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sistemas caóticos con retraso mediante

redes neuronales

Memoria presentada por la Ingeniera

Silvia Ort́ın González
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Chapter 1

Motivations and outline

I n the last years there has been an intense research in chaos-based com-
munications. One of the original motivations for research in chaos-based
communications arose from the ongoing need for methods to communicate
information offering privacy and security. The understanding of chaotic dy-
namical systems leads to a natural application to “hide” information in the
broadband spectrum of chaotic waveforms. Chaotic waveforms provide an
additional layer or level of privacy beyond any conventional software-based
cryptography that can be simultaneously part of the communication protocol.
Moreover, the typically broadband spectrum of the chaotic signals is also de-
sirable for applications that require robustness against interference, jamming
and low detection probability.

Although great advances have been made in the field of chaos-based com-
munications it is very difficult to determine the privacy offered by any specific
scheme of chaotic communication. Some rules have been suggested to achieve
a reasonable degree of security [Alvarez and Li 2006]. Methods to quantify the
cryptanalysis of chaotic encryption schemes have been also proposed [Tenny
and Tsimring 2004]. However, the analysis of the security of different chaotic
communication systems is still a question that has to be addressed for practical
applications in the field.

Many chaos-based encryption schemes have been proposed, and many of
those schemes have been broken later on. It was early shown that low dimen-
sional chaotic systems can be often cracked using standard nonlinear tech-
niques [Pérez and Cerdeira 1995, Short and Parker 1998]. Higher dimensional
systems, especially those involving hyperchaotic dynamics, are likely to pro-
vide improved security. Nonlinear time-delay systems can have chaotic attrac-
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2 Chapter 1. Motivations and outline

tors whose dimension increases with the delay time, reaching very high values
[Farmer 1982]. It is then computationally difficult to reconstruct the nonlinear
dynamics of these systems with time-series analysis techniques based on the
standard embedding approach. However, it is possible to reconstruct the non-
linear dynamic of a single-variable time-delay system by using an embedding-
like approach [Bünner et al. 2000a;b, Hegger et al. 1998]. This method works
with a special embedding space that includes both short time and feedback-
time delayed values of the system variable. It permits to reconstruct the
nonlinear dynamics of a chaos time-delay system without having any a-priori
knowledge about the equation that rule the system.

This thesis focuses on the reconstruction of the nonlinear dynamic of time-
delay systems applying this special embedding. We use global nonlinear mod-
els (Neural Networks) instead of the local linear ones used by Bünner and
coworkers. The global models present serious advantages over the local linear
models, such as a smaller computation time to construct the model. We also
carefully investigate the time delay identification from the time series, a cru-
cial parameter to construct the special embedding vector. Finally we shall use
the reconstructed models to show the vulnerability of the chaos-based commu-
nication system based on time-delay systems and to study the predictability
of these systems.

We particulary focus on optical communication systems with delayed feed-
back. Optical communication system are very interesting because they offer
the possibility of high transmission rates (range of Gbits) [Argyris et al. 2005,
Uchida et al. 2005]. Moreover, semiconductor lasers subject to feedback pro-
vide simple ways of generating chaotic signals with high dimensional attrac-
tors. Two schemes based on all-optical and electro-optical feedback have been
considered. We particulary concentrate our attention in electro-optical feed-
back system that present chaos in wavelength. These systems can be modelled
by the Ikeda equation [Ikeda 1979, Ikeda and Matsumoto 1987] that has turned
out to be a paradigm for the study of delayed chaotic system under variations
of the nonlinear strength. The experiments were performed in the group of
Prof. Laurent Larger (Université de Franche-Comté, Besançon, France). This
particular system does not reach high transmission rates, but it permits to an-
alyze the time delay identification and the nonlinear dynamics reconstruction
for high dimensions and entropies. Therefore, we can use this system to deter-
mine the effect of these magnitudes in the nonlinear dynamics reconstruction
and time delay identification.

Although we mainly focus on electro-optical feedback system, the tech-
niques investigated in this thesis have a general applicability to scalar time-
delay systems. In particular, we also study the Mackey-Glass system from
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numerical and experimental data. These experiments were performed in the
electronics laboratory at IFCA.

The thesis is outlined as follows:
In Chapter 2 (Introduction) we introduce and explain various concepts

and terms that will be referred for the remainder of the thesis. The chapter
starts with a general introduction to chaotic systems, followed by a closer look
at chaos-based communications. We particulary focus on the security of these
systems. The chapter finishes with a general description of the nonlinear time
series analysis and the neural networks.

In Chapter 3 (Time delay identification) we study the identification of
the time delay from numerical and experimental time series of semiconductor
lasers subject to optoelectronic and optical feedback. To this aim we use
different techniques. The identification of the time delay is a key step in the
reconstruction of the nonlinear dynamics. We analyze semiconductor lasers
subject to one and two fixed time-delays. We apport original contributions
based on the development of adapted methods to identify multiples fixed time
delays. Finally, we also develop a new technique based on the standard ones
to identify the periodic time delay and we apply this method successfully
to the experimental time series of a semiconductor laser with optoelectronic
feedback.

In Chapter 4 (Nonlinear dynamics reconstruction of time-delay
systems) we reconstruct the nonlinear dynamics of time-delay chaotic sys-
tems from time series using neural networks. In this chapter we use a new type
of modular neural network based on the structure of time-delay systems. We
analyze the advantages of the modular versus the standard neural networks
and the effect of the nonlinear strength and the time delay on the nonlin-
ear dynamic reconstruction. We have particulary focused on two time-delay
chaotic systems: the Mackey-Glass system and the semiconductor lasers sub-
ject to optoelectronic feedback. For the latter system, the nonlinear dynamics
is reconstructed when the system is subjected to one or two fixed time de-
lays. Experimental nonlinear dynamics reconstruction of the semiconductor
chaotic wavelength laser subject to optoelectronic feedback are shown for the
first time.

In chapter 5 (Prediction of time-delay nonlinear systems) we study
the forecasting horizon of a Mackey-Glass system using standard prediction
techniques and the anticipated synchronization. We use neural networks mod-
els of the original system obtained from numerical and experimental time se-
ries. On the other hand, we also show that convective instabilities appear
in chains of identical replicas of a time-delay system synchronized without
anticipation. We characterize these convective instabilities.
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In chapter 6 (Unmasking messages encoded by time-delay chaotic
systems) we construct an unauthorized receiver using neural networks from
the transmitted signal of a chaos-based optical communication system. The
chaotic carrier is generated by a semiconductor laser subject to optoelectronic
feedback. We show that the unauthorized receiver can recover the message
from numerical and experimental transmitted signals.

In chapter 7 (Concluding remarks and open questions) we close the
thesis with a summary and discussion of the presented research topics, con-
cluding with some suggestions for future research.



Chapter 2

Introduction

I n this chapter we will take a short tour of the field of chaos based com-
munication and nonlinear time series analysis. We introduce and explain
various concepts and terms that will be referred in this thesis. We begin with
an overview of chaotic systems, before focusing on the topic of chaos based
communications. We specially concentrate on optical chaotic communications
using semiconductor lasers subject to delayed feedback. Then, we go into some
of the issues concerning the privacy of these communication systems and in-
troduce the nonlinear time series analysis as a general approach to recover the
nonlinear dynamics of the chaotic system. Finally, among the different meth-
ods to reconstruct the nonlinear dynamics we point out the neural networks
and give some basic concepts related to them.

It is outside the scope of this thesis to give a complete overview of the field
of chaos based communications, or to exhaustively consider all the possible
approaches that can be chosen to tackle the aforementioned issues. A more
comprehensive treatment of the chaotic systems can be found in [Hilborn 2000,
Ott 2002, Pikovsky et al. 2001, Strogazt 1994]. Regarding the optical chaotic
communications and semiconductor lasers, one can look at [Ohtsubo 2007,
Uchida et al. 2005]. A good reference for nonlinear time series analysis is
[Kantz and Schreiber 1997]. Finally, an extensive information about neural
networks can be obtained from [Castillo et al. 1999, Haykin 2001, Kecman
2001].

5



6 Chapter 2. Introduction

2.1 Chaotic systems

Chaos has generated a great deal of attention in the scientific community in
the last decades. Although Henri Poincaré was the precursor of the chaos
theory in 19th century, the big development of chaos research was in the last
seventies with the advent of modern digital computing. The modern theory of
chaos has been constructed with the contributions of many investigators [see
Hilborn 2000, Ott 2002, Strogazt 1994, for a survey].

Chaos designates a class of dynamical behavior. The asymptotic behavior
of a dynamical system as time approaches infinity, can be a fixed point, a
periodic or quasi-periodic solution or chaos. It is well known that a dynamical
system consists of a set of possible states, together with a rule that determines
the present state in terms of past states. The rule must be deterministic, which
means that one can determine the present state uniquely from the past states.
If the rule is applied at discrete times, it is called a discrete-time dynamical
system, also called maps. The continuous-time dynamical system is essentially
the limit of discrete systems with smaller updating times. The evolution rule
in that case becomes a set of differential equations.

The phase space of a dynamical system is a mathematical space with
orthogonal coordinate directions representing each of the variables needed to
specify unambiguously the instantaneous state of the system. The number of
degrees of freedom of a dynamical system is the dimension of its phase space,
i.e., the number of variables needed to completely describe the system. The
phase space can be finite-dimensional (as in ordinary differential equations and
mappings) or infinite-dimensional, as in partial differential equations and delay
differential equations. The attractor is the set in the phase space formed by the
non-transient trajectories of the system. The dimension of the attractor gives
an estimation of the number of the active degrees of freedom for the system
and it is an important feature for the nonlinear dynamics reconstruction based
on embedding techniques as we shall see later (see section 2.6). Thus, the
dimension of the attractor is smaller than the dimension of the full phase
space.

Necessary conditions for chaos are the nonlinearity of the system and di-
mension larger than two when the system is described by ordinary differential
equations (Poincare-Bendixon theorem). Chaos in one dimensional system is
only possible if the system is discrete (maps).

There is a lack of a general definition of chaotic systems, however they share
three essential properties. First, they are very sensitive to initial conditions,
i.e., nearby trajectories of a given variable separate exponentially fast. Second,
they can display a highly aperiodic behavior which looks random, and third,
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despite the last feature, they are deterministic. It is worth noting that because
of their random-like behavior, chaotic signals have impulse-like autocorrelation
functions and white wideband power spectra.

Several methods and measures are available to recognize and characterize
chaotic systems [see Kantz and Schreiber 1997]. One of the most important
measures to quantify chaos are the Lyapunov exponents. As above mentioned,
the sensitivity to initial conditions is a distinctive feature of chaotic behavior.
Initially arbitrary close points in the phase space produce markedly different
trajectories. Characteristically, trajectories in chaotic systems diverge expo-
nentially and Lyapunov exponents are a measure of the average rate of the
exponential divergence of two trajectories. For a N-dimensional dissipative
system there are N Lyapunov exponents, since the divergence of the trajecto-
ries can occur in any direction of the system. The largest Lyapunov exponent
represents the largest rate of exponential divergence. Chaotic systems have
at least one positive Lyapunov exponent, i.e., at least in one direction the
difference of the trajectories grows in an exponential way.

Another important quantifier of a chaotic system is the metric entropy,
also known as Kolmogorov-Sinai (KS) entropy. The KS entropy measures
the average loss of information rate, or equivalently is inversely proportional
to the time interval over which the future evolution can be predicted. It
can be interpreted as a measure of unpredictability of a dynamical system.
The KS entropy is zero for periodic systems, positive for chaotic systems
and infinite for a stochastic/random process. Moreover, the KS entropy is
connected with the Lyapunov exponents by the Pessin’s theorem. Roughly
speaking the theorem says that the KS entropy is equal to the sum of the
positive Lyapunov exponents.

These two dynamical quantifiers (Lyapunov exponents and KS entropy)
play a very important role in the predictability of the chaotic systems. The
long-time prediction in a chaotic system is impossible due to the exponential
growth of the nearby trajectories that is measured by the Lyapunov exponents.
Therefore, the limit for the predictability of a chaotic system is related to the
largest positive Lyapunov exponent. The prediction time, T , can be estimated
by inverse of the largest Lyapunov exponent, λ, as T ∼ λ−1. On the other
hand, the KS entropy is a measure of how great our failure to predict the
future state will be; the larger the entropy, the larger the unpredictability of
the system.

The two above methods of quantifying chaos (Lyapunov exponents and
KS entropy) focus on the dynamics (evolution in time) of trajectories in the
phase space. However, one can also pay attention to the geometric features of
the attractors. The geometry of chaotic attractors can be complex and diffi-
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cult to describe. It is therefore useful to have quantitative characterizations
of such geometrical objects. Perhaps the most basic characterization is the
dimension of the attractor. One way to estimate the attractor dimension is by
the Kaplan-Yorke conjecture, that states that the dimension of a strange at-
tractor can be approximated from the spectrum of Lyapunov exponents. Such
a dimension has been called the Kaplan-Yorke (or Lyapunov) dimension.

2.2 Chaotic Synchronization

Synchronization is an ubiquitous phenomenon, which can be encountered in a
lot of scientific disciplines [Pikovsky et al. 2001]. Synchronization in dynami-
cal systems was introduced by Christiaan Huygens in 1665. He observed that
two pendulum clocks which are suspended on the same support, display per-
fectly out of phase oscillations. The clocks did influence each other through
imperceptible movements of the common support.

The idea of chaos synchronization between two nonlinear systems was pro-
posed by Pecora and Carroll [1990]. After their proposal, synchronization
phenomena in various chaotic systems including lasers have been reported.

If two nonlinear chaotic systems operate independently, the two systems
never show the same output because of the sensitivity of chaos to the initial
conditions. However, when a small portion of a chaotic output from one non-
linear system is sent to the other, the two systems synchronize with each other
and show the same output under certain conditions of the system parameters.
This scheme is called chaos synchronization.

The drive signal necessary to achieve synchronization in coupled systems
can go in all directions, but here we only consider the case of unidirectional
coupling, that is the way that has more applications in communications. In the
case of unidirectional coupling, the system which sends the synchronization
signal is indistinctly referred to as the emitter, the drive or the master system;
the system which receives this synchronization signal and thereby tries to track
the dynamics of the emitter is referred to as the receiver, the response or the
slave system.

There are different ways to characterize the synchronization. One is related
to the relationship achieved between the master and slave variables. Another
is concerned to the way the synchronization state is reached. In order to
explain the different ways to characterize the synchronization, let us consider
two autonomous N dimensional chaotic systems of the form:
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ẋ = f(x)
ẏ = g(y)

where x = (x1, ...xn) and y = (y1, ...yn) are N-dimensional vectors describing
the state of the master and slave system, respectively. Note that master and
slave may not be identical systems.

Concerning the functional relations in trajectories between the master and
the slave, the most well-known synchronization schemes are:

• Identical or complete synchronization: refers to a perfect locking of
chaotic trajectories of the master and slave so, limt→∞ ‖x(t)−y(t)‖ = 0.
The identical synchronization is sensitive to the mismatch between the
master and slave system [Ashwin et al. 1994, Brown et al. 1994, Kouo-
mou et al. 2004]. Therefore, it has been proposed to use the identical
synchronization as a method to validate nonlinear models obtained from
chaotic data [Aguirre et al. 2006, Brown et al. 1994]. This approach shall
be used through this thesis.

• Generalized synchronization is defined as the existence of a functional
relationship (G) between the states of the master and slave [Rulkov et al.
1995], limt→∞ ‖G(x(t))− y(t)‖ = 0.

• Lag synchronization implies that there is a time shift between the evo-
lution of the master and slave system, where the slave lags the state of
the master, limt→∞ ‖y(t)− x(t− τ)‖ = 0.

• Anticipated synchronization implies that there is a time shift between
the evolution of the master and slave system, but in this case the slave
is anticipating the state of the master, limt→∞ ‖y(t) − x(t + τ)‖ = 0.
It is a rather counterintuitive phenomenon, that has been proposed as
a way to increase the predictability of chaotic systems by using chains
of anticipated synchronized slaves [Voss 2001a]. However, it has been
recently shown that this scheme is unstable to propagating perturba-
tions. The spatiotemporal character of the coupled chain introduces a
convective like instability into the synchronization manifold [Mendoza
et al. 2004]. We shall show in chapter 5 that convective instabilities
also appear in chains of identical synchronized time-delay chaotic sys-
tems due to the time delay. Moreover, we shall analyze the predictions
obtained from the anticipated synchronization scheme using a chain of
slave neural networks that model the master system.
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• Phase synchronization is defined as the locking of the phases of the state
variables, whereas the amplitudes evolve freely and remain chaotically
uncorrelated [Rosenblum et al. 1996].

The above presented schemes determine the relationship between master
and slave systems once the synchronization state has been reached. To obtain
a synchronization state, several schemes have been presented in the literature.
One of the more widespread is the diffusive coupling proposed by Pyragas
[1993]:

ẏ = g(y) + kc(x1 − y1) (2.1)

where kc is the coupling parameter or the strength of the perturbation. For
identical systems, a synchronous solution of equation (2.1) exists in a math-
ematical sense. In other words, the synchronized state x=y is a fixed point
of the system which can be stabilized by the coupling term for a sufficiently
large strength kc. The diffusive coupling is very general and applicable to
most kinds of nonlinear dynamical systems.

2.3 Chaos on communications

There has been significant interest in recent years in exploiting chaotic dy-
namics in communications. Their special properties (sensitive dependence
on initial conditions, random-like behavior and continuous broadband power
spectrum) have emerged in several applications in the communication field.
One of the most outstanding is the chaotic communications based on chaos
synchronization.

In the communication field, spread-spectrum communications are well
known techniques that are used in many commercial applications, such as
the code division multiple access (CDMA) protocol used in the Global Po-
sitioning System (GPS) and in the third generation of mobile telephones.
The main concept behind the spread spectrum systems is a broadband trans-
mitted signal that occupies a bandwidth which is much larger than the mes-
sage/data/information bandwidth. The key idea for the exploitation of spread-
spectrum signals in communications is to increase the robustness against dis-
turbances affecting narrow frequency ranges, i.e. multipath propagations and
interfering signals.

Chaotic signals, with their inherent wideband characteristic, are natural
candidates for spreading narrowband information. In chaos-based communi-
cations the broadband coding signal is a chaotic waveform generated at the
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physical layer instead of algorithmically. These chaos based communication
systems have all the advantages of the standard spread spectrum techniques
regarding the robustness of communication channels to interferences with nar-
rowband disturbances. From a fundamental point of view, using waveforms
generated by deterministic chaotic systems to carry information in a robust
manner is a generalization of standard communication systems. Additionally,
chaotic carriers offer a certain degree of intrinsic privacy in the data transmis-
sion as we shall see in section 2.5.

In chaos based communications using synchronization, the message is some-
how hidden into the noise-like output of a chaotic emitter and sent to the
receiver via a public channel. The receiver thanks to the synchronization phe-
nomenon, performes a nonlinear filtering process, intended to generate locally
a message-free chaotic signal, which is then used to recover the message from
the encoded transmitted signal. This nonlinear filtering process is known as
the chaos-pass-filtering phenomenon. That is, the receiver only couples to the
chaotic component of the transmitted signal.

Therefore, the two basic requirements of chaos based communications us-
ing synchronization are a system able to generate a chaotic waveform and
the synchronization. The synchronization process is the key of the chaotic
communication system.

Concerning the way the message is embedded into the chaotic signal, a
great number of different modulation and demodulation schemes have been
proposed for chaotic communications based on chaos synchronization. Nonethe-
less, only some of them have been implemented. Depending on how the mes-
sage signal is encoded and decoded, the modulation schemes can be catego-
rized into three classes: chaos masking (CMA), chaos modulation (CMO) and
chaos shift keying (CSK) (see figure 2.1).

• Chaos Masking (CMA): In the additive chaos masking or chaos masking
the message signal is added to the chaotic carrier outside the transmitter.
Assuming that the receiver dynamics synchronizes only with the chaotic
carrier, the message is recovered by a simple substraction between the
transmitted signal and the output of the receptor. This procedure works
well when synchronization is not very sensitive to perturbations in the
drive signal. In particular the amplitude of the message must be small
enough with respect to the carrier, in order to reproduce a good quality
of a decoded message and to hide the message into the chaotic carrier.

• Chaos Modulation (CMO): In the chaos modulation, the message is
mixed nonlinearly with the chaotic carrier. This means that the mes-
sage signal affects directly the dynamics of the chaotic carrier. The
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original chaotic signal together with the message conforms a new chaotic
signal and, therefore, the message may essentially have a large ampli-
tude. However, the message must not be so large that it may completely
change the dynamics of the original chaotic system. Moreover, the mes-
sage itself may even explicitly appear in the transmission signal. For
these reasons a message with small amplitude is usually used in CMO.

• Chaos Shift Keying (CSK): The chaotic shift keying also known as
chaotic switching was designed to transmit digital message signals. In al-
most all proposed methods, the basic principle is to map digital symbols
to different chaotic basis signals, which are produced from a dynamical
system using different values of a bifurcation parameter or from differ-
ent dynamical systems. In the most simple scheme, presented in figure
2.1(c), the digital message is used to switch the transmitted signal be-
tween two statistically similar chaotic attractors, which are respectively
used to encode bit 0 and bit 1 of the message signal. These two attrac-
tors are generated by two chaotic systems with the same structure and
different parameters. The difference between the two chaotic states in
the CSK system must be very small, since the message can be easily
estimated from the attractors when the difference of chaotic oscillations
between the two states is too large. In the receiver each state is de-
tected by the technique of chaos synchronization. For practical use of
this system, we must take into account the transient time required for
the synchronization between the receiver and transmitter.

The possibility of secure communications based on chaos synchronization
was pointed out by Pecora and Carroll [1991] in their seminal paper about
chaos synchronization in nonlinear systems. The first experimental demon-
stration of chaos communication schemes were made in electronic circuits
[Cuomo and Oppenheim 1993, Cuomo et al. 1993, Halle et al. 1993, Kocarev
et al. 1992, Parlitz et al. 1992, Volkovskii and Rul’kov 1993]. In 1993 Cuomo
and Oppenheim proved experimentally, using electronic circuits that it is pos-
sible to mask and recover a message by using chaos synchronization. However,
the bandwidth of this system was inherently limited by its electronic nature
(few KHz). This successful experience was a breakthrough suggesting the use
of optical systems to increase the bandwidth available for information trans-
mission to the gigahertz range.
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Figure 2.1: General examples of CMA (a), CMO (b) and CSK (c) modulation
schemes



14 Chapter 2. Introducction

2.4 Chaotic optical communications

Researchers from different groups around the world have been trying to de-
velop optical communication systems exploiting chaos. One of the major mo-
tivations for using lasers is that optical chaotic systems offer the possibility of
high-speed data transfer.

The two necessary conditions for chaotic optical communications are the
optical chaotic generator and the synchronization between the transmitter and
receiver laser. Methods to lead lasers to chaos are numerous: as early empha-
sized, two necessary conditions are nonlinearity and threefold dimensionality.
Hence, when the nonlinearity of the laser (system) is not strong enough, an
external nonlinear element can be introduced. Along the same line, when the
dimensionality of the laser system is not high enough, it can be increased by
parameter modulation or by delayed feedback loops. The first to show chaotic
behavior in lasers was Haken [1975]. After that, chaos has been theoretically
and experimentally encountered in almost all types of lasers (solid-state, gas,
semiconductor, etc...).

The other essential ingredient of chaos based-communication systems is
synchronization. In laser systems, synchronization was experimentally demon-
strated for first time in CO2 lasers [Sugawara et al. 1994] and solid state lasers
[Roy and Thornburg 1994]. After that, many theoretical and experimen-
tal investigations for chaos synchronization in various laser systems including
semiconductor lasers were published. In laser systems, to obtain a unidirec-
tionally synchronization a small portion of the output from one of variables
is sent to the slave laser from the master. Identical chaos synchronization
is very sensitive to parameter mismatches between the master and slave sys-
tems [Kouomou et al. 2004]. Laser chaos synchronization was experimentally
complicated by the difficulty to build almost identical lasers. For example,
even for semiconductor lasers coming from the same wafer, we can not expect
exactly the same oscillation frequencies for the master and slave under the
same injection current.

In theory, the message can be encoded on the amplitude, frequency (phase)
or polarization of a light wave. However, the first two options are the most
extensively studied. The first experimental demonstrators of chaos based com-
munication systems were built by Van Wiggeren and Roy [1998] using erbium-
doped fiber ring-lasers, and by Larger et al. [1998a] using the wavelength chaos
generated with a semiconductor laser. Both methods used the CMO technique
to encode the transmitted message.

Semiconductor lasers are specially interesting for communication purposes
because they are the emitters in modern telecommunication systems using
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optical fibers. Therefore, much attention has been devoted to the application
of synchronization of semiconductor lasers to chaos communication. Among
others methods, semiconductor lasers can be driven to chaos when they are
subject to optical injection, current modulation, optical feedback or optoelec-
tronic feedback. Particularly interesting are the lasers with time-delay feed-
back because they can display a highly hyperchaotic behavior, that is, very
complex temporal oscillations characterized by hundreds of positive Lyapunov
exponents [Ahlers et al. 1998]. The feasibility of optical chaotic communica-
tion with such lasers was independently proposed by Mirasso et al. [1996] and
by Annovazzi-Lodi et al. [1996]. A milestone in the field of chaos based com-
munication systems using semiconductor lasers subject to delayed feedback
was the successful field experiment reported by Argyris et al. [2005]. They
obtained transmission rates at 1 Gb/s over a network of 120 Km of optical
fiber in the metropolitan area of Athens, Greece. The corresponding recovered
message exhibited BER values lower than 10−7.

As far as semiconductor lasers are concerned, there are two delayed systems
that are commonly used to obtain chaos. The first one studied in detail by
Lang and Kobayashi [1980], corresponds to the situation where a fraction of
the delayed output radiation of a semiconductor laser is fed back into the
active region layer. The second one was proposed by Ikeda [1979], Ikeda and
Matsumoto [1987], and consists in a continuous-wave laser whose output light
propagates in a nonlinear cavity. In both cases hyperchaos can be generated.
Moreover, the geometric dimension of the attractor increases linearly with
time delay. In the following we present both systems in more detail.

2.4.1 Semiconductor lasers with optical feedback

The equations that are generally used to describe single-mode semiconductor
lasers subject to coherent optical feedback are the ones proposed by Lang and
Kobayashi [1980] for the complex electric field E(t) and the carrier number
inside the cavity N(t):

dE(t)
dt

=
1 + iα

2
[G− 1

τp
]E + κE(t− τ)e−iΩτ (2.2a)

dN(t)
dt

=
I

e
− N

τs
−G|E|2 (2.2b)

where G = g(N −Nt)/(1+ ε|E|2) is the optical gain, g is the differential gain,
Nt is the carrier number at transparency, ε is the gain saturation coefficient,
α is the linewidth enhancement factor, τp is the photon life-time in the cavity,
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τs is the carrier life time in the cavity, Ω is the frequency of the free running
laser, I is the pump current, κ is the feedback coefficient and τ is the external
cavity round-trip. Note that the Lang-Kobayashi model only includes the
feedback effect after one roundtrip in the external cavity. Therefore, it may
not be valid in regimes of strong optical feedback where multiple reflections
in the external cavity should be accounted for.

Let us point out that in the semiconductor lasers subject to coherent op-
tical feedback, the feedback is linear and nonlinearities come from the laser
itself. The presence of the relaxation oscillations in semiconductor lasers gives
rise to complex dynamics when the laser is perturbed by external disturbances.
The relaxation oscillation frequency characterizes the time scale for exchange
of energy between the electric field and the population inversion. The relax-
ation oscillation frequencies for semiconductor lasers are in the GHz range.
Under moderate feedback rates the semiconductor lasers show chaotic behav-
ior and sometimes evolve into unstable oscillations in a coherence collapse
state (CC) where the laser linewidth is broadened greatly. On the other hand,
one typical instability in a semiconductor laser subject to optical feedback is
the phenomenon known as low frequency fluctuations (LFFs). In this case,
the laser output power shows frequent irregular dropouts having frequencies
from MHz to hundred of MHz. Usually, LFFs occurs for pump current rates
around the laser threshold.

For systems described by equations (2.2), Vicente et al. [2005] have nu-
merically demonstrated that the Kaplan-Yorke dimension increases linearly
with the delay time so very large dimensionality can be achieved (see figure
2.2 left). However, they have also found that the KS entropy saturates as
the delay time increases (see figure 2.2 right). Although the system has more
positive Lyapunov exponents as the time delay is increased, they have a very
small amplitude. Moreover, the largest positive Lyapunov exponent decreases
for increasing delay times. Therefore, although the system has a larger di-
mensionality when increasing the delay, its behavior does not become more
unpredictable.

Semiconductor lasers with optical feedback have been frequently used as
chaotic generators. In this type of communication chaotic system, two dif-
ferent configurations (open-loop and closed-loop) can be used to obtain the
synchronization (see figure 2.3). In the closed-loop configuration both emitter
and receiver lasers are subject to optical feedback. By contrast, in the open-
loop configuration only the emitter laser is subjected to optical feedback. In
general, the open-loop configuration is less sensitive to parameter mismatch
than the close-loop one, since the former does not require feedback in the re-
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Figure 2.2: Left (Right): Kaplan-Yorke dimension (Kolmogorov-Sinai entropy) as a
function of the feedback strength for τ = 100 ps (solid), τ = 200 ps (crosses), τ = 300
ps (asterisks), and τ = 1000 ps (diamonds). The inset panel of the right figure shows
the Kolmogorov-Sinai entropy as a function of the delay time for a fixed feedback κ
= 10 ns−1. The figures have been taken from [Vicente et al. 2005].

LDT

LDR

LDT

LDR

Figure 2.3: Schematic diagram of chaos synchronization systems in semiconduc-
tor lasers with optical feedback. Left: closed-loop configuration. Right: open-loop
configuration. LDT: transmitter laser, LDR: receiver laser.

ceiver (and hence no tuning of feedback parameters in the receiver is needed
at all).

2.4.2 Semiconductor lasers with electro-optical feedback

Chaotic behavior can be also induced when the light emitted by a semiconduc-
tor laser goes through an optoelectronic feedback loop containing a nonlinear
optical device. In these type of systems, the chaotic dynamics is determined
by the nonlinear optical device in the loop, not by the laser itself. The laser
is a linear component.
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The dynamics of these type of systems can be described by a delay differ-
ential equation where the feedback is modelled by a nonlinear function, whose
transfer characteristic has at least a maximum or a minimum in the variable
range.

The first experimental demonstration of chaotic communications based on
semiconductor lasers with electro-optical feedback using CMO for message
encoding was performed by Goedgebuer et al. [1998a], Larger et al. [1998a].
This system exhibits a nonlinearity in wavelength that is implemented by a
birefringent plate (see 3.4.1 for more details). Similar experimental setup was
also investigated for CSK modulation scheme in [Cuenot et al. 2001]. More
recently, data transmission with a cryptosystem based on Mach-Zehnder mod-
ulators has been reported [Goedgebuer et al. 2002]. Here, the semiconductor
laser with electro-optical feedback produces chaos in intensity. Optoelectronic
phase chaos generators have been also reported [Larger et al. 2005].

In the chaotic communication systems considered in [Goedgebuer et al.
1998a, Larger et al. 1998a], the dynamical behavior of the chaotic carrier can
be described by the following delay differential equation:

x(t) + T
dx(t)

dt
= β sin2(x(t− τ)− φ) (2.3)

where x(t) is the wavelength, T is the response time of the system, τ is the
delay time in the optoelectronic feedback, and φ is the feedback phase. β
determines the strength of the feedback as well as the strength of the nonlin-
earity. The regime of oscillations in wavelength depends on the value of the
parameter β. The system can display chaotic behavior for β > 2.1, but this
threshold value depends on the feedback phase. As the feedback strength β
increases the influence of the phase decreases and for β > 5 the dynamics is
independent of φ [Vicente et al. 2005]. The number of extreme values of the
sin2 nonlinear function increases also with β.

It has been shown numerically for the system described by equation (2.3)
that increasing the time delay produces a linear increment in the number of
positive Lyapunov exponents but their values also decrease linearly [Vicente
et al. 2005]. Hence, the KS entropy is independent of the value of the time
delay for sufficiently large values of the feedback strength (see figure 2.4 right).
The KS entropy has only a linear growth with the feedback strength. On
the other hand, the Kaplan-Yorke dimension (an estimation of the attractor
dimension) grows linearly with both the feedback delay time and the feedback
intensity (see figure 2.4 left), in accordance with the results obtained for other
systems described by delay differential equations (DDE) as the Mackey-Glass
system [Farmer 1982].
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Figure 2.4: (a) Kaplan-Yorke dimension as a function of the feedback strength
for τ = 5, 10, 20, 50, 100 and 250 scaled with the delay time. (b) Kolmogorov-Sinai
entropy as a function of the feedback strength for τ = 5, 10, 20, 50, 100 and 250. In
both panels, the curves corresponding to different delay times overlap indicating the
almost perfect scaling of the dimension and the entropy. The figures have been taken
from [Vicente et al. 2005].

2.5 Security of chaos-based communication
systems

One of the main points to develop chaos-based communication systems is the
promise of enhancing the security of the system. Nonetheless, it is worth
highlight that using a chaotic carrier to dynamically encode information does
not preclude the use of more traditional digital encryption schemes as well.
Dynamical encoding with a chaotic waveform can thus be considered as an
additional layer of encryption.

Nowadays, a growing proportion of data requires a high level of confiden-
tiality while they are transmitted. Security of information in public or opened
transmission channels is a key challenge in modern telecommunication net-
works. Until now, secure data transmission by conventional communication
systems is based on mathematical algorithms. The operating principle of these
systems is to take a message which has to be secretly transmitted, convolute
it with a given pattern (key) supposed to be known by the emitter and the
receptor of the message, and thereby obtain a new signal which can be safely
sent in a public communication channel. If the system is properly designed,
only the receptor (the one knowing how to deconvolute the message) can have
access to the originally encrypted message. Actually, this is the description
of a secret-key encryption. However, with this approach, two persons who
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did not knew each other before can not communicate securely. The public-
key cryptography circumvents the drawbacks of the secret key encryption.
In public-key cryptography, each user has two keys, one public key and one
private. The public key may be widely distributed, which can be freely inter-
cepted by whoever, while the private key is kept secret. Both keys are related
mathematically, but the private key cannot be practically derived from the
public key (recovering the secret key from the public one remains a quasi-
untractable mathematical problem). The messages encrypted with the public
key can be decrypted only with the corresponding private key. However, Shor
[1994] demonstrated that quantum computers may break all of our commonly
used public-key algorithms. Moreover, breaking cryptographic mechanisms
depends on the available computing power and taking into account the grow-
ing computation capacities and grid availability there is a strong hint that the
era of public key cryptosystems will one day come to an end.

Consequently, there is a need to turn towards new alternatives able to
strengthen software cryptography. Hardware cryptosystems, that is, cryp-
tosystems relying on the physical properties of emitters and receivers, are
good candidates. One advantage of hardware cryptosystems is that they are
fully compatible with their software counterpart, in the sense that data can
first be encrypted by software, and later encrypted again by hardware, thereby
providing additional security. The more promising techniques in hardware en-
cryption are quantum cryptography and chaos communication.

The idea behind the quantum cryptography is that two people commu-
nicating using a quantum channel can be absolutely sure no one is eaves-
dropping. Based on Heisenberg’s uncertainty principle, one can not measure
quantum information without disturbing it, and that disturbance alerts autho-
rized users to the eavesdropper’s presence. Nowadays, quantum cryptography
or more exactly, Quantum Key Distribution (QKD) [Bennett and Brassard
1984, Ekert 1991] is only used to produce and safely distribute a key, not
to transmit any message data. This key can then be used with any chosen
encryption algorithm to encrypt (and decrypt) a message, which can then be
transmitted over a standard communication channel. Quantum Key Distri-
bution is currently widely investigated and even has yet reached the stage
of reliable field applications and there are even some commercially available
quantum cryptosystems. These QKD cryptosystems exploit the quantum me-
chanical properties of light particles (photons) to verify and certify that the
information-photon has not been eavesdropped upon or intercepted. The pho-
tons are subsequently used to generate and exchange secrets (keys) between
two remote sites through an optical fibre link, confirming thus their secrecy.
However, QKD has quite severe limitations: it can not encrypt information
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in real time, and until now, the distance over which keys can be exchanged is
limited by several tens of kilometers and the key generation rate is very low
(several tens of KHz).

Another interesting hardware cryptosystem is chaos-based communication,
presented in the previous sections. The dependence on the initial condition
of chaotic systems and the complexity of irregular behavior suggest the appli-
cation of chaos in secure communications. In chaos based secure communica-
tions the objective is to use the apparently random oscillations of a chaotic
system to hide a message. Encryption therefore relies on the unpredictability
of chaotic systems.

Privacy in chaotic communication systems results from the fact that the
receiver must posses the same configuration and parameter settings that the
transmitter. Important aspects of receiver design are the number of param-
eters that have to be matched for information recovery and the precision
required for parameter matching.

Therefore, in case of hardware attack, an eavesdropper must have the
proper hardware and parameter settings in order to decode and recover the
message. The decryption of the message is possible only when the emitter
and receiver systems are almost perfectly identical: if it is not the case, syn-
chronization does not occur and chaos-pass filtering becomes inoperant. It
is expected that an eventual eavesdropper trying to build a chaotic receiver
identical to the emitter would have to face this parameter mismatch problem,
which impedes a proper extraction of the encrypted message.

However, it is also possible to make a software attack. Understanding the
software attack as the possibility to eavesdrop and analyze the transmitted
signal to detect and extract the hidden message. It was early shown that
the hidden message can be unmasked by the dynamical reconstruction of the
chaotic signal using nonlinear time series techniques [Short 1994; 1996] or other
methods [Pérez and Cerdeira 1995, Rulkov et al. 1995, Yang et al. 1998a;b;c] in
some low dimensional chaotic systems with few positive Lyapunov exponent.
After the publication of these results in low-dimensional chaos-based commu-
nication systems, the employment of highly dimensional chaotic systems has
been proposed to improve the security of these systems [Kocarev and Parlitz
1995, Peng et al. 1996].

A prominent class of dynamical systems that can have high dimensions
and many positive Lyapunov exponents are nonlinear systems with time-delay
feedback. These systems are wide spread in nature. There are many practical
examples from physics, biology, economic and other fields. Within this rather
broad class of systems, one can find the Ikeda equation [Ikeda 1979] modelling
the passive optical resonator system, the Lang-Kobayashi equations [Lang and



22 Chapter 2. Introducction

Kobayashi 1980] describing semiconductor lasers with optical feedback or the
Mackey-Glass equation [Mackey and Glass 1977] modelling the production of
red blood cells. From a mathematical point of view, time delay feedback sys-
tems are usually modelled by delay differential equations (DDE). Although
the physically meaningful models are continuous time systems, one will usu-
ally construct models which are discrete in time, the delayed maps (DM).
In fact, the way DDE are implemented on digital computers is precisely by
constructing a suitable DM and, more important, DM are the natural models
to be reconstructed from experimental signals recorded with a finite sampling
rate.

Nonetheless, in spite their high dimensionality, chaotic communication sys-
tems based on time delayed feedback systems have been broken by nonlinear
time series analysis when the structure of the equation is known [Ponomarenko
and Prokhorov 2002, Prokhorov and Ponomarenko 2008, Robilliard et al. 2006,
Udaltsov et al. 2003, Zhou and Lai 1999].

2.6 Nonlinear time series analysis

In the first stages, the unpredictability of the chaotic signal suggested that
chaotic communication systems may be totally secure. However, the under-
lying dynamics is deterministic, so that it is natural to ask whether some
technique exists which is able to reproduce the observed dynamics. It was
early demonstrated that these systems can be broken by nonlinear time series
analysis [Abarbanel et al. 1994, Short and Parker 1998].

The methods of nonlinear time series analysis have been developed in
close parallelism to the research in nonlinear dynamical systems defined by
low dimensional ordinary differential equations (ODES). The bulk of them is
based on the reconstruction of a vector space from the time record of a suitable
observable. This vector space is equivalent to the original phase space of the
system. For instance, in a laser system, the most common variable one can
measure is the total intensity of the light output.

Nonlinear time series analysis is based on the assumption that the underly-
ing dynamics of the recorded time series is deterministic. Then, the embedding
method or the embedding theorem [Casdagli et al. 1991, Packard et al. 1980,
Sauer et al. 1991, Takens 1981] states that the knowledge of sufficient values
of a single scalar variable at a sequence of times allows to reconstruct the dy-
namics of the attractor. The standard embedding techniques describe only the
dynamics in the attractor itself. More precisely, having a time series x(t) mea-
sured with a sampling time δt, the method to reconstruct the attractor requires
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the creation of the embedding vector V = (x(t), x(t−τe), . . . , x(t−(m−1)τe)),
where m is the embedding dimension and τe is the embedding lag, an inte-
ger multiple of δt. In theory, the reconstruction of the nonlinear dynamics of
the attractor is possible with m > 2DF , where DF is the dimension of the
attractor.

