissolution in CO2-rich solutions and its implication for 

porosity changes in limestone and dolostone reservoir rocks is scarce. Part II-crushed rock 

seeks to better understand these coupled reactions by assessing the effect that P, pCO2, T, 

mineralogy, acidity and solution saturation state exert on these reactions. Thus, column 

experiments using limestone and dolostone grains and 1D reactive transport simulations were 

performed.  

The Hontomín reservoir rock is a fractured system mainly composed of low-

permeability rocks (Alcalde et al., 2014), where fractures serve as conduits for flow. In this 

situation long-lasting flow of fluids in disequilibrium with the rock is expected.  Dissolution 

and precipitation processes can alter the geometry of fractures and, consequently, their 

hydraulic and transport properties (Noiriel et al., 2013). 

Prediction of the changes in the flow and transport properties of fractures is still a 

challenge due to the complexity of fluid-rock interactions and the uncertain role of fracture 

heterogeneity. The macroscopic physical properties, such as fracture permeability, are 

directly related to the microstructure of the fracture, which makes the determination of 

fracture geometry an important issue to model flow and transport (Gouze et al., 2003; Noiriel 

et al., 2013; Szymczak and Ladd, 2009). Experiments conducted at the laboratory scale are 
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needed for this kind of characterization. In porous media, the impact of heterogeneities on the 

evolution of permeability and dissolution patterns has already been evaluated (Carroll et al., 

2012; Luquot et al., 2014; Smith et al., 2013). Smith et al. (2013) performed core-flood 

experiments involving CO2-rich brines and carbonate rocks and reported the formation of 

stable or unstable dissolution fronts depending on the degree of pore space heterogeneity. 

Their results were further investigated using 3D reactive transport models by Hao et al. 

(2013).   

Several experimental studies have been performed to investigate fracture evolution 

during dissolution using non-destructive techniques (e.g., nuclear magnetic resonance 

imaging (NMRI), X-ray computed microtomography (XCMT),…), which allow 

characterization of fracture geometry and flow during dynamic experiments (Detwiler, 2008; 

Detwiler et al., 2003; Dijk et al., 2002; Ellis et al., 2011; Gouze et al., 2003; Liu et al., 2005; 

Noiriel et al., 2007, 2013).   

Evolution of fracture structure is directly related to fluid flow and mineral dissolution rates. 

Feedback between fluid flow, solute transport and mineral dissolution may lead to the 

formation of preferential flow paths (wormholes) under certain flow and reactivity conditions 

(Szymczak and Ladd, 2009). Experimental studies about dissolution patterns in a variety of 

porous systems (Golfier et al., 2002; Hoefner and Fogler, 1988) and in single rock fractures 

(Detwiler, 2008; Detwiler et al., 2003; Dijk et al., 2002; Durham et al., 2001; Gouze et al., 

2003; Polak et al., 2004) have already been carried out, but the physicochemical mechanisms 

behind pattern formation are not yet understood in detail. Moreover, theoretical and 

computational models have been developed to predict this physical and chemical alteration of 

the fractures depending on the relative rates of transport and reaction (Péclet and Damköhler 

numbers) but only a few of them have been contrasted against experimental data (e.g., 

Elkhoury et al., 2013).  

 Part III-Fractured cores deals with the influence of the flow rate on dissolution and 

precipitation features during percolation experiments with fractured limestone and sandstone 

cores. Fracture permeability was measured and X-ray computed microtomography was used 

to characterize changes in fracture volume induced by dissolution and precipitation processes.  

Thereafter, dissolution/precipitation-induced volume changes and variation in permeability 

were compared between the two reservoir rocks to evaluate their potential changes in storage 
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capacity and injectivity. Additionally, 2D reactive transport modeling was performed to 

estimate flow and reaction kinetics parameters by reproducing the experimental results.  

 

1.2 Thesis outline 

This thesis is organized in four parts and six chapters. Chapters 2, 3 and 4 are based 

on published or submitted papers and Chapter 5 is currently in preparation for publication.  

Part I-Introduction and materials and methods – Chapters 1 and 2 

 Chapter 1 describes the motivation and scientific context of this study, together with 

the state of the art and the objectives. 

 Chapter 2 presents a detailed description of (i) the experimental methodology 

followed to perform the column and percolation experiments (fractured cores) and (ii) 

the parameters used in the 1D and 2D modeling of these experiments.   

Part II-Crushed rock – Chapter 3 

 Chapter 3 presents and discusses the experimental and modeling results of the column 

experiments run at different P-pCO2-T conditions. The effect of P, pCO2, T, 

mineralogy, acidity and solution saturation state on dissolution and precipitation 

reactions is assessed. 1D reactive transport calculations allow quantification of the 

mineral reaction rates and porosity variation. 

Part III-Fractured cores – Chapters 4 and 5 

 Chapter 4 shows the flow rate effect on dissolution and precipitation features in the 

percolation experiments with fractured limestone and sandstone cores. Changes in 

permeability and fracture volume are evaluated.         

 Chapter 5 is divided into two sections. The first one compares the changes in fracture 

volumes and permeability between fractured limestone and sandstone cores. The 

second one shows the 2D reactive transport simulations of these experiments. 

Part IV-Conclusions – Chapter 6 

 Chapter 6 provides a summary of the main contributions of this thesis. 
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Two appendixes are supplied:  

 Appendix A provides the model parameters used to perform the 1D simulations of the 

column experiments and the 2D simulations of the percolation experiments (fractured 

cores).  

 Appendix B includes additional experimental and modeling results from the column 

experiments.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 2   

Materials and methods 

 

2.1 Experimental methodology 

This section describes the experimental procedure followed to perform the column 

experiments presented in Part II: crushed rock and the percolation experiments with 

fractured cores shown in Part III: fractured cores. Analytical techniques used to characterize 

rock samples and injected solutions are detailed. In addition, the different experimental 

equipments used under different P conditions and the mass transfer and fracture permeability 

calculations are described. 

 

2.1.1 Sample characterization and analytical techniques 

Four different sedimentary rock samples were used in this study: vuggy limestone, 

dolostone, oolitic limestone and sandstone. The vuggy limestone, the oolitic limestone and 

the sandstone were provided by CIUDEN and belong to the Bercedo series and different 

formations in the Hontomín reservoir rock (Fig 1.2; Table 2.1; Pujalte et al., 1998). The 

dolostone was provided by the Department of Mineralogy (Faculty of Geology, Barcelona 

University) and comes from Peñarroya, Teruel (Spain). The mineralogical composition of the 

samples was obtained by X-ray diffraction (XRD), performed using a Bruker diffractometer 

model D-5005 with Cu K- α1 radiation, and Rietveld analysis (Young, 1995) (Table 2.1).  
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The vuggy limestone and the dolostone rock samples were used to carry out the 

column experiments that are presented in Part II: crushed rock and the oolitic limestone and 

the sandstone rock samples were used to perform the percolation experiments with fractured 

cores that are shown in Part III: fractured cores (Table 2.1). 

 

Table 2.1 Rock samples: origin and mineralogical composition (wt.%). See also Fig. 1.2. 

 

 

Rock samples used in the column experiments (Part II: crushed rock) were crushed to 

a grain size between 1 and 2 mm for the atmospheric and 10 bar pCO2 experiments. For the 

34 bar pCO2 experiment, the limestone was ground to a grain size between 250 and 500 μm 

owing to the smaller diameter of the column (Fig. 2.1). Thereafter, in order to remove 

microparticles due to grinding, the crushed and ground samples were washed three times with 

pH 1 solution (HCl) and three times with deionized water. Finally, the washed samples were 

dried in the oven at 40 °C and were put into cylindrical columns.  

X-ray fluorescence analysis of the vuggy limestone and the dolostone was performed using a 

Bruker
 
spectrometer model AXS-S2 Ranger to identify minor-element composition. In the 

limestone sample, Ca and Mg were the major elements, Si (0.37 wt.%) and Fe (0.20 wt.%) 

appeared as minor components and S and Sr as trace elements (< 0.1 wt.%). In the dolostone 

sample, Al, Si, S, Mn and Cl appeared as minor components (from 0.1 wt.% to 1 wt.%) and 

Cu, Pb and K as trace elements. Fe (1.48 wt.%) was the only element, besides Ca and Mg, 

with a concentration higher than 1 wt.%.  

 

Sample Experiments Series

Formation

Calcite Dolomite Quartz Microcline

Bercedo

Puerto de la Palombera

Bercedo

Sopeña

Bercedo

Areniscas del Río Polla

*coarse-grained sandy limestone according to Mount (1985).

- 100 - -
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Mineralogical composition (wt.%)

(XRD and Rietveld)

Oolitic limestone 

Sandstone* 

Part III: fractured cores                

65.7 - 27.8 6.5

100

-

-
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Fig. 2.1 Rock samples used in the column experiments described in Part II: crushed rock. Top: vuggy 

limestone (core, crushed grains (1-2 mm)/ground grains (250-500 μm) and SEM image); bottom: 

dolostone (fragments, crushed grains (1-2 mm) and SEM image). 

 

Flow-through experiments with the dolostone rock sample were conducted to obtain dolomite 

dissolution rates at different pH values from 1.5 to 3.5. Assuming stoichiometric dolomite 

dissolution, the Ca/Mg ratio measured from the steady-state output Ca and Mg concentrations 

was used to obtain the structural formula of dolomite (Ca1.048Mg0.952(CO3)2).  

Scanning electron microscopy (SEM) was performed on C-coated samples before and after 

the column experiments using a Hitachi H-4100 instrument under a 15-20 kV potential. The 

surface of the unreacted limestone grains was rough, whereas the surface of unreacted 

dolostone grains was flat and terraced. Microparticles attached onto the surfaces were not 

observed (Fig. 2.1). 

Cylindrical rock cores used in Part III: fractured cores were cored side-by-side from 

the provided samples. Fifteen cores of 9 mm in diameter (d) and 18 mm in length (L) were 

obtained; six limestone cores and nine sandstone cores. Limestone and sandstone porosities 

were 5% and 6%, respectively, as reported by CIUDEN (ALM-09-008, 2010). The 

permeability of the rock cores (k < 10
-18 

m
2
) was measured by performing a permeability test 

using the Icare Lab CSS II apparatus (Luquot et al., 2012). Thereafter, a fracture was 

artificially created by sawing each core with a circular saw, during which formation of micro-

cracks could happen. Nonetheless, as discussed in Section 4.2.4.1, their existence did not 

5 mm 5 mm25 mm
500 μm

5 mm
1 mm

25 mm

Vuggy Limestone 

Dolostone
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intervene in the overall fracture dissolution. To guarantee flow exclusively through the 

fracture, all fractures were laterally sealed using a fiber glass thread and Duralco 4525 epoxy 

resin (stable mechanical and chemical properties up to 690 bar, 260 ºC and low pH) (Fig. 

2.2a). 

 

 

Fig. 2.2 Fracture core dimensions (a) and SEM images (b) of the rock samples used in the percolation 

experiments with fractured cores shown in Part III: fractured cores. Cal = calcite; Qz = quartz and 

Mc = microcline. 

 

Some fractured cores were characterized by XCMT before and after the experiments. Data 

was acquired at the National Institute for Lasers, Plasma and Radiation Physics (NILPRP) 

(Bucharest-Magurele, Romania) using the Cone beam CT rapid scan (180° + ½ fan angle), 

Oblique View Cone Beam. X-ray energy was 225 kVp and maximum power was 10/15 W, 

using a tungsten filament source. The cores were mounted on a rotary stage, and images were 

collected every 0.5º. The linear detector, using 1,024 scintillator-photo diode assemblies, 

yielded 16-bit output digital files. The resulting pixel size was 14 μm. The processing of 

these X-ray microtomography data was carried out by Voxaya (Montpellier, France), 

providing characterization of the fracture geometry. Segmentation of the images was 

performed using the method “edge based snakes” (Yushkevich et al., 2006) and error 

calculation was carried out by changing the iteration number which corresponds to the 

propagated time of the segmented volume. Calculated errors of fracture volumes ranged from 

0.4% to 5.6%. 

Oolitic limestone                                               Sandstone

(a) (b)

Cal

Qz

Mc

400 mm

fracture

Cal

fracture

200 mm
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After the reacted samples had been scanned, the cores were flooded with epoxy to allow 

sectioning and further analysis with SEM. The reacted cores were sectioned along different 

planes perpendicular to the fracture depending on fracture evolution (sections 1 and 2 in Fig. 

2.2a). SEM analyses were performed using a Hitachi H-4100 instrument under a 15-20 kV 

potential to obtain the dimensions of the fracture and observe features of mineral dissolution 

and precipitation (Fig. 2.2b)  

MicroRaman spectra, using a Jobin-Yvon LabRam HR 800 apparatus equipped with an 

Olympus BXFM microscope and using a wavelength of 532 nm, were obtained to identify 

the secondary phases in the reacted fractured cores. 

 

2.1.2 Injected solutions 

Two types of solutions were prepared. The first type was a synthetic version of the 

Hontomín groundwater, which is nearly in equilibrium with calcite, dolomite and 

gypsum/anhydrite, with a 0.6 M ionic strength and neutral pH (Table 1.1). Four modifications 

of this solution (named gypsum-equilibrated solution, gp-e) were performed varying gypsum 

saturation state and acidity, and yielding one solution undersaturated with respect to gypsum 

(gypsum-undersaturated solution, gp-u), one solution sulfate-free (no-s) and two acidic 

gypsum-equilibrated solutions (pH 2.1 acid solution, a2.1; pH 3.5 acid solution, a3.5) (Table 

2.2). TDS of these solutions was around 30 g/L. Solutions were prepared by adding 

appropriate amounts of reagents CaCl2·2H2O, MgCl2·6H2O, NaCl, KCl, Na2SO4 and NaBr to 

Millipore MQ water (18 MΩ·cm) at room T (25 ± 2 ºC) and under atmospheric pressure. The 

amounts of reagents were based on equilibrium calculations using the CrunchFlow code 

(Steefel, 2009) and the EQ3/6 database (Wolery et al., 1990). The solubility product of 

gypsum was that included in the database (logKGp = -4.4729 at T = 25 ºC). However, in the 

gypsum-equilibrated solutions unexpected precipitation of gypsum (≈ 1.3 g in 2 L solution) 

occurred while stirring the solutions for 12 h. Thus, final mixtures were filtered using a 0.22 

μm filter to eliminate the precipitated gypsum particles and analyzed to measure the total 

concentrations by inductively coupled plasma-atomic emission spectrometry (ICP-AES) 

using a Thermo-Jarrel Ash spectrometer equipped with a CID detector (Table 2.2). The 

detection limits for Ca, S, Mg, K, Na and Fe were 1.25   10
-6

 M, 1.34   10
-6

 M, 2.06   10
-6

 

M, 1.28   10
-6

 M, 1.30   10
-4

 M and 3.58   10
-7

 M, respectively. Using the measured 

equilibrium concentrations, a new logKGp value was calculated to be logKGp-25 = -4.5978 at T 
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= 25 ºC. Hence, applying the same correction factor at different temperatures, the newly 

obtained logKGp-40 and logKGp-60 were -4.6368 (40 °C) and -4.7383 (60 °C). These values 

turned out to be similar to those recently reported by Nordstrom (2013). The new gypsum 

logK values at 25, 40 and 60 °C were used in the calculations of this study.  

For the atmospheric pCO2 experiments the solutions were acidified to pH 2.1 and pH 3.5 

(a2.1 and a3.5 input solutions) by adding appropriate amounts of 1M HCl solution. For the 

rest of experiments run under pCO2 higher than the atmospheric one, the acidity of the 

solution was obtained from dissolution of CO2. Relationship between CO2 partial pressure 

and aqueous CO2 concentration, as well as the saturation state of the injected solutions under 

the experimental conditions were calculated using the PhreeqC (v.3) code (Parkhurst and 

Appelo, 2013) and the PhreeqC database (Table 2.2). The aqueous solubility of CO2 is 

temperature, pressure and ionic strength dependent, generally lower at elevated temperature 

and salinity and higher at elevated pressure (Duan and Sun, 2003; Takenouchi and Kennedy, 

1964). pH and saturation indexes (SI) of input solutions injected in experiments performed 

under P = 150 bar were calculated using PhreeqC-v.3 (P effect included) and CrunchFlow (P 

effect not included) to quantify the non-linear effect of P (P > 20 bar) on CO2 solubility and 

mineral equilibria (through the molar volume of solutes) reported by Appelo et al. (2014) 

(Table 2.2). 

The second type of prepared solution was a sulfuric acid solution (H2SO4, pH = 2.5; 

TDS = 1.2 g/L) in equilibrium with gypsum at T = 25 °C (Table 2.2; H2SO4 solution, s). 

3.162 mL of 1 M H2SO4 solution were poured into 2 L of Millipore MQ water. Then, 

approximately 20 g of fragmented gypsum were added and the mixture was stirred for 12 h. 

Finally, gypsum-equilibrated solutions were filtered using a 0.22 mm filter. 

Five input solutions were used to perform the column experiments presented in Part 

II: crushed rock and three input solutions were used to run percolation experiment through 

fractured cores shown in Part III: fractured cores (Table 2.2). 

 



 

Table 2.2 Injected solutions: amount of reagents, experimental conditions, average concentration (from ICP-AES), experimental pH, and calculated 

saturation indexes (SI), pH and ionic strength (I). 

 

Input label  s no-s

CaCl2·2H2O - 12.67

MgCl2·6H2O - 13.33

NaCl - 45.05

KCl - 1.69

Na2SO4 - -

NaBr - 2.34

Exp. Label L25-atm-s L25-atm-a3.5 L60-atm-a3.5 L25-atm-a2.1 L60-atm-a2.1 L25-10-gp-u L40-10-gp-u L25-10-gp-e L40-10-gp-e L60-10-gp-e L60-34-gp-e

Part II: Crushed rock D25-atm-s D40-10-gp-e

Exp. Label L0.2-gp-e, L1-gp-e, L5-gp-e, L60-gp-e, L1-no-s, L60-no-s,   

Part III: Fractured cores S5-gp-u, S60-gp-u S0.2-gp-e, S1-gp-e, S5-gp-e, S60-gp-e S1-no-s, S5-no-s, S60-no-s

T  (°C) 25 25 60 25 60 25 40 60 25 40 60 60

P (bar) 150 150 150 150

p CO2 (bar) 62 34 62 62

Ca
2+ 1.55E-02 4.15E-02

SO4
2- 1.85E-02 -

Mg
2+ 1.73E-04 3.34E-02

K
+ - 1.16E-02

Na
+ - 3.99E-01

Cl
- - 5.48E-01

Br
- - 1.14E-02

CO2 1.29E-05 1.30E-05 6.25E-06 1.29E-05 6.23E-06 2.79E-01 2.02E-01 6,15E-01 2.79E-01 2.02E-01 1.43E-01 3.85E-01 6.15E-01 6.15E-01

pH 2.50 3.56 3.65 - 3.51 3.62 3.73 - - -

Cal -10.34 -8.01 -7.77 -10.84 -10.60 -3.45 -3.22 -3.03 (-3.35) -3.48 -3.21 -2.88 -2.96 (-3.25) -3.01 (-3.32) -3.10 (-3.46)

Dol -23.19 -16.55 -15.74 -22.18 -21.36 -7.34 -6.71 -6.16 (-6.48) -7.47 -6.77 -5.96 -6.07 (-6.35) - -

Gp-25 0.09 0.05 - -0.03 - -0.19 - - 0.003 - - - - -

Gp-40 - - - - - - -0.20 - - 0.006 - - - -

Gp-60 - - 0.04 - -0.09 - - -0.21 (-0.24) - - -0.03 -0.04 (-0.07) -0.01 (-0.05) -

pH 2.50 3.65 3.70 3.40 (3.26) 3.61 3.68 3.78 3.53 (3.40) 3.40 (3.26) 3.37 (3.21)

I 0.05 0.63 0.62 0.61 0.59 0.60 0.61 0.60 0.61 0.62 0.58 0.6 0.62 0.64
(1)

 refers to the average concentrations of several prepared solutions of the same type. The largest %RSD (relative standard deviation) of the average concentration in s , a2.1-3.5 , gp-u , gp-e and no-s  solutions is 2 (for SO4
2-

), 

0.8 (for Ca
2+

), 3.5  (for Mg
2+

), 4.9 (for SO4
2-

) and 1.2 (for Mg
2+

), respectively.
(2)

 SI, I and pH values are calculated using CrunchFlow and SI and pH values in brackets are calculated using PhreeqC-v.3. 

Relationship between p CO2 and aqueous CO2 concentration was calculated using PhreeqC-v.3. 

TDS (Total Dissolved Solids) of all solutions is around 30 g/L except for solution s  which is 1.2 g/L.

Cal = calcite; Dol = dolomite; Gp = gypsum; s  = H2SO4 solution; a3.5 = acid solution pH 3.5; a2.1  = acid solution pH 2.1; gp-u  = gypsum-undersaturated solution; gp-e  = gypsum-equilibrated solution; no-s  = sulfate-free solution.

a3.5  and a2.1  input solutions were acidified to pH 3.5 and 2.1 by adding appropriate amounts of 1M HCl solution.

 a3.5  a2.1  gp-u  gp-e

reactant mass (g) in 2L MQ water

16.12 12.67 16.12

13.34 13.34 13.34

37.84 40.57 37.84

1.69 1.69 1.69

8.77 5.45 8.77

2.34 2.34 2.34

10
-3.5 10 10

(1)
average concentration (mol/kgw) and experimental pH

5.30E-02 4.83E-02 4.40E-02

experimental conditions

60

1 10 10

4.94E-02

3.28E-02 3.22E-02 3.33E-02 3.26E-02

2.90E-02 2.74E-02 1.92E-02 2.68E-02

1.19E-02 1.12E-02 1.15E-02 1.14E-02

3.77E-01 3.99E-01 3.92E-014.02E-01

5.18E-01 5.14E-01 5.15E-01 5.02E-01

(2)
SI, pH and I (CrunhFlow and PhreeqC-v.3)

1.14E-02

3.50 2.10

1.13E-02 1.13E-02 1.14E-02

3.50 2.10
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2.1.3 Experimental setups and conditions 

Three experimental setups were used to work under three different P conditions (P = 

1, 10 and 150 bar) in the column experiments presented in Part II: crushed rock and two 

experimental setups were used to work under P = 150 bar in the percolation experiments with 

fractured cores shown in Part III: fractured cores (Fig. 2.3). Experiments run at P = 1 bar 

and P = 10 bar were carried out at the IDAEA-CSIC laboratory (Barcelona, Spain) and the 

experiments conducted at P = 150 bar were performed at the Geosciences Department of 

Montpellier University-CNRS (Montpellier, France). 

 

 

Fig. 2.3 Experimental setups used to work under atmospheric (a), subcritical (b) and supercritical (c) 

CO2 conditions. 
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2.1.3.1 Atmospheric pressure setup (P = 1 bar) 

Transparent methacrylate cylindrical columns of 2.6 cm in inner diameter (d) and 4 

cm in length (L) were filled with approximately 20 g of crushed rock fragments with a grain 

size of 1-2 mm. A bed of glass beads of 0.7 mm in diameter was placed at the top and bottom 

of the cylinder to homogenize the inlet and outlet solutions. The thickness of the beds was 

about 0.7 cm, yielding an effective column volume (Vbulk) of 13.80 cm
3
 (Fig. 2.3a). A 0.22 

mm filter was placed at the top of the column to prevent any particle release into the output 

solution. Column porosity was calculated using the mass of the rock sample, the density of 

the rock and the effective column volume. The density of the vuggy limestone (2.72 g/cm
3
) 

was obtained from the weight fractions of calcite (90.7 wt.%) and dolomite (9.3 wt.%) and 

the respective densities (2.71 g/cm
3
 and 2.86 g/cm

3
; Downs, 2006). Initial porosities ranged 

between 45% and 48%. Given the mineral mass, the rock density and the effective column 

volume, and assuming that the rock fragments were spheres of 1.5 mm in diameter, the 

geometric surface areas of vuggy limestone and dolostone fragments were approximately 

2000 m
2

m/m
3
bulk (m: mineral; bulk: column). 

Input solutions were injected from bottom to top of the column using a peristaltic 

pump under a constant flow rate of 0.021 ± 0.002 mL/min. The outlet solution was 

periodically collected. Darcy velocity ranged from 6.28   10
-7

 to 7.06   10
-7

 m
3
/m

2
/s, 

yielding residence times (τ) between 4.6 and 5.6 h (Table 3.1). Collected samples were 

immediately acidified with 1% HNO3 to avoid changes in chemical composition. Most of the 

experiments were undertaken at room temperature (22-25 °C). For the experiments 

performed at 60 °C the columns were fully immersed in a thermostatic bath. Input and output 

pH at the desired temperature was measured with a conventional glass pH electrode 

(accuracy ± 0.02) that was calibrated using Crison buffer solutions of pH 2.02 and 7.00. Total 

input and output concentrations were measured by ICP-AES (see Section 2.1.2). 

 

2.1.3.2 Subcritical pressure setup (P = 10 bar) 

The experimental setup was completely designed and assembled at the Geosciences 

Department of the IDAEA-CSIC in collaboration with the GASLI company, a manufacturer 

of pressure gauges and measurement instruments located in Barcelona (Spain).  

A 316 stainless steel column (3.2 cm in diameter (d) and 6 cm in length (L)) was filled 

with approximately 60 g of crushed rock fragments with a grain size of 1-2 mm. The mass of 
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the sample was weighed before and after the experiments. Two plastic filter screens of 1 mm 

thickness were placed at the top and bottom of the cylinder to homogenize the inlet and outlet 

solutions. Two pieces of 0.45 μm stainless steel mesh were likewise placed at the bottom and 

the top of the reaction cell to prevent any particle release into the output solution. The 

effective column volume (Vbulk) was 43.43 cm
3
 (Fig. 2.3b). Initial porosities calculated using 

the same approach as in the atmospheric pressure setup ranged between 47% and 53%. Given 

the mineral mass, the rock density and the effective column volume, and assuming that the 

fragments were spheres of 1.5 mm in diameter, the geometric surface areas of vuggy 

limestone and dolostone fragments were approximately 2000 m
2

m/m
3
bulk. 

