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Information theory techniques for multimedia data
classification and retrieval

Abstract: We are in the information age where most data is stored in digital
format. Thus, the management of digital documents and videos requires the
development of efficient techniques for automatic analysis. Among them, capturing
the similarity or dissimilarity between different document images or video frames
are extremely important.

In this thesis, we first analyze for several image resolutions the behavior of
three different families of image-based similarity measures applied to invoice
classification. In these three set of measures, the computation of the similarity
between two images is based, respectively, on intensity differences, mutual
information, and normalized compression distance. As the best results are
obtained with mutual information-based measures, we proceed to investigate the
application of three different Tsallis-based generalizations of mutual information
for different entropic indexes. These three generalizations derive respectively from
the Kullback-Leibler distance, the difference between entropy and conditional
entropy, and the Jensen-Shannon divergence.

In relation to digital video processing, we propose two different
information-theoretic approaches based, respectively, on Tsallis mutual information
and Jensen-Tsallis divergence to detect the abrupt shot boundaries of a video
sequence and to select the most representative keyframe of each shot.

Finally, Shannon entropy has been commonly used to quantify the image
informativeness. The main drawback of this measure is that it does not take
into account the spatial distribution of pixels. In this thesis, we analyze four
information-theoretic measures that overcome this limitation. Three of them
(entropy rate, excess entropy, and erasure entropy) consider the image as a
stationary stochastic process, while the fourth (partitional information) is based on
an information channel between image regions and histogram bins.





Tècniques de la teoria de la informació per a la
classificació i recuperació de dades multimèdia

Resum: Ens trobem a l’era de la informació on la majoria de les dades
s’emmagatzemen en format digital. Per tant, la gestió de documents i vídeos
digitals requereix el desenvolupament de tècniques eficients per a l’anàlisi
automàtic. Entre elles, la captura de la similitud o dissimilitud entre diferents
imatges de documents o fotogrames de vídeo és extremadament important.

En aquesta tesi, analitzem, a diverses resolucions d’imatge, el comportament
de tres famílies diferents de mesures basades en similitud d’imatges i aplicades
a la classificació de factures. En aquests tres conjunt de mesures, el càlcul de la
similitud entre dues imatges es basa, respectivament, en les diferències d’intensitat,
en la informació mútua, i en la distància de compressió normalitzada. Degut a que
els millors resultats s’obtenen amb les mesures basades en la informació mútua, es
procedeix a investigar l’aplicació de tres generalitzacions de la informació mútua
basades en Tsallis en diferents índexs entròpics. Aquestes tres generalitzacions
es deriven respectivament de la distància de Kullback-Leibler, la diferència entre
l’entropia i entropia condicional, i la divergència de Jensen-Shannon.

En relació al processament de vídeo digital, proposem dos enfocaments diferents
de teoria de la informació basats respectivament en la informació mútua de Tsallis
i en la divergència de Jensen-Tsallis, per detectar els límits d’un pla cinematogràfic
en una seqüència de vídeo i per seleccionar el fotograma clau més representatiu de
cada pla.

Finalment, l’entropia de Shannon s’ha utilitzat habitualment per quantificar
la informativitat d’una imatge. El principal inconvenient d’aquesta mesura és que
no té en compte la distribució espacial dels píxels. En aquesta tesi, s’analitzen
quatre mesures de teoria de la informació que superen aquesta limitació. Tres
d’elles (entropy rate, excess entropy i erasure entropy) consideren la imatge com
un procés estocàstic estacionari, mentre que la quarta (partitional information)
es basa en un canal d’informació entre les regions d’una imatge i els intervals de
l’histograma.





Técnicas de la teoría de la información para la clasificación
y recuperación de datos multimedia

Resumen: Estamos en la era de la información donde la mayoría de los datos
se almacenan en formato digital. Por lo tanto, la gestión de documentos y videos
digitales requiere el desarrollo de técnicas eficientes para el análisis automático.
Entre ellas, la captura de la similitud o disimilitud entre diferentes imágenes de
documentos o fotogramas de vídeo es extremadamente importante.

En esta tesis, analizamos, a varias resoluciones de imagen, el comportamiento de
tres familias diferentes de medidas basadas en similitud de imágenes y aplicadas a la
clasificación de facturas. En estos tres conjunto de medidas, el cálculo de la similitud
entre dos imágenes se basa, respectivamente, en las diferencias de intensidad, en la
información mutua, y en la distancia de compresión normalizada. Debido a que los
mejores resultados se obtienen con las medidas basadas en la información mutua, se
procede a investigar la aplicación de tres generalizaciones de la información mutua
basadas en Tsallis con diferentes índices entrópicos. Estas tres generalizaciones se
derivan respectivamente de la distancia de Kullback-Leibler, la diferencia entre la
entropía y entropía condicional, y la divergencia de Jensen-Shannon.

En relación al procesamiento de vídeo digital, proponemos dos enfoques diferentes
de teoría de la información basados respectivamente en la información mutua de
Tsallis y en la divergencia de Jensen-Tsallis, para detectar los límites de un plano
cinematográfico en una secuencia de video y para seleccionar el fotograma clave
más representativo de cada plano.

Por último, la entropía de Shannon se ha utilizado habitualmente para cuantificar
la informatividad de una imagen. El principal inconveniente de esta medida es que
no tiene en cuenta la distribución espacial de los píxeles. En esta tesis, se analizan
cuatro medidas de teoría de la información que superan esta limitación. Tres de
ellas (entropy rate, excess entropy y erasure entropy) consideran la imagen como un
proceso estocástico estacionario, mientras que la cuarta (partitional information) se
basa en un canal de información entre las regiones de una imagen y los intervalos
del histograma.





CHAPTER 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Motivation

We are in the information age where most data is stored in digital format.
Thus, multimedia databases management techniques became very popular. The
development of intelligent systems capable of dealing with this kind of data
efficiently and effectively has become an extremely important task. Therefore, it is
absolutely necessary and critical to find good metrics in order to develop similarity
measures for multimedia data classification and retrieval.

Based on the capability of scanners to transform large amounts of documents
to digital images, big organizations and companies use information systems to deal
with scanned images, which are usually stored in a database as image files. Some
information of these images, such as, for instance, the provider, the date, or the
total amount in an invoice, is integrated in the database via manual editing or OCR
techniques. To automatize the postprocessing tasks, such as binarization and text
extraction, the classification of these documents in different types can be very useful.
Thus, the automatic classification of this type of documents with a geometric layout
is a topic of major interest for many office applications.

Similar to digital images, in the last decades, the availability of digital video is
growing at an exponential rate. In this context, video summarization constitutes one
of the major goals of multimedia research. Video shot boundary detection, or the
segmentation of a video sequence in its constituent shots, is a fundamental step in
video data management. Another step is keyframe selection within each shot.

Also, an important and not very well studied issue is the information content
of an image. But what is image information? How can we quantify this content? In
this thesis, we analyze the performance of several techniques based on information
theory, applied in the scopes of image informativeness, document classification, and
video processing.
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1.2 Objectives

The main goal of this thesis is to find good metrics based on information theory with
the aim of developing robust similarity measures for multimedia data classification
and retrieval.

To reach this objective we aim to

• Analyze for several image resolutions the behaviour of several families of
image-based similarity measures applied to invoice classification.

• Investigate the application of several Tsallis-based generalizations of mutual
information to analyze the similarity between scanned invoices.

• Analyze the behaviour of several information-theoretic measures to detect the
video discontinuities and to extract the most representative keyframes.

• Investigate the application of several information theoretic measures to
quantify the image informativeness.

1.3 Thesis outline

This dissertation is organized in seven chapters. Apart from this introduction, the
thesis is divided into six chapters:

• Chapter 2: Background

In this chapter, the background on document classification and video
processing required for the comprehension of the main issues that are going
to be analyzed in this thesis is introduced. The main concepts of information
theory are also reviewed since they are the basis of most of our contributions.

• Chapter 3: Image-based similarity measures for document classification

In this chapter, we analyze for several image resolutions the behaviour of
three different families of image-based similarity measures applied to invoice
classification. In these three groups of measures, the computation of the
similarity between two images is based, respectively, on intensity differences,
mutual information-based measures, and the normalized compression
distance.

The content of this chapter is presented in "Image-based Similarity Measures
for Invoice Classification", Marius Vila, Anton Bardera, Miquel Feixas, Mateu
Sbert. Submitted.

• Chapter 4: Tsallis mutual information for document classification

In this chapter, we investigate the application of three different Tsallis-based
generalizations of mutual information to analyze the similarity be-
tween scanned documents. These three generalizations derive from the
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Kullback-Leibler distance, the difference between entropy and conditional
entropy, and the Jensen-Shannon divergence, respectively. In addition, the
ratio between these measures and the Tsallis joint entropy is analyzed. The
performance of all these measures is studied for different entropic indexes in
the context of invoice classification and registration.

The content of this chapter has been published in"Tsallis Mutual Information
for Document Classification", Marius Vila, Anton Bardera, Miquel Feixas, Mateu
Sbert. Entropy, vol. 13, no. 9, pages 1694-1707, 2011 [Vila 2011].

• Chapter 5: Shot boundary detection and keyframe selection

In this chapter, we propose two different information-theoretic approaches to
detect the abrupt shot boundaries of a video sequence. These approaches are,
respectively, based on two information measures, Tsallis mutual information
and Jensen-Tsallis divergence, that are used to quantify the similarity between
two frames. Both measures are also used to find out the most representative
keyframe of each shot. Several experiments analyze the behavior of the
proposed measures for different color spaces (RGB, HSV, and Lab), regular
binnings, and entropic indices.

The content of this chapter has been published in "Tsallis entropy-based
information measure for shot boundary detection and keyframe selection",
Marius Vila, Anton Bardera, Qing Xu, Miquel Feixas, Mateu Sbert. Signal,
Image and Video Processing, vol. 7, no. 3, pages 507-520, 2013 [Vila 2013].

• Chapter 6: Image informativeness

In this chapter, we analyze the performance of four information-theoretic
measures when the image informativeness is quantified. Three of them
(entropy rate, excess entropy, and erasure entropy) consider the image as
a stationary stochastic process, while the fourth (partitional information) is
based on an information channel between image regions and histograms bins.

The content of this chapter has been published in "Analysis of image
informativeness measures", Marius Vila, Anton Bardera, Miquel Feixas, Philippe
Bekaert, Mateu Sbert. IEEE International Conference on Image Processing
pages 1086-1090, October 2014 [Vila 2014].

• Chapter 7: Conclusions and future work

In this chapter, both the conclusions and the future work of the thesis are
presented, along with a summary of the publications related with this thesis.
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2.1 Introduction

In this chapter, we review the basic concepts of information theory used in this thesis,
together with some previous work on document classification and video processing.

This chapter is structured as follows. Section 2.2 presents the concepts of
information theory that will be used in this thesis. Section 2.3 briefly summarizes
some of the most important aspects to be taken into account to solve the document
classification problems, referring several approaches presented by different authors.
Section 2.4 provides an overview on video processing where shot boundary
detection and keyframe selection concepts are defined.

2.2 Information theory tools

In 1948, Claude Shannon published a paper entitled “A mathematical theory of
communication” [Shannon 1948]which marks the beginning of information theory.
In this paper, Shannon defined measures such as entropy and mutual information1,
and introduced the fundamental laws of data compression and transmission.

1In Shannon’s paper, the mutual information is called rate of transmission.
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Information theory deals with the transmission, storage, and processing of
information and is used in fields such as physics, computer science, mathematics,
statistics, economics, biology, linguistics, neurology, learning, image processing, and
computer graphics.

In information theory, information is simply the outcome of a selection among a
finite number of possibilities and an information source is modelled as a random
variable or a random process. The classical measure of information, Shannon
entropy, expresses the information content or the uncertainty of a single random
variable. It is also a measure of the dispersion or diversity of a probability
distribution of observed events. For two random variables, their mutual information
is a measure of the dependence between them. Mutual information plays an
important role in the study of a communication channel, a system in which the output
depends probabilistically on its input [Cover 1991, Verdú 1998, Yeung 2008].

This section presents Shannon’s information measures (entropy, conditional
entropy, and mutual information) and their most basic properties. The information
bottleneck method is also introduced. Good references of information theory are the
books by Cover and Thomas [Cover 1991], and Yeung [Yeung 2008].

2.2.1 Entropy

Let X be a discrete random variable with alphabet X and probability distribution
{p(x)}, where p(x) = Pr[X = x] and x ∈ X . In this thesis, {p(x)} will be also
denoted by p(X ) or simply p. This notation will be extended to two or more random
variables.

The entropy H(X ) of a discrete random variable X is defined by

H(X ) = −
∑

x∈X
p(x) log p(x), (2.1)

where the summation is over the corresponding alphabet and the convention
0 log0= 0 is taken.

In this thesis, logarithms are taken in base 2 and, as a consequence, entropy
is expressed in bits. The convention 0 log 0 = 0 is justified by continuity since
x log x → 0 as x → 0. The term − log p(x) represents the information content (or
uncertainty) associated with the result x . Thus, the entropy gives us the average
amount of information (or uncertainty) of a random variable. Note that the entropy
depends only on the probabilities. We can use interchangeably the notation H(X )
or H(p) for the entropy, where p stands for the probability distribution p(X ).

Some relevant properties [Shannon 1948] of the entropy are:

• 0≤ H(X )≤ log |X |.

– H(X ) = 0 if and only if all the probabilities except one are zero, this one
having the unit value, i.e., when we are certain of the outcome.
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– H(X ) = log |X | when all the probabilities are equal, i.e., we have
maximum uncertainty.

• If the probabilities are equalized, entropy increases.

The binary entropy (Fig. 2.1) of a random variable X with alphabet {x1, x2} and
probability distribution {p, 1− p} is given by

H(X ) = −p log p− (1− p) log(1− p). (2.2)

Note that the maximum entropy is H(X ) = 1 bit when p = 1
2
.
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Figure 2.1: Plot of binary entropy.

The definition of entropy is now extended to a pair of random variables. The
joint entropy H(X , Y ) of a pair of discrete random variables X and Y with a joint
probability distribution p(X , Y ) = {p(x , y)} is defined by

H(X , Y ) = −
∑

x∈X

∑

y∈Y
p(x , y) log p(x , y), (2.3)

where p(x , y) = Pr[X = x , Y = y] is the joint probability of x and y .
The conditional entropy H(Y |X ) of a random variable Y given a random variable

X is defined as the expected value of the entropies of the conditional distributions:

H(Y |X ) =
∑

x∈X
p(x)H(Y |X = x) =

∑

x∈X
p(x)

 

−
∑

y∈Y
p(y|x) log p(y|x)

!

= −
∑

x∈X

∑

y∈Y
p(x , y) log p(y|x), (2.4)

where p(y|x) = Pr[Y = y|X = x] is the conditional probability of y given x .
The Bayes theorem relates marginal probabilities p(x) and p(y), conditional

probabilities p(y|x) and p(x |y), and joint probabilities p(x , y):

p(x , y) = p(x)p(y|x) = p(y)p(x |y). (2.5)
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If X and Y are independent, then p(x , y) = p(x)p(y). Marginal probabilities
can be obtained from p(x , y) by summation: p(x) =

∑

y∈Y p(x , y) and p(y) =
∑

x∈X p(x , y).
The conditional entropy can be thought of in terms of a communication or

information channel X → Y whose output Y depends probabilistically on its input X .
This information channel is characterized by a transition probability matrix which
determines the conditional distribution of the output given the input [Cover 1991].
Hence, H(Y |X ) corresponds to the uncertainty in the channel output from the
sender’s point of view, and vice versa for H(X |Y ). Note that in general H(Y |X ) 6=
H(X |Y ). In this thesis, the conditional probability distribution of Y given x will be
denoted by p(Y |x) and the transition probability matrix (i.e., the matrix whose rows
are given by p(Y |x)) will be denoted by p(Y |X ).

The following properties hold:

• H(X , Y ) = H(X ) +H(Y |X ) = H(Y ) +H(X |Y ).

• H(X , Y )≤ H(X ) +H(Y ).

• H(X )≥ H(X |Y )≥ 0.

• If X and Y are independent, then H(Y |X ) = H(Y ) since p(y|x) = p(y)
and, consequently, H(X , Y ) = H(X ) + H(Y ) (i.e., entropy is additive for
independent random variables).

2.2.2 Kullback-Leibler divergence and mutual information

We now introduce two new measures, Kullback-Leibler divergence and mutual
information, which quantify the distance between two probability distributions and
the shared information between two random variables, respectively.

The relative entropy or Kullback-Leibler divergence [Kullback 1951] DKL(p‖q)
between two probability distributions p and q, that are defined over the alphabet
X , is defined by

DKL(p‖q) =
∑

x∈X
p(x) log

p(x)
q(x)

. (2.6)

The conventions that 0 log 0
0
= 0 and a log a

0
= ∞ if a > 0 are adopted. The

Kullback-Leibler divergence satisfies the information inequality

DKL(p‖q)≥ 0, (2.7)

with equality if and only if p = q. The Kullback-Leibler divergence is also called
information divergence [Csiszár 2004] or informational divergence [Yeung 2008],
and it is not strictly a metric2 since it is not symmetric and does not satisfy the

2A metric between x and y is defined as a function d(x , y) that fulfills the following properties: (1)
non-negativity: d(x , y) ≥ 0, (2) identity: d(x , y) = 0 if and only if x = y , (3) symmetry: d(x , y) =
d(y, x), and (4) triangle inequality: d(x , y) + d(y, z)≥ d(x , z).
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triangle inequality. The Kullback-Leibler divergence is “a measure of the inefficiency
of assuming that the distribution is q when the true distribution is p” [Cover 1991].

The mutual information I(X ; Y ) between two random variables X and Y is
defined by

I(X ; Y ) = H(X )−H(X |Y ) = H(Y )−H(Y |X ) (2.8)

=
∑

x∈X

∑

y∈Y
p(x , y) log

p(x , y)
p(x)p(y)

=
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log

p(y|x)
p(y)

. (2.9)

Mutual information represents the amount of information that one random variable,
the input of the channel, contains about a second random variable, the output of
the channel, and vice versa. That is, mutual information expresses how much the
knowledge of Y decreases the uncertainty of X , and vice versa. I(X ; Y ) is a measure
of the shared information or dependence between X and Y . Thus, if X and Y are
independent, then I(X ; Y ) = 0. Note that the mutual information can be expressed
as the relative entropy between the joint distribution and the product of marginal
distributions:

I(X ; Y ) = DKL(p(X , Y )‖p(X )p(Y )). (2.10)

Mutual information I(X ; Y ) fulfills the following properties:

• I(X ; Y )≥ 0 with equality if and only if X and Y are independent

• I(X ; Y ) = I(Y ; X )

• I(X ; Y ) = H(X ) +H(Y )−H(X , Y )

• I(X ; Y )≤min{H(X ), H(Y )}

• I(X ; X ) = H(X )

The relationship between Shannon’s information measures can be expressed by
a Venn diagram, as shown in Fig. 2.23. The correspondence between Shannon’s
information measures and set theory is discussed in [Yeung 2008].

The normalized mutual information N M I can be defined as

N M I(X ; Y ) =
I(X ; Y )
H(X , Y )

, (2.11)

where N M I takes values in the range [0,1].

2.2.3 Inequalities

In this section, we introduce some inequalities that are essential in the study of
information theory.

3The information diagram does not include the universal set as in a usual Venn diagram.
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H(X) H(Y)

H(X,Y)

H(X|Y) H(Y|X)I(X;Y)

Figure 2.2: The information diagram represents the relationship between
Shannon’s information measures. Observe that I(X ; Y ) and H(X , Y ) are represented,
respectively, by the intersection and the union of the information in X (represented
by H(X )) with the information in Y (represented by H(Y )). H(X |Y ) is represented
by the difference between the information in X and the information in Y , and vice
versa for H(Y |X ).

2.2.3.1 Jensen’s inequality

In this section, we introduce the concepts of convexity and concavity. Many
important inequalities and results in information theory are obtained from the
concavity of the logarithmic function.

A function f (x) is convex over an interval [a, b] (the graph of the function lies
below any chord) if for every x1, x2 ∈ [a, b] and 0≤ λ≤ 1,

f (λx1 + (1−λ)x2)≤ λ f (x1) + (1−λ) f (x2). (2.12)

A function is strictly convex if equality holds only if λ= 0 or λ= 1.
A function f (x) is concave (the graph of the function lies above any chord) if

− f (x) is convex.
For instance, x2 and x log x (for x > 0) are strictly convex functions, and log x

(for x > 0) is a strictly concave function.
Jensen’s inequality can be expressed as follows. If f is a convex function on the

interval [a, b], then
n
∑

i=1

λi f (x i)− f

 

n
∑

i=1

λi x i

!

≥ 0, (2.13)

where 0 ≤ λ ≤ 1,
∑n

i=1λi = 1, and x i ∈ [a, b]. If f is a concave function, the
inequality is reversed. A special case of this inequality is when λi =

1
n

because then

1

n

n
∑

i=1

f (x i)− f

 

1

n

n
∑

i=1

x i

!

