
Universidad Autónoma de Barcelona

Escuela Técnica Superior de Ingeniería

Departamento de Informática

Coscheduling Techniques for

Non-Dedicated Cluster Computing

Memoria presentada por Francesc Sol-

sona Tehàs para optar al grado de

Doctor en Informática

Barcelona, Mayo de 2002



Coscheduling Techniques for

Non-Dedicated Cluster Computing

Memoria presentada por Francesc Solsona Tehàs para op-

tar al grado de Doctor en Informática por la Universidad

Autónoma de Barcelona. Trabajo realizado en el Depar-

tamento de Informática de la Escuela Técnica Superior de

Ingeniería de la Universidad Autónoma de Barcelona, den-

tro del programa de doctorado “Arquitectura de Computa-

dores y Procesamiento Paralelo”, bajo la dirección del Dr.

Porfidio Hernández Budé.

Barcelona, Mayo de 2002

Vo. Bo. Director de Tesis

Fdo. Porfidio Hernández Budé



Deseo expresar mi agradecimiento al Dr. Porfidio Her-

nández Budé por su magistral dirección y constante de-

dicación a la supervisión del trabajo.

A Francesc Giné, por su ayuda y colaboración en varias

fases del trabajo. A Concepció Roig, que habiendo coinci-

dido en la realización de la Tesis ha sido en todo momento

un importante punto de apoyo. Y en general a toda el área

de Arquitectura del Departamento de Informática de la Uni-

versidad de Lleida.

A Emilio Luque y a todo el grupo de investigación de la

Unidad de Arquitectura y Sistemas Operativos del Depar-

tamento de Informática de la UAB, que gracias a su colab-

oración y apoyo ha sido posible la realización de esta Tesis.

Y como no, a toda mi familia. A mis padres, hermanos, a

mi mujer, Montse y a los pequeños, Sara y Roger, que han

sabido entender en todo momento la dedicación que me ha

supuesto la realización del proyecto.



Abstract

When general-purpose workstations are interconnected by a Local Area Network

(LAN) they form the so-called Network Of Workstations (NOW) or Cluster sys-

tem. This kind of workstation is designed for developing and executing appli-

cations without excessive computing requirements. These applications, named

“local” or “user” in this project, are usually very interactive or I/O bound. Their

execution rarely exceeds the computing power provided by the hardware resources

of the workstation.

Large CPU-bound applications require more complex computer systems. Su-

percomputers and MPPs (Massively Parallel Processors) have been the most widely

used platforms to execute this kind of application. Basically, they are formed by a

large number of Processing Elements (PE) with shared (all the PEs share a global

memory) or distributed memory (a local memory is assigned to each PE). Depend-

ing on the memory access pattern, the applications can be classified as parallel or

distributed. This also differentiates two different research fields, namely parallel

and distributed processing. In the parallel case, communication/synchronization

between processes (located at different PEs) making up parallel applications is

performed through the Shared Memory. In contrast, in distributed processing, as

local memory in one PE cannot be accessed by another one, the remote processes

forming the distributed applications, communicate/synchronize between them by

means of message passing.

The key questions are why not to use the Clusters in distributed processing,

and what the advantages/drawbacks in doing so are. Many researchers work in this

research field of Cluster Computing trying to answer these questions. Apparently,

the workstations are not designed to execute distributed applications efficiently,

but recent advances in their hardware components and the increasing speed of

i



ii

LANs provide the NOWs with performance capabilities ever closer to the that of

the MPPs. Another factor to be mentioned is the constant evolution of different

Distributed Computing Environments (DCE), such as PVM (Parallel Virtual Ma-

chine) and MPI (Message Passing Interface), which are also applicable in Cluster

computing and simplify the design and implementation of distributed applications

for such systems. As a result, the use of NOWs or Clusters in distributed proces-

sing is increasing and with time is becoming more and more popular.

There are important drawbacks to be considered if both distributed and local

applications are executed in parallel in a Cluster system. The performance of

distributed applications depends on the behavior of all their forming processes,

spread over the Cluster nodes, so the performance of distributed applications can

decrease significantly if the nodes (even only one node) of the Cluster are (is)

heavily loaded by local jobs. On the other hand, nodes with large distributed

workload can disturb the local jobs excessively. The local tasks are normally I/O

bounded, so the term “disturb” would mean here: “increase the response time”. If

the local tasks were CPU-bound, “disturb” would mean in this case: “increase the

return time”.

As a consequence of the above commented dissertation, a new research goal

in Cluster computing appeared recently: how to coordinate local and distributed

applications when they are executed in parallel in a Cluster system. We also focus

our research on this area. More precisely, our efforts are centered on constructing

a Virtual Machine over a Cluster system that provides the double functionality

of executing traditional workstation jobs as well as distributed applications effi-

ciently.

The problem is focused on Clusters in which the forming nodes havemul-

tiprocessingcapabilities. If not, no manner of executing distributed and local

applications in parallel would be possible.

Moreover, the execution of local applications (which usually require low aver-

age response times) in the Cluster implies that the operating system of each node

must also betime-sharing. This property attempts to split the CPU time between

all the executing tasks, so the average response time of local tasks can be reduced.

Furthermore, distributed applications with a high (even low) communication de-

gree will be affected if this property is not provided: an excessive delay in the



iii

execution of distributed tasks will not favor the rapid interchanging of messages,

and consequently their performance would be low.

To solve the problem, two major considerations must be addressed:

• How share and schedule the workstation resources (especially the CPU)

between the local and distributed applications.

• How to manage and control the overall system for the efficient execution of

both application kinds.

Coschedulingis the base principle used for the sharing and scheduling of the CPU.

As will be seen later in greater depth,coschedulingis based on reducing the com-

munication waiting time of distributed applications by scheduling their forming

tasks, or a subset of them at the same time. Consequently, non-communicating

distributed applications (CPU bound ones) will not be favored by the application

of coscheduling. Only the performance of distributed applications with remote

communication can be increased withcoscheduling.

Coscheduling techniques follow two major trends:explicit and implicit con-

trol. This classification is based on the way the distributed tasks are managed and

controlled. Basically, inexplicit-control, such work is carried out by specialized

processes and (or) processors. In contrast, inimplicit-control, coscheduling is per-

formed by making local scheduling decisions depending on the events occurring

in each workstation.

Two coscheduling mechanisms which follow the two different control trends

are presented in this project. They also provide additional features including us-

ability, good performance in the execution of distributed applications, simulta-

neous execution of distributed applications, low overhead and also low impact

on local workload performance. The design of the coscheduling techniques was

mainly influenced by the optimization of these features.

An implicit-control coscheduling model is also presented. Some of the fea-

tures it provides include collecting on-time performance statistics and the useful-

ness as a basic scheme for developing new coscheduling policies. The presented

implicit-controlmechanism is based on this model.

The good scheduling behavior of the coscheduling models presented is shown

firstly by simulation, and their performance compared with other coscheduling



iv

techniques in the literature. A great effort is also made to implement the principal

studied coscheduling techniques in a real Cluster system. Thus, it is possible to

collect performance measurements of the different coscheduling techniques and

compare them in the same environment. The study of the results obtained will

provide an important orientation for future research in coscheduling because, to

our knowledge, no similar work (in the literature) has been done before.

Measurements were made by using various distributed benchmarks with diffe-

rent message patterns: regular and irregular communication patterns, token rings,

all-to-all and so on. Also, communication primitives such as barriers and basic

sending and receiving using one and two directional links were separately mea-

sured. By using this broad range of distributed applications, an accurate analysis

of the usefulness and applicability of the presented coscheduling techniques in

Cluster computing is performed.

Another point to mention is that general-purpose workstations do not differ-

entiate between distributed and local jobs. All of these are simply jobs. Con-

sequently, some sort of mechanism for differencing these two kinds of jobs is

considered when new solutions are proposed.

Furthermore, the implementation of the coscheduling techniques may be per-

formed in the user or the system space. So, it is necessary to analyze the main

features the Cluster communication subsystem provides in the design of the cos-

cheduling techniques. Moreover, the scheduling mechanisms (located in the ope-

rating system) of the forming nodes must also be studied. PVM and Linux are

respectively the DCE and the operating system which were used in this project as

base platform. The communication subsystem composed by PVM and Linux and

also the Linux scheduler were accordingly studied in depth.



Contents

1 Introduction 1

1.1 Cluster Systems . . . . . . . . . . . . . . . . . . . . . . . . . . .3

1.1.1 Cluster Components . . . . . . . . . . . . . . . . . . . .7

1.1.1.1 Operating System . . . . . . . . . . . . . . . .8

1.1.1.2 Cluster Networks . . . . . . . . . . . . . . . .10

1.1.1.3 Distributed Computing Environments (DCEs) .11

1.1.1.4 Local Applications . . . . . . . . . . . . . . . .12

1.2 The Coscheduling Concept . . . . . . . . . . . . . . . . . . . . .13

1.2.1 Scheduling Schemes . . . . . . . . . . . . . . . . . . . .13

1.2.2 Coscheduling . . . . . . . . . . . . . . . . . . . . . . .14

1.2.3 Coscheduling Classification . . . . . . . . . . . . . . . .16

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

1.3.1 Explicit-control Coscheduling . . . . . . . . . . . . . . .19

1.3.2 Implicit-control Coscheduling . . . . . . . . . . . . . . .20

1.4 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . .23

1.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . .23

1.4.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . .25

1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

2 Coscheduling Techniques 29

2.1 Explicit Coscheduling . . . . . . . . . . . . . . . . . . . . . . . .31

2.1.1 STATIC Mode . . . . . . . . . . . . . . . . . . . . . . .33

2.1.2 BALANCED Mode . . . . . . . . . . . . . . . . . . . . .34

2.1.3 DISTRIBUTED Mode . . . . . . . . . . . . . . . . . . .37

v



vi CONTENTS

2.1.4 Explicit Synchronization . . . . . . . . . . . . . . . . . .37

2.2 Predictive Coscheduling . . . . . . . . . . . . . . . . . . . . . .39

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . .40

2.2.2 Performance metrics . . . . . . . . . . . . . . . . . . . .43

2.2.3 Local Coscheduler (LC) . . . . . . . . . . . . . . . . . .45

2.2.4 Predictive Coscheduling Algorithm . . . . . . . . . . . .47

2.3 Dynamic Coscheduling . . . . . . . . . . . . . . . . . . . . . . .50

3 Coscheduling Prototypes 53

3.1 Preliminary Concepts . . . . . . . . . . . . . . . . . . . . . . . .54

3.1.1 Analysis of the Communication System . . . . . . . . . .54

3.1.1.1 PVM Layer . . . . . . . . . . . . . . . . . . .54

3.1.1.2 Linux Layers . . . . . . . . . . . . . . . . . . .55

3.1.2 The Linux Scheduler . . . . . . . . . . . . . . . . . . . .58

3.2 DTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

3.2.1 DTS Scheduler . . . . . . . . . . . . . . . . . . . . . . .61

3.2.2 DTS Overhead . . . . . . . . . . . . . . . . . . . . . . .63

3.3 High-Priority Distributed Tasks (HPDT) . . . . . . . . . . . . . .64

3.4 Implicit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

3.4.1 Implicit Coscheduling Overhead . . . . . . . . . . . . . .67

3.5 Predictive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

3.5.1 Predictive Scheduler . . . . . . . . . . . . . . . . . . . .69

3.5.2 Obtaining the current sending/receiving frequency . . . .71

3.5.3 Additional Comments . . . . . . . . . . . . . . . . . . .72

3.6 The Dynamic Version . . . . . . . . . . . . . . . . . . . . . . . .74

4 Experimental Results (Simulation) 77

4.1 Coscheduling Models Evaluation . . . . . . . . . . . . . . . . . .80

4.2 Predictive and Dynamic . . . . . . . . . . . . . . . . . . . . . . .88

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . .92

5 Experimental Results (Implementation) 95

5.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96



CONTENTS vii

5.1.1 Kernel Benchmarks . . . . . . . . . . . . . . . . . . . . .97

5.1.2 Multiprocessor Low_Level Benchmarks . . . . . . . . . .105

5.1.2.1 Communication Benchmarks . . . . . . . . . .105

5.1.2.2 Synchronization Benchmark . . . . . . . . . .106

5.2 Local Workload Characterization . . . . . . . . . . . . . . . . . .106

5.3 Explicit Coscheduling . . . . . . . . . . . . . . . . . . . . . . . .107

5.3.1 IP Interval and Local Overhead . . . . . . . . . . . . . .108

5.3.2 DTS Modes . . . . . . . . . . . . . . . . . . . . . . . . .110

5.4 Explicit versus Implicit . . . . . . . . . . . . . . . . . . . . . . .112

5.4.1 Implemented Environments . . . . . . . . . . . . . . . .112

5.4.2 Distributed Performance . . . . . . . . . . . . . . . . . .113

5.4.3 Local Performance . . . . . . . . . . . . . . . . . . . . .114

5.5 Predictive and Dynamic . . . . . . . . . . . . . . . . . . . . . . .115

5.5.1 NAS Results . . . . . . . . . . . . . . . . . . . . . . . .115

5.5.1.1 Executing Together . . . . . . . . . . . . . . .118

5.5.2 Low Level Results . . . . . . . . . . . . . . . . . . . . .120

5.5.3 Local Tasks Overhead . . . . . . . . . . . . . . . . . . .123

5.5.4 Varying the Message Size . . . . . . . . . . . . . . . . .125

5.5.5 Additional Measurements . . . . . . . . . . . . . . . . .127

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

6 Conclusions and Future Work 135

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

6.1.1 Explicit-control Coscheduling . . . . . . . . . . . . . . .135

6.1.2 Implicit-control Coscheduling . . . . . . . . . . . . . . .137

6.1.3 Additional Conclusions . . . . . . . . . . . . . . . . . . .139

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

A DTS and Linux Command 143

B Additional Results 147

Bibliography 157



List of Figures

1.1 Taxonomy of Parallel Architectures. . . . . . . . . . . . . . . . .3

1.2 Cluster architecture . . . . . . . . . . . . . . . . . . . . . . . . .7

1.3 ApplicationsA1, A2 andA3 . . . . . . . . . . . . . . . . . . . . . 23

1.4 Coscheduling benefits. . . . . . . . . . . . . . . . . . . . . . . .24

2.1 Explicit environment behavior . . . . . . . . . . . . . . . . . . .32

3.1 PVM protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . .55

3.2 PVM message structure (pmsg) . . . . . . . . . . . . . . . . . . . 56

3.3 Linux communication levels. . . . . . . . . . . . . . . . . . . . .56

3.4 sk_buffandpacketstructures. The packet Data area contains the

information to be transmitted. . . . . . . . . . . . . . . . . . . .57

3.5 Linux Scheduler. . . . . . . . . . . . . . . . . . . . . . . . . . .58

3.6 DTS environment. . . . . . . . . . . . . . . . . . . . . . . . . . .61

3.7 Most frequently used Linux structures (and their fields). . . . . . .72

3.8 (a) write_queue and (b) CBL transmission queues. . . . . . . . .74

4.1 SCluster input arguments. . . . . . . . . . . . . . . . . . . . . . .78

4.2 NSTATIONS=4, MRQL=2. (left) SCODE (right) TIMES. . . . . 83

4.3 NSTATIONS=4, MRQL=5. (left) SCODE (right) TIMES. . . . . 87

4.4 SCODE:NSTATIONS=4, MRQL=5, maxm=1. . . . . . . . . . . 88

4.5 MCO.NSTATIONS=4. (left) MRQL=2 (right)MRQL=5. . . . . 90

5.1 EP class A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

5.2 IS class A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

5.3 MG class A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

ix



x LIST OF FIGURES

5.4 FT class T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

5.5 CG class T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

5.6 BT class T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

5.7 SP class T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

5.8 (a) STATIC mode results. (b) local workload overhead. . . . . . .108

5.9 Comparison between the three DTS modes. . . . . . . . . . . . .110

5.10 Execution of the NAS parallel benchmarks. (a) IS (b) MG. . . . .113

5.11 Local Overhead(LO) of local tasks. . . . . . . . . . . . . . . . .114

5.12 IS class A, 4 nodes. . . . . . . . . . . . . . . . . . . . . . . . . .116

5.13 IS class A, 8 nodes. . . . . . . . . . . . . . . . . . . . . . . . . .116

5.14 MG class T and A, 4 and 8 nodes. . . . . . . . . . . . . . . . . .118

5.15 IS and MG, 4 nodes. (a) IS (b) MG. . . . . . . . . . . . . . . . .119

5.16 CG and SP. (b) CG (b) SP. . . . . . . . . . . . . . . . . . . . . .120

5.17 CG, IS and SP. (a) CG (b) IS (b) SP. . . . . . . . . . . . . . . . .121

5.18 Low Level benchmark COMMS2. . . . . . . . . . . . . . . . . .122

5.19 Low Level benchmark SYNCH1. . . . . . . . . . . . . . . . . . .123

5.20 Local Overhead (LO) ofcalcula2. . . . . . . . . . . . . . . . . .124

5.21 Local Overhead (LO) ofcalcula2. . . . . . . . . . . . . . . . . .125

5.22 benchmarks: (a)sinringand (b)sintree . . . . . . . . . . . . . .126

5.23 Varying the message size. . . . . . . . . . . . . . . . . . . . . . .126

5.24 master-slavebenchmark. . . . . . . . . . . . . . . . . . . . . . .127

5.25 master-slaveexecution times (in seconds). . . . . . . . . . . . . . 128

5.26 Explicit vs. Predictive (IS). (a) Distributed Gain (b) LO. . . . . .130

5.27 Explicit vs. Predictive (MG). (a) Distributed Gain (b) LO. . . . . .131

B.1 NSTATIONS=8, MRQL=2. (left) SCODE (right) TIMES. . . . . .148

B.2 NSTATIONS=8, MRQL=5. (left) SCODE (right) TIMES. . . . . .149

B.3 NSTATIONS=16,MRQL=2. (left) SCODE (right) TIMES. . . . .150

B.4 NSTATIONS=16,MRQL=5. (left) SCODE (right) TIMES. . . . .151

B.5 MCO.NSTATIONS=8. (left) MRQL=2 (right)MRQL=5. . . . . . 152

B.6 MCO,NSTATIONS=16. (left)MRQL=2 (right)MRQL=5. . . . . . 153

B.7 CG, FT, BT and SP. Class T, 4 Nodes. . . . . . . . . . . . . . . .154

B.8 CG, BT and SP. Class A, 4 Nodes. . . . . . . . . . . . . . . . . .155



LIST OF FIGURES xi

B.9 CG, BT and SP. Class A, 8 Nodes. . . . . . . . . . . . . . . . . .155

B.10 IS and CG. (left) IS (right) CG. . . . . . . . . . . . . . . . . . . .156

B.11 IS and BT. (left) IS (right) BT. . . . . . . . . . . . . . . . . . . .156

B.12 IS and SP. (left) IS (right) SP. . . . . . . . . . . . . . . . . . . . .156



List of Tables

1.1 PVM versus MPI . . . . . . . . . . . . . . . . . . . . . . . . . .11

1.2 Time-slicing and space-slicing classification. . . . . . . . . . . .14

1.3 Coscheduling Techniques. . . . . . . . . . . . . . . . . . . . . .18

2.1 Relation betweenRLA, PSandLS . . . . . . . . . . . . . . . . . 36

2.2 CMC task field and global variable initializations. . . . . . . . .47

4.1 Simulation Summary. . . . . . . . . . . . . . . . . . . . . . . . .91

5.1 NAS Parallel Benchmarks. Memory: max. resident set size of

each node when the benchmark is executed in 4 nodes.OM: Out

of Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

5.2 IS Execution/Communication times. . . . . . . . . . . . . . . . .100

5.3 MG Execution/Communication times. . . . . . . . . . . . . . . .101

5.4 FT Execution/Communication times. . . . . . . . . . . . . . . .101

5.5 CG Execution/Communication times. . . . . . . . . . . . . . . .102

5.6 BT Execution/Communication times.n: nodes,C: Class. . . . . .102

5.7 SP Execution/Communication times. . . . . . . . . . . . . . . .104

xiii



List of Algorithms

1 Explicit Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . .31

2 Explicit Synchronization Algorithm. . . . . . . . . . . . . . . . .38

3 Local Coscheduler (LC) of nodeN[k]. . . . . . . . . . . . . . . . 45

4 Predictive Coscheduling Algorithm (PCA).S_C≡ T[i].de< MCO.

C_C≡ h. f req> T[i]. f req. . . . . . . . . . . . . . . . . . . . . . 48

5 DTS Scheduler. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Priority Scheduler. Assigns real-time priority to PVM tasks. . . .65

7 ImCoscheduling. Implements the Implicit coscheduling. . . . . .66

8 Functiongoodness(task). . . . . . . . . . . . . . . . . . . . . . . 69

9 Predictive version of the Linux Scheduler. Only the modifications

(addition of Steps 5.1 to 5.3) with respect to the original Linux

Scheduler (Fig. 3.5) are shown. . . . . . . . . . . . . . . . . . . .70

10 Function n_packets(task,queue). . . . . . . . . . . . . . . . . . .71

xv



Chapter 1

Introduction

The studies in [4] indicate that the workstations in a NOW (Network of Work-

stations) are normally underloaded. So, a great number of researchers have been

exploring ways to make better use of the wasted NOWs capacity for parallel com-

puting. As a result, Networks of Workstations have become important and cost-

effective parallel platforms for scientific computation.