The input solution (2.5 L) was poured into the Teflon-coated pressurized storage tank 

of 3 L capacity. Sufficient head space was left to inject CO2 gas under the desired pressure (P 

= 10 bar). To ensure that CO2 was the only gas phase in contact with the solution, air was 

removed airing the head space with CO2 gas for 15 min approximately. Thereafter, to 

guarantee that the input solution was equilibrated with CO2 before injection, the valve that 

connects the CO2 bottle with the storage tank was alternatively closed and opened until no 

pressure drop occurred in the tank with the valve closed. Once the pressure in the closed tank 

was constant (after ca. 12 h) the solution was considered to be in equilibrium with CO2 and 

ready to be injected. The CO2-equilibrated input solution was injected from bottom to top 

through the crushed sample by a dual-piston pump under a constant flow rate of 0.058 ± 

0.005 mL/min (Fig. 2.3b). Darcy velocity ranged from 1.14   10
-6

 to 1.31   10
-6

 m
3
/m

2
/s, 

yielding residence times (τ) between 5.5 and 6.7 h (Table 3.1). pH of the solution and fluid 

pressure were measured in line before the solution reached the column and after the reaction 

cell. pH was measured using Hamilton Polilyte Plus XP 120 pH electrodes (accuracy ± 0.02), 

which allow measurements under conditions up to 60 °C and 50 bar. The electrodes were 

calibrated using Crison buffer solutions of pH 2.02 and 7.00. Fluid pressure was measured 

using Gasli pressure transducers with a pressure range from -1 to 24 bar and an accuracy of 

0.5% over the full scale.  

The reacted solution was collected using two pressurized syringes of 250 mL, which worked 

as back-pressure system maintaining the whole setup under a total pressure of 10 bar. After 

filling one syringe, the solution was manually diverted to the other one. This sampling system 

allowed the collection of the output solution without any experimental interruption. 
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Collected output solutions were extracted from the syringe and immediately acidified with 

1% HNO3 to avoid any precipitation during sample depressurization. The whole sampling 

operation lasted less than 2 min. Total concentrations were analyzed using ICP-AES (see 

Section 2.1.2). Column experiments were performed at 22-25 °C, 40 ± 0.1 °C and 60 ± 0.1 

°C. The storage tank and the column were adequately heated using a resistor and insulated for 

the experiments performed at 40 and 60 °C.   

 

2.1.3.3 Supercritical pressure setup (P = 150 bar) 

Two flow-through apparatus (Icare Lab CSS I, Luquot and Gouze, 2009, and Icare 

Lab CSS II, Luquot et al., 2012), which belong to the Geosciences Department of Montpellier 

University (France), were used to reproduce the in situ reservoir conditions for CO2 

sequestration (Fig. 2.3c). In both experimental devices the CO2-equilibrated solution was 

injected into the percolation cell by a monitorized piston-pump system. This system was 

equipped with displacement encoders to obtain an accurate control of the flow rate, ranging 

from 0.6 to 180 mL/h in Icare Lab CSS I and from 0.05 to 40 mL/h in Icare Lab CSS II. 

Radial confining pressure was applied to the silicon jacket that covered the sample in the 

percolation cell (112% of the inlet pressure). The piston pump motion and the pneumatically-

controlled valves were operated by LabView-based software. 

A single column experiment in Part II: crushed rock was performed using the Icare 

Lab CSS I, with a flow rate of 0.01 mL/min and P = 150 bar and T = 60 ºC (Third set in 

Table 3.1). The CO2 partial pressure of the inlet solution was set to be 34 bar (0.38 mol/L of 

CO2). Approximately 1 g of ground sample (grain size of 250-500 μm) was placed in a 

Teflon cell of 0.7 cm in inner diameter (d) and 1.7 cm length (L) (Fig. 2.3c; effective column 

volume Vbulk = 0.69 cm
3
). Initial porosity was calculated to be around 55%. A 0.45 μm 

stainless steel filter was placed at the outlet (bottom) of the Teflon cell to prevent particle 

escape into the output solution. Given the mineral mass, the rock density and the effective 

column volume, and assuming that the rock fragments were spheres of 0.375 mm in diameter, 

the geometric surface area of the vuggy limestone fragments was 7237 m
2

m/m
3
bulk. Test tubes 

of 10 mL were used to collect 0.5 mL of the output solution, which was acidified with 9.5 mL 

of 1% HNO3 solution to avoid precipitation of carbonates during sample depressurization. 

Total concentrations were analyzed by ICP-AES (see Section 2.1.2). Darcy velocity was 4.33 

  10
-6

 m
3
/m

2
/s, yielding a residence time (τ) of 0.6 h (Table 3.1).  
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All percolation experiments with fractured cores shown in Part III: fractured cores 

were run using both experimental apparatus (Icare Lab CSS I and Icare Lab CSS II). The CO2 

partial pressure of the inlet solution was set to be approximately 62 bar (0.61 mol/L of CO2) 

and obtained by mixing the solutions with industrial-grade pure CO2. CO2-rich solutions were 

injected under a constant volumetric flow rate corresponding to Q = 60 mL/h for five 

experiments using Icare Lab CSS I and Q = 0.2, 1 and 5 mL/h for ten experiments using Icare 

Lab CSS II (Table 4.1). The pressure difference ∆P(t) between the inlet and the outlet of the 

sample was recorded continuously. Periodically, 0.5 mL of the output solution were collected 

in 10 mL test tubes that contained 9.5 mL of 1% HNO3 solution. The acid was used to 

prevent any carbonate precipitation due to sample depressurization. Total concentrations 

were analyzed by ICP-AES (see Section 2.1.2). The geometric areas of the minerals that form 

the sandstone rock (m
2

m/m
3
bulk; m: mineral, bulk: core), calculated as explained above, were 

7.5   10
5
 m

2
m/m

3
bulk (for calcite), 3605 m

2
m/m

3
bulk (for quartz) and 2180 m

2
m/m

3
bulk (for 

microcline). The grain radii of quartz and microcline were measured from SEM images (225 

mm and 90 mm, respectively). Since calcite matrix in both the sandstone and limestone rocks 

was assumed to be formed of small aggregates with a radius of 2.5 mm, the geometric area of 

calcite in the limestone rock was 1.03   10
6
 m

2
m/m

3
bulk. 

 

2.1.4 Mass transfer calculations 

The volume of dissolved rock at the end of the experiment was calculated from 

                            
 
  (2.1) 

where   is the number of minerals that compose the rock,    is the total experimental time 

and         is the volume of dissolved mineral which, as in case of the volume of 

precipitated mineral (      ), was calculated as  

                                    
          

    
 (2.2) 

where    is the molar volume of the mineral   (m
3
/mol),   is the flow rate (m

3
/s),   is the 

stoichiometric coefficient of element j in the mineral,    is the concentration of the element j 

from dissolved or precipitated mineral (        or       ; mol/m
3
) and    is the sampling time.  
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Considering that dissolution of calcite and dolomite and precipitation of gypsum were 

the reactions in the experiments,         and        were calculated from the mass balance 

equations as:  

                                 (2.3) 

                          (2.4) 

                      (2.5) 

where        and         are the input and output concentration of an element j, respectively. 

These concentrations were obtained from the ICP-AES measurements with an error estimated 

to be around 2%. The error        in the change of concentration of element j (    

              ) was estimated using the Gaussian error propagation method (Barrante, 1974). 

The molar volumes of calcite, dolomite and gypsum were calculated from the molecular 

weights and densities of these minerals (Downs, 2006) yielding 36.93   10
-6

, 64.93   10
-6

 

and 74.86   10
-6

 m
3
/mol, respectively.  

As for vuggy limestone dissolution, the volume of dissolved rock was calculated 

considering that calcite and dolomite were the dissolving minerals so that the          term 

included the amount of Ca release from both reactions. In the case of sandstone dissolution, 

the volume of dissolved rock was calculated considering that calcite is the only dissolving 

mineral due to the negligible Si release obtained in the experimental results. Using the 

calculated structural formula of dolomite (Ca1.048Mg0.952(CO3)2), the volume of dolostone 

dissolved was calculated on the basis of both Ca and Mg. 

Loss of sample mass was first calculated (      ) based on the dissolved and 

precipitated mineral volumes and then measured (      ) by weighting the samples before 

and after the experiment. 

Porosities after reaction       in the column experiments presented in Part II: crushed 

rock were calculated on the basis of changes in solution chemistry according to Eq. (2.6): 

     
 

                                       
 

     
  (2.6) 
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where       is the effective column volume,        is the initial solid sample volume and 

               and            are the volumes of dissolved rock and precipitated mineral at the 

end of the experiment, respectively (Eqs. 2.1 and 2.2). 

In the percolation experiments with fractured cores shown in Part III: fractured cores 

the change in fracture volume at the end of the experimental time          (  : chemical) 

was calculated from aqueous chemistry using Eq. (2.7) and compared with the variation in 

fracture volume obtained from XCMT (        ). 

                                (2.7) 

 

2.1.5 Permeability changes 

Pressure difference between the inlet and the outlet of the fractured sample was 

measured in the percolation experiments shown in Part III: fractured cores. Change in 

fracture permeability over time k(t) was calculated from the pressure difference ΔP(t) 

measured between the inlet and the outlet of the sample and combining Darcy’s law (Eq. 2.8) 

with a cubic law for flow through two parallel plates (Eq. 2.9); Huitt, 1956; Witherspoon et 

al., 1980)  

  
   

   
 (2.8) 

  
  
    

    
 (2.9) 

where μ is the dynamic viscosity of the solution (Pa·s), L is the length of the sample in the 

flow direction (m), Q is the volumetric flow rate (m
3
/s), S is the sample cross section (m

2
), 

ΔP is the measured pressure difference (Pa), ah is the hydraulic aperture of the fracture (m), 

and d is the width of the fracture (m).  

Combining Eqs. (2.8) and (2.9), the hydraulic aperture of the fracture was determined from 

       
     

      

 
 (2.10) 

and fracture permeability from  

     
  
    

  
 (2.11) 
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ΔP between the inlet and the outlet of the fractured sample was measured from the beginning 

of the experiment (t0) up to a particular point of time tk. Due to the increase in permeability, 

ΔP becomes smaller over time. tk is the time after which the value of ΔP is no longer 

measureable (below detection). The highest and lowest measurable ΔP values (ΔPmax and 

ΔPmin) were 25 and 0.06 bar in Icare Lab CSS I and 25 and 0.33 bar in Icare Lab CSS II. tk 

was always ≤ 2 h.  

 

2.2 Reactive transport modeling 

1D simulations of the column experiments (Part II: crushed rock) and 2D simulations 

of the percolation experiments with fractured cores (Part III: fractured cores) were 

performed using CrunchFlow (Steefel, 2009; Steefel et al., 2014).  The column experiment 

under CO2 supercritical conditions (P = 150 bar, T = 60 ºC) was also modeled using PhreeqC 

(v.3) (Parkhurst and Appelo, 2013). Hence, the results obtained considering the P effect on 

equilibrium constants (from PhreeqC (v.3)) could be compared with the results that did not 

include this consideration (from CrunchFlow). Section A.1.2 (Appendix A) shows the 

PhreeqC input file.  

2.2.1 Description of the CrunchFlow reactive transport code  

The CrunchFlow code solves numerically the mass balance of solutes expressed as 

      

  
                                           (2.12) 

 where   is porosity,    is the concentration of component j (mol/m
3
),   is the combined 

dispersion-diffusion coefficient (m
2
/s),   is the Darcian fluid flux (m

3
/m

2
/s) and    is the total 

reaction rate affecting component j (mol/m
3
bulk/s). 

The total reaction rate for the component j,    is given by 

            (2.13) 

where    is the rate of precipitation (      or dissolution (  < 0) of mineral m in 

mol/m
3

bulk/s, and     is the number of moles of j per mol of mineral  .  

Since mineral reactions are described using kinetic rate laws, initial reactive surface 

areas, initial mineral volume fractions and several reaction rate parameters have to be 
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supplied by the user as input. In this set of simulations, the reaction rate laws used in the 

calculations are expressed as  

                 

 
      

  
               (2.14) 

where    is the reaction rate for a given mineral in units of mol/m
3

bulk/s,    is the mineral 

surface area (m
2

m/m
3
bulk),    is the reaction rate constant (mol/m

2
/s) at the temperature of 

interest,  
  

 
  is the term describing the effect of pH on the rate,   

   is a term describing a 

catalytic/inhibitory effect by another species on the rate, and        is the function 

describing the dependence of the rate on the solution saturation state. The summation term 

indicates that several parallel rate laws may be used to describe the dependence of the rate on 

pH or on other species. 

The rate constant at temperature T (K) is calculated from  

                    
    

 
 
 

   
 

 

 
    (2.15) 

where          is the rate constant of a mineral   at 25 °C,      is the apparent activation 

energy of the overall reaction (J/mol),   is temperature in Kelvin and   is the gas constant 

(J/mol/K).  

The        function is defined as 

   Δ       
   

 
 
  

 
  

    (2.16) 

where     is the Gibbs energy of the reaction (J/mol),     is the ionic activity product of the 

solution with respect to the mineral,   is the equilibrium constant for that mineral reaction 

(ionic activity product at equilibrium) and    and    are empirical coefficients. 

Changes in mineral surface area    (m
2

m/m
3
bulk) due to reaction are calculated 

according to 

        
 

  
 
 
  

 
  

    
 

 
  

dissolution  (2.17) 

        
 

  
 
   

precipitation   (2.18) 
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where      is the initial volume fraction of the mineral   and    is the initial porosity of the 

medium. This formulation ensures that as the volume fraction of a mineral goes to 0, its 

surface area does too. Moreover, for both dissolving and precipitating minerals, the term 

      
    requires that the surface area of a mineral in contact with fluid goes to 0 when 

the porosity of the medium goes to 0. This formulation is used primarily for primary minerals 

(i.e., minerals with initial volume fractions > 0). For secondary minerals which precipitate, 

the value of the initial bulk surface area specified is used as long as precipitation occurs. If 

this phase later dissolves, the above formulation is used with an arbitrary initial volume 

fraction of 0.01. 

Regardless the changes in permeability in the 2D calculations where flow was 

updated, the code solved Darcy’s law (neglecting the buoyancy term; Eq. (2.19)), and 

permeability was updated at each time step according to Eq. (2.20).  

    
 

 
    (2.19) 

      
 

  
 
 

  (2.20) 

 

2.2.2 One-dimensional model (Part II: crushed rock) 

Results and discussion of the 1D reactive transport simulations that reproduce the 

experimental data of the column experiments are shown in Chapter 3. Model parameters used 

in 1D simulations are given in the following sections. 

 

2.2.2.1 Numerical discretization 

The one-dimensional numerical domain is composed of 20 elements in most 

simulations. Two simulations under atmospheric conditions with a2.1 input solution (Table 

3.1; experiments L25-atm-a2.1 and L60-atm-a2.1) were run using a two-zone domain 

composed of 40 shorter elements at the start of the column and 16 longer elements along the 

rest for better resolution of changes in solution composition. See Tables A.1 and A.2 

(Appendix A) for details of the spatial discretization.  
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2.2.2.2 Rock and solution composition 

Two rocks were considered in the calculations: vuggy limestone and dolostone (Table 

2.1). Mineral volume fractions are shown in Tables A.1 and A.2 (Appendix A). For each 

experiment, only the precipitated sulfate phase was taken into account (gypsum at all 

temperatures).  

Rate laws for the reacting minerals were taken from the literature (Palandri and 

Kharaka, 2004). The fit of the model to the experimental data (aqueous Ca, S, Mg 

concentrations and pH) was performed by adjusting the values of the reactive surface areas 

(Am in Eq. 2.14). A sensitivity study of the reactive surface areas was performed. As a result, 

ranges of values that could also fit the experimental concentrations within the ± 2% analytical 

error and experimental pH are provided. In the experiments where gypsum precipitated, the 

initial surface area of gypsum (area used to fit the early evolution of the system) was 

increased in separate calculations to fit S and Ca concentrations along the experiment (see 

initial and final values of the reactive area of gypsum in Tables 2.3 and 2.4). 

Calculated (CrunchFlow) saturation index, ionic strength and pH of the injected 

solutions (input boundary condition) are given in Tables 2.3 and 2.4. In the case of the 34 bar 

pCO2 experiment, the PhreeqC (v.3) calculated undersaturations with respect to calcite and 

gypsum are slightly larger (Table 2.4; SICal = -3.25 and SIGp = -0.07) than the CrunchFlow 

values owing to the P effect on equilibrium constants. In all simulations, the initial solution 

composition inside the column was considered to be in equilibrium with calcite, dolomite and 

gypsum. 

 

2.2.2.3 Flow and transport properties  

The Darcy velocity q (m
3
/m

2
/s) in the column experiments was obtained dividing the 

flow rate Q (m
3
/s) by the cross section S (m

2
) calculated as S = π·r

2
, being r the radius of the 

column. Darcy velocity q, effective diffusion coefficient De and longitudinal dispersivity αL 

used in the simulations are shown in Tables A.1 and A.2 (Appendix A). The effective 

diffusion coefficient was derived from 

                                                                                                                          (2.21) 

The diffusion coefficient in water at 25 ºC D0 and the cementation exponent n used in the 

simulations were 10
-9

 m
2
/s and 2-2.5, respectively. They are based on common values 
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reported in the literature (e.g., Ullman and Aller, 1982; De Marsily, 1986; Domenico and 

Schwarthz, 1990). 

 

2.2.2.4 Thermodynamic and kinetic data 

Thirty-seven aqueous species were considered in most simulations (experiments with 

a2.1, a3.5, gp-u and gp-e as input solution). Two experiments performed under atmospheric 

conditions used H2SO4 input solution in equilibrium with gypsum (s). In these cases, 

seventeen aqueous species were taken into account (Table A.3, Appendix A, species with *). 

All the equilibrium constants (log K at 25, 40 and 60 °C) and stoichiometric coefficients, 

which were taken from the EQ3/6 database (Wolery et al., 1990; included in the CrunchFlow 

code), are shown in Table A.3 (Appendix A). Activity coefficients were calculated using the 

extended Debye-Hückel formulation (b-dot model) with parameters obtained from the 

CrunchFlow database (EQ3/6). Three solid phases were considered in the calculations 

(calcite, disordered dolomite and gypsum). The equilibrium constants for the mineral 

reactions were also taken from the EQ3/6 database (Table A.4, Appendix A). At 25, 40 and 60 

°C, the values of the gypsum equilibrium constants were decreased by approximately 25% to 

fit the experimentally observed equilibrium condition, as explained in Section 2.1.2. 

 

Table 2.3 Reactive surface area (Am) and input boundary conditions (SI, I and pH) used in 

simulations under atmospheric conditions (CrunchFlow code). 

 

initial final initial final initial final

0.001(0-0.01) 0.015(0.01-0.03) 0.01(0-0.1) 0.1(0.02-0.2)  -  -

 -  -  -  -  -  -

 -  -  -  - 0.01(0.015-0.03) 0.04(0.02-0.05)

A m  = Reaction surface area. A m  in brackets indicates the range of values that fits the experimental concentration data (within ± 2% uncertainty)

 in the sensibility study. 

Cal = calcite; Dol-dis = disordered dolomite; Gp = gypsum.

L60-atm-a2.1

ROCK COMPOSITION

Am (m
2
m/m

3
bulk ) 

Cal - 120(80 - 180)

Exp. label D25-atm-s L25-atm-s L25-atm-a3.5 L60-atm-a3.5 L25-atm-a2.1

Dol -dis 17(16 - 20) 5(4 - 7) 5(0 - 20)

Gp-25 0.03(0.01-0.06) 0(0-0.03)  -

SI, I and pH (CrunchFlow)

Gp-40  -  -  -

Gp-60  -  - 0(0-0.005)

INPUT BOUNDARY CONDITIONS

Input label s a3.5 a2.1

-10.60

Dol-dis -22.85 -23.53 -16.55 -15.74 -22.18 -21.36

Cal -10.33 -10.34 -8.01 -7.77 -10.84

-

-

Gp-40 - - - - - -

Gp-25 0.09 0.08 0.05 - -0.03

pH 2.50 3.50 2.10

-0.09

I 0.05 0.63 0.62 0.61 0.59

Gp-60 - - - 0.04
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2.2.2.5 Reaction rates 

Kinetic rate laws used for primary minerals (calcite and dolomite) and secondary 

minerals (gypsum) are from Palandri and Kharaka (2004) and Xu et al. (2012). Xu et al. 

(2012) proposed a calcite dissolution rate that improves the rate-G dependence under close-

to-equilibrium conditions (-12 ≤ G ≤ 1.7 kJ/mol) with respect to the simplest TST-based 

rate law (m1
 
= m2

 
= 1 in Eq. (2.16)). Hence, all simulations were run based on this rate law 

(i.e., m1
 
= 3 and m2

 
= 1 in Eq. (2.16)). Rate parameters and apparent activation energies are 

listed in Table A.5 (Appendix A). The two parallel rate laws for each primary mineral 

describe the explicit dependence of the rates on pH. Rate constants at temperatures different 

from 25 ºC were calculated according to Eq. (2.15). 

 

Table 2.4 Reactive surface area (Am) and input boundary conditions (SI, I and pH) used in 

simulations under subcritical and supercritical conditions (CrunchFlow and PhreeqC (v.3) codes). 

 

 

2.2.3 Two-dimensional model (Part III: fractured cores) 

Two-dimensional reactive transport simulations were performed to reproduce the 

experimental data of three percolation experiments with fractured cores which developed 

initial final initial final initial final

0.01(0-0.1) 10(1-*)  -  -  -  -

 -  - 0.01(0-0.04) 0.3(0.1-*)  -  -

 -  -  -  - 0.01(0-0.1) 0.1(0.01-*)

A m  = Reaction surface area. A m  in brackets indicates the range of values that fits the experimental concentration data 

(within ± 2% uncertainty) in the sensibility study.

 * Maximum value is not constrained within the experimental error; solution reached equilibrium in the column.

** CrunchFlow (charge balance) calculated pH, similar to the measured averaged pH (see Table 3.1).

Cal = calcite; Dol-dis = disordered dolomite; Gp = gypsum.

SI and pH in brackets is calculated using PhreeqC (v.3).

D40-10-gp-e L60-34-gp-e

ROCK COMPOSITION

Am (m
2
m/m

3
bulk )

Cal 120(80 - 180) - 120(80 - 180)

Exp. label L25-10-gp-u L40-10-gp-u L25-10-gp-e L40-10-gp-e L60-10-gp-e

Dol -dis 5(0 - 10) 5(3 - 20) 10(5 - 30)

Gp-25  -  -  - -

Gp-60  -  -  - 0.5(0.2 -*)

Gp-40  -  - 0.3(0.08-*) -

INPUT BOUNDARY CONDITIONS

Input label gp-u gp-e

SI, I and pH (CrunchFlow)

-2.88 -3.19 -2.96 (-3.25)

Dol-dis -7.34 -6.71 -7.47 -6.77 -5.96 -6.74

Cal -3.45 -3.22 -3.48 -3.21

-6.07

Gp-25 -0.19 - 0.00 - - - -

0.01 -

-0.03 - -0.04 (-0.07)

Gp-40 - -0.20 - -0.01 -

Gp-60 - - - -

0.63 0.60

pH 3.65** 3.7** 3.61** 3.68** 3.78** 3.68** 3.53 (3.40)

I 0.60 0.61 0.61 0.62 0.58
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three different dissolution patterns: face dissolution (L0.2-gp-e), wormhole (L1-gp-e) and 

uniform dissolution (S60-no-s). Results and discussion of the simulations are shown in 

Chapter 5. Model parameters used in 2D simulations are given in the following sections. 

 

2.2.3.1 Numerical discretization 

Rectangular coordinates were used to model experiments which developed face and 

uniform dissolution patterns (L0.2-gp-e and S60-no-s), whereas rectangular and cylindrical 

coordinates were used in the experiment where a wormhole developed (L1-gp-e). Reasons to 

apply this modeling approach are given in Chapter 5. To simplify the models with 

rectangular coordinates only half of the core was considered given the symmetry of the 

fractured cores (Fig. 2.4a). 

 Rectangular coordinates: The dimensions of the domain were:  

Ry: 20 mm (core length).  

Rx: 3.5 mm.  

where Rx was computed by considering that half the core section S (S = π(d/2)
2
; d = 9 mm) 

was equivalent to the area of a rectangle whose sides were d and Rx (Fig. 2.4a). 

The domain was composed of two parts: (1) high-permeability zone (fracture, large porosity; 

in red in Fig. 2.4a) and (2) rock matrix (small porosity; in green in Fig. 2.4a). The fracture 

zone was at the left side of the rectangular domain, parallel to the flow direction (y axis) and 

had a thickness equal to half the experimental fracture aperture (i.e., the first node along the x 

direction).  

The domain in experiment L0.2-gp-e was composed of 27 elements in the x direction and 36 

elements in the y direction. In experiment S60-no-s the domain was composed of 28 elements 

in the x direction and 20 elements in the y direction. This coarser discretization was applied to 

reduce the computational time constraint by the Courant number. The detailed spatial 

discretization is given in Table A.6 (Appendix A). 

 Cylindrical coordinates: The dimensions of the domain were:  

Cy: 20 mm (core length)  
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Cx: 4.5 mm (radius of the core) 

In this case, the 2D grid had symmetry around the y axis (the core sample axis). The length of 

the interface (z) between two cells along x was proportional to the radial distance to the core 

sample axis. In rectangular coordinates, this length was independent of radius. 

 

 

Fig. 2.4 Scheme showing the geometry and boundary conditions of the flow domain used in the 

models: (a) rectangular and (b) cylindrical coordinates. Left and right boundaries are no-flow 

boundaries. Plots on the left show the conceptual model, and plots on the right show the implemented 

grid. 

 

The domain was composed of two zones: (1) cylindrical fracture (high porosity) and (2) rock 

matrix (small porosity). The fracture zone was at the left side of the rectangular domain, 
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parallel to the flow direction (y axis) and 402 mm thick (i.e., 52 nodes along the x direction). 

