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Spectroscopes send out a variety of wavelengths, like scouts into a foreign land.  

Inevitably, a few of these scouts do not come back 
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Abstract 
 

The main objective of this thesis is the development of new methodologies and the testing of advanced 

technology so final users can use this information when establishing their optimum water quality 

monitoring strategy. The research project was located in Barcelona (Spain) and the Llobregat River, one 

of the main sources for drinking water but characterised by low quality values due to its low flows and 

high anthropogenic impact. 

 

Automatic on-line instruments were tested, such as the measurement of global toxicity or the recording of 

the spectrophotometry fingerprint, for their use as Early Warning Systems. For the identification of 

emerging substances, methodologies based on advanced analytical instruments at the laboratory were 

proposed. New indexes to describe the quality of freshwater in terms of chemical risk for Ecosystems and 

Human Health are provided. These indexes have been established in order to assess and define the 

efficiency of water treatment technologies. 

 

 

 

Keywords 
Water quality monitoring, toxicity, spectrophotometry, pharmaceuticals, risk assessment, Llobregat River, 
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Preface 
 

Legislation, social and environmental awareness, and optimisation of treatment technologies are the main 

driving forces that are prompting the creation of monitoring strategies for measuring water quality.  

 

The optimum strategy will be a combination of different technologies depending on the needs and 

characteristics of the system to be monitored. Constraints like cost reduction; the need to obtain results in 

real time; and the acquisition of accurate and sensitive data, will influence the final decision. Thanks to 

new technological advances, the traditional strategy based on grab sampling and analysis in the 

laboratory,communicating results remotely on a real-time basis, will be replaced by on-line instruments. 

However, currently this automation of monitoring activities is only possible for certain water quality 

paremetres. 

 

A unique optimum strategy does not exist. The final solution will be based on a combination of on-line 

and off-line techniques for the monitoring of water quality depending on the specificity and the needs to 

be met for each case. Classical monitoring is based on reporting data on the concentration values of a list 

of substances, but this may not be enough to ascertain a general view on the quality status of a water 

stream. The measurement of global paremetres that provide indirect information about the general quality 

status or the presence of toxic substances, and other complementary approaches based on the creation of 

indexes to perform risk assessment, will generate information that can be more useful for final users.  

 

This work dealt with the optimisation and validation of some of these techniques, from the optimisation 

of laboratory methodologies for reporting values on emerging substances to the validation of automated 

instruments to monitor global toxicity or to track changes in the content of organic matter. The 

development of indexes to assess human health and environmental chemical risk is also included. The 

research was focused on the Llobregat River to monitor natural waters or drinking waters after treatment 

steps.  
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1. Introduction 
 

The monitoring of water bodies quality is a requirement nowadays but not only for the preservation of 

ecological and chemical status. Final uses of this water, especially for irrigation, industrial application or 

potable purposes demand high quality. Treatment technologies are implemented when quality does not 

meet requirements for these specific uses, but the performance of these technologies and the quality of 

produced water are also very dependent on the characteristics of the resource at the intake.  

 

Several strategies can be applied for the monitoring of these waters, including the classical sampling and 

transport to the laboratory in order to perform analysis, the use of kits and portable devices, and the 

installation of on-site instruments that are able to operate automatically and communicate remotely. 

 

There is no single optimal strategy to follow for the monitoring of the quality of waters. This depends on 

a set of factors: the paremetres to be monitored (ranging from physico-chemical paremetres such as 

conductivity to specific organic molecules or microorganisms), the final objective of the monitoring 

(ranging from global alert systems to the unequivocal identification and quantification of specific 

molecules), and other restrictions (financial resources, accessibility, etc.). In the end, it will be necessary 

to choose an adapted strategy for each case or a combination of several strategies. 

 

Although monitoring of the quality of waters is performed routinely nowadays, new advances need to be 

made in the identification of emerging paremetres, the use of advanced technologies and their validation 

for different uses. To evaluate the chemical status of water, quantification of legislated paremetres may 

not be enough. The creation of indexes based on the toxicity of compounds for ecosystems and for the 

public may be a useful tool for this purpose. 

 

This chapter will include an introduction to the topic of monitoring river and drinking waters plus the 

methodologies and technologies that will be the basis for the research that has been performed in the 

framework of this thesis. River waters were selected as a representation of natural water resources as 

these waters are the main source of drinking water production in the case where the research was 

performed: the Barcelona area and the Llobregat River (NE Spain). Therefore, Llobregat River is 

considered not only as an aquatic ecosystem itself but also as a source of drinking water.  
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1.1.  General Framework: the monitoring of water quality 

 

Traditionally, the principal reason for monitoring water quality has been the need to verify whether 

observed water quality is suitable for intended uses. Monitoring has evolved over time and the main 

purposes may be to (adapted from the World Meteorological Organisation (2013): 

 

- Support decision-making and operational water management in critical situations. When pollution 

events occur, reliable data are needed, which may require early warning systems to signal when 

critical pollution levels are exceeded or toxic effects occur; 

- Determine trends in the quality of the aquatic environment and how the environment is affected 

by the release of contaminants, often known as “impact monitoring”; 

- Determine treatment options for polluted or undrinkable water; 

- Determine ecological flows, that is,the flow regime required in a river to achieve desired 

ecological objectives; 

- Evaluate the effectiveness of water management measures; 

- Provide the basis for the formulation of science-based environmental policies; 

- Evaluate water-quality trend over a period of time, and understand the environmental fate of 

different pollutants; 

 

Although the impact of pollution on surface waters in Europe is being continuously reduced, probably 

due to the reduction of industrial toxic discharges because of the implementation of stricter governmental 

regulations and the development of cleaner technologies, complementary improvements in the 

elimination of priority pollutants, the control of discharges and environmental monitoring should be 

achieved. 

 

The European Commission’s Joint Research Centre (JRC) identified water quality and availability as 

issues that are evolving at a critical pace. Table 1.1 summarises the key issues recommended to protect 

water resources, reported in the JRC`s strategic paper “The Water Challenge” (Joint Research Centre, 

2000). 
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Table 1.1 Issues, approaches, and specific actions needed to safeguard water resources (adapted from “The 

Water Challenge”) 

 
Issue Approach Specific Actions 
Ensure that demand for 
water is matched by 
availability 

Integrated water 
management 

Develop measures for groundwater management 
rehabilitation. 

Reduction in surface 
and groundwater 
pollution 

Develop measures to promote effective water use, 
with an emphasis on demand-side management. 
Develop economic and fiscal measures. 
Study the quality of water resources regarding 
present/futures uses. 

Maintain and improve 
groundwater quality 

Prevention of point 
pollution and reducing 
non-point pollution 

Define chemicals and good quantitative status of 
groundwater. 

Maintain a high standard 
of ecological quality of 
surface water 
biodiversity 

Development of new 
directives embracing 
ecological principles 

Establish operational indicators of ecological quality 
for surface waters. 
Measure and identify long-term trends in 
eutrophication and acidification of Europe’s water. 
Improve awareness about biological and ecological 
effects. 
Implement European water resources monitoring 
network. 
Define the data needs for the development of 
integrated environmental assessments on specific 
issues (e.g. eutrophication). 

 

 

1.1.1.  Legislation 

 

Legislation aimed at improving water quality is being developed on the basis of lists of pollutants used in 

industrial processes or products, such as pesticides, applied in the environment. Many of these are known 

or are suspected to produce significant impacts on the environment and human health. Some of these 

compounds persist in the environment and bio-accumulate, having potential negative effects on organisms 

(e.g. endocrine disruption). These lists currently form the basis of risk assessments and related 

management plans. 

 

At a European level, quality fulfilments to be met are mainly addressed by Water Framework Directive 

(WFD, 2000/60/EC) and the updated Priority Substances Directive (2013/39/EU) where Environmental 

Quality Standards (EQS) such as Maximum Allowable Concentration (MAC) and Annual Average (AA), 

are established for a list of 45 pollutants in surface waters and biota. The WFD defines EQS as 

concentrations of pollutants in water, sediment or biota that should not be exceeded in order to protect the 

environment, although nowadays only EQS has been established for surface waters. The WFD has led to 

a critical assessment of existing monitoring practices, and, in most river basins, this has required an 

upgrading of monitoring systems.  
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Performing laboratory analysis of the list of 45 pollutants implies a large number of analyses. 

Additionally, it should be taken into account that it is not enough to measure whether or not the priority 

substances’ concentration is below the EQS as this is not necessarily representative of the water status. 

Moreover, spot sampling campaigns, the most common approach for analysing these compounds, are 

costly and labour-intensive and not sufficient to ascertain an accurate picture of the chemical and 

biological status of water quality on a yearly basis.  

 

Linked to the WFD, other Directives exist in the field of water quality: 

 

- Legislation concerning the protection of groundwater (2006/118/EC) 

- Strategies against chemical pollution of surface water, such as the legislation on the Discharges of 

Dangerous Substances Directive (76/464/EEC) 

- Water pollution coming from urban wastewater and certain industrial sectors regulated by the 

Urban Waste Water Treatment Directive (91/271/EEC) 

- The quality of bathing waters in rivers, lakes and coastal waters regulated by the Bathing Water 

Quality Directive (2006/7/EC) 

 

Additionally, the approval of the Environmental Liability Directive (2004/35/EC), concerning the 

prevention and mitigation of environmental damage, poses the principle of prevention and repair on the 

basis of the "polluter-payer" principle of damage to the environment caused by an operator (the damages 

concerned are those severely affecting soil status, ecological, chemical or quantitative status or the 

ecological potential of water, wild species of fauna and flora and protected natural habitats).  

 

In tandem with these initiatives, the Commission approved a regulatory framework for the Registration, 

Evaluation, Authorisation and Restriction of Chemicals (REACH). It entered into force as Regulation 

1907/2006. It streamlines and improves the former legislative framework on chemicals of the European 

Union. 

 

The main aims of REACH are to ensure a high level of protection of human health and the environment 

from the risks that can be posed by chemicals, the promotion of alternative test methods, the free 

circulation of substances on the internal market and enhancing competitiveness and innovation 

Additionally, the INSPIRE Directive (2007/2/EC) establishes an infrastructure for spatial information in 

the European Community to support environmental policies and policies or activities which may have an 

impact on the environment.  
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Concerning other policies beyond legislation, the European Union Water Initiative was launched to 

contribute to the achievement of the United Nations Millennium Development Goals with regard to 

drinking water and sanitation targets. The UN World Water Assessment Programme seeks to develop the 

tools and skills needed to achieve a better understanding of those basic processes, management practices 

and policies that will help improve the supply and quality of global freshwater resources. 

 

One of the most sensitive uses of natural waters is their treatment for drinking purposes. Source water 

must comply with the requirements that make it suitable for its treatment in drinking water plant facilities. 

European and national legislation have also been established to protect drinking water consumers. The 

Drinking Water Directive(98/83/EC) and the application of Water Safety Plans (WHO Guidelines and 

ISO 22000:2005) impose strict regulations on the monitoring of water quality indicators, mainly focused 

on protecting human health. Moreover, treatment works have been designed for removing certain 

compounds at a range of concentration. An unexpected alteration ofthe quality of water could impact on 

the efficiency of the processes. Therefore, regulatory and technological requirements make it necessary to 

monitor water at the entrance of treatment plants. 

 

1.1.2. Global approaches to the monitoring of water quality 

 

The methods used to monitor pollutants of concern very commonly involve taking volumes of water in 

glass or plastic containers at specified periods of time from the field to the laboratory where they are 

analysed. In most cases, accredited methods are used to analyse different types of substances, and there is 

a high degree of confidence in the results obtained. However, there is less confidence in the sampling 

procedures, since low-frequency sampling at a restricted number of sampling points may not provide a 

representative picture of water quality, because pollutants levels vary both spatially and temporally. 

Furthermore, the levels of substances measured in the laboratory may not reflect the bio-available fraction 

present in the water (de la Cal et al., 2008). In some cases, the sample preparation (e.g. different degrees 

of filtration) can affect the material available for quantification. Many pollutants can relate to some extent 

to other compounds in the water sample, such as suspended particulate matter, and dissolved large 

molecular weight organic compounds (e.g. humic and fulvic substances) (Dworak et al., 2005; Graveline 

et al., 2010). 

 

Therefore, there is a need to use some alternative monitoring tools to complement or even partially 

replace the traditional ones mentioned above. Some provide rapid, in-situ or on-site measurements, whilst 

others still require the collection of spot samples and their transport to a laboratory for analysis. New 

techniques, with lower monitoring and analysis costs compared to frequent spot sampling, could be used 
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to provide a comprehensive overview of water quality on a river basin scale and to offer a rigorous basis 

for the risk assessments and subsequent decisions on corrective actions (Geiszinger et al., 2009). 

 

An alternative way to complement the analytical determination of pollutants in grab samples is the use of 

innovative in-line systems that pre-concentrate pollutants in water samples and offer information on a 

time-average basis (Santiago Sánchez et al., 2014). These devices report the average concentration during 

sampling time. Although not providing information on peak pollution, they reflect pollution episodes that 

could have taken place between individual grab samples. Another advantage is the possibility of detecting 

pollutants below the detection limit of the analytical equipment as they are being accumulated in the 

sampling device (Kot-Wasik et al., 2007). The application of these tools for water quality monitoring 

could mean a great advantage considering that some legislation (2013/39/EU) demands the reporting of 

annual averages and not just peak concentrations. 

 

Due to instrumentation development in the field of analytical chemistry, it has been possible to identify 

and quantify a large range of pollutants in all biological or physical matrices. This information warns of 

the presence of these contaminants in the ecosystems, but their ecotoxicity is not taken into account. 

Accordin to Bogue (2008), the environmental protection agencies routinely analyse water samples for 

around 200 different compounds plus other variables that give a broad indication of the health of the 

aquatic environment (e.g. pH, dissolved oxygen, toxicity, conductivity and suspended solids). In 

monitoring pollutants, difficulties arise because of: the great number of compounds involved, many of 

which need to be determined at trace levels; many sources are diffuse rather than point; and many 

different aquatic matrices and environments are subject to pollution (rivers, lakes, aquifers, wetlands, 

reservoirs, drinking water, seas and oceans). Some of the most significant water pollutants and their 

sources and effects according to Bogue (2008) are listed in Table 1.2. 

 

Biomonitoring is used as a complement to physical and chemical determinations of water quality. This 

involves evaluating a disturbance to the environmental status by using the properties of certain living 

organisms that will react to these disturbances. The biological and ecological response of target species 

provide information on the presence, type and sometimes estimated quantity of pollutants in an 

ecosystem. This is a valuable assessment tool receiving increasing interest and being used progressively 

in different types of water quality monitoring programmes (Allan et al., 2006; Malhotra et al., 2005). 
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Biomonitoring uses sentinel species, defined as any living organism to be used as an indicator of the 

presence of a pollutant or the toxicity of a contaminant (Amiard and Amiard-Triquet, 2008). Sentinel 

species can be: 

 

- Bioindicators: species used in the absence or presence criteria, and/or abundance criteria  

- Bioaccumulators: species that have the capacity to accumulate contaminants present in the 

environment 

- Species that has modifications at molecular, cellular, physiological, organic or behavioural levels, 

which can be used to assess the risks associated with presence of a pollutant (biomarker and 

bioassay) 

 

For the implementation of WFD, studies at a community level (bioindicators) appear suitable for 

assessing the ecological quality of water bodies, whereas the bioassays/biomarkers are especially useful 

as early warning systems and to investigate the causes of ecological impairment, thereby enabling a better 

understanding of the cause–effect-relationships (Martinez-Haro et al., 2015). 

 

In the past, regulatory changes tended to focus on a continual decrease in allowable analyte 

concentrations, relating to the development of enhanced laboratory instrument sensitivities. Future 

regulations may well focus on the consistency of water quality, by exploiting the capabilities of online 

technology. Future regulatory control strategies might be based on the percentage of time in compliance 

rather than on instantaneous concentrations not to be exceeded. Requirements and time periods to perform 

the measurements would be established by following a risk analysis (AWWA, 2002). 

 

Concerning water quality sensors, they use a range of electrochemical, optical and biochemical 

techniques (Table 1.3) and several are effectively automated versions of the standard laboratory methods. 

Academic and industrial research groups are working on the development of new and improved 

environmental sensors, which include (Bogue, 2008): 

 

- A desire to replace some laboratory determinations with measurements in the field or at the point 

of discharge; 

- A need for more sensitive sensors in response to falling emission limits and other standards; and 

- A frequent requirement for more data to provide improved spatial coverage. 

 

The first of these reflects both cost and operational considerations and also the benefits arising from the 

ability to obtain data more rapidly. This is particularly important when investigating water pollution 

incidents and also where sites that are being investigated are remote from analytical laboratories. 
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1.2. Case study: Barcelona Metropolitan Area and the Llobregat River basin 

 

The Llobregat River emerges at Castellar de n’Hug, North West of Catalonia, Spain (see Figure 1.1), at 

an altitude of 1400 m and flows approximately 160 km, discharging its waters into the Mediterranean 

Sea, 10 km south of Barcelona. The Cardener and Anoia Rivers are the main tributaries.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Screenshot of the Llobregat River basin highlighted in red on a map of Catalonia (http://aca-

web.gencat.cat/sdim/visor.do) 

 

As a Mediterranean river, is highly dependent on climatic conditions and the flow can range from over 

600 m3s-1 in the stormy seasons (spring and autumn) to a few m3s-1 during the dry season (summer) 

leading to worse water quality due to the increase of effluent wastewaters in the total flow of the river 

(Mosley, 2015). 

 

This river is also characterised by its salinity from salt mines located in the upper course of the river and 

from the geological formation present in the basin. Although in the 1990s a brine-pipe was built with the 

aim of collecting the mining lixiviates, the salinity problems in the Llobregat River Basin were not totally 

solved and high salinity levels are still found in some stretches of the river. In the lower-middle course of 

the Llobregat and Cardener Rivers there is a large concentration of industries, agricultural activities and 

densely populated areas with significant demands of water. The Anoia River is mainly influenced by the 

agricultural areas (vineyards) and industries.  

 

http://aca-web.gencat.cat/sdim/visor.do
http://aca-web.gencat.cat/sdim/visor.do
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More than 30 Wastewater Treatment Plants (WWTPs) have been set up in order to improve the water 

quality of the Llobregat River and its tributaries, treating a mixture of urban and industrial wastewaters. 

The main industries sited along the Llobregat River are tannery, food products, textile, and pulp and paper 

industries discharging a broad spectrum of organic chemicals into the river. Therefore, the river receives 

effluents from these WWTPs and surface runoff from agricultural areas. 

 

A high contribution of treated wastewaters discharges into the total flow of the river is expected as the 

low flow makes the dilution factor almost negligible. The removal of contaminants by the WWTPs is not 

always complete; consequently these pollutants can enter the environment via sewage effluents and thus 

become a potential risk to the receiving bodies and, in addition, to the production of drinking water 

(Gasperi et al., 2008; Muñoz et al., 2009; Collado et al., 2014). At rainy periods, a higher and more 

turbulent flow implies a resuspension of the sediments from the riverbed. In industrial areas, polluted 

sediments could also pose a threat to water quality. An additional threat to water quality at rainy periods 

comes from the fact that an overflow of the sewerage network could take place, causing a direct discharge 

of wastewaters into the river. 

 

The Llobregat River is one of the main drinking water sources in the Barcelona Metropolitan Area 

(BMA) due to the scarcity of groundwater resources. Therefore, the quality of the raw water must be 

controlled and consequently a group of surface water quality control stations was set up in recent decades 

providing data about general paremetres such as turbidity, pH, conductivity, dissolved oxygen, 

temperature, total and dissolved organic carbon, ammonia, phosphates, nitrates and a selection of heavy 

metals. Previous studies and monitoring campaigns show the presence of a significant number of families 

of pollutants (Céspedes et al., 2005; González et al., 2012; Kuster et al., 2008). Also, in order to enhance 

the water quality of the river, several by-passes have been constructed along the river, thereby stopping 

the most contaminated discharges from reaching the river before the drinking water treatment plants 

(DWTPs).  

 

Abrera DWTP and Sant Joan Despí DWTP, located in the lower-middle course of the Llobregat River, 

supply approximately 40% of drinking water to the Barcelona metropolitan area and surrounding area, 

other sources being the Ter River, El Prat desalination plant and groundwater. In order to adapt the 

DWTPs to the European legislation requirements (some parametric values were updated in 2008, 10 years 

after the entry into force of Directive 98/83/EC), both DWTPs have implemented new infrastructures in 

recent years (Figure 1.2).  
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Figure 1.2. New drinking water treatment facilities in the Barcelona area (source: www.atll.com) 

 

Sant Joan Despí DWTP opted for an additional ultrafiltration and reverse osmosis treatments, thereby 

reducing the presence of target compounds and treating 50% of the effluent. In contrast, Abrera DWTP 

installed the world's largest electrodialysis-reversal (EDR) desalination plant, which can remove up to 

154 tons of salt water per day. Both plants provide a reduction of the formation of trihalomethanes in 

drinking water to levels below 100 µg/L as requested in the Drinking Water Directive (98/83/EC)(Valero 

and Arbós, 2010). 

 

1.3. Need to monitor surface water 

 

The management of rivers and the wider hydrological environment of a river basin also influence 

ecological and water quality. Over time, with the advent of industrialisation and increasing populations, 

the range of requirements for water has increased, together with greater demands for higher-quality water, 

such as for drinking and personal hygiene, fisheries, agriculture (irrigation and livestock supply), 

navigation for the transport of goods, industrial production, cooling in fossil fuel (and later also in 

nuclear) power plants, hydropower generation, heat/cold storage in aquifers, recreational activities such as 

bathing or fishing and nature conservation, e.g. wetlands. Each water use, including abstraction of water 

and discharge of waste, leads, however, to specific and generally rather predictable impacts on the quality 

of the aquatic environment. 

 

Plants upgraded 
with membrane 
technologies 
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The high variability of sources of pollution means a large number of compounds and paremetres need to 

be measured, from the basic physical-chemical paremetres like temperature, turbidity, salinity, organic 

matter or pH to simple compounds that could be present in water having a known effect on ecosystems 

like ammonia, nitrate, phosphate, heavy metals or more complex organic compounds included in 

regulations like pesticides, alkylphenols, etc. There are also some other pollutants that could cause a risk 

to health or the environment but whose effects are not completely studied and reported on yet, which are 

the emerging compounds such as hormones, antibiotics, surfactants, endocrine disruptors, human and 

veterinary pharmaceuticals, X-ray contrast media, pesticides and metabolites, disinfection by-products, 

algal toxins and taste-and-odour compounds (Pal et al., 2014). 

 

There are numerous classifications of the contaminants that can be found in surface waters. Bartram and 

Ballance (1996) presented the following classification: 

 

- Faecal contamination from sewage makes water unsafe for human consumption and aesthetically 

unpleasant and unsafe for recreational activities. Many organic pollutants consume oxygen, 

suffocating fish and other aquatic life.           

- Nutrients, such as nitrates and phosphates, from farm fertilisers to household detergents cause the 

growth of large mats of algae, some of which can be toxic. When the algae die they decompose, 

consume oxygen and damage ecosystems.  

- Pesticides and veterinary medicines from farmland and some industrial chemicals can threaten 

wildlife and human health. Some of these damage the hormonal systems of fish, causing 

“feminisation” (endocrine disruption). 

- Metals, such as zinc, lead, chromium, mercury and cadmium, are extremely toxic. Copper 

complexes are less toxic, and cobalt and ferrous complexes are only weak toxicants. 

- Organic micropollutants, such as pharmaceuticals, hormones and chemical substances used in 

products and households, can also threaten health. 

- Chlorinated hydrocarbons exist in the natural systems and several are highly toxic for humans. 

These molecules persist in the environment for a longer time and threaten to contaminate aquatic 

and soil systems. 

- Sediment runoff from the land can make water muddy, blocking sunlight and, as a result, kill 

aquatic life. Irrigation, especially when used improperly, can bring flows of salts, nutrients and 

other pollutants from soils into water. 

 

Good knowledge about the occurrence of these compounds and their effect on living organisms, including 

human beings, are of major importance to performing a risk assessment related to their presence in 

surface waters. This means that not only quantification of these pollutants is important, but also it is 
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evaluating their toxicity in order to develop indicators that could assign the proper weights to compounds 

detected according to their harmfulness. Another field of research is the study of the behaviour of 

pollutants during water treatment and in the environment. It is important to detect not only parent 

compounds but their degradation products as they could be even more toxic than the former ones (e.g. 

nonylphenol exhibits higher toxicity than the parent compound nonylphenol ethoxylates used as a non-

ionic surfactant) (González et al., 2007). 

 

The key to continual improvements in environmental quality is the availability of precise and 

representative information of the quality of water bodies. Reliance on infrequent spot sampling is unlikely 

to fulfil this increasing need. A range of alternative tools are emerging and although they have not shown 

the same low level of uncertainty that is now taken for granted in classical analytical methods yet, they 

can provide more representative data, often at a lower cost. These include sensors, field test kits, passive 

samplers, biological early warning systems, biomarkers, and ecological indices. It is important that further 

work is carried out to demonstrate the utility and reliability of these emerging tools in laboratory and field 

trials compared to classical methods. This will be necessary to provide a wide range of well-defined tools 

to make it possible to select the most appropriate solution for each specific application. 

 

Different techniques could be used to monitor water quality depending on the information that needs to be 

obtained. A classification of these techniques has been included as Table 1.4. When designing a strategy 

for monitoring the water quality of natural waters, a combination of them should be considered depending 

on the specific needs. For the classification of techniques, the following aspects are taking into account 

(Allan et al., 2006): 

 

- Paremetres to be measured. Different techniques have been designed for the identification of 

different paremetres. Physicochemical properties are inherent to the whole mass of water and a 

large number of probes have been designed over the years, based on different technologies, so a 

rapid measure can be obtained on site. In contrast, some organic compounds are present at such 

low levels (pg/L) that sophisticated equipment is necessary to detect them after a sample pre-

treatment at the laboratory, implying costly and elaborated methods. Technology should be 

chosen according to the properties of the target compound. 

 

- Application field. Information on water quality could be obtained for different purposes. A study 

on the impact on river ecosystems could involve biological sensing techniques that will mimic the 

effects of water quality on living organisms. When the purpose is to detect alteration in water 

quality to protect intake of DWTPs, systems providing information in real time are needed. When 

monitoring a specific family of compounds at trace levels and its behaviour, advanced techniques 
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at laboratory are used. These techniques require a sample concentration that could be done in the 

laboratory in spot sampling or on site when passive samplers are implemented to obtain average 

information over a period of time. 

 

- Cost. Information on the cost of acquiring technologies, their maintenance, staff requirements, 

reagents, etc. needs to be assessed when performing the analysis.  

 

In situ and portable water quality monitoring devices are often used, as there is an increasing need to 

monitor large areas in short time periods. Field test kits can accomplish the initial screening and 

periodical monitoring of waters. Such tests are relatively inexpensive and can be conducted at water-user 

level. The ability of a portable monitoring device to provide an immediate result has its application in 

isolated and developing areas where the safety of drinking-water supplies is of paramount concern. 

 

In-situ sensors enable the continuous or intermittent collection of water quality paremetre data in real or 

near-real-time. High density of measurements over relatively short periods can be critical because water-

quality conditions can vary widely, such as before, during and after storms. Sensors can be cost effective 

because they minimise costly field visits by scientists and technicians. The monitoring devices may also 

include flow-through systems that enable rapid measurements, either as continuous stationary 

measurements or used on a moving platform (boat). It should be stressed, however, that the use of these 

special, multi-parametric, portable instruments and automatic water quality stations still require regular 

(and sometimes sophisticated and expensive) maintenance. Advances related to monitoring technology 

are needed to support future water-quality issues successfully. They include, for example, continued 

development and testing of probes, monitors, data-recorders and telemetry equipment that allow the 

monitoring of water-quality variables (WMO, 2013). 

 

When data is obtained, especially in the case of sensors generating a huge amount of data, an analysis 

should be done to extrapolate the information needed. Strategies could involve obtaining data at the same 

site at different times to study evolution; at different sites at the same time, as a monitoring network; 

different sites at different times, understood as the evolution of a network needed for providing data for 

models; or even different data at the same site, requiring multiparametric sensors or a battery of different 

sensors or analysis (UKWIR, 2008). After the analysis is done, the information can be compared to field 

ecological observations and can be used to provide indicators for the ecological status of water bodies, 

develop river basin management plans or provide early warning strategies. 
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1.4. Need to monitor drinking water 

 

Drinking water quality is affected by the characteristics of water at source, treatment technologies and 

interaction with pipe materials, among other factors. The monitoring of water quality in the drinking 

water supply system is very important for management purposes, as it provides information not only on 

the safety of the water for its potable use, but on the current blend of waters coming from different 

sources, the technologies that have been used and the composition of pipe materials. The interactions 

between pipes and drinking water affect not only the quality of waters through the leaching of pipe 

material but by producing corrosion on pipes. These interactions can be altered if water quality is 

modified.   

 

Online drinking water quality monitoring technologies have made significant progress for source water 

surveillance and water treatment plant operation. The use of these technologies in the distribution system 

has not been beneficial due to the high costs associated with installation, maintenance, and calibration of 

a large distributed array of monitoring sensors. This has led to a search for newer technologies that can be 

economically deployed on a large scale (Banna et al., 2014). 

 

The same technologies used for surface water monitoring can be adapted for their use in drinking water. 

Although the matrix is less complex than surface waters, the pollutants are found in much lower 

concentrations. Systems for monitoring drinking water need to be much more sensitive. Additionally, 

level requests are more stringent as this water impacts directly on the health of water consumers.  

 

Threats such as terrorism attacks or accidental pollution episodes pose new challenges even to efficient 

operators in developed countries. Preparedness is crucial for facing such new threats, but new 

methodologies for detecting incidents are unquestionably needed, as well as new management strategies 

based on risk assessment protocols. The traditional strategy of grab sampling plus laboratory analysis is 

not reliable enough to protect the public from accidental o deliberate contamination. Monitoring 

programmes based on the analysis of certain compounds at the laboratory are thought to control mid or 

long-term deviation of the paremetres but not sudden changes, although nowadays this is the only strategy 

able to identify unequivocally and quantify precisely single molecules. 

 

According to the vision of the European of Security Research and Innovation Forum (ESRIF, 2009), most 

households will have intelligent water meters installed that will be equipped with low-cost miniaturised 

sensors, automatic valves and communication devices for readout and remote control. Real time hydraulic 

and water quality models will be able to accurately predict the water quality at the point of these sensors, 

based on the automatic meter reading and upstream water quality. Model predictions can be compared 
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with current sensor readings and in the event of any deviation results may be used to trigger an alarm. 

However, the existing systems (networks with a low density of sensors and presenting deviations between 

predicted and measured water quality) are not robust enough to trigger an alert.  

 

Based on the type of alert, the structure designed for both water utilities and local authorities should 

provide water supply managers with reliable tools, Early Warning Systems (EWS), to efficiently give 

solutions to the needs of detection and assessment of chemical, biological, radiological and nuclear 

(CBRN) events. 

 

Once target contaminants for the EWS have been identified and the range of concentration necessary to 

detect them has been established, it is necessary to select a monitoring technology for the particular 

contaminant or class of contaminants. The technology considered for use in an EWS should be evaluated 

to ensure that all steps of the methodology perform correctly and can detect the target contaminants 

without excessive interference. The data quality objectives should be defined during the design of the 

EWS and include specificity, sensitivity, accuracy, precision, and recovery, as well as rates of false 

positives and negatives. According to the USEPA (2005), these are the steps to be followed to implement 

an EWS in drinking water networks:  

 

- Determine Alarm Levels. The basis for setting alarm levels will depend on the previously 

determined levels at which contaminants need to be detected and on the type of EWS employed. 

Operators should be able to set threshold values so the system automatically triggers an alarm if 

readings move outside of the range that has been defined as safe.  

- Conduct Studies on Fate and Transport Modelling of Pathogens and Chemicals. If information is 

available on contaminant characteristics that affect the contaminants’ fate and transport, it should 

be factored into the design of an EWS. This information in turn can be used to select optimal 

locations for sensors. 

- Determine Sensor Location and Density. The location and density of sensors in an EWS is 

dictated by the results of the system characterisation, vulnerability/threat assessment, usage 

considerations, risk minimisation, and cost. It may be beneficial to develop a hydraulic model of 

the system to assist in the placement of sensors. Real-time integrated pressure and flow data can 

be used to build flow models that have well characterised predictive capabilities. Table 1.5 shows 

the advantages and disadvantages of measuring contamination at different locations of the water 

distribution system. 
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Table 1.5. Advantages and disadvantages of monitoring at different locations of the drinking water 

distribution system (ASCE 2004) 
 

Location  Advantages  Disadvantages 
Source waters Covers large segment or all of system Threat of intentional contamination of source waters is 

relatively low for source waters on which no 
commercial traffic flows 

 Long lead time for response  
 Long time for corroboration  
 For navigable source waters threat of 

contamination can be relatively high 
 

 To be of concern to public health, large 
quantities of contaminant needed—therefore 
easier to detect 

 

End of water transport or 
aqueducts 

Threat of intentional contamination is slightly 
higher than for sources 

Low threat for intentional contamination 

 Covers large segment or all of system  
Treatment plant Threat of intentional contamination is slightly 

higher than for source or transport 
Relatively low threat for intentional contamination 
because access is limited and there is potential for 
discovery 

 Insider threat higher  
 Finished water reservoirs Threat of intentional contamination 

considerably higher 
There may be many of them requiring coverage 

Early distribution system Moderate threat, particularly at sites to which 
access can be gained (including valves, pumps 
and check points) Relatively long time available 
for warning and response 

Need several platforms to cover entire system 

Mid distribution system Higher threat, covers many of the likely 
contamination entry points including valves, 
pumps and inspection ports 

Need multiple platforms to get full coverage, moderate 
to little warning time 

Entry pipes for likely 
targeted customers 

Higher risk area; expect better cooperation 
from such customers 

Locating so close to user leaves very little time for 
effective response 

 

- Select Systems for Data Management, Interpretation, and Reduction. One of the challenges of a 

continuous, real-time monitoring system is management of the large amounts of data that are 

generated. The use of data acquisition software and a central data management centre is critical. 

This will require that individual sensors deployed in the system be equipped with transmitters, 

modems, direct wire, or some other means to communicate the data to the acquisition and 

management systems. Furthermore, the data management system should be capable of 

performing some level of data analysis and trending in order to assess whether an alarm level has 

been exceeded. At a minimum, the system should notify operators, public health agencies, and/or 

emergency response officials.  

- Establish Response Communication Links, Notification, and Decision Making. An integrated 

EWS would also include network and communication links between command centre operators 

and any people designated as response decision makers. Monitoring devices may report data to a 

command centre that will relay information to utility decision makers. In turn, the response may 

use the same secure communications links to take actions in the distribution system (e.g. shut 

isolation valves). Further actions may include monitoring and sampling for the contaminant at 
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appropriate locations in the distribution system and monitoring for surrogate paremetres that may 

indicate contamination (e.g., increased chlorine demand, changes in pH).  

- Real-Time Data Acquisition and Data Analysis. A SCADA system (Figure 1.3) links monitoring 

instruments, remote telemetry units, programmable logic controllers, and a host computer in order 

to integrate data collection and processing into a single system-wide control centre that can be 

accessed from various locations (EMSOFT, 2004). Once obtained, the data can go through 

quality assessment and validation, aggregation, transformation, and analysis (AWWA, 2002). 

Data analysis is performed by specialised software. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Screenshot of the SCADA system at the Sant Joan Despí Drinking Water Treatment Plant 

(Barcelona) 

 

 

An EWS may generate real-time data for quick analysis, decisions and action. There are various 

techniques for assisting in real-time reporting and decision support. They include data filtering, 

operational indexes (commonly used by operators to calculate measures that represent trends for routine 

operational performance), short-term prediction using software sensors, and classification and state 

description to reduce information overload. Predictive modelling can also be used for assisting with data 

validation (AWWA, 2002). 
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1.5. Monitoring techniques 

 

Monitoring is required to cover a number of water quality paremetres including physical-chemical, hydro-

morphological, biological and chemical data. Chemical monitoring is expected to become more intense 

and toxicological tests should be included as well. The validation of cost-effective observation systems 

based on the integration of different sensing technologies will be the basis for chemical and biological 

monitoring of water quality.  

 

Technologies applied to the monitoring of chemical quality of water bodies can be also applied to 

drinking waters if methodologies based on these technologies are properly adapted. Drinking water is 

mainly influenced by the characteristics of water in natural bodies where the intakes of the DWTPs are 

located. Processes during the treatment line reduce the content of organic matter and other compounds in 

water but the characteristics of produced water are clearly related to the water in source. Monitoring of 

water bodies can act as an alarm for the preserving of the intake of DWTPs and assuring a good quality of 

drinking waters. In contrast, characterisation of drinking water in a supply network can give information 

about the water quality at the source before its treatment.   

 

The design of a monitoring programme should include: the planning of a monitoring network with the 

choice of location for the sampling operations, the selection of variables to monitor, the definition of 

sampling procedures and operations, such as in-situ measurements, manual or automated measurements, 

sample conservation, identification and shipment, the planning of field measurements (frequency), and 

the definition of the resources required (Bartram and Ballance, 1996). 

 

When designing the programme, it should be taken into account which technology, or combination of 

technologies, could meet the requirements. Off-site laboratory methodology is able to identify and 

quantify single molecules with a high sensitivity but some variables should also be selected for early 

warning systems according to the availability of equipment for in-situ measurements and other cost-

benefit considerations, due to the high investment, operating and maintenance costs for automatic 

measuring devices. Acute toxic effects may also be recognisable with the help of biological systems 

examining species from different trophic levels and with various functions. 

 

An ideal integrated EWS should demonstrate a number of characteristics, such as the following (adapted 

from Gates (1999)): 

 

- Provides a rapid response; 

- Includes a sufficiently wide range of potential contaminants that can be detected; 

- Exhibits a significant degree of automation, including automatic sample archiving; 
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- Allows acquisition, maintenance, and upgrades at an affordable cost; 

- Requires low skill and training; 

- Identifies the source of the contaminant and allows accurate prediction of the location and 

concentration downstream of the detection point; 

- Demonstrates sufficient sensitivity to detect contaminants; 

- Permits minimal false positives/false negatives; 

- Exhibits robustness and ruggedness when continually operating in a water environment; 

- Allows remote operation and adjustment; 

- Functions continuously; 

- Allows for third-party testing, evaluation, and verification. 

 

Viable integrated EWSs that meet the desired characteristics and can be routinely used are several years 

away. Some individual components are available currently; however, others need further development. 

Most sensor and EWS components have not been third-party tested or verified, and the types of 

contaminants and levels of exposure have not been well defined to support selection of sensor 

technologies (EMSOFT, 2004). 

 

1.5.1. Off-line methodologies for the identification of emerging compounds 

 

In a monitoring strategy, despite the advances of real-time sensing techniques, an accurate and sensitive 

analysis of a large list of individual compounds can only be obtained by grab sampling and later analysis 

at the laboratory. This is the strategy mainly followed for the monitoring of substances that are expected 

to be found in very low concentrations (ngL-1 level) in quite stable concentrations over time.  

 

Off-line methodologies to identify and quantify individual compounds in the laboratory are time 

consuming. The main constraints are related to the high investment in laboratory instruments, the cost of 

consumables and the need for highly-qualified personnel, especially for complex organic molecules that 

are difficult to analyse. Multi-residue methodologies are commonly applied to identify families of 

compounds having similar properties in a single analysis. These are the technologies applied for the 

monitoring of the occurrence of emerging compounds. As the list of compounds can be very long and 

their analysis is not compulsory, monitoring campaigns tend to have a low frequency. 

 

In recent years, significant attention has been paid to the presence of pharmaceuticals and substances used 

in personal care products (PPCPs) in the aquatic environment. It is an obvious fact that these compounds 

are released into municipal sewage systems and it is also well-known that depending on their chemical 

structure many of them can survive the passage through sewage treatment plants or even being 
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transformed into more active compounds (Jelic et al., 2015). Water reclamation schemes are promoting 

the study of removal efficiencies and monitoring practices after tertiary treatments (Rodriguez-Mozaz et 

al., 2015). Research work done in recent years has resulted in refined methods for various different 

classes of PPCPs, in new multimethods, and in lower detection limits as well as simpler simple 

preparation procedures due to significantly improved mass spectrometers (Buchberger, 2011). 

 

For the analysis of these compounds in the studies reviewed, SPE followed by liquid chromatography 

tandem mass spectrometry (LC-MS/MS) is the main technique selected (Gros et al., 2006; Hernando et 

al., 2006; Kuster et al., 2008; Osorio et al., 2012). In recent years, the Commission Decision 2002/657/EC 

that was aimed at regulating the performance of analytical methods in the food industry, has also been 

applied to environmental analysis. According to this regulation, three identification points (IP) are needed 

when using LC-MS/MS for the correct confirmation of the presence of target compounds. The high 

sensitivity of LC-MS/MS (with triple quadrupole analysers, QqQ) makes it a very suitable, accessible 

technique for analysis in surface waters. The main problem is that the three IPs are not obtained for those 

analytes not showing two selected reaction monitoring (SRM) transitions, that is, when only one product 

ion can be obtained from the precursor one. This disadvantage makes this technique insufficiently reliable 

for the analysis of compounds such as ibuprofen or gemfibrozil. 

 

Other techniques can be used for the analysis of pharmaceutical compounds, such as the time-of-flight 

(TOF) detection for the identification or complementary confirmation of these analytes. This approach 

has been previously tested for the analysis of pharmaceuticals but in wastewaters (Martínez Bueno et al., 

2007). TOF-MS measures the accurate mass of the compounds, adding that extra point of confirmation 

needed to obtain a reliable result. 

 

PPCPs, although not all are hydrophobic, can be preconcentrated by SPE. In recent years, new polymeric 

sorbents that improve the retention of polar compounds have become increasingly popular, such Oasis 

HLB, or C18 cartridges. The SPE of pharmaceuticals is generally done in an off-line mode prior to the 

chromatographic analysis step. Fully automated SPE procedures with single-use cartridges exist by using 

commercial instruments such as Prospekt-2, manufactured by Spark Holland. This robotic system 

employs disposable extraction cartridges (Petrovic et al., 2010). 

 

Liquid chromatography relies on the ability to predict and reproduce with great precision competing 

interactions between analytes in solution (the mobile phase) being passed over a bed of packed particles 

(the stationary phase). The development of columns packed with a variety of materials and the systems 

able to precisely deliver the mobile phase has enabled LC to become one of the most used analytical 

techniques.  
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In High Performance Liquid Chromatography (HPLC), high pressure is used to generate the flow required 

for liquid chromatography in packed columns. Further advances in instrumentation and column 

technology have achieved significant increases in resolution, speed, and sensitivity. Columns with smaller 

particles (1.7 μm) and instrumentation designed to deliver mobile phase at 15,000 psi (1,000 bar) have 

come to be known as Ultra Performance Liquid Chromatography (UPLC). 

