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Abstract

Lexical semantic class information for nouns is critical for a broad variety of Natu-
ral Language Processing (NLP) tasks including, but not limited to, machine trans-
lation, discrimination of referents in tasks such as event detection and tracking,
question answering, named entity recognition and classification, automatic con-
struction and extension of ontologies, textual inference, etc.

One approach to solve the costly and time-consuming manual construction and
maintenance of large-coverage lexica to feed NLP systems is the Automatic Ac-
quisition of Lexical Information, which involves the induction of a semantic class
related to a particular word from distributional data gathered within a corpus. This
is precisely why current research on methods for the automatic production of high-
quality information-rich class-annotated lexica, such as the work presented here,
is expected to have a high impact on the performance of most NLP applications.

In this thesis, we address the automatic acquisition of lexical information as a
classification problem. For this reason, we adopt machine learning methods to
generate a model representing vectorial distributional data which, grounded on
known examples, allows for the predictions of other unknown words.

The main research questions we investigate in this thesis are: (i) whether corpus
data provides sufficient distributional information to build efficient word represen-
tations that result in accurate and robust classification decisions and (ii) whether
automatic acquisition can handle also polysemous nouns.

To tackle these problems, we conducted a number of empirical validations on En-
glish nouns. Our results confirmed that the distributional information obtained
from corpus data is indeed sufficient to automatically acquire lexical semantic
classes, demonstrated by an average overall F1-Score of almost 0.80 using di-
verse count-context models and on different sized corpus data.

Nonetheless, both the State of the Art and the experiments we conducted high-
lighted a number of challenges of this type of model such as reducing vector
sparsity and accounting for nominal polysemy in distributional word representa-
tions. In this context, Word Embeddings (WE) models maintain the “semantics”
underlying the occurrences of a noun in corpus data by mapping it to a feature
vector. With this choice, we were able to overcome the sparse data problem,
demonstrated by an average overall F1-Score of 0.91 for single-sense lexical se-
mantic noun classes, through a combination of reduced dimensionality and “real”
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numbers.

In addition, the WE representations obtained a higher performance in handling
the asymmetrical occurrences of each sense of regular polysemous complex-type
nouns in corpus data. As a result, we were able to directly classify such nouns
into their own lexical-semantic class with an average overall F1-Score of 0.85.

The main contribution of this dissertation consists of an empirical validation of
different distributional representations used for nominal lexical semantic classifi-
cation along with a subsequent expansion of previous work, which results in novel
lexical resources and data sets that have been made freely available for download
and use.
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Resumen

La información de clase semántica de los nombres es fundamental para una am-
plia variedad de tareas del procesamiento del lenguaje natural (PLN), como la tra-
ducción automática, la discriminación de referentes en tareas como la detección
y el seguimiento de eventos, la búsqueda de respuestas, el reconocimiento y la
clasificación de nombres de entidades, la construcción y ampliación automática
de ontologı́as, la inferencia textual, etc.

Una aproximación para resolver la construcción y el mantenimiento de los léxicos
de gran cobertura que alimentan los sistemas de PNL, una tarea muy costosa y
lenta, es la adquisición automática de información léxica, que consiste en la in-
ducción de una clase semántica relacionada con una palabra en concreto a partir
de datos de su distribución obtenidos de un corpus. Precisamente, por esta razón,
se espera que la investigación actual sobre los métodos para la producción au-
tomática de léxicos de alta calidad, con gran cantidad de información y con ano-
tación de clase como el trabajo que aquı́ presentamos, tenga un gran impacto en
el rendimiento de la mayorı́a de las aplicaciones de PNL.

En esta tesis, tratamos la adquisición automática de información léxica como un
problema de clasificación. Con este propósito, adoptamos métodos de aprendizaje
automático para generar un modelo que represente los datos de distribución vec-
torial que, basados en ejemplos conocidos, permitan hacer predicciones de otras
palabras desconocidas.

Las principales preguntas de investigación que planteamos en esta tesis son: (i) si
los datos de corpus proporcionan suficiente información para construir representa-
ciones de palabras de forma eficiente y que resulten en decisiones de clasificación
precisas y sólidas, y (ii) si la adquisición automática puede gestionar, también, los
nombres polisémicos.

Para hacer frente a estos problemas, realizamos una serie de validaciones empı́ricas
sobre nombres en inglés. Nuestros resultados confirman que la información obtenida
a partir de la distribución de los datos de corpus es suficiente para adquirir au-
tomáticamente clases semánticas, como lo demuestra un valor-F global promedio
de 0.80 aproximadamente utilizando varios modelos de recuento de contextos y
en datos de corpus de distintos tamaños.

No obstante, tanto el estado de la cuestión como los experimentos que realizamos
destacaron una serie de retos para este tipo de modelos, que son reducir la escasez
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de datos del vector y dar cuenta de la polisemia nominal en las representaciones
distribucionales de las palabras. En este contexto, los modelos de Word embed-
dings (WE) mantienen la “semántica” subyacente en las ocurrencias de un nombre
en los datos de corpus asignándole un vector. Con esta elección, hemos sido ca-
paces de superar el problema de la escasez de datos, como lo demuestra un valor-F
general promedio de 0.91 para las clases semánticas de nombres de sentido único,
a través de una combinación de la reducción de la dimensionalidad y de números
reales.

Además, las representaciones de WE obtuvieron un rendimiento superior en la
gestión de las ocurrencias asimétricas de cada sentido de los nombres de tipo
complejo polisémicos regulares en datos de corpus. Como resultado, hemos po-
dido clasificar directamente esos nombres en su propia clase semántica con un
valor-F global promedio de 0.85.

La principal aportación de esta tesis consiste en una validación empı́rica de difer-
entes representaciones de distribución utilizadas para la clasificación semántica
de nombres junto con una posterior expansión del trabajo anterior, lo que se tra-
duce en recursos léxicos y conjuntos de datos innovadores que están disponibles
de forma gratuita para su descarga y uso.
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Resum

La informació de classe semàntica dels noms és fonamental per a un gran nombre
de tasques de processament del llenguatge natural (PLN), com la traducció au-
tomàtica, la discriminació dels referents en tasques com la detecció i el seguiment
d’esdeveniments, la cerca de respostes, el reconeixement i la classificació de noms
d’entitats, la construcció i l’ampliació automàtica d’ontologies, la inferència tex-
tual, etc.

Una aproximació per resoldre la construcció i el manteniment manual de lèxics
de gran cobertura que alimenten els sistemes PLN, una tasca molt costosa i lenta,
és l’adquisició automàtica d’informació lèxica, que implica la inducció d’una
classe semàntica relacionada amb una paraula determinada a partir de dades de
distribució obtingudes d’un corpus. És precisament per això que s’espera que la
investigació actual sobre mètodes per a la producció automàtica de lèxics d’alta
qualitat, amb molta informació i amb anotació de classe, com el treball que presen-
tem aquı́, tingui un gran impacte en el rendiment de la majoria de les aplicacions
de PLN.

En aquesta tesi, tractem l’adquisició automàtica d’informació lèxica com un prob-
lema de classificació. Per aquesta raó, adoptem mètodes d’aprenentatge automàtic
per generar un model que representi les dades de distribució vectorial que, basades
en exemples coneguts, permetin predir més paraules desconegudes.

Les principals preguntes de recerca que plantegem en aquesta tesi són: (i) si les
dades de corpus proporcionen suficient informació sobre la distribució per con-
struir representacions de paraules de forma eficient i que tinguin com a resultat
decisions de classificació precises i sòlides, i (ii) si l’adquisició automàtica pot
gestionar, també, els noms polisèmics.

Per fer front a aquests problemes, hem dut a terme una sèrie de validacions empı́riques
en noms en anglès. Els nostres resultats confirmen que la informació de distribució
obtinguda a partir de dades de corpus és suficient per adquirir automàticament
classes semàntiques, demostrat per un valor-F global d’aproximadament 0.80
utilitzant diversos models de recompte de context i en dades de corpus de mides
diferents.

No obstant això, tant l’estat de la qüestió com els experiments que vam realitzar
destacaven una sèrie de reptes d’aquest tipus de models, com reduir l’escassetat
de vectors i donar compte de la polisèmia nominal en les representacions de pa-
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raules distribucionals. En aquest context, els models de Word embeddings (WE)
mantenen la “semàntica” subjacent a les ocurrències d’un nom en les dades de
corpus assignant-lo a un vector de caracterı́stiques. Amb aquesta elecció, hem
pogut superar el problema de l’escassetat de dades, com ho demostra un valor-F
general de mitjana de 0.91 per a les classes semàntiques de noms de sentit únic, a
través d’una combinació de la reducció de la dimensionalitat i de nombres reals.

A més, les representacions de WE van obtenir un rendiment superior en la gestió
de les ocurrències asimètriques de cada sentit dels noms de tipus complex po-
lisèmics regulars en dades de corpus. Com a resultat, hem pogut classificar direc-
tament aquests noms en la seva pròpia classe semàntica amb un valor-F global de
mitjana de 0.85.

La principal aportació d’aquesta tesi consisteix en una validació empı́rica de difer-
ents representacions de distribució utilitzades per a la classificació semàntica de
noms juntament amb una expansió del treball anterior, el que es tradueix en nous
recursos lèxics i conjunts de dades que es posan a lliure disposició perquè es
puguin descarregar i utilitzar.
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Chapter 1

INTRODUCTION

The automatic acquisition of lexical information involves the induction of a
semantic class related to a particular word from distributional data gathered
within a corpus. We approach this task by classifying words into previously
known nominal lexical-semantic classes. Currently, the information obtained by
automatic acquisition is critical for a variety of Natural Language Processing
(NLP) tasks, including, but certainly not limited to, machine translation, the
discrimination of referents in tasks such as event detection and tracking [Fillmore
et al., 2006], question answering [Lee et al., 2001], entity typing in named
entity recognition [Ciaramita and Altun, 2005, Fu, 2009], automatic building and
extending of ontologies [Buitelaar et al., 2005], textual inference [de Marneffe
et al., 2009] and much more. Furthermore, these automatically acquired lexical-
semantic classes have been proven to be useful for grammar induction [Agirre
et al., 2011], where problems come from the need to generalize over a high-
dimensional space.

The significant cost of manually conducting this task hinders, for instance, the
production of rich lexica, as well as its creation for different languages. In
addition, the domain tuning of lexica is expensive, and the use of an inadequate
lexicon is one of the causes of poor performance for many applications. Along
this line, good lexical coverage is absolutely crucial to achieve proper perfor-
mance of any processing component for NLP applications that rely on lexical
information. Automatic lexical semantic class acquisition offers a solution for
the construction—and, importantly, the maintenance—of large-coverage lexica
for feeding these processing components. Thus, current research on methods
for the automatic production of high-quality, information-rich, class-annotated
lexica, such as what will be presented in the subsequent chapters of this thesis,
is expected to have a high impact on the performance of most NLP applications.
Moreover, and critically, it will foster significant improvements in their coverage
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over different domains, as well as languages.

Distributional methods, based on the Distributional Hypothesis [Harris, 1954],
build word representations from corpus data that represent a word directly
through the contexts in which it has been observed. This hypothesis conveys
the oft-referred to statement “similar words tend to occur in similar contexts”.
Distributional representations of words consist of a vector of n-components,
where each component encodes the frequency of the word occurring with or in
a particular context. These vectors model the contexts in which a given word
has been observed. However, the definition of what consists of a context is
highly dependent on the model considered. For instance, features can consist
of co-occurring tokens, phrases, a combination of individual lexical items or
the order in which those lexical items appear to name a few. All of the feature
information is then represented in feature vectors that are used to classify words
into a number of desired classes. Supervised learning methods are then used
so that automatic lexical acquisition can be approached by assigning a word to
certain classes according to information gathered from its occurrences in texts as
represented in the vector.

Yet, there is no consensus on the features that are relevant for the task of classi-
fying nouns; and different features can yield both advantages and disadvantages
when constructing a word representation that is both informative and useful
to a machine-learning algorithm. For this reason, we must understand what is
the required information to be provided for the classifier to learn and to make
predictions that successfully construct viable and informative distributional
word representations. Herein lies our main object of study in this thesis: the
construction of distributional word representations that are both useful and
informative to machine learning methods.

The accomplishment of building both viable and informative distributional word
representations for machine learning algorithms requires an in-depth study of
two main obstacles that have been encountered in the construction of these word
representations: mainly, the lack of useful information in feature vectors, i.e.,
sparsity, and the consideration of the multiple classes to which a word can belong,
i.e., polysemy. Along this line, the main goals pillaring this thesis are two-fold:

• to identify and to empirically justify the main challenges confronted in the
task of the automatic acquisition of nominal lexical-semantic information;

• to build a lexical-semantic classifier using information obtained from dis-
tributional word representations that account for these challenges through
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selecting the most informative and distinctive features to build it.

Specifically, we account for the challenges that arise from both the potential spar-
sity of nouns in corpus data, which negatively affects word representations, and
the polysemy of nouns, which can cause a bias for machine learning algorithms
through an asymmetry of occurrences as a member of a particular class in corpus
data.

The main issue confronted is found in the representation of distributional
information of words in corpus data; specifically, in what information is required
to achieve the most informative distributional representation that we can build
from corpus data. There have been many approaches to the building of distri-
butional semantic representations based on, for instance, the bag-of-words-type
model [Bullinaria and Levy, 2007, Bullinaria and Levy, 2012], which uses
windows of words for features; linguistically-motivated models [Merlo and
Stevenson, 2001, Joanis et al., 2008], which can use subcategorization frames or
the exact position occupied by a target word in a given context for features or
general purpose distributional semantic models [Baroni and Lenci, 2010, Turney
and Pantel, 2010], which use both grammatical and lexical information in a
space that encodes networks of semantic information from corpus data that can
be adapted to all sorts of tasks. However, depending on the model selected, a
sacrifice in either precision or recall must be not only accepted, but assumed.

From these considerations, along with the main goals outlined for this thesis, the
general research question arose: what is the most relevant and useful distributional
information to include in word representations; and will these representations
result in cleaner vectors with more relevant class-indicative information, which in
turn permit the construction of more accurate and broad-covering nominal lexical
semantic classifiers?

To answer these questions, we first needed to identify strategies to correctly
handle language data that has specific characteristics (such as ambiguity or
low frequency of use), which are not always easily interpreted with machine
learning algorithms. Furthermore, we placed ourselves within the framework of
a semantic theory, as it allows for the acquisition of refined semantic features
that do not always emerge from a purely corpus-based collocation analysis. We
chose the Generative Lexicon theory (GL) [Pustejovsky, 1995] because it offers
an alternative to the traditional, sense-enumeration-based understanding of word
senses by postulating the concept of so-called complex-type nouns, i.e., nouns
that are regular polysemous, meaning that they can be selected for two different
classes in one single context and, therefore, present a large challenge for any
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distributional representation. Placing ourselves in a theoretical framework such
as GL allows us to adequately frame the evaluation of automatically acquiring
lexical semantic information of these types of polysemous nouns.

We narrowed the focus of this thesis to English nouns, which, besides being
less studied in comparison to other parts of speech, such as verbs, are known
to be deeply affected by the polysemy problem, which has not typically been
dealt with distributionally in the State of the Art and as we will see in Chapter
5. Moreover, we specifically study the grammatical category of nouns because
they can behave as arguments, which can be semantically selected for in context.
This allows us to use the specific contexts that surround a noun to predict the
other nouns that can be selected in that same context. In this way, we are able
to automatically acquire the lexical semantic class information for an unknown
target noun. We have chosen to conduct our study on a number of lexical semantic
classes that are also available in WordNet [Miller et al., 1990], more specifically,
COMMUNICATION OBJECT, EVENT, HUMAN, ORGANIZATION and LOCATION.
For our study on the automatic acquisition of nominal regular polysemous
information (Chapter 5), we also use a data set built by [Boleda et al., 2012a] that
was based on the regular polysemous alternations defined in the CoreLex data
base [Buitelaar, 1998].

The first obstacle that we tackled in the work presented in this thesis is sparse
data (Chapter 4). As previously described, distributional representations model
the contexts in which a given word has been observed, yet, those contexts
are highly dependent on the distributional model used. Thus, this sparse data
issue is not unique to any distributional model in particular, as each model has
its own challenges when it comes to populating vectors with “real” numbers.
Sparse vectors are especially problematic to the classifiers because the actual
information that is available in the word representation can be undermined by
non-, or zero, values due to the fact that machine learning algorithms cannot
efficiently differentiate between them. Furthermore, evidence occurring with
low-frequency can be disregarded by automatic systems, as demonstrated in the
classification experiments of [Bel et al., 2007, Bel, 2010], which results in the
word representations providing insufficient class indicative information to a clas-
sifier. Thus, we empirically compared distributional models that exploit different
types of feature information, which thereby resulted in different representations
of nominal behavior in context. The resulting analysis provided insight regarding
the effects (both advantages and disadvantages) when considering different
types of feature information to build distributional representations for nominal
lexical-semantic classification tasks.
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In addition to studying the viability for automatic lexical-semantic acquisition
between different distributional (count-context) models built from features
containing information from different levels of generalization, we also studied
the use of Word Embeddings (WE). These representations, rather than counting
individual occurrences, map the occurrences of a noun in corpus data into a
feature vector, maintaining its underlying “semantics”. Our empirical analysis
presented evidence that, on the one hand, confirms the ability of certain types
of distributional information to provide accurate representations to a machine-
learning algorithm, resulting in accurate and robust class membership decisions.
On the other hand, it permits the further understanding of the relations between
the features used to build distributional word representations, the origins of
the obstacles they encounter and, more importantly, how these obstacles can
be overcome. Consequently, we validated that the distributional models (both
count-context and WE) provide empirical evidence to confirm whether the
indicative distributional information available in corpus data is sufficient to be
identified, captured and learned by machine learning algorithms, resulting in
stronger lexical-semantic class membership predictions.

In Chapter 5, we focused on the challenges that regular polysemy for dis-
tributional word representations. Unlike single-sense “simple-type” nouns,
complex-type nouns, or nouns that can occur as a member of more than one class
in a single context, can also occur in contexts indicative of each of the individual
semantic classes that form a regular polysemous alternation. However, these oc-
currences are not always equal, resulting in characteristic patterns of occurrence
in corpus data that differ from simple-type monosemous nouns that cannot and do
not instantiate a regular polysemous alternation. Thus, the problem lies mainly in
the fact that all of the potential senses of a word that are learned from the contexts
become conflated into one representation, which does not necessarily—and, in
fact, rarely—equally represent each sense of that word. Three main experiments
were conducted to assess and overcome these aforementioned obstacles. The first
experiment consisted of a clustering system using representations automatically
built from the FORMAL role of the Qualia Structure (QS), a postulation of GL,
identified whether there is sufficient distributional evidence to automatically
acquire information from more than one related sense of a noun.

The second and third experiments consisted of the design and implementation
of a dedicated two-step approach that incorporates the special characteristics
of complex-type regular polysemous nouns in an attempt to simultaneously
gain more coverage while also increasing precision, which is usually low
due to the unique contextual properties of these nouns. We conducted this
experiment using both the aforementioned LING model and the more exhaustive
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and recently exploited WE models in an attempt to evaluate the impact of sense
asymmetry on the two models. This experiment accounted for the differences
between monosemous and polysemous classes, and highlighted the importance
of considering the unique characteristics of these types of classes when building
distributional word representations. The results of this experiment led us to
propose that complex-type nouns that can instantiate a regular polysemous
alternation should be treated as members of their own, individual lexical-semantic
class for automatic classification tasks.

This thesis is organized as follows: in Chapter 2 we cover the related work on
the use of distributional information to model and build word representations,
strategies and methods for the automatic acquisition and classification of lexical-
semantic information, as well as the use of semantic theory, more specifically GL,
to guide relevant empirical evaluations. Chapter 3 describes each of the data sets
used in the subsequent experiments conducted in this thesis and the steps followed
to build them, when applicable. Chapter 4 describes the experiments conducted
regarding monosemous, or single-sensed, lexical-semantic classes. Along this
line, this Chapter also described the identification and implementation of our
linguistic model and proposes methods to overcome sparsity in resulting vectorial
representations, both through the increase of distributional information and the
use of WE representations. Moreover, this Chapter also compares the empirical
results of several State-of-the-Art methods to determine the most effective word
representations to provide to machine learning algorithms. Chapter 5 describes
and identifies the main challenges that machine-learning algorithms encounter
with the distributional representations of regular polysemous nouns, mainly
sparsity in the vector and asymmetry. This Chapter also describes in detail a
two-step strategy proposed to overcome these challenges, as well as how WE

representations can be used to acquire lexical-semantic class information of
regular polysemous nouns. Finally, Chapter 6 summarizes the main conclusions
drawn from the experiment chapters and lists the additional contributions of the
dissertation.

Publications

Parts of this thesis (ideas, figures, results and discussions) have appeared previ-
ously in the following peer-reviewed publications and have served as the basis for
others, which have been marked with (*):

• [Bel et al., 2012]: Bel, Núria, Romeo, Lauren; Padró, Muntsa (2012).
“Automatic lexical semantic classification of nouns”. In Calzolari, Nico-
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letta; Choukri, Khalid; Declerck, Thierry (et al.) (Eds.) Proceedings of
the Eight International Conference on Language Resources and Evaluation
(LREC’12). Paris: European Language Resources Association (ELRA). p.
1448-1455. ISBN 978-2-9517408-7-7

• [Romeo et al., 2012]: Romeo, Lauren; Mendes, Sara; Bel, Núria (2012).
‘Using Qualia Information to Identify Lexical Semantic Classes in an Unsu-
pervised Clustering Task’. In Kay, Martin; Boitet, Christian (eds.) Proceed-
ings of COLING 2012: Posters: 24th International Conference on Compu-
tational Linguistics COLING 2012; 2012 December 8-15; Mumbai, India.
Mumbai: The COLING 2012 Organizing Committee. p. 1029-1038

• * [Romeo et al., 2013a]: Romeo, Lauren; Martı́nez Alonso, Héctor; Núria
(2013). “Class-based Word Sense Induction for dot-type nominals”. In
Saurı́, Roser; Calzolari, Nicoletta; Huang, Chu-Ren; Lenci, Alessandro;
Monachini, Monica; Pustejovsky, James (ed.) Proceedings of the 6th In-
ternational Conference on Generative Approaches to the Lexicon: Genera-
tive Lexicon and Distributional Semantics GL2013: September 24-25 2013
Pisa, Italy. Pisa: Istituto di Linguistica Computazionale Antonio Zampolli.
p. 76 -83. ISBN 978-1-937284-98-5

• [Romeo et al., 2013b]: Romeo, Lauren; Mendes, Sara; Bel, Núria (2013).
“Towards the automatic classification of complex-type nominals”. In Saurı́,
Roser; Calzolari, Nicoletta; Huang, Chu-Ren; Lenci, Alessandro; Mona-
chini, Monica; Pustejovsky, James (ed.) Proceedings of the 6th Inter-
national Conference on Generative Approaches to the Lexicon: Genera-
tive Lexicon and Distributional Semantics GL2013: September 24-25 2013
Pisa, Italy. Pisa: Istituto di Linguistica Computazionale Antonio Zampolli.
p. 21-28. ISBN 978-1-937284-98-5

• [Romeo et al., 2014a]: Romeo, Lauren; Lebani, Gianluca; Bel, Núria;
Lenci, Alessandro (2014). “Choosing which to Use? A Study of Distribu-
tional Models for Nominal Lexical Semantic Classification”. In Calzolari,
Nicoletta (Conference Chair), Choukri, Khalid; Declerck, Thierry (et al.)
(Eds.) Proceedings of the Ninth International Conference on Language Re-
sources and Evaluation (LREC’14): May 26-31, 2014 Reykjavik, Iceland.
[s.l.]: ELRA. p. 4366-4373. ISBN 978-2-9517408-8-4

• [Romeo et al., 2014b]: Romeo, Lauren; Mendes, Sara; Bel, Núria (2014).
“A Cascade Approach for Complex-type Classification”. In Calzolari, Nico-
letta (Conference Chair), Choukri, Khalid; Declerck, Thierry (et al.) (Eds.)
Proceedings of the Ninth International Conference on Language Resources
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and Evaluation (LREC’14): May 26-31, 2014 Reykjavik, Iceland. [s.l.]:
ELRA. p. 4451-4458. ISBN 978-2-9517408-8-4

• [Romeo et al., 2014c]: Romeo, Lauren; Mendes, Sara; Bel, Núria (2014).
“Using unmarked contexts in nominal lexical semantic classification”. In
Tsujii, Junichi ; Hajic, Jan (eds.) Proceedings of COLING 2014, the 25th
International Conference on Computational Linguistics: Technical Papers:
August 23-29, 2014, Dublin Ireland. Dublin, Ireland: Dublin City Uni-
versity and Association for Computational Linguistics. p. 508-519. ISBN
978-1-941643-26-6

• * [Martı́nez Alonso and Romeo, 2014]: Martı́nez Alonso, Héctor; Romeo,
Lauren (2014). “Crowdsourcing as a Preprocessing for Complex Semantic
Annotation Tasks”. In Calzolari, Nicoletta (Conference Chair), Choukri,
Khalid; Declerck, Thierry (et al.) (Eds.) Proceedings of the Ninth Inter-
national Conference on Language Resources and Evaluation (LREC’14):
May 26-31, 2014 Reykjavik, Iceland. [s.l.]: ELRA. p. 229-234. ISBN
978-2-9517408-8-4
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Chapter 2

STATE OF THE ART

Before evaluating the State of the Art through a literature review of the automatic
acquisition of lexical-semantic information, we revised some of the main concepts
upon which the State of Art is based to have a better overview of the implications
and obstacles that encountered in our analysis.

The Distributional Hypothesis [Harris, 1954] forms the basis upon which this
thesis is built. The Distributional Hypothesis conveys the oft referred to statement
“similar words tend to occur in similar contexts” [Rubenstein and Goode-
nough, 1965, Schütze and Pedersen, 1995, Landauer and Dumais, 1997, Pantel,
2005]. [Sahlgren, 2008] further postulates that there is a correlation between
distributional similarity and meaning similarity, which therefore allows us to
utilize the former in order to estimate the latter. Along this line, distributional
approaches have been adapted to use distributional properties of linguistic entities
as the building blocks of semantics, especially for meaning acquisition tasks.
Recent research has used the Distributional Hypothesis to build word repre-
sentations in vectorial spaces to use for tasks in the field of Natural Language
Processing (NLP), such as tasks that automatically acquire lexical semantic
information [Brent, 1993, Merlo and Stevenson, 2001, Stevenson and Joanis,
2003, Baldwin and Bond, 2003, Baldwin, 2005, Joanis et al., 2008, Bullinaria
and Levy, 2007, Bullinaria, 2008, Bullinaria and Levy, 2012, Turney and Pantel,
2010, Baroni and Lenci, 2010].

These distributional approaches typically treat a word as an n-dimensional vector
that encodes the patterns of co-occurrence of that word with other expressions
in a large corpus of language [Sahlgren, 2008, Turney and Pantel, 2010, Baroni
and Zamparelli, 2010]. These representations can also include the lexical
and syntactic constraints related to semantic categories that can be identified,
captured, represented and learned for semantic prediction tasks. [Copestake and
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Herbelot, 2012]. The distributional representations of words can be provided
to machine learning algorithms that use the available information to make
predictions regarding the semantics of an unknown word. For these reasons,
distributional representations are especially useful because they provide a general
purpose representation of natural language meaning [Erk, 2013] that can be
learned and used to acquire further information.

2.1 Building distributional word representations

The Distributional Hypothesis postulates that words occurring in a similar context
tend to have similar distributional representations. Distributional models directly
approach the meaning of words from their occurrences in corpus data through
the information that is considered to be an indicative property of that word,
or of the lexical-semantic class of which that word is a member. However,
distributional representations can vary greatly, depending on the specific aspects
of meaning they are designed to model. Because of this, the selection of the
most useful and/or indicative features is one of the most important tasks to
build distributional models because it directly affects the how a word is repre-
sented and, consequently, the classification decision made using its representation.

The extraction of distributional properties from corpus data can result in different
types of so-called count-context representations, including linguistically-
motivated distributional representations, structured distributional representations,
unstructured distributional representations [Baroni and Lenci, 2010] and, more
recently, Word Embeddings WE representations [Mikolov et al., 2013, Levy and
Goldberg, 2014b, Levy and Goldberg, 2014a].

On the one hand, count-context models are distributional representations that
count individual occurrences in corpus data to keep track of those contexts where
of a given word is found [Clark, 2014,Erk, 2012,Turney and Pantel, 2010,Baroni
and Lenci, 2010]. Each context becomes a dimension in a feature vector and the
frequency information of a given word occurring with that context is represented
the value of that feature. with its co-occurrence information as a value. On the
other hand, WE representations frame the vector estimation problem directly
as a supervised task, where the weights in a word vector are set to maximize
the probability of the contexts in which the word is observed in the corpus,
rather than collecting context vectors [Bengio et al., 2003, Collobert and Weston,
2008, Turian et al., 2010, Collobert et al., 2011, Huang et al., 2012, Mikolov
et al., 2013, Baroni et al., 2014]. In this Section, we explore both types of
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representations.

2.1.1 Count-Context models
As described above, count-context models are distributional semantic spaces built
by counting each of the individual contexts implied by the parameters that define
a given feature set. There are several types of count-context models, which are
distinguished by different types of features. Due to the nature of count-context
models, the features that characterize these representations have different levels
of granularity, such as words, individual word occurrences or phrases [Erk, 2012].
For this reason, the selection of features is highly relevant, as they have a direct
impact on the resulting word representations, and therefore the classification
predictions that they obtain. In the following Sections, we describe in detail
each of the different types of count-context models that we will study in this thesis.

Unstructured distributional models

Unstructured distributional models consist of simple word co-occurrence statis-
tics and they consider pre-defined windows around a target word or pre-selected
contexts in which a target word occurs as descriptive feature information. One
of the most commonly used unstructured models is the so-called “bag-of-word”
(BOW) approach, which represents a text as a “bag” of its words, disregarding
grammar and word order, yet maintaining the multiplicity of each individual
instance. As it is one of the simpler models that studied, it incorporates no further
linguistic information into its representations, which as we will see, can exclude
valuable information.

[Lund and Burgess, 1996] and [Landauer and Dumais, 1997] built unstructured
distributional models by inducing knowledge directly from local co-occurrence
data in large corpora. Their models captured the substitutability and the semantic
similarity of word relations. However, these model were highly affected by the
parameters selected. For instance, [Landauer and Dumais, 1997] reported that
their model performed poorly when it relied only on local co-occurrence count
(too many dimensions) and when it it tried to represent all its word knowledge in
less than 100 dimensions; yet, a strong performance was achieved with around
300 dimensions. Thus, the definition the number of dimensions for the word
representations is not a trivial task, especially when constructing unstructured
models. [Kiela and Clark, 2014] further confirmed this idea in their systematic
study of parameters used in the construction of semantic vector space models.
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They also concluded that larger vectors did not always lead to better performance,
as their results indicated that performance tends to stabilize as vector size
increased. Furthermore, their model became compromised with smaller corpora,
demonstrating sensitivity to a reduction in corpus data. This result indicated that
corpus size was also a factor in determining the predictive power of the model,
as unstructured models have been known to be more predictive when built with
larger corpora.

[Bullinaria and Levy, 2007]; [Bullinaria and Levy, 2012] and [Bullinaria, 2008]
built unstructured models to induce aspects of word meaning using simple word
co-occurrence counts from corpus data. Their unstructured distributional models
studied semantic word categorization as a function of window type and size,
semantic vector distribution, as well as corpus size. [Bullinaria and Levy, 2012]
reported the best performance using their models for semantic categorization at
approximately 80%.

In our classification experiments, presented in Section 4.3 of this thesis, we, too,
observed such an effect with the performance of our LINE model on smaller
corpus data. However, we will continue to see throughout the work presented that
sparsity is not an obstacle exclusive to unstructured models, as more structured
models can also be subject to challenges concerning sparse data [Turney and
Pantel, 2010].

Linguistically-motivated distributional models

Linguistically-motivated models use features that use linguistic knowledge to
identify lexico-syntactic patterns identified to capture different contexts where
a number of words belonging to a class tend to occur, going beyond the simple
lexical co-occurrence information used by the “bag-of-words”-type approaches.
These models assume that linguistic information can be provided by the distribu-
tion of occurrence to motivate lexical classes [Grimshaw, 1990].

Besides the inclusion of lexical information (e.g. a set of verbs of a similar
semantic-type that recurrently select for a target noun in the subject position),
linguistic models also take into account the crucial role that syntax can have in
defining the distributional properties of classes by specifying patterns made of a
combination of lemmas and part of speech. Because the lexico-syntactic patterns
are linguistically-motivated, they are directly based on linguistic knowledge, and
thus can provide a more precise representation than simple co-occurrence counts
or bag-of-word models. Moreover, the use of patterns based on linguistically-
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motivated information can predict other words that can occur in that same
position occupied by the target noun. In this way, these patterns are considered to
cue a semantic property that a set of words, or class, may have in common. This
information is then used as an indicator for members of that class.

[Hearst, 1992] conducted one of the first studies using lexico-syntactic patterns
to automatically acquire lexical information, more specifically, the hyponymy
lexical relation, from unrestricted text. The use of lexico-syntactic patterns to
construct a model highlighted the benefits of a method that does not require
pre-encoded knowledge (from a syntactic dependency parse, for instance). Fur-
thermore, it demonstrated its applicability across wide ranges of text, especially
because they defined and used easily recognizable and frequently occurring
patterns that capture the particular lexical-semantic relation of hyponymy, such
as: “X is-a Y” and “X and other Y”. Although this strategy obtained promising
results, the scope of relations that the patterns were able to find were small in
comparison to the size of the corpus.

Recently, [Panchenko et al., 2012] has expanded upon the original [Hearst,
1992] approach to gain coverage and recall, improving upon the limitations of
the scope that the original patterns were able to reach. Extending a set of the 6
original [Hearst, 1992] patterns with 12 more linguistically-motived patterns, for
a total of 18 patterns, both positive and negative contexts were also included to
exclude meaningless information and find further correlations between related
words. However, recall increased only with the increase of corpus data, rather
than the inclusion of more cues. Thus, the improvement of recall was attributed
to an increase in corpus size. In this way, although corpus size was increased,
the word representations were still reliant on the limited information that the
patterns were able to extract. To further overcome the sparsity resulting from
manually-identified cues, [Snow et al., 2006] used known hypernym/hyponym
pairs to generate training data for a machine-learning system, which then learned
indicative lexico-syntactic patterns. However, the detection of these patterns
required syntactic information from an English-language dependency parser;
hence, this approach was dependent on external resources and the independence
of external resources was one of the advantages of the manually-identified
approaches.

[Merlo and Stevenson, 2001] built a linguistic model by selecting very specific
ad-hoc linguistically-motivated cues for classifying verbs undergoing different
types of diathesis alternations, along the line of the study conducted in [Brent,
1993]. They selected linguistic cues to classify English verbs into three classes:
unaccusative, unergative and object-drop. For instance, animacy of the subject
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is a significant cue for the class of object-dropping verbs, in contrast to verbs
in unergative and unaccusative classes. In contrast, [Joanis et al., 2008] built
a linguistically-motivated model using general linguistic information, such the
frequency of filled syntactic positions or slots, tense and voice of occurring verbs,
etc. to classify English verbs into a number of [Levin, 1993] classes. [Jones and
Mewhort, 2007] built a different type of linguistically-motivated model, based on
semantic norms, that addresses word order phenomena, that considered the lexical
probability that a word like “Hong” is highly likely to be followed by “Kong”
but unlikely to be preceded by it. Finally, [Moon and Erk, 2013] represented the
meaning of a word as a probability distribution over potential paraphrases. The
results obtained by their model confirmed the importance of linguistic models, as
they concluded that the consideration of syntactic order along with collocation
information is crucial to performance.

Considering the above, linguistically-motivated models can, on the one hand,
offer a higher degree of generalization to the word representation in comparison
to unstructured models, through the use of pre-defined, manually-crafted or
automatically-extracted linguistically-motivated lexico-syntactic patterns indica-
tive of a specific semantic property or relation of a class. Furthermore, these
linguistically-motivated models can models can often be highly predictive even
when there is not a large amount of corpus data available, in contrast to the
unstructured models, we also observe this result in Chapter 4. On the other hand,
the fact that these patterns tend to be handcrafted, learned or manually-selected
was a limitation to the full representations of words in corpus data. Moreover,
sometimes these patterns can also unintentionally introduce noise into the model,
especially in the case that the pattern is to general, such as the case of [Joanis
et al., 2008].

Structured distributional models

Structured distributional representations are built by collecting corpus derived
information in the form of word pairs and dependency relations [Grefenstette,
1994, Padó and Lapata, 2007, Baroni and Lenci, 2010]. These representations
can organized in the form of tuples, including the word pairs and parser-extracted
syntactic relations or lexico-syntactic patterns linking the pair [Grefenstette,
1994, Lin, 1998b, Lin et al., 2003, Poesio and Almuhareb, 2004, Erk and Padó,
2008, Padó and Lapata, 2007].

One of the major advantages of the structured models is that they tend to
include information from a syntactic-dependency parser. Thus, these models
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also take into account the crucial role of syntactic structures in the distri-
butional behavior of words. However, on the other side of the coin, these
extremely features are also very fine-grained, and thus it also tends to be very
sparse. The use of fine-grained features makes it more difficult to generalize upon.

The work presented in this thesis focuses specifically on Distributional Memory
model (DM: [Baroni and Lenci, 2010]). The DM model was proposed as a
general-purpose resource for semantic modeling. It consists of work-link-word
tuples, which are extracted with different levels of lexicalization. The framework
of DM was designed to exploit corpus data to its full extent for any type of
semantic task and, furthermore, the tuple structure that it uses for features
attempts to overcome the limitations of ad-hoc or manually-constructed patterns.
In this way, this model can exploit different views of extracted data and different
algorithms to tackle various tasks by collecting just one set of statistics from the
corpus data.

Extensive and systematic studies have been conducted with the DM model,
including but not limited to similarity judgments, synonym detection, noun cat-
egorization, detection of selectional preferences, etc., which have demonstrated
that it is both general, yet comprehensive enough to address a variety of semantic
tasks. Overall, in the large battery of experiments considered in their seminal
work [Baroni and Lenci, 2010] report that in nearly all of the considered test sets,
their best implementation of the DM model is at least as good as other models re-
ported in the State of the Art. In related work, [Blacoe and Lapata, 2012] used the
DM model to address to problem of modeling compositional meaning for phrases
and sentences, while the DM model was used by [Lenci, 2011] to represent the
expectations of the subjects about the most likely words co-occurring in given
syntactic role in order to address the problem of how thematic fit is dynamically
updated depending on the way other arguments are filled. Furthermore, [Lenci
and Benotto, 2012] successfully model hypernyms in English using DM, while
its usefulness in modeling semantics has also, importantly, proved to be mul-
tilingual, as demonstrated by a DM model built for Croatian [Šnajder et al., 2013] .

Considering the above, we consider that the structured DM model is a versatile
model that can be used to address many semantic phenomena, including but not
limited to classification and lexical acquisition, as demonstrated in [Baroni and
Lenci, 2010]. In the work presented in this these, we refer to DM as the TYPEDM
instance of DM, which is readily available for download and use.1. We provide
further details on this instance of DM in Section 4.3

1http://clic.cimec.unitn.it/dm/

15



“thesisv7.6-submitted” — 2015/6/27 — 12:01 — page 16 — #36

CHAPTER 2. STATE OF THE ART

2.1.2 Word-Embedding models
Proposed and recently adapted for use in NLP tasks by various authors [Bengio
et al., 2003, Collobert and Weston, 2008], Word-Embedding (WE) models, based
on neural network approaches, map words into a low-dimensional spaces, in
contrast to count-context models. Unlike the distributional models and vector
spaces that count co-occurrence information, as previously described, WE

representations do not directly encode frequency information into a vector to
represent lexical items; rather, these spaces offer a mapping from raw corpus
data to a vectorial space that represents the similarity of lexical items in similar
contexts. By mapping word occurrences into dense feature vectors, WE repre-
sentations learn or assign similar vectors to words occurring in similar contexts.
Practically-speaking, these models represent each word as a n-dimensional vector
of real numbers. [Baroni et al., 2014] eloquently defined the difference of WE

models from count-context models, which we quote below:

“Instead of first collecting context vectors and then re-weighting these vectors
based on various criteria, the vector weights are directly set to optimally predict

the contexts in which the corresponding words tend to appear. Since similar
words occur in similar contexts, the system naturally learns to assign similar

vectors to similar words.”

