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Chapter 1

Introduction

Science may be described as the art of systematic over-simplification
—the art of discerning what we may with advantage omit.

Karl Popper

Fluids are part of our daily lives. Furthermore, they comprise two (possibly
three) states of matter, and are ubiquitous: the ratio of solid to fluid matter in

the observable universe is negligible. Moreover, if the solid state is defined as that in
which atoms’ positions are fixed, when averaged over sufficiently long times, and the
fluid state as that in which they are not, then, in full rigour, only crystals are solids.
Amorphous matter is characterised by an order parameter lacking not only the discrete
translational symmetry found in crystals, but also, for fixed temperature and pressure, a
state of global equilibrium. Interestingly, there are systems, microscopically considered as
fluids according to the definition just given, that, however, present discrete translational
invariance at larger length scales, i.e., mass density shows a crystalline structure when it is
probed at length scales which are large enough to contain a statistically meaningful number
of atoms, typically in the 10 nm—1 µm range. These systems have features reminiscent
of solids if the word ‘atoms’ in the definition above is replaced by ‘cells’, a cell being a
spatial sampling window large enough to allow the observation of statistical trends of the
underlying microscopic fields, i.e., of a mesoscopic size. Matter showing these features is
amenable to re-classification: in fact, it was baptised as the liquid crystalline state.

Early theoretical studies of fluids were exclusively based on the continuum hypothesis.

9



10 1. Introduction

By 1830, the Navier-Stokes equations had become the equations of fluid motion par ex-
cellence, a prime example of a model for nonequilibrium phenomena decades ahead of a
rigorous formulation of either kinetic theory or Gibbsian equilibrium statistical mechanics.
It was not before the end of the 1930s that statistical mechanics had matured enough to
be able to provide consistent mesoscopic condensed matter theories accounting for fluc-
tuations and phase transitions. It was in 1932 that Onsager solved the two-dimensional
Lenz-Ising model exactly, modelling a phase transition; in 1935 Landau published his phe-
nomenological mean-field treatment of phase transitions; in 1940, Fowler & Guggenheim
extended the quasi-chemical method of liquid solutions to take into account long-range in-
teractions; in 1955, Noll proved that by taking appropriate phase averages, any molecular
system modelled by statistical mechanics can be shown to satisfy exactly the equivalent
field equation for a continuous material; in 1957 Alder & Wainwright computationally dis-
covered a phase transition in a gas of hard spheres. Computer simulation was employed
as a necessary tool in solving models of matter which incorporate microscopic informa-
tion. Examples of these are kinetic models, mainly used for the calculation of transport
properties of simple gases and their mixtures, and Ising-like, Monte Carlo and molecular
dynamics models, used to study phase transitions, correlation functions and transport
properties of liquids [1, 2, 3].

The advent of scaling theories in modelling polymer solutions [4] made it possible to
tackle fluid systems of a more complex nature than the ones investigated hitherto; the
distinction between ‘simple’ and ‘complex’ fluids came into existence for the first time.
Also called ‘soft matter’ following P.-G. de Gennes, complex fluids encompass a range
of systems whose common, defining feature is the presence of a mesoscopic length scale
which necessarily plays a key role in determining their properties. At a first glance, features
such as a multi-species composition or molecular self-assembly might also be considered
as alternative definitions of a complex fluid. However, there are counter-examples to
this: fluid mixtures do not necessarily present a mesoscopic length scale determining their
properties, and, regarding the second feature, systems such as colloidal suspensions of
particles of fixed molecular weight do not show self-assembly. Complex fluids invariably
show ‘anomalous’ properties, in the form of rheological, optical, electrical and magnetic
responses which are nonlinear, i.e., they are not proportional to the external ‘force’ causing
them. In all of these cases, it is the supramolecular scale of the fluid that allows the
molecular responses to superpose and yield a ‘strong’, co-operative effect; its behaviour is
determined by several length and time scales.

It is enough to mention some examples of complex fluids to recognise their immediate
and overwhelming practical importance. In fact, micellised surfactants provide the ba-
sis for numerous industrial processes and cosmetic and detergent applications; polymers
constitute the most important class of synthetic materials due to their ample range of
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structural, optical and rheological properties; most biological and geological fluids (e.g.
blood, cell cytoplasm and mud) are colloidal suspensions of some kind. Furthermore, bio-
logical cell membranes are made up of closed bilayers of phospholipids, of an amphiphilic
nature; on a more fundamental level, proteins and DNA are biopolymers.

As we shall see briefly, they consist of a surfactant-like species dispersed in a fluid
which in turn can have internal structure, e.g., an immiscible fluid. Despite the fact that,
e.g., surfactant molecules can have a relatively small size compared with that of polymers
and colloids, they can give rise to striking modifications of the macroscopic behaviour of
the fluid in which they are dispersed due to the broad range of length and time scales
spanned as a result of their self-assembly. For this reason, amphiphilic systems can be
considered a paradigm class of complex fluids of low molecular weight. Since they are
so, it is reasonable to regard them as ideal testbeds for models aiming to incorporate, in
a bottom-up fashion, following a complexity paradigm, the simplest possible molecular
detail into existing fluid flow solvers in the mesoscopic domain such as lattice gases, and
related lattice-Boltzmann methods.

Our objective for the research presented in this thesis has been the validation of vari-
ants of the lattice-Boltzmann and lattice-gas mesoscopic models for fluid dynamics by
investigating surface tension, phase segregation, self-assembly and shear-induced proper-
ties in two types of complex fluids, binary immiscible and ternary amphiphilic mixtures.
Within the broad context of condensed matter, these methods are generically classified
as mesoscopic since they deliberately retain only a reduced set of the microscopic degrees
of freedom. This makes them gain several orders of magnitud more algorithmic efficiency
than fully-microscopic methods—the job of the modeller is, then, to map out their physi-
cally relevant parameter space.

The research carried out in this PhD project generated a number of papers accepted
and/or published in both peer-reviewed international journals and conference proceedings,
and a further work in the form of a preprint of imminent submission by this thesis’ sub-
mission date. Copies of these papers, except the ones indicated, are included in chapters 3
and 4. The papers of whose work reported therein and writing I am the main contributor
are, in inverse chronological order, the following:

1. N. González-Segredo, J. Harting and P. V. Coveney, “Stress response and struc-
tural transitions in sheared gyroid and lamellar amphiphilic mesophases: lattice-
Boltzmann simulations.” (Preprint, Centre for Computational Science, 2004.) (An-
nexed on p. 95.)

2. N. González-Segredo and P. V. Coveney, “Coarsening dynamics of ternary amphi-
philic fluids and the self-assembly of the gyroid and sponge mesophases: lattice-
Boltzmann simulations.” Phys. Rev. E, (in press, 2004). (Annexed on p. 73.)
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3. N. González-Segredo and P. V. Coveney, “Self-assembly of the gyroid cubic mesophase:
lattice-Boltzmann simulations.” Europhys. Lett. 65, 795 (2004). (Annexed on
p. 65.)

4. N. González-Segredo, M. Nekovee and P. V. Coveney, “Three-dimensional lattice-
Boltzmann simulations of critical spinodal decomposition in binary immiscible flu-
ids,” Phys. Rev. E 67, 046304 (2003). (Annexed on p. 47.)

5. N. González-Segredo and M. Foster, “pLRME2D: A parallel implementation of a
two-dimensional hydrodynamic lattice-gas model with long-range interactions,” Pro-
ceedings of the Sixth European SGI/Cray MPP Workshop, Manchester, UK (2000).
(Annexed on p. 107 and available online,
cf. URL: http://mrccs.man.ac.uk/mpp-workshop6/proc/gonzalez.htm .)

The papers of which I am not first author are:

6. P. J. Love, M. Nekovee, P. V. Coveney, J. Chin, N. González-Segredo, and J. M.
R. Martin, “Simulations of amphiphilic fluids using mesoscale lattice-Boltzmann
and lattice-gas methods,” Comp. Phys. Commun. 153(3), 340-358 (2003). (Not
included in this thesis.)

7. M. Nekovee, J. Chin, N. González-Segredo, and P. V. Coveney, “A parallel lattice-
Boltzmann method for large scale simulations of complex fluids,” E. Ramos et al.
(eds), Computational Fluid Dynamics, Proceedings of the Fourth UNAM Super-
computing Conference, Singapore (World Scientific, 2001). (Not included in this
thesis.)

It is worth noting that a new line of research at the Centre for Computational Science
(Christopher Ingold Labs, University College London), namely, the study of defect dy-
namics in gyroid cubic mesophases, sprouted from the study of amphiphilic self-assembly
presented in this thesis [5]. The first landmark of this ongoing line of research has been
the successful TeraGyroid project [6, 7], aimed at harnessing the power of remote high-
performance compute and visualisation platforms and storage devices via grid-enabled
computational steering tools to explore the parameter space of the amphiphilic lattice-
Boltzmann model presented herewith.

This dissertation is structured as follows. The remainder of this Introduction presents
the physical features of the systems subject of our investigation. Section 1.2 gives an
account of existing models for the simulation of multiphase fluids. Starting from kinetic
theory and molecular dynamics basics, we justify the need for, and give an exposition
of, methods in the mesoscopic scale which are able to either (a) contract the overwhelm-
ing amount of molecular information available from the microscopic realm and reduce
the computational burden associated to their description, or (b) incorporate particulate



1.1 Amphiphilic fluids are complex fluids 13

features, since continuum approaches are insufficient in dealing with phenomena such as
self-assembly. Section 1.2 finishes with a presentation of the role of computer simulations in
the study of fluid and soft matter and of the burgeoning field of high-performance comput-
ing. I finalise the Introduction with a presentation of the research reported in this thesis.
In Chapter 2 I give a summary of the results and discuss them. In Chapter 3 I include
copies of the papers published and accepted for publication in peer-reviewed international
journals. In Chapter 4 I substantially complement the previous chapter by including one
preprint to be imminently submitted, and one paper published in the Proceedings of an
international conference. In Chapter 5 I provide the final conclusions.

1.1 Amphiphilic fluids are complex fluids

What is a ‘simple’ fluid? Figure 1.1 is a typical pressure-temperature phase diagram for a
noble gas, such as argon, and let us consider a sample of which containing a large number
of atoms. At sufficiently high temperature and moderate pressures, the sample will be in
its gas or vapour phase; upon gradual cooling, the gas will undergo condensation which,
depending on the pressure, will proceed via coalescence of liquid droplets or solidification
into crystalline flakes. This phase transition from vapour to denser states can also occur
at fixed temperature by increasing the pressure. Distinctive states in this diagram are
given by the triple point, where three phases share the same thermodynamic variables,
and the critical point, beyond which the transition between vapour and liquid is no longer
first-order: it does not require a latent heat and the specific volume does not go through
a step discontinuity.

Phase diagrams such as the one just described are characteristic of what we call ‘simple’
substances. We can include water among these; despite the unusual properties that this
ubiquitous liquid exhibits, its equilibrium phases are still vapour, liquid and crystalline
solid, its transitions are first-order, and areas of phase coexistence are of zero measure. In
addition, ‘simple’ fluids are Newtonian: the stress is well described as being proportional
to the velocity-field gradient, or strain rate, the proportionality constant being, in general,
a tensor which does not depend on the velocity or its gradients.

Complex fluids are invariably characterised by equilibrium phase diagrams of a different
nature, see Fig. 1.2. Their phases can be numerous and greatly depend upon the par-
ticular system under consideration (polymeric, colloidal, amphiphilic, liquid crystalline);
the following phases are examples: sponge (dispersed or bicontinuous microemulsions),
lamellar, columnar (or tubular), cylindrical or elongated micellar, cubic (fcc, bcc, micellar
cubic, bicontinuous), and liquid crystalline isotropic, columnar, and nematic and smectic,
the latter two names derived from Greek for ‘filament’ and ‘to slide’, respectively. Complex
fluids’ phase diagrams can present regions of phase coexistence of the same dimension-
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ality, n, of the phase diagram itself, instead of n − 1 as it occurs in phase diagrams of
simple substances. Complex fluids’ non-equilibrium properties are, in addition, typically,
non-linear.

The term amphiphilic fluid is

T
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e
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Figure 1.1: Phase diagram of a hypothetical ‘simple’ sub-

stance, showing the most common states of matter, first-order

transitions between them and areas of phase coexistence of zero

measure.

broadly used to denote multiphase
fluids in which at least one species
is of a surfactant nature (from sur-
face active agent, also called an
amphiphile). The kind of amphi-
philic fluid we shall deal with in
this thesis is that consisting of a
binary immiscible fluid in which
an amphiphile has been dispersed.
I shall use the terms ‘amphiphile’
and ‘surfactant’ interchangeably,
although others may understand
the latter as only man-made and
refer to the former in a different
or broader context.

A surfactant molecule contains
a polar headgroup attached to a
hydrocarbon or aliphatic tail which, dispersed in a binary immiscible fluid mixture, such
as oil and water, is driven towards and adsorbed at the interface between the two flu-
ids. The selective chemical affinity between each part of the surfactant molecule and the
components of the binary fluid is the mechanism responsible for such a taxis [9]. This
is a process which is energetically favoured relative to their entropically beneficial dis-
persion in the bulk, provided that the amount of amphiphile is below the critical micelle
concentration. Such a concentration is a threshold for the formation of globular clusters
(colloidal aggregates) of amphiphilic molecules, bound together by the chemical affinity of
their aliphatic chains and the repulsion from the ionic solvent; this is an activated process
which can be favoured by certain changes in solution pH, and leads to sudden variations
in interfacial tension once it starts, due to the fact that the micelle population eventually
shoots off.