However, the direct reconstruction of attractors from scalar data through
time delay embedding using Takens theorem is clearly limited to low dimen-
sional systems. A recent estimate [Olbrich and Kantz 1997] shows that the
minimal number of points required for a clear manifestation of determinism
is related to ehDF , where DF is the dimension of the attractor and h is the
Kolmogorov-Sinai entropy. In practice, attractors with dimensions larger than
5 can hardly be recognized by time series analysis using Takens theorem, since
otherwise an unrealistic large amount of data and an unrealistically low noise-
level would be required.

As early emphasized, it has been well established that time-delay feedback
systems are able to exhibit high-dimensional chaotic attractors with many
positive Lyapunov exponents. In these type of systems, the corresponding
phase space is infinite dimensional, as an infinite set of independent numbers
are required to specify the initial condition that is a generic function defined
on the interval [−τ, 0], with τ being the delay time. In practice, however, high
frequency components are almost absent and thus a finite number of variables
are enough to parameterize the asymptotic solutions. On the other hand, the
fractal dimension DF can be made arbitrarily large as it has been established
that DF is proportional to τ for sufficiently large τ [Farmer 1982]. Thus the
direct reconstruction of the system by the time delay embedding techniques
runs into severe problems.

Nonetheless, it has been demonstrated that it is possible to reconstruct the
dynamics of scalar time delay systems (i.e. systems involving a single vari-
able) with high dimensional attractors by exploiting the particular structure
of time-delay systems without taking into account the embedding theorems
[Bezruchko et al. 2001, Bünner et al. 1996a;b, Ellner et al. 1997, Ponomarenko
and Prokhorov 2002, Prokhorov et al. 2005, Robilliard et al. 2006, Udaltsov
et al. 2003, Voss and Kurths 1997; 1999, Zhou and Lai 1999]. A method based
on the projection of the phase space to suitable chosen subspaces has been
extended to multi-variate delay systems, but a multi-variate measurement is
required [Bünner et al. 1997].

The basic approach in the above mentioned cases is to consider that the
structure of the equations that govern the time-delay systems is known, and
only the functions and the parameters of the equations remain unknown. The
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parameters and functions are estimated with parametric or non-parametric
methods from the time series.

Nevertheless, these techniques fail when the structure of the equations
that govern the system are unknown. In these cases, the nonlinear dynamics
reconstruction by the embedding theorem is a more flexible approach, because
one does not need to know so much a-priori information about the system
under study.

Once the attractor is reconstructed by the embedding theorem, a model
can be constructed by using the embedding vector. A faithful time series
model can be used for many purposes, such as prediction, noise reduction
and control, or to create artificial data which shares, for example, the power
spectrum, distribution of values, attractor dimension, entropy and Lyapunov
exponents of the original data. The general approach to construct the model
is to estimate the next value of our observable time series x̂(t + τe) = F (V),
where V is the corresponding embedding vector. The value of x̂(t + τe) is a
unique function of its m previous values where m is the embedding dimension.

There are different choices to construct the general form of the function
F from the time series, x(t). Two of the most commonly used approaches are
local methods in the phase space and global nonlinear models. In both cases,
the free parameters are optimized by minimizing a cost function.

The local methods work by partitioning the embedding space into neigh-
borhoods where the dynamics can be appropriately described by a linear
model. Thus given a point in the embedded space the closest neighbors to
such a point must be found. Among the local methods the most well known is
the local linear fits. A common difficulty of local methods is the long compu-
tational times required by the searching for close neighbors in the embedding
space and the effort to assemble the local linear models.

To overcome the problems of the local methods we can use global nonlinear
models. The basic idea behind the nonlinear models is to find an appropri-
ate F to model the true function on the whole attractor. A very popular
strategy is to take F to be a linear superposition of basis functions (kernels),
F =

∑k
i=1 αiΦi. The k basis functions Φi are kept fixed during the fit and

only the coefficients αi are varied. There is a large variety of global nonlinear
models such as neural networks, radial basis networks, wavelet-based models,
support vector machines and so on.

Recently, Bünner et al. [2000a;b], Hegger et al. [1998] have demonstrated
that it is possible to reconstruct the dynamics of scalar time delay systems (i.e.
systems involving a single variable) with a local linear model by an embedding-
like approach. This method works with a special “embedding” space which
include both short-time and feedback-time delayed values of the variable. In
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this way, the dynamics is recovered in a space with a dimension smaller than
the attractor’s dimension.

In this thesis we apply this special-like “embedding” to reconstruct the
nonlinear dynamics of time-delay systems with global nonlinear models to ex-
ploit the advantages of the global models over the local ones. In our particular
case, we will use neural networks models. Moreover, all the above mentioned
methods developed to recover the nonlinear dynamics of time delay systems
(parametric or non-parametric) take advantage of the particular structure of
these systems. To this aim it is essential to know the time delay of the sys-
tem. Therefore, a successfully recovery of the time delay from the time series
is required. This question is studied in detail in chapter 3.

2.7 Neural networks

Artificial Neural Networks (NN) are mathematical models obtained from data.
NN models are universal approximators in the sense that they can theoretically
approximate any function to any degree of accuracy. They have been widely
applied to a large number of problems in many different fields.

Neural Networks consist of a large number of simple processors (called
neurons) with many interconnections. The strength of the connection or link
between two neurons is called the weight. The values of the weights are the
network parameters that have to be determined by the learning procedure in
NNs. The neurons are organized into layers. Neural networks are nonpara-
metric models and their parameters have no particular meaning in relation to
the problems to which they are applied.

There are many different types of NNs. The choice of a particular type
of NN depends on the kind of problem to be solved. The most famous and
well-known NN is the multilayer Feed-forward network (FFNN) also called
multilayer perceptron.

Multilayer Feed-forward networks consists of an input layer, an output
layer and M hidden layers (HL) of neurons. Each neuron of one layer can re-
ceive only inputs of the neurons of the previous layer (see figure 2.5). Through
this thesis, we refer to this type of architecture as FFNN(a:b), indicating a
FFNN with two hidden layers with a and b neurons, respectively. Other nota-
tions found in the literature refers to this type of NN as (j:a:b:i), where j and
i represents the number of inputs and outputs of the multilayer perceptron.

The typical output neuron, zi, computes the weighted sum of its n inputs
signals, xj (j = 1, 2, ...n) plus a bias or offset term θi and generates an output
value given by:
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Figure 2.5: Example of a Multilayer Feed-forward NN with j inputs, i outputs and
one hidden layer with k neurons: FFNN(k)
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Figure 2.6: Schematic of a neuron

zi = f(
n∑

j=1

wijxj − θi) (2.4)

where f is the activation function and wij is the weight associated with the jth
input (see figure 2.6). The weights wij can have positive or negative values.

For each output, yi, the FFNN calculates a function yi = Fi(x1, ...xn) of
the inputs. For example, the outputs of the multilayer NN plotted in figure
2.5 are given by:
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yi = f(
∑

k

Wikf(
∑

j

wkjxj − θk)− θi) (2.5)

In the case of general regression, the main task of the NN is to model the
underlying function between the given inputs and outputs and to filter out the
disturbances contained in the noisy training data set. As above mentioned,
NNs learns from a set of training data and the learning procedure is one of
the most important task of the nonlinear modelling with the NNs.

2.7.1 Learning process

The learning process consists on adjusting the connection weights of the NN so
the NN can model the underlying function from a finite set of measurements
or observations. The weights of the NN that have to be adjusted constitute
the parameters of the NN. There are many different ways and various learning
algorithms to adapt and change the weights.

Depending on the information that is available to the network the meth-
ods of learning can be classified in supervised or unsupervised learning. The
unsupervised learning is outside the scope of this thesis, and for the remainder
of this section we will focus on the supervised learning. In supervised learn-
ing the network is provided with the correct output for every input pattern.
Hence, the learning problem is setting as follows: there is some unknown
nonlinear dependency y = F (x) between some high-dimensional input vec-
tor x and scalar or vector output y. The network is given a desired output
(yp1, ......, ypm) for each input pattern (xp1, ...xpn). During the learning pro-
cess, the actual output generated by the network (ŷp1, ......, ŷpm) may not equal
the desired output. Weights are modified to allow the network to produce an-
swers as close as possible to the known correct answer. Normally, the weights
are obtained minimizing some cost functions that measure the difference be-
tween the desired output and the NN output. In the neural network field, the
most widely criterion for the estimation of model parameters is the sum of
error squares (if the data are corrupted with Gaussian noise with zero mean,
minimization of the sum of error squares results in the same parameters as
maximization of the likelihood function).

One of the main problems of the NN is that the cost function depends
nonlinearly upon weights. This means that the error hypersurface is generally
not a convex function with guaranteed minimum. There are many different
learning algorithms to optimize the weights by minimizing the cost function.
In this thesis, we will use the Levenberg-Marquardt algorithm [Hagan et al.
1996] that is based on the gradient descent along the error surface. This
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algorithm appears to be the fastest method for training moderate-sized feed-
forward neural networks (up to several hundred weights). In the general case,
where the error hypersurface are plenty of local minima, all that can be done
is to start at a number of random (or somehow well chosen) initial places,
then go until find a local minimum each time. Then, one selects the lowest
of the found local minima, and takes the corresponding weights vector as the
best one. This implies that the NNs do not assure the global minima of the
error hypersurface and depending on the initial conditions that minima can
not be found.

2.7.2 Some aspects of NN design

The most important issues in designing feed-forward networks are the num-
ber of hidden layers, the number of neurons in a hidden layer, the type of
activation functions and the size of the training set. Few theoretical results
provide a guidelines for selecting these parameters in practice. There are many
aspects in designing feed-forward networks that must be determined by trial
and error. Recall that both the number of input and output neurons are in
general determined by the nature of the problem.

One of the first decisions is to choose the number of hidden layers. Al-
though it is possible to design a multilayer perceptron with an arbitrary num-
ber of hidden layers, theoretical results and simulations in different fields have
demonstrated that there is no need to have more than two hidden layers.
Feed-forward NNs with one or two hidden layers are theoretically able to ap-
proximate any continuous function to any degree of accuracy [Cybenko 1989,
Kurkova 1992]. It is difficult to say which topology is better. The rule of
thumb is to try first to solve the problem with only one layer and if it is
necessary to add a second hidden layer.

The number of neurons in a hidden layer and their activation functions
are the most important design parameters with respect to the model abilities
of NNs. In practical applications of NNs one should build and train many
different NNs structures and then pick the best one. To choose the number
of neurons in hidden layers, two extreme solutions should be avoided: filter-
ing out the underlying function (not enough HL neurons) and modelling the
noise or “over-fitting” the data (too many HL neurons). On the other hand,
the activation functions for the output layer neurons are typically linear or
sigmoidal. Concerning the choice of the activation function of the hidden
layer there is not a definitive answer. Any nonlinear, smooth, differentiable
and preferable non-decreasing function can be used, ensuring the universal
approximation capacity of a specific network. The sigmoidal function is the
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favorite activation function. The most popular sigmoid functions are: the
logistic function defined by f(x) = 1/(1 − e−cx) and the hyperbolic tangent
function defined by f(x) = tanh(cx), that yield output values in the range
[-1,+1]. In both cases c is the slope parameter. It is generally recognized that
the tangent hyperbolic always gives better approximation properties so people
tends to use it.

Finally, it is also necessary to determine the number of training patterns
needed to train the network to guarantee a valid generalization. Generalization
refers to the capacity of a neural network to give correct answers on previously
unseen data (this means, how will the network performs on data not included
in the training set). Too few training data may cause “over-fitting” (wherein
the network performs well on the training data set, but poorly on previously
unseen data). To avoid this, it is important to make a cross validation of the
model. The given data set can be divided into two parts, one destinated to
the training of the NN and the other to the test. When the test error is much
higher than the training error, there is a problem of over-fitting. Typically if
the number of training data is higher than the number of neurons then there
is not over-fitting. On the other hand, the quality of weight estimation de-
pends upon the noise level and the size of the data set. Clearly, the higher
the noise level and more complex the underlying function to be modelled, the
more training data are needed.

To sum up, the main advantages of NNs are that they have the property
of learning from the data, can approximate any multivariate nonlinear func-
tion, do not require deep understanding of the problem and are robust to the
presence of noisy data. Nonetheless, NNs also present some disadvantages.
For instance, the NNs do not increase our knowledge about the system and
little guidance is offered about the NN structure or optimization procedure, or
the type of NN to use for a particular problem. Moreover, they are prone to
bad generalizations (data over-fitting) and offer multiple solutions but noth-
ing assure you that the best solution for the problem is reached. In addition,
NNs suffer from problems in convergence and longer training times for high
dimensional input spaces. It is also addressed that the generalization abil-
ity decreases in huge NNs. The modular neural networks (MNNs) seem very
promising for tackling the two last problems.

The idea behind the modular neural networks (MNNs) is the division of
a complex problem into simpler tasks. A modular neural network is a neural
network characterized by a series of neural networks moderated by some inter-
mediary. Each independent neural network serves as a module and operates
on separate inputs to accomplish some subtask of the task the network hopes
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to perform. The task the module has to learn is in general easier than the
whole task of the network. The intermediary takes the outputs of each module
and processes them to produce the output of the network as a whole. The
modules do not interact with each other. The architecture of a single module
is simpler and the subnetworks are smaller than a standard NN network. One
of the major benefits of modular neural networks is the ability to reduce the
size of the network, since the computation time depends on the number of
neurons and their connections.



Chapter 3

Time delay identification

I n this chapter, we study how to identify the time delay in semiconductor
lasers subject to optical and optoelectronic feedback. These systems have
been considered as appropriate candidates for secure chaotic communications
systems because they provide a simple way of generating high-dimensional
chaotic carriers [Vicente et al. 2005].

However, several studies have demonstrated that it is possible to extract
the nonlinear dynamics of certain chaotic nonlinear delayed systems once the
time delay is known [Bezruchko et al. 2001, Bünner et al. 2000a;b; 1997;
1996a;b, Ellner et al. 1997, Hegger et al. 1998, Ponomarenko and Prokhorov
2002, Prokhorov et al. 2005, Prokhorov and Ponomarenko 2008, Robilliard
et al. 2006, Udaltsov et al. 2003, Voss and Kurths 1997; 1999, Zhou and Lai
1999]. The extraction of the dynamics can only be performed if the value of
the delay of the system is known . Therefore, time delay is a key parameter
in order to ensure the confidentiality of a chaotic communication system.

Through this chapter we analyze the time delay identification of semicon-
ductor lasers subject to optical and optoelectronic feedback in depth. We
also pay attention to several modifications (like variable time delays or the
inclusion of a second delay) proposed to avoid time delay identification.

The chapter is organized as follows. In section 3.1, we detail several tech-
niques to extract the time delay from time series. Section 3.2 deals with the
time delay extraction (from numerical simulations and experiments) in sys-
tems based on all-optical feedback with one and two delays. In sections 3.3
and 3.4 we study the time delay identification in systems based on optoelec-
tronic feedback with one and two delays from numerical and experimental
data, respectively. The experimental data are obtained from a semiconductor
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laser with optoelectronic feedback that presents chaos in wavelength. In sec-
tion 3.5 we extract the time delay of the optoelectronic feedback system from
experimental data when the time delay is a periodic function. Finally, section
3.6 is devoted to the conclusions.

3.1 Techniques to identify the time delay from
time series

Multiples methods have been developed to identify the time delay of scalar or
vectorial delay systems from a time series x(t). These type of system can be
described by the following delay differential equation:

h(ẋ(t)) = F(x(t), x1(t− τ)) (3.1)

where x = (x1, . . . , xN ), h(ẋ(t)) is usually equal to T ẋ(t), being T the response
time of the system, F is some nonlinear function and τ represents the time
delay. In the following, the bold type letter indicates vectors.

Among the reported methods to identify the time delay from time series,
we can find the autocorrelation function [Lepri et al. 1994, Ohira and Sawatari
1997, Siefert 2007], the mutual information [Locquet et al. 2006, Udaltsov
et al. 2005], the minimal forecast error [Bünner et al. 2000a;b, Fowler and
Kember 1993, Hegger et al. 1998], the minimal value of information entropy
[Tian and Gao 1997], various measure of complexity of the projected time
series [Bünner et al. 1998; 1997; 1996a;b, Kaplan and Glass 1993], regression
analysis [Ellner et al. 1997, Voss and Kurths 1997; 1999] and statistical analysis
of time intervals between extrema in the time series [Bezruchko et al. 2001,
Ponomarenko and Prokhorov 2002, Prokhorov et al. 2005, Prokhorov and
Ponomarenko 2008].

In the following, we describe in some detail the most widespread methods
used to extract the time delay from time series. Posteriorly, we use these
methods to identify the time delay of semiconductor lasers subject to optical
or optoelectronic feedback.

3.1.1 Autocorrelation Function

The autocorrelation function (AF) of a signal x(t), is defined as:

c(ν) =
1
σ2
〈(x(t)− 〈x(t)〉)(x(t− ν)− 〈x(t)〉)〉 (3.2)
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where 〈〉 implies averaging over time and σ = 〈(x(t)− 〈x(t)〉)2〉1/2. Note that
c(ν) = c(−ν) and c(0) = 1.

The AF reflects the linear correlations of the variables x(t) and x(t − ν).
It is well established that the autocorrelation of signals from deterministic
chaotic systems decays with increasing ν and the time delay can be estimated
for the first peak or valley of the AF [Lepri et al. 1994]. However, as the AF
only measures the linear relationship between x and x(t − ν), the detection
of the time delay fails in systems with high nonlinearities. Moreover, the
autocorrelation function leads to an overestimation of the delay time due to
the finite reaction time of the system [Bünner et al. 1998].

3.1.2 Mutual information

The mutual information is based on Shannon’s entropy and takes into account
the nonlinear correlations. Given two discrete variables X and Y with joint
probability distribution function, PXY (x, y), and marginal probability distri-
bution functions PX(x) and PY (y), the mutual information can be defined
as:

I(X;Y ) =
∑

xεX

∑

yεY

PXY (x, y) ln(
PXY (x, y)

PX(x)PY (y)
) (3.3)

The mutual information measures the amount of information that can be
obtained about one variable X by observing another variable Y. The delayed
mutual information (DMI) is the special case when Y is the process X sampled
at times t− ν, and the calculation of the mutual information is performed for
different delays ν. A nonlocal time dependence appears as a peak in the DMI
of delayed systems when ν = τ . In the special case of ν = 0 the expression
yields the Shannon entropy of the data distribution. The mutual information
takes always positive values.

Unlike the autocorrelation function, the DMI measures the nonlinear de-
pendency between x(t) and x(t− ν) and the time delay can be estimated for
highly nonlinear systems. However, the time delay given by the DMI is also
overestimated due to the response time of the system.

Hereafter, we shall present other techniques to extract the time delay that
are not affected by the response time of the system. Nevertheless, the time
delay identification by the DMI and the AF is more immune to the presence
of noise.



34 Chapter 3. Time delay identification

3.1.3 Filling factor method

The filling factor method (FF) relies on the existence of a functional rela-
tionship between x(t) and x1(t − τ) (see equation (3.1)). In this case, the
trajectory projected on the space (x(t), x1(t − ν), ẋ(t)) is restricted to a line
when ν = τ . However, with ν 6= τ , the trajectory is no longer restricted to
a line and fills a great part of the space. This makes possible to detect the
time delay of the system, τ , by measuring the complexity of the projected
trajectory as a function of ν. This method also permits in some cases the
reconstruction of the nonlinear dynamics of the system [Bünner et al. 1997;
1996a]. There are different ways to quantify the complexity of the projected
trajectory [Bünner et al. 1996a;b, Zhou and Lai 1999], but one of the most
well-known is the filling factor method [Bünner et al. 1998; 1997].

The filling factor of the projected trajectory of a N-order time-delay sys-
tem is computed by covering the (x(t), x1(t − ν), ẋ(t)) space with P cubes
of dimension (2N + 1). The filling factor is the number of cubes, which are
visited by the projected trajectory at least one time, normalized to the total
number of cubes, P . The filling factor analysis is performed under variation
of ν.

The filling factor is minimal for small values of ν as a result of local cor-
relations in time. When ν = τ, 2τ, ...nτ , the filling factor shows local minima
with decreasing amplitude indicating nonlocal correlations in time due to the
time delay.

One of the drawbacks of the FF method is that the time derivative of x(t)
has to be estimated from the time series. The estimation of time derivatives
from experimental time series is sensitive to additional noise. Moreover, the
sampling rate has to be fine enough to allow the estimation of time derivatives
with the help of adequate interpolating procedures. To save computation time,
the filling factor can be measured over the space (x(text), x1(text − ν)), where
x(text) corresponds to the extrema of the time series. In this way we reduce
the dimension of the cubes to N + 1.

The value of the time delay given by the FF method is not overestimated
by the time response of the system. Furthermore, the filling factor method
works for highly nonlinear system, although the minimum at τ decreases in
amplitude as the nonlinearity of the system increases. The main shortcoming
of this method is its sensitivity to noise, as it is necessary to evaluate the
extrema or the derivative of the time series.
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3.1.4 Time distribution of extrema

The time distribution of extrema (TDE) method is based on a statistical
analysis of time intervals between extrema in the time series [Bezruchko et al.
2001, Ponomarenko and Prokhorov 2002], [Prokhorov et al. 2005, Prokhorov
and Ponomarenko 2008]. To identify the time delay, we count the number N
of pairs of extrema in x(t) that are separated in time by ν, normalized to the
total number of extrema. N(ν) is an estimation of the probability to find a
pair of extrema in x(t) separated by ν given a sufficiently number of extrema.

Let us explain in more detail why the time delay can be estimated from
N(ν) following the explanation given in [Ponomarenko and Prokhorov 2002].
We consider the equation (3.1) with N = 1 (the scalar case) and h(ẋ(t)) = T ẋ(t)
for the sake of clarity. In this case, the time derivative of such equation is given
by:

T ẍ(t) =
∂F (x(t), x(t− τ))

∂x(t)
ẋ(t) +

∂F (x(t), x(t− τ))
∂x(t− τ)

ẋ(t− τ) (3.4)

The probability to find pairs of extrema in x(t) separated by ν when ν = τ
is maximal for T = 0 and minimal when T 6= 0.

If T = 0 and ẋ(t) = 0, then most probably ẋ(t − τ) = 0. Consequently,
almost each extremum of x(t) is separated by a time τ of another extremum.
As a result N(ν) shows a maximum at ν = τ .

On the other hand, if T 6= 0, the maximum of N(ν) shifts from τ to larger
values and can be found at τ + τs. The value of τs depends on T . In this case,
if ẋ(t) = 0, typically, ẍ(t) 6= 0. Thus, according to equation (3.4), ẋ(t−τ) 6= 0.
Then a minimum in N(ν) should appear at ν = τ .

The TDE can be used to estimate the time delay in highly nonlinear system
since the statistics of extrema is independent of the nonlinearity of the system.
However, the analysis of the time distribution of extrema can be difficult in
presence of noise. The noise induces spurious extrema randomly distributed.
Therefore, the noise increases the number of extrema and the probability to
find a pair of extrema in time series separated in time by τ . However, for
moderate noise levels this probability is smaller than the probability to find
a pair of extrema separated in time by ν 6= τ . In data heavily corrupted by
noise, since the maximum of N(ν) is more pronounced than the minimum,
its location can be used as an upper estimate of τ . This implies that under
high noise levels, the estimated time delay with this method is affected by the
time response of the system. Moreover, this method requires long time series,
in order to have enough statistics, particularly in presence of noise where the
length of the time series can be crucial.
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Time distribution of extrema method for systems with multiple
delays

The analysis of the time distribution of extrema can be also used to estimate
multiple time delays [Prokhorov et al. 2005]. We consider a system described
by the equation:

T ẋ(t) = F (x(t), x(t− τ1), x(t− τ2)) (3.5)

The time derivative of equation (3.5) is given by:

T ẍ(t) =
∂F

∂x(t)
ẋ(t) +

∂F

∂x(t− τ1)
ẋ(t− τ1) +

∂F

∂x(t− τ2)
ẋ(t− τ2) (3.6)

In general x(t) has mainly quadratic extrema, and therefore, at the ex-
trema points ẋ(t) = 0 and ẍ(t) 6= 0. Hence, if ẋ(t) = 0 we have:

T ẍ(text) =
∂F

∂x(text − τ1)
ẋ(text − τ1) +

∂F

∂x(text − τ2)
ẋ(text − τ2) (3.7)

When ẋ(t) and ẋ(t− τ1) or ẋ(t) and ẋ(t− τ2) vanish simultaneously, a special
relationship between ẍ(t) and ẋ(t − τi) should be fulfilled. Then this corre-
sponds to an event with low probability. As a result, the number of extrema
separated in time by τ1 and τ2 must be appreciably less than the number of
extrema separated in time by other values of ν. Thus, N(ν) has pronounced
minima at ν = τ1 and ν = τ2 corresponding to the two time delays of equation
(3.5).

3.1.5 Forecasting error of a model

The forecasting error of a model that approximate the original system can be
used to retrieve the time delay. This method has been proposed by Hegger
et al. [1998] to identify the time delay and also to reconstruct the nonlinear
dynamics of the system [Bünner et al. 2000a;b]. They construct a local linear
model from the available time series. The output of their model is given by
x̂(t + δt) = at + btx(t) + ctx(t− ν), where at, bt and ct are the coefficients of
the local linear approximations and δt is the sampling period. To identify the
time delay, they evaluate the error given by the difference between x(t) and
x̂(t) under variations of ν. When ν = τ , the averaged forecasting error of the
model has a minimum.

Based on the same approach, we have proposed to use a simpler global
model instead of a local linear one [Lee et al. 2005, Ort́ın et al. 2005]. In this
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way, we avoid the problems associated with local linear models (see 2.6). This
global model is described by:

x̂(t + δt) = W (x(t), x(t− δt), ..., x(t−m1δt),
x(t− ν + m2δt), ..., x(t− ν), ..., x(t− ν −m2δt)) (3.8)

where W can be a linear or nonlinear function. As in the case of the local
linear models, a minimal forecast error is expected when ν = τ . The optimal
values for m1 and m2 are obtained by trial and error. As a rule of thumb,
large m1 and m2 values should be avoided.

The main advantage of using a linear function is the simplicity of the
model. In this case, the equation (3.8) can not reproduce the dynamics of
the original system and the forecasting error takes high values. However,
it is enough to identify the time delay for weakly nonlinear systems. Global
nonlinear functions are necessary to identify the time delay in highly nonlinear
system.

We have considered linear and nonlinear models. In the first case, our
method is nothing but linear least squares fitting technique. In the second
case the nonlinear function is obtained by using neural networks. In the latter
case, the Neural Network model has been used to identify the time delay and
also to extract the nonlinear dynamics of optoelectronics feedback system (see
chapter 4).

The principal disadvantage of the global nonlinear model to identify the
time delay is the long required computation times. However, the forecasting
error of model is not affected by the response time of the system. Therefore
it can be used in combination with other method (such as DMI) to refine the
estimated time delay.

Finally, it is worth pointing out that this method under low and moderate
noise is more robust than the filling factor method or the time distribution of
extrema method. Nonetheless, for data heavily corrupted by noise, the DMI
and the autocorrelation function yield better results.

3.2 Semiconductor lasers with all optical feedback

Previous works on time delay identification in external cavity semiconductor-
based lasers (ECSLs) have shown that the time delay can be easily extracted
from the laser light output by standard identification methods as the ones
presented in the previous section [Bünner et al. 1998, Lee et al. 2005, Locquet
et al. 2006].
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To complicate the time delay identification, it has been suggested the
inclusion of additional cavities in ECSLs [Lee et al. 2004]. In that work, it
was shown on basis of the Lyapunov exponents and dimensions of the chaotic
attractor, that the complexity of the dynamics is greater for double delay than
for single delay systems. However, it has been demonstrated that even in the
presence of multiple feedback loops it is possible to identify the time delays of
the ECSLs [Bünner et al. 1998, Lee et al. 2005, Locquet et al. 2006]

Recently, it has been proved that a simple ECSL with a single optical
feedback could, with a careful choice of parameters, hide its time-delay when
standard methods are employed [Rontani et al. 2007]. Interestingly, the region
of laser and feedback parameters where such a difficult time-delay identifica-
tion occurs does not necessarily correspond to the situation where the chaos
complexity (dimension and entropy) is high.

In this section, we study the time delay identification in the ECSLs apply-
ing the methods described in the previous section. Our purpose is to determine
the more adequate methods to retrieve the time delay. The section is orga-
nized as follows. In subsections 3.2.1 and 3.2.2, we extract the time delay
from numerical simulations of a ECSL with one and two feedback loops, re-
spectively. In subsection 3.2.3, the time delay is identified from experimental
time series of ECSLs with one and two times delays. In subsection 3.2.4, we
analyze the estimation of the time delay in ECSLs with low feedback rates.
Finally, the conclusions about time delay identification in semiconductor laser
with all-optical feedback are presented in subsection 3.2.5.

3.2.1 One delay systems

In this section, we simulate the behavior of a single-mode semiconductor laser
with a single external optical feedback with the following delay differential
equations [Mulet 2003]:

dE(t)
dt

=
1
2
(1 + iα)[G(t)− k]E(t) + κe−iΩτE(t− τ) +

√
2βspγeNξ(t) (3.9a)

dN(t)
dt

= pJth − γeN −G(t) | E(t) |2 (3.9b)

where E(t) = E1 + iE2 is the complex amplitude of the electrical field, N(t)
is the total carrier density, α is the linewidth enhancement factor, G(t) =
g(N − Nt)/(1 + ε | E |2) is the optical gain, g is the differential gain, Nt

is the carrier number at transparency, ε is the gain saturation coefficient, k
is the cavity decay rate, κ is the feedback strength, τ is the external cavity
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round trip, Ω is the frequency of the free running laser, p is the pumping
factor, Jth is the threshold current and γe is the carrier recombination rate.
βsp is the spontaneous emission coefficient and ξ is the spontaneous emission
noise that represents a complex Gaussian white noise with zero mean and time
correlation given by 〈ξ(t)ξ∗(s)〉 = 2δ(t− s).

We consider the following parameters values: α = 3, g = 2.76×10−6 ns−1,
Nt = 1.51×108, ε = 3×10−7, k = 158 ns−1, κ = 5 ns−1, τ = 2.3 ns, γe = 1.66
ns−1 and βsp = 5 × 10−7. For these parameters, when the pumping factor is
1.3 the system works in the CC regime and when p = 1 in the LFF regime
(see section 2.4.1).

To identify the time delay we analyze the intensity time series I(t) =
E1(t)2 + E2(t)2, sampled each 0.05 ns over 500 ns. The sampling time has
been chosen to match the available experimental sampling times.

First, we extract the time delay of the system with the autocorrelation
function and the delayed mutual information. The results are presented in
figure 3.1 (a and b) for the LFF and CC regimes. The time delay is located at
the peak with higher amplitude, although peaks with decreasing amplitudes
also appear at multiples of the time delay. The estimated time delay with
both methods is τ̂ = 2.35 ns, within the error of 0.05 ns due to the sampling
time.

We also estimate the time delay with the filling factor method and the
forecasting error of a global linear model (see figure 3.1 (c and d)). The
estimated time delay with these methods is τ̂ = 2.35 ns, the same as the
one obtained from the AF and DMI. These methods are not affected by the
response time of the system. Therefore, the overestimation of the time delay
given by some methods (like the AF or the DMI) due to the finite reaction time
of the system, is insignificant respect to the time delay value. We conclude
that the response time of the ECSLs is negligible compared to the time delay
value. Moreover, the time delay identification is possible in the LFF and
CC regimes with methods that only take into account the linear correlations
between x(t) and x(t−τ), such as the AF and the forecasting error of a global
linear model. The only appreciable difference is that the peaks or valleys that
identify the time delay have sharper width and smaller amplitude in the CC
regime than in the LFF regime.

Finally, it is worth to mention that two different time scales (the relaxation
oscillations period τRO and the time delay τ) coexist in the ECSLs. The effect
of τRO on the time delay identification is more noticeable in the AF for the
LFF regime. In this case, apart from the peaks due to the time delay, we find
small peaks and valleys located at multiples of ±τRO/2 (see figure 3.1 (a1)).
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Figure 3.1: From top to bottom: the autocorrelation function (AF), the delayed
mutual information (DMI), the filling factor and the forecasting error of a global
linear model of the laser output intensity of an ECSL with single feedback, τ = 2.3
ns. Left: LFF regime. Right: CC regime.
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These peaks due to τRO can blur the identification of the time delay when the
feedback strength is low [Rontani et al. 2007].

3.2.2 Two-delay systems

Now, we study if the inclusion of a second delay can affect the time delay
extraction in ECSLs. The behavior of a semiconductor laser with two exter-
nal optical feedbacks is simulated using a trivial generalization of the delay
differential equations that rules the one delay case (equations (3.9)):

dE(t)
dt

=
1
2
(1 + iα)[G(t)− k]E(t) + κ1e

−iΩτ1E(t− τ1)+

+ κ2e
−iΩτ2E(t− τ2) +

√
2βspγeNξ(t) (3.10a)

dN(t)
dt

=pJth − γeN −G(t) | E(t) |2 (3.10b)

A second delay term is included in the electric field equation. The opera-
tional parameters are the same as in the single delay case, with κ1 = κ2 = κ.
The first time delay is τ1 = 2.3 ns (the same as in the single delay case) and
the second time delay is τ2 = 4 ns.

We find that it is possible to identify the two time delays using the same
techniques that work in the single delay case. The DMI for the ECSL with
two delays is plotted in figure 3.2. Comparable results are obtained with other
methods of identification. As can be observed, the two peaks with higher am-
plitudes indicate the two time delays of the system. Peaks of lower amplitude
also appear at the linear combinations of both time delays, mτ1 ± nτ2 with m
and n integer numbers. Among these peaks, the stronger one always corre-
sponds to the sum of the time delays τ1 + τ2. As in the single delay case the
effect of the response time is negligible. Likewise, the amplitude and the width
of the peaks decrease in the CC regime respect to the LFF regime. Therefore,
some of the mτ1 ± nτ2 combinations are no noticeable in the CC regime.

Next, we study the particular case τ2 = 2τ1, with τ1 = 2.3 ns and τ2 = 4.6
ns. Here, the DMI plotted in figure 3.3 is very similar to the DMI of the
single delay case (see figure 3.1 (b1 and b2)). The linear combinations mτ1 ±
nτ2 are always multiples of τ1 and conceal the existence of the second delay.
The results hold for other techniques of identification. The same happens for
τ2 = 3τ1. By contrast, in the case τ2 = 4τ1, the peak in τ2 is higher than the
others and it is possible to guess the existence of the second delay from the
DMI.
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Figure 3.4: Schematic experimental setup of a ECSL with two feedbacks. BS: beam
splitter, M:Mirror, OI: optical isolator, NDF: neutral density filter, PD: photodetec-
tor.

3.2.3 Experiments

Until now, we have studied the time delay extraction in ECSLs with numerical
simulations. Hereafter, we analyze the time delay identification from exper-
imental measurements of a semiconductor laser subject to single and double
optical feedback.

The experimental setup is shown schematically in figure 3.4 [Lee et al.
2005]. A Fabry-Perót type diode laser emitting at 1550 nm is used as the
optical source. The laser operates at 24.1 ◦C. The laser threshold current is
12.35 mA. The drive current is 12.5 mA for the case A and 24.7 mA for the case
B. The emission of the laser is collimated by an aspheric lens. The system has
two external-cavities: Cavity 1 and Cavity 2. The cavities are formed using
mirrors M1 and M2. The beam splitter BS1 is used to couple the laser to
the photodetector PD. BS2 is used to separate the laser output in two arms
for double optical feedback through M1 and M2. The neutral density filters
NDF1 and NDF2 are adjusted to give a 3% optical feedback intensity of the
laser output for each cavity. The optical isolator OI eliminates back-reflection
with a −40 dB isolation. The 12 GHz photodetector PD enables detection
of the chaotic laser output at high frequencies. A 20 GS/s oscilloscope is
used to record the photodetector outputs. The sampling time of the recorded
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time series is 50 ps. Experiments have been performed for different cavity
lengths L1 and L2. The experimental time delay has been estimated from the
cavity length. More information about the experimental setup can be find in
reference [Lee et al. 2005].

First, we study the single delay configuration (only one cavity) with a time
delay of τ = 2.3 ns. The intensity time series and the spectra of the cases
A and B with single feedback are plotted in figure 3.5. A wider spectrum is
obtained for case B (see figure 3.5(b)).

Clearly, the time delay of the system can be estimated as the inverse of
the frequency difference between two consecutive peaks of the spectrum. The
time delay can be also extracted with the autocorrelation function and the
delayed mutual information. Both are depicted in figure 3.6. The biggest
peak indicates the estimated time delay of the system τ̂ = 2.35 ns for A and
B cases. Peaks with decreasing amplitude also appear at multiples of the
time delay. The peaks due to the time delay are surrounded for the DMI by
small peaks at multiples of ±τRO/2. In the AF peaks and valleys are located
at multiples of τRO/2. The relaxation oscillation period (τRO) is 0.67 ns for
case A and 0.2 ns for case B. The effect of τRO is more noticeable for the
case B. These experimental results support the conclusions obtained with the
numerical simulations.

Regarding the double delay system, it has been demonstrated with simula-
tions and experiments [Bünner et al. 1998, Lee et al. 2005, Locquet et al. 2006]
that the time delay can be extracted with the same methods used to extract
the single time delay. Next, we study the identification of the time delay in
the double feedback system for the same cases that have been analyzed with
numerical simulations in the previous subsection.

The intensity time series and the spectra of an ECSL with two delays,
τ1 = 2.3 ns and τ2 = 4 ns are plotted in figure 3.7. The intensity time series
of one (figure 3.5(a)) and two delays seem similar. Nonetheless, in the two
delays case, the spectrum (see figure 3.7(b)) does not yield any conclusion
about the time delays of the system. Numerous peaks appear related with
both delays and their linear combinations. Therefore, the identification of the
time delays from the spectrum is difficult or even impossible in the double
delay case. Here, to extract the time delays, other methods as the AF or DMI
are necessary. The AF and DMI are shown in figure 3.8. In both cases, the
two biggest peaks indicate the two delays of the system. Peaks at the linear
combination of both delays also appear, but only the peaks located at τ1± τ2

are noticeable in this case. The numerical results obtained in the previous
subsection are in agreement with the experimental ones. However, note that
the AF and DMI of the numerical simulations present more peaks due to the
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linear combinations of both delays. Here, the presence of another type of
noise different from spontaneous emission can affect the presence of the linear
combination peaks.

Now, we study two special situations, τ2 = 2τ1 (τ1 = 2.3 ns and τ2 = 4.6
ns) and τ2 = 3τ1 (τ1 = 2.3 ns and τ2 = 6.9 ns). The simulations of these
cases have shown that it is not possible to guess the existence of the second
delay from the results of the different techniques of identification. However, in
the DMI of the experimental time series (plotted in figure 3.9 for case B) the
marker located at τ2 has higher amplitude than the marker at τ1. This permits
to guess the presence and value of both delays. We have checked that similar
results are obtained for case A and other identification techniques. The delay
located at the higher marker could have a higher feedback rate due to the
difficulty to obtain experimentally identical feedbacks rates for both delays.

Finally, we analyze the two time delays identification when both delays are
very close. When the two delays are close enough, the peaks located at each
time delay converge into a single peak, making difficult or even impossible the
distinction between both time delays. To illustrate this point, we plot the DMI
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when τ1 = 2.3 ns and τ2 = 2.7 ns for the B case in figure 3.10 (left). Here, both
time delays are still identified without problem, although both peaks are very
close. However, if τ1 = 2.3 ns and τ2 = 2.5 ns (figure 3.10 (right)), both peaks
have converged into a single one. Evidently the possibility to distinguish both
delays is subordinated to the sampling rate of the time series. If we increase
the sampling period to 100 ps, it is impossible to distinguish the two peaks
even with τ1 = 2.3 ns and τ2 = 2.7 ns. Comparable results and conclusions
are obtained with other identification techniques.

3.2.4 Low feedback rates

Until recently, ECSLs with a single optical feedback were considered as weakly
secure systems in terms of time-delay identification. In the previous section,
we have demonstrated that the time delays can be extracted with standard
techniques in the case of single and double delay feedback. However, it has
been shown recently that a simple ECSL with a single optical feedback could,
with a careful choice of parameters, hide its time-delay when standard methods
are employed [Rontani et al. 2007].

The time delay identification in ECSLs strongly depends on the operational
parameters of the ECSL, specially on the feedback rate, κ. The feedback rate
controls the optical power reinjected in the laser cavity. As a result, it drives
the contribution of the delayed intensity I(t− τ) in the time-evolution of I(t).
Therefore, the stronger the feedback rate, the more important the information
shared between I(t − τ) and I(t) will be. At large feedback rates, the time
delay can be estimated with standard identification techniques (see previous
subsections). However, when the feedback rate is weak, a large variety of
scenarios has been reported [Rontani et al. 2009]. These scenarios are largely
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dependent on the choice of the pumping factor, p, as well as the choice of
the time-delay value in comparison with the relaxation oscillation period τRO.
Two scenarios that difficult the time delay identification have been found.
First, for low feedback rates and significant separation between τ and τRO,
the presence of peaks or troughs at multiples of τRO/2 makes the identification
difficult. Second, when the feedback rates are low and the values of τ and τRO

are close. In this case, it has been proved that it is not possible to identify the
time delay by the DMI or the AF [Rontani et al. 2007; 2009]. No significant
peak appears close to the delay value in the autocorrelation function or in the
delayed mutual information.