≥ 0, (2.14)
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that is, the value of the function at the mean of the x i is less or equal than the mean
of the values of the function at each x i.

Jensen’s inequality can also be expressed in the following way: if f is convex on
the range of a random variable X , then

f (E[X ])≤ E[ f (X )], (2.15)

where E denotes expectation (i.e., E[ f (X )] =
∑

x∈X p(x) f (x)). Observe that if
f (x) = x2 (convex function), then E[X 2]−(E[X ])2 ≥ 0. Thus, the variance is always
positive.

2.2.3.2 Log-sum inequality

The log-sum inequality can be obtained from Jensen’s inequality (Equation (2.13)).
For non-negative numbers a1, a2, . . . , an and b1, b2, . . . , bn, the log-sum inequality is
expressed as

n
∑

i=1

ai log
ai

bi
−

 

n
∑

i=1

ai

!

log

∑n
i=1 ai

∑n
i=1 bi

≥ 0, (2.16)

with equality if and only if ai

bi
is constant for all i. The conventions that 0 log 0 = 0,

0 log 0
0
= 0, and a log a

0
=∞ if a > 0 are again adopted.

From this inequality, it can be proved that H(X ) is a concave function of p [Cover
1991].

From this inequality, the following properties can be proved [Cover 1991]:

• DKL(p‖q) is convex in the pair (p, q).

• H(X ) is a concave function of p.

• If X and Y have the joint distribution p(x , y) = p(x)p(y|x), then I(X ; Y ) is a
concave function of p(x) for fixed p(y|x) and a convex function of p(y|x) for
fixed p(x).

2.2.3.3 Jensen-Shannon inequality

The Jensen-Shannon divergence, derived from the concavity of entropy, is used
to measure the dissimilarity between two probability distributions and has the
important feature that a different weight can be assigned to each probability
distribution. The Jensen-Shannon (JS) divergence is defined by

JS(π1,π2, . . . ,πn; p1, p2, . . . , pn) = H

 

n
∑

i=1

πi pi

!

−
n
∑

i=1

πiH(pi), (2.17)

where p1, p2, . . . , pn are a set of probability distributions defined over the same
alphabet with prior probabilities or weights π1,π2, . . . ,πn, fulfilling

∑n
i=1πi = 1,
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and
∑n

i=1πi pi is the probability distribution obtained from the weighted sum of the
probability distributions p1, p2, . . . , pn.

From the concavity of entropy (Section 2.2.3.2), the Jensen-Shannon inequality
[Burbea 1982] is obtained:

JS(π1,π2, . . . ,πn; p1, p2, . . . , pn)≥ 0. (2.18)

The JS-divergence measures how far the probabilities pi are from their mixing
distribution

∑n
i=1πi pi, and equals zero if and only if all the pi are equal. It is

important to note that the JS-divergence is identical to the mutual information
I(X ; Y ) when πi = p(x i) (i.e., {πi} corresponds to the marginal distribution p(X )),
pi = p(Y |x i) for all x i ∈ X (i.e., pi corresponds to the conditional distribution of Y
given x i), and n= |X | [Burbea 1982, Slonim 2000b].

2.2.3.4 Data processing inequality

The data processing inequality is expressed as follows. If X → Y → Z is a Markov
chain4, then

I(X ; Y )≥ I(X ; Z). (2.19)

This result proves that no processing of Y , deterministic or random, can increase
the information that Y contains about X . In particular, if Z = f (Y ), then X → Y →
f (Y ) and, consequently, I(X ; Y )≥ I(X ; f (Y )) [Cover 1991].

2.2.4 Entropy rate

Using the property H(X1, X2) = H(X1)+H(X2|X1) (Section 2.2.1) and the induction
on n [Yeung 2008], it can be proved that the joint entropy of a collection of n random
variables X1, . . . , Xn is given by

H(X1, . . . , Xn) =
n
∑

i=1

H(X i|X1, . . . , X i−1). (2.20)

We now introduce the entropy rate that quantifies how the entropy of a sequence
of n random variables increases with n. The entropy rate or entropy density hx of a
stochastic process5 {X i} is defined by

hx = lim
n→∞

1

n
H(X1, X2, . . . , Xn) (2.21)

when the limit exists.
4For random variables X , Y , and Z , X → Y → Z forms a Markov chain if p(x , y, z) =

p(x)p(y|x)p(z|y). That is, the probability of the future state depends on the current state only and is
independent of what happened before the current state.

5A stochastic process or a discrete-time information source {X i} is an indexed sequence of random
variables characterized by the joint probability distribution p(x1, x2, . . . , xn) = Pr[(X1, X2, . . . , Xn) =
(x1, x2, . . . , xn)] with (x1, x2, . . . , xn) ∈ X n for n≥ 1 [Cover 1991, Yeung 2008].
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Entropy rate represents the average information content per symbol in a
stochastic process. For a stationary stochastic process6, the entropy rate exists and
is equal to

hx = lim
n→∞

hx(n), (2.22)

where hx(n) = H(X1, . . . , Xn)−H(X1, . . . , Xn−1) = H(Xn|Xn−1, . . . , X1). Entropy rate
can be seen as the uncertainty associated with a given symbol if all the preceding
symbols are known. It can also be interpreted as the irreducible randomness in
sequences produced by an information source [Feldman 1998].

An alternative notation, inspired by the work of Feldman and Crutch-
field [Crutchfield 2003], is also used here to define the entropy rate. Given a
chain . . . X−2X−1X0X1X2 . . . of random variables X i taking values in X , a block of
L consecutive random variables is denoted by X L = X1 . . . X L. The probability that
the particular L-block x L occurs is denoted by p(x L). The joint entropy of length-L
sequences or L-block entropy is now denoted by

H(X L) = −
∑

x L∈X L

p(x L) log p(x L), (2.23)

where the sum runs over all possible L-blocks. Thus, the entropy rate can be
rewritten as

hx = lim
L→∞

H(X L)
L

= lim
L→∞

hx(L), (2.24)

where hx(L) = H(X L|X L−1, X L−2, . . . , X1) is the entropy of a symbol conditioned
on a block of L − 1 adjacent symbols.

2.2.5 Entropy and coding

In this section, we review other interpretations of the Shannon entropy:

• As we have seen in Section 2.2.1, − log p(x) represents the information
associated with the result x . The value − log p(x) can also be interpreted as
the surprise associated with the outcome x . If p(x) is small, the surprise is
large; if p(x) is large, the surprise is small. Thus, entropy (Equation (2.1))
can be seen as the expectation value of the surprise [Feldman 2002].

• A fundamental result of information theory is the Shannon source coding
theorem, which deals with the encoding of information in order to store or
transmit it efficiently. This theorem can be formulated in the following ways
[Cover 1991, Feldman 2002]:

6A stochastic process {X i} is stationary if two subsets of the sequence, {X1, X2, . . . , Xn} and
{X1+l , X2+l , . . . , Xn+l}, have the same joint probability distribution for any n, l ≥ 1: Pr[(X1, . . . , Xn) =
(x1, x2, . . . , xn)] = Pr[(X1+l , X2+l , . . . , Xn+l) = (x1, x2, . . . , xn)]. That is, the statistical properties of the
process are invariant to a shift in time. At least, HX exists for all stationary stochastic processes.
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– Given a random variable X , H(X ) fulfills

H(X )≤ ` < H(X ) + 1, (2.25)

where ` is the expected length of an optimal binary code for X . An
example of an optimal binary code is the Huffman instantaneous coding7.

– If we optimally encode n identically distributed random variables X with
a binary code, the Shannon source coding theorem can be enunciated in
the following way:

H(X )≤ `n < H(X ) +
1

n
, (2.26)

where `n is the expected codeword length per unit symbol. Thus, by using
large block lengths, we can achieve an expected codelength per symbol
arbitrarily close to the entropy [Cover 1991].

– For a stationary stochastic process, we have

H(X1, X2, . . . , Xn)
n

≤ `n <
H(X1, X2, . . . , Xn)

n
+ 1 (2.27)

and, from the definition of entropy rate HX (Equation (2.21)),

lim
n→∞

`n→ HX . (2.28)

Thus, the entropy rate is the expected number of bits per symbol required
to describe the stochastic process.

2.2.6 Information bottleneck method

The information bottleneck method, introduced by Tishby et al. [Tishby 1999], is a
technique that extracts a compact representation of the variable X , denoted by bX ,
with minimal loss of mutual information with respect to another variable Y (i.e.,
bX preserves as much information as possible about the control variable Y ). Thus,
given an information channel between X and Y , the information bottleneck method
tries to find the optimal tradeoff between accuracy and compression of X when the
bins of this variable are clustered.

Soft [Tishby 1999] and hard [Slonim 2000a] partitions of X can be adopted. In
the first case, every x ∈ X can be assigned to a cluster x̂ ∈ cX with some conditional
probability p( x̂ |x) (soft clustering). In the second case, every x ∈ X is assigned to
only one cluster x̂ ∈ cX (hard clustering).

In this thesis, we consider hard partitions and we focus our attention on the
agglomerative information bottleneck method [Slonim 2000a]. Given a cluster x̂

7A code is called a prefix or instantaneous code if no codeword is a prefix of any other codeword.
Huffman coding uses a specific algorithm to obtain the representation for each symbol. The main
characteristic of this code is that the most common symbols use shorter strings of bits than the ones
used by the less common symbols.
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defined by x̂ = {x1, . . . , x l}, where xk ∈ X for all k ∈ {1, . . . , l}, and the probabilities
p( x̂) and p(y| x̂) defined by

p( x̂) =
l
∑

k=1

p(xk), (2.29)

p(y| x̂) =
1

p( x̂)

l
∑

k=1

p(xk, y) ∀y ∈ Y , (2.30)

the following properties are fulfilled:

• The decrease in the mutual information I(X ; Y ) due to the merge of x1, . . . , x l
is given by

δI x̂ = p( x̂) JS(π1, . . . ,πl ; p1, . . . , pl)≥ 0, (2.31)

where the weights and probability distributions of the JS-divergence are given
by πk =

p(xk)
p( x̂) and pk = p(Y |xk) for all k ∈ {1, . . . , l}, respectively. An optimal

clustering algorithm should minimize δI x̂ .

• An optimal merge of l components can be obtained by l−1 consecutive optimal
merges of pairs of components.

2.2.7 Generalized entropies

Rényi [Rényi 1961] and Harvda and Charvát [Harvda 1967] introduced,
respectively, two generalized definitions of entropy which includes the Shannon
entropy as a particular case.

The Rényi entropy HR
α(X ) of a random variable X is defined by

HR
α(X ) =

1

1−α
log

∑

x∈X
p(x)α, (2.32)

where α > 0 and α 6= 1. When α→ 1, HR
α(X ) = H(X ). HR

α(X ) is a concave function
of p if α≤ 1, but neither concave nor convex if α > 1.

Tsallis [Tsallis 1988] used the Harvda-Charvát entropy in order to generalize
the Boltzmann entropy in statistical mechanics. The introduction of this entropy
responds to the objective of generalizing the statistical mechanics to non-extensive
systems8. In this thesis, we only use the Harvda-Charvát entropy.

The Harvda-Charvát-Tsallis entropy Hα(X ) of a discrete random variable X is
defined by

Hα(X ) = k
1−

∑

x∈X p(x)α

α− 1
, (2.33)

8An extensive system fulfills that quantities like energy and entropy are proportional to the system
size. Similarly to Shannon entropy, a fundamental property of the Boltzmann entropy is its additivity.
That is, if we consider a system composed by two probabilistically independent subsystems X and Y
(i.e., p(x , y) = p(x)p(y)), then H(X,Y) = H(X) + H(Y). This property ensures the extensivity of the
entropy but strongly correlated systems present non-extensive properties that require another type of
entropy fulfilling non-additivity.
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where k is a positive constant (by default k = 1) and α ∈ R\{1} is called
entropic index. This entropy recovers the Shannon entropy (calculated with natural
logarithms) when α→ 1 and fulfils the properties of non-negativity and concavity
(for α > 0). In this thesis, the Harvda-Charvát-Tsallis entropy is also called Tsallis
entropy.

If X and Y are independent, then the Harvda-Charvát-Tsallis entropy fulfills the
non-additivity property:

Hα(X , Y ) = Hα(X ) +Hα(Y ) + (1−α)Hα(X )Hα(Y ), (2.34)

hence, superextensivity, extensivity or subextensivity occurs when α < 1, α = 1 or
α > 1, respectively [Tsallis 2002].

The Tsallis conditional entropy Hα(Y |X ) is defined by

Hα(Y |X ) =
∑

x∈X
p(x)αHα(Y |x)

=
∑

x∈X
p(x)α

1−
∑

y∈Y p(y|x)α

α− 1
, (2.35)

where Hα(Y |x) is the Tsallis entropy of Y known x.
From Equation (2.10), we have seen that mutual information can be expressed as

the Kullback–Leibler distance between the joint probability distribution p(x , y) and
the distribution p(x)p(y). Tsallis [Tsallis 1998] generalized the Kullback–Leibler
distance in the following form:

K Lα(p, q) =
1

1−α

�

1−
∑

x∈X

p(x)α

q(x)α−1

�

. (2.36)

Thus, from Equations (2.10) and (2.36), Tsallis mutual information can be
defined [Taneja 1988, Tsallis 1998] as

Iα(X ; Y ) = K Lα
�

p(x , y), p(x)p(y)
�

=
1

1−α

 

1−
∑

x∈X

∑

y∈Y

p(x , y)α

p(x)α−1p(y)α−1

!

. (2.37)

In the context of Tsallis entropy, the normalized mutual information N M I
(Equation (2.11)) can be generalized as

N M Iα(X ; Y ) =
Iα(X ; Y )
Hα(X , Y )

, (2.38)

where Hα(X , Y ) is the Harvda-Charvát-Tsallis entropy defined in Section 2.2.7.
Although N M Iα(X ; Y ) is a normalized measure for α→ 1, this is not true for other
α values as N M Iα can take values greater than 1. This measure is always positive
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and symmetric.

2.3 Document classification

The automated classification of scanned documents has become an essential task in
document image processing and it is used in many applications due to the advances
in communication and information technology:

• Office automation. Document classification allows the automatic distribution
or archiving of documents. For example, after classification of business letters
according to the sender and message type (such as order, offer, or inquiry),
the letters are sent to the appropriate departments for processing.

• Digital libraries. Document classification improves the indexing efficiency in
digital library construction. For example, the classification of documents into
table of contents page or title page can narrow the set of pages from which to
extract specific meta-data, such as the title or table of contents of a book.

• Image retrieval. Document classification plays an important role in document
image retrieval. For example, consider a document image database containing
a large heterogeneous collection of document images. Users have many
retrieval demands, such as retrieval of papers from one specific journal, or
retrieval of document pages containing tables or graphics. Classification of
documents based on visual similarity helps to limit the search and improves
retrieval efficiency and accuracy.

• Other document image analysis applications. Document classification fa-
cilitates higher-lever document analysis. Due to the complexity of docu-
ment understanding, most high-level document analysis systems rely on
domain-dependent knowledge to obtain high accuracy. Many available
information extraction systems are specially designed for a specific type of
document, such as forms processing or postal address precessing, to achieve
high speed and performance. To process a broad range of documents, it is
necessary to classify the documents first, so that a suitable document analysis
system for each specific document type can be adopted.

Electronic documents have many advantages over paper documents due to
their compact storage, easy maintenance, and efficient retrieval. The huge amount
of electronic documents creates the need of automatic classification based on its
content or visual similarity with minimal human intervention. According to Peng
et al. [Peng 2003], the definition of the similarity between documents can be
divided into two main groups based respectively on matching local features, such
as the matching of recognized characters [Lopresti 2000] or different types of line
segments [Tseng 1997], and on extracting global layout information, such as the
use of a spatial layout representation [Hu 1999b] or geometric features [Shin
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2001]. Chen and Blostein [Chen 2007] present an excellent survey on document
classification.

Most published document image classification systems rely on either OCR [Trier
1996, Lopresti 2000], so that the documents can be categorized depending on the
textual content, or on some form of layout analysis to produce an “appearance
signature” that can be compared to category-prototypes [Hu 1999b, Shin 2001].
Classifying documents by appearance is a useful part of document indexing,
retrieval, organization, sorting, and workflow routing. This is especially true if OCR
is inaccurate, expensive, or relies on prior knowledge about document type, or if
the text content is too variable or insufficient for classification [Gupta 2007].

Due to the wide variety of classification problems that can be raised, there is
a huge diversity of document classifiers with significant differences between them.
This fact involves the need to clearly specify the problem before starting the design
of a classifier. Some of the most important aspects to be taken into account are the
level of detail, the document features, and the classification techniques. Next, we
briefly summarize these aspects:

• Level of detail. Bagdanov and Worring [Bagdanov 2001] defined two levels of
detail: coarse-grained and fine-grained. While the coarse-grained classification
is used to classify documents with different types [Eglin 2003, Maderlechner
1997, Shin 2001], such as invoices versus journal pages, the fine-grained
classification is used to classify documents with the same typology [Appiani
2001, Bagdanov 2001, Baumann 1997, Diligenti 2003, Sako 2003], such as
invoices from different suppliers.

• Document features. In order to classify electronic documents, it is necessary
to extract a set of document features. These can be grouped into four
groups: image, physical layout, logical layout, and textual features. Image
features, that are directly extracted from the image, can be divided into
two subgroups: global and local image features. Global features [Bagdanov
2001, Fan 2010, Fränti 2000] are computed on the whole image (e.g., the
density of black pixels), whereas local features [Bagdanov 2001, Diligenti
2003, Meshesha 2008, Tseng 1997] are computed on regions of the image
(e.g., the number of horizontal lines in a segmented region). These features
are usually limited to a coarse-grained level classification. Physical [Esposito
2000, Baldi 2003, Bagdanov 2003] and logical [Rangoni 2011, Duygulu
2002, Liang 2002] layout features are used to classify documents of the same
type with structural variations [Nagy 2000, Mao 2003, Haralick 1994]. The
use of these structural features allows the classifier to perform a fine-grained
level classification. Finally, textual features can be extracted directly from the
images [Shin 2001, Spitz 1999] or computed from the OCR output [Baumann
1997, Maderlechner 1997]. These features allow that the classifier assigns one
or multiple labels to a document based on its content.

• Classification techniques. There is a huge variety of classification techniques.
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The most used ones, can be grouped into four basic categories: statistical,
structural, knowledge-based, and template matching techniques. Statistical
techniques [Duda 2001, Jain 2000] are relatively mature and include
the use of tools such as nearest neighbor [Héroux 1998, Alippi 2005],
decision trees [Shin 2001], neural networks [Rangoni 2011], or hidden
Markov models [Hu 1999a]. These techniques do not usually capture the
document structure and therefore they are not suitable for fine-grained
classification. Structural techniques are computationally complex and include
the use of tools such as decision trees [Shin 2001], hidden tree Markov
models [Diligenti 2003], or graph matching techniques [Bunke 2000, Liang
2002]. Knowledge-based techniques require a significant effort to acquire,
maintain, and update the knowledge base [Lam 1993], although there are
systems that learn rules automatically from labeled training samples [Esposito
2000, Wenzel 2001]. Finally, template matching techniques [Byun 2000, Kochi
1999] are used to match a document image with a template document.These
techniques are most commonly applied in cases where document images have
a fixed geometric configuration and are recommended for coarse-grained
classification.

It is interesting to note that the above techniques are usually combined to
improve the classification performance [Ho 2001, Héroux 1998].

Processes, such as document clustering or template matching, require the
definition of document similarity. Document clustering aims to classify similar
documents in groups and template matching consists in finding the spatial
correspondence of a given document with a template in order to identify the relevant
fields of the document.

In our work, instead of extracting specific pieces of information or analyzing
the document layout, we propose to use global measures to evaluate the similarity
between two image documents. The similarity between two images can be computed
using numerous distance or similarity measures. In the medical image registration
field, mutual information has become a standard image similarity measure [Hajnal
2001]. Although our analysis can be extended to a wide variety of document types,
we focus our attention on invoice classification.

2.4 Video processing

Video processing constitutes one of the major areas of multimedia research due to
the exponential growth of digital video generation that has taken place in the last
decades. Shot boundary detection and keyframe selection are fundamental tasks
for video processing applications such as content-based video retrieval and video
summarization applications [Money 2008, Peng 2010]. In video processing, a shot
may be defined as a sequence of frames that was continuously captured from a
single camera at a time, and it can encompass pans, tilts, or zooms. Usually, a shot
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is a group of frames that have consistent visual characteristics such as color, texture,
and motion. A video sequence normally contains a large number of shots, which
are connected with each other through different video editing methods. A shot
boundary is the gap between two shots and its identification enables us to index the
video sequence, facilitating the fast browsing and retrieval of shots of interest to the
user [Cotsaces 2006, Grana 2007, Urhan 2006, Yuan 2007]. The main difficulties of
automatic shot boundary detection are related to the object motion and illumination
variations, which can be easily confused with a shot boundary.