Basically, there are three methods of using these CPU idle cycles. The first

area is the analysis, design and development of remote execution facilities,Con-

dor [5], Process Server[6], Sprite[3] and so on.

The second area is task migration [5, 7]. In a NOW, in accordance with the

research by Arpaci [16], the unpredictable behavior of local users may lower the

effectiveness of this method. An alternative is load balancing, which may be ex-

cessively time costly in Cluster computing [34]. In addition, load balancing may

cause subsequent problems, such as redirection of messages (due to the migration

of tasks), and extra overhead and communication traffic in managing and control-

ling the overall system.

The third and last area is job scheduling [8, 49, 18]. This deals with the design

of schedulers, which must ensure the requested interactive behavior of a work-

station. At the same time, this technique attempts to give as many CPU cycles

(including the wasted ones) as possible to parallel tasks.

Job scheduling is the area chosen to tackle the problem, and more specifically

parallel-taskcoschedulingrather than job scheduling.

1



2 CHAPTER 1. INTRODUCTION

In practice, a NOW system is heterogeneous and non-dedicated. These two

unique factors make scheduling policies on multiprocessor/multicomputer sys-

tems unsuitable for NOWs, but the coscheduling principle is still an important

basis for parallel process scheduling in these environments.

The heterogeneity of a NOW can be modeled by using the Power Weight, de-

veloped by Zhang in [50]. Each node making up the Cluster has a value (the power

weight) between [0..1] assigned. This value represents the execution speed with

respect to the fastest node in the system. Nevertheless, the non-dedicated feature

means that two issues must be addressed, these being how to coordinate the si-

multaneous execution of the processes forming a parallel application, and how to

manage the interaction between parallel and local user jobs. Combining parallel

and sequential workloads on a non-dedicated Cluster system, with reasonable per-

formance for both kinds of computation is an open research goal. Efforts in this

project have been focused on the proposal of new solutions in this research field.

To define the problem to be solved, a more accurate study of the Cluster sys-

tems must be performed. Section 1.1 presents the location of NOWs inside a ge-

neral classification of parallel architectures together with their principal features.

The coscheduling principle is defined in section 1.2. The different kinds of

coscheduling are also presented in this section.

An in depth study of the state of the art is performed in section 1.3. Special

attention is given to the coscheduling techniques which consider simultaneous

executions of various distributed applications jointly with local or user workload.

Next, by means of a simple example, the reason for using coscheduling in

Cluster computing is demonstrated (in section 1.4). After presenting the most

relevant work in coscheduling and one specific motivation example, the main ob-

jectives of this project can be more easily understood. The presentation of the

main aim as well as the detailed objectives of this thesis occupy the last part of

this section.

Finally, the remaining contents of this project are presented in the Overview

section (section 1.5).



1.1. CLUSTER SYSTEMS 3

1.1 Cluster Systems

A taxonomy of parallel systems, done by Tanenbaum in [36], is shown in Fig. 1.1.

Here, the location where the Clusters are can be observed.

Array processor
Distributed Memory
DSM: Distributed Shared Memory

MPP

MISD

Vector processor

SISD SIMD MIMD

Parallel computer architectures

NOW/COW

MULTICOMPUTERSMULTIPROCESSORS
Shared Memory

CCECMS

Beowulf (dedicated) NOW (non dedicated)

Figure 1.1: Taxonomy of Parallel Architectures.

The first level of the Tanenbaum taxonomy (see Fig. 1.1) is based on Flynn’s

classification of parallel computers.

Flynn used the concepts “instruction” and “data” stream as base terms for

classifying the different kinds of architecture. Each Instruction stream has an

associated Program Counter. A data stream consists of a set of operands. For

example, SISD is the acronym of Single Instruction stream Single Data stream

and corresponds to the classic Von Newman’s Machine. We are interested in the

MIMD (Multiple Instruction stream Multiple Data stream) category. In this case,

multiple processes will execute in parallel by using various data sets. This is the

branch where the NOWs are located, so the rest of Flynn’s classification will not

be considered henceforth.

The MIMD classification includes Multiprocessors (shared-memory machines)

and Multicomputers (message-passing machines). Multiprocessor classification is

based on the way the shared memory is implemented in them. Accordingly, no

more comments nor explanations about Multiprocessors are necessary.



4 CHAPTER 1. INTRODUCTION

The Multicomputers are divided into MPPs (Massively Parallel Processors)

and NOWs/COWs (Network/Cluster Of Workstations). The MPPs are expensive

Supercomputers consisting of many CPUs “tightly coupled” by a high-speed in-

terconnection network. The Cray T3E and IBM SP/2 are two well-known exam-

ples. NOWs, which are also named COWs, consist of regular PCs or workstations

“thinly coupled” by commercial off-the-self interconnection technology.

Since the early 1980s, a particular trend in parallel computing is to move away

from specialized platforms (such as MPPs) to general purpose systems, and espe-

cially to Cluster systems [74].

The most interesting comment to be made before introducing the NOWs is

that they are based on distributed memory (see Fig. 1.1). However, some devel-

oped environments for distributed-memory systems implement the so-called DSM

(Distributed Shared Memory). DSM allows the execution of shared-memory ap-

plications in distributed memory systems. These environments are discarded be-

cause we are interested in pure message-passing communication systems.

Distributed computing is a more accurate terminology for parallel compu-

ting in Cluster systems. Message passing is the paradigm used in communicat-

ing/synchronizing distributed tasks and no semaphores or shared memory utili-

ties like those in parallel computing are used. This can be a drawback because

to date, the most important work and research was been performed for shared-

memory parallel applications. Furthermore, applications designated for serial sys-

tems are more easily migrated to parallel systems than distributed ones, because

both serial and parallel systems use the shared-memory paradigm for communica-

tion/synchronization. Distributed applications use message passing instead. Re-

searchers have made a great effort investigating automatic tools (i.e. interpreters

and compilers) for migrating applications from shared to distributed memory sys-

tems, but a lot of work still remains to be done in this area.



1.1. CLUSTER SYSTEMS 5

Definition of Cluster: a "Cluster" is a local computing system comprising a set

of independent computers and a network which interconnects them. The

constituent computer nodes are general purpose workstations and the inter-

connection network usually employs an isolated local area network (LAN).

A "Beowulf-class system" ([61]) is a dedicated Cluster which is generally com-

posed of personal computers (PC), integrated by local area networks (LAN), and

normally hosting an open source Unix-like operating system in each node. Non-

dedicated Clusters are also referenced as NOWs (Network Of Workstations) or

simply Clusters.

In our case, the system used (for implementing and testing the coscheduling

techniques presented in this thesis) is a NOW or Cluster. The system is non-

dedicated because we are interested in executing in parallel user (local or interac-

tive) as well as distributed applications.

The NOWs can be also divided between Cluster Management Software (CMS)

and Cluster Computing Environments (CCE). The difference between CMS and

CCE is that in the first, the addition of new functionality to the NOW is per-

formed without modifying the operating system of the component nodes (addi-

tions/modifications are made in the user space). Instead, the CCE term usually

serves to designate NOWs where the operating system incorporates parallel (dis-

tributed) facilities and services (additions/modifications are made in the system

space). As will be seen, our work deals with both kinds of NOW.

The increasing use of Cluster systems in distributed computing is due to many

factors. The most important ones are mentioned below:

• Continuous advances in high speed networks, microprocessor and compo-

nent performance. Furthermore, the ratio between performance and price

overtakes the contemporary Supercomputers.

• Commercial hardware and software technologies can also serve in high per-

formance computing using Cluster systems. As a consequence, their acqui-

sition does not require the heavy investment of the Supercomputers.

Exactly what attributes a Cluster system should possess is still an open question.

The most desirable features a Cluster should provide are listed below:



6 CHAPTER 1. INTRODUCTION

• Stability: the most important characteristics are robustness against crashes

of nodes (or processes) and usability under heavy load.

• Performance: bandwidth and latency of the interconnecting network, as

well as memory management, process scheduling, I/O and communication

protocols of each component node, should be as efficient as possible.

• Scalability: the scalability of a Cluster is mainly influenced by the pro-

vision of the contained nodes (i.e. maximum number of processes, user

addressable space and so on). Also, the performance characteristics of the

interconnection network have an important influence on scalability.

• Support: unlike large Supercomputers, the support cost of any Cluster is

normally much lower because Cluster components are developed for the

commercial and consumer computer markets.

• Heterogeneity: a Cluster system does not necessarily consist of homoge-

neous hardware and software. It can be made up of different kinds of nodes

(PCs, workstations, even Supercomputers), operating systems (Unix, Win-

dows, NT Windows and so on), etc ...

Another kind of distributed computing is Metacomputing. Metacomputing sys-

tems must be able to handle heterogeneous computer systems, wide area distribu-

tion, heterogeneous data, multiple user identities, and multiple security systems.

Basically, differences between Cluster computing and Metacomputing are in the

kind of network used in interconnecting the forming nodes. Usually, Cluster com-

puting deals with NOWs, whose interconnection network is a LAN. Meanwhile,

the term Metacomputing is associated to LANs which are also interconnected by

means of WANs (Wide Area Networks). Thus, Metacomputing is a more generic

term than Cluster Computing. For example, in addition to the problems of Cluster

Computing, Metacomputing also includes user verification, and security control

and maintenance. The work presented in this thesis is centered exclusively in

Cluster Computing.



1.1. CLUSTER SYSTEMS 7

1.1.1 Cluster Components

The main components of a Cluster system are studied next separately. This study

is necessary for understanding the terminology used throughout this document.

Figure 1.2 shows the scheme of the general resources making up a Cluster sys-

tem. Particular features of the Cluster used in the implementation of the different

coscheduling techniques presented in this document appear in parenthesis. A par-

ticular characteristic (not shown in the figure) is that the nodes making up the

Cluster are uniprocessor.

Cluster (8 nodes)

(PC with Linux o.s.)

(TCP and UDP / IP)

HW

PC / Workstation
Operting System

Network Topology

Network Interface

(kernel version 2.2.15)

(Intel Fast Ethernet board)

Distributed ApplicationsLocal, User or Sequential Applications
(NAS parallel and synthetic benchmarks)(synthetic applications, system daemons, etc ...)

High Speed Network/Switch (Fast Ethernet: 100Mbps, min. averaged latency of 0.1ms)

Distributed Environments, i.e. PVM and MPI (PVM version 3.4.3)

Figure 1.2: Cluster architecture

One of the most important Cluster components is the Operating System run-

ning in each Cluster node. Special attention is paid to the Linux o.s., this being

the one chosen for this project.

Three Cluster Network Topologies are also commented on. The first one is

the Internet Protocol, which is the kind of network used in this project. The other

two are Active Messages and Fast Messages. As we will see later, Active and

Fast Messages were used in implementing the two most important coscheduling

techniques we based this project on.

The most commonly used Distributed Computing Environments (DCE) in

Cluster computing are PVM (mainly used in this project) and MPI. Their prin-



8 CHAPTER 1. INTRODUCTION

cipal features and differences are also presented in this section.

Finally, the final part of this section contains the definition and some additional

comments about the local applications.

1.1.1.1 Operating System

We are interested in investigating non-dedicated Clusters. This is, the study of the

efficient use of Cluster systems for executing both distributed and user (interactive

or local workload) applications simultaneously. So, based on that and taking into

account the Cluster definition, the list of requirements the underlying o.s. must

provide are as follows:

• Multiprocessing or multiuser capabilities: multiple execution of different

processes (or users) must be allowed. If not, only serial execution would

be possible. In a multiuser system, each process belongs to a user. Fur-

thermore, each user has an specific environment (i.e. file system directory,

rights, environment variables and so on), which serves for controlling sys-

tem security and managing resource accounting. The environment is asso-

ciated and reset for the permitted user in the login phase (when entering the

system).

• Time-sharing: this feature guarantees rapid response time for interactive,

I/O-bound, or even message passing intensive applications. If time-sharing

were not provided by the underlying o.s., most of both distributed and local

applications would perform poorly when various of them were executed

in parallel. Normally, time-sharing is accomplished by using some sort of

Round-Robin scheduler policy, which is based on repeatedly assigning a

maximum execution time slice (quantum) to each process.

• Extensibility: the o.s. should allow the integration of coscheduling me-

chanisms and Cluster-specific extensions. For example, as we will see,

some modifications to the original scheduler (in the kernel space) will be

performed on the implementation of a new coscheduling technique. Also,

some specific system information (for example, number and size of buffered

communicating messages) which is not reported by the original system will



1.1. CLUSTER SYSTEMS 9

be accessed in doing so. Thus, new extensions to the o.s. must be easily

incorporated.

• Usability: an absolute necessity is remote system administration. For exam-

ple, some initial configuration should be performed by scripts which access

nodes remotely. If remote access was not available, it must be performed

manually, thus leading to hard, tedious work.

In this thesis, and principally in the implementation sections, comments and as-

sumptions are mostly based on Linux [62, 63, 65, 66, 64]. Also, this was the

o.s. chosen for implementing the coscheduling techniques in each Cluster node

because Linux fulfils the above commented requirements and also for five addi-

tional reasons:

1. It is free.

2. It is an open source operating system: anyone is free to modify or customize

the kernel for their own specific needs. This means that it can incorporate

I/O optimizations, such as specialized drivers for new high-speed networks.

3. Research and development focus: Linus Torvalds started a personal project

aimed at extending the MINIX o.s. [67]. He converted it into a UNIX re-

ply. Nowadays, Linux is still an incomplete project. From its public launch

in 1991, it has undergone a continuous and rapid evolution because many

scientists base their research on this o.s.. As a consequence, extensive doc-

umentation is available nowadays as well as s/w and h/w resources adapted

to it.

4. Acceptance: there is a growing acceptance in the last years over a great

range of computer systems (specially in PCs or Workstations). Also, com-

puter firms trust more and more in Linux as a base platform for developing

their applications or components. Since its initial development for the Intel

processors, it has been ported to other processor families as for example

SPARC, Alpha and MIPS.

5. For historic reasons: Donald Becker selected Linux for the original Beowulf

Cluster and thus, Beowulf-derived systems have also used Linux.



10 CHAPTER 1. INTRODUCTION

1.1.1.2 Cluster Networks

There are a broad range of interconnection technologies available for Cluster com-

puting. So, only the ones referred to or used in the document are commented on.

Internet Protocol: The Internet Protocol (IP) [71] is thede factostandard for

networking worldwide. IP offers messaging service between two comput-

ers that have an IP address. The Transmission Control Protocol (TCP) [70]

and the User Datagram Protocol (UDP) [69] are both transport layer pro-

tocols built over the Internet Protocol. TCP (or TCP/IP) offers a reliable,

connection-oriented service between two hosts on a network. UDP is an un-

reliable, connectionless transport layer service. The de facto standard BSD

sockets is the most common Application Programmer’s Interface (API) for

TCP and UDP. Traditionally, TCP and UDP protocols are typically imple-

mented using operating system services and one or more buffers in main

memory.

The most important drawback in the use of TCP(UDP)/IP is that as net-

work hardware became faster and faster, the overhead of the communication

protocols remains significantly larger than the actual hardware transmission

time for messages. That is, the operating system latencies in sending mes-

sages, have not evolved as rapidly as the network ones.

Active Messages:messages in Active Messages [24] are synchronous: each mes-

sage contains the address of a user-level handler at its head. The handler is

executed on message arrival. The role of the handler is to get the message

out of the network and to yield it to the corresponding process. Like a tradi-

tional pipeline, the sender blocks until the message can be injected into the

network and the handler executes immediately on arrival. Then, the handler

will transfer the message from the network to the receive buffer, in the user

memory.

The main advantage of Active Messages is that no buffering in system

memory is performed.

Fast Messages:Fast Messages [72] was developed at the University of Illinois.

It is a very similar protocol to Active Messages. Fast Messages extends



1.1. CLUSTER SYSTEMS 11

Active Messages by guaranteeing that all messages arrive reliably and in-

order, even if the underlying network hardware does not. It does this in

part by using flow control to ensure that a fast sender cannot overrun a slow

receiver, thus causing messages to be lost.

Authors assure that Fast messages provides MPP-like communication per-

formance on workstation Clusters.

1.1.1.3 Distributed Computing Environments (DCEs)

A DCE (Distributed Computing Environment) is a high-level message passing

system, used for developing, executing, testing and controlling distributed appli-

cations.

Currently, the two most popular DCEs are thede factostandard PVM [30] (Pa-

rallel Virtual Machine), from the Oak Ridge National Laboratory and the standard

MPI [32, 33] (Message Passing Interface), defined by the MPI Forum.

Geist et al. provide an excellent comparison between these two environments

in [31], summarized in Table 1.1.

PVM MPI

Both MPI and PVM run on MPPs and heterogeneous Clusters

virtual machine concept no such abstraction

simple message passing rich messaging support

communication topology unspecified supports logical communication topologies

portability over performance performance over flexibility

robust fault tolerance more susceptible to faults

PVM can only use IP MPI can use a wide range of protocols

contains resource management, load primarily concerned with messaging

balancing and process control primitives

programs in C, C++, or Fortran may interlanguage communication not supported

freely intercommunicate

Table 1.1: PVM versus MPI

We are not interested in any particular environment because we do not want

to modify or improve any of those aspects listed in Table 1.1. Also, the study and

applicability of coscheduling do not depend on the choice of one of them.



12 CHAPTER 1. INTRODUCTION

However, PVM has more resource management facilities (such as the console)

and task management capabilities. These facts simplify enormously the use and

control of the overall system and as we will see, they also have an important role in

the implementation of new coscheduling mechanisms. Consequently, PVM was

finally the chosen distributed computing environment.

1.1.1.4 Local Applications

Different kinds of applications can be executed in a Cluster. We only distinguish

between distributed and local ones. Distributed applications are formed by one

or various distributed tasks. This is also true for local applications. The main

difference between them is that all the local tasks making up a local application

reside in one unique node. On the contrary, distributed tasks making up distributed

applications can reside in different nodes. So, remote (only local) communication

or synchronization between distributed (local) tasks may occur.

Throughout this document the local applications are denoted as local, user or

interactive workload. Also, the term “workload” will be used to denote the local

tasks residing in a particular Cluster node.

The term “workload index” will be used to quantify the number of local tasks

residing in each Cluster node. A wide variety of workload indices have been used

in the literature [53, 54, 55]. From among, the Ready to run Queue (RQ) length

was chosen. This was decided because the work done by Ferrari [54] shows, by

a wide range of experimentation, that the length of the RQ is a good index for

measuring the load of a workstation.

Ferrari compared various workload indices. First, he differentiated the ones

based on resource utilization and the ones based on resource queue length. Various

resources were considered: the CPU, Main Memory (MM) and I/O (the different

disk queues were treated as a single I/O queue). It was shown that resource uti-

lization cannot reflect the load level exactly. As an example, a resource with an

average queue lengths of 3 and 6, probably has a utilization close to 100%, while

they are obviously very differently loaded. Also differences in workload indices

based only on CPU queue length and those considering also I/O and MM queue

lengths gave very close values. He also proved that the CPU is the most predom-



1.2. THE COSCHEDULING CONCEPT 13

inant resource. The conclusion is that the average RQ length is a good workload

index.

In [55], using a synthetic, executable workload, the experiments were con-

ducted to determine the effect of different load indices. It was also shown that

by using a simple workload descriptor, such as the number of tasks in the ready

queue, one can achieve an equal or better performance compared with more com-

plex load descriptors.

In this project we are interested in observing the interaction between the dis-

tributed and local workloads. A wide range of distributed applications (i.e. syn-

thetic and well known benchmarks) will form the distributed workload. Instead,

the local or user workload characterization in each node of the Cluster is carried

out by means of running synthetic applications, which perform basically floating

point operations indefinitely (or a variable number of times). Taking into account

the work done by Ferrari, it is a good characterization of the workload because

the key question is based on varying the mean RQ length (and this way, the work-

load). Furthermore, it is more helpful in obtaining and comparing performance of

the different proposed environments because the workload is not a variable factor

to be taken into account (it can be fixed at a predetermined value).

1.2 The Coscheduling Concept

1.2.1 Scheduling Schemes

Parallel/Distributed scheduling is usually decomposed into two independent steps.

The first step, space slicing, determines the mapping of a parallel/distributed ap-

plication into a set of processors. The second step, time slicing (or time sharing),

dispatches those allocated processes over time.

A comprehensive classification of the scheduling techniques for multipro-

grammed parallel systems was done by Feitelson in [13]. It was based on the

way the computing resources are shared: space slicing, time slicing, or both. Ta-

ble 1.2 shows a more reduced Feitelson’s scheme with one or two examples of real

systems for each particular case. On the time slicing axis, the main distinction was

made between mechanisms that operate independently in each PE (Processor Ele-



14 CHAPTER 1. INTRODUCTION

ment) andGang scheduling(defined later), that handles a group of PEs as a single

unit. Mechanisms for independent PEs are further divided into those that use lo-

cal queues (requiring processes to be mapped to PEs before their scheduling), and

those which use a shared global queue.

time slicing
yes no

space independent PEs gang
slicing global queue local queues scheduling

yes Mach Paragon, Meiko, Medusa, SGI, IBM SP2,

no IRIX on SGI, StarOS, Payche, MasPar MP2 Illiac IV

Table 1.2: Time-slicing and space-slicing classification.

As can be seen in Table 1.2, the first and second scheduling steps are indepen-

dent. We focus on the second step of time slicing processes over time. Thus, no

more space slicing techniques will be considered.

One of the most popular time slicing mechanisms isGang scheduling ([2]).