These difficult identifications find their origin in the specific nonlinear dy-
namics and timescales appearing in the ECSL in its bifurcation cascade lead-
ing to chaos. Indeed, at weak feedback rates the chaos keeps reminiscence
of the time-scales involved in the early stage of the laser dynamics, such as
the undamped relaxation oscillation time-scale and possibly period-doubling
and quasi-periodic dynamics. The time-delay estimators then exhibit complex
modulated shapes showing these different laser dynamics timescales [Rontani
et al. 2009].

In this subsection, we discuss the robustness of the time-delay conceal-
ment in the second scenario. The simulations have been carried out with the
equations and parameters values presented in [Rontani et al. 2009]. The equa-
tions that rule the ECSL are basically the same as the equations described by
(3.9). The parameters values of the system are: α = 5, g = 7.5 × 10−6 ns−1,
Nt = 3×108, ε = 2.5×10−7, k = 500 ns−1, γe = 0.5 ns−1 and βsp = 2×10−6.

First, we consider the case of a feedback strength, κ = 2 GHz, τ = 1
ns and τRO = 0.75 ns. The autocorrelation function and the delayed mutual
information for this case are depicted in figure 3.11(a) (top). The valley (peak)
with maxima amplitude in the AF (DMI) is positioned at τRO/2. We do
not observe any significant peak at the time delay value. Other identification
techniques have been tested and do not give more insight about the time-delay
value. For example, we plot in figure 3.11(a) (bottom) the results given by the
forecasting error of a global nonlinear model and the analysis of time extrema
distribution. The global nonlinear model consists on a modular neural network
with two modules: the non-feedback module has only one linear neuron and
the feedback module is a FFNN(6:3). The inputs for the non-feedback and
feedback modules are I(t − τe) and (I(t − ν + τe), I(t − ν), I(t − ν − τe)),
respectively. The embedding time, τe, is 5 ps.

Now, we increase the feedback rate to κ = 5 GHz. As in the previous
case, the time delay can not be inferred from the autocorrelation function,
the delayed mutual information or the forecasting error of a global nonlinear
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Figure 3.11: Autocorrelation function (AF), Delayed mutual information (DMI),
forecasting error of a global nonlinear model (GNLM) and analysis of time distribution
of extrema of an ECSL with τ = 1 ns and τRO = 0.75 ns.
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model (see figure 3.11(b)). Only a valley (peak) at τRO/2 appears in the AF
(DMI) as in the previous case. However, the analysis of time series extrema
shows a small minimum at the time delay value. Therefore, as the feedback
rate is increased, the first method that shows the time delay is the statistics
of the time interval between extrema. It retrieves the time delay value for low
feedbacks rates where the other methods fail.

In conclusion, it has been shown that independently from the method of
identification, if the operational parameters of the ECSL are carefully chosen,
the time-delay signature remains hidden. The low feedback rate is a critical
condition. The parameter set that avoids the time delay identification is lim-
ited to a small range with very low feedback rates, low pumping rates and a
close relationship between τ and τRO. This parameter choice yields a chaotic
regime that is close to the regular one. In principle, this is not the most
suitable regime for secure optical communications.

3.2.5 Conclusions

It has been shown, that the time delays of an ECSL with single or double
feedback can be extracted from numerical and experimental time series using
standard identification techniques when the system has large feedback rates.
In this case, we have demonstrated that the estimated time delay with different
techniques is similar.

At large feedback rates, the time delay identification is only ambiguous
when two cavities are considered and both delays are multiples or have close
values. If both delays are close enough, the markers that identify the two
delays can converge into a single one. The minimum distance between delays
to avoid this situation depends on the sampling time of the time series. In
these cases, close and multiples time delays, the relevance of both delays in the
reconstruction of the nonlinear dynamics has to be addressed. The proximity
or relationship of both delays can make possible the nonlinear reconstruction
knowing only the approximate time delay given by the identification tech-
niques.

At low feedback rates, the time delay identification can be compromised.
A careful choice of a low feedback rate, low pumping power and small dis-
tance between τRO and τ avoid the time delay identification with the standard
techniques. However, the range of parameters that conceals the time delay
extraction is very small. Moreover, in spite of the successful time delay con-
cealment, the complexity of the chaos (dimensions and entropy) generated in
this case is not very suitable for secure optical communications.
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3.3 Semiconductor lasers with optoelectronic
feedback

In the optoelectronic feedback system the laser operates in the linear regime.
Therefore, the laser dynamics can not be used to hide the time delay as in
the all optical case. However, the entropy of systems with optoelectronic
feedback increases with the feedback strength, whereas it saturates for all-
optical feedback systems [Vicente et al. 2005] (see chapter 2, section 2.4).
Hence, the behavior might be more unpredictable for chaotic carriers based
on optoelectronic feedback.

In spite of the high nonlinearity that can reach the semiconductor laser
subject to a single optoelectronic feedback, the time delay can be easily re-
trieved from the time series with the standard techniques. In this section we
particulary study the effect of the nonlinearity and the response time of the
system on the time delay identification. Following the trail of the all opti-
cal feedback system, we also analyze if the inclusion of additional delays can
difficult the time delay identification. We study two different double delay
implementations, serial and parallel. In both cases, we extract the time delay,
although the serial configuration requires the employment of more elaborated
methods to identify both time delays.

This section is structured as followed. In subsection 3.3.1 we analyze the
time delay identification of a single optoelectronic feedback system for different
response times and nonlinearity strengths of the system. In subsection 3.3.2
we study the effect of the noise on the time delay identification. Subsection
3.3.3 is devoted to the time delay extraction with double feedback for two
different configurations, serial and parallel. Finally, conclusions are presented
in section 3.3.4.

3.3.1 One delay systems

We study the time delay identification in a semiconductor laser subject to
a single optoelectronic feedback. The system can be modelled by the well-
known Ikeda delay differential equation [Goedgebuer et al. 1998a;b, Vicente
et al. 2005]:

T ẋ(t) = −x(t) + β sin2(x(t− τ)− φ) (3.11)

where T is the response time or the finite reaction time of the system, β is the
nonlinearity strength as well as the feedback strength, τ is the time delay and
φ is the phase shift. The feedback strength is a particularly interesting param-
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eter because both the entropy of the chaotic signal and the dimension of the
chaotic attractor increase with β [Vicente et al. 2005]. System configurations
that correspond to large values of β are therefore particularly interesting for
encryption purposes.

The equation (3.11) is simulated with an Adams Moulton predictor correc-
tor scheme [Press et al. 1992] and a time integration step of 0.01. To study the
effect of the nonlinearity strength and the response time of the system on the
time delay identification, we carry out numerical simulations of the equation
(3.11) with β = 5 (low nonlinearity strength) and β = 50 (high nonlinearity
strength), for T = 1 and T = 40. The phase and the time delay are always
φ = 0.26π and τ = 100. We have checked that our results hold for different
phase shifts and time delays.

The length of the time series is one million points, sampled at T/100,
where T is the response time of the system. This sampling time ensures that
the discretization reproduces faithfully the characteristics of the continuous-
time system even for β = 50. The dynamics of the system is faster for high
nonlinearities and low response times (see figure 3.12). However, both values of
β, 5 and 50, are studied using the same sampling time, although the dynamics
of β = 5 can be faithfully reproduced with a larger sampling time. We will
follow a similar approach to analyze the experimental data (see section 3.4).
In figure 3.12 the numerical simulated time series are plotted. Note that the
mean value and the standard deviation increase with the nonlinearity strength
of the system.

Hereafter, we apply the different methods described in section 3.1 to iden-
tify the time delay of the system ruled by equation (3.11). The estimated
time delay, τ̂ , by the different methods is presented in table 3.1. The time
delay is estimated by the position of the peak (or valley) with maximum (min-
imum) amplitude. Peaks (or valleys) with decreasing amplitudes also appear
at multiples of τ̂ . The amplitude of these markers (peaks or valleys) decreases
with increasing nonlinear strengths. This can lead to the disappearance of
the markers at the integer multiples of the time delay for high nonlinearity
strengths. However, it has been tested that the marker at τ does not disappear
even for β = 100.

The first methods applied to identify the delay are the delayed mutual
information and the autocorrelation of the time series (plotted in figure 3.13).
The AF only takes into account linear correlations between x(t) and x(t− ν).
When the system is highly nonlinear (β = 50), no trace of the time delay is
found in the autocorrelation function (see figure 3.13(a) (b1 and b2)).

As we can observe from table 3.1, the AF and the DMI always overestimate
the time delay of the system. This is due to the response time of the system,
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Figure 3.12: Time series of a semiconductor laser subject to optoelectronic feedback.
The system is ruled by equation (3.11) with parameters τ = 100 and φ = 0.26π. a1:
β = 5 and T = 1. a2: β = 5 and T = 40. b1: β = 50 and T = 1. b2: β = 50 and
T = 40.

T = 1 T = 40
β = 5 β = 50 β = 5 β = 50

AF 100.5 - 181.2 -
DMI 100.4 100.06 116 102.4
FF 100 100 100 100

TDE 100 100 100 100
GLM 100 - 100 -

GNLM 100 100 100 100

Table 3.1: Estimated time delay from the numerical time series by different tech-
niques. The time delay is τ = 100.
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Figure 3.13: The parameters of the system are τ = 100 and φ = 0.26π. a1: β = 5
and T = 1. a2: β = 5 and T = 40. b1: β = 50 and T = 1. b2: β = 50 and T = 40.
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T . The overestimation is more noticeable for low nonlinearities strengths. In
these cases, the estimated time delay is approximately τ̂ ' τ + T/2. For
higher β, the nonlinear dynamics rules the system and the effect of the linear
dynamics (governed by the response time) is less appreciable. Therefore, when
the response time is small compared to the time delay of the system, as in the
all optical system, the overestimation can be neglected. However, when the
response time is comparable with the time delay, the AF and the DMI are not
suitable techniques to extract the time delay.

Other techniques, as the filling factor method or the statistics of the time
interval between extrema do not overestimate the time delay due to T (see
figure 3.14). However, both methods require an accurate localization of the
extrema of the time series to obtain τ̂ = τ (see table 3.1). The accurate
localization of the extrema can be difficult when the system is affected by
noise and/or the sampling time is too large. In the filling factor method, if we
evaluate the complexity of the trajectory in the space (x(t), x(t− ν)), (taking
into account all the points not only the extrema), the results are comparable
to the ones obtained from the DMI.

Finally, the time delay can be also retrieved from the forecasting error
of a model. We have used simple global linear and nonlinear models. The
global linear model is basically a least squared fitting. The global nonlin-
ear model is a modular neural network, MNN(2:2) (see chapter 4 for more
details about the MNN). In both cases the inputs of the models are x(t),
x(t− ν − δt),x(t− ν),x(t− ν + δt), where δt is the sampling time. The error
is evaluated under variations of ν. A minimum appears at the value of the
time delay. Nonetheless, the global linear model, as the AF, can only identify
the time delay for low nonlinearity strengths (see table 3.1). A global nonlin-
ear model is necessary to extract the time delay of highly nonlinear system
(see figure 3.15).

Let us point out that, as general rule, we try to use the simpler model
capable to identify the time delay in order to reduce the computational time.
This factor is particulary important for the global nonlinear models. To reduce
the long computational times of global nonlinear models, this method can be
used in combination with a faster one (as the DMI), to reduce the searching
range. Furthermore, it is also worth mentioning that we have also used mod-
ular neural networks to reconstruct the nonlinear dynamics of optoelectronic
feedback systems (see chapter 4).
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Figure 3.14: The parameters of the system are τ = 100 and φ = 0.26π. a1: β = 5
and T = 1. a2: β = 5 and T = 40. b1: β = 50 and T = 1. b2: β = 50 and T = 40.
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Figure 3.15: Forecasting error of a global nonlinear model that consists on a
MNN(2:2). The parameters of the system are τ = 100 and φ = 0.26π. a1: β = 5 and
T = 1. a2: β = 5 and T = 40. b1: β = 50 and T = 1. b2: β = 50 and T = 40.

3.3.2 Robustness of the time delay identification

The results presented in the previous subsection have been obtained from
a free noise system, with long time series and sampling times that ensure a
faithful capture of the system dynamics. Nonetheless, when some of the above
conditions are not fulfilled, the estimation of the time delay can be difficult.

To study the performance of the identification techniques described in
section 3.1 in presence of noise, a white gaussian noise is added to the time
series. The white gaussian noise has zero mean and its standard deviation is
the noise amplitude. Its autocorrelation function is a delta function centered at
ν = 0. Hence, the effect of this type of noise is negligible on the autocorrelation
function or the delayed mutual information, even for high noise amplitudes.

By contrast, under moderate noise levels, the time delay estimated by the
filling factor method and the statistics of extrema is overestimated by the
response time of the system, given similar results as the DMI. The FF and
TDE evaluate the extrema of the time series to extract the time delay. The
overestimation is due to the spurious extrema that appear in the time series
induced by the noise. In the case of the analysis of the extrema statistics, these
spurious extrema increase the intervals of extrema separated by the time delay.
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This leads to the disappearance of the minimum at τ . To a certain point, this
effect can be counteracted with longer time series to improve the statistics.

A possible solution is filtering the noise of the time series. Under moderate
noise amplitude it is possible to smooth the time series and use the smoothed
time series to calculate the filling factor and the statistics of the interval
between extrema. This technique works well under low and moderate noise
levels (see section 3.4). Otherwise, the extrema of the smoothed time series
do not correspond to the original extrema points.

The forecasting error of a global model is the unique method of those
studied before that in presence of moderate noise levels does not overestimate
the time delay of the system due to the response time. However, models with
more parameters and training points are required to estimate the time delay
in presence of noise. This yields longer computational times.

Other points to take into account in the estimation of the time delay from
a time series are the length and the sampling time of the time series. In
general, the shorter time series, the lower amplitude has the markers that
identify the time delay. Furthermore, the filling factor and the analysis of the
interval between extrema are not the best options to identify the time delays
from short time series. These methods only evaluate the extrema of the time
series, then short time series reduces the statistic of extrema. Regarding the
sampling of the time series, it is possible to identify the time delay from time
series sampled so that they do not reproduce faithfully the characteristics of
the continuous-time system. Evidently, the accuracy of the time delay depends
on the sampling time. The error in the time delay estimation can not be lower
than the sampling time.

3.3.3 Two-delay systems

Optoelectronic systems with multiples delays have been proposed to increase
the security of the system [Lee et al. 2004]. In the following, we investigate
whether the additional delays can difficult the time delay extraction in the
optoelectronic system.

The two-delay chaotic generator used in this work can be modelled by the
following delay differential equation,

x(t) + T
dx(t)

dt
= G(x(t− τ1), x(t− τ2)) (3.12)

where x(t) is the dynamical variable, τ1 and τ2 are the time delays, G is a
nonlinear function and T is the response time of a low pass filter which limits
the dynamics of the system. This equation can also describe the generator
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Figure 3.16: Block diagram of a chaotic generator with two delays. The elements
of system are the Laser Diode [LD], the nonlinear element [NL], the delay lines [τ1

and τ2], the amplifier [β] and the low pass filter.

of wavelength chaos reported in [Goedgebuer et al. 1998a;b, Larger et al.
1998a;b], but with some additional feedback loops.

Two different configurations, serial and parallel, regarding the way the
nonlinear function is applied to the delayed terms are considered. The block
diagrams of both configurations are presented in figure 3.16.

In the parallel configuration the nonlinear function is applied to each de-
layed term separately:

Gp[x(t− τ1), x(t− τ2)] = β1 sin2 (x(t− τ1)− φ1) + β2 sin2 (x(t− τ2)− φ2)
(3.13)

By contrast, in the serial configuration the nonlinear function is applied to
the sum of the delayed terms,
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Gs[x(t− τ1), x(t− τ2)] = β sin2 (x(t− τ1) + x(t− τ2)− φ) (3.14)

In both cases, the parameter β determines the strength of the feedback as
well as the strength of the nonlinearity, τ1 and τ2 are the delays of the system
and φ is the phase shift.

When both time delays take similar values, τ1 ≈ τ2 ≈ τ , in the parallel con-
figuration the nonlinear function can be written as Gp = (β1+β2) sin2(x(t−τ)).
In the serial case, x(t)+T ẋ(t) = β sin2(2x(t−τ)) and defining a variable y(t) =
2x(t) we obtain a new differential equation, y(t) + T ẏ(t) =2β sin2(y(t− τ)).
Therefore, in the two delays case, the upper bond of the effective nonlin-
ear strength is approximately 2β when β1 = β2 = β. Likewise, regarding
the entropy of the system, both configurations have the same entropy when
φ1 = φ2 = φ. In the parallel configuration the entropy is the same when
φ1 − φ2 = 0 = π/2 and slightly higher if φ1 − φ2 = π/4 [Pazó 2009].

The simulations of the equation (3.12) have been carried out using the
Adams-Bashforth-Moulton predictor-corrector scheme [Press et al. 1992] with
a time integration step of 0.01 for both configurations (the same as in the
one delay case). The time series of both configurations with parameters
β1 = β2 = β = 15, τ1 = 100 and τ2 = 215 are plotted in figure 3.17. The
system is working in the chaotic regime for the chosen parameters. The mean
and the variance of x are higher for the parallel case.

Parallel configuration

The parallel configuration with two feedback loops have been experimentally
implemented using coherence modulation techniques [Lee et al. 2004].

In the parallel configuration it is possible to extract the delays using the
same techniques employed for single delay systems [Prokhorov et al. 2005,
Siefert 2007]. For example, we plot in figure 3.18 the delayed mutual infor-
mation and the filling factor when φ1 = φ2 = 0.26π, β1 = β2 = 15, τ1 = 100
and τ2 = 215 (there is not a rational relationship between τ1 and τ2). Two
peaks (valleys) of approximately the same amplitude appear in the DMI (FF)
at the value of the time delays τ1 and τ2. An additional peak (valley) emerges
at τ2 − τ1. Its amplitude respect to the markers at τ1 and τ2 depends of the
method of identification. Comparable results are obtained with the rest of the
identification techniques.

Now, let us explain the presence of the peak at τ2 − τ1. For the sake of
clarity, we consider T = 0. Then the delay differential equation for the parallel
configuration can be written as:
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Figure 3.17: The time series for serial (top) and parallel (bottom) configurations.
The parameters of the chaotic generator are T = 1, β1 = β2 = β = 15, φ1 = φ2 =
φ = 0.26π, τ1 = 100 and τ2 = 215. The sampling time is 0.01.
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x(t) = β1f1(x(t− τ1)) + β2f2(x(t− τ2)) (3.15)

Next, we evaluate this equation at time (t− (τ2 − τ1)):

x(t− (τ2 − τ1)) = β1f1(x(t− τ2)) + β2f2(x(t− 2τ2 + τ1)) (3.16)

Equating x(t− τ2) from (3.15) and inserting in (3.16), x(t− (τ2− τ1)) and
x(t) are related by:

x(t− (τ2 − τ1)) = β2f2(x(t− (2τ2 − τ1))) + β1f1[f−1
2 (

x(t)
β2

− β1

β2
f1(x(t− τ1)))]

(3.17)
When f1 = f2 = f = sin2 and φ2 = φ1, equation (3.17) can be expressed

as:

x(t− (τ2 − τ1)) = β2f(x(t− (2τ2 − τ1))) + x(t)
β1

β2
− β1

β2
f(x(t− τ1)) (3.18)

demonstrating that exits a linear relationship between x(t) and x(t− (τ2 − τ1)),
that cause the appearance of the peak (valley) at (τ2 − τ1) in the DMI (FF).

Another interesting scenario might be when φ2 − φ1 is π/2 or π/4. When
φ2 − φ1 = π/2, f1 = 1− f2. Replacing this in equation (3.17), also appears a
linear relationship between x(t) and x(t− (τ2 − τ1)):

x(t−(τ2−τ1)) = −β1

β2
x(t)+

β2
1

β2
f1(x(t−τ1))+β1+β2f2(x(t−2τ2+τ1)) (3.19)

Therefore, the DMI when φ2 − φ1 is π/2 (see figure 3.19 (left)) is very
similar to the case φ2−φ1 = 0 (see figure 3.18 (left)) and a clear peak appears
at (τ2 − τ1). However, when φ2 − φ1 = π/4, there is not a linear relationship
between x(t) and x(t− (τ2 − τ1)). In this case the DMI does not show any
peak at (τ2 − τ1) (see figure 3.19 (right)). These conclusions hold for other
techniques used to identify the time delay.

On the other hand, the behavior respect to the nonlinearity strength is
the same as in the one delay case (increasing nonlinearities imply sharper
and small markers). In the optoelectronic feedback system with the parallel
configuration we can also analyze what happens if the nonlinear strength is
different for both delays. To illustrate our results we use the DMI, but all the
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Figure 3.19: The mutual delayed information of a optoelectronic feedback system
with two delays in the parallel configuration. Right (Left): φ2−φ1 = π/4(π/2). The
rest of the parameters of the system are β1 = β2 = 15, T = 1, τ1 = 100 and τ2 = 215.
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Figure 3.20: The delayed mutual information of a optoelectronic feedback system
in the parallel configuration. Right (Left): β2 = 25 (5) . The rest of the parameters
of the system are β1 = 15, T = 1, φ2 = φ1 = 0.26π, τ1 = 100 and τ2 = 215.

identification techniques described in this thesis lead to the same conclusions.
We show in figure 3.20 the DMI when β1 = 15, and β2 = 5 and 25. Just
as expected, the peak associated with the time delay with lower (higher)
nonlinearity strength increases (decreases) its amplitude.

Finally, we also study the time delay identification when both delays are
integers multiples (τ2 = 2τ1) and have a similar value (τ2 ≈ τ1). The delayed
mutual information for these two cases is depicted in figure 3.21. When both
delays are close enough the two peaks that indicate the time delays converge
into a single peak. The DMI of the one and two delays case when τ2 = 2τ1 are
qualitatively similar (compared figures 3.13(b) and 3.21 (left), respectively).
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Figure 3.21: The delayed mutual information of a optoelectronic feedback system in
the parallel configuration. Right (Left): τ2 = 101 (200) . The rest of the parameters
of the system are β1 = β2 = 15, T = 1, φ2 = φ1 = 0.26π and τ1 = 100.

To sum up, we have found that the conclusions obtained for the identifica-
tion of the two delays in the optoelectronic system with parallel configuration
are similar to ones obtained for the all optical feedback system with two de-
lays. In both cases the time delays can be retrieved with the same standard
techniques that work for the one delay case. Likewise, peaks at linear combi-
nations of both time delays appear. In the optoelectronic case, the main peak
due to the linear combination of both delays is located at τ2− τ1, while in the
all optical case the main linear combination correspond to τ1 + τ2.

Through this subsubsection, the results have been illustrated with the
delayed mutual information. Similar results are obtained with other methods
of identification. Moreover, in the two-delay case we have checked that the
effect of the response time is the same as in the one delay case.

Serial configuration

The time delays of the optoelectronic system with double feedback in the
serial configuration can be extracted with the standard methods when the
nonlinearity strength of the system is low (for example β = 5). When the
nonlinearity strength increases, the standard procedures to identify the time
delays start to fail. For β = 15 it is not possible to identify the time delays
with the delayed mutual information, the forecasting error of a global non-
linear model or local linear models [Locquet et al. 2006]. The filling factor
method and the analysis of the extrema distribution show small markers lo-
cated at the time delays of the system (see figure 3.22 (top)). However, the
time delay identification with these methods is not robust. Low noise levels,
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Figure 3.22: The filling factor (left) and the statistics of the time interval between
extrema (right) of a optoelectronic feedback system with two delays in the serial con-
figuration. Top: free noise system. Bottom: Additive gaussian noise whose standard
deviation is 1% of the amplitude of the time series. The parameters of the system
are β = 15, T = 1, φ = 0.26π, τ1 = 100 and τ2 = 215.

higher nonlinearities, shorter time series or even longer sampling times make
impossible the time delay identification (see figure 3.22 (bottom)).

In the double feedback systems, the equation (3.12) only guarantees the ex-
istence of structure in the four dimensional space (ẋ(t), x(t), x(t− τ1), x(t− τ2))
or in the three dimensional space (x(text), x(text− τ1), x(text− τ2)) when only
the extrema points are considered. It is not guaranteed, however, that a
projection on a lower-dimensional space leads to an identifiable object. This
depends on the system considered. In the parallel configuration, each non-
linear function depends only of one time delay yielding some structure in the
(x(text), x(text − τi)) space. To identify the time delays in the serial case, we
propose to generalize the filling factor method and the forecasting error of the
global models to work in the space (x(text), x(text − τ1), x(text − τ2)). Hence,
in the modified filling factor method the trajectory is evaluated in the space
(x(text), x(text−ν1), x(text−ν2)) for the extrema of x(t). In the global model,
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Figure 3.23: The modified filling factor (right) and the forecasting error of a GNLM
adapted for two delays (left) of an optoelectronic feedback system with two delays in
the serial configuration. The parameters of the system are β = 15, T = 1, φ = 0.26π,
τ1 = 100 and τ2 = 215.

now we have inputs delayed by both delays so the output of the model is given
by:

x̂(t + δt) = W (x(t), x(t− δt), ..., x(t−m1δt),
x(t− ν1 + m2δt), ..., x(t− ν1), ..., x(t− ν1 −m2δt),
x(t− ν2 + m2δt), ..., x(t− ν2), ..., x(t− ν2 −m2δt))(3.20)

The results obtained with these modified methods are depicted in figure
3.23. In both cases a minimum appears when ν1 = τ1 and ν2 = τ2. The
robustness of the modified filling factor and the forecasting error of the GNLM
is similar to that of the one delay case. Note that the computational time of
the modified methods respect to the standard ones is much higher due to the
fact that we have to sweep two values instead of one.

3.3.4 Conclusions

We have shown that the time delays of optoelectronic feedback systems subject
to one or two fixed time delays can be identified from numerical time series.
The addition of a second delay does not avoid the time delay identification.
Two different configurations have been analyzed for the two-delay case, serial
and parallel. In the parallel configuration it is possible to extract the delays
using the same techniques that work for single delay systems. However, in the
serial case these techniques fail and we have developed some adapted methods
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to identify the time delay in this configuration too. The basic idea of these
methods is to sweep the two delays of the system. The main drawback of the
modified methods is the increment of the computational time respect to the
standard ones.

We have also studied the effect of the nonlinearity and the response time of
the system on the identification of the time delay with the different techniques
described in section 3.1. For increasing nonlinearity strengths, the general
behavior is a dismissing amplitude of the marker that estimates the time delay.
On the other hand, the response time of the system affects the accuracy of the
estimated time delay by the DMI and the AF. These methods overestimate the
time delay particularly when the nonlinearity is low and the response time of
the system is comparable to the time delay. Moreover, if the system is not free
noise, then the filling factor method and the analysis of time interval between
extrema also overestimate the time delay due to the response time. In these
latter cases, we have checked that under moderate level noise, the filtering of
the time series can avoid or decrease this effect. The only method that does
not overestimate the time delay of the system due to the response time is the
forecasting error of a global nonlinear model. However, this method always
implies long computational times.

3.4 Experiments: optoelectronic feedback system

After analyzing the time delay identification in a semiconductor laser with
optoelectronic feedback from numerical time series, now we apply these tech-
niques to experimental time series.

In subsection 3.4.1 we describe in detail the experimental setup. The
chaotic experimental generator shows chaos in wavelength. This system offers
a high flexibility compared to other optical systems. This feature permits us to
analyze the time delay identification from the experimental time series under
a large variation of parameters such as the response time and the nonlinearity.
The same experimental setup will be used to study the reconstruction of the
nonlinear dynamics and the unauthorized decoding of a message in chapters
4 and 6, respectively.

Finally, in subsections 3.4.2 and 3.4.3 we retrieve the time delay from the
experimental time series of a semiconductor laser with optoelectronic feedback
with one and two delays.
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Figure 3.24: Experimental Setup.

3.4.1 Experimental setup

The chaotic experimental generator considered in this work is depicted in
figure 3.24 [Goedgebuer et al. 1998a;b, Larger et al. 1998a;b]. It consists of
a wavelength-tunable distributed-Bragg-reflector (DBR) semiconductor laser
with a feedback loop. The feedback loop contains an optical component that
exhibits a nonlinearity in wavelength, a delay line, an amplifier and a first-
order low-pass filter. An electronic corrector is also included in the loop to
achieve constant wavelength-independent optical power at the laser output.

After the nonlinear element the variable output power is converted into
an electric current by a photodiode, and the current in turn is injected into
the tunable-wavelength laser diode. As a consequence, the delayed feedback
induces chaotic fluctuations in the laser wavelength for adequately chosen
control parameters.

In the two-electrode DBR semiconductor laser, the wavelength is fixed at
a given value Λ0 by adjusting a couple of bias currents (Iact, IDBR) on each
of the electrodes. The wavelength can be tuned electronically around Λ0 by
varying current IDBR, while keeping Iact constant. The Iact determine the
output power of the laser. The variation range of the wavelength is small
enough to ensure that the DBR laser always oscillates in a single longitudinal
mode.

The nonlinearity in wavelength is induced by the birefringent plate whose
fast and slow axes are oriented at 45◦ to two crossed linear polarizers. The
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Figure 3.25: Nonlinear function generated by the birefringent plate in an open loop
configuration.

intensity detected by the photodetector is a sin2 nonlinear function of the
wavelength emitted by the laser diode (see figure 3.25).

The delay module consists of a First-In First-Out (FIFO) memory of
2048x9 bits that stores 2048 data in queue order so the first input element
goes out the first. The FIFO module is plotted in detail in figure 3.26. The
signal is digitized with a 12 bits analog-to-digital (AD) converter to store the
data in the FIFO memory. When the data go out of the FIFO memory, they
are converted again to an analog signal using a 12 bits digital-to analog (DA)
converter. The clock frequency fclk is given by an external clock with a fre-
quency fin = 4fclk. The clock frequency is limited to a maximum value of
5 MHz by the AD and DA converters. A minimum clock frequency of 1 MHz
is considered to avoid aliasing. When the clock frequency is fixed the time
delay is given by (2048+6)/fclk, where the extra small delay of 6/fclk is due to
a sort of buffer located inside the device. The time delay in this experimental
setup takes values between 0.4 and 2 ms.

The wavelength of the chaotic carrier can be described by the following
time-delay differential equation:

T
dλ(t)

dt
= −λ(t) + βλ sin2(

πD

Λ2
0

λ(t− τ)− φ) (3.21)

where λ is the wavelength deviation from the center wavelength Λ0, D is the
optical path difference of the birefringent plate which constitutes the nonlin-
earity, φ is the feedback phase, τ is the time delay, T is the response time of
the feedback loop, given by the cut-off frequency of a the first-order low-pass
filter and βλ is the feedback strength. The feedback strength can be adjusted
through the gain G of an amplifier in the loop. The regime of oscillations
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Figure 3.26: Detailed FIFO module.

in wavelength depends on the value of the parameter βλ, which determines
the strength of the feedback as well as the strength of the nonlinearity. In
dimensionless units this parameter is given by β = πDβλ/Λ2

0. The number
of extreme values of the sin2 nonlinear function increases also with β. In the
following the system parameters are set to operate in the chaotic regime. Note
that equation (3.21) can be normalized to the Ikeda delay differential equation
(3.11) presented in the section 3.3.

3.4.2 One delay systems

In this subsection, we analyze the single time delay identification from the
experimental time series generated by the chaotic generator explained above.
The experimental time series have been recorded with a high end digital stor-
age oscilloscope with 8 bits for the analog-digital conversion. The value of the
time delay has been estimated from the FIFO parameters to be around 1.655
ms. We have checked that similar results are obtained for different time delay
values.

Two different cases are studied: a nonlinear function with 2-3 extrema (low
nonlinearity) and 6 extrema (moderate nonlinearity). Moreover, two different
values of the cut-off frequency of the low-pass filter are considered, 20 KHz
and 200 Hz, leading to response times of 8 µs and 800 µs, respectively. The
sampling time is in both cases approximately one hundred times lower than
the response time of the system. This means, a 10 Msampl/s for T=8 µs and
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Figure 3.27: Experimental time series of an optoelectronics feedback system with
τ = 1.655 ms. Different nonlinearities and response times are plotted. a1: Low
nonlinearity strength and T = 8 µs. b1: Moderate nonlinearity strength and T = 8 µs.
a2: Low nonlinearity strength and T = 800 µs. b2: Moderate nonlinearity strength
and T = 800 µs. The sampling time is 10 µs for T = 800 µs and 0.1 µs for T = 8 µs.

0.1 Msampl/s for T=800 µs. The length of the recorded time series is always
of one million points. In figure 3.27 the experimental time series are depicted.

Contrary to the simulations results, the autocorrelation function of the
experimental time series and the forecasting error of a global linear model do
not give any indication of the time delay of the system for low nonlinearity
strengths (nonlinear functions with 2-3 extrema). The reason might be the
presence of noise (not only additive white gaussian noise).

A rough estimation of the noise of the time series can be made by sub-
tracting the original time series (normalized to mean zero and variance unity)
and an averaged version of it. The basic idea is to compare each point of the
original signal with an average of the neighborhoods points. We calculate the
noise of the system as the difference between the original and the smoothed
signal. With this method we estimate a SNR ' 32 (31) dB when T = 8 (800)
µs. The SNR is calculated as 20 log(σλ/σsλ−λ), where σλ and σsλ−λ are the
standard deviation of the original signal and the smoothed signal minus the
original one, respectively. The normalized original time series and its aver-
age is plotted in figures 3.28(a) and 3.28(b) for T = 800 µs and T = 8 µs,
respectively.
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Figure 3.28: (a, b): Top panel: The normalized experimental time series (black) and
its average (red). Bottom panel: the difference between the normalized experimental
time series and its average. a (b): The time series has been generated by a chaotic
generator with τ = 2080 (476) µs, T = 800 (8) µs and a nonlinear function with 5
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measured in volts.
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Figure 3.29: The delayed mutual information for the experimental time series with
τ = 1.655 ms. Different nonlinearities and response times are analyzed. a1: Low
nonlinearity strength and T = 8 µs. b1: Moderate nonlinearity strength and T = 8 µs.
a2: Low nonlinearity strength and T = 800 µs. b2: Moderate nonlinearity strength
and T = 800 µs.

On the other hand, the location of the highest peak of the delayed mutual
information (plotted in figure 3.29) estimates the time delay of the system.
Lower amplitude peaks appear at multiples of the time delay. As happened
with the numerical results, the amplitude of the peaks decreases as the non-
linearity strength increases. Moreover, the estimated time delay given by the
DMI method is also overestimated due to the response time of the system (see
table 3.2). The influence of the response time in the estimated time delay
is more noticeable for high T and low nonlinearities. For high nonlinearities
the influence of the response time in the dynamics of the system decreases, in
parallel with the decreasing influence of the linear dynamics.

Next, we plot the filling factor and the statistic of the time interval between
extrema of the experimental time series in figure 3.30. In both cases the
estimated time delay is also affected by the response time of the system (see
table 3.2). This is consequence of the spurious extrema that appear in the
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T = 8µs T = 800µs

Low β High β Low β High β

DMI 1.658 ms 1.657 ms 1.83 ms 1.77 ms

FF 1.657 ms 1.656 ms 1.76 ms 1.7 ms

GNLM 1.654 ms 1.654 ms 1.655 ms 1.655 ms

TDE 1.65 ms 1.652 ms 1.56 ms 1.6 ms

FF (smooth) 1.654 ms 1.654 ms 1.655 ms 1.655 ms

TDE (smooth) - - 1.655 1.655

Table 3.2: Estimated time delay from different techniques from the experimental
time series. The experimental estimated time delay is 1.655 ms.

time series originated by the noise. The time delays estimated with the FF
method, the absolute maximum of N(ν) (where N(ν) is the statistic of the
time interval between extrema) and the DMI are similar. In the TDE, the
absolute minimum of N(ν) should provide an accuracy time delay estimation
but the extrema induced by the noise lead to an underestimation of the time
delay (see table 3.2).

Under low and moderate noise, the forecasting error of a model is the only
time delay identification technique of the ones studied in this thesis whose
results are not affected by the response time of the system. We apply the
same global nonlinear model used in the simulations to the experimental time
series. The results are shown in figure 3.31 and table 3.2. The main shortcom-
ing of this method is the long computational times. The computational time
increases for long time delays, short sampling times and large number of pa-
rameters of the model. Systems with higher nonlinearity strengths and noise
require more parameters. To minimize the computational time, this method
can be used in combination with simpler ones, like the delayed mutual infor-
mation. Once we have an estimation of the time delay, the range of the values
near the estimated time delay can be swept with a global model to obtain a
better approximation of the time delay.

Even with this approach, the computational time can be too long. A
possible solution to avoid or decrease the effect of the noise is to filter the
experimental time series. As previously mentioned, one simple way of filtering
part of the noise is to smooth the data. Smoothing is achieved by averaging the
signal around each point (the number of the nearby points used to average
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Figure 3.30: The experimental time series has τ = 1.655 ms. Different nonlinearities
and response times are analyzed. a1: Low nonlinearity strength and T = 8µs. b1:
Moderate nonlinearity strength and T = 8 µs. a2: Low nonlinearity strength and
T = 800 µs. b2: Moderate nonlinearity strength and T = 800 µs.
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Figure 3.31: The forecasting error of a neural network model for the experimen-
tal time series with τ = 1.655 ms. Different nonlinearities and response times are
analyzed. a1: Low nonlinearity strength and T = 8 µs. b1: Moderate nonlinearity
strength and T = 8 µs. a2: Low nonlinearity strength and T = 800 µs. b2: Moderate
nonlinearity strength and T = 800 µs.

depends on the sampling time and the dynamics of the particular system).
Under low and moderate noise, the extrema of the smoothed time series are
located at the same points that the extrema of the free noise time series. Under
high noise levels there is not a good resemblance between the smoothed and
the free noise time series and this simple technique is not valid. We plot
in figure 3.32 the filling factor and the statistics of the time interval between
extrema of the smoothed time series. The overestimation of the time delay due
to the effect of the response time of the system has been eliminated (see table
3.2). Nonetheless, when T = 8 µs the number of extrema of the smoothed
time series is insufficient to apply with success the analysis of the time interval
between extrema. In this particular case, longer time series are necessary. The
effect of the low number of extrema can be also noticed in the filling factor
that presents valleys with lower amplitude than for the original time series.

To conclude, in the experimental optoelectronic feedback system we can
estimate the time delay with accuracy and avoid the effect of the response time
of the system by using a global nonlinear model. However, the computational
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Figure 3.32: The smoothed experimental time series has τ = 1.655 ms. Different
nonlinearities and response times are analyzed. a1: Low nonlinearity strength and
T = 8 µs. b1: Moderate nonlinearity strength and T = 8µs. a2: Low nonlinearity
strength and T = 800 µs. b2: Moderate nonlinearity strength and T = 800 µs.
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time is too long. Other effective methods are also the filling factor and the time
distribution of extrema methods once part of the noise of the original time
series has been filtered. This technique works well under low and moderate
levels of noise. On the other hand, higher nonlinearity strengths (nonlinear
function with more extrema) imply lower peaks or valleys located at the time
delay of the system. Note that similar results and conclusions were reached
with the numerical simulations in the previous section. Finally, it is worth
mentioning that the time delay of the system can be extracted from time
series with larger sampling times than the ones used in this section.

3.4.3 Two-delay systems

It is possible to add a second delay line to the experimental setup presented in
subsection 3.4.1. The experimental setup of the two delays chaotic experimen-
tal generator is plotted in figure 3.33. The two delays chaotic experimental
generator can be described by the following time-delay differential equation:

T
dλ(t)

dt
= −λ(t) + βλ1 sin2(

πD

Λ2
0

λ(t− τ1)− φ1) + βλ2 sin2(
πD

Λ2
0

λ(t− τ2)− φ2)

(3.22)
Due to the experimental implementation the nonlinearity strength βλ2 is al-
ways higher than βλ1 . This experimental case fits the parallel two-delay case
presented in the simulations (see section 3.3.3).

The behavior of the time delay extraction with respect to the nonlinearity
strength of the system is the same as in the one delay case. Taking this into
account, in the two-delay experimental case we only study the time delay
identification with the higher nonlinearity strength than can be reached by
the present experimental setup. From previous sections, we know that this
scenario is the most complicated to identify the time delay since the amplitude
of the markers located at the time delay decreases for increasing nonlinearity
strength.

First, we analyze the case of T = 8 µs when the experimental measured
time delays are τ1 = 0.41 ms and τ2 = 2.05 ms. The recorded experimental
time series has one million points sampling each 1 µs, demonstrating that it
is possible to retrieve the time delay with sampling times longer than 0.1 µs
(one delay case). The experimental time series corresponding to this case are
plotted in figure 3.34.