The thickness of the fracture was varied from 6.7 mm (initial fracture aperture) to 402 mm in a 

sensitivity study (see Chapter 5, Section 5.3.2). When cylindrical coordinates were used, it 

was assumed that the initial fracture was already cylindrical (i.e., a very small wormhole). 

The domain in experiment L1-gp-e was composed of 133 elements in the x direction and 36 

elements in the y direction. Elements along the x axis were rather short to avoid errors in the 

flux calculations. The detailed spatial discretization is given in Table A.6 (Appendix A). 

  

2.2.3.2 Rock and solution composition 

The initial mineralogical composition and porosity of the two described zones are 

given in Table 2.5. Two rocks were considered in the calculations: oolitic limestone and 

sandstone (Table 2.1). Fracture porosity was defined to be 100% whereas limestone and 

sandstone porosities were those reported by CIUDEN (ALM-09-008, 2010).  

The reactive surface areas (Am in Eq. 2.14) of calcite, quartz and microcline were 

initially calculated considering the geometric area (see Section 2.1.3.3). The calcite reactive 

surface area was fitted to reproduce the variation in Ca concentration. Given that quartz and 

microcline did not intervene in the overall process, the values of their reactive surface areas 

were not modified. Calculated values of saturation index, ionic strength and pH of the 

injected solutions are given in Table 2.2. In all simulations, the initial solution composition in 

the rock matrix (pore solution) was considered to be in equilibrium with calcite and gypsum.  

 

2.2.3.3 Flow and transport parameters 

Flow field was updated according to porosity and permeability changes in the 

simulations of the experiments that developed face and uniform dissolution (rectangular 

coordinates). Flow update is not implemented in CrunchFlow when cylindrical coordinates 

area used, and therefore fixed flow was assumed in this case. Notice that De was a fitted 

parameter in the calculations. 

The molecular diffusion coefficient D0, cementation exponent n (e.g., Ullman and 

Aller, 1982; De Marsily, 1986; Domenico and Schwarthz, 1990), longitudinal dispersivity αL 

and effective diffusion coefficient De derived from Eq. (2.21), are listed in Table 2.6. 
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Table 2.5 Initial mineralogical composition of both the rock matrix and the high-permeability zone 

(fracture) and input solution used in the 2D simulations. 

 

 

In the simulation of the wormhole experiment (i.e., rectangular + cylindrical 

coordinates and fixed flow), q was fixed in the fracture zone of the numerical domain. In 

simulations of the experiments with face and uniform dissolution patterns (i.e., rectangular 

coordinates and flow update), Q (m
3
/s) was imposed at the first node of the high-permeability 

zone (node 1,1) to obtain the corresponding q (m
3
/m

2
/s). 

In the experiments where flow field was updated, rock and fracture permeability 

varied according to Eq. (2.20). Initial fracture permeability in experiment S60-no-s was 

obtained by hydraulic measurement using Eqs. (2.10 and 2.11). However, in experiment 

L0.2-gp-e, hydraulic measurement could not be performed and hence initial fracture 

permeability was calculated using Eq. (2.11) and the fracture aperture measured from SEM 

image (as). In both cases, initial limestone and sandstone permeabilities (rock matrix) were 

assumed to be 10
-20 

m
2
 based on the measured rock permeabilities (see Section 2.1.1). In 

these two simulations, left and right boundaries were no-flow boundaries. Initial pressure was 

set to 150 bar in the entire domain. 

 

 

Exp. label

Rock matrix

Rock

Initial porosity φ0 %

Vol. F. Am Vol. F. Am Vol. F. Am

Cal 0.95 2000 0.95 9500 0.612 300000

Qz - - - - 0.264 3605

Mic - - - - 0.060 2180

Gp-60 0.00 100 0.00 6 - -

High-permeability (fracture) zone 

Initial porosity φ0 %

Vol. F. Am Vol. F. Am Vol. F. Am

Gp-60 0.00 100 0.00 6 - -

Input solution 

Input label

A m  = Reactive surface area in m
2

m/m
3

bulk. Vol. F. = Volume fraction

Chemical composition, calculated pH, SI and I of the input solutions are in Table 2.2.

gp-e gp-e no-s

65

100 100100

Sandstone

L0.2-gp-e L1-gp-e S60-no-s

Oolitic limestone
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Table 2.6 Initial transport properties assumed in the 2D calculations. 

 

 

2.2.3.4 Thermodynamic and kinetic data  

Thirty-seven aqueous species were considered in limestone simulations (experiments 

L0.2-gp-e and L1-gp-e; Table A.3, Appendix A) and forty-four aqueous species in the 

sandstone simulation (experiment S60-no-s; Table A.7, Appendix A). Equilibrium constants 

(log K at 60 °C) and stoichiometric coefficients, which were taken from the EQ3/6 database 

(Wolery et al., 1990; included in the CrunchFlow code), are shown in Tables A.3 and A.7 

(Appendix A). Activity coefficients were calculated using the extended Debye-Hückel 

formulation (b-dot model) with parameters obtained from the CrunchFlow database (EQ3/6). 

Two solid phases were considered in the limestone calculations (calcite and gypsum) 

and three solid phases in the sandstone calculations (calcite, microcline and quartz). The 

equilibrium constants for the mineral reactions were also taken from the EQ3/6 database 

(Table A.8, Appendix A). The values of the gypsum equilibrium constants at 60 °C were 

decreased by approximately 25% to fit the experimentally observed equilibrium condition, as 

explained in Section 2.1.2. 

2.2.3.5 Reaction rates 

Kinetic rate laws used for calcite, quartz and gypsum are from Palandri and Kharaka 

(2004) and Xu et al. (2012) and those for microcline are from Bandstra et al. (2008). Rate 

parameters and apparent activation energies are listed in Table A.9 (Appendix A). The two 

parallel rate laws for calcite and microcline describe the explicit dependence of the rates on 

pH.  

Exp. label L0.2-gp-e L1-gp-e S60-no-s

Coordinates rectangular rectangular + cylindrical rectangular

Fracture permeability k m
2

6.75E-12
(1)

- 4.32E-12
(2)

Rock permeability k m
2

1.00E-20 - 1.00E-20

Initial Darcy velocity (N) q m
3
/m

2
/s 6.86E-04 4.61E-3 (1) + 5.47E-4 (52) 2.56E-01

Diffusion coeff. D 0 m
2
/s 1.1E-10 5.36E-09 1.1E-08

Cementation exponent n 2.5 2.5 2.5

Eff. diffusion coeff. D e m
2
/s 6.0E-14 3.0E-12 9.5E-12

Long. dispersivity αL m 0.01 0.01 0.01

Trans. dispersivity αT m - - -

N = number of nodes along the x  direction with fixed flow

(1)
Fracture permeability calculated using Eq. (2.11) and a s.

(2)
Fracture permeability calculated using Eq. (2.11) and a h.
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Crushed Rock 

 

 

 

 

 

 

 

 

 



 



Note: This chapter is based on the article: Garcia-Rios, M., Cama, J., Luquot, L., Soler, J.M., 2014. 

Interaction between CO2-rich sulfate solutions and carbonate reservoir rocks from atmospheric to 

supercritical CO2 conditions. Chem. Geol. 383, 107-122. 

 

 

Chapter 3  

Interaction between CO2-rich sulfate solutions 

and carbonate rocks: column experiments and 

1D modeling 
 

3.1 Introduction 

This chapter focuses on the understanding of the coupled reactions of calcite/dolomite 

dissolution and gypsum precipitation by assessing the effect that P, pCO2, T, mineralogy, 

acidity and solution saturation state exert on the reactions. Experiments using columns filled 

with vuggy limestone or dolostone were conducted under different P-pCO2 (atmospheric: 1-

10
-3.5

 bar; subcritical: 10-10 bar; and supercritical: 150-34 bar) and T (25, 40 and 60 ºC) 

conditions. Input solutions were injected varying the sulfate content (gypsum-undersaturated 

and gypsum-equilibrated solutions) and the acidity source (strong HCl and weak H2CO3 

acids). In addition, the experimental data were reproduced by means of 1D reactive transport 

calculations to evaluate mineral reaction rates in the system (fitted in the model through the 

reactive surface area term) and to quantify the porosity variation. The CrunchFlow (Steefel, 

2009) and PhreeqC (v.3, Parkhurst and Appelo, 2013) numerical codes were used to conduct 

the simulations. 
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3.2 Results 

The experimental conditions and results (output pH, volumes of dissolved rock and 

precipitated mineral, porosity variation, and measured and calculated loss of mass) of the 

column experiments are shown in Table 3.1. The output pH was measured ex-situ in 

experiments performed under atmospheric conditions and in-situ under subcritical conditions. 

In the experiment conducted under supercritical conditions output pH could not be measured 

and was calculated using CrunchFlow and PhreeqC (v.3). The volumes of dissolved 

limestone and dolostone (VL-diss and VD-diss) and precipitated gypsum (VGp-ppt) were calculated 

according to Eqs. (2.1) and (2.2) based on the Ca, Mg and S input and output concentrations. 

The resulting porosity was computed from these values using Eq. (2.6). The mass of the 

sample was weighted before and after reaction in the experiments under subcritical and 

supercritical conditions. The measured loss of mass (ΔMmeas) was compared with the one 

calculated from mass balance (ΔMcalc). 

In all the experiments with gypsum-equilibrated solutions, the S concentration of the 

output solution was smaller than that of the input solution, indicating that a sulfate-rich 

mineral precipitated. This phase was identified by X-ray diffraction (XRD) to be gypsum in 

all cases. SEM images showed the typical needle shape of gypsum crystals (Fig. 3.1).  

The model fit was achieved by adjusting reactive surface areas, using values much 

smaller than the calculated geometric surface areas (2000 m
2

m/m
3
bulk in the atmospheric and 

10 bar pCO2 experiments and 7237 m
2

m/m
3
bulk in the 34 bar pCO2 experiment). Reactive 

transport simulations using ACal = 120 m
2

m/m
3
bulk and ADol ≈ 5 m

2
m/m

3
bulk provided a good fit 

to the experimental data (Fig. 3.2, 3.3 and 3.4). An explanation for the small values of area 

could be given by the transport (diffusion) control of the net reactions at pH < 5 (e.g., Sjöberg 

and Rickard, 1984). When gypsum precipitation occurred in limestone column experiments, 

the initial value of AGp used to fit the early stage was increased to fit the temporal variation of 

the experimental S deficit and Ca excess. The final value of AGp ranges from 0.015 to 10 

m
2

m/m
3
bulk (Tables 2.3 and 2.4). By contrast, in dolostone column experiments, a single value 

of AGp provided a good fit for the whole duration of the experiments because of the rapid 

steady-state of the experimental S deficit and Ca excess. A sensitivity analysis regarding 

surface areas yielded a range of ACal, ADol and AGp values that matched the experimental data 

within the 2 % of analytical uncertainty (Tables 2.3 and 2.4). 



 

 

Table 3.1 Experimental conditions and results (pH, volume of dissolved rock and precipitated mineral, porosity variation, and measured and calculated loss 

of mass) of the column experiments. 

Experiment Sample Input T Initial mass Vp τ tf VGp-ppt 

label solution input ouput ΔMmeas ΔMcalc-Ca ΔMcalc-Mg
(Ca) (Mg) (Ca) (Mg)

label (°C) (g) (cm
3
) (h) (h)

First Set

L25-atm-s L s 25 20.82 6.2 4.6 2.50 7.55 2451 - 1.43 - 0.57 - 0.06 3.72 -

D25-atm-s D s 25 21.15 6.4 5.0 2.50 7.55 2812 - 0.75 0.90 0.41 0.46 0.18 1.65 2.03

L25-atm-a2.1 L a2.1 25 19.37 6.7 5.6 2.10 7.3 732 - 1.31 - 0.56 - 0.09 3.39 -

L60-atm-a2.1 L a2.1 60 19.42 6.7 5.6 2.10 7.31 732 - 0.88 - 0.52 - 0.23 2.07 -

L25-atm-a3.5 L a3.5 25 19.41 6.7 5.6 3.50 6.75 542 - 0.08 - 0.03 - - 0.20 -

L60-atm-a3.5 L a3.5 60 19.43 6.7 5.3 3.50 6.82 542 - 0.06 - 0.02 - - 0.15 -

Second Set

L25-10-gp-u L gp-u 25 61.60 20.8 5.5 3.56 5.22 204 1.74 1.61 - 0.59 - - 1.36 -

L40-10-gp-u L gp-u 40 56.00 22.8 6.1 3.65 5.17 506 - 2.84 - 1.04 - - 2.40 -

L25-10-gp-e L gp-e 25 62.61 20.4 6.1 3.51 5.21 721 4.60 3.59 - 1.71 - 0.47 2.87 -

L40-10-gp-e L gp-e 40 58.27 22 6.7 3.62 5.16 684 2.49 2.61 - 1.22 - 0.30 2.11 -

L60-10-gp-e L gp-e 60 59.23 21.7 6.6 3.73 5.13 683 1.78 1.90 - 0.81 - 0.13 1.58 -

D40-10-gp-e D gp-e 40 61.60 21.7 6.2 3.60 4.62 889 1.04 0.82 0.71 0.46 0.42 0.21 0.57 0.48

Third Set

L60-34-gp-e L gp-e 60 0.852 0.38 0.6 3.53 4.72 121 0.05 0.07 - 0.03 - 0.004 3.82 -

Labels of the experiments are coded by rock type, T , p CO2 and input solution label: rockT -p CO2-input label.

L = limestone; D = dolostone.

Vp = pore volume.

τ  = residence time; tf = experimental time.

Input pH (10 bar p CO2) and output pH (atmospheric and 10 bar p CO2) are the averaged measured pH ( pH value ± 0.20). 

Input and output pH in italics (34 bar p CO2) indicates CrunchFlow calculated pH (charge balance). 

V rock-diss  (Ca) and V rock-diss  (Mg) indicate the volume of dissolved rock, calculated  from Ca and Mg release, respectively.

V Gp-ppt  indicates the volume of precipitated mineral.

The propagated error of V rock-diss , V Gp-ppt  and calculated loss of mass is ± 10%.

atmospheric conditions (P = 1 bar; p CO2 = 10
-3.5

 bar)

subcritical conditions (P = p CO2 = 10 bar)

supercritical conditions (P = 150 bar; p CO2 = 34 bar)

pH Loss of mass Vrock-diss Δφ

(g)  (cm
3
)
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Fig. 3.1 SEM images of the reacted limestone (a) and dolostone (b). Gypsum needles precipitated on 

the carbonate surfaces. 

 

As stated above, simulations successfully reproduced the experimental variation of 

Ca, Mg and S concentration over time. However, the simulated output pH matched the 

measured output pH of the 10 bar pCO2 experiments (Fig. B.3b, Appendix B) but was 

systematically smaller than the measured one in experiments under atmospheric pCO2 (Fig. 

B.1a, Appendix B). This mismatch was probably caused by CO2 degassing when measuring 

the output pH under atmospheric conditions. pH was measured in line under 10 bar pCO2 (no 

degassing). 

 

3.2.1 Experiments under atmospheric conditions (P = 1 bar; pCO2 = 10
-3.5

 bar) 

 

3.2.1.1 H2SO4 solution (s) 

Fig. 3.2a, b shows the output Ca and S concentrations measured during the 

experiments with s input solution (Table 3.1; experiments L25-atm-s and D25-atm-s). The 

measured output pH rapidly increased from 2.50 to 7.55 and reached steady state from the 

start of the experiment in both limestone and dolostone column experiments (Fig. B.1a, 

Appendix B). The output Ca concentration was larger than the input one in both experiments 

(Fig. 3.2a). The high output pH and Ca and Mg concentrations indicate that calcite and 

dolomite dissolved. 
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Fig. 3.2 Top row (experiments L25-atm-s and D25-atm-s): Variation of the experimental (Exp) and 

simulated (Sim) output concentration of Ca (a) and S (b) with time in limestone (L; in green) and 

dolostone (D; in blue) column experiments. Black-solid lines indicate input solution. Dashed and 

dotted lines depict simulated values of limestone and dolostone column experiments, respectively. 

Bottom row (experiments L25-atm-a2.1 and D25-atm-a2.1): Variation of the experimental (Exp) and 

simulated (Sim) increase in Ca (c) and S (d) concentration with time in limestone column experiments 

at  25 ºC (in green) and 60 ºC (in red). Solid lines indicate the Ca concentration increase at 

equilibrium with calcite. 

 

During limestone dissolution, output pH and output Ca concentration reached 

equilibrium with calcite (equilibrium Ca concentration is 1.98   10
-2

 M). However, during 
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dolostone dissolution output Ca and Mg concentration did not achieve equilibrium with 

dolomite (equilibrium Ca and Mg concentrations are 1.82   10
-2

 M and 2.88   10
-3

 M, 

respectively). Equilibrium concentrations were calculated with PhreeqC (v.3; Parkhurst and 

Appelo, 2013) and the PhreeqC database. In the limestone column experiment, the output S 

concentration was only slightly smaller than the input one up to around 1500 h, after which it 

decreased and reached steady state. By contrast, in the dolomite column experiment, the 

output S concentration was smaller than the input concentration and steady state was reached 

from the start of the experiment (Fig. 3.2b). This decrease indicates that a sulfate-rich mineral 

precipitated after around 1500 h in the limestone column experiment and almost from the 

start in the dolomite column experiment. The precipitated sulfate-rich mineral was identified 

by XRD to be gypsum in both cases. In the column experiments performed by Singurindy 

and Berkowitz (2003), clogging of the column due to gypsum precipitation was favored 

under flow rates between 1 and 2.2 mL/min and H
+
/SO4

2-
 ratios between 2 and 2.5. The range 

of H
+
/SO4

2-
 ratios and flow rates used in their study were significantly higher than those used 

in our experiments. 

 

3.2.1.2 Acidic gypsum-equilibrated solution (a2.1 and a3.5) 

Two limestone column experiments with a2.1 input solution were performed at 25 

and 60 ºC (Table 3.1; experiments L25-atm-a2.1 and L60-atm-a2.1). Fig. 3.2c and d shows 

the experimental and simulated Ca and S concentration increase versus time. In these 

experiments, the measured output Ca concentration and pH were higher than the respective 

input values. The output Ca concentration was slightly larger at 25 than at 60 ºC. The solution 

saturation state was close to calcite equilibrium at both temperatures, but closer at 60 ºC (Fig. 

3.2c; PhreeqC (v.3)-calculated equilibrium Ca concentrations at 25 and 60 ºC were 7.28   10
-

2
 M and 6.45   10

-2
 M, respectively). At both temperatures, S concentration was immediately 

smaller than the input one, indicating immediate precipitation of sulfate-rich mineral. 

According to the S deficit, mineral precipitation at 60 ºC was higher than at 25 ºC (Fig. 3.2d).  

The precipitated sulfate-rich mineral at 25 and 60 ºC was identified by XRD to be 

gypsum even if thermodynamically the most stable phase at 60 ºC was considered to be 

anhydrite. The fact that gypsum was the precipitated phase at 60 ºC was not rare owing to the 

existence of a marked inconsistency between the thermodynamics of calcium sulfate and its 

crystallization behavior (Van Driessche et al., 2012). Ossorio et al. (2013) reported that 



47 
 

salinity and temperature strongly influence the type and stability of the precipitated phase 

(gypsum, bassanite and anhydrite), yielding gypsum stability up to 10 months at 80 ºC under 

0.8 M NaCl conditions. Increasing salinity (4.3 M NaCl), bassanite precipitation prevails and 

gypsum stability decreases.  

In the limestone column experiments run with a3.5 input solution (Table 3.1; 

experiments L25-atm-a3.5 and L60-atm-a3.5), the output Ca concentration was only slightly 

larger than the input one (Fig. B.2a, Appendix B), and the input and output Mg and S 

concentrations were the same within error. Therefore, at this input pH, limestone dissolution 

was small and there was no precipitation. The output pH increased up to 6.75 (25 ºC) and 

6.82 (60 ºC) (Fig. B.2b, Appendix B). 

 

3.2.2 Experiments under subcritical conditions (P = pCO2 = 10 bar) 

 

3.2.2.1 Gypsum-undersaturated solution (gp-u) 

In the limestone column experiments with gp-u input solution (Table 3.1; experiments 

L25-10-gp-u and L40-10-gp-u), the output Ca concentration was larger than the input 

concentration at both temperatures (25 and 40 ºC), reached steady state at the start of the 

experiment, and was greater at 25 ºC than at 40 ºC (Fig. B.3a, Appendix B). The output pH 

increased up to 5.22 (25 ºC) and 5.17 (40 ºC) (Fig. B.3b, Appendix B). The input and output 

Mg and S concentrations were the same within error. Therefore, calcite dissolution was the 

only occurring reaction. In both experiments, the solution saturation state did not reach 

equilibrium with calcite (Fig. B.3a, Appendix B; PhreeqC (v.3)-calculated equilibrium Ca 

concentrations at 25 and 40 ºC were 7.04   10
-2

 M and 6.31   10
-2

 M, respectively). In the 

experiment performed at 25 ºC, the measured loss of mass calculated by subtracting the final 

weight of the sample from the initial weight was 8% higher than the calculated loss of mass 

based on the aqueous chemistry (comparison of ΔMmeas and ΔMcalc-Ca in Table 3.1). However, 

these values were within the calculated propagated error (≈ 10%).  

 

3.2.2.2 Gypsum-equilibrated solution (gp-e) 

Three limestone column experiments with gp-e input solution were performed at 25, 

40 and 60 ºC (Table 3.1; experiments L25-10-gp-e, L40-10-gp-e and L60-10-gp-e).  
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Fig. 3.3 Top row (experiments L25-10-gp-e, L40-10-gp-e and L60-10-gp-e): Variation of the 

experimental (Exp) and simulated (Sim) increase in Ca (a) and S (b) concentration with time in 

limestone column experiments at  25 ºC (in green), 40 ºC (in orange) and 60 ºC (in red). Dashed, 

dotted and red-solid lines show simulated values at 25, 40 and 60 ºC, respectively. Bottom row 

(experiments L40-10-gp-e and D40-10-gp-e): Variation of the experimental (Exp) and simulated 

(Sim) increase in Ca (c) and S (d) concentration versus time in limestone (L; in orange) and dolostone 

(D; in blue) column experiments. Dotted and dashed lines show simulated values of limestone and 

dolostone experiments, respectively. Solid lines in (c) represent the Ca concentration increase in 

equilibrium with calcite (in orange) and dolomite (in blue). 

 

The results of this set of experiments showed that the output pH immediately increased up to 

5.21 (25 ºC), 5.16 (40 ºC) and 5.13 (60 ºC) and reached steady state. The output Ca 
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concentration exceeded that of the input in all experiments and decreased with time at 25 and 

40 ºC, reaching steady state at 60 ºC. Ca release decreased with temperature (Fig. 

3.3a;Ca25ºC >Ca40ºCCa60ºC). In all experiments, the solution saturation state did not 

reach equilibrium with calcite, being slightly further from equilibrium at 25 ºC (PhreeqC 

(v.3)-calculated equilibrium Ca concentrations at 25, 40 and 60 ºC were 7.55   10
-2

 M,  6.93 

  10
-2

 M and 6.08   10
-2

 M, respectively). The input and output Mg concentrations were the 

same within error. The output S concentration was smaller than the input concentration in all 

experiments. This S deficit gradually increased with time at 25 and 40 ºC and showed little 

variation with time at 60 ºC. Output S concentration increased with temperature, which 

implies that │S60ºC│<│S40ºC│<│S25ºC│ (Fig. 3.3b). Thus, according to the resulting 

trend of Ca and S, the amounts of dissolved calcite and precipitated gypsum (identified by 

XRD) were larger at lower temperatures.  

Using gp-e as input solution, the dolostone column experiment at 40 ºC (Table 3.1; 

experiment D40-10-gp-e) showed that the output pH increased up to 4.62. ΔCa and ΔS 

variations with time are shown in Fig. 3.3c and d.  The output Ca and Mg concentrations only 

increased very slightly (zero within error) and immediately reached steady state. The solution 

saturation state did not reach equilibrium with dolomite. In contrast to the limestone 

experiment, the output S concentration decreased immediately and reached steady state (Fig. 

3.3d). However, the drop in concentration was very small (zero within error). 

In this set of experiments, the measured loss of mass was different from the calculated 

loss of mass by a factor of 5-28% (Table 3.1).  

 

3.2.3 Experiment under supercritical conditions (P = 150 bar; pCO2 = 34 bar) 

The output pH in the limestone column experiment with gp-e input solution at 34 bar 

of pCO2, P of 150 bar and T of 60 ºC (Table 3.1; experiment L60-34-gp-e) could not be 

measured. The simulated output pH rapidly increased up to 4.72 (CrunchFlow) and 4.47 

(PhreeqC (v.3)) and reached steady state. The output Ca and Mg concentrations were larger 

than the input concentrations (Fig. 3.4a), and the output S concentration was slightly smaller 

(Fig. 3.4b). Hence, limestone dissolved and gypsum (identified by XRD) precipitated. The 

calculated loss of mass (0.07 g) was 40% higher than the measured loss of mass (0.05 g) 

(Table 3.1), the difference being due to the small mass value. 
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Fig. 3.4 Variation of the experimental (Exp) and simulated (Sim) output Ca and Mg (a) and S (b) 

concentration with time in the limestone column experiment under supercritical conditions (L60-34-

gp-e). Red and green dashed lines indicate simulated values of output concentrations using 

CrunchFlow and PhreeqC (v.3), respectively. In the PhreeqC (v.3) calculation, dolomite was not 

considered and the calculated output S concentration coincides with the input value. 

 

3.3 Discussion 

The influence of the variation in T, mineralogy and pCO2 on the dissolution and 

precipitation processes was evaluated using the experimental and modeling results. Overall, it 

was observed that (1) by lowering temperature, the amount of dissolved limestone increased 

under any pCO2 condition and gypsum precipitation was only favored at high pCO2; (2) as 

expected, the amount of mineral dissolved and porosity increase were noticeably larger in the 

limestone experiments than in the dolostone ones, regardless of solution composition, 

temperature and dissolved CO2; gypsum precipitated immediately as dolostone dissolved and 

only after some time as limestone dissolved; and (3) by increasing pCO2 the amounts of 

dissolved limestone and precipitated gypsum increased, enhancing the porosity over a longer 

column length.  