Gang schedulingis based on the preemptive and simultaneously scheduling of a

certain set of processes (or threads) on distinct PEs, with a one-to-one mapping

of threads to PEs. Thus, it requires coordinated context switching across the PEs,

which is harder to implement than independent context switching. Basically, the

benefits are reached when the overhead of frequent context switching is saved and

the need for buffering during communication is reduced.

Gang schedulingis gaining in popularity, and an increasing number of com-

mercial systems provide gang scheduling. Some examples of real implementa-

tions in different computer systems are: Medusa, SGI, Butterfly, Tera, Cray T3E,

Meiko CS-2, Intel Paragon, CM-5, Cedar, IBM SP2 and so on.

1.2.2 Coscheduling

In gang scheduling (coscheduling’s ancestor) all the threads in a job are scheduled

and de-scheduled at the same time, so threads composing jobs should be known

in advance. This information, in distributed systems like Clusters or NOWs, is

very difficult to obtain (or maintain). The alternative is to identify them during



1.2. THE COSCHEDULING CONCEPT 15

execution [12]. Furthermore, if the processes synchronize with each other at fine

granularity, it would be beneficial to schedule just some of them simultaneously,

leading tocoschedulingrather than gang scheduling.

Coschedulingwas originally defined by Ousterhout in [2] to describe systems

where the operating system attempts to schedule a set of processes simultaneously

on distinct PEs, as in gang scheduling, but if it cannot, then it resorts to scheduling

only a subset of the processes simultaneously.

Another interesting and perhaps a bit more self-contained definition, by Feit-

elson in [12], is as follows:Coschedulingensures that no process will wait for a

non-scheduled process for synchronization/communication and will minimize the

waiting time at the synchronization points.

In a Cluster or NOW system, coscheduling is applied to reduce message wai-

ting time (by synchronizing tasks composing fine grained distributed applications

-those with a high communicating degree-).

The distinction between gang scheduling and coscheduling is subtle but signi-

ficant. Coscheduling is a variant of gang scheduling that does not guarantees that

all the processes (or threads) making up a distributed (or parallel) application will

always run simultaneously.

A gang feature (derived from the above mentioned distinction) which also dif-

ferentiate those mechanisms is that gang scheduling allows guarantees about the

performance to be given. This is so because applications execute in an environ-

ment that is essentially the same as a dedicated machine, except for some addi-

tional overheads. Coscheduling, on the other hand, has unknown performance

implications. If the application processes are largely independent, they can make

progress even if the whole gang is not scheduled. Coscheduling can be performed

between groups of processes which form the gang. In this case, coscheduling can

be highly beneficial.

Researchers in this area have shown that coscheduling can offer good per-

formance, although the literature demonstrates that coscheduling is critical for

parallel programs in order to achieve acceptable performance. The key question

is how coscheduling techniques must combine parallel and sequential workloads

with reasonable performance for both computation kinds.



16 CHAPTER 1. INTRODUCTION

1.2.3 Coscheduling Classification

The coscheduling techniques follow two control-based trends:

• Explicit-control coscheduling: in explicit-control coscheduling, cooper-

ating components (i.e. specialized nodes or processes) explicitly contact

other local or remote components for control or state information. They are

responsible for making decisions and controlling the overall system.

Another level of classification was indicated by Poovendran in [20]. Explicit-

control coscheduling may be accomplished statically with the provision of

a global scheduler responsible of making decisions in advance, or dynami-

cally, where decisions are made at each context switch. In the last case,

controlling and information interchange must be performed between the

processes or nodes responsible for implementing explicit-control cosche-

duling in a distributed manner.

• Implicit-control coscheduling: in implicit-control coscheduling, compo-

nents infer remote state by observing naturally-occurring local events and

their corresponding implicit information, i.e., incoming (outgoing) mes-

sages to (from) a Cluster node, local workload, etc...

It deals with implicit information: each node in the Cluster acts according

to the interpretation of some sort of event, and determining from this the

convenience for coscheduling processes with other cooperating distributed

tasks.

Implicit-control simplifies the construction of distributed system services. Com-

ponents neither query nor control remote components in their actions. Thus, an

implicit-control system does not contain additional communication beyond that

which is inherent in constructing the service.

Unlike implicit-control coscheduling, explicit-control techniques provide a

means for controlling the overall system, and information concerning the global

behavior must be maintained, thus more accurate decisions can be taken. The

drawback is in the overheads introduced in the addition of (information and con-

trol) message exchanging between the processes that implement the mechanism.



1.3. RELATED WORK 17

The choice between explicit or implicit-control coscheduling mechanisms de-

pends on the requirements of the final distributed system.

1.3 Related Work

Researchers and efforts in coscheduling have grown continuously since their ori-

gin. Nowadays, it still remains as an open question. As a consequence of such

research work, many tendencies have arisen or are being developed. So, an accu-

rate study of the state of the art must be performed.

Feitelson and Rudolph in [11], compared the performance of gang scheduling

using busy-waiting synchronization to that of independent (uncoordinated) time

sharing using blocking synchronization. They found that for applications with

fine-grain synchronization, performance could degrade severely under uncoordi-

nated time sharing when compared with gang scheduling. In an example where

processes synchronized about every 160µs on a multiprocessor with 4-MIPS pro-

cessing nodes, applications took roughly twice as long to execute under uncoor-

dinated scheduling as they did under gang scheduling.

Another interesting study was performed by Crovella et al. in [8]. They

showed that independent time sharing without regard for synchronization pro-

duced significantly greater slowdowns than coscheduling. Chandra et al. have

reported similar results in [10]: in some cases independent time sharing is as

much as 40% slower than coscheduling.

In general, the results cited above agree with the claims advanced by Ouster-

hout in [2]: under independent time sharing, multiprogrammed parallel job loads

will suffer large numbers of context switches, with attendant overhead due to

cache and TLB reloads. The extra context switches result from attempts to syn-

chronize with de-scheduled processes.

As was mentioned in section 1.2, the coscheduling techniques follow two ma-

jor trends: explicit and implicit control. Moreover, the coscheduling techniques

studied (from the literature) and the ones presented in this document are located

in one of these two categories. So, the study of the previous work, developed

in this section, attempts to separate the main coscheduling contributions to date

according to this classification.



18 CHAPTER 1. INTRODUCTION

Table 1.3 resumes the most relevant work done in coscheduling to date, and

presented later in this section.

The table is split into two parts. In the upper part, a classification of the most

important explicit and implicit-control techniques is given. In the bottom part,

the main features of each model are listed. It summarizes schematically the main

differences between the models. The abbreviations used are the following: Y -

Yes; N - No;φ - no observations have been made. DCE - used Distributed Com-

puting Environment (S: Simulated); OS - Operating System; P - Protocol (IP:

TCP(UDP)/IP, AM: Active Messages, FM: Fast Messages); N - Network type (* -

the coscheduling model was based on this kind of network); V - simultaneous ex-

ecutions of Various distributed applications considered; L - Local tasks starvation

considered.

Classification

explicit A SONiC [15]
control B self coordinated local scheduler [49]

C buffered coscheduling [23]
D ticket coscheduling [22]

implicit E implicit coscheduling [16, 17, 18, 19, 20, 21]
control F demand-based (dynamic) coscheduling [28, 29]

Properties
DCE OS P N V L Based on

A SONiC Mach IP φ Y N priority

B S *UNIX SVRC IP φ Y Y priority

C S φ φ *Myrinet, Y N buffering and scheduling

*Switched commnication messages

D S φ φ *Switched Y Y assigning execution tickets

E MPI Solaris AM Myrinet N N spin-block on blocking recv

F MPI Solaris FM Myrinet Y Y preemption in favour to

receiving tasks

Table 1.3: Coscheduling Techniques.



1.3. RELATED WORK 19

1.3.1 Explicit-control Coscheduling

In [15, 49] two variants of explicit-control coscheduling were implemented.

In [15] a Mach-based scheduling server was developed. It allows for parti-

tioning a workstation among parallel and interactive tasks. This server is an inte-

gral part of SONiC, the “Shared Objects Net-interconnected Computer”. SONiC

implements an object-based distributed shared memory and remote execution ser-

vices and allows for execution of parallel programs in workstation environments.

The scheduling server relies on Mach’s fixed-priority scheduling policy and it is

based on giving as many CPU cycles as possible to parallel tasks. By manipulating

task priorities it overrides the operating system scheduler. The main contribution

was that in contrast with other “remote execution systems”, SONIC does not have

to be restricted to the use of only purely idle workstations.

X. Du [49], based on the coscheduling principle, implemented the so-called

"self-coordinated local scheduler", which guarantees the performance of both lo-

cal and parallel jobs in a NOW by a time-sharing and priority-based operating

system. The scheme can be applied to schedule multiple parallel jobs. Each local

scheduler adjusts the execution rate of a parallel process. The coordination of pa-

rallel processes is performed independently in each workstation. The priority of

the processes was varied according to the power usage agreement between local

and parallel jobs. The effectiveness of this method was demonstrated by means of

simulation.

Another variation of explicit-control coscheduling is Buffered Coscheduling

[23]. Instead of synchronizing distributed applications, the messages are buffered

and delivered later, thus reducing the need to coschedule communicating tasks.

The communication generated by each processor is buffered and performed at the

end of regular intervals (or time-slices) in order to amortize the communication

and scheduling overhead. By delaying communication, a global scheduling of the

communication pattern can be performed. Next, a strobing mechanism performs a

total exchange of control information at the end of each time-slice in order to move

from isolated scheduling algorithms to more global system scheduling algorithms.

An important advantage of Buffered Coscheduling is that, instead of overlap-

ping computation with communication and I/O within a single parallel program,



20 CHAPTER 1. INTRODUCTION

all the communication and I/O which arise from a set of parallel programs can be

overlapped with the computations of the overall programs. However, additional

overhead should be introduced because an explicit manipulation of messages must

be done.

Although no real implementation has been performed yet, the obtained simu-

lation results make this a technique to be considered. Also a more accurate study

of how the messaging delay affects performance of the communicating tasks must

be done.

1.3.2 Implicit-control Coscheduling

In [28], Sobalvarro introduced the concept ofdemand-basedcoscheduling, a new

approach to scheduling parallel computations on time-shared multiprogrammed

multiprocessors. Underdemand-basedcoscheduling, processes are scheduled si-

multaneously only if they communicate; communication is treated as a demand

for coordinated scheduling. Also, it indicated that the programmer would not

even need to identify the processes that constitute a parallel job.

That method does not follow the coscheduling line explained above (in explicit-

control). Indemand-basedcoscheduling, potential coscheduling is detected by the

implicit information (so it follows an implicit-control trend) between communi-

cating processes; avoiding not only the need to implement a system controller, but

also extra communication traffic, and fault tolerance problems. Sobalvarro divided

demand-basedcoscheduling betweenDynamicandPredictivecoscheduling.

Dynamiccoscheduling uses the arrival of a message as a means of signaling

the scheduler that the process to which the message is addressed should be imme-

diately scheduled. In the firstDynamicalgorithm he presented (named theAlways

Scheduledynamic coscheduling algorithm), the reception of a message always

caused a context switch in favor of the receiving task (thus preempting the task

being executed in the CPU). In the most interesting algorithm, the second (named

equalizingdynamic coscheduling algorithm), a mechanism was also provided to

avoid local task starvation, where equal shares of the CPU for both distributed and

local tasks were considered.

In [29], only the execution of theequalizingalgorithm for one distributed ap-



1.3. RELATED WORK 21

plication was evaluated. Due to the limitations of Fast Messages [72] (the user

messaging level where theequalizingalgorithm was implemented), no more than

one concurrent execution of parallel applications was possible.

ThePredictivemethod is based on coscheduling at the same time those pro-

cesses that have recently communicated with each other (the so-called correspon-

dent processes). It deals with detecting these kind of processes implicitly and

efficiently coscheduling them. No previous work in this area has been performed

to date, thus Predictive coscheduling is a new and open research field.

A variation of Dynamic coscheduling, namedImplicit coschedulingin [16,

17, 18], is based on the spin-blocking technique. In this, a process waiting for

messages spins (i.e. performs an empty loop) for a determined time and if the

response is received before the time expires, it continues execution. If not, the

requesting process is blocked and another one is scheduled. In [17], the measure-

ments in a Cluster of 16 workstations showed how multiple competing parallel

jobs can be coscheduled implicitly with good performance. These results hold for

programs that communicate either continuously or in bulk synchronous style, as

well as applications with a mix of communication characteristics.

Dynamic coscheduling, in contrast to Implicit coscheduling, deals with all

message arrivals (not just those directed to blocked processes), thus increasing the

range of potential cases for coscheduling. This produces an important Implicit

drawback because it supposes that multiple executions of distributed applications

cannot be efficiently coscheduled.

In [19], Implicit coscheduling was implemented in the Berkeley Cluster, which

contains 105 workstations with 16-port Myrinet switches. The communication

subsystem in each node was formed by the MPI ([32, 33]) environment MPICH

([27]), and the Abstract Device Interface was implemented by Active Messages

[24] operations. Results obtained in the execution of various NAS kernel bench-

marks ([56]) shown as implicit coscheduling reduced the communication waiting

time in the message passing applications. Their performance was improved by a

factor of as much as 10, reducing the applications slowdown to 1.5 in the worst

case. However, the implications that the gain in message passing applications

produced in the local workload were not studied.

In [20], a mathematical framework for analyzing, interpreting, and extending



22 CHAPTER 1. INTRODUCTION

the extensive simulation results for Implicit coscheduling reported in the literature

was presented. It provided arbitrary distributions for message arrival to distributed

processes, in contrast to previous results, where only uniform ones where taken

into account.

Anglano [21] evaluated different Implicit coscheduling algorithms. Basically,

these algorithms were obtained as a result of combining different coscheduling

strategies based on the spin-block technique explained above. Strategies were

divided between: spin indefinitely, classical block, spin-block (as in [16, 17, 18])

and spin-yield (after spinning, the priority of the receiving process is decreased).

Simulation results showed the importance of coscheduling a receiving process as

soon as possible. But if I/O-bound (or interactive) jobs are present, more complex

strategies are required in order to achieve satisfactory performance for parallel

jobs. The results concerning the performance of local job performance showed

that the worst strategies were those based on pure spin.

Furthermore, Gupta et al. showed similar results in [9]. They had already con-

cluded that the use of non-blocking (spinning) synchronization primitives would

result in even worse performance under moderate multiprogrammed loads be-

cause, while the extra context switches are avoided, the spinning added an im-

portant overhead. Also, the above mentioned work by Feitelson and Rudolph in

[11] corroborates these conclusions.

Anglano reconsidered the situation in [22], motivated by the fact that spinning

does not allow performance of parallel applications to be achieved when various

of them were executed simultaneously with local workload. In that work, he pro-

posed a ticket distribution between users and processes. It is based on distributing

execution tickets to the users depending on the global shared resource require-

ments. The strategy moved thus from implicit to explicit-control coscheduling.

Experiments were performed by simulation. Note that in Cluster computing, re-

source requirements change rapidly, continuously and drastically, so the manage-

ment of the global user requirements, can be very inefficient.



1.4. MOTIVATION AND OBJECTIVES 23

1.4 Motivation and Objectives

1.4.1 Motivation

The necessity and the main goal for coscheduling distributed tasks in Cluster sys-

tems is explained next by means of an example.

Let three intensive message-passing distributed applications beA1, A2 andA3,

and a ClusterC made up of three identical machines,M1, M2 and M3. Each

distributed application is composed of two tasks (i.e.A1 = {A1,1,A1,2}, A2 =
{A2,1,A2,2}, A3 = {A3,1,A3,2}) (see Fig. 1.3), which are also mapped into three

different machines. The Mapping Assignment (MA) for each distributed applica-

tion is: MA(A1) =
{

A1
1,1,A

2
1,2

}
, MA(A2) =

{
A2

2,1,A
3
2,2

}
, MA(A3) =

{
A2

3,1,A
3
3,2

}
,

whereAk
i, j means taskj composing distributed applicationi is assigned to machine

k.

Communication

Computation

tasks Ai,1  and  Ai,2  form distributed application Ai

Comments:

 A

 A 3,1

 A

 A 3,2

 A  A1,1 1,2

2,1 2,2

both computation and communication for each task is 1 time unit

Figure 1.3: ApplicationsA1, A2 andA3

It is assumed that when a distributed task cannot communicate, it only per-

forms its computations and will need another Time Slice for communication.

However, if the distributed task can communicate with its correspondent, it can

perform computation and communication at the same time, because the resources

to do this are different. For simplicity reasons we suppose that each task of every

application needs one unit of time for computation and another time unit for com-

munication.

It is also supposed that there are local tasks in each machine: {LOCAL1
1,

LOCAL1
2} in machineM1, {LOCAL2

1} in machineM2 and {LOCAL3
1, LOCAL3

2}

in machineM3. In this case, notationLOCALk
i indicates local taski executing in



24 CHAPTER 1. INTRODUCTION

machinek. The local tasks in each machine execute jointly with the distributed

ones, but depending on the coscheduling policy, their execution (return) time can

vary significantly.

M3M1M3M2M1

LOCAL1
1

LOCAL1
2

LOCAL1
1

LOCAL1
2

LOCAL 1
2

LOCAL 1
2

LOCAL 1
3

LOCAL3
2

LOCAL3
2

LOCAL 1
3

M2

1,1A1

1,1A1

A2
3,1

remote communicating tasks

IDLE idle CPU

4

3

2

1

7

6

5

4

3

2

1

IDLE

IDLE

IDLE
T (Time, in cycles)

T (Time, in cycles)

MACHINESMACHINES

(a) (b)

A

A

A

A

A

A

A A

A

A1,1A

A

A

1,2
2

2

2

2

2 3

3

3

3

1 2

2

2 3

3
2,1

A 3,1

1,2

2,1

3,2

2,2

3,2 3,1

2,1

3,2

2,2

2,2

1,2

A

A i,j
k distri. appli. i, task j, in node k

Figure 1.4: Coscheduling benefits.

If any kind of coscheduling between communicating tasks is applied (and as

Fig. 1.4(a) shows), the executing time for each distributed application (T (Ai)), is

T (A1) = 6, T (A2) = 7 andT (A3) = 5, and its averaged execution time (TDmean)

is TDmean= 6.

On the other hand, a coscheduling technique based, for example, on increasing

the scheduling priority of distributed applications is used in Fig. 1.4(b). In this

case, the results obtained areT (A1) = 1, T (A2) = 2, T (A3) = 3 andTDmean=
2. The correspondents of each application are coscheduled at the same time in

Fig. 1.4(b), and for this reason an important gain in the distributed applications is

produced.

Note that in the example, when the coscheduling technique is applied, local

tasks, denoted asLOCAL2
1 (in machineM2) andLOCAL3

2 (in machineM3), are

delayed by three and two cycles respectively. To simplify the problem, time is in

cycle units. In real time-sharing systems, each cycle corresponds to some variable

amount of time (often namedTime Slice). In turn, aQuantumis the maximum

Time Slicea process is allowed for executing uninterruptedly in the CPU. Follow-



1.4. MOTIVATION AND OBJECTIVES 25

ing the example, if one cycle is equivalent to aQuantum, it would mean that each

process spends all the maximum allowed time executing inside the CPU each time

it is dispatched. In Linux, the value of the Quantum is 210 ms, and if it is used

as a reference in this example,LOCAL2
1 would be delayed 630 ms. In this case,

the response time (one of the most important system performance indices for lo-

cal applications) ofLOCAL2
1 is not increased excessively, but real coscheduling

techniques may even cause starvation of the local (even distributed) tasks.

This simple example shows us the motivation for implementing coscheduling

techniques, but the observed gain is not always reached. There are many other fac-

tors to be considered, for example, how to obtain the communicating frequency,

avoid local tasks starvation and so on.

1.4.2 Objectives

In Cluster or NOW systems, combining parallel and sequential workloads with

reasonable performance for both computation kinds is an open research goal. Or

in other words, how to build a NOW that runs parallel programs with performance

equivalent to a MPP (Massively Parallel Processor) with the ability to execute

sequential programs like a dedicated uniprocessor, is still an open question to be

solved.

Furthermore, as mentioned at the beginning of this chapter, workstations in a

NOW are normally underloaded. Thus, executing distributed applications in these

systems will lead to making good use of the CPU idle cycles. Consequently, the

use of NOWs in distributed processing is also justified.

Certainly, taking into account these previous comments, the Cluster system

features and the definition of coscheduling, the goals of this thesis will be more

easily understood.

Before going into detail on the objectives of this project, the main and sec-

ondary goals are described in general terms.

Main objective: to execute distributed and local (or user) applications efficiently

in a Cluster of NOW system by applying coscheduling techniques. Efforts

are directed towards understanding coscheduling mechanisms in a Cluster



26 CHAPTER 1. INTRODUCTION

or NOW system when distributed jobs are executed jointly with local work-

loads, balancing parallel performance against the local interactive response.

To carry out this objective, new coscheduling techniques are presented in

this thesis.

Furthermore, various coscheduling mechanisms proposed in the literature were

tested by simulation and some of them were also evaluated in a real Linux Clus-

ter. Comparison of their performance in the same simulator system and in a real

Cluster was thesecond objectiveof this thesis.

These two generic objectives are summarized in the design and implemen-

tation of two new coscheduling techniques (one with explicit and another with

implicit control), which are detailed below.