We find that both delays of the system can be extracted using the one
delay standard techniques (see figure 3.35). Due to βλ2 > βλ1 , the marker
located at τ2 is always lower than the marker at τ1. A marker at τ2 − τ1 also
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Figure 3.33: Experimental setup of the chaos in wavelength with two delay lines.
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Figure 3.35: Time delay identification of a two-delay experimental system using
different methods. a1: DMI. a2: Filling Factor. b1: Statistics of the interval between
extrema. b2: Forecasting error of a modular neural network with 1 non-feedback
input, 3 feedbacks inputs, 6:3 neurons in the feedback module. The parameters of
the system are T = 8 µs, high nonlinearity strength, τ1 = 0.41 ms and τ2 = 2.05 ms.

appears. This marker is even higher than the second delay one for most of
the cases. Similar results and conclusions were obtained with the numerical
simulations (see section 3.3.3).

As in the simulations, we study the time delay extraction in three special
cases: τ1 is very close to τ2, τ2 = 2τ1 and τ2 = 3τ1. The delayed mutual
information for these three cases is depicted in figure 3.36. The conclusions
hold for other time delay identification techniques. Total agreement with the
simulations conclusions is obtained. When both delays are close enough, the
two peaks that indicate the time delays converge into a single peak, making
impossible to distinguish both time delays. The DMI of the case τ2 = 2τ1 are
qualitatively similar to the DMI of the one delay case (see figure 3.29). This
does not occur when τ2 = 3τ1.

Finally, we can also analyze the two time delays case with T = 800. The
DMI and the filling factor are plotted in figure 3.37 when the time delays are
τ1 = 1.17 ms and τ2 = 1.64 ms. In both cases the sampling time is 10 µs.



Section 3.4. Experiments: optoelectronic feedback system 83

0.7 0.8 0.9
0

0.05

0.1

ν (ms)

τ
1

↓

↓
τ

2

0 1 2
0

0.05

0.1

DMI

ν (ms)

↓

τ
2

τ
1
=τ

2
−τ

1

↓

0 1 2
0

0.05

0.1

ν (ms)

↓
τ

1

↓
τ

2
−τ

1
↓
τ

2

Figure 3.36: The DMI of experimental time series with T = 8 µs and high nonlin-
earity strength. Left: τ1 = 0.811 ms and τ2 = 0.819 ms. Middle: τ1 = 1.025 ms and
τ2 = 2.05 ms Right: τ1 = 0.683 ms and τ2 = 2.05 ms.

0 1 2 3 4
0

0.05

0.1

0.15
DMI

ν (ms)

↓
τ

1
↓
τ

2

0 1 2 3 4
0.36

0.4

0.44

FF

ν (ms)

↑τ
1

↑τ
2

Figure 3.37: Left (Right): DMI (FF) of experimental time series with two time
delays. The parameters of the system are T = 800 µs, high nonlinearity strength,
τ1 = 1.17 ms and τ2 = 1.64 ms.

Here, the peaks (valleys) that estimated the time delay appear in the region
where the effect of the linear correlations have not yet disappeared. The peak
at τ2 − τ1 is concealed due to the linear correlations. Clearly, the time delays
are overestimated due to the response time as in the one delay case. The same
solutions proposed in the one delay case to avoid this overestimation can be
applied to the two delays case.
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3.5 Periodic time delay

We have demonstrated in the previous sections that the optoelectronic feed-
back system with one and several fixed delays is vulnerable from the point of
view of time delay identification. To enhance the security of the system, it has
been proposed [Kye et al. 2004] to use a variable time delay to hide it from
an eavesdropper.

Following this approach, we study the extraction of a periodic time delay
from the experimental time series. In the chaotic wavelength transmitters
based on a DBR laser subject to optoelectronic feedback (see subsection 3.4.1),
the value of the time delay is given by a FIFO memory (see figure 3.26).
When fixed delays are considered, the fclk of the FIFO memory is fixed. The
experimental periodic time delay, τ(t), can be easily obtained by periodic
modulation of the clock frequency. The modulated clock frequency, fclk, is
given by:

fclk(t) = f0 + ∆fψ(t) (3.23)

where f0 is the clock frequency is absence of modulation, ∆f is the amplitude
of modulation, ψ(t) is a periodic function of period T=1/F and F is the
modulation frequency.

Depending on the clock frequency modulation (∆f , ψ(t), F), different func-
tions for the periodic time delay, τ(t), are obtained. First, in subsection 3.5.1
we analyze the function obtained for the time delay, both from a theoretical
model and from experimental data. In subsection 3.5.2 we study the case of a
periodic time delay with square wave modulation for the clock frequency. The
period of the time delay is obtained from the mutual information. Finally, in
subsection 3.5.3 we show that the periodic time delay function of the chaotic
carrier can be extracted from experimental data by applying a modified filling
factor method. A sinusoidal periodic function for the clock frequency is con-
sidered for the delay. Different periods and modulation depths are considered.

3.5.1 Periodic time delay function

Let us examine first the simplest case, a square-wave modulation of the clock
frequency between two values f1 and f2, such that f1 > f2.

In theory, the maximum and minimum time delays that the system can
reach are τi = 2048/fi(i = 1, 2), and correspond to the two clock frequencies f1

and f2. We first consider that the modulation frequency F is small, such that,
τi(i = 1, 2) are smaller than T/2. T = 1/F is the modulation period. When the
clock frequency is changed from f1 to f2, it takes a time τ2 to replace the data
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stored in the FIFO memory (sampled with the rate f1) by the data sampled
with the rate f2. Then the value of the time delay increases linearly from τ1 to
τ2 in a time τ2 with a slope (f1 − f2)/f1. A similar situation occurs when the
clock frequency is changed from f2 to f1, and the time delay decreases linearly
from τ2 to τ1 in a time τ1, but with a greater slope (f1 − f2)/f2. However,
when the modulation frequency F is large, such that T/2 is smaller than τ2,
the maximum time delay that can be reached, τ2 − (τ2 − τ1)(1− T/(2τ2)), is
smaller than τ2.

Following these guidelines we have developed a model that simulates the
periodic time delay τ(t) as function of the clock frequency. We show in figure
3.38 (left) and figure 3.39 (left) the time delay function for square-wave and
sinusoidal modulation, respectively. It can be seen that the time delay for
square-wave modulation has an increasing slope smaller than the decreasing
one. Moreover, in these figures the minimum frequency clock is 1 MHz. This
leads to a maximum time delay of 2 ms applying the FIFO formula (2054/fclk).
For small values of the modulation frequency this maximum time delay is
reached (see figure 3.38). For larger values of the modulation frequency the
range of the delay values decreases, and the maximum time delay is smaller
than 2 ms (see figure 3.39). These results are in agreement with the previous
discussion.

We have also performed experimental measurements to obtain the time
delay function. The experimental time delay function is obtained by the fol-
lowing procedure. A periodic triangular signal with a period Tin = 50 ms
greater than T has been used as input of the FIFO delay module. The output
signal is then given by Vou(t) = Vin(t − τ(t)). The time delay function can
be obtained from (Vin − Vou)/A (or (Vou − Vin)/A ) using a half-period with
increasing (or decreasing) input signal, where A = 70 mV/ms is the slope of
the triangular input signal. Data acquisition is performed for all the cases
of modulated time delay with a 8 bits resolution oscilloscope and a sampling
time of 10 µs. The results obtained for square-wave and sinusoidal modu-
lation are shown in figures 3.38 (right) and 3.39 (right), respectively. The
time delay functions measured in this way are similar to the ones obtained
from the model. In the case of sinusoidal modulation the range of the delay
values is similar for both experimental and theoretical results. However, for
the square-wave modulation the range of the delay values obtained from the
model is 0.3 ms smaller than the range obtained from the experimental mea-
surements. We note that the measurements in this subsection were performed
at the end of the experimental work with the modulated time delay. It seems
that the FIFO memory performance has become worse, and that the delay
module was not working properly during these measurements.
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Figure 3.38: Periodic delay time obtained from model (left) and experiment (right)
for square-wave modulation of the clock frequency between 1 and 5 MHz with mod-
ulation frequencies F = 100 (top) and 200 (bottom) Hz.
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Figure 3.39: Periodic delay time obtained from model (left) and experiment (right)
for sinusoidal modulation of the clock frequency between 1 and 5 MHz with modula-
tion frequencies F = 400 (top) and 700 (bottom) Hz.
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Figure 3.40: Right: Delayed Mutual information of the experimental time series for
square-wave modulation with the clock frequency around f0 = 3 MHz, ∆f = 1.25
MHz and low nonlinearity. Left: Simulations of τ(t) for square-wave modulation with
the clock frequency around f0 = 3 MHz and ∆f = 1.25 MHz. From top to bottom,
different modulation frequencies: F = 50 (top), 400 (middle) and 700 (bottom) Hz.

3.5.2 Square-wave modulation

Now, we consider a square-wave modulation of the clock frequency:

fclk(t) = f0 + ∆f sgn(sin(2πFt)), (3.24)

where sgn(x) is the sign function, that gives 1 (-1) for positive (negative)
values of x, ∆f is the modulation amplitude, F is the modulation frequency
and f0 = 3 MHz. We name f1 = f0 + ∆f and f2 = f0 −∆f .

The modulation frequency can be obtained from the delayed mutual infor-
mation of the experimental time series. We have found that the DMI exhibits
a modulation with maxima at multiples of the modulation period T = 1/F
(see figure 3.40 (right)). These maxima in the statistical link between λ(t)
and λ(t + nT ) are due to the fact that the time delay is the same for both
variables. When the modulation frequency is increased the maxima also ap-
pear at multiples of T/2. This is related to the shape of τ(t) (see figure 3.40
(left)). Similar behavior is obtained for the DMI of τ(t).

The amplitude of the modulation of the DMI function decreases when the
amplitude and/or the frequency modulation of the clock frequency decrease.
Then for small clock frequency modulation amplitudes and low frequencies it
is difficult to extract the modulation frequency F (see figure 3.41). Note that
for small modulation frequencies it is necessary to use longer time series.

On the other hand, for low modulation frequencies the DMI gives also
information about the two values of the time delay, τi = 2054/fi(i = 1, 2),
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Figure 3.41: Delayed mutual information for square-wave modulation of the clock
frequency around f0 = 3 MHz for low nonlinearity, modulation amplitude of 0.25
MHz and modulation frequencies F = 400 (top) and 700 (bottom) Hz.

that correspond to the two clock frequencies (see figures 3.42 and 3.43). For
low modulation frequencies the time delay function is similar to a square-
wave function (see figure 3.40 (left)) with only two values τ1 and τ2 for the
delay. Then the statistical link between λ(t) and λ(t − ν) is maximum when
ν = τi(i = 1, 2) (see figure 3.43). When the modulation frequency is increased
the peak amplitude at τ1 and τ2 decreases, and the values of the mutual in-
formation for times between τ1 and τ2 increase (see figure 3.43). For large
modulation frequencies the time delay function is similar to a triangular func-
tion (see figure 3.40 (left)). Then the range of the delay values is given by
the interval between τ1 and τ2, and the mutual information gives information
about this range. It is also found that the statistical link given by the DMI
decreases when the nonlinearity is increased (see figure 3.43).

3.5.3 Sinusoidal modulation

In this subsection we consider a sinusoidal modulation of the clock frequency
of the form:

fclk(t) = f0 + ∆f sin(2πFt) (3.25)

where ∆f is the amplitude modulation, F is the modulation frequency and
f0 = 2.25 MHz.
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Figure 3.43: Delayed mutual information for square-wave modulation around f0 =
3 MHz for ∆f = 0.25 MHz and different modulation frequencies: F = 50 (top), 400
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Figure 3.44: Delayed mutual information for sinusoidal modulation of the clock
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(High) nonlinearity. The arrows correspond to the maximum and minimum values of
the time delay function.

As in the square-wave modulation case, the delayed mutual information
exhibits a modulation with maxima at multiples of the modulation period
T = 1/F. The maxima appear also at multiples of T/2 for small ∆f , and
when F is increased for large ∆f (see figures 3.44 and 3.45). As in the square-
wave modulation case this behavior is related to the shape of τ(t). It is also
found that the DMI modulation amplitude decreases when F decreases (see
figures 3.44 and 3.45). Then for small clock frequency modulation amplitudes
and low frequencies it is more difficult to extract the modulation frequency F.

In addition, the DMI also informs us about the range of the time delay
function. In figure 3.46 we show the delayed mutual information for small
modulation amplitude and different modulation frequencies. Two peaks are
obtained at values close to the maximum, τM , and minimum, τm, values of the
time delay function. The fraction of the modulation period such that the time
delay function is close to one value has a maximum for τM and τm (see figure
3.39). Then the DMI has also a maximum at these extreme values of τ(t). The
location of the peaks at τM (τm) decreases (increases) when the modulation
frequency increases, in agreement with the results shown in figure 3.39. Since
the time delay takes values between τm and τM the DMI also increases for
the same range of values. The same behavior is also obtained at multiples of
this interval. It is also found that the DMI decreases when the nonlinearity is
increased (see figure 3.46).

The amplitude of the modulation of the DMI function increases when the
modulation amplitude ∆f increases. Then for large ∆f the peaks located at
τM and τm are nearly hidden by the DMI modulation (see 3.44 right).
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Figure 3.46: Delayed mutual information for sinusoidal modulation around f0 =
2.25 MHz for ∆f = 0.25 MHz and different modulation frequencies: F = 100 (top),
400 (middle) and 700 (bottom) Hz. Left: low nonlinearity. Right: high nonlinearity.
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Figure 3.47: Top: Filling factor obtained from experimental data xn = (ti + nT )
for low nonlinearity and sinusoidal modulation of the clock frequency around f0 =
2.25 MHz for ∆f = 1.25 MHz and modulation frequency F = 700 Hz. Bottom: The
same filling factor after removing the modulation. Two values of ti are considered
that yield two values of the time delay function: τ(t1) = 0.7 ms (left) and τ(t2) =
1.1 ms (right).

We have developed a modified filling factor method to recover the time
delay function τ(t). The procedure is explained in the following lines. We take
the experimental data sampled at each modulation period starting at a time
ti, xn(ti) = λ(ti +nT ). Then the same time delay, τ(ti), is associated with all
the data xn(ti). Therefore the filling factor method obtained from these data
xn(ti) exhibits a minimum at τ(ti). We show in figure 3.47 the filling factor
obtained for two different values of the initial time ti. A minimum appears in
the filling factor at τ(ti). Moreover, it is found that the filling factor exhibits
a modulation with a period T. When the modulation is removed (see figure
3.47 bottom), minima at multiples of the delay τ(ti) can be also seen. The
time delay function is obtained by sweeping the value of ti over a period T.

The time delay functions retrieved from experimental data series are plot-
ted in figures 3.48-3.50 for different modulation amplitudes and frequencies,
and for low and high nonlinearity. A good agreement is obtained with the
time delay function calculated by using the model. A systematic overestima-
tion of around 20 µs is obtained. Similar results are obtained for low and high
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Figure 3.48: Periodic delay time obtained from experimental time series (solid) and
model (dashed) for sinusoidal modulation of the clock frequency around f0 = 2.25
MHz, ∆f = 0.25 MHz and modulation frequency F = 400 Hz. Left: low nonlinearity.
Right: high nonlinearity.

Figure 3.49: Periodic delay time obtained from experimental time series (solid) and
model (dashed) for sinusoidal modulation of the clock frequency around f0 = 2.25
MHz, ∆f = 0.25 MHz and modulation frequency F = 700 Hz. Left: low nonlinearity.
Right: high nonlinearity.

nonlinearity. For small modulation amplitude a quasi-sinusoidal modulation
is obtained (see figures 3.48 and 3.49). When the modulation frequency is
increased the minimum (maximum) value of the delay increases (decreases),
and the range of the delay values is reduced, in agreement with the results
shown in figure 3.39. When the modulation amplitude is increased the shape
of τ(t) is distorted (see figure 3.50). The time delay function has an increasing
slope that is smaller than the decreasing one, in agreement with the analysis
previously performed for the delay module.

Summarizing, we have investigated the time-delay identification from the
experimental time series generated by an optoelectronic feedback system with
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Figure 3.50: Periodic delay time obtained from experimental time series (solid) and
model (dashed) for sinusoidal modulation of the clock frequency around f0 = 2.25
MHz with modulation frequency F = 700 Hz and different modulation amplitudes:
0.75 (left) and 1.25 (right) MHz. Top: low nonlinearity. Bottom: high nonlinearity.

periodic time delay. First, we have shown that the modulation period T can
be obtained from the mutual information for different modulation shapes,
amplitudes and frequencies. This recovery becomes more difficult for small
modulation amplitudes and low modulation frequencies. The range of the
delay values can be also extracted from the mutual information. Next, a
modified filling factor method has been used to obtain the time delay function
for the case of sinusoidal modulation. A good agreement is obtained with the
results given by the model developed for the delay module.

In a similar way that we will see for the case of two fixed time delays
(see chapter 4, section 4.4), it can be expected that the retrieval of the time
delay function will allow to reconstruct the nonlinear dynamics by working in
a low-dimensional projection of the phase space. Then these optoelectronic
feedback systems with periodic time delay are vulnerable. A way to enhance
the security of these systems could be the use of a chaotic time delay [Kye
et al. 2004], obtained as a function of the feedback system or generated by
another chaotic system.
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3.6 Conclusions

Along this chapter we have analyzed the time delay identification in semi-
conductor lasers subject to optical or optoelectronic feedback with different
techniques. We have particulary focused on several cases proposed to difficult
the time delay extraction: systems with variable time delay and multiples fixed
time delays. We have also carefully analyzed the time delay identification in
the all-optical case when low feedback rates are considered.

In the all optical feedback case, we have found that for large feedback rates,
one and two fixed time delays can be easily extracted from numerical and
experimental time series of the laser light output by standard identification
methods. Similar results are obtained by the different standard techniques.

The most complicate time delay identification scenario for the all optical
feedback system occurs for low feedback rates and a careful choice of the
operational parameters, for which the laser relaxation-oscillation period is
close to the delay. In this case, a simple ECSL with a single optical feedback
can hide its time-delay when standard methods are employed. However, the
range of parameters that conceals the time delay extraction is small and the
complexity of the chaos (dimensions and entropy) generated in this case is not
very suitable for the secure optical communications.

Regarding the optoelectronic case, we have found that the time delay of
single optoelectronic feedback systems can be also retrieved from numerical
and experimental time series using the standard techniques. Here, we have
particulary studied the effect of the nonlinearity strength and the response
time of the system on the time delay identification. We have found that an
increment of the nonlinearity strength decreases the amplitude of the markers
located at the time delay. On the other hand, the time delay of the system
can be overestimated by some standard identification techniques due to the
response time of the system. This effect is more noticeable for low nonlinearity
strengths and time delays comparable with the response time. The forecasting
error of a global model is the only technique that in a noisy system gives a
accurate estimation of the time delay. In systems under moderate noise, the
noise of the time series can be filtered so the filling factor and the statistical
interval between extrema give estimated time delays that avoid the effect of
the response time of the system.

In the optoelectronic system, we have also analyzed the two fixed delays
case for two different configurations, serial and parallel. As happens with the
all-optical systems the addition of a second delay does not avoid the time delay
identification. In the parallel configuration it is possible to extract the delays
using the same techniques that work for single delay systems. In the serial
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configuration we have modified the filling factor method and the forecasting
error of a model to identify multiples time delays. However, in this case the
computational time required to identify the time delays increases exponentially
with the number of delays.

In the two delay case, the time delay identification is only ambiguous when
both delays are multiples or have close values. However, the relevance of both
delays in the reconstruction of the nonlinear dynamics is a question that has to
be addressed. The proximity or relationship of both delays can make possible
the nonlinear reconstruction knowing only the approximate time delay given
by the identification techniques. These results are valid for the optoelectronic
and optical systems.

Actually, the most promising approach to avoid the time delay identi-
fication seems to be the variable time delay. However, we have developed
customized techniques to extract the time delay function when the variable
time delay is a periodic function. The procedure consists on extracting the
period of the time delay from the delayed mutual information. Posteriorly, a
modified filling factor method is used to obtain the time delay function. We
have applied this technique to extract periodic time delays from experimental
time series of an optoelectronic system.

Finally, let us mention that we have also analyzed the time delay identifi-
cation from experimental time series of a optoelectronic system that presents
chaos in intensity [Goedgebuer et al. 2002]. This system uses a Mach-Zehnder
modulators to generated the nonlinearity of the system. Only low nonlinear-
ities can be reached with this system and the response time of the system is
low compared to the time delay. Therefore basic techniques as AF or DMI
estimate the time delay with a good accuracy.



Chapter 4

Nonlinear dynamics
reconstruction of time-delay
systems

M odelling and predicting the dynamics of nonlinear chaotic systems is
a challenging problem with important applications in many real-world prob-
lems. Most of the research done in nonlinear dynamics modelling from data
is focused on low-dimensional dynamics. Different non-parametric and para-
metric techniques have been proposed for constructing approximate models
from time series. The general approach consists in reconstructing the phase
space from the observed data, most often by making use of the time delay
embedding theorem [Sauer et al. 1991, Takens 1981]. Unfortunately, this ap-
proach suffers from severe limitations as soon as the dimension of the chaotic
attractor becomes large.

Bünner et al. [1996a;b] has shown that it is possible to reconstruct the dy-
namics of time delayed chaotic systems with high dimensional attractors with
much less variables than those required by the standard embedding theorems.
They exploit the particular structure of time delay systems for the reconstruc-
tion. Following a similar approach, other investigators have reconstructed the
dynamics of time delay chaotic systems [Bezruchko et al. 2001, Ellner et al.
1997, Ponomarenko and Prokhorov 2002, Prokhorov et al. 2005, Prokhorov
and Ponomarenko 2008, Robilliard et al. 2006, Udaltsov et al. 2003, Voss and
Kurths 1997; 1999, Zhou and Lai 1999]. These methods are only valid for
scalar time delay systems, i.e. systems involving a single variable. Posteriorly,

97
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Bünner et al. [1997] extended their technique to multi-variate delay systems,
but a multi-variate measurement is required.

In the above mentioned cases, it is assumed that the structure of the de-
lay differential equation that governs the chaotic generator is known. The
method only estimates the functions and the parameters from the time series.
A more general approach to the problem is to consider that the only informa-
tion available about the chaotic generator is that we deal with a time-delay
system. No more details about the particular structure of the delay differential
equation are required. Under this assumption, Bünner et al. [2000a;b], Hegger
et al. [1998] have demonstrated that it is possible to reconstruct the dynamics
of time-delay systems with special “embedding” spaces which include both
short-time and feedback-time delayed values of the variable. In this way, the
dynamics is recovered in a space with a dimension smaller than the attractor’s
dimension, that can be high dimensional. They used this special “embedding”
to reconstruct the nonlinear dynamics of time-delay systems with a local linear
model [Bünner et al. 2000a;b, Hegger et al. 1998].

This special “embedding” can be applied to the same nonparametric mod-
els used to reconstruct low dimensional dynamics with standard embedding
techniques. Among these nonparametric models, we want to highlight the
neural networks (NNs). They can theoretically approximate any arbitrary
function to any degree of accuracy and are robust versus moderate noise lev-
els. Moreover, NNs are global models that overcome the problems associated
to local models.

In this chapter we successfully apply modular and standard feedforward
neural networks to recover the nonlinear dynamics of high dimensional time-
delay systems, using the appropriate embedding techniques. The chapter is
organized as follows. Section 4.1 is devoted to explain in detail the method to
recover the nonlinear dynamics with multilayer feed-forward neural networks
(FFNNs) and modular neural networks (MNNs) using the special embedding
approach for high dimensional time-delay systems. In sections 4.2 and 4.3, we
apply this technique to the Mackey-Glass and the Ikeda systems, respectively.
For both systems numerical and experimental cases are considered. Next, in
section 4.4, we reconstruct the nonlinear dynamics of a Ikeda system with
two delays, extending the special like embedding to the double delay case.
Finally, section 4.5 is devoted to the reconstruction of the nonlinear dynamics
of an experimental optoelectronic feedback system. We summarize the main
conclusions in section 4.6.
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4.1 Nonlinear dynamics modelling of time-delay
chaotic systems

The deterministic nature of chaotic systems allows modelling its functional
structure from a time series using appropriate nonlinear techniques. In recent
years, new approaches for nonlinear time series modelling have emerged (see
[Kantz and Schreiber 1997] for a survey).

In the most general case, we deal with a measured time series, x(t), sam-
pled with a period δt, that lies on a DF dimensional attractor of a Nth-order
deterministic dynamical system. The starting point to model the nonlinear
dynamics is to obtain an embedding space from the recorded data. A conve-
nient, though not unique, embedding vector representation has the following
form:

v(t) = (x(t− τe), ..., x(t−mτe)) (4.1)

where τe is the embedding time and m is the embedding dimension. According
to the embedding theorems [Sauer et al. 1991, Takens 1981], if m > 2DF there
will be a smooth map so:

x(t) = F̃(v(t)) (4.2)

Taking this into account, one can build a model of a chaotic dynamical
system. Clearly, a key issue in modelling nonlinear dynamics is the selection
of an appropriate embedding space. As early emphasized, the direct recon-
struction of attractors from scalar data through time delay embedding using
Takens theorem is limited to low dimensional systems. The high dimension of
typical time-delayed feedback systems usually prevents the implementation of
the standard embedding techniques.

An optimal solution to such problem might require an embedding space in
which the temporal distances from one coordinate to another are not neces-
sarily the same. These embeddings are called irregular or nonuniform [Jones
et al. 2002].

The reconstruction of the dynamics of high dimensional attractors with
a nonuniform embedding space which include both short-time and feedback-
time delayed values of the variable was carried out by Bünner et al. [2000a;b],
Hegger et al. [1998]. The dynamics is recovered in a space with a dimen-
sion smaller than the attractor’s dimension. They proved that it is possible
to identify the underlying deterministic structure of systems ruled by delay
differential equations (DDE) of the form:
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ẋ(t) = F (x(t), x(t− τ)) (4.3)

when τ is the time delay. The time series x(t) is sampled at equally spaced in-
tervals δt. Note that here we only consider continuous time systems. However,
a similar approach can be used in the case of the delayed maps (DM).

Bünner et al. [2000a;b] reconstruct the nonlinear dynamics in a state space
whose dimension is independent of τ , in spite of the fact that DF depends on
the time delay. The dynamics in the state space is given by:

x̂(t) = F̃ (vτ (t)), (4.4)

where F̃ belongs to some class of parameterized functions, and

vτ (t) = (x(t− τe), . . . , x(t−m1τe),
x(t− τ), x(t− τ − τe), . . . , x(t− τ −m2τe)) (4.5)

When the time delay τ is not a multiple of the sampling time, the closest
sample is considered. Bünner et al. [2000a;b] demonstrated that the knowledge
of these vectors is sufficient to determine the future dynamics. However, the
sampling time has to be sufficiently short.

Bünner et al. [2000b] have applied this “special” or nonuniform embedding
technique to recover the nonlinear dynamics of a CO2 laser with a local linear
model. Nonetheless there are different nonparametric models that can be used
to reconstruct the nonlinear dynamics applying this special space method. To
overcome the problems of the local linear models, such as the effort required
to assemble the different local fits, one can use global models. In our case we
will use neural networks (NNs) to model the dynamics of time-delay systems.

4.1.1 Standard and Modular Neural Networks

Artificial Neural Networks (NNs) have been successfully applied for nonlinear
dynamics modelling of low dimensional chaotic systems [Genay and Liu 1997,
Principe et al. 1992]. The NN models have been trained with input-output
samples from the time series x(t) according to the embedding theorem [Sauer
et al. 1991, Takens 1981]. Moreover, it has been shown that the resulting ap-
proximate neural models reproduce the dynamical behavior and the nonlinear
characteristics of the original model (similar unstable periodic orbits [Suykens
and Vandewalle 1995], similar Lyapunov exponents or fractal dimension [Chen
et al. 1997], etc.).
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In fact, if the feedback time τ is short enough, the dynamics of time-delay
chaotic systems can be approximated using the Takens embedding with an
input vector (x(t− τe), ..., x(t−mτe)), where mτe > τ . For instance, Principe
et al. [1992] approximates a Mackey-Glass model with τ = 17 considering
a input vector of the form (x(t − 6), x(t − 12), . . . , x(t − 24)). Nevertheless,
when the feedback time is large, the above input vector may contain too many
values leading to models with a large number of parameters. Therefore, for a
successful recovery of high dimensional time-delay systems one has to apply
the nonuniform embedding described in the previous section.

Among the different classes of NNs, it has been shown that feedforward
neural networks (FFNNs) are an universal approximator for continuous (one
hidden layer) or arbitrary (more than one hidden layer) functions [Cybenko
1989]. Hence, FFNNs are a powerful method to reconstruct the nonlinear
dynamics of delayed or non-delayed nonlinear systems, independently of the
particular details of the system. One of its main advantages is that no-priori
knowledge of the system apart from the time delay (in the case of the time-
delay chaotic systems) is necessary to construct the neural network model.
The value given by the FFNN is xnn(t) = Fnn(v(t)), where v(t) is the em-
bedding vector defined by equation (4.1) or (4.5) for non-delayed and delayed
chaotic systems, respectively. The training process is carried out by consider-
ing input-output couples of the form (v(t), x(t)).

Although the proposed standard FFNNs give faithful models that re-
construct the nonlinear dynamics, in recent years modular neural networks
(MNNs) [Happel and Murre 1994] and functional networks [Castillo et al.
1999] have been introduced for obtaining flexible models using the idea of
modularity. The concept of modularity is linked to the notion of local compu-
tation: each module is an independent system and interacts with others within
a whole architecture in order to perform a given task. Thus, modularity tends
to create some structure within the topology to specialize the performance
of each module. In the case of MNNs these ideas lead to dispersed networks
beyond the fully connected topology, thus requiring a smaller number of pa-
rameters. For instance, figure 4.1 shows a feedforward neural network and a
more simple modular network dealing with the same problem.

The MNNs overcome some of the problems of fully connected FFNNs.
However, in order to have meaningful and efficient models, each module has to
perform an interpretable and relevant function according to the mathematical
or physical properties of the system (domain knowledge). Thus, we need to
adapt the structure of the modular network to the particular system.

Most of the scalar delay differential equations (DDE) can be expressed as
the combination of two functions, f and g, each one depending only of the
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Figure 4.1: (a) A fully connected feedforward network; (b) a particular modular
neural network

non-feedback and feedback part of the dynamics, respectively. In these cases,
the equation (4.3) can be expressed as:

ẋ(t) = f(x(t)) + g(x(t− τ)) (4.6)

According to the structure of (4.6), we can use a MNN with two modules,
one for the non-feedback part with input data delayed by the embedding time,
τe, ~xnf = (x(t−τe), ..., x(t−m1τe)) and a second one for the feedback part with
input data delayed by the feedback time, τ , ~xf = (x(t− τ), ..., x(t− τ −m2τe)),
where m1 and m2 are the numbers of non-feedback and feedback inputs, re-
spectively. A feed-forward neural network is used for each of the modules.
The value given by the MNN is xnn(t) = fnn(~xnf ) + gnn(~xf ), where fnn and
gnn correspond to the functions inferred by the non-feedback and feedback
modules, respectively (see figure 4.2).

Therefore, when the system can be expressed as the combination of two
functions as in equation (4.6), instead of using a standard FFNN with an
input vector given by (4.5), a MNN with two modules can be used. In both
cases, the inputs are based on the nonuniform embedding approach used by
Bünner et al. [2000a;b], but in the MNN case, the input vector is divided into
its delayed and non-delayed part.

Once the type of model to reconstruct the nonlinear dynamics has been
chosen, the following step to build the model is to determine the appropriate
embedding space and finally to estimate whatever parameters the model may
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Figure 4.2: Topology of the MNN for a system described by equation (4.6). The
input vectors are ~xnf and ~xf for the non-feedback and feedback modules, respectively.
The output of the MNN is given by xnn(t) = fnn(~xnf ) + gnn(~xf ). Each module is
formed by a feed-forward neural network.

have. The parameters are estimated by minimizing a cost function. In the
case of the NNs, the most common cost function is the root mean squared
error (RMSE) defined as:

RMSE =

√√√√ 1
N − 1

N∑

i=1

(x(ti)− xnn(ti))2 (4.7)

where N is the number of test points, xnn(t) is the output of the NN and x(t)
is the desired output. Let us point out that to work with NNs, the original
signal x(t) is normalized to zero mean and standard deviation one. Thus,
the errors given by the NN are normalized. Furthermore, as mentioned in
the introduction (see 2.7), the RMSE depends on the initial conditions of the
NN weights. In order to overcome this problem and avoid ill-posed initial
conditions, the RMSEs presented through this thesis are calculated as the
mean of the best five test errors obtained out of ten models trained starting
at different initial weights.

A low RMSE is a necessary condition for the global reproduction of the
observed dynamics, but does not guarantee the validity of the model when it is
iterated in time. It has been proposed to use identical chaotic synchronization
as a validation method [Aguirre et al. 2006, Brown et al. 1994]. The basic idea
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behind this validation technique is that the identical synchronization is only
possible when the model is very similar to the original system.

On the other hand, the number of parameters of the model that have to
be estimated depends on the model structure. Hence, another key point is
to choose a model structure that is as simple as possible, but also complex
enough to capture the dynamics underlying the data. One way of addressing
the structure selection problem is to define some measure of complexity for
a given model. For instance, the maximum description length has been used
in several papers [Small and Tse 2002]. However, in our particular case, to
determine the optimal number of neurons we train the NN with different
number of neurons. The optimal network can be easily obtained by visual
inspection of the errors and the number of parameters.

4.2 The Mackey-Glass system

The Mackey-Glass [Mackey and Glass 1977] model is one of the most popu-
lar time-delay chaotic systems. It is a first order scalar differential equation
with a force field that depends on a past value of the variable itself. The
simplicity of the model and its easy implementation on electronic circuits, has
converted the Mackey-Glass (MG) model in a paradigm of nonlinear dynamics
reconstruction of time-delay chaotic systems.

One of the first attempts to use NNs to predict time-delay chaotic systems
was made by Principe et al. [1992] with a MG system. Nevertheless, they
used a Mackey-Glass with a short time delay, so the dimension of the system
is not high and standard embedding techniques can be applied. In this section,
we extend this pioneer work to Mackey-Glass systems with higher dimensions
(longer time delays) by the use of the special embedding techniques that in-
clude the different (short and feedback) time scales present in the dynamics
of the model.

The Mackey-Glass model is described in subsection 4.2.1. In subsection
4.2.2 we apply standard and modular feedforward NNs to recover the nonlinear
dynamics of the MG from numerical time series. Next, in subsection 4.2.3,
MNNs are used to reconstruct the dynamics of the MG from experimental
time series. In all the cases we use the special like embedding described in the
previous section.

4.2.1 The Mackey-Glass Model

The Mackey-Glass model [Mackey and Glass 1977] was suggested in a physi-
ological context (regulations of the productions of red blood cells), where the
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mechanism of time delayed feedback is rather common. It is described by a
time-delay differential equation of the form:

ẋ(t) = f(x(t)) + g(x(t− τ)) = −bx(t) + a
x(t− τ)

1 + x(t− τ)c
(4.8)

where τ is the time delay and a = 0.2, b = 0.1 and c = 10 are the standard
parameters. The system is chaotic for τ >16.8. Its dimension is greater than
2.94 for τ > 30. For long time delays, the dimension increases linearly with
the delay, while the metric entropy remains constant [Farmer 1982]. This is
due to the fact that all the Lyapunov exponents, both positive and negative,
become smaller in absolute value as the delay is increased. Specifically, the
positive exponents decrease as 1/τ .

We have carried out numerical simulations of the system to obtain data
sets for values of the feedback delay time that correspond to short, τ=20,
and long-delay systems, τ = 100 and 300. The dimension of the chaotic
attractor is given by 2.4 for τ = 20, 10 for τ = 100 and 30 for τ = 300
[Farmer 1982]. Note that the linear response time of the system is 10. In our
numerical simulations we have used the Adams-Moulton predictor-corrector
scheme [Press et al. 1992] with a time integration step of 0.01. The time series
corresponding to time delays of 20 and 300 are plotted in figure 4.3. Clearly,
the time series show a more irregular behavior for τ = 300 than for τ = 20.

4.2.2 Nonlinear Modelling with Neural Networks

We are interested in approximating the functional model which characterizes
the dynamics of the time series, x(t), as a function of the past values of x(t).
The only available information is the observable time series, x(t), obtained
from equation (5.6) and sampled at equally spaced intervals with δt = 0.1.

To this aim we first consider standard feedforward neural networks (FFNNs)
with sigmoidal σ(y) = 1/(1 + e−y) and linear activation functions for hidden
and output layers, respectively. The FFNNs are trained with an input vec-
tor, v(t) = (x(t − τe), . . . , x(t − m1τe), x(t − τ), . . . , x(t − τ −m2τe)), where
m1 and m2 are the number of input variables for short and feedback delay
time components, respectively. The embedding time, τe, is in this case equal
to the sampling time, δt. Note that the form of the input vector, v(t), fits
the special embedding vector presented in the previous section for time-delay
systems (see equation (4.5)). We use 21000 input-output patterns from the
time series x(t) of the form (v(t), x(t)). This set is divided into two parts; the
first one (1000 data) is used for training the NN using the Levenberg-Marquad
algorithm [Hagan et al. 1996], whereas the second one (20000 data) is reserved
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Figure 4.3: Numerical time series of the Mackey-glass system defined by equation
(5.6) for τ = 20 (top) and τ = 300 (bottom).

for testing the resulting models. Note that the original time series, x(t), is
normalized with zero mean and standard deviation one before to use it as
input of the FFNN.

At this point, let us point out that a successful extraction of the nonlinear
dynamics of time-delay chaotic systems from a time series involves detecting
the correct delay time. The time delay can be identified in a Mackey-Glass
system with the same techniques that have been used in the previous chapter
for the Ikeda system with low nonlinearity strength.

Table 4.1 shows the normalized test RMSE obtained after training the neu-
ral network with m1 = m2 = 3. We have considered different neural networks
with increasing number of parameters (neurons) to fit the nonlinear dynamics
of the Mackey-Glass time series with feedback times 20, 100, and 300. Note
that as the number of parameters (neurons) increases, the normalized test
RMSE decreases.

Hereafter, we use modular neural networks (MNNs) instead of the FFNNs
to reconstruct the nonlinear dynamics of the MG. Modular neural networks
can apport models with a lower number of parameters and more flexibility.
The application of the MNN requires some prior knowledge of the problem that
permits its decomposition into simpler tasks. In this particular case, we know
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Model FFNN(2:2) FFNN(4:2) FFNN(6:3) MNN(2:2) MNN(4:2)

Param. 20 38 63 14 26

τ=20 5.1 ·10−3 3.3 ·10−3 2.8 ·10−3 2.9 ·10−3 2.7 ·10−3

τ=100 4.9 ·10−3 1.1 ·10−3 9.24 ·10−4 9.04 ·10−4 9.41 ·10−4

τ=300 6.5 ·10−3 2.7 ·10−3 2.7 ·10−4 2.6 ·10−4 2.3 ·10−4

Table 4.1: Total number of parameters and test forecasting errors for different feed-
forward (FFNN) and Modular Neural Networks (MNN). FFNN(a:b) denotes a FFNN
with two hidden layers with a and b neurons, respectively. MNN(a:b) denotes a mod-
ular network with a two layer a:b FF network for the nonlinear feedback component.

f
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xnf

fx

xnn

nn

nn

Figure 4.4: Topology of the MNN used in this work. The input vectors for the
non-feedback and feedback modules are ~xnf and ~xf , respectively. The output of the
MNN is given by xnn(t) = fnn(~xnf ) + gnn(~xf ). The non-feedback module is formed
by a linear neuron and the feedback module by a feedforward neural network.

that the original MG model can be divided into two functions (f and g), each
one depending only on the feedback or non feedback part (see equation (5.6)).
Based on this knowledge, we design a modular neural network with a linear
component (neuron) for the short-time module and a FFNN for the feedback
module (see figure 4.4). The normalized test RMSE are shown in table 4.1
when the MNN is trained with different number of neurons (parameters) in
the feedforward module.

From table 4.1 we can obtain two main global conclusions. First, although
the dimension of the attractor increases with the delay time, the neural net-
work models can fit the dynamics with a similar degree of accuracy for the
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different time delays. This conclusion is in agreement with similar results ob-
tained with local models [Hegger et al. 1998] and with the fact that the metric
entropy of the system remains almost the same for the different time delays
[Farmer 1982]. Second, the MNNs obtain better results than the FFNNs with
less number of parameters.

On the other hand, although the results shown in table 4.1 indicate a good
accuracy in one-step ahead prediction using NNs, it does not mean that the
obtained neural model can reproduce the dynamics of the MG system when
iterated in time. A small forecast error of the constructed model is necessary
but not sufficient condition to assure the model has captured the nonlinear
dynamics of the system.