The interfacial tension of an immiscible fluid, or the surface tension of a liquid-vapour
interface for a pure fluid, is a free energy per surface area in the sense of the amount of work
needed to create a unit area; this is equivalent to the force per unit length associated to
the (reversible) process of creating such a unit area. During the adsorption of amphiphile
onto the interface, the temporal evolution of the interfacial tension depends upon the rate
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and spatial distribution of the amphiphile adsorbed onto it. In a liquid-vapour mixture,
interfacial tension is the result of intermolecular cohesion forces being different for the
two phases, hence creating different molecular correlation lengths. In a binary immisicible
fluid, intermolecular forces can predominantly be either cohesive or repulsive; either way,
or both, this effectively creates a molecular selection mechanism which leads to molecular
repulsion and, hence, phase segregation. The fact that the amphiphile has affinities for both
of the phases or species leads to its interfacial adsorption, and, as soon as a statistically
significant number has been locally adsorbed, to functioning as an anchor between the
phases. The gradient of the order parameter, i.e., of the difference in compositions or
densities, experiences a net local reduction due to the presence of a density of adsorbed
surfactant, and hence so does the interfacial tension since it is proportional to such a
gradient. This reduction makes the interface locally floppier and creates a local imbalance
of lateral forces on the fluid layer defined between the interface and a depth into the bulk
which will depend on the size of the surfactant molecule’s head or tail and its correlation
with the surrounding fluid. In other words, the fluid surrounding the interfacial region
where surface tension has dropped will exert a force per unit length tangentially to the
interface which will not be balanced by the forces from the region of lower surface tension.
As a result, an unsteady and spatially nonuniform tangential shear stress will kick in,
causing the interface to stretch, spreading the amphiphile monolayer and entraining the
fluid below, deforming the interface. This kind of flow is generically called Marangoni
flow.

The renowned property that amphiphiles lower the interfacial tension of a binary im-
miscible fluid (see, e.g., Ref. [10]) occurs for an equilibrated and homogeneous distribution
of adsorbed amphiphile, which may well not be the general, nonequilibrium case. Local
reduction of interfacial tension makes the interface locally floppier, causing the creation of
interfacial surface. As more interfacial surface is created, so more amphiphile dispersed in
the bulk can be accommodated on it. However, this mechanism is in competition with the
Marangoni spreading flow, which causes the interfacial tension to increase to a value close
to that for zero surfactant concentration. The actual fluid dynamics related to amphiphile
adsorption is hence highly dependent on the particularities of the system, i.e., for example,
densities, shear viscosities and chemical affinities.

Amphiphilic fluids are not only important in physical chemistry, structural biology, soft
matter physics and materials science from a fundamental perspective, but their applica-
tions are also widespread. Detergents and mammalian respiration are two common exam-
ples in which surfactants are present. Living cell membranes are complex macromolecular
assemblies comprised in large part by self-assembled phospholipids, of an amphiphilic na-
ture [11]. Sponge mesophases are formed as a result of an amphiphile dispersion or melt at
an appropriate composition, and enjoy numerous applications in medical research as well
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as the pharmaceutical, cosmetic, food, and agro- and petrochemical industries [12, 13].
Lipidic, liquid crystalline mesophases, ubiquitous in biological systems, are also formed
from amphiphilic dispersions or melts, and have important applications in membrane
protein crystallisation, controlled drug release and biosensors [14, 15]. These phases are
termed mesophases since their intrinsic internal length scales range between characteristic
molecular and hydrodynamic (or macroscopic) ones [9, 10, 11].

Depending on temperature,
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Figure 1.2: Phase diagram of a common nonionic surfactant,

polyoxyethylene alkyl ether C12E6, where Cm is the hydrophobic,

methylene or methyl chain, and En is the hydrophilic, oxyethy-

lene chain. ‘W’ denotes the surfactant-containing water phase,

‘L2’ denotes an inverse micellar phase, ‘V1’ denotes a normal

bicontinuous structure, and ‘S’ denotes a solid phase. Adapted

from Hamley [8].

pressure and fluid composition,
the amphiphile can self-assemble
and force the oil-water mixture
into a wealth of equilibrium struc-
tures. The self-assembling pro-
cess is dictated by the compet-
ing attraction-repulsion mecha-
nisms present among the species.
Lamellae and hexagonally-packed
cylinders are examples of these
mesophases, also referred to as
Lα and H, respectively, with trans-
lational symmetry along one or
two directions. Other examples
are the sponge (L3) mesophase
and the micellar (Q223 or Pm3n,
or Q227 or Fd3m), primitive (“P”,
Q229 or Im3m), diamond (“D”,
“F”, Q224 or Pn3m) and gyroid
(“G”, Q230 or Ia3d) cubic meso-
phases, all of which lack trans-
lational symmetry [16]. Among
all the aforementioned phases, only the sponge mesophase is devoid of long-range order
and so cannot be classified as a liquid crystal: it is rather characterised by glassy features.
Figure 1.3 shows a schematic depiction of some mesophases formed from a blend of two
amphiphilic fluids. These mesophases are termed lyotropic since it is the mass fraction of
the components that determines the transitions.

A sponge mesophase formed by the (amphiphilic) stabilisation of a binary immiscible
fluid mixture is called a microemulsion. Since we shall be dealing with oil and water in
equal proportions, we shall be concerned with bicontinuous microemulsions. A bicontin-
uous microemulsion is a structure consisting of two percolating, interpenetrating oil and
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Figure 1.3: Schematic depiction of some mesophases formed from a blend of two amphiphilic fluids, A

and B. In this example, the transition between the four renowned mesophases is lyotropic, i.e., driven by

concentration. From left two right, the pictures correspond to the micellar, tubular, gyroid and lamellar

mesophases.

water phases separated by a monolayer of surfactant molecules adsorbed at the interface.
Oil and water are isotropically mixed, and ordering is short range. Sponge phases formed
by the dispersion of amphiphile in a single phase solvent differ from microemulsions in
that it is a surfactant bilayer which underlies the structure, and the regions it divides are
occupied by the same fluid component. A gyroid phase is also a bicontinuous, interpene-
trating structure; however, ordering is evidently long range, whence its classification as a
liquid crystal. In the gyroid, the locus where most of the surfactant resides is a triply pe-
riodic minimal surface (TPMS) whose unit cell is of cubic symmetry. The surface has zero
mean curvature, no two points on it are connected by a straight segment, and no reflexion
symmetries are present. Isosurfaces of the gyroid phase for which oil and water are not at
equal composition (minority phases) form mutually percolating, three-fold coordinated,
regular lattices. Other examples of triply periodic surfaces of zero mean curvature arise
in the P and D mesophases, the minority phase isosurfaces of which exhibit coordination
numbers of six and four, respectively.

1.2 Modelling and simulation of multiphase fluids

Classically, the theoretical study of the non-equilibrium behaviour of fluids has been based
on the solution of the Navier-Stokes equations [17]. These are equations for the balance
of momentum and mass, which, for a compressible fluid and using an Eulerian system of
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reference, have the form:

∂tρ + ∇ · (ρu) = 0 , (1.1)

∂t(ρu) + ∇ · (ρuu− σ) = F , (1.2)

σ = −pI + Π , Π = 2η
◦

(∇u)s + ζ(∇ · u)I (1.3)

where ρuu−σ is the momentum flux density tensor, σ is the stress tensor, p is the scalar or
hydrostatic equilibrium pressure, p = 1

3trσ, Π is the deviatoric, non-equilibrium or ‘viscous’
stress tensor, η is the dynamic shear viscosity, ζ is the bulk viscosity, the circle subtracts
the trace, tr∇u ≡ ∇ · u, which is zero in an incompressible fluid, the “s” superscript
denotes the symmetrisation 1

2(a + aT), where a is a generic 2-tensor, I is the unit 2-tensor,
and, finally, F is an external force. Setting aside the obvious effect of the external force,
cf. Eq. (1.2), except when causing an initial perturbation, this Eulerian representation
clearly shows the irreversible evolution of the system: the momentum density is locally
increased at a rate set by ∇·σ = −∇p+η∇2u+ ζ∇∇·u, where we have assumed uniform
viscosities. Alternatively, it is customary to find the last equations written in a Lagrangian
representation; for an incompresible fluid, they appear as

Dtρ = −ρ∇ · u , (1.4)

ρDtu = −∇p + η∇2u + F , (1.5)

∇ · u = 0 , (1.6)

where Dt ≡ ∂t + u · ∇ is the time derivative along the streamline.
The Navier-Stokes equations have been the paradigm equation of motion used by

continuum fluid dynamicists for more than 150 years [18, 19]. Finding analytical solutions
for them has drawn the attention of mathematicians seeking theorems of existence and
uniqueness [20], and made significant contributions to the theory of non-linear equations.

The Navier-Stokes equations, however, remain an approximation to fluid motion, al-
though this is frequently overlooked. From a kinetic-theoretic perspective, as we shall see
in Section 1.2.1, they are derived at a restricted level of microscopic detail. In modelling
multiphase flows, characterised by the presence of a moving boundary condition, much
computational effort needs to be spent in tracking the evolution of the interface itself,
although some recent progress has been made in this respect [21]. Indeed, the fact that
the interface width is zero, i.e. diffusive effects are excluded, is a limitation in dealing
with problems in which the fluid’s length scales are comparable to such a width, such as
in phase segregation, interfacial phenomena and flow in porous media.

1.2.1 Kinetic theory

Classical kinetic theory offers an alternative approach to the study of non-equilibrium fluid
phenomena to continuum fluid dynamics. The time evolution of the system is described by
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means of a single equation, the transport equation, whose only unknown, the distribution
function, not only carries all the information on the spatial distribution of the fluid’s
molecular contituents, but also on their velocity distribution.

Kinetic theory is in turn an approximation to the full description of the system in terms
of its microscopic, many-body, Newtonian dynamics. The BBGKY hierarchy [22, 23] for a
system of N interacting molecules, equivalent to the Liouville equation for the (classical)
motion of their N -particle probability distribution function in a 6N phase space, is an
equation for the reduced, r-particle distribution, Fr, where 1 ≤ r ≤ N , as a function of
Fr+1. The reduced distribution Fr is defined as the integral of FN over the phase space
of the remaining 6(N − r) dynamic variables. The recursive character of the hierarchy is
what holds up its equivalence to the fundamental, many-body, Liouville equation; for the
hierarchy to be solved, it needs to be self-contained, i.e. it needs to be ‘closed.’

Boltzmann equation

The closure of the BBGKY hierarchy is what defines the passing from a many-body theory
to a kinetic or transport theory approach, which is done by defining Fr+1 as a function
of Fr in an ad hoc fashion. For most gases and liquids, and for practical reasons,the
description is kept to its coarsest levels, namely r = 1 and 2. The closure at r = 1 is what
is defined as the Boltzmann equation, which has the form

∂tf + ξ · ∇f +
F
m

· ∇ξf =
∫∫∫

V (ff ′|f̃ f̃ ′)
(

ff ′ − f̃ f̃ ′
)

d3ξ′d3ξ̃d3ξ̃′ (1.7)

where f = f(x, ξ, t) ≡ F1, a prime means that the coordinates in question are those of the
partner molecule in a binary collision whereas a tilde denotes pre-collisional coordinates,
and V (ff ′|f̃ f̃ ′) is a scattering function, or probability of the transition from the ingoing
distribution, f̃ f̃ ′, to the outgoing distribution, ff ′. This equation requires assumming the
Stosszahlansatz, or molecular chaos assumption, i.e. the evolution of any one particle is
sufficiently described by using single-particle distributions, and hence

F2 ≡ f f . (1.8)

The Stosszahlansatz, Eq. (1.8), restricts the range of validity of the Boltzmann equation
to what is known as the Boltzmann-Grad Limit (BGL) [24]. Effectively, the BGL is a
prescription for the coarsest mean-field approximation that can be carried out on the
equations of motion of the system.

Contraction of information

The Boltzmann equation is an integro-differential equation for the single-particle distribu-
tion function, f . This distribution, which lives on a 6-dimensional (position and velocity)
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phase space, not only provides information on how probable it is for a molecule to be found
around a given spatial position but also with what microscopic (or molecular) velocity; in
other words, how populated such a microscopic velocity is at that position.

Continuum fluid dynamicists are, however, not concerned about the population of
molecular velocities. Rather, they are ultimately interested in predicting macroscopic
quantities such as the fluid velocity, stress and temperature fields. Even in regimes in
which many-body quantum-mechanical effects [25] are negligible, such as for a broad
range of temperatures and pressures in gases and liquids without chemical reactions, the
uncertainty principle renders it impossible for experimental probes to fully explore micro-
scopic information, which effectively becomes averaged out. This indicates the need to
resort to averaging the minimally detailed information available at the microscopic level
that a kinetic description provides in order to obtain one which can be directly related
with experience.

This contraction of information is performed by integrating the transport equation
over the whole subspace of microscopic velocities, in a similar fashion to the contraction of
a subset of the Liouville equation’s dynamic variables, leading to the BBGKY hierarchy.
Since the macroscopic quantities of interest, such as mass and linear momentum density,
stress (pressure tensor) and kinetic energy density are defined as moments of the distri-
bution function with respect to the microscopic velocity ξ, by multiplying the transport
equation by a polynomial of ξ and integrating over velocities, in what is called the Grad’s
moment method, leads to the macroscopic, hydrodynamical balance equations [26]. At this
level, all reference to microscopic information has been lost. These equations, however,
are not a closed set since they contain unknowns which are moments of higher order than
those of the quantities being advected; in fact, they are related to the fluxes of the latter.
These higher-order moments appear, in the Grad’s method, as independent variables.

In theory, the determination of these higher-order variables poses no difficulty to the
transport kineticist since a knowledge of the distribution function (solution of the trans-
port equation) allows to determine directly and exactly all of its moments. A purely
macroscopic approach, however, requires the closure of the set, i.e. the use of an Ansatz:
the constitutive relations. Following such an approach, having obtained a non-closed set
of balance equations by integrating the Boltzmann equation, the Navier-Stokes equations
arise when the stress (second moment of f with respect to the excess or peculiar molecular
velocity) is considered proportional to the strain rate; if the proportionality (transport)
coefficient is independent of the latter, the fluid is termed Newtonian. In this scheme, the
ideal hydrodynamic, or Euler, equations arise for an inviscid fluid, i.e. a fluid with zero
shear viscosity. Newton’s constitutive relation can be generalised to take into account
viscoelastic effects by assuming a model for the dependence of the shear viscosity with
the strain rate [27]. In order to close the energy balance equation, the heat flux needs to
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be assumed proportional to the temperature gradient (Fourier’s law), and its transport
coefficient of proportionality (thermal conductivity) independent of it.