The transitions between shots can be classified into two basic groups: hard cuts
and gradual transitions. A hard cut is an abrupt shot change that occurs between
two continuous frames, i.e., when the last frame in one shot is followed by the
first frame in the next shot. A comparison of existing cut detector methods is
presented by Lienhart [Lienhart 1999] and Browne et al. [Browne 1999]. Gradual
transitions occur over multiple frames and the most typical are fade-in, fade-out,
dissolve, and wipe, but many other types of gradual transition are possible [Lienhart
2001, Hanjalic 2002, Yuan 2007].

Shot boundary detection techniques can be divided into two basic categories
depending on the use of compressed video data or not. The methods that work
in the compressed domain usually use motion differences encoded in the MPEG
standard and are faster than the ones in the uncompressed domain since we assume
that the video is given in a compressed format and, therefore, the decompression
step is unnecessary [Meng 1995, Lelescu 2003]. However, these algorithms often
show a lower performance due to the limited features that can be extracted
from the compressed video [Lee 2006]. Thus, the proposed methods in the
uncompressed domain are usually more accurate but also more computationally
expensive than the ones in the compressed domain due to the decompression
step [Hanjalic 2002]. The most common methods that work in the uncompressed
domain are based on pixel differences [Nagasaka 1992, Lienhart 1999], statistical
differences [Hanjalic 2002, Yoo 2006], histogram comparison [Lienhart 1999, Gargi
2000], edge differences [Zabih 1995], motion vector [Dhawale 2008, Tardini
2005, Hesseler 2006], and information-theoretic measures [Butz 2001, Cernekova
2006, Xu 2010].

Keyframes provide a suitable video summarization and a framework for video
indexing, browsing, and retrieval [Günsel 1998, Nagasaka 1992, Wolf 1996]. The
use of keyframes greatly reduces the amount of data required in video indexing
and provides a framework to deal with the video content. The simplest proposed
methods choose only one frame for each shot (usually the first one), regardless of the
complexity of visual content. The more sophisticated approaches take into account
visual content, motion analysis, and shot activity [Zhuang 1998]. These approaches
either do not effectively capture the major visual content or are computationally
expensive. Ciocca and Schettini [Ciocca 2006] propose an approach for keyframe
selection by analyzing the differences between two consecutive frames using
different frame descriptors. Peng and Xiao-Lin [Peng 2010] introduce an adaptive
keyframe extraction method based on the visual attention model.



CHAPTER 3

Image-based similarity measures
for document classification

3.1 Introduction

In this chapter, we analyze a set of global measures to evaluate the similarity
between two invoices instead of extracting specific pieces of information or
analyzing the invoice layout. The use of global similarity measures is in general very
demanding to be applied to large databases, however we propose to downscale the
scanned images and, thus, to compute the similarity on low resolution images. This
makes our approach completely feasible, achieving more robustness and accuracy.

We investigate three types of measures, based respectively on intensity
differences, mutual information, and normalized compression distance. While the
first group is based on the intensity difference between the corresponding pixels,
the second group uses the joint probability distribution of intensities to take into
account the correlation between the structures of the document. In the third group,
the normalized compression distance utilizes different compressors to compute
the dissimilarity between document images. A number of experiments analyze the
performance of some of the proposed measures applied to two testing invoice
databases composed by colored and black-and-white images, respectively, and to
a real-world invoice database.

The content of this chapter is presented in "Image-based Similarity Measures
for Invoice Classification", Marius Vila, Anton Bardera, Miquel Feixas, Mateu Sbert.
Submitted.

3.2 Previous work

In the context of document image analysis, image similarity is mainly used for
classification purposes in order to index, retrieve, and organize specific document
types. Nowadays, this task is especially important because huge volumes of
documents are scanned to be processed in an automatic way. Some automatic
solutions based on optical character recognition (OCR), bank check reader, postal
address reader, and signature verifier, have already been proposed but a lot of
work has still to be done to classify other types of documents such as tabular
forms, invoices, bills, and receipts [Hamza 2008]. Chen and Blostein [Chen 2007]
presented an excellent survey on document image classification.
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Many automatic classification techniques of image documents are based on
the extraction of specific pieces of information from the documents. In particular,
OCR software is especially useful to extract relevant information in applications
that are restricted to a few specific models where the information can be located
precisely [Trier 1996]. However, many applications require to deal with a great
variety of layouts, where relevant information is located in different positions. In
this case, it is necessary to recognize the document layout and apply the appropriate
reading strategy [Appiani 2001]. Several strategies have been proposed to achieve
an accurate document classification based on the layout analysis and classifica-
tion [Hu 1999b, Appiani 2001, Shin 2001, Peng 2003, Shin 2006, Gupta 2007].

In the literature of document image classification, different measures of
similarity have been used. Appiani et al. [Appiani 2001] design a criterion to
compare the structural similarity between trees that represent the structure of a
document. Shin and Doermann [Shin 2006] use a similarity measure that considers
spatial and layout structure. This measure quantifies the relatedness between two
objects, combining structural and content features. Behera et al. [Behera 2005]
propose to measure the similarity between two images by computing the distance
between their respective kernel density estimation of the histograms using the
Minkowski distance or the intersection of the histograms.

In this work, we focus our attention on invoice classification. Invoices are
commercial document issued by a seller, containing details about the seller,
the buyer, products, quantities, prices, etc., and usually a logo and tables.
Several approaches for invoice classification have been presented by Alippi
et al. [Alippi 2005], Silva et al. [Silva 2006], and Hamza et al. [Hamza
2008]. Hamza et al. [Hamza 2008] identify two main research directions in
invoice classification. The first one concerns data-based systems and the second
one concerns model-based systems. Data-based systems are frequently used
in heterogeneous document flows and to extract different information from
documents, such as tables [Silva 2006], graphical features such as logos and
trademarks [Alippi 2005], or the general layout [Appiani 2001]. On the contrary,
model-based systems are used in homogeneous document flows, where similar
documents arrive generally one after the other [Arai 1997, Cesarini 1998, Tang
1997, Duygulu 2002].

In this chapter, we focus our attention on capturing visual similarity between
different invoice images using global measures that do not require the analysis of
the invoice layout.

3.3 Similarity measures

In this section, we present three types of similarity measures based on
intensity differences, the joint probability distribution of intensities, and image
compressibility, respectively. The performance of these measures to evaluate the
invoice similarity will be analyzed in the next section.



3.3. Similarity measures 23

The following similarity measures are computed in the overlapping domain ΩA,B
of images A and B, which is defined as the intersection area of both images when
these are aligned at the coordinate origin. Note that, since the images have been
rescaled to a fixed height, ΩA,B is given by the image height times the minimum
width of the images A and B.

3.3.1 Intensity-based measures

We present here three intensity-based measures to compute the similarity between
two images [Studholme 1997, Hajnal 2001]. Specifically, the similarity is calculated
from the local difference between the intensities corresponding to the pairs of
matching pixels. We analyze the following three measures:

• Sum of squared differences (SSD): For N pixels in the overlap domain ΩA,B of
images A and B, this measure is defined as

SSD =
1

N

∑

i∈ΩA,B

| A(i)− B(i) |2, (3.1)

where A(i) and B(i) represent the intensity at a pixel i of the images A and B,
respectively. Note that the images can have a different size and, therefore, the
similarity measures are only computed on the overlap area ΩA,B between both
images. It is assumed that the image values are calibrated to the same scale.
It can be shown that SSD is the optimal measure when two images only differ
by Gaussian noise [Viola 1995]. A drawback of this measure is that it is very
sensitive to a small number of pairs of pixels that have very large intensity
differences.

• Sum of absolute differences (SAD): This measure is defined as

SAD =
1

N

∑

i∈ΩA,B

| A(i)− B(i) | . (3.2)

Since the differences are not squared, the negative effects of SSD on an small
number of large intensity differences are reduced by using SAD.

• Correlation coefficient (CC): This measure is defined as

CC =

∑

i∈ΩA,B
(A(i)− Ā)(B(i)− B̄)

[
∑

i∈ΩA,B
(A(i)− Ā)2

∑

i∈ΩA,B
(B(i)− B̄)2]

1
2

, (3.3)

where Ā and B̄ are, respectively, the mean intensity values in images A and
B in the overlap domain ΩA,B. While SSD makes the implicit assumption that
the images differ only by Gaussian noise, CC assumes that there is a linear
relationship between the intensity values in the images [Hill 2001].
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3.3.2 Information-theoretic measures

In this section, we present two similarity measures, mutual information and
normalized mutual information, which are based on the joint probability
distribution of two matching images. This fact confers to these measures a better
behavior than the intensity-based measures presented in the previous section.
Mutual information and normalized mutual information have been widely used
in numerous papers in the multimodal registration field [Hajnal 2001]. These
measures are based on the probabilities of the intensities instead of the intensities
themselves. To define these measures, an information channel X → Y is created,
where X and Y stand for the two images A and B, respectively. In this channel,
their marginal probability distributions, p(x) and p(y), and the joint probability
distribution, p(x , y), are obtained by simple normalization of the marginal and
joint intensity histograms of the overlapping area of both images. To define
these measures, we remember here the definition of entropy for one and two
random variables. For more details, see Section 2.2.1 and the books by Cover and
Thomas [Cover 1991], and Yeung [Yeung 2008].

The most basic information measure is the Shannon entropy H(X ), where
the random variable X represent the intensity bins of an image A. The Shannon
entropy quantifies the average uncertainty of a random variable X with probability
distribution {p(x)}, and is defined by

H(X ) = −
∑

x∈X
p(x) log p(x), (3.4)

where X is the alphabet of X . In this case, the alphabet X is given by the set of
intensity bins.

The joint entropy H(X , Y ) of a pair of discrete random variables X and Y with
joint probability distribution {p(x , y)} is defined by

H(X , Y ) = −
∑

x∈X

∑

y∈Y
p(x , y) log p(x , y), (3.5)

where X and Y are, respectively, the alphabets of X and Y , given by the intensity
bins of images A and B, respectively. H(X , Y ) measures the average uncertainty of
the pair (X , Y ).

Mutual information and normalized mutual information are defined as follows:

• Mutual information (I): The mutual information between two random
variables X and Y is defined as

I(X ; Y ) =
∑

x∈X

∑

y∈Y
p(x , y) log

p(x , y)
p(x)p(y)

= H(X ) +H(Y )−H(X , Y ) (3.6)

and represents the shared information between X and Y , where X and Y
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Figure 3.1: Computation of the normalized compression distance using an image
compressor.

represent the intensity bins of images A and B, respectively. I(X ; Y ) was
introduced by Viola [Viola 1995] and Maes et al. [Maes 1997] as a similarity
measure for image registration.

• Normalized mutual information (NMI): The normalized mutual information is
defined as

N M I(X ; Y ) =
I(X ; Y )
H(X , Y )

. (3.7)

The joint entropy H(X , Y ) is an upper bound of mutual information and,
hence, normalizes the measure between [0, 1]. In the context of image
registration, Studholme et al. [Studholme 1997] showed that this measure
is more robust than the mutual information I(X ; Y ), due to its greater
independence of the overlap area. Another theoretical justification of its good
behavior is that the normalized mutual information N M I is a true distance.

It is important to remark that, while the intensity-based measures seen in the
previous section are very sensitive to changes in the intensity values, the mutual
information-based measures are not directly based on these values but on their
co-occurrences. This fact helps to capture with greater precision the structural
similarity between two images.

3.3.3 Compression-based measures

In this section, we present a dissimilarity measure between two images based on
the Kolmogorov complexity. The Kolmogorov complexity K(x) of a string x is the
length of the shortest program to compute x on an appropriate universal computer.
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Figure 3.2: Computation of the normalized compression distance using a file
compressor.

Essentially, the Kolmogorov complexity of a string is the length of the ultimate
compressed version of the string. Moreover, the joint complexity K(x , y) represents
the length of the shortest program for the pair (x , y) [Li 2004, Li 2008].

Li et al. [Li 2004] presented the normalized information distance (N I D), called
also the similarity metric, as a universal metric which quantifies the distance between
two strings x and y as the length of the shortest program that computes x from y
and y from x in a normalized way. N I D is defined by

N I D(x , y) =
K(x , y)−min{K(x), K(y)}

max{K(x), K(y)}
(3.8)

and takes values in [0, 1]. This metric is universal in the sense that if two strings
are similar according to the particular feature described by a particular normalized
admissible distance (not necessarily metric), then they are also similar in the sense
of the normalized information metric [Cilibrasi 2005].

The Kolmogorov complexity K is a non-computable measure in the Turing
sense [Li 2008] and, therefore, for real-world applications, we will need an
approximation of it. An upper bound of K is the length C(x) (or C(y)) of the
compressed string x (or y) generated by a compression algorithm. The better
the compression algorithm, the better the approximation to K [Li 2008]. Then, a
feasible version of the normalized information distance (Equation (3.8)), called the



3.4. Methodology 27

normalized compression distance (NC D), is defined as

NC D(x , y) =
C(x , y)−min{C(x), C(y)}

max{C(x), C(y)}
, (3.9)

where C(x) (or C(y)) represents the length of the compressed string x (or y)
and C(x , y) the length of the compressed pair (x , y) [Cilibrasi 2005]. Thus,
NC D is computed from the lengths of compressed data files and, therefore,
NC D approximates N I D by using standard real-world compressors. Bardera et
al. [Bardera 2010] have studied the performance of this measure in the image
registration field.

In our experiments, we use two different strategies to compress the images:

• Image compressors: In this approach, three standard real-world image
compressors (JPEG, JPEG2000, and PNG) are used to compute NC D between
two images. For each image, the values C(x) and C(y) can be easily computed
by compressing the original images and taking the size of the resulting file.
The problem arises with the computation of C(x , y), since compressors are
designed to deal with a single image. To overcome this limitation, we propose
to use the three channels of the RGB representation. First, both images are
converted to grayscale and are fused in a single image using the red channel
for one image, the green channel for the other, and assigning null values to the
blue one. In this way, we have a single image that can be compressed with the
same compressor that has been used with the original images. This method is
represented in Figure 3.1. For more details, see Bardera et al. [Bardera 2010].

• File compressors: In this approach, all the intensity values of the image are
written in a binary file and compressed with a standard file compressor (GZIP
and BZIP2). In order to encode the image in the file, each intensity value is
represented as a byte. The size of the compressed files is given by C(x) and
C(y), respectively. To compute C(x , y), a binary file composed by the intensity
values of both images is generated and compressed. This file has been obtained
by taking alternately the intensity values of the pixels of both superimposed
images. Figure 3.2 shows the different steps of this approach. For more details,
see Bardera et al. [Bardera 2010].

In theory, N I D takes into account all the characteristics of the images to obtain
the dissimilarity between them. However, the approximation of that measure by
NC D introduces a certain degree of inaccuracy due to the limited resources used by
a compressor and makes this measure more inaccurate than it could be expected.

3.4 Methodology

Large organizations and companies deal with a large amount of documents, such as
invoices and receipts, which are usually scanned and stored in a database as image
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files. Then, some information of these images, such as the seller, the date, or the
total amount of the invoice, is integrated in the database via manual editing or OCR
techniques.

A critical issue for document analysis is the classification of similar documents.
The documents of the same class can share some interesting information such as
the background color, the document layout, the position of the relevant information
on the image, or metadata, such as the seller. Once one document is grouped into
a class, an specific processing for extracting the desired information, as textual
content, can be designed depending on these features [Appiani 2001].

As we have previously mentioned, we focus our attention on the classification of
invoices. In our framework, each image class represents a set of different invoices
of the same provider. As we can see in Figure 3.3, different invoices of the same
class usually share a similar document layout. However, the document layouts can
be very different from one class to another and they can differ, for instance, in font
type, font size, background color, and the presence of logos, tables, and images (see
Figure 3.3). This variety of document images makes it difficult to define a general
scheme for OCR or layout analysis that produces accurate results.

A simple way to define a class consists in taking one or more representative
images. Then, we can create a database with the representative images and every
new entry in the classifier is grouped into the class that the similarity between the
new image and the representative image is maximum. A general scheme of our
framework is represented in Figure 3.4. As it can be seen, two different groups of
images are defined. The first group, formed by the reference images (or template
images), is constituted by a set of invoice images where each image belongs to a
class. This group of images forms the invoice database. Note that one class can
contain more than one image. The second group, composed by the input images, is
constituted by a set of invoice images that is used as the input to the classifier with
the aim of finding their corresponding class within the database of the reference
images. When an input image does not correspond to any class, this image is
considered as the reference image of a new class and extends the size of the
reference image database.

Our classification framework is based on global image similarity measures
between the images to be classified and the class templates, and not on extracting
image features. It can be considered that our method is basically a template
matching technique and that, due to the fact that each class represents a set of
invoices of the same provider, it applies a fine-grained classification.

As all the invoice images are digitized using a scanner we can have both
translation and skew errors. These errors should be corrected to obtain a more
reliable evaluation of the image similarity. In our experiments, we assume that
the used scanning protocol produces quasi-aligned images. The skew error is also
corrected using the method presented by Gatos et al. [Gatos 1997]. Moreover,
the images are downscaled to analyze the behavior of the classification process
for different image resolutions. Note that this downscaling process contributes to
minimize the small alignment errors. After these preprocessing steps, the similarity
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Figure 3.3: Two document class samples.

between the input image and all the reference images is computed, and the input
image is assigned to the class of the reference image for which the similarity value
is maximum and greater than a given threshold. If this maximum value is lower
than the threshold, we consider that the input invoice does not correspond to any
existing class, and the new class is added to the database.

The main goal of this chapter is to evaluate the performance of different
image similarity measures in the invoice classification process using different image
resolutions.

3.5 Results

This section is split into two parts. In the first part, we present the experiments
carried out with two testing databases (a black-and-white invoice database and a
color invoice database) with the aim of studying the behaviour of the presented
measures (see Section 3.3) at different image resolutions. In the second part, we
analyze the behaviour of these measures with a real-world database. The proposed
measures have been implemented in Visual C++ .NET and their performance has
been measured on a system with an Intel Core 2 Duo CPU.
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Figure 3.4: Invoice classification pipeline.

3.5.1 Experiments with two testing databases

In our first experiment we have used two different testing databases: a
black-and-white invoice database and a color invoice database. First, we study the
behaviour of the measures presented in Section 3.3 at different image resolutions.
Second, we analyze how the image similarity-based classification is sensitive to the
choice of the reference image of the class.

While the invoices from the first database only have two intensity values (black
and white), the invoices from the second database use 24-bits per pixel (8-bits for
each RGB color channel) and, usually, present a more complex layout, including
pictures, logos, and highlighted areas. The black-and-white database is composed by
204 reference invoices and 154 input invoices, and the color database is composed
by 51 reference invoices and 95 input invoices. In this evaluation experiment, for the
sake of simplicity, each class is represented by a single invoice and a input invoice
always correspond to an existing class, and thus will be assigned to the most similar
reference image. In spite that invoice images of the same class come from the same
scanning process and have a similar document layout, they might present a high
variability due to changes in the textual content, different number of items, different
figures, or stamp position (see two examples in Figure 3.3). Due to the design of this
experiment, there are only two possible classification results: true positive (correct
classification) or false positive (incorrect classification).

In our experiments, we assume that the images to be compared are fairly well
aligned. With the aim of correcting the skew error introduced during the scanning
process, all the reference and input invoices have been preprocessed using the
method presented by Gatos et al. [Gatos 1997]. Although the skew error is corrected,
they still present small translation errors among them. It is important to remark
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(a) 800 (b) 400 (c) 200

(d) 100 (e) 50 (f) 25

Figure 3.5: An invoice sample with resolutions from (a) 800 to (f) 25 pixels.
Resolution is specified by the number of pixels of image height.

that the invoices of the color database are not as well aligned as the invoices of the
black-and-white database because they have been digitized using a less accurate
scanning protocol.

To study the behavior of the similarity measures with respect to the image
resolution, all images have been scaled to several sizes. This allows us to evaluate an
approximated optimal resolution for each one of the proposed measures. Initially,
the invoice images are acquired at a resolution of around 2500 pixels width ×
3500 pixels height, however the height of the images is reduced to 800, 400,
200, 100, 50, and 25 pixels, conveniently adjusting the image width to keep the
aspect ratio of the images. From now on, the resolution values of the images are
only specified by the image height. It is important to note that the black-and-white
images are transformed into grayscale images when they are downsampled to lower
resolutions. That is, the intensity values of the low resolution pixels are produced
from an average of the original black-and-white pixels. An invoice example with
the resolutions used in this study can be seen in Figure 3.5. In these experiments,
the information-theoretic measures, I and NMI, have been computed using only 8
intensity bins. In spite of the reduction of the number of pixels due to the image
downscaling, the bin reduction avoids that the joint intensity histogram becomes
too sparse.
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As the main objective of our experiments is to calculate the degree of similarity
between each input invoice and all reference invoices, an ordered list of reference
invoices, called similarity list, is obtained from the similarity (from the highest to the
lowest) between both the input and the reference invoices. Thus, it is interpreted
that the first reference invoice of the list corresponds to the class assigned to the
input invoice.