WE representations introduce the novel idea of directly capturing the similarity
between words by assigning them similar vectors according to the contexts that
they are observed in. Thus far, the count-context models we have reviewed are
limited by certain obstacles: mainly vector sparsity and issues with ambiguity due
to selectional preferences in context. Furthermore, WE representations offer an
additional abstraction step, by both mapping and tuning the information encoded
into the vector that dramatically improves accuracy. Along this line, WE provides
a cleaner representations to a classifier that do not rely heavily on the ability of
the classifier to select for the most distinctive class-indicative features.

Considering the above, WE assign a similar vector to two (or more) similar
words in terms of co-occurrence. Moreover, feature selection is no longer
necessary because the actual representation of the word is produced in the
learning phase and the number of features is externally defined. These distributed
word representations are usually learned by means of the gradient descent
back-propagation algorithm in order to minimize the differences between training
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samples. Intuitively, the neural networks that WE representations are based on
take into account the observed word-context pairs and induce latent parameters
on the basis that words that appear in the same contexts have similar parameters.

Furthermore, note that WE representations optimize the global probability distri-
bution in order to meet the condition that all word-context pairs observed indeed
came from the corpus data compared to a corrupted corpus, which contains the
“negative” samples used for training neural networks. [Mikolov et al., 2013]
provides a detailed explanation of this process, which is not reported here as it
goes beyond the scope of this thesis. Thus, it has been demonstrated that the
learned vectors indeed capture syntactic and semantic similarities [Mikolov et al.,
2013].

Additionally, the learned vectors have proved to be very useful for different
NLP tasks, and perform better than count-context models (see [Baroni et al.,
2014] for a comparison). The use of these word representations have proved to
be very advantageous in the task of “semantic similarity evaluation” due to the
fact that these representations, in a continuous dimensional space, permit the
discovery of semantically similar words with Euclidean methods, such as the
cosine distance, for instance. One of the most referred to work in this area is the
WORD2VEC representations developed by [Mikolov et al., 2013], whose code
and data experiments are freely available for use and download2.

[Levy and Goldberg, 2014a] extended the [Mikolov et al., 2013] system
that uses only raw corpus data to build representations to also include the
syntactic information from a dependency-parser. Again, the objective was to
reduce the scope of “co-occurrence” (or context windows) to words that are
indeed in a dependency relation with the word in question. Their results in
similarity evaluation tasks are also very encouraging, reporting no issues due
to data sparsity, which led us to adapt their system for our own classification tasks.

The use of WE representations in this thesis is a direct result of the temporal
implication that they had on the State of the Art. In the summer of 2014, the
main experiments to be included in this thesis were completed. Yet, in parallel to
the completion of the original programmed work, there was an explosion of WE

to build distributional word representations that was obtaining results that were
completely outperforming all of the other models that we had studied up until
that point.

2https://code.google.com/p/word2vec/
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Because the main objectives of this thesis contemplate improving the perfor-
mance of lexical-semantic classes by handling obstacles related to this task
such as sparse data and polysemy, the dense and compact, yet informative word
representations built with WE provided a very logical and viable alternative to
overcome these issues, especially encountered with the count-context models. For
these reasons, in the summer of 2014, we implemented classification experiments
using WE representations to train our distributional models. After our preliminary
experiments reported results with an increase in F1-Score of approximately 8
points, we conducted all of our experiments using WE representations. Thus,
due to this temporal change in the construction of distributional models for
machine-learning tasks, the last Sections of both Chapters 4 and 5 report upon
our results and reflect upon the implications of these method to build word
representations to automatically acquire lexical semantic information.

2.2 Automatic acquisition of general lexical infor-
mation

In the work presented in this thesis, we approached the automatic acquisition of
lexical-semantic information by classifying nouns into known lexical semantic
classes. In addition to the classical distributional hypothesis [Harris, 1954], we
considered that lexical semantic classes are products of emergent properties of
a number of words that recurrently co-occur in a number of particular contexts,
following [Bybee and Hopper, 2001] and [Bybee, 2010]. Furthermore, [Ko-
rhonen, 2010] proposed that class-indicative properties can be manifested in
statistical differences over uses of different features, which permits the collection
of this information to be used as a more cost-effective solution to easily—and
automatically—acquire lexical-semantic class information.

In the framework of usage based construction grammar theories [Goldberg,
2006] and supported by psycholinguistic and cross-lingual evidence, a lexical-
semantic class is a generalization that comes about when there is a systematic
co-distribution for a number of words and a number of contexts in the broad
sense. Thus, different contexts where a number of words tend to occur become
overt linguistic cues of a particular semantic property that a set of words has in
common and, therefore, upon which members of that class can be recognized.
Simply put, words that belong to the same lexical-semantic class will tend to
share a number of particular contexts.
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Construction-based grammar hypotheses allow us to predict that there are a
set of word occurrences, not in one or another discriminating context, but a
number of them what constitutes a class mark. The structuralist notion of
markedness [Jakobson, 1971, Bybee, 2010] allows for principled predictions
about the probability of observing these contexts if understood as class marks.
Furthermore, [Grimshaw, 1990] proposed that linguistic information can be
provided by occurrence distribution, as is usually done in linguistic theory to
motivate lexical classes. Moreover, this markedness notion would allow us
to predict that members of the class will appear in marked contexts, as well
as in unmarked contexts, although the unmarked contexts can be interpreted
either as an instance of a non-member, or a situation where the distinction is
irrelevant [Jakobson, 1971]. Hence, the selection of features to build word
representations is one of the most important tasks to build distributional models
to automatically acquire lexical semantic information.

Considering what types of distributional information to use as a feature, or a
characteristic, of a lexical semantic class is a critical methodological decision
when building word representations. This is because it directly affects what
types of information are (or are not) used, and therefore it directly affects
the representation provided to a classifier. Currently, count-context models
define the distributional properties used to construct representations in terms of
documents [Landauer and Dumais, 1997,Griffiths et al., 2007], which captures in-
formation available from entire document; lexical collocates [Lund and Burgess,
1996, Schütze, 1998, Bullinaria and Levy, 2007, Bullinaria and Levy, 2012],
which capture information from a defined context window, PoS tags [Joanis et al.,
2008], which use syntactic category information for representation; syntactic
structures [Dorr and Jones, 1996], which construct representation with syntac-
tic information from a dependency parser; lexico-syntactic patterns [Hearst,
1992, Grefenstette, 1994, Merlo and Stevenson, 2001], which use pre-defined
patterns including lexical information and PoS tags considered linguistically
relevant; and tuples [Kilgarriff, 2003, Erk and Padó, 2008, Padó and Lapata,
2007,Baroni and Lenci, 2010], which consider word pairs and the parse-extracted
syntactic relation or the lexico-syntactic patterns linking them.

Currently, there is no consensus on what features to use for general acquisition
tasks, and in many cases, the feature sets are constructed ad-hoc to address the
objectives of that specific task. There have been some attempts to standardize the
feature selection process for distributional semantics, such as the proposal of the
DM model [Baroni and Lenci, 2010] that we study in Chapter 4 for classification.
More recently, WE strategies [Mikolov et al., 2013, Levy and Goldberg, 2014a],
use a uniform process that exploits the information from the entire corpus to map
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target noun occurrences into a dense feature space, thus eliminating the need for
a specific feature selection, as required for count-context models.

2.2.1 Information of verbs and other parts of speech
One of the first studies that identified and counted topical cues for classification
was conducted by [Brent, 1993], who hypothesized that in language acquisition
it is possible to approximate cues to determine syntactic structure, by stringing
local-surface cues together rather than global constraints. Furthermore, the results
obtained confirm that it is possible to discover relevant syntactic structures in an
utterance without prior knowledge of all of the words. A possible set of cues was
proposed to identify information in English subcategorization frames, considering
for instance function morphemes, utterance boundaries and knowledge of proper
names, combined with inference mechanisms. On the one hand, they concluded
that syntactic frames can, in fact, be identified with relatively simple surface
cues, yet, on the other hand, this simplicity of some of these features was also a
limitation because they did not achieve very high accuracy, primarily due to the
ambiguous nature of many words.

[Levin, 1993] manually categorized verbs based on their diathesis alternations.
This pioneering study served to justify the hypothesis that there was a direct
link between the syntax of a word and the semantic arguments that are able to
constrain it. Furthermore, this manual classification of verbs provided the base-
line for almost the entire State of the Art in automatic verb classification. [Dorr
and Jones, 1996] used automatic methods to further the correlation between
the semantic classes of verbs and patterns of grammar codes. They verified the
central thesis of [Levin, 1993] by automatically extracting syntactic information
from machine-readable resources (MRDs). Two different experiments were
conducted; one that considered polysemy of verbs and one that did not. In
the case of the former, information for all of the different classes of the verb
were encoded in one representation, while in the case of the later; individual
representations were constructed for each class of the verb. Unsurprisingly, the
results reported for the latter were much clearer, as they were based on represen-
tations that were already disambiguated. Furthermore, these results highlighted
the critical need for any lexical acquisition system to accurately handle ambiguity.

[Lapata, 1999, McCarthy, 2000] both further built upon the work presented
by [Dorr and Jones, 1996], proposing the use of corpus data to extract feature
information, as a way of by-passing the reliance on the availability and adequacy
of MRDs. Additionally, the use of corpus frequency information was proposed to
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estimate the probability of a given alternation. Following [Dorr and Jones, 1996],
they both further confirmed a significant relationship between the similarity
of selectional preferences at the target slot and the grammatical restrictions
that can be both identified and learned. However, the use of corpus data to
extract information actually increased the effects of data sparsity, although it
did positively increase coverage and, consequently, recall. As we will see in the
forthcoming Chapters, although the increase of data should logically decrease
the sparsity of information used, we will see that it is not necessarily the case,
as more data does not imply higher quality representations; rather, it is the
information within the word representation that is be the key to overcoming the
sparse data problem hindering most corpus-based studies.

[Lapata, 1999, McCarthy, 2000, Lapata and Brew, 1999] further strived to
overcome data sparsity using probabilistic models that combined linguistic
knowledge via Levin’s classifications and frame frequencies acquired from the
BNC. Notably, [Lapata and Brew, 1999] achieved an accuracy of 91.8% with
Levin classes and 83.9% with class ambiguous verbs using the information
available in subcategorization frames (SCF) to disambiguate verbs. However,
their system was heavily reliant on the verb class information provided by
Levin—any verb that is not a part of the Levin list, would be represented by a
zero. Furthermore, there was also a strong emphasis placed on the importance
of frequent classes that did not take into account how individual verbs can be
distributed across classes. This can be problematic, as we also saw in Chapter 4
of this thesis, because most ambiguous nouns do not occur symmetrically in all
of their potential classes in corpus data. Thus, when considering only the most
frequent class, the representation can be biased or skewed incorrectly because the
verb may occur in several classes with a different frequency, which can lead any
classifier to make an incorrect classification system.

[Schulte im Walde, 2000] automatically obtained the semantic classes of
verbs using probability distributions over verb SCFs. The verb frame types
used for as syntactic descriptors contained at most three arguments, including
nominative, dative, accusative, noun phrases, reflexive pronouns, prepositional
phrases, expletives, non-finite clauses, finite clauses, and copula constructions.
Following [Lapata and Brew, 1999], [Schulte im Walde, 2000] empirically
demonstrated that semantic classification for German verbs is largely recoverable
from the patterns of verb-frame co-occurrences. [Lenci, 2014] also proposed
the information in SCFs as appropriate features to semantically classify verbs
in Italian, while also emphasizing the importance of further understanding the
meaning components, i.e. the semantic features, that are relevant to analyze verb
meaning.
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[Stevenson and Merlo, 1999] began to move away from subcategorization
frames, expanding on the idea of classifying verbs according to linguistically-
motivated grammatical features extracted automatically from corpus data. They
expected that the semantic role assignments of verb classes to be reflected in
their syntactic behavior, and consequently in the distributional data they collected
from corpus data. Moreover, the extraction of features directly from corpus data
further reduced reliance on external resources, such as MRDs. More specifically,
in their seminal work they propose to automatically classify verbs based on
argument-structure properties. However, [Stevenson and Merlo, 1999] attempted
to generalize upon the very fine-grained syntactic restrictions reported in [Levin,
1993] that [Dorr and Jones, 1996] based their experiments upon. Again, in
parallel to [Dorr and Jones, 1996], they concluded that there is a significant rela-
tionship between classes of verbs and the syntax, in their case, argument structure.

[Schulte im Walde, 2006] further expanded on a series of experiments for the
semantic classification of German verbs, parting from the idea that semantic verb
classes can be generalized according to their semantic properties. This was done
by capturing large amounts of verb meaning without defining the idiosyncratic
details for each verb. Following the current trend, [Schulte im Walde, 2006]
used a combination of SCFs, prepositional information and selectional prefer-
ences as features. Classification results coincided with those from a manual
classification exercise, although manual correction and completion was still
necessary. Furthermore, [Sun et al., 2008, Sun and Korhonen, 2009] also used
SCFs, instead of syntactic slots, as features for classification, demonstrating that
considerable additional improvement can be obtained also with semantic features
in automatic classification. Differing from [Schulte im Walde, 2006], their feature
sets included automatically acquired SCFs, along with (statistical) information
related to the PoS tags, GRs (subject, object, indirect object associated with verb),
argument heads, and adjuncts of verbs, as well as both shallow and deep syntactic
and semantic features. Their results further justified the [Levin, 1993] hypothesis
that verb classification relies not only on syntactic but also on semantic features.

[Merlo and Stevenson, 2001, Li and Brew, 2008, Joanis et al., 2008] considered
a wider range of information, including also the semantic preferences of verbs,
which consequently helped to alleviate some of the complications caused by
sparse data problem widely reported in the representations derived from previous
work. [Merlo and Stevenson, 2001] addressed the generalization of distinctions
in argument structure by identifying linguistically distinctive features that exhibit
distributional differences across the verb classes directly in corpus data. More-
over, they considered that the statistical distributions of these features contributes
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to the learning of the classification of the verbs. [Stevenson and Joanis, 2003]
clustered verbs into lexical semantic classes, using a set of noisy features to
capture broader syntactic and semantic properties of verbs, thus increasing cover-
age. They explored both manual, unsupervised and semi-supervised methods for
feature selection, concluding that a manual selection of a subset of features based
on the known classification performs better than using a full set of noisy features.

[Joanis et al., 2008] further developed the idea of [Stevenson and Joanis, 2003]
to expand upon a general feature set. Results obtained demonstrated that a
general feature space can achieve a rate of error reduction ranging from 48% to
88% over a chance baseline and across classification tasks of varying difficulty.
However, their general feature space, including features such as syntactic slots,
slot overlaps, tense, voice and aspect, and animacy did not generally improve
the classification accuracy over SCFs. [Li and Brew, 2008] built upon the
methodology reported in [Joanis et al., 2008] to explore an even wider range
of features, focusing on mixing syntactic information with information from
lexicalized slots, information derived from dependency relations, lexicalized
co-occurrence information and adapted co-occurrence information. Furthermore,
it was proposed to keep all prepositions and to replace all verbs in neighboring
contexts of each target verb with their part-of-speech tags, and a combination of
SCFs and co-occurrences. Empirical evidence indicated that both syntactic and
lexical information are useful for verb classification.

Finally, [Merlo and Stevenson, 2001] demonstrated that a small number of
linguistically-motivated lexical features are sufficient to achieve an acceptable
accuracy rate (in their case 69.8) and that relevant semantic properties of verb
classes (such as causativity or animacy of subject) may be successfully approx-
imated through countable syntactic features. However, the use of patterns again
limited the amount of information extracted, resulting in vector sparsity.

Furthermore, there has also been some work done on the automatic acquisi-
tion of information for other grammatical categories, such as adjectives and
prepositions. [Celli and Nissim, 2009, Girju, 2009], for instance, studied the
semantic classification of prepositions through their experiments to identify the
semantic relations in complex nominals, while [Bannard and Baldwin, 2003]
used distributional similarity to analyze prepositional semantics. In regards to
adjectives, [Carvalho and Ranchhod, 2003] automatically disambiguated adjec-
tives in Portuguese from nominal headers for PoS taggers, while [Bohnet et al.,
2002] aimed to use automatic methods to classify adjectives in German. More
recently, [Boleda et al., 2012b] automatically induced lexical-semantic classes
of adjectives in Catalan, using both theoretically-motivated features that cue
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properties of each class, as described in literature, and PoS features Today, much
of the work on the classification of adjectives is focused on Sentiment Analysis,
which goes beyond the scope of this thesis, yet we note the seminal works
of [Hatzivassiloglou and McKeown, 1997] and [de Marneffe et al., 2010], which
used similar semantic methods to those reviewed here, based on distributional
techniques, to successfully automatically obtain the subjective adjectives and
their orientation from corpus data.

2.2.2 Information of nouns
The acquisition of lexical semantic information of nouns parts from the same
hypothesis that frames the acquisition of any part of speech: there is a strong
correlation between syntax and semantic meaning, i.e. the meaning of a noun is
represented from observed or inferred contexts in which it is found. The work
of [Hindle, 1990] represents one of the first attempts to exploit syntax for the
acquisition of semantic information of nouns. They demonstrated the plausibility
of deriving semantic relatedness from the distribution of syntactic forms, such as
the distribution of subjects, verbs, and objects in a corpus of English text. The
results obtained demonstrated modest success, yet they encountered a number of
challenges that remained to be solved in future work, such as the consideration
of polysemy, the use of non-content words and the need for very large corpus
data, as well as a syntactic-dependency parser. [Lin, 1998a] also relied on the use
of dependency relationships as word features for automatic thesaurus creation,
more specifically distributional patterns of words from a parsed corpus were
used to infer the meaning of an unknown word. However, polysemy was not
accounted for as their representations were learned from all of contexts the
word, the different senses of the word were all conflated into one representation,
which can cause uncertainty in a class membership decision. [Hearst, 1992]
attempted to avoid the need for pre-encoded knowledge for the similar task of
hyponymy acquisition by identifying a set of lexico-syntactic patterns that are
easily recognizable and that occurred frequently and across text genre boundaries
and that indisputably indicate the lexical relation of interest. On the one hand,
the use of these patterns eliminated the need for an external parser, while on the
other hand, it further restricted the number of hyponyms recovered because not
all cases occur within the specific patterns used.

Other attempts to automatically acquire lexical-semantic nominal information
include [Light, 1996], which used only information from derivational affixes
to classify nouns. Following [Hearst, 1992], these morphological cues were
considered to be good surface cues at they were easy to identify, abundant
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and correspond to the needed lexical semantic information. However, one
limitation of this desideratum is that there are many words in English that may
not have a derivational cue, and the reliability of it on its own may be too low
for many NLP tasks. [Gillon, 1992, Baldwin and Bond, 2003, Baldwin, 2005]
considered different types of cues as features for nominal classification. For
instance, [Gillon, 1992] used surface cues such as quantifiers, such as numerals,
articles, modifying determiners, etc. to distinguish between count and mass
nouns. [Baldwin and Bond, 2003, Baldwin, 2005], however, induced mass/count
information from a parsed English corpus using parallel supervised classifiers
that took into account morpho-syntactic information, such as head number,
modifier number, subject-verb agreement, occurrence in “N of N” constructions,
etc. In their experiments with nominal classification, [Bel et al., 2007] considered
(among other lexical features, such as subcategorized complements and bounded
prepositions) the local contexts in a PoS tagged corpus as features to classify
Spanish mass nouns.

Finally, [Bel et al., 2010] used lexico-syntactic patterns to develop class-based
lexica by automatic means, focusing on non-deverbal event nouns for both
English and Spanish. Lexico-syntactic patterns were identified to characterize
contexts in Spanish, where members of a given lexical-semantic class tended
to occur, such as: nominal suffixes, prepositional phrases, nouns occurring
as external or internal arguments of verbs, present of temporal quantifying
expressions, such as “two weeks of”, the fact that non-deverbal event nouns will
not be in prepositional phrases headed by locative prepositions, that non-deverbal
event nouns have an external argument that can also be realized by an adjective.
Furthermore, lexico-syntactic patterns were also identified to characterize
contexts in English, where members of a given lexical-semantic class tended to
occur, such as: process nominals and non-deverbal event nouns can be identified
by appearing as complements of aspectual PPs, non-deverbal nouns may occur as
external or internal arguments of occurrence verbs or time-related verbs, intention
to register event nouns whose external argument, although optional, is realized
as a genitive complement, etc. Although achieving an accuracy of almost 80% in
English, like the other approaches for linguistically-motivated models, they came
across two main obstacles: (i) noise, where nouns sometimes occur in contexts
that were not aimed at, and (ii) sparsity of information in feature vectors, which
is affected by the low frequency of some nouns, as well as the low frequency of
the occurrences of some indicative contexts.

Two related tasks, Named-Entity Recognition and Classification (NERC) and
Word Sense Disambiguation (WSD), also deal with assigning lexical items into
categories or senses. However, they differ from lexical-semantic acquisition

25



“thesisv7.6-submitted” — 2015/6/27 — 12:01 — page 26 — #46

CHAPTER 2. STATE OF THE ART

because they work on token occurrences and tend to adopt an enumerative
approach as their main goal is to separate each individual sense of a given word.
In the case of WSD, for instance, the system determines the singular sense of a
word in a particular context, while in the case of NERC, the system identifies and
classifies particular occurrences of proper names into an already predefined set of
categories. These types of systems define word meaning by an enumerable, static
set of senses per word. Yet, they do not consider that a word can be more than
one sense in a single context. This does not always constitute the most accurate
representation because it ignores cases of regular polysemy, which we address in
the following section. Although these tasks go beyond the scope of the work pre-
sented in this thesis, for an overview of relevant and noteworthy NERC work see,
for instance, [Nadeau and Sekine, 2007, Tkachenko and Simanovsky, 2012, Ritter
et al., 2011], and for WSD see [Rigau et al., 1997, Atserias et al., 2005, Cuadros
and Rigau, 2006, Navigli, 2009, Toral et al., 2009, Navigli, 2012, Agirre et al.,
2014, Azpeitia et al., 2014].

2.3 Distributional representations and the Genera-
tive Lexicon

As we have identified throughout this literature review, most previous approaches
to the automatic acquisition of semantic classes have mostly disregarded the chal-
lenge of polysemy by considering only monosemous or already disambiguated
words or classes, by simply ignoring it or by discussing it only in the context
of analyzing results obtained. Polysemy is a challenge for distributional models
mainly because the word representations are learned from all of the contexts
of a word in corpus data, and therefore the different senses of a word are con-
flated into one single representation. Dealing with the multiple distinct senses of
a word in a distributional representation can be considered a research line in itself.

Typically, in external lexical resources, such as a dictionary or WordNet, sense
distinctions are made by considering each sense independently. However, and
critically, this does not take into account the (systematic) relations that may occur
between the multiple senses of a word. This is particularly problematic when
words allow for multiple selection, i.e. when different senses of the same lexical
item can both be selected for in one context (see Example 1). Known as logical,
or regular, polysemy this type of ambiguity has been shown to have well-defined
properties [Apresjan, 1974, Pustejovsky, 1995, Buitelaar, 1998, Martı́nez Alonso
et al., 2013] and has been consistently reported as a factor in lexical semantic
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acquisition tasks. Example (1) illustrates how the word bank is selected for
both as a LOCATION noun, where the target noun is the modified nominal (i.e.
constructed bank), and an ORGANIZATION noun, where the target noun has an
agentive subject (i.e. bank offers).

(1) The newly constructed (LOCATION) bank offers special conditions
(ORGANIZATION) to new clients.

Along this line, besides the logical theoretical implications, the acquisition of
information regarding regular polysemy in distributional word representations
can also reduce redundancy in lexical resources, as well as the need for many
fine-grained sense distinctions, which is one of the major criticisms of WordNet.
Yet, the distinction of nouns that represents this phenomenon are semantic.
Thus, we place ourselves within the framework of a semantic theory since the
acquisition of refined semantic features do not always emerge from a purely
corpus-based collocation analysis. Along this line, we place ourselves specifically
in the framework of the Generative Lexicon Theory (GL) [Pustejovsky, 1995],
as it models the phenomenon of regular polysemy by internally and logically
structuring the semantic composition of lexical items [Pustejovsky, 1995]. GL

postulates various levels of representation to semantically represent words while
allowing for the computation of meaning in context. The Qualia Structure (QS)
is one of these levels, consisting of four roles (FORMAL: what an object is;
CONSTITUTIVE: what it is composed of; TELIC: its purpose; AGENTIVE: its
origin), which model the predicative potential of lexical items.

More specifically, the QS also models phenomena, such as lexical items in-
herently complex in their meaning. These complex-type nouns are defined
by a logical pairing of senses denoted by their individual types [Pustejovsky,
1995, Pustejovsky, 2005]. Thus they are characterized by the properties of more
than one class [Pustejovsky, 1995, Pustejovsky, 2013] and, critically, they exhibit
characteristics properties of both classes in corpus data (see again Example (1)).

In this way, according to the GL, differing from simple types, complex types
are composed of more than one constituent sense that can be recovered both
individually and simultaneously in context. In other words, complex types are
words of a semantic type made up to two classes (x · y). [Ježek and Lenci, 2007]
presented an analysis of a verb that has been well-characterized as a complex-type
in GL literature (the Italian for leggere “to read”) to determine if the selecting
environments of internal arguments can be validated and refined using corpus
data. Likewise, [Rumshisky et al., 2007] presented one of the first empirical
regular polysemy models that explicitly and specifically addressed the study of
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complex-types nouns. They proposed a method for the automatic detection of
selector contexts specific to the components of a complex-type noun. They built
upon the work of [Pustejovsky et al., 2004], which used GL concepts to argue
and demonstrate that word senses are not directly encoded in the lexicon of the
language, but rather are a product of the so-called “selection contexts”, which can
be categorized into the QS.

Yet, even considering the above, there has still been very little empirical work
regarding the modeling of complex-type nouns and their regular polysemous
alternations [Copestake, 2013]. [Buitelaar, 1998] used WordNet as a basis to
empirically identify nouns that regularly alternate between at least two WordNet
senses to define the complex types described in the CoreLex data set. [Utt and
Padó, 2011] built an empirical model, also based on WordNet, to make an
ontological distinction between homonymous and polysemous nouns. [Boleda
et al., 2012a] modeled the alternations defined in the CoreLex database. In this
work, a general framework was designed to ground sense alternations in corpus
data, rather than in WordNet. It generalized each alternation at the type level,
above individual instances, to predict of alternations of an unseen word. [Martı́nez
Alonso et al., 2013] defined a scheme to provide reliable human annotations
for complex-type nouns in English, Spanish and Danish. Moreover, [Martı́nez
Alonso and Romeo, 2014] outlined a methodology to reduce the workload of
experts for complex semantic tasks, such as the annotation of complex-type
nouns with all of their sense information. Furthermore, [Martı́nez Alonso, 2013]
built a sense-prediction system to automatically find empirical evidence to justify
the incorporation of a third underspecified sense for complex-type nouns in sense
inventories. [Romeo et al., 2013a] using Word Sense Induction techniques to
automatically induce the sense alternation of complex-type nominals in corpus
data. [Ježek and Vieu, 2014] assessed the possibility to empirically distinguish
between complex-type nouns and simple-type nouns through an analysis of
co-predictability contexts, which have been postulated to be characteristic
contexts of complex-type nouns.

There has been other work conducted that tried to model the different senses of
a word, such as that of [Schütze, 1998], which represented words, contexts and
senses in order to assign to each target word to its most similar semantic sense
cluster. Although this method obtained promising results, it did not also consider
the relations between words that are representative of multiple senses. Therefore,
it does not accurately handle regular polysemy as it does not consider the possible
relations that there are between the different senses of a word, which is critical to
accurately represent of complex-type nouns.
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2.3.1 Automatic acquisition of lexical information and the GL

The Generative Lexicon [Pustejovsky, 1995] was first introduced as a knowledge
representation framework offering a rich and expressive vocabulary for lexical
information. As one of the most difficult problems facing theoretical and com-
putational semantics is defining the representational interface between linguistic
and non-linguistic knowledge, GL was initially developed as a theoretical frame-
work for encoding selectional knowledge in natural language. Along this line, GL

differs from more traditional lexical organization as it does not assume that word
meaning can be exhaustively defined by an enumerable set of senses per word.
This has a two-fold benefit:

• it does not require the pre-encoded knowledge of all of the possible senses
of a word, which can result in incomplete coverage;

• it can also incorporate the creative uses of words in novel contexts because
it accounts for meaning generated in context, which can be crucial for the
accurate treatment of lexical items that are found in slots selected for by a
regular polysemous alternation.

Furthermore, [Pustejovsky and Ježek, 2008] argued that lexical representations
built from evidence of distributional behavior alone are unable to fully explain
the rich variation in linguistic meaning in language. [Pustejovsky and Rumshisky,
2008] further justified this point by exploring the so-called “tensions” between
corpus data and the linguistic theory, such as GL, that models it. The main
conclusion was that both corpus-based and model-based linguistics have roles in
constructing an adequate characterization of language usage, and therefore both
must be considered in the design and identification of features used to build our
distributional models.

One of the most direct applications of GL in the field of distributional lexical
semantics was the automatic acquisition of QS information. As previously
described, the QS represents the entire semantic composition of a word, which
ultimately determines both the semantic meaning of that word, as well as its
constraints in context. Moreover, the main goal of automatically acquiring
QS information has been described as a method to automatically acquire deep
semantic lexical knowledge from corpus data.

[Yamada et al., 2007] proposed a method for automatically extracting the
TELIC and AGENTIVE roles of nouns from corpus data. Their experiments were
based on the identification of syntactic constructions that are indicative of verbs
constituting the TELIC or AGENTIVE roles of a given noun. In parallel, [Cimiano
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and Wenderoth, 2007] identified lexical patterns that identify all of the noun
properties as defined by the entire QS of a word. The main difference of using
patterns that identify relations corresponding to Qualia roles from those defined
by [Hearst, 1992], for instance, are that the semantic information is related
to the entire semantic composition of a word, which is also indicative of the
different relations of a word. [Baroni and Lenci, 2010] attempted to improve
upon the results reported in [Cimiano and Wenderoth, 2007] using the DM

model. Instead of manually-crafting patterns, they exploited the information
already available in the tuples of the DM model. They were able to approximate
the patterns proposed by [Cimiano and Wenderoth, 2007] to automatically
extract QS information and the results obtained were slightly above the best
reported by [Cimiano and Wenderoth, 2007], which served to further demonstrate
the transferability and adaptability of the DM model for a variety of semantic tasks.

[Katrenko and Adriaans, 2008] expanded upon the method of [Cimiano and
Wenderoth, 2007] to automatically acquire QS to investigate the use of this
automatically acquired information and impact on a noun categorization task.
Demonstrating the effects on classification when using the information provided
by different levels of their automatically acquired QS, the FORMAL role was
concluded to be sufficient for discrimination between the semantic classes of
nouns, while the addition of information of other roles such as TELIC and
AGENTIVE did not improve results. However, focusing solely on the automatic
acquisition of information from Qualia role, again, did not consider all of the
available co-occurrence information, as it was limited to the use of a small portion
of corpus data.

2.3.2 Other applications of GL

The GL has also been adapted for use in many other applications. Large scale
applications of the GL can be found in the European Union-funded SIMPLE

project [Lenci et al., 2000], which used GL as a basis to build multi-lingual
semantic lexica, due to the relations that can be detected from the QS. The lexicon
built with the SIMPLE project provides QS information to its lexical entries
and, more importantly, regular polysemous classes represented by a complex
type, which established a link between the systematically related senses in the
lexicon. [Pustejovsky et al., 2006] also developed a large ontology and dictionary
to allow for more widespread access to GL-based lexical resources.

Finally, the common thread among the large variety of work presented in this
Section is the deep relationship between the GL theory and corpus analysis.
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Moreover, the work reviewed demonstrates that the theoretical postulates of the
GL are sufficiently adequate to frame the empirical evaluation of our task to
automatically acquire lexical-semantic information by considering the effects of
this phenomenon on our word representations.

2.4 Thesis overview
Based on the literature review conducted in this Section, we identified the main
obstacles to the automatic acquisition of lexical-semantic information that justify
the work conducted in this thesis:

• sparsity, which negatively affected precision and/or recall in the results ob-
tained;

• polysemy, which negatively affected precision due to the fact that some
words can be a member of more than one class. This issue was typically
bypassed as not being considered for the methodology or the authors tend
to use already disambiguated words for training and evaluation purposes.

First, we consider the limitations that data sparsity presents to distributional
word representations. Along this line, we focus on the features used to build
different distributional representations. Yet, this is not a trivial task because the
generalization of features can provide noisy information into feature vectors,
while bag-of-word-type approaches do not have the advantage of syntactic
information that more complex models contain. Thus, an empirical evaluation
on different models must be conducted to identify the distributional information
crucial to built efficient word representations. We explore this objective in detail
in Chapter 4

Second, distributional word representations conflate all of the senses of a word,
which results in the obstacle to identify the relation of each individual sense. Fur-
thermore, all of the senses of a word do not occur equally in corpus data, resulting
in a frequency bias toward one sense. This causes an imbalance of information
between the senses in the feature vector. Due to this obstacle, machine-learning
algorithms are not able to handle the lower-frequency senses due to their smaller
amount (or lack) of information. Thus, a method that can accurately handle the
distributional word representations of these types of nouns is critical. We explore
this objective in detail in Chapter 5.
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DATA DESCRIPTION

The main focus of this thesis is the automatic classification of nouns using distri-
butional word representations into lexical-semantic classes. This Chapter explains
in detail the data that is used to both train and to evaluate our lexico-semantic
classifiers in each experiments conducted. Furthermore, we also describe the
corpora used to extract the distributional data used to build these supervised
classifiers.

Each experiment described in this thesis, extracts distributional information
from corpus data to build word representations. This information is extracted
either with Regular Expressions, pre-defined context windows or using tools that
extract particular and relevant information in the form of tuples or other types
of pre-defined structures. Frequency information for each extracted feature is
stored in an n-dimensional vector. Machine-learning classification algorithms
then use these vectors to obtain probability scores regarding class membership
of a given noun. The selection, construction and use of the data sets and
corpora used to build the word representations that form the basis of each ex-
periment conducted in this thesis, are explained in detail in the following Sections.

3.1 Data sets

In this Section, we describe the compilation, extraction and construction of the
different data sets used in this thesis.

Our first step was to define the specific lexical semantic classes that we would
study. The selection of lexical-semantic classes was based on the criteria that
each class was lexically relevant, meaning that words of this class occur relatively
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frequently in context, and grammatically salient, meaning that the words of
a given class demonstrated definitive grammatical and lexical tendencies. In
our case, we selected five (5) predominant classes for the English language:
EVENT, HUMAN, ORGANIZATION, LOCATION and COMMUNICATION OBJECT.
Henceforth, these classes will be referred to as: EVT, HUM, ORG, LOC, and COM,
respectively. Table 3.1 contains examples of lexical items that pertain to each
individual class.

To obtain lexical items that represent each of these classes, we consulted Word-
Net for its extensive coverage in English and for its overwhelming acceptance
in the field of NLP as a sort of gold-standard indicator of lexical semantic
classes [Miller et al., 1990]. Primarily designed as a computational account of
the human capacity of linguistic categorization, WordNet is a lexical database
that covers an extensive set of lexical-semantic categories that organize lexical
meaning, or senses, through representative lexical items, in contrast from more
traditional sense-enumerated dictionaries. The senses that categorize the lexical
items of each different grammatical category in WordNet are assigned by humans.
The nominal database of WordNet is the source from which we extracted our data
sets. It is organized as a sense hierarchy, with unique beginners, or categories that
are not subsumed by any other category, at the top.

class Examples
EVT malfunction, accident, schism
COM book, letter, summary
HUM comedian, instructor, nurse
LOC campus, ghetto, playground
ORG administration, crew, staff

Table 3.1: Examples of nouns that pertain to each selected lexical-semantic class
studied

The objectives of this thesis require the exploration of distributional representa-
tion of all types of nouns, including lexically ambiguous words. Along this line,
on the one hand, we considered many words that are clear cut “monosemous”
or single-sense members of a given nominal lexical-semantic class, such as girl,
which is a clear and exclusive member of the HUM class. On the other hand, we
also considered polysemous or multi-sensed words, such as the noun newspaper,
which provided a clear example of a noun that is lexically ambiguous.

(2) He was the editor of the newspaper (COM) at that time.
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(3) The journalist was curious as to whether the newspaper (ORG) would pay
her to report on the riots.

To further illustrate the lexical ambiguity of the noun Example (2) shows how
the noun newspaper is selected for as a member of the COM class, referring to a
physical object printed on paper and contains informative articles while Example
(3) shows how it is selected for as a member of the ORG class, describing the
administration that produces the physical object referred to in Example (2). We
address the representation and handling of this phenomenon in detail in Chapter 5.

3.1.1 Monosemous data sets
One of the main goals of this thesis is to study different distributional word
representations and their effect on nominal lexical-semantic classification. In
order to obtain these representations and evaluate our models, we need data sets
of words containing lexical-semantic class information. In order to obtain these
data sets, we followed the methodology described below. All of these data sets
will be available on-line for download and use in the final version of this thesis.

Each noun for the monosemous, or single-sense, data sets, was selected with a
relatively simple procedure that was conducted for each noun class considered.
For each lexical semantic class, we extracted all of the words from WordNet
that contained a corresponding sense. In other words, we extracted all of the
items that were tagged in WordNet as people for the HUM class; as location for
the LOC class; as group for the ORG class; as event for the EVT class; and as
communication for the COM class.

Class
Targets
(Class Members)

Targets
(Not Class
Members)

EVT 260 260
HUM 246 246
ORG 138 135
LOC 157 156
COM 262 259

Table 3.2: Number of target nouns (including the distribution between members
and non-members) used per lexical-semantic class

After extracting a lists of nouns for each classes, we then filtered each list using
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simple heuristics. We filtered out all compound words, multi-word expressions
and words containing non-alpha-numeric characters. We then removed all
proper nouns still included in the lists. Finally, we filtered out all nouns that
had less than 3 characters, in order to remove any cases of acronyms, for
instance. In this way, we ensured that our conclusions strictly concern common
nouns. The figures reported in Table 3.2 reflect the final distribution of nouns that
were used for training and evaluation purposes in the work presented in this thesis.

3.1.2 Polysemous data sets

Another main goal of this thesis is to determine how to handle distributional
word representations that are affected by phenomena such as regular polysemy.
Thus, besides the monosemous data sets described above, we also needed to
encode information regarding the ability of certain nouns to also be selected
for as a member of another class. To obtain this information, we conducted a
human annotation task to annotate the data sets described above with information
regarding the potential of each individual noun to instantiate a class pertaining to
a regular polysemous alternation.

Human-annotated polysemous data sets

In Chapter 5, we primarily focus on the word representations and the classifi-
cation of regular polysemous nouns. Thus, we needed to obtain a data set that
also contains information regarding the potential of a noun to be systematically
selected for as each sense that corresponds to the sense components that form a
complex type. This information is usually not included in language resources,
and it is specifically not included in WordNet [Boleda et al., 2012a]. For this
reason, we conducted a human annotation task to manually build polysemous
data sets from our automatically extracted “monosemous” data.

We enlisted three experts to annotate each individual noun from the data sets
described in Section 3.1. Each expert was either native or highly proficient
English speakers and, moreover, familiar with the phenomenon of regular
polysemy. The annotators were asked to indicate whether each noun can be
selected for in context as a member of a specific class (y) that pertains to a regular
polysemous alternation (x · y) and which was different from its original class (x)
in the monosemous data sets.
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Specifically, and for the sake of brevity, we only focused on the manual annotation
of two specific regular polysemous classes: LOC·ORG and EVT·COM. Appendix
A.2 provides more information and detailed examples regarding the exact
annotation task conducted, as well as the scheme and results obtained. A noun
was considered to be regular polysemous if a majority of the human annotators
indicated that the noun can be considered a member of both classes that form the
specified regular polysemous alternation. In this way, we used a voting scheme
to select the nouns from which we built the polysemous data set. We included
those nouns considered to be members of more than one class by at least two
annotators. Thus, in the case of LOC·ORG, a LOC noun must also be marked that it
can be selected for as an ORG noun and vice versa; in the case of EVT·COM, a EVT

noun must also be marked that it can be selected for as a COM noun and vice versa.