From the microscopic point of view, the Navier-Stokes-Fourier equations (Navier-
Stokes equation along with the energy balance equation) are only an approximation and
never exact, and they remain undetermined since the transport coefficients are unknown.
In fact, in a microscopic approach, the balance equations are not needed in order to com-
pute the evolution of the macroscopic variables. Instead, it is the Boltzmann equation
which contains all the information required.

Naturally, the Boltzmann equation, as I have presented it so far, is limited to the
BGL, which restricts the systems it can exactly model, for at least short times, to dilute
and electrically neutral gases without internal structure so that collisions are binary and
localised, and excluded-volume effects negligible. The BGL also precludes contributions
to the energy from intermolecular force fields, since the latter are negligible; an alternative
limit would need to be considered in order to include these effects.

Chapman-Enskog method

Even assuming the existence of solutions to the Boltzmann equation, it is, however, un-
realistic to suppose that we would have fully detailed information of f at any instant,
or, equivalently, the infinite set of its moments. In fact, Hilbert uniqueness theorem [22]
states that “if f can be expanded in powers of some small parameter, then f is uniquely
determined for times t > 0 by the values at t = 0 of its first five moments {ρ, u, T}
only,” i.e. by the mass density, baricentric or hydrodynamic velocity and temperature
[22]. This small parameter can be identified with the Knudsen number, Kn, or ratio of
a microscopic to a macroscopic length or time, and the solutions satisfying the assertion
are called normal solutions. The macroscopic variables chosen are the only collisional
invariants under binary collisions, the latter being the only ones allowed in the BGL. The
Chapman-Enskog method [22, 23] is based on such an expansion of f in powers of Kn,
and assumes that the system features a clear scale separation in which Kn is small. A
zeroth-order expansion leads to the Euler equations for an inviscid fluid, whereas a first-
order expansion yields the Navier-Stokes equations. The expressions for the stress and
heat flux (second and contracted-third moments of f , respectively) used to obtain the
Navier-Stokes-Fourier equations by closing the hydrodynamic balance equations emerge
naturally from the method at second order of approximation. These expressions are linear
relations between thermodynamic forces and fluxes, in the sense of the bilinear expression
for the entropy production in local equilibrium thermodynamics [28], valid in a wide class
of phenomena for small Kn numbers [27]. Most importantly, the Chapman-Enskog method
gives expressions for the transport coefficients in terms of microscopic information.

Linear constitutive relations are, however, insufficient for high-frequency and high-
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wavenumber phenomena, chemical reactions and viscoelastic behaviour. An improvement
on this direction is meant to be given by the Chapman-Enskog method to second order,
which leads to corrections to the first-order stress and heat flux (implicit in the Navier-
Stokes-Fourier equations) in the form of first-order derivatives of the thermodynamic forces
or products of two different of such forces. The closed set of equations obtained by using
these corrected relations are called the Burnett equations, albeit still based on the Hilbert
uniqueness theorem, i.e. leading to normal solutions.

Despite the fact that they are corrections to the Navier-Stokes equations, the Burnett
equations have enjoyed considerably less success than the former, owing to a lack of knowl-
edge of this type of partial differential equations, of the form of the boundary conditions
needed to determine the higher-order derivatives in them, and of their validity in regimes
where the first-order approximations cease to be valid [23].

Grad’s moment method

In the search for a more general method of solution of the transport equation, including,
in particular, solutions which are not normal (i.e. not well described by the hydrody-
namic variables alone), Grad’s method provided a suitable alternative [26]. Instead of
expanding f in powers of a small parameter, leading to normal solutions, Grad’s method
expands it in terms of a basis of tensor Hermite polynomials of the microscopic velocity,
the expansion coefficients being the moments of f with respect to the relevant polynomial.
The advantage of this method rests on its generality: along with the hydrodynamic vari-
ables (ρ, u and T ), it employs higher moments of f which are not collisional invariants,
hence termed non-hydrodynamic, and whose balance equations can be derived. Also, the
linear, or non-linear ad hoc forms for the constitutive equations hitherto mentioned are
replaced in this approach by hyperbolic balance equations, and the idea is that using an
increasing number of statistical moments of f provides for increasingly higher detail in
the description, closer to that of the full transport equation. An expansion on the first
thirteen moments, namely ρ, u, T , {σij} and {qi}, where the last two are the stress tensor
and the heat flux, respectively, and T ∝ trσ/ρ is the temperature, leads to an important
generalisation of the Navier-Stokes equations, which includes the balance equations for
the fluxes {σij} and {qi}. There have been attempts to use the Grad approximation at
higher orders than the first thirteen moments, aimed at reproducing transport coefficients
depending not only on the frequency, such as in the 13-moment approximation, but on the
wavenumber too [29, 30]. Last but not least, Grad’s moment method has been an inspira-
tion for the formulation of thermodynamic theories of irreversible processes extending the
number of state variables to include non-hydrodynamic, measurable fluxes [27]. Despite
the apparent greater generality of Grad’s method compared to Chapman and Enskog’s,
it nonetheless also has drawbacks, namely, the lack of an expansion parameter allowing
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for control of the order of the approximation; moreover, transport coefficients obtained
from the balance equations are less precise than those provided by a Chapman-Enskog
procedure in the regimes where both are comparable [30].

Simplified Boltzmann models

In the foregoing paragraphs I have given a brief overview of the role of kinetic theory in
fluid modelling. The Navier-Stokes equations are obtained from the Boltzmann equation
at first order of approximation in the Chapman-Enskog method. This implies that the
upper bound for the Knudsen number needs to be small enough, and certainly away from
that of the transition regime between reversibility and irreversibility. On the other hand,
the Boltzmann equation is valid only in the Boltzmann-Grad limit, i.e. for binary, localised
collisions, which imposes a lower bound on the collision length and time scales, that is
to say, on Kn. These two conditions restrict the range of applicability of the Boltzmann
equation in reproducing Navier-Stokes flow.

Transport equations other than Boltzmann’s are also available in order to deal with
a broader range of systems [31]. An example is the Enskog equation, an extension of
Boltzmann equation to dense gases with hard sphere’s intermolecular potential [22, 23].

Finding analytical solutions to the full Boltzmann equation is a daunting task. For
this reason, it is customary to adopt models for the collision term. Examples are the
single relaxation time approximation (or Bhatnagar-Gross-Krook, BGK, model), multiple
relaxation time models, Kac’s, Carleman’s and Broadwell’s models [22]. Despite fact
that these methods are simpler than the full Boltzmann equation, hence containing less
information, their parameters provide a means of mapping their solutions to experimental
data. In addition, in modelling phenomena at a given value of the Knudsen number, their
algorithmic implementations are also more efficient.

In this thesis, one of the methods employed to model fluid dynamics is the lattice-
Boltzmann (LB) method. This can be regarded as a discretisation of the Boltzmann
equation, and hence it would be straightforward to think that such a method will inherit
the properties of the latter, including the range of validity in Kn number. However, we
shall see that, since the LB equation can also be derived from applying the Stosszahlansatz
to a lattice gas, its validity is not particularly restricted to low densities [32].

The applications that we are concerned about in this thesis are binary immiscible
and ternary amphiphilic fluids under creeping, slow flows. We are interested in their
dynamics and the formation of structure, i.e., nonhomogeneities of the order parameter.
The common denominator in these applications is the existence of different phases in the
fluid. Kinetic theoretic methods to this end incorporate phase segregation in the form of
repulsive pair potentials [33], which is the way it is incorporated in our LB model.
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1.2.2 Mesoscopic models

Fluid dynamical methods in the mesoscopic scale came to light as a way to grasp the
relevant thermohydrodynamical behaviour with as little computational effort as possible.
This is achieved by evolving a microworld in which the usual vast number of molecular
degrees of freedom and characterisation have been drastically reduced, based on the fact
that, away enough from critical points, a fluid’s macrostate is pretty much insensitive to
many of its microscopic properties.

The mesoscopic scale comprises lengths and times which are intermediate between
those of the atomistic and the macroscopic worlds. Since it can be defined by the size
of a spatial or temporal probing window which is large enough so that statistical trends
of the underlying microscopic fields can be extracted upon averaging, the actual size of
the mesoscopic scale will depend on the system under scrutiny. Figure 1.4 shows how a
scalar quantity measured on a hypothetical system will vary with the size of such a window
increasing up to the hydrodynamic scale; different behaviours can be distinguished.

The upper limit of the mesoscale is, however, not set by the aforementioned defini-
tion. Depending on the number of statistical moments (of the distribution of the relevant
observable) that we might pay attention to, we could obtain a description which is closer
to one or the other limit in the scale. This vagueness in the definition of the mesoscale
translates into a degree of freedom for the development of theoretical methods of analysis,
which has led to a wealth of numerical approches for the study of complex fluids.

The aim of mesoscopic methods is to contract the amount of information needed for a
fully atomistic description, aiming at grasping macroscopic behaviour which is insentitive
to some of the microscopic details. Since (a) the methods are constrained by what it is
experimentally observed, and (b), due to the contraction of information, in many cases it
is necessary to introduce parameters in them in an ad hoc fashion, most of the methods
fall in the category of phenomenological theories, as opposed to microscopic or ab initio
methods.

There is a clear divide in the approaches taken by mesoscopic methods to date, based
upon how close they are to the macroscopic limit to be modelled; I shall refer to them as
top-down and bottom-up approaches. In connection with my mentioning of the number of
statistical moments to use in probing the microdynamics, at the beginning of this section,
phenomenological approaches ought to be based either on the idea that the micrody-
namics need to be gradually and explicitly replaced by thermohydrodynamic descriptions
as we near the large-scale realm, or that the space of ad hoc parameters, introduced in
order to coarse-grain microscopic interactions, needs to be mapped onto the large-scale
phenomenology.
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Figure 1.4: Variation of a scalar quantity measured on a hypothetical system by a probing
cell of varying size. We assume that time and spatial variations have been smoothed out via
averaging. The variation in the measured quantity with cell size is due to various mechanisms
acting on different length scales: molecular interactions lead to considerable stochastic effects, and
long-wavelength inhomogeneities lead to macroscale variations. In the middle is a ‘mesoscale’, well
defined by a plateau in the plot. Adapted from Boon and Yip [2].

The Ginzburg-Landau theory and model H

Top-down approaches to multiphase fluid modelling assume the local equilibrium hypothe-
sis and use a thermodynamic potential accounting for the phase transition between homo-
geneity and nonhomogeneity, which in a canonical ensemble is the Helmholtz free energy
accounting for interfacial energetics and entropy. The method, known as the Ginzburg-
Landau theory, is similar to the van der Waals’ formulation of liquid-gas transitions [34],
and the equilibrium properties of the fluid structure are obtained through numerical min-
imisation of the thermodynamic potential with relevant constraints. In the case of mul-
tiphase fluids where the inhomogeneities arise as a result of the self-assembly of amphi-
philic molecules, such as in surfactant-containing fluids or co-polymer melts, the actual
expression of the thermodynamic potential is computed from a mesoscopic model of such
molecules under a mean-field approximation [35, 36]. As the reader might have realised,
Ginzburg-Landau methods do not deserve the classification of mesoscopic since they are
at the local thermodynamic level of description, that is to say, only the first-order sta-
tistical moments of the underlying microscopic observables are retained and studied at
stationarity.

In order to model dynamics, such as phase segregation and self-assembly, the free
energy is used to specify the chemical potential in a diffusion equation for the order pa-
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rameter. Designed for regimes sufficiently far from criticality, i.e., where the correlation
length and hence fluctuations are small, thermal effects are injected as a correction noise
term into the diffusion equation. This noise term is what incorporates mesoscopic infor-
mation in the system, albeit in an ad hoc fashion and not as a result of a renormalisation
group, consistent coarse-graining procedure, as exemplified in Ref. [37]. The inclusion of
hydrodynamics in phase-segregating fluids was carried out by Cahn and Hilliard [38] and
termed Model H [39], which we present as follows. The model couples an anti-diffusion
equation

∂tφ + gu · ∇φ = M∇2 δF

δφ
+ θ , (1.9)

where φ = φ(x, t) ≡ ρB − ρA is the order parameter (difference between the components’
densities), the functional derivative is the local chemical potential of the mixture, δF/δφ =
µ, M is a phenomenological transport coefficient (the mobility), which serves to tune the
interfacial tension, g is a coupling parameter, and θ is a Gaussian white noise source,
correlated according to

〈θ〉 = 0 , (1.10)

〈θ(x, t)θ(x′, t′)〉 ∝ δ(x − x′)δ(t − t′) , (1.11)

where the proportionality coefficient is a normalisation constant. In Eq. (1.9), F is the
following free energy functional

F [φ] =
∫

ddx

{
1
2
(∇φ)2 + f(φ)

}
, (1.12)

f(φ) = aφ2 + bφ4 . (1.13)

Here, d is the space dimensionality, f is the local free energy density, and a and b are
scalar functions of the temperature such that there is only one minimum (φ = 0) above
the critical temperature, Tc, and two symmetric minima (φ = ±φ0) below it; the order
parameter becoming non-zero signals the symmetry breaking in the initial homogeneous
phase, φ = 0. Equation (1.9) models a purely diffusional phase segregation when u = 0
and M > 0; in general, this equation is coupled to the Navier-Stokes momentum balance
equation as follows

ρDtu = −∇p + η∇2u− φ∇δF

δφ
, (1.14)

where the last term of the right hand side accounts for a dissipative force proportional to
the gradient of the chemical potential.