Explicit-Control: the realization of a real implementation of explicit coschedu-

ling in a NOW is the first objective. We will attempt to ensure that user

of the parallel machine regularly has all the computing power of the NOW

available during a short period of time. The expectation in doing so is to in-

crease the performance of message-passing distributed applications without

excessively damaging the local one.

Our contribution in this field is based on the work carried out in [37, 38,

39], where an explicit-control coscheduling algorithm was implemented in

a PVM-Linux Cluster.

Implicit-Control: the realization of a Predictive coscheduling algorithm in a non-

dedicated Cluster is the second specific aim of this thesis. It consists of cos-

cheduling the sets of correspondent -recent communicated- processes at the

same time. To do so, the correspondents must be known in advance, but in

distributed (i.e. Cluster) systems, this information is very difficult to obtain.

Our proposal is based on the assumption that high receive-send message

frequencies imply that potential coscheduling with remote processes is met.

We propose to identify the correspondent processes in each node by tak-

ing into account the receive-send message frequency. Normally, the most

recent communicating processes need to communicate again soon, so their



1.5. OVERVIEW 27

scheduling priority must be increased without damaging the local task per-

formance excessively. Not only is message receiving considered -as in

[16, 17, 18, 19, 28, 29]-, since tasks performing only message receiving

do not justify the need for coscheduling. This is also true for only sen-

ding processes. This way, an approximation to Predictive coscheduling is

performed.

Also, as in explicit-control, the contributions presented in implicit-control

are based on some previously presented work in [39, 41, 42, 43].

1.5 Overview

The remainder of this document is organized as follows.

In chapter 2, two new coscheduling models are presented. They are defined

and analyzed separately. First, in section 2.1, an explicit-control mechanism is

presented, named also Explicit.

A new Predictive coscheduling mechanism which follows an implicit-control

policy is presented in section 2.2. It includes an implicit-control coscheduling

model (named CMC: Coscheduling Model for non-dedicated Clusters). Sections

2.2.1 and 2.2.2 respectively describe the notation used and a new set of CMC

related performance metrics. Their applicability in a generic scheduler is introdu-

ced next in section 2.2.3. Also, a Predictive coscheduling algorithm based on this

model is developed in section 2.2.4.

Finally, Dynamic coscheduling, a variant of the Predictive coscheduling is

explained in the last section (sec. 2.3) of chapter 2.

In chapter 3, various implemented coscheduling prototypes are presented.

The first prototype presented (section 3.2) is the DisTributed coScheduler

(DTS), an environment that implements the explicit-control model presented in

chapter 2, section 2.1. A variation of DTS, which always assigns more scheduling

priority to distributed tasks, named High Priority Distributed Tasks (HPDT), is

explained in section 3.3.

Next, and also in chapter 3, three implicit-control prototypes are presented:

• Implicit (section 3.4): implements a variation of the spin-block technique



28 CHAPTER 1. INTRODUCTION

which was previously developed by other authors in [16, 17, 18, 19]. It was

also studied in [20, 21].

• Predictive (section 3.5): implements the Predictive mechanism presented in

section 2.2.

• Dynamic (section 3.6): implements a Predictive variation, named Dynamic,

presented in section 2.3.

The performance of the coscheduling models are evaluated by simulation in chap-

ter 4. Extensive performance analysis, based on the presented CMC model and

metrics demonstrate their applicability in Cluster computing. Also, the proposed

coscheduling algorithms are evaluated and compared with other coscheduling

policies previously presented in the literature.

In chapter 5, the behavior of the implemented prototypes is checked in a Clus-

ter made up of 8 nodes, by means of measuring the execution and communica-

tion times on two distributed application kinds: synthetic and parallel benchmarks

(kernel benchmarks from the NAS [56], and the PARKBENCH low level bench-

marks [57]).

Finally, the conclusions and future work are detailed in the last chapter of this

document (chapter 6).



Chapter 2

Coscheduling Techniques

In this chapter two new coscheduling techniques with different control trends (ex-

plicit and implicit) are presented.

First of all, coscheduling with explicit-control mechanisms is studied. In doing

so, an explicit coscheduling method is presented. The main idea is to split exe-

cution time in each node between distributed and local tasks. Theoretically, the

model will provide distributed (and local) applications with a means for executing

in the Cluster as if it were entirely dedicated to them. Due to the broad range

of existing communicating patterns and synchronization needs of distributed ap-

plications, three different operation modes have been provided for this explicit

scheme.

One important observation is that, as mentioned in chapter 1, gang scheduling

allows guarantees about the performance to be given. In the explicit model we

present, the performance is guaranteed between the overall group of distributed

applications executed simultaneously in the Cluster. In some sense, this is accom-

plished by assigning them periodically their own execution interval. We consider

this property an important advantage over environments where performance im-

plications cannot be determined in advance, as for example plain Linux based

Clusters or even ones that implement some kind of implicit-control mechanism.

Coscheduling techniques based on implicit-control have also been studied. In

implicit-control, the major drawbacks (basically the added overhead) derived from

the controlling and the managing needs of explicit-control coscheduling are saved.

29



30 CHAPTER 2. COSCHEDULING TECHNIQUES

Moreover, one additional explicit-control drawback to bear in mind is related to

fault tolerance: crashing of controlling nodes or processes could cause a failure

of the overall system. The study and proposal of different alternatives will also

occupy our attention.

Predictive coscheduling is the second method presented in this thesis. Its be-

havior, as in other implicit-control methods, is autonomous. That is, it does not

depend on local or remote controlling processes. It is based on assigning more

scheduling priority to processes with higher communication frequency.

To our knowledge the presented Predictive model is the first one that attempts

to coschedule the correspondent processes (those which have recently communi-

cated between them). So an accurate study of this has been performed. In do-

ing so, a model, named CMC (Coscheduling Model for non-dedicated Clusters),

which provides a means for developing and testing the performance of implicit-

control techniques in time-sharing based systems is presented. Multiple concur-

rent execution of distributed applications is supported by this model, but the clus-

tering nodes are restricted to uniprocessors. A proposal for a new algorithm based

on the CMC model will occupy the last part of the Predictive presentation.

Finally, a variation of the Predictive method, named Dynamic coscheduling

is presented. Unlike Predictive, the Dynamic method is based only on message

receiving, like the Dynamic model presented by Sobalvarro in [28] and [29], so it

has been named the same.

All these mechanisms were implemented in a real Cluster system, as described

in chapter 1, section 1.1.1. The realization of the different prototypes or environ-

ments which implement them are explained in the following chapter (chapter 3).



2.1. EXPLICIT COSCHEDULING 31

2.1 Explicit Coscheduling

The proposed explicit coscheduling technique is based on assigning an execution

period to the distributed tasks and another to the interactive ones in the overall

active nodes of the NOW. The set of active nodes (where the explicit mechanism

is activated) are denoted by VM (Virtual Machine). In such a way that, the CPU

time of each active node is split into two different periods, theParallel Slice(PS)

and theLocal Slice(LS).

Algorithm 1 Explicit Scheduler

assign high scheduling priority to distributed tasks

sync_point:

while (distributed tasks )do

set(PS)

schedule distributed tasks during aPSinterval

set(LS)

schedule local tasks during aLS interval

endwhile

The main work performed in the execution of explicit coscheduling is located

in one module namedExplicit Scheduler(see Algorithm 1). The function of each

Explicit Scheduler(as can be seen in Algorithm 1) is the dynamic variation of

the amount of CPU cycles exclusively assigned to execute distributed tasks (PS:

Parallel Slice), and the amount of time assigned to local tasks (LS: Local Slice).

IP (Iteration Period) is defined asIP = PS+ LS.

Figure 2.1 shows a Gantt diagram of the behavior of the explicit mechanism:

each time theExplicit Scheduler(in each VM node) is executed, it concedes the

CPU alternatively to the distributed (for aPSunit of time) tasks and to the Local

ones (for anLSunit of time).

Although the figure depicts theExplicit Schedulerexecution intervals, it can

seem that it adds an important overhead in the system. These intervals are really

very small. They usually have similar length as the CS (elapsed time in doing a

context switch). They have been drawn in this form to help in the understanding

of the explicit mechanism.SI is the Synchronization Interval and will be defined



32 CHAPTER 2. COSCHEDULING TECHNIQUES

Priority

Distributed
Tasks

Interactive
Tasks

Explicit
Scheduler

CS

PS

SI

IP IP IP

LS
Time

Figure 2.1: Explicit environment behavior

later when the different execution modes of the explicit mechanism are introduced.

TheExplicit Scheduleris meant for executing in the user space, and behaves as

an additional Scheduler which controls the execution times of distributed and local

applications. First of all, eachExplicit Schedulerassigns an scheduling priority to

the distributed tasks which is higher than the local ones. Thus, the activation of the

PS(LS) period can be performed for example, by simply waking up (suspending)

the distributed tasks. Note that the form of doing so will depend on the DCE used

and the underlying o.s. residing in each VM node.

The tasks composing a distributed application are composed basically of (a)

CPU or (b) message passing intensive phases. In the first case, when distributed

tasks are mainly performing computation, it is unnecessary to synchronize the

tasks.

On the other hand, in the second situation (case (b)), as was already pointed

out in [16], the synchronization between the communicating tasks can increase the

global performance of the method. In our case, that will imply the synchronization

of the PS (evenLS) over the VM. For this reason, the explicit model has three

different operating modes: STATIC, BALANCED and DISTRIBUTED.

In the presentation of the different modes, it is supposed that there are three

types of modules, theExplicit Scheduler(already explained), theLoad and the

Console. As in theExplicit Scheduler, theLoad is composed of distributed pro-



2.1. EXPLICIT COSCHEDULING 33

cesses running on each active workstation. TheLoadprocesses collect the interac-

tive load on every workstation. TheConsoleis executed in one VM node (named

master) and is responsible for managing and controlling the overall system.

In the STATIC mode, thePS and LS periods are synchronized over all the

distributed tasks. This synchronization is based on starting thePS interval at the

same time in all the nodes forming the VM. This is accomplished by sending one

synchronization message from theConsoleto the differentExplicit Schedulers.

The asynchronous reception of such message causes an unconditional jump of

the correspondingExplicit Coschedulerto the beginning of the main loop, at the

sync_pointlabel (see Algorithm 1). In addition, the BALANCED mode sets the

PSandLSintervals according to the mean local workload of the Cluster. The DIS-

TRIBUTED mode is meant for situations where distributed tasks do not synchro-

nize/communicate between each other. That is, the distributed tasks are mainly

CPU bound. ThePSandLSare updated according to the workload in each local

node.

Next, the three operating modes are explained separately in more detail.

2.1.1 STATIC Mode

This mode consists of synchronizing the parallel and local periods of each work-

station everySI (Synchronization Interval) unit of time.PSandLSare determined

in theConsoleat the beginning of the startup phase of the Explicit environment.

Next, they will be sent to the overallExplicit Schedulersof the nodes forming the

VM.

This mode is based on synchronizing the PS (even the LS) interval throughout

the overall VM. To do so, everySI unit of time, theConsolesends a broadcast

Datagram message (containing the PS and LS intervals) to everyExplicit Sche-

duler, which in turn set their ownPSandLS (equal in the overall VM). We need

not delay the master due to message delivery latency because the slave side of the

master will also receive a synchronization message.

At the end of each SI, the workstations remain synchronized for a long period

of time. So, theSI interval would have to be much greater thanIP (SI� IP). By

assuming thatSI is large enough, the added overhead in synchronizingPSandLS



34 CHAPTER 2. COSCHEDULING TECHNIQUES

can be depreciated. Consequently, no more considerations on optimal values for

SI nor its associated overhead are made.

The search for optimal values for the intervalsIP, PSandLS is investigated

later in the experimentation chapter (chapter 5).

Although the explicit mechanisms may generate an additional overhead, the

global performance of the system can be increased using this model. However,

considering the workload in each workstation, as in the following mode (BAL-

ANCED), the expectation of performance gain also increases.

2.1.2 BALANCED Mode

In the BALANCED mode, in addition to the synchronization of thePSandLS

intervals provided in the STATIC mode, we are also interested in varying these

periods according to the local load average of the NOW. If the mean workload is

low, it seems very reasonable to enlargePS(decreaseLS) in each node. On the

other hand, if the mean workload is high, it would be necessary to decreasePS

(increaseLS). Also, as in the STATIC mode, the samePSandLS intervals have to

be kept equal and synchronized in the overall VM.

An additional feature of the BALANCED mode is that it has been designed

for use in heterogeneous systems.

According to the work done by Ferrari [54], the load is obtained based on the

Ready to run Queue (RQ) length. The length of each RQ node is sampled each

second by theLoad processes. Every Load Interval (LI = 10s), the ten-second

average RQ length (qi), only in the Local Slice (LS), is obtained. Next, theLoad

Index, denoted asQi (the index used to obtain the average RQ length) is computed,

and a message containing it is sent to theConsoleif
(∣∣∣Q j

i −Q j
i−1

∣∣∣≥ Load−Treshold
)

,

with a default value forLoad_Threshold= 1. Exponential smoothing is used to

compute theLoad Index, defined as follows:

Qi = Qi−1e−P +qi(1−e−P), i ≥ 1, Q0 = 0, (2.1)

whereQi−1 is the last computedLoad Index, qi is the ten-second average RQ

length andP = 1
LI∗N . Taking into account the studies done by Ferrari [54], anLI

of 10s andN of 6 were chosen. This way, exponential smoothing over the last



2.1. EXPLICIT COSCHEDULING 35

LI ∗N = 60 seconds (= 1 minute) is used to computeQi .

WhenLoadcollectsqi , as it is supposed that this operation is performed in the

LSinterval, the distributed tasks are stopped, waiting out of the Ready Queue. For

this reason, the distributed tasks are not computed. In another situation, for exam-

ple, systems where the priority of distributed tasks is increased and decreased pe-

riodically, the need to distinguish between distributed and interactive tasks would

add a great overhead to the system.

In the reception of the Load indices from the active nodes or after a timeout,

theConsolecomputes theRelative Load Average(RLA), which is used to fix the

parallel and local slices on each workstation. The RLA is defined as follows:

RLA=
∑NW

j=1
Q j

i
Wj (A)

NW
(2.2)

whereQ j
i is theload indexof workstationj, NW is the number of workstations in

the VM andWj(A) is thepower weightof workstation j. Initially, in the startup

phase of the BALANCED mode, all the active nodes send their respective Load

indices to theConsole.

Thepower weight[50] of one machineMi with respect to one application of

size A is defined as follows:

Wi(A) =
minNW

j=1{Tj(A)}
Ti(A)

, j = 1...NW (2.3)

whereTi(A) is the execution time to solve the serial application of size A in a

dedicated workstationMi .

Note that this method for obtaining the RLA is designed to be used in hetero-

geneous systems. It is worthwhile to point out that two machines with the same

Qi and with different power weight will not be equally loaded. However, its quo-

tient (see formula 2.2) gives a number which sort the load between the different

machines of the VM. It represents a more accurate approximation of the workload

of each node with respect to the others. For example, suppose a serial application

of sizeA and two nodesMm andMn, with Qm
i = 2, Wm(A) = 1, andQn

i = 1 and

Wn(A) = 0.5. Then,Qm
i /Wm(A) = 2, andQn

i /Wn(A) = 2. This simple example

shows how this pair of workstations are equal loaded. Note thatQm
i = 2∗Qn

i , but



36 CHAPTER 2. COSCHEDULING TECHNIQUES

alsoWm(A) = 2∗Wn(A), so they are evenly loaded because asMm has double com-

puting capacity it also requires the double load to be as loaded asMn. In our case,

the Cluster is homogeneous, thus for any serial applicationA, Wj (A) = Wj = 1,

where j= 1...NW.

RLA LS PS
0≤ RLA ≤0.5 10 90

0.5< RLA ≤1 20 80
1< RLA ≤1.5 30 70

1.5< RLA ≤2 40 60
2< RLA ≤2.5 50 50

2.5< RLA ≤3 60 40
3< RLA ≤3.5 70 30

3.5< RLA ≤4 80 20
4< RLA 90 10

Table 2.1: Relation betweenRLA, PSandLS

Table 2.1 (which shows the relation between theRLA, PSandLS) is used to

computePSandLS. The values ofPSandLSshown in the table are percentages

of the IP period. For example, ifIP = 1s andRLA= 0.5,LSandPSwill be set

respectively to 100ms and 900ms.

Note that the range of values in table 2.1 depends on the chosen interval for

which a variation in the RLA is significant enough to change thePSandLS in-

tervals. A variation in the load lower than 0.5 can hardly be appreciated and will

add excessive overhead. On the other hand, higher values would decrease the

effectiveness of the model. An interval of 0.5 was therefore chosen.

Finally, theConsolesendsPSandLSto all theExplicit Schedulersmodules (if

|RLA−RLAprev|> 0.5, whereRLAprev is the previous RLA) by sending a broadcast

message (for example). Broadcast delivery is a good method of doing so because

multicasting or sending as many messages as nodes making up the VM would add

an excessive overhead.



2.1. EXPLICIT COSCHEDULING 37

2.1.3 DISTRIBUTED Mode

This explicit mode is designed for situations in which the message exchange bet-

ween tasks forming distributed applications is very low, even when the communi-

cation is null. In these cases, no global adjustment of thePSandLSintervals need

be performed. Also, there is no need for synchronizing these intervals between

the VM nodes. The only factor to take into account is the efficient sharing of

the CPU between the distributed and local tasks in each workstation, so that each

workstation sets thePSandLS intervals according to its own local workload.

TheLoadmodule in each node computes and then sends thePSandLSvalues

to the localExplicit Scheduleraccording to Table 2.1 too, but in this case, RLA is

substituted byQi (the Load Index). For example, ifIP = 100ms andQi = 0.75,

LSandPSwill be set respectively to 20ms and 80ms.

In this mode, apart of assigning more scheduling priority to distributed tasks,

theExplicit Schedulerwill be only responsible for setting thePSandLSperiods

on receiving them from the Load module (residing at the same node) and then

starting (when theLS period has elapsed) and stopping (when thePSperiod has

elapsed) the distributed tasks.

2.1.4 Explicit Synchronization

Algorithm 2 resumes the synchronization performed in the different explicit modes.

The algorithm (written in pseudo-code), shows the interaction between the modu-

les residing in each VM node (Loadj andExplicit Schedulerj) andConsole, which

is located in themasternode.



38 CHAPTER 2. COSCHEDULING TECHNIQUES

Algorithm 2 Explicit Synchronization Algorithm.

Loadj : ∀ M j ∈ VM

Q j
i−1 = 0

Each LI intervaldo
if (MODE ! = STATIC)
compute(q j

i );
compute(Q j

i );
if (MODE == DISTRIBUTED)
compute(PS&IS);
send(Explicit Schedulerj , PS&LS);

endif
else
if

(∣∣∣Q j
i −Q j

i−1

∣∣∣≤ Load−Threshold
)

send(Console,Q j
i ); endif

endelse
endif

enddo

Console: Node Master
if (MODE == STATIC)
Each SI intervaldo broadcast(PS&LS);

endif
if (MODE == BALANCED)
do

while (not timeout)do
for eachM j ∈ VM async_receive(Q j

i );
compute(RLA, PS&LS);
if (|RLA−RLAprev| > 0.5)

broadcast(PS&LS); RLAprev = RLA;
endif

while (true)
endif

Explicit Schedulerj : ∀ M j ∈ VM
async_receive(PS&LS);
setPS&LS;
if (MODE ! = DISTRIBUTED)

gotosync_point
endif



2.2. PREDICTIVE COSCHEDULING 39

2.2 Predictive Coscheduling

The proposal of a Predictive coscheduling mechanism for non-dedicated Clusters

and with an implicit-control trend will occupy our attention next.

The Predictive technique is formalized by the definition and design of a model

for Cluster systems, named CMC (Coscheduling Model for non-dedicated Clus-

ters). This model is made up of a set of performance metrics and the Local

Coscheduler. A Predictive Coscheduling Algorithm (PCA), based on the CMC

model is also presented.

First of all, various assumptions on the system in which to apply the model

must be made:

1. This model assumes that not necessarily all the nodes in a non-dedicated

Cluster or NOW must be under the control of this coscheduling scheme.

This is an important difference with respect to the previously presented ex-

plicit model, where all the nodes of the Cluster making up the VM were

explicitly managed and controlled by the explicit mechanism.

2. The distributed applications are composed of a suite of tasks which are al-

ready mapped in the nodes making up the Cluster.

3. Currently in Cluster computing, tasks making up the distributed applica-

tions are executed in each node as simple local tasks. For this reason no

initial assumptions are made about knowledge of the distributed tasks of

each node composing the distributed applications (i.e. composition, identi-

fication and mapping).

4. Each node in the Cluster is supposed to be uniprocessor, with a time-sharing

operating system. It is also assumed that the local CPU Scheduler in each

node deals with the ready to run tasks list, theReady Queue(RQ) and has

an appropriative Round-Robin (R-R) policy, with a variable time slice (TS:

requesting CPU execution cycles) for each task. Note that this scheduling

coincides (with some specific characteristics) with most real time-shared

o.s.’s (i.e. Solaris, Linux and so on).



40 CHAPTER 2. COSCHEDULING TECHNIQUES

The CMC model provides the following features:

• Multiple concurrent execution of distributed applications is supported by

this model.

• Dynamic identification of distributed processes: remote communicating pro-

cesses (which are considered as distributed ones) are identified at run-time.

• Coordinated scheduling: communicating processes from the same parallel

job are scheduled almost simultaneously across a set of workstations, thus

achieving its performance. Coordination of processes should minimize the

waiting time for messages.