To further illustrate this, consider the following examples that we observed in
our data sets. In regards to the EVT/COM data sets, on the one hand the EVT

noun campaign was marked by all three annotators to be able to be selected for
as a COM noun in context. Thus in our data sets, this noun was tagged as regular
polysemous. On the other hand, the EVT nouns malfunction and disappearance
were not marked as able to be selected for as COM nouns. Therefore, these nouns
remained marked as monosemous EVT nouns in our data sets. This was also the
case for the COM nouns portfolio and memo, which were marked as not able to
be selected for as an evt noun and remained marked as monosemous COM nouns
in our data sets. In regards to the LOC/ORG data sets, the LOC noun institute
was marked by all three annotators to be able to be selected for as a ORG noun
in context. Thus in our data sets, this noun was tagged as regular polysemous.
However, the ORG nouns workforce and league were not marked as able to be
selected for as LOC nouns, therefore, they remained marked as monosemous ORG

nouns in our data sets. Finally, the LOC nouns, such as frontier and coastline, that
were not marked as able to be selected for as ORG nouns remained marked as
monosemous LOC nouns in our data sets.

Table 3.3 presents the final number of nouns considered per polysemous alterna-
tion. Tables A.7 and A.6, for in Appendix A.2 provide the full lists of nouns and
their final annotations.
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Complex types Simple types
ORG·LOC 79 184
EVT·COM 99 381

Table 3.3: Number of complex-type and simple-type nouns in the data sets ob-
tained by human annotation

Automatically-extracted polysemous data sets

The [Boleda et al., 2012a] data set1 is a large and automatically constructed
data set of nouns that belong to specific regular polysemous alternations. Like
our data sets described above, the [Boleda et al., 2012a] data set was extracted
automatically from WordNet and consists of a data set for each of the disemous
alternations (or combination of two alternating classes) defined in the CoreLex
database [Buitelaar, 1998].

As described in Chapter 2, the CoreLex database is a lexical resource designed
specifically to study regular polysemy. It identifies the lexical items that share
alternating senses in WordNet. [Buitelaar, 1998] built this database with a
frequency criterion to filter out those combinations of WordNet classes that have
only one member; this criterion is compliant with the GL guideline that postu-
lates regular polysemy to be a recurrent phenomenon [Pustejovsky, 1995] and
therefore, the alternation must be represented by more than one noun. [Buitelaar,
1998] identified a total of 529 polysemous classes that met this criterion; 60 of
which are disemous and, along the lines of [Boleda et al., 2012a], are focused on
in Chapter 5.

The 60 disemous classes in CoreLex are used as gold standards. Each of these 60
gold standards contain 40 lexical items, 10 of which defined as target lexical items
(m,n), or true members of that regular polysemous alternation. The other 75% of
the gold standard consists of what [Boleda et al., 2012a] defines as distractors or
lemmas that do not instantiate the regular polysemous alternation. They defined
three different types of distractors, which equally compose of the remainder of
the data set (i.e. each composes 25% of the remainder of the data set):

• distractors that share m with the target but not n;

• distractors that share n with the distractor but not m;

1 [Boleda et al., 2012a] made this data set fully available for download and use at http:
//www.nlpado.de/?sebastian/data.shtml.
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• distractors that share neither m nor n with the distractor.

Essentially, [Boleda et al., 2012a] built these data sets to avoid the critique that
their classifier was conducting coarse word sense disambiguations. By providing
distractors, these data sets more effectively demonstrate whether a system is
able to make finer-grained semantic distinctions regarding regular polysemous
nouns, instead of broad coarse-grained classifications. A broad coarse-grained
classification would simply include nouns representative of m,n, as well as m or
n, which does not make any distinction between regular polysemous nouns and
monosemous nouns.

3.1.3 Further details
Although each of the data sets that we built specifically for the experiments
presented in this thesis were encoded with different types of semantic information
(i.e. monosemous vs. polysemous information), they were used with the same
methods as target nouns to extract information to build distributional word
representations.

Each noun in the data sets was not contrasted with the actual occurrences of
the nouns in corpus data because we used several different corpora, which we
explain in detail in Section 3.2. Thus, the number of nouns available varied
with the corpus used. Likewise, the lack of contrast more accurately mirrored a
production-level system which does not control for what nouns are available in
the data it is provided. Therefore, each noun appears x times in each corpus. In
this way, by using the information of each individual corpus, our methodology
takes into consideration the “messiness” that is always encountered when working
with any type of raw language data.

For experimental and evaluation purposes, the data sets were balanced with
respect to class members and elements not belonging to the class. The elements
considered to not belong to a class were randomly selected from the set of nouns
that did not contain a sense in WordNet that corresponded to the target class being
classified.

3.2 Corpora
We used several different corpora in order to extract a wide variety of distribu-
tional data for our experiments and to ensure the transferability of our methods,
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as well as the validity of the results obtained. Table 3.4 presents and compares
each of the corpora used in the experiments presented in the subsequent Chapters
of this thesis.

Each corpora was a general domain corpus and we did not tune our methodology
to any specific domain in the classification experiments. Furthermore, we selected
corpora of various sizes to determine the effects of the amount of corpus data in
our experiments. Consistent results were obtained from the experiments reported
in this dissertation using different sized corpus, as will be explained in detail in
the following Sections and Chapters.

Corpus ID Sources Token Number Domain(s) Experiments References

IULA3M

Texts are selected
and classified
according to topics
proposed by
specialists in each area in English

3.2 Million

Law, Economics,
Environmental sciences,
Medicine,
Computer science and
Linguistic sciences

Section 4.1 [Castellvı́ Cabré et al., 2012]

IULA21M

Texts are selected
and classified
according to topics
proposed by
specialists in each area in Spanish

21 Million

Law, Economics,
Environmental sciences,
Medicine,
Computer science and
Linguistic sciences

Section 4.1 [Castellvı́ Cabré et al., 2012]

CRAWL30M
Texts were crawled
using specific
URLs as indicator.

30 Million general, web-crawled Section 4.2 [Pecina et al., 2011]

UKWAC60M

Texts were crawled
using URLS
ending with .co.uk as
indicators

60 Million general, web-crawled Sections 4.2; 5.1 and 5.2 [Baroni et al., 2009]

BNC90M

Texts include extracts
from regional, and
national newspapers,
specialist periodicals
and journals for all ages
and interests, academic
books and popular
fiction, published and
unpublished letters and
memoranda, school
and university essays,
among many other kinds
of text.

90 Million general Sections 4.3 and 4.4 [Burnard, 2007]

LARGE3BN

Concatenation of UkWaC
corpus (see above), BNC
corpus and a mid-2009
dump of the English
Wikipedia

2.83 Billion general, parts web-crawled Sections 4.3; 4.4 and 5.3
[Burnard, 2007];
[Baroni et al., 2009];
also following [Baroni and Lenci, 2010]

Table 3.4: Description and comparison of the different corpora used for the exper-
iments described in this thesis

Each of the above corpora were tokenized and PoS tagged using the Penn Tree-
bank Tagset for English. The BNC90M, UKWAC60M and the LARGE3BN corpora
were also parsed, tokenized, PoS tagged, lemmatized with the TreeTagger5;
they were dependency-parsed with the MaltParser, as described and detailed
in [Baroni et al., 2009] and used also in [Baroni and Lenci, 2010].
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DISTRIBUTIONAL WORD
REPRESENTATIONS FOR
CLASSIFICATION

Distributional representations model the contexts in which a given word has been
observed. However, what is considered to be a context is highly dependent on
the distributional model used. For instance, some models can use co-occurring
tokens as features, while other models consider combinations or lexical items as
features and still others use PoS tags, syntactic information, etc. Nonetheless, and
regardless of the type of context required by a distributional model, the extraction
of feature information from corpus data can result in sparse word representations
that, due to the heterogeneity of occurrences of words in context, contain a high
amount of zero values in the vectorial representation.

Sparse vectors are especially problematic to the classifiers because the “real”
information available in the word representation is undermined by the non-, or
zero, values, which machine learning algorithms can not efficiently differentiate
between. Furthermore, evidence occurring with low-frequency is typically disre-
garded by automatic systems, as demonstrated in the classification experiments
of [Bel et al., 2007, Bel, 2010], which results in the word representations pro-
viding insufficient class-indicative information to a machine learning classifier.
Thus, sparse data can affect word representations either because of the low
frequency of many of the words to classify, which does not provide sufficient
information for the classifier to make an accurate classification decision, or due
to the low frequency of particular representative contexts that are needed to
produce an accurate classification, which results in missing values being more
“informative” than actual data.

40



“thesisv7.6-submitted” — 2015/6/27 — 12:01 — page 41 — #61

CHAPTER 4. DISTRIBUTIONAL WORD REPRESENTATIONS FOR
CLASSIFICATION

The sparse data issue is not unique to any distributional model in particular, as
each model has its own challenges when it comes to populating vectors with
“real” numbers. For instance, on the one hand, the LING model, which we first
explore in Section 4.1, uses manually-identified linguistically-motivated lexico-
syntactic patterns to extract distributional information, which are dependent
on both the occurrence of these patterns in corpus data and the occurrence of
target nouns with these patterns in corpus data, which is problematic for many
low-frequency nouns. On the other hand, some distributional models, such
as the LINE model, use co-occurring tokens in a context window as features
that are difficult to generalize upon, resulting in the need for large amounts
of corpus data to achieve a sufficient predictive model; while more complex
distributional semantic model, such as the Distributional Memory: DM [Baroni
and Lenci, 2010], use features in the form of tuples containing information from
a syntactic-dependency parser, thus containing very specific information, which
result in high dimensional vectors with few “real” values.

Finally, we study Word Embedding WE in Section 4.4. WE representations
attempt to reduce the large, and typically very sparse, dimensions of the more
traditional count-context distributional representations. This is done by producing
representations that directly map the occurrences of a word in corpus data,
which has been said to be able to increase the expressive power of the represen-
tations [Bengio et al., 2003, Chen et al., 2013, Mikolov et al., 2013, Levy and
Goldberg, 2014a,Levy and Goldberg, 2014b]. The advantage of these representa-
tions is that they have been said to reduce the dimensionality of the vector space,
while they increase in predictive power. Nonetheless, WE representations cannot
be inspected, and they are useful when a large (it is important to emphasize large,
here, as these representations work best on corpora sized above 1 billion tokens)
corpus is available.

Each distributional model has both advantages and disadvantages when building
word representations. This Chapter primarily focuses on the use of distributional
representations of words from corpus data and the impact of their different types
of features used to classify nouns into lexical-semantic classes. In the work
presented in this Chapter, we deal with how to accurately represent words so
that classifiers can learn the relevant aspects of these representations to correctly
predict the classifications of unknown words.

In addition, we also address the related problem of noise, or instances of nouns
that are not members of a class but appear in indicative contexts of that particular
class. This is because for many features there is not an 1 − 1 association with
a specific class, which can cause many of the surface patterns to be ambiguous.
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Moreover, noise is problematic to word representations because: (i) the typical
application of filters to remove unwanted information cannot be easily applied as
we cannot afford to eliminate any available data and (ii) not all of the cases of
noise are representative of this obstacle, as handling better the polysemy of nouns
can play a role in overcoming this obstacle. Furthermore, we must consider a
priori the limitations of the use of low-level tools, such as Regular Expressions
over PoS tagged corpora, that can also introduce noise as they sometimes capture
unwanted information.

4.1 Building a linguistically-motivated distribu-
tional model

In this Section, we focus on the identification of lexical-syntactic patterns that
are indicative of nouns belonging to specific lexical-semantic classes. The work
presented in this Section had a two-fold objective:

• to define the linguistic patterns that are indicative of members of each nom-
inal lexical-semantic class;

• to assess to what extent data sparsity is an issue in the vectorial spaces
constructed with linguistically-motivated information.

Our hypothesis is that lexical-semantic classes are bound by certain linguistic
information, which is recurrent to members of a given class sufficiently enough
to be both recognizable and discriminatory. More concretely, members of a
given nominal lexical semantic classes can be identified by their occurrence in
indicative properties that appear to be linguistically significant for a number of
linguistic phenomena that characterize the class. We specifically adapted this
hypothesis to identify particular linguistic contexts that represent distributional
characteristics of a specific lexical class in corpus data and which also support
the building of specialized classifiers. Moreover, rather than very indicative,
exclusive cues to identify members of a given nominal lexical semantic class, we
identified a set of indicative though not exclusive cues, for each lexical-semantic
class. We did this because some features can still be useful, although they are
not class-exclusive, because they occur more frequently in data and, furthermore,
can also extract a larger amount of distributional information to provide to the
classifier.

42



“thesisv7.6-submitted” — 2015/6/27 — 12:01 — page 43 — #63

CHAPTER 4. DISTRIBUTIONAL WORD REPRESENTATIONS FOR
CLASSIFICATION

Finally, the work presented in this Section addresses lexical-semantic classes
in both English and Spanish. We studied the lexical-semantic classification of
nouns in two languages to demonstrate the validity and transferability of our
methodology to different languages.

4.1.1 Identification of class-indicative lexico-syntactic patterns
In what follows, we defined the criteria used for the identification of the
linguistically-motivated lexico-syntactic cues through a linguistic study of
possible class-indicative, or marked, contexts. The results of the following
experiments serve to verify that there is sufficient linguistic information from
which we can extract distributional data that is sufficient to classify nouns into
nominal lexical semantic classes. To begin, we first defined the major linguistic
categories from which we part to identify the linguistically-motivated indicative
features for each class. The linguistic categories include: predicate selectional
restrictions, grammatical marks, prepositional information and affixes.

(i) predicate selectional restrictions: Predicate selectional restrictions are
useful to identify class-indicative contexts because most verbs impose particular
semantic restrictions to their subjects and objects. For instance, verbs like happen
and cause are said to select different types of nouns as subjects, and these
differences can be generalized under the lexical-semantic class concept. Happen
selects for EVT nouns as subjects, whereas cause selects for agentive entities,
among which HUM nouns, see for instance [Rumshisky et al., 2007].

HUM nouns in both English and Spanish can be identified as subjects of particular
agentive verbs, and those that denote an intelligent act, such as admire, talk,
think, etc. [Levin, 1993] exhaustively categorized the semantic roles of verbs
in English and [Vázquez et al., 2000, Ferrer, 2004] conducted a similar task for
verbs in Spanish, which provides useful information regarding the semantic class
of the argument that the verb selects for. Selectional restrictions also apply to
complements other than the subject and object. In the case of LOC nouns, verbs
imposing certain selectional restrictions also impose subcategorization frame
constraints in the form of prepositional complements [Jackendoff, 1983]. Thus,
for English, verbs such as come, go and arrive are used as cues with different
prepositions, while for Spanish this holds true with the verbs venir, ir and llegar.
For English we have also identified some motion verbs that do not require
prepositions: enter, leave, etc., which are also indicative of LOC nouns [Levin,
1993].
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Selectional restrictions are also imposed by non-verbal predicative elements like
adjectives that can restrict the nouns they combine with. While the strongest
case is for collocations, there are also classes of adjectives that impose certain
constraints on the classes of nouns that they modify. For instance, [Dixon, 1982]
identified that human propensity adjectives tend to modify HUM nouns. Thus, the
modification of a noun by this type of adjective is indicative of nouns belonging to
the HUM class. Furthermore, the modification of a noun by particular adjectives
can be indicative to nouns belonging to other lexical-semantic classes. For
instance, geographical provenance adjectives that indicate nationality or religion,
etc. are indicative modifiers of HUM nouns, while adjectives such as such as far,
remote, etc. are modifiers indicative of LOC nouns.

(ii) grammatical functions: There are particular grammatical functions that
require nouns from a specific lexical-semantic class. While the class of the
subject is largely determined by the selectional restrictions of the predicate, as
we have just exemplified, we can say that Indirect Objects, both in English and
Spanish, preferably select for HUM nouns. Furthermore, to a certain extent,
by-Objects in passive constructions are also occupied by HUM nouns. HUM nouns
are also related to the dative alternation phenomena in English. In addition, Direct
Objects in Spanish that are marked with the preposition a are mostly indicative of
HUM nouns [Leonetti, 2004], as seen in Example 5.

(4) Ayer la chica conocı́a a su nueva profesora. // Yesterday girl met her new
professor.

(5) La hermana ayuda a su hermano menor // The sister helps her younger
brother

Certain LOC nouns can also have marks of grammaticalization, such as subject
complements. For instance, consider the phrase “A school is a place of learn-
ing.”, where place is also referring to the school, or a LOC where people can learn.

Adjuncts and modifiers of nouns to be classified are also indicative of certain
lexical-semantic classes, especially when they also co-occur with particular
particles. Clear cases of modifiers that describe the semantic characteristics of
the noun that they modify are relative clauses headed with certain marked relative
pronouns, such as who and whom (quién is the Spanish correlate). For instance,
these types of pronouns clearly refer to a HUM antecedent, while where (or the
Spanish equivalent donde, which is more restricted to LOC nouns than its English
counterpart) are indicative of nouns belonging to the LOC class.
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For English in particular, genitive complements (my brother’s book, for example)
tend to be filled with nouns belonging to the HUM class. Furthermore, possessive
determiners are known to modify HUM nouns, as for instance in his colleagues.
However, and as expected, these cues are not necessarily “exclusive” to nouns
belonging to just one lexical-semantic class. Along this line, these cues represent
instances of features that are only indicative in correlation with other cues as they
cannot be considered exclusive indicators of the classes. This point is further
justified by usage grammar theories, which postulate that emergent classes can be
based on a number of marked correlations.

(iii) prepositions: Prepositions, especially those said to be content preposi-
tions, can be very indicative of nouns that belong to a given lexical-semantic
class. [Tseng, 2001, Rauh, 1993, Jackendoff, 1973, Taylor, 1993]. On the one
hand, there are prepositions, such as during and the corresponding Spanish
preposition durante, that are key indicative features to identify members of the
EVT class. While, on the other hand, there are prepositions, such as at, within,
across or under, that are good hints of LOC nouns in English.

Other informative marks prepositions such as: en and según (in and according to)
are indicative of Spanish LOC and HUM nouns, respectively. Furthermore, nouns
themselves can also combine with complements and modifiers that are selected
by the semantics of the noun. Depending on the language, they can also appear
as noun-compounds or as PPs, which can help to indicate the class of the noun
that it is heading [Celli and Nissim, 2009].

(iv) affixes: The final category that we consider is affixes. Affixes provide crucial
indicative information regarding the lexical-semantic class of a noun. Along
the lines of [Bybee, 1985, Bybee, 2007, Bybee, 2010], we consider it to be an
important distinguishing feature, even for only moderately inflected languages,
such as English, because it provides evidence regarding the semantic preferences
of the root. This was further confirmed with empirical evidence by [Light, 1996]
who demonstrated that particular derivational affixes are good indicators of
HUMAN nouns in some languages.

For English nouns, suffixes, such as -er, -or, -ist, etc., effectively identify HUM

nouns, while for Spanish nouns, suffixes, such as -aco, -ano, -dor, etc., are good
indicators of nouns belonging to the HUM class. Indicative suffixes for LOC nouns
in Spanish, such as -erı́a, -al, -dero, etc., tend to be much more frequent than
those discriminatory suffixes for LOC nouns in English (-dom, -eria, -place, etc.).
Thus, the predicative power of a morphological cue is highly dependent on the
language and the class for which it is discriminating.
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Because we were primarily concerned with looking for features that were
indicative of a given lexical semantic class, although not necessarily exclusive
of that class, we also considered what we called “negative” features, or cues.
Negative markers are features that do not occur with class members. Thus, the
fact that a target is not seen with a negative feature and is seen with a positive
feature actually provides useful information to our classifiers.

To further illustrate the concept of the negative features, consider the positive
cue of a noun phrase headed with the preposition durante (“during”) for the EVT

class in Spanish. Grammatically, this preposition can never head a noun phrase
that is not an EVT noun. See Examples (6), (7), and (8) to see the use of durante
in several different noun phrases.

(6) Durante la fiesta - EVT. (During the party).

(7) #Durante el medico - HUM. (#During the doctor )

(8) #Durante la foto - COM. (#During the photograph )

As Examples (6), (7), and (8) demonstrate, a preposition like during cannot
be used to identify nouns of classes other than EVENT. However, when we
consider the correlation between several different features in order to arrive at a
classification decision, the inclusion of a feature that does not pertain to a class
can provide us with additional information about the distributional characteristics
and behavior that these nouns should not have in context. Thus, the negative cues
consist of information that is indicative of any other class.

In summary, each class was characterized by a number of different cues for
each language that were manually identified following the guidelines mentioned
before. Not all of them have the same distribution varying in sparseness (low
frequency) and noise (also occurring with non-members of the class). Table 4.1
contains some examples of patterns used for each class, while Appendix A.1
contains a list of all of the cues defined under the categories elaborated above.

4.1.2 Experiments
Our experiments have covered English and Spanish nouns for the following
classes: EVT, HUM, ORG, COM, and LOC. To elaborate on the results and conduct
a multilingual comparison, we provide details on the experiments for LOC, EVT

and HUM classes both for English and Spanish. For our experiments, we used the
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Class Examples of lexico-syntactic patterns
ORG x-NN (found|establish|organize)-VBD

LOC
(inside|outside)-IN
(the|a|an)-(DT |Z) x-NN

COM
(submit|publish|report)-V*
(the|a|an)-(DT |Z) x-NN

EVT
during-IN
(the|a|an)-(DT |Z) x-NN

HUM x-(−er| − or| −man)-NN

Table 4.1: Examples of lexico-syntactic patterns indicative of 5 different lexico-
semantic classes, which we refer to as marked contexts

3-million token IULA3M corpus for English and the 21-million token IULA21M

corpus for Spanish, as described in Section 3.2.

Each of the identified lexico-syntactic patterns have been formalized in a regular
expression, which was then used to directly extract information from corpus
data. The target nouns for each class were defined in the monosemous data set,
described in Section 3.1 and each data set was balanced with respect to class
members and elements not belonging to the class. The relative frequency for the
occurrence of each noun with a defined context populated a n-dimensional vector
provided to a classifier for each word.

For classification, we used a Decision Tree classifier in the WEKA [Witten and
Frank, 2005] implementation of pruned C4.5 DT [Quinlan, 1986] and evaluated
our representations in a 10-fold cross-validation testing environment.

The C4.5 (J48) [Quinlan, 1986] Decision Tree (DT) classifier is the first classifier
that we used for the work presented in this thesis1. We selected this classifier,
in particular, because it is fast to train and because it has been demonstrated to
work well in a binary class prediction task [Kotsiantis, 2007, Wu et al., 2008].
However, the J48 classifier does not have a high tolerance to noise or to handle
missing values. This can be especially problematic when a vector contains a high
number of missing values for attributes that register the occurrence of a lexical
item in particular contexts. This problem is especially exacerbated when a target
lexical item occurs with low frequency in corpus data.

1In subsequent Sections, as a consequence of the analysis of the results obtained at each step,
we refined both our method and the type of machine learning classifier used. Each classifier used
is clearly described in each Section where it is merited. We explore and discuss the impact of
different classifiers throughout the work presented in this thesis.
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Note that a missing, or zero, value can indicate one of two scenarios: (i) that
the missing value is caused by the token not being observed with a particular
context, although it could in other data collections or (ii) that the token does
not belong to the class and thus cannot occur in that particular context. This
uncertainty between lack of useful information and an indicative non-inclusion of
information creates uncertainty for this type of classifier because the zero values
provide incompatible learning examples that make the word representations
lose their predicative capacity, and therefore are not taken into account, or
the missing values actually are considered by the classifier to be handled as
informative features due to their large quantity and, thus, render ineffective the
class membership decisions of the classifier [Bel, 2010].

In plain terms, there is no way to distinguish between the large amount of zeros
that indicate a lack of occurrence of a target noun with a class-indicative feature
and the similarity to two items that is due to their large amount of zeros in each
respective feature vector. For this reason, we also place a special emphasis on the
origins of false negatives in our results because they tend to caused by the high
sparsity of distributional word representations.

4.1.3 Results
Table 4.2 presents the results obtained in our experiments for both English and
Spanish in terms of accuracy, False Positives (FP), or those items incorrectly
classified as members of the target class, and False Negatives (FN), or those items
incorrectly classified as not belonging to the target class.

English Spanish
Class Acc (%) FP(%) FN(%) Acc (%) FP(%) FN(%)
HUM 79.01 5.52 15.47 77.29 9.67 13.04
LOC 66.21 11.64 22.15 77.55 9.84 12.61
EVT 73.05 8.38 12.56 80.90 6.53 12.56

Table 4.2: DT classification results for English and Spanish, including accuracy,
percentage of false positives and percentage of false negatives

With an average accuracy of 72.75% for English nouns and 78.58% for Spanish
nouns, the overall results confidently demonstrate that the selected cues are
informative in distinguishing the addressed lexical semantic noun classes.

48



“thesisv7.6-submitted” — 2015/6/27 — 12:01 — page 49 — #69

CHAPTER 4. DISTRIBUTIONAL WORD REPRESENTATIONS FOR
CLASSIFICATION

Moreover, our results also demonstrate that it is possible to exploit the correlation
between syntactic, morphological and lexical co-occurrences to identify members
of a lexical-semantic class. Finally, there is no statistically significant difference
between the average accuracy obtained for Spanish and that the average accuracy
obtained for English, verifying that our approach is valid for different languages.

4.1.4 Discussion
Table 4.2 presents the results obtained from our experiments using the
linguistically-motivated class-indicative cues described above. An average
accuracy of 72.75% for English and an average accuracy of 78.58% for Spanish,
allowed us to confidently confirm our hypothesis that nouns of lexical semantic
classes can be automatically classified using the distributional information
extracted from linguistically-motivated class-indicative cues. Furthermore, the
results indicated that not all classes are equally identifiable using surface cues, as
demonstrated by a decrease in accuracy of more than 7 points for the LOC nouns
in English. This reduction of accuracy for the LOC class in English signaled
differences in terms of the degree of grammaticalization. Not all nouns occurred
with the same frequency, and likewise, not all classes were easily identified with
surface marks. One of the clearest examples, for instance, of a high and frequent
grammatical mark was for Spanish HUM nouns that tended to be marked as direct
objects headed by the preposition a.

Moreover, the results presented in Table 4.2 demonstrated that FPs are a result
of noisy instances in feature vectors, as we will explain below. Some examples
of what we found to be noise are, for instance, the noun pancarta (banner),
which was found after the prepositional expression después de (after), referring
to the temporal sequence of a demonstration headed by it, is a clear case of
coercion. Another example is the noun cárcel (prison), for which there are some
occurrences of años de cárcel (years of prison) in the corpus. This would lead us
to consider that prison or banner can either be interpreted also as an EVT or that
the cue produced some undesired matching.

Furthermore and as expected, FNs show that the main problem is indeed the
sparsity in vector representations. This was confirmed when we realized that
there are 68 English HUM nouns (almost 13% of the total) that were not found
in any of the contexts that were taken as cues. To further expand upon the
issue of sparse data, we highlight that the sparsity in feature vectors was not
necessarily an effect caused by the amount of corpus data. The English corpus
is approximately 14% smaller than the size of the Spanish corpus and, yet, the
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results are not statistically significantly different, indicating the size of corpus
data is not a significant factor when words are accurately represented with
linguistically-motivated class-indicative distributional information.

Finally, the morphological cues for each class yielded, though applicable for both
languages, have different results depending on the language. For example, in
English, derivational suffixes were strong marks for the HUM class, as many HUM

nouns are nominalizations. However, this did not hold true for the LOC class in
English. In this case, the derivational affixes are quite noisy, in comparison to
Spanish. This could be attributed to the fact that in English, the LOC class relies
heavily on compounding such as rice field and rose garden, while in Spanish
affixation is the preferred strategy, as illustrated in by the translations of arrozal
“rice field” and rosaleda “rose garden”.

4.1.5 Final remarks
Overall, the results of the experiments support our hypothesis that linguistic
information can be used to build comprehensive and accurate word representa-
tions. Moreover, the results confirmed that cue correlations, more than particular,
exclusive cues, provided a strong predicative power. This was observed because
none of the cues used prove to be exclusive of the class. Yet, our classifier was
able to assign the correct class to a word by identifying the correlations between
a series of our linguistically-motivated indicative marks.

The results presented in this Section also demonstrated the ubiquity of the sparse
data problem in this type of approach. On one hand, the use of linguistically
motivated cues as indicators toward a particular lexical semantic class can provide
very precise, though potentially infrequent, information as the occurrence of
a target noun with a cue is dependent on the corpus data available. On the
other hand, a lack of occurrences of indicative contexts (or of a target noun
with indicative contexts) will result in the classifier not to use the indicative
information toward a particular class as such, rendering this evidence ineffective
for nominal classification. Finally, the methodology presented in the Section has
been proven to be language-independent, although the linguistically-motivated
class-indicative cues, themselves, are not.

Our main conclusion from the work presented in this Section is that representa-
tions built with linguistically-motivated class-indicative patterns can effectively
build distributional word representations but still require more distributional
information to overcome issues of sparsity that we observed. Therefore, in the
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following Section, we design a strategy to effectively and efficiently utilize more
of the available distributional information in corpus data that encodes specific
behavioral characteristics of a lexical-semantic class.

4.2 Overcoming data sparseness with unmarked in-
formation

In order to further reduce the problems of sparsity observed in the results
in Section 4.1, we turn to what we called “unmarked” contexts in order to
provide additional and useful distributional information to classifiers, which we
demonstrate in this Section.

We defined unmarked contexts to be very general contexts that are typically
disregarded in distributional models because they have been thought to be too
general to contribute any relevant class-indicative information to a classifier, as
they tend to be observed with nouns of all lexical-semantic classes. Furthermore,
the basic claim leading most authors to neglect this kind of context is that it
presents a challenge for classifiers to accurately use this type of information in
class membership decisions and, therefore, is bound to negatively affect results
(see [Cooke and Gillam, 2008, Turney and Pantel, 2010, Bullinaria and Levy,
2012], among many others). In this way, unmarked contexts directly contrast
with the class-indicative marked contexts that we previously defined in Section
4.1. At the same time, however, they corresponded to a large amount of corpus
data was not being previously used, as discussed in Section 4.1.

Despite all this, we hypothesized that there are distributional differences in
occurrences in this type of context, which can be identified and captured and
learned from the data. As corpus data have a finite number of occurrences, we
expected that nouns of a given lexical-semantic class have a different distribution
than occurrences of nouns in those contexts that are not members of that class.
Therefore, our objective in this Section was to define a strategy that accurately
included the information extracted from unmarked contexts in the distributional
word representations, resulting in more accurate class membership decisions.

According to [Jakobson, 1971], unmarked contexts occur frequently because
they consist of all information not considered to be marked or indicative toward
a particular class. Furthermore, [Bybee, 2010] claims that general contexts, not
exclusive to a particular class (i.e. unmarked contexts, as defined above), are
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more frequent than contexts marked toward a particular class, as they occur with
nouns of all classes. In view of this, it further became apparent that a large part
of available distributional data was not being taken into consideration when these
very general co-occurrences (e.g. co-occurrence with an article are not taken
into account) observed with nouns of all classes were not considered at all in
lexical semantic classification tasks. This means that while there is sometimes
not enough information for classification, we are also not considering a large
part of the information available. Although these contexts are not necessarily
discriminative, we hypothesized that our distribution of the information extracted
with unmarked contexts among members of a given class differs from its
distribution among lexical items that are not members of the class, thus becoming
an indicative characteristic of the class.

In Section 4.1, we saw the impact of the of sparse data problem, especially due
to the fact that the classifiers cannot properly distinguish between zeros and
missing values, affecting their ability to learn and to make accurate classification
decisions. On one hand, the use of linguistically-motivated cues as indicators
toward a particular lexical semantic class can provide very precise, although
potentially infrequent, information as the occurrence of a target noun with a cue is
highly dependent on the corpus data available. On the other hand, the infrequency
of indicative information is problematic to classifiers, as a lack of occurrences
can result in the classifier to not consider the available indicative information
toward a particular class as such, rendering this evidence ineffective for nominal
classification. It became apparent that we needed to design a method in order
to capture and incorporate this type of information in feature vectors because it
is a source of information that is not typically affected by low frequency and,
therefore, it is always available to use.

Following previous work on the relation between these types of contexts and
sense selection [Rumshisky et al., 2007], we hypothesized that the distribution
of members of a class with respect to their occurrence in particular unmarked
contexts is consistent, meaning that class members occur similarly with unmarked
contexts and this behavior, which is divergent from the general occurrences of
all other nouns in the corpus with the same context can be captured and used to
inform classifiers and to improve results.

[Rumshisky et al., 2007] was one of the first to empirically provide evidence
toward an asymmetry in the way certain word senses are used in language,
preferably or rarely occurring in certain very general contexts (e.g. subject
position, occurrence with an adjectival modifier, etc.). The generic asymmetry
of use can occur across all argument positions and there are even some syntactic
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characteristics that can be strong indicators of a likely semantic interpretation
for that noun, which would indicate the class that it is being selected for in that
context, such as the difference in occurrence as a plural or a singular noun or a
noun phrase headed with a definite or an indefinite article.

This type of asymmetry refers to a difference in distribution, more specifically,
how semantically neutral contexts either co-occur with a target lexical item with
either more or less frequency, depending on the sense in which a word is used,
meaning that the contexts that a target item co-occurs with change according to
the sense that they are being selected for in that context. To illustrate this concept,
as argued in [Rumshisky et al., 2007], consider the EVENT noun invention,
which tends to be selected for more often as a RESULT-EVENT modified with the
determiner the in the argument position selected for by verbs such as produce,
explain, protect, develop, combine, etc. than as a PROCESS-EVENT modified with
the determiner an in the argument position selected for by verbs such as welcome,
avoid, stimulate, etc., although the noun can be selected for as both.

Parting from the conclusions of [Joanis et al., 2008], we considered that there are
class tendencies that can observed when using general contexts, such as unmarked
contexts. To the best of our knowledge, the use of unmarked contexts in cue-based
lexical semantic classification has not been previously explored, as these contexts
are considered to introduce noise, or non-discriminative information, into the
classifier, due to its claimed undifferentiated co-occurrence with nouns of all
classes.

In this Section, we proposed a strategy that informatively includes unmarked
contexts in word representations. We encoded the deviation of the behavior
of each target noun, as observed in unmarked contexts, with respect to the
average behavior of nouns in the corpus, based on our idea that using information
regarding occurrences in unmarked contexts will provide additional relevant
information to the classifier; especially with regards to those nouns of a given
lexical semantic class for which their occurrences in marked contexts do not
provide sufficient information for classification.

Considering such distributional evidence can increase the amount of information
made available to classifiers, our main claim is that our strategy informatively
includes this type of distributional information in classification tasks by taking
advantage of a bigger portion of corpus data, thus, improving the accuracy of
classifiers.
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4.2.1 Identifying unmarked contexts
In contrast with mainstream approaches to cue-based lexical-semantic classifica-
tion, we argued for the inclusion of a type of distributional information typically
not considered to be indicative of class membership, and thus not informative
to automatic classification systems. These very general contexts of occurrence
typically disregarded, as they are thought to be too general because they occur
with nouns of all lexical-semantic classes, and therefore thought to not contribute
any relevant information. At the same time, they correspond to a large amount of
corpus data that is a priori not considered due to the assumption that it does not
provide any class-indicative information.

Following the conclusions of [Rumshisky et al., 2007] regarding asymmetries
in the distribution of word senses in general contexts, our hypothesis is that the
distribution of members of a class with respect to their occurrence in particular
unmarked contexts is consistent and thus can be captured and used to inform
classifiers and improve results when considered along with other indicative, or
marked, contexts. Furthermore, the inclusion of unmarked contexts alleviates
problems caused by data sparsity in classification tasks by providing additional
information to classifiers. To assess to what extent this information can be used
in classification tasks, we had to identify such contexts and verify whether our
hypothesis was confirmed, i.e. if different lexical classes showed significant
variations in terms of distribution that might be explored to augment the amount
of information made available to classifiers.

Considering the characteristics of the contexts discussed above, we identified 32
unmarked contexts under a frequency criterion (see Table 4.3 for a description of
the different contexts identified)2 for English nouns from the HUM, LOC, ORG,
EVT and COM lexical-semantic classes. To identify these contexts, we considered
that the more frequent contexts will combine with more nouns in the corpus and
thus should not be marked for any restricted set. However, although they are not
considered to be class marks, we expected these contexts to be asymmetrically
distributed between lexical semantic classes, in an analogous way to what was
observed by [Rumshisky et al., 2007], with regard to the distributional behavior
of different word senses in language use.

We first studied the distribution of these contexts in a web-crawled corpus (see
CRAWL30M in Section 3.2). We compared the distribution of each context

2The full list of formalized regular expressions used to extract distributional information
for unmarked contexts in corpus data is freely available for download and use at http://
repositori.upf.edu/handle/10230/24562
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over all the nouns in the corpus and over nouns defined as part of a specific
lexical semantic class, according to our data sets (see Section 3.1 for detailed
descriptions of the construction of the data sets used). We calculated the average
of occurrence of each noun that pertained to a particular lexical-semantic class
in a specific unmarked context, as well as the average of occurrence of all the
nouns in the corpus with that same context; we then determined that if there was
a statistically significant difference between the behavior of nouns from specific
classes and the behavior of nouns in general with regard to the contexts identified
as unmarked.

Feature Type Description Examples
article target noun preceded by a(n) (in)definite article (a|an)-(DT |Z) x-NN or (the)-(DT |Z) x-NN
number target noun in plural/singular form x-NNS or x-NN

copula
target noun as
subject/object of verb to be x-NN be-VBZ,or be-VBZ,x-NN

modifiers
adjective or nominal modifier
preceding target noun x-JJ x-NN or x-NN x-NN

preposition of
target noun
preceding/following the preposition of x-NN of-IN or of-IN x-NN

subject of V
target noun as subject
of each of the 20 most frequent verbs in the corpus x-NN(have|get|make)-VB(Z D)

Table 4.3: Description of unmarked contexts identified and used in our experi-
ments

The results showed there were, in fact, statistically significant differences
(p < 0.05)3 in the behavior of nouns in particular classes with regard to certain
unmarked contexts. For instance, the occurrence of COM, ORG, LOC, and HUM

nouns with a definite article (the-DT) showed to be divergent from the average.
The occurrence with an indefinite article (a|an-DT) proved to be significantly
different for LOC nouns, while the co-occurrence with an adjective (x-JJ) was
significantly different for COM nouns. Thus, the empirical evidence obtained
confirmed that there are differences in the behavior of particular lexical semantic
classes with regard to their occurrence in unmarked contexts. Thus, the next
step consisted in determining the best way to make this information available to
classifiers.

To mirror the specificity of the distribution of each noun with regard to each
context considered, we subtracted the mean of occurrence of nouns in each
context from the actual occurrences of the target noun represented by the vector
in that same context to obtain each feature f , as defined in Equation 4.1, where ci
represents a given context, t a target noun, n any noun belonging to N , the set of

3The statistical significance was calculated using Student’s t-test (cf. [Krenn and Samuelsson,
1997]).
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all nouns in the corpus, and freq, the frequency of occurrence (e.g. = frequency
of occurrence of the target noun t in context ci).

f =
freq(t | Ci)

freq(t)
− 1

|N |
∑
n∈N

[
freq(n | ci)
freq(n)

]
(4.1)

We can encode the deviation of the behavior of that noun with regard to the gen-
eral behavior of all nouns in the corpus using the difference between the number
of occurrences of a given noun and the average occurrence of all nouns in a spe-
cific context. Under the hypothesis that nouns of the same class display similar
tendencies in terms of deviant behavior in the contexts considered, our strategy,
therefore, provides relevant information to the classifier. We apply our strategy to
two different corpora making apparent its robustness.