Lattice-gas models

The principle of similarity in fluid dynamics states that provided two fluids sharing the
same Reynolds number, then, irrespectively of their microscopic differences, their flows
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will behave identically. This justifies why wind or water tunnels may indifferently be used
for testing low-Mach number flows. In fact, two fluids with quite different microscopic
structures can have the same macroscopic behaviour because the form of the macroscopic
equations is entirely governed by the microscopic conservation laws and symmetries. These
observations, among others, led in 1986 to a novel simulation strategy for fluid dynamics,
the lattice-gas automaton [40, 41], based on cellular automata. Cellular automata, first
introduced by von Neumann [42], consist of a lattice, each site of which can have a finite
number of states (usually coded by Boolean variables); the automaton evolves in discrete
time steps, the sites being simultanously updated by a deterministic or nondeterministic
rule, and typically, only a finite number of neighbours are involved in the updating of
the states [32]. In addition to these features, lattice gases introduce particular constraints,
such as mass and momentum conservation and the correct lattice symmetry, so as to recre-
ate a fictitious discrete microworld approximation to that of continuum, ‘real’ molecular
dynamics in a way that fluid dynamics is recovered in the macroscopic limit; in this sense,
lattice gases are genuinely bottom-up, mesoscopic models.

The principle of similarity was not the only motivation in the development of lattice
gases. It is known that numerical instabilities are a common cause for concern for most
algorithms solving continuum fluid equations, especially at high Reynolds numbers. Aside
from the intrinsic accuracy of the algorithm, precision is also a major contributing factor.
In fact, since floating-point representations favour bits in the most significant places, the
algorithm is rendered vulnerable to machine-dependent round-off noise [43].

Following Frisch et al. [32], I now give a general presentation of lattice gases and
their hydrodynamics. Consider a D-dimensional regular, Bravais lattice L in RD of finite
extension L (eventually, we shall make L → ∞). Assume that each node, x∗, of such
a lattice has a coordination number b, i.e., there are b ‘velocity’ vectors ck of the same
modulus c linking the node to its nearest neighbours, x∗ + ck. In addition, for any pair
of links ck and cl, there exists an element in the “crystallographic” group G of isometries
which maps ck into cl.

The automaton is constructed by associating to each node a b-bit state N(x∗) ≡
{Nk(x∗), k = 1, . . . , b}, where each Nk is a Boolean variable. The evolution of the lattice,
more precisely, the update of the Boolean field N(.), is ruled by two steps, collision followed
by propagation, also called advection. Propagation is defined by the spatial translation

Nk(x∗) ← Nk(x∗ − ck) , (1.15)

where periodical (i.e., wrap-around) boundary conditions are mostly used at the lattice
edge, although others such as no-slip (bounce-back) or sliding periodic (Lees-Edwards’)
can also be implemented; eventually, the particular choice will be irrelevant for the prop-
erties of the bulk since hydrodynamics will emerge for L → ∞. The collision step is the
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simultaneous application at each node of nondeterministic transition rules from an in-state
s̃ ≡ {s̃k, k = 1, . . . , b} to an out-state s ≡ {sk, k = 1, . . . , b}; s̃ and s are particular assign-
ments that state N(x∗) can take on. Each transition is assigned a probability A(s|s̃) ≥ 0,
normalised to one

(∑
s A(s|s̃) = 1,∀s̃

)
, and depending only on s̃ and s and not on the

node. More conditions are imposed on the transition probabilities, namely

• Conservation laws: the only collections of b real numbers ak such that

∑
k

(sk − s̃k)A(s|s̃)ak = 0 , ∀s̃, s (1.16)

are linear combinations of unity and of the links’ cartesian components ck1, . . . , ckD,
i.e., only particle number and linear momentum are conserved.

• Invariance under all isometries preserving the velocity set:

A
(
g(s)|g(s̃)

)
= A(s|s̃) , ∀g ∈ G , ∀s̃, s . (1.17)

• Semi-detailed balance: ∑
s̃

A(s|s̃) = 1 , ∀s . (1.18)

Note that the stronger, detailed balance condition is A(s|s̃) = A(s̃|s).
Specific forms of the transition probabilities can be given through examples of lattice-

gas models, of which we shall give three. The Hardy-Pomeau-de Pazzis (or HPP) model
uses a two-dimensional rectangular lattice, whence b = 4. In general, the Boolean rep-
resentation of a state s is (sb−12b−1, . . . , sk2k, . . . , s121, s020), where sk = 0 or 1, and
k = 0, . . . , b − 1 are velocity vectors’ labels. In the HPP model, numbering the velocity
vectors as non-negative integers (modulo 4) counterclockwise, the collision rules consist
in exchanging, at each node, the four-bits states 1010 and 0101 and leaving all the other
states unchanged. That is to say, head-on collisions, represented by occupied “input chan-
nels” {k, k + 2} lead to occupied “output channels” {k + 1, k + 3}; in brief, HPP simply
rotates head-on collisions’ incoming velocities by π/2, which conserves mass (number of
particles) and momentum. The crucial property of the HPP lattice gas is the existence
of thermodynamic equilibria, despite the fact that no ergodic theorem is known for it [43].
These equilibria are factorised over nodes and directions, independent of node position
but dependent on direction, and have free continuous parameters (the ensemble-averaged
mass and momentum). When density and momentum are varied slowly in space and time,
emerging macrodynamical equations arise which differ from the Navier-Stokes equations
owing to a lack of Galilean invariance and isotropy.

The Frisch-Hasslacher-Pomeau (or FHP) series of models are variants, still in two
dimensions, of the HPP model, with a larger invariance group. The lattice is triangular,
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hence b = 6. The larger group invariance is seen through the fact that head-on collisions
are now degenerate: for in-state {k, k+3} there are two out-states which conserve mass and
momentum, {k +1, k +4} and {k−1, k−4}. Systematically choosing one of the outcomes
leads to a chiral lattice gas, of broken specular symmetry; a random choice will lead to a
nondeterministic lattice gas. The actual random chain needs not be flat-distributed, and,
as we shall see in the annexed paper on page 107, will certainly be node-dependent for
multiphase models, in disagreement with the definition we put forward here.

The FHP collision rules, as they have been laid out so far, lead to invariants other
than just mass and momentum. These so-called spurious invariants are the difference
of particle numbers in any pair of opposite directions, occurring for head-on collisions.
Unless they are removed from the microdynamics, the macrodynamical equations will
differ drastically from the Navier-Stokes equations. One way to achieve this is to introduce
triple collisions {k, k +2, k +4} �→ {k +1, k +3, k +5}. Another way to remove them is to
add zero-velocity rest particles in binary collisions; at low densities, these remove spurious
conservations more efficiently than triple collisions do. There are three versions of the FHP
models, named FHP-I, FHP-II and FHP-III, depending on the increasing complexity of
their collision rules, respectively. FHP-III contains rest and spectator particles, the latter
being particles of non-zero velocity which are not affected upon collision.

Finally, as we shall see later, three-dimensional Bravais lattices do not have enough
symmetry to guarantee macroscopic isotropy [43]; instead, isotropy is recovered when
the underlying lattice is a four-dimensional, face-centred hypercube (FCHC), defined by
vectors (x1, x2, x3, x4) such that their cartesian components are signed integers satisfying
that x1 +x2 +x3 +x4 is even. From each node there are velocity vectors of length c =

√
2

linking to b = 24 nearest neighbours, two cartesian components of which differing by ±1.
The collision rules should conserve mass and four-momentum whilst avoiding spurious
conservations; this can be achieved with just binary collisions, yet there are different
strategies [32, 44]. Non-deterministic rules are needed to ensure that the collisions and
the lattice have the same invariance group. Three-dimensional fluids are modelled using
a projection of the FCHC model called the pseudo-four-dimensional or projected FCHC
model. This is defined as a spatial three-dimensional cubic lattice with an underlying
four-dimensional velocity lattice. The way the velocity lattice is embedded into the spatial
lattice is by breaking the isotropy of the latter during the advection step: particles with a
non-zero fourth component of the velocity, ck4 = ±1, are only allowed to advect to nearest-
neighbouring nodes, one lattice unit apart, whereas particles with a null fourth component,
ck4 = 0 are only allowed to advect to the next-nearest nodes,

√
2 lattice units apart. Nodes

which are
√

3 lattice units apart do not intervene in advection. This prescription then
allows for up to two particles to simultaneously advect to nearest-neighbour sites, whereas
there is an exclusion principle for those travelling to the next-nearest sites: there can be



30 1. Introduction

only one. Collision rules are identical to those for the FCHC model, preserving mass and
four-momentum. A common notation referring to the spatial dimension, d, of the lattice
and the number of velocities, q, on each node is DdQq.

So far we have specified the microdynamics of particular lattice-gas models in terms
of their collision rules. It is however possible to give a compact representation of it in
the form of an equation governing the node’s population, N(x∗) [32]. For brevity’s sake,
we shall restrict ourselves to the HPP model; expressions for more complex collision rules
such as those of the FHP and FCHC models are obtained in a similar fashion and involve
many more factors and terms. It can be verified that the right-hand side of the following
collision-advection equation is the out-state, expressed using Boolean operations on the
in-state at node x∗,

Nk(x∗ + ck, t + 1) =(
Nk ∧ ¬(Nk ∧ Nk+2 ∧ ¬Nk+1 ∧ ¬Nk+3)

)
∨

(
Nk+1 ∧ Nk+3 ∧ ¬Nk ∧ ¬Nk+2

)
(1.19)

where the symbols ∧, ¬ and ∨ stand for and, not and or, respectively. This equation
can be re-arranged in the form Nk(x∗ +ck, t+1) = Nk(x∗, t)+∆k(N), where the collision
operator is a mapping of the type ∆k : N(x∗, t) �→ 0,±1. Since Boolean operations can
be cast as base-10 operations, the HPP collision term can also be written as

∆k(N) =

Nk+1Nk+3(1 − Nk)(1 − Nk+2) − NkNk+2(1 − Nk+1)(1 − Nk+3) (1.20)

It is worth showing that the lattice-gas dynamics is the lattice equivalent of the Louville
equation in phase space. For that, let us define the collision operator as C : Nk(x∗) �→
Nk(x∗) + ∆k(Nk(x∗)), the streaming operator as S : Nk(x∗) �→ Nk(x∗ − ck), and their
composition, E ≡ S ◦ C, as the automaton’s evolution operator. Then we define the phase
space Γ as the set of all possible assignments s(.) ≡ {s} of the Boolean field N(x∗), at
x∗ ∈ L. We now consider at time t∗ = 0 an ensemble of initial conditions, each endowed
with a probability P

(
s(.), 0

)
≥ 0, such that

∑
s(.)∈Γ P

(
s(.), 0

)
= 1. Each element of such

an ensemble evolves via the automaton’s evolution operator E , whence the time evolution
of phase space Γ, i.e., the Liouville equation, can be written as the following equation for
the conservation of probability

P
(
s(.), t∗ + 1

)
= P

(
E−1s(.), t∗

)
. (1.21)

Evidently, we are considering a deterministic automaton which allows for E to be invertible.
An expression for Eq. (1.21) in terms of transition probabilities is readily obtainable for
the nondeterministic case.
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Keeping the analogy, we can now define a macroscopic quantity or observable, q =
q(x∗, t∗), as the mean value of a microscopic quantity Q

(
s(.)

)
as

〈
Q

(
s(.)

)〉
≡

∑
s(.)∈Γ

P
(
s(.), t∗

)
Q

(
s(.)

)
. (1.22)

For example, the particle density, nk(x∗, t∗), which is a quantity evolved by coarse-grained,
transport schemes (such as the LB method), specified at a certain point in position, velocity
and time space, as we shall see, is defined by Eq. (1.22) with Q ≡ N ,

〈
Nk(x∗, t∗)

〉
≡ nk(x∗, t∗) = Nfk(x∗, t∗) , (1.23)

where N is the total number of particles and fk is a probability distribution function, not
necessarily single-particle, in the new, reduced phase space {x, ξ}. Macroscopic variables
can be calculated by further averaging à la kinetic theory, i.e., as moments of the distribu-
tion function: for example, ρ ≡ m

∑
k nk, j ≡ m

∑
k cknk and m

∑
k(ck −u)(ck −u)nk, for

the mass, momentum, and flux of momentum densities, respectively, where the latter in-
cludes the baricentric or peculiar velocity, (ck −u), in terms of the mean or hydrodynamic
velocity u, defined through j = ρu, and m is the particle mass.

The lattice-Boltzmann approximation

The LB method has an double origin: it is not only an approximation to the contin-
uum Boltzmann equation, but also a coarse-grained lattice-gas microdynamics. In this
introduction I shall only elaborate on the former following a derivation after Luo [45]. A
derivation from the latter, the lattice-gas cellular automaton, is conceptually analogous to
the derivation of the Boltzmann equation from the N -body Liouville equation, and is left
at the reader’s discretion [32, 46].

For the sake of generality, we consider the Enskog equation [23] as a starting point. The
Enskog equation is an ad hoc extension of the Boltzmann equation to include the excluded-
volume effect present in dense gases. The equation is restricted to identical hard spheres
(henceforth of radius σ), which makes the chances of multiple simultaneous encounters
negligible. Keeping the notation of Eq. (1.7) regarding pre- and post-collisional velocities,
we consider the collision of two of such spheres with velocities ξ and ξ′, respectively, being
subjected to an external acceleration field a. Letting x̂ be a unit vector pointing from the
centre of the ‘primed’ to that of the ‘unprimed’ sphere at the instant of contact, and c be
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the relative velocity ξ′ − ξ, the Enskog equation in absence of external forcing reads

Dtf = J [f ] , Dt ≡ ∂t + ξ · ∇ ,

J [f ] ≡
∫∫

d2Ω(c · x̂)d3ξ′
{

χ(x + 1
2
σx̂)f̃(x)f̃ ′(x + σx̂)

−χ(x − 1
2
σx̂)f(x)f ′(x − σx̂)

}
,

(1.24)

where g is the radial distribution, and d2Ω(c · x̂) is a solid angle which is a function of
the projection of the relative velocity c onto the apse line x̂. For the point particles of
the Boltzmann equation, such a projection is one; also, whilst the Boltzmann equation
assumes the Stosszahlansatz, the Enskog equation utilises a different Ansatz: a non-zero
correlation between the two colliding particles separated by vector r, absorbed entirely by
a radial correlation function g, i.e. F2(x, ξ,x + r, ξ′) = g(r)ff ′.