Next, we analyze the results obtained using both black-and-white and color
invoice databases. For each database, each measure, and each different resolution,
we obtain two types of results: accuracy, and classification error. The accuracy is
given by the number of correctly classified input invoices over the total number of
inputs. We consider that an invoice is correctly classified when the corresponding
reference invoice occupies the first place in the similarity list.

We also define the classification error as the class position mean minus 1 of the
misclassified invoices, where, given an input invoice, the class position is determined
by the position of the corresponding reference invoice in the similarity list. If the
reference invoice is chosen properly, this is located at position 1 of the list and, thus,
the class position is 1. The classification error ranges from 0 to the number of classes
minus 1.

Tables 3.1 and 3.2 present the results obtained by the proposed measures applied
to the black-and-white and color databases, respectively. These tables show two
values for each resolution and each measure, where the first represents the accuracy
and the second represents the classification error. As it can be seen, most of the
measures perform best at resolutions of 200, 100, and 50 pixels. In part, it can be
considered that the reduction of the number of pixels allows us, on the one hand,
to preserve the most relevant information and structure, and, on the other hand,
to reduce noise. However, if we reduce too much the resolution, we lose significant
information and, therefore, the accuracy decreases.

We now focus our attention on the black-and-white database (see Table 3.1).
From the accuracy values, we can see that the best performance corresponds to the
information-theoretic measures. Observe that NMI performs slightly better than I.
This is due to the fact that the latter measure is very sensitive to the entropy of
the reference image while NMI is normalized by the joint entropy. With respect to
the intensity-based measures, CC performs better than both SSD and SAD, although
the behavior of SAD and SSD is in some cases better at a resolution of 25 pixels.
The behavior of the measures based on the compressors PNG, GZIP, and BZIP2 is
worse than I, NMI, and CC. As we could expect, PNG and GZIP compressors have
a similar behavior since they are based on the same compression algorithm, called
Deflate. The better behavior of PNG against JPEG at a low resolution is due to the
higher compression capacity of PNG when the images contain text, lines, and, in
general, sharp transitions and large areas of solid color. Thus, NC D based on PNG is
a better approximation of N I D than NC D based on JPEG. In the JPEG case, the error
decreases with the increase of resolution, achieving better results than PNG at the
highest resolutions. This behavior could be explained by the fact that we use a lossy
JPEG compression which suppresses redundant information at high resolution and
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25 50 100
Measure A E A E A E

SSD 94.16 72.33 95.45 84.71 92.21 60.75
SAD 96.10 46.33 95.45 40.57 92.21 42.25
CC 94.16 7.78 97.40 3.50 97.40 2.25
I 92.86 49.00 98.05 2.67 99.35 2.00
NMI 94.16 55.44 98.05 5.00 99.35 3.00
PNG 85.06 25.52 96.10 26.00 96.75 24.60
JPEG 7.14 57.50 29.87 32.03 82.47 17.96
JPEG2000 68.18 21.14 60.39 18.79 64.94 20.33
GZIP 85.71 28.14 92.21 24.00 94.81 49.50
BZIP2 93.51 36.80 95.45 20.00 95.45 38.86

200 400 800
Measure A E A E A E

SSD 82.47 43.70 73.38 39.73 61.69 46.51
SAD 79.22 37.63 69.48 42.89 55.84 48.35
CC 97.40 2.00 96.75 4.40 96.75 3.60
I 98.05 2.00 96.10 2.50 96.10 2.83
NMI 98.05 2.00 96.75 3.60 96.10 3.00
PNG 95.45 25.71 95.45 36.00 92.86 69.00
JPEG 95.45 22.86 97.40 12.00 98.05 2.33
JPEG2000 65.58 21.21 64.94 25.76 59.09 34.38
GZIP 98.05 21.67 96.75 13.60 93.51 31.50
BZIP2 94.81 51.25 88.31 53.56 64.29 64.16

Table 3.1: For the black-and-white invoice database, the accuracy (A) and the
classification error (E) for different image heights (25, 50, 100, 200, 400, and 800
pixels). Bold and italic numbers indicate, respectively, the best measure for each
resolution and the best resolution for each measure.
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25 50 100
Measure A E A E A E

SSD 77.89 26.67 76.84 23.91 70.53 20.25
SAD 77.89 16.29 81.05 16.22 76.84 14.41
CC 86.32 6.38 89.47 8.00 88.42 6.73
I 91.58 8.63 96.84 3.33 98.95 3.00
NMI 92.63 4.71 97.89 2.00 100.00 0.00
PNG 57.89 13.50 89.47 5.50 94.74 4.80
JPEG 7.37 13.49 10.53 11.80 58.95 7.31
JPEG2000 34.73 9.84 32.63 10.03 35.79 10.56
GZIP 73.68 12.08 90.53 5.00 93.68 7.67
BZIP2 84.21 6.53 94.74 3.40 92.63 5.00

200 400 800
Measure A E A E A E

SSD 72.63 21.54 66.32 19.13 57.89 17.25
SAD 71.58 13.26 65.26 12.58 58.95 12.87
CC 87.37 4.25 88.42 3.82 88.42 3.55
I 98.95 3.00 93.68 3.17 86.32 3.23
NMI 100.00 0.00 94.74 2.40 91.58 3.00
PNG 88.42 5.27 82.11 14.65 70.53 15.71
JPEG 77.89 12.57 82.11 15.53 82.11 20.35
JPEG2000 32.63 11.61 26.32 14.7 21.05 16.91
GZIP 86.32 10.15 77.89 11.71 74.74 13.00
BZIP2 77.89 4.43 57.89 7.48 32.63 11.52

Table 3.2: For the color invoice database, the accuracy (A) and the classification
error (E) for different image heights (25, 50, 100, 200, 400, and 800 pixels). Bold
and italic numbers indicate, respectively, the best measure for each resolution and
the best resolution for each measure.
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relevant information at low resolution. Finally, the JPEG2000 compressor presents
a similar behaviour for all resolutions, but, in general, it achieves poor results.

The classification error, that allows us to evaluate to what extent the
classification is wrong when an invoice is misclassified, is also shown in Table 3.1.
If this value is low, the system could suggest a short list of class candidates and
the user could select the correct one, but this procedure is not recommendable
when this value is high. From the results obtained, we can see that the mutual
information-based measures and correlation coefficient have a better performance
than the other measures with respect to the classification error. Note that these
measures also achieve better results in accuracy.

For the color database (see Table 3.2), the behavior of the measures is similar to
the one observed in the case of the black-and-white database, although, in general,
the accuracy is lower. Note that I and NMI clearly perform better than the rest
of the measures. Observe in Table 3.2 that the performance of CC has notably
decreased with respect to I and NMI. It is important to emphasize the robustness
of the mutual information-based measures taking into account that, as we have
mentioned, the color database invoice images are not as well aligned as the invoices
of the black-and-white database.

An important issue in our framework is the selection of the reference image
of each class. In our approach, the first analyzed image of a class is taken as the
representative one. The next experiment analyzes how the image similarity-based
classification is sensitive to the choice of the reference image of the class. In this
experiment, we have computed the similarity between each input image and all the
images of its class and we have used as the reference image in the database the one
that obtains the lowest similarity value. In this way, for each input image, the worst
case is now considered with respect to the reference image of the correct class. For
this study, we analyze all presented measures with image resolutions of 100 and 200
pixels. The results are summarized in Table 3.3. As it can be seen, the current results
are slightly worse than the ones obtained in the previous experiment (see Tables 3.1
and 3.2), as it could be expected since the worst case is considered. Observe that
the best performance is also achieved by I and NMI, obtaining an accuracy around
95% in almost all the cases. As we can observe, for the other measures, the accuracy
decreases more significantly than for I and NMI. This shows that, I and NMI are less
sensitive to the choice of the reference image of the class. The classification error
has also similar values to the previous experiment, except for the cases where the
presence of outliers decrease the quality of the results. For instance, observe the
high increase of the classification error for the file compressors measures applied to
the black-and-white database.

3.5.2 Experiment with a real-world database

In this experiment, the similarity measures presented in Section 3.3 have been
applied on a real-world black-and-white database using only two image resolutions.
Although, in the first experiment, the best results have been obtained with image
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Black-and-white database
100 200

Measure A E A E
SSD 85.71 53.18 70.78 46.11
SAD 83.12 45.42 64.29 65.30
CC 95.45 3.29 93.51 7.10
I 96.10 2.83 95.45 6.86
NMI 96.10 2.67 95.45 9.43
PNG 86.36 30.90 88.96 45.53
JPEG 65.58 26.17 83.77 22.68
JPEG2000 49.35 34.19 50.00 35.57
GZIP 87.01 94.65 93.51 118.40
BZIP2 90.91 129.57 86.36 97.48

Color database
100 200

Measure A E A E
SSD 53.68 29.95 50.53 28.00
SAD 61.05 21.51 56.84 20.51
CC 84.21 8.13 81.05 4.72
I 94.74 2.20 90.53 2.11
NMI 96.84 2.00 94.74 2.00
PNG 85.26 6.50 76.84 6.55
JPEG 41.05 14.38 61.05 15.43
JPEG2000 20 15.79 21.05 22.23
GZIP 76.84 8.45 57.89 10.58
BZIP2 74.74 7.50 54.74 6.44

Table 3.3: For the black-and-white and color invoice database, the accuracy (A) and
the classification error (E) for different image heights (100 and 200 pixels) when, for
each input image, the worst reference image is considered. Bold numbers indicate
the best measure for each resolution.
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resolution of 50, 100, and 200 pixels, in the current experiment, we only consider
image resolutions of 50 and 100 pixels in order to reduce the computational cost,
which is linearly proportional to the number of pixels.

Our real-world database is composed by 2177 reference black-and-white
invoices divided into 557 classes, and by 3673 input black-and-white invoices to
be classified. In contrast to the previous experiments (Section 3.5.1), each input
invoice can belong or not to a class and a class can have one or several reference
invoices. Therefore, four different classification results can be obtained: true positive
(TP), when the input invoice belongs to an existing class and the method found it;
true negative (TN), when the input invoice does not belong to an existing class and
the method did not found any class; false positive (FP), when the method classifies
the input invoice in a class and the invoice does not belong to this class (either
the invoice belongs to another class or it does not belong to any existing class); and
false negative (FN), when the input invoice belongs an existing class and the method
did not found any class. The first two types (TP and TN) are considered as correct
classification results, while the FP and FN are considered as wrong ones.

In order to carry out this classification, it is necessary to introduce a threshold
to discriminate when a input image belongs or not to a class. When the maximum
similarity is lower than the threshold, we consider that the input invoice does not
belong to any existing class. For comparison purposes with the previous experiment,
the results are also presented without a threshold, where the input invoice is always
classified in the most similar class. When the threshold is used, we consider all
possible results: TP, TN, FP, and TN. On the contrary, when the threshold is not
used, all input images are classified on a class and, therefore, only TP and FP (only
when the invoice belongs to another class) results are possible.

The results without the use of a threshold are summarized in Table 3.4,
where the accuracy and the classification error are shown. Note that, in general,
the performance of the global image measures is similar, or slightly better, to
the one obtained in the first experiment. In particular, NMI still shows the best
performance. In this experiment, we do not use the BZIP2 compressor due to its
high computational cost.

The results with threshold are shown in Table 3.5, where four different measures
have been used: accuracy A = (T P + T N)/(T P + T N + F P + FN), precision P =
T P/(T P + F P), recall R = T P/(T P + FN), and F − measure = 2(P × R)/(P +
R). For each measure, the threshold that maximizes the F-measure has been used.
Observe that NMI obtains the best results and is also the least affected measure
by the use of a threshold. Note that, in general, the performance of most of the
measures with image resolution of 50 pixels is similar to the one obtained with
resolution of 100 pixels. Thus, we propose to use an image resolution of 50 pixels
since its computational cost is four times lower than using a resolution of 100 pixels.

With respect to the measures analyzed in this experiment, observe the very good
performance achieved by the mutual information-based measures, but also by the
intensity-based measures and the NC D using the PNG compressor. This behaviour
is, to a great extent, due to the fact that the invoice images of the real-world database
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50 100
Measure A E A E

SSD 98.15 401.60 97.85 272.44
SAD 99.65 73.08 98.67 7.00
CC 99.40 17.55 99.40 14.05
I 99.67 8.75 99.65 12.38
NMI 99.95 44.50 99.84 22.50
PNG 96.95 68.63 98.75 23.99
JPEG 16.66 232.86 64.88 104.41
JPEG2000 51.18 61.99 50.45 37.94
GZIP 96.62 38.19 89.52 1016.02

Table 3.4: For the real-world invoice database, the accuracy (A) and the classification
error (E) for different image heights (50 and 100 pixels). Bold numbers indicate the
best measure for each resolution.

50 100
Measure A P R F A P R F

SSD 95.32 95.32 100 97.60 95.02 95.02 100 97.45
SAD 96.80 96.80 100 98.38 95.83 95.83 100 97.87
CC 98.67 99.55 99.07 99.31 98.94 98.99 99.92 99.45
I 98.77 99.41 99.33 99.37 99.02 99.44 99.55 99.49
NMI 99.84 99.92 99.92 99.92 99.51 99.66 99.83 99.75
PNG 94.12 94.12 100 96.97 96.60 98.46 97.99 98.23
JPEG 13.83 13.83 100 24.30 62.73 63.17 97.93 76.80
JPEG2000 48.35 48.35 100 65.19 47.62 47.70 99.66 64.51
GZIP 93.79 93.79 100 96.80 87.67 88.85 98.16 93.27

Table 3.5: For the real-world invoice database, the accuracy (A), precision (P),
recall (R), and F-measure (F) for different image heights (50 and 100 pixels). Bold
numbers indicate the best measure for each resolution.

are black-and-white and have been very well aligned in the scanning process. Let us
remember that the results obtained by both the intensity-based measures and the
NC D measures with the testing color database were notably worse (see Table 3.2).
Thus, taking into account all the experiments carried out in this section, we can
confirm the excellent performance and robustness of the mutual information-based
measures, specially of NMI.

Finally, we compare these results with the ones obtained using an OCR-based
method. This method captures the text of the invoice image using OCR, finds text
candidates to be a tax ID code, and compares these candidates with the existing ID
codes in the database. If the tax ID code coincides with a class ID code, the method
classifies this invoice to belong to this class; on the contrary, a new class is created. In
this case, if there is not any ID code candidate from the OCR process, the invoice can
not be classified. With this method, the accuracy is 88.81%, the precision is 100%,
the recall is 86.96%, and the F-measure is 93.02%. As we can see, the performance of
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the OCR-based method is significantly lower than most of the global image methods.
After analyzing the classification errors of the OCR-based method, they have been
classified in the following types:

• Errors of OCR reading. Confusions of letters and/or numbers (63.74%).

• Invoice with some physical manipulation, such a hole or a stamp, that prevents
the correct reading of the tax ID code (15.09%).

• Invoice without tax ID code (7.79%).

• Invoice with noise that prevents the correct reading of the tax ID code (6.81%).

• Invoice with an identifier instead of a tax ID code. OCR does not recognize the
identifier as a tax ID code (4.38%).

• Invoice with an incomplete tax ID code. In international invoices may be
missing letters of the country (2.19%).

In our current implementation, the average computational time to classify
an input image in our real-world database using the NMI measure, with image
resolution of 50 pixels, is between 4 and 5 seconds, and the time required by the
OCR-based method is between 20 and 50 seconds.

3.6 Conclusions

In this chapter, we have analyzed the behavior of different similarity measures
applied to invoice classification. Three types of measures, applied to invoice
processing, have been tested, based respectively on the intensity differences (sum
of squared differences, sum of absolute differences, and correlation coefficient),
the shared information (mutual information and normalized mutual information),
and the normalized compression distance between two images, calculated from
image (PNG, JPEG, and JPEG2000) and file (GZIP and BZIP2) compressors. The
experiments have been carried out on two testing databases and a real-world
database. In both cases, low resolution images have been used to show the good
performance of the mutual information-based measures, although an acceptable
performance has also been obtained with the correlation coefficient and the
normalized compression distance implemented using file and image compressors.
We have demonstrated the suitability of global similarity measures for invoice image
classification.





CHAPTER 4

Tsallis mutual information for
document classification

4.1 Introduction

The definition of the similarity between documents [Peng 2003] can be divided into
two main groups based respectively on matching local features, such as the matching
of recognized characters [Lopresti 2000] or different types of line segments [Tseng
1997], and on extracting global layout information, such as the use of a spatial
layout representation [Hu 1999b] or geometric features [Shin 2001]. In this chapter,
instead of extracting specific pieces of information or analyzing the document
layout, we propose to use global measures to evaluate the similarity between
two image documents. The similarity between two images can be computed using
numerous distance or similarity measures. In the medical image registration field,
mutual information has become a standard image similarity measure [Hajnal 2001].

In the previous chapter, we found that the best measures on invoice classification
were based on mutual information. This motivates us to investigate in this
chapter the performance of several extensions of mutual information. Thus, we
will study the application of three different Shannon-based generalizations of
mutual information to analyze the similarity between scanned invoices. These
three generalizations derive from Kullback-Leiber distance, the difference between
entropy and conditional entropy, and the Jensen-Shannon divergence, respectively.
In addition, the ratio between these measures is studied for different entropic
indexes in the context of invoice classification and registration. A number of
experiments are carried out to study the performance of the proposed measures
using to invoice databases.

The content of this chapter has been published in "Tsallis Mutual Information for
Document Classification", Marius Vila, Anton Bardera, Miquel Feixas, Mateu Sbert.
Entropy, vol. 13, no. 9, pages 1694-1707, 2011 [Vila 2011].

4.2 Background

In this section, we review three different definitions of mutual information and
the basis of image registration. Note that the previous work on document image
similarity has been already presented in Chapters 2 and 3.
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4.2.1 Mutual information definitions

In this section, we review three different ways to define mutual information. First,
as we have seen in Section 2.2.2, the mutual information between two random
variables X and Y can be defined by

I(X ; Y ) = H(X )−H(X |Y ) = H(Y )−H(Y |X ). (4.1)

I(X ; Y ) is a measure of the shared information between X and Y .
Second, as we have also seen in Section 2.2.2, an alternative definition of

I(X ; Y ) can be obtained from the definition of the informational divergence or
Kullback–Leibler distance (K L) [Cover 1991] as follows:

I(X ; Y ) = K L(p(x , y), p(x)p(y)). (4.2)

Third, mutual information can be expressed as a Jensen–Shannon divergence. As
we have seen in Section 2.2.3.3, the Jensen–Shannon inequality [Burbea 1982] is
defined by:

JS(π1, . . . ,πn; p1, . . . , pn) = H

 

n
∑

i=1

πi pi

!

−
n
∑

i=1

πiH(pi)≥ 0, (4.3)

where JS(π1, . . . ,πn; p1, . . . , pn) is the Jensen–Shannon divergence of probability
distributions p1, p2, . . . , pn with prior probabilities or weights π1,π2, . . . ,πn,
fulfilling

∑n
i=1πi = 1. The JS-divergence measures how ‘far’ are the probabilities

pi from their likely joint source
∑n

i=1πi pi and equals zero if and only if all pi are
equal. Jensen–Shannon’s divergence coincides with I(X ; Y ) when {πi} is equal to
the marginal probability distribution p(x) and {pi} are equal to the rows p(Y |x i) of
the probability conditional matrix of the information channel X → Y . Then, mutual
information can be redefined as

I(X ; Y ) = JS(p(x1), . . . , p(xn); p(Y |x1), . . . , p(Y |xn)). (4.4)

4.2.2 Image registration

Image registration is a fundamental task in image processing used to match two or
more images or volumes obtained at different times, from different devices or from
different viewpoints. Basically, it consists in finding the geometrical transformation
that enables us to align images into a unique coordinate space. In the scope of this
thesis we will focus on 2D rigid registration techniques because only transformations
that consider translations and rotations are allowed.

Image registration is treated as an iterative optimization problem with the goal of
finding the spatial mapping that will bring two images into alignment. This process
is composed of four elements [Lavallee 1995]: the transformation, the interpolator,
the metric, and the optimizer (see Figure 4.1).
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As input, we have both fixed X and moving Y images. The transform represents
the spatial mapping of points from the fixed image space to points in the moving
image space. The interpolator is used to evaluate the moving image intensity at
non-grid positions. The metric provides a measure of how well the fixed image
is matched by the transformed moving one. This measure forms the quantitative
criterion to be optimized by the optimizer over the search space defined by the
parameters of the transform. Each of these components is now described in more
detail.

1. Spatial transformation. The registration process consists in reading the
input image, defining the reference space (i.e. its resolution, positioning, and
orientation) for each of these images, and establishing the correspondence
between them (i.e. how to transform the coordinates from one image to the
coordinates of the other image). The spatial transformation defines the spatial
relationship between both images. Basically, two groups of transformations
can be considered:

• Rigid or affine transformations. These transformations can be defined with
a single global transformation matrix. Rigid transformations are defined
as geometrical transformations that only consider translations and
rotations, and, thus, they preserve all distances. Affine transformations
also allow shearing transforms and they preserve the straightness of lines
(and the planarity of surfaces) but not the distances.