4.2.2 Experiments
In order to evaluate the impact of adding unmarked contexts to the previously
defined linguistically marked contexts, first, we had to extract distributional
information regarding the unmarked contexts identified (see Table 4.3), as well
as distributional information regarding class-indicative marked contexts. In
our experiments, we used the class-indicative marked contexts that have been
previously identified and described in Section 4.1 (see Table 4.1 for examples
or Appendix A.1 for a complete list of cues for each class). Our experiments
covered English nouns of the classes: COM, ORG, HUM, EVT and LOC from the
data sets introduced in Section 3.1. Each data set was balanced with respect to
class members and elements not belonging to the class. The final numbers of
nouns considered for our experiment is presented in Table 4.4.

Class ORG LOC EVT COM HUM

Class Members 138 157 260 262 246
Elements not belonging to the class 135 156 260 259 246

Table 4.4: Number of nouns included in data sets per class

For the purpose of the work presented here, we experimented with two corpora
to determine the transferability and robustness of our method, independently
of specific corpus data: the 30 million token CRAWL30M corpus to iden-
tify unmarked contexts and to train our classifiers and the 60 million token
UKWAC60M corpus (see Section 3.2 for a detailed description of each corpus
used). The use of two corpora ensured that our approach and classifiers were not
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over-fitted to any specific corpus data, instead confirming that the method we pro-
posed can be generalized and the results obtained are replicable given any data set.

We extracted the information using Regular Expressions to identify occurrences
of nouns in marked and unmarked contexts. For marked contexts, we used
the linguistic patterns defined in Section 4.1. The relative frequency of each
particular noun seen with a marked context was stored in an n-dimensional vector
that corresponds to the number of features used. The occurrences of a noun
in unmarked contexts were encoded in the same vectors following the strategy
outlined above (see Equation 4.1). Once all of the information was compiled, the
vectors were provided to classifiers.

For classification, due to the limitations discussed in Section 4.1 and the error
analysis conducted, we selected the Logistic Model Trees (LMT) [Landwehr
et al., 2005] Decision Tree (DT) for classification in this Section. We used the
LMT classifier in WEKA [Witten and Frank, 2005] implementation in a 10-fold
cross-validation setting for evaluation.

The LMT classifier essentially builds “logistic model trees”, which are classifica-
tion trees with logistic regression functions at the leaves, instead of selecting only
the most informative attributes for a tree structure. Thus, it partitions the feature
space into classes of observations to assemble into a tree. Because the C4.5
algorithm selects for only the minimum number of attributes, many informative
attributes are not taken into consideration for classification, thus, in many cases,
sufficient information is not provided to the classifier, resulting in inaccurate
classification decisions.

Furthermore, the LMT has been shown to better handle information sparse vectors
that are marked with a high amount of “zero” values, such as ours, by relying on
simple regression models if only little and/or noisy data is available. It also adds
a more complex tree structure if there is enough information to warrant such a
structure, thus arriving at even more accurate class membership decisions when
there is robust information available. Thus, the LMT classifier produces a tree
that contains linear regression functions at the leaves. Each function represents
the weight that a given cue contributes toward classification. Moreover, based
on logistic regression, this type of model makes no assumption regarding the
normality of the distribution of its variables. In our case, this is important given
the Zipfian distribution of corpus data [Zipf, 1935], which is an important feature
considering the type of data that we are working with.

We conducted a binary classification for each semantic class considered with
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the word representations that also included information regarding unmarked
contexts. For a fair comparison, we obtained what we consider to be the baseline
results from word representations that only include information regarding marked
contexts with the LMT classifier over CRAWL30M. This baseline allows us to
directly compare and assess the impact of unmarked contexts in nominal lexical
semantic classification.

4.2.3 Results
Tables 4.5 and 4.6 present the results obtained in our experiments in terms of Pre-
cision (P), Recall (R) and F1-Score (F1). The overall accuracy of all classifiers
for each experiment is also provided. The baseline classifiers achieve an average
accuracy of 70.84%. By including unmarked contexts in the vectors provided to
the classifiers, the average accuracy of the classifiers rises to 75.16%, representing
an error reduction of 4.32 points. We tested the statistical significance (p < 0.1)
of this increase in the accuracy of classification and, for all classes except for
HUM, the increase in accuracy between the baseline results and those obtained
when including unmarked contexts is significant.

Class original marked contexts

original
marked +
unmarked
contexts

marked
contexts

marked +
unmarked
contexts

P R F1 P R F1 P R F1 P R F1
ORG 0.64 0.62 0.60 0.70 0.68 0.68 0.76 0.74 0.74 0.75 0.74 0.74
LOC 0.72 0.70 0.70 0.73 0.73 0.73 0.70 0.70 0.70 0.77 0.79 0.77
EVT 0.70 0.68 0.67 0.74 0.73 0.72 0.73 0.72 0.64 0.73 0.72 0.69
COM 0.67 0.66 0.65 0.74 0.73 0.73 0.71 0.70 0.69 0.71 0.71 0.71
HUM 0.86 0.84 0.86 0.87 0.86 0.86 0.87 0.87 0.87 0.85 0.84 0.84
Acc. 70.84% 75.16% 75.05% 76.35%

Table 4.5: Precision (P), Recall (R), and F1-Score (F1) of classifiers over
CRAWL30M

Knowing that one of the potential downsides of using unmarked contexts in
classification tasks is an increase in noise, which will be elaborated upon later
in this Section, we conducted an error analysis of the results obtained using the
original marked contexts. This analysis made apparent that most of the noise was
due to imprecise information extracted with our regular expressions, leading us to
revise them as a result of this observation. In this process, there was no definition
of new marked contexts. This revision resulted in the 4 different experiments of
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which have results presented in Table 4.5. The revisions resulted in more accurate
and better defined regular expressions of our marked contexts.

As indicated by the results, these revisions in combination with the unmarked
contexts further raised the average accuracy of the classifiers to 76.35% (see Table
4.5), representing an error reduction of 5.51 points with regard to the baseline.
Having obtained these promising results over the data in the corpus used to
develop our approach (CRAWL30M), it was crucial to also verify the replicability
of our method using a different and completely independent corpus, as described
above. Moreover, replicating the original experiments over a different corpus was
also important to assure that the revisions made to the regular expressions did not
result in any over-fitting between the extraction of distributional information and
the corpus being used. We also note that the UKWAC60M corpus is 50% larger
than the corpus used to identify the unmarked contexts. The results obtained
using this corpus data are presented in Table 4.6.

Class
marked contexts

marked +
unmarked contexts

P R F1 P R F1
ORG 0.72 0.69 0.69 0.76 0.76 0.76
LOC 0.74 0.71 0.71 0.75 0.75 0.75
EVT 0.68 0.67 0.67 0.73 0.73 0.73
COM 0.69 0.69 0.68 0.70 0.70 0.70
HUM 0.86 0.86 0.86 0.84 0.84 0.84
Acc. 72.69% 76.03%

Table 4.6: Precision (P), Recall (R), and F1-Score (F1) of classifiers over
UKWAC60M

The classifiers that included unmarked contexts yielded an average accuracy of
76.03% over UKWAC60M, representing an error reduction of 3.34 points with re-
gard to the classifier including only marked contexts (using the revised version of
the regular expressions used to extract the lexical-syntactic patterns from Section
4.1), which is a statistically significant improvement (p < 0.1). Moreover, these
results represented an improvement of accuracy by 5.19 points with regard to the
baseline. This demonstrates, on the one hand, that the identification of relevant
contexts based on CRAWL30M data did not result in an over-fitted approach;
and, on the other hand, that the method presented here is robust, as we used
our classifiers with a completely different corpus and still yielded comparable
results. Because they were conducted on a corpus that was previously unseen,
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the results demonstrated the viability, as well as the transferability of our method,
below we detail only the results obtained on UKWAC60M data, as these results
are independent of all the preliminary studies conducted and thus demonstrated
the potential applicability of our approach to any corpus.

Class
marked contexts

marked +
unmarked contexts

members non-members members non-members
P R P R P R P R

ORG 0.79 0.52 0.65 0.86 0.78 0.72 0.75 0.80
LOC 0.82 0.55 0.66 0.73 0.78 0.70 0.73 0.80
EVT 0.73 0.57 0.63 0.78 0.74 0.72 0.72 0.73
COM 0.72 0.62 0.66 0.75 0.72 0.65 0.68 0.74
HUM 0.87 0.84 0.84 0.87 0.86 0.82 0.82 0.86

Table 4.7: Precision (P) and Recall (R) of classification of members and non-
members of different lexical classes over UKWAC60M

Table 4.7 presents the precision and the recall of each individual classifier over
UKWAC60M both with regard to the members of a given class, and those nouns
that are not members of that class. This table allows us to identify more precisely
gain insight regarding the contribution of unmarked contexts to the error reduction
in classification. According to our results, unmarked contexts allow us to gain
an average of 10.2 points in recall for class members, demonstrating that they
provide useful information to classifiers, which allows them to cover cases which
marked contexts alone were not able, most likely due to data sparsity. However,
the impact on precision varies between classes, as the inclusion of very frequent
information in the vectors representing target nouns may provide additional noise
to the classifier.

The precision of classification of class members decreases slightly with the
inclusion of unmarked contexts, although the differences are not statistically
significant (p < 0.1). However, the precision of the classification of nouns not
belonging to the classes considered significantly increases (p < 0.1) with the
inclusion of unmarked contexts in all cases except for the HUM class. This shows
that although unmarked contexts do not contribute to a better definition of the
characteristics of individual classes (see Table 4.7), they do allow for a cleaner
discrimination of members and non-members of a class, contributing to a better
partition of the classification space.
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Class
marked contexts

marked +
unmarked contexts

FN (%) FP (%) FN (%) FP (%)
ORG 23.32 6.71 13.43 9.98
LOC 22.30 5.75 14.74 9.71
EVT 21.91 10.42 13.82 12.97
COM 18.94 12.00 17.26 12.63
HUM 7.79 6.01 8.90 6.45

Table 4.8: Percentage of False Negatives (FN) and False Positives (FP) in classi-
fiers over UKWAC60M with and without unmarked contexts

Table 4.8 presents the percentage of False Positives (FP), i.e. nouns incorrectly
marked as members of the class, and False Negatives (FN), i.e. nouns incorrectly
marked as not belonging to a class, in the results of each classifier both with
and without the inclusion of unmarked contexts. Again, for each of the classes,
except HUM, the inclusion of unmarked contexts decreases the percentage of FN,
mirroring a reduction in sparsity and further indicating an increase of the amount
of relevant information. Yet, there was an increase of FP across all classes, which
signified an increase of the noise provided to the classifier, discussed in detail in
the next Section.

4.2.4 Discussion
In Section 4.2.3, we presented the results obtained in our experiments using
distributional information regarding both marked and unmarked contexts for the
classification of English nouns. Each unmarked context was selected based on
two criteria:

• Indicative of a grammatical mark where nouns of any class can co-occur in
context;

• High amount of occurrences in corpus data with nouns of any class.

Based on these two criteria, we objectively selected the contexts that we defined
as unmarked contexts. Along this line, we were rigorous in selecting contexts
that met both criteria; especially as our goal was to effectively increase the
information included in the word representation. This way, we did make sure that
the contexts selected were frequent; yet, we did not discount the possibility that
there are other unmarked contexts that exists. However, we leave their further
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identification and investigation to future work.

Overall, our results show that unmarked contexts either improve accuracy or do
not affect classification results. Specifically, the improvements in accuracy are
particularly significant for those classes for which there were difficulties to find
enough occurrences in marked contexts in previous experiments, i.e. those classes
with a higher level of FN when classified without using unmarked contexts.

Table 4.9 presents data regarding the range of absolute frequency of occurrence
in corpus data of nouns and how the average absolute frequency of each word
compares to the average absolute frequency of occurrence in marked contexts
and in unmarked contexts per class. Although, each class contains words with
a minimum frequency of 1, the range of maximum values per class differs. The
COM noun information, for instance, is the most frequently occurring nouns for
that class with an average absolute frequency of 55, 218 in the corpus (65, 899
occurrences with marked contexts and 89, 254 occurrences with unmarked
contexts), while the HUM noun author, the most frequently occurring noun
for that class, occurs with an absolute frequency of 5, 542 in corpus data (5635
occurrences with marked contexts and 9917 occurrences with unmarked contexts).

Unmarked contexts occurrences analysis

Class
Number of
In-class Nouns

Ave. absolute
frequency of
occurrences
of nouns in
corpus data

Av. absolute
frequency of
occurrence of
nouns in
marked contexts

Av. absolute
frequency of
occurrence of nouns
in unmarked contexts

Minimum
absolute
frequency
of class nouns

Maximum
absolute
frequency
of class nouns

Most
Frequent
Unmarked
Contexts

COM 240 1, 484 746 2, 532 1 (newscast, playbill) 55, 218 (information)
1. headed with definite article
2. modified by JJ

EVT 240 675 186 2, 544 1 (flashing, pileup) 15, 932 (experience)
1. occurs as singular
2. headed with definite article

HUM 227 451 285 864 1 (collegiate, defeatist) 5542 (author)
1. header of an “of” PP
2. Modified by a nominal

LOC 138 562 50 1, 089 1 (crawlspace) 9708 (property)
1. headed by an “of” PP phrase
2. selected for by the verb “to have”

ORG 125 1, 283 167 2, 453 1 (rabbinate, matriarchy) 19, 831 (company)
1. modified by a,nominal
2. Singular
3. selected for by the verb “to get”

Table 4.9: Average absolute frequency and range of noun occurrences per class in
marked and in unmarked contexts

Theses observations further indicate that the target nouns consistently occur
with a high frequency with unmarked contexts than with marked contexts. Thus
they tend to provide more available information that results in being useful,
especially in the cases where marked contexts do not provide an explicitly clear
representation to the classifier, as we will detail below. Yet, as we also mentioned,
there are some words that occur with an absolute frequency of only 1 in corpus
data, such as the EVT noun flashing. This noun, for instance, does not occur
in any marked contexts, yet it occurs 4 times in unmarked contexts, further
confirming the availability of unmarked contexts, especially in the cases where
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a noun occurs with extremely low frequency in corpus data. In these cases, the
unmarked contexts provide us with the distributional information necessary for a
class membership decision.

In general, the results confirm our hypothesis that the distribution of words in
unmarked contexts, when considered along with linguistically-motivated class-
indicative marked contexts, provide useful information to improve classifiers,
particularly when not enough class-specific information is available. In the sub-
sequent discussion, we further make apparent the main advantages of our strategy.

A trade-off between silence and noise

An important result of our experiments is the overall reduction in the negative
effect of sparsity caused by silence, or the low frequency of particular repre-
sentative contexts that are needed to produce an accurate classification, which
decreased by an average of 5.21% (see the difference in terms of FN in Table
4.8). This is attributed to an increase in accuracy (see Table 4.6): as more
information is supplied to the classifier, the additional information permits more
accurate membership decisions. To illustrate this, we consider examples from
the COM, ORG and EVT classes, for which there was not enough information for
classification when unmarked contexts were not considered. The inclusion of
unmarked contexts provided information resulting in correct classifications.

The COM noun theorem theorem occurred 118 times in the corpus, though only 8
times in one marked context, most specifically in a PP headed by the preposition
“to”, which was not enough to accurately classify it as a member of the COM

class. As this noun does occur in class-marked contexts, the information provided
is not sufficient for the classifier to make an accurate prediction regarding
its class membership. Thus, the lack of enough information provided to the
classifier is responsible for its misclassification. However, after the inclusion of
information regarding the behavior of this noun in unmarked contexts, the clas-
sifier was able to accurately decide for its inclusion as a member of the COM class.

This was also observed in the case of the ORG noun secretariat and the EVT noun
impulse, which occurred 190 and 154 times, respectively, in the corpus, yet only
8 and 12 times in marked contexts, including a PP complement headed with the
preposition “for” and in a PP headed with the preposition “by” without an article.
Yet, again, this was not enough for an accurate classification and the subsequent
inclusion of information regarding the distribution of these nouns in unmarked
contexts allowed for their correct classification.
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One of the main concerns regarding the use of unmarked contexts was the
introduction of extra noise as a side effect, and the way this affects classification
results. The impact of noise is further made apparent by the amount of FP
observed in classification results, see Table 4.8. In our experiment, we did
identify some cases of nouns correctly ruled out as members of a class when
using only marked contexts, which were incorrectly classified as class members
after the inclusion of unmarked contexts. The slight increase of FP in our
results (see Table 4.8) shows this method uses an approximation in order to
represent the distribution, which at times, as indicated above, can fail to provide
a clear-cut distinction to the classifier. However, in the overall results, this limita-
tion is compensated by the larger amount of nouns that were correctly classified
after the inclusion of unmarked distributional information (see Tables 4.5 and 4.6).

Analyzing the additional FP observed, we identify two different cases:

1. nouns correctly classified using only marked contexts as not belonging to a
class based on a borderline probability, which were incorrectly classified as
members of that class when unmarked contexts were also considered, again
based on a borderline probability;

2. nouns correctly classified as not belonging to a class as they hardly or never
occurred in class-marked contexts, but whose behavior in unmarked con-
texts was similar to that of members of the class being classified, thus pro-
viding contradictory information to the classifier and resulting in incorrect
classification.

The first case is illustrated by a noun like biography, which occurs 598 times in
marked contexts and was correctly predicted not to be a member of the LOC class
with a borderline probability score (0.47) when just included marked contexts
in its representation. The inclusion of unmarked contexts provided information
to the classifier, which slightly changed this probability (0.56), and resulted
in an incorrect classification. The noun megalopolis illustrates the other case.
Occurring only 3 times in class-marked contexts of the COM class, this LOC noun
had been correctly classified as not belonging to the COM class. However, its
behavior in unmarked contexts showed more similarities with members of the
COM class than with non-members, which resulted in its incorrect classification.

Due to the general low frequency of many of the words used, we observed a bias
toward the second case, in which the unmarked contexts were used to “fill in the
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blanks” where the missing values in the word representations of low-frequent
words were not sufficient for the classifier to make an accurate decision. This
was noted by the consistently low probabilities reported for these nouns. For the
purpose of this work, we consider low frequency to be an issue for words that
occur generally with an absolute frequent of less than 100, which actually affects
54.78% of our data set. In the UKWAC60M corpus this signifies that the total
absolute frequency of each of those nouns corresponds to only 0.00000167% of
corpus data.

Illustrating two paradigmatic cases of noise in the results of the classifiers, these
examples make apparent how unmarked contexts are sometimes responsible for
incorrect class membership decisions, and how further improving their use in
classification tasks, particularly in the case of borderline classification decisions,
remains a promising line of research to explore in the future.

More robust classification decisions

Besides the reduction of the impact of the lack of information in the features
vectors, that resulted in the consequent improvements in accuracy, as discussed in
the previous section, we also noticed that the introduction of unmarked contexts
provided additional information regarding the distribution of nouns that were
classified by chance (i.e. correctly classified nouns, with a borderline probability
score), resulting in more robust classification decisions.

We saw this with the EVT noun consolidation and the LOC noun coalfield,
for instance. Each of these nouns was correctly classified using only marked
contexts, yet with borderline probability scores: 0.52 and 0.53, respectively.
Upon providing information regarding unmarked contexts to the classifier, these
nouns continued to be correctly classified but with much higher probability
scores, and thus achieved more reliable classification decisions of 0.75 and 0.76,
respectively.

These examples are considerably different from those discussed earlier in this
Section, as they are far from being cases of sparsity. In fact, the EVT noun
consolidation occurs with an absolute frequency of 312 times in the corpus and
317 times in marked contexts while the LOC noun coalfield occurs 52 times in
the corpus and 53 times in marked contexts. We also acknowledge the difference
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between occurrences and marked contexts 4

In both of the above cases, almost all of the occurrences in marked contexts were
found to be with only one context, more specifically with morphological affixes.
The high frequency of nouns in just one cue is attributed to their occurrence with
a morphological marker, as explained in detail in Section 4.1. Morphological
markers provide a large amount of information in the feature vectors because they
correspond to an affix of the target noun, thus the occurrence of this cue is directly
related to the number of times that the noun is seen in corpus data. However,
although this context provides a large amount of indicative information for very
frequent nouns, this is not the case for nouns that occur with low frequency
in corpus data. Moreover, some nouns are polysemous, and thus, their class
membership can change based on the selectional preference of the context, which
would render null the effectiveness of this cue if the lexicalized context is not
indicative of the target class. In this way, we must rely also on the context of its
occurrences for the classifier to make an accurate decision.

Furthermore, the use of only morphological information can result in few
correlations between the evidence available due to the fact that occurrence with
only one marked context was observed, which causing a lower probability score.
This is problematic because morphological cues are the most frequently occurring
indicative cues, as they correspond directly to each occurrence of a word. Thus,
they are extremely indicative for highly inflectional languages; however, in less or
moderately inflectional languages, such as English, where there are not nominal
inflectional suffixes for all words or for all classes, this type of context is neither
sufficient nor available for all words.

The results obtained in the experiments using unmarked contexts also demon-
strate that classification results are unevenly affected by unmarked contexts.
As made apparent by the results, the contribution of unmarked contexts to the
classification of different semantic classes is not always the same. For example,
we observed that classes that demonstrated more disperse linguistic behavior
of their members, such as the ORG, LOC or EVT classes, improve more with
the inclusion of unmarked distributional information than classes with a more
homogeneous distributional behavior, such as the HUM class.

4Although there is a finite number of occurrences of a word in corpus data, there is not a finite
number of times that a noun can occur with a marked context or unmarked contexts. Due to the
nature of the patterns, different patterns may capture one occurrence of the word in a variety of
ways. To illustrate this concept, a noun can be captured in a pattern of a target noun modified by
an adjective and again in that same context it can be captured if it also contains an indicative affix.
It can even be captured a third time in that same context if the NP is the subject, for instance.
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To make our statement clearer, we claim that some nominal classes are composed
of nouns that tend to occur in a wider range of contexts, thus displaying a
more heterogeneous and disperse distributional behavior. This heterogeneity is
made apparent by an analysis of the overall distribution of the marked contexts
between the members of each lexical semantic class. In contrast with more
heterogeneously behaving noun classes, other classes are composed of members
that display a more homogeneous collective behavior that can be more easily
captured by distributional approaches.

Analyzing the distribution of cues between class members in UKWAC60M, we
identified, in each class, a set of cues that occurred with the majority of nouns
of the class, and which we will consider to represent the core linguistic behavior
of each specific class. We also observed the amount of cues included in this set
differed considerably from class to class (see Figure 4.1). Thus, the larger the
amount of marked contexts shared by the majority of the members of a class, the
more homogeneous we can claim their behavior to be. In the specific case of the
classes considered in this section, 30.7% of the cues for the HUM class are shared
by the majority of HUM nouns, while 26.6%, 13.3%, 9.5% and 9.1% of the cues
for the COM, ORG, EVT and LOC classes, respectively, are shared by the majority
of the nouns of each class, respectively as represented in Figure 4.1.

An effect of a class collectively having a more heterogeneous linguistic behavior
is that the evidence regarding each of its marks will typically be more disperse
and, as a result, often not strong enough to be considered by classifiers, which
explains the improvement introduced by unmarked contexts. In contrast, classes
like HUM, that are composed of nouns that generally occur in a common set of
prototypical contexts of that class can, on the one hand, identify contexts that
mirror the prototypical behavior of that class more straightforwardly and, on the
other hand, the class members almost always show enough occurrences in such
contexts to be merit an accurate classification decision. There are also strong
marks based on suffixes and degree of grammaticalization for the HUM class (as
demonstrated in Section 4.1), which can be more readily captured. For instance,
on the one hand, suffixes, such as: -er and -or are indicative of many HUM type
nouns (e.g. doctor, painter, officer, etc.) while the preposition during, when
preceding a nominal phrase, is very indicative of occurrences of EVT nouns.

These examples provide instances of features that can be easily identified for
inclusion in a feature vector, readily providing a large amount of class-indicative
information. On the other hand, there are other types of features that although
indicative, result in a much sparser feature vector because of their reliance of
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Figure 4.1: Percentage of cues occurring with the majority of class members, per
class

occurrence within corpus data. For instance the occurrence as the subject of an
agentive verb, which is considered an indicative feature for the ORG class, does
not necessarily occur readily with all members of the class, thus making marked
contexts that provide a homogeneous representation of the class more difficult to
capture.

In this way, when the more readily available and frequent marked contexts occur
with members of a class, the inclusion of extra contexts (e.g. unmarked contexts)
are rendered ineffective, as class membership decisions are already accurately
made to a great extent (in our case 86.19% of the times) based on the information
provided by marked contexts. This is consistent with the stability of the results
reported for the HUM class in the different experiments performed, which did not
demonstrate any significant changes with the inclusion of unmarked contexts.

4.2.5 Final remarks
Our main goal in this Section was to evaluate whether unmarked contexts im-
proved accuracy in our lexical semantic classification task by reducing sparsity in
vectors. Departing from the hypothesis that these contexts can provide additional
information to classifiers when there is not enough distinctive co-occurrence
information available, the results demonstrated that the use of unmarked contexts,
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which are typically discarded as non-discriminatory, can significantly improve
the results of lexical semantic classification when considered along with marked
contexts. Our results show that by using both types of distributional information
(i.e. marked and unmarked), we reduced the sparse data problem and subse-
quently improved classification, and indicated by the increase in classification
accuracy observed in Tables 4.5 and 4.6).

Yet, we also considered whether the combination of shallow distributional models
will provide the extra information necessary to make classification decisions,
where one or both of the individual models does not provide sufficient infor-
mation to the classifier. Thus, we also considered the combination of linguistic
information with linear “bag-of-words”-type features in an attempt to further
explore the potential of models that use surface information. In combining the
features from two models, as proposed in this Section, we can further determine
whether the distributional information of one model can be compensated with the
distributional information of the other, especially in the case that the information
provided by one of the models is insufficient for classification. In the following
Section, we further explore and discuss these combinatory strategies).

4.3 Comparing lexical semantic classification mod-
els

Following the results obtained in Section 4.2, our next logical step was therefore
to work on further reducing sparsity without introducing noise. To do this, we
compared our model built with linguistically-motivated class-indicative cues,
as described in Section 4.1, with other distributional models, including more
sophisticated and also simpler methodologies. The resulting analysis provides
insight to how the different features used to build these distributional models
that represent various levels of generalization (i.e. with contrasting levels of
complexity in terms of linguistic information, ranging from pre-defined tuples to
simple linear token information) can affect classification decisions.

Furthermore, the analysis of results from the classification decisions obtained
with each model also provides information regarding the origin of the obstacles
that have been identified to affect this task, as well as solutions to overcome
them. Along this line, we conducted an empirical study of the classifications that
each of these different distributional representations produce, which allowed us
to determine the effects (both advantages and disadvantages) of considering one
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type of information over the other.

As discussed in detail in Chapter 2, distributional models can vary greatly by
exploiting different representations of features. In the experiments presented
in this Section, we studied a structured distributional semantic resource, an
unstructured linear model and a linguistic model, as described below.

4.3.1 Distributional (semantic) models

The goal of the experiments presented in this Section is to empirically evaluate
the performance of different distributional models in a nominal lexical semantic
classification task, departing from the experiments explained in previous Sections.
We studied three models that exploit different types of distributional features,
thereby providing different representations of nominal behavior in context:

• The structured Distributional Memory model (henceforth DM: [Baroni and
Lenci, 2010]), introduced in Chapter 2, is a generalized framework for
distributional semantics that uses word-link-word tuples from a dependency
parse of a corpus as features. This is the only model that we have used, thus
far5, that incorporates the syntactic information provided by a dependency
parser.

We note that the DM consists of three different variations that are each rep-
resentative of different levels of lexicalization. For instance, the LEXDM
variation is the most heavily lexicalized of the three and considers each to-
ken; while the DEPDM variation has a minimum degree of lexicalization,
basing itself on the dependency paths between words. Finally, the TYPEDM
model represents a sort of middle level in regards to lexicalization. Based
on the idea motivated by [Baroni et al., 2010] that what matters is not the
frequency of the link between two words, but the variety of the surface
forms that express the link, this variation represents the types of contextual
realizations, not the tokens. Furthermore, TYPEDM model is representative
of the type level of generalization that we wish to achieve to classify nouns
into given lexical semantic classes. For these reasons, the work using DM

presented in this thesis is based on the TYPEDM model.

5In Section 4.4, we study Word Embeddings WE representations that also use information
from a syntactic dependency parser.
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• The linear model (henceforth: LINE), built by extracting tokens in context
windows of a target noun, is based on a bag-of-words-type model [Bulli-
naria and Levy, 2012]. In this model, features consist of tokens extracted
from a standard 5-word context window [Evert, 2008], to the right and to
the left of each target word.

• We also continue our study using our linguistically-motivated model
(henceforth: LING), which we built using the linguistically-motivated class-
indicative features of a given lexical semantic class, as described in Section
4.1.

The description of features that comprise each model further indicates the
differences of distributional information used to build the resulting word repre-
sentations. Table 4.3.1 presents examples of features from each of the models
considered. Furthermore, in Table 4.10 we can directly observe how the different
levels of generalization of feature information affects the number of cues required
by each model.

Targets typeDM LING LINE

COM 208 775, 747 16 27, 095
EVT 211 687, 019 20 27, 086
HUM 208 656, 023 17 27, 078
LOC 114 572, 191 22 27, 073
ORG 111 535, 675 16 27, 042

Table 4.10: Number of target nouns per class and number of features per class for
each model considered

typeDM LING LINE

accident-N
sub-int-happen-V x-NN when-WRB car
sub-int-occur-V until-IN the-DT x-NN injury
obj-cause-V since-IN the-DT x-NN road

Table 4.11: Example of features used for each model for the EVENT noun acci-
dent. In DM, features represent the syntactic position of a target noun as a com-
bination of dependency (sub-int) or its dependent head (happen-V); in LING, fea-
tures represent linguistically-motivated class indicative lexico-syntactic contexts,
such as a target noun (x-NN) preceding a specific adverb (when-WRB); in LINE,
features represent simple co-occurring words in a 5-word context window

71



“thesisv7.6-submitted” — 2015/6/27 — 12:01 — page 72 — #92

CHAPTER 4. DISTRIBUTIONAL WORD REPRESENTATIONS FOR
CLASSIFICATION

Finally, and as briefly mentioned in Section 4.2, in this Section we further
explored the potential of models that use surface information through the
combination of features from certain different models studied. More specifically,
from the LING model and from the LINE model, which resulted in a fourth model
(henceforth: LINGLINE) that uses both linguistically-motivated information as
well as linear context as features. In combining the features from these two
models, we further confirmed that the distributional information of one model
can be compensated with the distributional information of the other, especially in
the case that one of the models provides insufficient data for classification.

In line with the unmarked context approach proposed in Section 4.2, the com-
binatory LINGLINE model, on the one hand, the LINGLINE model combines the
distributional information extracted from the carefully-constructed linguistic
patterns defined in Section 4.1 and the distributional information from pre-defined
context windows, following the bag-of-words-type models. On the other hand,
our unmarked contexts strategy combines the same linguistically-motivated
class-indicative information with the unmarked context information encoded
from the deviation of the occurrence of a target noun with that context from
the average occurrence of all nouns with that same unmarked context. The
comparison of these models indicates whether harnessing data from more than
one model in a robust and informative way, can benefit classifiers, especially to
overcome the problem with sparse data.

4.3.2 Experiments
Each of the aforementioned models was trained on two different corpora: the 90
million token BNC90M corpus and the 3 billion token LARGE3BN corpus (Section
3.2 provides a detailed description of each corpus). We conduct these experiments
specifically on these two corpora because of their difference in size. In this way,
the results obtained provide empirical evidence that determines whether corpus
size has an affect on classification decisions for any specific model.

Although the same corpora was used to extract each model, the DM model was
the only model that also incorporated information from a full syntactic annotation
(tokens, PoS tags and syntactic dependency information) into its features. Each
feature for the DM mode consists of a type with its links generalized as patterns
inside the tuple. Each feature was extracted from corpus data using the typeDM
methodology to extract tuples, as defined by [Baroni and Lenci, 2010].

The LINE model uses only lexicalized tokens as features. To extract the features
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for this model, all PoS tags and punctuation were removed from the corpus
data and all tokens of at least 3 characters were extracted from a 5-word con-
text window to the right and to the left of each target word defined in our data sets.

Finally, the LING model uses the linguistically-motivated class-indicative
lexical-syntactic patterns, following the method to extract this marked context
information defined in Sections 4.1 and 4.2. The LING model required tokens
and corresponding PoS tags for feature extraction. Each lexico-syntactic pattern
was formalized in a Regular Expression to extract information regarding the
occurrences of nouns with each context. Table 4.10 provides the final number of
features considered per model and class.

All of the extracted feature information was used to build a word representation
for each class with each model by populating an n-dimensional vector for each
noun with the positive Local Mutual Information (pLMI: [Evert, 2008]) for each
feature. In the experiments presented in this Section, we use positive Local
Mutual Information to weight occurrence values because it is an approximation
of the log-likelihood ratio measure that has been shown to be a very effective
weighting scheme, especially in the case of sparse frequency counts (see [Baroni
and Lenci, 2010] for more details), which have been negatively affecting our
vectors in all of the work presented thus far.

The pLMI was calculated using the DISSECT toolkit [Dinu et al., 2013].
Following standard practice [Bullinaria and Levy, 2007], all negative weights
were raised to 0 and the information for each class and model was compiled into
a sparse matrix, consisting of four elements: target word, feature, weight and
class membership information that was provided to the classifier for classification.

Target nouns for each class were all obtained from the data sets described in
Section 3.1. We only considered those nouns that occurred both in BNC90M

and LARGE3BN. To ensure a direct comparison between the results obtained
on the small and large corpus data, we only classified nouns that occurred
in both corpora. As with the previous experiments, the data sets were also
balanced with respect to class members and elements not belonging to the
class (see targets in Table 4.10 for the final distribution of target nouns, which
presents the number of class members, each appearing n times in both corpora). A
binary classification was conducted for each semantic class in each model studied.

In this Section, each binary classification experiment was performed with a
CART: Classification and Regression Trees algorithm [Breiman et al., 1984] in
the Sci-kit learn [Pedregosa et al., 2011] implementation. This classification
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algorithm was selected for experiments in this Section due to the need to construct
a more powerful classifier that can handle high-dimensional vectors. From a
technical perspective, we encountered computational obstacles when handling
large data sets in the WEKA implementations of the classifiers that we have used
thus far. Thus, we needed to build a classifier that can efficiently handle our data
sets, mainly due to the inclusion of the DM model, which yielded hundreds of
thousands of features. The Sci-kit learn toolkit provided the necessary framework
to build a classifier that fit our needs. Within the classifiers available, the
CART classifier most closely resembled the classifiers that we have previously
experimented with, hence we selected it for the work presented in this Section.

The CART algorithm is very similar to the C4.5 DT, but differs in the fact that
it constructs binary trees using the feature and threshold that yield the largest
information gain at each node. Maximizing the information gain at each node
refers to the idea that the algorithm needs to choose a split among all those
possible at each node so that the resulting child nodes are the “purest”. Thus,
it minimizes the uncertainty of that particular split as the best selection for a
given attribute. For our classification tasks, we understand Information Gain to
define the preferred selection or sequence of features required to most rapidly
and efficiently arrives at an accurate classification decision. The mathematical
definition of Information Gain is illustrated in Equation 4.2, where S is an
number of training examples, Entropy(S) measures the impurity of S and A is
an attribute [Mitchell, 1997].

Gain(S,A) ≡ Entropy(S)−
∑

v∈V alues(A)

|Sv|
|S|

EntropySv (4.2)

4.3.3 Results
The results in Table 4.12 were obtained using the 3 billion token LARGE3BN

corpus. The results show that overall the F1-Score of each model demonstrates
a statistically significant improvement (p < 0.05) over a random baseline
when large amounts of data are considered. In regards to the performance of
the individual models, we observed that TYPEDM obtained the highest overall
results, with its F1-Score demonstrating a statistically significant improvement
(p < 0.05) over the F1-Score of both LING and LINE. We attribute this to the
inclusion of syntactic information provided by a dependency parse in the model,
which is one of the main differences between the TYPEDM model and the LINE

model. We reflect on this point in more detail in Section 4.3.4.
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typeDM LING LINE LINGLINE

P R F1 P R F1 P R F1 P R F1

COM 0.87 0.88 0.88 0.68 0.67 0.67 0.79 0.78 0.78 0.81 0.80 0.80
EVT 0.85 0.81 0.83 0.81 0.79 0.79 0.83 0.85 0.84 0.80 0.85 0.81
HUM 0.92 0.91 0.91 0.88 0.90 0.88 0.76 0.78 0.76 0.89 0.84 0.86
LOC 0.83 0.81 0.81 0.73 0.77 0.74 0.80 0.77 0.78 0.84 0.84 0.83
ORG 0.84 0.82 0.83 0.72 0.74 0.72 0.72 0.76 0.73 0.79 0.77 0.77

MacroAvg 0.86 0.84 0.84 0.76 0.77 0.76 0.78 0.78 0.77 0.82 0.82 0.81

Table 4.12: Precision (P), Recall (R), and F1-Score of classification using each
model of each class with a 3 billion token corpus (LARGE3BN)

Interestingly, the LING and the LINE models, which both consider shallower
features, achieve an F1-Score of 0.76 and 0.77, respectively, can already be
considered successful for use in NLP tasks. However, there is no statistical
significance between the F1-Scores of theses models, although there is a slight
difference in their recall and precision, especially when considering individual
classes. This implies that each model has different advantages in regards to the
lexical semantic classification of nouns, which we further investigate in our Error
Analysis in Section 4.3.3.

With respect to the individual classes, we observed that HUM and ORG classes
obtained stronger classification from the LING model while the COM, EVT and
LOC classes obtain stronger results with the LINE model, indicating that the
distributional model selected for classification should consider the indicative
properties of the class being classified, as demonstrated in Section 4.1. This
result further confirms one of our conclusions from Section 4.1, mainly that
not all classes are equally identifiable with specific surface cues, due to more
heterogeneous occurrence behavior in corpus data. For instance, the LING

model benefits classes, such as ORG and HUM, that have readily identifiable
class-specific features, such as morphological or grammatical marks while the
LINE model benefits classes in which the features considered to be indicative of
a class in linguistically-motivated models may fail to handle the heterogeneity
of members as they occur in actual language use. For these types of classes, the
information provided by the LING model may be too disperse in feature vectors
to be accurately captured by classifiers, while the linear features that are used in
the LINE model are much more numerous and thus contribute to a larger internal
variation in the vectors.

Furthermore, in Table 4.12, we also observed that the combined LINGLINE model
demonstrates a statistically significant improvement (p < 0.05) over both the
LING and the LINE models, respectively. As there is no statistical difference
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between the LING and the LINE models, individually, these results confirm that
there is a benefit to simultaneously use the features of both models; underlining
the compensatory effect of using information provided by the combination
of features from LING and LINE. For instance, LING includes indicative yet
potentially sparse and/or noisy features while LINE includes a simply large
amount of co-occurrence information. In this way, where the distributional
information provided by the features of the LING model is not sufficient for the
classifier to make a decision regarding class membership, the LINE model can
provide extra information to the classifier to arrive at a generally more reliable
decision and vice versa. However, we also acknowledge that the LINGLINE model
still does not outperform TYPEDM, which again emphasizes the added value
provided by the richer syntactic information available in TYPEDM. This result
also confirms the success of more structured DSMs to identify paradigmatically
similar words, which essentially form the basis for one of the basic criteria of
semantic classification.

As previously stated, we used two corpora for the work presented in this Section
to also study the effect of corpus size on classification decisions made with
different distributional models. The results in Table 4.13 were obtained using the
90 million token BNC90M corpus, which is approximately 20 times smaller than
the LARGE3BN corpus, to train each model.