Moreover, under all P-pCO2-T conditions, the volume of precipitated gypsum was always 

smaller than the volume of dissolved rock (either limestone or dolostone), yielding in all 

cases a porosity increase. Detailed explanation of the mechanisms that control the occurring 

processes is given as follows and is illustrated by the plots in Fig. 3.5 and 3.6.  
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Fig. 3.5 Experimental variation of volume of dissolved rock Vrock-diss (a and d), percentage of volume 

of dissolved limestone (g), volume of precipitated gypsum VGp-ppt (b and e), percentage of volume of 

precipitated gypsum (h) and porosity    (c, f and i) with number of pore volumes Vp in experiments 

performed at 25 ºC (in green), 40 ºC (in orange) and 60 ºC (in red). Solid, dashed and dotted lines 

(plots of T and pCO2) represent atmospheric, 10 bar and 34 bar pCO2 conditions, respectively. Solid 

lines and solid lines with empty squares (plots of mineralogy) indicate experiments with limestone (L) 

and dolostone (D), respectively. VL-diss (%) and VGp-ppt (%) are percentages of dissolved and 

precipitated volumes with respect to each initial sample volume. 

 

(1) T effect: Comparison between two groups of experiments with gypsum-

equilibrated solution and temperature ranging from 25 to 60 ºC was used to assess the T 

effect on porosity changes (Table 3.1; the first group was conducted under atmospheric pCO2 

(L25-atm-a2.1 and L60-atm-a2.1) and the second group under 10 bar of pCO2 (L25-10-gp-e,  

L40-10-gp-e and L60-10-gp-e)). Fig. 3.5a shows that the amount of limestone dissolved 
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increased by decreasing the temperature, and that the difference between VL-diss at 25ºC and 

VL-diss at 60ºC considerably increased with pCO2. Indeed, after 100 pore volumes, VL-diss 

(25ºC)/VL-diss (60ºC) was 1.08 under atmospheric conditions and 1.99 under 10 bar of pCO2.  

 

 

Fig. 3.6 Modeled porosity variation along the column during experiments at 25 ºC (in green), 40 ºC 

(in orange) and 60 ºC (in red). Solid, dashed and dotted lines represent atmospheric, 10 bar and 34 

bar pCO2 conditions, respectively, and plain and empty-square lines indicate experiments with 

limestone and dolostone, respectively. Colored areas indicate simulated values using the initial (AGp-0) 

and final (AGp-f) gypsum reactive area. T effect under atmospheric and 10 bar of pCO2, respectively (a 

and b), mineralogy effect (c) and pCO2 effect on porosity changes (d). Variation of calcite saturation 

index (SICal) along the column is shown in (a, b and d). 

 

It should be noted that the limestone dissolution rate decreased with temperature under both 

pCO2 conditions in contrast to the reported increase in the calcite dissolution rate constants 

with temperature from 25 to 100 ºC and under pCO2 from atmospheric to 55 bar (Pokrovsky 

(a) (b)

(c) (d)
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et al. 2005, 2009). An explanation for the observed T effect on the calcite dissolution rate was 

provided by the different solution saturation state along the column at different temperatures. 

From the CrunchFlow simulations run with the same reactive surface area of calcite (ACal = 

120 m
2

m/m
3
bulk), it was deduced that dissolution at 25 ºC took place under more 

undersaturated conditions than at 60 ºC under all pCO2 conditions (i.e., SICal is further from 

equilibrium at lower T; see SICal variation of atmospheric and 10 bar pCO2 experiments in 

Fig. 3.6a, b, respectively). Hence, the trend (faster dissolution rate at lower T) is driven by the 

solution saturation state rather than by the temperature dependence of the dissolution rate 

constant. The fact that CO2 solubility is higher with decreasing temperature (Duan and Sun, 

2003) also contributes to the observed trend of faster dissolution rate with decreasing 

temperature. The higher solubility results in buffering of the solution pH at lower values (see 

smaller pH values at lower T in Tables 2.4 and 3.1).  

As regards the T effect on gypsum precipitation, results show that by lowering 

temperature, gypsum precipitation rate was favored under 10 bar of pCO2 and not favored 

under atmospheric pressure (Fig. 3.5b). Under all pCO2 conditions, two stages were 

distinguished in limestone column experiments where gypsum precipitated. In the first stage, 

to match the small initial S deficit, the same value of gypsum reactive area for all 

experiments was used (AGp ≈ 0.01 m
2

m/m
3
bulk). In the second stage, this initial value was 

increased to match the growing S deficit as gypsum kept on precipitating. In the former stage, 

although the solution was slightly more supersaturated with respect to gypsum at the lowest 

T, the gypsum precipitation rate was faster at the highest T. This demonstrated that in this 

first stage the increased rate constants prevailed over the solution saturation state. In the latter 

stage, the dependence of the gypsum precipitation rate on T shows differences between 

experiments run under atmospheric and 10 bar of pCO2 conditions. Under atmospheric pCO2 

conditions, since the difference in calcite dissolution rates at 25 and 60 ºC was slight, the 

initial trend remained and the gypsum precipitation rate was faster at the highest T. By 

contrast, under 10 bar of pCO2 conditions the trend changed and the gypsum precipitation 

rate was faster at the lowest T owing to the larger Ca concentration at this T (Fig. 3.3a, b).  

Overall, the coupled process of limestone dissolution and gypsum precipitation 

always increased porosity (under any pCO2), the increase being higher at the lowest 

temperature (Fig. 3.5c). Simulations showed that an increase in temperature does not affect 

the trend of porosity variation along the column but reduces porosity creation under all pCO2 

conditions (Fig. 3.6a, b). 
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Likewise, in the experiments performed with the gypsum-undersaturated solution 

under 10 bar of pCO2 (Table 3.1; L25-10-gp-u and L40-10-gp-u), the trend in limestone 

dissolution and porosity variation with temperature was the same (faster dissolution rate and 

larger increase in porosity at the lowest temperature). In these cases, gypsum did not 

precipitate and the amount of dissolved limestone and the porosity increase were slightly 

enhanced (Fig. B.4, Appendix B) with respect to those using gypsum-equilibrated solution 

under the same T and pCO2 (Table 3.1; L25-10-gp-e and L40-10-gp-e). Given that calcite 

dissolution at the same T took place under very similar solution saturation states (Table 2.4; 

SICal was -3.45 and -3.48 at 25 ºC with gypsum-undersaturated and gypsum-equilibrated 

solutions, respectively), the slightly smaller amount of dissolved limestone in experiments 

with a high sulfate content can be attributed to a sulfate inhibitory effect on the calcite 

dissolution rate (Gledhill and Morse, 2006; Sjöberg, 1978). Nonetheless, a passivation 

process due to formation of gypsum coatings on the calcite grain surfaces cannot be neglected 

(Offeddu et al., 2014, 2015). 

(2) Mineralogy effect: Fig. 3.5d-f shows the differences between limestone and 

dolostone reactivity based on the results from two groups of experiments (Table 3.1; the first 

group performed under atmospheric pCO2 (L25-atm-s and D25-atm-s) and the second group 

under 10 bar of pCO2 (L40-10-gp-e and D40-10-gp-e)). The only difference between the two 

experiments in the same group is in the initial mineralogy: limestone (L) or dolostone (D). As 

a result of the slower dolomite dissolution kinetics (given by the values of the rate constants 

and the   
 
 exponents), VL-diss was higher than VD-diss regardless of solution composition, 

temperature and dissolved CO2, but the difference between VL-diss and VD-diss increased with 

pCO2 (Fig. 3.5d). For instance, after 100 pore volumes, VL-diss /VD-diss was 1.39 under 

atmospheric pCO2 and 3.91 under 10 bar of pCO2. This difference is also supported by the 

different increase between calcite and dolomite dissolution rates with increasing T (from 25 

to 60 ºC) and pCO2 (from atmospheric to 10 bar) reported in Prokrovsky et al. (2009). The 

reported increase in calcite dissolution rate is 5 times larger than in the case of dolomite. 

Therefore, the increase in T and pCO2 in the experiments of this study was expected to have a 

larger effect on calcite than on dolomite.  

The variation of volume of precipitated gypsum (VGp-ppt) versus the number of pore 

volumes (Fig. 3.5e) shows that under atmospheric pCO2 conditions the amount of 

precipitated gypsum was smaller in the limestone experiments than in the dolostone 
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experiments. Under 10 bar of pCO2, the gypsum precipitation rate was much faster than at 

atmospheric pCO2 being faster in the limestone experiment than in the dolostone experiment. 

Gypsum precipitated immediately in the dolostone columns and only after 225 (atmospheric 

pCO2) and 11 (10 bar of pCO2) pore volumes in the limestone columns (Fig. 3.5e). Moreover, 

the gypsum precipitation rates as dolostone dissolved were fairly constant in contrast to the 

gradual increase in the gypsum precipitation rates that occurred during limestone experiments 

(Fig. 3.2b and 3.3d). The difference between the early and late gypsum precipitation could be 

attributed to the mineral induction time, which is the time elapsed between the establishment 

of supersaturation in a solution and the detection of a new phase in the system (nucleation; 

Söhnel and Mullin, 1988). This term is influenced by the presence of impurities in solution 

(e.g., Al
3+

, Mg
2+

, Fe
2+

; Gao et al., 2008; Rashad et al., 2004) and other parameters (e.g., ionic 

strength and calcium content; Prisciandaro et al., 2001; Reznik et al., 2012).  

Overall, as a result of the coupled processes of calcite and dolomite dissolution and 

gypsum precipitation, porosity increase was significantly larger in the limestone experiments 

than in the dolostone ones under both pCO2 and T conditions (Fig. 3.5f). Under the same 

pCO2, the trend of porosity variation along the column was similar in the limestone and 

dolostone experiments. However, the formation of porosity was greater at the inlet of the 

limestone experiments than in the dolostone experiments owing to the slower dolomite 

dissolution rate (Fig. 3.6c).  

(3) pCO2 effect: Limestone reactivity under different pCO2 conditions was assessed 

by comparing the results of the experiments run under atmospheric, 10 and 34 bar of pCO2 

using gypsum-equilibrated  solutions at 60 ºC (Table 3.1; experiments L60-atm-a3.5, L60-10-

gp-e and L60-34-gp-e). Output pH rose to around 6.82 under atmospheric pCO2 conditions 

but it increased only to 5.13 and 4.72 under 10 and 34 bar of pCO2 (Table 3.1). The 

percentage of dissolved limestone and precipitated gypsum with respect to each initial sample 

volume was higher at the greater pCO2. For instance, after 100 pore volumes VL-diss (%) and 

VGp-ppt (%) were 0.28, 3.64, 4.95 and 0, 0.58, 0.77 under atmospheric, 10 and 34 bar of pCO2, 

respectively (Fig. 3.5g, h). Likewise, porosity increased with pCO2, being noticeably higher 

in the two high pCO2 experiments (Fig. 3.5i). 

The calcite dissolution rate was faster along the column under higher pCO2 

conditions. This behavior is directly attributed to the decrease in pH with increasing dissolved 

CO2. Given that the input pH is around 3.5 in the three experiments, the faster calcite 
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dissolution rate at high pCO2 (10 and 34 bar) is related to the weak character of the H2CO3 

acid in contrast to the strong nature of the HCl acid used under atmospheric pCO2. As a weak 

acid, H2CO3 acts as a pH buffer and dissociates partially yielding lower solution pH all over 

the column. As a result, under atmospheric pCO2 the increase in porosity occurred 

exclusively near the inlet in contrast to the significant porosity increase along the column 

under 10 and 34 bar pCO2 (Fig. 3.6d). This behavior is ascribed to the solution saturation 

state, which varies differently depending on pCO2. Under atmospheric pCO2, the solution 

reached equilibrium with calcite after a short distance from the inlet, whereas under 10 and 

34 bar of pCO2 it remained undersaturated along the column (Fig. 3.6d). Therefore, an 

increase in pCO2 changed the pattern of porosity variation along the column, increasing the 

distance affected by dissolution. As regards gypsum precipitation, it took place primarily near 

the inlet, where the amount of dissolved limestone was greater. 

The difference in calcite dissolution rates under different pCO2 conditions in the experiments 

of this study in which TDS is about 30 g/L could diminish if ionic strength was higher, as 

argued by Gledhill and Morse (2006). These authors demonstrated that differences between 

rates under different pCO2 conditions diminished with increasing solution concentration from 

40 to 200 g/L and the effect was more pronounced at higher pCO2.  

Finally, to test the non linear effect of P on CO2 solubility and mineral equilibria 

(through the molar volume of solutes) reported by Appelo et al. (2014), simulations using the 

CrunchFlow and PhreeqC (v.3) codes were compared. Using the same ACal value (120 

m
2

m/m
3
bulk), despite the fact that the respective simulated output Ca concentration barely 

differed (Fig. 3.4a), gypsum did not precipitate in the PhreeqC (v.3) simulation because 

gypsum solubility increased owing to the P effect (Fig. 3.4b). Therefore, at pCO2 > 20 bar, 

model calculations should consider the P effect on equilibrium constants to yield more 

reliable predictions. 

 

3.4 Summary and conclusions  

Experiments using columns filled with crushed limestone and dolostone with initial 

porosity of about 50% proved useful in gaining further insight into the effect exerted by 

mineralogy, temperature, injected synthetic solution composition and pCO2 on reservoir rock 

reactivity.  
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As for the temperature effect, under all pCO2 conditions, low temperature favored 

limestone dissolution rate although the calcite dissolution rate constants increase with 

temperature (up to 100 ºC; Pokrovsky et al., 2009). This inverse tendency was explained by 

the fact that limestone undersaturation increased by decreasing the temperature, which 

suggested that the process was thermodynamically controlled. Gypsum precipitated only if 

the injected solution was gypsum-equilibrated. Under the conditions of this study anhydrite 

precipitation did not occur. Using gypsum-undersaturated solutions, the amount of dissolved 

limestone was found to be slightly higher than that obtained with gypsum-equilibrated 

solutions. The high sulfate content in the latter solution probably inhibited calcite dissolution 

rate (Gledhill and Morse, 2006)).  

As expected under our experimental conditions, the volume of dissolved limestone 

was larger than that of dolostone owing to the well-known faster calcite dissolution kinetics. 

Likewise, a pCO2 increase implies a pH decrease that enhances substantially calcite 

dissolution rate with respect to that of dolomite (Pokrovsky et al., 2005, 2009). The volume 

of precipitated gypsum was always smaller than the volume of dissolved rock (whether 

limestone or dolostone), yielding in all cases a porosity increase. In addition, gypsum 

induction time was longer when limestone dissolved and precipitation increased gradually. 

When dolostone dissolved, gypsum precipitated quickly and precipitation remained steady. 

When raising pCO2, the limestone dissolution rate increased along the column 

because of the direct pH effect on the calcite dissolution rate. Dissolution of the carbonate 

minerals in acidic pH is controlled, under atmospheric pressure, by the protons provided by 

the strong acid (HCl or H2SO4), whereas under high pCO2, H2CO3 partial dissociation 

controls the dissolution. Model results show that if solution acidity is controlled by a strong 

acid, dissolution occurs exclusively at the first rock-solution contact, raising the pH at ≈ 7 

and limiting the limestone dissolution further away. In contrast, simulations under high pCO2 

conditions show that pH remains acidic (≈ 5) and the solution is permanently undersaturated 

with respect to calcite and dolomite (due to the carbonic acid buffer capacity), yielding a 

higher increase in porosity all over the rock-solution contact.  

A good match between the CrunchFlow and PhreeqC (v.3) reactive transport 

calculations and the experimental data was obtained. Rate laws including the values of the 

rate constants were taken from literature. The fit of the model to the experimental data was 

performed by adjusting the values of the reactive surface areas. The calcite and dolomite 
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reactive surface area values had to be diminished by two orders of magnitude from the 

initially calculated geometric surface areas. A possible explanation for the small areas could 

be given by the transport (diffusion) control of the dissolution reactions at pH < 5. It should 

be noted that a single value of the reactive area for calcite provided a good fit of the model to 

all experimental results, supporting the applicability of this modeling approach. The values 

for dolomite were more variable but continued to be within the model uncertainty. 

 

 

 

 

 

 



 

 

 

 

 

 

 

Part III: 

Fractured Cores 

 

 

 

 

 

 

 

 

 



 



Note: This chapter is based on the submitted article to Int. J. Greenh. Gas Control: Garcia-Rios, M., 

Luquot, L., Soler, J.M., Cama, J. 2015. Influence of the flow rate on dissolution and precipitation 

features during percolation of CO2-rich sulfate solutions through fractured limestone samples.  

 

 

 

Chapter 4  

Influence of the flow rate on dissolution and 

precipitation features during percolation 

experiments with fractured limestone and 

sandstone cores 

 

4.1 Introduction 

This chapter presents the experimental results of a set of percolation experiments 

which consist of injecting CO2-rich solutions through fractured core samples under Hontomín 

reservoir conditions. Cores were made of limestone and sandstone rocks from the Hontomín 

reservoir. Experiments were run under different flow rates and sulfate content of the injected 

solution. X-ray computed microtomography (XCMT) was used to characterize changes in 

fracture volume induced by dissolution and precipitation processes. In addition, measurement 

of the pressure difference between the inlet and the outlet of the sample and of the aqueous 

chemistry enabled the determination of permeability changes and net reaction rates. A 

discussion including the influence of flow rate on the reactions, evolution of dissolution 

patterns and permeability changes during fracture dissolution is likewise presented. 
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4.2 Results 

Table 4.1 shows the list of the percolation experiments. Core and fracture dimensions 

and mineralogical composition of limestone and sandstone samples were described in Section 

2.1.1 (Table 2.1, Fig. 2.2). Three different input solutions were injected through the fractured 

limestone and sandstone cores (sulfate-free solution no-s, gypsum-undersaturated solution 

gp-u and gypsum-equilibrated solution gp-e; Section 2.1.2; Table 2.2). All experiments were 

run under P = 150 bar, pCO2 = 62 bar and T = 60 ºC, and flow rates varied from 0.2 to 60 

mL/h. Two flow-through apparatus (Icare Lab CSS I, Luquot and Gouze, 2009, and Icare Lab 

CSS II, Luquot et al., 2012) were used to reproduce the in situ reservoir conditions for CO2 

sequestration (Section 2.1.3; Fig. 2.3c). 

 

Table 4.1 List of the percolation experiments. 

 

 

Experiment label Q Input solution label

(mL/h)

L1-no-s 1 no-s

L60-no-s 60 no-s

L0.2-gp-e 0.2 gp-e

L1-gp-e 1 gp-e

L5-gp-e 5 gp-e

L60-gp-e 60 gp-e

S1-no-s 1 no-s

S5-no-s 5 no-s

S60-no-s 60 no-s

S5-gp-u 5 gp-u

S60-gp-u 60 gp-u

S0.2-gp-e 0.2 gp-e 

S1-gp-e 1 gp-e

S5-gp-e 5 gp-e

S60-gp-e 60 gp-e

Labels of the experiments are coded by rock type, flow rate Q  and 

input solution label: rockQ -input label.

All experiments were run under P  = 150 bar, p CO2 = 62 bar and T  = 60 °C.

no-s  = sulfate-free solution.

gp-u  = gypsum-undersaturated solution.

gp-e = gypsum-equilibrated solution.

 LIMESTONE (L)

SANDSTONE (S)
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4.2.1 Initial fracture characterization 

The initial fracture aperture was obtained by means of three independent experimental 

measurements: (1) hydraulic aperture    determined from hydraulic test using Eq. (2.10), (2) 

geometric aperture     obtained from X-ray computed microtomography (XCMT) data, and 

(3) geometric aperture    obtained from scanning electron microscopy (SEM) examination. 

The relationship between the aperture      and the volume      of the fracture at initial time 

(    ) was considered to be                , assuming that the initial fracture volume 

was defined as a parallelepiped. Table 4.2 shows the obtained fracture aperture and fracture 

volume values at      (comparison of   ,     and   ). 

 

Table 4.2 Measured (weighted) mass of fractured core (      ), fracture permeability ( ), and 

fracture geometry (a and V) obtained by hydraulic measurement (   and    ), XCMT (    and    ) 

and SEM (   and   ) at initial time (    ). 

 

Experiment Mmeas k ah Vh aXr VXr as Vs ah/as aXr/as

label g m
2

μm mm
3

μm mm
3

μm mm
3

L1-no-s 2.995 9.25E-13 3.33 0.56 - 7.47 6.4 1.07 0.5 -

L60-no-s 3.015 - - - - 4.84 4.1 0.70 - -

L0.2-gp-e - - - - - - 9.0 1.48 - -

L1-gp-e 2.739 - - - 30.91 8.06 6.7 1.06 - 4.6

L5-gp-e 2.850 4.64E-13 2.36 0.37 - 5.71 5.3 0.82 0.4 -

L60-gp-e 2.690 8.49E-12 10.10 1.57 38.07 7.94 8.1 1.26 1.2 4.7

S1-no-s 2.974 6.72E-13 2.84 0.49 - - 7.1 1.22 0.4 -

S5-no-s 2.896 3.44E-13 2.03 0.33 - 2.85 2.5 0.41 0.8 -

S60-no-s 2.831 4.34E-12 7.22 1.19 - 10.52 9.2 1.51 0.8 -

S5-gp-u 2.852 - - - - 4.33 3.8 0.62 - -

S60-gp-u 2.685 - - - - 7.67 7.2 1.10 - -

S0.2-gp-e 3.101 - - - - - 9.2 1.56 - -

S1-gp-e 2.865 - - - 35.78 7.44 6.4 1.06 - 5.6

S5-gp-e 2.850 1.76E-12 4.60 0.74 - - 5.2 0.84 0.9 -

S60-gp-e 3.092 1.24E-11 12.19 2.10 - 11.38 9.50 1.63 1.3 -

a h  and V h  = hydraulic aperture and volume.

a Xr  and V Xr   = geometric aperture and volume from XCMT; V Xr  values with grey background correspond to experiments

 where XCMT was not performed, and were calculated using the relationship between SEM and XCMT results of 

experiments L1-gp-e , L60-gp-e  and S1-gp-e  (see Section 4.3.1 ).

a s  and V s  = geometric aperture and volume from SEM.

comparison

 LIMESTONE

 SANDSTONE

Hydraulic measurement XCMT SEM t = t0
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Initial hydraulic aperture        and fracture permeability     ) could only be 

calculated according to Eqs. (2.10) and (2.11) in the eight percolation experiments where    

was measurable (Table 4.2;      ,        and       ). In the other seven experiments    

was smaller than the minimum measurable value from the beginning of the experiment. Three 

unreacted fractured cores were characterized by XCMT (Table 4.2;         and        ; exp. 

L1-gp-e, L60-gp-e and S1-gp-e). Data was acquired at the National Institute for Lasers, 

Plasma and Radiation Physics (NILPRP; Bucharest-Magurele, Romania), and the processing 

of the X-ray microtomography data was carried out by Voxaya (Montpellier, France), 

providing characterization of the fracture geometry. Once the percolation experiments were 

finished, SEM analyses of all fractured samples were performed to obtain the dimensions of 

the fracture and observe features of mineral dissolution and precipitation. From SEM images, 

the initial fracture aperture could be measured in unaltered fracture regions, near the outlet 

and far away from the dissolution front (Table 4.2;        and       ). Detailed information 

about XCMT data acquisition and SEM analyses is presented in Section 2.1.1. 

Initial fracture characterization was performed by all three methods mentioned only 

for experiment L60-gp-e. Good agreement was observed between the measured parameters 

using hydraulic and SEM methods (Table 4.2;               = 1.2). In contrast, results from 

XCMT were noticeably higher (Table 4.2;                = 4.7).  

Good agreement between hydraulic measurement and SEM was also obtained in the 

four other experiments where               varied from 0.8 to 1.3, and was poorer in the 

three other experiments where               ranged from 0.4 to 0.5 (Table 4.2). Discrepancy 

between these two methodologies could be explained by the fact that the initial fracture 

apertures obtained from hydraulic measurement correspond to the minimum aperture of the 

fracture (controlling permeability), whereas those from SEM were an average of four 

measured values where reaction was not supposed to occur. However, significantly larger 

discrepancies existed when XCMT results were compared with those obtained with hydraulic 

measurement and SEM, which could be attributed to the limited resolution of the technique 

(14 μm of pixel size) and the high background noise from the data. For the three experiments 

where the sample was characterized by XCMT,                was around 5. 
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4.2.2 Aqueous chemistry 

Fig. 4.1 illustrates the variation in Ca and S concentration over time during limestone 

experiments, and Fig. 4.2 shows the variation in Ca, S and Si concentration over time during 

sandstone experiments. Note that variation in chemical composition of experiment S5-no-s is 

not shown in Fig. 4.2 because technical problems prevented the measurement. 

 

 

Fig. 4.1 Variation in the increase of Ca (a) and S (b) concentrations over time in the percolation 

experiments with fractured limestone cores, using no-s input solution (open symbols) and gp-e input 

solution (solid symbols) at   = 0.2 mL/h (in violet),   = 1 mL/h (in green),   = 5 mL/h (in red) and 

  = 60 mL/h (in black). Time for experiments at   = 0.2, 1 and 5 mL/h is plotted in the lower x-axis 

and time for experiments at   = 60 mL/h is plotted in the upper x-axis. 

 

The output Ca concentration in both limestone and sandstone experiments was always 

higher than the input concentration throughout the entire experimental run (ΔCa > 0), 

indicating calcite dissolution (dotted lines in Fig. 4.1a and Fig. 4.2a). Overall, the Ca 

concentration increase was larger at slow flow rates (  from 0.2 to 5 mL/h) than at the 

highest flow rate (  = 60 mL/h). At the slowest flow rate (  = 0.2 mL/h), the output Ca 

concentration continuously increased throughout the experiment. In some experiments with   

from 1 to 5 mL/h, Ca was released in two stages defined by an initial peak of ΔCa followed 

by a sharp decrease to approach an almost unvarying concentration (e.g., exp. L1-gp-e and 
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L5-gp-e). At   = 60 mL/h, ΔCa was fairly constant during the entire experimental run. 