• Nonrigid or elastic transformations. These transforms are defined for each
of the points of the images with a transformation vector. For simplification
purposes, sometimes only some control points are considered and
the transformation at the other points is obtained by interpolating
the transformation at these control points. Using these kinds of
transformations, the straightness of the lines are not ensured.

In this thesis, rigid image registration is our reference point.

2. Interpolation. The interpolation strategy determines the intensity value of
a point at a non-grid position. When a general transformation is applied
to an image, the transformed points may not coincide with the regular
grid. So, an interpolation scheme is needed to estimate the values at
these positions. One of the main problem of registration appears when
there is not a direct correspondence between the coordinates of the two
models. In this situation certain criteria has to be fixed to determine
how this point has to be approximated in the second model. Therefore,
spatial transformation rely for their proper implementation on interpolation
and image resampling. Interpolation is the process of intensity based
transformation and resampling is the process where intensity values are
assigned to the pixels in the transformed image. Several interpolation schemes
have been introduced [Lehmann 1999]. The most common are:
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• Nearest neighbour interpolation: the intensity of each point is given by the
one of the nearest grid-point.

• Linear interpolation: the intensity of a point is obtained from the
linearweighted combination of the intensities of its neighbors.

• Splines: the intensity of a point is obtained from the spline-weighted
combination of a grid-point kernel [Unser 1999].

• Partial volume interpolation: the weights of the linear interpolation
are used to update the histogram, without introducing new intensity
values [Collignon 1995].

3. Metric. The metric evaluates the similarity (or disparity) between the
two images to be registered. Several image similarity measures have been
proposed. They can be classified depending on the used features which are:

• Geometrical features. A segmentation process detects some features
and, then, they are aligned. These methods do not have high
computational cost. Nevertheless, there is a great dependence on the
initial segmentation results.

• Correlation measures. The intensity values of each image are analyzed
and the alignment is achieved when a certain correlation measure is
maximized. Usually, a priori information is used in these metrics.

• Intensity occurrence. These measures depend on the probability of each
intensity value and are based on information theory [Shannon 1948].

4. Optimization. The optimizer finds the maximum (or minimum) value of the
metric varying the spatial transformation. For the registration problem, an
analytical solution is not possible. Then, numerical methods can be used
in order to obtain the global extreme of a non analytical function. The
most used methods in the image registration context are Powell’s method,
simplex method, gradient descent, conjugate-gradient method, and genetic
algorithms (such as one-plus-one evolutionary). The choice of a method will
depend on the implementation criteria and the measure features (smoothness,
robustness, etc.). A detailed description of several numerical optimization
methods and their implementations can be found in Press et al. [Press 1992].
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Figure 4.1: Main components of the registration process.

The crucial point of image registration is the choice of a metric. Some of
these metrics, such as sum of squared differences, correlation coefficient or mutual
information, are presented in Sections 3.3.1 and 3.3.2. Different measures derived
from the Tsallis entropy have also been applied to image registration [Wachowiak
2003, Bardera 2004, Mohamed 2009, Khader 2010].

The main problems currently being addressed by image registration researchers
are briefly summarized.

• Robustness and accuracy. To evaluate the behaviour of a registration method
robustness and accuracy are the main parameters to be considered. The first
parameter, robustness, refers to how the method behaves with respect to
different initial states, i.e. different initial positions of the images, image noise,
modality of the images, etc. The second parameter, accuracy, refers to how the
final method solution is closer to the ideal solution. Constantly, new measures
and new interpolation schemes appear trying to improve the robustness and
the accuracy of the standard measures.

• Artifacts. In the registration process, the interpolator algorithm plays an
important role, since usually the transformation brings the point to be
evaluated into a non-grid position. This importance is greater when the grid
size coincides in both images, since the interpolator pattern is repeated for
each point. When the mutual information or its derivations, which are the
most common measures used in multimodal image registration, are computed,
their value is affected by both the interpolation scheme and the selected
sampling strategy, limiting the accuracy of the registration. The fluctuations
of the measure are called artifacts and are well studied by Tsao [Tsao 2003].

• Speed-up. One of main user requirements when using registration techniques
is speed. Users desire results as fast as possible. The large amount of
data acquired by current capture devices makes its processing difficult in
terms of time. Therefore, the definition of strategies able to accelerate the
registration process is fundamental. Several multiresolution frameworks have
been proposed achieving better robustness and speeding up the process.
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4.3 Generalized mutual information

We review here three different mutual information generalizations inspired by
the three different forms of mutual information presented in Section 4.2.1: the
Kullback–Leibler distance, the difference between entropy and conditional entropy,
and the Jensen–Shannon divergence, respectively. These generalizations are based
on the Harvda-Charvát-Tsallis entropy defined in Section 2.2.7.

4.3.1 Mutual information

As we have seen in Section 2.2.7, Tsallis mutual information can be defined [Taneja
1988, Tsallis 1998] from Equations (2.10) and (2.36) as

Iα(X ; Y ) = K Lα
�

p(x , y), p(x)p(y)
�

=
1

1−α

 

1−
∑

x∈X

∑

y∈Y

p(x , y)α

p(x)α−1p(y)α−1

!

. (4.5)

In Section 2.2.7 we have also presented the generalization of N M I given by

N M Iα(X ; Y ) =
Iα(X ; Y )
Hα(X , Y )

. (4.6)

Although N M Iα(X ; Y ) is a normalized measure for α → 1, this is not true for
other α values, since N M Iα can take values greater than 1. This measure is always
positive and symmetric.

4.3.2 Mutual entropy

Another way of generalizing mutual information is the so-called Tsallis mutual
entropy [Furuichi 2006]. From Equation (2.8), the Tsallis mutual entropy is defined
for α > 1 as

M Eα(X ; Y ) = Hα(X )−Hα(X |Y ) = Hα(Y )−Hα(Y |X )
= Hα(X ) +Hα(Y )−Hα(X , Y ). (4.7)

This measure is positive and symmetric, and the Tsallis joint entropy Hα(X , Y )
is an upper bound of it [Furuichi 2006]. Tsallis mutual entropy represents a kind of
correlation between X and Y .

As in Furuichi [Furuichi 2006], the normalized Tsallis mutual entropy can be
defined as

N M Eα(X ; Y ) =
M Eα(X ; Y )
Hα(X , Y )

. (4.8)

Normalized mutual entropy takes values in the interval [0..1], taking the value 0 if
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and only if X and Y are independent and α = 1, and taking the value 1 if and only
if X = Y [Furuichi 2006].

4.3.3 Jensen–Tsallis information

Since Tsallis entropy is a concave function for α > 0, the Jensen–Shannon
divergence (see Equation (2.17)) can be extended to define the Jensen–Tsallis
divergence:

J Tα(π1, . . . ,πn; p1, . . . , pn) = Hα

 

n
∑

i=1

πi pi

!

−
n
∑

i=1

πiHα(pi). (4.9)

As we have seen in Equation (4.4), Jensen–Shannon divergence coincides with
I(X ; Y ) when {π1, . . . ,πn} is the marginal probability distribution p(x), and
{p1, . . . , pn} are the rows p(Y |x) of the probability conditional matrix of the channel.
Then, for the channel X → Y , a generalization of mutual information, which we call
Jensen–Tsallis Information (J T Iα) can be expressed by

J T Iα(X → Y ) = J Tα(p(x); p(Y |x)) = Hα(
∑

x∈X
p(x)p(Y |x))−

∑

x∈X
p(x)Hα(Y |x)

= Hα(Y )−
∑

x∈X
p(x)Hα(Y |x). (4.10)

For the reverse channel Y → X , we have

J T Iα(Y → X ) = J Tα(p(x); p(Y |x)) = Hα(X )−
∑

y∈Y
p(y)Hα(X |y). (4.11)

This measure is positive and, in general, non-symmetric with respect to the reversion
of the channel. Thus, J T Iα(X → Y ) 6= J T Iα(Y → X ). An upper bound of this
measure is given by the Tsallis joint entropy: J T Iα ≤ Hα(X , Y ). The Jensen–Tsallis
divergence and its properties have been studied by Bardera et al. [Bardera 2004]
and Hamza [Hamza 2006].

Similar to the previous measures, a normalized version of J T Iα can be defined
as

NJ T Iα(X → Y ) =
J T Iα(X → Y )

Hα(X , Y )
. (4.12)

This measure also takes values in the interval [0,1].

4.4 Methodology

The main goal of this chapter is to analyze the application of the Tsallis-based
generalizations of mutual information (Section 4.3) to the invoice classification
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process.
As the methodology followed in this chapter is the same that the one used in

Chapter 3, we only remember here its main points:

• A database is constituted by classes, where each class is defined by one or
more representative images.

• Two different groups of images are defined: reference images, where each
image belongs to a class, and input images used as the input to the classifier.

• The used scanning protocol produces quasi-aligned images. Despite this, all
images are preprocessed to obtain a more reliable evaluation of the image
similarity. Skew errors are corrected and images are downscaled to analyze
the behaviour of the classification process for different image resolutions.

• Similarity between the input image and all the reference images is computed,
and the input image is assigned to the class of the reference image for which
the similarity value is maximum and greater than a given threshold. If this
maximum value is lower than the threshold, we consider that the input invoice
does not correspond to any existing class, and the new class is added to the
database.

A general scheme of our framework is represented in Figure 3.4.
Another objective of this chapter is to analyze the performance of the

Tsallis-based generalizations of mutual information in aligning two invoices. This
is also a critical point since it allows us to find the spatial correspondence between
an input invoice and a template. The registration framework used in this chapter is
represented in Figure 4.1.

4.5 Results

This section is split into two parts. In the first part, we present the experiments
carried out with one testing database (same color invoice database used in
Section 3.5.1) with the aim of studying the behaviour of the presented measures
(see Section 4.3). In the second part, we analyze the behaviour of these measures
with a real-world database (same real-world database used in Section 3.5.2).
The proposed measures have been implemented in Visual C++ .NET and their
performance has been measured on a system with an Intel Core 2 Duo CPU. For the
full description of both databases (testing color database and real-world database)
and methodological details, see Section 3.5.

4.5.1 Experiments with a testing database

In our first experiment, we analyze the behaviour of the mutual information
generalizations presented in Section 4.3 using the color invoice database presented
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in Section 3.5.1. We also analyze the performance of these Tsallis-based
generalizations of mutual information in aligning two invoices.

Preliminary experiments (see Section 3.5) have shown that the best classification
results are obtained for resolutions with height between 50 and 200 pixels. Note
that this fact greatly speeds up the computation process as computation time is
proportional to image resolution. In this experiment, all images have been scaled
from the original scanning resolution (around 2500 × 3500 pixels) to a height of
100 pixels, conveniently adjusting the image width to keep the aspect ratio of the
images.

Table 4.1 shows the two performance values for each measure and different
α values. Note that the values for the M Eα and N M Eα measures are not shown for
α < 1 since these measures are only defined for α > 1. For α= 1, the corresponding
Shannon measures are considered in all cases. As in the previous experiment the
first parameter represents the accuracy and the second represents the classification
error. We can observe that the measures have a different behavior with respect to
the α values. While Iα and N M Iα achieve the best classification success for α values
between 0.4 and 1.2, the rest of the measures (M Eα, N M Eα, J T Iα, NJ T Iα) perform
better for α values between 1.0 and 1.4. For these values, the normalized measures
classify correctly all the invoices. In general, the normalized measures perform much
better than the corresponding non normalized ones.

Finally, the last experiment analyzes the capability of the Tsallis-based proposed
measures to align similar invoices in the same spatial coordinates. In this case, two
different features, robustness and accuracy, have been studied.

First, the robustness has been evaluated in terms of the partial image overlap.
This has been done using the parameter AFA (Area of Function Attraction)
introduced by Capek et al. [Capek 2001]. This parameter evaluates the range
of convergence of a registration measure to its global maximum, counting the
number of pixels (i.e., x − y translations in image space) from which the global
maximum is reached by applying a maximum gradient method. Note that this
global maximum may not necessarily be the optimal registration position. The AFA
parameter represents the robustness with respect to the different initial positions of
the images to be registered and with respect to the convergence to a local maximum
of the similarity measure that leads to an incorrect registration. The higher the AFA,
the wider the attraction basin of the measure. In this experiment, the images have
been scaled to a height of 200 pixels, conveniently adjusting the width to keep the
aspect ratio. In Figure 4.2, the left plot represents the results for the Iα, M Eα, and
J T Iα measures with different α values and the right plot represent the results for
their corresponding normalized measures. As it can be seen, the best results are
achieved for α values greater than 1 for all the measures, being the mutual entropy
the one that reaches the best results. As in the previous experiment, the normalized
measures also perform better than the non normalized ones.

The second feature that we will analyze for the alignment experiment is the
accuracy. In this case, the general registration scheme of Figure 4.1 has been
applied, where we have used the Powell’s method optimizer [Press 1992], a rigid
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Figure 4.2: AFA parameter values with respect to the α value for the Iα, M Eα,
and J T Iα measures (left) and the corresponding normalized measures (right). AFA
parameter evaluates the range of convergence of a registration measure to its global
maximum.

transform (which only considers translation and rotation, but not scaling), and a
linear interpolator. The registration process is applied to 18 images of the same
class that are aligned with respect to a common template (scaling them to a
height of 800 pixels and keeping the aspect ratio). For each image with its original
resolution (around 2500 × 3500 pixels), 14 points have been manually identified
and converted to the scaled space of a height of 800 pixels. The same process has
been done with the template image. In order to quantify the registration accuracy,
the points of each image have been moved using the final registration transform.
The mean error, given by the average Euclidean distance between these moved
points and the corresponding points in the template, has also been computed. In
Figure 4.3, for each measure and each α value, the mean error is plotted. In this
case, we can not derive a general behavior. Iα performs better for α = 1.6, while
N M Iα for α = 0.4. In this case, the non normalized measure performs better than
the normalized one. Both M Eα and N M Eα do not outperform the corresponding
Shannon measures (α = 1). Finally, Jensen–Tsallis information have a minimum
in α = 0.6 and the accuracy diminishes when the α value increases. Among
all measures, the normalized Jensen–Tsallis information achieves the best results,
obtaining the minimum error (and thus the maximum accuracy) for α= 0.3.

As a conclusion, for invoice classification, the best results have been obtained
by the normalized measures, using α values between 0.4 and 1.2 for N M Iα and
between 1 and 1.4 for N M Eα and NJ T Iα. For invoice registration, the most robust
results have been obtained by N M Eα with α= 1.3 and the most accurate ones have
been achieved by NJ T Iα with α= 0.3.

4.5.2 Experiment with a real-world database

In this second experiment, the similarity measures introduced in Section 4.3
have been applied on the black-and-white real-world database (presented in
Section 3.5.2) using only two image resolutions (50 and 100 pixels).

In contrast to the previous experiments (Section 4.5.1), each input invoice can
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Figure 4.3: Mean error at the final registration position for different measures and α
values for the Iα, M Eα, and J T Iα measures (left) and the corresponding normalized
measures (right).

belong or not to a class and a class can have one or several reference invoices. As in
Section 3.5.2 four different classification results can be obtained: true positive (TP),
true negative (TN), false positive (FP), and false negative (FN). The first two types
(TP and TN) are considered as correct classification results, while the FP and FN are
considered as wrong ones.

In order to carry out the classification, we introduce a threshold to discriminate
when a input image belongs or not to a class. When the maximum similarity is
lower than the threshold, we consider that the input invoice does not belong to any
existing class. For comparison purposes with the previous experiment, the results
are also presented without a threshold, where the input invoice is always classified
in the most similar class.

The results without the use of a threshold are summarized in Table 4.2, where
the accuracy and the classification error are shown. We can observe that, for all
measures and image resolutions, the best results are obtained for α values between
1.0 and 1.4.

The results with threshold are shown in Table 4.3, where four different measures
have been used: accuracy A = (T P + T N)/(T P + T N + F P + FN), precision P =
T P/(T P+ F P), recall R= T P/(T P+ FN), and F −measure = 2(P×R)/(P+R). For
each measure, the threshold that maximizes the F−measure has been used. Observe
that N M I obtains the best results and is also the least affected measure by the use
of a threshold. It can be seen from Table 4.2 that, without the use of a threshold, the
best results are obtained by the Tsallis-based measures for α values between 1.0 and
1.4. Otherwise, when a threshold is used (Table 4.3), the best results are obtained
by Tsallis-based measures for α = 1.0 (i.e., Shannon-based measures). Note too
that the performance of most of the measures with image resolution of 50 pixels is
similar to the one obtained with resolution of 100 pixels. Thus, we propose to use an
image resolution of 50 pixels since its computational cost is four times lower than
using a resolution of 100 pixels.
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4.6 Conclusions

In this chapter, we have introduced three different mutual information generaliza-
tions for invoice classification. These measures have been inspired respectively by
Kullback–Leibler distance, the difference between entropy and conditional entropy,
and the Jensen–Shannon divergence, and their ratio with the Tsallis joint entropy.
The experiments have been carried out on a testing database and a real-world
database, both with and without the use of a threshold. When the threshold is
used, Tsallis-based measures obtain the best results for α values between 1.0
and 1.4 whereas, when the threshold is not used, the best results are obtained
for α = 1.0, i.e, when Shannon-based measures are applied. In both cases, low
resolution images have been used to show the good performance of the mutual
information-based measures. Finally, the invoice registration using measures based
on mutual information generalizations has been studied in terms of robustness and
accuracy. While the highest robustness is achieved for entropic indices higher than
1, the highest accuracy has been obtained for entropic indices clearly lower than 1.
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50 100
Measure α A E A E

0.4 99.35 13.00 99,32 12,21
0.6 99.52 12.47 99,58 14,07
0.8 99.58 10.20 99,61 13,21

Iα 1.0 99.67 8.75 99.65 12.38
1.2 99.83 17.00 99,69 13,36
1.4 99.83 21.33 99,72 15,50
0.4 99.58 15.40 99.47 12.79
0.6 99.80 22.71 99.66 13.50
0.8 99.83 18.17 99.80 19.71

NMIα 1.0 99.95 44.50 99.84 22.50
1.2 99.97 88.00 99.83 21.83
1.4 99.92 30.00 99.86 27.40
0.4
0.6
0.8

MEα 1.0 99.67 8.75 99.65 12.38
1.2 94.78 5.69 90.01 9.71
1.4 72.23 10.44 57.53 11.18
0.4
0.6
0.8

NMEα 1.0 99.95 44.50 99.84 22.50
1.2 99.89 17.75 99.89 24.75
1.4 99.86 8.20 99.66 9.42
0.4 91.95 14.54 96.99 28.45
0.6 98.63 8.77 99.12 18.81
0.8 99.66 13.00 99.58 14.40

J T Iα 1.0 99.67 8.75 99.65 12.38
1.2 99.72 9.10 99.66 16.17
1.4 99.75 9.89 99.63 17.54
0.4 92.70 12.78 94.54 27.09
0.6 99.09 8.41 99.10 11.63
0.8 99.92 50.33 99.69 15.73

NJ T Iα 1.0 99.95 44.50 99.84 22.50
1.2 99.94 42.00 99.83 27.00
1.4 99.94 38.50 99.86 36.20

Table 4.2: For the real-world invoice database, the accuracy (A) and the classification
error (E) for different image heights (50 and 100 pixels) and α values. Bold numbers
indicate the best combination of measure and α value for each resolution.
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50 100
Measure α A P R F A P R F

0.4 95.91 95.91 100 97.91 96.10 96.10 100 98.01
0.6 96.27 96.27 100 98.10 96.46 96.46 100 98.20
0.8 96.40 96.40 100 98.17 96.65 96.65 100 98.30

Iα 1.0 98.77 99.41 99.33 99.37 99.02 99.44 99.55 99.49
1.2 96.70 96.70 100 98.32 97.17 99.37 97.69 98.53
1.4 96.68 96.68 100 98.31 96.98 99.34 97.53 98.43
0.4 96.68 96.68 100 98.31 96.49 96.49 100 98.21
0.6 97.28 99.51 97.67 98.58 97.68 99.46 98.15 98,80
0.8 99.24 99.47 99.75 99.61 98.37 99.49 98.82 99.15

NMIα 1.0 99.84 99.92 99.92 99.92 99.51 99.66 99.83 99.75
1.2 99.16 99.41 99.72 99.57 98.47 99.49 98.93 99.21
1.4 98.66 99.41 99.21 99.31 98.23 99.29 98.88 99.08
0.4
0.6
0.8

MEα 1.0 98.77 99.41 99.33 99.37 99.02 99.44 99.55 99.49
1.2 88.50 88.50 100 93.90 83.19 83.19 100 90.82
1.4 64.28 64.28 100 78.26 50.46 50.46 100 67.08
0.4
0.6
0.8

NMEα 1.0 99.84 99.92 99.92 99.92 99.51 99.66 99.83 99.75
1.2 98.88 99.55 99.30 99.42 97.68 99.18 98.43 98.80
1.4 98.47 99.55 98.88 99.21 97.11 99.17 97.83 98.50
0.4 86.87 86.87 100 92.97 92.04 92.04 100 95.86
0.6 94.09 94.09 100 96.95 95.45 95.45 100 97.67
0.8 96.38 96.38 100 98.15 96.46 96.46 100 98.20

J T Iα 1.0 98.77 99.41 99.33 99.37 99.02 99.44 99.55 99.49
1.2 97.22 99.37 97.75 98.55 96.57 96.57 100 98.25
1.4 97.28 99.17 98.00 98.59 96.51 99.42 96.96 98.18
0.4 87.17 87.17 100 93.14 87.68 87.68 100 93.44
0.6 95.69 98.79 96.72 97.75 95.67 95.67 100 97.79
0.8 98.64 99.41 99.19 99.30 97.38 99.40 97.89 98.64

NJ T Iα 1.0 99.84 99.92 99.92 99.92 99.51 99.66 99.83 99.75
1.2 99.29 99.61 99.66 99.64 98.20 99.52 98.62 99.07
1.4 99.29 99.61 99.66 99.64 98.09 99.55 98.48 99.01

Table 4.3: For the real-world invoice database, the accuracy (A), precision (P),
recall (R), and F-measure (F) for different image heights (50 and 100 pixels) and
α values. Bold numbers indicate the best combination of measure and α value for
each resolution.