It can be shown [45] that the single relaxation time or BGK approximation (see Sec-
tion 1.2.1) for Eq. (1.24), assuming the fluid to be isothermal and incompressible, is

Dtf = − g

λ
[f − fLM] + J ′ , (1.25)

where λ is a scalar relaxation time and J ′ depends on the variables describing the volume
exclusion effect, J ′ ≡ −fLMρg(ξ − u) · ∇ ln(ρ2g); b is the second virial coefficient in the
virial expansion of the equation of state. In addition, Eq. (1.25) includes the local Maxwell
equilibrium distribution

fLM ≡ ρ(2πΘ)−D/2 exp
[
− (ξ − u)2

2Θ

]
, (1.26)

where D is the spatial dimension, and ρ, u and Θ ≡ kBT/m are the mass density, mean
velocity and specific thermal energy (Θ1/2 is the thermal velocity), respectively, where kB

is the Boltzmann constant and T is the kinetic temperature.
Following Luo [45], a formal solution of Eq. (1.25) can be obtained by integrating along

a characteristic streamline ξ over a time interval δt,

f(x + ξδt, ξ, t + δt) = e−δtg/λf(x, ξ, t)

+
g

λ
e−δtg/λ

∫ δt

0
dt′ eδ′tg/λfLM(x + ξt′, ξ, t + t′)

+ e−δtg/λ

∫ δt

0
dt′ eδ′tg/λJ ′(x + ξt′, ξ, t + t′) .

(1.27)

Assuming that δt is small enough and that fLM and f have sufficient smoothness in
the kinetic phase space, terms of order O(δ2

t ) or smaller can be neglected in the Taylor
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expansions of the integrands of last equation. With these approximations, the following
BGK-Enskog equation in continuous space and time is obtained [45, 47]

f(x + ξδt, ξ, t + δt) − f(x, ξ, t) = −g

τ
[f(x, ξ, t) − fLM(x, ξ, t)]

+ J ′(x, ξ, t)δt , (1.28)

where τ ≡ λ/δt is a dimensionless relaxation time. The local Maxwellian Eq. (1.26) can
be Taylor-expanded around ξ = 0; a good approximation for an isothermal fluid at low
Mach number is a second-order expansion in u [47],

fLM ≈ f (0) ≡ ρω(ξ)
[
1 +

ξ · u
Θ

+
(ξ · u)2

2Θ2
− u2

2Θ

]
,

ω(ξ) ≡ (2πΘ)−D/2 exp
[−ξ2

2Θ

]
. (1.29)

From this equation, the lattice-BGK approximation emerges from the correct discreti-
sation of velocity space. ‘Correct’ here means choosing the basis of the discrete space
such that not only the hydrodynamic variables but the higher moments of the distribution
function are preserved exactly, i.e. the following quadrature is exact [47]∫

d3ξ ψ(ξ)f(x, ξ, t) =
∑

k

Wkψ(ck)f(x, ck, t) , (1.30)

where ψ(ξ) is a polynomial of ξ and Wk is the relevant weight coefficient of the quadra-
ture corresponding to microscopic discrete velocity ck. The existence of this quadrature
means that, for example, the hydrodynamic moments can be written as ρ ≡ mN

∑
k fk =

mN
∑

k f
(0)
k and ρu ≡ mN

∑
k ckfk = mN

∑
k ckf

(0)
k , where fk = fk(x, t) ≡ Wkf(x, ξk, t)

and f
(0)
k = f

(0)
k (x, t) ≡ Wkf

(0)(x, ξk, t), both of the same units of fd3ξ. m is the particle
mass and N is the number of particles in the system. The actual values for the weights
Wk can be obtained by evaluating the equilibrium expectation value I ≡ ∫

d3ξ ψ(ξ)f (0)

for a particular discretisation of the velocity space. I is best calculated in polar coordi-
nates, with the measure d3ξ = ξdξdφ and the Sonine polynomial form ψ(ξ) ≡ ψm,n(ξ) ≡
ξm+n cosm φ sinn φ. In particular, the 9-bit two-dimensional model adopts the following
velocity discretisation

ck ≡




(0, 0) for k = 0,
(cos φk, sin φk)c, φk = (k − 1)π/2 for k = 1, . . . , 4
(cos φk, sin φk)

√
2c, φk = (k − 5)π/2 + π/4 for k = 5, . . . , 8

(1.31)

where c ≡ δx/δt is the “speed of light” and δx is the smallest lattice parameter. Note that
for an ideal gas, since the equation of state is p = ρΘ, the specific thermal energy defines
the speed of sound, Θ = c2

s , and, for this model, c =
√

3cs. This model’s lattice geometry
leads to the following discretisation for the continuous low-Ma equilibrium, Eq. (1.29),

f
(0)
k = ρwk

[
1 +

3(ck · u)
c2

+
9(ck · u)2

2c4
− 3u2

2c2

]
(1.32)
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which is exact only if

wk ≡




4/9 for k = 0,
1/9 for k = 1, . . . , 4,
1/36 for k = 5, . . . , 8,

(1.33)

and with the discretised volume-exclusion collision term, J ′
k ≡ −f (0)bρg(ck−u)·∇ ln(ρ2g),

to the lattice-BGK Enskog equation

fk(x + ckδt, t + δt) − fk(x, t) = −g

τ
[fk(x, t) − f (0)(x, t)] + J ′

k(x, t)δt , (1.34)

This equation reduces to the lattice-BGK Boltzmann equation for b = 0 and g ≡ 1.

Other mesoscopic models: dissipative particle dynamics

Originally introduced by Hoogerbrugge & Koelman in 1992 [48] as a discrete time algo-
rithm, dissipative particle dynamics (DPD) was reinterpreted as the discrete approxima-
tion to an underlying continuous-time Langevin dynamics with momentum conservation
by Español and Warren in order to guarantee the existence of a Gibbsian equilibrium
state [49]. Further developments include the demonstration of detailed balance and an
H-theorem for the continuous-time limit [50], an investigation of the equilibrium for dis-
crete time steps [51], the proof of detailed balance and the existence of an H-theorem for
interacting multicomponent fluids [52], and a procedure for deriving a coarse-grained DPD
model from molecular dynamics [53]. A top-down DPD model has also been put forward
by Pagonabarraga and Frenkel [54].

In its “traditional” version, the method evolves a set of point particles via Newtonian
dynamics; since each particle represents a mesoscopic portion of fluid, dissipative and
random forces are introduced in addition to Newtonian, pairwise additive and conservative
forces. The dissipative forces model the viscous drag between the particles, whilst the
random forces incorporate thermal effects and are the fingerprint that the particles are
mesoscopic entities representing the underlying molecular realm. The DPD equations are
the following stochastic differential equations for each particle i,

·
xi = vi , (1.35)
·
pi =

∑
j �=i

{FC
ij + FD

ij + FR
ij} , (1.36)

where the forces, between particles i and j, all of equal mass, are

FC
ij = − 1

m

∂φ

∂xij
, (1.37)

FD
ij = −γωD(xij){eij · vij}eij , (1.38)

FR
ij = σωR(xij)eijζij . (1.39)
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Here, φ is a potential energy, xij ≡ xi −xj is the relative separation vector, eij is the unit
vector in the direction of xij and xij is its modulus. The functions ωD(xij) and ωR(xij)
are weighting functions which limit the action of the dissipative and random forces to a
finite range, whereas the random variable ζij is sampled from Gaussian white noise, i.e.,
such that 〈ζij〉 and 〈ζijζkl〉 = (δikδjl + δilδjk)δ(t − t′). These forces conserve linear and
angular momentum, but not energy.

1.2.3 High-performance computing

From the early studies of fluid dynamics at the time of positivism, through the devel-
opment of kinetic theory and the observation of Brownian motion, to the more recent
use of techniques such as neutron scattering and transmission electron microtomography
and the appeararance of discrete and multi-scale models, fluid research has had a long
and rich history. Theoreticians have been presented with the increasingly difficult task
of extending their models’ validity to broader regimes or incorporating in them new ex-
perimentally observed phenomenology. Naturally, computer simulations started to play a
growing importance in the testing and application of the models.

It would be redundant to recall the vertiginous progress of computer hardware minia-
turisation and relevant performance increase during the past few decades. Computer
simulations such as the first simulation of a liquid, carried out at Los Alamos in 1953
on MANIAC, one of the most powerful mainframe computers available at the time [55],
can be performed nowadays on a laptop personal computer. This availability of computer
power has enormously contributed to computer simulations becoming a methodological
approach in itself to the study of nature, on an equal footing to analytical theory and
experimentation.

Scientific computing interfaces analytical theory and experimentation in providing a
tool to (a) solve the equations of analytical theory at scales and regimes comparable to
the ones found in experiment, hence allowing for both prediction and feedback into theory,
and (b) investigate the behaviour of the underlying mechanisms observed in experiment in
order to predict laws. The term in-silico experimentation has been appropriately coined
to describe the latter role of scientific computing. This role is becoming a complement and
sometimes a substitute to analytical theory in explaining the physical world: in fact, the
analytical approach breaks down when, due to technical difficulties, the ruling continuum
equations cannot be solved analytically or numerically, let alone when the phenomenon
under scrutiny cannot be represented in terms of continuum equations. This approach to
the modelling of natural phenomena does not use continuum equations; they are rather
replaced by discrete equations or algorithms which directly model the phenomenon under
investigation. In this line of thought, recent and controversial interpretations dare to assert
that spacetime is ultimately discrete and to extrapolate the application of the algorithmic
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approach to all natural phenomena [56].

The advent of readily available computing power to the broad scientific community
has made the computational approach operationally feasible. Such an availability has
always been linked to the development of new, faster and more miniaturised hardware,
and of efficient compilers tailored for such new architectures. The advance of the frontier
of high-performance computing, at the renown current pace of doubling performance ev-
ery two years, transmits the advantage of reducing costs down to existing, less powerful
architectures.

The term high-performance computing (HPC) implies the use of the so-called massively
parallel architectures. These are computers in which the number of processing elements
(PEs or processes) can be counted in hundreds and thousands. Each processing element
consists of one or more central processing units (CPUs or processors) accessing random
access memory (RAM) which can be shared among all the PEs or local to each PE. Each
CPU has a small RAM memory called cache, aimed at temporarily storing information
being managed by the CPU, and its size and its latency (time taken by an operation to
access the cache from the instant it is issued) are crucial, along with the latencies in ac-
cessing buses and RAM. Communication and data buses in these architectures are usually
the among fastest the current technology can provide, allowing for the fast exchange of
large amounts of information between the CPUs, the RAM and the input/output devices,
also of the highest performance available.

As important as processing speed for the execution of scientific algorithms is the avail-
ability of compilers specific to the CPU architecture. The CPUs of HPC architectures
usually differ from off-the-shelf, personal computers in the type of the instruction set.
Personal computers are based on what is called a Complex Instruction Set Computer
(CISC): the minimal set of machine-language instructions (operons) aimed at moving
data between the registers and the Arithmetic-Logic Unit (ALU), and towards the buses,
contains a small number of instructions, each representing a macro for smaller level oper-
ons. On the other hand, HPC machines are home to CPUs which are purpose-built with
a different approach in mind: maximally simplify the complexity of the instruction set
in what is called a Reduced Instruction Set Computer (RISC), and translate the burden
of producing machine-level code compatible with the new, simpler operons from a high-
level, user-friendly programming language entirely to the compiler. In addition, RISC
processors incorporate pipelining: the execution of operations by the CPU is dictated by
a pacemaker, the clock; CISC machines take four clock ticks to perform one operation,
whereas on a RISC machine four consecutive operations are held in a queue so that one
operation is flushed at each clock tick. RISC machines hence show higher performances
than CISC machines for similar clock frequencies.

Machine performance in HPC is usually measured by the number of floating point op-
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erations that can be executed per second of wallclock time (flops). Distinctively, the ALU
performs integer arithmetic separately from floating point arithmetic, which is slower. Ob-
viously, the number of flops a HPC machine can reach is associated to the particular code
executing those floating point operations, usually a linear algebra package. Sometimes,
mistakingly, comparisons of this number between machines are given without specifying
the software employed for it.

Instead, high-performance computers are compared by weighing a series of parame-
ters as a whole rather than individually, and ultimately, by benchmarking the software
applications of interest on them. Among such parameters are: CPU architecture (chipset,
clock frequency, cache size, latency, peak and sustained flops, processor interconnects), bus
architecture (structure, latency), random access memory (size per PE, on distributed mem-
ory machines, or total size for shared-memory machines), hard-disk (latency, read/write
speed), compilers (availability of flags for tailoring to machine-specific features, code bech-
marks).

In Table 1.1 we show a list of HPC architectures and their most relevant characteristics,
taken from the TOP500 list [57].