 

After performing the separation, a mass spectrometer can measure the mass of a molecule only after it 

converts the molecule to a gas-phase ion. The ions are separated, detected and measured according to 

their mass-to-charge ratios (m/z). 

 

The Electrospray Ionisation (ESI) is one technique for atmospheric pressure ionisation capable of creating 

ions at atmospheric pressure rather than in a vacuum. The sample is dissolved in a polar solvent and 

pumped through a stainless steel capillary, which carries between 2000 and 4000 V. The liquid 

aerosolises as it exits the capillary at atmospheric pressure, the desolvating droplets shedding ions that 

flow into the mass spectrometer, induced by the combined effects of electrostatic attraction and vacuum 

(as shown in Figure 1.4). A cone or counter-current gas is often applied to aid the desolvation of liquid 

droplets as they enter the rarified gas vacuum region of the analyser (Cole, 2000). 

 

Electrospray ionisation is by far the most commonly used ionisation technique for the trace analysis of 

PPCPs in environmental samples. Unfortunately, it is prone to ionisation suppression due to matrix 

components coeluting with the analytes. This may lead to a loss of sensitivity and would make 

quantitation less reliable if external standards prepared in pure solvents were used. Various isotopically 

labelled pharmaceuticals have become available in recent years, which can be used as internal standards 

to compensate matrix effects (Buchberger, 2011). 

 

 

 

 

 

 

 

 

 

Figure 1.4. Diagram showing an ESI probe in an orthogonal position in front of the MS ion inlet 
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In a quadrupole (Q) mass spectrometer, superimposed radio frequency and constant direct current 

potentials between four parallel rods were shown to act as a mass separator, where only ions within a 

particular mass range, exhibiting oscillations of constant amplitude, could gather at the analyser. 

Systematically changing the field strength alters which m/z value is filtered or transmitted through to the 

detector at any given time. Single quadrupole mass spectrometers require a clean matrix to avoid the 

interference of unwanted ions, and they show very good sensitivity.  

 

Single quadrupole instruments were used when the trace analysis of PPCPs began to attract increased 

interest, soon followed by time-of-flight (TOF) instruments. These may often still be fully sufficient for 

real samples, but more sophisticated MS analysers allowing MS/MS detection such as triple quadrupole 

(QqQ) instruments, combinations of Q and TOF (QqTOF), and combinations of Q and a linear ion trap 

(QqLIT) have been reported for PPCPS in a wide range of environmental samples (Petrovic et al., 2010). 

 

In triple quadrupole (QqQ), or tandem mass spectrometers (MS/MS), there are three sets of quadrupole 

filters, although only the first and third function as mass analysers (Figure 1.5). The first quadrupole, 

acting as a mass filter, transmits and accelerates a selected ion towards the second one, which is called a 

collision cell. The pressure in this cell is higher, and the ions collide with neutral gas in the collision cell. 

The result is fragmentation by collision-induced dissociation (CID). The fragments are then accelerated 

into the third quadropole, another scanning mass filter, which sorts them before they enter a detector. In 

such an application, a precursor ion fragments into product ions, and the MS/MS instrument identifies the 

compound of interest by its unique constituent parts (Balogh, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1.5. A precursor ion entering and being fragmented in the collision cell. The spectrum displays only 
fragments of interest with respect to the full scan MS spectrum 
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A TOF instrument provides accurate mass measurement of a molecule's true mass. The TOF instrument 

can be used as a reflectron, aided by electrostatic grids and lenses. When operated as a reflectron, 

resolution is increased without dramatically losing sensitivity or needing to increase the size of the flight 

tube (Figure 1.6). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Ions are accelerated by a high voltage pulse into a drift or flight tube. Lighter ions arrive at the 

multi-channel plate or detector sooner than heavy ones 

 

TOF analyses involve accelerating a group of ions to a detector. The ions exit the source having received 

an identical electrical charge or potential. Because all similarly charged ions share the same kinetic 

energy (kinetic energy = ½ mv2 where m is the ion mass and v the velocity), those with lower masses 

show greater velocity and a shorter interval before striking the detector. The ions travel a given distance 

in a time that depends on the mass-to-charge ratio (m/z). The TOF instrument can achieve a very high 

sensitivity relative to scanning instruments (Kanu et al., 2008). 

 

The TOF instrument's detector offers great resolution. However, the quadrupole instrument is, generally 

speaking, more sensitive when detecting target analytes in complex mixtures and is, therefore, typically a 

better quantitation tool.  

 

1.5.2. On-line physical-chemical probes: measurements based on UV-Vis absorption 

 

In applications where continuous monitoring is required, UV technology is one of the sensing principles 

that have often been adapted for use in online instruments. The use of modern signal processing 

techniques, combined with state-of-the-art optics, has allowed several compounds to be detected 

selectively and in a reagent-free manner. Examples include nitrates, nitrites and organic load, in matrices 
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such as drinking water, liquid wastes and process waters (Bogue, 2008). 

 

Most organic compounds commonly found in surface water absorb UV radiation. An analytical 

technique, using a UV spectrometer, is a useful alternative for measuring organic compounds in water. To 

estimate the concentration of organic compounds in water, UV absorption is measured at 253.7 nm (often 

rounded up to 254 nm). A strong correlation may exist between UV absorption and organic carbon 

concentration measured using other methodologies, such as TOC (ISO 8245:1999). 

 

UV absorption is a well-defined and commonly used methodology. The light source transmits a light 

beam through the middle in the flow cell and the detector measures the intensity of the remaining light. 

After being amplified, an electric signal is delivered as the absorption reading. In a single-beam 

spectrometer, many variables in addition to the sample in the flow cell affect the amount of UV light that 

hits the detector. The luminosity of the light source and the sensitivity of the photodetector will also affect 

the reading. Light source fluctuations are reduced by using “dual-beam” light configurations. With this 

configuration, a semi-transparent mirror produces two beams: the measurement beam, which passes 

through the sample and strikes the first photodetector, and the reference beam, which goes straight to the 

second photodetector. However, the changing sensitivity of the two photodetectors remains a source of 

error. The optimal solution is the use of two beams and just one photodetector as shown in Figure 1.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Two beams and a single detector spectrometer configuration (AWWA, 2002) 

 

A rotating disk, or “chopper” is inserted to alternatively pass the measurement and reference beams to the 

same photodetector. As a result, both the luminosity fluctuations of the light source and changes in 

photodetector sensitivity are eliminated as sources of errors. 
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Although the most common measurement is done at wavelength 254 nm, scanning through a continuous 

spectrum will give us more information. The footprint of the signal for the whole spectrum can give us 

additional information on the compounds present in water. A correlation could be established between the 

concentration of an organic compound and the measurement signal at selected wavelengths. 

 

Spectro::lyser (s::can, Austria) is a compact and submersible spectrometer capable of online 

measurements of absorption spectra (from 200 to 750 nm) directly in liquid media in real time. The 

instrument, shown in Figure 1.8, is a probe of about 0.6 m in length and with a 44 mm diameter. To the 

best of our knowledge, there only exists one other commercial probe with very similar characteristics: 

ISIS II (Bran + Luebbe). Spectral information between 200 and 710 nm is used to calculate the 

concentration of nitrate, suspended solids, organic compounds, DOC, COD, SAC and other paremetres.  

 

A prototype by the Spanish company ADASA has been also identified. Correlation studies between 

wastewater effluents and UV spectra have been executed in order to perform the calibration of the 

instrument (Platikanov et al., 2014). 

 

 

 

 

 

 

 

 

Figure 1.8. Picture of the Spectro::lyser at s::can datasheet (s-can.at) and the one used for this thesis at the 

Sant Joan Despí DWTP (Barcelona) 

 

 

The probe consists of three main components: the emitter, measuring cell and receiving unit. A general 

diagram can be seen in Figure 1.9. The central element of the emitter is a light source, a xenon flash lamp. 

This is complemented by an optical system to guide the light beam and an electronic control system to 

operate the lamp. A second light beam within the probe, called a compensation beam, is guided across an 

internal comparison section, enabling the identification of disturbances in the measuring process. 

Extinction or absorbance represents a ratio of two light intensities: the intensity of light after the beam has 

passed through the medium to be measured and the intensity of light determined after the beam has 

passed through a so-called reference medium (distilled water).  
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An optical system focuses the measuring and compensation beams at the entrance port of the detector. 

The light received by the detector is split up into its wavelengths and guided to the 256 fixed photodiodes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. Diagram of the functioning of the UV-VIS spectrometer probe (Ziglio 2002) 

 

A major influence on in-situ absorption measurements is turbidity due to suspended substances that cause 

light scattering, shading and thus influences absorption over the entire spectrum. Turbidity compensation 

has two tasks: the measurement of turbidity/suspended solid, and baseline compensation for the 

measurement of dissolved substances. A global calibration is provided as the default configuration of the 

UV-Vis spectrometer. For many purposes, such as plant control, precision is more important than 

trueness and the global calibration often delivers sufficient results. Through a second calibration step 

(local calibration), improvements concerning trueness, precision and long-term stability of the results can 

be achieved. 

 

The UV-Vis spectrometer provides a global calibration that is based on a Partial-Least-Square (PLS) 

regression for the paremetres of concern. The broad range of available wavelengths allows high flexibility 

for the choice of the best correlating wavelengths for the calibration function and the avoidance of cross 

sensitivities.  

 

Due to the different composition of some types of waters, a local calibration may be required. Local 

calibration is based on grab samples analysed for the paremetres of interest and can be performed without 

dismantling the probe. The experience showed that most of the times the laboratory data are the critical 

part of the calibration procedure. Therefore it is essential to guarantee the quality of the laboratory 

measurements to obtain good calibration results. The local calibration can be performed by running a 

complete calibration procedure based on PLS regression (Langergraber et al., 2004). However, in some 

cases, a change of the slope intercept of the regression function that can be easily done by the user is 

enough to improve the calibration. 
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Tests with a spectro::lyser probe have already been performed. Some of the studies include the 

application of probes for the detection of changes in wastewater quality influent to protect the 

technologies operating and the detection of industrial waste discharged to a municipal sewer network 

(Langergraber et al., 2006). For the measurement of ozone, a spectral algorithm was developed that 

allows quantification in situ using the probe. Furthermore, a spectral algorithm was developed that 

predicts AOC formation during ozonation and subsequent removal in further treatment steps (van den 

Broeke et al., 2008). A significant correlation was observed between laboratory analysis and 

spectro::lyser measurements for chemical oxygen demand (COD) and biological oxygen demand (BOD) 

concentrations in wastewater discharge in the city of Novi Sad, Serbia (Mihajlović et al., 2014). UV 

absorbance spectrophotometer installed for water quality monitoring at a conventional drinking water 

treatment plant was used to develop surrogate paremetres for treatment process monitoring and 

optimisation (Byrne et al., 2011). 

 

1.5.3. On-line toxicity monitoring systems based on bacteria tests 

 

Biologically based monitoring provides a relative, nonspecific indication that something may be wrong 

(e.g. a toxic spill has occurred or pathogens have been flush into water supply system) rather than precise, 

reportable measurement of specific variables (e.g. the concentration of a specific pesticide or pathogen). 

Biomonitors are used as alert systems to warn that something is wrong, but give little information about 

what exactly is wrong. 

 

There are limits to the chemicals that can be analysed in water. The magnitude of the total number of 

possible paremetres, and the inability to monitor them all continuously, has led to the use of biomonitors 

that can be put online to continuously monitor water quality. Biomonitors involve the use of living 

organisms (fish, mussels, daphnids, algae, bacteria) and measure the stress placed on the organisms by the 

presence of toxic materials. Different organisms are tested with the aim of detecting effects of water 

pollutants on several trophic levels. 

 

Toxicity tests that will be performed in the framework of the research work are based on luminescent 

bacteria. Tests have been developed based on the reduction on the light emitted by the marine bacterium 

Photobacterium phosphoreum, sometimes referred to as Vibrio fischeri. Reference water and sample 

water are placed in vials that contain a predetermined amount of bacteria. Fluorescence is measured after 

a certain exposure time (15 or 30 minutes). The decrease in the light emission due to the presence of a 

toxic substance, either as a ratio or a percentage, is measured. This technique is common in the 

wastewater industry. An automatisation of this system will be used for research purposes.  
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Figure 1.10. Picture of the new iTOXcontrol (microLAN flyer) and the TOXcontrol at the Sant Joan Despí 

DWTP (Barcelona) 

 

TOXcontrolTM (microLAN, Netherlands) is an automatic on-line water toxicity monitor shown in Figure 

1.10. It can monitor toxicity in surface water, groundwater, raw wastewater and treated wastewater 

through the use of luminescence bacteria. It is being proposed for the early warning of water quality in 

order to ensure the safety of natural waters, by detecting pollution caused by sudden chemical spills and 

terrorist incidents.The on-line toxicity monitoring TOXcontrolTM structure is divided into three subunits: 

Bio-monitor, TOXbioshakerTM to cultivate the luminescence bacteria, and TOXviewTM used for data 

treatment and the on-line service. 

 

It uses the luminescence of the bacteria to give an indication of the acute toxicity of the contaminants in 

water as a function of the emitted light. After the mix of the luminescent bacteria and the water sample, 

any toxic material in the sample would alter the metabolism of the bacteria. The decrease of light 

intensity is directly proportional to the concentration of toxic substances in the sample. Before performing 

the measure, dry frozen bacteria need to be re-hydrated by adding cultivation media and mixing under 

controlled temperature conditions for several days. Bacteria can react to several families of pollutants that 

can be found in water, including pesticides, herbicides, PCBs, PAHs, heavy metals, petroleum-related 

pollutants, protease inhibitors, respiratory system inhibitors and so on.  

 

The equipment works on the same basis as the certified methodology for the analysis of toxicity using 

Vibrio fischeri(ISO 11348-3) but adapted to automatic equipment. The analyser works in two parallel 

lines. While one of the lines is preparing the mixture of the bacteria solution with sample water and 

measuring the effect of that sample on bacteria, a second line is using reference water instead of sample 

water, as the output data is a relative measurement of the light emitted by the first line compared to the 
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second one. The bacteria solution is prepared using a (2% NaCl) solution. Figure 1.11 shows the bio-

monitor analyser.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11. Diagram of the biomonitor analyser 

 

TOXcontrolTM was chosen as a case study in the European project TESTNET (Towards European 

Sectorial Testing Networks for Environmentally sound Technologies) with the aim of adapting existing 

verification protocols developed for chemical monitors to be able to handle bio-monitors (Appels et al., 

2007). The instrument has also been identified as a rapid instrument for real-time measurements (Storey 

et al., 2011). 

 

1.6. Water quality indicators 

 

Monitoring actions should be based not only on the quantification of physical-chemical, chemical and 

biological paremetres. An assessment of the potential of these pollutants to have a chemical toxic effect 

on ecosystems or human health is the most important process in order to establish preventive or corrective 

actions. 

 

The risk assessment process, in relation both to human health and the environment, includes a sequence 

of actions (Joint Research Centre, 2003): 

- Assessment of effects, comprising 

o Hazard identification: identification of the adverse effects which a substance has on 

inherent capacity to cause; and 

o Dose-response assessment: estimation of the relationship between dose, or level of 

exposure to a substance, and the incidence and severity of an effect, where appropriate. 
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- Exposure assessment: estimation of the concentrations/doses to which human populations or 

ecosystem receptors are or may be exposed. 

- Risk characterisation: estimation of the incidence and severity of the adverse effects likely to 

occur in a human population or environmental compartment due to actual or predicted exposure 

to a substance, and may include “risk estimation”, i.e. the quantification of that likelihood. 

 

1.6.1. Indexes for measuring the impact of pollutants on aquatic ecosystems 

 

A contaminant present at low concentration levels for a long exposure time can have different effects on 

ecosystems depending on its toxicity. The paradigm of toxicity relies on a relationship between the toxic 

concentration and the fraction of the population affected by an aquatic ecosystem receptor and by a group 

of aquatic receptors (algae, crustaceans and fishes). The relationship for chronic exposures and for 

ecosystems used to be defined asPredicted Non-Effect Concentration (PNEC), that is, a concentration in 

water or food that affects less than the 5% of the ecosystem. 

 

A risk evaluation of toxicity caused by pollutants in aquatic ecosystems is a key methodology to assess 

the status of a river water body and can be a useful tool for regulators when they have to establish 

threshold values to control contamination. As an example, the relationship between ecological status and 

chemical status can be considered as one of the key issues of the WFD (Ginebreda et al., 2010). 

 

Stressors related to the impact that is observed on aquatic ecosystems (e.g. density and diversity of 

macroinvertebrates) are diverse and can include chemicals and physical-chemical agents (temperature, 

lack of oxygen, pH, salinity, suspended solids) as well as habitat related paremetres (latitude, length, 

drainage area), effluent characteristics and other paremetres that are difficult to measure. If scope is 

focused on toxicity, only a small part (often less than 10%) can be assigned to known substances. This 

means that even if there is a relationship between chemicals and toxic effects, known analysed chemicals 

do not always give the ecological status of an aquatic ecosystem, and therefore correlation between 

observed ecological effects and known contaminants would not be straightforward (Guillén et al., 2012).   

 

Monitoring measurements at river basin scale need to be based on a list of candidates, but they must be 

integrated into a methodology capable of analysing evidence and characterising the causes to finally 

identify, if possible, the stressors and the linked sources of impact. The proposed indicators will be 

focused on the integration of several paremetres measured by classical analytical chemical methods in 

order to assess the impact on aquatic ecosystems. Some other indicators have been previously developed 

and they have been used to assess the impact due to eutrophication or a combination of lack of oxygen 

and other stressors apart from toxic effects. For example, some local indexes have been already developed 
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for certain areas, e.g. river basins in Catalonia where the concentration of nitrate, ammonium, phosphates, 

TOC, conductivity and chlorides are used to give the global level of the physicochemical quality of 

rivers.(Agència Catalana de l’aigua, 2010). 

 

Local indicators for river aquatic ecosystems assessment should be developed based on the pollution 

characteristic of an area in order to specifically screen potential chemical stressors. Risk assessment 

should be tailored for local conditions, so compound prioritisation would depend on the particularities of 

each river basin (Ginebreda et al., 2014). These indicators can be calculated using experimental and 

public data. Matrices implemented in mathematical programs can help in the processing of data to create 

these indicators.  

 

The environmental risk assessment approach attempts to address the concern about the potential impact of 

substances on the environment by examining exposures resulting from releases of chemicals and the 

effects of such emissions on the structure and function of the ecosystem. For this examination, 

quantitative PEC/PNEC estimation for the environmental risk assessment of a substance comparing 

Predicted Environmental Concentrations (PEC) with Predicted No Effect Concentration (PNEC), that is, 

the concentration below which unacceptable effects on organisms will most likely not occur (Joint 

Research Centre, 2003). 

 

In this thesis, historical data on the occurrence of the substances in the Llobregat River will be used as 

PEC. Although concentration measurements may have a significant uncertainty due to the temporal and 

spatial variation of the presence of the compounds, it has been assumed that the reliability of results will 

be greater than by using predicted data based on models. Llobregat River has been the basis of several 

risk assessment studies in recent years by the development of new indexes in order to help to identify the 

compounds that should be addressed by the Public Administration in its policies (Fàbrega et al., 2013; 

Kuzmanović et al., 2015). 

 

PNEC should be calculated for the aquatic environment, thereby ensuring an overall protection of the 

environment. An extrapolation is made from single-species toxicity data assuming that the ecosystem 

sensitivity depends on the most sensitive species, and the protection of the ecosystem structure protects 

community function. For most substances, the number of studies needed to find out their toxicity has not 

been achieved yet, so the pool of data that is available to predict ecosystem effects is very limited. In this 

case, the assessment factors must be used. The size of the assessment factor depends on the confidence 

with which a PNECwater can be derived from the available data, as can be seen in Table 1.6. 
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Table 1.6. Assessment factors to derive an aquatic PNEC (Joint Research Centre, 2003) 

 

 

 

 

 

 

 

 

 

When assessing the status of the ecosystem, it is also important to consider the toxic effects in the higher 

members of the food chain, either living in the aquatic or terrestrial environment, which result from the 

ingestion of organisms from lower trophic levels that contain accumulated substances. Bioconcentration 

and bioaccumulation may be of concern for lipophilic organic chemicals and some metal compounds as 

both direct and indirect toxic effects may be observed in long-term exposure.  

 

One way to assess the risk of bioaccumulation in aquatic species is to measure the Bioconcentration 

Factor (BCF), that is, the ratio between the concentration in the organism and the concentration in water 

in an equilibrium situation. The potential for bioaccumulation can be estimated from the value of the 

octanol-water partition coefficient (log Kow).The BCF approach makes it possible to estimate the 

chemical risk for terrestrial vertebrates by using PNEC values expressed in a food basis.The PEC values 

expressed in food (worms, plants) can be obtained from environmental compartments such as water. 

 

1.6.2. Indexes for measuring the impact of pollutants on human health 

 

According to the World Health Organisation (WHO), the quality of water, whether used for drinking, 

domestic purposes, food production or recreational purposes has an important impact on health. Water of 

poor quality can cause disease outbreaks and it can contribute to background rates of disease manifesting 

themselves on different time scales (WHO, 2013). 

 

It is widely accepted that all stakeholders responsible for water safety should take efforts to improve risk 

management and risk communication to consumers, that is, the provision of information and health-based 

assessments on the various microbial, chemical, radiological and physical human health hazards that may 

be present in the water cycle. Health-based assessments of existing and emerging hazards in water should 

include a proper monitoring of the water at source and the produced water, technologies for treating water 

designed for reducing risks and an adequate approach to managing those associated risks.  

Available data  Assessment factor 
At least one short-term L(E)C50 from each of three trophic levels of 
the base set (fish, Daphnia and algae) 

1000 

One long-term NOEC (either fish or Daphnia) 100 
Two long-term NOECs from species representing two trophic levels 
(fish and/or Daphnia and/or algae) 

50 

Long-term NOECs from at least three species (normally fish, Daphnia 
and algae) representing three trophic levels 

10 

Species sensitivity distribution (SSD) method  5-1 
(to be fully justified case by case) 

Field data or model ecosystems  Reviewed on a case-by-case basis 
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The European Union ensures that drinking water quality is controlled through standards based on the 

latest scientific evidence. The Drinking Water Directive (98/83/EC) concerns the quality of water 

intended for human consumption. A total of 48 microbiological, chemical and indicator paremetres must 

be monitored and tested regularly. In general, the WHO's guidelines for drinking water and the opinion of 

the Commission's Scientific Advisory Committee are used as the scientific basis for the quality standards 

in the drinking water (WHO, 2008). 

 

Water safety plans are considered by the WHO as the most effective means of maintaining a safe supply 

of drinking water to the public. Hazards and risks need to be identified, and appropriate steps towards 

minimising these risks are then investigated (WHO, 2005). 

 

In developed countries, a wide implementation of water treating technologies and proper management has 

led to a significant reduction in the risks associated with water ingestion. Good practices have led to a 

decrease of the pollution at source and to a better removal of contaminants in water. Nevertheless, the list 

of contaminants that should be taken into account is growing as the studies to define the effects on health 

are progressing. 

 

Assessing exposure and the health consequences of chemicals in drinking water is challenging. Exposures 

are typically at low concentrations, measurements in water are frequently insufficient, chemicals are 

present in mixtures, exposure periods are usually long, multiple exposure routes may be involved, and 

valid biomarkers reflecting the relevant exposure period are scarce. In addition, the magnitude of the 

relative risks tends to be small (Villanueva et al., 2013). 

 

Indexes need to be established not only in relation to affected ecosystems but also those related to an 

impact on human health. As contamination reaches water bodies, effects on human health should be 

avoided when this water is taken and treated for drinking purposes. It is of utmost importance to assess 

what level of efficiency water treatment technologies should achieve in order to reach a level that is 

acceptable for human consumption.  

 

Not only the removal of incoming pollutants need to be assessed. Other products that could be also 

harmful, are produced as a result of treatment technologies. Disinfection processes are the cause of the 

formation of Disinfection By-Products (DBPs), especially when the precursors are present and the 

optimum conditions (temperature, etc.) exist. According to the World Health Organisation (WHO, 2011), 

trihalomethanes (THMs) are the most abundant DBPs, and the United States Environmental Protection 

Agency (USEPA) has stated that these are human carcinogens.  
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A methodology approach is based on toxicity assessment, exposure assessment, risk indexes and 

comparison with the target risk that must be observed for every substance. Exposure assessment included 

in this thesis is focused on water ingestion and is based on the dose of contaminant ingested through this 

pathway. 

 

Among the databases that offer information on the toxicity of the compounds that can be found in water 

for toxicity assessment, two of the most widely used are the Risk Assessment Information System (RAIS) 

and the WHO guidelines (WHO 2011). Legislation can also act a source for reference data on the 

potential effect of compounds, as the thresholds established are a consequence of toxicity studies. 

 

The manner in which the risk is expressed depends on the nature of the hazard and the types of data upon 

which the assessment is based. Risk estimates for adverse effects other than cancer are usually expressed 

as the ratio of the toxicological potency of the chemical to the estimated dose or exposure level received. 

That is the case with systemic toxicity, which refers to adverse effects on any organ system following 

absorption and distribution of a chemical throughout the body. The systemic indexes bellow unit 

expresses no effect and therefore an acceptable risk. 

 

In this case, the Reference Dose (RfD) is an estimate of the lowest daily human exposure that is likely to 

occur without an appreciable risk of deleterious effects during a lifetime. Deriving an RfD involves 

determining a No Observed Adverse Effect Level (NOAEL) or the Lowest Observed Adverse Effect 

Level (LOAEL) from an appropriate toxicological or epidemiological study, and then applying 

uncertainty factors to arrive at the RfD. The NOAEL is the highest exposure level that can occur without 

statistically or biologically significant adverse effects, and the LOAEL is the lowest exposure level at 

which adverse effects have been shown to occur. 

 

Carcinogenic effects are tumours caused by cancer. A key distinction between cancer and other 

toxicological effects is that most carcinogens are assumed to have no dose threshold. Cancer risks are 

most often expressed as the probability of an individual developing cancer over a lifetime of exposure to 

the chemical in question. This means that this index is a kind of quantitation of the probability of 

developing tumours. Generally a target carcinogenic acceptable risk value of 10-5 or 10-6 is used. 
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1.7. Objectives of the research work 
 

1.7.1. Motivation and purpose of the thesis 

 

The main objective of the thesis is the development and optimisation of methodologies for the chemical 

and biological characterisation of water quality at source (surface waters) and produced water (drinking 

water for consumption) with the final aim of integrating emerging technologies into the monitoring 

processes. 

 

The thesis has been developed on a specific case study: the city of Barcelona (NE Spain) and its main 

source for drinking water, the Llobregat River. The river has a low average flow and is highly impacted 

by human activities. Public Administration must safeguard quality of the river waters in order to attain a 

good ecological status. Water operators are facing a big challenge everyday in treating these natural 

waters in order to make them suitable for human consumption. The quality of final waters will depend 

mainly on the characteristics of the source water and the removal efficiency of treating technologies.  

 

It is important to propose new methodologies that address the needs of these final users. Requirements 

concerning the cost of the monitoring techniques and the information they provide are key in order to 

make the final selection. In most cases, the best solution is a combination of technologies. Some may 

provide accurate information on the concentration of target pollutants while others are intended to give a 

rapid alarm if an alteration to the global quality of water occurs. Additionally, working with data in order 

to obtain indexes based on the potential harm that a substance can pose to the ecosystem or the public 

may be possible with more useful information than just the occurrence of a given pollutant. The scientific 

community agrees that risk assessment need to be included as part of water quality legislation. 

 

In the framework of this thesis, a combination of techniques has been tested and are detailed below as 

specific objectives: 

- Optimisation of methodologies based on off-line techniques in the laboratory including solid 

phase extraction, liquid chromatography and mass spectrometry for the identification and 

quantification of a selection of emerging pollutants (pharmaceutical compounds) 

- Integration and validation of emerging biosensing technologies for on-line automatic 

measurement of global toxicity of surface waters by inhibition of Vibrio fischeri luminescence 

- Development of methods based on an in-line UV-Vis spectrophotometer for real-time monitoring 

of physical-chemical paremetres in rivers (early warning system) and drinking water (prediction 

of blends of different sources) 
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- Proposal of indexes for measuring the ecological impact of contaminants on aquatic and 

terrestrial ecosystems 

- Creation of indexes for evaluating the efficiency of water treatment technologies and assessing 

the potential impact of contaminants in drinking water to the supplied population 

 

The methodology for achieving each of the specific objectives has been described in individual chapters. 

Each of the tasks is based on different technologies or methods, although all of them are focused on 

achieving a single overall objective. 

 

The aim of this thesis is to help to implement technologies and risk analysis methodologies that would 

help to gain a better understanding of pollutants occurrence and behaviour in water. In addition to this, the 

proposed devices have the potential to become the basic building blocks for intelligent monitoring of 

water quality paremetres. Such sensor devices networks would assist the implementation of the WFD and 

related directives by providing data on pollutant levels in surface and drinking waters at higher temporal 

frequencies than is currently feasible using current monitoring regimes (typically based on spot sampling 

followed by laboratory analysis). New instruments should provide information that is useful for water 

operators and the public administration in decision-making processes. 

 

1.7.2. Scope and organisation of the thesis 

 

The thesis was prepared mainly within the context of two national research projects; the VIECO project 

(009/RN08/01.1) dealing with advanced strategies for the monitoring of surface waters and the 

WATMATIN project (CTM2010-21182) based on the quality control of drinking water at the exit of the 

DWTP and the distribution network. The global diagram can be seen in Figure 1.12. 

 

In order to identify which pollutants are commonly found in the Llobregat River, and to acquire 

knowledge about their toxicity, we carried out bibliographic research and consultation of public and 

private data bases. Monitoring plans of surface waters at the intake of the DWTP are performed in a more 

comprehensive way by water operators than the public administration because of their impact on drinking 

waters. Nevertheless, both databases are taken into account. Concerning emerging pollutants, they are not 

monitored on a routine basis, so scientific publications have been reviewed in order to find information 

about their occurrence and toxicity on ecosystems (Chapter 2). Most of the monitoring campaigns for 

these emerging compounds have been executed as part of research projects.  

 

In order to select the best instrument that meets the needs of the final users, a technological review and 

benchmarking of available instruments needs to be carried out. The selection of the on-site instruments  
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included in this thesis was made after a benchmark of commercial devices. Additionally, the selection of 

an instrument for the identification and quantification of Escherichia coli was made within the framework 

of a privately funded project. A complete review of the technologies, prototypes and commercial devices 

was completed in order to assess which technology best fits the users’ requirements. Not only analytical 

performance but the financial cost should be taken into account. A commercial instrument based on 

enzymatic fluorescence reaction was selected and tested in a real case scenario. The review of 

technologies was published and has been included as Chapter 3. Unfortunately, the results of the 

validation test have been excluded due to the confidentiality of the project. 

 

Beyond legislation, there are a large number of compounds whose effects on the health of ecosystems or 

the human population is not well established. For this reason, those families of substances have not been 

included in the legislation. However, Decision 2015/495 of 20 March 2015 specifically mentions 

pharmacueticals that have been included in the watch list of substances for monitoring: estradiol, estrone, 

ethynylestradiol, diclofenac, erythromycin, clarithromycin and azithromycin. For the unequivocal 

identification and quantification of individual pharmaceuticals at the levels that are found in the 

environment (in the order of ngL-1), the only alternative nowadays is the use of advanced instruments in 

the laboratory. Chapter 4 includes the optimisation of a methodology based on liquid chromatography 

coupled to mass spectrometry (triple quadrupole and time-of-flight) aimed at reporting results of 

concentrations found in several campaigns in the Llobregat River. 

 

The VIECO project proposed a platform for the water quality monitoring at the intake of the Barcelona 

DWTP (Chapter 5). The platform integrated different strategies including a combination of two 

instruments able to act as an Early Warning System, a UV-Vis probe for measuring alterations in the 

physical chemical characteristics of the water and a monitor to give indications of the global toxicity of 

the water. The platform was tested over several months at the Llobregat River. Both systems had been 

designed and validated in rivers from central Europe, having very different characteristics from the 

Llobregat River. The techniques faced the challenge of being tested in a river with high fluctuations, not 

only in flow, but also in some quality paremetres such as turbidity. Instruments are usually calibrated for 

a narrow range of target paremetres, but the response in fluctuating environments is not always 

guaranteed. 

 

The biomonitor used in the proposed platform described in Chapter 5 is based on the inhibition of 

fluorescence of the bacteria V. fischeri. The technique is based on the same principle as the commonly 

used laboratory instrument MicrotoxTM. The main difference is the automation of the methodology. What 

can be seen as an improvement entails some disadvantages. The certified methodology, as well as most of 

the toxicity studies measuring the inhibition in front of specific contaminants, is based on MicrotoxTM. In 

Chapter 6, an evaluation of the response of the on-line biomonitor was performed for a selection of 
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priority pollutants commonly found in the Llobregat River waters, comparing the results with two 

standardised techniques: MicrotoxTM and Daphnia magna tests. 

 

Source water has a strong impact on the characteristics of drinking water. Organic matter, for example, 

although removed to a large degree in the DWTP, remains in a small quantity that is enough to leave a 

fingerprint in drinking water when analysed by UV-Vis spectrophotometry. In a case like Barcelona, 

where up to 5 different sources for drinking water can exist (3 DWTPs located in 2 different rivers, 

seawater, groundwater), the water that can be found in the distribution network is a blend from different 

sources. For water operators, it is important to find out which is the approximate percentage of every 

origin contributing to the blending. Nowadays, the information is obtained by combining hydraulic 

models and conductivity measures. A more advanced method is proposed in Chapter 7 by analysing the 

fingerprint of the water sample and comparing it with the fingerprint of the water produced at every origin 

through chemometric methods. 

 

In order to report the ecological status of a water body, the WFD requires the development of indicators. 

An effort was made to create biological indicators based on the presence of local species in order to 

express the ecological status of surface waters. From a chemical point of view, a list of pollutants (45 

according to the recently updated legislation) should be analysed and their peak concentrations and 

annual averages reported. The financial investment required to analyse 45 chemical paremetres is 

significant and nowadays there are public administrations that cannot afford this. A new strategy based on 

risk assessment and management should be promoted. For this purpose, risk indexes have been developed 

in Chapter 8 as a complementary methodology based on the local occurrence of a large list of compounds. 

The global indexes have been created on the basis of historical data and every pollutant has a different 

weight depending on its toxicological effect on aquatic and terrestrial organisms. These indexes should 

serve to support public administrations in the decision-making process. 

 

As has been mentioned previously, risk assessment methodologies are being proposed as an alternative to 

report concentrations of a definite list of compounds. For drinking water, the hazard of the substances 

existing in water may be reported as indexes, comparing their concentration with a reference value. The 

reference value can be obtained from public databases where the value that has been calculated from 

toxicological studies is shown. Chapter 9 presents the global indexes that have been developed in the Sant 

Joan Despí DWTP in Barcelona in order to analyse the temporal variation of the toxicological impact of 

this drinking water, and to assess the variation of the index due to the upgrade of the technologies 

operating in the DWTP. 
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2. Presence and biological effects of emerging contaminants in 
the Llobregat River Basin: a review 
 

2.1. Abstract 

 

The Llobregat River (north-east Spain) is the largest drinking water source for Barcelona and its 

surrounding area. As one of the only water sources in the area, the river waters have been overexploited 

and effluents from more than 30 urban wastewater treatment plants, industries and agriculture runoffs 

have been discharged into the river. This study reviews the presence of emerging contaminants published 

in recent decades, emphasising the observed effects on ecosystems caused by the contamination. 

Pesticides, surfactants, oestrogens, pharmaceuticals and personal care products and even illegal drugs are 

the main groups detected in different studies, reporting alterations in species composition, the abundance 

of biomass and endocrine disruption measured by alterations in enzymatic activity or specific protein 

production. 

There is evidence that the information available provides an overview of the river status but not a 

representative picture according to the Water Framework Directive. 
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2.2. Introduction 

 

The European Water Framework Directive (WFD) (Directive 2000/60/EC) establishes bases to regulate 

water resources with the aim of conserving, protecting and improving their quality and sustainable use. 

The WFD requires that all surface waters must reach a good chemical and ecological status in a 

qualitative and in a quantitative sense by 2015. For WFD fulfilment it is necessary to know the status of 

water resources at the moment in order to establish which technologies should be implemented to achieve 

the goals of the WFD. 

 

Several studies have focused on the presence of organic contaminants in the Llobregat River, the largest 

drinking water source for Barcelona and its surrounding area, where a broad range of contaminants have 

been detected. Inorganics also have been studied but most of the studies focus only on sediment 

accumulation, especially metal ions and non-metals such as arsenic. Most of these studies have been 

complemented by ecological status monitoring studies, mainly based on the effects of endocrine 

disrupting compounds.  

 

This study reviews the most significant monitoring programmes that have been launched within the 

Llobregat River and its tributaries in order to discover its water quality and the results obtained by several 

research studies dealing with the evaluation of the effects of this contamination. It also discusses the use 

of monitoring programmes to provide valuable information on the biological health of the ecosystems. 

 

To our knowledge, this work represents the first review that is solely focused on the Llobregat River. 

 

2.3. The Llobregat River 

 

The Llobregat River emerges in Castellar de n’Hug, in the north west of Catalonia (Spain), at an altitude 

of 1400m and flows approximately 160 km before reaching the Mediterranean Sea, 10 km south of 

Barcelona (see Figure 2.1).  

 

The Cardener and Anoia Rivers are the main tributaries. In the lower-middle course of the Llobregat and 

Cardener Rivers there is a large concentration of industries, agricultural activities and densely populated 

areas with major water demands. In contrast, the Anoia River is mainly influenced by agricultural area 

(vineyards) and industries. As a Mediterranean river, it is highly dependent on climatic conditions (see 

Figure 2.2A) and the flow can range from several hundred m3/s in the storm period, normally in spring 
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and autumn to low m3/s during summer (dry period) where the flow can decrease considerably leading to 

worse water quality due to the increase of effluent wastewaters in the total flow of the river and when the 

dilution factor can be negligible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Geographical location and map of the Llobregat River basin. DWTP1: Abrera, DWTP2: Sant 

Joan Despí. WWTP with more than 100,000 population equivalents are named 

 

This basin is also characterised by its salinity from salt mines located in the upper course of the river. 

Although in the nineties a collector was built with the aim of collecting the mining lixiviates, the salinity 

problems in the Llobregat basin were not totally solved and high salinity levels are still found at some 

points (see Figure 2.2 B).  

 

To improve the water quality of the Llobregat River and its tributaries, more than 30 WWTPs treating a 

mixture of urban or industrial wastewaters have been set up along the river, as shown in Figure 2.1. The 

main industries sited along the Llobregat River are tannery, food products, textile, pulp and paper 

industries discharging a broad spectrum of organic chemicals into the river. Therefore, the river receives 

effluents from these WWTPs and surface runoff from agricultural areas. 

 

The removal of contaminants by WWTPs is in some cases not complete; consequently they can enter into 

the environment via sewage effluents and thus become a potential risk to the receiving bodies and in 

addition, into the production of drinking water.  
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Figure 2.2. Data paremetres of the Llobregat River in the low course during 2007/2008. A) flow B) 

conductivity/chlorides C) total organic carbon (TOC)/oxidability/dissolved oxygen and D) ammonia/nitrates 
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The Llobregat River is one of the main drinking water sources in the area due to the scarcity of 

groundwater resources. Therefore, the quality of the raw water must be controlled and to do this a net of 

surface water quality control stations have been set up in recent decades providing data on general 

paremetres such as the ones depicted in Figure 2.2 where a summary of general paremetres in the low 

course of the Llobregat River is presented. To enhance the water quality of the river, several by-passes 

have been constructed along the river avoiding the most contaminated parts of the river to reach the 

drinking water treatment plants (DWTP). Abrera DWTP and Sant Joan Despí DWTP, located in the 

lower-middle course of the Llobregat River (see Figure 2.1), supply approximately 40% of drinking water 

to the Barcelona Metropolitan and surrounding area, whose characteristics are shown in Table 2.1. 

 

Table 2.1. Characteristics of the two main DWTP operating in the Llobregat River 

DWTP % of 
population 
served in 
Barcelona 

area 

Treatment Maximum 
water 

production 

Source Treated 
water 

Abrera 
(DWTP 1)1 

5% Screening, sandfree, chlorination, 
flocculation and settling, sand 

filtration, filtration through 
activated carbon, electrodialysis-

reversal, final chlorination 
 

4 m3/s 97% river water-
3% groundwater 

52.9 
Hm3/year 

Sant Joan 
Despí 

(DWTP 2)2 

37% Predioxichlorination, grit removal, 
coagulation-sedimentation, sand 

filtration, ozonisation, filtration 
through activated carbon, 

ultrafiltration, reverse osmosis, 
hardness adjustment, final 

chlorination 

5.3 m3/s 
 

75% river water-
25% 

groundwater 

107 
Hm3/year 

Source: 1. ATLL, Annual report, 2008; 2. Internal source, 2009 

 

 

2.4. Levels of contaminants in Llobregat River waters 

 

The Llobregat River has been the subject of several studies dealing with the presence of contaminants in 

surface water and related compartments (e.g. sediments, fish). In this study, only compounds detected in 

surface waters are taken into account. Most of these studies focus on the lower and middle part of the 

river basin, where most of the WWTPs, DWTPs and population are located, and which therefore is the 

area with higher pressures.  
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2.4.1. Pesticides 

 

Pesticides are a group of compounds widely used in agricultural areas, related industries and other 

applications that comprise compounds with different physico-chemical characteristics. After their field 

application they can transfer to water (either surface or ground water) where, depending on the compound 

solubility, bioaccumulation in living organisms or accumulation in sediments or soils can occur.  

 

The majority of the studies focused on ground water and surface water, due to their importance as a 

source of drinking water, where EU legislation establishes a maximum acceptable level of 0.1 μg/L for 

individual compounds in water intended for human consumption (European Union Council Directives 

80/778/EEC, 91/414/EEC, 98/83/EC). Moreover, the WFD established a list of 33 priority substances to 

be controlled in the field of water policy (Directive 2008/105/EC), of which a third are pesticides. 

 

Due to the importance of these compounds, their presence has been extensively studied in the Llobregat 

River and more specifically in the intake of both DWTPs located in the river in order to discover the 

quality of the intake water (Kampioti et al., 2005; Quintana et al., 2001; Rodriguez-Mozaz et al., 2004). 