We use identical chaotic synchronization for comparing the dynamics of
chaotic systems [Aguirre et al. 2006, Brown et al. 1994]. We consider diffusive
coupling by adding a term k∆s(t) = k(x(t)−xs

nn(t)) to the approximate neural
system in the short-term delayed component of the input vector. This means
that the output of the synchronized MNN, xs

nn, is given by:

xs
nn(t) = Fnn (xs

nn(t− τe) + k∆s(t− τe), . . . ,
xs

nn(t−m1τe) + k∆s(t−m1τe),
xs

nn(t− τ), . . . , xs
nn(t− τ −m2τe)) (4.9)

where k is the coupling factor, x is the original signal and Fnn is the nonlinear
function inferred by the NN.

The synchronization error η is defined as the RMSE between the original
normalized signal and the output of the synchronized neural network xs

nn.
Figure 4.5 shows the synchronization error versus the coupling parameter k
for the modular and FF neural networks. The synchronization between the
original system and the model is achieved. In the range of k from 0.3 to 1.9,
the synchronization error of the NN is of the order of the test error. Synchro-
nization is unstable for large values of k. We will analyze this point in more
detail in subsection 4.3.2. Although test errors are similar, the synchroniza-
tion error is always greater for the FF neural networks than for the modular
ones.

The agreement between the Lyapunov exponents of the original system
and the model is also used as a tool to validate a model. In this case, we
have calculated the largest Lyapunov exponent from the numerical time series
generated by the iteration of the neural network model using the method
developed by Wolf et al. [1985], obtained 0.0079 (0.0035) for τ = 20 (100).
These values are comparable with the largest Lyapunov exponent given by
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Figure 4.5: Synchronization error vs. the coupling parameter for the MG system
with τ = 100. The solid (dashed) line corresponds to MNN(2:2) (FFNN(4:2)).

the linearized original equation, 0.0077 (0.0035) for τ = 20 (100). These
results are consistent with the previous validation of the model using identical
synchronization method.

Finally, we conclude that the MNNs are a more suitable option than stan-
dard NNs to extract the nonlinear dynamics of the MG model. We have
demonstrated that the MNNs offer models with better test RMSE for the
same number of parameters than the FFNNs. Moreover, smaller synchroniza-
tion errors are obtained with the modular than for FF neural networks when
the synchronization between the data and the model with diffusive coupling
is used to test the similarity of the system and the NN model.

In addition to NN, new approaches as support vector machines [Müller
et al. 1997, Quiñonero Candela and Hansen 2002] or recurrent neural networks
[Ma et al. 2007] have been used to predict the time series of a MG model. In
these studies, short time delays (τ = 17) with standard embedding techniques
have been considered. The results for the short time delays obtained using
NNs are similar to the results presented in the above mentioned references.

4.2.3 Experiments

We have implemented the Mackey-Glass system in an electronic circuit. The
circuit was built using a bucket brigade delay line for the feedback term. The
feedback delay time can be varied from 2.5 ms to 27 ms. The linear response
time is around 2 ms. The layout of the circuit is shown in figure 4.6. The
signals were acquired using a 2GS/s oscilloscope with a resolution of 12 bits.
The sampling period was 0.04 ms and the total acquisition time 2 s, i.e.,
50000 data points. A sample of the recorded time series for long and short
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Figure 4.6: Scheme of the experimental Mackey Glass circuit.

feedback delay times is plotted in figure 4.7. The short time delay series looks
more regular than the large time delay series, as happened with the numerical
simulations (see figure 4.3).

In this subsection we apply MNNs to the experimental time series recorded
from the above mentioned circuit for a short (τ = 5.26 ms) and a long value
(τ = 20.6 ms) of the feedback delay time.

As we have early emphasized, a successful extraction of the nonlinear dy-
namics from the time series involves detecting the correct delay time. As
mentioned in chapter 3, a simple way for estimating the delay time is consid-
ering the first dip that appears in the autocorrelation function (AF). However,
this method leads to an overestimation of the delay time, due to the finite re-
action of the system [Bünner et al. 2000a]. To overcome this problem and
considering that the experimental data are almost free noise, we can use the
filling factor method (FF) taking into account only the extrema of the time
series. The estimated time delay, τ̂ , with both methods is presented in table
4.2. The overestimation with the AF is approximately T/2, where T is the
response time. Therefore, the AF is not a suitable method to recover the
time delay in this particular case. This results are in total agreement with the
conclusions reached in chapter 3 about the time delay identification in chaotic
systems.
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Figure 4.7: Experimental time series of the Mackey Glass system. Top: τ = 5.26
ms. Bottom: τ = 20.6 ms.

τ̂ (ms)

short τ long τ

AF 6.12 21.4

FF 5.24 20.6

Table 4.2: Estimated time delay (τ̂) from experimental MG data with the Auto-
correlation function (AF) and the filling factor method (FF). The experimentally
measured time delay is 5.26 ms and 20.6 ms respectively.

Regarding the nonlinear dynamics reconstruction, two MNN(2:2) have
been trained for the data corresponding to 5.26 and 20.6 ms feedback time
delays. The procedure is identical to the one followed with the numerical data.
The test RMSE obtained are 3.9 ·10−3 and 4.1 ·10−3, respectively. To test the
similarity of the MNN model with the electronic circuit dynamics a diffusive
coupling is used with the experimental data as the driving signal. Figure 4.8
shows that when the coupling constant ranges from 0.5 to 1.4 synchronization
errors are similar to test errors. Moreover, the phase portrait of both mod-
els are found to be indistinguishable from the original ones (see figure 4.9).
Finally, we have also calculated from the experimental time series the largest
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Figure 4.8: Synchronization error of the experimental MG data with a MNN(2:2).
Left: τ = 5.16 ms. Right: τ = 20.6 ms
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Figure 4.9: Phase Portrait of the original experimental time series (left) and the
extended time series with the MNN(2:2) model (right). Top: τ = 5.16 ms. Bottom:
τ = 20.6 ms

Lyapunov exponent, obtained 0.04 ms−1 (0.02 ms−1) for τ = 5.26 ms (20.6
ms).

Therefore, it has been shown that the nonlinear dynamics of the electronic
circuit can be reconstructed with a simple MNN(2:2) for different values of
the feedback delay time. Moreover, as in the numerical simulations, we have
found that the complexity of the neural network model required to reconstruct
the nonlinear dynamics with a small training error (of order 10−3) does not
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increase with the delay time. This seems to indicate, that when the special like
“embedding” is used, the difficulty to recover the nonlinear dynamics depends
on the entropy of the system and not on its dimension.

Through this section, we have used a Mackey-Glass system as an initial
approach to the nonlinear dynamics reconstruction with neural networks. In
successive sections we will present more optimized NN models to recover the
nonlinear dynamics of time delay chaotic systems, particularly the Ikeda sys-
tem.

4.3 The Ikeda system

The Ikeda system has turned out to be a paradigm for the dynamical behavior
of delayed-feedback systems under the variation of control parameters. To-
gether with the Mackey-Glass is one of the most well-known scalar chaotic
system.

The Ikeda scalar delay differential equation was proposed to model a pas-
sive optical bistable resonator system [Ikeda 1979, Ikeda and Matsumoto 1987]
and is given by:

T ẋ(t) = f(x(t)) + g(x(t− τ)) = −x(t) + β(sin2(t− τ)− φ) (4.10)

where τ is the feedback time, T is the response time of the system and φ is
the phase. The parameter β determines the strength of the feedback as well
as the strength of the nonlinearity. The complexity of the system, related to
the number of extreme values of the sin2 nonlinear function increases with
β (see chapter 2, subsection 2.4.2). The Ikeda system permits the study of
the nonlinear modelling as function of the nonlinearity of the system, whereas
the MG system has always a nonlinear function with only one extreme that
corresponds to low nonlinearity strength.

In addition to the above mentioned features, one of the main reason to
consider the Ikeda system is that the dynamics of some generators in opti-
cal chaotic communication systems [Goedgebuer et al. 1998a;b, Larger et al.
1998a;b] can be described by the Ikeda equation (see 2.4.2). The extraction
of the Ikeda nonlinear dynamics from time series compromises the security of
these systems, allowing the extraction of the transmitted message as we shall
see in chapter 6.

In this section we extract the Ikeda nonlinear dynamics from time series ap-
plying MNNs with the nonuniform embedding. We can also use the standard
FFNN to recover the nonlinear dynamics. However, we have demonstrated
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that MNNs present serious advantages over the standard ones for the MG
(see section 4.2) and the Ikeda system [Ort́ın et al. 2005; 2007]. From now on,
we only apply the MNNs.

The section is organized as follows. In subsection 4.3.1 we reconstruct
the nonlinear dynamics of the Ikeda system from numerical time series with
MNNs using the especial embedding described in section 4.1. Section 4.3.2 is
dedicated to the validation of the MNN model. Finally, in subsections 4.3.3
and 4.3.4 we study the effect of the time delay mismatch and the presence of
noise on the obtained MNN model.

4.3.1 Nonlinear modelling with Modular Neural Networks

Following the same approach as in the case of the Mackey Glass model, we re-
construct the nonlinear dynamics of the Ikeda system with a MNN. The MNN
is trained from time series obtained by the simulation of equation (4.10) with
a Adams-Bashforth-Moulton fourth order predictor-corrector method [Press
et al. 1992] and an integration step of 0.01. To ensure the time series reproduce
faithfully the characteristics of the continuous-time system even for β = 50,
the sampling period is δt = T/100, where T = 1 is the linear response time.

Regarding the structure of the MNN, it has two modules, one for the
non-feedback part with input data delayed by the embedding time (τe):

~xnf = (x(t− τe), ..., x(t−m1τe)) (4.11)

and a second one for the feedback part with input data delayed by the feedback
time (τ),

~xf = (x(t− τ −m2τe), ..., x(t− τ), ..., x(t− τ + m2τe)) (4.12)

where m1 and 2m2 + 1 are the numbers of non-feedback and feedback inputs,
respectively. The value given by the MNN is xnn(t) = fnn(~xnf ) + gnn(~xf ),
where fnn and gnn correspond to the functions inferred by the non-feedback
and feedback modules, respectively. As in the case of the MG system, the
feedback module is a feedforward neural network and the non-feedback module
is a single linear neuron (see figure 4.4). We have checked that one non-linear
neuron also yields a linear function for the non-feedback module. A non-
feedback module with more layers and neurons only increases the parameters
of the MNN model but not its accuracy. Clearly, a more complicated f(x(t))
would require a feedforward neural network in the non-feedback module.

Once the structure of the MNN has been chosen, we have to decide the
number of inputs for the non-feedback and feedback modules (m1 and 2m2+1).
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The question is solved by trial and error. In free noise systems with small
sampling periods, as a general rule we have found that m1 = 1 and m2 = 1 (i.e.
three delayed input) are a good option. In fact, when the sampling period leads
to time series with strong linear correlations between neighboring samples, the
NN is able to minimize the forecast error only taking into account the linear
dynamics if m1 > 1. This yields no suitable models with lower forecasting
error that fail in the reproduction of the nonlinear dynamics. Regarding the
delayed inputs, m2 = 1 is the minimum value to assure that the model can
capture the dynamics. Not significant better models are obtained for larger
values of m2.

To determine the optimal number of neurons we train the MNN with dif-
ferent number of parameters (the number of neurons of the feedback module).
A more precise way to obtain the optimal model is using some model selection
algorithm (such as the Minimum Description Length Principle [Small and Tse
2002]). However, in this case, the optimal network can be easily obtained by
visual inspection of the errors and the number of parameters.

Two main points have been improved respect to the procedure followed
in the MG case to reconstruct the nonlinear dynamics with the MNN. The
first is related to the composition of ~xf . In the special like embedding vec-
tor presented in (4.5) and used with the Mackey Glass system, the compo-
nents delayed by the time delay are always consecutive to x(t − τ). Now,
the delayed components are equally distributed around x(t − τ). For in-
stance, if there are three delayed inputs, the input vector was ~xf = (x(t −
τ),x(t− τ − τe),x(t− τ − 2τe)) for the MG case whereas now we have ~xf =
(x(t − τ − τe), x(t − τ), x(t − τ + τe)). Through trial and error, we have ob-
served that slightly better models are obtained in the second case. Thus, the
feedback inputs minimize the distance to the feedback coordinate, x(t − τ),
that is the one that carries the information.

The second improvement concerns the training process, more specifically
the way the training points are chosen. The time series is divided into two
sets, one for the training and other for the test (see chapter 2, section 2.7). To
capture faithfully the dynamics of the attractor with our model, the training
set must cover the whole attractor. For the sake of clarity, let us suppose
that the training set has the minimum size to cover the whole attractor. If we
choose the training points consecutively from the training set (as in the MG
case), we have to take all the set to assure a good capture of the attractor
dynamics with the model. To reduce the number of training points, we can
choose them randomly over the training set. However, with this approach,
the proportion of training points corresponding to the less visited parts of
the attractor can be negligible. To overcome this problem, we choose the
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Figure 4.10: Black points correspond to x(t−τ) versus x(t) for a Ikeda system with
β = 15 and τ = 100. The red points indicate the position of 3000 training points
chosen consecutive (right) or to cover uniformly the attractor (left).

training points from the training ensemble so they are uniformly distributed
over the attractor. In scalar time-delay chaotic systems, we achieve this by
taking points randomly from the training ensemble until they cover uniformly
the area (x(t), x(t − τ)). To this aim, when β is high, the training set must
cover a large time interval. This increases the minimum length of the time
series used to train the NN, although the number of training points can be low.
Figure 4.10 shows the position of the training points in the space (x(t), x(t−τ))
for the Ikeda system with β = 15 when they are chosen to cover uniformly the
attractor (figure 4.10 left) or consecutively (figure 4.10 right). It is clear that
with the same number of training points, if they are chosen consecutively part
of the dynamics is not trained. For the Ikeda system, we use 3000 training
points uniformly distributed over the attractor when the system is noise-free.

Taking the previous points into account, in figure 4.11 we plot the RMSE
of the MNN model, calculated over 100000 test points, for different values of
β, τ (short τ = 10 and long τ = 100) and number of parameters of the MNN
(neurons of the feedback module). The phase and the response time of the
system are φ = 0.26π and T = 1. The results hold for different values of φ
and T . Note that the embedding time is τe = 0.01. The figure 4.11 shows
that the MNN RMSE increases with the feedback strength of the system, β,
but not with the time delay, τ . These results are related to the fact that
the dimension of the system increases with τ but the entropy only increases
with β. The case of β =25 corresponds to the limit value of β that has been
performed experimentally [Goedgebuer et al. 1998a]. For a fixed β, the MNN
error decreases as the number of parameters of the model increases. However,
for MNN with sufficiently large number of parameters, the addition of more
parameters does not lead to any further significant decrease of the MNN error.
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Figure 4.11: MNN RMS test error vs. β. The solid (dashed) lines correspond
to τ = 100 (10). The RMSE is presented for different MNN parameters. MNN(a:b)
denotes a modular network with a two layer a:b FF network for the nonlinear feedback
component.

Once the MNN has been trained, thanks to the modularity of the model, it
is possible to represent the feedback and non-feedback functions given by the
MNN model. Figure 4.12 shows the functions of non-feedback and feedback
modules, fnn and gnn, for three different values of the feedback strength β, 5,
25 and 50, that yield nonlinear feedback functions with 3, 8 and 14 extrema
respectively. Note that the MNN optimizes the total output of the model in-
stead of the non-feedback and feedback modules independently. The functions
extracted by the MNN approximately correspond to the linear and nonlinear
terms of a discrete-time version of equation (4.10), given by:

x(t + δt) = x(t)(1− δt) + δtβ sin2(x(t− τ)− φ) (4.13)

From figure 4.12 it seems that fnn ≈ x(t)(1−δt) and gnn ≈ δtβ sin2(x(t− τ)− φ).
However, note that the functions fnn and gnn used in the neural network de-
pend on the vectors ~xnf and ~xf respectively and not only on x(t) and x(t−τ).

4.3.2 Validation of the model

The one-step-ahead forecasting error is a local measure of the validity of a
given model. Therefore, a low RMSE is a necessary condition for a global
reproduction of the observed dynamics, but it is not at all sufficient. As we
already mentioned in the previous section, identical chaotic synchronization
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Figure 4.12: Comparison between the original nonlinear function (right) and MNN
Functions for the non-feedback (left, vs. x(t)) and feedback (center, vs. x(t − τ))
modules of the neural network. From top to bottom, the Ikeda system has β = 5, 25
and 50. In all the cases τ = 100.

can be used as a technique for comparing the dynamics of chaotic systems
[Aguirre et al. 2006, Brown et al. 1994]. We consider identical chaotic syn-
chronization between the system and the MNN model with diffusive coupling.
A term k(x − xs

nn) is added to the approximate synchronized neural system
xs

nn in the input of the non-feedback module. The normalized RMSE syn-
chronization error, η, divided by the MNN RMSE as function of the coupling
parameter, k, is depicted in figure 4.13 for different values of β and τ = 10.
Similar results are obtained for τ = 100. Moreover, the ratio between η and
the RMSE is almost independent of the β parameter (see figure 4.13). In the
range 0.3 < k < 1.9 the synchronization between the original data and the
MNN model is achieved and η is of the order of the MNN RMSE. For k > 1.9
the synchronization is unstable. Let us examine in detail this last point. If
we consider two identical time continuous systems of the form:
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Figure 4.13: Synchronization error, η, divided by the MNN RMSE versus k for a
Ikeda system with β =5 (black-circles), 25 (red-squares) and 50 (blue-triangles). The
MNN has 31 parameters for β = 5, 51 for β = 25 and 75 for β = 50. In all the cases
τ = 10, T = 1 and φ = 0.26π.

ẋ = −x + βf(x(t− τ))
ẏ = −y + βf(y(t− τ))− kc(y − x) (4.14)

where kc > 0 is the coupling parameter, x is the master and y is the slave, the
synchronization error is defined as:

ε = x− y (4.15)

Taking into account the equation system (4.14), the derivative of the syn-
chronization error is given by:

ε̇ = −(1 + kc)ε + β(f(x(t− τ))− f(y(t− τ))) (4.16)

If ε << 1, which is true for sufficient large kc:

ε̇ ' −(1 + kc − βḟ(x(t− τ)))ε (4.17)

Solving equation (4.17) we have:

ε2(t) ≈ ε2(t0) · e−2(1+kc)(t−t0)+2β
∫ t

t0
ḟ(x(s−τ))ds (4.18)
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In the Ikeda system, f(x) = sin2 x, and for sufficient large t,
∫ t
t0

ḟ(x(s −
τ)ds ≈ 0. Therefore, in the continuous case, the synchronization error de-
creases for increasing kc. Nonetheless, if we consider now the discrete version
of (4.14) this is no longer true. In the discrete version we have:

x(t + δt) = (1− δt)x(t) + δt βf(x(t− τ)) (4.19)
y(t + δt) = (1− δt)y(t) + δt βf(y(t− τ))− δt kc(y(t)− x(t))

The synchronization error is also defined by (4.15) and considering that
ε << 1,

ε(t + δt) ≈ −(kcδt + δt− 1)(1− δt βḟ(x(t− τ))
kcδt + δt− 1

)ε(t) (4.20)

Now, iterating n times the previous equation to obtain ε(t + nδt) and
taking absolute values, we have:

|ε(t + nδt)| ≈ |kcδt + δt− 1|n
n−1∏

i=0

|1− δtβḟ(x(t− τ − iδt))
kcδt + δt− 1

||ε(t)| (4.21)

The term depending on x(t− τ − iδt) can be considered as a noise whose
contribution is negligible (around 0.07 for β = 50 with our parameters) and
we obtain:

|ε(t + nδt)
ε(t)

| ≈ en|kcδt+δt−1| (4.22)

To avoid that the error increases towards infinite, we need that |kcδt +
δt − 1| < 1. Obviously the system is unstable for kcδt > 2 − δt. In our case
kcδt ≡ k, so we have that if k > 2 − δt, the synchronization error increases
towards infinite. This conclusion is in agreement with the numerical results
shown in figure 4.13 for the Ikeda system where the synchronization error
increases for k > 1.9. The same happens in the MG case (see figures 4.5 and
4.8 for numerical and experimental results respectively).

To conclude, we have demonstrated that the dynamics of the system gov-
erned by (4.10) is reconstructed with MNNs. The synchronization between
the original data and the MNN model has been used to validate the model.
Nonetheless, apart from the synchronization, other techniques are commonly
used to model validation [see Gouesbet et al. 2003, for a survey]. Most of them
are based on the comparison between some features of the original time series
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and an artificial time series obtained by iteration of the model. Among such
features, the Lyapunov exponents are frequently used. In the reconstructed
phase space, one can obtain an estimation of the maximal Lyapunov exponent
by following the divergence of nearby segments of the trajectory from the time
series. We have estimated the maximal Lyapunov exponent of the iterated
time series given by the MNN by the method proposed by [Wolf et al. 1985].
The maximal estimated Lyapunov exponents for τ = 10 and β = 5, 25 and 50
are 0.48, 1.44 and 1.63, respectively. We compare these results with the max-
imal estimated Lyapunov exponents of the corresponding original time series
obtaining similar results: 0.47, 1.46 and 1.64 for β = 5, 25 and 50, respectively.
The values for the maximal Lyapunov exponents obtained for β = 5 and 25
are close to the ones calculated from the linearized equation in [Vicente et al.
2005].

Taking all this together we can conclude that the MNN model correctly
reconstructs the dynamics of the system governed by equation (4.10) in spite
of the very high dimension of the chaotic attractor. In fact, an estimate of the
dimension of the chaotic attractor is given by 0.4βτ/T [Vicente et al. 2005]
and leads to dimensions as large as 2000 for β = 50 and τ = 100.

4.3.3 Time delay mismatch

As it has been emphasized throughout the thesis, to reconstruct the nonlinear
dynamics of time-delay chaotic systems with neural networks, the time delay
of the system is the only parameter that has to be known in advance. In
the previous subsections, we suppose no error in the estimation of the time
delay. However, it has been shown in chapter 3 that this is not always a valid
premise. Let us suppose that the estimated time delay is τ̂ = τ ±∆τ . Clearly,
the MNN RMSE increases with ∆τ . The increment of the RMSE respects to
∆τ follows a power law whose exponent depends on β and the number of
inputs of the feedback module, together with other factors (see figure 4.14).
The RMSE increases when higher values of β are considered for the same
values of ∆τ because the dynamics is faster. Hence, the difference between
x(t − τ) and x(t − τ ± ∆τ) increases with β. Evidently, small errors in the
time delay estimation can be counteracted by the increment of the number of
delayed inputs, so the vector ~xf includes the correct time delay.

To summarize, a good estimation of the time delay is critical to recover the
nonlinear dynamics of a chaotic time-delay system, specially for high nonlin-
earities. The degradation of the RMSE with the deviation in the estimation
of the time delay follows a power law. As a result, a bad time delay identi-
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Figure 4.14: RMSE vs. ∆τ = τ − τ̂ as percentage of τ . The Ikeda system has been
carried out with β = 5 and τ = 100. A MNN(8:4) is used. Left (right): axis in linear
(logarithmic) mode. In the right panel, the black (red) line corresponds to RMSE for
∆τ(%) > (< 0).

fication can deteriorate the reconstruction of the nonlinear dynamics of the
chaotic time-delay system.

4.3.4 The effect of noise

One of the multiples applications of nonlinear dynamics reconstruction is the
nonlinear filtering of the original data [Kantz and Schreiber 1997]. A good
nonlinear reconstruction from noisy data can yield models that are able to
act as nonlinear filters of the original data. Moreover, it is worth to know
the behavior of the model in the presence of noise since experimental data are
usually affected by it.

To investigate the robustness of the extraction of the nonlinear dynamics
using MNNs to additional noise, we add a zero mean Gaussian noise to the
original variable x(t). Obviously, the presence of noise in time series decreases
the quality of the MNN model obtained. Nonetheless, one of the advantages
of the NN models is their capacity to filter the noise data and to recover the
underlying nonlinear dynamics. Thus, we expect that the recovered data are
less noisy than the original ones.

To measure the level noise added to the system we use the CNR (Chaotic
carrier to Noise Ratio), defined as the ratio between the standard deviations
of the chaotic carrier x(t) and the noise n(t) in dB:
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CNR = 20 log
σx

σn
(4.23)

where σy = 〈(y(t)− 〈y(t)〉)2〉1/2 and 〈〉 implies averaging over time.
Now, we reconstruct the nonlinear dynamics of the system governed by

equation (4.10) by using MNNs trained from x(t) + n(t). We have considered
CNR from 40 dB (1%) to 20 dB (10%). The structure of the MNN is the same
as the one used for the free noise case, but the number of inputs has been
increased so the MNN can average the effect of noise. In this particular case,
we have used m1 = 10 and 2m2 + 1 = 5. The non-feedback inputs, ~xnf , are
chosen over the range where the autocorrelation has decreased a 10% instead
of taking the successive x(t−mτe) with m = 1, ..., m1. The normalized RMSE
is obtained by comparing the output of the MNN, xnn(t), with the free-noise
data, x(t), and not with the input of the MNN, x(t) + n(t). In this way we
check if the MNN model is able to filter the noise and to recover the underlying
nonlinear dynamics.

The MNN RMS test error is shown in figure 4.15 as a function of β for
different levels of noise. As expected, the RMSE increases with the noise level
and with β. However, for high noise levels the RMSE MNN increases only
slightly with β. In these cases the main contribution to the RMSE is due to
the input noise, that overcomes the model error that increases with β. On the
other hand, the number of inputs, training points and neurons of the feedback
module of the MNN have been increased respect to the free noise case. This
permits to obtain more flexible models capable of adapting to noisy systems.
Nonetheless, the improvement in the RMSE due to the increase in the number
of the training points and parameters of the MNN has a limit. Similar RMSE
are obtained for a MNN(10:5) training with 8000 points (more than the double
of the noise free case) (solid line in figure 4.15) than for a MNN(20:10) training
with 14000 points (dashed line in figure 4.15). Likewise, the number of inputs
can be also increased, but above a certain value the new inputs have not any
relationship with the variable that we want to predict.

As previously mentioned, the RMS test error shown in figure 4.15 is cal-
culated by using the free noise data x(t). When the free noise data are not
available, like in an experimental setup, the RMSE has to be calculated versus
the noisy input of the MNN. In this case, assuming a noise with zero mean
and a perfectly matched model, the RMSE would be the standard deviation
of the noise. Hence, the good accuracy in the one step ahead prediction of
the MNN should be determined by other methods as far as the MNN error
is governed by the noise. The recovering of the nonlinear function (see figure
4.16) can give an approximate idea to select the best MNN model, but it is not
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Figure 4.15: MNN RMSE vs. β for different CNR (Chaos to Noise Ratio). The
solid lines correspond to a MNN(10:5) -131 parameters- training with 8000 points.
The dashed lines correspond to a MNN(20:10) -351 parameters- training with 14000
points. The MNN RMSE is evaluated over 100000 test points. In all the cases
τ = 100.
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Figure 4.16: Nonlinear functions extracted by the feedback module of the MNN. In
both cases the Ikeda system has β = 25 and τ = 100. Right: CNR = 20 dB. Left:
CNR = 30 dB.

a sufficient condition. By contrast, the synchronization is still a very useful
tool to validate the model. We have achieved synchronization between the
MNN and the time series in all the cases presented in this subsection. The
synchronization error between xs

nn and the noise time series, x(t) + n(t), is
determined by the noise of the system. This error decreases with the coupling
parameter, k, as in the free noise case.

Finally, we check if the MNN is able to filter the input noise to some
extent. For this purpose we calculate the difference between the CNR at the
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Figure 4.17: CNRo − CNR versus β. In all the cases τ = 100 and a MNN(10:5)
-131 parameters- is used.

output (CNRo) and the CNR at the input of the MNN (CNR). The CNRo

is defined as 20 log(σx/(σx−xnn)), i.e. CNRo − CNR = 20 log(σn/RMSE).
The results are plotted in figure 4.17. The capacity of the MNN to filter the
input noise decreases for higher βs. However, even in the worst studied case,
the CNRo − CNR is at least 12 dB.

4.4 The Ikeda system with two delays

Chaotic systems with multiple feedbacks have been proposed to improve the
privacy of chaotic communication systems [Lee et al. 2004; 2005, Udaltsov
et al. 2005]. It was expected that the inclusion of additional delays could
difficult or avoid the time delay identification. However, we have demonstrated
in chapter 3 that it is always possible to identify the time delays of the system,
although the extraction can be more complicated depending on the system
topology.

Once the time delays of the system have been identified, the objective of
this section is to analyze if the additional delays can complicate the extrac-
tion of the nonlinear dynamics. One expects that the nonlinear dynamics
reconstruction can require more resources, provided that multiple time delay
systems have a more complex dynamics than single delay systems [Lee et al.
2004]. The extraction of the nonlinear dynamics of chaotic systems with two
time delays have been only studied in the literature with a MG system when
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the structure of the DDE that rules the system is perfectly known [Bünner
et al. 1998, Prokhorov et al. 2005].

In this section, we study the nonlinear dynamics reconstruction of a semi-
conductor laser with two electro-optical feedback loops by using MNNs. The
dynamics of the system is ruled by the Ikeda DDE with two delays. The
section is structured as follows. In section 4.4.1 we reconstruct the nonlinear
dynamics with the MNN following the same procedure as in the one delay
case but taking into account the two time delays of the system. Two different
configurations, serial and parallel, are examined to determine the more secure
scheme. In section 4.4.2 we adapt the MNN to the two delays case in order
to improve the obtained nonlinear models. Finally, sections 4.4.3 and 4.4.4
are dedicated to analyze the effect of system parameters and noise on the
nonlinear dynamics reconstruction with two delays.

4.4.1 Nonlinear Modelling with Modular Neural Networks

We have shown in previous sections (see 4.2 and 4.3) that the nonlinear dy-
namics of chaotic feedback system with one delay can be reconstructed by
modular neural networks (MNN) with two modules, one for the non-feedback
part with inputs delayed by the embedding time and another one for the
feedback part with inputs delayed by the feedback time.

Now, we apply the modular neural networks method to reconstruct the
nonlinear dynamics of feedback systems with two delays. The equation of the
Ikeda system with two delays has been presented in chapter 3, section 3.3.3. It
is basically defined by the following delay differential equation with two time
delays τ1 and τ2,

x(t) + T
dx(t)

dt
= G(x(t− τ1), x(t− τ2)), (4.24)

where x(t) is the dynamical variable, G is a nonlinear function and T is the
response time of a low pass filter which limits the dynamics of the system. Two
different configurations, serial and parallel, related to the way the feedback
terms are included in the nonlinear function are considered. The parallel
configuration has a nonlinear function defined by:

Gp[x(t− τ1), x(t− τ2)] = β1 sin2 (x(t− τ1)− φ1) + β2 sin2 (x(t− τ2)− φ2) ,
(4.25)

and the serial configuration has a nonlinear function given by,
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Gs[x(t− τ1), x(t− τ2)] = β sin2 (x(t− τ1) + x(t− τ2)− φ) , (4.26)

where β1, β2, β are the nonlinear strengths and φ1, φ2, φ are phase shifts. The
numerical simulations of the system described by equation (4.24) are carried
out using the Adams-Bashforth-Moulton predictor-corrector scheme [Press
et al. 1992] with a time integration step of 0.01 for both configurations.

Given these time series, the first step to extract the nonlinear dynamics
of the Ikeda system with double delay is the estimation of the time delays as
in the single delay case. In chapter 3, section 3.3.3, we have shown that it is
possible to extract both time delays although in the serial configuration case
is necessary to apply adapted techniques that involve longer computational
times. Hereafter, we consider that the values of the time delays are known in
order to extract the nonlinear dynamics.

To reconstruct the nonlinear dynamics, we follow the same procedure as
in the one delay case, but taking into account that the second delay of the
system implies the modification of the state space of the system. Now, it is
defined by data delayed by both time delays, τ1 and τ2.

In our first approximation to the problem, we use the same MNN structure
as in the single delay case (see figure 4.4). Hence, the MNN has two modules,
one for the non-feedback part with input data delayed by the embedding time
(τe), ~xnf = (x(t− τe), ..., x(t−m1τe)), and a second one for the feedback part.
To take into account the two delays of the system, the feedback module has
input data delayed by both feedback times, ~xf = (x(t− τ1 + m2τe), . . . , x(t−
τ1), . . . , x(t− τ1−m2τe), x(t− τ2 + m2τe), . . . , x(t− τ2), . . . , x(t− τ2−m2τe)).
The number of non-feedback and feedback inputs are m1 and 2(2m2 + 1),
respectively.

We have carried out numerical simulations of equation (4.24) for β =
β1 = β2 = 15 with an integration step of 0.01. The response time is T = 1
and the delay times are τ1 = 100 and τ2 = 215. The feedback phase is
φ = φ1 = φ2 = 0.26π. This case corresponds to a highly nonlinear system
with a sin2 nonlinear function with 12 extrema. A similar number of extrema
is obtained in the single delay case for a value of the normalized feedback
strength greater than 25 (see figure 4.12). Keep in mind that in the two delays
system the upper bound of the effective feedback strength is approximately
2β when β1 = β2 = β (see 3.3.3). In the following we compare the two-delay
system with β = β1 = β2 = 15 to the single-delay system with a feedback
strength of 30.

Next, the MNN model is trained with different number of parameters
(number of neurons of the FFNN of the feedback module) with m1 = 1 and
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MNN RMS error

NN feedback one delay two delays parallel two delays serial

6 : 3 2.33 · 10−3 0.015 (0.017) 2 · 10−3 (2 · 10−4)

8 : 4 6.62 · 10−5 9.7 · 10−3 (8.4 · 10−3) 3.63 · 10−5 (3.11 · 10−5)

10 : 5 6.12 · 10−5 4.7 · 10−3 (8.4 · 10−3) 3.57 · 10−5 (2.93 · 10−5)

12 : 6 4.03 · 10−5 2.4 · 10−3 (1.2 · 10−3) 3.21 · 10−5 (2.81 · 10−5)

14 : 7 4.03 · 10−5 1 · 10−3 (8 · 10−4) 1.74 · 10−5 (2.27 · 10−5)

Table 4.3: RMS test error of the MNN model. The system parameters for the one
delay system are τ = 215 and a nonlinearity strength of 30. In the two delays case
the parameters are β = β1 = β2 = 15, τ1 = 100 and τ2 = 215. The MNN for the
two-delay system has been trained with 3000 and 8000 points (RMSE corresponding
to 8000 points is between parenthesis).

m2 = 3. Note that the embedding time is τe = 0.01. The RMS normalized
errors of the MNN model tested over 100000 points are shown in table 4.3.
The NN feedback column, a : b, makes reference to the number of neurons of
the first (a) and second (b) layer of the feedback module. The MNN RMSE
is similar for the two delays serial configuration and the single delay case.
Comparing the double delay configurations, the parallel configuration gives
MNN RMSE two orders of magnitude higher than the serial configuration.

The MNN has been trained with 3000 and 8000 points chosen to cover uni-
formly the chaotic attractor. One can observe that the increment of training
points yields similar MNN RMSE. It is also interesting to point out that as in
the one delay case, the MNN error decreases for MNN models with increasing
number of parameters (neurons) but a limit value is reached. To decrease the
error below its limit value, lower embedding times have to be considered.

Taking all this into account, we can conclude that once the time delays of
the system are known, it is possible to reconstruct the nonlinear dynamics of
chaotic system with multiples delays using MNNs. However, the nonlinear dy-
namics reconstruction is worse for the parallel than for the serial configuration.
By contrast, the time delays can be identified in the parallel configuration with
the techniques used in the single delay case (see chapter 3, section 3.3.3). On
the other hand, the inclusion of multiples delays can be used as a practical
method to increment the effective nonlinearity of the system.

We can now show the shape of the nonlinear function obtained from the
model. In figures 4.18 and 4.19 the original and MNN recovered nonlinear
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Figure 4.18: Comparison between the original nonlinear function (left) and nonlin-
ear functions recovered by the feedback module of the MNN (right). The two-delay
Ikeda system parameters are β1 = β2 = 15, τ1 = 100 and τ2 = 215 for the parallel
configuration. The MNN has a feedback module with 14 : 7 neurons.

functions are plotted for the parallel and serial configurations, respectively.
In both cases we use a MNN(14:7). For the sake of clarity, the projection
of the 3D figure over the x(t − τ1) = 0 and x(t − τ2) = 0 planes is plotted
for the parallel case. The shape of the recovered nonlinear function gnn is
similar to Gs and Gp for the serial and parallel configurations, respectively.
In fact, as in the one delay case, the MNN feedback functions are similar to
the nonlinear terms of a discrete-time version of equation (4.24). However,
the original and recovered nonlinear functions match better for the serial case
thanks to the lower MNN RMSE. Note that the nonlinear recovered function
gnn(~xf ) depends on the input vector of the feedback module ~xf and not only
on x(t− τ1) and x(t− τ2).

Finally, we test that the obtained MNN model can also reproduce the
nonlinear dynamics of the system when iterated in time using the chaotic syn-
chronization [Aguirre et al. 2006, Brown et al. 1994]. We synchronize with
diffusive coupling the MNN model with the original system. The synchro-
nization manifold, (xs

nn(t) vs x(t)), is plotted in figure 4.20 for a coupling
parameter k = 0.4. The RMS synchronization errors are of the order of
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Figure 4.19: Comparison between the original nonlinear function (left) and nonlin-
ear functions recovered by the feedback module of the MNN (right). The two-delay
Ikeda system parameters are β = 15, τ1 = 100 and τ2 = 215 for the serial configura-
tion. The MNN has a feedback module with 14 : 7 neurons.
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Figure 4.20: The synchronization manifold with a coupling parameter k = 0.4 for
the two delays parallel (left) and serial (right) configurations. The parameters of the
system are β1 = β2 = β = 15, τ1 = 100 and τ2 = 215. We use a MNN(14:7).

the RMS MNN errors. For this particular case, the synchronization error is
3.5 ·10−3 and 2.28 ·10−5 for the parallel and serial configurations, respectively.
The synchronization errors have the same behavior with k as in the one delay
case. We can conclude that the dynamics of the Ikeda system with two delays
(ruled by equation (4.24)) is extracted by the MNN model.

4.4.2 Nonlinear Modelling with Adapted MNN

We can adapt the MNN model for exploiting better the characteristics of the
two delays systems. This is specially interesting in the two delays parallel
configuration where worse RMSE are obtained. In the following, we study
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Figure 4.21: Topology of the adapted MNN for the two delays parallel case. The
output of the MNN is given by xnn(t) = fnn(~xnf ) + g1

nn(~xf1) + g2
nn(~xf2). ~xnf , ~xf1

and ~xf2 are the input vectors for the non-feedback, first and second feedback module,
respectively. Each feedback module is formed by a feed-forward neural network.

the drawbacks and advantages of the adapted MNN models over the standard
ones.

In the two delays parallel configuration, we implement an adapted MNN
model with two feedback modules, each one for the nonlinear functions with
arguments x(t − τ1) and x(t − τ2). In this way the structure of the MNN
model resembles more the original nonlinear function Gp. The non-feedback
module is not modified. The inputs for each feedback module are only de-
layed by the corresponding τi, ~xfi = (x(t− τi + m2τe), . . . , x(t− τi), . . . , x(t−
τi −m2τe)), where i = 1, 2. In this case, the output of the MNN is given by
xnn(t) = fnn(~xnf ) + g1

nn(~xf1) + g2
nn(~xf2), where fnn, g1

nn and g2
nn correspond

to the functions of the non-feedback, first and second feedback modules, re-
spectively (see figure 4.21).

In the two delays serial configuration, the structure of the MNN remains
the same, but we change the inputs of the model. Instead of taking each de-
layed term separately, the inputs of the feedback module are directly the argu-
ment of the nonlinear function (in our case the sum of the delayed variables,
x(t−τ1)+x(t−τ2)). Hence, ~xf = (x(t−τ1+m2τe)+x(t− τ2 + m2τe), . . . , x(t−
τ1) + x(t− τ2), . . . , x(t− τ1 −m2τe) + x(t− τ2 −m2τe)).
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MNN error

NN feedback two delays parallel two delays serial

6:3 1.7 · 10−3 2 · 10−4

8:4 4.11 · 10−5 6.01 · 10−5

10:5 2.53 · 10−5 3.27 · 10−5

12:6 2.39 · 10−5 1.81 · 10−5

14:7 1.62 · 10−5 1.79 · 10−5

Table 4.4: Test RMSE of the adapted MNN model trained with 3000 points. The
feedback modules has 14:7 neurons. The parameters of the system are β = β1 = β2 =
15, τ1 = 100 and τ2 = 215.

The RMS normalized errors for the adapted MNN models are shown in
table 4.4. Let us compare with the non-adapted MNN RMSE presented in
table 4.3. Regarding the serial configuration, no advantage over the standard
MNN is observed. In this case, the only modification over the standard case is
the way the feedback inputs are injected into the model. Clearly, the MNN is
able to find the relationship of the inputs with the nonlinear function without
extra information. By contrast, in the parallel case, the adapted MNN yields
RMSE two orders of magnitude lower than the non adapted MNN. Hence, the
adapted MNN models permit to obtain MNN RMSE comparable with the two
delays serial configuration.