Rank Manufacturer, computer,
no. PEs

Rmax, Rpeak

(in Gflops)
Installation site, country,
year

1 NEC, Earth Simulator, 5120 35860.0,
40960.0

Earth Simulator Center, Japan,
2002

7 Linux Networx,
MCR Linux Cluster
Xeon 2.4GHz-Quadrics, 2304

7634.0,
11060.0

Lawrence Livermore National
Laboratory, USA, 2002

12 HP, AlphaServer SC ES45
1 GHz, 3016

4463.0, 6032.0 Pittsburgh Supercomputing
Center, USA, 2001

15 HP, AlphaServer SC ES45
1 GHz, 2560

3980, 5120 Commisariat à l’Energie
Atomique (CEA), France, 2001

16 IBM, pSeries 690 Turbo
1.3 GHz, 1280

3241.0, 6656.0 HPCx, UK, 2002

36 IBM, SP Power3 375 MHz
16 way, 1920

2106, 2880 Atomic Weapons
Establishment, UK, 2002

210 Cray Inc., T3E-1200E, 812 671.0, 974.0 CSAR (U. Manchester), UK,
2000

Table 1.1: Some HPC architectures and their most relevant characteristics, as of May 2004,

where the field computer specifies the chipset and its clock frequency, and performance is given

by parameters Rmax and Rpeak [57]. Listed in rank 210 is one of the machines used to produce

some of the results included in this thesis, now decommisioned.

High-performance computing hosts a range of working methodologies worth mention-
ing. From the elaboration of an algorithm for the model, the next step is its implementa-
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tion in a high-level language, such as Fortran90, C or C++. Occasionally, more than
one language is chosen in cases that only off-the-shelf libraries already implemented and
optimised are available, or certain routines perform better, for one language and not the
other. Care needs to be taken in checking for reduction of perfomance in inter-language
calls.

The obvious advantage of parallel computing is the decoupling between compute-time
and wall-clock time: many processes can concurrently tackle a (properly parallelised) single
task and speed up the lengthy serial turn-around times. Hence, implementation demands
a parallelisation strategy.

We shall deal here exclusively with the Single Program Multiple Data (SPMD) parallel
paradigm: a master process farms out identical copies of the parallel program to slave
processes for concurrent execution. The parallelised code contains directives placed at
strategic points in the program flow which are executed depending on which PE the copy
of the program is running on, i.e. on its rank. These directives consist of library calls for
exchange of the data stored on the RAM assigned to each PE with other PEs.

Any parallelisation strategy aims at assigning a portion of the system to each PE, in
a way such that inter-process communication is minimised since that is a pervasive factor
in the reduction of code performance. In this department, there are several possibilities,
highly dependent on the specifics of the system to be modelled: domain decomposition,
toroidal, etc.

What parallelisation strategy to follow on a serial algorithm is determined by its struc-
ture. For example, an Ising model algorithm, which is a cellular automaton with nearest-
neighbour, short-range interaction, updates the state of each lattice node at each time
step of its evolution towards equilibrium only from its nearest neighbours; therefore, only
information from nearest neighbouring cells in memory will needs to be exchanged. Par-
allel molecular dynamics algorithms, on the contrary, usually tag the atoms and logically
group them in clusters, the elements of which need not be spatially close, in order to assign
one PE for the computation of the evolution of each one of such clusters; also, interac-
tions are long-ranged, implying that the structure of the inter-process communications can
become complex and heavy. Indeed, molecular dynamics suites such as Namd include a
communications library at a higher level of abstraction than, e.g., MPI, for dealing with
the complexity of intermolecular interactions [58].

The lattice-Boltzmann algorithm

Since the LB method originated as a coarse grained version of the lattice-gas method, many
of the cellular automaton features of the latter are retained in the former [59]. One of them
is locality, i.e., the state of a lattice site only depend on the state of its nearest neighbours
and of itself at the previous time step. Not surprisingly, the adjective ‘embarrasingly
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parallel’ has been coined for the LB algorithm; clearly, however, more recent variants of
it which include long-range interactions are discharged from the embarrassment. Locality
leads to a parallelisation strategy which uses a cartesian topology for distributing the state
of the lattice sites onto each process’ memory, and communicates an amount of information
between parallel processes which is much reduced with respect to computational fluid
dynamics methods based on the solution of the Navier-Stokes equations. As a result, the
algorithm can be optimised such that to sustain an optimal parallel efficiency up to a large
number of processors.

Nonetheless the LB method shares features with lattice gases, it is also endowed with
some of its own. In fact, the kind of variables needed to hold the state of the system
differ between them: lattice gases use integers and lattice Boltzmann method employs
floating point numbers. This leads to an important difference: the amount of memory
required in both methods. For example, when space and velocity is discretised with a
D3Q25 projected-FCHC lattice of N3 sites, such as is the case in the LB method used in
the papers reported in this dissertation, the number of bytes required to store the state
of one fluid species in memory is M ≡ 25bN3/8, where b is the number of bits needed
to store the state variable per velocity link, i.e., a particle number for lattice gases and a
probability density for LB methods. Since lattice-gases are usually designed so that the
number of particles per velocity link and species is limited to one, b = 1 for them. For
LB methods with double-precision arithmetics, b = 32 or 64, depending on the platform,
which makes M between one and two orders of magnitude higher than for lattice gases. In
practice, the lattice-gas update (collision) rule employs a search through a list holding all
possible post-collisional states conserving, at least, mass and momentum, which adds an
additional and important memory expense over LB methods. However, this expense does
not scale with the lattice size, N , as M does, which makes LB methods more memory
consuming than lattice gases for large enough lattices.

1.3 The research presented in this thesis

I begin my exposition with the published paper annexed on page 47, summarised on
page 41. This aims to treat a paradigm phenomenon in complex fluids’ dynamics known
as spinodal decomposition employing a three-dimensional Shan-Chen lattice-Boltzmann
model for binary fluids. For a number of symmetric mixtures, I study the segregation
kinetics.

Once the capabilities and limitations of the lattice-Boltzmann method in modelling
phase segregation have been put forth, I present its extension to modelling flow in ternary
amphiphilic fluids (two binary immiscible fluids containing amphiphilic molecules) in the
two papers included on pages 65 and 73. Therein I investigate the effect of the gradual
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addition of amphiphile into a phase-segregating binary fluid, and report the finding, for
the first time using a kinetic-theoretic method, of the gyroid cubic mesophase.

The dynamical properties of gyroid mesophases observed in the study just mentioned
motivated the first part of a study of their rheology. Its results are included in the paper
of page 95. In there, I report on three aspects of shear-induced transitions in mesophases:
shear thinning, morphology transitions and stress transients.

The last paper covering the research reported in this dissertation, on page 107, is a
study of the role of long-range interparticle interactions in the interfacial properties of a
ternary amphiphilic fluid, using a two-dimensional lattice-gas model. We also briefly report
on algorithm parallelisation. Long-range interactions are commonplace in amphiphilic self-
assembly, and our aim is to lay a first stepping stone in lattice-gas modelling on its role
in vesicle morphogenesis. The results found are of relevance to lattice-Boltzmann models
in virtue of the similarity of how amphiphile is modelled in both methods.



Chapter 2

Summary of results

In this chapter I provide summaries of each of the papers included in this dissertation.

N. González-Segredo, M. Nekovee and P. V. Coveney, “Three-dimensional

lattice-Boltzmann simulations of critical spinodal decomposition in bi-

nary immiscible fluids,” Phys. Rev. E 67, 046304 (2003). (Annexed on

p. 47.)

We use a modified Shan-Chen, noiseless lattice-BGK model for binary immiscible, in-
compressible, athermal fluids in three dimensions to simulate the coarsening of domains
following a deep quench below the spinodal point from a symmetric and homogeneous
mixture into a two-phase configuration. The model is derivable from a continuous-time
Boltzmann-BGK equation in the presence of an intercomponent body force. We find the
average domain size growing with time as tγ , where γ increases in the range 0.545±0.014 <

γ < 0.717±0.002, consistent with a crossover between diffusive t1/3 and hydrodynamic vis-
cous, t1.0, behaviour. We find good collapse onto a single scaling function, yet the domain
growth exponents differ from others’ works’ for similar values of the unique characteristic
length L0 and time T0 that can be constructed out of the fluid’s parameters. This re-
buts claims of universality for the dynamical scaling hypothesis. For Re = 2.7 and small
wavenumbers, q, we also find a q2 ↔ q4 crossover in the scaled structure function, which
disappears when the dynamical scaling reasonably improves at later stages (Re = 37).
This excludes noise as the cause for a q2 behaviour, as analytically derived from Yeung
and proposed by Appert et al. and Love et al. on the basis of their lattice-gas simulations.
We also observe exponential temporal growth of the structure function during the initial

41
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stages of the dynamics and for wavenumbers less than a threshold value, in accordance
with the diffusive Cahn-Hilliard Model B. However, this exponential growth is also present
in regimes proscribed by that model. There is no evidence that regions of parameter space
for which the scheme is numerically stable become unstable as the simulations proceed,
in agreement with finite-difference relaxational models and in contradistinction with an
unconditionally unstable lattice-BGK free-energy model previously reported. Those nu-
merical instabilities that do arise in this model are the result of large intercomponent
forces which turn the equilibrium distribution negative.

N. González-Segredo and P. V. Coveney, “Self-assembly of the gyroid

cubic mesophase: lattice-Boltzmann simulations.” Europhys. Lett. 65,

795 (2004). (Annexed on p. 65.)

We present the first simulations of the self-assembly kinetics of the gyroid cubic mesophase
using a Boltzmann transport method. No macroscopic parameters are included in the
model and three-dimensional hydrodynamics is emergent from the microscopic conser-
vation laws. The self-assembly arise from local inter-particle interactions in an initially
homogeneous, phase segregating binary fluid with dispersed amphiphile. The mixture
evolves in discrete time according to the dynamics of a set of coupled Boltzmann-BGK
equations on a lattice. We observe a transient microemulsion phase during self-assembly,
the structure function peaks and direct-space imaging unequivocally identifying the gy-
roid at later times. For larger lattices, highly ordered subdomains are separated by grain
boundaries. Relaxation towards the ordered equilibrium structure is very slow compared
to the diffusive and microemulsion-assembling transients, the structure function oscillating
in time due to a combination of Marangoni effects and long-time-scale defect dynamics.

N. González-Segredo and P. V. Coveney, “Coarsening dynamics of ternary

amphiphilic fluids and the self-assembly of the gyroid and sponge meso-

phases: lattice-Boltzmann simulations.” Phys. Rev. E, (in press, 2004).

(Annexed on p. 73.)

By means of a three-dimensional amphiphilic lattice-Boltzmann model with short-range
interactions for the description of ternary amphiphilic fluids, we study how the phase
separation kinetics of a symmetric binary immiscible fluid is altered by the presence
of the amphiphilic species. We find that a gradual increase in amphiphile concentra-
tion slows down domain growth, initially from algebraic, to logarithmic temporal depen-
dence, and, at higher concentrations, from logarithmic to stretched-exponential form. In
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growth-arrested stretched-exponential regimes, at late times we observe the self-assembly
of sponge mesophases and gyroid liquid crystalline cubic mesophases, hence confirming
that (a) amphiphile-amphiphile interactions need not be long-ranged in order for period-
ically modulated structures to arise in a dynamics of competing interactions, and (b) a
chemically-specific model of the amphiphile is not required for the self-assembly of cubic
mesophases, contradicting claims in the literature. We also observe a structural order-
disorder transition between sponge and gyroid phases driven by amphiphile concentration
alone or, independently, by the amphiphile-amphiphile and the amphiphile-binary fluid
coupling parameters. For the growth-arrested mesophases, we also observe temporal oscil-
lations in the structure function at all length scales; most of the wavenumbers show slow
decay, and long-term stationarity or growth for the others. We ascribe this behaviour to
a combination of complex amphiphile dynamics leading to Marangoni flows.

N. González-Segredo, Jens Harting and Peter V. Coveney, “Stress re-

sponse and structural transitions in sheared gyroid and lamellar amphi-

philic mesophases: lattice-Boltzmann simulations” (Preprint, Centre for

Computational Science: London, 2004.) (Annexed on p. 95.)

We report on the stress response of the gyroid cubic mesophase to a steady Couette
flow simulated by means of a bottom-up lattice-Boltzmann model for amphiphilic flu-
ids and sliding periodic (Lees-Edwards) boundary conditions. We employ two gyroidal
mesophases, the gyroid per se (above the sponge-gyroid transition, of high crystallinity)
and the molten gyroids (within such a transition, of shorter-range order). These were
allowed to self-assemble from a homogeneous mixture of two immiscible fluids with added
amphiphile, the longer-range gyroid having 50% higher amphiphile concentration and
inter-amphiphile coupling than the molten gyroid. We find that both mesophases exhibit
shear thinning, more pronounced and at lower strain rates for the molten gyroid. We
also find that, at late times after the onset of shear, the skeleton of the longer-range
gyroid becomes a structure of interconnected irregular tubes and toroidal rings, mostly
oriented along the velocity ramp imposed by the shear—in contradistinction with free-
energy Langevin-diffusion studies finding a much simpler structure of disentangled tubes.
We also compare the shear stress and deformation of lamellar mesophases with and with-
out amphiphile in a steady Couette flow applied normally to the lamellae. We find that
the presence of amphiphile allows (a) the shear stress at late times to be higher than in
the case without amphiphile, and (b) the formation of rich patterns on the shear interface,
characterised by alternating regions of high and low curvature.
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N. González-Segredo and M. Foster, “pLRME2D: A parallel implemen-

tation of a two-dimensional hydrodynamic lattice-gas model with long-

range interactions,” Proceedings of the Sixth European SGI/Cray MPP

Workshop, Manchester, UK (2000). (Annexed on p. 107 and available

online,

cf. URL: http://mrccs.man.ac.uk/mpp-workshop6/proc/gonzalez.htm .)