CHAPTER 5

Shot boundary detection and
keyframe selection

5.1 Introduction

Video shot boundary detection, or the segmentation of a video sequence in its
constituent shots, is a fundamental step in video data management. In this chapter,
we propose two new information-theoretic measures based on both Tsallis mutual
information and Jensen-Tsallis divergence to detect the shot boundaries of a video
sequence. Their performance is analyzed for a set of video sequences using several
entropic indices, color spaces, and regular binnings. These similarity measures are
also used to select the most representative keyframe of a video shot. In this case, we
assume that the maximal representativeness of a frame is achieved when its average
similarity with the other frames of the shot is maximum.

Several experiments analyze the performance of the proposed mutual
information-based measures using different color spaces, such as HSV or Lab, and a
few number of histogram bins. These measures are devised to detect abrupt video
cuts and are not designed to deal with gradual transitions.

The content of this chapter has been published in "Tsallis entropy-based
information measure for shot boundary detection and keyframe selection", Marius
Vila, Anton Bardera, Qing Xu, Miquel Feixas, Mateu Sbert. Signal, Image and Video
Processing, vol. 7, no. 3, pages 507-520, 2013 [Vila 2013].

5.2 Previous work

In this section, we review some basic concepts on video shot boundary detection
and keyframe selection, and on basic information-theoretic tools.

5.2.1 Shot boundary detection and keyframe selection

As we have introduced in Section 2.4 a video shot is defined as a sequence of frames
captured by one camera in a single continuous action in time and space. In general,
video shots have similar visual features, such as color, texture, or motion and their
boundaries are commonly associated to abrupt changes of these features. Many
measures and algorithms have been proposed to detect video discontinuities and to
extract the most meaningful or representative frames of a video sequence [Money
2008, Peng 2010].
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Various approaches for shot boundary detection are based on
information-theoretic measures, such as entropy and mutual information. Butz
and Thiran [Butz 2001] present a novel approach that uses mutual information
in the gray-scale space to measure changes between subsequent frames in image
sequences. In order to compensate camera panning and zooming, they use affine
image registration that make the approach computationally expensive. Cernekova
et al. [Cernekova 2006] also present a shot detection method based on mutual
information and joint entropy between frames. This approach achieves very good
results using an adaptive thresholding based on the local mutual information
values in a temporal window. Mentzelopoulos and Psarrou [Mentzelopoulos
2004] propose an entropy difference to perform spatial frame segmentation.
Huan et al. [Huan 2008] use mutual information and canny edge detector to
distinguish object motion. Xu et al. introduced Jensen-Shannon [Xu 2010, Xu
2014], Jensen-Rényi [Xu 2012] and f-divergences [Luo 2014] to detect shot
boundaries and keyframes.

Although most methods use the RGB color space or the luminance value for
analyzing the video sequence, some works have studied different color spaces.
For instance, Gargi et al. [Gargi 2000] investigate the efficacy of some methods
for cut detection and the effect of color space representation on the performance
of histogram-based shot detection. Zhang et al. [Zhang 2006] also use the HSV
histogram differences of two consecutive frames as a feature for evaluating the color
information.

5.2.2 Tsallis entropy and Jensen-based divergence

As we have presented in Section 2.2.7, the Tsallis entropy Hα(X ) of a discrete
random variable X is defined by

Hα(X ) =
1−

∑

x∈X p(x)α

α− 1
, (5.1)

where α ∈ R − {1} is called entropic index. Let us remember that the Shannon
entropy, defined using natural logarithms, is recovered when α → 1. The Tsallis
mutual information is defined [Taneja 1988, Tsallis 1998] by

Iα(X ; Y ) =
1

1−α

 

1−
∑

x∈X

∑

y∈Y

p(x , y)α

p(x)α−1p(y)α−1

!

. (5.2)

Shannon mutual information is also recovered when α→ 1.
As we have seen in Section 2.2.3.3, the Jensen-Shannon inequality [Burbea 1982]

is defined by

JS(π1, . . . ,πn; p1, . . . , pn) = H

 

n
∑

i=1

πi pi

!

−
n
∑

i=1

πiH(pi)≥ 0, (5.3)
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where JS(π1, . . . ,πn; p1, . . . , pn) is the Jensen-Shannon divergence (JS-divergence) of
probability distributions {p1, . . . , pn}with prior probabilities or weights {π1, . . . ,πn}
fulfilling

∑n
i=1πi = 1. The JS-divergence measures how far the probabilities pi are

from their likely joint source
∑n

i=1πi pi and equals zero if and only if all the pi
are equal. It is important to note that the JS-divergence is identical to I(X ; Y )
when {π1, . . . ,πn} and {p1, . . . , pn} represent, respectively, the input distribution
and the probability transition matrix of the channel X → Y , where n = |X | and
m= |Y | [Burbea 1982, Slonim 2000b].

Similar to Equation (5.3), the Jensen-Tsallis inequality is given by

J Tα(π1, . . . ,πn; p1, . . . , pn) = Hα(
n
∑

i=1

πi pi)−
n
∑

i=1

πiHα(pi)≥ 0, (5.4)

where J Tα(π1, . . . ,πn; p1, . . . , pn) is the Jensen-Tsallis divergence (JT-divergence) of
probability distributions {p1, . . . , pn}with weights {π1, . . . ,πn}. Since Tsallis entropy
is a concave function for α > 0, JT-divergence is positive for α > 0 [Martins 2008].

5.3 Shot boundary detection

In this section, we present two new approaches based, respectively, on Tsallis mutual
information and Jensen-Tsallis divergence to detect the abrupt shot boundaries
of a video sequence. Then, we describe three new measures to extract the most
representative keyframes.

5.3.1 Mutual information-based similarity between frames

As we have mentioned in Section 5.2, Cernekova et al. [Cernekova 2006] presented
a shot detection method based on mutual information. The authors defined the
similarity between two consecutive frames i and j as

IRGB(i; j) = IR(i; j) + IG(i; j) + IB(i; j), (5.5)

where the superindices R, G, and B stand for the red, green, and blue color
components, respectively, and I c(i; j) is the mutual information (Equation (2.8))
between frames i and j for a given color component c. The marginal probabilities
p(x) and p(y) used in the computation of mutual information are given by the
normalized histograms of the corresponding color component of frames i and j,
respectively, and the joint probability p(x , y) is given by the probability of finding
the value x in the frame i and the value y in the frame j at the same pixel location.

Cernekova et al. [Cernekova 2006] also proposed a ratio between the mutual
information IRGB(i; j) and its average value in the neighbourhood of pair (i, j) in
order to capture relative variations of IRGB(i; j) with respect to the surrounding
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frames. This ratio was defined as

IRRGB(i; i + 1) =
IRGB(i; i + 1)

1
2r

∑i+r
j=i−r, j 6=i IRGB( j; j + 1)

, (5.6)

where r is the radius of the window centered in the transition between frame i and
i + 1 and given by the frames {i − r, . . . , i − 1, i + 1, . . . , i + r} (see Figure 5.1).

The measure IRGB(i; j) (see Equation (5.5)) is now extended using Tsallis
entropy and different color spaces. Thus, the informational frame similarity is
defined by

I x yz
α (i; j) = I x

α(i; j) + I y
α (i; j) + Iz

α(i; j), (5.7)

where the superindices x , y , and z stand for the color components in a determined
color space and I c

α(i; j) is the Tsallis mutual information (Equation (5.2)) between
frames i and j for a given color component c. As it was noted by Portes de
Albuquerque et al. [Portes de Albuquerque 2004], the main motivation for the use
in image and video processing of non-extensive measures, such as Tsallis entropy,
is the presence of correlations between pixels of the same object in the image
that can be considered as long-range correlations. Note that the use of the Tsallis
generalization of mutual information will allow us to analyze the performance
of the similarity measure using different entropic indices and, thus, to select
the entropic index that better discriminates a shot boundary. In this chapter, we
use the following color spaces: Lab (abbreviation for the CIE 1976, also called
CIELAB), HSV (abbreviation for hue, saturation, and value), and RGB. Lab color
space is perceptually uniform and has been designed to approximate human vision.
HSV color space separates lightness from chrominance information and it is not
perceptually uniform [Gonzalez 2002, Thompson 2011]. Both Lab and HSV color
spaces have less redundancy between the color components than RGB encoding.

The ratio IR (see Equation (5.6)) is generalized by defining the informational
frame similarity ratio as

IRx yz
α (i; i + 1) =

I x yz
α (i; i + 1)

IW x yz
α (i, r)

, (5.8)

where the average informational similarity in a window is given by

IW x yz
α (i, r) =

1

2r

i+r
∑

j=i−r, j 6=i

I x yz
α ( j; j + 1), (5.9)

where r is the radius of the window given by the frames {i−r, . . . , i−1, i+1, . . . , i+r}.
In our experiments, we use r = 2 (see Figure 5.1) as in Xu et al. [Xu 2010].
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i i-1 i+1 i-2 i+2 

r 

i+3 

r 

Figure 5.1: Set of frames with radius r centered in the transition between frame i
and i + 1.

5.3.2 Jensen-Tsallis-based similarity between frames

As we have commented in Section 5.2.1, Xu et al. [Xu 2010] applied the
Jensen-Shannon divergence to quantify the frame dissimilarity. The dissimilarity
between frames i and j was defined for an RGB color space as

JSRGB(i, j) = JSR(
1

2
,
1

2
; pR

i , pR
j )

+ JSG(
1

2
,
1

2
; pG

i , pG
j )

+ JSB(
1

2
,
1

2
; pB

i , pB
j ), (5.10)

where pc
i and pc

j are, respectively, the normalized histograms of frames i and j for
a given color component c.

Similar to the extension of mutual information (Section 5.3.1), the measure
JSRGB is extended using Jensen-Tsallis divergence and several color spaces. From
Equation (5.4), Jensen-Tsallis divergence between two frames i and j is defined as

J T x yz
α (i, j) = J T x

α (
1

2
,
1

2
; px

i , px
j )

+ J T y
α (

1

2
,
1

2
; p y

i , p y
j )

+ J T z
α(

1

2
,
1

2
; pz

i , pz
j ), (5.11)

where x , y , and z stand for the color components of a given color space,
J T c
α(

1
2
, 1

2
; pc

i , pc
j ) is the Jensen-Tsallis divergence between the frames i and j for a

given color component c (Equation (5.4)), and pc
i and pc

j are respectively given by
the normalized histograms of frames i and j.

As we are interested in a similarity measure between frames, we compute now
the complementary measure of J T x yz

α (i, j)with respect to its maximum value. From
Equations (5.1) and (5.4), it can be seen that the maximum value of J T c

α between
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two probability distributions depends on the parameter α and is given by

M c
α = max J T c

α(
1

2
,
1

2
; pc

i , pc
j )

=
1

1−α
�

n1−α − 1
�

−
1

1−α

�

�n

2

�1−α
− 1

�

, (5.12)

where α 6= 1 and n is the number of histogram bins of the color component c. Using
Jensen-Shannon divergence (Equation (5.3)), it can be seen that if α = 1, then
M = 1. Thus, M c

α − J T c
α(

1
2
, 1

2
; pc

i , pc
j ) can be seen as a similarity measure between

two frames for a given color component c. This allows us to define the Jensen-Tsallis
frame similarity between two frames i and j as

JT
x yz
α (i, j) = M x

α − J T x
α (

1

2
,
1

2
; px

i , px
j )

+ M y
α − J T y

α (
1

2
,
1

2
; p y

i , p y
j )

+ M z
α − J T z

α(
1

2
,
1

2
; pz

i , pz
j ), (5.13)

where x , y , and z stand for the color components of a given color space. Observe that
this measure only deals with marginal probabilities, but not with joint probabilities,
and, therefore, its computation is faster than the computation of Tsallis mutual
information (Equation (5.7)).

Similar to the previous mutual information-based measures (Section 5.3.1),
given a frame i, the Jensen-Tsallis frame similarity ratio between the frame similarity
of pair (i, i+1) and the average frame similarity in its neighbourhood is defined by

JTR
x yz
α (i, i + 1) =

JT
x yz
α (i, i + 1)

JTW
x yz
α (i, r)

, (5.14)

where

JTW
x yz
α (i, r) =

1

2r

i+r
∑

j=i−r, j 6=i

JT
x yz
α ( j, j + 1) (5.15)

is the average Jensen-Tsallis similarity in a window of radius r. In our experiments, we
use r = 2 [Xu 2010]. Let us note that JTRRGB

α for α= 1 is slightly different from the
normalization of the Jensen-Shannon divergence proposed by Xu et al. [Xu 2010].

5.4 Keyframe selection

Given a video shot with m frames, three simple measures are proposed to extract the
most representative keyframes. For a given frame i of a shot s, its average similarity
with respect to the rest of frames of s can be computed using the Tsallis mutual
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Filename #F #C Filename #F #C
amc_jeep 1646 27 newport_2 1537 12
apo16005 691 4 newport_3 1538 11
FPTVKyrgyzstan 1439 22 newport_5 1713 15
FPTVPakistan 723 18 newport_8 1749 10
indi001 1686 15 parker_brothers 1595 34
indi002 844 6 rca_victor 1635 8
indi007 3469 24 sharp_calculator 1743 13
indi008 705 4 tide 1736 15
indi105 1109 9 trik_trak 1751 37
indi106 3610 9 UGS07_007 3513 11
indi108 2673 13 uist01_13 1766 15
loop_a_lot 1754 11 uist97_11 2856 13
monkey_uncle 1688 31 wth-02 385 2
newport 1765 16

Table 5.1: List of 27 videos (with filename, number of frames (#F), and number of
shot boundaries (#C)) used in our experiments. Obtained from the video database
The Open Video Project [Open Video Project ].

information and the Jensen-Tsallis divergence.

The average informational similarity of frame i with respect to the other frames
of shot s is defined by

AIx yz
α (i) =

1

m− 1

m
∑

j=1, j 6=i

Ix yz
α (i; j), (5.16)

where m is the number of frames of shot s, and j represents a frame of shot s different
of i. From this measure, the keyframe of a shot is given by the frame with the highest
average similarity. Note that AI mainly takes into account the spatial distribution of
intensity values and achieves high values when the distribution in the frame i highly
correlates with the distribution in the other frames of the shot (see Figure 5.2).

Similarly, the average Jensen-Tsallis similarity of frame i with respect to the rest
of frames of shot s is defined as

AJTx yz
α (i) =

1

m− 1

m
∑

j=1, j 6=i

JT
x yz
α (i, j). (5.17)

Observe that AJ T only compares the histograms of the frames and that the spatial
distribution of the intensities is not taken into account. In this case, high values will
be obtained when the histogram of a frame is similar to the histograms of the rest
of the frames (see Figure 5.2).

Finally, a more global strategy is proposed to quantify the similarity between the
histogram of frame i and the mean histogram of shot s. Thus, the global Jensen-Tsallis
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. . . . . . 

i i-1 i+1 1 m 

s 

Figure 5.2: Computation scheme of the similarity between frame i and the rest of
frames of shot s used by AI and AJ T .

. . . . . . 

i i-1 i+1 1 m 

s s 

Figure 5.3: Computation scheme of the similarity between frame i and the virtual
frame s used by GJ T .

similarity (GJTS) for a frame i of shot s is defined as

GJTx yz
α (i) = JTx yz

α (i, s), (5.18)

where s is interpreted as a virtual frame whose histogram is the average of the
histograms of all frames of shot s. From this measure, the keyframe of shot s is given
by the frame with maximum global similarity, that is, its histogram is the closest to
the histogram that represents the whole shot (see Figure 5.3).

5.5 Results

In this section, we analyze the performance of the proposed Tsallis entropy-based
measures, using different color spaces and histogram binnings, to deal with shot
boundary detection and keyframe selection. These measures are compared with
the mutual information-based measure proposed by Cernekova et al. [Cernekova
2006], which is a particular case of the measure IRx yz

α (Equation (5.8)) when α= 1
and the RGB color space with 256 bins is considered. The proposed measures are
analyzed with two different databases. First, we use a training database, composed
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Figure 5.4: Error ratio percentage for the shot boundaries obtained by applying the
measures JT1, JTR1, I1, and IR1, for different color variables.

of 27 videos from the Open Video Project [Open Video Project ], to analyze in detail
the performance of the proposed measures for several parameters, such as color
space, regular binning, and entropic index. Second, we use a large testing database,
provided by the TrecVid project [TRECVID ], to evaluate the proposed measures with
the optimal parameter configurations obtained with the training database. Our tests
have been run on a PC with an Intel c© CoreTMi5 430M 2.27GHz and 4 GB RAM.

5.5.1 Training database

In this section, we describe the experiments that have been performed with
the training database to evaluate the behaviour of the proposed measures with
different color spaces and histogram binnings. These experiments have been carried
out over 27 videos with resolution of 320 × 240 pixels and a total duration of
30 minutes [Open Video Project ]. Table 5.1 shows the list of videos used in
our experiments, including both the number of frames and the number of shot
boundaries. As the proposed measures have been devised to detect video cuts, we
focus our attention on the detection of abrupt changes between shots and the fade
sequences have been removed in the analyzed videos.

As we are interested in the discriminatory capacity of the proposed measures,
we proceed in the following way. In this first experiment, for each video, the
stopping criterion of our algorithms is given by the previously known number of
shot boundaries. Thus, if the video has n shot boundaries, the frame similarity-based
algorithm seeks the n lowest frame similarity values. In order to quantify the error
ratio, the number of detected shot boundaries is compared with the manually
defined one. The error ratio is defined by the ratio between the sum of the number of
shot misdetections for all videos (#er rors) and the total number of shot boundaries
also for all videos (#cuts):

ER=
#er rors

#cuts
. (5.19)

First, we analyze the behaviour of Iα, IRα, JTα, and JTRα with α = 1 (i.e.,
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Shannon entropy-based measures) using RGB, Lab, and HSV color spaces. Figure 5.4
shows the error ratio percentage for the shot boundaries obtained with the similarity
measures I1 and IR1 based on mutual information I and JT1 and JTR1 based
on Jensen-Shannon divergence JS, and using different color variables. For each
color space, these measures are calculated with one color variable and three color
variables. In the case of three variables, we assign one color component to each
variable obtaining the combinations R ⊕ G ⊕ B, L ⊕ a ⊕ b, and H ⊕ S ⊕ V . In this
experiment, we use 256 histogram bins to quantize each color component. For one
variable, we use either the luminance variable (L in Lab) or the value variable (V
in HSV), since these color components provide us the most basic information in an
image and do not take into account the chromatic dimension. From Figure 5.4,
we see that the mutual information-based measures achieve better results than
the Jensen Shannon-based measures. In addition, we show how the use of ratios
outperforms the accuracy of the results. We also see that the color space Lab, that is
perceptually uniform, performs better than RGB and HSV. Note that, in general, the
results obtained with only one variable (i.e., luminance or value) are worse than
the ones obtained with three variables, where each color component is considered
separately. Thus, we see that the chromaticity information plays an important role
to detect the shot boundaries using the proposed measures.

To better illustrate the benefits of the normalization of mutual information and
Jensen-Tsallis divergence, we have performed two experiments whose results are
shown in Figures 5.5 and 5.6. Figure 5.5 shows the values of I1, IW1, and IR1
between consecutive frames for the video wth-02 using 256 bins, and L⊕a⊕ b color
variables. This video is composed of only 3 shots where the first two ones correspond
to standard video scenes while the frames of the last one are black images with
random noise. In this video, the similarity measure I1 between consecutive frames of
the first two shots takes values around 5, while in the shot boundary between frames
110 and 111 the measure decreases to 1.25. In the third shot, the frames contain
very little information and, thus, the shared information between two frames is
also low (around 0.25). Thus, the mutual information I detects that these frames
have low similarity and interprets them as shot boundaries. The informational frame
similarity ratio IR overcomes this problem since it rates the similarity between two
frames with the average similarity in its neighborhood (measure IW ). In this case,
the consecutive frames of the third shot have very low similarity but the average
similarity in their neighborhood is also low and, thus, they are not detected as cuts.
Figure 5.6 shows the similarity values JT1, JTW1, and JTR1 between consecutive
frames for the video wth-02 using using 256 bins and L ⊕ a ⊕ b color variables.
As in the previous case, we can see that the measure JT obtains a small set of
low values around the frame 287, when actually there is only one abrupt cut. This
problem is also solved by the application of the normalized measure JTR. These
two experiments illustrate the benefits of using the normalization of the information
measures by their average on a window, as was previously proposed by Cernekova
et al. [Cernekova 2006].