Moreover, in the experiments run at the same flow rate (  = 1, 5 or 60 mL/h) but with 

different input solution (no-s, gp-u or gp-e), ΔCa was larger in those with lower input S 

concentration (open and semi-solid symbols in Fig. 4.1a and Fig. 4.2a). 

In both the limestone and sandstone experiments with S concentration in the injected 

solution (gp-u and gp-e), the output S concentration was always lower than the input one, 

leading to a permanent S deficit (ΔS < 0; dashed lines in Fig. 4.1b and Fig. 4.2b). In 

experiments run under slow flow rates (  = 0.2, 1 and 5 mL/h) ΔS was very small (zero 

within the analytical error) during the early stage, whereas in the experiments with the fastest 

flow rate (  = 60 mL/h) this small value was observed during the whole experiment. Sulfur 

deficit indicated precipitation of a sulfur-rich mineral.  

In sandstone experiments the measured output Si concentration was slightly higher 

than the input one (solid lines in Fig. 4.2b). Given that the calculated pH ranged from 3.3 to 

4.4 during the experiments (Chapter 5), Si was only released from dissolving microcline 

since quartz dissolution rate is negligible at acid pH (Bandstra et al., 2008). In addition, Si 

concentration increased by decreasing flow rate. Owing to the obtained low output Si 

concentration, microcline dissolution was not taken into account to calculate the changes in 

fracture volume shown in Section 4.3.1.   

 

4.2.3 Permeability 

Fracture permeability      was calculated according to Eq. (2.11) in the eight 

percolation experiments where       could be measured (Table 4.2). In the other seven 

experiments,       was initially smaller than the minimum measurable value (         ) 

preventing      calculation. Fig. 4.3 shows that fracture permeability increased over time in 

the eight experiments regardless of the sulfur content of the injected solution. Note that 

precipitation of a S-rich phase did not prevent the permeability increase.  
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Fig. 4.2 Variation in the increase of Ca (left column-a) and S and Si (right column-b) concentrations 

over time in the percolation experiments with fractured sandstone cores, using no-s input solution 

(open symbols), gp-u solution (semi–solid symbols) and gp-e input solution (solid symbols) at   = 0.2 

mL/h (in violet),   = 1 mL/h (in green),   = 5 mL/h (in red) and   = 60 mL/h (in black). Dotted lines 

in (a) indicate Ca concentrations and solid and dashed lines in (b) indicate Si and S concentrations, 

respectively. 

 



68                                                                    Chapter 4: Percolation experiments through fractured cores 

 

In all limestone experiments, two stages were observed (Fig. 4.3a). In the initial stage 

the increase in permeability was much slower than in the second one. In particular, in the S-

rich experiments (L5-gp-e and L60-gp-e), the initial stage was longer than in the S-free 

experiment (L1-no-s) and shorter in the experiment with the fastest flow rate (L60-gp-e). All 

sandstone experiments showed a stepped increase in permeability with steps becoming 

shorter by increasing flow rate (Fig. 4.3b). Exceptionally, in experiment S5-gp-e, the 

permeability increased similarly to that in limestone experiments (i.e., an initial slow stage 

followed by a fast one). The different behavior of permeability increase between limestone 

and sandstone experiments is related to different developed dissolution patterns, as explained 

in Section 4.3.4. Note also that in experiment S60-gp-e the permeability increase was 

suddenly interrupted by a sharp fall, likely caused by detachment of quartz grains. 

Nonetheless, an immediate recover of permeability indicated that this phenomenon itself was 

unable to prevent the permeability increase in contrast to reported permeability reduction by 

transport of particles in limestone percolation experiments (Luquot et al., 2014). 

 

 

Fig. 4.3 Variation in fracture permeability during limestone (dashed lines-a) and sandstone (solid 

lines-b) experiments.   = 1 mL/h (green line),   = 5 mL/h (red and pale red lines) and   = 60 mL/h 

(black and grey lines). In the plots with grey background, upper-x axis indicates time for exp. L1-no-s 

and S5-gp-e and lower-x axis shows time for exp. L5-gp-e, S1-no-s and S5-no-s.  
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4.2.4 Identification of dissolution and precipitation processes 

The most prominent mineralogical change during any CO2-flooding experiment is 

carbonate dissolution (Weibel et al., 2011). Indeed, the changes in solution chemistry 

observed in the current limestone and sandstone experiments were mostly bound to calcite 

dissolution (ΔCa > 0). In the sandstone experiments, the low Si release (ΔSi > 0) was 

associated to microcline dissolution. Feldspar dissolution is commonly reported in CO2 

experiments (e.g., Fisher et al., 2010; Wandrey et al., 2011). However, given the slow 

feldspar dissolution rate relative to that of calcite (about five orders of magnitude) at the pH 

of this study (3.3-4.4), and the short duration of the experiments (up to ≈ 100 h), feldspar 

dissolution is of little significance in these experiments.  

Changes in solution chemistry in the experiments with S-rich injected solution 

indicated precipitation of a S-rich phase (ΔS < 0). MicroRaman analysis showed that this S-

rich phase was always gypsum (Fig. 4.4).   

 

 

Fig. 4.4 SEM images and MicroRaman spectrum of a thin section (section 2 in Fig. 2.2a) from the 

reacted fracture in experiment L5-gp-e: (a) dissolved calcite in the fracture surfaces and precipitated 

gypsum crystals. (b) Detailed view of the gypsum (Gp) crystals that grow at the expense of calcite 

(Cal) dissolution. Note the strong alteration of the fracture surfaces leading to formation of high 

microporosity. The y values indicate the distance from the inlet (y = 0) of the fracture along the flow 

direction (y). (c) MicroRaman spectra. The presence of the two characteristic peaks of water at ≈ 

3500 cm
-1

 confirms that gypsum is the sulfate precipitated phase. The standard spectra of gypsum and 

anhydrite are from Downs (2006). 

 

XCMT and SEM were used to identify and localize these reactions along the 

fractures. In the limestone samples, two different types of thin sections were prepared from 

the reacted cores according to the observed fracture evolution. Sections parallel to the flow 

200 μm 50 μm

a) b) c)

Gp Cal

y = 1.5 mm y = 1.5 mm 

L5-gp-e

2H2O
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direction (section 1 in Fig. 2.2a) were prepared in cores where partial or no wormhole 

formation occurred (L1-no-s and L0.2-gp-e). Several sections perpendicular to the flow 

direction (section 2 in Fig. 2.2a) were prepared from cores with a well-formed wormhole 

(L60-no-s, L1-gp-e and L5-gp-e), allowing better visualization of wormhole characteristics 

(e.g., diameter) and accompanying structures (dissolution patterns, gypsum growth, etc.). In 

the sandstone samples, only sections parallel to the flow direction (section 1 in Fig. 2.2a) 

were sufficient to characterize the resulting more uniform dissolution features in the evolved 

fractures. Sectioning could induce formation of micro-cracks but, as it is explained in the 

following sections, they did not intervene in the fracture reactivity. SEM images of the thin 

sections (limestone: Fig. 4.5 and Fig. 4.6; sandstone: Fig. 4.9 and Fig. 4.10) and XCMT 

images (limestone: Fig. 4.7; sandstone: Fig. 4.11) illustrate the evolved morphology of the 

fractures. 

 

4.2.4.1 Limestone samples 

SEM images of the experiments with no-s input solution (only calcite dissolution; Fig. 

4.5) showed significant dissolution from the inlet to near the outlet in the 1 mL/h experiment 

(L1-no-s; Fig. 4.5a) and formation of a single wormhole with a regular diameter (≈ 800 μm) 

in the 60 mL/h experiment (L60-no-s; Fig. 4.5b). In both cases the reacted fracture surfaces 

showed different alteration, yielding a rough surface in the former and a smooth surface in 

the latter, where the flow rate was faster. Additionally, Fig. 4.5a showed the existence of 

some micro-cracks parallel to the fracture likely formed during sectioning. Given that they 

were not percolated fractures and did not display any dissolution feature, it was assumed that 

they did not intervene in the overall fracture reactivity. Values of the initial fracture aperture 

shown in Table 4.2 (       and       ) were measured from the unreacted fracture regions 

near the outlet (indicated by red-dotted arrows in Fig. 4.5). In the 1 mL/h experiment, the 

dissolution feature observed in the SEM image was confirmed to be a wormhole by means of 

the XCMT image. This wormhole diverted and developed branching near the outlet (Fig. 

4.7a). XCMT images of the 60 mL/h experiment corroborated the development of a single 

wormhole with regular morphology that formed along the left side of the fracture (Fig. 4.7b).  

SEM and XCMT images of the experiments with gp-e input solution are shown in 

Fig. 4.6 and Fig. 4.7c-e, respectively. Precipitation of gypsum induced by calcite dissolution 

in S-rich solutions was solely observed in the 1 and 5 mL/h experiments (L1-gp-e and L5-gp-
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e). In the 0.2 and 60 mL/h experiments (L0.2-gp-e and L60-gp-e), gypsum precipitation was 

not observed, yet it was indicated by aqueous chemistry (Table 4.3;            ). Possible 

reasons are described in Section 4.3.1.  

 

 

Fig. 4.5 SEM images of the reacted limestone fractures in experiments with no-s input solution at (a) 

Q = 1 mL/h (L1-no-s, section 1) and (b) Q = 60 mL/h (L60-no-s, section 2). Red-dotted arrows 

indicate where the initial fracture aperture was measured (Table 4.2). The y values indicate the 

distances from the inlet (y = 0) of the fracture along the flow direction (y). Yellow arrows in (a) point 

out core heights, which are given by the y values (mm). 

 

Fig. 4.6a shows that, for the 0.2 mL/h experiment, little calcite dissolution occurred along the 

fracture, being more intense at the inlet (Fig. 4.6a; y = 0 mm; maximum fracture aperture of 

24 μm). Development of microporosity was not observed in the SEM image likely due to 

minor calcite dissolution. A micro-crack parallel to the fracture was also observed in this 

sample, likely formed during sectioning but, as occurred in experiment L1-no-s, it did not 

intervene in fracture reactivity.  

In the 1 mL/h experiment, SEM images in Fig. 4.6b show a single wormhole along the 

fracture with greater diameter at the inlet (1.12 mm) than at the outlet (850 μm) and 

development of microporosity in the fracture surfaces. Significant gypsum precipitation, that 

was inferred from the aqueous chemistry, was readily detected. The amount and size of 

gypsum crystals decreased along the wormhole (Fig. 4.6b). The wormhole started at the 

center of the fracture, where the initial permeability was probably higher due to 

1 mm 1 mm 1 mm
y = 1.5 mm y = 8.5 mm y = 16 mm 

1 mm

y = 0 mm y = 18 mm

a) L1-no-s

b) L60-no-s
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heterogeneity. Thereafter, it evolved parallel to a side of the core where a zone with high 

permeability formed owing to the lateral sealing of the fracture (Fig. 4.7c).  

 

Fig. 4.6 SEM images of the reacted limestone fractures in experiments with gp-e input solution at (a) 

Q = 0.2 mL/h (L0.2-gp-e, section 1), (b) Q = 1 mL/h (L1-gp-e, section 2), (c) Q = 5 mL/h (L5-gp-e, 

section 2) and (d) Q = 60 mL/h (L60-gp-e, section 1). Precipitated gypsum and development of 

microporosity (rough fracture surface) are observed in experiments at Q = 1 and 5 mL/h. Smooth 

fracture surface is observed in the experiment at Q = 60 mL/h. The y values indicate the distances 

from the inlet (y = 0) of the fracture along the flow direction (y). Yellow arrows in (a) and (d) point 

out the core height, which is given by the y value (mm). 
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In the 5 mL/h experiment, uniform dissolution occurred up to around 3.5 mm from the inlet. 

From this point onwards, a single wormhole developed with a regular diameter (850 μm) 

(Fig. 4.6c and Fig. 4.7d). As in the 1 mL/h experiment, gypsum precipitation was readily 

detected and the amount and size of gypsum crystals decreased along the wormhole. Gypsum 

grew abundantly in localized areas of the wormhole, where the roughness of calcite surface 

increased (Fig. 4.6c; y = 16 mm; large development of microporosity in calcite surface).  

SEM images of the 60 mL/h experiment showed significant dissolution near the inlet and the 

outlet of the fracture, as well as smooth fracture surfaces (Fig. 4.6d). The XCMT image of the 

reacted fracture (Fig. 4.7e) shows the wormhole to be wider near the inlet and that was 

displaced to a side of the core further downstream, probably because of the heterogeneity 

induced by the lateral resin sealing (as occurred in the exp. with   = 1 mL/h shown in Fig. 

4.7c). The preferential path started to form in the region where initial permeability was high 

due to existence of heterogeneity (see A’ in Fig. 4.7e). 

The fracture-length profiles from XCMT depicted in Fig. 4.8 show distinct evolution 

of the dissolution and precipitation processes along the fractures. Blue lines indicate the 

initial fracture volumes for experiments L1-gp-e and L60-gp-e. Black lines correspond to the 

total fracture volume after reaction, which includes initial fracture volume and volume 

obtained from dissolution (            ; Table 4.3), and orange lines show the largest 

connected volume from dissolution (e.g., wormhole).  

If localized dissolution (wormhole) occurs along the fracture, the difference between the total 

and the connected volume from dissolution should be practically the initial fracture volume. 

However, if uniform dissolution occurs along the fracture it is to be expected that the profiles 

of total and connected fracture volumes are very similar (e.g., from y = 13 to 16 mm in Fig. 

4.8a and Fig. 4.7a; from y = 0 to 3 mm in Fig. 4.8d and Fig. 4.7d). It was also observed that 

deviations of the preferential channel were directly connected with an increase in dissolution 

(bends in Fig. 4.7 and increases in dissolution in Fig. 4.8 are both marked with blue arrows). 

Volume profiles also corroborated that precipitation occurred all over the fracture being more 

intense at the inlet where significant dissolution took place (Fig. 4.8c, d).  

 

 

 



74                                                                    Chapter 4: Percolation experiments through fractured cores 

 

 

 

Fig. 4.7 XCMT results. Total volume of reacted (A) and unreacted (A’) fractures and images of the 

precipitated gypsum (B) in limestone experiments with no-s solution at (a) Q = 1 mL/h and (b) Q = 60 

mL/h and experiments with gp-e solution at (c) Q = 1 mL/h, (d) Q = 5 mL/h and (e) Q = 60 mL/h. 

Arrows indicate bends of the preferential flow channels. Color scale bars are in pixels (1 pixel = 14 

μm). Black and white sections (perpendicular to flow) show the fracture morphology with associated 

dissolution patterns from the inlet (right) to the outlet (left) of the cores.  
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Fig. 4.8 Fracture-length profiles that show the volume of unreacted (blue lines) and reacted (black 

lines) fractures, the largest connected volume from dissolution (orange lines) and the volume of 

precipitated gypsum (red lines) in exps. with no-s solution at (a) Q = 1 mL/h and (b) Q = 60 mL/h, 

and exps. with gp-e solution at (c) Q = 1 mL/h, (d) Q = 5 mL/h and (e) Q = 60 mL/h. Arrows point 

out volume increases that took place at the bends of the preferential flow channels (see Fig. 4.7). 

 

4.2.4.2 Sandstone samples 

 

Fig. 4.9 SEM images of the reacted sandstone fractures in experiments with no-s input solution at (a) 

Q = 1 mL/h (S1-no-s), (b) Q = 5 mL/h (S5-no-s) and (c) Q = 60 mL/h (S60-no-s). The y values 

indicate the distances from the inlet (y = 0) of the fracture along the flow direction (y). Yellow arrows 

point out the core height, which is given by the y value (mm). 
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SEM images of the experiments with no-s input solution showed only calcite 

dissolution, leaving non-dissolved grains of quartz and microcline along the fracture. This 

phenomenon led to non-uniform aperture increases, independently of the flow rate, but the 

faster the flow rate the larger the non-uniformity (Fig. 4.9). XCMT images showed that at Q 

= 1 mL/h calcite dissolution was little and uniform along the fracture (Fig. 4.11a). XCMT 

was not performed in this experiment. At Q = 5 ml/h, calcite dissolution yielded uniform 

dissolution from the inlet to the middle of the fracture and a wormhole from the middle to the 

outlet (Fig. 4.11b). At Q = 60 mL/h, uniform dissolution took place along the fracture but 

slightly localized at the inlet (Fig. 4.11c).  

In the S-rich experiments with gp-u solution XCMT images showed only calcite 

dissolution. Although gypsum precipitation was inferred from aqueous chemistry (Table 4.3), 

gypsum crystals were not observed by XCMT. Increasing the flow rate dissolution patterns 

changed from wormhole (Q = 5 mL/h; Fig. 4.11d) to nearly uniform dissolution (Q = 60 

mL/h; Fig. 4.11e).  

SEM images of the S-rich experiments using gp-e solution showed negligible 

dissolution at the slowest flow rate experiment. Noticeable dissolution, but differently 

distributed along the fracture, was observed in the rest of experiments with higher flow rate 

(Fig. 4.10). In the 1 and 60 mL/h experiments, dissolution was mostly homogeneous along 

the fracture except at the outlet, whereas in the 5 mL/h experiment it was localized around the 

middle of the fracture (Fig. 4.10). Other than calcite dissolution, precipitation of gypsum and 

an unidentified phase was observed.  While gypsum crystals grew at expense of calcite 

dissolution, the unknown phase formed at expense of microcline dissolution (close-up images 

in Fig. 4.10b). SEM-EDX analysis indicated that this phase was formed of Si, Al, and K but it 

could not be identified by microRaman since fluorescence emission masked the Raman 

signal. XCMT images revealed that the dissolution was initially controlled by wormhole 

formation to finish up as a uniform in the 1 mL/h experiment. In contrast, at 60 mL/h the 

process occurred inversely (Fig. 4.11f, h). X-ray microtomography was not perfomed in the 5 

mL/h experiment. 
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Fig. 4.10 SEM images of the reacted sandstone fractures in experiments with gp-e input solution at 

(a) Q = 0.2 mL/h (S0.2-gp-e), (b) Q = 1 mL/h (S1-gp-e), (c) Q = 5 mL/h (S5-gp-e) and (d) Q = 60 

mL/h (S60-gp-e). Close-up images in (b) show precipitated gypsum (left) and precipitated unidentified 

aluminosilicate (right). The y values indicate the distances from the inlet (y = 0) of the fracture along 

the flow direction (y). Yellow circle in (d) indicates a possible site of a grain detachment.  

 

Fig. 4.12 depicts the fracture-length profiles from XCMT data that show distinct 

evolution of the dissolution processes along the sandstone fractures (detailed explanation of 

the figure legend is given in the previous section (Section 4.2.4.1)).  Due to a more uniform 
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dissolution in the sandstone samples than that observed in the limestone ones, black and 

orange profiles coincided in most of the experiments (Fig. 4.12b, c, e, h). In fact, lack of 

coincidence was observed where a localized dissolution (e.g., wormhole) developed (Fig. 

4.12d, f). 

 

Fig. 4.11 XCMT results. Total volume of reacted (A) and unreacted (A’) fractures in sandstone 

experiments with no-s solution at (b) Q = 5 mL/h and (c) Q = 60 mL/h, with gp-u solution at (d) Q = 

5 mL/h and (e) Q = 60 mL/h and with gp-e solution at (f) Q = 1 mL/h and (h) Q = 60 mL/h. XCMT 

was not performed in experiment S1-no-s and XMT analysis was not carried out in experiment S5-gp-

e. Color scale bars are in pixels (1 pixel = 14 μm). Black and white sections (perpendicular to flow) 

show the fracture morphology with associated dissolution patterns from the inlet (left) to the outlet 

(right) of the cores.  
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Fig. 4.12 Fracture-length profiles that show the volume of unreacted (blue lines) and reacted (black 

lines) fractures and the largest connected volume from dissolution (orange lines) in sandstone 

experiments with no-s solution at (b) Q = 5 mL/h and (c) Q = 60 mL/h, experiments with gp-u 

solution at (d) Q = 5 mL/h, (e) Q = 60 mL/h and experiments with gp-e solution at (f) Q = 1 mL/h and 

(h) Q = 60 mL/h. 

 

4.3 Discussion 
 

4.3.1 Fracture volume calculated from mass balance and XCMT 

 Once the percolation experiments were finished, five limestone and six sandstone 

fractured samples were characterized by XCMT to determine the geometry of the reacted 

fracture (Table 4.3;    ). The changes in fracture volume obtained from aqueous chemistry 
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(    ) and from XCMT data (    ) were compared at the end of the experiment (Table 4.3; 

    ; comparison of      and     ).  

From aqueous chemistry, the volume of dissolved calcite           and precipitated 

gypsum         and the variation of fracture volume      at the end of the experiment (  ) 

were calculated according to Eqs. (2.2) and (2.7) and the mass balance equations (Eqs. (2.3) 

and (2.5); Table 4.3). The loss of mass calculated from the aqueous chemistry (      ) was 

in very good agreement with the measured loss of mass (      ) giving high reliability of 

the chemical analyses (Table 4.3).  

Information about the total volume of fracture after reaction     (void space including 

the initial fracture volume and the dissolution-induced volume) and the volume of gypsum 

precipitated in the fracture         was obtained by processing the X-ray microtomography 

data sets.         was always an amount of gypsum precipitated inside the fracture or in a 

wormhole. The change in fracture volume      shown in Table 4.3 was determined as  

                         (4.1) 

where the total volume of the unreacted fracture         was obtained using XCMT analysis 

only for three experiments (Table 4.2;        ). The unreacted fracture volume obtained from 

XCMT was ≈ 7 times larger than that from SEM. Hence, this factor of ≈ 7 was used to 

calculate         for the rest of experiments, from which XCMT analysis of the unreacted 

fracture was not performed (Table 4.2;         values in grey background). 

Comparison between the variation in fracture volume obtained from aqueous 

chemistry (        ) and that obtained from XCMT analysis (        ) showed very good 

agreement in six experiments in which                   ranged from 0.92 to 1.05 (Table 

4.3). Agreement was poorer in the other four experiments (Table 4.3; 0.72 ≤          

         ≤ 0.86). Problems in the XCMT segmentation process could be the cause of the 

observed discrepancies in the latter experiments. Void space was probably interpreted to be 

epoxy resin due to the large pixel size (14 μm) and the high background noise from the data. 

As a result, in the experiments where dissolution patterns developed in contact with the 

epoxy resin area, discrepancy increased. In most of the experiments where a wormhole 

developed in a central position (e.g., Figs. 4.7a, d and 4.11f), a very small discrepancy was 

observed. 
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Table 4.3 Measured mass, measured and calculated loss of mass and variation in fracture volume 

determined from aqueous chemistry and XCMT at the end of the experimental runs (t=tf). 

 

 

Regarding the volume of precipitated gypsum in the limestone experiments, volume 

calculated from aqueous chemistry             was greater than that obtained from XCMT 

analysis             in all experiments (Table 4.3;            /             = 2.9 in 

experiments L1-gp-e and L5-gp-e). The largest difference between measurements was 

obtained in the experiment with the fastest flow rate (L60-gp-e), where precipitation of 

gypsum was not observed by XCMT (Table 4.3;              not observed) in contrast to 

the volume of precipitated gypsum calculated from aqueous chemistry (Table 4.3; 

            = 6.73 mm
3
). In this experiment, the output Ca concentration was smaller than 

that obtained in experiments under slower flow rate (  from 0.2 to 5 mL/h). This fact and the 

shorter residence time probably induced the precipitation of smaller gypsum crystals, which 

would be more difficult to identify by XCMT. Moreover,             in experiment L60-gp-

Comparison

Experiment tf Mmeas ΔMmeas VCal-diss VGp-ppt ΔVch ΔMcalc VXr VXr-ppt ΔVXr ΔVXr/ΔVch

label (h) (g)

L1-no-s 30.75 2.957 -0.039 14.92 - 14.92 -0.040 22.60 - 15.13 1.01

L60-no-s 4.70 2.945 -0.069 23.50 - 23.50 -0.064 21.73 - 16.89 0.72

L0.2-gp-e 45.72 2.809 - 2.37 0.53 1.84 -0.005 - - - -

L1-gp-e 71.91 2.690 -0.049 21.53 5.47 16.06 -0.046 21.84 1.91 13.78 0.86

L5-gp-e 18.50 - - 23.76 8.34 15.42 -0.045 21.77 2.87 16.06 1.04

L60-gp-e 4.51 2.648 -0.042 22.11 6.73 15.38 -0.044 19.44 not detected 11.50 0.75

S1-no-s 6.31 2.970 -0.004 1.76 - 1.76 -0.005 - - - -

S5-no-s 1.38 2.892 -0.004 - - - - 4.71 - 1.86 -

S60-no-s 1.32 2.797 -0.034 12.45 - 12.45 -0.034 23.59 - 13.07 1.05

S5-gp-u 5.58 2.838 -0.014 6.72 0.50 6.23 -0.017 10.03 not detected 5.70 0.92

S60-gp-u 5.59 2.564 -0.121 45.76 2.97 42.79 -0.117 48.2 not detected 40.57 0.95

S0.2-gp-e 102.20 - - 7.34 0.65 6.69 -0.018 - - - -

S1-gp-e 37.34 2.825 -0.040 14.05 0.16 13.89 -0.038 21.88 not detected 14.44 1.04

S5-gp-e 17.66 - - 14.24 4.66 9.58 -0.028 - - - -

S60-gp-e 4.03 - - 27.42 1.28 26.14 -0.071 32.01 not detected 20.63 0.79

tf = experimental time.

M meas  = measured mass of fractured core (weighted).

ΔM meas  and ΔM calc  = measured and calculated (from aqueous chemistry) loss of mass.

V Cal-diss  and V Gp-ppt  = volume of dissolved calcite and precipitated gypsum (aqueous chemistry).

V Xr  and V Xr-ppt  = volume of fracture (void space) and volume of precipitated gypsum (XCMT).

ΔV ch  and ΔV Xr  = variation of fracture volume from aqueous chemistry (ch) and XCMT (Xr).

Initial values used to calculate ΔM meas  and ΔV Xr  are given in Table 4.2.

The propagated error of ΔV ch  is 10-12 %.

LIMESTONE

SANDSTONE

t = tf Aqueous chemistry XCMT 

(g) (mm
3
) (mm

3
)
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e was probably overestimated owing to the high uncertainty in the aqueous chemistry (Fig. 