LING LINE LINGLINE

P R F1 P R F1 P R F1

COM 0.66 0.68 0.66 0.74 0.73 0.73 0.72 0.73 0.72
EVT 0.71 0.71 0.71 0.66 0.64 0.65 0.74 0.71 0.71
HUM 0.87 0.86 0.86 0.70 0.70 0.69 0.91 0.87 0.89
LOC 0.69 0.64 0.64 0.64 0.62 0.61 0.74 0.74 0.73
ORG 0.81 0.76 0.78 0.70 0.70 0.69 0.77 0.77 0.76

MacroAvg 0.74 0.73 0.73 0.68 0.67 0.67 0.77 0.76 0.76

Table 4.13: Precision (P), Recall (R), and F1-Score of classification using each
model of each class with a 90 million token corpus (BNC90M)

Even when trained on smaller corpus data, the F1-Score of each of the models
still demonstrates a statistically significant improvement (p < 0.05) over a
random baseline. In regards to the performance of the individual models, we
observed that LINGLINE, obtains the highest overall results, with its F1-Score
demonstrating a statistically significant improvement (p < 0.05) over the
F1-Score of both once more affirms the compensatory benefit of combining the
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features of both models, especially in the case where one model lacks sufficient
information to make an accurate classification decision.

This result is further confirmed by the different of results between the LING

and the LINE models, where the LING model obtained a statistically significant
increase in F1-Score over the LINE model. Moreover, this result indicates that
the reduction of corpus data negatively effects the LINE model and effectively
reduces the amount of distributional data available, which hinders its ability to
accurately predict class membership.

Error Analysis

We conducted an error analysis based on the confusion matrices that resulted
from each classification experiment. In this way, we were able to identify that
the bottleneck of each model is a function of its resulting False Positives (FP)
and False Negatives (FN). Roughly speaking, we categorized FP to be interpreted
as a consequence of “noisy” feature vectors, while FN were interpreted as a
consequence of sparsity, or lack of evidence in the feature vectors, as previously
described in Section 4.1. In what follows, we summarize the observations that
can be drawn from the error patterns showed by each model in the different
corpus settings.

LARGE3BN (2.83 billion tokens):

We first look at the types of features used by each model. As we previously de-
scribed, the LING model consists of manually-identified linguistically-motivated
features considered to be indicative of the semantic properties of a given lexical-
semantic class. However, these features are not always exclusively indicative of
one class, as their predictive power can also arise through correlations between a
set of these features. Thus, there is a possibility that some of the features used by
this model are noisy and, thus, can hinder the ability of the classifier to make an
accurate decision.

For a further inspection, we constructed a confusion matrix that contains informa-
tion regarding the semantic class to which a given FP belongs. The binary setting
of the classification task did not allow for an analogous analysis to be conducted
on FN. Table 4.14 presents the overall results of this analysis. We observed a
large amount of EVT nouns to be classified as COM nouns and vice-versa. For
example, the COM noun reservation was incorrectly classified as an EVT noun,
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while the EVT noun discrepancy was incorrectly classified as a COM noun. This
trend was also observed with ORG and HUM nouns. For instance, we saw that a
large part of the FP of ORG are members of the HUM class (such as: comedian
and graduate) and a large part of FP of HUM are members of the ORG class (such
as: choir and regime). A high amount of confusion between FP of the LOC and
EVT classes was also observed.

COM EVT HUM LOC ORG

COM 0 36 43 29 26
EVT 49 0 27 49 26
HUM 20 20 0 22 52
LOC 23 37 16 0 18
ORG 21 21 33 27 0

Table 4.14: Confusion matrix of FPs from the LARGE3BN corpus

On the one hand, we can again attribute these FP to the fact that HUM nouns,
for instance, are explicitly marked, either grammatically or morphologically (i.e.
suffixes such as “-er”, “-or”, “-ir” or the subject of psychological-type verbs),
while ORG nouns can be considered collective HUM nouns, or a subset of this
class (see Section 4.1 for a detailed discussion of this phenomenon).

On the other hand, these misclassifications are also related to very particular cases
of lexical ambiguity. For instance, COM and EVT nouns, as well as LOC and EVT

nouns, have been considered in literature as examples of regular polysemy [Puste-
jovsky, 1995], as discussed in Chapter 2, in which a lemma can be selected for
in more than one sense. Under this assumption, some misclassifications can be
caused by the fact that a lemma is also a member of another (potentially related)
semantic class. It is important to note, however, that there is a systematicity in the
misclassification of the nouns observed in the confusion matrix that is attributed
to specific cases of lexical ambiguity. Nonetheless, a discussion of polysemy goes
beyond the scope of this Section, although it is revisited as the focus of Chapter 5).

BNC90M (90 million tokens):

When training with smaller corpus data, we observed that the results of the LING

model were consistent with results obtained with the 3 billion token LARGE3BN

corpus data. The most significant difference, however, was observed in the
results of the LINE model. Using a smaller corpus, we can directly see where the
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unstructured information of the LINE model is compensated with the linguistic
information of the LING model. This further highlights the value of combining
the distributional information from both models in the LINGLINE model(see
differences between models in precision and recall in Table 4.13), especially
in those cases where one model does not obtain sufficient distributional data
for an accurate classification decision. Hence, our results indicated that the
LINGLINE model effectively reduced the overall ratio of FP and FN that occur
with each model, individually, and furthermore, that it resulted in more accurate
classifications, as well as a broader coverage.

Finally, in regards to the semantic classes of the obtained FP, we observed trends
similar to those discussed with regard to the results obtained with the larger
corpus data. Along this line, we can say that although the amount of distributional
information is reduced, the tendencies of the behavior of the nouns remained
consistent.

4.3.4 Discussion
The work presented in this Section empirically evaluated the performances of
different distributional models in a nominal lexical semantic classification task.
Overall, the TYPEDM model consistently obtains the strongest performance,
demonstrated by a statistically significant difference between its results and the
results obtained with the other models. On the one hand, this can be attributed to
the inclusion of syntactic information provided by a dependency parse that can
provide more structure to lexicalized features. Furthermore, it can filter additional
noise incurred by extraction of the tuples of the DM model by reducing noise in
the vectors provided to the classifier.

Because the TYPEDM model is the only model that uses also the information
syntactic dependency parser, we directly attributed the statistically significant
increase in precision, recall and F1-Score to the reduction of noise that it provides
due to the inclusion of this information. Moreover, we also attribute this result
to the fact that the DM model a priori reduces very infrequent, potentially noisy
occurrences, such as parsing errors, for instance, because its tuples contain some
generalized link and semantic information, which can excluded noisy through
generalization. Along this line, we consider that general structural information
(e.g. syntactic parse patterns, copulative structures, position with relation to a
verb link, attribute nouns, prepositional phrases, etc.) provided by the TYPEDM
model become indicative of a given lexico-semantic class. Thus, the results
obtained by the DM model indicate that the quality of classification tasks increases
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with the inclusion of syntactic annotation.

In regards to the other distributional models that we considered, the results of
the LING model further indicate its dependence on the availability of specific
lexico-syntactic information in corpus data and the accuracy of a classifier to
correlate the relations between a set of individual features that together are
indicative of a given semantic class. However, as observed in Table 4.13, the
results indicated that the LING model does not necessarily require a large amount
of corpus data, in contrast to the LINE model. Hence, when available, the
linguistically-motivated cues of the LING model do provide sufficient information
to the classifier allowing it to make accurate class membership decisions.

As previously described, the results obtained with the LINE model indicated
its dependence on the availability of a large amount of corpus data to ensure a
sufficient amount of surface information. Consequently, when a large amount of
data is not available, the LINE model looses its predictive capacity. Moreover,
as the LINE model uses of many shallow features, there is a higher risk that
many of those features are uninformative and thus provide no useful or indicative
information to the classifier. Although we did not test the DM model on smaller
corpus data, our intuition is that it would also behave like the LINE model with
respect to data sparsity. In this light, these results confirm that sensitivity to
data sparseness is a general problem of count-context models, independently of
their being structured or not. Yet, an increase of features does not necessarily
reduce sparse data nor does it decrease noise. A common solution to improve
distributional models is to increase the numbers of features used in an attempt
to capture more distributional information. A larger amount of features would
actually cause further dispersion to the information available in the feature vector,
further increasing the amount of zeros for both positive and negative features,
which we have already confirmed that the classifier cannot distinguish between
and is one of the causes of unreliable classification decisions.

Moreover, as seen in Section 4.1, not all lexical classes may be equally identifi-
able through surface features (see also the differences in the F1-Scores of each
individual class in Table 4.12 and 4.13). In this way, the availability of contextual
distributional information, such as that considered in LINE, can help to overcome
the limitations assumed when manually-identifying linguistically-motivated
class-indicative features, such as low frequency of target occurrences or simply
a sheer lack of class-indicative marks. For these reasons, we can consider the
LING model to be ideal when trained on smaller corpora while the LINE model
can have more predictive power when trained on large corpus data.
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Furthermore, we observed that this combination of information produced a
compensatory effect in which each of the models provides information in
the LINGLINE model that may be lacking when considering the distributional
information provided by only one model, especially in the case of the LINE model
when trained on smaller corpus data. Thus, we also considered that the combined
LINGLINE model not only obtained State-of-the-Art results, but it does on
different-sized corpora. As a large, robust, syntactic dependency-parsed (large)
corpus is not always available for all languages, domains and/or tasks, the joint
exploitation of linguistically-motivated cues and linear co-occurrence features, as
demonstrated by LINGLINE, is also a viable alternative for classification.

Finally, we also compared the results of the LINGLINE model to the results
obtained using also unmarked contexts, as described in 4.2. Table 4.15 provides
a comparison of the results obtained from both experiments. The results firmly
confirm the benefits of the compensatory effect of combining distributional
information from more than one model. Furthermore, we observed that the
results from each experiment are consistent, and remain consistent on different
corpus data, which further validates the transferability of the combinatory strategy.

This is important to note, especially because one criticism of distributional
approaches is that sufficient corpus data was not used for training and testing.
These results further demonstrate that it is not necessarily the size of corpus data
that affects the quality of the results obtained, but rather results are effected by
the distributional representation used for classification.

Class
marked +
unmarked contexts:
UKWAC60M

LINGLINE:
BNC90M

LINGLINE:
LARGE3BN

P R F1 P R F1 P R F1
ORG 0.76 0.76 0.76 0.77 0.77 0.76 0.79 0.77 0.77
LOC 0.75 0.75 0.75 0.74 0.74 0.73 0.84 0.84 0.83
EVT 0.73 0.73 0.73 0.74 0.71 0.71 0.80 0.85 0.81
COM 0.70 0.70 0.70 0.72 0.73 0.72 0.81 0.80 0.80
HUM 0.84 0.84 0.84 0.91 0.87 0.89 0.89 0.84 0.86
Acc. 76.03% 80.39% 77.06%

Table 4.15: Comparing the results from the LINGLINE models and the Unmarked
Contexts approach

The results in Table 4.15 also demonstrate how the increase of information in
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the feature vectors can affect both the precision and the recall of the classifiers.
This is true for all classes using the combined models when compared to models
containing just one type of information. This is important to note because it
further confirms our hypothesis that the effective inclusion of a larger part of
previously excluded available corpus data, in addition to the information provided
by a pre-defined models (such as the linguistic information of the LING model or
the linear information of the LINE model) is crucial to the increase of accuracy of
the classification decisions. With the useful inclusion of this extra distributional
information, we are able to improve the acquisition of lexical-semantic class
information from distributional data in such a way that it provides more sufficient
information to the classifier, to further improve class membership decisions.

4.3.5 Final remarks
Overall, the work presented in this Section provides an empirical evaluation
of classifiers using word representations produced with different distributional
models. The results obtained underline the advantages and disadvantages of
each model. Moreover, the results in this Section consistently indicated that the
inclusion of syntactic information is an effective filter of noise. In this way,
retrieving information that appears related not only uses the parser to provide
more structured information to the classifier, but takes into account those features
known to be both grammatically and lexically relevant. In this way, we can
conclude that the quality of classification increases with the complexity of the
syntactic information included in the features of distributional models.

Furthermore, the analysis conducted in this work resulted in a strategy that is
capable of leveraging the bottlenecks of each model, by combining distributional
linguistic and linear features, especially when large robust data is not available.
Along with the results obtained in Section 4.2 using unmarked contexts, the
results obtained with the LINGLINE model serve to increase the reliability of
automatically constructed resources that require nominal lexical semantic class
information.

One limitation of this work is the assumption that the lexical semantic classes
considered are monosemous. As we observed in Section 4.3.3, this assumption
had a negative effect on some of the results obtained, especially because the data
sets used were not disambiguated for any specific task. In this sense, lexical
ambiguity is a more or less ubiquitous problem in most NLP tasks, at least in all
of those tasks that involve access to the contents of utterances. This phenomena
will be addressed in detail in Chapter 5.
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Finally, thus far in Chapter 4, we have addressed different distributional models,
and moreover, different strategies to build distributional word representations.
Besides observing the increase of predictive power with the inclusion of syntactic
dependency information. The DM model, for instance, obtained an F1-Score that
was an average of 6 points higher than the other models. We also observed the
decrease in predictive power of certain models when corpus data was reduced
(recall the decrease of F1-Score of 10 points with the LINE model when using the
BNC90M). Furthermore, the empirical evidence confirmed that supplementary
information is critical when there is not sufficient data for an accurate class
membership decision. For these reasons, we conclude that we still need strategies
to identify how to include more indicative distributional information, which do
not affect the sparsity in vectorial spaces. These strategies must ensure that these
spaces are filled with descriptive and relevant information, resulting in a decrease
of noise as well as a reduction in sparsity.

Thus far, we have based the acquisition of lexical information on the increment
and refinement of the features used to construct the distributional model. Each
model studied had used the frequency of occurrences of each of these features
with target lexical items in corpus data to build word representations. In this way,
these models assume that the more frequently a feature occurs with members of
a given class, the more predictive that feature is, resulting in more predicative
power in the word representation.

In this next Section, we use Word Embedding (WE) models [Mikolov et al.,
2013], based on Neural Networks to map the similarity of instances observed
directly from corpus data to build word representations. These representations
have been demonstrated to provide more similar word representations to the
classifier, which reduces the reliance on the selection of relevant features. We
explain in detail the experiments conducted with these WE models in Section 4.4.

4.4 Using WE representations for nominal lexical
semantic classification

Recently, Word Embedding (WE) models [Mikolov et al., 2013] have been adapted
and used more and more to build word representations for NLP tasks. such as
Named Entity Recognition, Chunking and Semantic Role Labeling [Turian et al.,
2010, Collobert et al., 2011, Socher et al., 2011]. Additionally, theses learned
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vectors have proved to perform better than frequency-based vectors (see [Baroni
et al., 2014] for a thorough comparison) in certain NLP tasks. The salient novelty
of this approach is that the features of word representations are parameters to
be learned. Moreover, the number of dimensions is defined a priori, and the
representation of corpus data is then condensed into the pre-defined number of
features specified. In this Section, we evaluate how WE can be used for and how
they effect our nominal lexical semantic classification tasks.

In contrast to the models studied in Section 4.3, (WE) models are learned using
neural networks by means of the back-propagation algorithm that minimizes
the differences between training samples. Intuitively, neural networks take into
account observed word-context pairs and induce latent parameters on the basis
that words that appear in the same contexts have similar parameters. It has been
demonstrated that these learned vectors indeed capture syntactic and semantic
similarities [Mikolov et al., 2013].

[Levy and Goldberg, 2014a] have extended the approach proposed by [Mikolov
et al., 2013] that uses only the raw text of corpus data, to also include syntactic
information provided by dependency-parsed corpora in the representations. The
objective is to reduce the scope of “co-occurrence” (or context windows) to
words that occur in a dependency relation with a target word. This results in WE

representations that assign similar vectors to words that occur in similar contexts.
Essentially, this provides word vectors that are already similar to each other
to a machine-learning classifier, which removes much of the decision-making
process, as the representations are already indicative of the classes that the words
belong to due to their similarity.

4.4.1 Using word embeddings for lexical-semantic classifica-
tion

In previous Sections, we have identified that one of the crucial issues in lexical
classification is word representation as a problem of feature design and selection
due to the sparsity of many of the frequency-based features. If we recall from the
previous Section, different models require different numbers of features, directly
affecting the resulting word representations. The most exhaustive models, such
as the DM model, also required the highest number of features, which although
effective, does result in sparsity in the vectors.

For our specific task, we build our word representations using WE derived from
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dependency-parsed information for our task of lexical semantic classification.
Our intuition was the dense WE vectors, with no zero values, that maintain the
distributional information of corpus data, will indeed be useful to a classifier that
tries to find similar semantic components between different words. Moreover,
we considered this particular instance of WE specifically because it also includes
dependency information from a syntactic parse, which previous work has
demonstrated to have a crucial role in obtaining stronger classification results, as
discussed in detail in Section 4.3. In this Section, we further build on the work
presented in Section 4.3 by further comparing the different distributional word
representations already studied with the word representations that we obtain from
WE models.

One of the most salient differences between the count-context models used for
nominal lexical semantic classification in Section 4.3 and the work described in
this Section is the number of features considered (see Table 4.10). While the
number of features considered for LING, LINE and typeDM could vary depending
on the corpus (due to the length of its vocabulary) or the number of selected
features, for the WE model the number of features used is constant. This is
because the number of features considered per word is actually a parameter to
be learned and is defined a priori as such. For the purpose of the work in this
Section, we used a standard dimension size of 200 [Levy and Goldberg, 2014a] to
build our word representations. Table 4.10 provides a comparison of the number
of features considered for each model.

As described above, WE do not look to find the most indicative features of the
lexical-semantic class, such as LING attempts to do, nor does it consider all of
the frequency information found in the context window, such as LINE. Rather,
WE tune the values of a set of features to assign similar words similar vectorial
representations.

4.4.2 Experiments
For our experiments, we used dependency-based word embeddings to build
our word representations, as detailed in [Levy and Goldberg, 2014a]. The
dependency-based word embeddings are actually a modified version of the
skip-gram approach6 [Mikolov et al., 2013] that also incorporates the syntactic
information from a dependency parse into its representation. Therefore, this

6As mentioned earlier, the WE built with the skip-gram approach [Mikolov et al., 2013], better
known as WORD2VEC, are available for download and use at https://code.google.com/
p/word2vec/.
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approach also considers contexts based on the syntactic relations the word
participates in, which is in contrast to the simple raw words of the windows of
size k around the target word of WORD2VEC.

We compared the performance of new classifiers against the three models
previously used for the same task and using distributional vectors, as described
and presented in Section 4.3. To ensure a direct comparison to directly compare
the results obtained in this Section, we trained the WE on both the 90 million
token BNC90M corpus and the 3 billion token LARGE3BN corpus, following the
methodology defined in Section 4.3. All evaluations were conducted in a 10-fold
cross validation setting.

4.4.3 Results
Table 4.16 presents the results obtained for the LINGLINE and TYPEDM model,
as well as the results obtained using WE representations. The results obtained
with WE demonstrated a statistically significant improvement (p < 0.05) over
the TYPEDM model for the COM, EVT and LOC classes. For the HUM and
ORG classes, although there is a slight improvement (0.003 for ORG and 0.017
for HUM), these improvements did not demonstrate statistical significance.
Furthermore, the results also demonstrated an overall average accuracy increase
of 16.0 and 6.0 points over the LINGLINE and DM models, respectively.

Class LINGLINE* typeDM* WE

COM 0.80 0.88 0.93
EVT 0.81 0.83 0.93
HUM 0.86 0.91 0.93
LOC 0.83 0.81 0.93
ORG 0.77 0.84 0.84
Average F1-Score 0.81 0.84 0.91

Table 4.16: F1-Score for each class using each model over LARGE3BN. The
results for the models marked with * were previously obtained, reported and elab-
orated upon in Section 4.3

Table 4.17 presents the results obtained we obtained using WE word representa-
tions with the BNC90M corpus as well as the results for the LINGLINE model,
first presented in Section 4.3.
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Class LINGLINE* WE

COM 0.72 0.90
EVT 0.71 0.93
HUM 0.89 0.90
LOC 0.73 0.87
ORG 0.76 0.83
Average F1-Score 0.76 0.89

Table 4.17: F1-Score for each class using each model over the BNC90M

The results obtained for WE using the BNC90M corpus data again demonstrated
a statistically significant improvement (p < 0.05) over the LINGLINE model and
with smaller corpus data. This improvement is consistent for each class, except
for the HUM class (in which the improvement was not statistically significant at
(p < 0.05) for its highest scoring model). Furthermore, the results obtained with
the WE model demonstrated an average overall increase of 13.0 points in the
F1-Score over the LINGLINE model.

We attribute the increase of F1-Score to the fact that the LINGLINE model is
more dependent on size and availability of corpus data for training purposes.
Thus, the results indicated that WE representations have an advantage over both
of these models when considering a reduced corpus size (90 million tokens) for
training. However, we do acknowledge that although we reduced the corpus size,
a 90 million token corpus should by no means be considered a “small” amount of
data.

4.4.4 Discussion

In this work, we evaluated the word representations built with WE in a nominal
lexical semantic classification task to determine whether the learned vectors pro-
vide more informative word representations, resulting in improved classification
decisions. Given the extremely successful results obtained, we explored the
two main obstacles that we identified to have an impact on the results of word
representations when analyzing the results, especially given the novelty of using
this approach for nominal lexical semantic classification:

• The effects of frequency of target lemmas on classification when using WE

representations.
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• The impact of polysemy on classification results obtained when using WE

representations.

Frequency effect on WE models

Our intuition was that word frequency would not have an effect on the accurate
classification of target nouns when using WE word representations. This is due to
the fact that feature vectors are weighted based on similarity of a target nominal
to other nominals found in similar contexts, rather than on how many times the
noun itself was seen (but, probably, on how many shared contexts were found).
Moreover, the WE are using all of the contexts available to a given word, similarly
to the DM model, hence the minimal differences between the results obtained
with these two models.

We observed in our results that the frequency of the target nouns considered per
class ranged from an absolute frequency of 192 in corpus data (pugilist of the
HUM class) to an absolute frequency of 2, 350, 093 in corpus data (information of
the COM class). We then looked at the frequency of occurrence of those nouns
per class that were misclassified to determine if the misclassifications occurred
with nouns below a certain frequency. However, the results obtained did not
demonstrate any particular, or recognizable, pattern in the amount of occurrences
of the misclassified nouns. For instance, there were sixteen misclassified nouns
from the COM class. Of these nouns, only one noun, (notepaper), had an absolute
frequency of less than 1, 000, while nine nouns were observed to have an absolute
frequency between 2, 500 and 8, 500 in corpus data, five of which had an absolute
frequency of more than 20, 000.

This trend was also consistent for the other classes studied. The HUM class
obtained twelve misclassifications, of which one noun (highness) has an absolute
frequency of less than 500 times, while nine nouns had an absolute frequency
ranging between 10, 000 and 100, 000, with two of these instances (customer and
human) occurring each more than 1, 000, 000 times in the corpus data. Although
there were only eight misclassifications of the LOC class, the nouns misclassified
were not necessarily low-frequency nouns with absolute frequencies ranging
from 2, 668 (domicile) to 121, 767 (port).

Along this line, we cannot conclude that frequency of the noun in corpus data is
one of the obstacles of classification when using WE. Our results indicated that
the absolute frequency of a noun does not affect classification. This is in contrast
to the LING model, for which the total frequency of target lemmas is crucial
because the availability of distributional information is dependent on target nouns
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occurring with linguistically-motivated class-indicative contexts, and it is also
in contrast to the LINE model, which is dependent on the availability of a large
amount of corpus data to ensure a sufficient amount of surface information. The
results obtained confirmed that the representations built by WE are not actually
dependent on high-frequency nouns, as tends to be the case with count-context
models. Thus, we can say that the construction of efficient WE representations are
dependent on the occurrences of a target in contexts where other similar target
nouns are occur, rather than the amount of occurrences of that target, such as in
count-context models.

Polysemy and WE models

As clearly identified in Section 4.3, polysemy is an obstacle to distributional
model due to the conflation of all senses of a target word in one vectorial repre-
sentations. This issue mainly stems from the fact that all of the co-occurrence
information of a target noun is being stored in one feature vector, although some
nouns have the potential to occur as more than one sense within corpus data.
This becomes a problem when providing feature vectors to a classifier especially
because all of the senses that a noun can be selected for are dispersed within the
vector and, therefore, the noun may not have enough distributional information
as a member of any of its classes for classification. Moreover, nouns may not
occur sufficiently as a member of the class to be classified, thus the distributional
profile for that noun may not provide any information toward the indication of
that specific class.

Our intuition here is that WE will lessen the effect that this sense dispersion can
have in count-context models by more evenly distributing the available sense
information within the distributional representation. An analysis of the results
obtained with WE indicated that some cases of misclassifications can be due to
polysemy within our results. One particular case that we observed was with the
ORG noun delegation, which was misclassified as a ORG noun and then later
classified as an EVT noun. Here, the noun delegation may have occurred as a
nominalization in our corpus data in contexts that are more similar to other words
indicative of “the action of entrusting a responsibility to others”, rather than
in contexts of words indicative of a “persons who are representative of others”
and thus acquired a feature vector more similar to EVT nouns. To illustrate this
difference further, consider the noun delegate in Examples 9 and 10, where it is
selected for as members of different classes in each context.

(9) The delegation (HUM) arrived to the summit prepared to propose their new
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platform.

(10) The main responsibility of the manager is the delegation (EVT) of tasks
among the group members.

Another case of misclassification due to polysemy that we observed was with
the HUM noun parent, which was classified as a COM noun. In this case, we
also observed a temporal shifting of senses within corpus data, which can be
dependent on the type of corpus considered. For instance, in some contexts, the
noun parent can be used as a term in a computer science domain to define “a
node that is one step higher in the hierarchy”, rather than being used in the sense
of a “familiar caretaker of children”. In this case, again, we have to consider not
only the occurrence of the misclassified noun in contexts indicative of its target
sense, but also the entire network of information that the WE model links to it
through mapping, which could bias the resulting word representation to one sense
over the other.

Thus, WE representations do not fully solve the problem of polysemy in nominal
lexical semantic classification tasks; but they do seem to lessen the effects of its
consequences, especially in comparison to results obtained using other types of
models, as described in Section 4.3. Overall, although we identified punctual
cases of misclassifications due to cases of lexical ambiguity, as discussed above,
the results obtained still merit the conclusion that WE representations can much
more efficiently handle polysemy than representations built with count-context
models.

4.4.5 Final remarks
Considering the results obtained using WE for our nominal lexical semantic
classification task, our results indicate that WE representations handle polysemy
more effectively than count-context models, as the number of misclassifications
due to polysemy is lower, in general, to what has previously been reported in
the State of the Art as well as what has been observed in the results of previous
Sections. However, we must note that the data set used for the evaluation of the
work presented in this Section was not constructed to specifically evaluate the
effects of polysemy on classification, as described in Section 3.1. The use of WE

representations to the handle obstacles of polysemy in classification tasks will be
revisited in Section 5.3.

Given the results obtained and our goal to evaluate the use of WE representations
in nominal lexical semantic classification tasks, our results confidently confirmed
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that the information provided by WE in their distributional representations does
result in more accurate and robust classification decisions, further verified by
the statistically significant improvement in precision, recall and F1-Score, in
comparison to other models that we considered in the scope of this thesis. This
type of an analysis would require further investigation, including an inspection of
the contexts that contribute to the construction of WE. Yet, WE representations do
not allow for the intrinsic inspection of the behavioral characteristics that led to
a particular classification decision. Thus, although the use of WE representations
improves the accuracy of classification decisions for all of the classes studied,
from a linguistic perspective, we are unable to draw conclusions regarding the
lexical or linguistic boundaries that distributionally characterize each classes, as
we are able to do with other models.

Furthermore, this raises the question of whether to pursue the identification
of learnable lexical-syntactic contexts that can induce word representations or
simply improve upon or refine these distributional representations that cannot
be inspected. The debate of this question goes beyond the scope of the work
conducted for this thesis, but it does open a door for extremely relevant and
interesting future research lines.
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HANDLING POLYSEMY IN
DISTRIBUTIONAL WORD
REPRESENTATIONS

The work presented in the previous Chapter focused on different distributional
models to build word representations of nouns from corpus data. Based on the
results obtained, we concluded that lexical semantic classes can be automatically
acquired using corpus data, using distributional characteristics, although the
success of classification is directly tied the use of information by the model.
However, one issue recurrently observed to be a cause of “errors” in classification
decisions was lexical ambiguity, even after overcoming the obstacle of data
sparsity with WE representations.

Furthermore, and as discussed in Chapter 2, this topic is also typically ignored
in most related empirical work [Boleda et al., 2012b]. Lexical ambiguity is an
important phenomenon to cover for several reasons, for instance, it that can intro-
duce noise into a vector due to the “occurrence” of a target nouns with misleading
corpus features, in which nouns occur in contexts that do not correspond to their
assumed lexical class. This is also due to the fact that most data sets do not take
into account the possibility of nouns belonging to more than one lexical semantic
class. Furthermore, as the distributional representation of each word conflates all
of the senses into one vector, misclassifications can occur if a target word occurs
more frequently in contexts characteristics to another class. Because lexical
ambiguity is an extremely broad topic, we focus on one aspect that we consider to
have the biggest impact on distributional word representations: regular polysemy.

Regular polysemy, or the systematic alternation between two senses of a word,
hinders distributional representations because it allows some nouns to be selected
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for as a member of multiple classes. This phenomenon affects a number of
members of lexical semantic classes, and it occurs only in particular classes,
where it has been recurrently seen. This results in the word representations of
regular polysemous nouns to contain distributional information that is indicative
of more than one lexical semantic class in the same vector. Moreover, regular
polysemy presents a challenging problem for supervised classification tasks, such
as in our case, because most authors do not distinguish among related senses of
the same word in their data sets, considering individual item as part of a class or
not ( [Hindle, 1990]; [Bullinaria, 2008]). This is particularly problematic when
words allow for multiple selection, i.e. when different senses of the same lexical
item can be simultaneously selected for in one sentence, as illustrated in Example
(11).

(11) noun: church
a. The church discussed its role in society at the gathering.

(ORGANIZATION)
b. The choir rehearses on Saturdays at the church. (LOCATION)
c. There is a collection organized (ORGANIZATION) by the church on

Mulberry Street (LOCATION) this Sunday.

Example (11) demonstrates how a noun like church can denote an ORG noun
in (11a) and a LOC noun in (11b). Moreover, it also shows how church can
denote both an ORG and a LOC noun in one context, in (11c). The complexity of
complex-type selectional behavior in context, as illustrated in Example 11, makes
it difficult to apply to complex types the standard notion of word sense, as used in
automatic text processing tasks. As discussed in Chapter 2, traditional word sense
disambiguation (WSD) systems are not an appropriate solution for this task due
to the fact that a decision for a single sense must always be made, despite the fact
that in a context such as (11c) both senses of the noun are activated by the context.

The different contexts in Example (11) indicates how distributional representa-
tions can be affected by the ability of a noun to be selected for as a member of
different classes. This is because the noun will not occur equally as a member
of each class in corpus data, which results in distributional vectors containing
asymmetrical information for each class of the noun. As classification algorithms
use the distributional information provided in a word representation to assign
class membership, performance can be hindered by asymmetrical representation
of different senses, resulting in a negative effect on classification decisions. Thus,
it is imperative to correctly model and consider this phenomenon when building
word representations to build lexical semantic classifier. Furthermore, accounting
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for this phenomenon in classification systems represents an important step
towards implementing systems that can assign meaning to words dynamically
depending on the context in which they occur [Cooper, 2005].

Additionally, we also consider regular polysemy an important topic to cover in
this thesis because the incorporation of this type of rich complex-type nominal
information into the word representations can serve to reduce the search space
in disambiguation tasks, and thus the number of decisions needed. Moreover, it
can also provide grounds to opt for the non-disambiguation of instances when
relevant, for example in co-predication contexts like (11c), which more accurately
models the contextual uses of these types of nouns. Furthermore, the knowledge
of the entire sense potential of a given word is sometimes required for specific
tasks (see for instance [Rumshisky et al., 2007] and [Lenci, 2014]), thus resulting
in more complete and precise representations of these lexical items.

In the subsequent Sections, we propose to address regular polysemous nouns as
members of a given ambiguity class (within a wider lexical semantic class) and
making apparent the relation between members of different classes by identifying
shared properties beyond class limits. Thus, we place ourselves within the Gen-
erative Lexicon (GL) framework [Pustejovsky, 1995], as it provides the tools to
account for regular polysemous nominal lexical units that display rich variations
of meaning in language use. Furthermore, GL allows for the identification of
refined and relevant semantic features, as well as to capture information that does
not necessarily emerge from a purely corpus-based collocation analysis.

As defined earlier, the nouns that can instantiate this phenomenon have been
defined in GL [Pustejovsky, 1995] to be complex-type nouns. Complex-type
nouns are formed by the intersection of two (or more) senses that they can be
selected for in context, thus they are typically recognized in context by a bullet
that joins the classes together (x · y). In Section 5.1 we perform a detailed error
analysis regarding the classification of complex-type nouns. In Section 5.2 we
study the difference between super, or (x/y), classes that encompass all of the
nouns related to each lexical-semantic class (or classes) of interest. In our case,
the (x/y) class includes simple-type nouns from classes (x) and (y), as well as
complex-type (x · y) nouns.

To address the differences between the two types of nouns, we proposed a
dedicated two-step approach to capture the distributional behavior of regular
polysemous words in corpus data in a way that accurately reflects the semantic
complexities of different types of (related) lexical-semantic classes. By classi-
fying nouns into a broader super (x/y) class in a first step, we are able to also
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capture more nouns due to the larger distributional profile of the class. In a
second step, we were then able to differentiate between complex types (x · y) and
their monosemous counterparts (x and y) that form the (x/y) super class. Finally,
in Section 5.3 we expand our data set to also use the Cascade approach to classify
nouns into CoreLex classes. Furthermore, in this Section we also used the WE

model to build word representation, due to their success reported in Section 4.4.

5.1 Using the Qualia Structure to identify lexical-
semantic classes

Authors such as [Pustejovsky, 1995, Ježek and Lenci, 2007, Lenci, 2014] have
shown how distributional analysis and theoretical modeling interact to account for
rich variation in linguistic meaning, especially because blind-theory distributional
approaches have been shown to fail to account for the wide range of linguistic
behavior displayed by words in language data (see [Pustejovsky, 1995]). In this
section, we proposed and evaluate the use of automatically obtained FORMAL role
descriptors as features to cluster nouns. As introduced in Chapter 2, the FORMAL

role is one of the four roles that form the Qualia Structure (QS), the structure that
defines the semantic properties of a noun, according to the GL [Pustejovsky, 1995].

We specifically used the FORMAL role of the QS because it directly corresponds
to the facets of “what an object is”, thus it can be considered as a feature
that identifies lexical class membership. Figure 5.1 illustrates the semantic
composition of the FORMAL role of complex-types nouns, according to the GL,
in an attribute-value matrix (AVM), consisting of the feature structure of the
noun [Copestake and Briscoe, 1995]. According to the GL, the FORMAL role
distinguishes a lexical object within a larger domain, using the same concept
as our lexical semantic classes, which are essentially the larger domains, or
super-types, of a given noun.

Building on this definition, we assume that nouns belonging to a certain class
display particular features shared by other nouns of that class, which should
distinguish them from members of other classes. For example, the EVT class may
extract the noun activity as a FORMAL role descriptor, representing a common
feature shared between these lexical items of that class. In our case, we expect
the use of the FORMAL role descriptors as features of the lexical-semantic classes
of a noun to capture information regarding all of the possible lexical-semantic
classes of a noun; moreover serving to identify those nouns that can be members
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Figure 5.1: AVM of complex-type nouns

of more than one lexical semantic class. We part from the hypothesis that the
FORMAL role of a noun, by providing information about “what an object is”. We
consider that this information is representative of a feature that is bound to be
closely related to a particular lexical semantic class. Thus, we hypothesize that
the FORMAL role of the QS is sufficient to discriminate between lexical semantic
classes of English nouns.

5.1.1 Extracting Qualia role information
Unlike linguistically-motivated cues, the information extracted from the FOR-
MAL role provides a guideline to understand to what extent we can justify the
membership of certain nouns in just one lexical-semantic class. Along this
line, the FORMAL role features provide us with information regarding what the
elements are semantically “made of”, in this way moving away from grammatical
knowledge by trying to instead extrapolate semantic knowledge from corpus data.

As there were no available lexica annotated with FORMAL role information,
we developed a method to obtain it automatically and carried out clustering
experiments. Automatically extracting qualia with lexico-syntactic patterns
has received attention for its success: [Hearst, 1992] identified lexico-syntactic
patterns to acquire noun hyponyms, which correspond to the FORMAL role,
whereas [Cimiano and Wenderoth, 2007] identified lexico-syntactic patterns to
obtain information regarding the specific semantic relations that correspond to
each qualia role. As we needed information regarding the FORMAL role, not full
lexical entries, in order for clusters to emerge, following [Celli and Nissim, 2009],
we bypassed the representation of the entire QS, assuming semantic relations can
be induced by matching lexico-syntactic patterns that convey a relation of interest.
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Along this line and, moreover, considering that there are nouns that are rep-
resentative of more than one sense and, therefore may contain distributional
information indicative to more than one lexical semantic class, we followed the
cue-based methodology to employ our nominal classifiers, described in Section
4.1 to have a direct representation regarding when certain nouns occur in context
as members of one class or of another. We conducted classification experiments
for three different classes that commonly participate in regular polysemous
alternations [Pustejovsky, 2005]: HUM, LOC and EVT.

5.1.2 Experiments
In the experiment performed, we employed two steps:

• In a first step, we extracted FORMAL role descriptors from corpus data;

• In a second step, we used the representations built from this data for clus-
tering.

To obtain FORMAL role descriptors for our unsupervised clustering task, we used
UKWAC60M, as described in Section 3.2. For our data set, we employed 60 target
nouns, selected from the monosemous data sets described in Section 3.1.

Building the data set

As explained above, given the unavailability of lexica annotated with FORMAL

role information, and considering our basic goal of evaluating whether this infor-
mation is enough to cluster together nouns of the same class, we first extracted
distributional information for targets nouns from a corpus using hand-crafted
lexico-syntactic patterns indicative of the FORMAL role, adapted from [Hearst,
1992] and the list proposed by [Cimiano and Wenderoth, 2007]. Table 5.1
provides a complete list of the patterns. Each patterns was formalized through
Regular Expressions with PoS tags given after each token.

The extracted information was stored in feature vectors representing co-
occurrences with target nouns in relevant contexts, as defined by the patterns
in Table 5.1. Each element corresponds to occurrences of a particular target
noun (x) with a possible FORMAL role descriptor (y), following [Katrenko and
Adriaans, 2008]. Using the patterns in Table 5.1, we obtained 185 FORMAL role
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Lexico-syntactic patterns indicative of FORMAL roles
x (or|and) other y
x such as y
x (is|are) (a/an/the) (kind(s)/types(s)) of y
x (is|are) also known as y

Table 5.1: Patterns used to detect FORMAL role information in corpus data were
built

descriptors for 55 of the 60 target nouns in 353 occurrences.

Given the properties of the clustering algorithm used, a random value would
be provided to nouns not sharing feature information with any other noun
in our data set. To avoid random cluster assignations and to provide more
significant information to the system, we filtered out the features not shared
between at least two target nouns. We did not control for what class the shared
features belonged to. Though we employed a large set of data, there were not
enough shared FORMAL role descriptors for an important part of our data set.
For this reason, we devised a strategy to increase the information available to
the clustering algorithm, which we will describe in detail in the following Section.

Bootstrapping for more features

To obtain more FORMAL role descriptors, we employed a bootstrapping tech-
nique [Hearst, 1998] that relies on monotonic patterns for natural language
inference [Hoeksema, 1986, van Benthem, 1991, Sánchez Valencia, 1991] and
as illustrated in Example (12). This strategy is consistent with the GL lexical
inheritance structure [Pustejovsky, 1995, Pustejovsky, 2001] that assumes lexical
items obtain their semantic representation by accessing a hierarchy of types
and inheriting information according to their QS. Thus, qualia elements can be
viewed as hierarchically organized categories in which some sub-categories are
subsumed by more general super categories as one moves up in the hierarchy.

(12) noun: mammal
a. A mammal is a [type of] animal.
b. A zebra is a [type of] mammal.
c. Therefore, a zebra is a [type of] animal.

To illustrate how this applies specifically in our case, the HUM noun treasurer
obtained officer as a FORMAL role descriptor, whereas officer extracted person
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and employee as its own FORMAL role descriptors in Example 13.