Now, we focus on the number of parameters of the model (shown in table
4.5). Clearly, the additional inputs due to the second delay of the system
increment the parameters of the MNN respect to the one delay case. In the
serial configuration, the only advantage of the adapted MNN versus the non-
adapted one is the reduction of the MNN parameters. However, this slight
reduction of parameters implies a total knowledge of the nonlinear function
argument. This constrains the universality of the model and does not apport
any improvement to the error. For instance, the non-adapted MNN is valid
when the argument of the nonlinear function is (x(t− τ1)− x(t− τ2)) instead
of (x(t − τ1) + x(t − τ2)). Therefore, the standard MNN is the better option
for the serial configuration.

In the parallel configuration the inclusion of a second feedback module
leads to adapted MNNs that almost double the parameters of the standard
MNN model. In spite of the increment in the number of parameters, the
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Number of MNN parameters

One delay 2 delays parallel 2 delays serial

NN feedback Non adapt adapt Non adapt adapt

6 : 3 51 69 100 69 51

8 : 4 75 99 148 99 75

10 : 5 103 133 204 133 103

12 : 6 135 171 268 171 135

14 : 7 187 229 372 229 187

Table 4.5: Number of parameters of the adapted and non adapted MNN models.
The two-delay Ikeda system has β = β1 = β2 = 15, τ1 = 100 and τ2 = 215. The one
delay Ikeda system has a nonlinearity strength of 30 and a time delay of 100.

improvement in the RMSE implies that the adapted MNN model is more
adequate to extract the nonlinear dynamics in this case.

Finally, the original and MNN recovered nonlinear functions using the
adapted MNN for parallel and serial configuration are depicted in figures 4.22
and 4.23, respectively. Good agrement between the original and recovered
functions are found for both cases. Note that in the parallel case, each MNN
nonlinear function only depends on one delayed term, whereas the original
nonlinear function depends on both delayed terms. Therefore, the functions
extracted by the MNN model are sharper than the original ones.

4.4.3 Influence of the system parameters

We have demonstrated through this chapter that the RMSE of the MNN
model increases with the feedback strength of the system, β, but not with the
time delay, τ . These results are in agreement with the fact the entropy of the
system increases with β but not with τ . These results are also valid for the
multiple delays case. In the two delays case we can also analyze the effect of
the ratio between both delays. Furthermore, in the parallel configuration, we
can study the influence of different βs and phase shift values in the nonlinear
dynamics reconstruction with MNN.

Regarding the time delays, three different situations are studied in this
subsection. Both delays are multiples (τ1 = 100 and τ2 = 200), take close
values (τ1 = 100 and τ2 = 101) or do not have an integer ratio (τ1 = 100 and
τ2 = 215). In all the cases β = β1 = β2 = 15, φ1 = φ2 = φ = 0.26π and
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Figure 4.22: Comparison between original non-linear functions (left) and MNN
functions for the first and second feedback module (right upon and bottom). The
system parameters for the parallel configuration are β1 = β2 = 15, τ1 = 100 and
τ2 = 215. The adapted MNN has two feedback modules each one with 14 : 7 neurons.

Figure 4.23: Comparison between original non-linear function (left) and MNN func-
tion (right) in the serial configuration with adapted MNN. The MNN has a feedback
module with 14 : 7 neurons. The system parameters are β = 15, τ1 = 100 and
τ2 = 215.
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MNN error

2 delays parallel 2 delays serial

τ1 τ2 Non Adapt Adapt Non Adapt Adapt

100 215 1 · 10−3 1.62 · 10−5 1.74 · 10−5 1.81 · 10−5

100 200 4 · 10−4 1.44 · 10−5 2.42 · 10−5 2.16 · 10−5

100 101 1.9 · 10−3 1.51 · 10−5 2.71 · 10−5 1.32 · 10−5

Table 4.6: Test RMSE of the MNN model for different time delay ratios. The
parameters of the two-delay Ikeda system are β = β1 = β2 = 15, T = 1 and φ1 =
φ2 = φ = 0.26π. The MNN has been trained with 3000 points. The feedback modules
have 14 : 7 neurons

an adapted MNN with feedback modules of 14 : 7 is considered. The RMS
test error of the MNN for each case is presented in table 4.6. Clearly, the
RMSE of the MNN is independent of the ratio between delays for the serial
configuration. The same conclusion is obtained for the parallel configuration
when an adapted MNN is used. The latter conclusion is evident because
each time delay has associated its own feedback module in the adapted MNN.
However, if the time delays are multiples and a standard MNN is used, the
RMSE decreases for the parallel configuration. Similar results are obtained in
the case of a standard FFNN.

Next, focusing only on the parallel configuration, we can analyze the effect
of the relative phase shift (φ1 − φ2) and β1 6= β2. As it is illustrated in
table 4.7, the effect of different relative phase shifts over the RMSE MNN
is negligible. Although it has been demonstrated with numerical simulations
that the entropy of the system is slightly higher for φ1−φ2 = π/4 [Pazó 2009],
this increment is not enough to affect the nonlinear dynamics reconstruction.
With respect to the nonlinear modelling with MNN in the two delays parallel
configuration with β1 6= β2, table 4.8 shows that the MNN RMSE increases
with β in agreement with the results obtained for the one delay case (if we
consider the upper bound for the effective nonlinearity when x(t − τ1) ≈
x(t − τ2), then the results of table 4.8 can be compared to the single delay
case for β = 20, 30 and 40).

To sum up this subsection, the most important parameter in the design
of a two-delay Ikeda system to complicate the nonlinear dynamics extraction
with a MNN is the nonlinear strength. In the parallel configuration, higher
βs values have to be used in both terms of the nonlinear function in order to
increment the privacy of the system. Moreover, an integer ratio between both
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MNN error: two delays parallel

φ1 − φ2 No Adapt Adapt

0 1 · 10−3 1.62 · 10−5

π/2 1.78 · 10−3 1.34 · 10−5

π/4 2.1 · 10−3 1.22 · 10−5

Table 4.7: Test RMSE of the MNN model for different φ1 − φ2. The parameters of
the two-delay Ikeda system using the parallel configuration are β1 = β2 = 15, T = 1,
τ1 = 100 and τ2 = 215. The MNN has been trained with 3000 points. The feedback
modules have 14 : 7 neurons

MNN error: two delays parallel

β1 β2 Non Adapt Adapt

15 5 4.31 · 10−5 8.41 · 10−6

15 15 1 · 10−3 1.62 · 10−5

15 25 6.47 · 10−3 4.18 · 10−5

Table 4.8: Test RMSE of the MNN model for different β2 values. The parameters
of the two-delay Ikeda system using the parallel configuration are T = 1, φ1 = φ2 =
0.26π, τ1 = 100 and τ2 = 215. The MNN has been trained with 3000 points. The
feedback modules have 14 : 7 neurons

delays should be avoided in the parallel configuration. By contrast, the phase
shifts of the system can take any value provided the system is working in the
chaotic regime.

4.4.4 The effect of noise

In this subsection we investigate the robustness of the nonlinear dynamics
reconstruction of a two-delay Ikeda system in presence of noise using MNN.
Following the same approach as in the single delay case, a zero-mean Gaussian
noise is added to the output of the double delay Ikeda system defined by
equation (4.24). We study the nonlinear dynamics reconstruction for different
Chaos to Noise Ratio (CNR).

Taking into account the conclusions of the previous subsections, we use
an adapted MNN for the parallel configuration and a non-adapted MNN for
the serial topology. In accordance with the procedure followed in the single
delay case, the MNN structure is the same as in the absence of noise. We
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MNN error

CNR (dB) two delays parallel two delays serial

40 1.6 · 10−3 1.9 · 10−3

30 4.83 · 10−3 9.1 · 10−3

25 0.011 0.015

20 0.023 0.031

Table 4.9: Test RMSE of the MNN model for different CNR. The two-delay Ikeda
system parameters are β = β1 = β2 = 15, τ1 = 100 and τ2 = 215 . The MNN has
been trained with 8000 points and the feedback modules have 14:7. A non-adapted
(adapted) MNN is used for the serial (parallel) configuration.

only increase the number of inputs and training points respect to the free
noise case to obtain more flexible models capable of being adapted to noisy
systems. Hence, the MNN is trained with 8000 points, m1 = 10 and m2 = 5.
The non-feedback inputs, ~xnf , are chosen over the range where the linear
autocorrelation value has decreased a 10%.

The RMSE obtained for different CNR is presented in table 4.9. As in the
one delay case, the RMSE is calculated with respect to the system without
noise. As expected, the MNN error increases with the noise level. However, the
noise affects more to the serial configuration. Similar results are obtained when
the number of training points is increased to 15000 and a MNN with feedback
modules (20 : 10) is used. In all the cases, the MNN model synchronizes with
the original system. The behavior of the synchronization error with the model
error and the coupling parameter is the same as in the one delay case.

It is worth pointing out that the MNN model has filtered the noise to
some extends as it happens in the one delay case. We present in table 4.10
the CNR at the input and at the output of the MNN model. The capacity of
the MNN to filter the noise decreases with the input noise level. The noise
filtering is less efficient in the serial configuration, in agreement with the worse
test RMSE MNN obtained for this configuration.

Finally, we show the recovered nonlinear functions for the parallel and se-
rial topologies when CNR = 20 dB in figures 4.24 and 4.25. The recovered
nonlinear functions are affected by the noise, but they still resemble the orig-
inal ones. However, due to the effect of the noise, they do not correspond to
the nonlinear discrete-terms of the original DDE, as happened in the absence
of noise.
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CNR (output) (dB)

CNR (input) (dB) two delays parallel two delays serial

40 56 54

30 46 41

25 39 36

20 33 30

Table 4.10: CNR in dB at the input and the output of the MNN model. The
two-delay Ikeda system parameters are β = β1 = β2 = 15, τ1 = 100 and τ2 = 215.
The MNN has been trained with 8000 points and the feedback modules have 14:7. A
non-adapted (adapted) MNN is used for the serial (parallel) configuration.

Figure 4.24: Comparison between original non-linear function (left) and MNN
functions for the first and second feedback module (right upon and bottom).
The CNR = 20 dB. The system parameters for the parallel configuration are
β1 = β2 = 15, τ1 = 100 and τ2 = 215. The adapted MNN has two feedback modules
each one with 14 : 7 neurons.
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Figure 4.25: Comparison between original non-linear function (left) and MNN
function (right) in the serial configuration with non-adapted MNN(14:7). The
CNR = 20 dB. The system parameters are β = 15, τ1 = 100 and τ2 = 215.

4.5 Optoelectronic feedback systems: Experiments

In this section we reconstruct the nonlinear dynamics from experimental time
series with MNNs following the same approach used with numerical simula-
tions.

The experimental setup is explained in detail in chapter 3, subsection 3.4.1.
Basically, the experimental generator of the chaotic wavelength beam consists
of an electrically tunable DBR multielectrode laser diode with a feedback loop
formed by a delay line and an optically birefringent plate whose peculiarity is
to exhibit a nonlinearity in wavelength. The wavelength of the chaotic carrier
can be described by a time-delay differential equation given by:

T
dλ(t)

dt
= −λ(t) + βλ sin2(

πD

Λ2
0

λ(t− τ)− φ) (4.27)

where λ is the wavelength deviation from the center wavelength Λ0, D is the
optical path difference of the birefringent plate which constitutes the nonlin-
earity, φ is the feedback phase, τ is the time delay, T is the response time of
the feedback loop, implemented by a first-order low-pass filter and βλ is the
feedback strength.

The system parameters are set to operate in the chaotic regime. The max-
imum number of extrema of the nonlinear function reached with the present
set-up when the loop is closed is around 6. The number of extreme values in-
creases with the nonlinearity of the system that can be adjusted through the
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gain of the amplifier. The equation (4.27) can be normalized to the well-known
Ikeda equation (4.10).

The experimental time series have been recorded with a high end digital
storage oscilloscope with 8 bits for the analog-digital conversion. However,
it was found that for low sampling rates the recorded time series present an
important quantification noise. To overcome this problem the time series has
been also recorded with a digital storage oscilloscope with 12 bits of resolution.
This latter oscilloscope has a small bandwidth of 200 MHz, but it covers
without problems the bandwidth of the recorded time series that is constrained
by the low pass filter. Let us point out that the stored time series, λ(t), is
measured in volts that is proportional to the value of the wavelength deviation.

To reconstruct the nonlinear dynamics from a time series the first step is
the identification of the time delay. In chapter 3, section 3.4, we have analyzed
the time delay identification in this experimental setup, finding that the time
delay can be identified through different techniques.

Hereafter, we reconstruct the nonlinear dynamics from the experimental
time series for two different cut-off frequencies of the low-pass filter, 20 KHz
and 200 Hz. This leads to short (8 µs) and long response times (800 µs),
respectively.

4.5.1 Long response time

In this case, we reconstruct the nonlinear dynamics from experimental time
series when the low pass filter has a cut off frequency of 200 Hz yielding a
response time of the system, T = 800 µs. To this aim, we use experimental
time series sampled each 10 µs (around 100 times lower than the response of
the system) during 1 second, i.e., 105 points. The time series are recorded
with a high end digital oscilloscope of 8 bits. Here we only consider the
case of a nonlinear function with 5 extrema that is close to the maximum
nonlinear strength reached with the present experimental set-up and a time
delay, τ = 2.08 ms. The results are similar for different time delays and better
dynamics reconstruction is possible for lower nonlinearity strengths.

As previously explained (see chapter 3, subsection 3.4.2), a rough estima-
tion of the noise of the time series can be made by subtracting the original
time series (normalized to mean zero and variance unity) and an average ver-
sion of it. This method yields an estimated noise with a standard deviation
of 0.028, i.e., a CNR=31 dB. The noise level is normalized to the standard
deviation of the chaotic carrier.

Following the same approach as in the numerical simulations with noise,
we reconstruct the nonlinear dynamics from the experimental time series using
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Figure 4.26: Synchronization manifold between the original experimental signal and
the MNN synchronized output with a diffusive coupling of k = 0.4. The time series
has been generated by a chaotic generator with τ = 2080 µs, T = 800 µs and a
nonlinear function with 5 extrema. The sampling period is 10 µs. λ(t) is measured
in volts.

a MNN(10:5). This means that the MNN has a feedback module with 10 : 5
neurons and a non-feedback module with one linear neuron. The non-delayed
inputs of the MNN are chosen over the interval where the autocorrelation
function of the time series has decayed a ten percent, leading to eight non-
delayed inputs (m1 = 8). Nonetheless, we have found by trial and error that
the number of non delayed inputs can be reduced to m1 = 4 giving similar
results. Respect to the delayed inputs, we take five values around the delay
time (m2 = 2). The number of training points are around ten thousand and
the MNN model is tested over 100000 points. The MNN RMSE is 0.029,
similar to the estimated noise of the system. Similar RMSE are obtained for
higher number of neurons of the feedback module and training points.

Due to the presence of noise in the time series, the RMSE can not be used
to validate our model. Therefore, to test the validity of the model we synchro-
nize the MNN with the original time series through a diffusive coupling as in
the numerical simulations. The synchronization manifold when the coupling
parameter, k, is 0.4, is plotted in figure 4.26. The synchronization error for
k = 0.4 is 0.0224.

Finally, we plot in figure 4.27 the functions fnn and gnn extracted by
the MNN model that correspond to the non-feedback and feedback modules,
respectively. The original non-linear function can be estimated from the av-
eraged experimental time series by plotting λ(t) versus λ(t − τ) only for the
extrema points (see figure 4.27 (rigth)). It can be seen that the MNN model
recovers the shape of the sin2 original nonlinear function.
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Figure 4.27: Left (middle): non-feedback (feedback) module function of the
MNN(10:5) model. Right: Estimation of the original nonlinear function given by
the plot of λ(t) versus λ(t − τ) only for the extrema points of λ(t). The time series
has been generated by a chaotic generator with τ = 2080 µs, T = 800 µs and a
nonlinear function with 5 extrema. The sampling period is 10 µs. λ(t) is measured
in volts.

The case analyzed in this subsection corresponds to a situation where the
time delay of the system is around 2.6 times the response time of the system.
Therefore, the dimension of the chaotic attractor does not scale with the time
delay of the system [Vicente et al. 2005]. In the next subsection we analyze
the system for T = 8 µs, where the dimension of the attractor scales with the
time delay of the system.

4.5.2 Short response time

In this case, we reconstruct the nonlinear dynamics from experimental time
series when the low pass filter has a cut off frequency of 20 Khz yielding a
response time of the system, T = 8 µs. The experimental time series are
sampled each 1 µs (around 10 times lower than the response of the system)
and the time delay of the system is 0.476 ms. The time series are recorded
with a high end digital oscilloscope of 8 bits of resolution.

We analyze three different scenarios that correspond to nonlinear functions
with 2 (low nonlinearity strength), 5 and 6 extrema (moderate nonlinearity
strength). The last case corresponds to the maximum number of extrema that
can be reached for the present experimental setup. In this case the chaotic car-
rier has Gaussian probability density and the normalized standard deviation
is 0.23. The standard deviation normalized to the mean value decreases when
β is increased. The value of the parameter β can be estimated by comparing
the normalized standard deviation and the number of extrema of the nonlin-
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ear function of the numerical simulations with the experiment. The maximum
feedback strength reached (nonlinear function with 6 extrema) corresponds to
a value of the normalized parameter β around 15.

Following the same approach as in the case of T = 800µs, we roughly
estimate the noise of the time series. In this case, the estimated noise has a
standard deviation of 0.0239, i.e. a CNR = 32 dB. The level noise is similar
to the case of T = 800µs.

To reconstruct the nonlinear dynamics we use a MNN with two modules:
a non-feedback one formed by one linear neuron and a feedback one formed
by a feedforward NN. The input vector of the non-feedback module, ~λnf =
[λ(t − τe), λ(t − 2τe), λ(t − 3τe), λ(t − 4τe)], has four components (m1 = 4)
delayed by the embedding time, τe = 1 µs. The input vector of the feedback
module, ~λf = [λ(t−τ +2τe), λ(t−τ +τe), λ(t−τ), λ(t−τ −τe), λ(t−τ−2τe)],
has five components (m2 = 2) delayed by the feedback time, τ . We use
around 25000 training points distributed to cover uniformly the attractor. The
feedback module has two layers with 4 : 2 neurons for the low nonlinearity (2
extrema) and 6 : 3 neurons for the moderate nonlinearities (5 and 6 extrema).

The MNN RMSE obtained is around 0.033, 0.06 and 0.08 for the nonlinear
functions with 2, 5 and 6 extrema, respectively. Hence, the RMSE increases
with the nonlinearity of the system and it is always higher than the estimated
noise of the time series (0.024). As previously emphasized, the RMSE is
affected by the noise of the system. Therefore, other methods should be used
to select the best MNN. The nonlinear function inferred by the MNN model
can give an approximate idea. The linear and nonlinear MNN functions, fnn

and gnn, are plotted in figure 4.28 for the nonlinear functions with 2, 5 and
6 extrema. Good agrement between the shape of the MNN functions and its
estimation from the time series are found.

To validate the obtained MNN models, we synchronize the MNN with the
experimental time series using a diffusive coupling. The synchronization error
divided by the MNN RMSE is depicted in figure 4.29. The range of k where
the synchronization is achieved decreases for increasing nonlinearity. However,
in all the cases exits a range of k where the synchronization errors are of the
order of the test RMSE. Similar behavior has been found with the numerical
simulations of the Ikeda system (see figure 4.13) and with the MG simulations
and experiments (see figures 4.5 and 4.8).

The MNN models can not be improved by increasing the training points,
the number of neurons or inputs of the MNN. In fact, the number of non-
delayed inputs used (m1 = 4) is the minimum to reconstruct the nonlinear
dynamics from the experimental time series with a sampling period of 1µs.
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Figure 4.28: Left (middle): non-feedback (feedback) module function of the MNN
model. Right: Estimation of the original nonlinear function given by the plot of λ(t)
versus λ(t− τ) only for the extrema points of λ(t). From top to bottom the nonlinear
function has 2, 5 and 6 extrema. A MNN(4:2) (MNN(6:3)) is used when the nonlinear
function has 2 (5 and 6) extrema. The time series has been generated by a chaotic
generator with τ = 0.476 ms and T = 8 µs. The sampling period is 1 µs. λ(t) is
measured in volts.
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Figure 4.29: The synchronization error, η, divided by the MNN RMSE error versus
the coupling parameter, k. The red (squares), blue (triangles) and black (circles) lines
correspond to a chaotic generator whose nonlinear function has 2, 5 and 6 extrema,
respectively. In all the cases T = 8 µs and τ = 0.476 ms. The sampling period is 1
µs.

In order to obtain better models, we can try to extract the nonlinear
dynamics from time series with lower sampling period, δt = 0.1 µs (around
100 times smaller than the response time of the system). In this case the data
are recorded with a 12 bits oscilloscope to avoid the quantification noise that
appears in the data recorded with the 8 bits oscilloscope for this sampling
period.

One possible way to improve the nonlinear dynamics reconstruction could
be to filter part of the noise of the experimental time series. Nonetheless, the
relevant frequencies of the system are larger than inverse of the response time
of the system [Bavard et al. 2007]. In our case, the maximum average time
when T = 8 µs is around 0.3 µs. Thus, the filtered time series that lead to
valid MNN models (able to synchronize with the time series by the diffusive
coupling) do not increase significantly the model quality.

In the case of δt = 0.1 µs, to reconstruct the nonlinear dynamics the only
modification with respect to the case of δt = 1 µs is the number of non-delayed
inputs. We take m1 = 1, yielding a non-delayed input vector, λnf = [λ(t−τe)].
More non-delayed inputs leads to MNN models that are not able to describe
the global dynamics when they are iterated in time.

The linear and nonlinear MNN functions when δt = 0.1 µs are plotted in
figure 4.30. The feedback module of the MNN has 4 : 2, 8 : 4 and 10 : 5 for the
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Figure 4.30: Top (Bottom): The recovered functions of the non-feedback (feedback)
modules of the MNN. The time series has been generated by a chaotic generator with
a nonlinear function with 2 (left), 5 (middle) and 6 (right) extrema, τ = 0.476 ms
and T = 8 µs. The sampling period is 0.1 µs. λ(t) is measured in volts.

nonlinear functions with 2, 5 and 6 extrema, respectively. The MNN functions
are sharper in this case due to the lower sampling period. The RMSE are in all
the cases around the level noise (0.013 for δt = 0.1 µs and the data recorded
with the 12 bits oscilloscope). The validation of the models have been made
by the synchronization with the experimental time series.

We want to point out that although the above results have been obtained
with a time delay of τ = 0.476 ms, similar results have been reached for others
time delays, such as 2.05 and 1.23 ms. Therefore, the difficulty to reconstruct
the experimental nonlinear dynamics is comparable for different time delays
of the system. The same conclusion has been obtained from the numerical
simulations.

We conclude that the MNN model correctly reconstructs the dynamics of
the experimental system in spite of the very high dimension of the chaotic at-
tractor, that can be estimated to be greater than 200 in all the cases. An esti-
mate of the dimension of the chaotic attractor given by 0.4βτ/T [Vicente et al.
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2005] leads to dimensions from 280 for τ = 0.476 ms to 1200 for τ = 2.05 ms.
Note that we have used for this estimation β = 12. As previously mentioned,
the feedback strength corresponds to a value of the normalized parameter β
around 15 when the experimental nonlinear function has 5-6 extrema.

4.6 Conclusions

We have reconstructed the nonlinear dynamics from numerical and experi-
mental time series of time-delay chaotic systems using neural networks. The
MG system and systems based on optoelectronic feedback have been used for
this analysis. The neural networks are trained with data delayed by the em-
bedding time and by the feedback time of the system. Therefore, to model
the nonlinear dynamics of time-delay system with neural networks, it is only
necessary to know the feedback time of the system. The feedback time of the
system can be extracted from the time series (see chapter 3) and its accuracy
estimation is critical to model the system. No a-priori knowledge is necessary
about the structure of the scalar equation that rules the chaotic dynamics.

However, we have demonstrated that a new type of Modular Neural Net-
work gives better models with less parameters than the standard feedforward
neural networks. The MNN is constructed according with the structure of
the time-delay systems and has two modules: one for non-feedback part with
input data delayed by the embedding time, and a second one for the feedback
part with input data delayed by the feedback time. We have used the chaotic
identical synchronization to validate the neural network models.

Nonlinear dynamics attractors with dimensions greater than 200 have been
reconstructed from experimental and numerical time series of optoelectronic
feedback systems with one delay. We have also reconstructed the nonlinear
dynamics of optoelectronic systems with two feedbacks from numerical time
series. Two different feedback configurations, serial and parallel, have been
considered. The parallel configuration requires adapted MNN (each nonlinear
function is modelled by a module) to give model errors similar to the serial
configuration.

We have found that the number of parameters of the models necessary
to obtain accurate models increases with the feedback strength of the system.
However, the complexity of the neural network required to achieve a low model
error does not increase with the time delay of the system, in spice of the very
high dimension of the chaotic attractor. These results are in agreement with
the fact that the entropy of the system increases with the feedback strength
but not with the time delay.
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Finally, we have also demonstrated that the neural networks can recon-
struct the nonlinear dynamics of the system under moderate noise levels. They
are even able to filter part of the original noise of the time series.

The main conclusion of this chapter is that chaotic carriers based on time-
delay systems with several fixed time delays are vulnerable. It is possible to
use the NN models to extract a transmitted message encoded by these type of
chaotic carries as we shall see in chapter 6 or to predict the nonlinear dynamics
of the system (see chapter 5).



Chapter 5

Prediction of time-delay
nonlinear systems

O ne of the main motivations to reconstruct the nonlinear dynamics of
chaotic systems from time series is the prediction of the original chaotic sys-
tem. Once we have a model of the system, the standard prediction method
consists in the forward iteration of the model from the initial state. In this
method synchronization between the model and the system has been used to
achieve data assimilation and drive the two systems to initially close start-
ing points, from which future predictions can be made [Cohen et al. 2008].
Another alternative technique for predicting the dynamics of chaotic systems
that has been recently proposed is the anticipated synchronization [Voss 2000].
In this scenario the driving signal is provided by the original data and the
model is the slave in the anticipated synchronization scheme. A cascade of
anticipated synchronized models can be used to increase the anticipation time
[Voss 2001a]. However, it has been recently shown that a chain of antici-
pated synchronized exact replicas (slaves) of the original system is unstable
to propagating perturbations. The spatiotemporal character of the coupled
chain introduces a convective like instability into the synchronization manifold
[Mendoza et al. 2004].

In this chapter, we study the above presented issues in the case of time-
delay systems. Section 5.1 describes the mechanism of the anticipated syn-
chronization. In section 5.2 we analyze the attainable forecast horizon of a
Mackey-Glass system modelled by Modular Neural Networks obtained from
the standard prediction and the anticipated synchronization. Experimental
and simulations results are presented. Next, in section 5.3 we study the

149



150 Chapter 5. Prediction of time-delay nonlinear systems

prediction of the Mackey-Glass system by anticipated synchronization using
identical replicas of the original system. Finally, in section 5.4 we analyze the
stability of the synchronization manifold of a cascade of time-delay system
with non-anticipated synchronization. In this scheme, a convective instability
also appears and we characterize it as function of several parameters of the
system. Section 5.5 is devoted to summarize and conclude the main results of
this chapter.

5.1 Anticipated synchronization

Since the discovery of the chaotic synchronization by Pecora and Carroll
[1990], several schemes have been proposed to achieve synchronization. Given
two identical autonomous chaotic systems, a master (u̇0 = f(u0)) and a slave
(u̇1 = f(u1)), one of the simplest synchronization schemes uses a dissipative
coupling [Pyragas 1993]:

u̇0(t) = f(u0(t)) (5.1)
u̇1(t) = f(u1(t)) + K(u0(t)− u1(t)) (5.2)

For particular values of the coupling matrix parameters K and after some
transient time, the dynamics of both systems will be restricted to the syn-
chronization manifold of the unidirectionally coupled system, u0(t) = u1(t).

The above presented synchronization scheme, where the master and slave
system exhibit identical dynamical behavior, is called complete or identical
synchronization (see 2, section 2.2). Another interesting type of synchroniza-
tion in unidirectionally coupled systems is the anticipated synchronization
presented recently by Voss [2000]. He has shown that dissipative chaotic sys-
tems can drive near-identical system in such a way that the slave anticipates
the master by synchronizing with futures states. Amongst the different pos-
sibilities to achieve the anticipated synchronization, we restrict ourselves in
this thesis to the anticipated synchronization scheme of the form:

u̇0(t) = f(u0(t)) (5.3)
u̇1(t) = f(u1(t)) + K(u0(t)− u1(t− τa)) (5.4)

The inclusion of the anticipated delay time τa in the equation of the slave
yields a synchronization manifold, u1(t) = u0(t + τa). Thus the dynamics of
the slave system anticipates by a time τa the dynamics of the master for some
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bounded region of the coupling parameters K and the anticipated delay times
τa.

The anticipated synchronization is globally stable, robust and constitutes
a rather universal phenomenon of nonlinear dynamics. After its discovery,
the anticipated synchronization have been found in many classes of systems
[Hernández-Garćıa et al. 2002, Voss 2001a] and it has been demonstrated
experimentally in electronic circuits [Voss 2001b] as well as in semiconductor
lasers [Liu et al. 2002].

As early emphasized, the anticipated synchronization has attracted a lot of
attention because of its potential applications for predicting the dynamics of
chaotic systems. Voss [2001a] have proposed to use a chain of anticipated syn-
chronized exact replicas (slaves) of the original system to obtain an arbitrary
large forecast horizon. A chain of identical N + 1 unidirectionally coupled
systems is defined in the following way:

u̇0(t) = f(u0(t))
u̇1(t) = f(u1(t)) + k(u0(t)− u1(t− τa))
· · ·

u̇N (t) = f(uN (t)) + k(uN−1(t)− uN (t− τa)) (5.5)

where subsystem u0(t) is the master and subsystems ui(t) with i = 1, . . . , N
are slaves. In theory the total prediction time (the anticipation time of the
Nth slave as compared to the master), Nτa, is much larger than that of the
single slave scheme. However, in this scheme convective-like instabilities in-
troduced by the spatiotemporal character of the chain appear. They reduce
the maximum anticipated time attainable [Mendoza et al. 2004].

5.2 Prediction using non-identical replicas

In most practical cases, the original system is unknown and approximate mod-
els fitted to the available data are used to model and forecast its nonlinear
dynamics. The forecast horizon in these cases depend not only on the dynam-
ics of the original system, but also on the error of the approximate model.

In this section, we analyze the forecasting of time-delay chaotic systems
using the standard prediction and the anticipated synchronization with non-
identical replicas. To this aim, we use the Mackey-Glass (MG) system. The
MG is described by a time-delay differential equation of the form:
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ẋ(t) = f(x(t)) + g(x(t− τ)) = −bx(t) + a
x(t− τ)

1 + x(t− τ)c
(5.6)

where τ is the time delay and a = 0.2, b = 0.1 and c = 10 are the standard
parameters. We have carried out numerical simulations of the system (5.6) by
the Adams-Moulton predictor-corrector scheme [Press et al. 1992] with a time
integration step of 0.01. In chapter 4, section 4.2, we have reconstructed the
nonlinear dynamics of the MG system from experimental and numerical time
series by standard and modular neural networks for feedback delay times that
correspond to short and long-delay systems.

Now, we use these modular neural network models to predict the future
behavior of the MG system. Similar results are expected using the standard
neural networks provided the model errors are similar. In this section we use
the MNN(2:2) model obtained from the numerical time series with a RMSE
around to 2.9 · 10−3 (9.04 · 10−4) for τ = 20 (τ = 100). Regarding the exper-
imental data we use a MNN(2:2) with a RMSE of 3.9 · 10−3 (4.1 · 10−3) for
τ = 5.26 ms (τ = 20.6 ms). The largest Lyapunov exponent is extracted from
the numerical and experimental time series [Wolf et al. 1985]. In the numeri-
cal case we have obtained a largest Lyapunov exponent of 0.0079 (0.0035) for
τ = 20 (100). From the experimental time series we obtain that the largest
Lyapunov exponent is 0.04 ms−1 (0.02 ms−1) for τ = 5.26 ms (20.6 ms).

5.2.1 Standard prediction with Neural Networks

The standard prediction technique consists on iterating forward in time the
approximate model from an initial condition (the present point). The attain-
able forecast horizon depends on the precise location of the initial condition
within the attractor. Thus, the forecast horizon can be only considered in an
averaged sense. Lower horizon values correspond to initial conditions chosen
in the unstable regions of the attractor where transitions are more likely to
occur.

In order to obtain an averaged forecast horizon we iterate the MNN model
from 500 different initial conditions distributed over the attractor. We com-
pute the forecast horizon tp as the time where the distance between the neural
and real orbits is larger than 5% of the system’s amplitude. The histogram
of the horizon time is shown in figure 5.1 for numerical simulations and ex-
periments. In the numerical simulations, the average of the forecast horizon
is 375 (1129) for τ = 20 (τ = 100). Moreover, the prediction error is smaller
than 0.05 for a prediction time tp = 180 (tp = 500) for τ = 20 (τ = 100) (see
figure 5.1(a)).
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Figure 5.1: Histogram of the prediction horizon for numerical simulations (a) and
experiments (b) of a Mackey-Glass system.

In the experimental case, the average of the forecast horizon is 45 ms (96
ms) when the feedback time is 5.26 ms (20.6 ms). The mean prediction error
is smaller than 0.05 for a prediction time tp < 20 ms (tp < 45 ms ) when
τ = 5.26 ms (τ = 20.6 ms) according to figure 5.1(b). We can also plot the
mean prediction error as a function of the forecast time (see figure 5.2 for the
experimental case for τ = 5.26 ms and 20.6 ms). We have found that for small
errors the error is nearly constant for intervals of the prediction time of the
order of the feedback delay time. Then prediction errors increase according to
the time scale given by τ and not to the linear response time. Similar results
are obtained from the numerical simulations.

The differences between the original time series and the neural network
prediction are negligible when the mean error is low. For instance the time
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Figure 5.2: Mean prediction error (in %) vs. forecast time. Left (Right): τ = 5.26
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Figure 5.3: Time series in normalized units of experimental data (top) and neural
network prediction (bottom) (prediction time tp = 10) ms for τ = 5.26 ms.

series of the experimental data and the MNN prediction (prediction time tp =
10 ms) for τ = 5.26 ms is shown in figure. 5.3. In this case the mean error is
smaller than 0.5%.

The main conclusion of this subsection is that the standard prediction us-
ing non-identical replicas of the original system leads to prediction times of
the order of the inverse of Lyapunov exponents for experiments and numeri-
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cal simulations. Then the maximum prediction time scales with the feedback
delay time. Moreover, the prediction horizon can be only given in the proba-
bilistic terms.

5.2.2 Anticipated synchronization with Neural Networks

In this subsection, we use the anticipated synchronization to predict the dy-
namics of the time-delay chaotic system. We consider an anticipated synchro-
nization scheme where the master system is the original chaotic system, and
the slave system is replaced by the modular neural network approximation
obtained in chapter 4, section 4.2. A cascade of slave systems is also used to
try to increase the anticipation time [Voss 2001a].

Figures 5.4 and 5.5 show the stability regions K vs ta obtained when cou-
pling the Mackey-Glass system to the MNN(2:2) for the numerical simulations
and experiments, respectively. In both cases, we analyze the results for short
and large time delays. We consider that synchronization is obtained when the
correlation is greater than 0.95. The correlation between two time series x(t)
and y(t) is defined as:

C =
1

σxσy
〈(x(t)− 〈x(t)〉)(y(t)− 〈y(t)〉)〉 (5.7)

where σx = 〈(x(t)− 〈x(t)〉)2〉1/2.
We have found that the results are similar for different feedback delay times

(τ = 20 and 100 for the numerical simulations and τ = 5.26 ms and τ = 20.6
ms for the experiments). A reduction of the stability region is obtained when
the number of slaves increases. Since the systems are not identical, the errors
introduced in each of the slave systems propagate through the cascade. The
maximum anticipation time (that corresponds to a correlation greater than
0.95) is around ta = 5 for the simulations and ta = 0.8 ms for the experiments.
In both cases, this time is not increased in a significant way by using a cascade
of two or more slaves. We can then conclude that the maximum anticipation
times are similar for different feedback delay times, and the limit seems to be
given by the linear response time (that is 10 for the numerical simulations and
around 2 ms for the experiments).

In order to test this conclusion, we calculate the mean synchronization
errors in the parameter space K and ta. In figure 5.6 it is shown for the
experimental case that a maximum prediction time of around 1.8 ms with
a mean error smaller than 1% is obtained for both feedback delay times.
This anticipation time can not be increased by using a cascade of more than
three slaves. Moreover, the time series of experimental data (solid line) and
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Figure 5.4: Stability region in the parameter space K and ta for anticipated syn-
chronization of the numerical simulations of the Mackey-Glass system (right: τ = 20;
left: τ = 100) with one, two and three slave MNN(2:2) (from top to bottom).
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Figure 5.6: Mean synchronization error levels (in %) in the parameter space K and
ta for anticipated synchronization of the experimental data (right: τ = 5.26 ms; left:
τ = 20.6 ms) with one, two and three slave MNN(2:2) (from top to bottom).
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Figure 5.7: Time series of experimental data (solid line) and anticipated slave
MNN(2:2) (ta = 1 ms) (dashed line) in normalized units for τ = 5.26 ms.

anticipated slave neural network (ta = 1 ms) for τ = 5.26 ms is shown in figure
5.7.

5.2.3 Conclusions

Two alternative practical techniques have been considered to anticipate the
dynamics of the chaotic time-delay systems. On the one hand, the neural
network trained to the available data is used to predict the dynamics by the
standard technique of iterating the model from an initial condition forward
in time. One shortcoming of this method is that the prediction horizon can
be only given in the probabilistic terms. Our results for both numerical and
experimental data show that the forecast horizon is limited in this technique by
the inverse of the largest Lyapunov exponent. Then the maximum prediction
time scales with the feedback delay time.

The second technique that we have considered is anticipated synchroniza-
tion with diffusive coupling between the neural network and the chaotic sys-
tem. In this scheme the driving signal is provided by the available data. A
cascade of slave model systems have been used to increase the anticipation
time. Reversely to the previous case, here the horizon anticipation time is a
fixed value. We have found for both numerical and experimental data that
the maximum prediction times are similar for different feedback delay times.
The forecast horizon with a single slave is limited by the linear response time.
Prediction times are not increased in a significant way by using a cascade of
slave model systems.
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These conclusions are in agreement with the numerical results obtained
for low dimensional and non-delayed chaotic system (Lorentz and Rössler)
[Ciszak et al. 2005].

5.3 Prediction using identical replicas

In the previous section we have shown that the anticipated synchronization
scheme using a single non-identical replica as slave does not reach anticipated
times larger than the linear response time of the system.

The limit imposed by the response time of the system to the maximum
attainable anticipated time can be explained analyzing the anticipated syn-
chronization with identical copies of the original system.

The first approximation to the forecasting of a dynamical system with the
anticipated synchronization is to take two identical chaotic systems and deter-
mine the maximum anticipated time delay without destabilizing the system.

The anticipated synchronization by a diffusive coupling in scalar time-delay
chaotic system is given by:

u̇0(t) = f(u0(t)) + g(u0(t− τ))
u̇1(t) = f(u1) + g(u1(t− τ)) + K(u0(t)− u1(t− ta))

(5.8)

We first consider a couple of identical master-slave Mackey-Glass models
with τ = 30, a = 0.2, b = 0.1 and c = 10. The correlation between the
master u0(t) and the slave u1(t− ta) is shown in figure 5.8. Similar results are
obtained for τ = 100. If we consider that synchronization is obtained when
the correlation is greater than 0.95, the maximum anticipation time is around
ta = 5. This time is smaller than the linear response time T = 10.

This suggests that the anticipated synchronization mechanism is limited to
a neighborhood of t, where u1(t−τa) can be linearly approximated in terms of
u1(t). Substituting the linear approximation u1(t− ta) = u1(t)− tau̇1(t) into
the equation (5.8), we get the following expression:

Ru̇1(t) = f(u1(t)) + g(u1(t− τ)) + K(u0(t)− u1(t)) (5.9)

where R = 1−K ta. Thus, using a first-order approximation, the anticipated
synchronization scheme can be reduced to a non-anticipated synchronization
scheme with a different time scale (t′ = t/(1−Kτa)). Anticipation requires (in
the first-order approximation framework) 0 < 1−Kτa < 1, giving the following
two constrains for anticipated synchronization Kτa > 0 and Kτa < 1.