4.1b; ΔS ≈ 0 within the analytical error). In the experiment with the slowest flow rate (  = 

0.2 mL/h) this comparison could not be performed because the XCMT analysis was not 

carried out. Gypsum was not observed either in the SEM images probably due to the minor 

calcite dissolution.  

In the sandstone experiments, precipitated gypsum was not detected by XCMT. In 

experiments S60-gp-u and S60-gp-e with remarkable            , precipitation of small 

gypsum crystals owing to the fast flow rate (  = 60 mL/h) was likely the cause to impede 

detection of gypsum by XCMT. In the experiment with the largest              (S5-gp-e) this 

comparison could not be performed because the XCMT analysis was not carried out. 

Regardless of the methodology used to calculate changes in fracture volume, it was 

observed that the final fracture volume was always larger than the initial one even when 

gypsum precipitated in experiments with sulfate-rich solutions (gp-u and gp-e).  

 

4.3.2 Influence of flow rate on reaction 

The effect of flow rate on the resulting dissolution and precipitation processes was 

investigated by varying the flow rate from 1 to 60 mL/h in the experiments with no-s and gp-

u input solutions and from 0.2 to 60 mL/h in the experiments with gp-e input solution (Table 

4.1). 

Mineral dissolution is limited by reaction rates in the fracture surfaces and solute 

transport (advection vs. diffusion) within the fracture. The Damköhler (  ) and Péclet (  ) 

numbers parameterize the relative magnitude of these processes. In the formulation that we 

use,    compares the magnitudes of the advective solute flux along the fracture with 

diffusion from the fracture surface, and    compares mineral reaction rates with advective 

flux along the fracture. The    number is given by           , where   is the mean fluid 

velocity in m/s defined as         ,   is the mean aperture of the fracture in m,    is the 

molecular diffusion coefficient of the reactants in m
2
/s,   is the volumetric flow rate in m

3
/s 

and   is the width of the fracture in m. The molecular diffusion coefficient at 60 ºC (   = 

5.36.   10
-9

 m
2
/s) was calculated using Arrenhius equation and the molecular diffusion 

coefficient in water assumed for all species at 25 ºC (   ≈ 10
-9

 m
2
/s). 
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To assess the flow rate effect on calcite dissolution, experiments with similar calcite 

dissolution rate (                    ; Xu et al., 2012) must be compared. The initial 

calcite dissolution rate at the inlet of all fractures could be considered identical because the 

reactive surface area      (same geometry), the dissolution rate constant    (same T, P), the 

proton activity     (same pH) and the saturation state   (similar input solutions) were almost 

the same at this initial point (y = 0 mm and      ). Once the injected solution reacts with the 

fracture surface (calcite) under different flow rates, the dissolution rate parameters (    ,   , 

    and  ) will be differently affected with time and distance.  

Along the fractures, P and T were constant and changes in pH were very similar in all 

experiments (average input pH = 3.23 ± 0.02; average output pH = 3.91 ± 0.20), yielding no 

variation in    and very similar variation in    . Pokrovsky et al. (2009) demonstrated that 

     was basically not affected by pCO2 directly (only through the     term). Additionally, 

saturation state should not noticeably change      between experiments because all output 

solutions were undersaturated with respect to calcite (SICal ≈ -2.4 and   = 4   10
-3

 for 

experiments at   = 60 mL/h and SICal ≈ -1.6 and   = 2.5   10
-2

 for experiments at   = 0.2, 1 

and 5 mL/h) and considered to be far from equilibrium (SICal < -1.5; Cubillas et al., 2005; Xu 

et al., 2012). Hence, differences in      between experiments at different flow rates were 

probably not caused by the small differences in  .  

As for the reactive surface area      term, it should be similar in all experiments. However, 

as a consequence of the coupled chemical reactions and transport of elements through the 

fracture, different dissolution patterns (homogeneous vs. heterogeneous/localized dissolution) 

may occur, yielding a noticeable variation in the accessible area of mineral that can react with 

the solution along the fracture. Consequently, differences in the amount of Ca obtained from 

dissolution at the outlet of the fracture (net reaction rate) between experiments were probably 

related to changes in the reacted area. At this large scale, Luhmann et al. (2014) and Luquot 

and Gouze (2009) measured a decrease in   during wormhole formation. In addition, at the 

micrometer scale the flow rate also affects  , favoring an   increase for slow flow rates 

(microporosity development; e.g., Fig. 4.6b and c) and an   decrease for fast flow rates 

(surface smoothing; e.g., Fig. 4.6d). Similar observations were reported by Deng et al., 

(2013), Luquot et al. (2014) and Noiriel et al. (2009). These authors characterized 

microporosity formation during limestone dissolution for several flow-through experiments. 

Noiriel et al. (2009) proposed the so-called sugar-lump model that reproduces the 
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experimental results (formation of microporosity) by a dissolution mechanism that induces 

the formation of small calcite particles with larger reactive surface area.  

To calculate the Damköhler number (        ), a velocity for calcite dissolution 

far from equilibrium in m/s (           ) is used. This type of rate law (linear 

dependence on    ) applies to calcite dissolution under acidic conditions (Atanassova et al., 

2013; Palandri and Kharaka, 2004; Pokrovsky et al., 2009). Experimental studies have 

reported that below pH 5.5, the calcite dissolution rate is pH-dependent and limited by mass 

transfer processes (e.g., Plummer et al., 1978; Sjöberg and Rickard, 1984). Therefore, calcite 

dissolution rate should increase with fluid velocity because the mass transfer of reactants and 

products is enhanced by the local fluid velocity near the mineral surface. This trend has been 

observed by several authors based on discontinuities in the evolution of the output solution 

concentration due to changes in the flow rate regime (Elkhoury et al., 2013; Noiriel et al., 

2007). Noiriel et al. (2007) showed that the chemical flux of Ca
2+

 in mol/s increased with 

increasing flow rate. In this study, the calculated volumes of dissolved calcite per hour 

             (mm
3
/h) also increased with increasing flow rate (Table 4.4; e.g., from 0.05 to 

4.90 mm
3
/h in limestone experiments and from 0.07 to 6.80 mm

3
/h in sandstone experiments 

by increasing   from 0.2 to 60 mL/h with gp-e solution). Additionally, the volume of 

dissolved calcite per injected volume                (mm
3
/mL) was calculated and showed 

the opposite tendency: e.g.,                decreased by a factor of ≈ 3.2 with increasing the 

flow rate from 0.2 (   = 1) to 60 mL/h (   = 346) in both limestone and sandstone 

experiments with gp-e (Table 4.4). It was probably caused by the shorter residence time in 

experiments under faster flow rate. 

Note that at   = 0.2 mL/h,                was lower than expected in both limestone and 

sandstone experiments. The explanation for this was unclear as the output solution was far 

from equilibrium and there was no evidence of the existence of more diffusive zones that 

limited the overall dissolution process and retarded the exit of the reaction products. 

To compare experiments performed with the same rock and flow rate, the dissolution 

rates were calculated at the same experimental time (experiments with (*) in Table 4.4), in 

particular at the shortest experimental time   . It was expected to obtain similar values of 

              and                    in experiments under the same flow rate and similar 

evolution of fracture geometry (equivalent reacted area) (Table 4.4). This was evidenced, for 
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instance, in limestone experiments at   = 60 mL/h (wormhole formation: L60-no-s and L60-

gp-e) and in sandstone experiments at   = 5 mL/h (wormhole formation: S5-gp-u and S5-gp-

e*). 

 

Table 4.4 Péclet (Pe) and Damköhler (Da) numbers and net reaction rates expressed as volume of 

dissolved calcite, precipitated gypsum and variation in fracture volume per time and injected volume. 

 

 

However, in the two limestone experiments run at   = 1 mL/h,               and           

         were larger in the experiment using no-s input solution (L1-no-s and L1-gp-e*). The 

reacted area for the no-s experiment was larger because of the formation of channel 

branching near the outlet (Fig. 4.7a, c). Likewise,               and                    were 

smaller in the sandstone experiment run at   = 60 mL/h with gp-e owing to a more localized 

dissolution near the outlet  than those for the other two sandstone experiments with nil or 

lower sulfate content in the input solution (Fig. 4.10 c, e, g). This fact confirmed the effect of 

the reacted area on the net calcite dissolution rate (including both reaction and transport). 

Q Pe Da tf VCal-diss/tf VGp-ppt/tf ΔVch/tf Vinj (tf) VCal-diss/Vinj (tf) VGp-ppt/Vinj (tf) ΔVch/Vinj (tf)

(mL/h) (h)  (mL)

L0.2-gp-

e

0.2 1 1.9E-05 46 0.05 0.01 0.04 9 0.26 0.06 0.20

L1-no-s 31 0.49 - 0.49 31 0.49 - 0.49

L1-gp-e* 72 0.30 0.08 0.22 72 0.30 0.08 0.22

L5-gp-e 5 29 7.6E-07 19 1.28 0.45 0.83 93 0.26 0.09 0.17

L60-no-s 5 5.00 - 5.00 282 0.08 - 0.08

L60-gp-e 5 4.90 1.49 3.41 271 0.08 0.02 0.06

S0.2-gp-

e

0.2 1 1.9E-05 102 0.07 0.01 0.07 20 0.36 0.03 0.33

S1-no-s 6 0.28 - 0.28 6 0.28 - 0.28

S1-gp-e* 37 0.38 0.004 0.37 37 0.38 0.004 0.37

S5-no-s 1 - - - 7 - - -

S5-gp-u 6 1.20 0.09 1.12 28 0.24 0.02 0.22

S5-gp-e* 18 0.81 0.26 0.54 88 0.16 0.05 0.11

S60-no-s 1 9.43 - 9.43 79 0.16 - 0.16

S60-gp-

u

6 8.19 0.53 7.66 335 0.14 0.01 0.13

S60-gp-e 4 6.80 0.32 6.49 242 0.11 0.01 0.11

tc VCal-diss/tc VGp-ppt/tc ΔVch/tc Vinj (tc) VCal-diss/Vinj (tc) VGp-ppt/Vinj (tc) ΔVch/Vinj (tc)

(h)  (mL)

L1-gp-e* 31 0.30 0.08 0.22 0 0.30 0.08 0.22

S1-gp-e* 6 0.27 0.003 0.26 0 0.27 0.003 0.26

S5-gp-e* 6 1.26 0.10 1.16 0 0.25 0.02 0.23

Pe and Da  = Péclet and Damkhöler numbers.
tf = total experimental time; tc = time of the shortest experiment in those run at the same rock and flow rate (see text in Section 4.3.2 ). 

* indicates experiments where tc was calculated.

V inj  = injected volume.

Exp. label 

 (mm
3
/h)

 (mm
3
/h)  (mm

3
/mL)

7.6E-07

346 6.3E-08

Rate values calculated at tc

60

60

1

1

5

6 3.8E-06

29

Rate values calculated at tf   

6

346

3.8E-06

6.3E-08

 (mm
3
/mL)
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Regarding gypsum precipitation it was also observed that by increasing the flow rate 

the volume of gypsum precipitated per hour            increased. Note, however, that at   = 

60 mL/h (exps. L60-gp-e, S60-gp-u and S60-gp-e), there was a large error in            due 

to the large uncertainty in the measured output S concentrations which were around zero 

within the error (Fig. 4.1b and Fig. 4.2b). This suggested that precipitation of gypsum was 

mainly favored at   = 5 mL/h. Overall, the volume of gypsum precipitated per injected 

volume              decreased by increasing the flow rate, being this attributed to the effect 

of the smaller residence time under fast flow rate. Gypsum precipitation was observed, as 

expected, in poorly reactive regions with high diffusion (Fig. 4.6c; y = 1.5 mm), and 

surprisingly, it also occurred on high reactive areas of the forming wormholes (e.g., Fig. 4.6c; 

y = 16 mm).  

Another factor that could contribute to the different amount of dissolved calcite in the 

experiments with the same flow rate is the sulfate content in the injected solution, as S 

inhibits calcite dissolution especially in the presence of calcium and magnesium in solution 

(Garcia-Rios et al., 2014; Gledhill and Morse, 2006; Sjoberg, 1978). Likewise, the inhibiting 

role of gypsum coating on the surface of dissolving calcite (passivation) should be taken into 

account (Offeddu et al., 2014, 2015).  

 

4.3.3 Dissolution patterns  

The relative rates of reaction and transport (diffusion and advection) control the nature 

of the dissolution process within the fracture and the evolution of the fracture geometry 

(Detwiler and Rajaram, 2007; Kalia and Balakotaiah, 2009). The dimensionless Damköhler 

and Péclet numbers provide a means of combining the physical and chemical processes that 

control dissolution regimes in porous and fractured media. Hence, depending on their values, 

three different dissolution patterns may result: (1) face dissolution (only dissolution at the 

inlet and no further alteration along the fracture due to reactant consumption), (2) wormhole 

formation and (3) uniform dissolution along the core (Fredd and Fogler, 1998; Golfier et at., 

2002; Szymczak and Ladd, 2009).  

As for fractured samples, various theoretical and computational models have been 

developed to propose easy prediction of dissolution patterns depending on Péclet and 

Damköhler numbers, which may be defined in different ways. Efforts to test the 
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computational models of fracture dissolution with quantitative experimental results have had 

varying success. Verberg and Ladd (2002) simulated the experiment performed by Durham et 

al. (2001) yielding discrepancies that they attributed to crude models of reaction kinetics and 

fracture closure. Experiments performed by Detwiler et al. (2003) have been simulated by 

several authors that have progressively achieved better reproducibility of the experimental 

data (Detwiler and Rajaram, 2007, Szymczak and Ladd, 2004, Szymczak and Ladd, 2009). 

The experimental system of Detwiler et al. (2003) consisted of two flat potassium-

dihydrogen-phophate (KDP) surfaces with fixed relative positions to eliminate the effect of 

confining pressure, and a fracture aperture   = 1.26   10
-2

 cm. Dissolution was induced by an 

inflowing solution of KDP at 5% undersaturation (  = 0.95). Szymczak and Ladd (2009) 

successfully reproduced their experimental data using a 3D microscopic numerical method 

that combines velocity field calculations from an implicit lattice Bolzmann method (Verberg 

and Ladd, 1999) with a transport solver based on random walk algorithms that incorporates 

the chemical kinetics at the solid surfaces (Szymczak and Ladd, 2004a). A resulting phase 

diagram described characteristic dissolution patterns in fractures as a function of    and   .  

Elkhoury et al. (2013) performed four percolation experiments with fractured 

limestone cores using four different flow rates and under reservoir P-pCO2-T conditions (P = 

pCO2 = 140 bar and T = 60 ºC). Brine equilibrated with supercritical CO2 (3 < pH < 4.6) was 

injected through fractures with a mean aperture   of ≈ 300 μm. The dissolution patterns 

observed in the fractures were wormhole formations in the two slowest flow rate experiments 

(Fig. 4.13; V2 with   = 6 mL/h and    = 44 and V1 with   = 14 mL/h and    = 101) and 

uniform dissolution in the two fastest flow rate experiments (Fig. 4.13; V3 with   = 600 

mL/h and    = 4374 and V4 with   = 1200 mL/h and    = 8749). In addition, the authors 

successfully reproduced their experimental data providing a first opportunity to directly 

compare simulations to experimental results in more realistic rock samples (reservoir rocks) 

and settings than those used by Detwiler et al. (2003).  

In this study, the    and    values were computed using the formulation described in 

Section 4.3.2 (Table 4.4) and     = 1.2   10
-8

 m/s, which was calculated from the calcite 

dissolution rate reported by Pokrovsky et al. (2009) under pCO2 = 30 atm and T = 60 ºC (3.98 

  10
-4

 mol/m
2
/s) and the calcite molar volume (3.69   10

-5
 m

3
/mol). Taking into account that 

the experimental conditions of Elhoury et al. (2013) were similar to those of this study, the 

same     value was used to calculate their    values. The resulting dissolution patterns were 
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plotted as a function of    and      (Fig. 4.13). In general, by increasing the flow rate 

(larger    and smaller   ) dissolution patterns in both sets of limestone experiments (V1-

V4; Elhoury et al. (2013) and LQ-input label; this study) and in sandstone experiments (SQ-

input label; this study) varied from face dissolution to wormhole and uniform dissolution 

(Fig. 4.13). This tendency was also observed in the   -     diagram reported by Szymczak 

and Ladd (2009). 

Before discussing about the observed dissolution patterns it is advanced that the 

epoxy resin was mechanically stable up to 690 bar, preventing any fracture closure 

throughout the experiments. Therefore, a possible mechanical effect was neglected to 

influence fracture evolution. This was evidenced by the similar initial fracture apertures 

measured during the experiment (  ) and after the experiment (  ) (Table 4.2). 

 

 

Fig. 4.13 Dissolution patterns, as a function of Péclet and Damköhler numbers, of limestone and 

sandstone experiments performed in this study and limestone experiments conducted by Elkhoury et 

al. (2013). The dashed arrow shows the tendency of dissolution patterns by increasing flow rate. The 

triangle, square and circle symbols indicate face dissolution, wormhole and uniform dissolution, 

respectively. The mixed (semicircle-square) symbol denotes transition between patterns (see text).    
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Dissolution pattern changed from face dissolution to wormhole by increasing the flow 

rate from 0.2 mL/h (Fig. 4.6a; L0.2-gp-e) to 1 mL/h (Fig. 4.7a, c and Fig. 4.11f; L1-no-s, L1-

gp-e and S1-gp-e). Two sandstone experiments were not included in the   -     diagram 

(S0.2-gp-e and S1-no-s). Unfortunately, the thin section of experiment S0.2-gp-e was 

produced far from the dissolution front preventing any SEM identification of the dissolution 

features (Fig. 4.10a) and XCMT was not performed. Similarly, the lack of XCMT and the 

short duration of experiment S1-no-s hindered a full development of any recognizable 

dissolution feature (Fig. 4.11a).  

At 5 mL/h two dissolution structures were observed. A single wormhole originated in 

two experiments (Fig. 4.11d and Fig. 4.10c; S5-gp-u and S5-gp-e), as occurred in experiments 

at 1 mL/h, and a single dominant wormhole with slightly uniform dissolution at the inlet 

developed in other two experiments (Fig. 4.7d and Fig. 4.11b; L5-gp-e and S5-no-s). The 

latter phenomenon suggested an approach of some change in the dissolution pattern 

(semicircle-square symbol in Fig. 4.13). 

Finally, by increasing the flow rate up to 60 mL/h, the expected dissolution pattern 

would be uniform dissolution, as it occurred in the three sandstone experiments (Fig. 4.11c, e, 

h; S60-no-s, S60-gp-u and S60-gp-e). However, different dissolution patterns were 

distinguished in the limestone experiments, probably caused by the presence of important 

heterogeneities in the fractures. In experiment L60-gp-e, slightly uniform dissolution 

occurred only at the inlet and not in the rest of the fracture, where a dominant wormhole 

developed. A reason to shift from one pattern to the other could be given by the initial high 

permeability along the lateral sealing (Fig. 4.7e). In experiment L60-no-s, the existence of the 

lateral heterogeneity at the very inlet perturbed the experiment, causing an exclusive fluid 

circulation on one side to yield a single dominant wormhole along the fracture (Fig. 4.7b). 

Hence, dissolution features are clearly influenced by heterogeneities. If significant 

heterogeneities are initially present, the calculated    and    numbers are insufficient 

information to predict dissolution patterns (L60-gp-e and L60-no-s), as Luquot et al. (2014) 

pointed out for porous media. 

Nonetheless, as supported by Elkhoury et al. (2013), dissolution patterns in fractures 

resemble those in porous media, where dissolution features evolve from face dissolution to 

wormhole formation when increasing the flow rate (Golfier et al. 2002). The main difference 

lies in the fact that the presence of fractures forces wormhole formation along the fractures. 
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However, under high flow rates, preferential flow paths grow more uniformly, compared to 

the formation of highly ramified wormholes in porous media. 

 

4.3.4 Permeability changes during fracture dissolution 

In principle, variation in the output Ca concentration, changes in fracture permeability 

and the evolved fracture geometry should be closely linked. This fact was readily observed in 

the 5 mL/h limestone experiment where, after 2 h, the output Ca concentration dropped 

dramatically as fracture permeability increased sharply (Fig. 4.1a and 4.3a; experiment L5-

gp-e in red), presumably coinciding with the formation of the primary dissolution channel. 

Once this single preferential path was created (Fig. 4.7d), fracture permeability could not be 

measured (        ) and output Ca concentration reached steady state. The other 

experiments under different flow rates did not show such evident correlation between 

parameters. 

  Differences in intrinsic characteristics of the fractures, such as an initially distinct k, 

and development of combined dissolution structures, such as branched wormholes, led to 

different scenarios where some correlation of these parameters is rather complex. For 

example, in the 1 mL/h limestone experiment, the sharp increase in fracture permeability 

occurred after 15 min. However, in this case, the output Ca concentration did not drop, but 

went on increasing (Fig. 4.1a and 4.3a; experiment L1-no-s in green). This behavior is 

attributed to the evolution of the fracture, as a single wormhole developed while branches 

formed near the outlet (Fig. 4.7a). This type of fracture geometry (i.e., branching) contributed 

to an enhancement of the accessible area of mineral (calcite) that can react with the solution 

along the fracture, yielding a gradual increase in output Ca concentration.  

In the 60 mL/h experiments, variation in output Ca concentration and fracture 

permeability were not apparently linked (Fig. 4.1a and 4.3a; experiment L60-gp-e in black 

and Fig. 4.2a and 4.3b; experiment S60-gp-e in black). The increase in fracture permeability 

was observed with a negligible variation in output Ca concentration due to the very short 

residence time under this fast flow rate. 

A two-stage trend in the evolution of permeability was observed during wormhole 

formation. After a first period of slow increase in fracture permeability (initial formation of 

connectivity), a wormhole finally breaks through the outlet of the core, inducing a large and 
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sudden increase in permeability. Instead, when uniform dissolution originated, a stepped k 

increase was observed in most of the experiments (Fig. 4.3).  

Experiments under different flow rates led to situations where the amount and location 

of dissolution in the fracture varied significantly. Taking into account that local dissolution 

kinetics in this system is fast relative to diffusion (Pokrovsky et at., 2009; Sjöberg and 

Rickard, 1984), fracture dissolution will be transport limited (as shown in Section 4.3.2) and 

strongly influenced by Pe. At very low Pe, diffusion controls dissolution resulting in the 

growth of large disconnected cavities and a slow increase in  , whereas for high Pe, 

advection dominates reactant transport resulting in dissolution along dominant flow channels 

and a more rapid increase in  . Finally, when fast flow rates eliminate diffusive gradients on 

the fracture surface, reactant transport is fast relative to dissolution kinetics, and reaction in 

the fracture tends to a more uniform dissolution (Detwiler et al., 2003; Golfier et al., 2002).  

 

Fig. 4.14 Variation in fracture permeability vs. the number of equivalent fracture volumes 

(time/residence time τ) for the limestone (dashed lines) and sandstone (solid lines) experiments. Q = 1 

mL/h (green line), Q = 5 mL/h (red and pale red lines) and Q = 60 mL/h (black and grey lines). k(t0) 

indicates initial fracture permeability. 
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Fig. 4.14 shows variation in fracture permeability versus the number of equivalent 

fracture volumes for the experiments where   was measurable. Variation in   could not be 

measured in the two experiments with the slowest flow rate (Table 4.2;    = 1; L0.2-gp-e and 

S0.2-gp-e) from which, the slowest   increase would be expected, leading to the maximum 

number of fracture volumes until breakthrough. All experiments under faster flow rate, where 

  was measurable, showed a remarkable   increase. The   increase was very sharp for 

experiments where a single dominant wormhole developed (e.g., L1-no-s, S5-gp-e) and more 

gradual for the experiments with more uniform dissolution patterns and, in general, under 

faster flow rates (e.g., L5-gp-e, S60-gp-e). In addition, in experiments where a single 

wormhole developed, the significant increase in   occurred after a relatively few fracture 

volumes. For the 5 and 60 mL/h experiments the number of fracture volumes until 

breakthrough increased due to formation of more uniform dissolution structures. In this case, 

dissolution took place over larger fracture surface areas. The trend in the permeability 

responses showing the typical transition from a single dominant wormhole channel to a more 

uniform structure was likewise observed in percolation experiments performed in porous 

media, but more ramified wormhole structures formed (Fredd and Fogler, 1998, Luhmann et 

al., 2014). 

 

4.4 Summary and conclusions 

Injection of CO2-rich sulfate solutions through fractured limestone and sandstone 

cores always produced an increase in permeability and fracture volume even when gypsum 

precipitated in the fractures (experiments using gypsum-equilibrated solutions). 

In general, the two methods (aqueous chemistry and XCMT analysis) used to 

calculate the variation in fracture volume induced by calcite dissolution and gypsum 

precipitation showed good agreement, yielding differences around 5%. Major discrepancies 

between them arose when wormholes developed along the lateral sealing and small gypsum 

crystals precipitated in experiments under fast flow rate. In both cases, the XCMT resolution 

and image quality limited an accurate quantification of the resulting volumes of fracture and 

precipitated gypsum.  

By increasing the flow rate, under the same pH and far from equilibrium conditions, 

(1) the volume of dissolved calcite per time increased, confirming that calcite dissolution in 
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the fracture was transport controlled, and (2) the volume of dissolved calcite per injected 

volume decreased, likely caused by the smaller residence time in experiments run under 

faster flow rate. In addition, the formation of more uniform geometries under fast flow rates 

(i.e., increase of the reacted area) led to an increase in the amount of calcite dissolved. At the 

micrometer scale, slow flow rates (e.g., Q = 1 and 5 mL/h) led to an increase in reactive 

surface area caused by an enhancement of microporosity, whereas fast flow rates (e.g., Q = 

60 mL/h) tended to form smooth fracture surfaces which did not favor an increase in reactive 

surface area. 

At the same flow rate, the amount of calcite dissolved was larger in some experiments 

with sulfate-free solution owing to the larger reacted area related to the developed dissolution 

feature. Another factor contributing to the larger calcite dissolution in sulfate-free 

experiments than in sulfate-rich ones could be the sulfate inhibitory effect on calcite 

dissolution, together with gypsum coatings leading to calcite passivation. 