(13) noun: officer
a. An officer is a [type of] employee.
b. A treasurer is a [type of] officer.
c. Therefore, a treasurer is (also) a [type of] employee.

Assuming this lexical organization, we consider FORMAL role descriptors
extracted for officer to also be features of treasurer. Thus, we gathered additional
information regarding the nouns to cluster, using the originally obtained FORMAL

role descriptors as target nouns to extract more elements in an attempt to
overcome biases due to sparse data, as well as to reinforce information already
obtained.

We conducted one iteration of the aforementioned bootstrapping technique, going
up one level of generalization to obtain the final distribution of information below.
The newly obtained feature information was unified with the previously extracted
features, filtering out any additional noise attained. Table 5.2 presents the final
distribution of this information.

Class Elements Occurrences
HUM 61 elements 841 occurrences
LOC 43 elements 225 occurrences
EVT 36 elements 216 occurrences

Table 5.2: Distribution of FORMAL role descriptors extracted (after filtering and
bootstrapping per class of target noun)

Basing our clustering experiment on automatically extracted FORMAL role
descriptors, the accuracy of information obtained was a concern. To assess the
accuracy of the information obtained, the FORMAL role descriptors extracted
were revised manually. Extractions were considered erroneous if they provided
information not in accordance with the class that the target nouns pertained to.
Table 5.3 presents the results of this analysis. Erroneous extractions caused by
faults of the extraction mechanism (i.e. problems handling phenomena such as
PP attachment), PoS tagging errors, lexical ambiguity or erroneous statements in
text [Katrenko and Adriaans, 2008], as well as errors due to regular polysemy.
Note that although errors were identified, they were not filtered out for the
clustering task, i.e. all information (erroneous or not) was included. We discuss
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the impact of these errors, specifically the errors attributed to regular polysemy,
later in this section.

Class
% of accurate FORMAL

role descriptors extracted
HUM 87.60%
LOC 63.54%
EVT 75.96%

Table 5.3: Percentage (%) of accurate FORMAL role descriptors obtained by class

Clustering word representations

The second step of our experiment consisted in clustering nouns using the
automatically extracted FORMAL role descriptors. To empirically demonstrate the
extent to which FORMAL role descriptors clustered together nouns from the same
class. We used the SIB algorithm [Slonim et al., 2002] in the WEKA [Witten
and Frank, 2005] implementation to cluster target nouns into lexical semantic
classes, based only on the FORMAL role information obtained. We selected the
SIB algorithm due to the manner that it manages larger data sets through reduced
complexity.

The SIB algorithm measures the similarity between two vectors using the Jensen-
Shannon divergence, which measures the similarity between two probability
distributions, rather than Euclidean distance, which can unfairly bias the data if
the number of attributes representing the factors is not equal [Davidson, 2002].
Furthermore, we selected the SIB algorithm because our feature spaces were
dependent on the number of FORMAL role descriptors each target noun occurred
with in the corpus.

5.1.3 Results
The goal of this experiment was to use FORMAL role descriptors to cluster
together target nouns from the same lexical-semantic class. To evaluate this task,
we compared the nouns of each cluster to the class information indicated in the
corresponding monosemous data sets described in Section 3.1. Tables 5.4 and 5.5
present clustering results. The distribution of nouns across each cluster is given
by the percentage of nouns pertaining to each lexical class included in it. The
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total number of target nouns in each cluster is also provided.

Class Cluster 0 Cluster 1 Cluster 2
HUM 92.85 00.00 57.14
LOC 07.69 39.13 14.29
EVT 00.00 60.87 28.57
Total Number of
Seed Nouns per Cluster 14 23 7

Table 5.4: Distribution of nouns in a 3-way clustering solution (%)

We experimented with both a 3-way and a 4-way clustering solution. The 3-way
clustering solution resulted in the clustering of HUM nouns (Cluster 0). LOC and
EVT nouns grouped together in Cluster 1, the remaining cluster being composed
of nouns from all classes with very few features available (less than three), i.e.
insufficient information for classification. Considering this, we employed a 4-way
solution to see whether LOCATION and EVENT nouns could be discriminated.
This solution distinguished between the three classes (Cluster 0, 1 and 3 in Table
5.5) with a fourth cluster containing those nouns that did not have sufficient
information for an accurate class membership decision, and moreover, had a
negative effect on the 3-way solution.

Class Cluster 0 Cluster 1 Cluster 2 Cluster 3
HUM 0.00 0.00 57.14 0.93
LOC 0.00 90.00 14.29 7.69
EVT 100.00 100.00 28.57 0.00
Total Number of
Seed Nouns per Cluster 13 10 7 14

Table 5.5: Distribution of nouns in a 4-way clustering solution (%)

The results show that even after filtering and bootstrapping the features extracted,
sparse data still affected the results. However, nouns whose most salient common
trait was the lack of sufficient information were consistently grouped together.
In this was, the results demonstrate that the clustering solutions are able to
discriminate between lexical semantic classes, as well as to detect those nouns
for which there is not sufficient information by clustering them together.
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5.1.4 Discussion

The clustering algorithm discriminated between the three classes considered,
using only the FORMAL role descriptors extracted from corpora data as features.
Leaving aside the nouns for which there was not enough information available
(12.7% of our data set), EVT, HUM and LOC nouns were discriminated in the
4-way clustering solution (Clusters 0, 1 and 3, respectively, as presented in Table
5.5). In this Section we analyze the misclassified nouns to understand the reasons
behind their misclassification and to evaluate to which extent they correspond
to recurring phenomena in language, which can possibly be accounted for and
overcome with additional strategies.

Although their impact is not significant, noisy extractions, as explained earlier,
do play a role in misclassification. In the 4-way clustering results, for instance,
an EVT noun is included in the cluster dominated by LOC nouns due to errors in
extraction, specifically the incorrect identification as a FORMAL role descriptor of
the noun in a PP modifying the head noun of the NP that should be extracted. This
type of noise is mostly generated by the use of low-level NLP tools. However,
the existence of this type of noise, caused by the tools used, in the data did not
significantly affect the clustering algorithm, as demonstrated by the accuracy of
the clustering results presented in the previous section.

Concurrently, although general patterns can be identified in language use, one
of the main characteristics of language data is its heterogeneity, which means
that elements of a given lexical-semantic class do not necessarily share all their
features or show perfectly matching “expected” linguistic behavior. Moreover,
considering that lexical items are complex objects with different semantic
dimensions, they may also share properties with elements of more than one
lexical class. This type of phenomenon is behind some of the misclassifications
in our data, such as the clustering of the LOC noun factory with HUM nouns.
This misclassification seems to be related to the fact that a part of HUM class
members tended to obtain FORMAL role descriptors typical of HUM nouns, as
well as of ORG nouns, making apparent that nouns do not always occur in the
sense considered in our pre-classified list of nouns.

The case of the noun factory, which was clustered with HUM nouns, clearly
demonstrates how the polysemy described above can partially apply to this noun.
Among the descriptors obtained for factory we found, alongside descriptors
typical of LOC nouns, nouns such as sector, organization and profession,
which were descriptors that were also extracted for HUM nouns showing the
HUMANGROUP·ORG logical polysemy, indicating that nouns like factory are also
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Figure 5.2: AVM of the noun factory

complex objects, as illustrated in Example (14).

(14) noun: factory
a. The factory on the corner of Main Street is big and brown. (LOC)
b. The factory summoned a protest against the new government sanc-

tions. (ORG)
c. There was a protest organized (ORG) by the factory that burned down

(LOC) last week.

In our data, factory shared features both with definite plural NPs headed by HUM

nouns like teacher and employee and LOC nouns such as kitchen and resort. The
linguistic behavior of factory can, therefore, be assumed to reflect the regular
polysemy of ORG·LOC·HUMANGROUP complex-types identified by [Rumshisky
et al., 2007], further illustrated in the AVM of the noun factory is presented in
Figure 5.2.

Furthermore, some HUM nouns obtained FORMAL role descriptors typical of
ORG nouns that indicate a type of polysemy that occurred in our data only with
plural HUM nouns. This alludes to the works of [Copestake and Briscoe, 1995]
and [Caudal, 1998], according to which some HUM nouns show a specific type of
polysemy when heading definite plural NPs: the polysemy between the individual
HUM sense and the collection of HUMANS sense, which in turn is polysemous
between the HUMANGROUP and ORG senses. In Example (15) we see how the
definite plural NP the doctors can select for the two senses typically denoted by
collective nouns, while having also the possibility to denote individual entities,
which is not possible with collectives, as demonstrated in Example (16)), that
cannot occur in contexts that force a distinct individual entity reading.

(15) nouns: doctors
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a. The doctors lay in the sun. (several individual HUM entities)
b. The doctors protested in front of the hospital. (HUMANGROUP)
c. The administration negotiated with the doctors. (ORG)

(16) nouns: staff, employees, administration
a. # The staff lay in the sun. (several individual HUM entities)
b. The employees lay in the sun. (several individual HUM entities)
c. The staff protested in front of the hospital. (HUMANGROUP)
d. The administration negotiated with the staff. (ORG)

As both collectives and definite plural NPs denote collections, [Caudal, 1998]
states that it is desirable to account for the polysemy of such items morpho-
syntactically. This analysis is further strengthened by the observation that, unlike
pairs such as employee and staff, for nouns like doctor there is no lexicalization
for group of doctors in English. The same being true for collective nouns like
audience or committee, whose individual members are not lexicalized. Given
such lexical gaps, morpho-syntax is the strategy available. However, though
logically polysemous, plural definite NPs like the doctors do not allow for
multiple selection as is typical of complex types: once the individual HUM sense
has been selected for there is no access to the HUMANGROUP·ORG sense, as
suggested by Example 17 (see [Buitelaar, 1998] and [Rumshisky et al., 2007]).

(17) The administration negotiated with the doctors, who later lay in the sun.
(several individual HUM entities)

[Pustejovsky, 1995]:155 claims these patterns of linguistic behavior are due to the
information in the QS. In the case of expressions like the doctors, the dot element
denoting the individual HUM entity and the complex type HUMANGROUP·ORG

correspond to different qualia roles, as represented by the AVM in Figure 5.3.
Hence, the different senses of the expressions cannot be selected at the same time.

For our work, the most relevant aspect of the behavior displayed by nouns like
factory and doctors is that it makes apparent how our strategy to extract FORMAL

role descriptors reflects the ambiguity of nouns to be clustered, which is often
difficult to handle in NLP, particularly in classification tasks. The clustering
solutions we obtained, as described in the results, grouped together HUM nouns,
both those that display the ambiguity discussed in this Section and those that do
not, the same being true for LOC nouns. And yet, polysemous nouns display
features that clearly point towards the existence of finer-grained distinctions,
i.e. sub-classes within lexical semantic classes. We demonstrated that these
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Figure 5.3: AVM of the noun doctors

fine-grained distinctions are mirrored in FORMAL role descriptors, we assume it
should also be possible to automatically recognize groups of nouns within the
same ambiguity class, i.e. complex-type nouns.

To validate this hypothesis, we performed an additional iteration of the clustering
using the same features and algorithm over previously identified clusters. The
iteration was run individually over Clusters 1 and 3 (LOC and HUM noun clusters,
respectively) from our 4-way clustering solution, as both clusters contained
regular polysemous nouns.

Finally, we obtained a 2-way clustering solution for each class, aiming to
differentiate nouns strictly containing the LOC sense and those reflecting
the polysemy described above for factory, on one hand, and nouns in the
HUM·HUMANGROUP·ORG ambiguity class from those strictly denoting HUM

individuals on the other. Cluster 1 split into 2 clusters distinguishing between
polysemous LOC nouns and those that are not, whereas for Cluster 3 the
clustering algorithm arrived at a near perfect distinction of complex-type nouns
and non-ambiguous HUM nouns. The noun factory clustered with polysemous
HUM nouns, once more confirming its semantic proximity with nouns of the
HUM·HUMANGROUP·ORG type.

Therefore, a second iteration of the same clustering algorithm over the same
feature vectors was able to identify finer-grained distinctions within lexical
classes, automatically recognizing groups of nouns in the same ambiguity class.
In doing this, we validate our analysis regarding the role of regular polysemy and
complex-type nouns in the clustering solutions obtained, and further strengthen
our original hypothesis.
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5.1.5 Final remarks
In this Section, we proposed using automatically obtained FORMAL role descrip-
tors as features to draw together nouns from the same lexical semantic class in
an unsupervised clustering task. In line with the results, our initial hypothesis
was supported: we can cluster nouns using automatically extracted FORMAL

role descriptors as features. Moreover, we showed that they were sufficient to
discriminate between elements of different lexical semantic classes.

Furthermore, we validated that some misclassifications observed were caused by
regular polysemy, which directly effected the results obtained by the distribu-
tional word representations. The method outlined in this Section demonstrates
that it is possible to handle the polysemous behavior of nouns in classifica-
tion tasks by making finer-grained distinctions regarding lexical items that
consistently belong to the same ambiguity class. Additionally, we provided a for-
mal description of noise being caused in many cases by cases of regular polysemy.

Finally, one of the main causes of sparse data in the experiments presented
in this Section can be attributed to the fact that we just used the information
extracted for the FORMAL role of each noun. Consequently, in subsequent
Sections, we revert back to using the manually-identified linguistically-motivated
lexical-syntactic patterns, defined in Section 4.1 to extract more frequently
occurring class-indicative information.

5.2 A cascade approach to complex type classifica-
tion

Based on the results obtained in Section 5.1, in this Section we propose a strategy
to classify complex-type nouns. The classification of regular polysemous nouns is
a real challenge for classifiers because all of the senses of a word are conflated in
one representations and machine learning classifiers cannot distinguish between
the different senses of a noun in context. The exclusive discriminative information
to regular polysemous nouns, while it is extremely indicative to members that can
instantiate a given alternation, such as co-predication or underspecified contexts,
for instance [Pustejovsky, 1995,Pustejovsky, 2005,Pustejovsky, 2013,Rumshisky
et al., 2007], occur with extremely low frequency infrequency in corpus data.
Because of this, their inclusion is typically not useful in distributional word
representations. To overcome this problem, we use lexico-syntactic patterns to
automatically classify nouns for which there is distributional evidence of their
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membership to more than one class. In this way, regular polysemous complex-
type nouns should demonstrate characteristic and indicative lexico-syntactic
distributional characteristics for each class that forms a given regular polysemous
alternation.

In line with the argument presented above, we focus on two complex types repre-
sentative of the general characteristics of dot objects, ORGANIZATION·LOCATION

and EVENT·COMMUNICATION OBJECT [Pustejovsky, 1995, Pustejovsky,
2005, Rumshisky et al., 2007, Ježek and Melloni, 2011, Copestake and Herbelot,
2012]:

(18) ORGANIZATION·LOCATION

(λx · y∃[α(ORG(x) · LOC(y)) ∧R(x, y)])
a. the church prays during mass (ORGANIZATION)
b. the church is a large building (LOCATION)

(19) EVENT·COMMUNICATION OBJECT

(λx · y∃[α(EVT(x) · COM(y)) ∧R(x, y)])
a. the interview lasted for two hours (EVENT)
b. the interesting interview in the book (COMM. OBJECT)

As in the previous Section, for the work presented in this Section we formally
assume the [Pustejovsky, 1995] definition of complex-type nominals as a
Cartesian product of types with a particularly restricted interpretation. This
means that the product (t1 × t2), of types (t1) and (t2), each denoting sets, alone
does not adequately determine the semantics of the complex-type nominal. The
relation R, which structures the component types, must also be seen as part of
the definition of the semantics of the lexical conceptual paradigm of the complex
type. Thus, for the complex type (t1 · t2) to be well-formed, there must be a
relation R that structures the elements (t1) and (t2), a concept that is formalized
in GL ( [Pustejovsky, 1995]: 149) as demonstrated in the AVM in Figure 5.1.

This formalization accounts for one of the properties that makes complex types
unique and distinguishes them, for instance, from cases of homonymy: the
possibility for their distinctive senses to be active at the same time ( [Pustejovsky,
1995]: 223), as previously illustrated in Example (11c). The levels of representa-
tion and generative mechanisms in GL predict that a noun like church occurs not
only in contexts typical of class (x): ORG (see again Example 11a) and of class
(y): LOC (see again Example 11b), but also in contexts which activate the relation
R1(x, y), i.e. contexts where both ORG and LOC senses are simultaneously
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Figure 5.4: AVM of the noun church

activated (see 11c).

We attempt to capture these properties through the design of a two-step methodol-
ogy that can account for the possibility of complex-type nouns to distributionally
belong to multiple lexical-semantic classes.

5.2.1 Verifying distributional information to identify complex-
type nouns

We considered that complex-type nouns are members of more than one lexical-
semantic class, more precisely members of each class that forms a given regular
polysemous alternation. Thus, complex-type nouns should occur sufficiently
in the indicative distributional contexts of each corresponding lexical-semantic
class. Using the distributional information extracted from each relevant lexical-
semantic class that forms a regular polysemous alternation, we build word
representations to automatically classify complex-type nominals.

We hypothesized that the classification of a noun as a member of each individual
classes that forms a given regular polysemous alternation is an indicator of its
membership in that alternation. Parting from the cue-based nominal lexical
semantic classification work reported in Section 4.1, we applied this methodology
also to complex-type nominals, which allows us to analyze the distributional
behavior of nouns belonging to more than one class and to which extent binary
classifiers can accurately deal with such items.

Due to their ability to be selected for as a member of more than one lexical-
semantic class, we expect complex-type nouns to occur in indicative contexts
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of different classes. Because of this, their occurrences in contexts indicative
of each class that form a regular polysemous alternation can be infrequent
because they occur a finite number of times in corpus data and, therefore,
their distributional information is divided among all classes for which they
occur in indicative contexts. Thereby, we also evaluate to which extent
this dispersion can be problematic to binary classifiers. Specifically, we verify
whether the available distributional information indicative of each individual class
is strong enough for an automatic cue-based classification of complex-type nouns.

Experiments

We conduct two main experiments in this Section. We first verify the ability
of our binary classifiers to identify complex-type nouns as members of the
class corresponding to their more prominent sense, according to the results
obtained from our human annotation task. To do this, we classified (t1) nouns
as a member of the (t2) class, and vice versa. Along this line, we confirm
whether a noun has sufficient distributional information for classification in both
classes that form a given regular polysemous alternation through their successful
classification as an member of each individual class. Then, in a second exper-
iment, we automatically classify complex-types from simple types by training
a dedicated classifier by combining the distributional information characteris-
tic of each individual sense component of the complex type into a single classifier.

We used the human-annotated regular polysemy data sets, as described in
detail in Section 3.1, to extract distributional information for corpus data. The
lexico-syntactic patterns indicative of each individual class, defined in see Section
4.1 were used to gather distributional evidence for each target noun in our data
sets from the UKWAC60M corpus. The relative frequency of occurrence of each
noun in each cue was stored in an n-dimensional vector, where n is the total
number of indicative cues used for each class. For classification, we used a
Logistic Model Trees (LMT) [Landwehr et al., 2005] Decision Tree classifier
in the WEKA [Witten and Frank, 2005] implementation, as introduced and
described in detail in Section 4.2.

A baseline based on the majority class would not allow us to assess the quality
of the results depicted here. Thereby, to evaluate our results, we compare them
against the performance of State-of-the-Art classifiers for simple types, reported
in Section 4.1.
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Complex-type nouns as members of individual simple-type classes

The results reported in Table 5.6 make apparent that complex-type nominals
provide enough distributional indicative evidence toward their most frequently
occurring sense so that their automatic classification as members of each class
of the alternation is possible. The results obtained are actually in line with
the performance of the same classifiers with simple-type nominals reported in
Section 4.1, where a 66.21% and a 73.05% accuracy are obtained respectively for
the LOC and the EVT nouns classifiers.

Class
complex types correctly
classified as members

of the class (%)

ratio of classified
complex types per

members of the class
ORG·LOC as ORG 58.69 0.22
ORG·LOC as LOC 89.47 0.25
EVT·COM as EVT 71.11 0.43
EVT·COM as COM 77.78 0.03

Table 5.6: Complex types correctly identified as members of the class correspond-
ing to their frequent sense, in bold

With this in mind, we proceeded to verify whether this is also observed when
considering the less frequent sense components of the complex-type noun
by performing a cross-classification of the nouns using the binary classifiers
mentioned above. More precisely, we used trained binary classifiers for each
class to classify the human-annotated lists of nouns, i.e. each classifier trained for
simple-type classification of nouns of semantic type (t1) was provided with a list
of nouns with (t2).

In this way, the cross-classification experiment consisted of training a classifier
with simple-type classification of (t1) nouns and testing it with (t2) nouns and
vice versa. To further illustrate this, a noun like church, defined as a LOC (t1),
was checked for its occurrences in lexico-syntactic patterns indicative of ORG (t2)
nouns to determine whether it shows distributional evidence indicative of another
class. Our claim is that (t1) nouns that sufficiently occur in contexts indicative of
t2, resulting in an accurate classification as a member of (t2), confirms that those
nouns are members of more than one lexical semantic class, a fact that automatic
classifiers should account for.

Table 5.7 presents the results of precision and recall of this cross-classification,
indicating the less frequent sense component in bold.
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Class Precision Recall Ratio
ORG·LOC as ORG 57.14% 21.05% 0.06
ORG·LOC as LOC 77.78% 15.21% 0.06
EVT·COM as COM 6.67% 66.67% 0.03
EVT·COM as EVT 64.44% 32.22% 0.19

Table 5.7: Results of cross-classification

The results of the cross-classification verified that the information available
generally indicates that certain nouns demonstrate a distributional behavior of
members of more than one class, although the information available for each class
may not be enough to correctly classify a part of the nouns studied, indicated by
the low recall. From the results in Table 5.7, we made three main observations:

• The performance of cross-classification is in line with that of the classi-
fiers used when dealing with simple-type nominals and when classifying
complex-types nouns as members of the class corresponding to its most
prominent sense component. This indicates that complex-types nouns do
occur in contexts typical of the different classes corresponding to their sense
components, i.e. they belong to more than one class and behave as such.

• The overall low recall indicates an imbalance of information regarding one
of its class, which is consistent with the work of [Rumshisky et al., 2007]
and the above discussion. Specifically, this hold true in regards to asymme-
tries in terms of frequency of the different meaning components of complex
types. This is primarily reflected in the frequency of occurrences in contexts
indicative of a given class, which represents the information provided to our
classifiers of each class. The noun church, for instance, occurred in contexts
typical of LOC nouns with a relative frequency of 0.015 and of 0.030 in con-
texts typical of ORG nouns. This is also the case of the noun jurisdiction,
which occurred with a relative frequency of 0.039 in contexts typical of ORG

nouns and just 0.014 in contexts typical of LOC nouns. This provides evi-
dence that a noun occurs more frequently in the contexts indicative of one
class, which is bound to affect classification results, particularly when the
asymmetry is large. Thus, the asymmetric representations of senses impacts
the recall, in particular, of our classification results, because there is insuf-
ficient distributional evidence towards class membership for an important
part of nouns in our list.
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• The absolute numbers are lower due to the aforementioned recall, the ratio
of complex types per class shows similar tendencies to those observed in
the results of the human annotation of the polysemous data set. In fact,
the ratios of complex types for the ORG and LOC data sets are balanced,
along the lines of the human annotation results (see Appendix A.2, whereas
a bigger asymmetry is observed for the COM and EVT classes.

Finally, given our objective to verify whether complex-type nominals provide
distributional evidence concurrent with more than one semantic class, our cross-
classification experiment confirms that the distributional information available
generally indicates that complex types demonstrate a distributional behavior
typical of members of more than one class, though the information available is
not always sufficient enough to correctly classify a part of the nouns studied.

However, in this experiment we only considered a part of the distributional data
for each complex type at a time. Having demonstrated that complex-type nouns
show distributional behavior typical of members of more than one class, we
propose to include indicative contexts of each of the classes that form a regular
polysemous alternation to the classifier, thus this way accounting for its full sense
potential in one dedicated vector.

Distinguishing complex types from simple-type nouns

The experiments described above demonstrate that the distributional evidence
of a complex-type noun can be indicative of one class, yet the information
available is often not sufficient for automatic systems to perform accurately
and robustly. Thus, we put forth a new experiment to classify complex types
built upon these observations. The cross-classification experiments used the
distributional information available for each word in contexts indicative of each
class corresponding to one of its senses individually. In this experiment, we
combine into one vector the contextual cues indicative of the individual classes
that a the regular polysemous alternation.

Along this line, we collected distributional evidence of nouns by simultaneously
using the cues for each class corresponding to the different sense components
of the complex types considered in this work. As in the experiment presented
in Section 4.2, we used the LMT classifier [Landwehr et al., 2005] in a 10-fold
cross-validation setting in the WEKA [Witten and Frank, 2005]. Table 5.8
presents the results of the classification of ORG·LOC and EVT·ORG
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Accuracy Precision Recall F1-Score
ORG·LOC 67.68% 0.62 0.67 0.62
EVT·COM 78.75% 0.72 0.78 0.72

Table 5.8: Results of complex-type classifiers

The results presented in Table 5.8 demonstrate that by combining indicative cues
of different individual semantic classes and thus providing distributional evidence
of the entire sense potential of a complex-type to the classifier, we are able to
automatically classify complex types, by distinguishing them from simple-type
nominals. As in the previous experiment, in order to be distinguished from
simple-type nominals, complex types must demonstrate sufficient distributional
evidence in contexts that are indicative of classes corresponding to their different
sense components. By combining the distributional information that is indicative
of both classes in one vector, we improve the results previously obtained and
attain accuracy in line with State-of-the-Art simple-type classifiers (see Section
4.1 results regarding nominal lexical semantic classification in English).

We observed that the difference of more than 10% of accuracy between the
classifiers for both complex types considered. Previously discussed work
by [Ježek and Melloni, 2011] helped us identify possible causes for these con-
trasts, such as an ontological dependence between components of complex-type
nouns like EVT·COM, whose occurrences have both sense components of the
complex type generally simultaneously present. However, the same is not true for
complex-types nouns such as ORG·LOC nouns, which results in a more disperse
distributional behavior between indicative contexts of each sense component of
the complex type, constituting a challenge for classifiers, naturally impacting
performance.

Discussion

In order to discuss the results presented in this Section, we first comment on the
data set that we used. We recall that the polysemy information available in the
data set was obtained by a human annotation task, as described in Section 3.1.
When analyzing the results of that task, we observed that there was an asymmetry
of the sense distribution of the polysemous items. Previous work has reported
asymmetries regarding the difference of the selection of senses in context that
compose complex types (see, for example, [Rumshisky et al., 2007] and [Ježek
and Melloni, 2011]), especially as one sense is generally more frequently used
or constitutes a preferred interpretation. Confirming this observation, evidence
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Figure 5.5: AVM of the noun illustration

from psycholinguistic studies [Frisson, 2009] also claim that although more
than one sense interpretation is available for a given word, one interpretation is
consistently preferred over the other.

Several authors have established relations between this type of asymmetry and
complex types, particularly with regard to the nature of the relations holding
between their sense components. An important part of the work developed on this
matter has focused on classes whose sense components are ontologically related,
in particular on the PROCESS·RESULT complex-type. [Ježek and Melloni, 2011]
characterized the properties of the polysemy involved in this case arguing it arises
from the fact that a RESULT object type is temporally and causally dependent on
a PROCESS type as an event is the pre-condition for the (coming into) existence of
the object (RESULT). Thus, PROCESS readings can be considered more prominent
as they are also reflected when the RESULT sense is active while the reverse does
not hold true. The EVT·COM complex type, can be considered a sub-case of the
former. Formalized in the AVM presented in Figure 5.5, the aforementioned
unique properties of this complex type are represented in the AGENTIVE role.

Just as is the case for PROCESS·RESULT nominals, we expected the prominence
of senses for this complex type to be asymmetric. The data obtained in our
annotation task are consistent with this expectation (see Tables A.7 and A.6), as
90 of the 239 COM nouns in the data set are considered to also have an EVT sense,
whereas only 9 of the 239 EVT nouns are annotated as also having an COM sense.
Moreover, these human annotation results constitute a source of quantitative
information that provide evidence that support the existence of asymmetries of
prominence of the different sense components of complex types.

Regarding the LOC·ORG complex type, there is neither an ontological relation
between its meaning components nor such a clear asymmetry in the prominence
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of its sense components. Yet, differences observed can be attributed to relations
generally holding between objects in the world. For instance, an ORG, as a more
abstract concept, is typically associated to a physical reality, namely the LOC

which hosts this abstract object and makes it perceivable. Reversely, LOC, as
a physical point in space, is often independent of any other reality. Thus, in
the lexicon, we observe words primarily denoting an ORG that also refer to the
LOC that hosts it, whereas the reverse is observed only in considerably stricter
conditions, as illustrated by congress and schoolyard in Example (20).

(20) nouns: congress and schoolyard
a. The congress (ORG) decided to vote the new rule into power after the

recess.
b. #The schoolyard decided to vote the new law into power after the

recess.
c. The new rule was voted to power in the schoolyard (LOC).

Asymmetry can, therefore, be said to be related to the nature of the system-
atic relation holding between them, which is different for each complex-type
paradigm. Moreover, the ratio of nouns in each individual class annotated as
having more than one potential sense, makes apparent the representativity of this
phenomenon for each class. This provides crucial insight when evaluating our
results, particularly in order to determine whether the asymmetries reported in
this Section have an overall impact in the automatic identification of complex
types.

Final remarks

The strategies proposed in this Section were able to automatically identify
nouns that display characteristic properties of different simple types, namely
LOC and ORG, and EVT and COM in spite of the strong biases that asymmetry
has imposed on our data set. This is a very important point to note because it
provides further evidences toward the treatment of a dedicated lexical-semantic
class for nouns that instantiate regular polysemous alternations. This is because
the nouns must be classified as members of each class that composes the regular
polysemous relation, regardless of the bias a noun may have for one of the classes
that instantiates that relation. By achieving this, we demonstrate the validity of
our hypothesis that complex-type nouns can sufficiently display distributional
characteristics of the different classes that form a regular polysemous alternation
in one distributional vector.
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Moreover, our cue-based lexical semantic classification methodology obtained
an average overall performance of more than 70% when distinguishing complex
types from simple-type nouns belonging to semantic classes that corresponds
to any of the sense components of the former. Yet, these results are based on
the classification of a complex-type noun from its simple-type counterparts. In
the next Section, we expand upon this approach to demonstrate that this method
can be adapted to also identify complex-type nominals from a given class by
distinguishing them from any other noun in the language. Accomplishing this
requires extending our approach to be able to not only separate complex-type
nominals from simple-type nouns belonging to one of the classes corresponding
to one of the sense components of the former, but to distinguish nouns belonging
to a given complex-type class from any noun in the language, independently of
the class to which they belong.

Finally, a task to consider for future work is the design of a strategy to also
incorporate of contexts specific to complex types, i.e. contexts which convoke
different sense components simultaneously (see, for instance, [Simon and Huang,
2010]; [Pustejovsky, 2013]; [Cruse, 2000]) into feature vectors, for a still more
reliable classifier.

5.2.2 Implementing a 2-Step cascade classification approach
Based on the results and observations made in the previous Section, we expanded
upon the approach proposed and designed a 2-step Cascade Approach to classify
complex-type nouns from any other noun in language. As mentioned, the Cascade
Approach consists of 2 steps:

• Step 1: to distinguish (x/y) group nouns from any other noun in the lan-
guage for each polysemy alternation;

• Step 2: to take the nouns classified as belonging to the (x/y) group in Step
1 and distinguish them simple-type nouns from complex-type nouns.

Figure 5.6 outlines the workflow for each of the defined steps in our proposal for
the Cascade Approach.

The Cascade Approach classifies consists of complex-type nouns in 2 steps.
Having previously experimented with a single-step classification systems in
Chapter 4 and Sections 5.1 and 5.2.1, the results obtained made apparent that the
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Figure 5.6: Workflow of the proposed approach for complex-type classification

nuanced distinctions a complex-type nominal classifier has to perform requires
a different approach. Because complex-type nouns correspond to a very specific
and complex linguistic phenomenon, with a strong impact in terms of semantic
behavior in context, automatic systems have difficulty to accurately model them.
More specifically, the characteristic properties of this type of nouns causes their
distributional data to be more disperse, besides partially overlapping with that of
the simple-type nouns that correspond to one of the sense components that form
a regular polysemous alternation, which further raises problems to any automatic
classification system.

These observations led us to search for an alternative approach to the problem of
complex-type nominal classification, namely the design of a Cascade Approach
that consists of two steps in order to ensure for the accurate classification of
complex-types.

Step 1: Distinguishing nouns in the (x/y) group from any other noun:

The first step of the Cascade Approach consists of training a classifier to
distinguish nouns of the (x/y) group from nouns of any other class in language.
Along this line, we consider all (x · y) complex-type nouns (either LOC·ORG or
EVT·COM, in the case of the classifiers discussed in this section), as well as the
simple-type nouns that correspond to one of the classes that form the regular
polysemous alternation. In other words, we classify each of the components
of the complex-type classes (LOC and ORG and LOC·ORG; or EVT and COM

and EVT·COM) into the (x/y) class. Thus, the goal of this step is to coarsely
distinguish nouns belonging to the (x/y) group from nouns belonging to any
other lexical semantic class.
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Step 2: Identifying complex-type nouns with a (x · y) classifier:

The goal of the second step of the cascade experiment is to distinguish (x · y)
complex-type nouns from simple-type (x) and (y) nouns. In this step, we use
the output of Step 1 as the input to be classified. More precisely, we classified
those nouns that were classified as members of the (x/y) class in Step 1. Testing
our complex-type classifiers with this information allows us evaluate their
ability to really capture complex-type nouns (i.e. identifying, on the one hand,
LOC·ORG nouns and, on the other hand, EVT·COM nouns), as they have to deal
with the noisier input consisting of (x/y) group nouns as identified by an au-
tomatic system whose average accuracy scores are in the mid-70% (see Table 5.8).

Experiments

Following the experimental design in Section 5.2.1, we gathered distributional
data from the UKWAC60M corpus for each word in the human-annotated pol-
ysemous data set, described in Section 3.1, using the lexico-syntactic patterns,
defined in Section 4.1, that correspond to each class considered. To build the
word-representations for the complex-type classifier, we again combined the
distributional information extracted from each class into one vector per word to
provide to the classifier.

More specifically, to extract distributional information indicative of each (x/y)
group, we combined the features indicative of class (x) with the features indicative
of class (y), i.e. we combined class-indicative features of LOC and ORG, in the
case of the LOC/ORG classifier, and indicative cues for the EVT and COM classes
in the case of the EVT/COM classifier. The relative frequency of occurrence of
each noun in each cue was stored in an n-dimensional vector, where n is the total
number of cues used for each class. To classify, we used a Logistic Model Tree
(LMT) [Landwehr et al., 2005] classifier in the WEKA [Witten and Frank, 2005]
implementation, as introduced in Section 4.2.

For the purpose of training a classifier and testing it with unseen data, we divided
our full data set into training and test sets (70% for training and 30% for test).
The experimental results reported and discussed in the following sections are
based on the results obtained when considering balanced data sets for training,
whose constitution is presented in Table 5.9.

Thus, in order to implement Step 1 of the Cascade Approach, we trained two
classifiers: for the (LOC/ORG) group and for the (EVT/COM) group, with a
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Balanced Datasets
LOC·ORG EVT·COM

type S C not LOC/ORG S C not EVT/COM

training 56 56 112 68 68 136
test 128 23 211 315 31 356

Table 5.9: Distribution of nouns in training and test data sets for the complex-type
classes considered in this experiment: C corresponds to complex-type nouns, S
to simple-type nouns either of class (x) or (y), while the not (x/y) corresponds to
nouns not belonging to the (x/y) group considered (see Footnote 1)

supervised LMT classifier, using 70% of our original data set in a balanced
selection of data, as detailed in the previous Section (see Table 5.9). Each training
classifier was trained in a 10-fold cross-validation setting. The (x/y) classifier
model for each regular polysemous alternation was then tested on unseen data
(i.e. the remaining portion of the original data set - cf. Table 5.9).

To implement Step 2 of the Cascade approach, we used the output of the classifi-
cation of the test set in Step 1, more specifically, we used those nouns that were
classified to be a member of the (x/y) class, whether it was a correct classification
or not. We then classified those nouns using the trained (x · y), or complex type,
classifier, again, using a supervised LMT classifier.

Results

Table 5.10 presents the results regarding the performance of the classifiers used
in the cascade experiment, both with training and test data, and for the two
complex-type classes considered. As was to be expected, the performance of
the complex-type classifiers in the training setting is consistent with the results
reported in Section 5.2.1. Though slightly lower on the test setting, there is no
statistically significant difference in the overall performance of the complex-type
classifiers in the training and test settings, i.e. in a 10-fold cross validation setting
and when used to classify the output of either the LOC/ORG or the EVT/COM

group classifiers.

Our expectations were also confirmed by the results obtained and presented in
Table 5.10. On the one hand, the overall precision of a 2-step classification system
significantly improves when compared with that of a single-step approach to this
problem. On the other hand, the automatic separation of items, which is inherent
to the cascade approach, still have a negative impact on recall, although it was
not statistically significant. However, this result crucially indicates an important
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Step 1 of the cascade experiment: x/y group classification
LOC/ORG group classifier
accuracy precision recall F1-Score

training set 74.55% 0.75 0.75 0.74
test set 75.69% 0.76 0.76 0.75

EVT/COM group classifier
accuracy precision recall F1-Score

training set 72.79% 0.73 0.73 0.73
test set 69.81% 0.71 0.69 0.69
Step 2 of the cascade experiment: complex-type classification

LOC·ORG complex-type classifier
accuracy precision recall F1-Score

training set 60.71% 0.61 0.59 0.59
test set 57.14% 0.88 0.57 0.67

EVT·COM complex-type classifier
accuracy precision recall F1-Score

training set 59.56% 0.59 0.59 0.59
test set 56.69% 0.91 0.57 0.67
Overall Score of the cascade experiment: complex-type classification

LOC·ORG complex-type classifier
accuracy precision recall F1-Score

training set 67.63% .68 0.67 0.67
test set 66.42% 0.82 0.66 0.71

EVT·COM complex-type classifier
accuracy precision recall F1-Score

training set 66.18% 0.66 0.66 0.66
test set 63.25% 0.80 0.63 0.68

Table 5.10: Performance of classifiers in Step 1 and Step 2 of the Cascade Ap-
proach to classify complex-type nouns
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noise reduction, which actually increases the reliability of the complex-type
classification decisions made by the system.

Furthermore, the results obtained with the (LOC/ORG) group classifier, as well
as the results obtained with the (EVT/COM) group classifier are consistent and
promising: precision and recall are generally above 70% and there are no statisti-
cally significant differences between the performance of the classifier in a 10-fold
cross validation training setting and when the classification models are confronted
with an input of unseen data in the test setting. However, with regard to the results
obtained in the second step of this experiment, further discussion is required.

Discussion

The considerably higher precision of the complex-type classifier in the test setting
when compared with the results obtained in the training setting has, nonetheless,
to be underlined and commented upon. Overall, this seems to indicate that the
complex-type classifier successfully handle instances corresponding to noise
proceeding from the first step of the cascade experiment, ubiquitous in any
production-level scenario. Moreover, it also indicates that, although one of the
concerns with using a cascade approach was the possibility of error accumulation,
the results obtained, and the significant increase in precision in the classification
of complex-type nouns in particular, point towards the opposite. More precisely,
these results indicate that the information provided to the (x · y) classifiers is
somehow cleaner. Yet, this is a direct reflection of the Cascade Approach itself.
As we are using the output of Step 1 as the input for Step 2, the data set is no
longer equally balanced between members of the class and nouns that are not
members of the class, resulting in the higher numbers of precision reported.

We attribute these results to the increase of the distributional profile of nouns to
be classification in the (x/y) step in Step 1, which can introduce higher levels
of “noise” and result in the misclassification of a noun as a member of the
(x/y). However, this smaller number of nouns used in Step 2 results in a higher
precision, mainly due to the fact that there are less nouns to classify in the data
set. Furthermore, it is interesting to note that this increase in precision does not
have a relevant impact on recall: although the scores are slightly lower in the test
setting, the difference between the recall scores in the training and test settings is
not statistically significant.