Using a two-dimensional hydrodynamic lattice-gas model for the simulation of binary im-
miscible and ternary amphiphilic fluids, we investigate the effect of long-range interactions
in the surface tension of a planar interface between two immiscible fluids of equal density
with and without a layer of surfactant particles lying on it. This is the first stepping stone
towards the simulation of the dynamics of fluid vesicles: the surface tension is one of the
parameters of some continuum-mechanical descriptions [60] for vesicles, and long-range
interactions are believed to be crucial in attaining stability. The parallel implementation
of the lattice gas algorithm employs a new communication wrapper providing an object
orientated approach to distributed memory programming of n-dimensional grid-based cal-
culations. We find that the surface tension increases with the range of interactions of the
immiscible fluid particles but not with that for the surfactant particles. We also find good
scalability and minimal impact of the parallelisation strategy on the structure of the base
serial code.
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give a detailed account of the research presented in this thesis, summarised in Chapter 2.
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• N. González-Segredo, M. Nekovee and P. V. Coveney, “Three-dimensional lattice-
Boltzmann simulations of critical spinodal decomposition in binary immiscible flu-
ids,” Phys. Rev. E 67, 046304 (2003). (Annexed on p. 47.)
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Chapter 4

Other articles

This chapter contains two articles: one preprint of imminent submission by this the-
sis’ submission date, and one paper in the proceedings of an international conference,

as follows:

• N. González-Segredo, Jens Harting and Peter V. Coveney, “Stress response and struc-
tural transitions in sheared gyroid and lamellar amphiphilic mesophases: lattice-
Boltzmann simulations” (Preprint, Centre for Computational Science: London, 2004.)
(Cf. p. 95.)

• N. González-Segredo and M. Foster, “pLRME2D: A parallel implementation of a
two-dimensional hydrodynamic lattice-gas model with long-range interactions,” Pro-
ceedings of the Sixth European SGI/Cray MPP Workshop, Manchester, UK (2000).
(Cf. p. 107 and available online:
URL: http://mrccs.man.ac.uk/mpp-workshop6/proc/gonzalez.htm .)
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Stress response and structural transitions in gyroid and lamellar amphiphilic

mesophases: lattice-Boltzmann simulations

Nélido González-Segredo,∗ Jens Harting,† and Peter V. Coveney‡

Centre for Computational Science, Department of Chemistry,

University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom

(Dated: October 12, 2004)

We report on the stress response of the gyroid cubic mesophase to a steady Couette flow simulated

by means of a bottom-up lattice-Boltzmann model for amphiphilic fluids and sliding periodic (Lees-

Edwards) boundary conditions. We employ two gyroidal mesophases, the gyroid per se (above the

sponge-gyroid transition, of high crystallinity) and the molten gyroids (within such a transition,

of shorter-range order). These were allowed to self-assemble from a homogeneous mixture of two

immiscible fluids with added amphiphile, the longer-range gyroid having 50% higher amphiphile

concentration and inter-amphiphile coupling than the molten gyroid. We find that both mesophases

exhibit shear-thinning, more pronounced and at lower strain rates for the molten gyroid. We also

find that, at late times after the onset of shear, the skeleton of the longer-range gyroid becomes

a structure of interconnected irregular tubes and toroidal rings, mostly oriented along the velocity

ramp imposed by the shear—in contradistinction with free-energy Langevin-diffusion studies finding

a much simpler structure of disentangled tubes. We also compare the shear stress and deformation

of lamellar mesophases with and without amphiphile in a steady Couette flow applied normally to

the lamellae. We find that the presence of amphiphile allows (a) the shear stress at late times to

be higher than in the case without amphiphile, and (b) the formation of rich patterns on the shear

interface, characterised by alternating regions of high and low curvature.

I. INTRODUCTION

The study of the response to shear in amphiphilic
mesophases has been the subject of attention for numer-
ical modellers only in recent years. The interest in the
subject is sustained not only by the wide range of applica-
tions in materials science and chemical engineering, but
also by the need to gain a fundamental understanding of
the universal laws ruling the self-assembly processes and
competing mechanisms present.

The research has been mainly focused on the structural
changes induced by steady and oscillatory shear, near and
far from critical points, on block copolymer systems [1–
5]. The morphologies studied have been cubic micel-
lar, lamellar and hexagonally-packed tubular mesophases;
more complex structures such as bicontinuous morpholo-
gies, and, in particular, mesophases of cubic symmetry
have been looked at in lesser, insufficient detail [3].

The purpose of this paper is to report on the rheol-
ogy of amphiphilic mesophases simulated with a bottom-
up kinetic-theoretic model for fluid flow. The numeri-

∗Email: nelido@amolf.nl; now at the FOM Institute for Atomic

and Molecular Physics (AMOLF), P. O. Box 41883, 1009 DB Am-

sterdam, The Netherlands. Also at the Department of Physics,
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†Email: j.harting@ica1.uni-stuttgart.de; now at the Institut
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many.
‡Email: p.v.coveney@ucl.ac.uk

cal studies measuring the stress response to shear have
been hitherto concentrated on two opposite ends of com-
plex fluid research: in phase-segregating binary immisci-
ble fluids [6], and in polymeric [7] and glassy systems [8].
Since our model is genuinely particulate in the sense that
no hypothesis of desirable macroscopic behaviour is im-
posed on the microdynamics, we consistently adhere to a
complexity paradigm [9, 10]. In addition, since our model
describes the amphiphilic molecule with the minimal pos-
sible amount of information—a dipole—the rheology to
report is expected to cover features, in a broad range of
amphiphilic systems, which are independent of the molec-
ular structure.

This paper is structured as follows. In the next sec-
tion we briefly introduce the model and describe the
boundary conditions allowing the imposition of shear on
the mesophases. In Section III we report our measure-
ments of shear stress in long-range and molten gyroids
as a function of time after the onset of shear, and study
their shear-thinning non-Newtonian behaviour. We also
report, in direct and Fourier space, on the plastic de-
formation of the longer-range gyroid into a tubular-like
mesophase as the strain increases, and show how the
stress decays as the steady shear is abruptly ceased. In
section IV we reveal how the presence of amphiphile in-
duces the formation of rich interfacial patterns in lamellar
mesophases and allows the stress to reach higher values
than in lamellar mesophases without amphiphile. Finally,
we provide some conclusions in Section V.
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II. THE MODEL AND THE LEES-EDWARDS

BOUNDARY CONDITIONS

We employed an existing bottom-up lattice-Boltzmann
(LB) model for amphiphilic fluids [10, 11], extended to
simulate shear flow by means of Lees-Edwards boundary
conditions [12]. The model is in turn based on an exten-
sion made to the bottom-up Shan-Chen LBGK model for
immiscible fluids to model amphiphilic fluids, and utilises
25 microscopic velocities, of speeds 0, 1 and

√
2, in three

dimensions (D3Q25 lattice) [13, 14]. The model repro-
duces the Navier-Stokes (NS) equation in the bulk of each
immiscible fluid phase (“oil” and “water” hereafter) for
large enough lattices [15], and it exhibits correct growth
kinetics for the average size of the immiscible domains in
the absence [16] and presence [11] of a third amphiphilic
(surfactant-like) species. In addition, the model simulates
the nonequilibrium self-assembly and relaxation dynam-
ics of sponge and gyroid mesophases [10, 11]. It endows
gyroids with rigidity, arising from their crystalline order-
ing, which gradually fades away as the amphiphile density
is reduced, since a lyotropic transition causes the cor-
relation length to decrease towards that of the sponges
through a molten-gyroid state. This idea is central to
the work we present herewith: we shall see that the
mesophase’s crystalline ordering enhances its stress re-
sponse; indeed, we find shear-thinning to occur at higher
strain rates for gyroids than for sponges.

The Lees-Edwards boundary conditions (LEBC) were
originally proposed by Lees and Edwards in the context
of molecular dynamics simulations [12]. They showed
that these boundary conditions gave rise to a desired
linear, wedged velocity profile whilst avoiding the trou-
blesome spatial inhomogeneities arising when solid walls
were used to induce the shear flow [17]. A particular re-
alisation of the LEBC on the cartesian simulation box
[0, Nx]× [0, Ny]× [0, Nz] is established by letting the peri-
odic images, for which Nx < x ≤ 2Nx and −Nx ≤ x ≤ 0,
move parallel to unit vectors ±ez, respectively, both with
speed U . The LEBC are expressed as a Galilean transfor-
mation from the unprimed to the primed position (x, y, z)
and velocity (ξx, ξy, ξz) co-ordinates of a particle, as fol-
lows

x′ ≡ xmodNx

y′ ≡ ymodNy

z′ ≡



(z + ∆z) modNz , x > Nx,

zmodNz , 0 ≤ x ≤ Nx,

(z − ∆z) modNz , x < 0,
(1)

ξ′x ≡ ξx

ξ′y ≡ ξy

ξ′z ≡


ξz + U , x > Nx,

ξz , 0 ≤ x ≤ Nx,

ξz − U , x < 0,
(2)

where ∆z ≡ U∆t is the image’s shift at time ∆t after

starting shearing.
An implementation of the LEBC on a lattice differs

from that of molecular dynamics in that the shift ∆z is
not in general a multiple of the lattice unit, as Wagner
and Pagonabarraga have pointed out [17], and hence an
interpolation scheme is needed. We use a parallel im-
plementation of the LEBC in three dimensions which in-
cludes this interpolation scheme to move mass densities
with velocity ck for each (fluid and amphiphilic) species
α, nα

k (x), and amphiphile dipoles, d(x). The spatial
displacement follows Eqs. (1); the velocity shift, how-
ever, is not enforced by replacing the discrete microscopic
speeds ck · ẑ for the continuum velocity component ξz in
Eqs. (2), where k = 1, . . . , 25, since the velocities ck are
constant vectors. Instead, this is enforced by modifying
the macroscopic fluid velocity contained in the truncated
local Maxwellian, towards which the BGK scheme makes
the density relax, in the same fashion that immiscibility
is enforced [11, 16]. This procedure guarantees that all
accelerations in the fluid are ruled by the same BGK pro-
cess, controllable via the shape of the distribution func-
tion and the relaxation time parameter.

Our LEBC implementation is embedded into an effi-
cient parallel LB algorithm [18] which allows us to employ
large lattices and hence reach the small Knudsen number
limit where (a) regions away from interfaces satisfy the
incompressible NS equation in the limit of low Mach num-
bers (Ma) [16], and (b) observables vary by less than 10%
when the lateral lattice dimension is doubled. González-
Segredo and Coveney previously found that the lattice
size guaranteeing condition (b) is 1283 for the parame-
ters generating the mesophases investigated here [10, 11].

III. SHEARING GYROID MESOPHASES

We sheared two gyroidal mesophases differing in the
density of amphiphile dispersed and the value of the
inter-amphiphile interaction coupling parameter. Each
of these structures was allowed to self-assemble from a
thorough, homogeneous mixture of oil and water with
an third added amphiphilic species. They have been ap-
propriately characterised by probing direct and Fourier-
space late-time snapshots of the density order parameter
φ ≡ ρoil − ρwater; more precisely, they correspond to gy-
roid (cf. Fig. 1) and molten gyroid mesophases, as previ-
ously reported by González-Segredo and Coveney [10, 11].

The common parameters used for both gyroids were
oil and water densities flatly distributed in the range 0 <
n(0)b = n(0)r < 0.7, coupling strengths gbr = 0.08, gbs =
−0.006, relaxation times τb = τ r = τ s = τd = 1, and, for
the amphiphile’s dipoles, β = 10 and d0 = 1.

Their differing parameters were surfactant densities
flatly distributed in the ranges 0 < n(0)s < 0.9 (gy-
roid) and 0 < n(0)s < 0.6 (molten gyroid), with cou-
pling strengths gss = −0.0045 (gyroid) and gss = −0.003
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(molten gyroid). These parameters for the gyroid are
50% higher than those for the molten gyroid.

FIG. 1: High-density volume rendering of one of the two im-
miscible fluids in the gyroid mesophase employed, before the
application of shear. This configuration, on a 1283 lattice, is
reached after 15 000 time steps of self-assembly from an ini-
tial homogeneous mixture of “oil”, “water” and amphiphile,
with the amphiphile density being flatly distributed across the
lattice in the range 0 ≤ n(0)s ≤ 0.9 and an inter-amphiphile
coupling parameter of gss = −0.0045. The regions visible to
the reader are those for which the density order parameter
is φ ≡ ρoil − ρwater ≥ 0.36 (oil), whilst over the whole fluid
−0.79 ≤ φ ≤ 0.79; the regions for which φ ≤ −0.36 (water,
not shown) display a similar structure which is complemen-
tary (interweaving) to the one shown here.

While the gyroid relaxes to a highly crystalline struc-
ture [19], the molten gyroid shows both shorter-range
order and stronger temporal oscillations than the for-
mer [11]. In order to allow for the latter to relax suf-
ficiently, we took the structure at time step 32 500 as
initial condition for the shear; regarding the gyroid, the
time slice chosen was time step 15 000. For practical
reasons, we generated the molten gyroid by upscaling a
mesophase of the same parameters and similar features,
previously self-assembled on a 643 lattice [11], onto a
1283 lattice. Upscaling consisted in replicating identical
copies of the system—the periodic boundary conditions
used to generate the former guarantee that the density
field is smooth across the replica boundaries. Upscaling
produces a mesophase with an added, undesirable long-
wavelength periodicity of half the lattice size, whose gy-
roidal unit cell sizes in general do not match those of a
molten-gyroid allowed to self-assemble on a 1283 lattice.
However, we observed that this mesophase takes less than
1 000 time steps to relax to a structure in which the long
wavelength periodicity has disappeared [19]. Since this
relaxation occurs during a short transient period, we took
the upscaled, unrelaxed structure as an initial condition
for our shearing study.

It is worth noting that we did not require an elongated

aspect ratio for the lattices along the direction parallel
to the translation of the shearing walls since spatial den-
sity fluctuations were much smaller than the lattice size.
This is not the case when shearing phase segregating flu-
ids without a growth-arresting species, such as an am-
phiphile, as was recently reported by Harting, Venturoli
and Coveney with this LB model using lattices of up to
128 : 128 : 512 sizes and aspect ratio [20].