In those studies, pesticides belonging to different classes (triazines, phenylureas, organophosphates, 

anilines, acidic, thiocarbamate) have been analysed where MCPA (acidic), dimethoate 

(organophosphate), diuron (phenylurea), terbuthylazine, simazine and atrazine (triazines) were the 

compounds more frequent detected and in higher concentrations (up to 2.21 µg/L for simazine, 463 ng/L 

for atrazine, 415 ng/L for MCPA and 239 ng/L for diuron). However, the concentrations detected varied 

depending on the season; the higher values were found during the field application period (February-

June). 

 

In recent studies (Kuster et al., 2008; Ricart et al., 2010; Terrado et al., 2009) performed at different 

locations along the Llobregat River and its tributaries, the most ubiquitous and abundant compounds 

detected were similar to the ones detected in the DWTP intake: the acidic pesticides MCPA (up to 1.28 

µg/L) and 2,4-D (up to 109 ng/L); the phenylureas linuron (up to 327 ng/L) and diuron (up to 99.7 ng/L) 

and the organophosphate diazinon (up to 785 ng/L).  

 

Higher concentrations were detected in previous studies for terbutylazine (13 μg/L) due to a local spill 

produced by a company that uses it for its refrigerating circuit (Lacorte et al., 1998) and for glyphosate 

just before field application finding quite high concentrations (20-60 µg/L) with peaks of 137 µg/L after 

three days. However, after 12 days of field application this was not found any more (Puertolas et al., 

2010). 
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As a summary, all the studies carried out in the river confirm the presence of pesticides in the Llobregat 

River coming from their usage in the agriculture and industrial activity. The higher concentrations were 

always found during their application period (spring-summer). However, as can be seen in Figure 2.3 

where a summary of pesticide concentration is shown, the concentrations found rarely exceed the EU 

maximum acceptable concentrations.  

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Levels of selected pesticides found in the intake of DWTP 2, showed as maximum, minimum and 

average concentrations. The dotted line shows the maximum acceptable concentration for individual 

compounds according to EU legislation. (Kampioti et al., 2005; Kuster et al., 2008; Quintana et al., 2001; 

Rodriguez-Mozaz et al., 2004) 

 

2.4.2. Pharmaceuticals, personal care products and illegal drugs 

 

Interest in the presence of pharmaceuticals, personal care products (PPCPs) and illegal drugs in the 

environment has increased in recent decades. Their usage is greater than before, mainly due to the 

increase of density and age of the population, and hundreds of tonnes of these compounds are consumed 

every year. 

 

After they are excreted, via urinary or faecal excretion, or directly disposed into the sewerage system or 

discharged through pharmaceutical manufacturing, they can enter surface water, groundwater or even in 

drinking water mainly through insufficiently treated wastewater effluents (50-90%) (Radjenovic et al., 

2007). 

 

A large group of PPCPs have been extensively studied along the Llobregat River during the last decade 

(Farre et al., 2001; Garcia-Galan et al., 2010; Kuster et al., 2008; Lopez-Roldan et al., 2010; Muñoz et al., 

2009). Non-steroidal anti-inflammatories (NSAIDs): ibuprofen and diclofenac; lipid regulators; 

gemfibrozil and bezafibrate; antibiotics: sulfamethoxazole and ofloxacin and β-blocker metoprolol were 

the compounds found in higher concentrations. For all the studies, the contamination load increased 

0,1

1

10

100

1000

10000

Sim
az

ine

Iso
pro

tur
on

Atra
zin

e

Diur
on

MCPA
2,4

-D

Mec
op

rop

Dim
eth

oa
te

C
on

ce
nt

ra
tio

n 
(n

g/
L) EU Maximum acceptable

0,1

1

10

100

1000

10000

Sim
az

ine

Iso
pro

tur
on

Atra
zin

e

Diur
on

MCPA
2,4

-D

Mec
op

rop

Dim
eth

oa
te

C
on

ce
nt

ra
tio

n 
(n

g/
L) EU Maximum acceptable



Ingeniería Ambiental 

 

64 

 

downstream along the river, and the highest concentrations were found in the Rubi creek and a channel 

receiving by passes from the most contaminated parts of the river.  

 

Most of the samples analysed were in the range of 10-1000 ng/L, where the higher concentrations relate 

to the aforementioned hot spots. Even concentrations exceeding 10 µg/L have been detected for 

diclofenac, bezafribrate and sulfamethoxazole (Muñoz et al., 2009). However, the concentrations vary 

greatly depending on the sampling time. As an example, sulfamethoxazole was studied at the same points 

in two sampling campaigns during June 2005, November 2005, May 2006 for the first sampling 

campaign (Muñoz et al., 2009) and November 2005, May 2006, November 2006 for the second one 

(Garcia-Galan et al., 2010). While in the first sampling campaign 11.92 µg/L maximum concentrations 

and 1.11 µg/L mean concentrations were detected, in the second one these were less than half (4.29 µg/L 

and 0.25 µg/L, respectively). 

 

Moreover, two of the last published studies (Lopez-Roldan et al., 2010; Muñoz et al., 2009), that focused 

on a high number of pharmaceuticals (28, belonging to 8 different therapeutic groups), are compared in 

Figure 2.4. As can be seen, the concentrations can change greatly in a short period of time (a few 

months). Despite studying the same compounds and in the middle lower part of the river, the first study 

shows much higher concentrations than the second for all the therapeutic classes except for two. This can 

only be explained by the fact that the first study covers samples taken in June (summer period), with a 

low river flow and therefore a pollutant concentration and the second in the autumn-winter period with a 

higher river flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Cumulative levels of pharmaceuticals, grouped by therapeutic class detected in two different 

studies at different sites of the Llobregat. Showed as maximum, minimum and average concentrations. 

(Lopez-Roldan et al., 2010; Muñoz et al., 2009) 
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The presence of illegal drugs, a group of compounds causing great concern in recent years, has been also 

studied in the Llobregat River. Water samples from different points of the Llobregat River (including the 

intake of DWTP), Cardener and Anoia River and the Rubí creek were collected and analysed to detect the 

presence of illegal drugs, namely codeine, morphine, THC-COOH (11-nor-9-carboxy-Δ9-

tetrahydrocannabinol; the main urinary metabolite of the active component of cannabis), methadone and 

its degradation product EDDP (2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine) (Boleda et al., 2007; 

Boleda et al., 2009) and cocaine, its metabolite benzoylecgonine (BE), amphetamine-type-stimulants 

(ATS), ketamine, phencyclidine (PCP), lysergic acid (LSD) and fentanyl along the river. Stimulatory non-

controlled drugs such as nicotine and caffeine were also included due to their high widespread 

consumption (Huerta-Fontela et al., 2007; Huerta-Fontela et al., 2008). Concentrations tend to be higher 

along the course to the mouth, due to the increasing population living near the coast. However, higher 

concentrations of almost all the compounds were found in the Anoia River and in the Rubí creek. The 

higher concentrations and the higher ubiquity were found as expected for nicotine and caffeine and its 

degradation product paraxanthine (up to 2.8 µg/L). Illegal drugs were found in ng/L concentration. 

Codeine, EDDP, THC-COOH and BE were the drugs detected in higher concentrations. 

 

When daily and seasonal variation was studied, relative constant concentrations for nicotine and caffeine 

and their metabolites were found. For illegal drugs the highest values detected were observed during 

weekend and were seasonal during summer and winter.  

 

As has been shown, pharmaceuticals are a group of compounds present in Llobregat River water. All the 

studies demonstrate that the most ubiquitous compounds are the ones that are most consumed by the 

population (e.g. analgesics, anti-inflammatories, lipid regulators, antibiotics). Moreover, treated 

wastewater effluents have been found to be the main cause of water contamination with PPCPs, and in 

most of the cases the samples collected from sampling points downstream of WWTPs were contaminated 

with these compounds, although their concentrations varied and depended mainly on the extent of water 

dilution, and therefore on water flow. 

 

2.4.3. Surfactants  

 

Surfactants are one of the groups of organic chemicals with highest production rates, increasingly being 

used all over the world. They are used, not only as industrial and domestic detergents, but also as 

emulsifiers, paints, antifoamers or pesticide adjuvants. 

 

After usage, surfactants are discharged into municipal sewer systems and then treated in WWTPs where 

they are completely or partially removed, being present in the effluents discharged into surface waters. 

Therefore, their main introduction into the environment is via wastewater discharges. 
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The Llobregat River receives wastewaters form several textile and tannery industrial plants mixed with 

municipal wastewaters. Due to this fact, several studies have been performed to determine the presence of 

surfactants and their degradation products in the receiving media.  

 

During the wastewater treatment some of these surfactants biodegrade to non-toxic compounds before 

reaching the environment, but alkylphenol ethoxylates (APEO) deserve particular attention due to the 

endocrine disrupting potential of their degradation products, confirmed by numerous in vitro and in vivo 

studies. Therefore, most of these studies focus on the presence of these compounds (Brix et al., 2010; 

Cespedes et al., 2005; Diaz et al., 2002; Diaz et al., 2002; Gonzalez et al., 2004; Petrovic et al., 2002; 

Petrovic et al., 2002; Sole et al., 2000). They have been reported in the entire river basin (see Table 2.2) 

downstream of the WWTP, reporting a general trend of increasing analyte concentrations from the upper 

to the lower course of the river, with the highest concentrations in the Rubí Creek. The concentrations 

ranged from a few µg/L to several hundred µg/L with a general trend to decrease as reported for the 

WWTP located in this area by González et al. (2004). This decrease is probably due to the restriction in 

use of these compounds in household detergents and a progressive substitution by more degradable ones 

like AEO. This decrease in alkylphenolic concentrations compared with the previous studies suggests an 

improvement of the environmental status due to the decrease of the presence of Endocrine Disrupting 

Compounds (EDCs) in the river. 

 

Although the alkylphenolic compound found in higher concentrations was nonylphenoxy dicarboxylate 

(NP2EC), nonylphenol (NP) concentrations detected in some studies exceed the maximum allowable 

concentration (MAC) of 2 µg/L established by the EU directive on Priority Substances (Directive 

2008/105/EC). 

 

Due to their importance a more detailed study was carried out in the Sant Joan Despí DWTP where 

samples from each treatment step were taken to evaluate the degradation of nonylphenolic compounds 

and the formation of brominated and chlorinated derivatives during the drinking water treatment process 

(Petrovic et al., 2003). These compounds were detected at low µg/L, with NP2EC also being the most 

abundant compound with concentrations below 15 µg/L.  

 

Other surfactants like sulfophenylcarboxylates (SPCs), the degradation products of linear alkylbencene 

sulphonates (LAS), were also determined in the intake of Sant Joan Despí DWTP reporting average 

concentrations of 5 µg/L, where C8-SPC and C9-SPC were the most prominent homologues (Eichhorn et 

al., 2002). 
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Moreover, alcohol ethoxylates (AEO), coconut diethanol amides (CDEA) and LAS were detected at the 

mouth of the Llobregat River (Gonzalez et al., 2004; Petrovic et al., 2002) with concentrations ranging 

from 0.93-92 µg/L for LAS, up to 3.9 µg/L for AEO and 0.13-4.2 µg/L for CDEA. 
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2.4.4. Oestrogens and progestogens 

 

The main source of natural and synthetic oestrogens and progestogens into the aquatic environment is 

anthropogenic after their usage for the treatment of certain hormonal disorders (e.g. menopause) and 

cancers and in birth control pills. 

 

The elimination during wastewater treatment can vary depending on the compound and the type of 

treatment. Furthermore, less active conjugated forms in which oestrogens are excreted can be 

deconjugated by microorganisms during water treatment discharging the parent compound into the 

effluents (Petrovic et al., 2004). 

 

Representative oestrogens, both natural and synthetic, progestogens and the natural hormone progesterone 

were evaluated at several points in the Cardener and Anoia tributaries but were detected below the 

detection limit (Cespedes et al., 2005; Sole et al., 2000). 

 

In recent years and due to the use of novel techniques that permit the determination of oestrogens and 

progestogens in a low ng/L range, the detection of these compounds has been possible at several points in 

the Llobregat River and its tributaries within this range. 

 

The steroids most frequently monitored along the Llobregat River are oestriol, oestrone and oestrone 

sulphate, the main metabolites of estradiol (Brix et al., 2010; Kuster et al., 2008; Lopez-Roldan et al., 

2010; Petrovic et al., 2002; Rodriguez-Mozaz et al., 2004; Rodriguez-Mozaz et al., 2004), not surpassing 

25 ng/L in any case. The highest concentrations were found in one channel receiving water from Anoia 

River, the Rubí creek and Sant Feliu WWPT to by-pass it downstream of the DWTP and near 

Castellbisbal, an area influenced by urban activities. 

 

The steroids found in the Llobregat are the ones with lower oestrogenic potential. Contrary, the natural 

hormone estradiol and the synthetic ethinyl estradiol, the compounds with higher oestrogenic potential 

were not detected in the aforementioned studies. The concentrations found can pose a risk to aquatic 

organisms given that a concentration of 1-10 ng/L is considered enough to cause oestrogenic effects 

(Petrovic et al., 2002). 
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2.4.5. Other compounds 

 

Other groups of compounds have been also of concern mainly due to their characteristics. Bisphenol A 

and phthalates, used as plasticizers, were studied due to their endocrine disrupting potential (Cespedes et 

al., 2005; Rodriguez-Mozaz et al., 2004), reporting concentrations of up to 2.97 µg/L and 6.85 µg/L, 

respectively, with diethyl phthalate (DEP) being the compound found in higher concentrations.  

 

Polycyclic aromatic hydrocarbons (PAH) are another group of concern due to their mutagenic, 

carcinogenic and teratogenic characteristics included in the list of priority substances of the WFD that 

have been studied in the Llobregat basin. PAHs sources are mainly industrial due to the combustion of 

fossil fuels, and natural combustion such as forest fires. Pyrene, fluoranthene and phenanthrene were 

studied over a long time period (2003-2006) found in maximum concentrations of 16 ng/L (Terrado et al., 

2009). In a study carried out after extensive forest fires occurred in 1994 (Olivella et al., 2006) twelve 

parent PAHs were detected along nine sampling sites in the Llobregat. One month after the forest fires the 

total PAH varied from 2 to 336 ng/L whereas after heavy rainfalls the concentration decreased by a factor 

of three.  

 

Regarding inorganic compounds, although most of studies have been carried out on sediments, there are 

some published results on surface waters along the Llobregat basin (Castillo et al., 2001; Fernandez-

Turiel et al., 2003). High contents of Na, K, Mg, Cl, Br, Rb and Sr have been detected related to mining 

and industrial activities from potash exploitation. Also, industrial and residential uses located in the lower 

part of the river basin result in increases of P, B, Mn, Fe, Pb, Al, Cr, Co, Ni, Cu, Zn, As and Sb 

concentrations in the river water. 

 

Several compounds causing odour and taste events in drinking water have also been investigated in 

Llobregat River waters due to the public perception problems that these compounds can cause in 

consumers and therefore in water suppliers. Creosote, a raw material used in wood-preserving factories 

and mainly composed of PAH, was identified as the compound causing odour episodes in the river. After 

a change in practices by the wood-preserving companies, no creosote episode has been detected in the 

river (Ventura et al., 1998). Geosmin and odour natural compounds causing an earthy-musty odour in 

water were detected in concentrations between 50-150 ng/L achieving a good elimination along the 

drinking water treatment, but still being present in drinking water (Romero and Ventura, 2000). 2-3 

butanedione (diacetyl), an organic compound imparting sweet and buttery odour problems was detected at 

the intake point at a concentration of 0.9-26 µg/L, identifying this compound as the cause of several 

odour events (Diaz et al., 2004). Trichlorobromophenols, suspected to be responsible for unresolved taste 

and odour in water, were also studied in raw and treated water in Llobregat reporting concentrations in 

river below 400 ng/L but the sum for all studied compounds reached 2.1 µg/L. In contrast, the 
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concentrations found in treated water were near the quantification limits but were still candidates for 

unresolved cases of taste and odour (Diaz et al., 2006). 

 

The presence of other group of compounds, the chlorinated toluenes, coming from the textile industries 

and inefficient treatment of wastewaters, was evaluated over a year (2003-2004). Weekly sampling 

reported concentrations at a low ng/L after treatment in WWTP (Marti et al., 2005).  

 

2.5. Biological effects 

 

It is known that chemicals may pose hazards to organisms including humans, as indicated by observable 

effects (e.g., in vivo and in vitro bioassays). Being aware of the presence of these contaminants in the 

river, identifying links between water quality and the biological effects observed has been the objective of 

many studies (see Table 2.2) and will continue to be so in future in order to discover the ecological status 

of water bodies as required in the WFD. These kind of ecological status studies are difficult to assess, 

since evaluation methods are not standardised.  

 

The application of bioassays indicating effects on cellular, organism or population level in laboratory test 

systems and linking measurable effects of complex environmental samples to distinct toxicants are 

required to bridge the gap between chemical contamination and ecological status (Brack et al., 2007). 

 

Muñoz et al. (2009) have used multivariative techniques to determine potential relationships between the 

presence of pharmaceuticals and the structural composition of biological communities (diatoms and 

invertebrates) finding a potential causal association between the concentration of some anti-

inflammatories and β-blockers and the abundance and biomass of several benthic invertebrates. 

Additionally, hazard quotient (HQ) indexes have been estimated as the ratio between concentrations and 

EC50 (50% effect concentration) reported values for three bioassays commonly used: fish, Daphnia and 

algae, calculated as the sum of the HQs for all the compounds. In general, HQ tend to increase when 

going downstream and only points located farther upstream can be qualified under low risk for the three 

bioassays (Ginebreda et al., 2010).  

 

Multivariative techniques have also been used to study the effects of pesticides in benthic algae and 

invertebrate fauna communities revealing a potential relationship between triazine-type herbicides and the 

distribution of the diatom community (Ricart et al., 2010). 

 

Leira and Sabater (2005) were aware that distribution of diatom was influenced, not only by chemical 

factors but also by physiographical ones. Salinity, high nutrient concentration and low flow are 
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considered to be responsible for biologically poor communities made up of tolerant taxa. This trend in the 

modification of the distribution of diatom species along the Llobregat River according to different 

characteristics of each stretch of the river was also reported in other studies (Sabater et al., 1987; Tornes 

et al., 2007). 

 

Although several studies have been performed so far, some challenges still exist that need to be overcome 

to achieve an optimal characterisation of aquatic systems, by combining chemical analyses and 

biological-effect assessment into a single strategy. Tolerance of organisms towards toxicants is not linear 

in natural environments and the interactions that occur within a population are not considered in toxicity 

assessment. Moreover, making estimations and predictions from relatively limited laboratory data to real 

ecosystems is problematic and gives rise to some degree of uncertainty (Geiszinger et al., 2009). In this 

sense, a combination of different taxa was used for studying relationships between chemical pollution and 

loss of diversity. In the Llobregat River, autotrophic biofilm diversity was observed to decrease as 

concentration of diuron increased when combining several diversity indices while no significant variation 

was observed in the conventional ones, concluding that diuron may influence only certain levels of 

taxonomic classification (Ricciardi et al., 2009). 

 

The effects of glyphosate on the structure and function of the Llobregat River ecosystem after their field 

application has been studied (Puertolas et al., 2010). Due to the fact that the macroinvertebrate 

communities were dominated by taxa tolerant to pollution, the herbicide application did not affect the 

abundance or number of taxa in any location studied. Nevertheless, significant specific toxic effects on 

transplanted Daphnia magna and field collected Hydropsyche exocellata were observed. Effects included 

Daphnia magna feeding inhibition and oxidative stress related responses such as increased antioxidant 

enzyme activities related with the metabolism of glutathione and increased levels of lipid peroxidation. 

Daphnia magna also has been used in sensitive, robust and ecological methods aimed to diagnose 

sublethal effects of toxic effluents rich in metals and agrochemicals (Damasio et al., 2008). Feeding rates 

were negatively affected by the presence of PAHs and positively affected by nitrogen sources (NO3, 

NO2). Additionally, temperature, suspended solids and triazines contributed marginally to observed 

responses. 

 

Pharmaceutical compounds were analysed in the same area, also including samples from Rubí Creek and 

effluents from WWTPs (Farre et al., 2001). Toxicity values were obtained by measuring bioluminescence 

inhibition of Vibrio fischeri bacteria. Although positive values were found in most of the samples (up to 

an inhibition of 36.8%), the contribution of pharmaceuticals in global toxicity was supposed to be low so 

they can only be considered as tracers. 
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As a key conclusion reported in several articles, further studies are needed on the usefulness of in-situ 

bioassay responses in detecting subtle effects on aquatic organisms exposed chronically to multiple 

environmental factors and/or to low levels of contaminants (Maltby et al., 2002).  

 

Concerning the oestrogenic effects that pollutants may pose to organisms, EDCs are defined as exogenous 

agents that interfere with the production, release, transport, metabolism, binding, action or elimination of 

the natural hormones in the body responsible for the maintenance of homeostasis and the regulation of 

developmental processes (Kavlock et al., 1996). EDCs are a wide range of industrial and household 

chemicals which include persistent organic pollutants (e.g. alkylphenols and their ethoxylates, BPA, 

phthalates, pesticides), some heavy metals as well as steroid oestrogens which have caused major concern 

in the Llobregat River because of the potential risk to aquatic organisms.  

 

The production of vitellogenin in males (also VTG, a yolk egg precursor synthesised naturally only in 

female fish) is a widely accepted measure of oestrogenicity. The VGT increase in plasma samples of male 

carps (Cyprinus carpio) was related to the presence of NP at sites close to WWTPs (Sole et al., 2000) and 

to alkylphenolic compounds in water and sediment samples and for oestriol and oestrone in water 

(Petrovic et al., 2002). Moreover, the levels of VTG mRNA in the liver of the same fish were attributed to 

the presence of NP derivatives in this river (Garcia-Reyero et al., 2004).  

 

Carps collected in Anoia River were also fully characterised according to different paremetres (VTG in 

plasma, VTG in liver, estradiol, testosterone, xenobiotic metabolising capacity in liver) and classified into 

three groups: apparently normal males, apparently normal females and affected fish. Results showed a 

highly variable content of VTG in all groups and an enhanced xenobiotics metabolism in the affected fish 

group. An increase in VTG, sex hormones and most enzymatic activities from January to March was 

observed but attributed to higher water temperature. The study points out the need for further research on 

the reproductive capacity of affected fish (Sole et al., 2003).  

 

Recombinant yeast assay (RYA) has been also used to determine the presence of EDC. Oestrogenic 

activity measured by RYA showed a good correlation with the chemical analyses performed. Clear 

positives were found only in the Anoia River (Garcia-Reyero et al., 2001) and in the lower course of the 

Llobregat (Cespedes et al., 2005) but showed much lower oestrogenic response than that observed in 

WWTPs. This activity was mainly attributed to the presence of NP with a minor contribution of BPA and 

nonylphenol monoethoxylates.  

 

Other studies established a link between residues of selected pollutants in tissues of some organisms and 

biochemical responses. Although a general pattern can be established, that is, an increase in the activity of 

some biomarkers, such as EROD activity can be linked to a higher exposure to some organic pollutants 
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that can be found downstream at a WWTP, some inconsistencies are found showing that one biomarker is 

not enough to assess responses of organisms to contamination (Fernandes et al., 2002). The relationship 

has been also studied among residues of selected metals in Caddisfly larvae of Hydropsyche exocellata 

and some enzyme activity. Oxidative stress increased towards downstream locations where metal 

concentration is high and antioxidant enzymes respond to them. But it is also highlighted that other 

environmental factors may also alter this status (Barata et al., 2005).  

 

2.6. Conclusions 

 

In order to comply with the WFD and to ensure the good ecological status of all water bodies, a large 

number of compounds will have to be analysed. The methods used to monitor pollutants of concern very 

commonly involve spot sampling at specified periods of time from the field back to the laboratory where 

they are analysed by classical chromatographic and spectroscopic techniques. Almost all of the studies 

reviewed in this work belong to this type of monitoring but they are based on infrequent samples at a 

limited number of sampling points that may not provide a representative picture of water quality, because 

pollutants levels vary both spatially and temporally Therefore, the cost of obtaining representative data of 

the overall water quality using these methods would be high. 

 

Furthermore, to obtain an accurate picture of the situation and to be able to understand the ecosystems 

and how to preserve and enhance them, it is not enough to measure whether the pollutants concentration 

is below the limits established by legislation or not, because this is not necessarily representative of the 

water status. Pollutant monitoring should be complemented by studies dealing with the determination of 

the effects caused by the contamination. Studies showed that although some correlations between the 

concentration of target contaminants and specific alterations in some organism can be established, a 

comprehensive battery of biological tests needs to be performed to obtain a complete characterisation of 

the ecosystem status, as different taxa of living species have different reactions to specific pollutants. In 

this aspect further studies are needed in order to discover the ecological status of the Llobregat River as 

required by the WFD. 
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3. On-line bacteriological detection in water 
 

3.1. Abstract 

 

Microorganism contamination is a permanent concern in a wide range of fields, including the water 

treatment, food and pharmaceutical industries, in which fast detection is critical to prevent microbial 

outbreaks. 

 

Concerning water monitoring, current procedures for water quality analysis are based on periodic 

sampling and detection by culture methods. These methods are slow, requiring 24-48h for completion, 

meaning that when the first results reach the decision-makers and an alarm is triggered, exposure time has 

been already significant and the population may have been exposed to a health hazard. 

 

There is a need for rapid and reliable detection of contaminants across a broad spectrum of water 

management situations. For real-time detection, online monitoring seems to be the ideal approach, but the 

need to adjust the available techniques for autonomous operation and the optimisation of the time of 

response is a substantial challenge. 

 

This review presents the findings of an identification study about the state-of-the-art of technologies and 

commercial devices for on-line bio-monitoring of water quality, specifically for the detection of faecal 

contamination. We have also included studies dealing with the verification or use of these devices. 
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3.2. Introduction 

 

In the water treatment and supply industry, transmission of diseases can be related to inappropriate 

treatment methods, a failure in operation and supervision, or shortcomings in quality monitoring [1]. In 

fact, it can theoretically be argued that all waterborne diseases can be prevented by appropriate 

monitoring and corrective measures taken in good time [2]. Waterborne diseases are typically caused by 

enteric pathogens, mainly transmitted by the faecal-oral route, such as bacteria (Salmonella spp, Shigella 

spp, pathogenic Escherichia , Campylobacter spp, Vibrio cholerae and Yersinia enterocolitica), viruses 

(Hepatitis A and E, enteroviruses, adenoviruses, small round structured viruses including Norwalk virus, 

astro and rota viruses) and protozoa (Entamoeba histolytica, Giardia intestinalis, Cryptosporidium 

parvum). Other opportunistic pathogens found in water promote infections of the skin and mucous 

membranes of the eye, ear, nose and throat (Pseudomonas aeruginosa, Aeromonas, and species of 

Mycobacterium) or infections contracted by the inhalation of contaminated aerosols: Legionella spp 

(legionellosis), Naegleria fowleri (primary amoebic meningoencephalitis) and Acanthamoeba spp 

(amoebic meningitis, pulmonary infections). 

 

Since analysis and detection of all these pathogens is highly unfeasible, there is an established selection of 

the most suitable to be used as indicators. Currently, E.coli is used as an indicator of water safety 

regarding faecal contamination in almost all water quality legislation in the world for drinking water and 

bathing waters. E. coli is a bacterium that lives in high numbers in the intestines of warm blooded 

animals. Its value as an indicator of faecal contamination in water has been proved on numerous 

occasions [3]. 

 

Nowadays, the analysis of bacteriological quality is mainly performed in the laboratory by culture 

methods. However, culture methods have a variety of drawbacks. A primary concern is the time between 

sample collection and result reporting (>18 h), creating a risk that humans will be exposed to 

contaminated water. In addition, standard culture methods do not provide species-level identification that 

would provide a better indication of faecal contamination [4]. Recently, researchers have increasingly 

moved toward molecular technologies to meet the need for rapid, multiplexed, species-level detection [5]. 

Techniques such as polymerase chain reaction-based methods (PCR), have been proved to provide 

sensitive, rapid, and quantitative analytical tools for pathogen determination [6]. 

 

In recent years, concerns have risen about the need for on-line monitoring of water systems given that 

existing laboratory-based methods are too slow to develop operational responses and do not provide a 

level of public health protection in real time. This need for real-time monitors should be assessed on a 
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case-by-case basis based on the requirements of an individual water management body. Water utilities 

worldwide therefore employ on-line monitoring tools and early warning systems at all stages of the urban 

water cycle to measure physical properties and some chemical compounds, through intake protection, 

treatment operations and distribution systems [7]. 

 

In the distribution network, the challenge is to establish a rapid alert and response to a contamination 

event in order to minimise the population at risk. If an incident is detected early enough, emergency 

procedures can easily and vastly limit damaging effects [8, 9]. Therefore, accurate real-time detection of 

CBRN contaminants is often required for planning and implementing mitigation measures to protect 

water supplies [10].  

 

The development of autonomous methods for the online measurement of microbiologic paremetres 

requires the automation of the analytic methodology for fast analysis of faecal indicators and the design 

of instruments to operate in real environments. In this regard, we have performed a review of existing 

technologies and instruments (commercial and prototypes) that have tried to deal with this challenge. 

 

3.3. Review of analytical techniques 

 

The range of methods available for the application of molecular techniques has increased, and the costs 

involved have fallen. Additionally, recent improvements in detection technologies have allowed the 

simultaneous detection of multiple targets in a single assay. However, the analytical techniques available 

today and those under development require further refinement in order to be standardised and applicable 

to a diversity of matrices [6]. Very recently, attention has also been focused on nanobiotechnologies for 

food-borne pathogen detection in food matrices and environmental matrices [11].  

 

Many emerging biological sensors rely on the detection of specific biomolecules, including adenosine 

triphosphate (ATP), enzymes and other proteins, as well as immunoassay and polymerase chain reaction 

(PCR) techniques. The major limitation of these and other biological systems lies in their inability to 

detect low concentrations of microorganisms, which unlike chemicals are not uniformly distributed in 

aqueous environments. Other biological sensors rely on the optical properties of water and the analytes 

present in the sample, and include those based on evaporative light scattering detection, refractive index 

measurement, fluorescence detection, and Raman spectroscopy [7]. 

 

The techniques reviewed have been used to evaluate the microbiological quality of water or they have 

been applied to other fields but could be potentially used for water applications. As the ultimate objective 

of this review is real-time detection, we have selected techniques according to their potential for on-line 

applications. 
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3.3.1. Light Scattering 

 

Light scattering technology is a simple scanning procedure that provides information about the presence 

of particles of a certain size. When a laser beam is sent through flowing water, the laser light is scattered 

at right angles by the presence of particles in the water. Optical devices such as photodiodes collect the 

scattered light, which can be analysed to determine the size and number of particles present in the water 

sample. 

 

However, the technology does not allow for the determination of specific information about the identity 

of the particle; furthermore, it can only detect particles within a certain size range. The two main 

challenges facing this technology are the decrease in the number of false positives and the improvement 

of the level of sensitivity. Measurements of particle volume for specific particle sizes are site-correlated 

with the absolute numbers of a particular pathogen [12].  

 

The new Multi-Angle Light Scattering (MALS) technology uses optical fingerprints in order to identify 

the different types of bacteria. The optical signatures obtained are compared with a database, and particles 

are classified into shape categories [13, 14]. Figure 3.1 shows a diagram of the functioning of this 

technology.  

 

An AWWARF research project [15] determined that MALS technology can distinguish between 

Cryptosporidium and finished water matrix particles at a level high enough to serve as an early warning 

tool for water systems. The identification rate of Cryptosporidium parvum oocysts varied from 11% to 

45%, and false-positive rates varied from 0.3% to 3%. 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. Multi-Angle Light Scattering (MALS) Technology (source: www.jmar.com) 
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3.3.2. ATP Luminescence 

 

A common indicator for microbial presence widely used in the food and beverage industry is ATP 

luminescence. For the measurement of microbial ATP, cells in the water sample are lysed to release ATP 

into the solution. The reaction is catalysed by luciferase, which breaks down ATP and releases a photon 

of light from luciferin. Then an illuminometer reads the quantity of light emitted from the reaction. The 

light intensity is directly related to the concentration of ATP in the sample. It is important that the routine 

testing establishes a baseline trend for ATP results, and then subsequent fluctuations in ATP can indicate 

a change in microbial status of the system [16]. Provided that the concentration of ATP depends on the 

specie, the specific strain, and the environmental and metabolic factors, ATP is only an approximate 

indicator of the biomass in the sample. In the food and water industry, ATP technology is used for the 

rapid enumeration of total viable counts [17]. Figure 3.2 shows a representation of an ATP Luminescence 

measurement. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. ATP Luminescence measurement (source: www.qiagen.com)  

 

 

3.3.3. Immunoassays 

 

The principle behind rapid immunoassay technologies is the detection of the antigen-antibody reaction. 

The presence of a microbial contaminant is detected when specific antigen proteins in the sample bind 

with the corresponding antibodies. Classic examples of immunoassays are the enzyme-linked 

immunosorbent assay where a secondary antibody is conjugated to an enzyme that forms a coloured 

precipitate (ELISA), and the enzyme-linked fluorescent immunoassays that give off light (ELFA). 

Immunosorbent refers to the immobilisation of the capture molecules on a surface, such as a membrane. 
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The target molecules in the sample are antibodies if antigens are immobilised and antigens if antibodies 

are immobilised [18]. 

 

A test showed that immunomagnetic separation plus PCR and RNA techniques presented great promise in 

their ability to completely automate the detection of pathogens [19]. Setterington and Alocilja [20] 

detected E. coli by isolating cells by immunomagnetic separation, labelling them with electroactive 

polyaniline, and detecting them by cyclic voltammetry on screen-printed carbon electrodes. Initial results 

showed a detection limit of 70 CFU/ml with a linear range of 101 to 105 CFU/ml. The assay required 70 

min from sampling to result. The experiment developed by Laczka [21] coupled magneto-immunocapture 

and amperometry at flow channel microband electrodes. Experiments with E. coli evidenced a linear 

response for concentrations ranging 102-108 CFU/ml, without preenrichment steps. The whole assay 

could be completed in 1h. Immunomagnetic beads efficacy has been tested for the analysis of E. coli by 

[22]. In inoculated food samples, the technique detected 1 CFU/g of E. coli after a 6-hour enrichment at 

37 °C. 

 

3.3.4. Polymerase Chain Reaction (PCR) 

 

The PCR technique is a three-step cyclic in vitro procedure based on the ability of the enzyme DNA 

polymerase to copy a strand of DNA. The region of DNA to be amplified is specified by the choice of 

primers. Primers are short oligonucleotides, usually 20-30 nucleotides in length, whose sequence matches 

the end of the region of interest. Amplification takes place over a number of thermal cycles. In subsequent 

cycles, primers will bind to both the original DNA and the newly synthesised DNA resulting in an 

exponential increase in the numbers of copies. The results of PCR are detected by the use of fluorescent 

double-stranded DNA dyes or probes [16]. 

 

PCR is a highly sensitive, specific and potentially rapid detection method. However, the potential of this 

technique for on-line environmental monitoring is limited because of the use of disposable prepared kits 

for commercial PCR instruments. This greatly increases mechanical complexity, because sophisticated 

robotic mechanisms must replace the disposable elements [23]. The relationship between PCR 

quantification and culture-base methods has been successfully used to quantify faecal indicator bacteria at 

coastal and some inland water sites [24, 25]. Another comparison for detection of Legionella 

pneumophila showed that real time PCR methods offer the benefit of speed over traditional culture 

methods [26]. 

 

To detect several organisms in a single reaction, the simultaneous amplification of more than one locus is 

required. This methodology is referred to as multiplex PCR in which several specific primer sets are 
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combined into a single PCR assay. Monitoring bacterial faecal contamination in waters using multiplex 

real-time PCR assay for Bacteroides spp. and faecal enterococci was carried out by Agudelo [27]. 

Detection levels were much higher and the procedure could be performed in less than 3 h.  

 

In a similar way to PCR approaches, a highly specific real-time NASBA (nucleic acid sequence-based 

amplification) method could also be used for rapid detection of viable E. coli in water samples [3, 28]. 

The sensitivity of the NASBA assay was comparable with the culture method and approaches a sensitivity 

of 1 CFU/100ml. Results were obtained in only 3–4 h, enabling same-day responses to faecal 

contaminations. 

 

3.3.5. Enzymatic fluorescence techniques 

 

The recognition of colonies of presumptive target organisms has been facilitated by the introduction of 

chromogenic and fluorogenic media. The microbiological growth media contains enzyme substrates 

linked to a chromogen (colour reaction), fluorogen (fluorescent reaction) or a combination of both. The 

target population is characterised by enzyme systems that metabolise the substrate to release the 

chromogen/fluorogen. This results in a colour change in the medium and/or fluorescence under long wave 

UV light. 

 

Most encountered devices using this technology are based on IDEXX Colilert®, which is used for the 

simultaneously detection and enumeration of total coliforms and E. coli in water and wastewater based on 

the Most Probable Number (MPN) principle. This method uses two chromogenic nutrient indicators: 

ortho-nitrophenyl-β-D-galactopyranoside (ONPG) and 4-methylumbelliferyl-β-D-glucuronide (MUG) as 

the major sources of carbon. As coliforms grow, they use β-galactosidase to metabolise ONPG and 

change it from colourless to yellow. E. coli uses β-glucuronidase to metabolise MUG and create 

fluorescence [29].  

 

A published study reported the detection of E. colibased on the hydrolysis of chemiluminescent 1,2-

dioxetanes. Chemiluminescence showed greater sensitivity than fluorescence. Combined with membrane 

filtration, this shows potential for early-warning detection of microbial contaminations in drinking water 

(4–6 h) [30]. 

 

The M.E.R.® (“Méthode Enzymatique Rapide”) approach is a rapid quantification test of E. coli 

presented in a marine or fresh water sample [31]. This enzymatic test allows the detection of a specific 

enzyme activity as the β-D-glucuronidase for E. coli and was also adapted to the detection of the 

Enterococcus spp. specific β-D-glucosidase activity. Research on this technology showed that 
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assessments of water given by the M.E.R. and the ISO standard methods were in relatively high 

agreement for the quantification of E.coli and Enterococcus in marine waters [32, 33]. 

 

 

3.3.6. Fluorescent in-situ hybridisation (FISH) techniques 

 

Fluorescence in-situ hybridisation (FISH) with ribosomal RNA (rRNA) targeted oligonucleotide probes is 

the most commonly applied technique among the ‘non-PCR based’ molecular techniques. The choice to 

target RNA instead of DNA results in a more sensitive technique (higher copy numbers available) and a 

link to viability. In the preparation of FISH, microbial cells are treated with appropriate chemical fixatives 

and then hybridised under stringent conditions on a glass slide or in solution with oligonucleotide probes 

[16]. After stringent washing, to remove unbound probe, specifically stained cells are detected via 

epifluorescence microscopy. FISH has been applied with this aim for the detection of emerging pathogens 

from water, sewage and sludge [34].  

 

An integrated microfluidic device (µFlowFISH) capable of performing fluorescence in-situ hybridisation 

(FISH) followed by flow cytometric detection for identifying bacteria in natural microbial communities 

was tested. The device was used for the detection of species involved in the bioremediation of Chromium 

(VI) and other metals in groundwater samples. The µFlowFISH approach provided an automated platform 

for the quantitative detection of microbial cells from complex samples with low cell numbers [35]. The 

feasibility of using real-time potentiometric detection of bacteria in complex samples was proved by 

Zelada-Guillén [36]. The potentiometric biosensor used carbon nanotubes chemically linked to aptamers 

as probes to selectively detect and identify a particular strain of E. coli in real complex samples in a few 

minutes. 

 

3.3.7. Molecularly imprinted polymers (MIPs)  

 

Molecularly imprinted polymers (MIP) are polymers that have been processed using the molecular 

imprinting technique which leaves cavities in polymer matrix with an affinity to a  chosen molecule. 

Those synthetic receptors can be designed for a range of toxins and some microorganisms. MIPs have 

greater stability, being able to withstand climate extremes and larger sensitivity ranges, than antibodies. 

Some analytes for which MIPs have been developed include the algal toxins, domoic acid, and 

microcystin, and the fungal toxins, aflatoxin B1, and ochatoxin A [18]. Figure 3.3 shows the preparation 

of molecularly imprinted data. 
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A novel, affinity-augmented, bacterial spore-imprinted, bead material was synthesised and evaluated 

using spore-binding assays with either Bacillus thuringiensis or Bacillus subtilis spores [37]. A MIP-

based biosensor has been used for detection of the plant pathogen Tobacco mosaic virus at 100 ng/ml, 

thereby illustrating the potential of MIPs as specific receptors [38]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.3. Preparation of Molecularly Imprinted Data (source: www.vti.bund.de) 

 

 

However, some of the disadvantages of MIPs are the difficulty to completely remove the template from 

MIPs, the insolubility of the imprinted polymer and, although the polymer contains many imprinted 

cavities, only some of them match the template molecule [39]. 

 

3.3.8. Electrochemiluminescence (ECL) detection 

 

ECL assays employ labels that emit light when electrochemically stimulated at an electrode. Attaching 

these labels to biological binding reagents allow their use in solid phase binding assays, such as nucleic 

acid hybridisation assays of sandwich immunoassays. The existence of small, stable and highly efficient 

ECL labels makes the technique robust, sensitive and easy to implement. Assays are carried out in 

disposable multi-well plates having integrated carbon ink electrodes. These electrodes act as solid phase 

supports for arrays of biological reagents and also provide the source of electrical energy for generating 

ECL signals. The use of array-based multiplexing allows for the detection of multiple analytes in each 

well of a multi-well plate (up to 25 per well of a 96-well plate). Usually a cooled CCD camera and 

molded lens image the ECL generated from the plate arrays.  