In general, dissolution patterns in limestone and sandstone experiments varied from 

face dissolution to wormhole formation and uniform dissolution by increasing the flow rate 

(larger    and smaller   ), confirming the tendency observed in previous studies (Detwiler 

et al., 2003; Szymczak and Ladd, 2009). Nonetheless, to predict them, initial surface 

heterogeneities must be taken into account since they were decisive in the evolution of the 

dissolving fractures.     

Variation in fracture permeability was found to be highly dependent on flow rate and 

developed dissolution pattern. Thus, permeability increase was very sharp when a single 

dominant wormhole developed, whereas it was more gradual when uniform dissolution 

occurred under fast flow rate. The number of fracture volumes to breakthrough increased 

with flow rate. This phenomenon was attributed to the formation of more uniform dissolution 

structures, which induced dissolution over larger fracture surface areas. 
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Chapter 5  

Dissolved CO2 effect on two fractured reservoir 

rocks: comparison and 2D modeling 

5.1 Introduction 

This chapter is divided in two parts. In the first one, the geochemical response of two 

fractured reservoir rocks (limestone and sandstone) to the injection of a CO2-rich solution 

under the Hontomín reservoir conditions was compared. The main difference between the 

limestone and the sandstone is the presence of quartz and microcline grains (≈ 35%) in the 

latter rock, which affects the evolving geochemical processes and, consequently, could 

influence the CO2 storage capacity and injectivity of the reservoir.  

In the second part, 2D reactive transport simulations that reproduce the variation in 

aqueous chemistry and fracture geometry of the experiments were performed to estimate flow 

and reaction kinetics parameters. Under the experimental conditions, pH could not be 

measured. The calculated pH (CrunchFlow) increased from 3.3 (input solution) to 4.4 

(steady-state output solution). 
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5.2 The role of silicate minerals on the CO2 storage capacity and 

injectivity 

The reactivity of two fractured reservoir rocks (limestone composed of 100% calcite 

and sandstone composed of 65.7% calcite, 27.8% quartz and 6.5% microcline) in contact 

with a CO2-rich sulfate solution was compared.  

As shown in Chapter 4, calcite dissolution was the dominant reaction in both 

limestone and sandstone experiments, becoming the only process considered to calculate the 

volumes of dissolved rock. Negligible dissolution of K-feldspar (microcline) and nil 

dissolution of quartz led to the existence of inert regions in reactive zones of the sandstone 

experiments. The influence of the inert regions on rock dissolution, mineral precipitation and 

fracture volume variation was evaluated. 

Two sets of experiments with gp-e input solution run under flow rates of 0.2, 1, 5 and 

60 mL/h were compared (Table 4.1; four limestone experiments: L0.2-gp-e, L1-gp-e, L5-gp-e 

and L60-gp-e; four sandstone experiments: S0.2-gp-e, S1-gp-e, S5-gp-e and S60-gp-e). 

Overall, the volume of dissolved rock            was larger in the sandstone 

experiments than in the limestone ones (Fig. 5.1a), likely caused by the evolved dissolution 

pattern. The presence of inert silicate grains in the sandstone experiments favored more 

extended dissolution structures than the localized ones in the limestone experiments. As a 

result, a larger area of calcite could interact with the CO2-rich solution resulting in a larger 

amount of calcite dissolution. The XCMT images show the difference in dissolution patterns 

between limestone and sandstone experiments (e.g., comparison of Fig. 4.7c and Fig. 

4.11f). Only when   was 5 mL/h            was larger in the limestone experiment. This was 

related with the zone in which dissolution started: in the fracture (limestone experiment L5-

gp-e) or in the rock matrix through initial heterogeneities (sandstone experiment S5-gp-e). 

Net rock dissolution was likely favored when started in the fracture. 

The volume of gypsum precipitated         was always larger in the limestone 

experiments, even if calcite dissolution was smaller (Fig. 5.1b). In the sandstone experiments, 

dispersion of nuclei for precipitation on the inert surfaces (quartz grains) was likely the cause 

of less precipitation. This phenomenon was already observed when inert wood chips (Rötting 

et al., 2008) and glass beads (Offeddu et al., 2015) were added in columns packed with 

calcite grains to prevent calcite passivation. 
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Fig. 5.1 Experimental variation of volume of dissolved rock            (a), volume of precipitated 

gypsum         (b) and fracture volume    (c) with time in limestone (dashed lines) and sandstone 

(solid lines) experiments with gp-e input solution, under   = 0.2 mL/h (in violet),   = 1 mL/h (in 

green),   = 5 mL/h (in red) and   = 60 mL/h (in black). 

 

The resulting            and         always yielded a larger increase in fracture 

volume    in sandstone experiments (Fig. 5.1c). Hence, it appears that the CO2 storage 

capacity would be more favored in a sandstone reservoir than in a limestone one because the 

increase in porosity is higher and larger extended distribution of created volume    occurs 

(uniform dissolution). 

The different distribution of created volume    between limestone and sandstone 

experiments was responsible for the different variation in fracture permeability (Fig. 5.2). 

Limestone dissolution tended to be localized (wormhole), whereas sandstone dissolution 

tended to be extended (uniform). To illustrate it fracture permeability variation was compared 

between a limestone experiment where a wormhole developed (L60-gp-e; Fig. 5.2a) and a 

sandstone experiment where uniform dissolution occurred (S60-gp-e; Fig. 5.2b). In the 

limestone experiment, the increase in fracture permeability started with the formation of a 

localized preferential path (t1), which continuously enlarged (t2 and t3), resulting in a gradual 

increase in permeability (from t1 to t3). In the sandstone experiment, the fracture permeability 

increase was more complex. In this case, the enlargement of a first preferential path (first 

permeability increase; t1) was constrained by the presence of inert grains. The initial path 
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enhancement stopped as calcite totally dissolved and silicate grains contacted the solution. 

Thereafter, additional paths developed (t2), keeping permeability constant until a larger 

channel originated (t3 with a3 > a1, a2), allowing permeability to increase. This stepped 

increase in fracture permeability contrasts with the sharper increase observed in limestone 

experiments.  

Given the resulting differences in fracture permeability variation, an advantage of a 

progressive stepped increase in permeability in the sandstone experiments is that risks 

associated with changes in the mechanical properties of a reservoir, induced by a sharp 

permeability increase during CO2 injection, could be minimized. Moreover, in sandstone 

experiments, the lower number of fracture volumes necessary to start the permeability 

increase could facilitate the CO2 injection and, hence, reduce the energetic storage costs. 

Another benefit that stems from the more extended distribution of created volume in 

sandstone experiments is the enhancement of porous connectivity, which favors capillary 

trapping. 

 

 

Fig. 5.2 Variation in fracture permeability as a function of number of fracture volumes (t/ τ) and the 

associated distribution of created volume in the experiments L60-gp-e (a) and S60-gp-e (b). k(t0) 

indicates initial fracture permeability. 
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5.3 (2D) Reactive transport modeling 

Simulations of experiment L0.2-gp-e (face dissolution), L1-gp-e (wormhole) and S60-

no-s (uniform dissolution) are shown in this section. In addition, discussion on the fitting 

parameters used to adjust the model to the experimental data (measured Ca and S 

concentrations and porosity variation) is also provided.  

Rectangular coordinates were used to model experiments which developed face and 

uniform dissolution patterns (L0.2-gp-e and S60-no-s), whereas rectangular and cylindrical 

coordinates were used in the experiment where a wormhole developed (L1-gp-e). When 

cylindrical coordinates were used, it was assumed that the initial fracture was already 

cylindrical (i.e., a very small wormhole). 

 

5.3.1 Face dissolution 

A model with rectangular coordinates and flow update was used to simulate the 

experimental data of experiment L0.2-gp-e (face dissolution). A good match between the 

experimental and simulated Ca and S concentrations versus time was achieved by considering 

an initial De value of 3.0   10
-12

 m
2
/s in the rock matrix and adjusting the initial calcite and 

gypsum reactive surface areas (ACal = 250 m
2

m/m
3

bulk; AGp = 10 m
2

m/m
3
bulk) (SIM_A in Fig. 

5.3a, b). Nonetheless, the simulated variation in porosity (Fig. 5.3c) did not match the actual 

variation measured by SEM (Fig. 4.6a). Considering half of the fracture core (due to 

symmetry), the SEM image shows 100% porosity up to 12 m in the x direction (normal 

distance to fracture) at the inlet of the fracture (colored area in Fig. 5.3c, d), and no porosity 

increase at the outlet. The initial De value was calculated using Eq. (2.21) with D0 and n 

values equal to 10
-9

 m
2
/s and 2.5, respectively. These values are common values reported in 

literature (see Section 2.2.2.3).  

A reasonable match of the variation of both the Ca and S concentrations with time 

(SIM_B in Fig. 5.3a, b) and porosity with distance normal to fracture (Fig. 5.3d) was only 

obtained by reducing the initially estimated De value to 6.0   10
-14

 m
2
/s and adjusting the 

values of ACal and AGp (2000 and 100 m
2

m/m
3
bulk, respectively). Model parameters used in this 

simulation are given in Table A.6, Appendix A. Experimental porosity variation was plausibly 

reproduced by the model: at the inlet of the core the calculated porosity was higher than 85% 

over the first 11.3 m in the x direction (the measured porosity was 100% up to 12 m; Fig 
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4.6a, y = 0 mm). At the outlet, the calculated porosity was slightly higher than the measured 

one (20% instead of 5%; Fig 4.6a, y = 20 mm). The changes in mineral content caused a 

noticeable increase in porosity at the inlet of the fracture and almost no increase afterwards 

(Fig. 5.3d). The different increase in porosity between inlet and outlet of the fracture 

(markedly larger at the inlet) compared well with the observed dissolution pattern (face 

dissolution). 

 

 

Fig. 5.3 Experiment L0.2-gp-e (face dissolution); simulations with rectangular coordinates and flow 

update: (a,b) Variation in the experimental and simulated Ca and S concentration versus time and 

(c,d) simulated porosity variation with distance normal to fracture. Colored areas in (c,d) indicate the 

zone with 100% porosity measured by SEM at the inlet of the fractured core.  
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still flowed preferentially along the fracture (Vy; Fig. 5.4b), with a negligible deviation 

towards the rock matrix (Vx; Fig. 5.4a).  

 

Fig. 5.4 Velocity field for experiment L0.2-gp-e (face dissolution) at t = 46 h; Velocity (m
3
/m

2
/yr) in 

the x direction (Vx; left plot) and in the y direction (Vy; right plot).  

 

5.3.2 Wormhole 

Simulation of the wormhole experiment would require the use of cylindrical 

coordinates and flow update. However, flow update is not implemented in CrunchFlow when 

cylindrical coordinates are used. Given this limitation, a model with rectangular coordinates 

and flow update was used to simulate just the very initial stage of the experiment by 

assuming that wormhole formation was not initiated yet. This approach allowed a successful 

match of the initial variation in Ca and S concentration with time (black-solid lines in Fig. 

5.5a, b) but, as expected, did not reproduce the porosity variation with distance normal to 

fracture. The match of this initial stage was achieved by considering a De value of 3.0   10
-12

 

m
2
/s and adjusting the calcite and gypsum reactive surface areas (ACal = 2000 m

2
m/m

3
bulk; AGp 

= 100 m
2

m/m
3

bulk). Note that these areas were one order of magnitude higher than those used 

to fit the face-dissolution experiment using the same De value. The measured (SEM) porosity 

variation was defined by a wormhole with a radius of 600 m at the inlet and a radius of 430 

m at the outlet (Fig. 4.6b) whereas the calculated porosity was only higher than 80% in the 
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first 200 m in the x direction at the inlet of the fracture and, with no significant increase in 

porosity at the outlet.  

A model with cylindrical coordinates and fixed flow was used to match the Ca and S 

concentration after the first initial stage. It was assumed that at this stage the wormhole was 

already developed. In the model the initial radius of the cylinder had to be increased from 6.7 

m (initial fracture aperture; grey-dashed line in Fig. 5.5a, b) to 402 m (black-dashed line in 

Fig. 5.5a, b) to match the experimental data. This larger radius nearly coincided with the 

measured radius of the wormhole at the outlet of the fracture (430 m). From here it could be 

deduced that solution initially circulated through both the incipient wormhole and the 

dissolving fracture until the moment when the radius of the wormhole was high enough to 

concentrate most of the flow. In this case, a good match was achieved by considering a De 

value of 3.0   10
-12

 m
2
/s and adjusting the calcite and gypsum reactive surface areas (ACal = 

9500 m
2

m/m
3
bulk; AGp = 6 m

2
m/m

3
bulk). 

 

 

Fig. 5.5 Experiment L1-gp-e (wormhole); simulations with rectangular coordinates (rect) and flow 

update (solid lines) and simulations with cylindrical coordinates (cyl) and fixed flow (dashed lines): 

Variation in the experimental and simulated Ca (a) and S (b) concentration versus time. r indicates 

the initial radius of the cylinder (see text). 
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with rectangular coordinates and fixed flow in the fracture zone. Fracture thickness 

corresponded to the initial fracture aperture (Table A.6, Appendix A). The calculated 

parameters obtained from this first stage were the input parameters used in the second one, in 

which the rest of the experiment (from 15 to 72 h) was simulated using a model with 

cylindrical coordinates and fixed flow imposed in a cylinder of 402 m of radius (the first 52 

nodes; Table A.6, Appendix A). With this approach the porosity variation with the distance 

normal to fracture was reasonably matched (Fig. 5.6c), indicating the creation of high 

porosity at the inlet (up to 600 m) and at the outlet (up to 400 m), as observed in the SEM 

images. Porosity increase was not higher than 80% owing to the precipitation of gypsum in 

this high-porosity area (Fig. 5.6d). Gypsum precipitation was also observed in the SEM 

images (Fig. 4.6b). 

 

 

Fig. 5.6 Experiment L1-gp-e (wormhole); simulation with rectangular + cylindrical coordinates and 

fixed flow: (a,b) Variation in the experimental and simulated Ca and S concentration versus time and 

variation in simulated porosity (c) and mineral content (d) with distance normal to fracture. 
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5.3.3 Uniform dissolution 

A model with rectangular coordinates and flow update was used to match the 

variation in Ca concentration with time (Fig. 5.7a) in experiment S60-no-s (uniform 

dissolution) with sulfate-free solution. The distance normal to fracture affected by dissolution 

was underestimated in the model. Indeed, the calculated porosity variation indicated high 

porosity (≈ 70%) up to 60 m at the inlet (Fig. 5.7b) whereas the measured one showed high 

porosity (total dissolution of calcite grains; 96%) up to 100 m from the fracture along most 

the fracture length (grey background in Fig. 5.7b and Fig. 4.9c). Nonetheless, the similar 

porosity variation all along the fracture calculated by the model was consistent with the 

observed dissolution pattern (uniform). As occurred in experiment L0.2-gp-e (face 

dissolution), at the end of the experiment, solution still flowed preferentially along the 

fracture (Vy; Fig. 5.4b), with a negligible deviation towards the rock matrix (Vx; Fig. 5.4a).  

 

 

Fig. 5.7 Experiment S60-no-s (uniform dissolution); simulation with rectangular coordinates and flow 

update: (a) Variation in the experimental and simulated Ca concentration versus time and (b) 

simulated porosity variation with the distance normal to fracture. Grey area in (b) indicates the zone 

with high porosity (96%) measured by SEM along most the fracture length.  
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higher than those used in previous models (ACal = 3   10
5
 m

2
m/m

3
bulk). Model parameters 

used in this simulation are given in Table A.6, Appendix A.  

As occurred in the experiment with face dissolution, at the end of the experiment, 

solution still flowed preferentially along the fracture (Vy; Fig. 5.4b), with a negligible 

deviation towards the rock matrix (Vx; Fig. 5.4a).  

 

5.3.4 Flow and reaction kinetics parameters  

The fit of the models was achieved by adjusting the calcite reactive surface area value 

(ACal) and, in some cases, the effective diffusion coefficient value (De).  

ACal values had to be diminished from the initially calculated geometric surface area. 

A possible explanation for the small areas could be given by the transport control of the 

calcite dissolution reaction at pH < 5, which increased by decreasing the flow rate. Indeed, 

when De equaled 3.0   10
-12

 m
2
/s and flow update was used in the models, ACal was reduced 

by four, three and one order of magnitude in the 0.2, 1 and 60 mL/h experiments, 

respectively. Note also that the net reaction rates, which include the transport effect, were 

larger at higher Q because more extended geometries (larger reacted area) developed under 

these conditions. 

Regarding the wormhole experiment, the ACal value used in the model with fixed flow 

was a factor of five greater than that used in the model with flow update. This expected 

increase in reactive surface area was necessary to compensate the lack of advection in the 

rock matrix when fixed flow was used. 

Concerning the De values used in the simulations, the initially estimated De value (3.0 

  10
-12

 m
2
/s) was diminished in the slowest flow rate limestone experiment (6.0   10

-14
 

m
2
/s), kept constant for the 1 mL/h limestone experiment and slightly increased in the fastest 

flow rate sandstone experiment (9.5   10
-12

 m
2
/s). In the limestone experiments, diminishing 

De was necessary to increase the fracture surface reactivity at the inlet. De values by one order 

of magnitude higher for sandstone than limestone rocks with similar porosity (3-11%) were 

reported by Boving and Grathwohl (2001). 
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5.4 Summary and conclusions 

When a CO2-rich solution interacted with the fractured reservoir rocks, on the one 

hand, the presence of inert silicate grains in sandstone favored the occurrence of largely 

distributed dissolution structures in contrast to localized dissolution in limestone. Hence, a 

larger area of calcite intervened in the process so that sandstone dissolution was larger than 

limestone dissolution. On the other hand, the dispersion of nuclei for precipitation on the inert 

silicate surfaces resulted in smaller gypsum precipitation in sandstone than in limestone. As a 

result, in sandstone reservoirs, the larger increase in fracture volume as well as the more 

extended distribution of the created volume would favor the CO2 storage capacity.  

The different distribution of created volume between limestone and sandstone 

fractured reservoir rocks promoted a different variation in fracture permeability. The 

progressive stepped permeability increase for sandstone would be prefer to the sharp 

permeability increase for limestone to minimize risks related with CO2 injection, favor 

capillary trapping and reduce energetic storage costs. 

The 2D reactive transport models reproduced the variation in aqueous chemistry and 

in porosity of the experiments by adjusting the calcite reactive surface area value (ACal) and, 

in some cases, the effective diffusion coefficient value (De) derived from literature (3.0   10
-

12
 m

2
/s). ACal values had to be diminished from the initially calculated geometric surface area 

to account for the transport control of the calcite dissolution reaction at pH < 5, which 

increased by decreasing the flow rate. Also, the net reaction rates (including transport effect) 

were larger at higher Q because of more extended geometries (larger reacted area) developed 

under these conditions. 

De values for sandstone (9.5   10
-12

 m
2
/s) were higher than those for limestone (3.0   

10
-12

 m
2
/s and 6.0   10

-14
 m

2
/s), as it is found in literature for these rock with similar 

porosity. 

 

 

 

 
 



 

 

 

 

 

 

 

Part IV: 

Conclusions 

 

 

 

 

 

 

 

 

 



 



 

 

Chapter 6  

General conclusions 

 

The main conclusions of this thesis are: 

1) Regarding the effect of P, pCO2, T, mineralogy, acidity and solution saturation state 

on the coupled reactions of calcite/dolomite dissolution and gypsum precipitation 

(crushed rock): 

- Under all pCO2 conditions, low temperature favored limestone dissolution rate 

although the calcite dissolution rate constants increase with temperature. This inverse 

tendency was explained by the fact that limestone undersaturation increased by 

decreasing the temperature, which suggested that the process was thermodynamically 

controlled.  

- In experiments using gypsum-undersaturated solutions, gypsum did not precipitate 

and the amount of dissolved limestone was found to be slightly higher than that 

obtained in experiments using gypsum-equilibrated solutions. The decrease in calcite 

dissolution rate could be associated to the sulfate inhibitory effect and/or passivation 

of the calcite grain surfaces. 

- As expected under the conditions of this study, the volume of dissolved limestone was 

larger than that of dolostone owing to the well-known faster calcite dissolution 

kinetics. Likewise, a pCO2 increase implies a pH decrease that enhances substantially 

calcite dissolution rate with respect to that of dolomite. In addition, gypsum induction 
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time was longer when limestone dissolved and precipitation increased gradually. 

When dolostone dissolved, gypsum precipitated quickly and precipitation remained 

steady. 

- When raising pCO2, the limestone dissolution rate increased along the column 

because of the direct pH effect on the calcite dissolution rate. Dissolution of the 

carbonate minerals in acidic pH was controlled, under atmospheric pressure, by the 

protons provided by the strong acid (HCl or H2SO4), whereas under high pCO2, 

H2CO3 partial dissociation controlled the dissolution. Model results showed that if 

brine acidity was controlled by a strong acid, dissolution occurred exclusively at the 

first rock-brine contact, raising the pH at ≈ 7 and limiting the limestone dissolution 

further away. In contrast, simulations under high pCO2 conditions showed that pH 

remains acidic (≈ 5) and the brine was permanently undersaturated with respect to 

calcite and dolomite (due to the carbonic acid buffer capacity), yielding a higher 

increase in porosity all over the rock-brine contact. This suggested that 

calcite/dolomite dissolution induced by CO2-rich solutions tends to extend the 

dissolution fronts (1) favoring the CO2 storage capacity of the reservoir and (2) 

preventing localized dissolution which would lead to sharp changes in hydrodynamic 

rock properties, harmful for CO2 injection.  

- A good match between the CrunchFlow and PhreeqC (v.3) reactive transport 

calculations and the experimental data was obtained. Rate laws including the values 

of the rate constants were taken from literature. The fit of the model to the 

experimental data was performed by adjusting the values of the reactive surface areas. 

The calcite and dolomite reactive surface area values had to be diminished by two 

orders of magnitude from the initially calculated geometric surface areas. A possible 

explanation for the small areas could be given by the transport (diffusion) control of 

the dissolution reactions at pH < 5. It should be noted that a single value of the 

reactive area for calcite provided a good fit of the model to all experimental results, 

supporting the applicability of this modeling approach. The values for dolomite were 

more variable but continued to be within the model uncertainty. 

- Overall, the coupled process of limestone/dolostone dissolution and gypsum 

precipitation always increased porosity (under any pCO2). This suggested that 
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gypsum precipitation cannot decrease the reservoir rock porosity nor impede CO2 

injection. 

2) Regarding the influence of the flow rate on dissolution and precipitation features in 

the percolation experiments with fractured limestone and sandstone cores (fractured 

rock): 

- Injection of CO2-rich solutions through fractured limestone and sandstone cores 

always produced an increase in permeability and in fracture volume even when 

gypsum precipitated. 

- In general, the two methods (aqueous chemistry and XCMT analysis) used to 

calculate the variation in fracture volume induced by calcite dissolution and gypsum 

precipitation showed good agreement, yielding differences < 4%. Major discrepancies 

between them arose when wormholes developed along the lateral sealing and small 

gypsum crystals precipitated in experiments under fast flow rate. The XCMT 

resolution and image quality limited an accurate quantification of the resulting 

volumes of fracture and precipitated gypsum.  

- By increasing the flow rate, under the same pH and far from equilibrium conditions, 

(1) the volume of dissolved calcite per time increased, confirming that calcite 

dissolution in the fracture was transport controlled, and (2) the volume of dissolved 

calcite per injected volume decreased, likely caused by the smaller residence time in 

experiments under faster flow rate. In addition, the formation of more uniform 

geometries under fast flow rates (i.e., increase of the reacted are) led to an increase in 

the amount of calcite dissolved. At the micrometer scale, slow flow rates (Q = 1 and 5 

mL/h) led to an increase in reactive surface area caused by an enhancement of 

microporosity, whereas fast flow rates (Q = 60 mL/h) tended to form smooth fracture 

surface which did not favor an increase in reactive surface area. 

- At the same flow rate, the amount of calcite dissolved was larger in some experiments 

with sulfate-free solution owing to the larger reacted area related to the developed 

dissolution feature. Another factor contributing to the larger calcite dissolution in 

sulfate-free experiments than in sulfate-rich ones could be the sulfate inhibitory effect 

on calcite dissolution, together with gypsum coatings leading to calcite passivation. 
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- In general, dissolution patterns in limestone and sandstone experiments varied from 

face dissolution to wormhole formation and uniform dissolution by increasing the 

flow rate (larger    and smaller   ), confirming the tendency observed in previous 

studies (Detwiler et al., 2003; Szymczak and Ladd, 2009). Nonetheless, to predict 

them, initial surface heterogeneities must be taken into account since they were 

decisive in the evolution of the dissolving fractures.     

- Variation in fracture permeability was found to be highly dependent on flow rate and 

developed dissolution pattern. Thus, permeability increase was very sharp when a 

single dominant wormhole developed, whereas it was more gradual when uniform 

dissolution occurred under fast flow rate. The number of fracture volumes to 

breakthrough increased with the flow rate. This phenomenon was attributed to the 

formation of more uniform dissolution structures, which induced dissolution over 

wider fracture surface areas. 

3) Regarding the geochemical response of the two main Hontomín reservoir rocks 

(limestone and sandstone) to injection of a CO2-rich sulfate solution, and the 2D 

simulations of the percolation experiments: 

- On the one hand, during the interaction between CO2-rich sulfate solutions and 

fractured reservoir rocks, the presence of inert silicate grains in sandstone favored the 

occurrence of largely distributed dissolution structures in contrast to localized 

dissolution in limestone. Consequently, a larger area of calcite could interact with the 

CO2-rich solution resulting in a larger amount of calcite dissolution. On the other 

hand, dispersion of precipitation nuclei on the surface of the inert silicates yielded 

smaller volume of gypsum precipitated in sandstone than in limestone. As a result, in 

sandstone reservoirs, the larger increase in fracture volume, along with the more 

extended distribution of the created volume, would favor the increase of the CO2 

storage capacity.  