• Local performance maintenance: participating in the Cluster should not de-

grade excessively the performance of the workload of a single node (local

or user jobs). Also, the response time for interactive local jobs does not

drop excessively.

• Autonomy: each node maintain control over its own actions, participating

in the system in a non-imposed manner.

• Reconfigurability: workstations can join and leave the Cluster dynamically

without restarting the system services.

• Reliability: the failure of any node of the system does not affect the behavior

of the system.

2.2.1 Notation

In a machine with a time-sharing o.s., a task may be in different states (ready

to run or simply ready, blocked, etc ...). A ready taskl , meaning in the RQ,

will be denoted asT[l ]. However, if taskl is not ready, it will be referenced

simply asl , without theT prefix. The method used to uniquely identify a task

without depending on its state, is by means of the task identifier function (tid).

For example,T[l ] andh are the same task iftid(T[l ]) = tid(h).



2.2. PREDICTIVE COSCHEDULING 41

Let a ready to run task bel (T[l ]), somel -related basic notation is defined as

follows (time is in cycles):

• T[l ]: taskl -can be local or distributed- of the RQ. Special RQ tasks arel =
0 (top) andl = ∞ (bottom). “top” task is the currently executing task in the

CPU and “bottom” is the latest one to be executed.

• T[l ].c (T[l ].tc) -c: cycles; tc: total cycles-: executing cycles for taskl ,

since the last time such a task reached the RQ (c), or since the start of the

execution (tc).

• T[l ].pco -pco: potential coscheduling-: boolean variable that informs of

potential coscheduling of the taskl . When a task enters the RQ and its

current communication frequency is higher than 0, its associated fieldpco

is activated. This fact tells that such a task is a candidate for coscheduling

(and thus needs to be scheduled as soon as possible).

• T[l ].co (T[l ].tco) -co: coscheduling,tco: total coscheduling-: number of

coscheduled cycles (= executed cycles) of taskl when potential coschedu-

ling was met (the fieldpcowas activated on insertion into the RQ), since the

last time such a task reached the RQ (co), or since the start of the execution

(tco). The coscheduling condition, as will be seen in section 2.2.4, is the

most important cause for increasing the priority (overtaking other tasks of

the RQ) of the distributed tasks.

• T[l ].th (T[l ].tth) -th: thrashing,tth: total thrashing-: number of lost cosche-

duling cycles (not executed cycles) of taskl when potential coscheduling

was met, since the last time such a task reached the RQ (th), or since the

start of the execution (tth).

• T[l ].de -de: delay-: number of times that taskl has been overtaken in the

RQ by another task due to a coscheduling cause, since the last time such a

task reached the RQ.

• T[l ].d (T[l ].td) -d: delay,td: total delay-: number of delayed cycles for task

l due to a coscheduling cause, since the last time such a task reached the

RQ (d), or since the start of the execution (td).



42 CHAPTER 2. COSCHEDULING TECHNIQUES

• T[l ].ovt[MCO]: array ofMCO (Maximum number of Coscheduling Over-

takings) task identifiers (tid). When a taskh overtakes taskl (due to a cos-

cheduling reason) in the RQ, its correspondingh identifier (tid(h)) is saved

in one of thel MCO fields.

If a task is not ready, only fieldstc, td, tco and tth are used, because they save

information about the overall execution and not only since the last time the task

reached the RQ. For example, the fieldtc of taskh will be referenced ash.tc.

Let a Cluster be C, made up ofn nodes (C = {N[k]}, k = 1...n). Also, for

referring fieldtc of taskl of a nodek, we will use notationN[k].T[l ].tc for a ready

taskT[l ] andN[k].l .tc, otherwise.

In this model, it is supposed that incoming (out-going) messages to (from) a

Cluster nodeN[k], are buffered in a Receiving Message Queue,RMQ (Sending

Message Queue,SMQ). This is a non-arbitrary assumption. The communication

system of most time-shared environments has some sort of queue of this type. For

example (as is explained in more detail in chapter 3, section 3.1.1), in a PVM-

Linux environment, there is a queue namedpvmrxlist in the PVM [30] level (in

the user space), which buffers receiving fragments (the PVM transmission unit)

and another one that buffers sending fragments,txlist. There are two queues in the

kernel level (in the system space), namedreceive_queue(which buffers receiving

packets: the socket transmission unit) andwrite_queue(which buffers sending

packets). These queues have the same behavior and functionality as RMQ and

SMQ. The choice of the level at which to apply the coscheduling techniques is an

implementation decision that does not depend on the model.

The Predictive coscheduling algorithm -proposed in this project (see section

2.2.4)- is based on communication frequency. Taking into account the existence of

the above mentioned message buffers, the following information can be obtained

(and used later in the proposed algorithms) for a taskl :

• T[l ].cur− f reqr : current message receiving frequency.

• T[l ].cur− f reqs : current message sending frequency.

• T[l ]. f reqr : past message receiving frequency.



2.2. PREDICTIVE COSCHEDULING 43

• T[l ]. f reqs : past message sending frequency.

• T[l ]. f req : sending and receiving frequency.

2.2.2 Performance metrics

The performance metrics defined in this section use the CMC notation defined in

section 2.2.1. As all of them are computed for tasks in the RQ, we use notation

T[l ] for referencing tasks, andN[k].T[l ] for referencing taskl of nodek. These

metrics can be used to measure performance of a coscheduling algorithm, and in

particular a Predictive coscheduling algorithm like the one proposed in section

2.2.4, and are defined as follows:

• Task Delay (TaskD(T[l ])). Informs of the delay introduced into tasks due to

a coscheduling policy. For example, if the ready taskT[l ] was overtaken by

another ready taskT[h] due to a coscheduling policy, the execution time of

T[h] will be added to taskT[l ] as a delay. This will be very useful for mea-

suring the impact of a coscheduling policy on local (and also distributed)

tasks. This information is maintained by the model in the“td” field of the

corresponding task, that is:

TaskD(T[l ]) = T[l ].td (2.4)

• Node Delay (NodeD(N[k])). Delay introduced into a nodek.

NodeD(N[k]) = ∑
l

T[l ].td (2.5)

• System Delay (SystemD). Delay introduced into the overall system.

SystemD= ∑
k

∑
l

(N[k].T[l ].td) (2.6)

• Task Coscheduling Degree (TaskCoDe(T[l ])). Provides information about

the good performance of a coscheduling technique. For example, if a high-

frequency task is always scheduled first, this task would have a goodTask-



44 CHAPTER 2. COSCHEDULING TECHNIQUES

CoDe. It is defined as the relation between the total coscheduled cycles

(T[l ].tco) when potential coscheduling was met (fieldT[l ].pco was acti-

vated) and all the possible coscheduling ones (T[l ].tco+ T[l ].tth) for task

T[l ].

TaskCoDe(T[l ]) =
T[l ].tco

T[l ].tco+T[l ].tth
(2.7)

• Node Coscheduling Degree (NodeCoDe(N[k])). It is the averageTaskCoDe

metric of the overall tasks in a node.

NodeCoDe(N[k]) = ∑l T[l ].tco

∑l (T[l ].tco+T[l ].tth)
(2.8)

• System Coscheduling Degree (SystemCoDe). Relation between coschedu-

led cycles and all the possible coscheduling ones in the overall system.

SystemCoDe= ∑k ∑l N[k].T[l ].tco

∑k ∑l (N[k].T[l ].tco+N[k].T[l ].tth)
(2.9)

• Task Thrashing, Node Thrashing and System Thrashing Degree (TaskThDe(T[l ]),
NodeThDe(N[k]) andSystemThDe). In contrast to the *CoDemetrics, they

provide information about poor use of the potential coscheduling by a cos-

cheduling technique. In this case,TaskThDe(T[l ]) = 1 − TaskCoDe(T[l ]),
NodeThDe(N[k]) = 1− NodeCoDe(N[k]) andSystemThDe= 1− System-

CoDe.

To sum up, a good coscheduling algorithm should maximize the *CoDe (* =
{Task, Node, System}) metrics and minimize the *D and *ThDeones. This is the

main goal of the Predictive algorithm presented in section 2.2.4.

Note that these metrics do not consider the time spent by a process waiting for

an event to occur (normally in blocking states). The coscheduling performance

mainly depends on a good choice of the task to be dispatched to the CPU (among

all those which form the RQ) in each scheduling phase. Thus, blocking times

when processes are, for example, waiting for messages, I/O or synchronization

events are discarded, which in addition may depend on other factors, such as net-

work and system latencies, and in general of the underlying hardware resources.



2.2. PREDICTIVE COSCHEDULING 45

2.2.3 Local Coscheduler (LC)

Algorithm 3 shows the pseudo-code of the Round-Robin Local Coscheduler (LC)

proposed for a time-shared o.s. of a Cluster nodeN[k].

Algorithm 3 Local Coscheduler (LC) of nodeN[k].

1 do forever

2 if (T[0] 6= NULL)

3 dispatch(T[0]);

4 ACCOUNTING:

5 T[0].{c, tc} + = exe_time;

6 if (T[0].pco) T[0].{co, tco} + = exe_time; endif;

7 for (i=0; T[i +1] 6= NULL; i++)

8 if (T[i +1].pco) T[i +1].{th, tth} + = exe_time; endif;

9 if (T[i +1].ovt[ j] == tid(0) for any j = 0..MPO−1)

10 T[i +1].{d, td} + = exe_time;

11 endif;

12 endfor;

13 T[0].d = 0; T[0].c; T[0].co= 0; T[0].th = 0; T[0].de= 0;

14 for ( j=0; j<MPO; j++) T[0].ovt[ j] = NULL; endfor;

15 if (T[0].cur_freq==0) T[0].pco=false; endif;

16 delete_RQ(T[0]); insert_RQ(T[0]);

17 endif;

18enddo;

This algorithm is very similar to a real Local Scheduler. It performs the same

work as another typical scheduler of a time-sharing o.s., but with coscheduling

capabilities. Other typical scheduler functions (like saving/restoring task contexts)

that do not influence our model are not considered. Next, the LC operation is

discussed.

We are interested in providing the Local Coscheduler (LC) jointly with the



46 CHAPTER 2. COSCHEDULING TECHNIQUES

Predictive Coscheduling Algorithm (PCA, presented in the following section),

with the following three features:

• Priority based policy. The scheduler must dispatch processes with the high-

est potential degree to be coscheduled with remote tasks as soon as possible

by assigning them more scheduling priority.

• To avoid local task starvation. Local tasks do not have to suffer excessive

delay penalties. Response time and also return time have to be limited to a

predetermined amount.

• No excessive overhead must be introduced. The added work the LC must

carry out does not have to drop node (and system) performance excessively.

LC works only if the RQ is not empty (T[0] 6= NULL). First of all, it dispatches

(assigns the CPU to) the top task (line 3). When the executing task finishes exe-

cution, or its assigned time slice expires, or is preempted by another task, the

execution in the CPU continues in line 4 (labelACCOUNTING), where some cos-

cheduling accounting related to such task must be performed (lines 5 to 15).

In line 5, the execution time (exe_time) is added to the out-going CPU task.

Note that this information is generally carried out by the scheduler of a time-

shared o.s.. After doing coscheduling accounting in line 6, the next loop (lines

7-12) performs the modifications of the thrashed and delayed task fields when

required.

In line 16, delete_RQ(T[0]) means that taskT[0] is first removed from the

RQ, and theninsert_RQ(T[0]) indicates that the top taskT[0], is inserted into the

RQ again in accordance with the PCA algorithm. This way, a slight variation of

the Round-Robin scheduling policy is implemented. This kind of movement in

the RQ is performed whenT[0] has not completed its execution time requirement.

The task fieldsd, c, co, th anddemust be initialized (line 13) before doing the

movement, because their respective coscheduling information is “since the last

time the task reached the RQ”. Lines 14-15 perform the remaining initializations.

Note that the difference between fieldsd, coandth with their associated fields

t* (*: d, coandth) is that they inform of the coscheduling policy behavior in each

moment (or in each change in the RQ), and not in a determined period of time



2.2. PREDICTIVE COSCHEDULING 47

(or the overall execution), as the t* ones do. Thus, they may be more valuable for

obtaining on-time system performance. However, they do not serve for obtaining

performance of a coscheduling mechanism based on the regular behavior of the

distributed tasks. Consequently, the CMC metrics (sec. 2.2.2) were defined by

using the fields t*.

Table 2.2 shows the CMC task field and the global variable initializations.

These fields should be added to the Process Control Block, the information struc-

ture associated with each task in a real time-shared o.s.. All of them should be

initialized when the task is created.

Table 2.2: CMC task field and global variable initializations.

N[k].T[l ] glob. var.

c tc pco co tco th tth de d td ovt[0] ovt[1] MCO
0 0 0 0 0 0 0 0 0 0 0 0 2

2.2.4 Predictive Coscheduling Algorithm

In this section, a Predictive coscheduling algorithm (named PCA) is proposed and

discussed (Algorithm 4 shows its pseudo-code).

Algorithm PCA is implemented inside a generic routine (namedinsert_ RQ).

This is the routine chosen to implement Predictive coscheduling because all the

ready to run tasks must pass it before their scheduling. TheINITIALIZATION sec-

tion is the place where the different initializations (these may be global variables)

are done. Note that an originalinsert_RQroutine should only contain one line of

the forminsert (h,∞), which would insert taskh at the bottom of the RQ.

From lines 5 to 14, we can see that taskh is inserted in the lowest (the closest

to the top, or even overtaking it) possible position of the RQ, depending on two

conditions, theSTARVATIONand COSCHEDULING CONDITIONS(S_Cand C_C

respectively). In line 8,tid(h) is saved in oneovt field of each overtaken task. In

line 9, the delay field (de) of the overtaken tasks is increased.

The routineinsert, appends a process to the RQ. For example,insert(h,0) (line

4) means that taskh will be inserted in the top when the RQ is empty, or else taskh



48 CHAPTER 2. COSCHEDULING TECHNIQUES

Algorithm 4 Predictive Coscheduling Algorithm (PCA).S_C≡ T[i].de< MCO.
C_C≡ h. f req> T[i]. f req.

1 insert_RQ(taskh)

2 INITIALIZATION

3 if (h.cur_freq 6= NULL) h.pco=true; endif;

4 if (T[0] == NULL) insert (h,0); endif;

5 else

6 i = bottom;

7 while ((S_C) and (C_C) and (i 6=−1))

8 tmp= T[i].de; T[i].ovt[tmp] = tid(h);

9 T[i].de++;

10 i−−;

11 endwhile;

12 if (i 6=−1) insert (h,i); endif;

13 elsecontext_switch(h,0); endelse;
14 endelse;

will be added after taskT[i] in the RQ (line 12), wherei depends on the Predictive

conditions (S_CandC_C ). When taskh overtakes the executing task (case i=−
1), then a context switch (context_switch(h,0), in line 13) in favor to taskh must

be performed. The top taskT[0] will be preempted from the CPU and moved to

position 1 of the RQ (it will becomeT[1]). Next, the new executing taskh (i.e.

tid(h)) will becomeT[0].

TheSTARVATION CONDITION(S_C) is equal toT[i].de< MCO. MCO is defined

above as the Maximum number of Predictive Overtakes or, in other words, the

maximum number of task overtakes due to a coscheduling policy. The aim of this

condition is to avoid starvation of local tasks. For this reason, the inserting taskh

overtakes the ones whose fieldde (T[i].de) is lower than the global coscheduling

variableMCO. Thus, starvation of local tasks is avoided.

The default value forMCO is 2, as higher values may decrease the response

time (or interactive performance) of the local tasks excessively. The fieldde is



2.2. PREDICTIVE COSCHEDULING 49

selected to do this comparison because its purpose is to count the number of over-

takes since such a task last reached the RQ. This is much more significant for

interactivity information than for example,tde (not used in the model), which

would deal with overtakes since the task started execution. Thetdefield is more

appropriate thande for controlling starvation of intensive CPU workload (less

representative of real local workload).

TheCOSCHEDULING CONDITION(C_C) ish. f req> T[i]. f req, whereT[i]. f req

indicates the frequency of messages addressed to (delivered by) the taskT[i]. Its

goal is to increase the scheduling priority of the tasks according to their respective

communication frequency. That is, higher scheduling priority is assigned to tasks

with higher receive-send messaging frequency.

Before defining the sending and receiving frequency (freq) for a taskh (fol-

lowing the notation of section 2.2.1, it will be denoted ash. f req), theh receiving

(h. f reqr ) and sending (h. f reqs) frequencies must be defined:

h. f reqr = P∗h. f reqr +(1−P)∗h.cur− f reqr , (2.10)

h. f reqs = P∗h. f reqs+(1−P)∗h.cur− f reqs, (2.11)

whereP is the percentage assigned to the past receiving and sending frequency

(h. f reqr andh. f reqs respectively). (1−P) is the current receiving and sending

frequency percentage (h.cur− f reqr andh.cur− f reqs respectively). Note that in

these formulas,h. f reqr andh. f reqs act as past frequencies on the right side. This

means that each time these frequencies are obtained, they will be used later as past

history for obtaining new frequency values.

Finally, the communication frequency for a taskh (h. f req) is defined as the

sum of the task sending and receiving frequency:

h. f req= h. f reqr +h. f reqs, (2.12)

All frequencies must be computed at regular intervals (FI : Frequency Inter-

val). Moreover, to obtain the current frequencies it would be necessary to gather

the number of messages of theRMQandSMQeach Sampling Interval (SI), which



50 CHAPTER 2. COSCHEDULING TECHNIQUES

in turn must be smaller thanFI (SI < FI ).

Note that this method for obtainingh. f req is analogous to the one presented

in section 2.1.2 for obtaining the Load Index,Qi (formula 2.1), in the explicit

BALANCED mode.

The choice of theFI andSI intervals will depend on the kind of distributed ap-

plications to be executed. Also it must be considered in doing so that the shorter

these intervals are, the more overhead will be introduced. For example, large

FI should be chosen for large enough distributed applications.SI depends on

the communication behavior: regular communications favor the choice of large

SI intervals; instead, irregular communication will force the election of shortSI

intervals. However, in the following chapter (where a Predictive prototype imple-

mented in a PVM-Linux environment is explained), we suggest a more efficient

form of obtaining those frequencies without having to consider theFI andSI in-

tervals.

In contrast with any other coscheduling technique, coscheduling in the pro-

posed Predictive scheme is applied not only to blocked receiving tasks (as [16,

17, 18, 19, 28, 29]), but coscheduling can be applied to each movement (i.e. the

quantum of the executing task has expired) and in each kind of task insertion in

the RQ (i.e. when a task is reawakened not only from a blocked receiving state,

but also when it was blocked for I/O, or waiting for a synchronization event).

2.3 Dynamic Coscheduling

The Dynamic technique was first defined by Sobalvarro in [28]. The most inter-

esting algorithm he proposed (theequalizingdynamic coscheduling algorithm),

attempts to provide equal sharing of the CPU for runnable tasks within some con-

stant difference. That algorithm is as follows: on receipt of a message in a node

N[k], the number of executing CPU cycles of the target task (T[l ]) since it reached

the ready queue plus a constant (share) is compared with the same parameter

(N[k].T[0].c) of the running task (T[0]). Thus, ifN[k].T[l ].c+share< N[k].T[0].c
then a context switch is performed in favor ofT[l ].

Take for example, the following situation: there is one local (and other dis-

tributed) task executing in the CPU, which request 30ms (20ms) of execution



2.3. DYNAMIC COSCHEDULING 51

every 50ms (50ms too). For lowsharevalues and when the local task is executing,

Sobalvarro’s algorithm would always preempt the CPU in favor of the distributed

task, thus adding too much overhead in context switching. On the contrary, high

sharevalues do not allow the realization of context switching. That in turn can

damage the peer-coscheduling between the remote source(s) and the local target

tasks excessively. Note that in the example, the distributed execution time never

equals the local one. On the contrary, it tends to be lower. Therefore, it will

be very difficult to obtain dynamically optimalsharevalues for each scheduling

situation.

Furthermore, local (even distributed) applications can be excessively delayed

or preempted from the CPU. In an extreme case, if the number of mixed workload

is high enough, the system nodes can enter in thrashing. Instead of progress in

the execution of the Cluster workload, the system would perform mainly context

switching.

Our proposed Dynamic coscheduling is a variation on the previously presented

Predictive model. Unlike the Predictive model, the Dynamic version is based only

on message reception frequency. This is both to assign more scheduling priority

to high receiving frequency for increase coscheduling success between distributed

tasks, and prevent local starvation by controlling the number of overtakings (with

MCO) thus avoiding the problems of Sobalvarro’s algorithm.

Taking into account the above mentioned considerations and also section 2.2.4,

where Predictive Coscheduling was developed, the resulting Dynamic Coschedu-

ling Algorithm (DCA) is a slight variation on PCA.

DCA only varies from PCA in theCOSCHEDULING CONDITION(C_C). In

PCA,C_C is equal toh. f req> T[i]. f req, meaning that when taskh is inserted in

the RQ, it advances tasks with lower sending and receiving frequency. In DCA,

only receiving frequencies must be taken into account. However, note that modi-

fications for obtaining it are minimal. It is only necessary to changeC_C. In this

caseC_Cshould be equal toh. f reqr > T[i]. f reqr .

Only the messages waiting in theRMQshould be taken into account for ob-

taining the receiving message frequency. Thus, only the CMC fieldsh. f reqr and

h.cur− f reqr must be considered, and consequentlyh. f req= h. f reqr .