 

ECL combined with the polymerase chain reaction (ECL-PCR) method was applied for the first time to 

the rapid detection of Vibrio parahaemolyticus in infected and uninfected sea foods [40]. 

http://www.vti.bund.de)/


Ingeniería Ambiental 

 

92 

 

Immunomagnetic separation (IMS) methodology was coupled to ECL detection to produce rapid 

detection (<1 h) of as few as 100 bacterial spores [41] or 1000 cells/ml of E. coli O57 and Salmonella 

typhimuri [42] 

3.3.9. Raman Spectroscopy detection 

 

Raman spectroscopy measures the inelastically scattered light following excitation. Figure 3.4 shows a 

representation of Raman spectroscopy. The advantages of Raman spectroscopy are significant for 

aqueous samples, as the infra-red absorption of water is avoided and spectral bands are generated more 

sharply and distinguishable [43]. Biological molecules such as nucleic acids, protein, lipids, and 

carbohydrates all generate specific Raman spectra, which provide biochemical information regarding the 

molecular composition, structure, and interactions in cells [44]. Therefore, from the whole-cell spectra, 

single microorganisms can be identified and discriminated. Raman spectroscopy has been further 

developed into two technologies: Surface Enhanced Raman Spectroscopy (SERS) for the identification 

from the spectra produced at the surface of the organism which has reacted with antibodies; and Laser 

Tweezer Raman Spectroscopy (LTRS), producing an optical “tweezer” to catch a microorganism and 

then laser light is used to produce a unique Raman spectrum that can be used to discriminate between 

different strains of bacteria [45]. Using this technique the discrimination between different strains of 

bacteria (Bacillus cereus, Enterobacter aerogenes, Escherichia coli, Streptococcus pyrogenes, 

Enterococcus faecalis and Streptococcus salivarius) [42] and the germination of single Bacillus spores 

[46] have been reported.  

 

 

 

 

 

 

 

 
 

Fig.3.4. Representation of Raman Spectroscopy (source: www.porous-35.com) 

 

3.3.10. Dye-loaded microspheres detection 

 

Each microsphere can be coated with a separate capture molecule which can be involved in nucleic acid 

hybridisation, antibody recognition, a receptor-ligand reaction, or an enzymatic reaction. The reaction 
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times are about three times faster than standard microarrays because the microspheres in solution have 3-

D exposure allowing for almost solution-phase kinetics, whereas flat microarrays are limited by solid-

phase kinetics [47]. The microspheres pass through the detection chamber single file and are optically 

measured, usually by flow cytometry, which quantitatively measures the optical characteristics of the 

spheres as they are presented separately in front of a focused light beam. 

 

In a general overview, optical techniques present the advantages of being very fast and reagentless, but 

they have very low specificity and a high risk of detecting false positives. Immunoassays have low 

sensitivity and require preconcentration, but they are a good basis for optical sensing upon capture. 

Fluorescence techniques are the most reliable and maybe ready alternative to culture methods, but are by 

far the slowest methods. PCR is fast, sensitive and very specific, but is affected easily by inhibitors or 

other matrix interference and is difficult to integrate into an autonomous device. Other emerging 

technologies introduce some new solutions and modified approaches, but they still need further research ( 

and especially validation) to be considered for standardised online use. An example of application of 

Dye-loaded microspheres for river and seawater using Luminex technology is presented by Baums et al 

[5]. 

 

Table 3.1 presents an enumeration of the techniques presented above with some summarised issues and 

capabilities. Additionally, Table 3.2 summarises the application reported. 

 

3.4. Assessment of commercial devices 

 

In Table 3.3, several devices for microbiological detection are presented. Some of them have been 

specifically designed for water analysis. Some others have been designed for other different applications, 

but the instruments are versatile enough for the detection of several bio-targets, including enteric 

pathogen bacteria in water samples. In general, all of them are able to detect indicators of faecal 

contamination. The selection of devices is not intended to be an exhaustive enumeration of biological 

instruments, since such approaches already exist [48] but a representative list of the available instruments 

for previously reported technologies that presumably may better suit online water analysis. As far as 

possible, devices are listed in ascending order, from the least automated (need for sample handling) to on-

line autonomous devices. 

 

Few studies have been reported dealing with the validation of these instruments. Some of them are very 

new and, in a large number of cases, results of the tests are confidential or performed by private 

companies or other institutions with no interest in publication of results. Nevertheless, the studies 

identified have been reported. 
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RAPTOR, a rapid and automated fiber-optic biosensor assay for the detection of Salmonella in sprout 

rinse water was developed by Kramer [49]. Salmonella typhimurium could be positively identified when 

seeds were contaminated with 50 CFU/g. This biosensor assay system has the potential to be directly 

connected to water lines within the sprout-processing facility and to operate automatically. 
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Table 3.2. Results for the application of the reported techniques for bacteriological detection at water samples 

 

 

Successful detection above regulatory standards was also obtained using ultrafiltration plus detection of 

enterococci in recreational waters. RAPTOR was shown to be more thorough and faster than other 

methods (e.g. qPCR) but the detection limits were not low enough for bathing waters [50]. 

 

P-CAN Sensor from IBI is based on the CANARY concept, which stands for “Cellular Analysis and 

Notification of Antigen Risks and Yields” and uses an array of B cells, each specific to a particular 

bacterium or virus. The cells are engineered to emit photons of light when they detect their target 

pathogen [51, 52].  

 

A BioSentry instrument using multi-angle light scattering (MALS) technology was tested by Adams [53]. 

A laser beam strikes particles as they pass through the beam, generating unique light scattering patterns 

which are comparable to fingerprints. By comparing these bio-optical signatures to an on-board database 

of microorganism patterns, detection and classification occurs within minutes. The system is cost 

effective, uses no reagents, operates remotely, and can be used for continuous microbial surveillance in 

many water treatment environments. Tests with BioSentry in a distribution network pilot showed that 

turbidity significantly affected baseline calibration [54]. 

 

Type of technology Paremetres analysed 
in water samples LoD Analysis Time Ref 

Light Scattering Cryptosporidium 
E. coli 

1 oocysts/mL 
1000 CFU/mL 

60 min 
continuous 

[15, 55] 
 

ATP luminescence Total microbial biomass 200 CFU/ml 5 min [60] 

Immunoassays Bacillus anthracis 
Legionella pneumophila 

100 000 CFU/mL 
800 CFU/mL 

15 min 
180 min 

[18, 61] 

Polymerase Chain 
Reaction (PCR) 

E. coli, Enterococci  
Legionella pneumophila 

15 CFU/100 mL 
100 genomes 
units/L 

3 h 
3 h 

[24, 26] 

Enzyme fluorescence E. coli, total coliforms 50 CFU/100 mL 1 h [32, 33] 

FISH  E.coli 
100-100 CFU /mL 
10 CFU /100 mL 

2 h 
10 h 

[62] 

Molecularly imprinted 
polymers Bacillus  not specified 1 day (plus 

beads synthesis) [37] 

Electrochemiluminescen
ce (ECL) E. coli, Salmonella 1000 cells/mL 1 h [63] 

Raman Spectroscopy E. coli 1000 cells/mL  [45] 

Dye-loaded 
microspheres E. coli 1000 cells/mL 1 h [64] 
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Evaluation of sensors for real-time monitoring of E. coli in water distribution systems was performed by 

Miles [55]. Only BioSentry was fairly accurate; however, the sensor could not distinguish between 

particulates and E. coli if concentrations were relatively high. The response of the TOC sensors to 

intrusion events was variable, being more sensitive in the detection of the media associated with E. coli 

than the microorganisms themselves. 

 

AWISS, an autonomous wireless in-situ sensor, was used for the detection of E. coli [56]. A prototype 

battery-powered optical AWISS, consisting of a miniature spectrophotometer, monitored the changes in 

fluorescence intensity that occurs when the E. coli–synthesised b-glucuronidase enzyme hydrolyses the 

reagent’s glycosidic bond, releasing fluorophores into solution. Laboratory testing with the prototype 

sensor showed the AWISS was capable of detecting low concentrations (< 100 CFU/100 mL) in less than 

eight hours. Higher concentrations (> 5 000 CFU/100mL), indicative of a possible combined sewage 

discharge, could be detected in less than one hour. 

 

After performing the review it could be stated that on-line systems should include sample preparation (at 

least a concentration of contaminants) and detection of the analytes. Consequently they will be somewhat 

complex to develop and use. On-line concentration is a challenge by itself (although it has not been 

specifically addressed in this review).  

 

The next challenges for the development of on-line systems will be to meet the following requirements: 

acceptable specificity and sensitivity, acceptable cost and acceptable maintenance. Further support for 

their viability is a need to interpret data in real time and implement a management strategy in response. 

 

3.5. Conclusions 

 

We have identified and reviewed technologies for water quality analysis of faecal contamination 

indicators. Some established technologies used in microbiology laboratories, such as immunoassays or 

enzyme fluorescence, have the potential to be applied in on-line equipment if combined with automated 

detection methods and implementing proper enhancements for reduction of the analysis time. More recent 

technologies such as PCR, FISH or electrochemiluminescence enable the quantification of very low 

concentrations of bacteria with high specificity, but require a lot of sample processing and have not been 

applied for on-line raw samples. Optical techniques provide the advantage of being immediate and 

reagentless, so that combined with capture methods may become the ideal detection technology for online 

water monitoring. However, to date it has been difficult to obtain successful results in real samples in a 

simple and reliable manner. 
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We performed an identification of devices based on the previous technologies, mainly aimed at 

generating an alarm when there is an episode of accidental or deliberate faecal contamination. Detection 

of microorganisms either in very low concentrations or within a turbid complex matrix is a challenging 

task, especially when aiming for online monitoring. All in all, although significant advances have been 

made in recent years in technologies – and its applications – to monitor water, it can be envisaged that 

while many of them seem promising, they are not currently available and require further testing and/or 

development.  
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4. Advanced monitoring of pharmaceuticals and oestrogens in the 
Llobregat River basin (Spain) by liquid chromatography-triple 
quadrupole-tandem mass spectrometry in combination with ultra-
performance liquid chromatography time-of-flight mass spectrometry 
 

4.1. Abstract 

We investigated the occurrence of 28 pharmaceuticals and 10 oestrogens in waters from the lower part of 

the Llobregat River basin, where the main intakes for production of drinking water for Barcelona (Spain) 

are located. Sampling was scheduled to monitor the same mass of water on its way down the river to 

reflect inputs from discharges, the contribution from subsidiaries plus the persistence of the compounds in 

the surface water. Analysis of pharmaceuticals was performed by off-line solid phase extraction (SPE) 

followed by liquid chromatography tandem mass spectrometry with a triple quadrupole analyser (LC-

QqQ-MS/MS). Further analysis by ultra-performance liquid chromatography/mass spectrometry with a 

time-of-flight analyser (UPLC-TOF-MS) was proposed and applied for confirmation of several of these 

target compounds. Oestrogens were analysed by on-line SPE-LC-QqQ-MS/MS. Within the class of 

pharmaceuticals, 23 out of the 28 compounds investigated were detected in at least one sample. The 

highest concentrations were observed for the β-blockers metoprolol (8042 ng L-1) and sotalol (788 ng L-1), 

the antibiotic ofloxacin (1904 ng L-1), and the lipid regulator gemfibrozil (1014 ng L-1). Within the group 

of oestrogens, only oestrone and oestrone-3-sulphate were positively identified, with concentrations for 

the former (0.82 to 5.81 ng L-1) close in some locations to those considered sufficient to induce 

oestrogenic effects in aquatic organisms (1-10 ng L-1). As a general pattern, the concentration of target 

compounds increases along the river flow as expected. 
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4.2. Introduction 

 

This study is focused on monitoring the presence of pharmaceutically active compounds in natural waters. 

This family of compounds includes prescription drugs, over-the-counter medications and drugs used in 

hospitals, plus other natural hormones having endocrine disrupting properties.  

 

Interest about the study of the presence and toxicity of these compounds has been reported by some 

international organisations (GWRC, 2004)(Henderson, 2006). The European parliament, for instance, 

during the preparation of the recently adopted Directive 2008/105/EC on environmental quality standards 

in the field of water policy, considered the inclusion of various pharmaceuticals (e.g. carbamazepine and 

diclofenac) inthe list of substances subject to a review for possible identification as “priority substances” 

or “priority hazardous substances”, although they were finally withdrawn from the final version. The 

Global Water Research Coalition in an effort to develop a common list of pharmaceuticals relevant to the 

water cycle has included carbamazepine, sulfamethoxazole, diclofenac, ibuprofen, naproxen, bezafibrate, 

atenolol, erythromycin and gemfibrozil as Class1: high priority pharmaceuticals (GWRC, 2004).  

 

The main reasons for concern are that large quantities of these compounds can enter the environment after 

use by individuals. In recent years, several studies have shown the efficiency of water treatment 

technologies in removing pharmaceutical and endocrine disrupting compounds. Whereas conventional 

technologies such as sand filtration or flocculation showed poor elimination percentages (Ternes et al., 

2002), advanced oxidation processes (Ternes et al., 2003; Zwiener and Frimmel, 2000) or nanofiltration 

and reverse osmosis techniques (Snyder et al., 2007) have been shown to be the most effective ones. 

Concerning secondary treatments in waste water treatment plants (WWTPs), the literature shows 

activated sludge with nitrogen treatment and membrane bioreactor as the most efficient treatments (Miège 

et al., 2009). Other sources are unused or expired medications that are thrown away in rubbish, residues 

from pharmaceutical manufacturing and waste from hospitals (www.epa.gov/ppcp). 

 

Recent advances in technology have improved the ability to detect and quantify these chemicals in 

environmental samples. Even though they are found in very low concentrations, there is still a lack of 

knowledge about the long-term risks that the presence of a large variety of drugs may pose for non-target 

organisms as well as for human health (Gros et al., 2006) 

 

The lower Llobregat River basin (NE of Spain) has been the object of several studies dealing with the 

presence of these target analytes in surface water. A high concentration of industrial and agricultural 

activities, added to the fact that is a densely populated area, make these waters receiving bodies for urban 

and industrial WWTPs, accidental spills from industries and general pollution from agriculture. This 

situation, due to the fact that the Llobregat River is the source of drinking water for millions of 



Ingeniería Ambiental 

 

 109 

inhabitants living in the area, raises the necessity of further investigation into the presence of these 

pollutants and the associated risks. 

 

Pharmaceuticals and their toxicity have been studied in the upper part of the Llobregat basin (Farré et al., 

2001) and a short list of them were included in a study covering a wide range of emerging pollutants in 

the same area (Kuster et al., 2008). Results obtained in the Llobregat basin area, plus other campaigns in 

other basins in Spain (Gros et al., 2006; Hernando et al., 2006), show levels of pharmaceuticals at the 

nanogram-per-litre level (ng L-1) or even at the low microgram-per-litre level (µg L-1). Oestrogens and 

progestogens have also been monitored in this area (Petrovic et al., 2002; Rodriguez-Mozaz et al., 2004a; 

Rodriguez-Mozaz et al., 2004b; Solé et al., 2000) showing levels of some of them, especially oestrone 

and oestrone-3-sulphate, at the low nanogram-per-litre level (ng L-1). 

 

For the analysis of these compounds in the studies reviewed, liquid chromatography/mass spectrometry 

(LC-MS) has been the technique mainly selected in the past (Farré et al., 2001; López De Alda and 

Barceló, 2000), but now this technique has been largely replaced by liquid chromatography tandem mass 

spectrometry (LC-MS/MS) (Gros et al., 2006; Hernando et al., 2006; Kuster et al., 2008). In recent years, 

the Commission Decision 2002/657/EC that was aimed at regulating the performance of analytical 

methods in the food industry, has also been applied to environmental analysis. According to this 

regulation, three identification points (IP) are needed when using LC-MS/MS for the correct confirmation 

of the presence of target compounds. The high sensitivity of LC-MS/MS (with triple quadrupole (QqQ) 

analysers) makes it a very suitable, accessible technique for analysis in surface waters. The main problem 

is that the three IPs are not obtained for those analytes not showing two selected reaction monitoring 

(SRM) transitions, that is, when only one product ion can be obtained from the precursor one. This 

disadvantage makes this technique not reliable enough for the analysis of compounds such as ibuprofen or 

gemfibrozil. 

 

An innovative aspect of this study is the performance of an extra analysis based on the use of time-of-

flight (TOF) detection for confirmation of the analytes, an approach that has been previously tested for 

analysis of pharmaceuticals but in wastewaters (Martínez Bueno et al., 2007). Ultra-performance liquid 

chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) has been 

applied for drugs identification in wastewater analysis (Petrovic et al., 2006). However, the use of this 

technique was tested in this study and finally discarded for our purposes because of the high detection 

limits found (results not included in this study). UPLC-TOF-MS was also tried and finally selected 

because of its higher sensitivity. Detection limits were appropriate to confirm peaks of contamination of 

target analytes in surface waters. TOF-MS measures the accurate mass of the compounds, adding that 

extra point of confirmation needed in order to obtain a reliable result. 
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Another innovative aspect concerns the sampling method. Instead of taking samples from several points 

at the same time, sampling was scheduled to try to sample the same mass of water on its way down the 

river. Therefore, monitoring should reflect inputs from discharges, the contribution from subsidiaries plus 

the persistence of the compounds in the surface water. This sampling method helps to eliminate some 

sources of mistakes when interpreting results obtained from traditional samplings (e.g. a peak of 

contamination caused by a punctual discharge upstream will not be detected in the analysis downstream 

and this could lead to a wrong conclusion regarding the natural removal of the compound).  

 

This work  also provides, for the first time, a view on the occurrence of 38 emerging compounds in the 

lower part of the Llobregat basin area based on the combination of two techniques (LC-QqQ-MS/MS + 

UPLC-TOF-MS) for their unequivocal confirmation and quantification. 

 

4.3. Material and methods 

 

4.3.1. Chemicals and standards 

 

All standards used were of high purity grade (>90%). Ibuprofen, naproxen, ketoprofen, diclofenac and 

gemfibrozil were kindly supplied by Jescuder (Rubí, Spain). Indomethacine, acetaminophen, mefenamic 

acid, clofibric acid, bezafibrate, mevastatin, azythromycin dihydrate, erythromycin hydrate, 

carbamazepine, fluoxetine hydrochloride, lansoprazole, loratadine, famotidine, ranitidine hydrochloride, 

sulfamethoxazole, trimethoprim, ofloxacin, atenolol, metoprolol, propanolol hydrochloride and sotalol 

hydrochloride were purchased from Sigma–Aldrich (Steinheim, Germany). Propyphenazone, pravastatin 

and paroxetine hydrochloride were from LGC Promochem (London, UK). Pure standards of the natural 

and synthetic, both free and conjugated, oestrogens oestriol-3-sulphate, oestriol-16-glucuronide, estradiol-

17-glucuronide, oestrone-3-glucuronide, oestrone-3-sulphate, oestriol, estradiol, ethynyl estradiol, 

oestrone and diethylstilbestrol were supplied by Sigma Aldrich (Steinheim, Germany) 

 

Individual stock standard solutions were prepared at 1000 µg mL-1 in methanol and stored at −20 ◦C. A 

mixture of all pharmaceutical standards and another mixture containing all oestrogens were prepared by 

the appropriate dilution of the individual stock solutions. Further dilutions of the pharmaceutical mixture 

were prepared in methanol–water (25:75, v/v) before each analytical sequence and were used as working 

standard solutions for external calibration. Working standard mixtures of the oestrogens were prepared by 

dilution in methanol and used as spiking solutions for preparation of the aqueous calibration standards 

(content of methanol < 0.1%). 
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HPLC-grade acetonitrile and water (Riedel de Haën) were supplied by Sigma Aldrich (Steinheim, 

Germany). Methanol (J.T. Baker) was supplied by Serviquimia (Constantí, Spain). Hydrochloric acid 

37%, ammonium acetate (NH4Ac) and acetic acid (HAc) were from Merck (Darmstadt, Germany). 

Nitrogen for drying 99.995% of purity was from Air Liquide (Madrid, Spain).  

 

4.3.2. Site description and sampling procedure 

 

The Llobregat River is located in the northeast of Spain and flows into the Mediterranean Sea south of the 

city of Barcelona. This is a densely populated area where agriculture and industrial activities (tannery, 

textile, pulp, paper and salt mining) are also present. The river receives discharges from urban and 

industrial WWTPs and runoff from agriculture and salt formation areas. Water from the Llobregat River 

basin is also used for the production of drinking water. Several drinking water plants are located next to 

the river. This high urbanisation of the basin is especially significant in Mediterranean climate basins. 

River water flows fluctuate heavily throughout the year and wastewater effluents can account for the 

majority of the river water flows during the dry season. The river represents, together with its two main 

tributaries, the Cardener River and the Anoia River, a good example of overexploited Mediterranean 

rivers. 

 

In this study we collected a total of 16 water samples at eight selected sites in the lower reach of the 

Llobregat River basin (see Figure 4.1) in two different sampling campaigns performed in November 2006 

and December 2006. The first site was located upstream just before the Terrassa Drinking Water 

Treatment Plant (DWTP) intake (site 1). The five following samples were taken at sites (2 to 6) located 

downstream of the Llobregat basin. According to the flow, an estimation of the time to take the samples 

was performed with the aim of monitoring the same water mass as it flows to the sea. Site 2 was located 

in the Llobregat River just before the union with its tributary, the Anoia River, which carries the 

discharge of the Abrera WWTP. The next site was located in the Anoia River itself close to its confluence 

with the Llobregat River (site 3). The following samples were taken from the Llobregat River at 

Capdevila Dam (site 4, before the input of the Rubí Creek), downstream of the town Molins de Rei (site 

5), and before the intake of the Sant Joan Despí DWTP (site 6), the biggest DWTP supplying water to the 

city of Barcelona. Additionally, we monitored two more sites (A and B) having less influence in the water 

quality of site 6: a channel receiving polluted water from the Anoia River, the Rubí Creek and the Sant 

Feliu WWTP (site A) that was constructed to avoid these waters being discharged into the Llobregat 

River before the Sant Joan Despí DWTP intake (site A), and the Rubí Creek itself (site B) which receives 

wastewater from industries in the area. 

 

Water samples (2 L) were collected in amber glass bottles to avoid photodegradation of the analytes. 

Upon reception, samples were filtered through 0.45 µm Nylon filters (Whatman, Maidstone, UK) to 
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eliminate particulate matter and other suspended solid matter and then stored at 4 ºC in the dark until 

analysis which was always carried out within 48 h of collection to keep microbial degradation to a 

minimum. 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.1. Map of the lower Llobregat basin where the eight sampling sites are indicated (1-6, A, B) 

 

4.3.3. Analytical methods 

 

Pharmaceuticals were initially analysed by off-line solid phase extraction (SPE) followed by LC-QqQ-

MS/MS. Additional confirmation was performed by UPLC-TOF-MS. Oestrogens were monitored using 

an on-line SPE-LC-QqQ-MS/MS method. 

 

4.3.3.1. Determination of pharmaceuticals by off-line SPE followed by LC-QqQ-MS/MS  

 

Pharmaceuticals were initially analysed by off-line SPE followed by LC-QqQ-MS/MS according with a 

method described in the literature (Gros et al., 2006).  

 

MS/MS detection was performed in the SRM mode, obtaining two SRM transitions per compound. Only 

1 SRM transition was obtained in the case of ibuprofen, gemfibrozil, and pravastatin due to poor 

fragmentation. A second transition was obtained for ofloxacin and ketoprofen according to the method 

followed, but it could be not detected in the experiment. In order to increase the sensitivity, the SRM 

transitions were classified into different elution time windows. The first transition, the most abundant 

one, was used for quantification, and the second transition, the less abundant, was used for confirmation 

purposes. 
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Identification of the target analytes was achieved by comparing the retention time and the LC-MS/MS 

signals of the target compounds in the samples with those of standards analysed under the same 

conditions. For positive identification the following criteria had to be met: (1) LC chromatographic 

retention time agreement within 2%; (2) relative abundance of the two selected precursor ion-product ion 

transitions within a margin of 20% (93/256/EEC). 

 

4.3.3.2. Determination of oestrogens by on-line SPE- LC-QqQ-MS/MS 

 

Fully automated on-line SPE-LC-QqQ-MS/MS analysis of oestrogens was performed with a SPE sample 

processor Prospekt-2 (Spark Holland, Emmen, The Netherlands) coupled on-line to the LC-MS/MS 

system. The method was previously developed for the analysis of free oestrogens (Rodriguez-Mozaz et 

al., 2004a) but it has been modified to include three conjugated compounds (oestrone-3-glucuronide, 

oestriol-3-sulphate and oestriol-16-glucuronide). 

 

MS/MS detection was performed in the SRM mode with an electrospray interface operated in the 

negative ion (NI) mode. 2 SRMs transitions were monitored per compound. For quantification of the 

analytes, the external standard method was used, based on the peak areas obtained in the first SRM 

transitions.Positive confirmation of the target analytes in the samples was based on the same criteria 

(retention time and relative abundance of the 2 SRM transitions signals) described in section 2.3.1. 

 

4.3.3.3. Confirmation of pharmaceuticals by UPLC-TOF-MS 

 

Confirmation of pharmaceuticals in the water sample extracts previously analysed by LC-QqQ-MS/MS 

was performed by UPLC-TOF-MS. The method is a modification of a previously developed UPLC-

QTOF-MS/MS method (Petrovic et al., 2006).Positive identification of the target compounds was based 

on: (a) accurate mass measurement of the analyte base peak with an error <5 ppm; and (b) LC retention 

time of the analyte compared to that of a standard within ±2%. 

 

In all cases (the only exception was pravastatine, which formed the sodium adduct) the base peak 

corresponded to the protonated [M +H]+ or deprotonated [M−H]− molecular ion of the analyte, depending 

on whether the analysis was performed in the positive ion (PI) or NI mode. The errors obtained in mass 

measurements (between 0.0 and 4.7 ppm (0.0–1.2 mDa) were within the widely accepted accuracy 

threshold of 5 ppm. 

 

For low contaminated waters (river, ground and drinking water) the instrumental detection limits (IDLs) 

might not be sufficient to detect low concentrations occurring in these samples, and the UPLC-TOF-MS 
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method needs to be complemented by a sensitive quantitative analysis using a QqQ in SRM mode 

(Petrovic et al., 2006). That is why only analytes showing one transition or achieving the highest levels in 

the QqQ analysis were selected for confirmation, as QqQ analyses have been shown to be more sensitive 

and accurate for quantification. Therefore, confirmation analysis via UPLC-TOF-MS was done only for 

diclofenac, ibuprofen, gemfibrozil, atenolol, sotalol, metoprolol and ofloxacin in the most polluted 

samples (sites 3, 5, A, B). 
 

4.4. Results and discussions 

 

4.4.1. Levels of Pharmaceuticals 

 

Table 4.1 lists the method detection and quantification limits calculated for the quantification and 

confirmation SRM transitions monitored for the various target pharmaceuticals in the off-line SPE-LC-

QqQ-MS/MS method, together with the percentage of positive samples and the minimum, maximum and 

average concentrations quantified using this method in the samples investigated. 

 

For all pharmaceuticals except ibuprofen, gemfibrozil, pravastatin, ketoprofen and ofloxacin, 2 SRM 

transitions were detected per compound thus achieving 4 IPs (2002/657/EC), which is in compliance with 

the minimum confirmation requirements established in the Council Directive 96/23/EC. However, in the 

case of ibuprofen, gemfibrozil, pravastatin, ketoprofen and ofloxacin, for which only 1 SRM transition 

was detected or monitored due to poor fragmentation in the MS/MS system, only 2.5 IPs were obtained, 

which are not enough to comply with the aforementioned Directive. 

 

In order to gain sufficient confirmation in the analysis of these five compounds, water sample extracts 

previously analysed by LC-QqQ-MS/MS were subjected to a second analysis by means of UPLC-TOF-

MS, which obtained 2 additional IPs per ion monitored (2002/657/EC). As shown in Table 4.2, ibuprofen 

and gemfibrozil could be positively confirmed in the samples through the second analysis (LODs 150 and 

50 ngL-1, respectively). Pravastatin and ofloxacin levels, in spite of reaching 78 and 1904 ngL-1, 

respectively, in the samples, were too low for confirmation using this second technique (LODs 350 and 

500 ngL-1, respectively). Ketoprofen had not been found by means of LC-QqQ-MS/MS so no 

confirmation was performed by UPLC-TOF-MS (LOD 150 ngL-1). 
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This approach was also used to confirm the presence of compounds detected at very high concentrations 

in heavily polluted samples. Since the sensitivity provided by LC-QqQ-MS/MS working in the SRM 

mode is higher than that achieved by UPLC-TOF-MS in the scan mode, not all positive results obtained 

using the former technique can be confirmed by using the latter. However, for those cases where the 

concentrations found are very high, an additional source of confirmation is possible and valuable. Table 

4.2 shows as an example the results obtained in the UPLC-TOF-MS analysis of diclofenac, atenolol, 

sotalol and metoprolol in samples collected from sites 3, A and B. In this case, all the results were 

positively confirmed.  

 

Regarding the results obtained, 14 out of the 28 pharmaceuticals investigated were detected in all samples 

(see Table 4.1). Only three compounds, namely, ketoprofen, mevastatin, and paroxetine were not detected 

in any sample. Figure 4.2 shows the range of concentrations measured for the various compounds 

positively identified in the samples. The highest concentrations, above 500 ngL-1, were found for the lipid 

regulator gemfibrozil (up to 1014 ngL-1), the antibiotic ofloxacin (up to 1904 ngL-1), and the β-blockers 

sotalol (up to 788 ngL-1) and metoprolol (up to 8042 ngL-1). Average concentrations higher than 100 ngL-

1 were calculated for the analgesic anti-inflammatory ibuprofen (153 ngL-1), and also for gemfibrozil (243 

ng ngL-1), ofloxacin (285 ngL-1) and metoprolol (738 ngL-1) (Table 4.1). Carbamazepine was among the 

most ubiquitous compounds (detected in all samples). Concentrations ranged from 8 to 179 ng ngL-1. 

Although its consumption is not very high, carbamazepine is not or is very poorly removed in 

conventional treatment processes operating in WWTPs (Zhang et al., 2008). 

 

 
Figure 4.2.Range of concentrations (minimum, maximum and average) measured for the various compounds 

positively identified in the samples (ng L-1) 

 

8041 ng/L 
1904 ng/L 
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Recently, an extensive data compilation on the environmental occurrence of pharmaceuticals products in 

surface water and WWTP influents and effluents has been performed in the context of the project 

KNAPPE - Knowledge and Need Assessment on Pharmaceutical Products in Environmental Waters 

funded by the European Commission within the 6th Framework Programme (Sadezky et al., 2008). 

Comparing the average concentration calculated for each compound within this study with the average of 

those compiled in the context of the above project, all detected pharmaceuticals except mefenamic acid, 

propyphenazon, clofibric acid, erythromycin, sulfamethoxazole, atenolol, propanolol, carbamazepine, and 

fluoxetine, (i.e. 16 compounds in total), showed higher values. Much higher values were those relating to 

gemfibrozil (243 ngL-1vs 16 ngL-1), ofloxacin (285 ngL-1 vs 41 ngL-1), and metoprolol (738 ngL-1 vs 47 

ngL-1). However, the maximum values reported were only exceeded by ofloxacin (1904 ngL-1vs 306 ngL-1 

found in Italy) and metoprolol (8041 ngL-1 vs 2200 ngL-1 found in Germany), in addition to those never 

detected in the reviewed literature, namely, pravastatin (maximum concentration in this work 78 ngL-1), 

lansoprazole (77 ngL-1), loratadine (202 ngL-1), and famotidine (9 ngL-1). 

 

Classified by therapeutic groups, the highest average concentrations were detected for the β-blockers 

(average of positive results = 191 ngL-1), followed by lipid regulators and cholesterol lowering statin 

drugs (118 ngL-1), antibiotics (91 ngL-1), analgesics anti-inflammatories and antiulcer agents (both 59 

ngL-1), psychiatric drugs (58 ngL-1), and histamine H1 and H2 receptors antagonists (23 ngL-1). For the 

discussion of results it is important to mention that samples from site 2 and site A taken in the second 

sampling period were lost during sample preparation.  

 

Figure 4.3 shows the total charge of pharmaceuticals, grouped by therapeutic class, detected along the 

course of the river basin, at both sampling campaigns. Sites showing the highest concentrations of the 

target compounds were site A (channel receiving waters from the Anoia River, Rubí Creek and Sant Feliu 

WWTP) and site B (Rubí Creek). A decision was taken in the past to avoid these waters discharging to 

the Llobregat River upstream of the Sant Joan Despí DWTP.  

 

Monitoring of surface water along the river flow showed, in general, an increase of the total 

pharmaceuticals concentrations from site 1 to 6. The exception was site 3, which is not located in the 

Llobregat River itself but in the tributary the Anoia River before it joins the Llobregat River. Levels of 

target compounds were usually higher in the Anoia River (site 3). The low flow of the Llobregat River, 

linked to its seasonal fluctuations, makes this river very sensitive to the levels of target analytes present in 

its tributaries and the water coming directly from WWTPs. Comparing both campaigns, slightly higher 

values were found in the samples collected in December. Taking into account the proximity of sampling 

periods, results indicate a fairly constant input of contaminants into the river basin. 
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Figure 4.3. Cumulative levels of pharmaceuticals, grouped by therapeutic class, detected at sites 1-6 (a) and 

sites A and B (b), at both sampling campaigns 

 

Information on acute and, especially chronic toxicity of pharmaceutical aquatic waste is scarce. 

Pharmaceutical concentrations measured in surface waters are generally well below concentrations that 

are known to cause acute toxicity to aquatic organisms (Cooper et al., 2008). However, pharmaceuticals 

enter the aquatic environment continuously, leading to fairly constant environmental water 

concentrations. Chronic exposure to pharmaceuticals has the potential for numerous subtle effects, such 

as metabolic or reproductive changes on non-target organisms (Cooper et al., 2008).The UK Environment 

Agency (Boucard, 2006) has recently compiled a database including data on the chronic aquatic 
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ecotoxicity of human pharmaceuticals towards various aquatic organisms belonging to different 

taxonomic groups. The maximum concentrations measured in the Llobregat basin were always below the 

reported chronic toxicity values. Maximum concentrations measured were on average more than 5, 3, 6, 

and 5 orders of magnitude lower than the lowest toxicity values reported for algae, invertebrates, fish and 

plants, respectively, which indicates no ecological risk. However, the potential for synergistic or additive 

toxicity to aquatic organisms and/or other toxicity effects, which has not yet been studied, cannot be ruled 

out. According to the inventory of chemicals defined as endocrine disrupters compiled by the Institute for 

Environment and Health (IEH, 2005 ), which includes a total of 966 compounds, carbamazepine (detected 

in all samples at concentrations up to 179 ngL-1) affects circulating thyroid hormones and 

sulfamethoxazole (detected in all samples at concentrations up to 119 ngL-1) alters thyroid function. 

 

4.4.2. Levels of oestrogens 

 

Among the group of target oestrogens, oestrone and oestrone-3-sulphate were the only analytes found at 

the Llobregat basin surface waters and at very low concentrations (in the low ngL-1 range). Table 4.3 lists 

the LODs achieved for the various compounds monitored. Oestrone concentrations, measured in all but 

one sample, ranged from 0.82 to 5.81 ngL-1. The highest levels were detected at site A (2.38 and 5.81 

ngL-1 in the first and second sampling campaign, respectively) and site B (2.80 ngL-1 in the first sampling 

campaign). These levels are within the range of those (1 to 10 ngL-1) from which oestrogenic effects can 

be expected (1 to 10 ngL-1 depending on the oestrogenic assay used) (Petrovic et al., 2004). Conversely, 

the most potent oestrogenic compounds (estradiol, ethynyl estradiol, and diethylstilbestrol) were not 

found in any of the samples analysed. 

 

Table 4.3. Method detection and quantification limits of the various target oestrogens in the on-line SPE-LC-

QqQ-MS/MS method 

 
Compound LOD (ng L-1) LOQ (ng L-1) LOD (ng L-1) 

SRM 1 SRM 1 SRM 2 

Oestriol-3-sulphate 0.05 0.12 0.23 

Oestriol-16-glucuronide 0.16 0.41 0.22 

Estradiol-17-glucuronide 0.23 0.62 0.67 

Oestrone-3-glucuronide 0.14 0.38 0.35 

Oestrone-3-sulphate 0.02 0.06 0.10 

Oestriol  0.49 1.32 0.62 

Estradiol  0.53 1.42 0.65 

Ethynyl estradiol 2.20 5.86 2.90 

Oestrone  0.12 0.32 0.35 

Diethylstilbestrol (DES) a 0.30 0.79 0.94 

a For DES, SRM1 refers to the first peak and SRM2 to the second peak of the first transition 
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Oestrone-3-sulphate was found in 80% of the samples and reached values between 0.25 and 1.46 ngL-1. 

Additionally, oestriol-3-sulphate was detected at very low levels in some samples but its presence could 

not be confirmed because the concentration measured using the most abundant SRM transition was lower 

than the method limit of detection achieved with the second transition. UPLC-TOF-MS could not be used 

in this case for confirmation due to insufficient sensitivity. Oestrogenic activity for conjugated oestrogens 

is lower than for the free oestrogens; levels found seem to have no risk for the environment.  

 

4.5. Conclusions 

 

The combination of two LC-MS techniques was used to unequivocally detect and quantify levels of 38 

compounds in surface waters of the Llobregat River basin. LC-QqQ-MS/MS was used for detection and 

quantification because of its high sensitivity and possibility of confirmation when two transitions of the 

parent ion to product ions are recorded. When a second transition could not be selected, the accurate 

measurement of the mass of the base ion was performed using UPLC-TOF-MS for confirmation. This 

approach was used to confirm the presence of ibuprofen and gemfibrozil in all samples and of diclofenac, 

atenolol, sotalol and metoprolol in samples showing high levels of these compounds. Confirmation of 

pravastatin and ofloxacin by UPLC-TOF-MS was not possible due to insufficient sensitivity. The main 

disadvantage of this solution is the extra cost related to the performance of two analyses. This problem 

could be partially solved by solely analysing the samples containing those analytes for which extra 

confirmation is needed.  

 

Results from the monitoring performed confirmed the presence of drugs of high consumption as expected 

in a densely populated Mediterranean basin. Significant levels, higher in general than those previously 

reported in the literature, were found for the ß-blockers metoprolol and sotalol, the antibiotic ofloxacin 

and the lipid regulator gemfibrozil. Within the group of oestrogens, only oestrone and its conjugated 

derivative oestrone-3-sulphate were confirmed to be present. Oestrone levels were in some sites close to 

those considered sufficient to cause oestrogenic effects in aquatic organisms. 

 

Two sites out of the eight monitored showed distinctly high concentrations of both classes of compounds; 

however, their waters are diverted to reach the river at locations close to the mouth and downstream of the 

inlet of the Sant Joan Despí DWTP, which supplies water to a large part of the Barcelona metropolitan 

area, in order to protect the quality of the source water. Along the river, the contamination load was 

observed to increase from upstream to downstream. 
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This study confirms the presence of some of the target compounds in concentrations that could lead to a 

potential risk to the environment and human health. Further studies on the risk of these compounds need 

to be undertaken. 
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5. Validation of a Water Quality Monitoring Platform at  Barcelona 
Drinking Water Treatment Plant 
 

5.1. Abstract 

 

The use of early warning technologies that can provide real-time information on water quality will 

increase in the following years for water protection against contamination. The main objective of the 

work is to propose and validate a methodology for the on-line monitoring of surface water quality at the 

intake of a Drinking Water Treatment Plant (DWTP) adapted to operators’ needs. 

 

For that purpose, a biological toxicity monitor using luminescent bacteria (TOXcontrolTM) coupled to a 

UV-VIS spectrophotometer probe is being tested online at the intake of the Barcelona DWTP. The plant 

is located downstream in the Llobregat River, receiving discharges from more than 30 WWTPs and 

occasional accidental spills from industries, so a real-time control is crucial for safety reasons. 

 

On-line measurement of several paremetres (TSS, COD, TOC, NO3-) in one single UV-VIS probe could 

help to establish relationships between these paremetres and characterise surface water before entering the 

plant. Toxicity is being measured by decreases of the luminescence of Vibrio fisheri bacteria and an alert 

signal is established. A SPE concentrator prototype is also being tested to increase sensitivity of this 

biomonitor to toxic substances. This combination will be validated for pollutants more commonly found 

in the tested area and those posing major risk to water production (pesticides, personal care products, 

surfactants etc.)  
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5.2. Introduction 

 

Water bodies’ quality monitoring is essential nowadays, but not only for the preservation of the 

ecological status. Final uses of water, especially for irrigation, industrial application or potable purposes, 

demand good quality. Treatment technologies are implemented when quality does not fulfil the 

requirements for these specific uses. The performance of these technologies and quality of produced 

water are also very dependent on the characteristics of the resource at the intake.  

 

Actions have also been implemented to improve the quality of these natural bodies. The impact of these 

preventive and/or corrective actions should be monitored to follow-up their efficacy and to fulfil 

regulatory standards. 

 

At a European level, quality requirements to be met are mainly addressed by the Water Framework 

Directive (WFD, 2000/60/EC)1 and the Priority Substances Directive (2008/105/EC)2 where 

Environmental Quality Standards (EQS), that is, concentration, and Annual Average (AA), that is, total 

loads, are established for a list of 33 pollutants. Performing laboratory analysis of these 33 pollutants 

represents a large number of analyses and it should be taken into account that it is not enough to measure 

whether or not the priority substances concentration is below the EQS or not because this is not 

necessarily representative of the water status. Moreover, spot sampling campaigns, the most common 

approach for analysing these compounds, are costly and labour-intensive and not sufficient to obtain an 

accurate picture of the chemical and biological status of water quality.  

 

For all of these reasons, new tools need to be established to obtain all the information needed. 

 

One of the most sensitive uses of natural waters is their treatment for drinking purposes. Source water 

needs to comply with the requirements that make it suitable for treatment in the drinking water plant 

facilities. European and national legislation has also been established to protect the health of drinking 

water consumers. Drinking Water Directive (98/83/EC)3 and recent application of Water Safety Plans 

(WHO Guidelines4 or ISO 220005) imposes strict regulation on the monitoring of water quality indicators, 

mainly aimed at protecting human health. Regulatory and technology requirements make it necessary to 

monitor water at the intake of treatment plants. 
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5.3. Location. Case Study 

 

The Barcelona area (NE of Spain) is supplied with drinking water from different sources. Water scarcity 

situations, typical in the Mediterranean area, require complex management taking into account the 

availability of different water sources: The Llobregat and Ter Rivers, groundwater, sea and brackish 

water, all combined, in different blends, according to the season of the year and the exact location in the 

Barcelona area. 

 

Although having this complex system of water supply, the main source is surface water coming from the 

Llobregat River. Previous studies and monitoring campaigns show the presence of a significant number of 

families of pollutants6-8. Some physico-chemical paremetres are continuously monitored. The values of 

these paremetres exhibit significant variations, especially due to the seasonal effects. Figure 5.1 shows 

information on the flow variation at the intake of Sant Joan Despí Drinking Water Treatment Plant 

(DWTP). The uneven distribution of rainfalls during the year causes sudden alterations of river 

characteristics, especially flow and turbidity due to runoff in heavy rain events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.Seasonal flow variation of the Llobregat River at the Sant Joan Despí DWTP 

 

A sudden alteration of quality paremetres could be interpreted as an episode of accidental spill or illegal 

discharge into the river, not only impacting on ecosystems but creating a situation where polluted water 

could enter the water treatment plant, potentially affecting the quality of drinking water. If this situation 

occurs, intake from the relevant surface water is closed and groundwater is pumped from the aquifers in 

the area. 
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5.4. VIECO project 

 

In order to successfully achieve this objective, a monitoring platform had to be designed. The platform 

integrates off-line and on-line measures and in-line integrating sampling tools in order to achieve the 

detection of a wide range of different paremetres and to have integrated responses according to water 

quality. 