This simple prediction has been compared with the numerical anticipated
synchronization diagram of the MG system. Figure 5.8 (left) shows that the
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Figure 5.8: Stability region in the parameter space K and ta of the Mackey-Glass
system (τ = 30) with one identical copy for anticipated synchronization scheme (left)
and the first-order approximation scheme (right). The green line corresponds to the
curve K ta = 1

curve K τa = 1 gives a bound in qualitative agreement with numerical results.
For comparison, we have also included in figure 5.8 (right) the synchronization
diagram coming directly from the approximation scheme given by equation
(5.9). The similarity between the two figures (5.8 right and left) confirms the
validity of our simple approximation. This approximation is also valid for
non-delayed chaotic systems [Ciszak et al. 2005].

The bound of K > 0 is only a necessary condition for the anticipated
synchronization, but it turns out that a minimum coupling value is required
in order to achieve synchronization.

We can then conclude that anticipated synchronization is limited to antic-
ipation times of the order of the linear response time, thus strongly limiting
its practical application. To obtain longer anticipation times it is necessary
to consider a chain of slave systems.

It has been demonstrated that chains of anticipated synchronized identical
slaves chaotic systems can reach a total anticipation time much larger than
the the inverse of the largest Lyapunov exponent [Ciszak et al. 2005, Voss
2001a]. Although the maximum anticipation time attainable with the chain
of the coupled system decreases with N , the total prediction time, Nτa, can
be much larger than that of the single slave scheme. However, recently it has
been shown that convective-like instabilities introduced by the spatiotemporal
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character of the chain reduce the maximum anticipation time τa in each unit
as compared to the case of a single slave [Mendoza et al. 2004]. Although
the anticipating synchronization manifold of the chain is absolute stable, the
convective instability undermines the stability of the synchronous regime in
long chains.

5.4 Convective instability

Convective instabilities are typical of spatially extended systems. A convective
instability is one in which a small localized perturbation moves spatially such
that the perturbation grows only in a moving frame of reference [Briggs 1964,
Deissler 1987].

Time-delay systems have been also interpreted as a spatially extended
system by decomposing the time variable in intervals of the time delay of the
system. Under this assumption, convective instabilities have been also found
in a CO2 laser with delayed feedback [Giacomelli et al. 2000]. Convective
instability also appears in systems with nonlocal coupling that is the spatial
analogous of temporal delay [Papoff and Zambrini 2005].

On the other hand, an open chain of unidirectionally coupled chaotic slaves
(oscillators) can be also interpreted as a spatially extended system by consid-
ering the integer i labelling the slaves (oscillators) as a space variable. There-
fore, the absolute stability of the synchronization manifold is only a necessary
condition for the robustness of synchronization properties in chains of uni-
directionally coupled systems. In this systems, it is also necessary to assure
the stability versus the convective growth of perturbations in suitable moving
frames

Regarding the latter point, Mendoza et al. [2004] have recently demon-
strated that the synchronization manifold of anticipating synchronization in
an open chain of unidirectionally coupled identical chaotic oscillators is un-
stable to propagating perturbations. In this scheme, the oscillators or slaves
are non-delayed chaotic systems (Rössler). The convective instabilities are
favored in this case by the feedback time, τa, provided by the anticipated
synchronization.

Now, we focus on the study of an open chain of unidirectionally coupled
identical time-delay chaotic oscillators. We first study the case of the identical
synchronization without anticipation, i.e. τa = 0. In order to address such a
problem, let us consider an open chain of N unidirectionally coupled identical
Mackey-Glass oscillators (slaves), given by:
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Figure 5.9: Time to reach the synchronization state, τs (defined as the time where
the synchronization error is lower that 10−15). Data are obtained from an ensemble
average of 1000 perturbations. Left: The blue diamonds, red squares and black circles
correspond to K = 0.3, τ = 30, 60 and 90, respectively. Right: The blue diamonds,
red squares and black circles correspond to τ = 30, K = 0.3, 0.6 and 1.2, respectively.

u̇i(t) = f(ui(t)) + g(ui(t− τ)) + K(ui−1(t)− ui(t)) (5.10)

where ui(t) determines the dynamic of the ith driven oscillator (i = 1, . . . , N),
K is the coupling parameter, τ is the time delay, f(ui(t)) = −aui(t), g(ui(t−
τ)) = bx(t−τ)/(1+x(t−τ c)) and the parameters of the Mackey-Glass system
are the standard a = 0.1, b = 0.2, c = 10. Farmer demonstrated that the
Mackey-Glass system is chaotic for τ > 16.8 and that the synchronization is
possible for large enough values of K [Farmer 1982].

Following a similar approach as presented in [Mendoza et al. 2004], we now
study the evolution of a perturbation once the system (5.10) has reached the
synchronization manifold. To this aim, system (5.10) is evolved from a random
initial condition for N = 100, up to the time at which an absolutely stable
synchronization manifold (SM) is reached. Stability remains independent of
the chain length, but the time necessary to reach the stable synchronization
manifold has a linear dependence with the number of oscillator of the chain and
scales with the feedback time of the system (see figure 5.9 (left)). Moreover,
the time necessary to reach the stable synchronization manifold is inversely
proportional to the coupling parameter K (see figure 5.9 (right)).

At this point, we investigate the response of the system to a delta-like
perturbation. More precisely, we have let the system (5.10) evolve from a ran-
dom initial condition at t = 0 until it reaches (within numerical accuracy) the
synchronization manifold. Then, the evolution is restarted after perturbing
u1 by a small amount δ = 10−12, while all other variables are left unchanged.
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Figure 5.10: Time evolution of the ensemble averaged differences ∆(i, t). Data is
obtained from an ensemble average of 1000 perturbations, for τ = 30, K = 0.3 and
δ = 10−12.

The perturbations or deviations from the stable SM are studied by monitoring
∆(i, t) = |ui(t) − u0(t)|. The ln(∆(i, t)) corresponding to different oscillators
are plotted in figures 5.10 and 5.11 for τ = 30, K = 0.3 and K = 0.6, re-
spectively. We observe for each oscillator that the deviation from the SM
initially grows but finally converges to zero thus confirming its absolute sta-
bility. In spite of this, the maximum of ln(∆(i, t)) increases for oscillators
labelled by larger i. This behavior is analogous to that of convective unstable
coupled spatially extended systems where a small localized perturbation dies
if observed where it has been generated while it appears to grow in suitably
moving frames [Briggs 1964, Deissler 1987].

The perturbation not only increases its amplitude whereas propagates
through the chain of oscillators. The perturbation width grows linearly with
the number of the oscillator (see figure 5.12). Moreover, the width of the
perturbation decreases for larger coupling parameters. At larger K, the slave
system synchronizes faster with the master, so the slaves can get back faster to
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Figure 5.11: Time evolution of the ensemble averaged differences ∆(i, t). Data is
obtained from an ensemble average of 1000 perturbations, for τ = 30, K = 0.6 and
δ = 10−12.

the stable synchronization manifold after a perturbation. We have also found
that for the MG system, the perturbation fulfills the following relation:

∆(i, t)
∆(i, t− τ)

=
∆(i− 1, t)

∆(i− 1, t− τ)
(5.11)

where i indicate the number of oscillator (space) and t is the time.
The origin of the convective-like growth in synchronized chains of chaotic

systems is a question that has to be addressed. In time-delay systems, the
perturbation at oscillator i consists of the response to the perturbation from
the previous oscillator i − 1 and the replicas generated by the oscillator i
approximately at multiples of the time-delay due to its own feedback. This
effect can be better appreciated in chains with large K where the response
to the original perturbation has decayed before the replicas due to the time-
delay of the system appear (see figure 5.11). If K is not strong enough the
effect of the perturbation and its replicas overlap (see figure 5.10). A possible
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Figure 5.12: Synchronized (black) and desynchronized (white) areas. The system
is considered synchronized when ∆(i, t) < 10−17. The right (left) panel corresponds
to K = 0.3 (K = 1.2).

mechanism for the growth of the perturbation in a moving frame of reference
is the enhancement of the perturbation by the replicas.

Now, we want to characterize the convective instability propagation and
amplification as a function of the time delay and the coupling parameter. In
the context of one-dimensional lattices, the convective Lyapunov exponent is
defined as [Deissler and Kaneko 1987]:

Λ(v) = lim
t→∞

1
t

ln
|∆(i = vt, t)|
|∆(0, 0)| , (5.12)

where ∆(i, t) denotes the perturbation amplitude in oscillator i at time t and is
initially localized in a finite region around the origin. The convective Lyapunov
exponent expresses the growth rate of a localized perturbation, when observed
in a frame moving with velocity v. This is equivalent to stating that the
asymptotic perturbation amplitude on oscillator i and a time t grows like:

∆(i, t) ' exp(Λ(v)t) = exp(
Λ(v)

v
i) (5.13)

when both |i| and t are large enough.
From a numerical point of view, Λ(v) can be accurately estimated by

comparing the perturbation amplitude at two different space-time positions
P1 = (i1, t1), P2 = (i2, t2),

Λ(v) =
v

i2 − i1
ln

∆(i2, t2)
∆(i1, t1)

, (5.14)
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Figure 5.13: Convective Lyapunov exponent versus the propagation velocity, com-
puted according to equation (5.14) for different pairs of oscillators so (i2 − i1) = 4.
In all the cases K = 0.3 and from left to right τ = 30, 60 and 90, respectively.

where v = i1/t1 = i2/t2. The typical behavior of Λ(v) in convective unstable
system is: as v is increased from zero, the convective Lyapunov exponent will
increase until it reaches a positive maximum, ΛM , at a velocity vM , and then
it decreases until it again becomes negative.

Now, we calculate Λ(v) for different time delays (see figure 5.13 and 5.14).
We can see that Λ(v) follows the typical behavior of convective unstable sys-
tem. The existence of a positive maximum of Λ(v) implies that perturbations
travelling with a velocity v = i/t between the two zeros of Λ(v) are amplified.

We have found that for τ = 30, 60 and 90 (chaotic regime), ΛM/vM = 0.19
when K = 0.3. Therefore, for long values of the time delay, the amplification
of the perturbation with i is independent of τ . However, this behavior of
ΛM/vM with respect to τ is not observed for short values of the time delay
(non-chaotic regime). In these cases, the amplification of the perturbation
with i depends on τ , although the amplification rate is always lower than
for the chaotic regime. For instance, when K = 0.6, for τ = 30, 7 and 3.5,
ΛM/vM = 0.08, 0.069 and 0.056, respectively.

We can also analyze the behavior of the convective Lyapunov exponent
with the coupling parameter K (see figure 5.15). Here, ΛM slightly decreases
with the coupling strength whereas vM is proportional to K. Thus, the ampli-
fication of the perturbation, ∆(i, v/i), is almost inversely proportional to K
(see figure 5.16). Therefore, large coupling parameters decrease the amplifica-
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Figure 5.14: Convective Lyapunov exponent versus the propagation velocity, com-
puted according to equation (5.14) for different pairs of oscillators so (i2 − i1) = 4.
In all the cases K = 0.6 and in the left (right) panel τ = 30 (τ = 7).

tion of the perturbation. This result agrees with the fact that large coupling
parameter forces more the slave system to follow the dynamics of the master.

The value of the maximum convective exponent, ΛM , can be independently
checked by monitoring the maximum value of the perturbation, ∆M , for each
oscillator i (see figures 5.17 and 5.18). From figure 5.17 (left) it is clearly
appreciated that the growth of the convective instability is independent of τ .
Moreover, the slope of ln(∆M (i)) is 0.2, in good agreement with the value of
ΛM/vM = 0.19 obtained previously. However, for short values of the time de-
lay (non-chaotic regime) the amplification of the perturbation with i depends
on τ (see figure 5.17 right). In this case the amplification rate is always lower
than for the chaotic regime. Likewise, figure 5.18 shows how the amplitude
of the perturbation decreases as K is increasing. The fit of figure 5.18 also
agrees with the result showed in figure 5.16.

However, let us point out that the scaling growth behavior of the pertur-
bation starts only above a certain oscillator i (see figures 5.18 and 5.17). Our
results show that the length of the chain necessary for the perturbation to
grow depends basically on K. As we can see from figure 5.18, the larger the
coupling parameter, the larger the oscillator at which the convective instabil-
ity starts to grow. In fact, we have found that for K = 1.2, the chain length
should be larger than 40 oscillators.

This opens a door to use chains of anticipated synchronized identical time-
delay chaotic systems oscillators as a forecasting method. However, prelim-
inary results obtained in anticipated synchronized chains of unidirectionally
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Figure 5.18: The maxima of ∆(i, t), ∆M , versus the oscillator number. The blue
diamonds, red squares, black circles, and green triangles correspond to K = 0.15, 0.3,
0.6 and 1.2, respectively. In all the cases τ = 30.
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coupled identical time-delayed chaotic oscillators show that the amplitude of
the perturbation starts to grow earlier and grows faster than for τa = 0. More-
over, we have previously shown that the large coupling parameter, the shorter
the anticipation time of the system, so Kτa ∼ cte (see section 5.3). Therefore,
use of chains of anticipated synchronized identical time-delay chaotic systems
oscillators as a forecasting method seems to be an unpractical method.

Finally, we present the preliminary results obtained from a chain of unidi-
rectionally Ikeda identical coupled systems. This scheme is interesting because
permit us to study the behavior of the convective instability as function of the
nonlinearity strength (related to the entropy) of the system. All reported sim-
ulations of the Ikeda system have been performed by implementing an Adams
Moulton predictor corrector scheme [Press et al. 1992].

The transverse Lyapunov exponent, describing the convergence rate of the
orbits along the synchronization manifold, should be negative for an achieve-
ment of stable synchronization in the coupled systems. For the Ikeda system,
the coupling parameter necessary to have a negative transverse Lyapunov ex-
ponent increases with the nonlinearity strength, β (see figure 5.19).

Once the chain of unidirectionally Ikeda identical synchronized systems
has reached the stable manifold (the time to reach the synchronization state
increase with β), we introduce an initial perturbation δ = 10−12 into the
first slave. In this case, the maximum convective Lyapunov exponent ΛM

increases with β whereas vM is constant. In figure 5.20, we plot the maximum
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Figure 5.20: Left (Right): The maxima of ∆(i, t), (∆M ), of each i versus their
occurrence time. The blue diamonds, red squares, and black circles,correspond to
β = 5, 10, and 15, respectively. In all the cases τ = 10 and K = 12.

of the perturbation, ∆M for different βs. Clearly, the amplification of the
perturbation increases with β. Moreover, the estimation of ΛM/vM from
figure 5.20 gives 0.1 (β = 15), 0.63 (β = 10) and 0.35 (β = 5).

To conclude, we have demonstrated that convective instabilities appear in
chains of unidirectionally synchronized identical time-delay chaotic oscillators,
when even a small amount of noise is present. Moreover, we have shown that
in the chaotic regime, the growth of the convective instabilities is independent
of the time delay and increases for weak coupling parameters. Preliminary
results obtained from the Ikeda system also show that the amplification of the
perturbation increases with the nonlinearity strength of the system.

5.5 Conclusions

We have studied the predictability of time-delay chaotic system using the
standard prediction and the anticipated synchronization.

In most practical cases, the original system is unknown and approximate
models fitted to the available data are used to model and forecast its non-
linear dynamics. The forecast horizon in these cases depend not only on the
dynamics of the original system, but also on the error of the approximate
model.
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When non-identical replicas are used, we have found for both numerical
and experimental data that the forecast horizon obtained with the standard
prediction is of the order of the inverse of the largest Lyapunov exponent.

Regarding the anticipated synchronization with diffusive coupling between
the neural network and the chaotic system, we have demonstrated for both
numerical and experimental data that the maximum prediction times are sim-
ilar for different feedback delay times. The forecast horizon with a single slave
is limited by the linear response time. Prediction times are not increased in a
significant way by using a cascade of slave model systems.

Therefore, the anticipated synchronization scheme discussed here cannot
forecast longer that the linear prediction time and much less than the inverse
of the largest Lyapunov exponent.

We have also shown that chains of anticipated non-identical replicas do
not increase significantly the prediction time of the system. Using identical
replicas the prediction time of the system is longer than the characteristic
ones. However, the anticipation time leads to the apparition of convective
instabilities.

We have used the original system as master and N identical synchronized
models as chain of slaves. In our case, the intrinsic time delay of the system
yields to the appearance of convective instabilities when the identical or com-
plete synchronization are considered. In this case the feedback time of the
system plays the role of the anticipated time. We have characterized these
convective instabilities by the convective Lyapunov exponent. We have found
that for long values of the time delay the amplification of the perturbation
at each oscillator is independent of τ and decreases almost inversely propor-
tional with the coupling parameter K. Moreover, the growth of perturbation is
faster than in chains of unidirectionally coupled non-delayed systems (Rössler)
synchronized anticipated, where ΛM/νM = 0.0034.





Chapter 6

Unmasking messages encoded
by time-delay chaotic systems

C haotic communications applying chaos synchronization have attracted a
great deal of attention due to their multiples applications. Specially interesting
is the possibility of using chaotic communications to improve the security
of communication systems. However, the security of chaotic communication
systems remains the key to be addressed.

Privacy in chaotic communication systems is based on the fact that the
emitter and receiver must posses the same configuration and parameter set-
tings. Important aspects of receiver design are the number of parameters that
have to be matched for information recovery and the precision required for
parameter matching. The decoding of the message is possible only when the
emitter and receiver systems are almost perfectly identical.

The security of chaotic communication systems has been extensively re-
searched but most of the research is focused on low-dimensional dynamics.
Many chaos-based encryption schemes with low dimensional chaos have been
proposed and many of those schemes have been broken later. [Pérez and
Cerdeira 1995, Rulkov et al. 1995, Short 1994; 1996, Short and Parker 1998,
Yang et al. 1998a;b;c]. Lately, the interest has turned to develop chaotic
communications systems that can generate high dimensional hyperchaos, be-
cause it is expected that these systems will improve the confidentiality of the
transmitted messages.

Nonlinear systems with delayed feedback can have many positive Lyapunov
exponents and chaotic attractors whose dimension increases with the delay
time reaching very high values [Farmer 1982]. Nonetheless, high-dimensional
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chaotic communication systems based on delayed feedback systems have been
also unmasked by nonlinear time series analysis that exploits the particular
structure of time-delay systems [Ponomarenko and Prokhorov 2002, Prokhorov
and Ponomarenko 2008, Robilliard et al. 2006, Udaltsov et al. 2003, Zhou and
Lai 1999]. In these cases, to unmask the chaotic communication system, it
is assumed that the structure of the equations that govern the delay time
systems is known.

When the structure of the equations is unknown, we have demonstrated
in chapter 4 that a method based on neural networks can reconstruct the
nonlinear dynamics of the chaotic time-delay carriers. These neural network
models can be used to decode the message.

In this chapter we study the security of optical chaotic communication
systems based on chaotic carriers generated by laser diodes subject to delayed
optoelectronic feedback. Diode lasers subject to delayed feedback provide
simple ways of generating very high-dimensional and high information entropy
chaotic carriers [Vicente et al. 2005]. Furthermore, it has been proved that
these systems can reach high transmission rates and can be compatible with
existing telecommunication infrastructures [Argyris et al. 2005].

The chapter is structured as follows. Section 6.1 describes the different
ways to inject the message into the chaotic carrier inside the nonlinear feed-
back loop. Section 6.2 presents the optical communication system based on
semiconductor laser subject to optoelectronic feedback. In section 6.3, we
detail the way of working of the modular neural network as an unauthorized
receiver. Sections 6.4 and 6.5 are devoted to message extraction from numeri-
cal simulations when the chaotic carrier has one and two delays, respectively.
Section 6.6 analyzes the recovery of the message from experimental time series
for different parameters values. Finally, we summarize our main conclusions
in section 6.7.

6.1 Chaos modulation scheme in time-delay
systems

A large variety of modulation and demodulation schemes have been proposed
for chaotic communication systems. Particulary interesting is the chaos mod-
ulation scheme (CMO), where the information signal is embedded into the
dynamics of the chaotic carrier (see chapter 2, section 2.3). When the dynam-
ical state of the chaotic time-delay generator can be described by a delayed
differential equation, there are different ways to implement the CMO scheme
[Prokhorov and Ponomarenko 2008, Udaltsov et al. 2001]. Let us consider a



Section 6.1. Chaos modulation scheme in time-delay systems 177

Delay

t

Nonlinear
element

F

Low pass
filter

T

I        1III        3II        2

Figure 6.1: Block diagram of a delayed nonlinear feedback system generating a
chaotic signal. The numerals I-III indicate points where an information signal can
be injected into the system. The numerals 1-3 indicated the output points of the
transmitter.

chaotic carrier governed in absence of information signal by a delayed differ-
ential equation of the form:

T ẋ(t) = −x(t) + F (x(t− τ)) (6.1)

where x(t) is the system state at time t, F is the nonlinear function, τ is the
time delay and T characterizes the response time of the system. This DDE
can be represented by a simple ring system composed of delay, nonlinear and
a low-frequency first-order filter that provides the response time of the system
(see the block diagram plotted in figure 6.1).

According to the analysis presented in [Prokhorov and Ponomarenko 2008,
Udaltsov et al. 2001], the information signal, s(t), can be injected into the
feedback loop at different points denoted in figure 6.1 by the romans numerals
I-III. Likewise, the signal transmitted into the communication channel, xr(t),
can be taken from different points of the ring system indicated in figure 6.1
by the arabic numerals 1-3. Thus, given a chaotic carrier defined by equation
(6.1), there are several ways to build the transmitter.

Depending on the point at which the message signal is injected into the
feedback circuit of the transmitter, the system dynamics is governed by a
different DDE (see table 6.1). In all the cases, the information signal is directly
involved in the formation of the dynamics of the chaotic carrier. Hence, the
transmitted signal, xr(t), represents more than the simple superposition of
the chaotic signal and the information signal.

The authorized receiver is composed of the same elements as the transmit-
ter, with the same parameters. Nevertheless, the receiver presents an open
loop configuration, i.e., the feedback loop in the receiver is broken by the
transmitted signal. It is critical to inject the signal from the transmitter at
the receiver layout in the same point where is collected in the transmitter.

Now, we define ∆(t) as the difference between the output receiver and the
transmitted signal. Not all the possible combinations of injected/collected
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Injected point Transmitter DDE

I T ẋ(t) = −x(t) + F [x(t− τ)] + s(t)

II T ẋ(t) = −x(t) + F [x(t− τ) + s(t− τ)]

III T ẋ(t) = −x(t) + F [x(t− τ) + s(t)]

Table 6.1: Delay differential equation for the transmitter plotted in figure 6.1 de-
pending on the injected point of the information signal s(t)

Input Output point

point 1 2 3

I s(t) T ∆̇(t) + ∆(t) = s(t) T ∆̇(t) + ∆(t) = s(t− τ)

II processing s(t) s(t− τ)

III processing processing s(t)

Table 6.2: The difference signal ∆(t) for different injection points of the information
signal into the feedback loop of the transmitter (I-III) and different output points of
the transmitted signal xr(t) (1-3).

points lead to a direct message extraction from ∆(t). As shown in table 6.2,
processing of the signal ∆(t) is necessary to recover the message in several
cases. Evidently, these cases are not attractive for communication purposes.
The state-of-the-art of the experimental systems is based on the combinations
that lead to a direct recovering of the information signal from ∆(t). In the
following section, we explain in detail the configurations I/2 and II/2. Both
have been experimentally implemented in an optical chaos based communica-
tion system where the chaotic generator is a semiconductor laser subject to
optoelectronic feedback [Bavard et al. 2007, Larger et al. 1998a].

6.2 The optical chaotic communication system

One of the first chaos based communication system based on semiconduc-
tor lasers subject to optoelectronic feedback was experimentally realized by
Goedgebuer et al. [1998a], Larger et al. [1998a] (see chapter 3, section 3.4
for more details about the experimental setup). The system shows chaos in
wavelength and a CMO modulation scheme is used. The schematic diagram
of the chaotic communication system is presented in figure 6.2. The chaotic
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Figure 6.2: Schematic diagram of the chaotic communication system. The elements
of the chaotic communication system are the Laser Diode [LD], the nonlinear element
[NL], the delay line [τ ], the amplifier [β] and the low pass filter. Points I and II
represent the two possible injection points of the message into the transmitter

dynamics of the transmitter without information signal can be described by
the equation:

T
dx(t)

dt
= −x(t) + β sin2 (x(t− τ)− φ) (6.2)

where T is the response time of the system, β is the nonlinearity strength, τ
is the delay of the feedback loop and φ is the phase.

In the transmitter, the information signal, s(t), is injected inside the loop
of the chaotic generator. Two different injection points, both performed ex-
perimentally [Bavard et al. 2007, Larger et al. 1998a], are considered in this
section. In the first case, s(t) is injected after the low pass filter (point II in
figure 6.2) [Larger et al. 1998a]. This transmitter configuration corresponds to
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the II/2 scheme presented in the previous section, and the transmitted signal
is given by:

xr(t) = xc(t) + s(t) (6.3)

where the chaotic part of the transmitter signal, xc(t), obeys the following
equation:

T
dxc(t)

dt
= −xc(t) + β sin2 (xc(t− τ)− φ + s(t− τ)) (6.4)

The second case consists on the injection of s(t) before the low pass filter
(point I in figure 6.2) [Bavard et al. 2007]. Thus, the transmitter configura-
tion corresponds to the I/2 scheme described in the previous section. The
transmitted signal is defined by:

T
dxr(t)

dt
= −xr(t) + β sin2 (xr(t− τ)− φ) + s(t) (6.5)

Both configurations use the same authorized receiver, y(t), to recover the
message, described by the equation:

T
dy(t)
dt

= −y(t) + β sin2 (xr(t− τ)− φ) (6.6)

The transmitter and receiver are identical, i.e. they have the same com-
ponents with the same parameters. The message is recovered by subtracting
y(t) from the transmitted signal, xr(t), once the receiver synchronizes with
the transmitter. The receiver architecture can be viewed as performing a
nonlinear filtering process, intended to generate locally a message-free chaotic
signal, which is subtracted from the transmitted signal to extract the message.
When xr(t) follows equation (6.3) (the message is embedded into point II),
∆(t) = xr(t) − y(t) yields directly the message s(t). However, when xr(t)
is given by equation (6.5) (the message is embedded into point I), ∆(t) is
described by a first order non-autonomous differential equation:

T
d∆(t)

dt
+ ∆(t) = s(t) (6.7)

6.3 The unauthorized receiver

To recover the information signal, an eavesdropper can construct a model that
reproduces the nonlinear dynamics of the chaotic carrier from the transmit-
ted signal. The more accurate is the extraction of the nonlinear dynamics,
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the higher is the quality of the synchronous chaotic response of the unautho-
rized receiver and, as a consequence, the higher is the quality of the message
extraction.

We have demonstrated in chapter 4 that MNNs can reproduce the nonlin-
ear dynamics of time-delay systems described by equation (6.2) under different
parameters values. Moreover, we have shown that the obtained MNN model
is able to synchronize with the original chaotic data. Thus, we can use the
MNN to recover the encoded information signal in the chaos communication
system presented in the previous section.

We can divide the procedure to extract the message into two phases. The
first one is to obtain the model that reconstructs the nonlinear dynamics of
the chaotic generator. To achieve this, we train a MNN from the transmitted
signal, xr(t). As described in chapter 4, the output of the MNN is given by:

xnn(t) = fnn(~xnf
r (t)) + gnn(~x f

r (t)) (6.8)

where fnn and gnn resemble the original linear and nonlinear functions of the
chaotic carrier governed by equation (6.2). The vectors ~xnf

r (t) and ~x f
r (t) are

given by:

~xnf
r (t) = (xr(t− τe), ..., xr(t−m1τe)) (6.9a)

~x f
r (t) = (xr(t− τ −m2τe), ..., xr(t− τ), ..., xr(t− τ + m2τe)) (6.9b)

where τe is the embedding time, and m1 and 2m2 + 1 are the numbers of
non-feedback and feedback inputs, respectively.

The second phase is the construction of the unauthorized receiver using
the model, in our case a MNN. The output of the unauthorized receiver is
given by:

ynn(t) = fnn(~y nf
nn (t)) + gnn(~x f

r (t)), (6.10)

where ~y nf
nn (t) = (ynn(t − τe), ..., ynn(t − m1τe)). Providing the MNN model

reproduces the nonlinear dynamics of the chaotic carrier, the output of the
MNN receiver, ynn, should be similar to the output of the authorized receiver,
y, ruled by equation (6.6). Thus, following the same approach as the original
receiver, the information signal is retrieved by the substraction of the input
and output of the MNN receiver, ∆nn(t) = xr(t) − ynn(t). The schematic
of the chaotic communication system with the unauthorized MNN receiver is
presented in figure 6.3.
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Figure 6.3: Schematic diagram of the chaotic transmitter and the MNN unau-
thorized receiver. The elements of system are the Laser Diode [LD], the nonlinear
element [NL], the delay line [τ ], the amplifier [β] and the low pass filter. Points I and
II represent the two possible injection points of the message into the transmitter.

It is worth highlight that depending on the way the message is injected
into the chaotic carrier other approaches exist to recover the information sig-
nal. For instance, one can try to extract the information signal by evaluating
xnn(t) − xr(t), where xnn is the simple MNN prediction (see equation 6.8).
The latter scenario only works when the message is placed in the DDE outside
the nonlinear function, e.g. point I. In other cases, such as messages injected
into point II, the information signal can not be retrieved by the evaluation of
xnn(t)− xr(t). Hence, the encoding scheme also plays a role in the privacy of
the chaotic communication system.

The signal to noise ratio (SNR) of the recovered message directly depends
on the mismatch between the transmitter and receiver. When the transmit-
ter and receiver are perfectly matched and no message is transmitted, the
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recovery signal, ∆(t), is equal to zero. However, when not perfectly matched
transmitter and receiver are considered, ∆(t) is altered by a decoding error,
ε. We define the decoding error, ε, as the RMS amplitude of ∆(t) when no in-
formation signal is injected. Therefore, ε =

√
〈∆(t)2〉

∣∣∣
s(t)=0

, where 〈〉 implies

averaging over time. This error is normalized to the standard deviation of the
chaotic carrier. For the particular case of the unauthorized MNN receiver, we
define the decoding error as εnn =

√
〈∆nn(t)2〉

∣∣∣
s(t)=0

. The decoding error de-

termines the minimum amplitude of s(t) that can be decoded by the receiver.
In the case of the MNN unauthorized receiver, εnn is always greater than the
RMSE. Furthermore, εnn increases with the RMSE in a nonlinear way, i.e.
small increments in the RMSE can lead to high increments of εnn.

6.4 One delay systems: Message extraction from
simulations

In chaos based communication systems, the message is hidden into the noisy
appearance of the chaotic carrier. The amplitude and frequency of the infor-
mation signal should be chosen to avoid the detection of the message from the
power spectrum or from the time series of the transmitted signal.

In the chaotic communication system presented in section 6.2, the chaotic
carrier has a power spectrum limited by the first-order filter of cut-off fre-
quency 1/(2πT ) (see figure 6.4). To avoid the detection of the message from
the power spectrum or from the time series of xr(t), the transmission rates
are limited by T and the amplitude of the message must be smaller than the
amplitude of the chaotic carrier.

To illustrate the message recovery with the MNN, we use the chaotic com-
munication system presented in section 6.2 to transmit a information signal
with frequency 0.04, in the middle of the plain zone of the spectrum of the
chaotic carrier (see figure 6.4). This frequency assures the concealment of
the message in the power spectrum of the transmitted signal, regardless of its
shape (sinusoidal or square functions).

Regarding the amplitude of the message, we define the message to chaos
ratio (MCR), as the ratio between the standard deviation of s(t) and that of
the chaotic carrier without message, x(t), in dB:

MCR = 20 log
σs

σx
(6.11)

where σz = 〈(z(t)− 〈z(t)〉)2〉1/2 and 〈〉 implies averaging over time.
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Figure 6.4: Power spectrum of the chaotic signal x(t) ruled by the equation (6.2)
for τ = 100, φ = 0.26π and T = 1.

Following the same approach used in the experimental setup [Bavard et al.
2007, Larger et al. 1998a], the MCR is chosen as the highest one that avoids
the detection of the message in the spectrum of the transmitted signal. Thus,
the SNR at the output of the receiver is maximal.

Nonetheless, a perfectly hidden message in frequency and time is a neces-
sary but not sufficient condition to guarantee the confidentiality of the trans-
mitted signal. An eavesdropper can extract the message from xr(t) by a
model that reproduces the nonlinear dynamics of the transmitter. In our case
we use a MNN to extract the nonlinear dynamics of the chaotic carrier and
the information signal. We consider two different situations:

• The MNN is trained from the transmitted signal without message

• The MNN is trained from the transmitted signal with message

Respect to the chaotic generator governed by equation (6.2), we focus on
the most difficult case for an eavesdropper. The chaotic carrier has β = 50
and τ = 100. As we have shown in chapter 4, the difficulty to reconstruct the
nonlinear dynamics increases with β but not with the time delay τ . Higher
βs imply higher RMSE and therefore worse message recovery.
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6.4.1 Training without message

In this subsection, we train the MNN from the transmitted signal during
periods where no message is transmitted. This situation has been analyzed
in detail in chapter 4, where we train MNNs to reconstruct the dynamics of
chaotic carriers defined by equation (6.2) for different values of β and τ . In
the case of β = 50 and τ = 100, the RMSE of the MNN(8:4) is around 5 ·10−4

(see figure 4.11 in chapter 4) leading to a decoding error of εnn = 1 · 10−3.
As explained above, we use the MNN model as an unauthorized receiver

to decode the transmitted message. First, we consider sinusoidal and square
periodic functions with zero mean and frequency 0.04 as information signals.
The MCR is −17 dB for the sinusoidal function and −20 dB for the square
one. These MCR are the highest ones that avoid the detection of s(t) in the
spectrum of xr(t).

For these cases, we analyze message recovery with the MNN when the in-
formation signal is injected into point I and II. The time series and spectrum
of the original sinusoidal (square) message, the transmitted signal and the
extracted message with the MNN, ∆nn, are plotted in figure 6.5 (6.6) when
the injection point is II (I). As can be seen, in both cases the original message
is perfectly recovered with the MNN unauthorized receiver. The SNR of the
extracted message is 53 (52) dB, whereas the original sinusoidal (square) mes-
sage injected into point II (I) has a SNR=57 (59) dB. Furthermore, note that
the message is concealed into the spectrum and time series of the transmitted
signal in both cases.

There is a slight difference between the recovered message when s(t) is in-
jected into point I or II. When the message is injected into point II, ∆nn(t) is
directly the original message. However, when the message is injected into point
I, ∆nn(t) corresponds to the filtered message (see equation (6.7)). In the latter
case, to properly recover the original message we have to calculate ∆̇nn(t) from
the time series (for example with the method of local parabolic approximation)
and add this to ∆nn(t) to obtain s(t). To illustrate this procedure, we plot in
figure 6.7 a transmitted pseudo-random message with MCR = -20 dB and fre-
quency 0.04 and the recovered message using the MNN when the information
signal has been embedded into point I and II.

6.4.2 Training with message

In the previous subsection, we suppose the existence of periods where no mes-
sage is transmitted and use them to train the MNN. However, the chaotic
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Figure 6.5: From top to bottom it is plotted the original message, the transmitted
signal and the recovered message in time (a) and frequency (b). The original message,
s(t), is a sinusoidal function with MCR = -17 dB and frequency 0.04 injected into
point II. The chaotic carrier has β = 50, T = 1, φ = 0.26π and τ = 100. The
MNN(8:4) has been trained without message.
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Figure 6.6: From top to bottom it is plotted the original message, the transmitted
signal and the recovered message in time (a) and frequency (b). The original message,
s(t), is a square periodic function with a MCR = -20 dB and frequency 0.04 injected
into point I. The chaotic carrier has β = 50, T = 1, φ = 0.26π and τ = 100. The
MNN(8:4) has been trained without message.
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Figure 6.7: Top panel: The original square pseudo-random message with MCR
= -20 dB and frequency 0.04. Middle (bottom) panel: ∆nn when the information
signal is injected into point II (I). The dashed line of the bottom panel corresponds
to ∆nn + ∆̇nn. The chaotic carrier has β = 50, T = 1, φ = 0.26π and τ = 100. The
MNN(8:4) has been trained without message.

communication system can be conceived so that a message is always trans-
mitted.

The process to extract the nonlinear dynamics with NNs from xr(t) is the
same regardless of the presence of the message in the transmitted signal. The
message can be viewed as a perturbation. The nonlinear reconstruction with
NNs is better when the injected message has low amplitudes and frequencies.
The limit cases would be messages with zero frequencies or amplitudes, i.e.
the NN would be trained from data without message. The effect of the shape
of the message is negligible.

To illustrate the above points, we train a MNN from xr(t) with an injected
NRZ (non return to zero) pseudo-random message with a MCR = -20 dB and
frequency 0.04. We use the same MNN structure, number of inputs, training
points and parameters that in the case without message. The RMSE (εnn)
obtained is around 2 · 10−3 (9 · 10−3), clearly higher that the RMSE (εnn)
obtained when no message is injected (around 5 · 10−4 (1 · 10−3)).

Regarding the message amplitude, higher amplitudes yield higher MNN
RMSE and therefore, higher decoding errors, εnn. Nonetheless, the increment
in the message amplitude compensates the worse decoding error and allows
message recovery. To exemplify this point, we transmit a NRZ pseudo-random



Section 6.4. One delay systems: Message extraction from simulations 189

0 100 200 300 400
−2

0

2

time (a.u.)

∆ nn
(t

)

−2

0

2
s(

t)

−2

0

2

∆ nn
(t

)

Figure 6.8: Top panel: The original message, s(t), is a square pseudo-random func-
tion with MCR = -9 dB and frequency 0.04. Middle (bottom) panel: ∆nn when s(t)
injected into point II (I). In both cases the MNN(8:4) has been trained from xr(t)
with the information signal. The chaotic carrier has β = 50, T = 1, φ = 0.26π and
τ = 100.

message with MCR = -9 dB and frequency 0.04. In this case, the RMSE is
around 0.02 yielding a εnn = 0.1 for both injection points of the information
signal. Therefore, the recovered message is similar for point I and II (see
figure 6.8). The differences between ∆nn when the message is injected into
point I or II are here concealed by the higher decoding errors. Let us point out
that the spectrum of the pseudo-random message allows that higher message
amplitudes (until a MCR = -9 dB) are concealed into the spectrum.

Regarding the message frequency, this is limited by the first order filter (re-
sponse time of the system T = 1) yielding a maximum transmission rate of the
information signal around 0.1. We have found that the effect of the frequency
on the recovered message is negligible for the allowed range of transmission
frequencies.

Finally, let us point out that the MNN is able to filter the message to
a certain extent in the same way that for a noisy time series. However, the
filtering process is much more effective in the case of the message. For instance,
the RMSE of a MNN trained from the transmitted signal without noise and
an injected message with a MCR = -20 dB is around 2 · 10−3. However, when
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the MNN is trained from the transmitted signal with a CNR = -20 dB and
without injected message the RMSE is 2·10−2(see chapter 4, subsection 4.3.4).

6.4.3 Robustness to noise

In this subsection we study the robustness of message recovery to noise by
adding a zero-mean Gaussian noise, n(t), to the transmitted signal, xr(t).
Different noise levels with a CNR from 40 dB (1%) to 20 dB (10%) are con-
sidered.

To recover the nonlinear dynamics from the transmitted time series with
and without message, we use MNNs with the same structure, number of in-
puts, parameters and neurons as the ones used in chapter 4, subsection 4.3.4,
for noisy time series.

When no message is transmitted, the MNN(10:5) trained from xr(t) with
noise gives decoding errors from 0.08 for CNR = 40 dB to 0.27 for CNR = 20
dB. Clearly, lower noise levels (i.e. higher CNRs) lead to lower decoding errors
and therefore better recovered messages. In figure 6.9 it is shown the extracted
messages for different CNRs when s(t) is injected into point I and II. The MNN
has been trained from the transmitted time series without message.

In presence of noise, the recovered message using a MNN trained with or
without message is very similar (see figure 6.10). As previously mentioned,
the message in the chaotic transmitted signal can be viewed as a noise with
respect the nonlinear dynamics reconstruction process. Hence, the effect of
the message is overcome by the noise present in the transmitted signal.

Finally, let us point out that it is not possible to recover transmitted
messages with amplitudes under the noise level of the system. Although we
have shown in chapter 4, that the MNN is able to filter part of the input noise,
εnn is always over the noise level.

We have demonstrated with numerical simulations that the chaotic com-
munication system presented in figure 6.2 is vulnerable. An eavesdropper can
train a MNN from the transmitted signal to reconstruct the nonlinear dynam-
ics of the chaotic carrier. Next, the MNN can be used as an unauthorized
receiver to extract the transmitted message. Therefore, the privacy of the
communication system is compromised. In the next section we analyze if the
above procedure is valid also when the chaotic generator has two delays.
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(a) Message injected into point I

(b) Message injected into point II

Figure 6.9: (a,b): Recovered message with CNR= 20 (top), 30 (middle) and 40
(bottom) dB. The red line corresponds to the filtered extracted message. The original
message, s(t), is a pseudo-random function with MCR = -9 dB and frequency 0.04.
The chaotic carrier has β = 50, τ = 100, T = 1 and φ = 0.26π. The MNN(10:5) has
been trained without message.
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Figure 6.10: Top panel: The original pseudo-random message with MCR = -9 dB
and frequency 0.04. Middle (bottom) panel: ∆nn where the message is injected into
point II (I). The black (red) lines correspond to ∆nn when the MNN is trained from
xr(t) without (with) message. The CNR = 23 dB. The chaotic carrier has β = 50,
τ = 100, T = 1 and φ = 0.26π.