All the remaining structures, considerations and hypotheses are the same as in



52 CHAPTER 2. COSCHEDULING TECHNIQUES

the PCA case.

Note that having previously defined the CMC model, implicit-control cosche-

duling techniques can be more easily defined.



Chapter 3

Coscheduling Prototypes

In this chapter various coscheduling implementations in an heterogeneous and

non-dedicated PVM-Linux Cluster are explained.

First of all, DTS (DisTributed coScheduler), a system which implements the

explicit mechanism of chapter 2, section 2.1, is presented. Basically, DTS is an

environment that explicitly deals (it follows an explicit-control philosophy) with

both kinds of task: distributed and local.

Next, a variation of DTS, named HPDT (High Priority Distributed Tasks) is

presented. HPDT also follows an explicit-control trend. It always assigns max-

imum scheduling priority to distributed tasks. The maximum distributed perfor-

mance in Cluster computing should be reached when distributed processes making

up the distributed applications always have more scheduling priority than the lo-

cal ones. For this reason, this particular kind of coscheduling technique is studied

next. Assuming that the maximum distributed performance will be reached using

this method, this will serve as a performance referencing point for comparing the

coscheduling techniques.

The first studied coscheduling technique based on implicit-control, is also

namedImplicit coscheduling.Implicit coscheduling has already been developed

by other authors in [16, 17, 18, 19] and [20, 21]. Here, the main objective is to

study the applicability of this technique in Clusters formed by general-purpose

workstations. Basically, efforts have been directed towards the search for an opti-

mal “spin” value for the spin-block procedure.

53



54 CHAPTER 3. COSCHEDULING PROTOTYPES

Finally, the implementation of the Predictive model is analyzed in depth. The

implementation of the Dynamic version scarcely varies with respect to the Predic-

tive one. So, only some observations on the changes performed in the Predictive

model are made.

3.1 Preliminary Concepts

As we will see later in this chapter,DTS, HPDT and theImplicit models have been

implemented in the user space. Moreover, the main modifications are located in

the PVM environment.

On the other hand, thePredictiveandDynamicmodels have been implemented

in the system space, mainly in the Linux Scheduler. So, it is necessary to study

the Linux Scheduler behavior and its principal mechanisms and structures which

have been used (or modified).

Furthermore, to better understanding the main decisions, taken in the design of

these models, some prior concepts must be introduced about the communication

system formed by PVM and Linux, in the user and system space respectively.

3.1.1 Analysis of the Communication System

In Linux Clusters, tasks forming the PVM distributed applications, communi-

cate/synchronize between themselves by message-passing. This means that mes-

sage delivering starts in the user space (inside PVM) and crosses the Linux com-

munication subsystem to the network. The reception of messages passes through

the same communication levels but in the opposite direction.

In this section, the main queues involved in the communication process are

analyzed, from the PVM throughout the communication-system Linux layers, to

the physical network device layer. The study is centered on the main PVM and

Linux messaging structures and buffering mechanisms.

3.1.1.1 PVM Layer

PVM [30] allows the execution of distributed applications in two different com-

munication modes:RouteDirect andDontRoute(see Fig. 3.1). In DontRoute,



3.1. PRELIMINARY CONCEPTS 55

communication between remote tasks is done through thepvmddaemon. In this

way, the daemon-daemon communication uses the UDP protocol and the task-

daemon communication is by means of TCP or UNIX Domain sockets. On the

other hand, in the RouteDirect mode, communication between remote tasks uses

the TCP protocol.

NODE i NODE j

DAEMON DAEMON

TASK TASK TASKTASK

UNIX Domain/TCPUNIX Domain/TCP

TCP

UDP

UNIX Domain

TCP

UNIX Domain

TCP

Figure 3.1: PVM protocols.

The PVM communication system provides amessageinterchanging facility.

Every message (with variable length) is divided intofragments, which have fixed

lengths (= 4096 bytes). Thefragmentis also the PVM transmission unit. Initially,

a head fragment namedmasteris created, then every time that a new fragment

is filled up, another one is initialized and linked to the fragment list. Fig. 3.2

shows the structure of a PVM message made up of a master fragment and two

data fragments (the first is full).

Every PVM task has an associated dynamic list namedpvmrxlist, which stores

the received messages, waiting for such task. On the other hand, all the messages

sent by a PVM task are stored in a static queue namedtxlist,which has a maximum

capacity of 100 messages.

3.1.1.2 Linux Layers

The responsibility for communicating processes by means of sockets belongs to

the Linux communication system (see Fig. 3.3).

The first communication level, the BSD socket layer, is responsible for creat-

ing a new structuresocketand providing a set of facilities to the underlying levels



56 CHAPTER 3. COSCHEDULING PROTOTYPES

m_mfrag
m_len
m_src
m_dst

m_mid

struct pmsg
m_link
m_rlink

message 

fr_link

fr_buf

fr_dat

fr_len

fr_max

master fragment

fr_link

fr_buf

fr_dat

fr_len

fr_max

fragment 1

fr_link

fr_buf

fr_dat

fr_len

fr_max

fragment 2

struct frag

HDR DATA HDR DATA

prev. message
next message

Buffer frag. 1

fr_len

fr_max

Buffer frag. 2

Figure 3.2: PVM message structure (pmsg)

Interface

Express 10/100
Intel Ethernet

Device

INET

BSD
Sockets

Sockets

UDPTCP

IP

PVM
user application

Kernel

 Socket

Protocol

Logical

Physical

Devices
Logical Network

Devices

Physical Network

Figure 3.3: Linux communication levels.

for its access. By means of an associatedsockstructure, thesocketstructure is

associated to the INET communication domain (or address family), in the INET

socket layer. Thesocket-sockstructures are usually denoted simply assocket. If,

on the contrary, the communication must be performed by UNIX Domain sockets,

the UNIX socket layer will be used instead.

The fragment sent by the PVM layer is decomposed into MTU (Maximum



3.1. PRELIMINARY CONCEPTS 57

Transmission Unit) size packets in the socket layer. Also, communication in the

opposite direction will convert packets into fragments. A structure, namedsk_buff,

will be associated with every packet.

TailData areaHead

prev
head

end

data
tail

len

len

Packet

sk_buff
next

Figure 3.4: sk_buff and packetstructures. The packet Data area contains the
information to be transmitted.

In the emission of packets, the socket layer creates a newsk_buffand stores it

in thewrite_queue. Similarly, in packet reception, the socket layer storessk_buff

structures in thereceive_queue.Both queues have a maximum capacity of 65535

bytes.

Thesk_buffstructures are used by Linux to pass data through the TCP(UDP)/IP

protocol layers [70, 71]. In emission/reception of packets, every protocol will

add/extract control information to/from its reserved Head and Tail space (see Fig.

3.4).

At the logical layer, in transmission, thesk_buffstructures (coming from the

protocol layer) are stored in one of three buffering queues (with a max. capacity

of 100 elements per queue). The choice of the queue will depend on the priority

of the packet,interactive(highest priority),normal (PVM messages) andback-

ground (lowest priority). The head of every queue is stored in an array named

buffs. On the other hand, the packets coming from the physical device are stored

in a list namedbacklog, which has a maximum length of 300 buffers.

Our communication board is an Intel EtherExpress 10/100 Mbps, which has

an i82558 microprocessor. The i82558 communicates with the kernel by means

of a shared memory mechanism. This memory is divided into two different frame

queues (also ofsk_buffstructures):CBL andRFA. The packets are named frames



58 CHAPTER 3. COSCHEDULING PROTOTYPES

in this layer. TheCBL stores sending frames to the network. TheRFA, instead,

stores incoming frames from the network. The maximum number of elements in

both queues is 14.

3.1.2 The Linux Scheduler

The Linux scheduler behavior is explained below. As can be seen in the Linux

Scheduler scheme (see Figure 3.5), the scheduling phase starts when there is at

least one task in the RQ (Ready to run task Queue). In Linux, the RQ is imple-

mented by a double linked list oftask_structstructures, the Linux PCBs (Process

Control Block).

SCHEDULING

Step 1

Step 3 Schedule current

Dispatch current

Do current Accounting

while (empty RQ)
do skip

Goto Step 1

Unlock RQStep 4

Step 5

Step 6

Lock RQ

Step 7

Step 2

Figure 3.5: Linux Scheduler.

Then the RQ is locked because it must be accessed in an exclusive manner.

Next, the scheduler picks up one task, “current” (task with the maximum returned

value from an internal function namedgoodness). Afterwards, the scheduler un-

locks the RQ and dispatchescurrent (assigns it to the CPU). When the execution

time slice is used up, thecurrent accounting is saved in its PCB and if finished,



3.1. PRELIMINARY CONCEPTS 59

it is removed from the RQ. If not, it will wait to be scheduled again in the RQ.

Finally, the scheduling process begins again.

The main Linux PCB fields which are involved in the scheduling process are:

• policy: scheduling policy. There are four scheduling policies in Linux: the

“normal” and three “real-time” (with more scheduling priority than the nor-

mal ones).

• rt_priority: scheduling priority between real-time tasks.

• priority -“static” priority-: scheduling priority between normal tasks. This

ranges from 1 (low priority) to 40 (high priority). Default Priority (DefPrio)

is equal to 20.

• counter-“dynamic” priority-: when the task is executing, each tick1, counter

is decremented towards 0 in one unit; then the CPU is yielded. The initial

value is equal topriority. Thus, the default Quantum value for normal tasks

is 210 ms.

• files: open files structure. They save information about the open files.

• cur_freqr : added field, and used for saving the current receiving frequency.

The initial value is 0.

• cur_freqs: added field, and used for saving the current sending frequency.

The initial value is 0.

• freqr : added field, and used for saving the passed receiving frequency. The

initial value is 0.

• freqs: added field, and used for saving the passed sending frequency. The

initial value is 0.

Fieldscur_freqr , cur_freqs, freqr andfreqs were added to the original Linux PCB,

and they will be used later for implementing Predictive and Dynamic coscheduling

(see sec. 2.2.4 and 2.3 respectively).

11 tick' 10 ms



60 CHAPTER 3. COSCHEDULING PROTOTYPES

There are other fields, such aspid (process identifier),stateand so on, but they

will have no influence on our coscheduling schemes and so no further comments

about them are included (see [62, 63, 65, 66, 64] or the Linux source for more

information).

Initially, tasks in Linux acquire a “normal” scheduling policy. Normal tasks

have a Round Robin scheduling policy, with a variable time slice. Real-time tasks

must acquire this condition explicitly. Also, the scheduling policy of each real-

time task can be defined as Round Robin or FIFO.

In task creation, the fieldcounteris set equal to the fieldpriority and then the

task (PCB) is appended to the RQ. The Linux scheduler picks up the next process

to be executed (current) by means of the internal functiongoodness(Figure 3.5,

Step 3). Basically, it returnsrt_priority to real-time tasks or the sum of thecounter

andpriority to the normal ones. The task with the highest value returned by the

goodnessfunction is scheduled. If all the returned RQ tasks values are 0 (the

field counter is 0), the fieldcounterof every normal task is reset to be equal to

priority and the scheduling process begins again. In absence of real-time tasks,

this mechanism avoids starvation of the normal ones.

As we will see, thert_priority field, will have a great influence in the im-

plementation of the DTS and HPDT explicit-control mechanisms. They assign a

real-time priority to tasks making up distributed applications.

Instead, in the implementation of the implicit-control models Predictive and

Dynamic, only the normal scheduling policy will be considered. Fieldspriority

andcounterwill be used jointly with the new frequency ones (*freqr and*freqs).

3.2 DTS

In this section, the system named DTS, DisTributed coScheduler, which imple-

ments the explicit mechanism (of chapter 2, sec. 2.1) is introduced. It has been

fully implemented in the user space of a PVM-Linux Cluster.

DTS is composed of the three types of modules introduced in chapter 2, theEx-

plicit Scheduler(named hereDTS Scheduler), theLoad and theConsole. Figure

3.6 shows the architecture and the relationship between the different components

of the DTS environment.



3.2. DTS 61

LAN

PVMD PVMD

MASTER

NODE

NODE
LOCAL_TASK LOCAL_TASKPVM_TASKPVM_TASK

LINUX/SOLARISLINUX/SOLARIS

Communication
Creation

DTS environmentN

i

O.S. O.S.

DTS Scheduler DTS Scheduler

LoadLoad Console

Figure 3.6: DTS environment.

The DTS startup process begins when the PVM is activated. In each worksta-

tion making up our VM (Virtual Machine), the shell script which startspvmd(the

PVM daemon) has been modified as follows: the sentence "exec $PVM_ROOT/lib/pvmd3

$@" has been changed to "exec $PVM_ ROOT/lib/DTS_Scheduler $@". This way,

when the workstation is added/ activated to the virtual machine (even if it is the

first) from the PVM console, theDTS Scheduleris executed.

DTS work is mainly centralized in a master node. If the algorithm were dis-

tributed, it would reduce the performance of the local applications and would

increase the network activity due, for example, to the high communication gener-

ated by eachLoadmodule, which would have to send the load index to the overall

VM.

3.2.1 DTS Scheduler

The pseudo-code that implements theDTS Scheduleris shown in Algorithm 5.

This algorithm is very similar to theExplicit Scheduler(Algorithm 1), but more

implementation considerations are introduced.

Our solution consists of promoting the distributed tasks (initially with a “nor-

mal” priority) to real-time. Furthermore, in each workstation, all the PVM tasks

are put in the same group of processes, and led bypvmd(the PVM daemon). Con-



62 CHAPTER 3. COSCHEDULING PROTOTYPES

trol of their execution can thus be performed by sending them stop and resume

signals from theDTS Scheduler.

Algorithm 5 DTS Scheduler.

setPRI(DTS_Scheduler) = ((max(rt_priority) and SCHED_FIFO)
fork&exec (Load)
fork&exec (pvmd)
setPRI(pvmd) = ((max(rt_priority) - 1) and SCHED_RR)
setPRI(Load) = ((max(rt_priority) - 2) and SCHED_FIFO)
setpvmdleader ofpvm_tasks

sync_point:
while (pvm_tasks) do

sleep(PS)
send_signal(STOP, pvm_tasks)
sleep(LS)
send_signal(CONTINUE, pvm_tasks)

endwhile

At the start of the execution, theDTS Scheduler, which has root permissions,

promotes itself to real-time class (initially time shared). After that, it forks and

executesLoadandpvmd, and also promotespvmdandLoadrespectively to 1 and

2 real-time priority lower than theDTS Scheduler. Next,DTS Scheduler, promotes

pvmdto become the leader of a new group of processes (denoted bypvm_tasks;

this group will be made up of all the PVM tasks thatpvmdwill create).

The scheduling policy of every process (SCHED_FIFO or SCHED_RR) is

also shown in the algorithm. They denote a FIFO or Round Robin scheduling

policy respectively. TheDTS SchedulerandLoad have a FIFO policy because

they need to finish their work completely before releasing the CPU. On the other

hand,pvmdcan block waiting for the receipt of a message (or event); meanwhile

the CPU will be granted to another process. For this reason, the scheduling policy

of pvmdhas to be Round Robin.

This loop stops when there are no more PVM tasks (including the pvmd). This

occurs when the workstation is deleted from the PVM console.

Thus, after the Parallel Slice (PS), all the Schedulers in the VM stop all the



3.2. DTS 63

PVM tasks by sending a STOP signal to the group of PVM processes led by

pvmd. After that, these are resumed at the end of the local slice by sending them a

CONTINUE signal. The distributed tasks run in the real-time class, so they have

a higher global priority than the interactive ones. Thus, when they are resumed,

they take control of the CPU. In this way, an interval of execution is assigned

to distributed tasks (PS) and another interval (LS), which can be different, to the

interactive ones.

Various control and information messages can be sent from theConsoleto the

DTS Schedulers. One of these control messages (init) informs theDTS Scheduler

processes to start delivering STOP and CONTINUE signals to their local high-

priority distributed processes at regular intervals (depending on thePS and LS

values). As was pointed out in section 2.1, thePSandLS intervals can be sent

with the control (i.e.init) or synchronization messages.

The Consolealso provides various commands for controlling and managing

the system. All theConsolecommands are listed in Appendix A.

3.2.2 DTS Overhead

The cost of implementing DTS in a PVM-Linux Cluster is analyzed next. The

cost in this case is the overhead introduced into each Cluster node in the imple-

mentation of explicit coscheduling. More precisely, we are interested in finding a

formula for measuring the overhead when changing from thePSto theLSperiod

and vice-versa.

A change in each Cluster node to theLS period is performed when theDTS

Schedulersends a STOP signal to the distributed task group in the local node.

On the other hand, a change to thePSperiod is performed by delivering them a

CONTINUE signal.

When changing from periodLS to PS, and taking into account that the Clus-

ter nodes are uniprocessors, at most there will only be one local task executing

into the CPU. Consequently, the time spent by “dts” stopping one local task and

waking up a distributed one (Tstart) is:



64 CHAPTER 3. COSCHEDULING PROTOTYPES

Tstart = Ws(local)+Ww(dts)+Ssig(CONT)+Ws(dts)+Ww(dis), (3.1)

whereWw/Ws is the elapsed time in waking up/suspending theDTS Scheduler

(dts), a local task (local) or a distributed task (dis). Ssig(CONT) is the maximum

elapsed time in sending a CONTINUE signal to all the distributed tasks in the

node.

Also, at most only one distributed task will be executing when a change from

thePSto theLSperiod is performed. When changing from periodPSto LS, the

time spent now in stopping a distributed task and waking up another, in this case

local, is (Tstop):

Tstop= Ws(dis)+Ww(dts)+Ssig(STOP)+Ws(dts)+Ww(local), (3.2)

whereSsig(STOP) is the maximum elapsed time in sending a STOP signal to all

the distributed tasks in the node.

Because the time in delivering a signal to a group of processes does not depend

on the signal to be delivered, we consider thatSsig(STOP) = Ssig(CONT) = Ssig.

Similarly, the valuesWw, Ws andW are considered to be equal (Ww = Ws = W). In

consequence 3.1 and 3.2 can be reformulated as:

Tex = Tstart = Tstop= 4W+Ssig. (3.3)

3.3 High-Priority Distributed Tasks (HPDT)

HPDT (High Priority Distributed Tasks) is a very similar coscheduling environ-

ment to DTS. Its purpose is always to give the maximum priority to the distributed

tasks in a PVM-LINUX environment.

To achieve maximum performance to distributed tasks it is only necessary

to assign them a high priority throughout their lifetime. As in DTS, HPDT is

implemented in the user space.

Taking into account the above consideration, the algorithm that implements



3.4. IMPLICIT 65

Algorithm 6 Priority Scheduler. Assigns real-time priority to PVM tasks.

setPRI(Priority_Scheduler) = ((max(rt_priority) and SCHED_FIFO)
fork&exec (pvmd)
setPRI(pvmd) = ((max(rt_priority) - 1) and SCHED_RR)

HPDT (Algorithm 6) is presented. This algorithm is located in a process named

Priority Scheduler. There is one copy ofPriority Schedulerin each Cluster node.

The maximum real-time priority is also assigned to each copy.

The startup mechanism is identical to DTS. When a new node is activated from

the PVM console, thePriority Scheduleris started instead of the DTS Scheduler

(as in DTS). Then, in order to assign a high priority to distributed tasks, it is

only necessary to promotepvmd(in its creation) one unit level less thanPriority

Scheduler(max(rt_priority) - 1). After that, all thepvmddescendant tasks will

inherit this priority.

This technique does not introduce additional overhead, except in the initial

startup phase, but for large enough distributed applications the starting process

time can be depreciated. However, the average response and also the return time

of the local tasks can be drastically increased.

3.4 Implicit

Implicit coscheduling was previously presented in [16], [17] and [18]. As its

name suggest, it follows an implicit-control philosophy. This model only requires

processes to block awaiting message arrivals for coscheduling to happen. The

two-phasespin-blocking is the most efficient one between two variants of this

technique. The waiting process spins for a determined time and if the response

is received before the time expires then it continues its execution. Otherwise,

the requesting process blocks and another one is scheduled. The other variant

consists of only spinning, which produced poorer performance, as was shown by

the authors.

One objective we have in mind is to measure the influence of the spinning

phase on the performance of distributed applications, and also to find the optimal



66 CHAPTER 3. COSCHEDULING PROTOTYPES

spin value. The previous work based on that technique does not consider the

interaction between distributed and local workload. So another purpose of the

study of this model is to investigate the relationship between thespin value and

the local slowdown in time sharing environments.

Algorithm ImCoscheduling(Algorithm 7) shows the pseudo-code of the Im-

plicit coscheduling model. The DCEs provide facilities for dealing with messages,

so Implicit coscheduling can be implemented in the user space (inside the DCE),

but it can also be implemented in the system space, for example, in the Socket

level. As was shown previously, this communication level uses packets (and its

associated sk_buff structures), so the spinning should be implemented in this case

as an active waiting for packets.

Algorithm 7 ImCoscheduling. Implements the Implicit coscheduling.

Initialize input_time, execution_time,spin
while (no_new_message)and (execution_time< spin)
and (execution_time< timeout)do

execution_time= current_time - input_time
if (no_new_message)

if (timeout) block (timeout - execution_time)
elseblock (indefinitely)

There are no appreciable differences in implementing Implicit coscheduling in

the user or system space, except in the kind of message to be dealt with. Accord-

ingly, it was decided to implement it in the user space, inside the PVM (the chosen

DCE). This way, no modification of the Linux kernel in each VM workstation is

required.