 

Initially, the project was focused on the integration of these new sensing technologies (including chemical 

and bio-sensors) with the existing ones, in order to obtain automatic and autonomous detection of 

different paremetres and to have integrated responses according to water quality. In a second step the 

monitored data are now being integrated to establish a relationship between field ecological observations 

and measured paremetres related to chemistry, toxicity, etc. and additionally to distinguish the 

contribution of unknown (not measured) causes. The platform will provide a low-cost management tool 

for providing different levels of environmental information in surface waters, with a high degree of 

integration of data processing and interpretation of whole results.  

 

5.4.1. Objectives 

 

The main objective of this project is to contribute to the exhaustive characterisation and further 

enhancement of water quality by developing and validating a cost-effective monitoring platform to 

provide environmental indicators of ecological, chemical and biological status of surface waters. 

Validation will be performed at the main DWTP in Barcelona. 

 

This objective will be achieved by providing the platform with emerging tools and validating results 

using traditional methods. Environmental indicators will be offered to operators and the government 

relating to the water ecological status, integrating data provided by the tools that have been validated, 

thereby helping to implement the WFD. 

 

5.4.2. Actions and resources involved 

 

In order to reach the above mentioned objective, the following sets of actions are being carried out:  
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5.4.2.1. Definition of the off-line chemical sensing platform  

 

Analytical methods have been optimised for the analysis of a selection of priority and “emerging” 

compounds. Liquid chromatography coupled to tandem mass spectrometry was the technique selected. 

Different methods for detection and quantification were developed for pesticides, pharmaceuticals and 

fullerenes. A list of contaminants was selected on the basis of: a) their high use and/or production, b) their 

significant aquatic toxicity, c) their fate in the aquatic environment (high stability and low 

biodegradability), d) their poor removal during activated sludge wastewater treatment. 

 

5.4.2.2. Integration of sensors for the on-line bio and chemical sensing platform 

 

In this task, on-line chemical and biological sensors are currently being validated for their integration into 

the monitoring network stations. 

 

To do this, a biological toxicity monitor using luminescent bacteria (TOXcontrolTM, microLAN, 

Netherlands) coupled to a diode array UV-VIS spectrophotometer probe is being tested (spectro::lyserTM, 

s::can, Austria). The on-line measurement of several paremetres (TSS, COD, TOC, NO3-) using a single 

UV-VIS probe could help to establish relationships between these paremetres and characterise surface 

water before entering the plant. Toxicity is being measured by the decrease of the luminescence of Vibrio 

fisheri bacteria and an alert signal being generated. A Solid Phase Extraction (SPE) concentrator 

prototype is also being tested to increase the sensitivity of this biomonitor to toxic substances. This 

combination is being assessed for pollutants more commonly found in the studied area and those posing a 

major risk to water production including pesticides, personal care products, surfactants, etc. 

 

A combination of complementary techniques will enable the verification of alarm signals, thereby 

reducing false alarm rates. Where a chemical analytical monitoring system identifies and quantifies 

specific water contaminants, biomonitoring gives an indication of the total quality, including the effects 

of unknown toxic substances. 

 

Equipment for indirect on-line measuring of the Biological Oxygen Demand (DBO Optosen 50TM, 

Interlab, Spain) based on the measurement of oxygen consumed by bacteria immobilised on a plate, will 

be validated not only at the intake of the DWTP but at the effluent outlet of a Wastewater Treatment Plant 

(WWTP). 
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5.4.2.3. Integration of in-line sensing tools 

 

Methodologies based on passive samplers have been developed for the in-line integrated monitoring of 

water quality as they provide more realistic results than conventional methods. Passive samplers are 

introduced into surface water streams and they adsorb certain chemicals during a period of time (normally 

between 2 and 4 weeks), commonly through a diffusion-limiting membrane. Afterwards the samplers are 

removed and taken to the laboratory, where target compounds are extracted and quantified. As a result, 

these devices calculate a time weighted average concentration (TWA), which is more representative than 

results of conventional methods using spot samples, because they mimic how these pollutants are taken 

by animals and plants and how they bioaccumulate. In addition to this, as they integrate concentration 

over a period of time, they provide an average, not a snap shot of the situation when a sample is taken. 

 

The diffusive gradient in thin film (DGT) devices was tested for the analysis of metals. Polar Organic 

Chemical Integrative Samplers (POCIS) were tested for the analysis of polar compounds such as 

pharmaceuticals, pesticides and surfactants, while an automatic device for constant flow integrative 

analysis (CFIS) was developed and tested for non-polar organic compounds like PAHs, PCBs, pesticides, 

phthalates and surfactants. 

 

5.4.2.4. Implementation of the biomonitoring platform for the assessment of pollution induced 
effects on biofilm communities  

 

A bio-monitoring platform was developed using field diagnostic tools for the estimation of water quality. 

The aim of this task was focused on the implementation of tools for a community-based toxicity 

assessment of site-specific toxicants by integrating structural, physiological and functional paremetres of 

microbenthic communities and community-based ecotoxicological assessment approaches. Changes in 

community structure (biomass, taxonomy and metabolic profiling) were studied under different toxicity 

exposures. The effects on functional paremetres from biofilms will be assessed through a variety of 

methods.  

 

5.4.2.5. Risk evaluation of toxicity in aquatic ecosystems 

 

The proposed task will be focused on the integration, at river basin scale, of several paremetres measured 

by sensors, classical analytical chemical methods and bioassays to define indicators to assess the impact 

and the effects of ecological field observations. Thanks to this methodology, it will be possible to relate 

the field ecological observations (e.g. abundance of species) to paremetres related to habitat, chemistry, 
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toxicity, effluents and to identify the contribution of unknown (not measured) causes. The correlation 

between the monitored and quantified paremetres within the project versus the observed ecological 

paremetres will be carried out using generalised linear models (GLM) and a flexible quadratic model will 

finally identify the influence of each group of variables on the final observed value and, thereby, attribute 

the effects to paremetres.  

 

5.4.3. Results on validation of on-line sensors 

 

5.4.3.1. Spectrophotometer probe  

 

We tested the diode array UV-VIS spectrophotometer probe in the first stage of the project, in the surface 

water entering the DWTP. Measures were scheduled automatically every 10 minutes. The probe was 

connected to an air compressor to clean the window every 5 measurements. The profile of the spectrum 

from 200 to 750 nm was recorded during each measurement. The calibration model showed values from 

pre-established paremetres with the information obtained from the spectral profile. In this case, on-line 

measurements of several paremetres: - Turbidity, Total Organic Carbon (TOC), nitrates and SAC-254 

were performed. Correlations were established between values obtained from the probe and the analysis 

performed in the laboratory. This comparison will give us information on the performance of the 

instrument and it will be used by the probe itself for local calibration. 

 

The main advantages of using a multiparametric probe are: compilation of information about several 

paremetres using a single technology resulting in a lower overall cost for purchase and maintenance; real-

time continuous monitoring of the water at the intake (potentially applied to other steps in the process of 

drinking water treatment), making it suitable to be used as an alert system; recording of the whole 

spectrum from 200 to 750 nm to enable us to add new paremetres or compounds and extract concentration 

values from the fingerprint. 

 

The main difficulty found when validating the probe was the unstable conditions of the Llobregat River. 

The water matrix changes quickly in Mediterranean rivers (e.g. turbidity can change from 30 NTU to 

1000 NTU in a few hours). The probe was calibrated for a concentration range of paremetres that were 

narrower than the range found in real conditions. This meant that in certain episodes (heavy rains), data 

was out of range and could not be recorded. The year the validation process took place (2010) had 

extraordinarily high rainfall, so extreme results, especially turbidity values, occurred quite frequently. 

Figure 5.2 shows turbidity values from November 2009 to June 2010 (values above 300 NTU are not 

shown). 
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Figure 5.2. Screen shot of spectrophotometer probe software showing variations in turbidity values 

 

5.4.3.2. Biological toxicity monitoring 

 

A biological toxicity monitor using luminescent bacteria is being tested. The equipment is completely 

automated. Measurements of the incoming flow of water are carried out every 30 minutes with a quasi-

real detection of the global toxicity of the compounds present in the water. Toxicity is being measured by 

the decrease of the luminescence of Vibrio fisheri bacteria when being in contact with the sample. The 

exposure time has been set at 15 minutes. An alert signal can be established at a certain value of light 

inhibition. 

 

At the Llobregat River, it was found that the background levels of toxicity are typically in a range of ± 

20% of light inhibition. As we stated earlier, the water matrix changes due to weather conditions. When 

turbidity is high, we can see some positive toxicity due to the decrease of light arriving at the 

photomultiplier light detection system in the equipment (Figure 5.3). In low turbidity episodes, toxicity 

values are negative because of the high content of nutrients in Llobregat water that results in an increase 

of the metabolism of the luminescent bacteria and therefore, in the emission of light. 

 

In one of the experiments performed, the toxicity monitor was used to analyse, in off-line mode, 6 

samples of surface water at the intake of DWTP plus another 6 samples of treated wastewater at Abrera 

WWTP, discharging to the Llobregat River upstream of the DWTP intake. A system was designed using 

a pump so the same sample flowed in a loop and it could be measured several times. Having different 
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measures of the same water gave us information on the repeatability of the method. Different aliquots 

from the same sample were analysed by a new prototype version of the toxicity monitor to compare the 

performance of both instruments; and also by certified methods using Vibrio fisheri (MicrotoxTM) and 

Daphnia magna (planktonic crustaceans). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Toxicity background levels relating to episodes of high turbidity 

 

 

Figure 5.4 shows that, although some differences can be seen by comparing the two versions of 

equipment, no significant inhibition was shown, so no toxicity of any of the samples could be reported. 

Checking the dispersion of data, repeatability was better in the biomonitor during validation, as it is a 

more mature version than the new prototype. Analysis performed with MicrotoxTM and Dahpnia magna 

also showed no toxicity. 

 

The equipment shows the advantage of detecting global toxicity of some of the priority pollutants (metals 

and pesticides) that causes inhibition in Vibrio fisheri bacteria. It can operate as an alert system for intake 

protection and the maintenance work is low (once a week). The main disadvantage of the equipment is 

that bacteria are not sensitive enough to detect the presence of toxic compounds at the levels needed to 

comply with legislation. To help to solve this problem, a Solid Phase Extraction (SPE) concentrator 

prototype is also being tested to increase sensitivity of this biomonitor to toxic substances. 
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Figure 5.4.Comparison between two pieces of equipment (prototype and biomonitor) for surface waters (a) 

and treated wastewaters (b). Samples are numbered from 1 to 6 relating to consecutive weeks 

 

5.4.4. Future work 

 

Once the pieces of equipment have been validated for real sample analysis, experiments will be 

performed for a selection of ten target compounds. These substances have been selected according to their 

occurrence in Llobregat River and the potential to show toxicity. The following ten compounds will be 

used for testing: Terbutylazine, Diazinon, Dimethoate, Diuron, Propanil, MCPA, Nonylphenol, LAS, 

Triclosan and Diclofenac. 

 

5.4.4.1. Recovery tests for SPE concentrator 

 

In order to test the performance of the SPE module for increasing concentrations of our target 

compounds, so they can show toxicity when analysed by the biomonitor, the following experiment has 
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been designed. HPLC grade water and surface water (filtered 0.45μm) will be spiked with a standard 

mixture of the ten target compounds. Samples will be spiked at 0.2 mg L-1 and 0.2 ng L-1 so after 

concentration (from 500 mL to a final volume of 10 mL), final concentrations are expected to be 10 mg L-

1 and 10 ng L-1. Two different cartridges will be tested: original ones and self-prepared (using OASIS 

HLB WatersTM material). Moreover, three replicates plus blank will be prepared for each situation. 

 

5.4.4.2. Dose response curves 

 

The concentration that causes 50% of inhibition (EC50) will be calculated according to the “dilution 

series procedure” (TOXcontrolTM) for each target compound. In this procedure, different concentrations 

of the same compound are tested automatically to obtain the curve concentration-response that will show 

information for the EC50 calculation. Due to the low solubility of some of the target compounds, 

solutions will be prepared in DMSO 0.2%. Such a low concentration of DMSO has been confirmed to 

show no response to Vibrio fisheri. 

 

5.4.4.3. Toxicity tests for the target compounds 

 

Taking into account information on recovery and toxicity obtained from previous tests, experiments will 

be designed for testing the response of the toxicity monitor when dealing with different mixtures of our 

target compounds after pre-concentration. Synergistic or antagonists effects could also be checked. The 

influence of matrix on the response will be also an important issue to assess. 

 

5.5. Conclusions 

 

Water resources quality monitoring is a mandatory issue for ecological and health reasons. New tools 

should be integrated into water quality monitoring programmes. The VIECO project develops 

methodology and validates technology before their routine use. The special characteristics of a case study 

(Llobregat River) pose a challenge to the implementation of some technologies, especially those 

operating on-line.  

 

Weather conditions can cause alterations in paremetres such as turbidity, making it difficult to measure 

this or other paremetres when previous calibration is needed or when optical measures are implied 

(absorbance or luminescence). 
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Sensitivity is another important obstacle to overcome when on-line instruments are used. Pre-treatment of 

the sample can augment concentration of pollutants, but could increase the response time or imply the 

need for the implementation of some manual processes. 
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6. Evaluation of an automated luminescent bacteria assay for in-
situ aquatic toxicity determination 
 

6.1. Abstract 

 

A new system for monitoring toxicity TOXcontrolTM (MicroLAN BV, The Netherlands) was used to 

assess the toxicity of a selection of priority or emergent compounds in the laboratory. In this study, 

inhibition curves and EC50 - Effective Concentration causing 50% inhibition- of selected compounds 

(including pesticides, pharmaceuticals, surfactants and metals commonly detected in surface or drinking 

waters) were determined. This new technology is based on the measurement of Vibrio fischeri 

bioluminescence inhibition (ISO 11348). The main advantage of this equipment, compared to other 

laboratory assays, is the full automation of the procedure. The instrument can be operated online in a 

simple, rapid and reproducible way. We studied the variability of the results obtained with the 

TOXcontrolTM biomonitoring system. A comparison with standardised technology based on V. fischeri 

(MicrotoxTM) and additional test with Daphnia magna for selected organic compounds is presented. The 

results show that the methodology based on the TOXcontrolTM system being validated is accurate and 

reproducible enough, thereby enabling this system to be used as an on-line automatic alert system to 

detect abnormal concentrations of toxic compounds. 
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6.2. Introduction 

 

Legislation related to the preservation of quality of water bodies is becoming more stringent both at 

national and international level. In the European context, the Water Framework Directive (WFD) 

(2000/60/EC) is an example of the new risk-based attitude adopted in terms of environmental impacts. 

The WFD requires both a good chemical and biological status of water bodies; therefore new monitoring 

assays to detect changes in water quality at short notice are required. Although a list of priority substances 

to be determined in surface water bodies was established by the Daughter Directive (2008/105/EC) 

according to their harmful potential, other substances exist that are not regulated at the moment, called 

emerging contaminants, which are liable to affect living organisms, although their concentrations are not 

routinely measured. A large number of studies have been performed with the aim of identifying those 

contaminants present in water flows (Von der Ohe et al., 2011). 

 

The objective of the Drinking Water Directive (DWD) (98/83/EC)is to protect human health in the 

European Union and to make sure that water is healthy and clean. For this purpose, DWD sets standards 

for the most common substances that can be found in drinking water. In the DWD a total of 48 

microbiological and chemical paremetres must be monitored and tested regularly. The thresholds of these 

substances (including pesticides, metals, bacteria, etc.) are based on the potential detrimental effects to 

organisms.  

 

The chemical status of water bodies is determined in most cases by spot sampling campaigns and 

laboratory determinations. This off-line methodology is slow and in some cases ineffective to respond to 

sudden quality changes as a result of possible contamination. There is a need to use some alternative 

monitoring tools to complement traditional ones in order to provide a comprehensive overview of water 

quality. Biomonitoring protocols use sentinel species, defined as any living organism used as an indicator 

of the presence of a pollutant or the toxicity of a contaminant (Amiard and Amiard-Triquet, 2008). 

Biological analysis with the help of different biosensors is considered a highly informative testing system, 

since the knowledge about the chemical characteristics of pollutants does not always provide sufficient 

information about their toxicity and danger for living organisms (Tsybulskii and Sazykina, 2010). 

 

Toxicity tests are one example of a commonly used biomonitoring tool. In this case, the biological 

response of a test organism is measured as the result of the combined effect, including antagonism and 

synergism, of the mixture of all potential contaminants contained in water. One of the most common 

biosensors used for the risk assessment in aquatic environment is based on the inhibition of luminescence 

produced by marine bacteria Vibrio fischeri. The use of this bioluminescence based assay has been 

standardised (ISO 11348-3) for regulatory purposes because of its sensitivity and short time required to 
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perform the test (Coz et al., 2007). Toxicity is usually represented as EC50, i.e. effective concentration of 

the tested chemical at which 50% of luminescence inhibition is observed. 

 

Since the early 80s, many studies have been performed to determine the toxicity of different families of 

chemicals in the laboratory. In one of these studies, the drugs investigated (ibuprofen, ketoprofen, 

naproxen, diclofenac, salicylic acid and gemfibrozil) showed very similar EC50 values when comparing 

two techniques using the luminescent bacteria assay (14 - 36 mgL-1 for MicrotoxTM and 12 - 43 mgL-1 for 

ToxAlertTM) (M Farré et al., 2001). Other comparisons performed with surfactants showed greater 

variability (0.36 - 127 mgL-1 for ToxAlertTM and 0.40 - 379 mgL-1 for MicrotoxTM) (M. Farré et al., 2001). 

Antibiotics showed a moderate toxicity on V. fischeri and no significant effects at the maximum 

concentration tested relating to water solubility were observed, but the compounds atrazine, simazine, 

glyphosate, deltametryn and leucomalachite green showed EC50 values greater than 10 mgL-1, and 

therefore they were classified as harmful, according to the Global Harmonised System of classification 

(UNECE, 2011; Hernando et al., 2007). EC50 values have also been determined for triclosan(0.28 mgL-1) 

and methyl triclosan (0.21 mgL-1) (Farré et al., 2008). 

 

In other studies, EC50 values for individual metal added in the ionic form were obtained for cadmium, 

chromium, copper, lead and zinc using V. fisheri at an exposure time of 30 min. Values ranged from 0.12 

to 13.8 mgL-1(Guéguen et al., 2004). In another study, the toxicity of the 13 priority pollutant metals and 

non-metals was evaluated using the MicrotoxTM chronic toxicity test. Among the metals, beryllium was 

found to be the most toxic in the test while thallium was the least toxic (Hsieh et al., 2004). The toxicity 

of arsenic, cadmium, lead, and mercury has been tested individually and as a composite mixture using the 

MicrotoxTM bioassay. Among the individual metals and non-metals tested, in the ranking of toxicity 

mercury was in first place, followed by lead, cadmium and arsenic (Ishaque et al., 2006). More tests have 

been performed in assessing toxicity of metals based on this bacterium (Codina et al., 1993; Cho et al., 

2004; Rosen et al., 2008; Tsybulskii and Sazykina, 2010). The response of luminescent bacteria to 

mercury compounds has also been investigated (JM Ribo et al., 1989). 

 

Further studies have been performed to  assess the performance of different sensors. Ten toxicity sensors 

utilising enzymes, bacteria, or vertebrate cells were compared to rapidly identify toxicity in water samples 

containing one of 12 industrial chemicals. MicrotoxTM was the highest scoring in the ranking, responding 

to 6 out of 12 compounds (van der Schalie et al., 2006). Another study performed a comparison between 

V. fischeri, Selenastrum capricornotum and Daphnia magna tests. A selection of pesticides, antifouling 

agents and pharmaceuticals were tested. D. magna was the most sensitive test. D. magna and V. fischeri 

both showed discriminatory ability to separate compounds in different toxicity categories (Hernando et 

al., 2005). In a different study, the inhibitory effects of 81 chemicals, after 5 min contact time, were 

calculated at eight concentrations using three commercial assay systems based on the luminescent 
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bacteria toxicity assay (ToxAlertTM, MicrotoxTM and LUMIStoxTM). Only five compounds gave EC50s 

that varied more than three-fold between assays (Jennings et al., 2001). Bioluminescent bacteria have 

been applied frequently to monitor toxicity in several environmental applications such as wastewater, 

seawater, surface and ground water, tap water, soil and sediments, and air (Girotti et al., 2008; M.C. Riva 

et al., 2007). However these tests were based on discontinuous samples and provide only a partial 

response in terms of compliance with WFD and related legislations. 

 

The objective of the study was the testing of the automated equipment TOXcontrolTM for measuring 

toxicity of contaminants that can be found at surface and drinking waters. We assessed the response of the 

equipment in the laboratory compared to a selection of contaminants. The response for the organic 

compounds was compared against the response of toxicity tests performed with MicrotoxTM. As it is a 

non-specific technique for measuring global toxicity, it was important to perform tests in the laboratory 

with water spiked with single analytes so a specific response to one compound could be obtained. Only 

one reference was found concerning the validation of on-line toxicology sensors, in which TOXcontrolTM, 

was tested  in combination with a spectrophotometer for the monitoring of sodium cyanide, azinphos-

methyl, sodium fluoroacetate and difenacoum in surface waters (Appels et al., 2007). Additionally, the 

sensitivity of V. fischeri for selected organic compounds was compared against the sensitivity of D. 

magna. 

 

Firstly, contaminants were selected taking into account their occurrence in semi-arid basins, such as the 

Llobregat River (SE Spain) where a high contribution of treated wastewaters discharges in the total flow 

of the river is expected, as the low flow makes dilution factor almost negligible. The pollutants can 

become a potential risk to the receiving bodies and, in addition, to the production of drinking water 

(Gasperi et al., 2008; Muñoz et al., 2009). Secondly, information on the possible presence of metals in 

drinking water according to their potential for being transferred from the corrosion of internally 

unprotected metallic water pipelines was taken into account for the metals selection (Imran et al., 2009). 

 

We performed experiments  to assess the aquatic toxicity of a selection of target compounds. These 

substances were selected in view of their occurrence in surface water, especially in semi-arid regions 

where the water stress leads to low flow rates and a higher concentration of dissolved pollutants, and their 

potential to show toxicity (González et al., 2012) and their possible presence in drinking water mainly due 

to migration of pipe material (Veschetti et al., 2010). 
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6.3. Materials and methods 

 

6.3.1. Reagents and standard solution preparation 

 

Chemical standards for terbuthylazine, triclosan, dimethoate, sodium dodecylbenzene sulphonate (SDBS), 

diazinon, sodium diclofenac, nonylphenol, propanil, 2-methyl-4-chlorophenoxyacetic acid (MCPA) and 

iron (III) sulphate hydrate were purchased from Sigma Aldrich (St. Louis, MO, USA). Standards for 

chromium (III) nitrate nonahydrate, copper (II) sulphate pentahydrate, lead (II) nitrate and nickel (II) 

sulphate hexahydrate were purchased from Merck (Darmstadt, Germany). HPLC water and dimethyl 

sulfoxide (DMSO) were also purchased from Sigma-Aldrich. The freeze dry luminescent bacteria V. 

fischeri, cultivation media, zinc sulphate (2500mg/l) and 20% sodium chloride were supplied by 

MicroLAN (Waalwijk, the Netherlands). Stock solutions were obtained by dissolving metal salts in 

HPLC water and organic compounds in DMSO (0.2% v/v). The pH of solutions was not adjusted but it 

was monitored and no sudden changes of pH were reported. 

 

Luminescent marine bacteria of the species Vibrio fischeri (NRRL B-11177) for the Microtox® 

determinations were obtained from SDI (Strategic Diagnostics Inc. Newark, DE USA.) Luminescent 

bacteria for ToxControl® determinations were obtained from Microlan B.V. Waaljik. NL. Daphnia 

magna used as test organisms were obtained from a CRIT-UPC maintained culture. 

 

6.3.2. On-line Toxicity monitoring 

 

The instrument for online monitoring of toxicity of water samples was the ToxControlTM Toxicity 

Monitoring System manufactured by Microlan, B.V. 

 

TOXcontrolTM is an advanced automatic on-line water toxicity monitor based on the use of luminescent 

bacteria (V. fischeri) to give an indication of the toxicity of the contaminants in water as a function of the 

emitted light. After the mixing of the luminescent bacteria and the water sample, the toxic material in the 

sample would alter the metabolism of the bacteria. The decrease of light intensity is directly proportional 

to the concentration of toxic substances in the sample.  

 

The equipment works on the same basis as the certified methodology for the analysis of toxicity with V. 

fischeri (ISO 11348-3) but adapted to automatic equipment. The analyser inside the equipment is 

designed to work in two parallel lines. A diagram of the modular parts can be seen in Figure 6.1. While 

one of the lines prepares the mixture of the bacteria solution with sample water and measures the effect of 

that sample on bacteria, a second line uses reference water instead of sample water, as the output data is a 
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relative measurement of the light emitted by the first line compared to the second one. Before performing 

the measure, dry frozen bacteria need to be re-hydrated by adding cultivation media and mixing under 

controlled temperature conditions for several days (2 days at 2ºC, 20 hours at 20ºC, 3-5 days at 4ºC for 

maintenance until used). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Diagram to represent the functioning of the automated TOXcontrol ® toxicity monitoring system 

 

The bacteria module, which always maintains the inside temperature at 5ºC, is filled with luminescent 

bacteria suspension. The luminescent bacteria cannot suffer constant alterations in temperature. After the 

luminescent bacteria are taken out of the cup, they are mixed with a sample and a sodium chloride 

solution (2g in 100ml of water) in the mixing module. The temperature is kept constant at 15ºC during 

incubation time (15 min or 30 min). EC50 values were calculated according to “dilution series procedure” 

of the TOXcontrolTM instrument for each target compound. In this procedure, different concentrations of 

the same compound were tested automatically to obtain the curve concentration-response that will show 

information for the EC50 calculation.  

 

According to this procedure, 50 µl of bacteria suspension are mixed with 5 ml of the sodium chloride 

solution for the preparation of the bacteria solution. This first part of the process takes 5 min. 

Measurements of luminescence are done for assuring activation of bacteria. Then a volume of standard 

working solution, instead of the real sample, is taken from a vial and diluted in another volume of the 

sodium chloride solution to constitute a final volume of 5 ml of diluted sample. When both solutions are 

mixed, a final volume of 10 ml of bacteria in contact with the analyte is incubated for 15 or 30 min. 
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Variables to be specified in this procedure are: the volume of sample to be taken, the number of dilutions 

per series (being 0 ml of sample the first point, the chosen volume of sample as the second point, and 

doubling the volume of sample for every successive point), and the number of series (repetitions) to be 

performed. 

 

Due to the low solubility of some of the target compounds, solutions for organic analytes were prepared 

in DMSO 0.2% v/v. Such a low concentration of DMSO has been shown during the preparation of the 

experiments to show no response for V. fischeri(Hernando et al., 2007). A series of five concentrations of 

each test solution were prepared and the measures were performed in triplicate. 

 

A quality control of the performance of the tests was executed. Positive and negative controls of the 

measurements were done before and after each series of measurement. The negative control was done 

using reference water. Measurement was accepted if the toxicity value was between -3 and 3%. A 

positive control was done using zinc sulphate (2500 mgL-1). If toxicity was over 60%, the series of 

measurement were accepted. If the negative or positive control was out of range, the series of 

measurements were excluded and the test repeated.  

 

The sigmoidal inhibition curves were calculated with the help of the Prism 4 software (GraphPad 

Software Inc.). 

 

6.3.3. The MicrotoxTM Toxicity assay 

 

The experimental procedure to determine toxicity using the MicrotoxTM Toxicity Analyser has already 

been described (Kaiser and JM Ribo, 1988) and it is based on the standardised method for the analysis of 

toxicity using V. fischeri (ISO 11348-3). The toxic effect of an aqueous sample is determined as the 

concentration of the sample causing a 50% reduction on the light emitted by the bacteria, after a pre-

determined exposure time (5 min, 15 min or 30 min). For regulatory purposes an exposure time of 15 

minutes was established. 

 

In this procedure the freeze-dried bacteria is reconstituted with water, to provide a stock suspension of 

test organisms that is kept at 5ºC and used to perform the test. The luminescence of the bacteria after 

exposure to the toxic sample is compared with that of a control at the test temperature (15ºC). A 

correction factor has to be applied due to the loss of luminescence of the control (reduction in light 

emitted without exposure to the toxicant). A 10% of the Microtox Osmotic Adjusting Solution must be 

added to all samples to provide osmotic protection to test organisms.  
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6.3.4. Daphnia Magna Toxicity Assay 

 

In this acute toxicity test, the biological end point is the immobilisation of the test organisms caused by a 

suspected toxic aqueous sample. The assay has been standardised (OECD, 2004; ISO 6341:1996), and it 

is used in the routine control of aquatic toxicity assessment of effluents and in environmental safety 

evaluation of chemical substances (Barata et al., 2006), and in mechanistic studies concerning aquatic 

toxicology (Damásio et al., 2007, 2008). 

 

In this assay a group of young crustaceans of the species Daphnia magna are exposed to the aqueous 

sample during a 48-hour period. The number of immobile individuals after 24 hours and 48 hours of 

exposure is recorded and compared with those in control samples. From these results the concentration 

causing immobilisation to the 50% of the daphnia population is calculated (EC50). The test organisms 

used are young Daphnia magna (cladocera, crustacea), at least of second generation, obtained from 

acyclic parthenogenesis in laboratory culture conditions and under 24 hours old. Daphnias are not fed 

during the assay. The assay is run at temperature 20 ºC (± 2 ºC), and under darkness. 

 

In the experimental procedure, a series of at least five concentrations of the test sample and one control 

were prepared in four replicates. The volume of each test vessel was 10 ml. Five individuals were added 

to each one of the test vessels, making a total of 20 individuals exposed to each test concentrations. When 

a solvent had to be used to dissolve the sample (i.e. 0.2% DMSO), a series of control vessels containing 

the dilution medium had to be added to the test. At the end of the exposure period (24h and/or 48h) the 

number of mobile daphnia in each vessel was counted. The daphnia unable to move after a slight 

agitation of the container were considered immobile, even if they were able to move their antennae. The 

relationship between test concentration and percentage of mobility was analysed by appropriate statistical 

methods (e.g. probit analysis) to calculate the concentration causing immobilisation to 50% of the 

populations (EC50). The measurements were made in triplicate. 

 

6.4. Results and Discussions 

 

Inhibition curves and EC50 values were obtained for a selection of compounds commonly found in 

European rivers and drinking waters through the use of TOXcontrolTM, an automatic on-line biosensor 

based on the measurement of the inhibition of luminescence by bacteria. The repeatability of the 

measurements was evaluated by doing experiments in triplicate (coefficient of variation is reported in 

EC50 values and deviation is graphically shown when representing inhibition curves). 

 



Ingeniería Ambiental 

 

 151 

In the first series of experiments, the luminescence inhibition curves were obtained with TOXcontrolTM at 

15 min and 30 min. Standard solutions and working solutions (automatically prepared by TOXcontrol TM) 

are presented in Table 6.1. A selection of resulting inhibition curves is represented in Figure6.2. No 

results are shown for 30 min exposure of diazinon, propanil and MCPA to the luminescent bacteria. In 

these cases, problems related to the low stability of standard solutions led to non-reliable results that were 

discarded for their inclusion in this study.  

 

Table 6.1. Concentration of standard solutions for each analyte and concentration range of working solutions 

(automatically prepared by TOXcontrol ®) 

 

Compound 

Standard 
solution 
(mgL-1) 

Concentration range (mgL-1) 

Minimum Maximum 
Nonylphenol 1 0,004 0,064 
Triclosan 5 0,02 0,20 
Terbuthylazine  10 0,32 4,50 
Dimethoate 200 0,8 12,8 
Diclofenac 1000 4 32 
SDBS 1000 8 128 
Diazinon 5000 20 320 
Propanil 60 7,7 21,2 
MCPA 60 3,8 27,0 
Cu (II) 318 1 39 
Ni (II) 1858 119 476 
Cr (III) 10000 40 320 
Fe (III) 624 20 80 
Pb (II) 1102 18 141 

 

The same organic compounds were tested in an interlaboratory exercise to compare results obtained using 

TOXcontrolTM and standardised methodologies based on MicrotoxTM and D. magna tests. Table 6.2 

shows the EC50 values and coefficient of variation (CV) for the several organic compounds tested with 

TOXcontrolTM and MicrotoxTM. A collection of results from literature is also provided for comparison. In 

Table 6.3 the results from Daphnia magna tests are included. EC50 values were in agreement with the 

ones that have been calculated using standardised methodologies (MicrotoxTM and D.magna tests). 

 

Not many results have been reported in the literature for the selected organic compounds and variability 

can be found between reported values, so it is not easy to establish a comparison. The values obtained for 

V. fischeri using TOXcontrolTM are in general in good agreement with those obtained with MicrotoxTM 

and those found in the literature (Table 6.2). Higher differences when comparing the two systems in the 

framework of this study can be observed, specially at nonylphenol EC50 values (0.03 mgL-1 for 

TOXcontrolTM compared to 54.30 mgL-1 for MicrotoxTM, although the literature supports TOXcontrolTM 

values), propanil (1594 mgL-1 for TOXcontrolTM compared to 21.71 mgL-1 for MicrotoxTM) and MCPA 

(3311 mgL-1 for TOXcontrolTM compared to 26.10 mgL-1 for MicrotoxTM, the literature found the value 

between these).  
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Additionally, selected compounds were tested using a different technique based on D. magna. Although 

based on different organisms, it was considered useful to obtain new EC50 values and a comparison was 

performed to see the correlation between techniques (Table 6.3). Values presenting higher differences 

between different technologies relate to diazinon presenting values for D. magna two orders of magnitude 

below V. fischeri and nonylphenol where differences could reach 4 orders of magnitude between results 

obtained using TOXcontrolTM and D. magna. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Inhibition curves for triclosan, sodium diclofenac, nonylphenol, SDBS, terbuthylazine, dimethoate, 

copper (II), nickel (II), iron (III) and chromium (III) at 15 and 30 min exposure time and diazinon, propanil, 

MCPA and iron (III) at 15 min exposure time. 
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In a new experiment, a second series of tests to determine the toxicity of aqueous solutions of metal 

compounds with the TOXcontrolTM system was performed. The percentage of inhibition was calculated 

from the results obtained using metal solutions. The EC50 values at 15 minutes and 30 minutes for copper 

(II), nickel (II), chromium (III) and iron (III) were calculated (Table 6.2). Standard solutions and working 

solutions (automatically prepared by TOXcontrolTM) are presented in Table 6.1. 

 

Inhibition curves for copper, nickel, chromium and iron are presented in Figure 6.2. The curve for lead 

(II) was not obtained due to the high variability of values. Even though the exact EC50 value cannot be 

represented, the approximate toxicological range can be estimated at 70-110 mgL-1 (15 min incubation 

time) and 80-130 mgL-1 (30 min incubation time). For the analysis of metal compounds, variations found 

between values reported in the literature are significant. The methodologies main differences are 

attributable to the salt used to prepare the solution and the pH adjustment, which is performed in some of 

the studies (Dutka and Kwan, 1981; Greene et al., 1985). 

 

Table 6.3 Value calculation of EC50 for organic compounds with D. magna (exposure time 24 and 48 h) 

 
 EC50 (mgL-1) Range EC50 (mgL-1) Range 

Compounds t=24h  t=48h  

Nonylphenol 134 104-172 98 78-123 

Triclosan 0.073 0.062-0.086 0.052 0.045-0.060 

Terbuthylazine 0.100 0.082-0.159 0.072 0.058-0.097 

Dimethoate 2.5 1.8-3.5 1.3 0.4-2.6 

Diclofenac 118 - 99 81-123 

SDBS (LAS) 23 19-27 15 - 

Diazinon 2.5 1.8-3.5 1.3 0.4-2.6 

Propanil 14 9-22 3.5 2.2-5.5 

MCPA 136 115-163 77 63-95 
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6.5. Conclusions 

 

The results obtained are in the same order of magnitude as those reported in the literature in most cases. It 

should be highlighted that results from toxicity experiments are dependent on the conditions in which the 

test is performed. Potential sources of variability could have their origin in the bacteria (preservation, 

reconstitution procedure, etc.); in the sample (preparation of standard solutions, pH, etc.) and in the 

experimental procedure (sample handling, deviations in volume delivery, instrumental error, calculation 

method, etc.). Due to this fact, values obtained from the toxicity test of the same compound can differ 

depending on the study. 

 

The results presented show that the methodology and the TOXcontrolTM system being validated is 

accurate and reproducible enough to enable this system to be used as an on-line automatic alert system to 

detect abnormal concentrations of toxic compounds in surface waters, discharge effluents or drinking 

waters. The main disadvantage of the use of the instrument as a routine monitor of the water quality 

concerns the sensitivity of the luminescent bacteria to react when exposed to low levels of toxicants. 

EC50 values determined for a variety of potential contaminants are above the reported levels of target 

analytes being currently measured in natural water bodies and drinking water. To solve this problem, the 

use of already developed on-line pre-concentration modules coupled to the biomonitor system to increase 

sensitivity could be studied.  

 

Additionally, there is another difficulty when applying this to drinking waters. If some disinfectant has 

been added and it remains in the sample (e.g. free chlorine), toxicity values will respond to the 

disinfectant, thereby hiding the real effect of the toxic compounds. 
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7. Integration of Ultraviolet-Visiblespectral and physicochemical 
data in chemometrics analysis for improved discrimination of water 
sources and blends. Application to the complex drinking water 
distribution network of Barcelona 
 

7.1. Abstract 

The Barcelona Metropolitan Area (BMA) drinking water distribution system is supplied with water from 

different sources and treated by different technologies. Different blending options occur along the 

network to homogenise water quality, both chemically and organoleptically. An appropriate technology 

able to recognise the water source and blends in real time along the network is crucial for the global 

system management. This paper presents a principal component analysis (PCA) methodology able to 

discriminate samples with respect to their original source and blends by using UV-Vis data from a 

spectrophotometric probe and a small number of physicochemical paremetres. 

 

The study began with PCA of 37 physicochemical paremetres obtained through standard laboratory 

procedures in order to distinguish among sources and blends. Taking a step further, the study investigated 

the possibility of discriminating the same sources and blends using only UV-Vis fingerprints obtained by 

a spectrophotometric probe. The discrimination capacity of PCA on UV-Vis data was slightly improved 

by adding three additional physicochemical paremetres: conductivity, fluoride and boron concentrations. 

In general, the new model was able to distinguish the two main water origins of the BMA – the Llobregat 

and Ter Rivers. The contribution of desalinated sea water and groundwater was also distinguished in the 

blends containing river water. Moreover, the influence of the water sources and blending on the 

occurrence and speciation of different trihalomethanes (THMs) alongside the BMA was evaluated. 
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7.2. Introduction 

 

In recent decades, a significant number of large urban areas, e.g. the Barcelona Metropolitan Area 

(BMA), which has drinking water supply networks based on surface water resources, experienced a 

reduction of its water quality and quantity at source due to anthropogenic and environmental 

pressures(González et al., 2012). Consequently, new infrastructures need to be implemented to improve 

the quality of drinking water and to ensure the availability of resources in the long term. The current 

solutions that have been implemented are based on the integration of two approaches. The first is based 

on the use of membrane-based technology in drinking water treatment plants (DWTPs) (e.g. reverse 

osmosis, nanofiltration and reverse electrodialysis) to reduce the salinity levels and to remove both 

organic and inorganic micropollutants; or, when surface and groundwater resources are scarce, the use of 

seawater desalination technologies. The second relies on the construction of new distribution network 

interconnections to enforce the blending of the different water sources in order to standardise aesthetic 

properties and assure the availability of drinking water in all the area covered by the distribution network 

(Valero and Arbós, 2010).  

 

In the case of large drinking water supply networks delivering water from different sources (e.g. BMA 

manages up to five different origins), the main changes in the quality of the supplied water in one specific 

site are caused by water blending operations. Few studies have been published based on the particularities 

of the blending operations and their impact on water quality. Most of them have dealt with the 

introduction of desalinated water into a network of water with conventional origins. Examples can be 

found in Barcelona (Spain) (García et al., 2015; Raich-Montiu et al., 2014), South Australia (Van 

Leeuwen et al., 2009), San Diego (USA) (Erdal et al., 2013) and Cyprus (Philippou, 2015). Changes in 

the mixing in the combination of waters coming from different sources produce chemical instability and 

processes such as precipitation or deposition of carbonates (Lahav et al., 2009) and consequently 

corrosion of pipes may take place. Several pilot studies have been conducted in order to investigate the 

impacts of blending waters from different sources on the quality of distributed water with an emphasis on 

metal release (Taylor et al., 2006). For example, the effects of chlorides and sulphates on lead release 

from pipes have been proved to be promoted (Tang et al., 2006). Knowledge about water source 

apportionments at a specific location of the water distribution system is a topic of interest for a better 

understanding of the network, the detection of possible origins in leak accidents and to establish legal 

property rights.  

 

Previous studies have tried to predict water origins by testing hydraulic models based on tracers, like 

conductivity. This approach has been used in Riga, Latvia. Six different water sources, having different 

electric conductivity values, are used to supply drinking water to the city. The measurement of the tracer 

was hard to predict when a proper mixing of water took place (Rubulis et al., 2011). 
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Other studies that have been conducted with traces were addressed to measure water quality based on the 

decay of paremetres like chlorine, like the one performed in Shanghai Pudong, China (Shu et al., 2010). 

Although chlorine is used as an indicator of water age, it cannot be used as a tracer of the origin of water 

as it is added after the intake during treatment processes and transport.  

 

The quality of the produced water is mainly dependent on its natural composition at source, which 

changes seasonably, and on the operating treatment technologies (Sharp et al., 2006). The main 

contributors are the content of total dissolved salts, especially in terms of aesthetic properties, and the 

contribution of the total dissolved organic matter (Spellman, 2007). The characteristics of the natural 

organic matter (NOM), as a complex mixture of different compounds affected by factors such as 

vegetation and soil composition, determines the formation of disinfection by-products along the water 

treatment steps. The complex nature of organic matter makes it difficult to identify both the nature and 

the concentration of the different compounds (Croué, 2004). Ultraviolet-Visible (UV-Vis) measures have 

been proposed as a fast technology able to determine the fingerprint of NOM in drinking water and 

monitor the changes along water treatment systems (Thomas and Burgess, 2007). 