121



“thesisv7.6-submitted” — 2015/6/27 — 12:01 — page 122 — #142

CHAPTER 5. HANDLING POLYSEMY IN DISTRIBUTIONAL WORD
REPRESENTATIONS

Complex-type classification of automatically identified (x/y) group nouns
from Step 1: impact on precision

In order to evaluate to which extent the first step of our Cascade Approach is
actually capturing nouns that meet the criteria of the (x/y) class, we also re-ran
our complex-type classification with the full test set, i.e. as if the first step of the
cascade workflow was performing with an accuracy of 100%, and compared the
results obtained. By doing this, we aimed to identify what types of nouns are
being eliminated in the first step of our Cascade Approach to verify whether the
candidates that we are losing would be correctly dealt with by our complex-type
classifiers. In this context, we observed that an important part of the nouns being
eliminated in Step 1 are nouns that occur in corpus data with a low frequency.

On the one hand, in the case of the (EVT/COM) classifier, 7 of the 11 nouns
misclassified as not belonging to the (EVT/COM) group, and thus not included in
the set of candidates provided as input to the (EVT·COM) complex-type classifier
in Step 2, occurred with an absolute frequency of less than 200 times in the
corpus. In fact, of those 7 nouns, 5 occurred with an absolute frequency of less
than 20. Thus, in this case, the generalization of the distributional profile to the
(x/y) class is not capturing some low-frequent nouns in Step 1. On the other
hand, in the case of the (LOC/ORG) class, the absolute frequency of 6 of the 12
misclassified nouns not considered to belong to the (LOC/ORG) group was lower
than 200 occurrences in the corpus, while the absolute frequency of 3 of those 6
nouns being lower than 20. Thus, as a large part of the misclassifications observed
in the first step of the Cascade Approach is due to low frequency of occurrence
in corpus data, it is bound to also affect the classification decisions in the second
step. To further explore the cause of this, we submitted all the nouns misclassified
in the first step of the cascade workflow to the complex-type classifiers in the
second step to determine to what extent they are still able to successfully classify
such candidates.

We obtained the following results: in the case of the (EVT·COM) class, 9 of
the 11 nouns eliminated in the Step 1 of our cascade experiment would still be
misclassified in Step 2 if they were to arrive to this step of the experiment, the
7 low-frequency nouns mentioned above being among these 9. In the case of
the (LOC·ORG) class, the same would happen to 6 of the 12 nouns misclassified
in Step 1, the overlap between the set of low-frequency nouns and that of mis-
classified complex-type nouns by the (LOC·ORG) classifier being perfect. These
data make apparent that the increase in precision in Step 2 is directly explained
by the fact that there are low-frequent complex-type nouns misclassified in Step
1, which results in a smaller amount of candidate nouns to the (x · y) classifier
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in Step 2 and has a direct impact on its performance in terms of an increase in
precision, on the one hand, but at the cost of recall, on the other hand. However,
we also consider that the inclusion of these nouns in Step 2 would have increased
recall at the cost of precision, which is not desirable for the classification of nouns
representative of a complex-semantic phenomenon, such as regular polysemy.

Naturally, not all of the nouns misclassified in Step 1 are necessarily “prob-
lematic”. For instance, we observed 2 cases of EVT·COM nouns and 6 cases
of LOC·ORG nouns that are incorrectly classified in Step 1, and therefore not
considered in Step 2, although they would have been correctly classified, which
further reduced the coverage of our classifiers and, moreover, impacted the
potential increase of precision. But this is not the only aspect determining the
scores of our classifiers in terms of recall, which is clearly the weak aspect of
the classifiers developed. In order to further understand what impacts the recall
scores obtained in complex-type classification we conducted an error analysis,
which we discuss below in detail, focusing on those nouns that were misclassified
as not belonging to a complex type by our classifiers.

Analyzing the recall of x·y classifiers from Step 2

In the case of the (EVT·COM) classifier, the final results obtained in Step 2
demonstrate 5 incorrectly classified complex-type nouns, which are considered to
be non-members of the (EVT·COM) class by our classifier. Of these 5 cases, the
noun newsflash, is the only one caused by insufficient distributional information
(15 occurrences in total of this noun in corpus data). Due to its low frequency in
our data, this noun only occurs 3 times with our class-indicative lexico-syntactic
patterns, which did not provide sufficient information for the complex-type
classifier to arrive at an accurate class membership decision for that particular
noun. We have to underline that the complex-type classifiers in Step 2 must make
more nuanced decisions, distinguishing between complex and simple-type nouns.
This is because the complex-type nouns should display characteristic features of
both class (x) and class (y) for an accurate classification decision, which makes
the availability of sufficient class-indicative distributional information all the
more important.

As to the 4 remaining cases of incorrectly classified complex-type nouns, their
misclassification cannot be attributed to low frequency, as these nouns have an
absolute frequency of 190, 3881, 1779 and 538 times in the corpus. However,
when looking into their individual feature vectors, we observed that the informa-
tion being provided to the classifiers demonstrated considerable asymmetry in
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terms of the frequency of use in language data of the different sense components
of the complex type. When considering the distributional data as represented
in the feature vectors of each of these complex-type nominals, we observed,
for instance, that in the case of the complex-type noun notice 613 of its 697
co-occurrences with class-indicative lexico-syntactic patterns corresponded to
features that are indicative of the COM class, while only 42 were indicative of the
EVT class, and another 42 occurrences corresponded to negative cues. This same
trend was also observed with the (EVT·COM) noun quote for which 123 of its
130 occurrences were in COM-indicative patterns, only 5 being in EVT-indicative
patterns, and 2 with negative cues.

This way, we attribute misclassification in these cases to context behavior that
is reflective of more than one lexical semantic class, which was reflected in
the representativity in corpora data of the features indicative of the different
sense components of these particular lemmas. This point is further verified by
the fact that these lemmas are correctly classified in Step 1 as members of the
(EVT/COM) group, as the classifier is trained to identify nouns from each of the
individual simple-type classes that form a regular polysemous alternation. Thus,
even though there is an asymmetry in the frequency of use in language data of
the distributional information represented in the feature vector of a complex-type
noun provided to our classifiers, which can cause its misclassification as a
non-member of the (x · y) complex type, these nouns are not misclassified in
the first step of our experiment as they have a significant number of features in
common with nouns of one of the simple-type classes being considered by the
classifiers in this step, and are therefore correctly classified as members of the
(x/y) group.

In the case of (LOC·ORG), the final results obtained in Step 2 demonstrate 4
incorrectly classified complex-type nouns, which were considered not to belong
to the LOC·ORG class by our classifier. Of these 4 cases, one is caused by
insufficiency of distributional information (23 occurrences in total of this noun
in corpus data) while the remaining 3 cases also displayed an asymmetry of
occurrences in class-indicative lexico-syntactic patterns of the different sense
components of the (LOC·ORG) complex type.

In the case of the LOC·ORG noun borough, 37 of its 54 occurrences in class-
indicative lexico-syntactic patterns are indicative of the LOC class, while only
14 of its occurrences are class-indicative features for the ORG class. This same
trend was also observed with the LOC·ORG noun unit, for which 339 of its 387
occurrences corresponded to features considered indicative of the LOC class,
while only 38 were features considered indicative of the ORG class, and 10
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amounted to negative cues. The same was also true for the LOC·ORG noun
agency, which has 189 of its 286 occurrences in features indicative of the LOC

class and only 33 in features of the ORG class, while 14 occurrences corresponded
to negative cues.

These examples further serve to demonstrate the impact of asymmetry in the
frequency of use of different sense components of a complex-type noun can have
on results, as discussed in detail in Section 5.2.1. In fact, although theses nouns
are considered to be complex-type nominals in our data set, their distributional
data is still heavily biased towards one of the two sense components of the
complex type.

Final remarks

The Cascade Approach presented in this Section confirms that we can obtain
State-of-the-Art results when running a 2-Step complex-type classification on a
data set consisting also of nominals that belong to any lexical semantic class, in
contrast to the work presented in Section 5.2.1.

Overall, our approach can successfully identify very specific lexical items
such as complex-type nominals with high accuracy, and distinguish them
from those instances that are not complex types using a combination of the
lexico-syntactic patterns indicative of each classes corresponding to the different
sense components that form a regular polysemous alternation to build word
representations. Moreover, the Cascade Approach increases the precision
of the complex-type nominal classification, further providing evidence of re-
current contextual characteristics that are distinctive to regular polysemous nouns.

Due to the success we have has using the WE representations in Section 4.4,
including overcoming problems of sparse data in word representations for clas-
sification, which resulted in higher quality classification decisions. In the final
Section of this Chapter, we used again WE representations to expand upon our
Cascade Approach as an attempt to overcome the reported effects of asymmetry
in the representations obtained using the LING model. Furthermore, we also
extend our approach to the larger CoreLex [Buitelaar, 1998], as described in
Section 3.1, which will increase the number of regular polysemous alternations
that we classify to 60, providing more evidence for our conclusions.
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5.3 Using WE representations to classify complex-
type nouns

As introduced in Section 5.2, and in parallel with the timeline provided in Chapter
4, the last experiments conducted for this thesis used WE distributional word
representations for classification.

In this final experiment, we implemented the Cascade Approach proposed in
Section 5.2 using WE word representations, as defined in Chapter 4.4. In this
Section, we used WE representations because they demonstrated to more aptly
handle the problem of sparsity in comparison to representations produced with
count-context models, such as the LING model. The success of the Cascade
Approach to classify complex-type nouns of a given regular polysemous alterna-
tion depends on the ability of the classifier to handle and classify low-frequent
lexical items that consequently have sparser data in their vectorial representations.

Moreover, in this Section, we used the CoreLex data set, built by [Boleda et al.,
2012a] and described in more detail in Section 3.1, to increase the number of
complex-types studied and provide further empirical evidence for the approach.
Furthermore, the inclusion of more regular polysemous alternations will confirm
the transferability of this Approach to all complex-type nouns.

5.3.1 WE for complex-type classification
As detailed in Section 5.2.2, the Cascade Approach consists of 2-steps that
account for all of the relevant classes of a complex-type nominal, by first dis-
tinguishing target nouns from any other noun found in the corpus not belonging
to any class that contributes to the sense alternation, i.e. as members of the
(x/y) class, as described in Section 5.2, and second, by distinguishing those
polysemous nouns (x · y) from their monosemous counterparts (x) and (y), i.e. as
members of the (x · y) class.

Our goal with using WE representations in the the Cascade Approach is to
improve the quality of classification decisions for complex-types nominals. As
the Cascade Approach has demonstrated to be effective even though frequency
is an issue to handle instances of when frequency is an issue because it focuses
on identifying those low frequent items first as members of the super class
of the regular polysemous alternation (i.e. those nouns that are members of
x, y and/or x·). However, as we saw in the previous Section, this resulted in
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classification decisions with high precision and low recall. In this Section, with
the use of WE representations, we aim to reduce the issues of recall while at least
maintaining, or increasing, precision. Furthermore, we hypothesize that the use
of WE representations can serve to provide further empirical evidence to support
our conclusions regarding the reduction of sparse data in Chapter 4.

5.3.2 Experiments

Each experiment conducted in this Section was conducted using the disemous
classes indicated in the CoreLex data set [Boleda et al., 2012a], as described in
Section 3.1. This data sets provided gold standard information regarding nouns
belonging to specific regular polysemous alternations.

Following the methodology already proposed in previous Section and the
strategy of [Boleda et al., 2012a], we based our experiments on each of the
60 disemous alternations defined in the CoreLex data set (i.e. alternations that
consist of only two different senses), such as (LOC · ORG) or (COM · EVT). As
previously explained, [Buitelaar, 1998] designed the alternations in the CoreLex
resource using a frequency criteria, which did not account for other types of
lexical ambiguity, such as homonymy. In order to validate that the regular
polysemous alternations being studied are exemplary, we also conducted a
human annotation task to identify which of the disemous alternations are con-
sidered to be prototypical regular polysemous alternations. A description of the
annotation task, as well as the details of the results are presented in Appendix A.3.

Each experiment was conducted with the 3 billion token LARGE3BN corpus, as
described in Section 3.2. We trained our classifiers with WE representations built
with dependency-based word embeddings [Levy and Goldberg, 2014a], using the
same method as described in Section 4.4. A binary classification was conducted
for each regular polysemous alternation using again a supervised LMT [Landwehr
et al., 2005] classifier in the WEKA implementation [Witten and Frank, 2005], as
previously introduced and described in Section 4.2. Each classifier was evaluated
in a 10-fold cross validation setting.

In order to evaluate the approach using WE representations, we conducted two
experiments:

• Experiment 1 - implementation of the Cascade Approach:
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– Step 1: We classify the nouns in Step 1 into a super class (or (x/y)
class), which classifies any noun that is related to a class that partici-
pates in the alternation from any other noun, following the methodol-
ogy outline in Section 5.2.

Figure 5.7: Workflow of Two-Step Cascade Approach (Experiment 1) using WE

representations

– Step 2: Using the nouns classified to be a member of the (x/y) class in
Step 1, we classify nouns as members of their own class (xẏ). In this
way, the goal is for the classifier to separate them from their potentially
monosemous or homonymous counterparts. Figure 5.7 illustrates each
Step in Experiment 1.

• Experiment 2 - Direct classification of complex-type nouns:

We directly classify the regular polysemous nouns into their own separate
lexical semantic class, thus eliminating the 2-step process. In this way, the
goal of this experiment is to directly classify nouns of a regular polysemous
alternation in their own lexical-semantic class (x · y).

Figure 5.8: Workflow of Experiment 2 using WE representations

128



“thesisv7.6-submitted” — 2015/6/27 — 12:01 — page 129 — #149

CHAPTER 5. HANDLING POLYSEMY IN DISTRIBUTIONAL WORD
REPRESENTATIONS

In this way, the classifier would directly separate complex-type nouns from
all other nouns in a corpus including their monosemous or homonymous
counterparts. Moreover, this experiment provides further evidence toward
the existence of regular polysemous alternation as a lexical semantic class.
Figure 5.8 illustrates the workflow for the direct classification Experiment
2.

5.3.3 Results
Table 5.11 presents the average overall results obtained from the 60 disemous
classes of the CoreLex data set [Boleda et al., 2012a]. Table 5.12 presents the
average results obtained from nouns of those regular polysemous alternations
those classes that had 100% agreement between the human annotators in our
annotation task. The results obtained using WE representations are quite promis-
ing and demonstrate a clear improvement upon the results previously presented
in Section 5.2.2, leading us to form new conclusions regarding complex-type
nominal classification.

Cascade Classification Experiment
accuracy precision recall F1-Score

Step 1: x/y group classifiers:
Experiment 1 74.66% 0.74 0.75 0.75

Step 2: x · y classifiers:
Experiment 1 71.72% 0.70 0.71 0.70

Overall Score: Cascade Classifiers: 73.19% 0.72 0.73 0.73
Direct Classification Experiment

accuracy precision recall F1-Score
x · y classifiers
Experiment 2 82.55% 0.80 0.82 0.81

Table 5.11: Average results from the CoreLex Cascade Classification experiments
over all 60 disemous polysemous classes

As indicated in the results presented in Table 5.11, Step 1 verified that we are able
to successfully classify nouns into a super class (x/y) of regular polysemous with
an average of almost 75% accuracy. This result is also consistent with the results
reported for Step 1 in Table 5.12, although there is a slight overall improvement,
which indicates that the Cascade Approach has a stronger performance when
considering classes that are actually representative of this phenomenon.
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Cascade Classification Experiment
accuracy precision recall F1-Score

Step 1: x/y group classifiers:
Experiment 1 76.41% 0.76 0.76 0.76

Step 2: x · y classifiers:
Experiment 1 73.52% 0.73 0.73 0.73

Overall Score: Cascade Classifiers: 75.09% 0.75 0.75 0.75
Direct Classification Experiment

accuracy precision recall F1-Score
x · y classifiers
Experiment 2 86.09% 0.85 0.86 0.85

Table 5.12: Average results from the CoreLex Cascade Classification experiments
over those disemous polysemous classes annotated by human annotators

The results of Step 1, also demonstrated an improvement over the results
obtained with this method from count-context models, as presented in Section
5.2.2. Besides the average increase in accuracy over the test set, we also, more
importantly obtained an overall average increase in recall of approximately 20
points, when considering the recall of the prototypical regular polysemous classes
and approximately10 points when considering the recall of all 60 disemous
classes. This increase in recall further indicates that the use of WE representations
drastically reduces the effects sparsity in vectors provided to the classifiers,
especially in the case of more low-frequent items that we cannot classify with
count-context models, which directly improves the performance of the classifier.

In the case of the (x · y) classifiers in Step 2 of Experiment 1, we achieved an
average accuracy of 71.72 in the case of all 60 disemous classes and an average
accuracy of 74.39 in the case of the annotated regular polysemy alternations.
These results are also important because they indicated that the distributional
representations of regular polysemous items is sufficient enough not only for an
accurate classification decision, but also sufficient enough to directly discriminate
these nouns from all other nouns that do not instantiate both classes. Hence, the
experiment confirms that the distributional characteristics of complex-type nouns
can be learned by a classification system.

More importantly, the results obtained in Experiment 2 are statistically significant
from the final results obtained in Experiments 1, with a 10 point increase in the
F1-Score and a 12 point increase in accuracy in the results of the prototypical
regular polysemous alternations and a 9 point increase in accuracy and an 8 point
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increase in F1-Score in the results of all of the 60 disemous alternations. This
is an important result because it directly highlights the main difference between
WE representations and those built with count-context models. Furthermore, this
result indicates that Step 1 of the Cascade Approach is rendered ineffective when
using representations that are not as highly affected by data sparsity, such as is
the case with WE representations. This is further indicated by the statistically
significant increase (p < 0.05) of results obtained in Experiment 2 and those
obtained in Step 2 of Experiment 1.

Moreover, the strong results obtained in Experiment 2 provide empirical evidence
for the treatment of complex-type nouns of a given regular polysemous alternation
as members of a separate, individual lexical-semantic class. Furthermore, these
results provide evidence that complex-type nominals do, in fact, have common
characteristics that are both identifiable and learnable.

5.3.4 Discussion
As indicated in Tables 5.11 and 5.12, WE representations are able to classify
complex-type nouns efficiently as members of a separate lexical-semantic class.
Along this line, we comment on the average accuracy score of 76.41% reported
in Table 5.12 for the prototypical alternations in Step 1 of Experiment 1, and
the fact that the score did not increase in Step 2 of Experiment 1. This result
is attributed to the fact that the (x/y) classifiers are trying to classify a broader
range of nouns that are essentially from 3 different lexical-semantic classes: (x),
(y) and (x · y). Classifying nouns from the single-sense (x) and (y) classes into
the super (x/y) class can be a challenge to the classifier because simple-sense
nouns do not necessarily share distributional characteristics with each other,
as required by nouns of the (x · y) class. Therefore, these distributional word
representations behave differently in context, which can exclude certain nouns
from classification into the super (x/y) class, thus accounting for the 10 point in-
crease in accuracy when directly classifying complex-type nouns in Experiment 2.

We observed this directly in the data of the GRS·LOG (SOCIAL GROUP·
GEO LOCATION)class. In Step 1 of Experiment 1, the GRS·LOG noun village was
misclassified with a probability score of 0.96, thus indicating almost certainty
of the class membership decision by the classifier. However, when we directly
classified this noun as a member of the GRS·LOG class in Experiment 2, the
classifier was able to correctly assign the noun class membership along with other
members of this the regular polysemous alternation with a strong probability
score of 0.80. Moreover, the misclassifications in Experiment 2 do not increase
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upon the misclassifications reported in Step 1 of Experiment 1, meaning that
either the same number of nouns were misclassified in Experiment 2 or less nouns
were misclassified. For instance, the GRS·LOG nouns suburbia and neighborhood
were both misclassified in Step 1 of Experiment 1, with probability scores
of 0.98 and 0.93, respectively. In Experiment 2, they remained misclassified,
yet with probability scores of 0.78 and 0.58 respectively, indicating that the
classifier was not as certain of their “non-membership” in the GRS·LOG class,
which consequently implies that their representation, although not sufficient for
accurate class membership decision, was still less similar to the representations
of non-class members, which resulted in a lower probability score for their
misclassification.

The results in both Tables 5.11 and 5.12 indicate that complex-type nouns
share a large enough amount of distributional characteristics, resulting in robust
class membership decisions, with more than 86% accuracy in Experiment 2.
Furthermore, our results demonstrate that there are definitive characteristics that
are unique to regular polysemous nouns because they are provided with more
information when classified together as members of their own class, following
the preliminary results that we obtained in Section 5.2.2, by combining the lexical
semantic patterns from both classes of the alternation (LOC and ORG, for instance).

To further inspect the results obtained in Experiment 2, we consider again our
conclusions in Section 4.4: WE representations eliminate the sparse data problem
in distributional word representations. The results in Section 4.4 confirmed the
success of WE representations to overcome the sparse data problem. We are able
to further overcome even the need for a 2-Step procedure because the WE word
representations are robust enough to allow for direct classification of regular
polysemous nouns into a dedicated lexical-semantic class. This is also justified
by the overall reduction in misclassifications when directly classifying regular
polysemous nouns into their own lexical-semantic class. Moreover, the direct
classification approach of the annotated alternations in Experiment 2 reported
a recall of 0.86, which is an increase of 10 points in comparison to the recall
reported in Step 1 of Experiment 1.

Furthermore, Experiment 2 reported an accuracy of 86.09%, which is almost a
full 10 point increase from the 76.41% accuracy obtained with the classifiers of
Step 1 of Experiment 1 for the prototypical alternations. With this comparison,
we do not need to refer to the final results in Step 2 of Experiment 1 because
they do not obtain a perfect classification, which automatically implies that the
reported precision and recall decreases, as a direct effect of the results obtained in
Step 1. For this reason, when using WE for complex-type nominal classification,
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the results obtained clearly indicate that the WE representations are robust enough
to directly classify the nouns as members of their own class, without a preliminary
step to capture low-frequent relevant lexical items.

Thus, the results obtained from Experiment 2 further support our hypothesis that
when distributional information is accurately and usefully represented, regular
polysemous items form their own lexical semantic class. This is verified by their
ability to be classified together with quite a high precision, which is statistically
significantly higher from the results obtained in the previous experiments
conducted.

5.3.5 Final remarks
The experiments presented in this Section provided a strategy using WE represen-
tations to overcome the issues of sense asymmetry and data sparsity that occur in
the vectors of complex-type nouns, due to the low frequency of these nouns in
some contexts that are indicative of their alternations, as observed in Section 5.2.
The Cascade Approach attempted to overcome these challenges by combining
distributional information available to complex-type nouns in one feature vectors
to smooth the asymmetry problems that can result in insufficient distributional
information.

The results obtained using WE representations for classification demonstrated
that sparsity is reduced in WE representations. This reduction in sparsity is
indicated by the increase of recall in both Experiments 1 and 2 in comparison
to the results obtained in Section 5.2 using word representations built with the
LING model. Furthermore, the classification results using WE representations
provide strong evidence toward the treatment of complex-type nouns of a
given regular polysemous alternations as members of their own separate lexical
semantic class. We draw this conclusion based on the ability of these nouns to be
directly classified as such based on their own distinctive, identifiable, and, most
importantly, learnable characteristics.

Furthermore, the results presented in this Section seem to demonstrate a gen-
eralization of the behavior of these types of nouns in corpus data, that smooths
the asymmetry of occurrences in the vector. We further consider that the WE

representations may also contain those very low-frequent yet highly indicative
contexts characteristic to nouns that instantiate regular polysemous alternations,
although we cannot directly inspect this fact.
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Chapter 6

CONTRIBUTIONS AND
CONCLUSIONS

Nominal lexical semantic class information is critical for a broad variety of NLP
tasks, yet its manual production has been known to be costly and time-consuming.
One approach to solve the construction and maintenance of large-coverage lexica
for feeding NLP systems is the automatic acquisition of lexical information,
which involves the induction of the semantic class related to a particular word
from distributional data gathered within a corpus.

In this thesis, we concentrated our work precisely on automatically acquiring
lexical-semantic information through empirical validations of different distri-
butional representations of nouns that are used for the classification and the
prediction of unknown nouns. We identified—and concentrated on overcom-
ing—two of the main challenges of this task, pinpointed in the State of the Art
and observed in our empirical validations.

6.1 Contributions

The main contribution of this dissertation is an empirical study of distributional
representations used for nominal lexical semantic classification. We expanded
upon six peer-reviewed articles [Bel et al., 2012, Romeo et al., 2012, Romeo
et al., 2013b, Romeo et al., 2014a, Romeo et al., 2014b, Romeo et al., 2014c]
related to the topics of nominal lexical semantic classification, distributional
representations and regular polysemy.

The following are the contributions that resulted from the work presented in this
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thesis:

• A methodology to define the criteria to identify linguistically-motivated
class-indicative features based on major linguistic categories including
predicate selectional restrictions, grammatical functions, prepositions and
suffixes.

• The definition and identification of class-indicative lexico-syntactic patterns
for five lexical-semantic classes in English that achieve an average F1-
Score of 0.76. The use of these patterns confirms that theoretically pos-
tulated explicit rules do certainly represent necessary boundaries for nouns
belonging to a given lexical-semantic class.

• The definition and application of what we call unmarked contexts. Further-
more, we outlined a strategy to include these unmarked contexts in distri-
butional vectors that encode the deviation of the occurrences of a noun in
a specific context from the average occurrence of all nouns in that same
context, achieving an average increase of accuracy of 5.19 points.

• A method for a Cascade Approach that achieves an overall average F1-
Score of 0.69 with the LING model, and an average F1-Score of 0.75 with
the WE model, whose main characteristic is a two-step approach that first
classifies the members of a so-called super class (x/y) to broaden the dis-
tributional profile of nouns being classified to include all of the potential
components of a given regular polysemous alternation, and then classifies
in a second step complex-type (x · y) nouns from simple-type (x) and (y)
nouns.

• Automatically constructed single-sense (i.e. monosemous) data sets for five
lexical-semantic classes in English (EVT, HUM, ORG, LOC, COM) that have
been used and empirically verified in several experiments and for several
different models.

• Human-annotated polysemous data sets for two prototypical regular pol-
ysemous alternations (LOC·ORG and EVT·COM) that have been used and
empirically verified in the Cascade Approach for complex-type nominal
classification. These data sets contain information regarding the potential
of nouns to be systematically interpreted in both senses that form a given
regular polysemous alternation.

• The identification of the disemous regular polysemous alternations of the
CoreLex repository that are prototypical of regular polysemy, according to

135



“thesisv7.6-submitted” — 2015/6/27 — 12:01 — page 136 — #156

CHAPTER 6. CONTRIBUTIONS AND CONCLUSIONS

the GL, and not of other types of lexical ambiguity, such as homonymy, in a
human annotation task. We confirm the validity of these alternations as true
examples of regular polysemy by the increase of average accuracy of more
than 3.5 points from the entire list of 60 disemous classes, as demonstrated
in Section 5.3.

All resulting lexical-resources and data sets have been made freely available for
download and use1.

6.2 Main conclusions
The main research question proposed in this dissertation addresses: (i) whether
corpus data provides sufficient distributional information to build efficient word
representations that result in accurate and robust classification decisions; and
(ii) whether automatic acquisition can handle polysemous nouns. The results in
Chapters 4 and 5 allow us to draw the following conclusions.

Distributional information obtained in corpus data is sufficient to automatically
acquire lexical semantic classes. However, a word representation, ultimately like
those built from the WE model, that maintains the “semantics” underlying the
occurrences of a noun in corpus data by mapping it to a dense feature vector,
is necessary because it offers reduced dimensionality of the vector space, and
considers only real numbers. Thus, it provides actual informative data to the
classifiers, avoiding the zero values that negatively effect classifications decisions
when using count-context models.

Furthermore, count-context models have been proven to maintain an upper limit
related to—not caused by—the information available in corpus data; specifically
in regards to their representation of distributional information. The results
obtained with the LINGLINE and the DM models (an average F1-Score of 0.83)
verify that the information available in corpus data is, in fact, sufficient to
accurately separate lexical semantic classes. However, it still does not achieve the
performance that mapped WE representations are able to achieve.

In order to handle polysemy, nouns that instantiate a given regular polysemous
alternation should be treated as members of their own separate class for any
lexical-semantic classification task. Unlike simple-type nouns, complex-type
nouns can occur in contexts of each of the semantic classes that form the

1http://repositori.upf.edu/handle/10230/24562
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alternation, as well as in contexts in which both senses are selected for, resulting
in characteristic patterns of occurrence in corpus data that differ from simple-type
monosemous nouns that cannot instantiate the alternation.

Distributional word representations and lexical-semantic classes

In Sections 4.1, 4.2 and 4.3, we successfully confirmed the learnability of lexical
semantic classes using manually identified patterns of linguistic information,
achieving an overall average F1-Score of 0.76 with an average of only 18 features
per class.

On the one hand, the combination of this linguistic information with other
commonly occurring—yet general—information, what we defined as unmarked
contexts, or bag-of-words-type information, such as in our LINGLINE model,
alleviated sparsity in the vectorial representations. This was confirmed by the
reduction of errors by an average of 5 points and also through a clear reduction
of false negatives. On the other hand, the inclusion of syntactic information
provided by a dependency parse in the DM model provides structure to the
lexical information in the features, which filters out noise and results in an
overall F1-Score that is a statistically significant improvement over all the other
count-context models, as observed in its higher average F1-Score of 0.84. Yet the
DM models, which include syntactic dependency information, require the largest
number of features—an average of more than 600, 000 per class—and are trained
on more than 3 billion tokens of corpus data.

Thus, distributional models based on linguistically motivated information proved
to be a viable solution to build word representations also on differently sized
corpora, achieving consistent results on corpora ranging from 3 million tokens to
3 billion tokens, and with such a small amount of features. This further confirms
that features based on linguistic knowledge accurately generalize and characterize
indicative marks of a lexical-semantic class.

Finally, in Section 4.4, we empirically provided evidence (an overall average
F1-Score of 0.91) that WE models almost completely overcome the sparse data
problem. This dramatic increase in performance indicated that our analysis of
the count-context models had a limited efficiency. Furthermore, linguistically
motivated features do not always necessarily uncover the more implicit relations
that can exist between similar words that occur in similar contexts that a mapped
model, such as WE models, can procure. Likewise, we also consider that some
of the more meaningful relations between words of a given class might require
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the information from all of language use to be able to uncover them. The
representations built using WE tend to more closely simulate this idea, and the
resulting performance of these classifiers with WE representations is so strong
that they (almost) perfectly represent the occurrences of nouns of given lexical
semantic classes, both monosemous and polysemous, in corpus data. These
results confirm that WE models overcome the sparse data problem encountered
with count-context models. Ultimately, using real numbers and condensing the
number of mapped dimensions provide a better representation to the classifier.

With regard to the significant improvement of classification using WE, we also
recall that the number of features (we used vectors of 200 dimensions) needed
to obtain these results is much higher than the number of features required by
LING, for instance, and it implied a large amount of corpus data (we trained the
WE models on 3 billion tokens of corpus data), which must be considered when
evaluating this model.

Finally, one of the main results of this thesis highlights the strong performance
of WE models for nominal lexical semantic classification. Nonetheless, these
models did not allow us to draw certain conclusions based on the fact that they are
essentially not inspectable, namely in regards to the actual contextual evidence
they represent. On the one hand, it is because they are not actually representing
individual components in each dimension, as count-context models do. On the
other hand, as mentioned earlier, the representations built using WE may stimulate
more closely both the implicit and explicit relations that occur between words.
Either way, we underline the fact that this limitation resulted in an inability to
draw specific conclusions about the information contributing to the formation of a
lexical class based on the contextual behavior of nouns when using this model for
classification. From a linguistic point of view, this represents a major constraint
toward the further understanding of the contextual boundaries required to define
a lexical semantic class.

Thus, one future avenue of this work is to extensively and exhaustively explore
the relations between word representations built using WE and actual occurrences
of a word in corpus data. Although some intrinsic correlations have been iden-
tified [Levy and Goldberg, 2014a], an in-depth and dedicated study is not only
warranted but needed to further understand the implications of the generalization
process that occurs during the mapping of data into word representations for
monosemous and regular polysemous nouns alike.
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Representing regular polysemous complex-type nouns

We verified that the distributional information indicative of each class is sufficient
to classify complex-type nouns, as proposed by GL [Pustejovsky, 1995], by
classifying complex-type nouns individually as a member of each class that forms
a given regular polysemous alternation. An average overall accuracy of 64.84%
confirms that complex-type nouns show distributional behavior of each individual
class that forms the regular polysemous alternation of that complex type.

We identified that the main limitation for the classification of complex-type nomi-
nals using count-context models is a resulting asymmetry in word representations
caused by the unequal occurrence of a target noun in contexts indicative of each
individual class that forms a regular polysemous alternation in context, indicated
by the results discussed in Section 5.2.

With the results obtained in Chapter 5, we conclude that regular polysemous
complex-type nouns should be treated as members of their own separate
lexical-semantic class. This is because these nouns share sufficient distributional
evidence that is identifiable and, more importantly, learnable, which permits
their classification into a separate lexical-semantic class, with an impressive 0.85
average overall F1-Score using WE representations.

Thus, we conclude that complex-type nouns should be treated as members of
their own lexical-semantic class because they do not equally occur in corpus
data as members of each class that forms a regular polysemous alternation,
resulting in biased distributional representations. A dedicated word represen-
tation that considers this asymmetry as a feature is imperative to the efficient
representation of complex-type nouns. Likewise, the classification of an un-
known noun into a nominal lexical semantic class must consider the possibility
of that noun being a member of either a monosemous or regular polysemous class.

Distributional representations built with WE models appear to smooth this
asymmetry due to its mapping of occurrences from corpus data to vector space.
We consider that one of the differences between complex-type nouns and
simple-type nouns is the occurrence in contexts representative of characteristics
specific to regular polysemous complex-type nouns (i.e., co-predication contexts
or underspecified contexts, as outlined in the GL [Pustejovsky, 1995]). Although
it cannot be inspected, the mapping conducted in WE representations may include
this information, which is not typically considered in count-context models due
to its low frequency, and can permit the differentiation between complex and
simple-type nouns, resulting in the classification of complex-type nouns into their
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own lexical-semantic class.
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Appendix A

The following Appendices contain supplementary information regarding the mod-
els, experiments and data sets presented and discussed in detail throughout this
dissertation.

A.1 Identification of linguistically-motivated class-
indicative lexico-semantic cues

Below we present lists of the linguistically-motivated cues for each class studied,
which served as the base to build the LING model, as presented in Section 4.1.
All of the part-of-speech tags follow the Penn Tree Bank tag-set. The lists of
the Regular Expressions used for extracting the relevant information from corpus
data are freely available for download and use1.

Each of the cues presented in the Tables below (EVT: Table A.1, HUM: Table A.2,
COM: Table A.3, ORG: Table A.4 and LOC: Table A.5) were described in detail in
Section 4.1. The exact methodology and steps followed to identify the cues listed
in the following tables is described in detail in Chapter 4.

1http://repositori.upf.edu/handle/10230/24562
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Cues for EVENT nouns
Cue Type Regular Expressions Examples

Target noun is
preceded by certain
adverbs/prepositions.

(during|before|after) + ##target noun##

Target noun
occurs with certain
expressions of time
in specific NPs.

(end|beginning|day|month|year|second|minute|hour|moment|century|period|
time|age|decade|frequency|occurrence|repetition|regularity|happening|epoque|
morning|night|afternoon|week|occasion|date) + of + ##target noun##

Target noun is
preceded by certain
expressions of time

##target noun## + [a-z]+\V*+(day|month|year|
second|minute|hour|moment|century|period|time|age|epoque|decade|week|
date|while)

Target noun
occurs as subject of
certain aspectual verbs
or other “occurrence” verbs

##target noun## +(throw|transpire|organize|organise|happen|occur|
initiate|begin|commence|inaugurate|launch|induct|open|originate|close|
conclude|end|terminate|start|stop)\V*

Target noun is
an object of certain
verbs indicative of
EVENT nouns

(initiate|begin|commence|inaugurate|launch|induct|open|originate|close|
conclude|end|terminate|start|stop|throw|lock|result|involve|run|experience|
refuse|plan|inject|complete|win|hold|follow|mark|launch|sustain|order|miss|
convene|need|speak)\V* + ##target noun##

External argument
of target noun
is realized
as genitive

[a-z]+(’s) + ##target noun##

Target noun is
subject of common verbs
that select for EVENT

nouns

##target noun## + (gain|seek|spike|require|cover|run|erupt|race|slow|
continue|average|hold|snap|skyrocket|stand|remain|mean|disintegrate)\V*

Target noun is
modified by certain adjectives

(neutral|economic|third|political|interior|easy|full − service|minimal|
standard|black|compact|first|annual|natural|human|presidential|final|
other|rapid|future)\J* + ##target noun##

Target noun is
preceded by certain agentive
prepositions: “by|for”

##target noun## + (by|for)\IN

Target noun
precedes certain relative
pronouns “(when|where)”

##target noun## + (when|where)\WRB

Target noun modified
by certain PP

[a-z]+\IN + ([a-z]+\DT)? [a-z]+\N* +
##target noun##

Delimiting point of
target noun signified
by PP

(until|since|till) + ##target noun##

Target noun
precedes certain post-adjectival
modifiers

##target noun## + (early|late)

Target noun contains
a suffixes indicative of
EVENT nominalizations

##[a-z]+(ment|ion)\target noun##

Table A.1: Linguistic cues and corresponding lexical-syntactic patterns formal-
ized as Regular Expressions used to extract distributional data indicative of nouns
the EVENT class
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Cues for HUMAN nouns
Cue Type Regular Expression Examples
Target noun is
subject of 35 frequent verbs
(that co-occur with
HUMAN nouns)

##target noun## + (excel|support|tell|believe|name|spend|
think|describe|ask|write|decide|show|receive|face|die|seem|put|
tend|set|buy|consider|bring|represent|meet|appear|feel|agree|
relate|start|pay|perform|sit|arrive|argue)\V*

Target noun is
subject of 35 frequent verbs
(that co-occur with
ORG nouns because
they tend to be similar
to HUM nouns due
to lexical gaps)

##target noun## + (work|feature|include|live|want|call|base|
follow|need|begin|win|continue|offer|hold|consist|report|remain|
look|become|operate|lead|move|build|announce|comprise|rely|grow|
leave|lose|try|dedicate|found|own|play)\V*

Target noun is
a complement of specific
agentive PP

(by|for) + ##target noun##

Target noun is
an indirect object of “give” verbs
[Levin, 1993]

(give|lend|loan|pass|refund)\V* + ##target noun##

Target noun is an
indirect object of indicative verbs
from [Levin, 1993], according to
their tendency to occur with
HUMAN nouns

(manage|trade|bet|evolve|register|protect|work|earn|found|carry|
enable|empower|enhance|enable|crown|help|elect|lead|serve|
require|strike|preside|appoint|designate|ail|link|become|visit|cost|
stay|crew|allow|arm|oust|purchase|kill)\V* + ##target noun##

Target noun is
modified by a genitive [a-z]+(’s)\PoS + ##target noun##

Target noun is
modified by a possessive pronoun [a-z]+\PRP$ + ##target noun##

Target noun is
headed by a specific relative pronoun ##target noun## + (who|whom|whose)\WRB

Target noun is
included in “group of” constructions

(group|aggregation|association|clique|congregation|crowd|party|
assemblage|band|club|coterie|gang|posse|assembly|class|company|
crew|gathering|society|troup|troope) + of
+ ##target noun##

Target noun is
modified by nationality, religion, governmental
affiliation, etc.

[a-z]+(ish|an|ch|ese|ss|ek|ino|ic|ant|ive|al|nt)\NP
+ ##target noun##

Target noun
precedes
certain adverbs

##target noun## + [a-z]+ly\RB

Target noun
occurs in certain “be located/found at” NPs ##target noun## + at + [a-z]+\NP

Target noun is
preceded by
specific JJ that indicate age|growth

(teenage|year − old|senior|junior|pre− pubescent)\J*
+ ##target noun##

Target noun is preceded by
specific JJ that indicate
personality, political, spiritual preferences, etc.