Messages in PVM are split into smaller transmission units, thefragments(see

section 3.1.1). Thus, for implementing Implicit coscheduling in the PVM level, it

is only necessary to change the word message by fragment in the Algorithm 7.

Next, it is also necessary to find the PVM libraries to incorporate the Implicit

mechanism where reception of fragments may occur, and modify them according

to the proposed algorithm. Only one PVM function, namedpvm_receive, is re-

sponsible for doing the waiting for fragments, so the algorithm was placed entirely

in this function.



3.4. IMPLICIT 67

In addition, the functionpvm_receiveis called from the best known PVM

functionpvm_recv. When the calling process returns frompvm_receive, it means

that a new fragment is available to it. This process is repeated until the overall

message is received or an error in the reception of the message is produced.

3.4.1 Implicit Coscheduling Overhead

Normally, in multiprogrammed systems, when a task is waiting for an event to

occur (i.e. message arrival), it suspends execution until the event arrives. Then,

it is reawaken and becomes ready to be scheduled again. In Implicit coschedu-

ling, distributed tasks waiting for message arrival spin for a period of time before

blocking, wasting this way CPU cycles that should be assigned to other ready to

run tasks. Thus, the Implicit coscheduling overhead depends on the CPU intervals

the distributed tasks spend in spinning.

In [17], the interval in which a process must active waiting the response of a

requesting message for spinning to be beneficial was investigated. Based on the

LogP model ([25, 26]), it was determined that the best benefits were obtained for

a spin value equal to 5C, whereC is the context switch cost. It was assumed that

C is a constant. Really,C depends on the size and number of processes in the

system. Analytically, according to the LogP model, the time in sending messages

is L + 2o, whereL is the latency of the network ando is the processing overhead in

each node. The optimal spin value in the requesting node was obtained by solving

the following equation:

2L+4o+spin< 2L+4o+5C, (3.4)

where 5C is the context switching cost: 2C in both, the requesting and service

nodes, and one additionalC (fixed as the lower spin interval), realized only in the

service node.

Distributed tasks can follow many types of communication pattern and the

messages can arrive to distributed tasks asynchronously, at any time. We are only

interested in spinning a distributed task at most during the time the system spends

when the task is suspended immediately, which is the cost of blocking the dis-

tributed task and reawaking it later (when the message arrives). This is the cost



68 CHAPTER 3. COSCHEDULING PROTOTYPES

in doing two context switches. Accordingly, the maximum spin value (spinmax) is

defined as follows:

spinmax= 2∗C (3.5)

This fact give us a first reference to choose the spin value for Implicit cos-

cheduling to be beneficial. It is also the overhead added -in each node- to the

remaining tasks which are ready, waiting to be scheduled.

3.5 Predictive

In this section, a real implementation of the Predictive coscheduling technique in

a Cluster system, as defined in chapter 2, section 2.2 is presented.

Modifications were mainly performed on the Linux scheduler (located in the

sched.cmodule). To modify the scheduler policy of any computer system in the

user space seems to be a bad idea. Scheduling is an inherent function of the ope-

rating system. If coscheduling were implemented in the user space, in the PVM

sending or receiving libraries, no means for promoting the correspondents would

be possible inside PVM (in the user space) when potential coscheduling was met.

New system calls and libraries should be added to access operating system struc-

tures and services, leading into a very complicated user-system interface. Also,

the extra overhead could reduce coscheduling performance.

Tasks making up distributed applications are normally executed in a Cluster,

as are the local ones, so there is no advance information differentiating both kinds

of task. As we are not interested in providing mechanisms which explicitly pro-

mote the distributed tasks to real-time (as DTS or HPDT do), only the normal

task scheduling policy will be taken into account. However, a means for assign-

ing more scheduling priority to distributed tasks must be provided to implement

Predictive coscheduling in the normal task queue.

Implementing coscheduling in the kernel space gives transparency to the over-

all system and allows the application of coscheduling independently of the DCE

used (PVM, MPI, etc ...).

The drawback is in portability. The kernel in each node must be modified to



3.5. PREDICTIVE 69

incorporate coscheduling capabilities. Although it is an inconvenient, the modifi-

cations we propose are minimum.

3.5.1 Predictive Scheduler

The Linux scheduler, in the scheduling phase (Fig. 3.5, Step 3), picks up the

task with the highestgoodnessvalue. Algorithm 8 shows how thegoodnessvalue

(weight) for a task is obtained. In line 1, theweightfor a real-time task is obtained

with the help of thepolicy andrt_priority task fields. Both distributed and local

tasks that we are dealing with always have “normal” priority, so lines 3 to 9 will

be executed.

Algorithm 8 Functiongoodness(task).

1 if (task→policy == “real_time”) weight= task→rt_priority + 1000;
2 else {// “normal” priority
3 weight= task→counter;
4 if (! weight) {
5 weight+ = task→priority;
6 task→cur_freqr = n_packets(current,RMQ);// RMQpackets
7 freqr = (1-P)∗task→cur_freqr + P∗task→freqr ;
8 Distributed=freqr || task→freqs;
9 weight+ = freqr + task→freqs + DefPrio ∗ Distributed ;
10 }
11 }
12 return weight;

The proposed Predictive model is based on increasing the priority of the dis-

tributed tasks (h) proportionally to their sending and receiving frequency (h. f req),

defined in section 2.2.4, formula (2.12) as:h. f req = h. f reqr + h. f reqs. Thus,

for implementing Predictive coscheduling, it is only necessary to increase the re-

turnedgoodnessvalue of the distributed tasks. This has been accomplished with

the addition of lines 6 to 9 in the originalgoodnessfunction (Algorithm 8) and by

modifying the original Linux Scheduler (Algorithm 9).

The current receiving frequency is obtained in the scheduling phase (line 6

of the functiongoodness), where messages are waiting for service. However, in

the sending case, it is obtained just after execution, in step 5.1 of the Predictive



70 CHAPTER 3. COSCHEDULING PROTOTYPES

version of the Linux Scheduler, Algorithm 9. Then, in Algorithm 9, steps 5.2 and

5.3, new passed frequencies are also computed and saved accordingly for later use

in Algorithm 8, in lines 7 to 9.

Note that in the section 2.2.4, it was stated that each time the receiving and

sending frequencies are obtained (h. f reqr andh. f reqs respectively), they will be

used later as passed history in obtaining new frequency values.

Instead of obtaining the current sending and receiving frequencies as was ex-

plained in the previous chapter (chapter 2), the number of sending and receiving

packets in the socket level was used. The reason for doing this is explained below,

in the Additional Comments section (sec. 3.5.3). That work is performed in the

functionn_packets(explained in the following section, sec. 3.5.2).

Algorithm 9 Predictive version of the Linux Scheduler. Only the modifications
(addition of Steps 5.1 to 5.3) with respect to the original Linux Scheduler (Fig.
3.5) are shown.

Step5: Dispatchcurrents
Step5.1: current→cur_freqs = n_packets(current,SMQ) // SMQpackets
Step5.2: current→freqs = (1-P)∗current→cur_freqs + P∗current→freqs

Step5.3: current→freqr = (1-P)∗current→cur_freqr + P∗current→freqr

Step6: Docurrentaccounting

Unlike explicit-control methods (as DTS or HPDT), we are interested in de-

tecting the correspondents in an implicit manner. In the DTS environment pre-

sented earlier, as every distributed task is started from theDTS Scheduler, all the

distributed (PVM) tasks belong to the same group of processes and led bypvmd.

As pvmd in each node is started from theDTS Scheduler, thepvmddescendant

tasks (all the remaining distributed or PVM ones) can be easily identified. The

implicit way of detecting the correspondent processes in the Predictive model is

by obtaining the communication frequency of “normal” processes.

Initially, in plain Linux, as well as in the Predictive model, all the processes

(even the distributed ones) begin execution with a “static” priority equal to Def-

Prio (=20), and remains constant during all their lifetime. So, the resulting prio-

rity of the distributed applications, with non-zero communication frequency (var.

Distributed= 1 in line 8 of the Algorithm 8), will be higher than the local (user)



3.5. PREDICTIVE 71

ones by adding they DefPrio (in line 9). Also the distributed application with the

highest communication frequency will obtain the highest scheduling priority (see

also the line 9).

Starvation of local tasks is avoided because when thecounterfield of any

normal task reaches 0, it can not be executed while there are other tasks with non

zero values in their respectivecounterfields (see Algorithm 8, lines 3 and 4).

3.5.2 Obtaining the current sending/receiving frequency

The implemented functionn_packets(task,queue), depending on the value of the

queueargument, obtains the number of packets received (queue= RMQ) or trans-

mitted (queue= SMQ) by a task. Next, the obtained value is saved in the PCB as

the current receiving (field cur_freqr ) or sending (field cur_freqs) frequency. The

pseudo-code of this function is shown in Algorithm 10.

Algorithm 10 Function n_packets(task,queue).

1 if (task→files)
2 for (fd = 0; fd < task→files→max_fds; fd++) {
3 file = task→files→fd[fd];
4 if (file) {
5 inode= file→f_dentry→d_inode;
6 if (inode && inode→i_sock && socket= socki_lookup(inode))
7 if (queue== RMQ)

cur_freqr + = dsocket→sk→rmem_alloc.counter/4096e;
8 elsecur_freqs + = dsocket→sk→wmem_alloc.counter/4096e;
9 }
10 }
11 if (queue== RMQ) return cur_freqr ; else returncur_freqs;

In Unix (Linux), the sockets are treated as files. Thus, first of all, the open files

that correspond to sockets must be identified. To do so, it is necessary to access

the structure that represents each file in Linux, theinode. As Fig. 3.7 shows, this

will be carried out by descending through the following structures:task_struct,

files_struct, file, dentry, and finally inode. Then, if the inode corresponds to a

socket (condition “inode->i_sock” of the Algorithm 10) it will be necessary to

access the socket related structures (socketandsock) by means of the obtained



72 CHAPTER 3. COSCHEDULING PROTOTYPES

pointer to the socket, socket= socki_lookup(inode), wheresocki_lookupis an

internal Linux function.

struct task_struct (PCB)

fd[1]

fd[max_fd]

files

rt_priority

counter

priority

policy

freq

(*)

(*)
rmem_alloc

wmem_alloc

struct sock

struct files_struct struct file struct dentry

d_inode

struct inode

(File table) f_dentry

sk

struct socket

socket

i_sock

receive_queue struct sk_buff

control info.

packet

write_queue

Figure 3.7: Most frequently used Linux structures (and their fields).

Thesockstructure points to two lists ofsk_bufstructures, which buffer packets

(the socket transmission unit2). One of these lists, namedreceive_ queue(the

RMQ, defined in section 2.2.1), buffers receiving packets, and the other, named

write_queue(theSMQ), buffers packets to be transmitted. Thermem_allocsock

field saves the number of bytes in thereceive_queue, and thewmem_allocfield

saves the number of bytes in thewrite_queue.

3.5.3 Additional Comments

The packet-buffering queues (receive_queueandwrite_queue), in the socket Linux

layer, has been chosen to collect message communication information. Accord-

ingly, packets would be a more accurate terminology for messages. As was shown

in the previous section, these queues can be accessed from the PCB of each pro-

cess and consequently, all the packets sent towards (delivered by) such process

can also be obtained. It would be more difficult to obtain the same information on

other communication levels (i.e., inside the PVM or in the protocol layer), or it

would even be more inefficient and add more additional overhead.

24096 bytes (4Kbytes)



3.5. PREDICTIVE 73

MCO, defined as the Maximum number of Coscheduling Overtakings in chap-

ter 2, was not considered in the implementation of the Predictive model. Its use

was unnecessary because, as mentioned above, the Linux scheduler already incor-

porates a valid mechanism for avoiding starvation of “normal” tasks. Perhaps, in

heavily loaded workstations, the Linux method may produce excessive response

time in local tasks, but really it is very difficult for commodity Clusters to deal

with this kind of load, so no more studies have been performed in this field.

Another Predictive feature to be mentioned concerns the way the current com-

munication frequencies are obtained. As was explained previously, the current

sending frequency is obtained by gathering the number of packets in theSMQ

queue of the process which has just released the CPU. If an accurate frequency

metric was obtained, the added overhead in gathering information each SI (Sam-

pling Interval) and the computation of frequencies of the overall system processes

in regular intervals (FI: Frequency interval), as was commented in chapter 2 sec-

tion 2.2.4, will add an extra overhead. Similarly, the obtaining of the current

receiving frequency is substituted by collecting theRMQ length in the scheduling

phase. This information even gives more information of real coscheduling neces-

sities than the proper current receiving frequency and also adds less overhead to

the system.

Also, the current frequencies could for example, be obtained in the send and

receive functions provided by the socket layer. But this method has been also

discarded because each time these functions were called, it must access the sys-

tem list of all the PCBs to update statistics. Such a method would add another

excessive time overhead in fine grained distributed applications.

In our method, the system communication overhead plays a favorable role.

Transmission packets are buffered for a short period of time, which is, however,

sufficient to collect information. With the help of Monito [40, 82] (a communica-

tion monitoring tool for Linux environments), each 100µs, occupation information

was gathered in the execution of IS (a NAS parallel benchmark described in chap-

ter 5) of thewrite_queue(which buffers transmission packets, in the Socket layer)

and the CBL queue (which buffers transmission frames, in the physical network

device). The results are shown in Fig. 3.8. Note that due to the delay introduced

by the network latency, the frames are buffered for a short period of time in the



74 CHAPTER 3. COSCHEDULING PROTOTYPES

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 500 1000 1500 2000

Time(x100ms)

write_queue (Bytes)

IS

(a)

0

2

4

6

8

10

12

14

0 500 1000 1500 2000

Time(x100ms)

CBL (frames)

IS

(b)

Figure 3.8: (a) write_queue and (b) CBL transmission queues.

CBL queue (see Fig. 3.8(b)). In addition, the system latency also increases the

time that the packets must be keep in thewrite_queue(Fig. 3.8(a)), waiting for

their transmission.

The design decisions depend on the final system of the Predictive (or other

coscheduling) model to be applied. In this case, due to the previous study of the

communication subsystem and the Linux scheduler behavior, the way the current

frequency is obtained and the control of the coscheduling overtakes (by using the

MCO parameter) for avoiding local task starvation has scarcely been modified.

3.6 The Dynamic Version

In this section, the Dynamic coscheduling technique defined in chapter 2, section

2.3 is explained. To implement the Dynamic version of the Predictive model it is

only necessary to discard the sending frequencies. Modifications to be made are:

1. Functiongoodness(task)(Algorithm 8), line 8, must be changed to a more

simple sentence (Distributed=freqr ), because only the receiving frequency

must be taken into account. Line 9 must also be changed to (weight+ =
freqr + DefPrio ∗ Distributed ).

2. The Predictive version of the Linux Scheduler (Algorithm 9) must only save

the passed receiving frequency. So steps 5.1 and 5.2 must be omitted.



3.6. THE DYNAMIC VERSION 75

3. Functionn_packets(task, queue)(Algorithm 10) must not be modified. Un-

like the Predictive case, this function will always be named with the queue

argument equal toRMQ.

No more modifications to the Predictive method need to be performed in im-

plementing the Dynamic mechanism. This fact demonstrates the importance of

defining the CMC model. Having in mind the CMC model, different coschedu-

ling techniques can easily be first designed and then implemented in real environ-

ments.

Note that the implementation of the Dynamic version require fewer modifi-

cations to be performed in the original Linux source. It also produces less extra

overhead in the execution of distributed applications because the access to the

SMQqueue is avoided.

One final comment is that both models can coexist in the same Cluster. If

we assume the existence of a system parameter which specifies the coscheduling

policy (Dynamic, Predictive or even plain Linux), one of the three models will

be applied. This parameter can also be easily changed when required by a com-

mand (and/or system call). This is the way this has been performed for obtaining

performance results in chapter 5. Appendix A presents an implementation of the

Linux command and system call which has been implemented for changing the

coscheduling model.



Chapter 4

Experimental Results (Simulation)

In this chapter, a broad experimentation based on simulation is performed. The

simulator, named SCluster (Simulator Cluster), was implemented in C++ (and

compiled with the public gnu g++ compiler) with the statistical CNCL (Commu-

nication Network Class Library) library [77]. CNCL was created at Communica-

tion Networks, Aachen University of Technology, in Germany. It is a class library

featuring generic C++ classes which provides very useful random number gen-

eration and statistics libraries as well as an event driven simulation.

The main advantage of SCluster is that it simulates a Cluster with a variable

number of nodes. The program defines a generic station class. Inside it, all the

different parameters and functionality a Cluster node must provide are very easily

defined and structured. Further extensions or modifications are located in a unique

structure, thestationclass. Also, communication links between different Cluster

nodes are incorporated in this class, so network topologies, or communication

patterns of distributed applications can easily be incorporated.

The global simulator parameters (passed as input arguments at program startup),

are the following (see fig. 4.1):

• NSTATIONS: number of nodes making up the Cluster.

• MRQL (Mean Ready Queue Length): the average number of tasks in each

Cluster node. The overall experimentation was done for twoMRQL va-

lues (2 and 5). Values of 2 and 5 represent a medium and high workload

respectively.

77



78 CHAPTER 4. EXPERIMENTAL RESULTS (SIMULATION)

STATIONi

task
Local Distributed

task
Distributed

task

New task mit: mean inter-arrival task

(1-pdt)cf: communication
frequency

RQ: Ready Queue

Server

maxm: maximum number of distributed tasks

pdt: probability of distributed task

MCO: Maximum Coscheduling Overtakes
MRQL: Mean Ready Queue Length

mst: mean service time

nsdt: number of served
distributed tasks

Figure 4.1: SCluster input arguments.

◦ mean inter-arrival time (mit): mean time for tasks to arrive at the RQ

(Ready Queue). The density function is exponential with mean= mit.

Themit is constant (with a value of 10) in the overall experimentation.

◦ mean service time (mst): mean time in serving tasks (by the Server,

which simulates a uniprocessor Cluster node). The chosen density

function is an exponential with mean= mst. Taking into account the

equilibrium condition,mstis computed as follows:

for a predeterminedMRQLvalue, asmit is fixed to a constant value

equal to 10, themstparameter is calculated by means of the following

equation:

MRQL=
ρ

1−ρ
, (4.1)

whereρ = λ
µ = 1/mit

1/mst. λ = 1/mit andµ= 1/mst.

• nsdt (number of served distributed tasks): finishing simulation parameter.

All the experimentation was performed with a value ofnsdt= 10.000.

• pdt (probability of distributed task). Each generated task is distributed with

probability pdt, and local with probability 1 -pdt. The density function



79

is a Bernoulli with apdt probability. The experiments were done with the

following pdt values: 0.2, 0.5 and 0.8.

• maxm(maximum number of distributed tasks): maximum number of dis-

tributed applications which can be simultaneously executed in the Cluster.

It is also the maximum number of distributed tasks residing in a Cluster

node. Experimentation was performed formaxmvalues equal to 1, 3 and 5.

These values are very realistic because the hardware resources capabilities

of the nodes making up the Cluster (as for example memory capacity) are

generally not designed for highermaxmvalues.

• cf (communication frequency): each distributed task (application) has an

associatedcf value in the range [1...maxm]. Depending on the correspon-

dent cf value, the message sending frequency of each distributed task is

generated. The density function of each generated distributed task is uni-

formly discrete in the interval [0...cf ].

• MCO Maximum Coscheduling Overtakes: number of times a task can be

overtaken in the RQ by another one with higher priority. In the experimen-

tation, theMCO values are varied in the range [MRQL−2, MRQL+2].

The models (and their principal parameters) that were evaluated are represented

by the following notation:

• Linux (LIN): it represents the Linux scheduler. As mentioned in chapter 3,

section 3.5, the scheduling policy of “normal” tasks (the kind of tasks we

are interested in) has a Round Robin behavior.

• Implicit (IMP): represents the spin-block technique of the Implicit cosche-

duling technique presented in chapter 3, section 3.4. The spin interval is

equal tomst/10.

• Explicit (EXP): represents the STATIC operation mode of the Explicit (DTS)

coscheduling environment, explained in chapter 2, sec. 2.1 (chapter 3, sec.

3.2). To obtain the best possible results a modification to the original DTS

model was introduced. In thePS (LS) interval, if there are no distributed



80 CHAPTER 4. EXPERIMENTAL RESULTS (SIMULATION)

(local) tasks in the RQ, an execution chance arises for the local (distributed)

ones. Moreover,PS=LS=100. In the simulation there is no overhead in

their setting or synchronization over the Cluster.

• High Priority Distributed Tasks (HPDT): this acronym is used to denote

the coscheduling model with the same name, HPDT, described in chapter

3, section 3.3. A high priority is always assigned to distributed tasks. To

simulate this model (and also in the EXP one), a previous identification of

the distributed tasks is needed. How to implement this in a Cluster system

by using a DCE with distributed-tasks management capabilities (i.e. PVM)

was explained in Chapter 3 .

• Predictive (PRE): denotes the Predictive model, defined in chapter 2, section

2.2.

• Dynamic (DYN): denotes the Dynamic model, defined in chapter 2, section

2.3.

Times in the simulator are in Time Units. For example, a value formit=10, rep-

resents 10 units of time. This generic unit of time has no influence in the results

obtained with SCluster.

4.1 Coscheduling Models Evaluation

The most significant CMC metrics are those referring to system performance, this

is SystemCoDe(System Coscheduling Degree) andSystemThDe(System Thrash-

ing Degree), described in chapter 2 section 2.2.2. They reflect the behavior of

distributed tasks in the overall system. Also, as the System Thrashing Degree is

the complement of 1 ofSystemCoDe(SystemThDe= 1 - SystemCoDe), there is

no need to obtainSystemThDe.