 

The use of the UV-Vis fingerprinting of NOM in natural waters has been proposed as a new additional 

source of information bringing a clear advantage for a better assessment of general changes in water 

quality instead of searching for the occurrence of specific contaminants. In this context, the use of UV-

Vis fingerprint, by using spectrophotometric probes, has been proposed as a useful strategy to cover a 

much broader range of potential threats, such as the intrusion of chemical or microbiological constituents 

in the network (Noij and Bobeldijk, 2003). These in-line/on-line paremetres must show a quick response 

to potential quality changes, which implies the need for real-time measurements. Spectral data and their 

evolution over time provide very rich information and an overall picture about water quality changes and, 

therefore, the possibility to detect changes not recorded by conventional single contaminant analysis 

(Langergraber et al., 2004). However, evaluating large amounts of data with different time dimensions 

and identifying the abnormal changes in water quality requires sophisticated analysing tools (Mustonen et 

al., 2008). 

 

In the case of the BMA, a previous study by Platikanov et al. (2011) proposed a methodology based on 

the use of UV measurements (190–230 nm) and multivariate data analysis using the Partial Least Squares 

(PLS) method was developed. The methodology was able to determine the relative amounts of the two 

main river water sources, the Llobregat and Ter Rivers, in tap samples in the Barcelona area when 

analysed using an UV-Vis spectrophotometer in the laboratory. Additionally, artificial samples prepared 

by mixing waters from five DWTPs, including the use of membrane filtration systems, needed the 

combined use of some other paremetres, like boron, to help to discern the original water sources. 
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Due to the European Unionregulations, an exhaustive characterisation of water quality is performed by 

collecting samples from different points in this large network and analysing them at routine control 

laboratories. Nowadays, more than 80 paremetres are monitored routinely in the BMA water supply 

network to ensure the safety of the population according to the ISO 22000 certification. The values 

obtained in these analyses contain valuable information, which can be used for operational purposes if 

properly handled. The main constraints of this monitoring system are related to the high cost of 

performing these analyses, and the inability of a fast response when an alteration of the water quality 

occurs. Therefore, improved monitoring systems based on real-time measures are still needed. The ideal 

situation would be to design a network of sensors based on optimum placement models able to show 

water quality variability with the minimum of recorded paremetres (Bazargan-Lari, 2014). 

 

This study goes beyond the one performed by Platikanov et al. (2011) as it introduces the use of a UV-Vis 

absorbance spectrophotometric probe able to be operated in-line. Identification of the spectra of water 

samples from different locations in the drinking water supply network and from different seasons of the 

year has allowed a more comprehensive picture of water characteristics and the determination of water 

blends from different origins. In a recent study, Raich-Montiu et al. (2014) demonstrated the 

improvement of the aesthetic properties of the distributed drinking water in the Barcelona Metropolitan 

Area when particular blending options are favoured. Therefore, monitoring tools to determine the 

blending ratios will contribute to improve the daily operations of water distribution systems. 

 

7.3. Materials and methods 

 

A description of the case study and sampling procedure of the water samples; the technique used to 

measure water quality; and the statistics methodology applied for obtaining the information; are included 

in this section. Barcelona Metropolitan Area (BMA) has been selected, as it is a complex system in terms 

of water blends and qualities, the availability of restricted data, and the fact that the water production and 

distribution is following the quality standards of the ISO22000. 

 

7.3.1. Barcelona Metropolitan Area (BMA): site description 

 

BMA covers 635 km2 and a population of 4.5 million inhabitants. Around 85% of the total drinking water 

supplied has its origin in surface waters (Ter and Llobregat Rivers) while the remaining 15% comes from 

groundwater resources.  
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In order to adapt the drinking water system to the new European legislation requirements, the DWTPs in 

Barcelona have conducted new infrastructures in recent years. Additionally, the severe drought that 

occurred in 2008 encouraged the use of new alternative resources. A quite complex combination of water 

sources and treatments are currently used in the Barcelona distribution system: a) Abrera DWTP, with a 

new treatment line incorporating reverse electrodialysis, and Sant Joan Despí DWTP, including an 

additional step of ultrafiltration and low pressure reverse osmosis, both located in the lower-middle 

course of the Llobregat River, supply approximately 40% of the drinking water to the Barcelona 

Metropolitan Area; b) Cardedeu DWTP treating Ter River water with a classical process including 

coagulation, flocculation and activated carbon filtration; c) El Prat Seawater Reverse Osmosis 

Desalination Plant (SWRO); and d) various groundwater wells at the Llobregat and the Besòs Rivers 

basins(García et al., 2015). A diagram representing all these water sources is shown in Figure 7.1.  

 

The integration of both membranes processes in Abrera DWTP and Sant Joan Despí DWTP have helped 

to reduce the salinity in the distributed water (the Llobregat River contains approximately 0.9 gL-1 of total 

dissolved solids) and the reduction of precursors of disinfection by-products (e.g. ammonium, bromide, 

iodide and NOM). Both plants have achieved a reduction in the formation of trihalomethanes (THMs) in 

drinking water to levels below 100 µgL-1 as required by the Drinking Water Directive (98/83/EC)(Valero 

and Arbós, 2010). Ter River water is treated without any membrane technology since the level of salinity 

is slightly lower (with a total dissolved solids level of approximately 0.35 gL-1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Diagram of different water supplies in Barcelona area: sources and treatment plants distribution. 

WTP1: Cardedeu DWTP; WTP2: Sant Joan Despí DWTP; WTP3: Abrera DWTP classical treatment; 

WTP4-EDR: Abrera DWTP plus reversible electrodialysis; SWRO: El Prat Seawater Reverse Osmosis plant 
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7.3.2.  Sampling 

 

Aigües de Barcelona, which is the water utility operating the drinking water distribution system in 

Barcelona, contributed to the study by providing a total of 191 drinking water samples over one year 

(April 2012-March 2013). The samples were collected from various locations in the dense BMA drinking 

water supply system during several seasons in order to cover the maximum variability. Samples with a 

contribution from one single source were also included in order to have a characterisation of these water 

origins. 

 

The samples from every location were examined in situ for three paremetres (free chlorine, total chlorine 

and temperature). In addition, data about 82 physicochemical paremetres were assessed at the Aigües de 

Barcelona laboratory. After the analysis and the compilation of data, the paremetres which were 

permanently below the limit of detection (LOD) for most of the observed samples or did not show 

variability were discarded from the chemometric analysis. As a result of this data filtering, 37 

physicochemical paremetres were selected. Table 7.1 presents the investigated physicochemical 

paremetres and their descriptive statistics. 

 

7.3.3. UV-Vis absorbance spectrophotometric probe 

 

All samples were recirculated in a closed loop through a UV-Vis absorbance spectrophotometric probe 

(spectro::lyserTM, s::can, Austria) with the help of a pump. The probe can be installed and operated 

remotely but, for the purposes of this study, it was placed in the laboratory in order to be able to analyse 

samples from multiple locations. Each sample was measured 10 times in order to obtain an average of the 

water fingerprint. Data were exported into an Excel file for their statistical treatment. 

 

7.3.4. Chemometric tools for data treatment.  

 

Experimental data containing 37 physicochemical paremetres and UV-Vis spectra (absorbance values at 

101 different wavelengths) for the 191 samples were arranged in two single data matrices, X1 [191, 37] 

and X2 [191,101]. A third, row-wise augmented data matrix X3 [X2 plus conductivity, fluoride and boron 

paremetres] was built to investigate the advantages of using these data. 

 

Preliminary exploratory data analysis was performed using univariate descriptive statistics. Each 

physicochemical paremetre and the UV-Vis fingerprint were plotted individually for the different 
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measurements performed during the whole investigation period. Histograms and box plots were analysed 

for trends and outliers. Pair-wise correlations among all variables were also evaluated.  

 

Table 7.1. Averages, maximum and minimum values; and the total number of samples with reported values 

above the detection limit for the selected 37 physicochemical paremetres analysed in the water samples 

 

Paremetres Units Values > LOD Average* Maximum Minimum 
Free chlorine* mgL-1 190 0.72 1.13 0.15 
Total chlorine* mgL-1 191 0.88 1.31 0.2 
Temperature* ºC 191 17.4 29.8 8 
Fluoride mgL-1 123 0.13 0.28 0.1 
Nitrates mgL-1 190 7.6 47 0.8 
Bromoform μgL-1 145 23 70 1 
Chlorodibromomethane μgL-1 188 7 64 1 
Chloroform μgL-1 100 20.7 49 1.1 
Dichloromethane μgL-1 155 6.15 19 0.5 
Trihalomethanes μgL-1  188 41.3 99 5.9 
Aluminium μgL-1 166 57 185 25 
Barium μgL-1 177 32.5 152 0.9 
Boron μgL-1 168 151 828 26 
Calcium mgL-1 191 73 142 9 
Strontium mgL-1 174 0.8 1.85 0.1 
Iron μgL-1 147 17 151 5 
Phosphorus μgL-1 30 25 37 20 
Lithium μgL-1 75 15 22 10 
Magnesium mgL-1 187 17 47 2 
Nickel μgL-1 64 7 18 5 
Potassium mgL-1 129 16 34 5 
Silicon mgL-1  170 1.7 8.2 0.5 
Sodium mgL-1 187 70 179 15 
TOC mgL-1 143 1.9 11.9 1 
Free chlorine mgL-1 183 0.86 51 0.15 
Chloride mgL-1 189 118 299 24.9 
Conductivity (20ºC) μScm-1 190 765 1899 58 
Ind. Langelier Langelier units 191 -0.043 0.782 -2.965 
pH pH units 191 7.4 8,0 4.7 
Sulphates mgL-1 189 85 205 8 
Turbidity NFU 86 0.4 1.6 0.2 
Alkalinity mgL-1 CaCO3  191 157 288 24.5 
Bicarbonates mgL-1 HCO3 179 192 351 85.8 
Bromide mgL-1 45 0.17 0.36 0.1 
Chlorates μgL-1 190 492 2440 42 
Chlorites μgL-1 61 99 262 20 
Hardness mgL-1 CaCO3 191 252 516 18 
        

 

 

In order to investigate how much information explained by physicochemical data overlaps with the 

information in the UV-Vis measurements, the modified RV coefficient was calculated (Smilde et al., 

2008). The modified RV coefficient is a rotation invariant measure of the similarity between two cross-

product matrices with values in the range of [-1,1]. The closer the RV coefficient is to 1, the more similar 

the two cross-product matrices are. The interpretation of modified RV is similar to the interpretation of 

the Pearson's correlation coefficient (Stanimirova et al., 2011). 
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The Principal Component Analysis (PCA) technique was applied to data matrices X1, X2, X3. This 

method extracts information about the latent structures of the data set. It transforms a large number of 

correlated original data (in our case, water quality paremetres and UV-Vis spectral data) into a reduced 

number of uncorrelated, orthogonal variables explaining maximum variance, called principal components 

(PCs) (Jolliffe, 2002). The samples from different locations of the investigated area were projected onto 

these principal components, giving sample scores. Plots of these sample scores and of the corresponding 

loading plots of physicochemical paremetres and spectra allow the investigation of the main sources of 

data variance. The main advantage of using PCA is the reduction of the dimensionality of the problem 

(number of paremetres or spectral wavelengths) retaining most of the original variability in the 

experimental data but filtering out noise and other minor irrelevant sources of data variance. Therefore, 

PCA allows for a more simple interpretation of variance sources of the investigated data set. 

 

7.4. Results and discussions 

 

The main goal of this study was to build up a multivariate model able to describe and distinguish different 

water sources and blends in the drinking water of the BMA obtained as a function of their 

physicochemical paremetres (obtained at the laboratory) and of the measured UV-Vis spectra. The PCA 

model based on UV-Vis spectral data will be compared with the PCA model built on the laboratory 

physicochemical data.  

 

Firstly, physicochemical paremetres data matrix, X1, and UV-Vis fingerprints matrix, X2, were analysed 

separately. A comparative study was performed to test the similarity between both data sets and to 

identify the amount of information that UV-Vis real-time monitoring could provide compared to 

laboratory routine analysis. Additionally, in order to improve results, the analysis of the combination of 

UV-Vis data with a selection of physicochemical paremetres, in matrix X3, was carried out. 

 

7.4.1. Descriptive statistics and preliminary inspection of the physicochemical and 
spectral data matrices 

 

A total number of 37 paremetres measured in the laboratory were used for statistical analysis. Table 7.1 

shows variations of the water quality paremetres. Averages, maximum values, minimum values, the total 

number of samples and the number of samples with reported values above LOD are included.  

 

Analysing the information contained in Table 7.1, it can be predicted that paremetres having a higher 

variability in their values would contribute to a greater degree to the classification of the water samples. 
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This is the case with paremetres like conductivity (58 to 1899 μScm-1), or the concentration of boron (26 

to 828 μgL-1), sodium (15 to 179 mgL-1) and calcium (9 to 142 mgL-1). It can be seen that some other 

paremetres fluctuate within a narrower range. The concentration of these paremetres is altered as the 

water is treated in the DWTPs and their values tend to homogenise. This is the case with chlorine 

concentration (0.2 to 1.31 mgL-1 of total free chlorine measured in situ) or total organic carbon (TOC) 

levels (1 to 12 mgL-1). Due to the treatments performed in the DWTPs, different water origins will 

influence the nature of organic matter in drinking water more qualitatively than quantitatively.  

 

Pairwise correlation coefficients between the 37 physicochemical paremetres were either positive or 

negative (see Figure 7.2). In the central part of the correlation map, strong positive correlations (intense 

red colours) can be seen between lump paremetres such as conductivity, hardness and alkalinity with 

cations like sulphates, calcium, magnesium, sodium or chlorine as expected. These paremetres are 

characteristic of natural water mineralisation. Negative correlations (intense blue colours) were found 

between paremetres in this first group and other paremetres resulting from the DWTP operation such as 

chlorine dioxide, TOC or disinfection by-products, which formed another cluster. Other paremetres such 

as turbidity, temperature and free residual chlorine did not show any positive or negative correlation. The 

temperature shows seasonal variations and therefore it affects all samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Correlation map among the 37 physicochemical paremetres measured in 191 water samples 
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Some other paremetres of interest, such as THMs, can be linked to their precursors. The content of 

chloroform and dichlorobromomethane show a positive correlation with the content of TOC and of 

chlorine dioxide, and a negative correlation with waters with high salts content. In contrast, 

dibromochloromethane and bromoform show the opposite trend. This is interpreted as the formation of 

different types of THMs depending on the water origin of the sample. Water, coming from the Llobregat 

River and to a lesser degree from the SWRO plant, leads to a trend of brominated THMs formation, while 

water coming from the Ter River tends to form chlorinated THMs.  

 

The modified RV coefficient (Smilde et al., 2008) for the two pre-treated data sets in this work, X1 and 

X2, was found to be 0.85, indicating that they have a large amount of overlapping information. This 

relatively high correlation coefficient proves that the information contained in the spectra is comparable 

to the information provided by more expensive laboratory analyses of physicochemical paremetres.  

 

Figure 7.3 shows the fingerprint of three pure water samples from different sources. These fingerprints 

depend on the composition of organic matter in the analysed water. Changes can be seen in the absolute 

values recorded at the same wavelength for different samples and in the ratios between absorbance values 

at different wavelengths for the same sample. In this case, the water fingerprint for the Cardedeu DWTP 

sample presents higher absorbance values than the other samples. The lowest values relate to the Besòs 

DWTP sample, where groundwater is treated by reverse osmosis giving a low content of organic matter. 

Additionally, the fingerprint of the Cardedeu DWTP sample shows an absorbance peak at 202 nm and a 

shoulder at 215 nm. These trends confirm the different nature of organic matter presented in the water 

samples analysed in this work. 

 

 

 

 

 

 

 

 

Figure 7.3. UV-Vis spectra of three water samples (April 2012) from different origins (DWTP Abrera, DWTP 

Cardedeu and DWTP Besòs) 
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7.4.2. PCA analysis of the physicochemical data 

 

Before PCA, data from physicochemical paremetres were autoscaled (column centering and scaling to a 

unit standard deviation) (Massart et al., 1998). 

 

PCA of X1 matrix gave 9 components (PC1:37.3%, PC2:12.4%, PC3:8.5%, …, PC9:3.0%) with 

eigenvalues higher than 1, which explained 82% of the total variance of the data. This rather large number 

of principal components indicates multiple sources of data variance, probably due to the variety of water 

sources, the different technologies implemented at the DWTPs and the large variety of paremetres (either 

from natural or from anthropogenic origin). 

 

Figure 7.4(a) shows the scores plot for the projection of samples onto the first two components, PC1 and 

PC2. These two PCs explain 50% of the data variance. Their scores plot shows that samples with different 

water blendings have been distinguished very well. For example, samples from the same river as main 

source are placed in the same region of the scores plot, and samples are grouped in clusters depending on 

the other water source contributing to the blending. As a general rule, the samples with large positive 

scores on PC1 contain a large contribution from the Llobregat River while those with strong negative 

scores on PC1 relate to the Ter River samples.  

 

According to PC2, water samples blended with groundwater are characterised with positive scores on this 

PC. The groundwater contribution pushes water samples to different zones of the plot depending on the 

source wells, since groundwater from different origins presents different characteristics. Water samples 

having high contributions from SWRO are located in the same cluster, irrespective of their river source, 

with negative scores in PC2.  

 

Figure 7.4(b) shows the PC1-PC2 loadings plot. Paremetres reflecting natural origin and high water 

mineralisation tend to have positive loadings in both PC1 and PC2. In relation to THMs, bromoform is 

present with a positive loading on PC1. In contrast, chloroform has a negative loading in PC1. PC2 is 

dominated by boron, which has the highest negative loading on this PC. 

 

Combining the information obtained from PC1-PC2 score and loading plots, it is possible to conclude that 

PC1 distinguishes between the two main river water origins (Ter and Llobregat Rivers). On the other 

hand PC1 also describes quality paremetres showing water mineralisation. Samples containing water from 

the Llobregat River origin were characterised by higher concentrations of these mineral paremetres than 

samples from the Ter River origin. Samples from the Ter River water origin were found to include higher 

concentrations of chlorine and chloroform in contrast to samples from the Llobregat River origin, which 
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contain the highest bromoform concentrations. This analysis proves that, within a large metropolitan area 

such as the BMA, THM formation processes can follow different mechanisms due to different water 

sources with different chemical compositions.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.4. (a) PCA scores plot of water samples for 37 paremetres measured in the laboratory and (b) the 

corresponding loading plot (c) PCA scores plot of UV-Vis spectral data and (d) the corresponding loadings 

plot. Legend: T, water samples with Ter River origin; T-UW, blended water from Ter River origin with 

groundwater; T-SWRO, blended water from Ter River origin with desalinated sea water; SJD, water 

samples from Sant Joan Despí DWTP with Llobregat River origin; SJD-UW, blended water from Sant Joan 

Despí DWTP (Llobregat River origin) with groundwater; A, water samples from Abrera DWTP with 

Llobregat River origin; A-SWRO, blended water from Abrera DWTP (Llobregat River origin) with 

desalinated sea water; RO-NF, water samples from the Besòs River, treated with reverse osmosis and 

nanofiltration technologies; B, water samples from the water distribution system in the area of Barcelona 

 

 

Throughout PC2, samples can be characterised according to their blending with water obtained from 

filtration processes or by addition of groundwater. Boron concentrations were found at relatively high 

concentrations in all samples blended with desalinated sea water due to its incomplete rejection during the 
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reverse osmosis filtration in the SWRO plant. On the other hand, river water blended with groundwater 

showed higher concentrations of minerals such as fluorine or silicon. 

 

This analysis of physicochemical paremetres of water samples (data matrix X1) has proved that water 

samples can be distinguished and clustered in the PC1-PC2 plots, summarising the information provided 

by the 37 physicochemical paremetres and making the interpretation of their changes (variance) easier for 

a better management of the drinking water system. 

 

7.4.3. PCA analysis of UV-VIS spectral data 

 

Data obtained by UV/VIS spectrophotometry also required some initial pre-treatment. Firstly, data were 

column min-max scaled (García-Reiriz et al., 2014) so the minimum and the maximum of the transformed 

spectral absorbance values were comprised between 0 and 1. Secondly, data were mean-centered in all 

cases to avoid offset effects; and finally, spectral data were normalised to the unit area to enhance 

possible spectral differences among them. PCA analysis on the pretreated data X2 matrix gave a model 

with four components (PC1: 57%, PC2: 28%, PC3: 8.6%, PC4: 5.5%), which explained 99% of the total 

variance. 

 

Figure 7.4(c) shows the PCA scores plot of the two first components, PC1 and PC2, explaining 85% of 

the total data variance. PC1 is determined mainly by negative scores for samples, either from the 

Llobregat River or from the Ter River origin, blended with water treated with membranes such as SWRO 

and Besòs DWTP origins. The strongest positive scores on PC1 were found for samples with the Ter 

River origin blended with groundwater. In contrast, samples with the same Llobregat River origin but 

blended with groundwater did not show a significant pattern distribution along this PC1.  

 

PC1-PC2 loadings plot shown in Figure 7.4(d) indicates that in PC1, all spectral bands dominate with 

positive loadings. Water treated with membranes (SWRO and Besòs DWTP origins) reduced the effect of 

the river source water, resulting in a decrease of the water spectral intensity. However, the blending with 

groundwater showed a stronger effect for samples containing the Ter River origin than for samples 

containing the Llobregat River water origin. In this case, it is PC2, which shows the distribution of 

samples according to the two main river water sources (Ter River and Llobregat River). Positive loadings 

on PC2 relate to the Ter River water samples and negative loadings on PC2 to the Llobregat River origin. 

 

Although this study proves that UV-Vis spectra can differentiate waters from different origins, the overall 

distribution by sources and blends is not as clear as the previous model obtained using the water 

physicochemical paremetres. However, the possible advantage of using this second strategy is based on 

the use of a single probe to obtain real-time information about water quality. To make the application 
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more useful, a combination of UV-Vis spectra and a limited number of physicochemical paremetres is 

proposed. 

 

7.4.4. PCA of augmented UV-Vis data set with fluoride, conductivity and boron 
physicochemical paremetres 

 

PCA analysis was applied to the augmented data set X3, which includes UV-VIS data and fluoride, boron 

and conductivity physicochemical paremetres. The pre-treatment of the augmented data block consisted 

of column min-max scaling, mean centering and normalisation to the unit area. PCA identified four 

components with significant values (PC: 36.6%, PC2: 32.0%, PC3: 15.0%, PC4: 7.3%) which explained 

90.9% of the total variance of the data. 

 

Figure 7.5(a) shows the PCA scores plot for the two first components, PC1 and PC2, explaining 68.6% of 

the total data variance.  

 

In the first component, PC1, the samples from Llobregat River were distinguished from the samples with 

the Ter River origin. The Ter River origin samples were distributed predominantly on the lower right-

hand side of the plot with strong positive scores on PC1. In contrast, samples from the Llobregat River 

were distributed predominantly on the upper left-hand side of the plot with strong negative scores in PC1. 

PC2 was determined by the blending effect, either mixed with filtered water or with groundwater. River 

samples from both rivers, blended with groundwater, showed positive scores in PC2. In contrast, samples 

from both rivers and blended with filtered water were very well clustered on the lower left-hand corner of 

the plot, with negative scores in this PC.  

 

 

 

 

 

 

 

 

 

 

Figure 7.5. (a) PCA scores plot of UV-Vis spectral data plus three paremetres (conductivity, fluoride, boron) 

and (b) the corresponding loadings plot. For text explanation, please refer to Figure 7.4 caption 
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In the loadings plot, Figure 7.5(b), the region related to the Ter River origin shows a higher contribution 

from absorbance values at medium wavelength range (250-280nm). In contrast, the area that was 

correlated with Llobregat River showed strong absorbance values in the lower wavelength range (210-

230nm) plus the paremetre conductivity. Positive loadings on PC2 at the area where groundwater has 

been identified refer to the concentration of fluoride. In the region of the plot associated with filtered 

water, negative loadings on PC2 were found for the concentration of boron. 

 

PC1-PC2 scores and loadings plots suggest the importance that a third PC3 could contribute for a better 

discrimination among water sources, especially between the Ter and Llobregat River samples. Figure 7.6 

shows the distribution of samples according to their water type along the PC1, PC2 and PC3 axes. Two 

different directions in the sample scores distribution on this plot are obtained. The red arrow line (hand 

written) indicates the distribution of Llobregat samples, starting with samples blended with seawater 

origin, pure Llobregat River water sample and river water blended with groundwater. On the other side, 

the blue arrow indicates the sample distribution of water samples from Ter River water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6. PCA scores plot of UV-Vis spectra plus three paremetres (conductivity, fluoride, boron) measured 

in water samples projected onto the three first principal components PC1, PC2 and PC3. For text 

explanation, please refer to Figure 7.4 caption 

 

 

The examination of the results obtained from PCA analysis of the augmented data matrix confirmed and 

summarised previous findings from the individual PCA of physicochemical and UV absorbance data. The 

final goal of our investigation, which was to use the spectral data to characterise the water origin, 

including, if necessary, a limited number of physicochemical data, has been achieved. Based on a 

previous study (Platikanov et al., 2011), fluoride has been confirmed to contribute significantly to the 

identification of the presence of groundwater in water blends. Also, the contribution of seawater was able 
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to be monitored when boron was included as an additional paremetre. In order to reinforce the 

differentiation between pure Llobregat River and pure Ter River water, conductivity has been proposed as 

an especially useful paremetre. 

 

7.5. Conclusions 

 

This study has proved the feasibility of predicting the contribution of water sources to the Barcelona 

drinking water network by applying chemometrics not only to the large amount of data obtained from 

laboratory analyses but also to the data obtained when on-line measurements (e.g. UV-Vis spectral 

fingerprint and conductivity) and other off-line measurements (e.g. fluoride and boron) are used 

simultaneously. 

 

In this study at the BMA, the two main surface water contributors, the Ter River and the Llobregat River, 

were distinguished by presenting different mineral and organic matter composition. PCA analysis 

indicated the influence of two different spectral regions, which were characteristic of the two river 

sources. These two spectral regions are related to their chemical composition, in particular to their 

different organic matter fractions, thereby making their differentiation feasible. 

 

Additional important information for the water distribution management system can be also obtained 

from the correlation between water paremetres, such as the possible influence of water blending in the 

formation of different species of THMs. 

 

The prediction power of UV-Vis spectral data was slightly improved, when physicochemical paremetres 

that can be measured on-line, such as conductivity (for its discriminating power between different water 

sources), boron concentration (for its capacity to characterise seawater origin), and fluoride concentration 

(as a marker of groundwater origin). The classification of water samples according to their source 

contribution was achieved. 

 

The results of this work confirm that a tool based on on-line/in-line real time measurement of the selected 

paremetres and the subsequent chemometric analysis can be of great help for the operation of complex 

drinking distribution systems using water blending.  

 

In terms of sustainability, the work can contribute to reduce the number of chemical analyses performed 

routinely. The technology proposed for measuring water quality is a reagent free instrument to be 

installed on-line, without the need of water sampling and transport. In combination with the proper 

statistic methodology, one single instrument has been proved to offer almost as much information as a list 
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of individual paremetres. As result, advanced information to the operators can be provided reducing the 

cost and the ecological footprint of the chemical analysis. Other applications based on the same detection 

technology can be addressed for future research, like the ability to detect contamination events if proper 

data treatment is applied. 
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8. Ecological screening indicators of stress and risk for the 
Llobregat River water 
 

8.1. Abstract 

The objective of this study is to develop and apply several simple and general indicators for river aquatic 

ecosystems assessment in order to screen potential chemical stressors. We developed several indicators, 

based on toxicity (PNEC) and on legislation levels (EQS). All these indicators are ratios that were 

calculated by using public and private data on the concentrations of a long list of compounds over a 

period of five years, including metals and organic compounds in the lower part of the Llobregat River 

basin at the intake of the Drinking Water Treatment Plant. Additionally, new campaigns were executed to 

increase the information available about the presence of compounds not routinely analysed, such as some 

other pesticides and pharmaceuticals. In the case of inorganic pollutants, the indicators obtained in this 

river section showed significant risk especially for zinc, but also for copper, nickel and barium. For 

organic pollutants, the pesticides terbuthylazine, diazinon, 2-methyl-4-chlorophenoxyacetic (MCPA), and 

in a few cases, chlorpyrifos and lindane, also showed indexes above the threshold. Among the 

pharmaceuticals, the antibiotics clarithromycin and ciprofloxacin were the only ones with risk indicators 

adverse to ecosystems. The specific values of the indexes obtained rely on the quantity and quality of the 

data available, so their interpretation should take into account that some values can be high due to the use 

of too conservative toxicological information. 
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8.2. Introduction 

 

Degradation of water bodies has been a key issue in Europe in recent years. The Water Framework 

Directive (WFD, Directive 2000/60/EC) [1] imposes the achievement of good ecological status of water 

bodies. Environmental objectives should preserve the quality of water bodies beyond its potential uses for 

industry, agriculture, urban and recreational uses, by integrating preservation of the health of ecosystems, 

their functioning and structure. This objective should assure the long-term preservation of ecosystems and 

local biological communities, as well as the elimination of dangerous substances that could pose a risk to 

human health. 

 

National administrations, such as river basin authorities, should use indexes that could be easily used to 

give an indication of the good chemical, hydromorphological and biological status of each specific water 

body according to their local characteristics. 

 

The threshold for this good status should be established to prevent a significant alteration of water bodies. 

This means biological communities should be healthy and physico-chemical and hydromorphological 

paremetres must show that no major changes have occurred compared to the base value in their natural 

state [2]. 

 

Indexes for physico-chemical and biological status are relatively easy to implement. Measurements are 

based on data that can be obtained by analysis, either in the field, in the laboratory or in real time at 

monitoring stations, or by the identification and counting of species. Concerning specific pollutants, 

Directive 2008/105/EC [3] establishes Environmental Quality Standards (EQS) for a list of 33 priority 

substances. These standards have been obtained from toxicological studies that show a clear correlation 

between chemical and biological responses. The monitoring of these substances implies a high cost in 

laboratory analyses and the information is not always easy to interpret and aggregate. Additionally, the 

proposal for amendment of the above mentioned Directive establishes EQS for the biota for some of the 

legislated compounds. [4] 

 

In order to have a clear view of the pollutants posing major stress at a specific site, it would be very 

helpful to gather information on the chemical status over a long period of time and normalise 

concentrations values according to a reference value, thereby giving an indication of their harmful 

potential. WFD requirements for achieving a good ecological status do not include guidelines on how to 

select the most appropriate stressor-specific environmental indicators. 

 

Previous studies focused on the task of establishing Water Quality Indexes (WQI) to give an indication of 

water-body quality beyond the concentration of individual paremetres. These indexes can be based on a 
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fixed list of paremetres or they can be case dependent, considering specific pollutants according to the 

most common impacts in every case. The main problem associated with these indexes is the limited range 

of paremetres to be integrated, which can underestimate the ecological impact. A long list of applications 

of WQI are found in the literature, applying or customising the most common ones in different countries 

around the world such as Turkey [5], Iran [6], Chili [7], Zimbabwe [8], Argentina [9], etc. 

 

More advanced studies are conducted to combine bioassessment and modelling techniques, such as the 

one performed in Denmark [10]. Some of the work to create new indexes also includes application to 

Geographical Information Systems (GIS) [11] and web-based approaches [12]. Studies about dealing with 

the uncertainty of environmental risk prediction have been undertaken [13]. Gottardo [14,15] proposed a 

methodology for Integrated Risk Assessment (IRA) based on a Fuzzy Inference System in order to 

hierarchically aggregate a set of environmental indicators. Fuzzy logics have been applied in recent years 

in order to develop risk indicators [16,17]. 

 

The study published by Van der Ohe [18] presents a more similar approach to the study presented below 

as a prioritisation of a list of chemicals is performed, according to a decision tree, for their monitoring 

based on the information available for 500 organic substances in four European basins. 

 

The idea of establishing a comprehensive index is to provide a unique indicator on water quality for 

environmental managers. This work on simplicity could be very useful but the information on the impact 

on single paremetres is lost. This work focuses on giving a simple indicator about the impact on every 

pollutant that can be found in the Llobregat River waters, considering its effect on aquatic and vertebrate 

organisms and considering its relation to legislative thresholds, referred as EQS. 

 

8.3. Methodology 

 

8.3.1. Risk indexes determinationmethodology 

 

Legislation has been developed applying the concept of aquatic ecosystem protection and establishing 

EQS for priority substances [3]. Further biota EQS have been proposed for future amendments [4]. The 

methodology for deriving these standards is based, among others, on the concepts of Ecological Risk 

Assessment (ERA) based on PNEC (Predicted Non Effect Concentration) and PEC (Predicted 

Environmental Concentration) [19]. 

 

Taking PECj as the concentration of a contaminant j measured in water, a risk indicator of aquatic 

organisms, I ao,j is defined as follows: 
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          (1) 

 

PNECj is derived from toxicological values in water, basically the NOEC (No Observed Effect 

Concentration) of crustaceans, algae, and fish, and the correct safety factor (assessment factor, AF). 

 

For priority substances, EQS give a concentration that represents impact on aquatic media, CREF,j. In these 

cases, where the threshold concentration for pollutants is legislated, a similar indicator to the one given in 

expression (1) could be derived, by replacing the PNEC with the legislative value EQS: 

 

                                              (2) 

 

Where I am,j is an indicator of aquatic impact 

 

The protection of terrestrial vertebrates (mammals and birds) that are predators of aquatic organisms are 

also part of the aquatic ecosystem and could be assessed by comparing the concentration of contaminants 

in aquatic organisms (PECfood) with the value of PNEC expressed in the food basis (PNECfood,j) [19]. 

 

PECfood,j could be expressed by using the transference Bioconcentration Factor (BCF) that measures the 

ratio concentration of contaminant in small aquatic organisms (considered food) (PECfood, j) divided by the 

concentration of contaminant in water (PECj). In this way, an indicator of terrestrial vertebrates risk, I tv,j 

could be obtained with the following expression: 

 

     (3) 

 

BCFj values could be obtained from empirical studies or, in case of organic compounds, from correlations 

with log Kow (Octanol-Water Partition Coefficient). 

 

The above expressions show that, having the concentration of the contaminants in water (PECj), the 

calculation of all the exposed indicators can be performed. For all these indicators, a target value of 1 was 

taken as the limit of a correct environmental situation. 

 

Every risk assessment process should consider the potential effect of a given substance and its exposure 

level [20], but certain aspects should be considered when creating and calculating indexes based on the 
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environmental concentration and exposure of pollutants. On one hand, the use of maximum or average 

concentrations in a given period of time and the treatment of data below the limit of quantification (LOQ) 

are needed to be taken into account. On the other hand, there is a tendency to equate the concentration of 

a non-quantified substance to half the value of LOQ. This strategy could lead to an overestimation of their 

ecological risk [21]. 

 

8.3.2. Case study and data sources 

 

The proposed ratios were calculated using data about concentrations from a list of contaminants in the 

Llobregat River water. The Llobregat River basin is situated in Catalonia (NE, Spain) and covers a 

catchment area of about 5000 km2 which is inhabited by more than 3 million people. The Llobregat River 

is 156.5 km long, but in this study, a specific location was selected close to the mouth of the river, just 

before the intake of the biggest Drinking Water Treatment Plant (DWTP) supplying water to the 

Barcelona Metropolitan Area (UTM coordinates X: 420340 Y:4578442). The site was selected for two 

main reasons. As it is in the lower part of the Llobregat basin, the river receives discharges from urban 

and industrial wastewater treatment plants, sewer overflows and diffuse pollution from agricultural fields, 

being the area with the highest impact along the river. According to the Catalan Water Agency (ACA), 

the administration responsible for preserving water quality in the Llobregat basin, the chemical status of 

the selected point is regarded as “bad” with a remark on the occurrence of surfactants, pesticides and 

heavy metals [2]. The location before the DWTP gives information on the potential impact on health for 

consumers. This location is not only advantageous because of this dual objective of protecting 

environmental and human health, but also because of the higher intensity of existing monitoring 

programmes. 

 

The data used for the first part of the study were obtained from two main sources. ACA communicates 

information on water quality paremetres through its website [22]. Monthly averages were downloaded for 

the period 2006-2010 for a list of 154 paremetres. Only contaminants showing values above LOQ for the 

specific location were selected. Lump paremetres showing physico-chemical conditions were discarded in 

order to focus only on specific pollutants. Selection was also restricted to those contaminants where a 

toxicological reference value could be obtained. Sociedad General de Aguas de Barcelona (SGAB), in 

charge of operating the DWTP, also supplied its record of data for 326 paremetres for the same period. 

The same methodology was executed for the final selection.  

 

After the selection was performed, impact indexes were calculated based on ACA data for the metals 

barium, nickel and zinc and the organic compounds chlorfenvinphos, chlorpyrifos, fluorides, lindane, 

simazine and terbuthylazine. In the case of SGAB data, indexes were obtained for the metals barium, 

copper and nickel, and the organic compounds chloroform, chlorpyrifos, diazinon, simazine, 
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terbuthylazine, tetrachloroethene and toluene. Although some compounds are repeated, a decision was 

made to keep both calculations for the different sources of information. Table 8.1 presents the selection of 

compounds and their reference values. BCFj values for organic compounds were obtained from their log 

Kow. 

 

Table 8.1. Reference values (Cref) for the calculation of the impact indexes for the selected compounds 

(according to ACA and SGAB sources) and additional pesticides (VIECO project) 

 

Compounds 

PNEC 
aquatic 
organisms 

PNEC 
terrestrial 
vertebrates  

PNEC 
tv/BCF 

EQS- 
AA 

EQS- 
MAC Ref 

  (μg L-1) (μg kg-1) (μg L-1) (μg L-1) (μg L-1)   

2,4-Dichlorophenoxyacetic 

acid 
500 

    (a) 

Alachlor    0.3 0.7 [3] 

Atrazine    0.6 2 [3] 

Barium 58 103600 25900   (b) 

Chlorfenvinphos    0.1 0.3 [3] 

Chloroform  13.3 48 5.11   [29] 

Chlortoluron 0.018     (c) 

Chlorpyrifos    0.03 0.1 [3] 

Copper 0.8     see text 

Diazinon  0.003     [30] 

DDE 0.0016 825 0.0602   [29] 

Dimethoate 3.60     [31] 

Diuron    0.2 1.8 [3] 

Fluorides 400 20000 1546247   [29] 

Isoproturon    0.3 1 [3] 

Lindane 0.058 500 2.66 0.02 0.04 [3,29] 

Malathion 0.037     [32] 

MCPA 0.022     (c) 

Mecoprop 124     (c) 

Metolachlor 0.76     [30] 

Nickel  0.6 10000 100 20  see text 

Propanil 0.2     (d) 

Simazine    1 4 [3] 

Terbuthylazine 0.0032     [29] (c) 

Tetrachloroethene 5 1160 7.49 10  [3,29] 

Toluene 74 74300 2085   [29] 

Zinc 1.83 11600 11.6     see text 

 

(a) Value obtained from 3 NOECs from ECOTOX and applying an AF of 10 

(b) Value obtained from 2 NOECs from ECOTOX and applying an AF of 50 

(c) Values obtained from L(E)C50s from ECOTOX and applying an AF of 1000 

(d) Value obtained from 2 NOECs from ECOTOX and applying an AF of 50 
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In the second part of the study, in the framework of a national research project called VIECO 

(www.proyectovieco.com), additional data was collected by analysing new samples in the same location 

for a list of priority and emergent pollutants, that is, pesticides and pharmaceutical products. The 

objective was to include new compounds not analysed routinely by public administrations or DWTP 

operators.  

 

A total number of 3 sampling campaigns were performed in December 2009, March and June 2010. A 

total of 19 pesticides were analysed by means of an automated method based on on-line solid phase 

extraction (liquid chromatography–electrospray tandem mass spectrometry) (on-line SPE–LC–ESI–

MS/MS) [23]. In order to choose the pesticides to be included in the study, a selection was made based on 

the compounds showing concentration levels above LOQ for at least 10% of the samples. Reference 

values were obtained as Annual Average EQS (EQS-AA) for priority pollutants and PNEC values were 

calculated based on toxicological data bibliographic research. Table 8.2 presents the EQS and PNEC 

values used in this study. 

 

For the pharmaceutical compounds, 76 substances were analysed by off-line SPE followed by LC–ESI–

MS/MS [24]. In this case, the same methodology was chosen to select the final list of compounds. 

Additionally, some pharmaceutical compounds had to be discarded because not enough toxicological 

information was available for the PNEC calculation. Table 8.2 includes PNEC values used in this work 

and literature references. 
 