(political|executive|proper|other|good|general|valuable|bright|civil|
local|religious|spiritual|modern|military|old|medical|traditional|
former|first|deputy|dear|global|close|little|public|good|online|scientific|
new|innocent|senior|archaic|artistic|graphic|young)\J*
+ ##target noun##

Target noun contains
specific suffixes indicative of
HUMAN nouns

##[a-z]+(er|or|man|men|mate|ist|arian|naut|yst|
ster|ess)\target noun##

Target noun contains
specific prefixes indicative of
HUMAN nouns

##(radio|anti|paleo|vice|epi|ex|neo|col|
grand)[a-z]+\target noun##

Table A.2: Linguistic cues and corresponding lexical-syntactic patterns formal-
ized as Regular Expressions used to extract distributional data indicative of nouns
the HUMAN class
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Cues for COMMUNICATION OBJECT nouns
Cue types Regular Expression Examples

Target noun occurs
in specific frequent
PP phrases

about\IN (+ [a-z]+\DT?) + ##target noun##
to\IN (+ [a-z]+\DT?) + ##target noun##
for\IN (+ [a-z]+\DT?) + ##target noun##
within\IN (+ [a-z]+\DT?) + ##target noun##
by\IN (+ [a-z]+\DT?) + ##target noun##
without\IN (+ [a-z]+\DT?) + ##target noun##

Target noun occurs
in specific frequent compound
PP phrases

(between|against|before|after)\IN (+ [a-z]+\DT?) + ##target noun##

Target noun contains
suffixes indicative of
COMM nouns

##[a-z]+(gram|graph|tion|ario|phia|sion|dence|graphy|logue|
logy|list|book|tale|note|chart|word|letter|paper)\target noun##

Target noun is an
object of frequent verbs
that select for COMM

nouns

(close|relate|mail|submit|report|write|send|believe|ask|issue|
entertain|detail|manage|register|shock|answer|serve|interest|
release|publish|collect|accompany|add|start)\V* + ##target noun##

Target noun is a
subject of frequent verbs
that select for COMM

nouns

##target noun## + (complete|excel|need|submit|include|continue|
contain|break|send|submit|violate|show|turn|call|refresh|regard|
personalize|release|delay|collect|issue|notify|direct|please|mention|
design)\V*

Target noun is
modified by “-ly” adjectives that
are derivates from time/direction
words or verbs (i.e. “weekly” ).

[a-z]+ly\J* + ##target noun##

Target noun is
modified by certain adjectives

(identifiable|personal|unrelated|other|long|certain|commercial|new|
content|online|legal)\J* + ##target noun##

Table A.3: Linguistic cues and corresponding lexical-syntactic patterns formal-
ized as Regular Expressions used to extract distributional data indicative of nouns
the COMMUNICATION OBJECT class
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Cues for ORGANIZATION nouns
Cue type Example

Target noun is
subject of frequent
agentive verbs

##target noun## + (work|feature|include|live|want|call|
base|follow|need|begin|win|continue|offer|hold|consist|report|
remain|look|become|operate|lead|move|build|announce|
comprise|rely|grow|leave|lose|try|dedicate|found|own|play)\V*

Target noun
precedes past
“founder”-type verbs

##target noun## + (create|found|preside|establish|
endow|organize|constitute|inaugurate|institute|originate|
decree)\(V BD|V BN)

Target noun is
captured by agentive
complements headed
with the preposition “for”

for\IN ((+[a-z]+\DT)?) + ##target noun##

Target noun is
an indirect object
headed by “to”

[a-z]+\V* + to\TO (+ [a-z]+\(DT |J∗)?) + ##target noun##

Target noun occurs in
independent PP complements
headed by “in”

in\IN(+ [a-z]+\(DT |J∗)?) +##target noun##

Target noun occurs in
independent PP complements
headed by “within”

within\IN(+ [a-z]+\(DT |J∗)?) +##target noun##

Target noun occurs in
independent PP complements
headed by “from”

from\IN(+ [a-z]+\(DT |J∗)?) +##target noun##

Target noun occurs as
a direct object
without a dependent PP

([a-z]+\V*)+ (+ [a-z]+\(DT |J∗)?) + ##target noun##

Target noun is
a subject of 35 frequent verbs
that select for HUM

nouns, which have
similar characteristics to ORG nouns

##target noun## + (excel|support|tell|believe|name|
spend|think|describe|ask|write|decide|show|receive|face|
die|seem|put|tend|set|buy|consider|bring|represent|meet|
appear|feel|agree|relate|start|pay|perform|sit|arrive|argue)\V*

Target noun is
preceded by certain relative
pronouns

##target noun## + (who|whose|whom)\WRB

Target noun
precedes dependent NP headed
by “in”

##target noun## + in\IN (+ [a-z]+\(DT |J∗)?)
+ [a-z]+\NP

Target noun contains
suffixes for (ORG|HUMAN)
(nouns tend to be similar to HUM NOUNS

due to lexical gaps)

##[a-z]+(hood|racy|man|men|mate|naut|ity|ship|ate)\target noun##

Table A.4: Linguistic cues and corresponding lexical-syntactic patterns formal-
ized as Regular Expressions used to extract distributional data indicative of nouns
the ORGANIZATION class
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Cues for LOCATION nouns
Cue type Regular Expression Examples

Target noun is
headed by locative/simple/
compound PP complements

on\IN (+ [a-z]+\DT |J∗?) + ##target noun##
between\IN (+ [a-z]+\(DT |J∗)?) + ##target noun##
above\IN (+ [a-z]+\(DT |J∗)?) + ##target noun##
with\IN (+ [a-z]+\(DT |J∗)?) + ##target noun##
without\IN (+ [a-z]+\(DT |J∗)?) + ##target noun##
at\IN (+ [a-z]+\(DT |J∗)?) + ##target noun##
outside\IN (+ [a-z]+\(DT |J∗)?) + ##target noun##
inside\IN (+ [a-z]+\(DT |J∗)?) + ##target noun##
along\IN (+ [a-z]+\(DT |J∗)?) + ##target noun##
through\IN (+ [a-z]+\(DT |J∗)?) + ##target noun##
toward\IN (+ [a-z]+\(DT |J∗)?) + ##target noun##
to\IN (+ [a-z]+\(DT |J∗)?) + ##target noun##

Target noun is
subject of frequent verbs
that select for LOC

nouns

##target noun## + (thrive|regard|require|appreciate|forbid|
include|remain|spring|conceal|request|buy|stop|nurture|confess|
landscape|forfend|poison|stretch|lead|divide|break|cover|
envision|own|lost|end|receive|describe|place|help)\V*

Target noun occurs
as Direct object of verb that
selects for LOC nouns

(film|extend|tour|exist|conduct|stand|pass|educate|turn|respond|
subdivide|originate|write|thrive|proceed|engage|divide|act|roll|
start|call|feel|set|administrate|arrive|travel|walk|follow|fly|move|
meet|run|bring|drive|pass)\V* + ##target noun##

Target noun is
preceded by certain relative
pronouns

##target noun## + where\WRB

Target noun contains
suffixes that are indicative
of LOC nouns

##[a-z]+(port|teria|dom|ory|topy|ium|polis|
way|place|ground|space|point|land|field)\target noun##

Target noun is
modified by adjectives of
dimension

(far|close|distance|high|low|nearby|remote|wide|narrow|
north|south|east|west|near)\J* + ##target noun##

Target noun is modified by frequent
“distance” or “location” adjectives

(overseas|spiritual|intellectual|upper|healthful|posterior|
early|anterior|private|coral|medial|third|daily|southern|
common|lateral|safe|political|later|last|early|natural|
different|next|southern|human|common|northern|public|
international|final|western|main|modern|first|exclusive|
inferior|various|social|right|exterior|lower)\J* + ##target noun##

Table A.5: Linguistic cues and corresponding lexical-syntactic patterns formal-
ized as Regular Expressions used to extract distributional data indicative of nouns
the LOCATION class
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A.2 Human annotation of polysemous nouns

In this thesis, we built data sets of complex-type nouns using human annotators,
as described in Section 3.1.2. These data sets were used for training and testing in
Chapter 5. In order to provide guidelines to the human annotation task, we used
the worksheets presented in Tables A.7 and A.6.

The human annotators were asked to complete a worksheet providing an annota-
tion for each individual noun in the form of a yes or no response to one of the
following four questions (Examples 19-22), according to the data set that was
being considered.

(21) Q1. Consider the following definition: ORGANIZATION is an entity that
has a collective goal.

Mark “yes” or “no” if you think the current noun can be interpreted as
an “ORGANIZATION” noun (besides potentially having any other sense)

(22) Q2. Consider the following definition: LOCATION is a place, a specific
position or a point in physical space.

Mark “yes” or “no” if you think the current noun can be interpreted as
an “EVENT” noun (besides potentially having any other sense)

(23) Q3. Consider the following definition: EVENT is an occurrence, some-
thing that happens or is regarded as happening.

Mark “yes” or “no” if you think the current noun can be interpreted as
an “EVENT” noun (besides potentially having any other sense)

(24) Q4. Consider the following definition: COMMUNICATION OBJECT is
any sort of knowledge communicated or received.

Mark “yes” or “no” if you think the current noun can be interpreted as
an “communication object” noun (besides potentially having any other
sense)

Thus, there were four worksheets provided to each annotator to annotate, which
consisted of a total of 743 words to annotate. Once those annotations were
obtained, we then used a voting scheme to select the majority annotation between
the human annotators to assign a sense to each of the individual nouns in the data
set.
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Tables A.6 and A.7 present the information regarding each individual noun, the
class assigned to it and the number of annotators agreeing with that particular
class assignment. Each Table contains all of the words considered for each regular
polysemous alternation studied. The implications of this task and the annotation
results obtained were discussed in detail in Sections 3.1 and 5.2.
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WORD CLASS TOTAL WORD CLASS TOTAL WORD CLASS TOTAL WORD CLASS TOTAL WORD CLASS TOTAL
riverside LOC 3 fatherland LOC· ORG 3 electorate ORG 2 pinnacle LOC 2 crew ORG 3
midway LOC 2 boundary LOC 3 readership ORG 3 coalfield LOC 3 brotherhood ORG 3
environs LOC 3 sphere LOC· ORG 2 gerontocracy ORG 3 jurisdiction LOC· ORG 2 hierocracy ORG 3
wasteland LOC· ORG 2 ground LOC 3 college LOC· ORG 3 encampment LOC 2 army LOC· ORG 2
scenery LOC 3 hometown LOC· ORG 3 academe LOC· ORG 2 square LOC 2 monarchy LOC· ORG 2
northwest LOC· ORG 2 bottom LOC 2 troupe ORG 3 fountainhead LOC 3 entourage ORG 3
bilocation LOC 3 touchline LOC 3 squad ORG 2 borderline LOC 2 conglomeration LOC· ORG 2
sprawl LOC 2 precinct LOC· ORG 2 confederation LOC· ORG 3 seafront LOC 2 meritocracy ORG 3
campground LOC 2 borough LOC· ORG 3 institute LOC· ORG 3 epicentre LOC 2 platoon ORG 3
turf LOC 2 oasis LOC 3 colloquium ORG 2 birthplace LOC 3 knighthood ORG 3
equator LOC 3 megalopolis LOC· ORG 3 alliance ORG 3 prefecture LOC· ORG 3 church LOC· ORG 3
viewpoint LOC 3 hemisphere LOC· ORG 2 troop ORG 2 heartland LOC· ORG 2 sisterhood ORG 3
archdiocese LOC· ORG 3 cornfield LOC 3 faculty LOC· ORG 3 bedside LOC 3 syndicate LOC· ORG 2
resort LOC· ORG 2 countryside LOC· ORG 2 lineage ORG 3 destination LOC 3 clique ORG 3
airspace LOC 2 endpoint LOC 3 chorus ORG 2 dockside LOC 3 academia ORG 2
frontier LOC 2 playground LOC 2 tribunal LOC· ORG 3 forefront LOC 3 republic LOC· ORG 3
harbourage LOC 2 reservation LOC· ORG 2 affiliate LOC· ORG 2 haven LOC· ORG 2 aggregate ORG 3
airway LOC 3 retreat LOC· ORG 2 oligarchy ORG 2 stage LOC 3 inspectorate LOC· ORG 2
ghetto LOC· ORG 3 waterline LOC 3 bureaucracy ORG 3 cemetery LOC 3 masonry ORG 3
checkpoint LOC 2 plaza LOC· ORG 2 staff ORG 3 hamlet LOC· ORG 3 dictatorship LOC· ORG 2
backwater LOC 3 habitat LOC 3 throng ORG 2 enclave LOC· ORG 3 unit LOC· ORG 3
rooftop LOC 3 outside LOC 3 squadron ORG 3 pasture LOC 3 population ORG 3
midpoint LOC 2 fireside LOC 3 convoy ORG 3 borderland LOC 2 parliament LOC· ORG 3
coastline LOC 2 diocese LOC· ORG 3 triumvirate ORG 3 terminal LOC 3 subgroup ORG 3
acre LOC 3 harbour LOC 2 assembly LOC· ORG 2 slum LOC· ORG 3 nobility ORG 3
township LOC· ORG 2 desktop LOC 3 armada LOC· ORG 2 graveyard LOC 3 fraternity ORG 2
latitude LOC 3 port LOC· ORG 2 minority ORG 3 locality LOC 2 directorate ORG 2
path LOC 3 underside LOC 3 family ORG 3 atmosphere LOC 3 desert LOC 3
biosphere LOC 2 seaport LOC· ORG 2 choir LOC· ORG 2 ionosphere LOC 3 epicenter LOC 2
skyline LOC 3 scenario LOC 3 academy LOC· ORG 3 hierarchy ORG 3 darkness LOC 3
battlefield LOC 2 border LOC 2 dynasty ORG 3 autocracy ORG 2 funfair LOC 2
heaven LOC 3 scene LOC 3 womanhood ORG 3 congregation ORG 2 stopover LOC 3
landmark LOC 3 environment LOC 3 gentry ORG 3 patriarchy ORG 2 dealership LOC· ORG 2
continent LOC· ORG 2 homeland LOC· ORG 3 personnel ORG 3 workforce ORG 3 theocracy LOC· ORG 2
heliosphere LOC 3 tidewater LOC 3 clientele ORG 3 team ORG 3 secretariat LOC· ORG 3
oilfield LOC 3 fairground LOC 2 legion ORG 2 poor ORG 2 cooperative LOC· ORG 3
grassland LOC 2 battleground LOC 2 caste ORG 3 sainthood ORG 3 herd ORG 3
hilltop LOC 3 sideline LOC 2 caravan LOC· ORG 3 jurisprudence ORG 2 papacy ORG 2
dukedom LOC· ORG 3 territory LOC· ORG 2 association LOC· ORG 3 sorority LOC· ORG 2 corps ORG 3
overhead LOC 3 circumference LOC 3 homeless ORG 2 organization LOC· ORG 2 admiralty LOC· ORG 2
minefield LOC 3 paradise LOC 3 horde ORG 3 cadre ORG 3 mob ORG 3
schoolyard LOC 2 aerospace LOC 2 society LOC· ORG 2 proletariat ORG 2 aristocracy ORG 2
savannah LOC 3 pole LOC 3 guild ORG 2 elite ORG 3 womankind ORG 3
beachhead LOC· ORG 2 battlefront LOC· ORG 3 copartnership ORG 3 matriarchy ORG 3 democracy ORG 2
crawlspace LOC 3 solitude LOC 3 administration LOC· ORG 3 senate LOC· ORG 3 technocracy ORG 3
property LOC 3 farmland LOC 2 fellowship ORG 3 company LOC· ORG 3 university LOC· ORG 3
laboratory LOC· ORG 3 hearth LOC· ORG 2 elderly ORG 3 club LOC· ORG 3 jury ORG 3
habitation LOC 3 seascape LOC 3 agency LOC· ORG 3 kinfolk ORG 3 leadership ORG 3
reef LOC 3 domicile LOC 2 crowd ORG 3 organisation LOC· ORG 3 priesthood ORG 3
churchyard LOC 2 hotspot LOC 3 pontificate ORG 2 nation LOC· ORG 3 congress LOC· ORG 3
lookout LOC 2 authority ORG 3 rabbinate ORG 2 regime ORG 3 midfield LOC 3
campus LOC· ORG 2 committee LOC· ORG 2 consortium LOC· ORG 2 league ORG 2
tip LOC 3 forum LOC· ORG 3 pastorate LOC· ORG 2 plutocracy ORG 3

Table A.6: Human annotation results and class assignment for LOC/ORG data set
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NOUN CLASS TOTAL NOUN CLASS TOTAL NOUN CLASS TOTAL NOUN CLASS TOTAL NOUN CLASS TOTAL
observance EVENT·COM 2 materialisation EVENT 3 experience EVENT 2 infomercial EVENT·COM 2 exam EVENT·COM 3
flashing EVENT 3 swerve EVENT 3 severance EVENT 3 lemma COM 3 briefing EVENT·COM 3
marathon EVENT 3 headway EVENT 3 disturbance EVENT 3 database COM 3 fiction COM 3
suspension EVENT 3 dislocation EVENT 3 splash EVENT 3 abbreviation EVENT·COM 3 calendar COM 3
bonanza EVENT 3 heave EVENT 3 densification EVENT 3 command EVENT·COM 3 inquiry EVENT·COM 3
setback EVENT 3 shame EVENT 3 extinction EVENT 3 genre COM 3 authorisation EVENT·COM 3
warp EVENT 3 trip EVENT 3 mortification EVENT 3 headline COM 3 copyright COM 3
strike EVENT 3 growth EVENT 3 progression EVENT 3 memo COM 3 movie EVENT·COM 2
smudge EVENT 2 fundraiser EVENT 3 demolition EVENT 3 content COM 2 billet COM 3
turning EVENT 3 wallow EVENT 3 doomsday EVENT 3 prognosis COM 2 word COM 3
impregnation EVENT 3 consolidation EVENT 2 affair EVENT 3 nonfiction COM 3 reservation EVENT·COM 3
diving EVENT 3 blackout EVENT 3 ascension EVENT 3 software COM 3 printout COM 2
lightning EVENT 3 downfall EVENT 3 undercurrent EVENT 3 propaganda EVENT·COM 2 caption COM 3
climbing EVENT 3 uplift EVENT 2 competition EVENT 3 pseudonym COM 3 magazine COM 3
contest EVENT 2 remission EVENT 3 impulse EVENT 3 memorandum COM 3 playscript COM 2
rectification EVENT·COM 3 disruption EVENT 3 meeting EVENT 2 theorem COM 2 schedule COM 2
permutation EVENT 3 humiliation EVENT 3 leakage EVENT 2 symbol COM 3 grade EVENT·COM 2
playoff EVENT 3 disappearance EVENT 3 meltdown EVENT 3 mail COM 2 submission EVENT·COM 3
substitution EVENT 2 resurrection EVENT 3 breakup EVENT 3 statement EVENT·COM 3 foreword COM 2
plunge EVENT 3 shock EVENT 3 trial EVENT 3 notepaper COM 3 quote EVENT·COM 3
earthquake EVENT 3 sideshow EVENT 2 squeeze EVENT 3 metonym COM 3 permission EVENT·COM 3
recurrence EVENT 3 wreck EVENT 3 sunset EVENT 3 interpretation EVENT·COM 3 stenograph COM 2
upheaval EVENT 3 expiration EVENT 2 decision EVENT·COM 3 lecture EVENT·COM 3 gag EVENT·COM 3
separation EVENT 3 dressing EVENT 3 eruption EVENT 3 vocabulary COM 3 antithesis COM 3
pileup EVENT 2 regurgitation EVENT 3 semifinal EVENT 3 portrayal EVENT·COM 3 testimony EVENT·COM 3
coronation EVENT 3 race EVENT 3 wedding EVENT 3 novel COM 2 encyclopedia COM 3
romp EVENT 3 cracking EVENT 3 precipitation EVENT 3 character COM 3 permit COM 2
exhaustion EVENT 3 whirlpool EVENT 3 landslide EVENT 3 term COM 2 logbook COM 2
deflection EVENT 3 campaign EVENT·COM 3 extermination EVENT 3 nomination EVENT·COM 3 firmware COM 3
outgrowth EVENT 2 installation EVENT 3 stampede EVENT 3 checklist COM 2 context COM 2
rumble EVENT 3 deformation EVENT 3 departure EVENT 3 questionnaire EVENT·COM 2 monologue EVENT·COM 2
hardship EVENT 3 thunder EVENT 3 smolder EVENT 3 sonnet COM 3 editorial COM 2
debacle EVENT 3 standoff EVENT 3 interruption EVENT 2 newsletter COM 3 idiom COM 3
tsunami EVENT 3 sacrifice EVENT 3 schism EVENT 3 shortlist COM 2 tale COM 2
aftershock EVENT 3 relaxation EVENT 3 burst EVENT 3 application EVENT·COM 3 paragraph COM 2
relief EVENT 3 beginning EVENT 3 escape EVENT 3 misquotation EVENT·COM 3 preface COM 3
steeplechase EVENT 3 bounce EVENT 3 pollination EVENT 3 channel COM 2 guideline COM 3
shrinkage EVENT 3 commencement EVENT 3 ramification EVENT 2 speech EVENT·COM 3 oratory COM 2
fading EVENT 3 rebound EVENT 3 displacement EVENT 3 reportage EVENT·COM 3 timetable COM 3
spike EVENT 3 procession EVENT 3 breach EVENT 2 notebook COM 3 travelogue EVENT·COM 2
overflow EVENT 3 rebirth EVENT 3 approaching EVENT 2 prolog EVENT·COM 2 holograph COM 3
sleepover EVENT 3 maelstrom EVENT 3 ruination EVENT 3 autograph COM 2 guidepost COM 2
outbreak EVENT 3 fiasco EVENT 3 outcome EVENT 2 address EVENT·COM 2 directory COM 2
wildfire EVENT 3 incident EVENT 3 championship EVENT 3 referral EVENT·COM 2 cookbook COM 3
misadventure EVENT 3 visitation EVENT 3 miracle EVENT 3 journal COM 2 credential COM 2
shipwreck EVENT 3 knock EVENT 3 burial EVENT 3 edict EVENT·COM 2 website COM 3
sunrise EVENT 3 repercussion EVENT 3 elevation EVENT 2 broadcast EVENT·COM 3 flashcard COM 3
break EVENT 3 joust EVENT 3 snore EVENT 3 testimonial EVENT·COM 2 studbook COM 3
passing EVENT 3 eclipse EVENT 3 depredation EVENT 2 catalog COM 2 film EVENT·COM 2
collapse EVENT 3 strengthening EVENT 3 emission EVENT·COM 2 blacklist COM 2 document COM 2
abatement EVENT 2 disaster EVENT 3 climb EVENT 3 measure EVENT·COM 3 mayday EVENT·COM 2
cessation EVENT 2 discharge EVENT 3 progress EVENT 3 gazette COM 3 logograph COM 3
intrusion EVENT 3 loss EVENT 3 preservation EVENT 3 leaflet COM 3 commercial EVENT·COM 2
rise EVENT 3 cotillion EVENT 3 plague EVENT 3 telecast EVENT·COM 2 diploma COM 3
celebration EVENT 3 irradiation EVENT 3 playlist COM 2 overview EVENT·COM 3 webpage COM 3
malfunction EVENT 3 entrance EVENT 3 definition EVENT·COM 2 recipe COM 3 volume COM 3
appearance EVENT 3 comeuppance EVENT 3 ideogram COM 3 portfolio COM 3 criterion COM 3
discrepancy EVENT 2 rupture EVENT 3 slogan COM 3 gazetteer COM 2 songbook COM 3
coincidence EVENT 2 adjustment EVENT·COM 2 literature COM 2 prayerbook COM 3 announcement EVENT·COM 3
compression EVENT 2 degeneration EVENT 3 decree EVENT·COM 2 dictation EVENT·COM 3 inscription EVENT·COM 3
replay EVENT 2 tribulation EVENT 3 instruction EVENT·COM 3 recommendation EVENT·COM 3 flowchart COM 2
exit EVENT 2 destruction EVENT 3 chat EVENT·COM 3 biography COM 3 illustration EVENT·COM 3
catastrophe EVENT 3 recovery EVENT 3 acronym COM 3 acknowledgement EVENT·COM 3 epilogue EVENT·COM 2
finish EVENT 3 avalanche EVENT 3 copybook COM 2 folktale COM 2 workbook COM 3
cascade EVENT 3 epidemic EVENT 3 quiz EVENT·COM 3 trademark COM 2 parody EVENT·COM 2
epiphany EVENT·COM 2 decrease EVENT 3 newspaper COM 3 codex COM 3 homograph COM 3
immersion EVENT 3 constriction EVENT 3 lithography COM 3 manifesto COM 3 horoscope COM 3
emergency EVENT 3 mudslide EVENT 3 coverage EVENT·COM 3 jargon COM 2 charade EVENT·COM 3
brawl EVENT 3 reversion EVENT 3 documentary EVENT·COM 2 advisory COM 3 fairytale COM 2
triumph EVENT 3 rip EVENT 2 typescript COM 2 cryptogram COM 3 message COM 3
defeat EVENT 3 ceremony EVENT 3 lexicon COM 3 radiogram COM 2 gpa COM 2
beep EVENT 3 torment EVENT 3 formula COM 3 semicolon COM 3 insignia COM 3
destabilization EVENT 3 creation EVENT 2 picture COM 2 atlas COM 3 variable COM 3
settling EVENT 3 standstill EVENT 3 anecdote EVENT·COM 2 paraphrase COM 2 communique EVENT·COM 2
inception EVENT 3 invasion EVENT 3 interview EVENT·COM 3 correspondence EVENT·COM 3 passport COM 3
ordeal EVENT 2 divergence EVENT 2 summary EVENT·COM 2 epigraph COM 3 letterpress COM 2
victory EVENT 3 swell EVENT 3 password COM 3 quotation EVENT·COM 3 assignment EVENT·COM 3
replacement EVENT 3 trample EVENT 3 appendix COM 3 anagram COM 3 hieroglyphic COM 3
surge EVENT 3 party EVENT 3 warranty EVENT·COM 2 dialogue EVENT·COM 3 ultimatum EVENT·COM 2
crucifixion EVENT 3 occurrence EVENT 3 centerfold COM 2 covenant EVENT·COM 3 query EVENT·COM 3
walloping EVENT 3 funeral EVENT 3 album COM 3 hieroglyph COM 3 filename COM 3
accident EVENT 3 perturbation EVENT 3 epigram COM 3 article COM 3 playbill COM 3
conception EVENT 2 vision EVENT·COM 2 finale EVENT·COM 2 register EVENT·COM 3 abridgement EVENT·COM 3
shower EVENT 3 fatality EVENT 3 coupon COM 3 postcard COM 2 newscast EVENT·COM 2
reversal EVENT 3 respite EVENT 3 question EVENT·COM 3 footnote COM 2 notice EVENT·COM 3
phenomenon EVENT 3 retrogression EVENT 3 textbook COM 3 handbook COM 3 video COM 2
downhill EVENT 3 modification EVENT·COM 2 consent EVENT·COM 2 thesis COM 2 vignette COM 2
radiation EVENT 3 changeover EVENT 3 screenplay COM 3 motto COM 3 analysis EVENT·COM 3
smash EVENT 3 onrush EVENT 3 thesaurus COM 3 spreadsheet COM 3 syllabus COM 3
crackling EVENT 3 inflation EVENT 3 consonant COM 3 newsflash EVENT·COM 2 sentence COM 3
puncture EVENT 3 travel EVENT 3 invitation EVENT·COM 3 prescription EVENT·COM 3 conference EVENT·COM 3
devastation EVENT 3 blowout EVENT 3 timeline COM 3 book COM 3 audio COM 2
initiation EVENT 3 convulsion EVENT 3 introduction EVENT·COM 3 guide COM 2 lesson EVENT·COM 3
outline EVENT·COM 2 commentary EVENT·COM 3 soliloquy EVENT·COM 3 information COM 2 letter COM 3
graph COM 3 eulogy EVENT·COM 2 phonebook COM 3 counterpoint COM 2 program EVENT·COM 2
prologue EVENT·COM 2 itinerary EVENT·COM 2 glossary COM 3 worksheet COM 2 greeting EVENT·COM 3

Table A.7: Human annotation results and class assignments for EVT/textsccom
class
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A.3 Human annotation of regular polysemous
CoreLex classes

The CoreLex lexical resource [Buitelaar, 1998] was built as a repository of
regular polysemous alternations. As described in Chapter 2, this resource was
constructed using on frequency counts of nouns that recurrently occurred as a
member of more than one class in WordNet. Therefore, other types of lexical
ambiguity combinations were also included2. The classes from the CoreLex data
set annotated here are considered by the annotators to be prototypical examples
of regular polysemous alternations and were used solely for the discussion in
Section 5.3.

In order to further verify that our method was able to correctly classify nouns
that are representative of regular polysemous alternations, we decided to identify
which of the disemous class combinations available in CoreLex exemplified the
theoretical characteristics of a regular polysemous alternation, according to the
GL [Pustejovsky, 1995]. Each annotator was provided with a list of the disemous
alternations specified in the CoreLex repository. We provided 5 examples of
target words that instantiate the alternation from the [Boleda et al., 2012a] data
set. The annotators were asked to indicate whether the examples provided for
each alternation were representative of regular polysemy or another type of
lexical ambiguity.

Table A.8 below presents the results that we obtained for each disemous alter-
nation considered in CoreLex by each of our five human annotators. The Table
is organized as follows: Column 1 contains the short-form of each alternation,
while Column 2 presents the long-form name of the two classes that form
the regular polysemous alternation. In Columns 3 − 7, there are 5 example
words for each alternation, extracted directly from the [Boleda et al., 2012a]
data set, as explained above. These words provide lexical examples to the
annotators without context so that they can objectively determine what kinds

2Examples of other types of lexical ambiguity include cases of homonomy, for instance, in
which there is no relation between the two senses of a word. Consider, for example, the difference
of meaning of the word bank in the two following contexts: savings bank and river bank, in
which there are two clearly different meanings, which therefore require distinct lexical entries.
Although noted here for posterity, this phenomenon is beyond the scope of this thesis.
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of words are available in WordNet in both of the classes that form the alternation3.

Column 8 provides the majority decision of the five annotators, as to whether
that given alternation is representative of a regular polysemous alternation.
Column 9 provides the total number of annotators that assigned the majority
vote. Column 10 presents the decision, which was yes only if all five annotators
were in agreement. We decided to consider only those alternations that all 5
annotators marked to be regular polysemous. This is because we were interested
in identifying only those most prototypical examples of the phenomenon.

After the results were analyzed, our human annotators fully agreed that 14
of the 60 original disemous regular polysemous alternations described in
CoreLex [Buitelaar, 1998] (approximately 23% of the data set) were prototypical
examples of regular polysemy.

3We did not provide any context to the annotators, so as not to bias the distinction between
homonymy and regular polysemy. This is because all of the examples words provided are members
of at least both of the classes forming the alternation. In this way, we were interested in having
the annotators determine if there could be a relation between the two senses. (Because of this, we
decided not to provide contextual examples for this task).
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1 2 3 4 5 6 7 8 9 10

Abbrev. ALTERNATION CLASSES Example 1 Example 2 Example 3 Example 4 Example 5 (YES/NO)
TOTAL
# AGR. DECISION

ACT-ART ACT-ARTIFACT vignette fresco mend improvisation scan YES 3
ACT-ATR ACT-ATTRIBUTE betrayal supplementation disobedience kindness role YES 3
ACT-COM ACT-COMMUNICATION laughter preaching abuse request intro YES 4
ACT-EVT ACT-EVENT burial easing athletics demolition visitation YES 5 RP
ACT-GRP ACT-GROUP following mailing traffic legislation parade YES 4
ACT-GRS ACT-SOCIAL GROUP deputation percussion management secession delegation YES 3
ACT-HUM ACT-HUMAN arrival minister catcher heroine swagger NO 0
ACT-PHM ACT-PHE0ME0N flurry flotation breeze transgression sprinkle NO 3
ACT-POS ACT-POSSESSION allotment spoil holding duty atonement YES 3
ACT-PRO ACT-PROCESS growing deflation filtration watering pairing YES 5 RR

ACT-PSY
ACT-
PSYCHOLOGICAL FEATURE imposition analogy vaccination imperialism reorientation NO 1

ACT-STA ACT-STATE suffocation diversification participation tumult privation YES 4
ACT-TME ACT-TIME festival regency probation continuance leisure YES 3
AGT-HUM AGENT-HUMAN engineer manipulator shopper jockey promoter YES 5 RP
ANM-ART ANIMAL-ARTIFACT stilt kit blower turtle rook NO 0
ANM-FOD ANIMAL-FOOD duckling smelt quail carp hare YES 5 RP
ANM-HUM ANIMAL-HUMAN maverick prey predator tiger sheep NO 0
ART-ATR ARTIFACT-ATTRIBUTE piano panache glaze fabric still NO 1
ART-COM ARTIFACT-COMMUNICATION wire fount facade well directory YES 3
ART-EVT ARTIFACT-EVENT pic serial drip shipwreck grate NO 2
ART-FOD ARTIFACT-FOOD sausage sub lager casserole screwdriver YES 3
ART-FRM ARTIFACT-FORM prism coil flute disc rim YES 5 RP
ART-GRP ARTIFACT-GROUP collage motley library pantheon repertory YES 3
ART-GRS ARTIFACT-SOCIAL GROUP bastion academy divan gang gymnasium YES 3
ART-HUM ARTIFACT-HUMAN seeker rocker doll organiser tripper NO 1
ART-LOC ARTIFACT-LOCATION domicile abode mansion roundabout laundry YES 5 RP
ART-LOG ARTIFACT-GEO LOCATION tee spa apron oasis hearth YES 4
ART-NAT ARTIFACT-NATURAL BODY radiator ditch curtain plough waterway NO 1
ART-PHO ARTIFACT-PHYSICAL OBJECT tent prop widget escarpment trench NO 2
ART-POS ARTIFACT-POSSESSION manor vat bullion store hacienda NO 2
ART-PRT ARTIFACT-PART cistern phone claw girdle rostrum NO 1

ART-PSY
ARTIFACT-
PSYCHOLOGICAL FEATURE credence straitjacket telecommunication pitfall magnet NO 1

ART-QUI
ARTIFACT-
INDEFINITE QUANTITY raft tub bottle keg carton YES 5 RP

ART-STA ARTIFACT-STATE hinge bazaar overdrive limelight maze NO 3
ART-SUB ARTIFACT-SUBSTANCE latex linen binder asphalt wicker YES 5
ATR-COM ATTRIBUTE-COMMUNICATION format slur hoot publicity leer NO 2
ATR-EVT ATTRIBUTE-EVENT glitter discrepancy glint gleam sparkle YES 3

ATR-PSY
ATTRIBUTE-
PSYCHOLOGICAL FEATURE odour chivalry texture pragmatism relativity YES 4

ATR-REL ATTRIBUTE-RELATION odds eccentricity productivity prevalence inconsistency NO 2
ATR-STA ATTRIBUTE-STATE visibility liability degeneracy uncertainty optimism YES 5 RP
COM-EVT COMMUNICATION-EVENT flick genesis prelude chatter broadcast YES 5 RP
COM-HUM COMMUNICATION-HUMAN wanderer flyer counsel cad morse NO 0

COM-PSY
COMMUNICATION-
PSYCHOLOGICAL FEATURE agenda supposition overtone will dictate NO 1

COM-STA COMMUNICATION-STATE reproach disdain acknowledgment fugue mystery NO 3

EVT-PSY
EVENT-
PSYCHOLOGICAL FEATURE experience fundamental corollary aetiology instance NO 2

EVT-STA EVENT-STATE occurrence triumph malformation affair incident YES 5 RP
FOD-HUM FOOD-HUMAN butter honey batter frank eater NO 0
fod-plt FOOD-PLANT currant celery potato watercress pineapple YES 5 RP
GRP-GRS GROUP-SOCIAL GROUP bunch public fleet swarm fraternity YES 3

GRP-PSY
GROUP-
PSYCHOLOGICAL FEATURE zoology underworld jurisprudence tableau mythology NO 1

GRS-HUM SOCIAL GROUP-HUMAN underwriter dealer bodyguard acquirer protestant NO 2
GRS-LOG SOCIAL GROUP-GEO LOCATION borough metropolis commonwealth neighbourhood parish YES 5 RP

GRS-PSY
SOCIAL GROUP-
PSYCHOLOGICAL FEATURE humanism democracy christianity genealogy religion NO 2

HUM-NAT HUMAN-NATURAL BODY creek sculptor firth moor marsh NO 0
HUM-PRT HUMAN-PART contractor reverend sigorina bum subordinate YES 3

HUM-PSY
HUMAN-
PSYCHOLOGICAL FEATURE lord paragon trickster successor son YES 3

PHM-STA PHEN0MENON-STATE potential aberration fog turbulence polarization YES 3
PLT-SUB PLANT-SUBSTANCE maple flax sycamore spruce fir YES 5 RP
PRO-STA PROCESS-STATE ulceration bondage fermentation dehydration glaciation YES 5 RP

PSY-STA
PSYCHOLOGICAL FEATURE-
STATE partiality sensibility pathology predilection feeling YES 3

Table A.8: Results and task description of the human annotation conducted to
identify true examples of regular polysemous alternation from the disemous alter-
nations described in the CoreLex data set [Buitelaar, 1998]
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Montréal, Quebec, Canada. Association for Computational Linguistics.

[Boleda et al., 2012b] Boleda, G., Schulte im Walde, S., and Badia, T. (2012b).
Modeling regular polysemy: A study on the semantic classification of Catalan
adjectives. Computational Linguistics, 38(3):575–616.

[Breiman et al., 1984] Breiman, L., Friedman, J., Olshen, R., and Stone, C.
(1984). Classification and Regression Trees. Wadsworth and Brooks, Mon-
terey, California, USA.

[Brent, 1993] Brent, M. R. (1993). From grammar to lexicon: Unsupervised
learning of lexical syntax. Computuational Linguistics, 19(2):243–262.

157



“thesisv7.6-submitted” — 2015/6/27 — 12:01 — page 158 — #178

[Buitelaar, 1998] Buitelaar, P. (1998). Corelex: Systematic Polysemy and Under-
specification. PhD thesis, Brandeis University, Waltham, Massachusetts, USA.

[Buitelaar et al., 2005] Buitelaar, P., Cimiano, P., and Magnini, B. (2005). Ontol-
ogy learning from text: Methods, evaluation and applications. Computational
Linguistics, 32(4).

[Bullinaria, 2008] Bullinaria, J. A. (2008). Semantic categorization using simple
word co-occurrence statistics. In Proceedings of the ”Bridging the gap between
semantic theory and computational simulations” workshop at the European
Summer School in Logic Language and Information (ESSLLI 2008), Hamburg,
Germany, 4-15 August, 2008, pages 1–8.

[Bullinaria and Levy, 2007] Bullinaria, J. A. and Levy, J. P. (2007). Extracting
semantic representations from word co-occurrence statistics: A computational
study. Behavior Research Methods, 39(3):510–526.

[Bullinaria and Levy, 2012] Bullinaria, J. A. and Levy, J. P. (2012). Extracting
semantic representations from word co-occurrence statistics: Stop-lists, stem-
ming and SVD. Behavior Research Methods, 44(3):890–907.

[Burnard, 2007] Burnard, L. (2007). Reference guide for the british national cor-
pus (XML edition), 2007.

[Bybee, 1985] Bybee, J. L. (1985). Morphology: A study of the relation between
meaning and form, volume 9. John Benjamins Publishing.

[Bybee, 2007] Bybee, J. L. (2007). Frequency of Use and the Organization of
Language. Oxford University Press.

[Bybee, 2010] Bybee, J. L. (2010). Language, usage and cognition. Cambridge
University Press.

[Bybee and Hopper, 2001] Bybee, J. L. and Hopper, P. (2001). Frequency and the
Emergence of Language Structure. John Benjamins, Amsterdam, The Nether-
lands.

[Carvalho and Ranchhod, 2003] Carvalho, P. and Ranchhod, E. (2003). Analysis
and disambiguation of nouns and adjectives in Portuguese by FST. Proceedings
of the Workshop on Finite-State Methods for Natural Language Processing at
EACL2003, pages 105–112.

[Castellvı́ Cabré et al., 2012] Castellvı́ Cabré, M. T., Bach, C., and Vivaldi, J.
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