In Figure 5.7, we analyze the capability to detect the video shot boundaries
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Figure 5.5: Similarity values I1, IW1, and IR1 between consecutive frames for the
video wth-02 using 256 bins and L ⊕ a⊕ b color variables.
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Figure 5.6: Similarity values JT1, JTW1, and JTR1 between consecutive frames for
the video wth-02 using 256 bins and L ⊕ a⊕ b color variable.



5.5. Results 69

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2

%
 e

rr
o

rs
 

alpha 

8 bins

16 bins

32 bins

64 bins

128 bins

256 bins

(a) R⊕ G ⊕ B

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2

%
 e

rr
o

r 

alpha 

8 bins

16 bins

32 bins

64 bins

128 bins

256 bins

(b) L ⊕ a⊕ b

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2

%
 e

rr
o

r 

alpha 

8 bins

16 bins

32 bins

64 bins

128 bins

256 bins

(c) H ⊕ S ⊕ V

Figure 5.7: Error ratio percentage for the shot boundaries obtained with IRα
measure computed for different entropic indices in the range [0.1, 2] and (a)
R ⊕ G ⊕ B, (b) L ⊕ a ⊕ b and (c) H ⊕ S ⊕ V color variables using 8, 16, 32, 64,
128, and 256 histogram bins.
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using the measure IRα for different entropic indices, color spaces, and number of
histogram bins. R ⊕ G ⊕ B, L ⊕ a ⊕ b, and H ⊕ S ⊕ V color variables are analyzed
for entropic indices ranging from 0.1 to 2 and considering a different number of
histogram bins (8, 16, 32, 64, 128, and 256). It can be seen that, L ⊕ a ⊕ b and
H⊕S⊕V color variables present a better performance than R⊕G⊕B and, as in the
first experiment presented in Figure 5.4, this fact confirms the hypothesis that the
use of perceptually aimed color spaces improve the accuracy of the results. Observe
also that the results are very sensitive to the number of histogram bins, obtaining
the best results with only 8 bins (i.e., only considering 8 different values for each
color component in the IR computation). Note also that the optimal entropic index
depends on the number of bins. For instance, with the L ⊕ a ⊕ b color variables
and 256 bins, the optimal index is around 0.5, while, with the same color variables
and 8 bins, the optimal one is around 1.7. In general, the lower the number of bins
the higher the optimal entropic index. The best result is achieved with H ⊕ S ⊕ V
color variables, 8 bins, and an entropic index of 1.7, that is six times better than the
one achieved with IRRGB

1 and 256 bins, as proposed by Cernekova et al. [Cernekova
2006]. Observe that the error is reduced from 4.69% to 0.74%.

In Figure 5.8, we also analyze the capability to detect the video shot boundaries
using the measure JTR for the same entropic indices, color spaces, and number of
histogram bins than in the previous experiment. Note that L ⊕ a⊕ b and H ⊕ S ⊕ V
color variables also perform better than R⊕ G ⊕ B variables. In this experiment, in
general the results improve with a low number of histogram bins, but the optimal
result is achieved with 128 bins. With respect to the optimal entropic index, JTR
has a behavior different than IR, since the best results are obtained in the range
from 0.4 to 1.2. As in the first experiment (see Figure 5.4), IR is, in general, more
accurate than JTR. However, it is also interesting to observe that JTRLab

0.5 achieves
slightly more precise results than IRRGB

1 . Note that JTR only deals with the frame
histograms while IR is based on the intensities of each pair of matching pixels.

In a real scenario, the number of cuts is not a priori known. In this case, a
simple strategy is to fix a threshold value so that a shot boundary is detected when
the similarity measure between two frames is lower than the threshold value. This
strategy is applied in the next experiment. To evaluate the results, the measures
precision and recall are used. The precision is defined as

P =
T P

T P + F P
, (5.20)

where T P is the number of true positives (i.e., the shot boundaries that the algorithm
detects and that correspond to the real ones according to the ground truth) and F P
is the number of false positives (i.e., the shot boundaries that the algorithm detects
and that do not correspond to the real ones according to the ground truth). The
recall is defined as

R=
T P

T P + FN
, (5.21)
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Figure 5.8: Error ratio percentage for the shot boundaries obtained by applying
JTR measure computed for different entropic indices in the range [0.1,2] and (a)
R⊕G⊕ B, (b) L⊕ a⊕ b, and (c) H ⊕ S⊕ V color variables using 8, 16, 32, 64, 128,
and 256 histogram bins.
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where FN is the number of false negatives (i.e., the shot boundaries that the
algorithm does not detect and that correspond to the real ones according to the
ground truth). The measures precision and recall take values in the range [0, 1],
being 1 the best value. In Figure 5.9, we show the precision and recall values for the
IR-based measures (Figure 5.9(a)) and the JTR-based measures (Figure 5.9(b))
with different threshold values. In Figure 5.9(a), precision and recall for IRRGB

1
with 256 bins are represented using threshold values in the range [0.35, 0.45] with
steps of 0.025, and the precision and recall for IRHSV

1 , IRHSV
1.5 , and IRHSV

1.7 with 8
bins are represented using threshold values in the range [0.15,0.25] with steps of
0.025. Observe that, when the threshold value is increased, the precision decreases
while the recall increases, and vice versa. As in the previous experiments, the results
obtained with the H⊕S⊕V color variables and 8 histogram bins clearly outperform
the ones obtained with R⊕G ⊕ B and 256 bins. Although the differences are small,
the best results are now obtained with α = 1 and α = 1.5, while in the previous
experiments the best performance was achieved with α= 1.7.

Figure 5.9(b) shows the results obtained with JTR
RGB
1 with 256 bins using

threshold values in the range [0.92, 0.96] with steps of 0.01, and the ones obtained
with JTRLab

1 with 32 bins and JTRLab
0.5 with 128 bins using threshold values in the

range [0.95,0.99] with steps of 0.01. As in the previous case, the measure applied
with the RGB color space obtains worse results than with the Lab color space. In this
experiment, the use of Tsallis entropy does not improve the results obtained with
Shannon entropy (i.e., α = 1). In particular, JTRLab

1 with 32 bins obtain similar
results to JTRLab

0.5 with 128 bins.
Finally, Figure 5.10 presents the results of selecting the keyframes for the

video UGS07_007 which has 12 shots. Results are shown for the three alternative
measures, AIα, AJ Tα, and GJ Tα. For AIα we have used α = 1.7, H ⊕ S ⊕ V , and 8
bins, and for AJ Tα and GJ Tα we have used α = 0.5 and L ⊕ a ⊕ b, and 128 bins.
Observe that these parameters have been chosen according to the ones that achieve
the optimal results in shot boundary detection. We can observe small differences
between the selected frames depending on the used measure. Due to the similarity
of the results, we recommend to use the method based on GJ Tα due to its lower
computational cost. In this case, each frame has to be only compared with the mean
histogram, while the measures AIα and AJ Tα require the comparison with all the
other frames in the shot.

5.5.2 Testing database

In this section, we use a testing database to compare the proposed measures in a
real environment. This large database is provided by the TrecVid project [TRECVID
] and it contains 17 videos with resolution of 352×288 pixels and a total duration of
7 hours and 29 minutes (see Table 5.2, where the number of frames and the number
of shot boundaries for each video are also shown). These videos were used to test
several methods in the shot boundary detection task in TrecVid 2007. The results
obtained by these methods are available in [TRECVID 2007]. The shot boundary
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Figure 5.9: Precision and recall values for (a) the IR-based measures and (b) the
JTR-based measures with different threshold values.

43 343 393 953 1217 1361 1639 1807 2571 2851 2965 3281

34 346 474 1016 1334 1362 1670 2041 2576 2734 2992 3186

17 163 457 941 1247 1373 1667 2041 2579 2759 2997 3205

Figure 5.10: The most representative keyframes for the video UGS07_007 have been
obtained using the H ⊕ S ⊕ V color variables, α = 1.7, 8 histogram bins, and the
measures (first row) AIHSV

1.7 with 8 bins, (second row) AJ T Lab
0.5 with 128 bins and,

(third row) GJ T Lab
0.5 with 128 bins.
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Filename #Frames #Cuts Filename #Frames #Cuts
BG_2408 35892 101 BG_9401 50049 89

BG_11362 16416 104 BG_14213 83115 106
BG_34901 34389 224 BG_35050 36999 98
BG_35187 29025 135 BG_36028 44991 87
BG_36182 29610 95 BG_36506 15210 77
BG_36537 50004 259 BG_36628 56564 192
BG_37359 28908 164 BG_37417 23004 76
BG_37822 21960 119 BG_37879 29019 95
BG_38150 52650 215

Table 5.2: List of 17 videos (with filename, number of frames, and number of shot
boundaries) used in our experiments. Obtained from the TrecVid project [TRECVID
].

positions are given by the ground truth provided by the TrecVid project together
with the video database. As with the training database, the gradual transitions have
not been considered in our experiments.

Table 5.3 summarizes the results obtained with the proposed measures
applied to the testing database. In this experiment, we have only analyzed the
Shannon-based measures IRRGB

1 and JTRRGB
1 and the measures that have achieved

the best results with the training database. A shot boundary is detected when a pair
of frames has a similarity value lower than a given threshold. The obtained results
are compared with the ground truth.

In addition to the previously defined measures precision and recall, we also use
the harmonic mean of both measures, also called F-measure, as a single value that
summarizes both precision and recall. The F-measure is defined as

F =
2

1
P
+ 1

R

. (5.22)

As it can be seen in Table 5.3, the best results are obtained with IRHSV
1.7 and 8 bins

using a threshold value of 0.2. Note also that the use of the Tsallis generalization
notably improves the results (F-measure varies from 0.9384 in the second row to
0.9495 in the forth row), and also the reduction of histogram bins and the use
of the HSV color space have a great impact in the results (F-measure varies from
0.8558 in the first row to 0.9384 in the second row). If the results are analyzed in a
detailed way, we observe that approximately the half of the errors (50 of 104) comes
from a single video, BG_36628, and are due to a scene with black frames corrupted
by noise. As these frames contain very little information, the proposed measure
does not perform properly because the normalization makes it very sensitive to
the presence of noise. This problem could be easily solved by, for instance, do not
taking into account frames with low information (i.e., low entropy value), similarly
to the strategy proposed by Cernekova et al. [Cernekova 2006] to detect fades. The
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Measure Color variables #Bins Th Precision Recall F

IR1 R⊕ G ⊕ B 256 0.4 0.7811 0.9463 0.8558
IR1 H ⊕ S ⊕ V 8 0.2 0.9542 0.9231 0.9384

IR1.5 H ⊕ S ⊕ V 8 0.2 0.9565 0.9352 0.9457
IR1.7 H ⊕ S ⊕ V 8 0.2 0.9531 0.9459 0.9495
JTR1 R⊕ G ⊕ B 256 0.94 0.8664 0.8936 0.8798
JTR1 L ⊕ a⊕ b 32 0.98 0.7793 0.9696 0.8641
JTR0.5 L ⊕ a⊕ b 128 0.98 0.8460 0.9584 0.8987

Table 5.3: Results obtained using the testing database and a threshold (Th) value as
stopping criterion.

Measure Color variables #Bins F-measure

IR1 R⊕ G ⊕ B 256 0.9186
IR1 H ⊕ S ⊕ V 8 0.9495

IR1.5 H ⊕ S ⊕ V 8 0.9562
IR1.7 H ⊕ S ⊕ V 8 0.9548
JTR1 R⊕ G ⊕ B 256 0.8855
JTR1 L ⊕ a⊕ b 32 0.9052
JTR0.5 L ⊕ a⊕ b 128 0.9047

Table 5.4: Results obtained using the testing database and the number of cuts as
stopping criterion.

JTR-based measures obtain in general worse results than the IR-based ones, but
note that JTRLab

0.5 with 128 histogram bins obtain clearly better results than the
measures IRRGB

1 and JTRRGB
1 ).

Table 5.4 shows the results obtained with the same measures than the previous
experiment when the number of cuts is a priori known and used as a stopping
criterion. These results can be seen as the best possible achievable results when
the best particular threshold is selected for each video. Note that in this case,
precision and recall take the same value, since F P is equal to FN and, thus, the
F-measure (i.e., the harmonic mean) also takes this value. The general behaviour
of the measures is similar to the previous experiment, obtaining the best results
when the perceptual color spaces and the generalized entropies are used. There are
some minor differences, such as the better behaviour of IRHSV

1.5 with respect to the
one of IRHSV

1.7 . From this fact, it can be established that IRHSV
1.5 has more capacity to

obtain good results, while IRHSV
1.7 is a more stable measure to be used with a single

threshold value for all the videos.
Another important aspect to be considered is the computation time. Figure 5.11

plots the F-measure versus the computation time per frame in milliseconds spent
on detecting the shot boundaries for the measures IRRGB

1 with 256 bins, IRHSV
1

with 8 bins, IRHSV
1.7 with 8 bins, JTRRGB

1 with 256 bins, JTRLab
1 with 32 bins,
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Figure 5.11: F-measure and computation time per frame in milliseconds, for the
measures analyzed in Table 5.3.

and JTR
Lab
0.5 with 128 bins. As we could expect, the computational time is very

sensitive to the number of bins. On the other hand, the difference between the
Shannon entropy-based measures and their extension based on Tsallis entropy is
not significant (especially, for a low number of bins). It is also important to notice
that the computational cost of the measures based on Jensen-Tsallis divergence
are between two times and four times lower than the measures based on mutual
information, since in the first case the computation of the joint histogram between
frames is not required.

As a conclusion, we have seen that IR with α= 1.7 and perceptually aimed color
spaces achieves the best performance, significantly improving the performance of
the mutual information-based measure proposed by Cernekova et al. We have also
seen that JTR, with α= 0.5, 128 bins, and L⊕ a⊕ b color variables, obtains a good
tradeoff between accuracy and computational cost.

5.6 Conclusions

In this chapter we have presented and analyzed the behaviour of two differ-
ent information-theoretic approaches based on Tsallis mutual information and
Jensen-Tsallis divergence to deal with video shot boundary detection and keyframe
selection. Their discriminatory capacity has been analyzed for several color spaces
(RGB, HSV, and Lab), regular binnings, and entropic indices. The performance of
these approaches has been successfully compared with mutual information and
Jensen-Shannon divergence presented by Cernekova et al. [Cernekova 2006] and
Xu et al. [Xu 2010], respectively. Different experiments have shown that the optimal
detection capacity is obtained by the Tsallis mutual information similarity measure
using HSV and Lab color spaces. In general, the reduction of the number of



5.6. Conclusions 77

histogram bins also improves the obtained results. Finally, we have also proposed
three different measures to select the most representative keyframe of each shot.
One of these measures is based on Tsallis mutual information whereas the other
two are based on Jensen–Tsallis divergence.





CHAPTER 6

Image informativeness

6.1 Introduction

The most basic information measure, the Shannon entropy, has been used to
quantify the information content or uncertainty of a random variable. Given a
color space (e.g., CIELab), the information associated with the lightness of the
whole image can be computed from the entropy of the lightness histogram. The
same procedure can be applied to any color component of a color space. The main
drawback of histogram entropy, called image entropy, is the fact that it does not take
into account the spatial distribution of pixels. This means that, for instance, after a
simple swapping of pixels, the image entropy would give the same result. In other
words, Shannon entropy is not an adequate measure to characterize, for instance,
the structure of an image.

In this chapter, we present a set of information measures that capture several
aspects of image information, from a local perspective, taking into account the
vicinity of pixels, to an evolutionary perspective, based on the difficulty of extracting
or discovering the image information. Thus, we focus our attention not on how the
image information varies when distortion is applied but on the quantification of the
information of a single image. This fact enables us to evaluate the image quality
and also to provide a set of image features that could be used to deal with several
image processing problems such as image classification and optimization of image
acquisition parameters.

Thus, we analyze four information-theoretic measures, three of them (entropy
rate, excess entropy, and erasure entropy) consider the image as a stationary
stochastic process, while the fourth (partitional information) is based on an
information channel between image regions and histogram bins. Experimental
results, applied to natural and synthetic images, analyze the performance of these
measures to characterize several informativeness aspects of an image. We also
analyze their behavior under some image effects such as blurring, contrast change,
and noise.

The content of this chapter has been published in "Analysis of image
informativeness measures", Marius Vila, Anton Bardera, Miquel Feixas, Philippe
Bekaert, Mateu Sbert. IEEE International Conference on Image Processing pages
1086-1090, October 2014 [Vila 2014].
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6.2 Previous work

In this section we review some previous work related to the concepts used in this
chapter.

Measurement of image quality is crucial for many image processing algorithms.
Traditionally, image quality assessment algorithms predict visual quality by
comparing a distorted image against a reference image, typically by modeling the
Human Visual System (HVS), or by using arbitrary signal fidelity criteria. Sheikh
and Bovik [Sheikh 2006] proposed an information fidelity criterion that quantifies
the Shannon information that is shared between the reference and the distorted
images relative to the information contained in the reference image itself. Wang
and Li [Wang 2011] tested the hypothesis that when viewing natural images, the
optimal perceptual weights for pooling should be proportional to local information
content, which can be estimated in units of bit using advanced statistical models of
natural images.

Rigau et al. [Rigau 2008a] presented a set of information-theoretic measures
to study some informational aspects of a painting related to its palette and
composition. Some of these measures, based on the entropy of the palette, the
compressibility of the image, and an information channel to capture the composition
of a painting, were used to discriminate different painting styles and to analyze the
evolution of van Gogh’s artwork [Rigau 2008b], revealing a significant correlation
between the values of the measures and van Gogh’s artistic periods. Rigau et
al. [Rigau 2010] also investigated whether informational measures can support the
claim of art critics on his evolution of palette and composition. They also studied
how far van Gogh’s last period was from his other periods, and tried to trace his
artistic development. To this end, they employed informational measures together
with a set of measures, such as entropy rate and excess entropy, that take into
account spatial information.

Bardera et al. [Bardera 2009b] introduced a split-and-merge algorithm based
on the definition of an information channel between a set of regions (input)
of the image and the intensity histogram bins (output). From this channel, the
maximization of the mutual information gain is used to optimize the image
partitioning. Then, the merging process of the regions obtained in the previous phase
is carried out by minimizing the loss of mutual information. Bardera et al. [Bardera
2009a] also presented an information-theoretic approach for thresholding-based
segmentation that uses the excess entropy to measure the structural information of
a 2D or 3D image and to locate the optimal thresholds. This approach is based on
the conjecture that the optimal thresholding corresponds to the segmentation with
maximum structure, i.e., maximum excess entropy.
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6.3 Image information measures

In this chapter, an image is considered as a random variable B taking intensity bin
values b from a finite set B . Each value b ∈ B represents a bin of intensity values
that can be either composed by a single intensity value or by a set of similar intensity
values depending on the used quantization. The probability distribution of the
random variable B is given by p(b) = Pr[B = b]. Thus, according to Equation (2.2),
the Shannon entropy H(B) of the random variable B is defined by

H(B) = −
∑

b∈B

p(b) log p(b). (6.1)

The term− log p(b) represents the information content associated with the intensity
bin b. Thus, the entropy gives us the average amount of information of the intensity
values in the image. From Equation (6.1), we can see that the entropy depends
only on the probabilities of the intensity values, but not on their spatial distribution.
Therefore, as we have mentioned in Section 6.1, two perceptually different images
can give the same image entropy value.

In order to consider the spatial structure in the image information computation,
two different approaches are presented. First, an image is modeled as a stationary
stochastic process to quantify the image information from the vicinity of pixels and,
second, an information channel between image regions and histogram bins is used
to study the difficulty of extracting the information of an image.

6.3.1 Stationary stochastic process-based measures

This first approach models an image as a stationary stochastic process {Bi},
which is an indexed sequence of random variables characterized by the joint
probability distribution p(b1, b2, . . . , bn) = Pr{(B1, B2, . . . , Bn) = (b1, b2, . . . , bn)}
with (b1, b2, . . . , bn) ∈ Bn for n ≥ 1 [Cover 1991, Yeung 2008]. In our case,
the sequence of states will be determined by consecutive positions in the image,
considering, thus, the spatial information.