8.3.3. PNEC calculation 

 
 

PNEC values were obtained from literature research or were calculated according to Technical Guidance 

on Risk Assessment [19]. This methodology is based on the idea that sensitivity of the ecosystem relies 

on the most sensitive species. The methodology is based on the extrapolation of toxicity tests performed 

in the laboratory with specific species using Assessment Factors (AF): 
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Table 8.2. PNEC for the studied pharmaceutical compounds and bibliographic sources for their calculation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compounds PNEC (μg/L) Ref. 
Acetaminophen 9.2 [33] (a) 
Acetylsalicylic acid 640 [34] (i) 
Atenolol 310 [35] (c) 
Benzafibrate 6 [33] (a) 
Betaxolol 1.5 [36] (f) 
Carazolol 2.5 [36] (f) 
Carbamazepine 0.5 [37] (b) 
Chloroamphenicol 20 [38] (d) 
Chlortetracycline 267 [36] (f) 
Cimetidine 740 [39] (e) 
Ciprofloxacine 0.005 [40] (c) 
Clarithromycin 0.002 [41] (c) 
Clenbuterol 2.0 [36] (f) 
Clofibric acid 4.9  [37] (b) 
Codeine 16 [36] (f) 
Diazepam 4.3 [42] (c) 
Diclofenac 0.1  [40] (i) 
Enalapril 346 [42] (c) 
Enrofloxacine 0.05 [43] (c) 
Erytromicin 4.3 [33] (a) 
Fenofibrate 0.78 [41] (g) 
Flumequine 0.00196 [44] (c) 
Fluoxetine 0.51 [33] (a) 
Furosemide 100 [42] (c) 
Gemfibrozil 0.9 [33] (a) 
Hydrochlorothiazide 100 [42] (c) 
Ibuprofen 4 [33] (a) 
Indometacine 3.9 [33] (a) 
Ketoprofen 32 [33] (a) 
Metoprolol 7.9 [33] (a) 
Metronidazole 12.5 (h) 
Naproxen 15 [33] (a) 
Ofloxacine 0.5 [37] (b) 
Oxytetracycline 0.2 [42] (c) 
Paracetamol 9.2 [42] (c) 
Paroxetine 35 [45] 
Phenazone 1.1 [33] (a) 
Phenobarbital 50 [46] (d) 
Propiphenazone 0.8 [33] (a) 
Propranolol 0.01 [37] (b) 
Ranitidine 63 [33] (a) 
Salbutamol 240 [42] (c) 
Salycilic acid 48 [33] (a) 
Sulfamethazine 4 [33] (a) 
Sulfamethoxazole 0.118 [40] (g) 
Tetracycicline 0.09 [40] (c) 
Timolol 9.0 [36] (e) 
Trimethoprim 16 [33] (a) 

 

(a) Values obtained from EC50 for fish, invertebrates (Daphnia magna) and algae reported at literature. Some toxicological 

data were estimated with ECOSAR. PNEC is being obtained from the lowest EC50 applying an AF of 1000 

(b) Chronic PNEC obtained from literature 

(c) Values obtained from EC50 applying an AF of 1000 

(d) Value obtained from one NOEC value and applying an AF of 100 

(e) Reference not available but reported at other literature sources 

(f) Value obtained from EC50 assessed with ECOSAR and applying an AF of 1000 

(g) Value obtained from NOECs and applying an AF of 50 

(h) Value obtained from L(E)C50 from ECOTOX and applying an AF of 1000 

(i) Value obtained from NOECs and applying an AF of 10 
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AF depends on the quantity and the type of toxicological values available. In general terms, if values are 

obtained from a short-term test, that is, acute exposure, e.g. EC50 (term half maximal Effective 

Concentration) or LC50 (term half maximal Lethal Concentration), the AF is 1000. For long-term tests to 

assay chronic toxicity, e.g. NOEC or LOEC (Lowest Observed Effect Concentration), the AF is between 

10 and 100 depending on the number of tests and the trophic levels covered. If the number of these tests is 

large enough (more than 10 values relating to 8 taxonomic groups), a statistical analysis can be performed 

(Species Sensitivity Distribution, SSD) to find a value that protects 95% of the population [19]. In this 

case an AF between 1 and 5 can be applied. 

 

Results for PNEC calculations are shown in Table 8.1 and Table 8.2. PNEC values that were calculated 

following statistical analysis are described below. This analysis was performed by using version 2.0 of the 

software ETX from RIVM. 

 

For copper calculation, a large amount of data was collected from different sources, belonging to algae, 

invertebrates and fish. After removing extreme data, the final data follows a log-normal distribution 

(n=43) used to estimate lower (95% confidence) HC5% values. The HC5% obtained is 2.40 µgL-1 for 

aquatic organisms with an associated confidence interval (CI) of 1.40 - 3.62 µgL-1. If an AF of 3 is 

applied (due to the high volume of data), the resulting PNEC is 0.8 µgL-1.  

 

In the case of nickel, data from eleven species were obtained: three from algae, six from invertebrates and 

two from fish, allowing a log-normal distribution. One value was excluded for being too high, so the final 

volume of data was slightly reduced (n=10). The HC5% obtained is 3.02 µgL-1 for aquatic organisms (CI 

0.26 - 1.22 µgL-1). The volume of data is not as large as the case of copper so an AF of 5 was selected, 

resulting in a PNEC of 0.60 µgL-1.  

 

Data from 33 species belonging to the three different taxonomic groups were found for zinc PNEC 

calculations. One value was discarded and log-normal distribution was applied to the final volume of data 

(n=32). The HC5% obtained is 5.50 µgL-1 for aquatic organisms (CI 1.78 - 12.8 µgL-1). In the case of 

zinc, an AF of 3 was considered appropriate. The final PNEC obtained for aquatic organisms is 1.83 µgL-

1. Figure 8.1 shows graphics for the sigmoidal data distribution and the histogram representing the value 

frequency for copper, nickel and zinc toxicity values. 
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(a) 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

 

 

 
Figure 8.1 Sigmoidal log-normal cumulative data distribution and the histogram representing the value 

frequency for copper (a), nickel (b) and zinc (c) toxicity values. (ETX ® software) 

 

 

8.4. Results and discussion 

 

Risk and impact indexes given in the expressions (1) to (3) for ACA and SGAB data were calculated. 

 

Figure 8.2 shows that risk indicators for aquatic organisms (Iao,j) give significant values (index value 

above 1) for all metals studied, that is, barium, copper, nickel and zinc where data were recorded.
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Only some months show values equal or below 1 (that is 1E+00) for barium. Although the toxicity of 

barium is lower than most of the heavy metals [25,26], the high concentrations found in Llobregat waters 

due to the high salinity make these indexes higher than previously thought. Zinc shows the highest 

indexes. Some months, the indexes reached valued between 100 and 1000 (2 and 3 orders of magnitude), 

posing the most serious risk for aquatic organisms. Zinc values were only obtained from ACA data bases 

and they refer to dissolved zinc. These higher indexes could be due to high concentration values or to 

very conservative PNEC values. 

 

The uncertainty of indicators is mainly due to PNEC values derivation. As mentioned, contaminants that 

have little representative data have a high value of AF and use a deterministic approach, and therefore the 

PNEC values could be very conservative, giving indicators of one order of magnitude or more regarding a 

case where lots of representative data have been used. This could be the case with barium, where AF=50 

was used.   

 

For the divalent metals copper, nickel and zinc, the derived PNEC is based on a distributed approach and 

therefore has less uncertainty than in the case of a deterministic approach. In the case of these metals with 

the range of confidence interval and range of AF (1 to 5) a variation of less than the order of magnitude in 

PNEC is obtained. This means that the method of derivation would not explain the high risk of indicator 

values. For these divalent metals, the biotic ligand model (BLM) is proposed as an alternative tool to 

evaluate PNEC values by considering the effect of water chemistry in the speciation and biological 

availability of metals in aquatic ecosystems. These models have been considered in the case of nickel, 

where the EQS value is much higher than derived from the PNEC in this work.   

 

For terrestrial vertebrates, as can be seen in Figure 8.3, the only compound showing an impact according 

to the index calculated is zinc. Most of the monthly averages are between 1 and 10. In some cases (three 

specific months), the risk index is between 100 and 1000. Nickel, the only metal in the selection 

considered as priority pollutant, shows average values equal or a little above its EQS for some months 

within the studied period (Figure 8.4). 

 

The identification of metals showing a higher risk is in accordance with other studies developing 

individual indexes for specific compounds. Zinc has been also prioritised in another study using toxicity 

indicators based on Microtox® test performed with DGT extracts [27]. Zinc and nickel were two of the 

inorganic compounds, along with copper, cadmium and beryllium, prioritised in another study based on 

SDD [28]. 
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Concerning organic compounds, the most significant indexes for aquatic organisms refer tothe herbicide 

terbuthylazine, a chlorotriazine, and the nonsystemic organophosphate insecticide diazinon. In both cases, 

indexes are always above the threshold of 1. The values obtained are between 1 and 100 as can be seen in 

Figure 8.2. The other selected organic compounds show no significant index values. The indexes 

calculated for terrestrial vertebrates for these organic compounds show no significant impact (Figure 8.3). 

All these results pointed to an acceptable risk, indicating that the bioconcentration in a single chain level 

would not affect terrestrial vertebrates that are predators of the aquatic organisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.4. Monthly indicators for aquatic impact at selected site of the Llobregat River (2006-2010) in ACA 

data bases (a) and SGAB (b) data bases 

 

Regarding aquatic impact, that is, the relation between the average concentration values and the threshold 

according to legislation (EQS), two compounds show indexes between 1 and 10 for some months in 2007 

(Figure 8.4). These compounds are organophosphate insecticide chlorpyrifos, having applications for 

domestic uses, and the organochlorine insecticide γ-hexaclorociclohexane, also known as lindane. It is 

important to mention that these values were obtained before publication of Directive 2008/105/EC [3] 

which regulates their occurrence in surface waters.  

 

(a) 

(b) 

http://en.wikipedia.org/wiki/Organochlorine
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Concerning VIECO data, Figure 8.5 represents obtained risk indexes for pesticides. The indexes have 

been calculated based on average concentrations for each compound on each campaign but whiskers 

show indexes based on maximum and minimum values. The only compounds showing indexes above 1 

are diazinon, MCPA and terbuthylazine. The results are consistent with the ones obtained for monthly 

averages in the period 2006-2010 from the other sources. The indexes for the former three compounds 

were calculated using very low reference values compared to the EQS for the priority compounds. This is 

one of the reasons why non-regulated pesticides show higher risk indexes than legislated ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.5. Risk indicators for pesticides (a) and pharmaceutical compounds (b) at selected site of the 

Llobregat River (special campaigns 2009-2010) 

 

The risk of exposure to pesticides has been assessed in previous studies. VIECO data on pesticides 

concentration was published including an assessment based on Toxicity Units (TU), and toxicity values 

based on EC50. According to this index, diazinon, malathion and diuron were prioritised [23]. Diazinon 

was also highlighted in the study performed by Von der Ohe at European level [18]. Other pesticides 

reported to present risk were azoxystrobin, terbuthylazine, heptachlor and endosulfan. Chlorpyrifos was 

(a) 

(b) 
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the pesticide reported to show higher risk according to the study previously reported by Carafa based on 

SSD [28]. 

 

Figure 8.5 shows calculated indexes for the pharmaceutical compounds, showing a risk index above 0.1 

in order to represent only significant values. For the antibiotics clarithromycin and ciprofloxacin the index 

is above 1, posing a risk to ecosystems. If indexes based on maximum concentration values are observed, 

the anti-inflammatory drug diclofenac, the lipid regulators gemfibrozil and fenofibrate, and the antibiotics 

enrofloxacin and sulfamethoxazole, present values between 1 and 10. 

 

8.5. Conclusions 

 

The combination of several indicators is crucial for the assessment of the river pressure based on 

chemical contaminants, but still there is a lack of information on reliable PNEC values. PNEC values are 

usually very conservative if they are not derived with the proper quantitative and qualitative data, even 

though they make it possible to establish the option of rejecting the negative effect of some contaminants 

if they do not exceed the target value. 

 

New studies in the future will lead to more information on the toxicological effects of substances that will 

in turn lead to more accurate PNEC calculations and toxicological information on new compounds not 

currently available. An update of this study in the future could lead to different results. Additionally, if 

the LOQ of analytical techniques is decreased, more PEC values will be obtained. 

 

Moreover, the potential to include new compounds in the list of priority pollutants will imply the creation 

of new EQS for ecological assessment indexes calculations. As can be seen in the study, EQS are less 

conservative than the predicted PNEC. EQS may be based on a higher number of toxicological studies 

than the PNEC calculated in this study. The inclusion of a substance as a priority pollutant may decrease 

its ecological impact according to the calculations performed.  

 

After this initial diagnosis, more detailed studies on the effect of the potential chemicals that pose risk 

need to be performed as part of an ERA process in order to establish cause-effect relationships.  
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9. Assessment of the Water Chemical Quality Improvement Based 
on Human Health Risk Indexes: Application in Drinking Water 
Treatment Plants incorporating Membrane Technologies 
 

9.1. Abstract 

A methodology has been developed in order to evaluate the potential risk of drinking water for the health 

of consumers. The methodology used for the assessment considered systemic and carcinogenic effects 

caused by the oral ingestion of water based on the reference data developed by the World Health 

Organisation (WHO) and the Risk Assessment Information System (RAIS) for chemical contaminants. 

An assessment of the chemical quality improvement of produced water in the Drinking Water Treatment 

Plant (DWTP) after integration of membrane technologies was performed. 

 

A series of concentration values covering up to 261 chemical paremetres over 5 years (2008-2012) of raw 

and treated water in the Sant Joan Despí DWTP, at the lower part of the Llobregat River basin (NE 

Spain), were used. After the application of the methodology, the resulting global indexes were located 

below the thresholds, except for carcinogenic risk in the output of DWTP, where the index was slightly 

above the threshold during 2008 and 2009 before the upgrade of the treatment works including membrane 

technologies was executed. The annual evolution of global indexes showed a reduction in the global 

values for all situations: HQ systemic index based on RAIS dropped from 0.64 to 0.42 for surface water 

and from 0.61 to 0.31 for drinking water; the R carcinogenic index based on RAIS was negligible for 

input water and varied between 4.2x10-05 and 7.4x10-06 for drinking water; the W systemic index based on 

the WHO data varied between 0.41 and 0.16 for surface water and between 0.61 and 0.31 for drinking 

water. A specific analysis for the indexes associated with trihalomethanes (THMs) showed the same 

pattern. These indexes have been presented as a tool to show the improvement of the produced water, 

especially after 2009 when ultrafiltration (UF) and reverse osmosis (RO) membranes were installed. 
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López-Roldán, R., Rubalcaba, A., Martin-Alonso, J., Gónzalez, S., Martí, V., Cortina, J.L. Assessment of the Water 

Chemical Quality Improvement Based on Human Health Risk Indexes: Application in Drinking Water Treatment 
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9.2. Introduction 

 

In developed countries, a wide implementation of water treating technologies and good management has 

led to a significant reduction in the risks associated with water ingestion. Good practices have led to a 

reduction of pollution at source and to a better removal of contaminants. In the European Union (EU), the 

Drinking Water Directive (98/83/EC) concerns the quality of water intended for human consumption. 

According to this legislation, a total of 48 microbiological, chemical and indicator paremetres must be 

monitored and tested regularly. Nevertheless, the list of contaminants that need to be taken into account is 

continuously growing as the studies to define the effects on health progress. 

 

Water safety plans are considered by the World Health Organisation (WHO) as the most effective means 

of maintaining a safe supply of drinking water to the public. Hazards and risks need to be identified, and 

appropriate steps towards minimising these risks are then investigated (WHO, 2005). Additionally, the 

incidence of global driving forces, including climate change, increasing water scarcity, population 

growth, demographic changes and urbanisation are expected to affect the resilience of water supply and 

sanitation systems and services, also forcing managers to adapt their infrastructures to these driving forces 

(Guha-Sapir et al., 2011). 

 

Membrane technologies have been identified as the most robust and flexible technologies used to improve 

water quality and taste by removing undesirable compounds and pathogens (Rahardianto et al., 2007; 

Reverberi and Gorenflo, 2007). Reverse osmosis (RO), nanofiltration (NF) and reverse electrodialysis 

(RED) are being applied worldwide to meet these needs (Birnhack and Lahav, 2007; Greenlee et al., 

2009; Wang et al., 2006). The selection of a suitable membrane technology is based on technical criteria 

(removal of contaminants) and economic aspects (capital operation and maintenance). The 

implementation of new technologies in drinking water treatment plants (DWTP), such as membrane 

technologies, improves the quality of drinking water, as they remove toxic contaminants (Metsämuuronen 

et al., 2014; Radjenović et al., 2008) and reduce human health risks associated with its consumption.  

 

However, it should be stressed that in order to ensure the minimisation of pathogens, the required 

treatment generates disinfection by-products (DBPs), which is one of the main drawbacks of the drinking 

water production. These compounds are produced by the reaction between chemical disinfectants and 

naturally occurring organic material (NOM), bromide, iodide, and anthropogenic pollutants present in the 

source water (Boorman et al., 1999; Krasner, 2009). The trihalomethanes (THMs), the most abundant 

DBPs, are probable human carcinogens according to the WHO (2005)based on sufficient animal evidence 

and inadequate human evidence of carcinogenicity. From January 1st 2009, a maximum limit of THMs of 
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100 μgL-1 was established in the EU (98/83/EC). Although values have been established for a number of 

DBPs, the risks associated with inadequate disinfection are far greater than the potential risks from long-

term exposure to DBPs (WHO, 2014). 

 

It is widely accepted that all stakeholders responsible for water safety should make efforts to improve risk 

management and risk communication to consumers, that is, the provision of information and health-based 

assessments on the various microbial, chemical, radiological and physical human health hazards that may 

be present in the water cycle. The evaluation of existing and emerging hazards in water should include a 

proper monitoring at source, after treatment and throughout the distribution network in order to reduce 

risks and an adequate approach to manage these associated risks.  

 

Assessing exposure and the health consequences of chemicals in drinking water is challenging: exposures 

are typically at low concentrations, measurements in water are frequently insufficient, chemicals are 

present in mixtures, exposure periods are usually long, multiple exposure routes may be involved, and 

valid biomarkers reflecting the relevant exposure period are scarce. In addition, the magnitude of the 

relative risks tends to be small (Villanueva et al., 2013). Studies to assess the exposure of contaminants 

due to drinking water ingestion detected values of arsenic and THMs above the threshold in Turkey 

(Caylak, 2012) and perfluorooctane sulphonate (PFOS) in Taiwan (Chimeddulam and Wu, 2013). 

Industrial contamination led to high risk indexes due to metals in India (Krishna and Mohan, 2014) and 

Pakistan (Muhammad et al., 2011). Studies in developed countries are more focused on emerging 

compounds but they are limited by the availability of reference data. The risk of adverse health effects 

from pharmaceuticals appeared to be negligibly low in the Netherlands (Houtman et al., 2014). Schriks 

(2010) concluded that the majority of the compounds evaluated pose no appreciable concern individually 

to human health in the Rhine and Meuse Rivers. Ribera (2014) used a combination of Life Cycle 

Assessment (LCA) and human health risk assessment in order to select the percentage of water in DWTPs 

that should be nanofiltered. Results show a reduction of one order of magnitude for the carcinogenic risk 

index when NF produces 100% of drinking water when it is compared to direct consumption without 

treatment. 

 

In this work, we have developed a methodology to determine the evolution of the chemical hazard of 

water. Additionally, an assessment is included on how this risk has been affected after the implementation 

of new treatment processes. The methodology is based on toxic effects assessment, exposure assessment 

and risk indexes characterisation (Durham and Swenberg, 2013). The exposure assessment in this work 

only considers the ingestion of drinking water containing pollutants through the oral route as the unique 

pathway and two typologies of effects on human health were considered: a) systemic toxicity that refers 

to adverse effects on any organ system following the absorption and distribution of a chemical throughout 

the body; and b) carcinogenic effects. 
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A set of water quality data recorded over five years from the DWTP monitoring programme has been 

used to implement the risk assessment methodology. The results obtained will be used to numerically 

quantify the improvement of water quality through the use of risk indexes. This study should help to 

develop new managing practices based not only on the occurrence, but also on the potential hazard of the 

chemical contaminants. 

 

9.3. Materials and methods 

 

9.3.1. Case study description: Llobregat River and Sant Joan Despí DWTP 

 

In recent decades, the drinking water supply network of the Barcelona Metropolitan Area (BMA), which 

is 635 km2 in size and has a population of 4.5 million inhabitants, has been primarily based on surface 

water resources from the Llobregat and Ter Rivers. These resources are suffering the effects of mining 

and industrial discharges, as well as a reduction in quantity, thereby reducing the quality of the raw water. 

Additionally, due to the Mediterranean climate, natural water resource availability is periodically lower 

than the water demand in the area (López-Roldán et al., 2013).    

 

To improve the water quality of the Llobregat River and its tributaries, more than 30 waste water 

treatment plants (WWTPs) treating a mixture of urban and industrial wastewaters have been set up along 

the river. The main industries sited along the Llobregat River are tannery, food products, textile, pulp and 

paper industries, discharging a broad spectrum of organic chemicals into the river. Therefore the river 

receives effluents from these WWTPs and surface runoff from agricultural areas. The removal of 

contaminants by WWTPs is not comprehensive; consequently they can enter into the environment via 

sewage effluents and thus become a potential risk to the receiving bodies and in addition, to the 

production of drinking water (González et al., 2012; Köck-Schulmeyer et al., 2011; Valero and Arbós, 

2010). 

 

Sant Joan Despí DWTP treats water from the Llobregat River following the process flow sheet described 

in Figure 9.1. The plant has a maximum treatment capacity of 5.5 m3s-1, and provides almost 50% of the 

annual drinking water in the BMA. In 2009, an improved treatment line began its operation. The new 

process uses membrane technology and treats 50% of the water flow with a pre-treatment via micro-

coagulation and ultrafiltration (UF) as protection for the RO step. Water is remineralised before being 

blended with water from the conventional treatment and sent to the post-chlorination stages. This process, 

the membrane treatment line according to Figure 9.1, is placed after the sand bed filtration where the flow 
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is split and 50% is treated with the new process; the remaining 50% will undergo ozonisation and 

granular activated carbon (GAC) filtration as before.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 9.1. Diagram of the DWTPs involved in the study. GAC: Granular Activated Carbon; MF: Micro 

Filtration; REM: Remineralisation; RO: Reverse Osmosis; UF: Ultra Filtration. The box indicates the 

modification introduced on the treatment line including a reverse osmosis step 

 

 

9.3.2. Chemical data quality collection and management 

 

The Llobregat River has been the subject of several studies dealing with the presence of contaminants in 

surface water and related compartments (e.g. sediments, fish). In this work, only compounds detected in 

the water matrix are taken into account. Most of these studies focus on the lower and middle part of the 

river basin, where most of WWTPs, DWTPs and population are located, and therefore, it is the area with 

higher pressures. Pesticides, surfactants, oestrogens, pharmaceuticals and personal care products (PPCPs) 

and even illegal drugs are the main groups detected in different studies, reporting alterations in species 

composition or abundance, and endocrine disruption measured by alterations in enzymatic activity or 

specific protein production (González et al., 2012). Nevertheless, a long list of these compounds is not 

monitored routinely. The lack of data on their presence and their toxicity makes difficult to include them 

in risk assessment studies on a long-term basis. Table 9.1 provides a list of the chemical compounds 

routinely monitored by the Sant Joan Despí DWTP in the year 2012. The selection of the paremetres to be 

analysed is done based on the legislation requirements, local characteristics, occurrence according to 

historical data and assessment of the efficiency of treatment technologies, among other causes. 

 

 

Main treatment line 

Membrane 
treatment line 
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Table 9.1. Chemical paremetres routinely monitored at the Sant Joan Despí DWTP (surface water and 

produced drinking water) in 2012 

Paremetre 
Frequency inlet 
measurements 

Frequency outlet 
measurements Paremetre 

Frequency inlet 
measurements 

Frequency outlet 
measurements 

1,1-dichloroethane every 2 weeks every week Fluorides every week every month 
1,1-dichloroethene  every year every week Free chlorine residual (in situ) N/A every hour 
1,1,1-trichlorethane every 2 weeks every week Gallium  every day every day 
1,1,1,2-tetrachloroethane every year every week Geosmin every 2 weeks every 2 weeks 
1,1,2-trichlorethane every year every week Heptachlor every week every month 
1,1,2,2-tetrachloroethane every year every week Heptachlor epoxide every week every month 
1,2-dibromoethane every year every week Indene(1,2,3-c,d)pyrene every week every month 
1,2-dichloroethane every year every week Indium every day every day 
1,2-dichloropropane every year every week Iron every day every 8 hours 
2-methylisoborneol every 2 weeks every 2 weeks Lanthanum every day every day 
4,4'-DDD every week every month Lead every day every day 
4,4'-DDE every week every month Lindane every week every month 
4,4'-DDT every week every month Lithium every day every day 
Acenaphthene every week every month m+p-Xylene every 2 weeks every month 
Acenaphthylene every week every month Magnesium every day every day 
Alachlor every week every month Malathion every week every month 
Aldrin every week every month Manganese  every day every day 
alpha-Endosulfan every week every month Mercury every week every day 
alpha-HCH every week every month Methyl parathion  every week every month 
Aluminium every day every 8 hours Metolachlor every week every month 
Ametryne every week every month Molinate  every week every month 
Ammonium every 2 hours every 12 hours Molybdene every day every day 
Anthracene every week every month Naphthalene every week every month 
Antimony every day every day Nickel every 4 hours every day 
Arsenic every day every day Nitrates every week every month 
Atrazine  every week every month Nitrites every week every month 
Barium every day every day Non-ionic tensioactives every 2 weeks N/A 
Benzene every 2 weeks every month o-Xylene every 2 weeks every month 
Benzo(a)anthracene  every week every month Palladium every day every day 
Benzo(a)pyrene every week every month Parathion every week every month 
Benzo(b)fluorantene every week every month Pendimethalin every week every month 
Benzo(g,h,i)perylene every week every month Phenanthrene every week every month 
Benzo(k)fluorantene every week every month Phenols every 2 weeks N/A 
Beryllium every day every day Phosphorus every day every day 
beta-Endosulfan  every week every month Pirimicarb every week every month 
Bismuth every day every day Potassium  every day every day 
Boron every day every day Prometrine every week every month 
Bromates every week every day Propanil  every week every month 
Bromides every day every month Propazine every week every month 
Bromochloroacetonitrile  N/A every week Pyrene  every week every month 
Bromoform every year every day Rubidium every day every day 
c-1,2-Dichloroethene every year every week Selenium  every day every day 
c-1,3-Dichloropropene every year every week Silicon every day every day 
Cadmium every day every day Silver every day every day 
Calcium every day every 8 hours Simazine every week every month 
Cesium every 2 months every year Sodium every day every day 
Chlorates N/A every day Strontium  every day every day 
Chlorfenvinphos every week every month Sulphates every day every month 
Chlorides  every day every day Sum 4 PAHs Dir. 98/83/CE every week every month 
Chlorites N/A every day Sum THMs Dir. 98/83/CE every year every month 
Chlorodibromomethane every year every day t-1,2-Dichloroethene every year every week 
Chloroform every year every day t-1,3-Dichloropropene every year every week 
Chlorpyrifos every week every month Terbuthylazine every week every month 
Chromium every day every day Terbutryn every week every month 
Chromium (VI) every 4 hours every 4 hours Tetrachloride carbon every year every week 
Chrysene every week every month Tetrachloroethene every 2 weeks every week 
Cobalt every day every day Thallium every day every day 
Copper every day every day Tin every day every day 
Cyanides  every 8 hours every month Tiobencarb every week every month 
Diazinon every week every month Titanium every day every day 
Dibenzo(a,h)anthracene every week every month Toluene every 2 weeks every month 
Dibromoacetonitrile N/A every week Total Haloacetonitriles N/A every week 
Dichlobenil every week every month Total Pesticides every week every month 
Dichloroacetonitrile N/A every week Total Trihalomethanes N/A every day 
Dichlorobromomethane every year every day Trichloroacetonitrile N/A every week 
Dieldrin every week every month Trichloroethene  every 2 weeks every week 
Endrin every week every month Trichloroethene + Tetrach. every 2 weeks every week 
Ethofumesate every week every month Trifluralin  every week every month 
Ethylbenzene every 2 weeks every month Tungsten every day every day 
Fenitrothion every week every month Uranium every 2 months every year 
Fluoranthene every week every month Vanadium every day every day 
Fluorene every week every month Zinc every day every day 
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A series of data covering monthly averages of 261 chemical paremetres over 5 years (2008-2012) of raw 

and treated water in Sant Joan Despí DWTP was used. Not all paremetres were measured over the five 

years, as monitoring programmes were periodically adapted. Moreover, some compounds were only 

measured in surface water while other compounds were only measured in drinking water.  

 

9.3.3. Fundamentals of the risk assessment methodology 

 

Chemicals that display environmental and biological persistence, bioaccumulation, toxicity and long-

range transport have been previously assessed quantitatively by national and international health agencies 

(Szabo and Loccisano, 2012). Among the databases that offer information on the toxicity of the 

compounds that can be found in water, two of the most widely used are the Risk Assessment Information 

System (RAIS) and the WHO guidelines (WHO, 2011). 

 

RAIS uses the Reference Dose (RfD), expressed as an oral dose per kilogram of body weight (given in 

units of mgKg-1day-1), as an estimate of the lowest daily human exposure that is likely to occur without 

appreciable risk of deleterious, non-cancerous effects during a lifetime. WHO proposes a very similar 

reference value called the Tolerable Daily Intake (TDI) as an estimate of the amount of a substance in 

food or drinking-water, also expressed on a body-weight basis that can be ingested daily over a lifetime 

without any appreciable health risk (WHO, 1991). The TDI values take into account both systemic and 

carcinogenic effects but the risk index is calculated as systemic.  

 

The exposure assessment of this work only considers the ingestion of drinking water containing pollutants 

through the oral route as the unique pathway. The oral dose for each contaminant present in water was 

calculated by eq 1: 

 

(eq 1) 

 

where Di represents the dose of contaminant by water ingestion (mg Kg-1day-1), Cw is the annual average 

concentration of the contaminant in water (mgL-1), EF is the exposure frequency to the contaminated 

media (days year-1), ED is the exposure duration (year), IRw is the rate of water intake (L day-1), BW is 

the body weight of the receptor (Kg), and AT is the average lifetime of a person (year). 

 

Table 9.2 shows the exposure values for the pathway of oral ingestion of water according to RAIS and 

WHO for the calculation of doses. For systemic risk Di is calculated by using AT=ED.  
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Table 9.2. Exposure paremetres for oral ingestion of water according to RAIS and WHO 

 

Paremetres RAIS WHO 

EF(days year -1) 350 365 
ED* (years) 24 - 

IR (L day-1) 2 2 
BW (kg) 70 60 

AT* (years) 70 - 
*Systemic risk: AT=ED   

 

 

Then, three different indexes (systemic and carcinogenic for RAIS and an index for WHO) were 

calculated: 

 

a) the systemic effect index according to RAIS (HQi) was calculated on the dose basis according to RAIS 

reference values as a ratio between the dose (D) and the dose reference level (RfD) by eq 2:   

 

𝐻𝐻𝑄𝑄𝑄𝑄 = 𝐷𝐷𝑄𝑄
𝑅𝑅𝑓𝑓𝐷𝐷𝑄𝑄

   (eq 2) 

 

where the ratio of the average daily dose to a RfD below 1 implies that adverse effects are very unlikely 

to occur. The guideline values were calculated separately considering the risk for individual substances, 

without specific consideration of additivity. Although this may result in risk underestimations, unless 

there is evidence to the contrary it is appropriate to assume that the toxic effects of these compounds are 

additive (Backhaus and Faust, 2012). Thus, a global systemic effect is obtained as contribution of the 

individual index values by eq 3: 

 

    (eq 3) 

 

If HQ is below 1 it implies that adverse effects are very unlikely to occur. 

 

b) The individual carcinogenic effects were only considered in the RAIS approach and the individual 

carcinogenic effect index (Ri) was calculated by eq 4:  

 

   (eq 4) 
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where SF is the Slope Factor (Kg day mg-1) that express a linear relationship of Di versus the risk Ri at 

low doses. The cancer risk was calculated by multiplying the estimated dose or exposure level by the 

appropriate measure of carcinogenic potency. A guideline value of 10-5 means one additional cancer case 

per 100 000 of the population ingesting drinking-water containing the substance at the guideline value for 

70 years (Cothern et al., 1986). Following the principle of additivity of compounds, the global risk index 

for all compounds was calculated as an addition of individual risk indexes by eq 5: 

 

   (eq 5) 

 

c) the individual WHO (W) index was prepared by using eq 6. 

 

𝑊𝑊𝑄𝑄 =  𝐷𝐷𝑄𝑄
𝑇𝑇𝐷𝐷𝑇𝑇𝑄𝑄

 (eq 6) 

 

And then, the global risk index for all compounds was calculated as an addition of individual risk indexes 

by eq 7: 

 

    (eq 7) 

 

9.3.4. Contaminant concentrations data treatment and filtering of raw data  

 

A tool was created and validated using the Microsoft Excel® programme for the calculation of risk 

indexes according to RAIS and WHO toxicity values and doses (eq 1) for the list of compounds by using 

eq 2-7. The tool was programmed to determine the annual average concentration of the compounds. 

Values representing the limit of quantitation (LOQ) for each compound were also entered so the tool was 

able to discriminate between measured values and values below LOQ. Blank cells were automatically 

recognised as non-measured paremetres in the data analysis. 

 

The diagram in Figure 9.2 was followed in order to assess the risk related to the compounds present in 

water and includes filtering steps to obtain reliable risk indexes mentioned previously. When dealing with 

raw data concentrations in the calculation of indexes, three main issues were identified and, consequently, 

filtering steps were applied:  

 

a) The lack of existence of oral toxicity data for each contaminant. The methodology was based on the 

risk approach, so the contaminants without toxicity values given by RAIS or WHO were excluded from 
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index calculations. The comparison of measured contaminants with drinking water standards set in the 

Directive 98/83/EC is a first step that could determine the risk when toxicity is not available. 

 

b) Annual average concentrations were calculated using a mixture of values below the LOQ and 

quantified values. The election of LOQ/2 is usually applied and solves the uncertainty of a concentration 

that could be between zero and LOQ but, at the same time, introduces an uncertainty that has to be 

considered, as could lead to an overestimation of the risk (James et al., 2009). In order to have an idea of 

this uncertainty for the annual average values, an uncertainty index “U” was calculated by using eq 8. 

 

𝑈𝑈 = 1 − 𝐴𝐴𝐴𝐴𝐴𝐴  (0)
𝐴𝐴𝐴𝐴𝐴𝐴  (𝐿𝐿𝐿𝐿𝑄𝑄 2⁄ )

 (eq 8) 

 

where Avg(0) is the average concentration when all the values below LOQ are considered as zero and 

Avg(LOQ/2) is the average concentration when all the values below LOQ are considered as LOQ/2. This 

U index is 1 if all the values are below LOQ (maximum uncertainty) and 0 if all the values are higher than 

LOQ (minimum uncertainty). The U index will be useful to evaluate the uncertainty of final global 

indexes. 

 

c) Reliability of the analytical techniques for the sensitive measurement of risk indexes. It is possible that 

some analytical techniques are focused on the detection of contaminants just below the legal values and 

are not sensitive enough to calculate the contribution of the contaminants to risk assessment when present 

at very low concentrations. Therefore, an important role of the analytical techniques applied to risk 

indexes calculation would be to provide LOQ values able to quantify small amounts of risk.  

 

 
 

Figure 9.2. Chart flow representing the methodology for risk assessment and previous filtering steps 
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In order to decide which analytical techniques are sensitive enough to measure the risk properly, the 

calculation of the risk indexes by using LOQ levels was performed. Paremetres giving values of 

individual indexes, based on LOQ, below a threshold (0.02 and 0.01 for systemic risk according to RAIS 

and WHO, respectively and 5x10-7 for carcinogenic risk) will be included in the index. For the excluded 

paremetres, the risk assessment should be performed by comparing the annual average concentration with 

the limits recognised by legislation, as those thresholds have been also calculated on the basis of risk to 

human health studies. 

Some extra calculations were programmed so aggregate indexes could be easily calculated taking into 

account some variables e.g. compounds measured at the inlet over the five years and compounds 

measured at the outlet over the five years. The figures showing the evolution of the final indexes have 

been programmed so they are automatically updated. The Excel tool has facilitated the index calculations 

based on a significant amount of data and can be easily adapted to new input data. 

 

9.4. Results 

 

9.4.1. Analysis of water quality improvement in the DWTP 

 

Analysis of the annual evolution, from 2008 to 2012, of the average concentrations of the contaminants is 

included in Table 9.3 and Table 9.4. Only paremetres at the inlet and the outlet that were routinely 

measured over the five years have been included. As can be seen, the surface water quality of the inlet 

water works (Table 9.3) have improved over the years for most of the paremetres, except for arsenic, 

barium, cyanides, chromium, selenium, tetrachloroethene and tungsten. Other compounds such as boron, 

calcium, strontium, magnesium, nitrates and sulphates remain constant. 

 

In the case of the outlet concentrations (Table 9.4), a reduction of the contaminants levels could be seen 

for all the compounds except for chlorates and chromium. This reduction can be explained mainly by the 

introduction of the RO step where at least 50% of the total waterworks capacity is treated. When the 

evolution of the DBPs concentrations was analysed, a reduction of 89% was achieved for total THMs. It 

should also be taken into account that the DWTP applied disinfection by using chlorine up to 2010 and by 

using chlorine dioxide from 2010, which is the main factor responsible for the formation of chlorinated 

DBPs. The content of chlorates has risen significantly as a DBP of the chlorine dioxide. However, the 

presence of bromide and iodide acted as a precursor for the formation of brominated and iodinated DBPs. 

Additionally, and due to the use of an ozonisation step, the formation of bromates from bromide occurred. 

The introduction of the membrane treatment unit improved the quality and in terms of the reduction of the 

high salinity (ca. 0.9 g TDSL-1), the DBPs precursors and the DBPs themselves, so the total content of 

legislated THMs below 100 µgL-1 was easily accomplished from 2009 onwards.  
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When other DBPs are addressed, the increase in the chlorate content should be attributed to the 

substitution of the initial chlorination steps of the treatment by using chlorine dioxide instead of chlorine. 

Chlorate and chlorites are disinfection by products through the use of chlorine dioxide(Richardson et al., 

2007). According to the WHO, a guideline value is designated as provisional because the use of chlorine 

dioxide as a disinfectant may result in the chlorate guideline value being exceeded, and difficulties in 

meeting the guideline value must never be a reason for compromising adequate disinfection. In the case 

of chromium (VI) the increase was due to the contribution of a groundwater pollution plume generated by 

electroplating industries, for more than 30 years, at industrial areas of the Llobregat Delta. The seasonal 

recharge of this plume onto surface water caused the detected peaks, always below the limits fixed by 

legislation (10 µgL-1). 
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9.4.2.  Risk indexes comparison of raw and treated water 

 

Global indexes for systemic risk according to RAIS and WHO reference values and carcinogenic risk 

based on RAIS reference data are shown in Table 9.5. The global risks indexes have been calculated 

through the addition of the individual indexes. For the calculation of the global indexes, only the 

compounds that were measured over the five years at the surface water (inlet) on one side, and the 

compounds measured for the five years at the treated water (outlet) on the other side have been includedin 

order to obtain comparable global indexes. 

 

 

Table 9.5. Global risk indexes calculation for systemic risk according to RAIS reference values (HQ) and 

WHO values (W) and carcinogenic risk (R) 

 

 

Inlet Outlet 

  HQ R W HQ R W 

2008 0.64 4.62x10-07 0.41 0.61 4.21x10-05 0.32 

2009 0.50 4.51x10-07 0.31 0.50 2.66x10-05 0.25 

2010 0.49 4.68x10-07 0.30 0.41 8.18x10-06 0.19 

2011 0.47 5.11x10-07 0.32 0.33 8.06x10-06 0.17 

2012 0.42 5.24x10-07 0.16 0.31 7.40x10-06 0.17 

 

 

A list of compounds is not included in the global index due to the filtering steps performed, because of 

the unavailability of reference data or the low sensitivity of the analytical technique. If they are excluded, 

the annual average concentrations are compared to the thresholds established in Directive 98/83/EC. 

Table 9.6, Table 9.7 and Table 9.8 show the concentrations of these paremetres for the outlet water in the 

calculation of HQ, R and W. Only free chlorine (2008-2009), chlorides (2008-2009) and sodium (2008) 

show levels above Directive reference values. 