- The different distribution of created volume between limestone and sandstone 

fractured reservoir rocks promoted a different variation in fracture permeability. A 

progressive stepped increase in permeability for sandstone is preferred to a sharp 

increase in permeability for limestone to minimize risks related with CO2 injection, 

favor capillary trapping and reduce the energetic cost of storage. 
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- The 2D reactive transport models reproduced the variation in aqueous chemistry and 

in porosity of the experiments by adjusting the calcite reactive surface area value 

(ACal) and, in some cases, the effective diffusion coefficient value (De) derived from 

literature (3.0   10
-12

 m
2
/s). As in the experiments with crushed rock, ACal values had 

to be diminished from the initially calculated geometric surface area to account for the 

transport control of the calcite dissolution reaction at pH < 5, which increased by 

decreasing the flow rate. De values for sandstone (9.5    10
-12

 m
2
/s) were higher than 

those for limestone (3.0   10
-12

 m
2
/s and 6.0    10

-14
 m

2
/s), as it is found in literature 

for this type of sedimentary rocks and similar porosity. 
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A.1 (1D) model parameters 

 

A.1.1 CrunchFlow simulations 

 

Table A.1 Experimental and input boundary conditions, transport parameters, numerical 

discretization and rock composition used in simulations of column experiments under atmospheric 

CO2 conditions. 

 

 

 

 

 

Experiment label

T (ºC)

P (bar)

p CO2 (bar)

Flow Rate Q mL/min

Length (m)

Radius (m)

Rock

Mass (g)

Grain diameter (mm)

Density (g/cm
3
)

Initial porosity f0 %

Darcy velocity q m
3
/m

2
/s

Eff. Diff. coeff. D e m
2
/s

Long. dispersivity α L m

Number of elements

Element dimension m 1.3E-04 1.3E-03 1.3E-04 1.3E-03

Cal

Dol-dis

Cal

Dol -dis

initial final initial final initial final

Gp-25 0.001(0-0.01) 0.015(0.01-0.03) 0.01(0-0.1) 0.1(0.02-0.2)  -  -

Gp-40  -  -  -  -  -  -

Gp-60  -  -  -  - 0.01(0.015-0.03) 0.04(0.02-0.05)

Input label

Cal

Dol-dis

Gp-25

Gp-40

Gp-60

I

pH

L = limestone; D = dolostone.

Cal = calcite; Dol-dis = disordered dolomite; Gp = gypsum.

A m  = Reactive surface area. A m  in brackets indicates the range of values that fits the experimental concentration data (within ± 2 % uncertainty) in the sensitivity study. 

0.05 0.63 0.62 0.61 0.59

2.50 3.50 2.10

- - - 0.04 - -0.09

- - - - - -

0.09 0.08 0.05 - -0.03 -

-22.85 -23.53 -16.55 -15.74 -22.18 -21.36

SI, I and pH (CrunchFlow)

-10.33 -10.34 -8.01 -7.77 -10.84 -10.60

 -  - 0(0-0.005)

INPUT BOUNDARY CONDITIONS

s a3.5 a2.1

0.03(0.01-0.06) 0(0-0.03)  -

 -  -  -

Am (m
2

m/m
3
bulk ) 

- 120(80 - 180)

17(16 - 20) 5(4 - 7) 5(0-20)

0.5400 0.0517 0.0482 0.0482 0.0481 0.0482

- 0.5028 0.4688 0.4691 0.4678 0.4690

1.3E-03 1.3E-03 1.3E-03 1.3E-03

ROCK COMPOSITION

Volume Fraction

DISCRETIZATION

20 20 20 20   40        +        16   40        +        16

1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.30E-03

2.12E-10 1.98E-10 2.33E-10 2.33E-10 2.34E-10 2.33E-10

6.62E-07 7.06E-07 6.28E-07 6.59E-07 6.28E-07 6.28E-07

TRANSPORT PARAMETERS

46.06 44.55 48.31 48.26 48.41 48.28

2.84 2.72 2.72 2.72 2.72 2.72

1-2 1-2 1-2 1-2 1-2 1-2

21.15 20.82 19.41 19.43 19.37 19.42

Rock Sample

D L L L L L

0.013 0.013 0.013 0.013 0.013 0.013

Column Dimensions

0.026 0.026 0.026 0.026 0.026 0.026

0.021 0.023 0.020 0.021 0.020 0.020

10
-3.5

10
-3.5

10
-3.5

10
-3.5

10
-3.5

10
-3.5

1 1 1 1 1 1

EXPERIMENTAL CONDITIONS

25 25 25 60 25 60

D25-atm-s L25-atm-s L25-atm-a3.5 L60-atm-a3.5 L25-atm-a2.1 L60-atm-a2.1
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Table A.2 Experimental and input boundary conditions, transport parameters, numerical 

discretization and rock composition used in simulations of column experiments under subcritical and 

supercritical CO2 conditions. 

 

 

 

 

Experiment label

T (ºC)

P (bar)

pCO 2 (bar)

Flow Rate Q mL/min

Length (m)

Radius (m)

Rock

Mass (g)

Grain diameter (mm)

Density (g/cm
3
)

Initial porosity f0 %

Darcy velocity q m
3
/m

2
/s

Eff. Diff. coeff. D e m
2
/s

Long. dispersivity α L  

Number of elements 

Element dimension m

Cal

Dol-dis

Cal

Dol -dis

initial final initial final initial final

Gp-25 0.01(0-0.1) 10(1-*)  -  -  -  -

Gp-40  -  - 0.01(0-0.04) 0.3(0.1-*)  -  -

Gp-60  -  -  -  - 0.01(0-0.1) 0.1(0.01-*)

Input  label

Cal

Dol-dis

Gp-25

Gp-40

Gp-60

I

pH

A m  = Reactive surface area. A m  in brackets indicates the range of values that fits the experimental concentration data (within ± 2 % uncertainty)

 in the sensibility study. 

L = limestone; D = dolostone.

Cal = calcite; Dol-dis = disordered dolomite; Gp = gypsum.

* Maximum value is not constrained within the experimental error; solution reached equilibrium in the column. 

** CrunchFlow (charge balance) calculated pH, similar to the measured averaged pH (see Table 3.1 ).

L60-34-gp-e

EXPERIMENTAL CONDITIONS

25 40 25 40 60 40 60

L25-10-gp-u L40-10-gp-u L25-10-gp-e L40-10-gp-e L60-10-gp-e D40-10-gp-e

150

10 10 10 10 10 10 34

10 10 10 10 10 10

0.010

Column Dimensions

0.054 0.054 0.054 0.054 0.054 0.054 0.017

0.063 0.062 0.056 0.055 0.055 0.058

0.004

Rock Sample

L L L L L D L

0.016 0.016 0.016 0.016 0.016 0.016

0.8523

1-2 1-2 1-2 1-2 1-2 1-2 250-500 

61.60 56.00 62.61 58.27 59.23 61.60

2.72

TRANSPORT PARAMETERS

47.85 52.59 47 50.67 49.86 50.06 54.77

2.72 2.72 2.72 2.72 2.72 2.84

4.33E-06

2.29E-10 2.77E-10 2.21E-10 2.57E-10 2.49E-10 2.51E-10 3.00E-10

1.31E-06 1.29E-06 1.16E-06 1.14E-06 1.14E-06 1.20E-06

1.30E-03

DISCRETIZATION

20 20 20 20 20 20 20

1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.30E-03

9.0E-04

ROCK COMPOSITION

Volume Fraction

0.4729 0.4299 0.4806 0.4473 0.4546 - 0.4102

2.7E-03 2.7E-03 2.7E-03 2.7E-03 2.7E-03 2.7E-03

 -  -  - -

 -  - 0.3(0.08-*) -

0.0422

Am (m
2

m/m
3

bulk )

120(80 - 180) - 120(80 - 180)

5(0 - 10) 5(3 - 10) 10(5 - 30)

0.0486 0.0442 0.0494 0.0460 0.0467 0.4994

SI, I and pH (CrunchFlow)

-3.45 -3.22 -3.48 -3.21 -2.88 -3.19 -2.96

 -  -  - 0.5(0.2 -*)

INPUT BOUNDARY CONDITIONS

gp-u gp-e

-6.07

-0.19 - 0.00 - - - -

-7.34 -6.71 -7.47 -6.77 -5.96 -6.74

-

- - - - -0.03 - -0.04 

- -0.20 - -0.01 - 0.01

0.60

3.65** 3.7** 3.61** 3.68** 3.78** 3.68** 3.53

0.60 0.61 0.61 0.62 0.58 0.63
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Table A.3 Equilibrium constants (log K) and stoichiometric coefficients for equilibria in solution 

(column experiments and fractured core experiments L0.2-gp-e and L1-gp-e). Reactions are written 

as the destruction of 1 mol of the species in the first column. * indicates species used in the 

atmospheric CO2 experiments with H2SO4 input solution (s). 

 

 

 

 

 

log K log K log K

25°C 40°C 60°C Ca
2+

* Mg
2+

* HCO3
-
* H

+
* SO4

2-
* K

+
Br

-
Cl

-
Na

+

CO2(aq) * -6.3414E+00 -6.2824E+00 -6.2695E+00 0 0 1 1 0 0 0 0 0

CO3
2-

 * 1.0325E+01 1.0218E+01 1.0132E+01 0 0 1 -1 0 0 0 0 0

CaCO3(aq) * 7.0088E+00 6.7507E+00 6.4479E+00 1 0 1 -1 0 0 0 0 0

CaCl
+ 7.0039E-01 6.6684E-01 5.8650E-01 1 0 0 0 0 0 0 1 0

CaCl2(aq) 6.5346E-01 6.7258E-01 6.2447E-01 1 0 0 0 0 0 0 2 0

CaHCO3
+ 

* -1.0429E+00 -1.0743E+00 -1.1605E+00 1 0 1 0 0 0 0 0 0

CaOH
+ 

* 1.2850E+01 1.2850E+01 1.2850E+01 1 0 0 -1 0 0 0 0 0

CaSO4(aq) * -2.1004E+00 -2.1626E+00 -2.2698E+00 1 0 0 0 1 0 0 0 0

H2SO4(aq) 1.0209E+00 1.0209E+00 1.0209E+00 0 0 0 2 1 0 0 0 0

HCl(aq) -6.9993E-01 -6.9322E-01 -6.6883E-01 0 0 0 1 0 0 0 1 0

HSO4
- 
* -1.9755E+00 -2.1656E+00 -2.4383E+00 0 0 0 1 1 0 0 0 0

KBr(aq) 1.7423E+00 1.6141E+00 1.4461E+00 0 0 0 0 0 1 1 0 0

KCl(aq) 1.5004E+00 1.3746E+00 1.2133E+00 0 0 0 0 0 1 0 1 0

KHSO4(aq) -8.0584E-01 -1.0836E+00 -1.4815E+00 0 0 0 1 1 1 0 0 0

KOH(aq) 1.4460E+01 1.4460E+01 1.4460E+01 0 0 0 -1 0 1 0 0 0

KSO4
- -8.7500E-01 -9.1333E-01 -9.9245E-01 0 0 0 0 1 1 0 0 0

Mg4(OH)4
4+ 

* 3.9750E+01 3.9750E+01 3.9750E+01 0 4 0 -4 0 0 0 0 0

MgCO3(aq) * 7.3562E+00 7.1557E+00 6.9230E+00 0 1 1 -1 0 0 0 0 0

MgCl
+ 1.3865E-01 1.2330E-01 5.3627E-02 0 1 0 0 0 0 0 1 0

MgHCO3
+
 * -1.0329E+00 -1.0700E+00 -1.1643E+00 0 1 1 0 0 0 0 0 0

MgSO4(aq) * -2.4125E+00 -2.5907E+00 -2.8356E+00 0 1 0 0 1 0 0 0 0

NaBr(aq) 1.3623E+00 1.2840E+00 1.1706E+00 0 0 0 0 0 0 1 0 1

NaCO3
- 9.8156E+00 9.8967E+00 1.0079E+01 0 0 1 -1 0 0 0 0 1

NaCl(aq) 7.8213E-01 7.3035E-01 6.4856E-01 0 0 0 0 0 0 0 1 1

NaHCO3(aq) -1.5573E-01 -3.7720E-02 1.1267E-01 0 0 1 0 0 0 0 0 1

NaOH(aq) 1.4799E+01 1.4345E+01 1.3799E+01 0 0 0 -1 0 0 0 0 1

NaSO4
- -8.2000E-01 -8.2000E-01 -8.2000E-01 0 0 0 0 1 0 0 0 1

OH
-
 * 1.3991E+01 1.3537E+01 1.3029E+01 0 0 0 -1 0 0 0 0 0

Species
Stoichiometric coefficient
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Table A.4 Equilibrium constants (log K) and stoichiometric coefficients for mineral reactions 

(column experiments). Reactions are written as the dissolution of 1 mol of mineral. 

 

 

Table A.5 Parameters for the mineral reaction rate laws (column experiments). All parameters are 

from Palandri and Kharaka (2004), except for the coefficients m1 and m2 for calcite, which are based 

on the data reported by Xu et al. (2012). 

 

 

A.1.2 PhreeqC simulation 

 The input PhreeqC file is attached below.  

--------------------------------------------------------------------------- 

TITLE L60-34-gp-e 

PHASES  

Gypsum 

 CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O 

 -log_k -4.7383 

 -delta_h -0.0 kcal 

 #-analytic 68.2401 0.0 -3221.51 -25.0627 

 -Vm 73.9 # 172.18 / 2.33  (Vm H2O = 13.9 cm3/mol) 

SOLUTION 0 

temp    60 

units mol/kgw 

pressure 150 

pH 3.5 charge 

S(6) 2.610e-2 

Ca 4.757e-2 

Mg 3.273e-2 

K  1.125e-2 

Na 3.906e-1 

Br 1.138e-2 

Cl 4.984e-1   

C(4) 3.850e-1 

END 

log K log K log K

25°C 40°C 60°C Ca
2+

Mg
2+ HCO3

-
H

+ SO4
2-

K
+

Br
-

Cl
-

Na
+

Calcite 1.8542 1.6272 1.3304 1 0 1 -1 0 0 0 0 0

Dolomite-disordered 4.0684 3.4414 2.6455 1 1 2 -2 0 0 0 0 0

Gypsum-25/-40/-60 -4.5978 -4.6368 -4.7383 1 0 0 0 1 0 0 0 0

Species
Stoichiometric coefficient

Mineral log kr (25 °C) Eapp m1 m2

(mol/m
2
/s) (kcal/mol)

Calcite -0.30 3.44 1.0 3.0 1.0

-5.81 5.62 - 3.0 1.0

Dolomite -3.19 8.63 0.5 1.0 1.0

-7.53 12.48 - 1.0 1.0

Gypsum -2.79 15.00 - 1.0 1.0




H

n

H
a
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SOLUTION 1-17 

temp    60 

units mol/kgw 

pressure 150 

pH 3.5 charge 

S(6) 2.610e-2 

Ca 4.757e-2 

Mg 3.273e-2 

K  1.125e-2 

Na 3.906e-1 

Br 1.138e-2 

Cl 4.984e-1   

C(4) 3.850e-1 

END 

RATES 

Calcite 

  -start 

   10 sat_cc = SR("Calcite") 

   20 rem if (m <= 0  and si_cc < 0) then goto 200 

   30  k1 = 10^(-0.30)  

   40  k2 = 10^(-5.81) 

   50  k1=log(k1)-14400/8.31/2.303*(1/TK-1/298.15) #log k1 

   60  k2=log(k2)-23500/8.31/2.303*(1/TK-1/298.15) #log k2 

   70  sup=0.22 

   80  rem moles=sup*(k1+k2)*(1-10^si_cc)*TIME #mol/l/s  

   90  moles=sup*(10^(k1)*act("H+")+10^(k2))*((1-sat_cc)^3.0)*TIME #mol/l/s  

   200 save moles 

  -end 

 

EQUILIBRIUM_PHASES 1-17 

        gypsum 0.0 0.0 

KINETICS 1-17 

 Calcite 

  -tol    1e-8 

  -m0  30125 

  -m 30125 

  -parms 50   0.6 

SELECTED_OUTPUT 

        -file            montPmathexp.xls 

        -totals          Ca S 

        -saturation_indices calcite gypsum 

        -kinetics calcite gypsum 

TRANSPORT 

        -cells           17 

        -length          0.001 

        -shifts          560 

        -time_step       128  # en seg. 

        -flow_direction  forward 

        -boundary_cond   flux  flux 

        -diffc           1.0e-9 

        -dispersivity    0.001 

        -correct_disp    true 

        -punch_cells     17  #celda para extraer datos            

        -punch_frequency  50 #datos cada 50 steps 

END 

--------------------------------------------------------------------------- 
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A.2 (2D) model parameters 
 

Table A.6 Experimental and input boundary conditions, fracture dimensions, numerical 

discretization, transport parameters and rock and fracture composition used in simulations of 

fractured core experiments. 

 

Experiment label

Dissolution pattern

Experimental Conditions

T ºC

P bar

p CO2 bar

Flow rate Q mL/h

Fracture Dimensions

Diameter d mm

Aperture a mm

Length L mm

Discretization

Coordinate (duration in h)

Total number of elements in X

number of elements 5 5 5 6 3 3 1 10

element dimension mm 4.5 9 45 90 180 720 3.6 15

Total number of elements in Y

number of elements

element dimension mm

Total number of elements in Z

element dimension mm

Zones

Fracture

Rock

Transport parameters

Darcy velocity (N) q m
3
/m

2
/s

Diffusion coeff. D 0 m
2
/s

Cementation exponent n

Eff. Diffusion coeff. D e m
2
/s

Long. Dispersivity α L m

Trans. Dispersivity α T m

Rock matrix

Rock

Initial permeability k 0 m
2

Initial porosity φ0 %

Cal

Qz

Mc

Gp-60

Fracture zone

Initial permeability k 0 m
2

Initial porosity φ0 %

Gp-60

Input boundary conditions 

Input label

A m  = Reactive surface area in m
2

m/m
3

bulk. Vol. F. = Volume fraction.

N = number of nodes along the x  direction with fixed flow.

Chemical composition, calculated pH, SI and I of the input solutions are shown in Table 2.2.

gp-e no-sgp-e

0.00 100 - -0.00 6

Vol. F. Am Vol. F. AmVol. F. Am

6.75E-12 4.32E-12-

100 100100

0.00 100 - -0.00 6

- - 0.060 2180- -

- - 0.264 3605- -

0.95 2000 0.612 3000000.95 9500

5 65

Vol. F. Am Vol. F. AmVol. F. Am

oolitic limestone sandstoneoolitic limestone

1.00E-20 1.00E-201.00E-20

0.001 0.0010.001

- --

2.5 2.52.5

6.0E-14 9.5E-123.0E-12

6.86E-04 2.56E-014.61E-3 (1) + 5.47E-4 (52)

1.1E-10 1.1E-085.4E-09

2-27 1-36 2-28 1-202-133 1-36

1-1 1-36 1-1 1-201-1 1-36

X-range Y-range X-range Y-rangeX-range Y-range

1 1-

9 9-

6

250 500 1667 900250 500 1667

20 10 6 2020 10

75 3806.7 67 34

36 2036

27 28133

10 750 33 50

20 2020

rectangular rectangularrectangular (0-15h) + cylindrical (15-72h)

9 99

9 7.226.7

0.2 601

L0.2-gp-e S60-no-sL1-gp-e

face dissolution uniformwormhole

60

150

62
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Table A.7 Equilibrium constants (log K) and stoichiometric coefficients for equilibria in solution in 

fractured core experiment S60-no-s. Reactions are written as the destruction of 1 mol of the species in 

the first column 

. 

 

log K

60°C Ca
2+

Mg
2+

HCO3
-

H
+

K
+

Br
-

Cl
-

Na
+

Al
3+ SiO2(aq)

Al(OH)2
+ 8.7460E+00 0 0 0 -2 0 0 0 0 1 0

Al13O4(OH)24 9.8730E+01 0 0 0 -32 0 0 0 0 13 0

Al2(OH)2
4+ 7.6902E+00 0 0 0 -2 0 0 0 0 2 0

Al3(OH)4
5+ 1.3880E+01 0 0 0 -4 0 0 0 0 3 0

AlO2
- 1.9573E+01 0 0 0 -4 0 0 0 0 1 0

AlOH
2+ 4.0039E+00 0 0 0 -1 0 0 0 0 1 0

CO2(aq) -6.2695E+00 0 0 1 1 0 0 0 0 0 0

CO3
2- 1.0132E+01 0 0 1 -1 0 0 0 0 0 0

CaCO3(aq) 6.4479E+00 1 0 1 -1 0 0 0 0 0 0

CaCl
+ 5.8650E-01 1 0 0 0 0 0 1 0 0 0

CaCl2(aq) 6.2447E-01 1 0 0 0 0 0 2 0 0 0

CaHCO3
+ -1.1605E+00 1 0 1 0 0 0 0 0 0 0

CaOH
+ 1.2850E+01 1 0 0 -1 0 0 0 0 0 0

H2SiO4
2- 2.2960E+01 0 0 0 -2 0 0 0 0 0 1

H4(H2SiO4)4
- 3.5940E+01 0 0 0 -4 0 0 0 0 0 4

H6(H2SiO4)4
- 1.3640E+01 0 0 0 -2 0 0 0 0 0 4

HAlO2(aq) 1.3727E+01 0 0 0 -3 0 0 0 0 1 0

HCl(aq) -6.6883E-01 0 0 0 1 0 0 1 0 0 0

HSiO3
- 9.4758E+00 0 0 0 -1 0 0 0 0 0 1

KBr(aq) 1.4461E+00 0 0 0 0 1 1 0 0 0 0

KCl(aq) 1.2133E+00 0 0 0 0 1 0 1 0 0 0

KOH(aq) 1.4460E+01 0 0 0 -1 1 0 0 0 0 0

Mg4(OH)4
4+ 3.9750E+01 0 4 0 -4 0 0 0 0 0 0

MgCO3(aq) 6.9230E+00 0 1 1 -1 0 0 0 0 0 0

MgCl
+ 5.3627E-02 0 1 0 0 0 0 1 0 0 0

MgHCO3
+ -1.1643E+00 0 1 1 0 0 0 0 0 0 0

NaAlO2(aq) 2.0095E+01 0 0 0 -4 0 0 0 1 1 0

NaBr(aq) 1.1706E+00 0 0 0 0 0 1 0 1 0 0

NaCO3
- 1.0079E+01 0 0 1 -1 0 0 0 1 0 0

NaCl(aq) 6.4856E-01 0 0 0 0 0 0 1 1 0 0

NaHCO3(aq) 1.1267E-01 0 0 1 0 0 0 0 1 0 0

NaHSiO3(aq) 8.0585E+00 0 0 0 -1 0 0 0 1 0 1

NaOH(aq) 1.3799E+01 0 0 0 -1 0 0 0 1 0 0

OH
- 1.3029E+01 0 0 0 -1 0 0 0 0 0 0

Species
Stoichiometric coefficient
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Table A.8 Equilibrium constants (log K) and stoichiometric coefficients for mineral reactions 

(fractured core experiments). Reactions are written as the dissolution of 1 mol of mineral. 

 

 

Table A.9 Parameters for the mineral reaction rate laws (fractured core experiments). Parameters 

for calcite, gypsum and quartz are from Palandri and Kharaka (2004), except for the coefficients m1 

and m2 for calcite, which are based on the data reported by Xu et al. (2012). Parameters for 

microcline are from Bandstra et al. (2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

log K

60°C Ca
2+

Mg
2+ HCO3

-
H

+ SO4
2-

K
+

Br
-

Cl
-

Na
+

Al
3+ SiO2(aq)

Calcite 1.3304 1 0 1 -1 0 0 0 0 0 0 0

Microcline -0.9478 0 0 0 -4 0 1 0 0 0 1 3

Quartz -3.4676 0 0 0 0 0 0 0 0 0 0 1

Gypsum-60 -4.7383 1 0 0 0 1 0 0 0 0 0 0

Species
Stoichiometric coefficient

Mineral log kr (25 °C) Eapp m1 m2

(mol/m
2
/s) (kcal/mol)

Calcite -0.30 3.44 1.0 3.0 1.0

-5.81 5.62 - 3.0 1.0

Microcline -10.06 12.40 0.5 14.0 0.4

-12.41 9.08 - 14.0 0.4

Quartz -13.39 15.00 - 1.0 1.0

Gypsum -2.79 15.00 - 1.0 1.0




H

n

H
a
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Appendix B  

Additional experimental and modeling results 

from the column experiments  
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Fig. B.1 Variation of experimental (Exp) and simulated (Sim) output pH (a) and output concentration 

of Ca (b), Mg (c) and S (d) with time in limestone (L; in green) and dolostone (D; in blue) column 

experiments (L25-atm-s and D25-atm-s, respectively). Solid lines indicate input solution except for 

Mg which is smaller than 3   10
-4

 mol/kgw (Table 2.2). Dashed and dotted lines indicate simulated 

values of limestone and dolostone column experiments, respectively. 
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Fig. B.2 Variation of the experimental (Exp) and simulated (Sim) increase in Ca concentration (a) 

and output pH (b) with time in limestone column experiments at  25 ºC (in green; L25-atm-a3.5) and 

60 ºC (in red; L60-atm-a3.5). Solid line in (b) shows input pH. Dashed and dotted lines show 

simulated values at 25 and 60 ºC, respectively. 

 

 

Fig. B.3 Variation of the experimental (Exp) and simulated (Sim) increase in Ca (a) and output pH 

(b) with time in limestone column experiments at  25 ºC (in green; L25-10-gp-u) and 40 ºC (in 

orange; L40-10-gp-u). Colored solid lines in (a) represent the Ca equilibrium with calcite and black-

dashed line in (b) indicates input pH. Dashed and dotted lines show simulated values at 25 and 40 ºC, 

respectively. 
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Fig. B.4 Experimental variation of volume of dissolved limestone VL-diss (a) and porosity   (b) versus 

time in experiments performed at 25 ºC (in green; L25-10-gp-u and L25-10-gp-e), 40 ºC (in orange; 

L40-10-gp-u and L40-10-gp-e) and 60 ºC (in red; L60-10-gp-e). Solid and dashed lines indicate 

experiments with gypsum-equilibrated and gypsum-undersaturated solutions, respectively. 
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