6.3.1.1 Entropy rate

As we have seen in Section 2.2.4, following the notation used in the work of Feldman
and Crutchfield [Feldman 2003], the entropy rate can be rewritten as

h= lim
L→∞

H(BL)
L

= lim
L→∞

h(L), (6.2)

where

h(L) = H(BL)−H(BL−1) (6.3)

= H(BL|B1, . . . , BL−1) (6.4)
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Figure 6.1: Two different graphical representations of the excess entropy measure,
corresponding to Equations (6.5) and (6.6), respectively. Images obtained
from [Feldman 2003].

is the entropy of a symbol conditioned on a block of L − 1 adjacent symbols. The
entropy rate of a sequence quantifies the average amount of information per symbol
b and the optimal achievement for any possible compression algorithm [Cover
1991]. The entropy rate is always equal or lower than the Shannon entropy and
is only equal when there is no correlation between consecutive symbols. Entropy
rate has been applied to image processing by Rigau et al. [Rigau 2010].

6.3.1.2 Excess entropy

A complementary measure to the entropy rate is the excess entropy, which is a
measure of the structure of a system. Structure here is taken to be a statement which
expresses the degree of correlation between the components of a system. The excess
entropy is defined by

E ≡
∞
∑

L=1

(h(L)− h) (6.5)

and captures how h(L) converges to its asymptotic value h. Figure 6.1(a) is a
graphical representations of the excess entropy measure, which is represented by
the shaded area, corresponding to the sum of differences between h(L) and the
limit h. If Equation (6.3) is inserted into Equation (6.5), the sum telescopes and an
alternate expression for the excess entropy [Feldman 2003] is obtained:

E = lim
L→∞
[H(BL)− h · L]. (6.6)

Hence, excess entropy is the y-intercept of the straight line to which H(BL)
asymptotes as indicated in Figure 6.1(b).

It is important to note that, when we take into account only a few number
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of symbols in the entropy computation, the system appears more random than it
actually is. This excess randomness measures how much additional information
must be gained about the configurations in order to reveal the actual uncertainty
h [Feldman 2002]. Excess entropy is commonly used and well understood in one
dimension, but some difficulties are found in its extension to higher dimensions.
Excess entropy has been introduced to image processing by Bardera et al. [Bardera
2009a]. Excess entropy, which provides us with a measure of the regularities
presenting in an image, can also be interpreted as the degree of predictability of
a pixel given its neighbours. In order to compute the excess entropy, two main
considerations have to be taken into account:

• The first is the definition of the neighbourhood concept for a pixel. While
neighbourhood is unique and unambiguous in 1D, its extension to 2D
introduces ambiguity, since a sequence of L-block neighbour pixels can be
selected in different manners [Feldman 2003].

• The second is the computation of L-block entropies when L→∞. In practice,
L-block entropies for high L are not computable, since the number of elements
of the joint histogram (required to compute joint probabilities p(bL)) is given
by BL, where B is the cardinality of the system. Note that in our case, B is the
number of clusters or bins of the segmented image histogram, i.e., the number
of colors of the image. Thus, a tradeoff between the accuracy of the measure,
given by L, and the number of clusters |B| is required.

To overcome the neighbourhood problem, uniformly distributed random lines,
also called global lines [Sbert 1993] are used. Global lines sample the 2D-surface
stochastically in the sense of integral geometry, i.e., invariant to translations and
rotations [Santaló 1976]. These lines are generated from the walls of a convex
bounding box containing the surface [Castro 1998]. This can be done taking a
random point on the surface of the convex bounding box and a cosinus distributed
random direction as it is illustrated in Figure 6.2(a). The sequence of intensity values
(L-block X L) needed to estimate the joint probabilities is captured at evenly spaced
positions over the global lines from an initial random offset, that ranges from 0
to the step size (see Figure 6.2(b)). Points chosen on each line provide us with the
intensities to calculate the L-block entropies, required to compute the excess entropy
(see Figure 6.2(c)). In this manner, the 2D-neighbourhood problem is reduced to
1D, where the concept of neighbourhood is well defined. In our implementation, N
is taken as an input parameter of the algorithm, while L is determined from N such
that the computation of the joint histogram is attainable.

6.3.1.3 Erasure entropy

As we have seen in Section 2.2.4, entropy rate of a collection of random variables can
be interpreted as the uncertainty associated with a given symbol if all the preceding
symbols are known. However, what if we condition on both the past and the future?
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Figure 6.2: (a) Global lines are cast from the walls of the bounding box, (b) intensity
values are captured at evenly spaced positions over the global lines from an initial
random offset, and (c) neighbour intensity values are taken in L-blocks.

This idea is carried out by the erasure entropy [Verdú 2006] that can be seen as
the uncertainty associated with a given symbol if all the preceding and succeeding
symbols are known.

Similar to Equation (2.20), the erasure entropy of a collection of L random
variables B1, . . . , BL is given by

H−(B1, . . . , BL) =
L
∑

i=1

H(Bi|B/i), (6.7)

where B/i = {B j, j = 1, . . . L, j 6= i}.
When entropy rate is applied to a data indexed by multidimensional sets, such

as images, it requires an artificial definition of the preceding symbols (past), while
erasure entropy does not suffer from that drawback.

For any collection of discrete random variables {B1, . . . BL}, H−(B1, . . . BL) ≤
H(B1, . . . BL) with equality if and only if {B1, . . . BL} are independent. Thus, a
collection of random variables has zero erasure entropy if it has zero entropy, but
the converse is not true. For example, if B1 = B2 then H(B1, B2) = H(B1) whereas
H−(B1, B2) = 0.

Analogously to the entropy rate (see Section 2.2.4), erasure entropy rate
quantifies how the entropy of a sequence of L random variables increases with L.
The erasure entropy rate h− of a stochastic process {Bi} is defined by

h− = lim
L→∞

1

L
H−(B1, B2, . . . , BL) (6.8)

when the limit exists. Thus, erasure entropy rate can be defined as the limit of the
arithmetic mean of the conditional entropies of each symbol given all preceding
and succeeding symbols. Erasure entropy rate represents the average information
content per symbol in a stochastic process. For a stationary stochastic process, the
erasure entropy rate exists and is equal to
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h− = lim
L→∞

h−(0), (6.9)

where h−(0) = H(B0|B−1
−L, BL

1 ), B−1
−L symbolizes the previous samples (past) and BL

1
the posterior samples (future).

6.3.2 Information channel-based measure

This second approach introduces spatial information into the information measure
by considering an information channel R→ B between the random variables R
(input) and B (output), which represent, respectively, the set of regions R of an
image and the set of intensity bins B . This channel is defined by a conditional
probability matrix p(B|R) which expresses how the pixels corresponding to each
region of the image are distributed into the histogram bins. Thus, each row r of the
p(B|R) matrix corresponds to the normalized histogram of the region r. The input
distribution p(R), which represents the probability of selecting each image region,
is defined by p(r) = n(r)

N
(i.e. the relative area of region r).

6.3.2.1 Partitional information

As it was proposed by Rigau et al. [Rigau 2004] and Bardera et al. [Bardera 2009b],
the information bottleneck method presented in Section 2.2.6 can be applied to this
information channel. Following a top-down partition procedure, a greedy algorithm
based on a binary space partitioning (BSP) can be used to find a partition that
maximizes the mutual information of the channel. The BSP partitioning algorithm
can be represented by an evolving binary tree where each leaf corresponds to a
terminal region of the image. At each partitioning step, the tree gains information
from the original image such that each internal node k contains the information Ik
gained with its corresponding splitting, which is given by

δI r̃ = I(R, B)− I(eR, B)

= p(r̃)JS
�

π1,π2; p(B|r1), p(B|r2)
�

, (6.10)

where π1 =
p(r1)
p(r̃) and π2 =

p(r2)
p(r̃) . Note that Equation (6.10) is a particular

case of Equation (2.31). As we have seen in Section 2.2.3.3 the JS-divergence
JS
�

πi,π j; p(B|r1), p(B|r2)
�

between two regions can be interpreted as a measure
of dissimilarity between them respect to the intensity values. At a given moment,
I(R, B) can be obtained adding up the information available at the internal nodes
of the tree weighted by p(k), where p(k) = n(k)

N
is the relative area of the region

associated with node k and n(k) is the number of pixels of this region. Thus, the
mutual information of the channel is given by

I(R, B) =
T
∑

k=1

p(k)Ik, (6.11)
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h : 0.0932 h : 0.0932 h : 0.1830 h : 0.9215
E : 0.8551 E : 0.8551 E : 0.7657 E : 0.0003
h− : 0.0253 h− : 0.0253 h− : 0.0591 h− : 0.9212
PI : 0.9580 PI : 0.9580 PI : 0.9337 PI : 0.7669

Figure 6.3: Synthetic images and their entropy (H), entropy rate (h), excess entropy
(E), erasure entropy (h−), and partitional information (PI) values (a-d).

where T is the number of internal nodes. It is important to stress that the best
partition can be decided locally. If this procedure is performed until the number
of regions reach the number of pixels, the I(R, B) curve leads to the entropy of
the image H(B). The integral of this curve can be seen as a measure of difficulty
of describing the spatial distribution of the intensities. Thus, a new information
measure, which we call partitional information, can be defined as

PI =

∑N
k=1 I(Rk, B)

N ·H(B)
, (6.12)

where Rk represents the set of regions of the image after k partitions. This measure
takes values in [0,1], leading to high values when the image has a simple structure
and low values when the image is complex.

6.4 Results

In this section, we analyze the information content of a group of synthetic and
real images using the image information measures presented in Section 6.3. All
images used in our experiments have been converted to grayscale in order to obtain
an unique intensity value between 0 and 256 for each pixel. Thus, probabilities
of H have been computed using 256 intensity bins. To convert RGB values to
grayscale values, we have used the CIE 1931 transformation Y = 0.2621R +
0.7152G + 0.0722B, where R, G, and B are, respectively, the values of red, green,
and blue channels, and Y is the luminance obtained. To compute h, E, and h−, the
intensity values of an image are captured at evenly spaced positions over uniformly
distributed random lines, also called global lines (see [Bardera 2009a] for more
details). To compute h and E we have used Equations (6.2) and (6.6), respectively,
taking the neighbour intensity values in L-blocks of size 3. h− has been computed
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using Equation (6.7) with L-blocks of size 1.
First, we use four synthetic images with pixel resolution of 256×256 to illustrate

the behavior of the measures (see Fig. 6.3). All images have been created to have
the same entropy value. The two first images 6.3(a-b) represent the same scene with
the colors interchanged. In this case, h, E, h−, and PI values are equal since these
measures are not dependent on the colors themselves, but only on their probability
and spatial distribution. In the third image 6.3(c), some shapes are moved with
respect to the original image 6.3(b). The last image 6.3(d) has been generated by
randomly swapping 200000 pixels of image 6.3(b). Thus, both images 6.3(c-d) alter
the structure with respect to the original image 6.3(b) but keep the same probability
for each color. Observe that h and h− increase their value with the increase of
uncertainty and variability in the image. This fact complicates the prediction of
the value of a pixel from the spatial distribution and, therefore, the value of these
measures increase. On the contrary, E and PI decrease with the decrease of the
spatial structure. Since Fig. 6.3(d) has no spatial structure, the knowledge of the
spatial distribution does not improve the capability of predicting a pixel value and,
therefore, h and h− are very close to the H value.

Second, we use a group of real images belonging to the Categorical Image
Quality (CSIQ) Database [Larson 2010] developed at Oklahoma State University. It
consists of 30 original images with pixel resolution of 512×512 an corresponding to
five different subjects: animals, landscapes, people, plants, and urban environments.
Each image is distorted using six types of distortions at five different levels,
obtaining a total of 930 images. The distortion types used in CSIQ are JPEG and
JPEG2000 compression, global contrast decrements, additive Gaussian pink noise,
additive Gaussian white noise, and Gaussian blurring. Furthermore, with the aim
of analyzing the behavior of all measures at different image resolutions, we have
reduced the original images to pixel resolutions of 256×256, 128×128, and 64×64.
Fig. 6.4 shows the absolute values of the measures of four images belonging to the
CSIQ Database. Each row corresponds to a measure and is sorted from the lowest to
the highest value, except PI , is sorted from the highest to the lowest value. Observe
that the first image (column 1) obtains in all the cases the minimum value of the
corresponding measure except with PI . This behaviour is mainly due to the low
information content (entropy H) of this image. With respect to measure PI , the
value is maximum due to the fact that this image can be more easily partitioned. A
similar behaviour can be observed with the second image (column 2) with respect
to third (column 3) and fourth (column 4) images. Observe also that the last
two images, although having a conceptually different content, have similar and
alternating values in the five measures considered. Our measures deal with intensity
histogram and spatial distribution of pixel values, but do not consider the semantic
content of the images.

Figs. 6.5(a-f) show several plots resulting from the application of additive
Gaussian white noise, Gaussian blurring, global contrast decrements, additive
Gaussian pink noise, JPEG, and JPEG2000 compression distortion, respectively. Each
plot shows the mean values of each measure at five levels of distortion with respect
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to the value in the original image. These six types of image effects can be divided
into two main groups. On the one hand, at each new level of distortion, the additive
Gaussian pink and white noise increase the variability of the image while the spatial
structure decreases. On the other hand, the rest of image effects have a completely
opposite behavior. In the first group, H, h, h− increase with the distortion level,
while E and PI decrease. In the second group, the behavior is complementary.
The only exception corresponds to the E value with the global contrast reduction
(see Fig. 6.5(c)). In this case, the decrease of E value is due to the fact that the
reduction of contrast keeps the spatial structure but also produces a global loss of
information. Observe that these results are consistent with the ones obtained by
using the synthetic images.

Finally, Fig. 6.5(g) shows how the image resolution affects the value of the
different measures with respect to the value in the original image. We can observe
that H, PI , and E are nearly invariant to image resolution, while the other measures
increase when the resolution is reduced. This reduction in the image resolution
can be seen as a distortion that increases the variability of the image. Entropy rate
and erasure entropy have obtained high values for images with high variability
and low spatial structure, while excess entropy and partitional information show
a complementary behavior. We can observe that excess entropy and partitional
information are less sensitive to image resolution than the rest of measures.

6.5 Conclusions

In this chapter, we have presented two different approaches to quantify the
information content of an image taking into account the spatial distribution of
pixels. In the first approach, entropy rate, excess entropy, and erasure entropy have
been used to quantify the image information from the vicinity of pixels and, in the
second approach, an information channel between image regions and histogram
bins has been applied to study the difficulty of extracting the information of an
image. The measures have been applied to several synthetic and natural images,
analyzing, in the latter case, the behavior of the measures under several types of
image effects.



6.5. Conclusions 89

H

6,0336 7,3014 7,5280 7,8448

h

2,9870 4,0776 4,3085 4,3853

E

3,8514 4,3185 4,3383 4,4422

h−

2,5367 3,7335 3,7517 4,0256

PI

0,8971 0,8634 0,8580 0,8497

Figure 6.4: Values of the measures (Shannon entropy H, entropy rate h, excess
entropy E, erasure entropy h−, and partitional information PI) of four natural
images. Each row corresponds to a measure and is sorted from the lowest to the
highest value, except the partitional information that is sorted from the highest to
the lowest value.
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Figure 6.5: (a-f) Mean values of each measure for five levels of distortion with
respect to the original image using Gaussian white noise, Gaussian blurring,
global contrast decrements, additive Gaussian pink noise, JPEG, and JPEG2000
compression, respectively. (g) Mean values of each measure for three different image
resolutions.



CHAPTER 7

Conclusions and future work

Contents
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 Contributions

The main goal of this thesis was to find good metrics based on information
theory with the aim of developing robust similarity measures for multimedia data
classification and retrieval. This objective has been achieved with the following
contributions:

• We have analyzed the behavior of different similarity measures applied
to invoice classification. Three types of measures, applied to document
processing, have been presented and tested, and are based respectively on the
intensity differences (sum of squared differences, sum of absolute differences,
and correlation coefficient), the shared information (mutual information and
normalized mutual information), and the normalized compression distance
between two images, calculated from both image (PNG, JPEG, and JPEG2000)
and file (GZIP and BZIP2) compressors. The experiments have been carried
out on two testing databases and a real-world database. In both cases, low
resolution images have been used to show the best performance of the
mutual information-based measures, although an acceptable performance
has also been obtained with the correlation coefficient and the normalized
compression distance implemented using file and image compressors. We have
demonstrated the suitability of several global similarity measures for invoice
image classification.

• We have introduced three different mutual information generalizations for
invoice classification. These measures have been inspired respectively by
Kullback–Leibler distance, the difference between entropy and conditional
entropy, and the Jensen–Shannon divergence, and their ratio with the Tsallis
joint entropy. The experiments have been carried out on a testing database and
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a real-world database, both with and without the use of a threshold, showing
different behaviour depending on the measure and the entropic index. When
the threshold is used, Tsallis-based measures obtain the best results for α
values between 1.0 and 1.4 whereas, when the threshold is not used, the
best results are obtained for α = 1.0, i.e, when Shannon-based measures are
applied. In both cases, low resolution images have been used to show the good
performance of the mutual information-based measures. Finally, the document
registration using measures based on mutual information generalizations has
been studied in terms of robustness and accuracy. While the highest robustness
is achieved for entropic indices higher than 1, the highest accuracy has been
obtained for entropic indices clearly lower than 1.

• We have presented and analyzed the behaviour of two different
information-theoretic approaches based on Tsallis mutual information
and Jensen-Tsallis divergence to deal with video shot boundary detection
and keyframe selection. Their discriminatory capacity has been analyzed for
several color spaces (RGB, HSV, and Lab), regular binnings, and entropic
indices. The performance of these approaches has been successfully compared
with mutual information and Jensen-Shannon divergence presented by
Cernekova et al. [Cernekova 2006] and Xu et al. [Xu 2010], respectively.
Different experiments have shown that the best detection capacity is obtained
by the Tsallis mutual information similarity measure using HSV and Lab
color spaces. In general, the reduction of the number of histogram bins
also improves the obtained results. We have also proposed three different
measures to select the most representative keyframe of each shot. One of
these measures is based on Tsallis mutual information and the other two are
based on Jensen–Tsallis divergence. Due to the similarity of the results, we
recommend to use the method based on global Jensen-Tsallis similarity due
to its lower computational cost, as each frame has to be only compared with
the mean histogram, while the rest of measures require the comparison with
all the other frames in the shot.

• We have presented two different approaches to quantify the information
content of an image taking into account the spatial distribution of pixels.
In the first approach, entropy rate, excess entropy, and erasure entropy have
been used to quantify the image information from the vicinity of pixels and,
in the second approach, an information channel between image regions and
histogram bins has been applied to study the difficulty of extracting the
information of an image. The measures have been applied to several synthetic
and natural images, analyzing, in the latter case, the behavior of the measures
under several types of image effects. Results show that entropy rate and
erasure entropy obtain high values for images with high variability and low
spatial structure, while excess entropy and partitional information show a
complementary behavior.
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7.2 Future work

The ideas presented in this thesis can be expanded in different directions.

• In document classification,

– we will study the performance of the similarity measures presented in
Chapters 3 and 4 for other typologies of documents, such as scientific
papers or journal pages.

– we will analyze the behaviour of several Rényi-based generalizations
of mutual information to calculate the similarity between scanned
documents.

– we will investigate different learning systems, such as support vector
machine and neural networks, for document classification.

– we will investigate whether the proposed measures for the video shot
detection can be adapted to the classification of document images.

• In video processing,

– we will more deeply investigate the performance of the proposed
measures in Chapter 5 for video shot detection. In particular, we
will investigate the performance of Tsallis mutual information and
Jensen-Tsallis divergence for several image resolutions.

– we will investigate how and why different measures have a different
behavior on shot detection, for videos with different characterizations.

– we will analyze the use of Tsallis entropy-based measures to deal with
gradual transitions in the context of shot boundary detection.

– we will investigate whether the proposed measures for the classification
of invoice images can be adapted to video shot detection.

– with respect to the color spaces, we will analyze the relationship between
the correlation of the color components and their discriminatory capacity.

– we will investigate new strategies for keyframe selection taking into
account the variability within a shot and the similarities between
keyframes of different shots and to compare the automatic keyframe
selection with a manual selection.

– all parameters are determined heuristically. Some of them could be more
robustly obtained, by creating links between them and other parameters
used.

• In image informativeness,

– we will investigate the performance of the measures proposed in
Chapter 6 to automatically adjust different camera effects such as focus,
contrast or sharpness.



94 Chapter 7. Conclusions and future work

– we will apply the presented measures as descriptors for document and
image classification.

7.3 Publications

Publications that support the contents of this thesis:

• "Tsallis Mutual Information for Document Classification", Marius Vila, Anton
Bardera, Miquel Feixas, Mateu Sbert. Entropy, vol. 13, no. 9, pages 1694-1707,
2011.

• "Tsallis entropy-based information measure for shot boundary detection and
keyframe selection", Marius Vila, Anton Bardera, Qing Xu, Miquel Feixas, Mateu
Sbert. Signal, Image and Video Processing, vol. 7, no. 3, pages 507-520, 2013.

• "Analysis of image informativeness measures", Marius Vila, Anton Bardera,
Miquel Feixas, Philippe Bekaert, Mateu Sbert. IEEE International Conference
on Image Processing pages 1086-1090, October 2014.

• "Image-based Similarity Measures for Invoice Classification", Marius Vila, Anton
Bardera, Miquel Feixas, Mateu Sbert. Submitted.
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