6.5 Two-delay system: Message extraction from
simulations

Following the same technique used to encode a message in the single delay
case, an information signal can be also embedded into a two delays chaotic
generator described by:

x(t) + T
dx(t)

dt
= G(x(t− τ1), x(t− τ2)), (6.12)

where τ1 and τ2 are the delay times, T is the response time of the system and
G is the nonlinear function (see chapter 3, subsection 3.3.3 for more details).

The information signal can be injected into point I or II. In this section
we only consider messages encoded inside the nonlinear function (point II).
All the conclusions and results hold for messages injected into point I. Hence,
the transmitted signal is giving by:

xr(t) = xc(t) + s(t), (6.13)

where the chaotic part of the transmitter signal, xc(t), obeys the following
equation,
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T
dxc(t)

dt
= −xc(t) + G[xr(t− τ1), xr(t− τ2)] (6.14)

The nonlinear function has two different implementations, serial and paral-
lel. The nonlinear functions for the parallel, Gp, and serial, Gs, configuration
are defined by:

Gp = β1 sin2 (xc(t− τ1) + s(t− τ1)− φ1) +
+β2 sin2 (xc(t− τ2) + s(t− τ2)− φ2) (6.15)

Gs = β sin2 (xc(t− τ1) + xc(t− τ2) + s(t− τ1) + s(t− τ2)− φ)(6.16)

The authorized receiver y(t) is described by the following equation:

y(t) + T
dy(t)
dt

= G[xr(t− τ1), xr(t− τ2)] (6.17)

The message is recovered by subtracting y(t) from the transmitted signal
xr(t), ∆(t) = xr(t)− y(t).

Following the same approach as in the one delay case, an eavesdropper can
decode the transmitted message by constructing a model that reproduces the
nonlinear dynamics of the chaotic carrier subject to two delays. The message
recovered by the eavesdropper is given by ∆nn(t) = xr(t)− ynn(t). When the
MNN is used to reconstruct the dynamics we have,

ynn(t) = fnn(~y nf
nn (t)) + gnn(~x f

r (t)) (6.18)

where fnn and gnn resemble the original linear and nonlinear functions of the
chaotic carrier governed by equation (6.14). The vectors ~y nf

nn (t) and ~x f
r (t) are

given by:

~y nf
nn (t) =(ynn(t− τe), ..., ynn(t−m1τe)) (6.19a)

~x f
r (t) =(xr(t− τ1 −m2τe), ..., xr(t− τ1), ..., xr(t− τ1 + m2τe),

xr(t− τ2 −m2τe), ..., xr(t− τ2), ..., xr(t− τ2 + m2τe)) (6.19b)

where τe is the embedding time and m1 and 2(2m2 + 1) are the numbers of
non-feedback and feedback inputs, respectively.

To illustrate the procedure in the two delays case, the chaotic carrier,
xc(t), ruled by (6.14) is used to transmit a pseudo-random NRZ message with
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a MCR = -12 dB and frequency 0.04. The parameters of the chaotic carrier are
β = β1 = β2 = 15, τ1 = 100, τ2 = 215, T = 1 and φ = φ1 = φ2 = 0.26π. The
amplitude and frequency of the message have been chosen so the information
signal is not noticeable in the time series or spectrum of the transmitted signal,
xr(t).

To recover the transmitted message, we reconstruct the nonlinear dynamics
of the chaotic carrier using MNNs. Based on the results obtained in chapter
4, section 4.4, we use an adapted MNN for the parallel configuration and a
non-adapted or standard MNN model for the serial configuration. In both
cases, the MNN feedback modules have 14 : 7 neurons.

First we consider the free noise case. The recovered message for both
delays configuration when the MNN is trained with and without message is
shown in figure 6.11(a). The RMSE of the MNN trained without message
is around 10−5 (see chapter 4, section 4.4) whereas the RMSE of the MNN
trained with message is around 9 · 10−4. As in the one delay case, lower RMS
errors lead to lower decoding errors, εnn, and therefore to better quality of the
recovered message. In fact, the extracted message when the MNN is trained
from xr(t) without information signal is practically identical to the original
transmitted message (see figure 6.11(a)).

Now, we add white gaussian noise with a CNR = 30 dB to xr(t). The
recovered message for both delays configuration when the MNN is trained
with and without message is shown in figure 6.11(b). Evidently, the quality
of the extracted message with noise is worse than without noise, specially
when the MNN model is trained with the message (see figure 6.11(b) (right)).
However, it is still possible to recover the original transmitted message.

Through this chapter, we have unmasked messages encoded by time-delay
chaotic systems with one and two delays. Once the nonlinear dynamics is
reconstructed by a model, we can also use this model to recover an encoded
message. The more accurate is the extraction of the nonlinear dynamics, the
higher is the quality of the message extraction. We have tested the mes-
sage recovery under different noise levels and injection message points. In all
the considered cases, the message can be recovered even when the model is
constructed from the time series of the chaotic carrier with or without the
transmitted message embedded. In the following section we will apply the
same method to unmask messages from experimental time series.
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Figure 6.11: (a,b): Recovered message for the serial (top) and parallel (bottom)
configurations. The MNN(14:7) has been trained from xr(t) without (left) and with
(rigth) message. The original NRZ pseudo-random message is plotted in red and has
MCR = -12 dB and frequency 0.04. The chaotic carrier has β1 = β2 = β = 15,
τ1 = 100 and τ2 = 215.
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6.6 Experiments: Optoelectronic feedback systems

The experimental chaos optical communication system analyzed in this sec-
tion present chaos in wavelength. The experimental chaotic generator is ex-
plained in detail in chapter 3, section 3.4. The experimental receiver has
not be implemented in the present case, however the complete optical chaos-
based communication system (plotted in figure 6.2) has been demonstrated
experimentally [Bavard et al. 2007, Larger et al. 1998a]. In the transmitter
experimental setup, the message is injected into the feedback loop before the
low pass filter and the amplifier that controls the nonlinearity of the system
(see figure 6.12). This situation is equivalent to inject an effective message
βs(t) into the point I of the numerical simulations.

In this section we unmask messages encoded by the above experimental
chaotic communication system. The procedure to extract the messages is the
same as the one followed with the numerical simulations. We use a MNN
model trained from the experimental time series as an unauthorized receiver.
Here we only consider sinusoidal and square periodic messages injected before
the low-pass filter and the amplifier (see figure 6.12) [Bavard et al. 2007].

The maximum frequency of the message analyzed is 4 KHz. The ampli-
tudes of the message are similar to the ones used experimentally to achieve
a good SNR at the experimental receiver [Bavard et al. 2007, Larger et al.
1998a]. This signal amplitude is around 10% of the amplitude of the trans-
mitted signal without message. This leads to CNR much higher than the
values analyzed with the numerical simulations.

GainLow Pass

Filter

G

Delay Corrector

Photodiode

Photodiode

ND

Non Linearity

PolarizerPolarizer

controller
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Figure 6.12: Experimental transmitter setup.
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As previously mentioned (see chapter 4, section 4.5), chaotic time series
with two different cut-off frequency of the low pass filter have been measured.
The experimental time series, x(t) (named as λ(t) in chapter 4), is measured
in volts that are proportional to the value of the wavelength deviation.

6.6.1 Long response time

In this subsection, the low pass filter has a cut-off frequency of 200 Hz that
leads to a response time T = 800 µs. For this case, we have reconstructed
the nonlinear dynamics of the chaotic carrier by MNNs without message in
chapter 4, subsection 4.5.1. The sampling period of the transmitted signal is
10 µs. The chaotic carrier has a nonlinear function with 5 extrema and the
time delay of the system is 2.08 ms.

In this scenario, we have recovered square and sinusoidal periodic mes-
sages with a transmission rate of 50 and 100 Hz when the MNN is trained
from the transmitted signal with and without message. Comparable results
are obtained for sinusoidal and square messages. The amplitude of the mes-
sages is a 7% of the amplitude of xr(t) without message, that yields to a
MCR = -7.7 dB. xr(t) and ∆nn(t) are plotted in figure 6.13 when the origi-

nal message is a square function with a transmission rate of 100 Hz and the
MNN(6:3) is trained from xr(t) with message. Similar results are obtained
when the MNN is trained from xr(t) without message.

For the above considered message amplitudes, a small peak at the basic
frequency of the message is noticeable in the spectrum of the transmitted sig-
nal (see figure 6.13(b)), provided that the spectrum has been obtained with
enough precision. We have demonstrated with numerical simulations that
the quality of the recovered message is the same regardless the periodicity or
pseudo-random nature of the transmitted message (see section 6.4). Therefore
the experimental results obtained for the periodic messages can be extrapo-
lated to pseudo-random messages. Pseudo-random messages with the same
amplitude and frequency would not be noticeable in the spectrum of the ex-
perimental transmitted signal, assuring its concealment.

On the other hand, as previously mentioned (see subsection 6.3), there
are other methods to extract the encoded message when the message is not
affected by the nonlinear module of the transmitter. One of these methods
recovers the transmitted message by using the MNN as simple predictor of
the experimental time series. We use the same MNNs as in the previous case.
The message is recovered by the difference between the transmitted signal and
the result of the prediction with the MNN, i.e. xr(t)− xnn(t). The recovered
message smoothed by using a Savitzky-Golay (polynomial) filter is depicted in
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Figure 6.13: The transmitted signal (top) and the recovered message (bottom) in
time (a) and frequency (b). The original message, s(t), is a square periodic function
with a MCR of -7.7 dB and frequency 100 Hz injected into point I. The chaotic carrier
has a nonlinear function with 5 peaks, T = 800 µs and τ = 2.08 ms. xr(t) is in volts.
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Figure 6.14: Top (Bottom): Recovered message using the MNN as a predictor in
time (frequency). The message is smoothed by a Savitzky-Golay (polynomial) filter.
The black spectrum corresponds to the non-filtered recovered message. The original
message, s(t), is a square periodic function with a MCR = -7.7 dB and frequency 100
Hz injected into point I. The chaotic carrier has a nonlinear function with 5 peaks, T
= 800 µs and τ = 2.08 ms.

figure 6.14 when the MNN is trained with message. The shape of the message
is perfectly recovered whereas the amplitude of the extracted message is much
smaller than the original one due to the method of extraction.

6.6.2 Short response time

Long response times of the system (T = 800 µs) are not appropriated for
communications purposes as far as the maximum transmission rate of the
message is very low. A second group of measures with a low pass filter with
a cut off frequency of 20 KHz leading to a response time of 8 µs has been
acquired.

For this case, in chapter 4, section 4.5.2 we have reconstructed the nonlin-
ear dynamics of the system for three different values of the nonlinearity β that
leads to nonlinear functions with 2, 5 and 6 extrema. The value of the param-
eter β can be estimated by comparing the normalized standard deviation and
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the number of extrema of the nonlinear function of the numerical simulations
with the experiment. In this case, the maximum feedback strength reached
(6 peaks of the nonlinear function) corresponds to a value of the normalized
parameter β around 15. The time delay of the system is 0.476 ms yielding a
estimated attractor dimension of 357 (for an estimated β = 15). The nonlin-
ear dynamics has been reconstructed from time series sampled each 1 µs (8
bits of resolution) and each 0.1 µs (12 bits of resolution). We use the MNN
models to construct our unauthorized receiver to extract messages injected
into point I following the same approach as in the numerical simulations. We
have found that the extracted message has higher quality when the MNN is
trained from xr(t) sampled each 1 µs (8 bits resolution). Next, we show some
results obtained from data sampled each 1 µs (8 bits resolution).

We have extracted sinusoidal and square periodic messages with frequen-
cies of 500 Hz, 1, 2 and 4 KHz. The amplitude of the messages is equal for all
the cases and represents around a 10% of the amplitude of the xr(t) without
message, yielding to a MCR = -8 dB. For this message amplitude, a small
peak at the basic frequency of the message is noticeable in the spectrum of
the transmitted signal. However, a pseudo-random message with the same
amplitude and range of frequencies would be concealed in the spectrum.

We plot in figure 6.15 the transmitted signal and the recovered message in
time and frequency for a square message with 4 KHz. The chaotic carrier has
a nonlinear function with 5 peaks (moderate nonlinearity) and a time delay
of 0.476 ms. The MNN has been trained in chapter 4, section 4.5.2 from the
transmitted time series without message. The recovered message shows high
oscillations, so a Savitzky-Golay (polynomial) filter is applied to the obtained
message (red line in figure 6.15). Due to the filtering process, the amplitude of
the extracted message is lower than the original one and its shape resembles
more a sinusoidal than a square signal. The square-like appearance of the
extracted message is more noticeable for smaller transmission rates (see for
instance figure 6.16).

We can also train a MNN from the transmitted signal with message. Simi-
lar results are obtained when the MNN is trained from xr(t) with and without
the message (see figures 6.17 and 6.18). These results are in agreement with
the conclusions obtained from the numerical simulations (see section 6.4). In
the cases presented in figures 6.17 (nonlinear function 5 peaks) and 6.18 (non-
linear function 6 peaks), the power spectrum of the recovered message displays
a strong peak at 2 KHz with a SNR around 27 dB. In both cases the original
message is a square periodic signal with a MCR= -8 dB and frequency 2 KHz.

Taking into account the results presented in this section, we conclude that
chaos-based communication system based on optoelectronic feedback with one
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Figure 6.15: Top: time series (left) and spectrum (right) of the transmitted signal
when s(t) is a square periodic function with a MCR = -8 dB and frequency 4 KHz.
Bottom: The extracted message in time (left) and frequency (right). The red lines
corresponds to the extracted message smoothed with a Savitzky-Golay filter. The
chaotic carrier has a nonlinear function with 5 peaks, T = 8 µs and τ = 0.476 ms.
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Figure 6.16: The extracted message with the MNN in time (left) and frequency
(right) smoothed with a Savitzky-Golay filter. s(t) is a square periodic function with
a MCR = -8 dB and frequency 500 Hz (top) and 1 KHz (bottom). The chaotic carrier
has a nonlinear function with 2 peaks, T = 8 µs and τ = 0.476 ms.
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(b) Message recovered by using a MNN trained from xr(t) without in-
cluding the message
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(c) Message recovered by using a MNN trained from xr(t) including the
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Figure 6.17: The chaotic carrier has a nonlinear function with 5 peaks, T = 8 µs and
τ = 476 ms. The original message is a square periodic function with a MCR = -8 dB
and a transmission rate of 2 KHz. The recovered message has been smoothed with a
Savitzky-Golay filter.
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(b) Message recovered by using a MNN trained from xr(t) without in-
cluding the message

479 480 481 482

−0.02

0

0.02

∆ nn
(t

) 
(V

)

time (ms)
10

2
10

3
10

4
−80

−60

−40

−20

0

20

∆
nn (f) (dB

)

frequency (hz)

(c) Message recovered by using a MNN trained from xr(t) including the
message

Figure 6.18: The chaotic carrier has a nonlinear function with 6 peaks, T = 8 µs and
τ = 476 ms. The original message is a square periodic function with a MCR = -8 dB
and a transmission rate of 2 KHz. The recovered message has been smoothed with a
Savitzky-Golay filter.
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fixed delay are not safe in spite of the very high dimension of the chaotic
attractor. Although the experimental results are not so good as expected
from the numerical simulations under similar parameters values and level of
noise, we can extract the transmitted message. One possible cause to explain
the difference between experiments and simulations can be the presence in the
experiments of other sources of noise different of the additive gaussian noise
considered in the numerical simulations.

6.7 Conclusions

The main conclusion of this chapter is that optical chaos-based communica-
tion systems based on optoelectronic feedback with several fixed delays are
vulnerable.

In this chapter we have demonstrated with numerical simulations and ex-
periments that MNN models can be used as unauthorized receivers to recover
the transmitted original message. The MNNs are trained from the transmit-
ted signal to reconstruct the nonlinear dynamics of the chaotic carrier. The
quality of the extracted message depends on the quality of the obtained MNN.
We have found that it is possible to recover the original message even from the
transmitted signal with message and moderate noise. Moreover, in presence
of noise the difference between messages extracted using MNN trained from
transmitted signal with or without message is negligible. It seems that the
noise overcomes the errors due to the presence of the message.

In the numerical case, we have analyzed the message extraction when
the message is injected into two different points at the transmitter. Similar
results are obtained in both cases. We have proved with numerical simulations
that periodic and pseudo-random message can be recovered when the chaotic
carrier is subject to one or two delays. For the two delays case the parallel
and serial configuration have been analyzed yielding similar results.

Finally, experimental time series have been also studied. In all the analyzed
experimental cases it is possible to retrieve the message using our unauthorized
MNN receiver. However, the recovered message has worse quality than in the
case of the numerical simulations. One reason could be that the experiment
is affected by sources of noise different than the additional one considered in
the numerical case.

In conclusion, the privacy of the above chaotic communication system is
compromised. We have extracted the transmitted message with simple MNN
with relative small number of parameters.



Chapter 7

General conclusions and open
questions

T he work presented in this thesis shows that the nonlinear dynamics of
chaotic time-delay systems governed by scalar delay differential equations can
be reconstructed by neural networks models. We have used an irregular em-
bedding based on the time delay of the system. This procedure does not
require a-priori knowledge of the structure of the equations that rule the sys-
tem. It is only necessary to know the value of the time delay of the system.

Taking this into account we have first comprehensively studied the time
delay identification from time series in semiconductor lasers subject to optical
or optoelectronic feedback. These systems have been chosen because they are
excellent candidates for optical chaos-based communications. We have found
that the time delay of the system can be overestimated when using some
standard identification techniques due to the response time of the system. As
original contributions, we have developed customized techniques that permit
the extraction of multiple fixed time delays and periodic time delays. We have
applied these techniques to the numerical and experimental time series of an
optoelectronic feedback system. Regarding the all-optical feedback systems,
the time delay can be easily extracted except when low feedback rates are con-
sidered. This latter case is the only one in which the time delay identification
has not been possible.

Once the time delay of the system is known, we have reconstructed the
nonlinear dynamics of time-delay systems that have high dimensional attrac-
tors using the irregular embedding previously mentioned. A semiconductor
laser subject to optoelectronic feedback that presents chaos in wavelength is

205
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the prototype system used in our research to analyze the nonlinear dynamics
reconstruction from experimental and numerical time series. We have found
that the difficulty to model this system increases with the nonlinear strength
of the system but not with the time delay. This is in agrement with the fact
that the entropy of the system increases with the feedback strength while it
does not depend on the delay time.

The special structure of time-delay systems has allowed us to model them
using a new type of neural network: modular neural network. They give better
models with less parameters than the standard feedforward neural networks.
Using modular neural networks as unauthorized receivers, we have extracted
messages encoded by a chaotic communication system based on semiconductor
lasers subject to optoelectronic feedback. The higher is the quality of the
neural model, the higher is the quality of the extracted message.

The above mentioned techniques are applicable to other scalar time-delay
systems. In fact, we have successfully applied the same techniques to the
Mackey-Glass system. Using this system, we have proven, both with numeri-
cal and experimental results, that the forecast horizon of time-delay systems
obtained from anticipated synchronization can not be longer than the lin-
ear prediction time. This time is much smaller than the forecast horizon
reached when using standard prediction methods. Cascades of non-identical
replicas extracted from the time series can not significantly enlarge the fore-
cast horizon based on anticipated synchronization due to the model errors.
However, cascades of identical replicas of the original system reach longer pre-
diction times than the characteristic ones. The problem of this configuration is
the appearance of convective instabilities that reduce the obtained prediction
times. Moreover, in this thesis we have proven that convective instabilities
also appear in cascades of identical time-delays systems that are synchronized
without anticipation. We have characterized these convective instabilities as a
function of the parameters of the chaotic system. It remains to study convec-
tive instabilities in cascades of anticipated synchronized time-delay systems
and extend this analysis to different time-delay systems, like the Ikeda one.

The foremost conclusion of this thesis is that chaotic communication sys-
tems based on laser diodes subject to optoelectronic feedback that present
chaos in wavelength are not secure. Therefore, chaos-based communication
systems have to evolve in order to meet the increasing demands for privacy
of these systems. Not only the chaotic carrier dynamics must not be re-
constructed by conventional methods, but all the stages of the design of a
chaotic secure communication system must be considered and analyzed, such
as appropriately choosing the transmitter and receiver system and the encod-
ing/decoding schemes.
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There are many interesting directions in which future research can be
carried out to improve privacy of the chaotic communication systems based
on time-delay systems. Next, we will mention some possible lines of future
work.

It has been pointed out along the thesis that a successful nonlinear recon-
struction lies in the identification of the time delay of the system. Therefore,
a way to enhance the security of these systems could be the use of a chaot-
ically variable time delay. This can lead to an additional level of confidence
in the chaotic communication system. The chaotic time delay could be ruled
by the own chaotic dynamics of the system or by an external chaotic system.
In the latter case and additional channel of communication would be required
to transmit the signal of the external chaotic system to the receiver. It is still
an open question the identification of the chaotic time delay from the chaotic
time series that governs it. Following a similar approach to the one used to
identify the periodic time delay, we can try to map ranges of values of the
chaotic time series with a constant time delay value.

In a similar way as for the case of one and two fixed time delays (see chapter
4), it can be expected that the identification of the time delay function will
allow us to reconstruct the nonlinear dynamics. Once the time delay of the
system is known, the nonlinear dynamic reconstruction is possible provided
that the embedding vector contains the corresponding delayed values.

We have only lightly touched upon in this thesis the nonlinear dynamics
reconstruction of time-delay system subject to several fixed time delays when
they are multiples or take close values. It would be interesting in these cases
to analyze the possibility of reconstructing the dynamics using only one of the
time delays.

Another remarkable open question is the reconstruction of the nonlinear
dynamics of semiconductor lasers subject to all-optical feedback and optoelec-
tronic feedback that present chaos in intensity. These systems can reach high
transmission rates. Moreover, the time scales involved in their dynamics can
be very short. Nonlinear dynamics reconstruction proves challenging for these
systems because it is difficult to directly measure and incorporate all of the
relevant variables of the model. It is expected that high-end equipment will
be necessary to acquire time series with the sampling rate and the precision
required to reconstruct the nonlinear dynamics.





Appendix A

Resumen en castellano

H oy en d́ıa un creciente tráfico de datos necesita un alto nivel de confi-
dencialidad en su transmisión. La seguridad de la información en canales de
transmisión públicos es uno de los grandes desaf́ıos de las modernas redes de
telecomunicaciones. Actualmente, la seguridad de los datos en los sistemas de
comunicaciones convencionales esta basada en algoritmos matemáticos.

Uno de los motivos originales para el desarrollo de las comunicaciones
caóticas fue la posibilidad de aumentar la privacidad y confidencialidad de
la información transmitida. La privacidad aportada al sistema de comunica-
ciones gracias a las portadoras caóticas es a un nivel f́ısico (hardware). Por
lo tanto el uso de una portadora caótica que dinámicamente codifica la in-
formación no excluye la utilización de otras técnicas de software criptográfico
más tradicional. La codificación dinámica con una portadora caótica puede
ser considerada otra capa adicional de encriptado.

Aunque durante estos años se han diseñado un gran número de sistemas de
comunicaciones caóticas, no existe todav́ıa una forma sistemática para analizar
la seguridad de estos sistemas similar a la desarrollada para la criptograf́ıa
convencional. Es por lo tanto fundamental profundizar en la investigación
sobre la privacidad de los sistemas de comunicaciones caóticas para ayudar a
una futura aplicación práctica de estos sistemas.

Existen diversas formas de aplicar el caos en las comunicaciones. La pri-
vacidad aportada por el caos esta basada en la sensibilidad a las condiciones
iniciales y el complejo comportamiento irregular que pueden presentar los sis-
temas caóticos. En esta tesis nos hemos centrado en las comunicaciones con
portadora caótica basadas en sincronización. Estos sistemas fueron inicial-
mente propuestos por Pecora y Carroll a principios de los años noventa [Pecora
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and Carroll 1990]. La idea consiste básicamente en “esconder” o “mezclar”
el mensaje que se quiere transmitir con una portadora caótica. Una vez la
señal transmitida llega al receptor, este sincroniza solo con la parte caótica
de la señal transmitida. De esta manera se genera localmente la portadora
caótica en el receptor y combinándola adecuadamente con la señal transmitida
se puede recuperar el mensaje enviado.

El ancho espectro que caracteriza a las señales caóticas confiere a las comu-
nicaciones caóticas robustez contra interferencias y otras ventajas asociadas
hasta ahora con las comunicaciones de espectro ensanchado (sistema GPS,
etc).

Los primeros experimentos de sistemas de comunicaciones caóticas basadas
en sincronización fueron realizados con circuitos eléctronicos donde las veloci-
dades de transmisión están limitadas al rango de los KHz [Cuomo and Oppen-
heim 1993, Cuomo et al. 1993, Halle et al. 1993, Kocarev et al. 1992, Parlitz
et al. 1992, Volkovskii and Rul’kov 1993]. En los últimos años se han desa-
rrollado sistemas de comunicaciones caóticas ópticas que ofrecen la posibili-
dad de alcanzar velocidades de transmisión del orden de Gbits [Argyris et al.
2005, Uchida et al. 2005]. Dentro de los sistemas de comunicaciones caóticas
ópticas son especialmente interesantes los basados en laseres semiconductores
ya que estos dispositivos son los emisores utilizados en los modernos sistemas
de comunicaciones ópticas. Además, dentro de los laseres de semiconductor
nosotros nos centraremos en esta tesis en aquellos sujetos a retroalimentación
óptica o electro-óptica, ya que estos sistemas pueden presentar atractores con
alta dimensión.

Hasta la fecha, se han desarrollado múltiples métodos para extraer el
mensaje a partir de la señal transmitida por los sistemas de comunicaciones
caóticas. Pronto se demostró que los sistemas de comunicaciones caóticas con
baja dimensionalidad pod́ıan ser a menudo decodificados usando técnicas no
lineales estándar basadas en los teoremas de embedding que permit́ıan la re-
construcción de la dinámica no lineal del atractor caótico [Short and Parker
1998]. Sin embargo la aplicación de estas técnicas a sistemas caóticos con alta
dimensión, especialmente aquellos que implican dinámicas hiper-caóticas, es
computacionalmente dif́ıcil.

Los sistemas no lineales con retraso o retroalimentación pueden tener
atractores caóticos cuya dimensión se incrementa con el tiempo de retraso
alcanzando valores muy altos (Farmer, 1982). Estos sistemas están muy ex-
tendidos en la naturaleza. Entre otros ejemplos podemos destacar la ecuación
de Ikeda [Ikeda 1979], que modela un resonador óptico pasivo, las ecuaciones
de Lang-Kobayashi [Lang and Kobayashi 1980], que describen a los laseres de
semiconductor con retroalimentación óptica o la ecuación del Mackey-Glass
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[Mackey and Glass 1977] que modela la producción de células rojas en la san-
gre. Desde un punto de vista matemático, los sistemas no lineales con retraso
son normalmente representados por ecuaciones diferenciales con retraso.

Es posible recuperar la ecuación que describe un sistema escalar con retraso
y alta dimensionalidad explotando la particular estructura de estos sistemas
sin tener en cuenta los teoremas de embedding, pero para ello es necesario
conocer a priori la estructura de la ecuación que gobierna el sistema [Bezruchko
et al. 2001, Bünner et al. 1997; 1996a;b, Ellner et al. 1997, Ponomarenko and
Prokhorov 2002, Prokhorov et al. 2005, Robilliard et al. 2006, Udaltsov et al.
2003, Voss and Kurths 1997; 1999, Zhou and Lai 1999].

Sin embargo en muchos casos no se conoce la estructura de la ecuación que
gobierna el sistema. Bünner y colaboradores [Bünner et al. 2000a;b, Hegger
et al. 1998] han desarrollado un embedding especial que incluye componentes
retrasadas y no retrasadas de la variable. Con este embedding especial, se
puede recuperar la dinámica no lineal de sistemas escalares con retraso en un
espacio con una dimensión más pequeña que la dimensión del atractor. En
este caso no es necesario conocer la estructura de la ecuación que gobierna el
sistema, siendo por lo tanto un enfoque mucho más flexible que no necesita
tanta información a priori sobre el sistema analizado, únicamente el valor del
retraso del sistema.

El objetivo principal de esta tesis es la reconstrucción de la dinámica no
lineal de sistemas caóticos con retraso, basándonos en el método del embed-
ding especial desarrollado por Bünner y colaboradores pero utilizando modelos
globales no lineales que presentan un tiempo de computación mucho menor
que los modelos locales lineales usados por ellos. Dentro de la variedad de
modelos globales no lineales nosostros hemos escogido las redes neuronales ar-
tificiales (particularmente una de las más famosas, el perceptrón multicapa),
que pueden teóricamente aproximar cualquier función con cualquier nivel de
precisión [Cybenko 1989].

Nos vamos a centrar principalmente en la reconstrucción de la dinámica
no lineal de los laseres de semiconductor con retroalimentación electro-óptica
(o opto-electrónica) que presentan caos en longitud de onda. Este tipo de
sistemas no alcanza grandes velocidades de transmisión, pero permiten estu-
diar la identificación del tiempo del retraso y la reconstrucción de la dinámica
no lineal para atractores con altas dimensiones y entroṕıa. Estos sistemas se
pueden usar como test para determinar el efecto de estos factores en la re-
construcción de la dinámica no lineal y la identificación del tiempo de retraso.
Además de simulaciones también presentaremos resultados experimentales.
Los experimentos han sido llevados a cabo por el grupo del Prof. Laurent
Larger (Universit de Franche-Comt, Besanon, France).
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Aunque nos centramos principalmente en los sistemas con retroalimentación
electro-óptica, las técnicas desarrolladas en esta tesis se pueden aplicar a
cualquier sistema escalar no lineal con retraso que pueda ser representado como
una ecuación diferencial retrasada. En concreto, nosotros también estudiamos
el sistema Mackey-Glass con datos numéricos y experimentales, estos últimos
obtenidos en el laboratorio del IFCA (Instituto de F́ısica de Cantabria).

La tesis esta organizada de la siguiente manera:
Introducción (caṕıtulo 2): Este caṕıtulo describe el marco donde se

lleva a cabo la investigación de esta tesis y presenta una serie de concep-
tos a los que nos vamos a referir en los caṕıtulos posteriores. Parte de
una descripción general de los sistemas caóticos y del fenómeno de la sin-
cronización. A continuación describe los sistemas de comunicaciones caóticas,
prestando especial atención a los basados en laseres de semiconductor con
retroalimentación óptica o electro-óptica. Como hemos mencionado previa-
mente estos sistemas pueden alcanzar altas velocidades de transmisión y pre-
sentar atractores caóticos con alta dimensión. Finalmente, se detallan los
avances obtenidos en el estudio de la privacidad de los sistemas de comuni-
caciones caóticas. También se definen conceptos básicos relativos a las redes
neuronales artificiales que son los modelos globales no lineales que vamos a
usar en esta tesis para reconstruir la dinámica no lineal de sistemas con retraso.

Identificación del tiempo de retraso (caṕıtulo 3): La identificación
del tiempo de retraso es crucial para la reconstrucción de la dinámica no
lineal de sistemas con retraso. Es a priori la única información necesaria para
reproducir la dinámica no lineal de estos sistemas con el embeding especial.
En este caṕıtulo se analiza la identificación del tiempo de retraso en laseres de
semiconductor sujetos a retroalimentación óptica y opto-electrónica a partir
de la serie temporal con diferentes técnicas. Hemos mostrado como algunas de
estas técnicas sobrestiman el tiempo de retraso debido al tiempo de respuesta
del sistema. Por lo tanto en los casos donde el tiempo de respuesta tiene
un valor significativo con respecto al del retraso se debe evitar usar dichos
métodos para su identificación.

En el caso de la retroalimentación óptica, hemos encontrado que cuando
la intensidad de la retroalimentación es alta, podemos identificar perfecta-
mente uno y dos retrasos a partir de series numéricas y experimentales usando
técnicas de identificación estándar. Sin embargo cuando la intensidad de la
retroalimentación es baja y se escoge adecuadamente el resto de los parámetros
operacionales del sistema, no es posible identificar el tiempo de retraso del
láser de semiconductor con las técnicas estándar. Esta situación se da para
un rango de parametros pequeño y regimes caóticos que en principio no son
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los más adecuados para los sistemas de comunicaciones caóticas ya que la
dimensión y entroṕıa del caos no son muy altas.

Respecto al caso de laseres de semiconductor con retroalimentación opto-
electrónica, el tiempo de retraso también puede ser extráıdo de series tem-
porales numéricas y experimentales usando técnicas estándar, siempre que el
sistema tenga un solo retraso o dos retrasos con configuración en paralelo.
Cuando el sistema tiene dos retrasos y la configuración es en serie, hemos
demostrado que los métodos estándar no permiten la identificación de ambos
retrasos. En este caso hemos desarrollado técnicas basadas en los métodos
estándar que permiten la correcta identificación de ambos retrasos. Dichas
técnicas rastrean un espacio con la misma dimensión que el número de retra-
sos del sistema, lo que implica un mayor tiempo de computación.

Finalmente, en este caṕıtulo investigamos la identificación del tiempo de
retraso en un láser de semiconductor con retroalimentación opto-electrónica y
tiempo de retraso variable de forma periódica. Los tiempos de retraso variables
son una de las propuestas más interesantes para evitar la identificación del
tiempo de retraso. En el caso que estudiamos, donde el retraso es periódico,
hemos desarrollado una técnica basada en la información mutua y el factor
de llenado que nos permite extraer el tiempo de retraso periódico a partir de
series experimentales.

Reconstrucción de la dinámica caótica de sistemas no lineales con
retraso (caṕıtulo 4): En este caṕıtulo hemos reconstruido la dinámica no li-
neal de laseres semiconductores sujetos a retroalimentación electro-óptica y el
sistema Mackey-Glass a partir de series numéricas y experimentales usando re-
des neuronales. Las redes neuronales son entrenadas con datos procedentes de
series temporales numéricas y experimentales que están retrasados el tiempo
de embedding y el tiempo de retraso del sistema. Por lo tanto para recons-
truir la dinámica no lineal de los sistemas con retraso usando redes neuronales
solamente necesitamos conocer el tiempo de retraso del sistema que ha sido
extráıdo de la serie temporal en el caṕıtulo anterior mediante diversas técnicas.

Hemos logrado buenos resultados con las redes neuronales, pero dada la
naturaleza del problema hemos estudiado también los resultados obtenidos
usando redes neuronales modulares (MNN). Las MNN están basadas en el
concepto de modularidad, que permite la división de un problema complejo
en tareas más sencillas. Una de las principales ventajas de las MNN frente a las
redes neuronales convencionales es que reducen el tamaño de la red (aportando
más flexibilidad que las redes estándar) y por lo tanto reduciendo los tiempos
de computación que dependen del número de neuronas y sus conexiones, aśı
como mejorando los problemas de entrenamiento y convergencia. En nues-
tro caso la MNN es construida de acuerdo con la estructura de los sistemas
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con retraso y tiene dos módulos: uno para la parte no retrasada con datos
retrasados por el tiempo de embedding y otro módulo con datos de entrada
retrasados por el tiempo de retraso. Hemos demostrado que este nuevo tipo de
red neuronal modular genera mejores modelos con menos parámetros que las
redes neuronales perceptrón multicapa. Los modelos obtenidos son validados
gracias a la sincronización caótica idéntica. El número de parámetros de la
red neuronal necesarios para obtener buenos modelos se incrementa con la in-
tensidad de la retroalimentación del sistema pero no con el tiempo de retraso,
a pesar de que al aumentar el tiempo de retraso aumenta la dimensión del
atractor caótico. Estos resultados están en consonancia con el hecho de que la
entroṕıa del sistema se incrementa con la intensidad de la retroalimentación
pero no con el tiempo de retraso.

También hemos reconstruido la dinámica no lineal de un sistema opto-
electrónico con dos retrasos a partir de las series temporales numéricas. En
este caso hemos estudiado dos configuraciones diferentes del retraso, serie y
paralelo. Hemos encontrado que la configuración en paralelo requiere redes
modulares adaptadas (cada función no lineal tiene un módulo diferente asoci-
ado) para obtener errores similares a la configuración en serie.

La principal conclusión que se puede extraer de este caṕıtulo es que las
portadoras caóticas basadas en sistemas con retraso escalares son vulnerables.
Una vez que la dinámica no lineal del sistema ha sido reconstruida, esta se
puede usar para predecir (caṕıtulo 4 ) o para extraer los mensajes transmiti-
dos cuando estos son encriptados con este tipo de portadoras caóticas como
veremos en el caṕıtulo 6.

Predicción de sistemas no lineales con retraso (caṕıtulo 5): En
este caṕıtulo hemos estudiado la predictabilidad de los sistemas caóticos con
retraso usando métodos de predicción estándar con redes neuronales y la sin-
cronización anticipada. En los casos prácticos la situación más habitual es que
el sistema original sea desconocido y modelos aproximados obtenidos a partir
de los datos disponibles son usados para la predicción de la dinámica no li-
neal. En estos casos el horizonte de predicción depende no solo de la dinámica
del sistema original sino también del error del modelo. Colocándonos en esta
situación y una vez modelado el sistema con redes neuronales modulares a par-
tir de datos de simulaciones numéricas y experimentales, hemos encontrado
que en el caso de la predicción estándar el horizonte de predicción es del orden
del inverso del mayor exponente de Lyapunov, es decir depende del valor del
retraso del sistema. En cambio, en el caso de la predicción con sincronización
anticipada hemos demostrado también para datos numéricos y experimentales
que los tiempos de predicción máximos son independientes del tiempo de re-
traso pero el horizonte de predicción con un solo esclavo esta limitado por
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el tiempo lineal del sistema. Estos tiempos de predicción no se incremen-
tan significativamente usando una cadena de modelos esclavos sincronizados
anticipadamente.

Si en lugar de modelos usamos cadenas de replicas idénticas sincronizadas
anticipadamente, los tiempos de predicción del sistema son mayores que los
caracteŕısticos. Sin embargo en este caso la anticipación conlleva la aparición
de inestabilidades convectivas. En el caso de sistemas con retraso nosotros
hemos probado que debido al tiempo de retraso estas inestabilidades con-
vectivas aparecen también en cadenas de esclavos identicos sincronizados sin
anticipación. En este caṕıtulo hemos caracterizado estas inestabilidades con-
vectivas mediante el exponente de lyapunov convectivo, encontrando que para
grandes valores del tiempo de retraso la amplificación de la perturbación en
cada oscilador es independiente del tiempo de retraso. Esta amplificacin de-
crece de forma inversamente proporcional con el parámetro de acoplo.

Descodificación de mensajes en sistemas de comunicaciones caóti-
cos con retraso(caṕıtulo 6): Los sistemas de comunicaciones caóticas basa-
dos en laseres de semiconductor con retroalimentación electro-óptica con uno
o varios retrasos son vulnerables. Los modelos de redes modulares neuronales
obtenidos a partir de simulaciones numéricas y experimentales son usados
como receptores no autorizados para recuperar el mensaje transmitido por
el sistema de comunicaciones caótico. Las redes modulares neuronales son
entrenadas a partir de la señal transmitida por el emisor para reconstruir la
dinámica no lineal de la portadora caótica. La calidad del mensaje recuper-
ado depende de la precisión con la que los modelos neuronales reproducen la
dinámica caótica de la portadora. Nosotros hemos demostrado que es posible
reconstruir la dinámica no lineal de la portadora caótica a partir de señales
transmitidas con mensaje incluido y niveles de ruido moderados.

Conclusiones generales y trabajo futuro (caṕıtulo 7): Cerramos esta
tesis con una revisión de las conclusiones más relevantes obtenidas aśı como
una discusión la investigación presentada que incluye las futuras ĺıneas de
trabajo.
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List of abbreviations

AF Autocorrelation Function
CC coherence collapse
CMA Chaos MAsking
CMO Chaos MOdulation
CNR Chaotic carrier to Noise Ratio
CSK Chaos Shift Keying
DDE Delay Differential Equation
DMI Delayed Mutual Information
ECSL semiconductor-based External Cavity Surface Lasers
FF Filling Factor
FFNN Feed-Forward Neural Network
GLM Global Linear Model
GNLM Global Non Linear Model
HL Hidden Layers
KS Kolmogorov-Sinai
LFF Low Frequency Fluctuations
MCR Message to Chaos Ratio
MG Mackey-Glass
MNN Modular Neural Network
NN Neural Network
NRZ Non Return to Zero
QKD Quantum Key Distribution
RMSE Root Mean Squared Error
SNR Signal to Noise Ratio
TDE Time Distribution of Extrema
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Mirasso, Raúl Toral, Luis Pesquera and Silvia Ort́ın.
Approach to predictability via anticipated synchronization. Physi-
cal Review E, Volume 72, Issue 4, Article Number: 046218 (2005).
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