Only SystemCoDestatistics are shown in the simulation because more infor-

mation about the overall system is reported using this metric. Deduced from its

definition,SystemCoDewill be low (high) if the averageNodeCoDeis also low

(high), so there is no need to compareNodeCoDeresults. The same can be said

for theTaskCoDemetric.



4.1. COSCHEDULING MODELS EVALUATION 81

We are interested in finding coscheduling techniques with good values (close

to 1) for SystemCoDe, which also in turn implicate good ones (close to 0) for

SystemThDe.

In doing the comparison between the models, two kinds of figures are used:

• SCODE: evaluates theSystemCoDe(System Coscheduling Degree). This

metric is applied only to Distributed tasks. It serves to compare coschedu-

ling performance between the different models and was formally defined in

formula 2.9 as:

SystemCoDe= ∑k ∑l N[k].T[l ].tco
∑k ∑l (N[k].T[l ].tco+N[k].T[l ].tth)

As can be seen in the formula,SystemCoDeis the relation between the total

coscheduled cycles (T[l ].tco) when potential coscheduling was met (field

T[l ].pco was activated) and all the possible coscheduling ones (T[l ].tco+
T[l ].tth). Potential coscheduling for a taskT[l ] is indicated with the activa-

tion of theT[l ].pco field. The fieldT[l ].pco is activated when the current

frequency is higher than 0. Thus, local and distributed tasks with the current

frequency equal to 0 are not computed in this formula because no need for

coscheduling is met.

In all the measurements of the PRE and DYN models,MCO=MRQLand

P' 0.

• TIMES: in this kind of figure, the average distributed and local times are ob-

tained. As in the SCODE figures, in the PRE and DYN modelsMCO=MRQL,

and P' 0. The chosen times in this case are:

◦ Dret: Distributed return time. Average return time (elapsed time from

the start to the end of execution) for all the distributed tasks in the

overall Cluster.

◦ Dwait: Distributed waiting time. Average waiting time in the RQ for

all the distributed tasks in the overall Cluster.

◦ Lret: Local return time. Average return time for all the local tasks in

the overall Cluster.



82 CHAPTER 4. EXPERIMENTAL RESULTS (SIMULATION)

◦ Lwait: Local waiting time. Average waiting time in the RQ for all the

local tasks in the overall Cluster.

Figure 4.2 shows the results obtained for the above mentioned kinds of metric

(on the left (right) the SCODE (TIMES) figures show theSystemCoDe(Dret,

Dwait, Lret andLwait) results) forNSTATIONS=4, MRQL=2 andmaxm=3. The

different figures show the results obtained forpdt=[0.2, 0.5, 0.8]. TheMRQL=2

represents a moderate workload in each Cluster node. As the maximum number

of distributed applications is 3 (maxm=3), a value of 2 for theMRQL is very

appropriate if we also consider that eventually there will be owner tasks in the

RQ.

Specific characteristics of distributed applications (i.e. different message pat-

terns, and effects of varying the communication frequency and the message lengths)

are not studied in this chapter. This experimentation aspect is covered in the fol-

lowing chapter (chapter 5), where different kinds of distributed applications are

executed in a real Cluster system.

By observing the Figure 4.2, it can be seen howSystemCoDeand TIMES

results are very closely related with each other. High (low)SystemCoDeresults

generally give low (high)Dret andDwait values in the distributed tasks (see the

TIMES figures). Note as times in the TIMES figures are in time units. All the

obtained TIMES values are also very coherent because they are in the same order

of magnitude than for examplemit (=10). This is, they ranges in multiples of 10

(and not for example in multiples of 100 or 1000).

Also, high (low) values forSystemCoDeimply high (low) return and waiting

times in the local tasks (metricsLret andLwait respectively). The added overhead

in local tasks is an important factor to be taken into account because as was com-

mented in the Objectives section of chapter 1, we are interested in increasing the

performance of distributed tasks without disturbing the local ones excessively.

The results obtained validate the usefulness of theSystemCoDemetric in ob-

taining on-time distributed performance of the overall system. By extension,

NodeCoDe(TaskCoDe) will serve for obtaining on-time performance of any par-

ticular node (distributed tasks forming a distributed application in a particular

node).



4.1. COSCHEDULING MODELS EVALUATION 83

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=4 MRQL=2 maxm=3 pdt=0.2

LIN IMP EXP HPDT DYN PRE

SystemCoDe

(a)

0

5

10

15

20

25

30

35

40

NSTATIONS=4 MRQL=2 maxm=3 pdt=0.2

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=4 MRQL=2 maxm=3 pdt=0.5

LIN IMP EXP HPDT DYN PRE

SystemCoDe

(c)

0

5

10

15

20

25

30

35

40

NSTATIONS=4 MRQL=2 maxm=3 pdt=0.5

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

(d)

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=4 MRQL=2 maxm=3 pdt=0.8

LIN IMP EXP HPDT DYN PRE

SystemCoDe

(e)

0

5

10

15

20

25

30

35

40

NSTATIONS=4 MRQL=2 maxm=3 pdt=0.8

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

(f)

Figure 4.2:NSTATIONS=4, MRQL=2. (left) SCODE (right) TIMES.



84 CHAPTER 4. EXPERIMENTAL RESULTS (SIMULATION)

The performance obtained in each model and a comparison between them is

discussed below.

In general, the performance statistics of the different models are very coherent.

For example, note that the LIN model always gives the same performance for

both distributed and local tasks (see the TIMES figures). The expectation and the

obtained results coincide, because LIN implements a Round Robin scheduling

policy, with no differentiation between distributed and local tasks.

The distributed performance of the IMP model is the poorest in all cases. This

fact is provoked by the high spin interval we chose (which is excessively high

with respect tomst, the mean service time). In the following chapter (chapter 5),

thespin interval is selected according to the explanation in section 3.4.1, which is

based on the context switch cost (which has a null value in the simulator and so

we cannot base this on it), and so more coscheduling benefits are reached.

It can be seen how the LIN and EXP performance always remains in interme-

diate locations.

Note that LIN and EXP results are very close to each other because, in the

simulation, no overhead is added in the EXP model. Also, overhead in switching

between thePSandLS periods is not considered. Thus, in EXP, distributed and

local tasks perform the same Round Robin as in LIN, but at separate intervals.

This fact favors the performance of distributed applications due to the benefits

obtained from coscheduling them in the same period (PS).

In general, HPDT, DYN and PRE gave better coscheduling performance (Sys-

temCoDe) than LIN, IMP and EXP. The simulation results confirm the expecta-

tions about HPDT, which assigns more scheduling priority to distributed tasks, so

this model obtained the best SystemCoDe results in all the situations. However,

DYN and PRE models obtained results very close to HPDT, especially for low

distributed workload (i.e.pdt= 0.2). This fact demonstrates their effectiveness in

making good use of potential coscheduling. However, no significant differences

between the PRE and DYN models were produced. Only one slight advantage for

PRE can be appreciated in these figures. We must await the results obtained in

real implementations (chapter 5) to observe more significant differences between

these models.

Unlike the other models, the LIN and IMPSystemCoDescarcely increase with



4.1. COSCHEDULING MODELS EVALUATION 85

pdt. By increasingpdt, the number of distributed tasks in each node also increases,

but as LIN does not take into account the need for coscheduling (it performs a sim-

ple Round Robin), no important gains are produced. Note as for lowpdt values

(and especially whenMRQL=5) the IMP performance of both distributed and lo-

cal tasks is very poor. This means that there is no need for spinning when the

probability of receiving a message is low. To spin in this situation only adds an

unnecessary overhead in the system.

In IMP, by increasingpdt the active waiting for messages favored distributed

applications and in turn also harmed the local ones. This result is also very co-

herent because it means that tasks only performing computation (local) are more

affected than ones which also communicate (distributed).

On the contrary, EXPSystemCoDedecreases withpdt (major differences can

be appreciated in Fig. 4.3, where the workload is increased, this isMRQL=5).

By increasing the number of distributed tasks, thePS interval must also be in-

creased accordingly, otherwise it becomes insufficient for executing all the dis-

tributed tasks. The synchronization phases have an additional overhead here, by

stopping distributed (and also local) tasks being served before the time slice for

execution has expired.

In the EXP model, local task performance scarcely increases withpdt (major

differences can also be appreciated in Fig. 4.3), because they have an interval

in which its execution is assured. By increasingpdt, the number of local tasks

decreases, thus there are fewer tasks to split benefits by executing them in the

sameLS interval. This fact is not so significant in Fig. 4.2 because the local tasks

are less affected whenMRQL is low.

In the HPDT, DYN and PRE models,SystemCoDealso decreases withpdt.

In this case, higher values forpdt produced the splitting of benefits (reported by

a more efficient coscheduling) between an increasing number of competing dis-

tributed tasks. This is, when a distributed task is favored, proportional penalties

are introduced into the others. On the contrary, when thepdt is low, the benefits

reached by a distributed task do not affect other distributed tasks negatively as

many times as before. These results show us the limit of distributed tasks to be

executed in a node composing a Cluster system for coscheduling to be beneficial.

For low pdt values the distributed gains obtained in the DYN and PRE (and



86 CHAPTER 4. EXPERIMENTAL RESULTS (SIMULATION)

especially in the HPDT) models exceed the added overhead into the local tasks

(see Fig. 4.2(b) and 4.3(b)). Whenpdt is high, the local overhead can increase

excessively (see Fig. 4.2(f) and 4.3(f)). This also informs of the upper bound of

distributed applications to be executed in a Cluster system.

As was expected, in the overall models, performance of both distributed and

local tasks decreased withMRQL.With MRQLthe probability increases that gains

produced in one task affect other ones negatively (even in the coscheduling mo-

dels). In sum, the negative effects produced in the affected tasks may exceed the

gain obtained in the task being favored.

From the comparison between the graphs in the Fig. 4.2 and Fig. 4.3, it

can be seen asSystemCoDefall in increasingMRQL is more accentuated in LIN,

IMP and EXP than in HPDT, DYN and PRE. If the number of competing tasks

increases obviously, the Round Robin algorithm (LIN), the spinning mechanism

(LIN) and the dropping of chances for executing distributed tasks in thePSinter-

val (EXP) affect their respectiveSystemCoDenegatively. In the HPDT, DYN and

PRE models, the distributed tasks have more chances to be executed than in the

other ones, and consequently major gains are produced in theSystemCoDemetric.

However, special attention should be paid to theMCO parameter in the DYN and

PRE models whenMRQL increases (studied in the section 4.2).

No significant variations in the behavior of the different models were obtained

by varying themaxmvalue. As theSystemCoDeis computed in the overall dis-

tributed applications, the differences between executing one or various distributed

applications are minimum. Only a scarce improvement can be observed (when

maxm=3) for the HPDT, DYN and PRE models. This also demonstrates the most

efficient coscheduling of these models. Furthermore, it can be appreciated that the

PRE model behaves better than DYN whenmaxmis increased. These facts can

be appreciated for example by comparing the SCODE Fig. 4.3(a) with Fig. 4.4(a)

(and Fig. 4.3(e) with Fig. 4.4(b)).

Figures B.2 and B.3 (in Appendix B) show the good behavior of the simulator

for NSTATIONS=8 andNSTATIONS=16 respectively. All the comments made for

NSTATIONS=4 are also valid for these cases. This confirms the space scalability

of the simulator. Consequently, it also proves the applicability and usefulness of

the coscheduling models presented, and especially the PRE and DYN ones.



4.1. COSCHEDULING MODELS EVALUATION 87

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=4 MRQL=5 maxm=3 pdt=0.2

LIN IMP EXP HPDT DYN PRE

SystemCoDe

(a)

0

20

40

60

80

100

120

NSTATIONS=4 MRQL=5 maxm=3 pdt=0.2

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=4 MRQL=5 maxm=3 pdt=0.5

LIN IMP EXP HPDT DYN PRE

SystemCoDe

(c)

0

20

40

60

80

100

120

NSTATIONS=4 MRQL=5 maxm=3 pdt=0.5

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

(d)

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=4 MRQL=5 maxm=3 pdt=0.8

LIN IMP EXP HPDT DYN PRE

SystemCoDe

(e)

0

20

40

60

80

100

120

NSTATIONS=4 MRQL=5 maxm=3 pdt=0.8

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

(f)

Figure 4.3:NSTATIONS=4, MRQL=5. (left) SCODE (right) TIMES.



88 CHAPTER 4. EXPERIMENTAL RESULTS (SIMULATION)

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=4 MRQL=5 maxm=1 pdt=0.2

LIN IMP EXP HPDT DYN PRE

SystemCoDe

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=4 MRQL=5 maxm=1 pdt=0.8

LIN IMP EXP HPDT DYN PRE

SystemCoDe

(b)

Figure 4.4: SCODE:NSTATIONS=4, MRQL=5, maxm=1.

The good behavior of the coscheduling models is supposed in ideal conditions

when the system is scaled. This is when the network latency and system laten-

cies in each Cluster node do not increase with the number of nodes. Normally,

this is not at all true. Due to the bandwidth capacity of the network, when com-

munication traffic increases, communication performance decreases. Collisions

and network latencies grow and this can reduce coscheduling effectiveness. Also,

overhead in communication buffering and information gathering in each node is a

factor which negatively affects performance. These effects will be covered in the

following chapter.

4.2 Predictive and Dynamic

In this section, Dynamic and Predictive performance are compared. In doing the

comparison between these models, one kind of figure is used:

• MCO: performance of both DYN and PRE are compared separately by vary-

ing theMCO betweenMRQL−2 andMRQL+2. Also, in both models P'
0.

Once the usefulness of theSystemCoDemetric had been proved in the previous

section, it was used in the current one for measuring performance when theMCO



4.2. PREDICTIVE AND DYNAMIC 89

was varied. Only the DYN and PRE models were compared. They are the only

models whose performance can be influenced byMCO.

Fig. 4.5 shows the results obtained for both DYN and PRE whenNSTA-

TIONS=4. Also, measurements were made forMRQL=2 andMRQL=5 (on the

left and right side respectively).

In general, it can be observed how theSystemCoDemetric increases with the

MCO. The SystemCoDemetric increases while theMCO is less than or equal

to MRQL. It tends to be stable above this threshold. It means that anMCO >

MRQL is not as important in distributed-tasks performance as anMCO≤ MRQL.

According to these resultsMCO must vary between 0 andMRQL.

From the comparison between the graphs in Fig. 4.5, we can observe how the

influence ofpdt (the distributed workload) andMCO on performance depends on

the total workload (MRQL). That is, when the overall workload increases, no gains

are produced by varying theMCO until pdt reaches an optimal value (which also

depends on theMRQL). Above this optimalpdt value, theMCO tends to decrease

its influence on the performance of distributed tasks (see, for example, Figures 4.5

(a), (c) and (e)).

The PRE model behaves slightly better than DYN whenpdt is increased. This

tell us that this model works finer than DYN when the number of distributed tasks

is also increased. The Predictive technique takes both the sending and receiving

frequency into account, whereas DYN only works with the receiving one, and this

implies that more coscheduling chances arise in the PRE model.

Similar results were obtained for different values of P, so they have been omit-

ted. The study of the influence of the P parameter on coscheduling performance

is covered in the following chapter.

In Appendix B, the figures B.5 and B.6 show the results obtained forNSTA-

TIONS=8 and NSTATIONS=16 respectively. As in the previous section, the

NSTATIONSparameter does not affect performance of the different models be-

cause when the system was spatially scaled, no variations on network bandwidth,

latency and bottlenecks were produced. By doing simple modifications to the sim-

ulator program, it should be possible to measure the performance implications of

these system parameters, but here, we are only interested in measuring coschedu-

ling performance. Thus, these were not taken into account in this experimentation.



90 CHAPTER 4. EXPERIMENTAL RESULTS (SIMULATION)

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=4 MRQL=2 maxm=3 pdt=0.2

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 0 1 2 3 4

SystemCoDe

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=4 MRQL=5 maxm=3 pdt=0.2

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 3 4 5 6 7

SystemCoDe

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=4 MRQL=2 maxm=3 pdt=0.5

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 0 1 2 3 4

SystemCoDe

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=4 MRQL=5 maxm=3 pdt=0.5

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 3 4 5 6 7

SystemCoDe

(d)

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=4 MRQL=2 maxm=3 pdt=0.8

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 0 1 2 3 4

SystemCoDe

(e)

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=4 MRQL=5 maxm=3 pdt=0.8

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 3 4 5 6 7

SystemCoDe

(f)

Figure 4.5: MCO.NSTATIONS=4. (left) MRQL=2 (right)MRQL=5.



4.3. SUMMARY 91

4.3 Summary

The results obtained are summarized in table 4.1. This table shows theSystem-

CoDebehavior of the different models (LIN, IMP, EXP, HPDT, DYN and PRE)

when various simulation parameters (NSTATIONS, MRQL, maxm, pdt andMCO)

are varied. The LIN column represents the behavior ofSystemCoDe(C: remains

Constant, I: Increases; SI: Scarcely Increases, SD: Scarcely Decreases, D: De-

creases) when the simulation parameters are increased. The columns of the re-

maining models represent the sameSystemCoDebehavior, but with respect to

LIN. We are not only interested in summarizing the performance of the different

models but we also want to compare them with respect to LIN.

SystemCoDe MODELS
SystemCoDerespect to LIN

PARAMETER LIN IMP EXP HPDT DYN PRE

NSTATIONS C C C C C C
MRQL D C SI I I I
maxm C C C SI SI SI
pdt SI SI SD D D D

MCO - - - - I I

Table 4.1: Simulation Summary.

As can be seen in table 4.1, the LIN performance is degraded by increasing

MRQL. That is,SystemCoDedecreases by increasingMRQL. Unlike pdt (which

scarcely increasesSystemCoDe), the remaining parameters do not affect LIN per-

formance.

The C in the IMP cell of theMRQL row means that this model behaves like

LIN when the workload increases. That is, theSystemCoDeof this model does

not vary with respect to LIN (performance differences between the two models

remain constant).

On the contrary, the EXP model behaves better (theSystemCoDeincreases)

with MRQL, and even more so with HPDT, DYN and PRE. This means that cos-

cheduling of these models is more efficient than the remaining ones in heavily

loaded systems.



92 CHAPTER 4. EXPERIMENTAL RESULTS (SIMULATION)

When comparing the IMP model with respect to LIN, it was observed that

only pdt increasedSystemCoDe. Moreover, with low values ofpdt, IMP obtained

significantly lower results than LIN, but by increasingpdt, the SystemCoDeof

IMP also increases and tends to reach the LIN one.

Unlike IMP, pdt harms EXP. With lowpdt values, EXP behaves better than

LIN and tends to decrease in performance whenpdt is increased. For high enough

pdt values, the performance is even worse than LIN. This fact can be better ap-

preciated (it is also more accentuated) in highMRQL (see Fig. 4.3). EXP works

fine when the system is heavily loaded, but as was commented, by increasingpdt,

distributed gain is also split between an increasing number of distributed tasks.

The same explanation forpdt andMRQL in EXP is also true for HPDT, DYN

and PRE, but gains in distributed performance are significantly better in these

models. In addition, PRE tends to give slightly better results than DYN and both

models also increase performance whileMCO≤MRQL(above this thresholdSys-

temCoDetends to be stable).

The performance of local tasks was excessively decreased in the HPDT, PRE

and DYN cases on increasingpdt. HPDT provides no mechanism for reducing

this overhead. In PRE and DYN in contrast, theMCO parameter can be used for

tuning the slowdown of the local workload.

DYN and PRE models (whenpdt increases) tend to lower in performance with

respect to HPDT. Unlike HPDT, theMCO parameter limits the distributed gain

and consequently,SystemCoDedecreases by increasing the number of distributed

tasks.

The most interesting appointment to be done aboutmaxmis that by increasing

this argument the PRE model behaves slightly better than DYN. This also confirms

the advantage of PRE in front of the DYN model.

4.4 Concluding Remarks

It is worthwhile to point out that in real environments, coscheduling behavior can

be overridden by non-scheduling factors. Some of these factors can also vary

depending on the system workload, such as memory contention, network latency

and bottlenecks, DCE servicing rate, context switching cost, operating system



4.4. CONCLUDING REMARKS 93

latency and so on. So, the simulation has served to measure the efficiency of the

coscheduling policies by only considering their scheduling behavior.

Simulation provided a mean for obtaining the behavior of the coscheduling

techniques in a wide range of situations. Moreover, the trend of the distributed

gains and overheads can be more easily studied than it can in the implementation

of the coscheduling techniques (in the following chapter).

Note that the simulation parameters (and speciallyMRQL, maxmand pdt)

were chosen to simulate the behavior of a non-dedicated Cluster as accurate as

possible. They are the most important parameters to take into account in the ana-

lysis of the applicability of coscheduling techniques when both distributed and

local applications coexist in the same system (i.e. Cluster).

Also, preliminary simulation results were very useful in the design of the cos-

cheduling models described in chapter 3. In the following chapter (chapter 5), the

different coscheduling polices are implemented in a real Cluster system. So, their

performance were measured considering also those additional effects produced by

the execution of distributed applications in a real environment.

Finally, we want to emphasize the usefulness of the CMC model in imple-

menting new coscheduling policies in heterogeneous and non-dedicated Cluster

systems. The implementation of new coscheduling techniques can be more easily

performed by taking the model into account.