 

Figure 9.3 shows the annual evolution of the global indexes. Thresholds for the three types of indexes 

have also been included (HQ<1; R<10-5; W<1). It should be highlighted that, although the thresholds were 

designed for individual paremetres, they were applied in this methodology to the global risk values. The 

annual evolution of indexes shows a reduction in the global risk for all situations. The biggest reduction 

can be seen after the first year, 2008, when a severe drought took place. The low average river flow in 

2008 (8.12 m3s-1 compared to 12.83 m3s-1in 2009) may be associated to higher average concentrations of 

pollutants and, therefore, an increase of the risk indexes.  
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Table 9.6. Annual averages of the compounds excluded from the HQ calculation when there are reference 

values from Directive 98/83/CE 

 
Parametre (excluded from HQ) Unit 2008 2009 2010 2011 2012 
Antimony µg L-1 0.564 0.551 0.500 0.750 0.750 
Arsenic µg L-1 0.558 0.500 0.500 0.750 0.907 
Bromates µg L-1 - - - 3.636 4.161 
Free chlorine residual (in situ) mg L-1 1.006* 1.007* 0.837 0.828 0.858 
Chlorides  mg L-1 414.610* 280.842* 186.797 179.581 183.703 
Chromium µg L-1 2.171 1.956 2.631 2.239 3.921 
Fluorides mg L-1 0.151 0.114 0.119 0.127 0.106 
Lindane µg L-1 0.006 0.004 0.004 0.004 0.004 
Pirimicarb µg L-1 0.006 0.006 0.006 0.006 0.006 
Sodium mg L-1 203.257* 129.339 98.539 99.359 106.460 
Sulphates mg L-1 197.292 158.333 127.833 110.333 109.917 
Terbuthylazine µg L-1 0.005 0.004 0.004 0.004 0.004 
Trichloroethene + Tetrachloroethene µg L-1 0.953 0.305 0.301 0.360 0.317 

       *Average concentrations above the thresholds established in Directive 98/83/EC: free chlorine (1 mg/L), chlorides (250 mg/L) and 
sodium (200 mg/L) 
 

Table 9.7. Annual averages of the compounds excluded from the R calculation when there are reference 

values from Directive 98/83/CE 
Parametre (excluded from R) Unit 2008 2009 2010 2011 2012 
Aldrin µg L-1 0.004 0004 0.004 0.004 0.004 
alpha-Endosulfan µg L-1 0.006 0.004 0.004 0.004 0.005 
Aluminium µg L-1 44.761 86.387 57.931 53.135 34.908 
Ammonium mg L-1 0.038 0.038 0.041 0.038 0.038 
Antimony µg L-1 0.564 0.551 0.500 0.750 0.750 
Arsenic µg L-1 0.558 0.500 0.500 0.750 0.907 
beta-Endosulfan  µg L-1 0.004 0.004 0.004 0.004 0.006 
Boron µg L-1 195.303 129.547 154.589 137.830 147.601 
Bromates µg L-1 5.745 7.893 7.867 3.636 4.161 
Free chlorine residual (in situ) mg L-1 1.006* 1.007* 0.837 0.828 0.858 
Chlorfenvinphos µg L-1 0.004 0.004 0.004 0.004 0.004 
Chlorides  mg L-1 414.610* 280.842* 186.797 179.581 183.703 
Chromium µg L-1 2.171 1.956 2.631 2.239 3.921 
Dieldrin µg L-1 0.004 0.004 0.004 0.004 0.004 
Iron µg L-1 9.205 8.831 8.999 8.389 8.751 
Fluorides mg L-1 0.151 0.114 0.119 0.127 0.106 
Heptachlor µg L-1 0.006 - - - - 
Heptachlor epoxide µg L-1 0.004 0.004 0.004 0.004 0.004 
Lindane µg L-1 0.006 0.004 0.004 0.004 0.004 
Malathion µg L-1 0.004 0.004 0.004 0.004 0.004 
Manganese  µg L-1 1.920 1.176 1.061 0.901 0.995 
Mercury µg L-1 0.046 0.014 0.013 0.013 0.013 
Metolachlor µg L-1 0.004 0.004 0.004 0.004 0.004 
Molinate  µg L-1 0.004 0.004 0.004 0.004 0.004 
Nickel µg L-1 5.108 3.263 2.527 2.747 3.763 
Nitrates mg L-1 10.755 10.313 9.138 7.700 7.458 
Nitrites mg L-1 0.010 0.010 0.010 0.010 0.010 
Pendimethalin µg L-1 0.006 0.004 0.004 0.004 0.004 
Pirimicarb µg L-1 0.006 0.006 0.006 0.006 0.006 
Propazine µg L-1 0.006 0.006 0.006 0.006 0.006 
Selenium µg L-1 0.569 0.500 0.500 0.876 0.750 
Sodium mg L-1 203.257* 129.339 98.539 99.359 106.460 
Sulphates mg L-1 197.292 158.333 127.833 110.333 109.917 
Terbuthylazine µg L-1 0.005 0.004 0.004 0.004 0.004 
Terbutryn µg L-1 0.006 0.004 0.004 0.004 0.004 
Tiobencarb µg L-1 0.006 0.004 0.004 0.004 0.004 
Trichloroethene + Tetrachloroethene µg L-1 0.953 0.305 0.301 0.360 0.317 

 

*Average concentrations above the thresholds established in Directive 98/83/EC: free chlorine (1 mg/L), chlorides (250 mg/L) and 
sodium (200 mg/L) 
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Table 9.8. Annual averages of the compounds excluded from the W calculation when there are reference 

values from Directive 98/83/CE 
 

Parametre (excluded from W) Unit 2008 2009 2010 2011 2012 
1,2-dichloroethane µg L-1 0.281 0.119 0.083 0.225 0.225 
Alachlor µg L-1 0.006 0.004 0.004 0.004 0.004 
alpha-Endosulfan µg L-1 0.006 0.004 0.004 0.004 0.005 
Aluminium µg L-1 44.761 86.387 57.931 53.135 34.908 
Ammonium mg L-1 0.038 0.038 0.041 0.038 0.038 
Arsenic µg L-1 0.558 0.500 0.500 0.750 0.907 
Atrazine  µg L-1 0.006 0.006 0.006 0.006 0.006 
Benzene µg L-1 0.023 0.035 0.050 0.125 0.125 
beta-Endosulfan  µg L-1 0.004 0.004 0.004 0.004 0.006 
Bromates µg L-1 5.745 7.893 7.867 3.636 4.161 
Free chlorine residual (in situ) mg L-1 1.006* 1.007* 0.837 0.828 0.858 
Chlorfenvinphos µg L-1 0.004 0.004 0.004 0.004 0.004 
Chlorides  mg L-1 414.610* 280.842* 186.797 179.581 183.703 
Chromium µg L-1 2.171 1.956 2.631 2.239 3.921 
Iron µg L-1 9.205 8.831 8.999 8.389 8.751 
Fluorides mg L-1 0.151 0.114 0.119 0.127 0.106 
Heptachlor µg L-1 0.006 0.004 0.004 0.004 0.004 
Heptachlor epoxide µg L-1 0.004 0.004 0.004 0.004 0.004 
Malathion µg L-1 0.004 0.004 0.004 0.004 0.004 
Manganese  µg L-1 1.920 1.176 1.061 0.901 0.995 
Pirimicarb µg L-1 0.006 0.006 0.006 0.006 0.006 
Propazine µg L-1 0.006 0.006 0.006 0.006 0.006 
Selenium µg L-1 0.569 0.500 0.500 0.876 0.750 
Sodium mg L-1 203.257* 129.339 98.539 99.359 106.460 
Sulphates mg L-1 197.292 158.333 127.833 110.333 109.917 
Terbutryn µg L-1 0.006 0.004 0.004 0.004 0.004 
Tiobencarb µg L-1 0.006 0.004 0.004 0.004 0.004 
Trichloroethene + Tetrachloroethene µg L-1 0.953 0.305 0.301 0.360 0.317 

 
*Average concentrations above the thresholds established in Directive 98/83/EC: free chlorine (1 mg/L), chlorides (250 mg/L) and 
sodium (200 mg/L) 
 

From the methodology developed it is also possible to identify the main contaminants contributing to risk. 

Lists for the top 10 compounds contributing to every risk index for the year 2012 are shown in Table 9.9. 

U indexes show the uncertainty related to the calculation of the individual risks. The closer U is to 1, the 

higher the uncertainty of the value of the annual concentration used for the risk calculation. The 

compounds posing a major risk show U close to 0, except for the carcinogenic risk at the inlet, which is 

based on compounds not found (U=1), although the global index shows an acceptable risk. 

 

 

 

 

 

 

 

 

 
Figure 9.3. Annual evolution of the global indexes for systemic and carcinogenic risk assessment according to 

RAIS and WHO reference data 
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For systemic risk according to RAIS reference values, HQ, the compounds posing a major risk at the inlet 

are nitrates and nitrites. Nitrates are found at high concentrations and the main risk is linked to their 

potential of becoming nitrites. Some other compounds such as bromates, strontium, boron, barium and 

nickel also contribute considerably to the global risk. At the outlet, boron and the halogenated 

chlorodibromomethane, bromoform, trichloroethene and 1,1,2-trichlorethane appear at the highest 

position in the list along with the above compounds. Some other compounds such as fluorides, free 

chlorine and metals such as thallium, lithium and chromium (VI) and non-metals such as arsenic and 

antimony do not contribute to the global index calculation as the techniques for performing the analysis 

were regarded as not sensitive enough. Therefore, this indicates that LOQs need to be improved so they 

can be included in the global risk assessment. 

 

In the situation according to the systemic risk index based on WHO values, W, is not so different to the 

index based on RAIS values, HQ, regarding the compounds showing the highest contribution to the global 

index. In this case, the filter has only excluded the pesticide atrazine for the inlet plus free chlorine, 

chlorates and chlorites in drinking water.Chlorates deserve special attention due to the significant 

concentration values present in drinking water. WHO guidelines present provisional guidelines due to the 

effects shown in animals (Richardson et al., 2007), although further studies should be performed in order 

to assess the effects in humans. 

 

Table 9.9. Lists of the compounds making a higher contribution to every risk index and their associated 

uncertainty in the year 2012 
 

 
Risk indexes at the inlet of the DWTP 

       Parametre Hqi U   Parametre Ri U   Parametre Wi U 
Nitrates 0.160 0.00 

 
Heptachlor 1.59x10-07 1.00 

 
Nitrates 0.084 0.00 

Strontium  0.078 0.00 
 

Benzo(a)pyrene 8.57x10-08 1.00 
 

Boron 0.041 0.00 
Nitrites 0.045 0.04 

 
Dibenzo(a,h)anthracene 8.57x10-08 1.00 

 
Nickel 0.025 0.00 

Boron 0.029 0.00 
 

Benzene 6.46x10-08 1.00 
 

Antimony 0.004 1.00 
Barium 0.023 0.00 

 
Trichloroethene  5.40x10-08 1.00 

 
Trichloroethene  0.003 1.00 

Nickel 0.012 0.00 
 

Ethylbenzene 2.58x10-08 1.00 
 

Aldrin 0.001 1.00 
Heptachlor epoxide 0.008 1.00 

 
Atrazine  1.35x10-08 1.00 

 
Dieldrin 0.001 1.00 

Molybdene 0.008 0.03 
 

Benzo(a)anthracene  8.57x10-09 1.00 
 

Simazine 0.000 1.00 
Beryllium 0.007 1.00 

 
Benzo(b)fluorantene 8.57x10-09 1.00 

 
Tetrachloroethene 0.000 0.74 

Trichloroethene  0.007 1.00   Indene(1,2,3-c,d)pyrene 8.57x10-09 1.00   Terbuthylazine 0.000 0.14 
                      
Risk indexes at the outlet of the DWTP 

      Parametre Hqi U   Parametre Ri U   Parametre Wi U 
Nitrates 0.128 0.00 

 
Chlorodibromomethane 3.37x10-06 0.00 

 
Nitrates 0.067 0.00 

Strontium  0.050 0.00 
 

1,1,2-trichlorethane 1.21x10-06 0.01 
 

Bromoform 0.030 0.00 
Bromoform 0.022 0.00 

 
Bromoform 1.20x10-06 0.00 

 
Boron 0.029 0.00 

Boron 0.020 0.00 
 

Dichlorobromomethane 3.70x10-07 0.00 
 

Nickel 0.010 0.00 
1,1,2-trichlorethane 0.016 0.01 

 
1,1,2,2-tetrachloroethane 2.35x10-07 1.00 

 
Chlorodibromomethane 0.007 0.00 

Trichloroethene  0.009 0.64 
 

1,2-dichloroethane 1.92x10-07 1.00 
 

Nitrites 0.005 1.00 
Heptachlor epoxide 0.008 1.00 

 
Chloroform 1.80x10-07 0.00 

 
Antimony 0.004 1.00 

Beryllium 0.007 1.00 
 

1,2-dichloropropane 1.69x10-07 1.00 
 

Trichloroethene  0.004 0.64 
Chlorodibromomethane 0.006 0.00 

 
Heptachlor 1.59x10-07 1.00 

 
Tetrachloride carbon 0.003 1.00 

Nickel 0.005 0.00   Tetrachloride carbon 8.22x10-08 1.00   Chloroform 0.001 0.00 
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For the carcinogenic risk, R, no compounds have a significant risk at the inlet, and values are two order of 

magnitude below the threshold. The risk is higher at the outlet as DBPs can only be found in the treated 

water. Compounds such as bromates, chromium and arsenic were discounted as contributing to the risk to 

a large extent due to their high LOQs but were below the values established in Directive 98/83/CE.  

 

At the outlet, legislated THMs and 1,1,2-Trichloroethane make the maximum contribution to the general 

added risk. A reduction in the risk is especially significant after 2009. This improvement is associated 

with the implementation of the RO treatment step, where a reduction in the concentrations of the DBPs 

precursors (bromide, iodide and dissolved organic matter) is expected, along with a reduction in the DBP 

concentration formed in the chlorination step before coagulation (see Figure 9.1). This reduction is shown 

in Figure 9.4 where the evolution of the levels of THMs is shown. 

 

 

 

 

 

 

 

 

 

Figure 9.4. Annual evolution of risk indexes for systemic and carcinogenic risk assessment for the four 

regulated THMs (bromoform, chlorodibromomethane, chloroform, dichlorobromomethane) at the outlet 

 

9.4.3. Contribution of disinfection by-products on risk indexes 

 

A special analysis was made of disinfection by-products in drinking water. The four THMs included in 

the legislation (bromoform, bromodichloromethane, dibromochloromethane, chloroform) are some of the 

top-ranking compounds in contributing to the global carcinogenic risk. Figure 9.4 shows the decrease of 

risk over time due mainly to a reduction of the concentration of THMs. It should be stated that for the 

four regulated THMs, U is equal to 0, showing no uncertainty in the risk calculations as the compounds 

are always quantified above their LOQs. 

 

This reduction can be explained by two main factors: the upgrade of the treatment line through the 

inclusion of the RO desalination treatment in 2009 and the replacement of chlorine by chlorine dioxide 

with a weaker oxidation potential, and therefore, with a lower capacity for the formation of DBPs. The 

introduction of a desalination step treating 50% of the in-let flow rate reduced the concentration of the 
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DBPs precursors, both inorganic species such as bromide and iodide, and organic species, mainly 

dissolved organic matter (natural and non-natural). The reduction of the DBP concentrations by up to four 

times could only be explained by the combination of both changes on the treatment line.  

 

Not all DBPs have decreased as it has been highlighted in section 9.4.1. Chlorates have increased due a 

change in the disinfection process where the use of chlorine was substituted by chlorine dioxide. 

Chlorates are on of the main DBP generated because of the use of chlorine dioxide. Due to the fact that 

chlorates have been included in the group of compounds whose risk is not included in the aggregated 

value, the contribution cannot be seen in the global index. Due to the fact that effects in animals have 

been proved (Richardson et al., 2007), it is important to monitor this compound and follow its evolution. 

An effort to optimize the dosing of chlorine dioxide in the plant to reduce the levels of chlorate started in 

2014, with the objective of achieving values below the guideline value 0.7 mg/L. Additionally, a new 

initiative to improve the analytical methodologies of chlorate analysis reducing the LOQ is under 

development. 

 

9.4.4. Risk indexes methodology advantages and constraints. 

 

The main advantage of these calculations is related to the fact that they are based on three accepted 

approaches to the assessment of health risks, differentiating between systemic and carcinogenic risk. 

These indexes consider all measured paremetres even if the monthly average concentrations are below the 

LOQ. The obtained indexes can be recalculated as long as new substances are analysed and WHO or 

RAIS recognises new toxicity values.  

 

But as these global indexes include individual values of specific pollutants, it is noticeable that the final 

risk values increase as new paremetres are measured, even if the results of the analytics are below the 

quantification limit. In order to cope with this problem, it is important to establish filters so substances 

presenting high-risk values when concentrations are below quantification limits do not overestimate 

global health risks. 

 

A series of data shows some limitations when the methodology is applied. Monthly averages are 

calculated on the base of the different frequency of measurements depending on the specific paremetre, so 

the number of analysis values and the time when they were performed can have an influence on the 

results. Additionally, the same list of paremetres has not been recorded over the 5 years. In order to be 

able to perform an annual comparison, global indexes only include the paremetres that have been 

measured over the five years covered in the study. 
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Analytical techniques have their own constraints, as no concentration values can be reported under LOQ. 

This LOQ is not only dependent on the technique, but on the specific compound, water matrix, and the 

methodology applied for the analytical measurements. Due to some facts such as the replacement of the 

instruments and the criteria for the calculation and acceptance of these limits, an evolution of LOQs can 

also be observed, making the inter-annual comparison more difficult. 

 

Another issue to be faced is presented when trying to assess the risk of produced water in comparison 

with raw water at the inlet of a DWTP. This analysis can be useful when evaluating the performance of 

the treatment technologies in removing certain substances. The difficulties arise when some analytes are 

only measured in one of the water streams as their presence is not expected in the outlet, due to the 

optimum removal efficiency, or in the inlet, due to their production as result of the treatment of the water 

flow, e.g. DBPs. The differences in the list of compounds analysed and a change in the limit of 

quantification, due to the analysis in different water matrixes, pose an additional difficulty in the 

assessment. 

 

9.5. Conclusions 

 

A methodology was developed in order to globally assess the chemical risk of drinking water and its 

source water. Indexes were created including those paremetres that have passed all the quality filters 

(existence of reference toxicological values and concentration measured with a sensitive analytical 

technique). The average concentration of the paremetres that were excluded from the hazard indexes was 

compared to the threshold established by legislation. 

 

The annual evolution of the global indexes at the intake and the outlet of a DWTP showed a continuous 

decrease in the toxicity from 2008 to 2012. After the application of the methodology, resulting global 

indexes were located below the thresholds except for carcinogenic risk in the output of the DWTP, where 

the index was slightly above the threshold during 2008 and 2009 before the upgrade of the treatment 

works with membrane technologies. The annual evolution of indexes shows a decrease in the global 

values for all situations: HQ systemic index based on RAIS falls from 0.64 to 0.42 for surface water and 

from 0.61 to 0.31 for drinking water; R carcinogenic index based on RAIS is negligible for input water 

and varies between 4.2x10-05 and 7.4x10-06 for drinking water; The W systemic index based on WHO 

moves varies between 0.41 and 0.16 for surface water and between 0.61 and 0.31 for drinking water. A 

specific analysis for the indexes associated to trihalomethanes (THMs) shows the same pattern.  
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From the second group of paremetres, not included in the calculation of the indexes, only free chlorine 

and chlorides at 2008 and 2009, and sodium at 2009 showed average concentrations slightly above the 

threshold for drinking water. 

 

Although risk indexes were calculated in order to help the decision of the stakeholders in charge of water 

treatment works and administrations dealing with health issues, it is important not to forget that 

legislation (e.g. Directive 98/83/EC in Europe) is the main reference when assessing the compliance of 

water quality to health standards. These indexes have been presented as a tool to show the improvement 

of produced water, especially after 2009 when the UF and RO membrane technologies were installed. 

 

The methodology developed in the form of risk indexes included more paremetres than those in the 

legislation in order to provide a tool based on risk assessment and not only on the concentration of 

legislated paremetres. These indexes take into account different effects (systemic and carcinogenic) and 

are based on reference values given by international organisations, considering oral ingestion doses. The 

indexes developed provide a quantification of the quality improvement that could be integrated with Life 

Cycle Assessment (LCA) and Life Cycles Costing (LCC) analysis.  

 

To summarise, the methodology introduced is able to estimate the risk reduction benefit when a change in 

the treatment line is introduced and could be used to estimate potential health benefits for this type of 

investment.  
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10. Conclusion 
 

The main achievements and impacts related to this thesis are described in this chapter. Progress beyond 

the state of the art and proposals for future research are also included. 

 

10.1. Scientific achievements 

 

The thesis was developed in different branches of what can be understood as an integrated water quality 

monitoring strategy. Different methodologies exist for the assessment of the quality of the water and its 

impact on the health of ecosystems and consumers. The needs of the end users will define which 

methodology best fits their requirements as each methodology provides information of a different kind 

and has its own constraints. The best solution may be a combination of methodologies and pursuing 

different monitoring strategies to meet the same global objective: ensuring public safety and protecting 

the environment. 

 

The work in this thesis has been executed as part of several projects whose final objectives were focused 

on improving the water quality monitoring of surface and drinking waters through holistic approaches, 

that is, by developing methodologies based on different techniques in order to integrate them to achieve 

the optimum solution. Each of these methodologies has constituted one chapter in this thesis. The 

following advances are presented as the result of this thesis: 

 

 

- Optimisation of methodologies based on off-line techniques in the laboratory including solid 

phase extraction, liquid chromatography and mass spectrometry for the identification and 

quantification of a selection of emerging pollutants (pharmaceutical compounds) 

 

A selection of pharmaceuticals (28) and oestrogens (10) was made based on previous studies in 

order to identify their presence along the Llobregat River. Different locations were monitored, 

estimating the time that the same mass of water would need to arrive to each of the sampling 

points. This way, the persistence of the compounds and the contribution from subsidiaries and 

discharges could be taken into account. 

 

For the detection of emerging compounds at very low levels, a methodology must be based on a 

very sensitive technique. Currently, only large laboratories have the capacity to perform these 
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analyses through the use of chromatographic plus mass spectrometry technologies. In this case, 

the analysis of pharmaceuticals was performed by off-line solid phase extraction (SPE) followed 

by liquid chromatography tandem mass spectrometry with a triple quadrupole analyser (LC-QqQ-

MS/MS). For the analysis of oestrogens, an instrument coupled to the chromatograph in order to 

automatically perform the extraction and pre-concentration of the compounds from the sample 

performed SPE. 

 

This technique is very accurate and sensitive, but 2 selected reaction monitoring (SRM) 

transitions must be recorded for each compound in order to unequivocally confirm its presence. In 

the case of ibuprofen, gemfibrozil, pravastatin, ketoprofen and ofloxacin, for which only 1 SRM 

transition was detected due to poor fragmentation of the molecule, additional analysis was 

proposed through ultra-performance liquid chromatography/mass spectrometry with a time-of-

flight analyser (UPLC-TOF-MS). The main constraints of this technique is the lower sensitivity 

compared to LC-QqQ-MS/MS and the extra cost of performing a second analysis.  

 

Concerning results, 23 out of the 28 pharmaceutical compounds were detected in at least one 

sample. The highest concentrations were observed for the β-blockers metoprolol and sotalol, the 

antibiotic ofloxacin and the lipid regulator gemfibrozil. Within the group of oestrogens, only 

oestrone and oestrone-3-sulphate were positively identified. Oestrone-3-sulphate showed 

concentrations in some locations considered sufficient to induce oestrogenic effects in aquatic 

organisms. As a general pattern, the concentration of target compounds increases along the river 

flow as expected. 

 

 

- Integration and validation of emerging biosensing technologies for the on-line automatic 

measurement of global toxicity of surface waters by inhibition of Vibrio fischeri 

luminescence 

 

A fully automatic on-line water toxicity monitor called TOXcontrolTM, based on the measurement 

of the inhibition of luminescence by bacteria, was tested for the first time in the Llobregat River 

basin. The results for the period studied showed that the toxicity was negligible or even negative 

mainly due to the low concentration of the toxic substances and the high occurrence of organic 

matter and nutrients that may act as a catalyst for the metabolism of the bacteria. No special event 

took place during the testing period to prove the feasibility of the instrument as an Early Warning 

System. 
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As very few bibliographic references existed regarding this technology, inhibition curves and 

EC50 values were calculated for a selection of compounds that can be found in European rivers 

and drinking waters. EC50 results (in mgL-1) were obtained for nonylphenol (0.03 and 0.06 for 15 

and 30 min respectively), triclosan (0.13 and 0.13), terbuthylazine (2.88 and 2.74), dimethoate 

(6.80 and 6.20), diclofenac (10.26 and 9.82), SDBS (50 and 39), diazinon (193 for 15 min), 

propanil (1594 for 15 min) and MCPA (2.0 for 15 min). Heavy metals were selected to represent 

ions that were found in water distribution systems due to leachate from pipe material. In this case, 

results were performed using copper (II) (10.61 and 4.68), nickel (II) (317 and 222), chromium 

(III) (190 and 123) and iron (III) (52 for 15 min). 

 

The same organic compounds were tested in an interlaboratory exercise to compare the response 

of TOXcontrolTM with the results obtained using standardised methodologies based on 

MicrotoxTM and D. magna tests. The values obtained for V. fischeri using the testing instrument 

were in general in good agreement with those obtained using MicrotoxTM and those found in the 

literature. In the case of D. magna tests, higher differences were found, particularly for diazinon 

and nonylphenol. This difference is not unusual, because the technique is based on the response 

of different organisms. 

 

In the case of metal compounds, a comparison was only carried out between the results obtained 

using TOXcontrolTM and values reported in the literature using V. fischeri techniques. A 

comparison with the published data identified major differences, providing an indication of the 

need to standardise the evaluation protocols to achieve reliable data. 

 

The results presented show that the TOXcontrolTM system is accurate and reproducible enough to 

be used as an on-line automatic alert system. No toxicity response was obtained when testing in 

real conditions in the Llobregat River waters as the level of toxicants are normally far below 

EC50 values. This can be seen as an indication of the improvement of the quality of the river 

during the last decade through the improvement of the wastewater treatments along the basin. 

Therefore, the system could be used as an early warning system (EWS) able to report abnormal 

values of toxicity in the river, due to accidental or deliberate contamination, as it is currently used 

in the Netherlands, Germany, Romania and China (Huangpu River). 

 

In the case of drinking waters, there is an additional constraint. In the case of Barcelona, for 

example, noticeable levels of chlorine are present in the sample as a result of the disinfection 

process. The chlorine shows a high toxicity to V. fischeri so no alarm could be obtained because 

of the presence of another toxic substance. However, it is possible to avoid this interference 

through the use of reagents such as sodium bisulphite so it can be used for such applications. 
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- Development of methods based on an in-line UV-Vis spectrophotometer for real-time 

monitoring of physical-chemical paremetres in river (early warning system) and drinking 

water (prediction of blends of different sources) 

 

A UV-Vis probe obtaining a fingerprint of a water sample, that is the spectrum from 200 to 750 

nm, was used successfully in two different applications for drinking water quality monitoring. 

 

On one hand, the on-line measurement of surface water could be used as an EWS before the 

intake of the DWTP if a sudden alteration of water quality occurs. The probe contained 

previously calibrated models for the transformation of the fingerprint into the following 

paremetres: turbidity, total organic carbon (TOC), nitrates and SAC-254. The study also 

attempted to establish correlations between the values obtained from the probe and the analysis 

performed in the laboratory. This comparison was intended to give information on the 

performance of the instrument and it could also be used for the local calibration of the probe. 

 

The main difficulty found when validating the probe was the unstable conditions of the Llobregat 

River. The water matrix changes quickly and the probe was calibrated for a concentration range 

of paremetres narrower than the range found in real conditions. Moreover, the models used were 

obtained in surface waters with different characteristics from the Llobregat River. This led to a 

situation where measures were not recorded during storm episodes (high turbidity but more 

chance of there being an alarm due to contamination) and correlations not optimum for nitrate and 

TOC. 

 

The probe was used to measure the water fingerprinting, thereby reflecting the nature of the 

organic matter. This fingerprint is representative of every water source and was used for the real-

time assessment of changes in water quality instead of identifying single contaminants. This 

information could be used by water managers in charge of distributing drinking water in 

Barcelona in order to identify the origin of the water in an exact location of the network in real 

time. 

 

A multivariate model able to describe and distinguish different water sources and blends in the 

drinking water of Barcelona was obtained from 37 physicochemical paremetres measures in 191 

samples from different locations over one year. Another model was built using the fingerprint 

(absorbance values at 101 different wavelengths) for the same samples. The Principal Component 

Analysis (PCA) model based on UV-Vis spectral was compared with the PCA model built from 
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the laboratory physicochemical data. The correlation was good but in order to improve the 

prediction capability, an analysis of the combination of UV-Vis data with a selection of 

physicochemical paremetres (conductivity, fluoride and boron) was performed. These paremetres 

were chosen for the information they provide and for their ability to perform on-line 

measurements if necessary. Conductivity helps to discriminate between different surface water 

sources, where boron is an indication of the presence of seawater origin, and fluoride acts a 

marker for groundwater origin. 

 

Moreover, the influence of the water sources and blending on the occurrence and speciation of 

different trihalomethanes (THMs) was quantified. Water coming from the Llobregat River, and to 

a lesser degree from the desalination plant, both with low levels of bromide and iodide, lead to a 

trend of brominated THMs formation, while water coming from Ter River tends to form 

chlorinated THMs. 

 

 

- Proposal of indexes for measuring the ecological impact of contaminants on aquatic and 

terrestrial ecosystems 

 

For the assessment of the potential hazard of the substances found in the Llobregat River waters 

to the safety of ecosystems, a series of indexes were developed. These indexes allowed us to 

assess the impact on aquatic organisms and terrestrial vertebrates. The methodology was based on 

comparing the average concentration of a toxic substance compared to the higher concentration 

that has no predicted effect on the environment (PNEC).  

 

The list of substances was limited to existing databases for water quality paremetres in the case 

study location (Catalan Water Administration and Barcelona water utility) and those 

contaminants where a toxicological reference value could be obtained. Additional data was 

collected through the analysis of water samples for pesticides and pharmaceutical products in 

order to include paremetres not analysed routinely but with existing references for their toxic 

effect in the literature. The PNEC was calculated from the existing toxicological studies divided 

by an assessment factor (AF). The higher the uncertainty in obtaining the reference value, the 

higher the AF, so the calculated PNEC would be lower. In this case, the indexes tended to be 

higher in order to be more conservative when assessing the risk. 

 

Indexes for aquatic organisms were normally higher than the indexes for terrestrial vertebrates 

indicating that bioconcentration in a single chain level would reduce the impact on vertebrates 

that are predators of the aquatic organisms. Additionally when regulatory thresholds are used as 
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reference levels, indexes tended to be lower, as these thresholds are not so conservative because 

they have been obtained from a significant number of toxicological studies.  

 

According to the results, all the metals studied (barium, copper, nickel and zinc) gave indexes 

above 1 for aquatic organisms, zinc being the highest, reaching values of 100 and 1000. For 

terrestrial vertebrates, only zinc showed impact. Concerning organic compounds, the most 

significant indexes for aquatic organisms referred to the pesticides terbuthylazine, diazinon and 

MCPA, and the antibiotics clarithromycin and ciprofloxacin. The indexes calculated for terrestrial 

vertebrates showed no significant impact. When the relation was established using the threshold 

according to legislation, chlorpyrifos and lindane showed indexes above 1 for some months.  

 

 

- Creation of indexes to evaluate the efficiency of water treatment technologies and assess the 

potential impact of contaminants on drinking water to the supplied population 

 

Indexes were developed, not only to assess the impact of chemical organic pollutants on the 

ecosystem, but also to measure the potential hazard of these substances to human health. The 

methodology used for the assessment considered systemic and carcinogenic effects caused by the 

oral ingestion of water. A series of concentration values covering up to 261 chemical paremetres 

over 5 years of raw and treated water in the Sant Joan Despí DWTP was used. The reference data 

for the calculation of the indexes were obtained from the databases developed by the World 

Health Organisation (WHO) and the Risk Assessment Information System (RAIS). 

 

A tool was created using the Microsoft ExcelTM programme for the calculation of risk indexes. 

Once the data on monthly average concentrations were loaded, the tool automatically presented 

the global risk for each year through the addition of individual risk indexes after performing some 

filtering. For the calculation of annual concentration averages, the tool attributed a value of half 

the limit of quantification (LOQ/2) to those concentrations below LOQ. Filtering was applied in 

order to exclude those contaminants with no toxicity reference data and those whose 

concentration had been obtained from analytical techniques that were not sensitive enough. This 

last filter avoided an overestimation of the global risk when individual risks were obtained from 

high LOQ/2 values.  

 

The annual evolution of global indexes showed a decrease in the global values for all situations in 

the 5-year period: the systemic index based on RAIS fell from 0.64 to 0.42 for surface water and 

from 0.61 to 0.31 for drinking water; carcinogenic index based on RAIS was negligible for input 

water and varied between 4.2x10-05 and 7.4x10-06 for drinking water; the systemic index based on 
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WHO varied between 0.41 and 0.16 for surface water and between 0.61 and 0.31 for drinking 

water. All the resulting global indexes were located below the thresholds except for the 

carcinogenic risk at the output during 2008 and 2009 when the index was slightly above the 

threshold. A specific analysis for the indexes associated to THMs showed the same pattern.  

 

These indexes showed the improvement of the produced water, especially after 2009 when the 

ultrafiltration (UF) and reverse osmosis (RO) membrane technologies were installed in the 

DWTP. 

 

For systemic risk, the compounds with a higher contribution to the indexes at the inlet were 

nitrates and nitrites. Bromates, strontium, boron, barium and nickel also contributed considerably. 

At the outlet, boron and the halogenated chlorodibromomethane, bromoform, trichloroethene and 

1,1,2-trichlorethane appeared at the highest position along with the former compounds. For 

carcinogenic risk, no significant risk was shown at the inlet. The risk was higher at the outlet, as 

DBPs can only be found in treated water. Legislated THMs and 1,1,2-Trichloroethane made the 

maximum contribution to the general risk. 

 

The paremetres excluded at the filtering process were compared to the drinking water legislation. 

Only free chlorine and chlorides in 2008 and 2009, and sodium in 2009 showed average 

concentrations slightly above the thresholds. 

 

10.2. Possible future research 

 

New methodologies are constantly being developed to analyse new substances in the laboratory that are 

suspected to be potentially harmful. Recent publications report the increasing use of nanoparticles used in 

industry and the growing concern about their impact on the environment. For example, the occurrence of 

fullerenes has been reported recently in the vicinities of Barcelona (Sanchís et al., 2014). Legislation such 

as the European Directive for Registration, Evaluation, Authorisation and Restriction of Chemicals 

(REACH) contributes to a need to assess and manage the risks posed by chemicals and the need to 

properly monitor them.  

 

Although laboratory analytical methodologies tend to be more sensitive than sensors working on line, 

these new emerging substances are present in concentration orders of even pgL-1. Pre-concentration 

techniques, such as SPE, help to reduce the detection limits of laboratory instruments.  
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Other techniques exist in order to perform this concentration on site. Passive sampling techniques, which 

simulate bioaccumulation organisms, are composed of a sorbent material that collects pollutants in 

proportion to time and concentration. They have shown themselves to be a reliable tool to allow the 

detection of levels much lower than those obtained by the traditional analysis of spot water samples 

(Allan et al., 2006). New technology has been developed in this field by the use of an integrative 

sampling device that consists of a small peristaltic pump controlled by an electronic board that governs its 

operation by pre-programming. A constant flow passes through a glass cell containing adsorbent material, 

thereby overcoming the problems related to turbulences in the water flow (Santiago Sánchez et al., 2014). 

 

The analysis of pharmaceutical compounds and oestrogens in this thesis confirms the presence of some of 

the target compounds in concentrations that could lead to a potential risk to the environment. Further 

studies on the risk of these and other substances need to be undertaken. As has been previously stated in 

this thesis, the development of analytical techniques should be accompanied by an increasing number of 

toxicological studies so that more accurate risk assessments can be performed. 

 

On-line detection systems, such as the commercial devices tested in this thesis, are generally designed to 

provide fast but not accurate data on the quality of water. A network of instruments needs to be installed 

in the most sensitive locations of a system, these being a water basin or a drinking water production and 

distribution network. Ideally, these systems should attempt to characterise the contamination event by 

identifying the contaminant or its class, indicating the concentration of the contaminant, calculating its 

spread within the system, and determining the duration of the event (ASCE, 2004). 

 

The main problems that were found when testing the on-line instruments could be grouped into two areas: 

 

- Lack of sensitivity. The instruments were designed to perform the measurement of the target 

paremetre (or surrogate) in a small amount of a water sample. Due to the fact that some 

contaminants are present in very low concentrations in surface waters, and even lower in drinking 

waters, the required sensitivity is not achieved in a significant number of cases. Increasing the 

volume of the sample could improve the LOQ but would also lead to some problems related to 

the presence of interfering substances or the matrix itself and, in some instruments, a higher 

consumption of reagents. 

 

- Lack of adaption to local conditions. The instruments were normally designed and validated to 

work on a specific environment. The longer the time the device is on the market, the more 

experience is gained in different situations and specific adaptations may be designed. These 

adaptations may be in the hardware or in the software used to convert the signal into a required 

paremetre. 
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In the case of TOXcontrolTM, a pre-concentration system needs to be adapted to analyse larger volumes of 

water. A prototype of an on-line SPE instrument was tested as part of this thesis but the results showed 

low recoveries and low reproducibility. Moreover, the time for the analysis rose from 45 minutes to 2 or 3 

hours. In order to solve this problem, on-going projects have been focused on developing and validating a 

new SPE system. 

 

Additionally, new tests could be done in order to discover the response of the instrument to new 

compounds. The toxicity of both sulphapyridine and its acetylated metabolite was evaluated for the first 

time by using TOXcontrolTM as part of a collaborative research project. Inhibition curves were obtained 

and a EC50 of 27.4 mgL-1 was observed for sulphapyridine and 8.2 mgL-1 for its metabolite. The results 

were published by (García-Galán et al., 2012). As more toxicological studies are performed based on V. 

fischeri, the more feasible it will be to establish comparisons with other results and to assess the accuracy 

of the instrument. 

 

In the case of spectro::lyserTM, as it is an in-line probe that works submerged in the water flow, no pre-

concentration system could be attached, unless the probe was operated in an on-line mode by the use of a 

flow cell. In this case, working with different optical lengths could help to partially solve the problem of 

sensitivity. A large optical length should be used in situations with a very clear matrix e.g. drinking water, 

while a shorter length might be used when dealing with surface water.  

 

In our case, the Llobregat River, the ideal situation would be to work with two probes with different 

optical length. At situations with no rainfall, that is, low turbidity, a wider optical length would make it 

possible to detect compounds with higher sensitivity. During storm events, when turbidity is much higher, 

a narrower optical length would mean a loss of sensitivity but would make it possible to record data even 

though turbidity increases. 

 

Another strategy needed in order to adapt to local conditions is the development of prediction models 

based on local data. Global calibration models can be adjusted to local data but if these models have been 

created in very different environments it is advisable to create new ones. A new model for the prediction 

of nitrates was created for the Llobregat River (results not published). The results showed a more accurate 

prediction model than the one supplied using the probe. The main problem was related to the fact that the 

new model was external, so no automatic real-time information on nitrates concentration could be 

obtained, as fingerprints needed to be downloaded to work with them. Discussions have been initiated 

with the instrument developers in order to assess the feasibility of uploading self-developed prediction 

models. 
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According to Bogue (2008), academic and industrial research groups are working on the development of 

new sensors motivated by the desire to replace some laboratory determinations with on-site 

measurements; the need for more sensitive sensors in response to falling limits; and the requirement for 

more data to provide spatial coverage. Some considerations such as the initial investment and the 

operational cost should be compared against the benefits arising from the ability to obtain data more 

rapidly.  

 

As the optimal on-line instrument does not currently exist, the approaches that are most likely to succeed 

will involve one tier of instruments to detect contamination events and provide location information, 

while a second tier (which will probably require the laboratory analysis of samples) will be needed to 

identify and measure the specific contaminants (ASCE, 2004). 

 

PNEC calculations are based on the numbers of toxicological studies and the information they provide 

(e.g. long term effects instead of only acute toxicity). More information on toxicological effects will lead 

to more accurate PNEC calculations. Toxicological information not currently available on new 

compounds plus the acquisition of concentration values of new substances due to an improvement of the 

sensitivity of analytical techniques will lead to the creation of new indexes. As the toxicological 

information is more accurate, more compounds will be able to be included in the list of priority pollutants. 

This will mean the creation of new EQS that are less conservative than predicted PNEC. The inclusion of 

a substance as a priority pollutant may decrease its ecological impact, depending on the calculations 

performed.  

 

Progress on the risk assessment regarding the effect of pollutants in ecosystems may lead to a situation 

where individual risks may be lowered due to the reduction of the uncertainty in PNEC calculations, but 

at the same time, the global risk may appear to be increased due to the inclusion of new substances.  

 

In the case of the indexes developed in this thesis to measure the impact of water pollutants on human 

health, the global values may rise in the future due to the inclusion of compounds that were rejected in the 

filtering steps. If new reference data are included in the RAIS and WHO databases and the LOQ of the 

analytical techniques are improved, more individual risks values would contribute to the global one. 

Although the number of included paremetres grows, the thresholds for the global risks values will remain 

the same (the ones established for individual risks, a ratio of 1 for systemic risk and a ratio of 10-5 for 

carcinogenic risk). This fact may lead to a situation where added values will rise above the thresholds 

even if the situation improves. A new threshold could be established when aggregating indexes, e.g. a 

value considering the number of paremetres included. Otherwise, this will lead to a situation where sites 

with more sophisticated and complete monitoring programmes will be disadvantaged. 

 



Ingeniería Ambiental 

 

247 

 

 

10.3. Expected impacts 
 

10.3.1. Impact of the state of the art of the technology 

 

The research included in this thesis was performed using the best technology available at the time when 

the projects were executed. A benchmark was established for every project in order to select the 

technology that best suited the needs of the end users from between the most advanced technologies.  

 

The performance of tests at the end users’ facilities according to their needs helps to spread these 

technologies and their uptake in the market. For this reason, it is important to publish the results although 

it is not a common practice when the end users themselves perform the tests. Recommendations included 

in the publications will help the developers to improve their instruments or to design new ones. 

 

In the analysis of emerging compounds, the most accurate and sensitive technologies available in the 

laboratory were selected. It was important to be able to identify a whole family of compounds using a 

unique analysis in order to optimise cost and time. A review of the literature showed that HPLC-QqQ-

MS/MS was the most adequate technique due to its capacity to obtain two product ions from the parent 

one; therefore 2 transitions could be observed, making the technique suitable for providing the level of 

confirmation needed. When 2 transitions cannot be obtained, due to the poor fragmentation of the ion, an 

additional technique may be used in order to perform an unequivocal confirmation. In this case, UPLC-

TOF-MS was used due to the high accuracy of this technique although sensitivity was not as high as the 

previous one. Apart from triple quadrupole (QqQ) and time-of-flight (TOF), other similar mass 

spectrometry techniques have been used recently to analyse similar compounds, such as the ion trap and 

LTQ-Orbitrap XL mass spectrometer (Haddad and Kümmerer, 2014). 

 

Concerning on-line selected instruments; the use of optical devices is increasing. The main advantages of 

these technologies are related to their low maintenance and, in the case of spectrophotometry, the use of 

reagent free techniques. Multi and hyperspectral technologies are considered multiparemetre sensors and 

several paremetres can be obtained by developing the proper calibration models. The possibilities of 

working with fingerprints through the use of chemometrics will make it possible to extract the 

information that might be useful for the end user. Any substance in water that has a response in the range 

the device is measuring (IR, Visible or UV) can be monitored. Alternatively, there are strategies that base 

the monitoring on the shape of the fingerprint without the intention of obtaining indirect paremetres. 

Other instruments such as TOXcontrolTM and ColiguardTM, although using reagents to obtain a 

response, perform their detection through optical techniques.  
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10.3.2. Impact of the case study 

 

Thanks to the projects developed, monitoring platforms were tested in Barcelona for surface and drinking 

waters. End users could benefit from the results because: 

 

- Selected instruments were tested and adapted to local conditions, plus specific calibration models 

were developed 

- Knowledge was gained on water quality paremetres and their effects on the health of ecosystems 

and the public 

 

Results from the monitoring performed confirmed the presence of high consumption drugs. Significant 

levels were found for the ß-blockers metoprolol and sotalol, the antibiotic ofloxacin, the lipid regulator 

gemfibrozil, and the oestrogens oestrone and oestrone-3-sulphate. Oestrone levels were in some sites 

close to those considered sufficient to cause oestrogenic effects in aquatic organisms. However, the most 

polluted waters are currently diverted and discharged to the river at a location downstream of the intake of 

the Sant Joan Despí DWTP. 

 

In the case of drinking water distribution, the results of the work confirmed that a tool based on the real-

time measurement of some paremetres and their subsequent chemometric analysis could be of great help 

in the operation of complex drinking water distribution systems. 

 

Concerning the methodology introduced based on the assessment of the hazard of water pollutants to the 

consumers; an estimation of the risk reduction benefit when a change to the treatment line is introduced 

was achieved. The methodology could be used to estimate potential health benefits for any investment. 

The indexes developed provide a quantification of the quality improvement that could be integrated with 

Life Cycle Assessment (LCA) and Life Cycles Costing (LCC) analysis. This study could help to develop 

new managing practices based, not only on the occurrence itself, but also on the potential hazard of the 

chemical contaminants. 

 

10.3.3. Impact of legislation 

 

Legislation on natural and drinking waters is evolving constantly. Paremetres to be measured in surface 

waters have recently increased from 33 to 45 (2013/39/EU). Apart from this list of priority pollutants, a 

watch list has been defined. Currently, this list includes 3 pharmaceutical compounds (estradiol, 
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ethynylestradiol and diclofenac) but more compounds will be included soon (a draft of this extended 

watch list currently exists). Methodologies for analysing these paremetres need to be ready. 

 

Moreover, some guidelines recommend a monitoring strategy based on risk assessment and the 

measurement of global paremetres in order to decrease the cost of an increasing number of substances and 

for monitoring to be more locally adapted. The thesis provides public administrations and water operators 

with the tools that could be the basis of new managing strategies for decision-making. 
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