A. Stress response and transients

Shear thinning occurs when the shear viscosity drops
as the strain rate increases. For structured fluids such
as the ones we used here, the dynamic shear viscosity,
η, is not expected to be a constant of the strain rate
γ̇ ≡ 1

2 (∂xuz + ∂zux), as is assumed in Newton’s law of
viscosity,

Pxz = −2η γ̇ , η �= η(γ̇) (3)

where Pxz is one off-diagonal component of the pressure
or stress tensor. Throughout this paper we work with
the steady shear described in Section II, i.e., the shear
is generated by the two image cells of the LB lattice
located along the x-axis moving in opposite directions.
As a consequence, ∂xuz becomes the only non-vanishing
component of the velocity gradient, also true for the Pxz

component of the stress tensor (and Pzx, since the phys-
ical requirement that the vorticity, W ≡ 1

2 (∂xuz − ∂zux),
remains bounded above requires the stress tensor to be
symmetric).

As done previously by González-Segredo, Nekovee and
Coveney to compute diagonal components of the pressure
tensor [10, 11, 16], we measured Pxz from its definition
as the sum of a kinetic term plus a virial mean-field term
accounting for interactions giving rise to non-ideal gas
behaviour, namely,

P(x) ≡
∑
α

∑
k

ρα
k (x)(ck − u(x))(ck − u(x))

+
1
4

∑
α,ᾱ

gαᾱ

∑
x′

[
ψα(x)ψᾱ(x′) + ψᾱ(x)ψα(x′)

]
×

(x − x′)(x − x′) , (4)

where ψ has the form ψ ≡ 1 − exp[−n(x)], saturating at
high density values in order to avoid unbounded inter-
particle forces whilst reproducing a meaningful equation
of state [11]. In addition, since the interaction matrix
{gαᾱ} is symmetric with all diagonal elements identically
zero, and only nearest neighbour interactions are being
considered, the virial term reduces to

1
2

∑
α�=ᾱ

gαᾱ

∑
k

ψα(x)ψᾱ(x + ck)ckck . (5)

Since in the incompressible limit our LB model repro-
duces the NS equation away from interfaces [13, 15], or,
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FIG. 2: Shear stress response of a gyroid mesophase along the

direction of the velocity gradient. As initial condition, we have

taken a gyroid on a NxNyNz = 1283 cubic lattice at time step

t = 15 000 of self-assembly [10, 11]. The Lees-Edwards walls move

with speed U = 0.10 (Ma = 0.17). For each x coordinate, the

original field has been averaged on the plane [1, Ny]× [16, Nz − 16],

where the excluded interval on the z-axis account for wrapped-

round densities. Standard errors of the averages are about 6×10−8

throughout, and are not shown. Each line represents the response

at ∆t time steps after the start of steady shear: ∆t = 0 (dotted

line), ∆t = 100 (dash-dotted), ∆t = 800 (dashed) and ∆t = 9 000

(solid), where the last is ca. the time at which the core (i.e., the

plane x = 64) fully responds. From the figure we can see that

momentum transfer decreases as it reaches the core from the walls.

Also, note that the stress inverts its sign at late times adjacent to

the boundaries, |x − x0| ≤ 2 (x0 = 0, 128). All quantities reported

are in lattice units.

equivalently, for gαᾱ ≡ 0, the source term for momentum
balance is given by ∇ ·

(
pI − 2η(∇u)s

)
with ∇ · u = 0,

where I is the unit second-rank tensor and s denotes the
same symmetrisation done for γ̇ above. The dissipative
term is the contribution to stress from shearing a single
phase fluid, which coincides with Newton’s law, Eq. (3),
since in this model η = ρc2s (τ − 1/2) is a constant, where
cs = 3−1/2 is the speed of sound in our LB model and τ

is the (oil or water) relaxation time parameter. We hence
set out to study the response to shear modelled by the
off-diagonal components of the virial term, whose diag-
onal entries are already known to give rise to a correct
interfacial tension [10, 11, 16].

In order to probe the function η = η(γ̇) for the gyroid
and molten gyroid mesophases, we measured Pxz for a
number of different applied shear rates. The chosen val-
ues for U were such that fluid speeds remained within the
incompressibility limit, i.e., small compared to the speed
of sound for the model, cs = 3−1/2 ≈ 0.58. Values chosen
were U = 0.05, 0.10, 0.15, 0.20, corresponding to Mach
numbers Ma = 0.086, 0.17, 0.26, 0.34, respectively. Part
of the merit of meso- and microscopic numerical simula-
tion rests in their ability to measure quantities with finer
resolution than is possible with many experimental tech-
niques. In fact, all observables we report in this paper
are spatial averages, at least on x = const. planes where
a simple fluid under the same shear would show transla-
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FIG. 3: Spatially averaged velocity component uz for the molten

gyroid and the gyroid mesophases sheared with U = 0.10, at late

times and over the x ≥ 64 half of the system. The dashed thin

and thick curves correspond to the molten gyroid at time steps

∆t = 9000 and 13 000, respectively. The solid thin and thick curves

correspond to the gyroid at time steps ∆t = 9000 and 13 000,

respectively. The average is over the same two-dimensional domain

as described in Fig. 2, for each x, and its standard error is shown

as negligible error bars. Note that the velocity shows a maximum

located from 2 to 4 sites away from the boundary, unlike a simple

fluid which would display it exactly at the boundary. The value

of this maximum coincides with the actual velocity at which the

BGK relaxation process of our LB model is forcing the fluid to

move, which needs not coincide with the input parameter U = 0.10.

Note that the inversion in the sign of the stress that we reported

in Fig. 2 occurs precisely for |x − x0| ≤ 2, x0 = 0, 128 and at

(late) times close and after ∆t = 9000. The behaviour at the other

boundary region is similar and symmetric to that displayed here.

All quantities reported are in lattice units.

tional symmetry for the velocity field, i.e., perpendicular
to the velocity gradient.

Figure 2 shows how the (averaged) stress varies across
the system for the sheared gyroid. Several curves therein
allow us to depict the time evolution of momentum mak-
ing its way to the core (i.e., the plane x = 64) of the gy-
roid as the strain grows. Distinctively, the profiles have
spatial fluctuations, which is a result of the presence of
the gyroid’s convoluted structure whose (internal) inter-
facial tension modifies the momentum transport expected
for a simple fluid. The uz component of the velocity field,
averaged in the same way as stated for 〈−Pxz〉 in the cap-
tion of Fig. 2, is however not inhomogeneous but follows a
transient similar to that expected for a simple fluid—we
observe the setting up of a steady, smooth and wedge-
shaped profile, except at the borders, see Fig. 3, which
also includes the behaviour of the averaged velocity pro-
file for the molten gyroid at late times.

Remaining with the gyroid, we show in Fig. 4 the tem-
poral evolution of the stress displayed in Fig. 2; the values
plotted are averages of the latter on the 8 ≤ x ≤ Nx−8 =
120 interval, which amounts to averaging over the whole
lattice except thin slabs adjacent to the boundaries. In
addition to Fig. 2, we include higher and lower shear
velocities, namely U = 0.05, 0.15, 0.20. Were the strain
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FIG. 4: Temporal evolution of the average shear stress of

the gyroid for different values of steady shear. The initial

condition is the same mentioned in Fig. 2. The curves, as

seen, e.g., at ∆t = 4000 from bottom to top, correspond to

Lees-Edwards walls moving with speeds U = 0.05, 0.10, 0.15, 0.20

(shear rates S/10−3 = 0.39, 0.78, 1.17, 1.56), respectively. The

dotted curves are the responses after a sudden termination of

shear; they are also referred to as the system’s relaxation func-

tions for the relevant shear speeds. The average here is in

the three-dimensional domain [8, Nx − 8] × [1, Ny] × [16, Nz − 16],

where Nx = Ny = Nz = 128 and error bars are the standard error

of the average. All quantities reported are in lattice units.

FIG. 5: Both the gyroid (solid line) and the molten gyroid

(dashed) mesophases exhibit shear thinning. Shown is the stress

averaged over the interval 24 000 ≤ t ≤ 28 000. From the figure it

is clear that the gyroid manifests greater stiffness than the molten

gyroid and its (effective) viscosity drops for higher strain rates. All

quantities reported are in lattice units.

rate at which the gyroid deforms coincident with the ap-
plied shear rate, this curve would itself confirm shear
thinning to be occurring and would be the first indica-
tion of shear thinning reported by means of a bottom-up
kinetic-theoretic model for fluid flow. In fact, while the
increments in applied shear rate between these curves are
kept constant, the increments in the (absolute) values of
the stress at late times do not remain so but decrease. In

Fig. 5 we show the stress averaged over time steps 24 000
to 28 000, plotted against the true strain rate, where the
latter was measured from the linear velocity profile gen-
erated at ∆t ≥ 9 000 (t ≥ 24 000), as displayed in Fig. 3.
Figure 5 clearly shows shear thinning: the slope, i.e.,
the effective viscosity ηeff ≡ ∂Pxz/∂γ̇, decreases with the
strain rate.

Figure 5 also contains the analogous curve for the
molten gyroid, which shows shear thinning for the lat-
ter at lower strain rates than those at which the gyroid
does, and at of higher intensity, i.e.

∂ηeff

∂γ̇

∣∣∣
molten

<
∂ηeff

∂γ̇

∣∣∣
gyroid

< 0 . (6)

B. Morphological transitions

Figure 6 shows the configuration of the gyroid in the
40 ≤ y ≤ 52 slab of the 128 : 128 : 128 lattice, before and
at late times after applying a shear of U = 0.20. The
volume rendering graphics method employed [21] makes
regions where φ ≥ 0.37 opaque to the (normally inci-
dent) lighting rays; since −0.79 ≤ φ ≤ 0.79 over the
whole system, these regions are the high-density locus of
one of the species (say, oil). Before shear, the structure
contains highly ordered subvolumes of gyroid symmetry
and diagonal length from about 32 to 64 lattice sites,
cf. Fig. 6(a). The gyroid is hence depicted as a regular
tubular structure making up two three-fold coordinated,
interweaving chiral lattices. Since the size of the unit cell
for the LB parameters employed is approximately 5 to 6
lattice sites, the depth (y-dimension) of the slabs shown
in Fig. 6 is of about two gyroid unit cells. As can be seen
in Fig. 6(a), the interfaces between these gyroid subvol-
umes are defective regions where long-range order and
symmetry drastically reduce [10, 11]. Two features char-
acterising them is the spatial variation in coordination
number and chirality, seen by the presence of elongated
tubules and toroidal rings, cf. figure 7.

At late times after the start of shear, ∆t = 21 000, the
structure has lost any resemblance with the initial gy-
roid, except for the persistence of the toroidal rings, see
Fig. 6(c). Also, the structure at these times is essentially
the same as that at time steps between ∆t = 3 000 and
∆t = 5 000—it is a nonequilibrium steady state at least
for the previous 16 000 time steps, a time longer than that
required for the initial configuration to self-assemble from
a homogeneous mixture of oil, water and amphiphile. The
structure at ∆t = 21 000 consists of a non-crystalline net-
work of mostly the same elements characterising the de-
fective regions before shear, i.e. elongated tubules, with a
tendency to align along the (1, 0, 1) direction (characteris-
ing the velocity profile), and toroidal, ring-like structures.
This description is independent of the subvolume of the
lattice visualised.

We also looked into the structure of the sheared molten
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(a) ∆t = 0 (b) ∆t = 1000 (c) ∆t = 21 000

FIG. 6: High-density regions of one species (say, oil) in the gyroid mesophase, before shearing, Fig. (a), and at an early (Fig. (b))
and late time slice (Fig. (c)) after the onset of shear. The shear speed is U = 0.20. The complementary immiscible fluid (water)
fills the voids with a similar, inter-weaving structure. The system is on a 128 × 128 × 128 lattice, and all figures show the
subvolume 40 ≤ y ≤ 52 and the reference system in use (the y-axis enters the reader’s plane). The initial configuration is a
gyroid at 15 000 time steps of self-assembly. These images are volume renderings of the density order parameter, φ ≡ ρoil−ρwater;
the regions visible to the reader are those for which φ ≥ 0.36 whilst over the entire fluid −0.79 ≤ φ ≤ 0.79. All quantities
reported are in lattice units.

gyroid

ring

tubule

FIG. 7: Schematic representation of the skeleton (locus of
highest density) of the gyroid mesophase we employ, and two
of its structural features before and at late times after the on-
set of steady shear. The thickness provides a sense of perspec-
tive, and represents how close each segment is to the reader;
note that the figures on the right are planar. The skeleton
denoted by ‘gyroid’ depicts a portion of one of the two chiral
lattices making up the long-range order regions of the gyroid
before shear, cf. Fig. 6a—the coordination number is three at
each node. In the regions of the gyroid containing defects,
as well as in most of the sheared mesophase at late times,
the coordination number can be reduced to two, describing
a ‘tubule’. We also show the skeleton of the ‘ring’ structure
ubiquitous in the sheared gyroid at late times, also present
in smaller proportion as a defect in the mesophase before the
onset of shear. At lower values of density, this ring appears
as toroidal.

gyroid at late times. In contradistinction to the gyroid’s
state at high strain, showing tubules of shape similar to
that included in Fig. 7 and at an angle with the x = const.
planes, the highly strained molten gyroid display tubes
which are more stretched and placed along the ẑ direc-
tion. The toroidal rings, also present for the molten gy-
roid before shear, represent a much smaller volume frac-
tion for the sheared molten gyroid than for the sheared
gyroid.

Figure 8 shows the summed structure function∑
ky
S(k), or scattering pattern, for the sheared gyroid

mesophase, where S(k, t) is the structure function, com-
puted according to [11, 16]

S(k, t) ≡ ς

V

∣∣∣φ′k(t)
∣∣∣
2

. (7)

Here, k is the discrete wavevector, V is the lattice volume,
ς is the volume of the D3Q25 lattice unit cell, and φ′k(t)
is the Fourier transform of the fluctuations of φ. S(k, t)
is the Fourier transform of the autocorrelation function
for the order parameter,

Cφφ(r, t) ≡ 〈φ((x, t))φ(x + r, t)〉 (8)

where r is a vector lag and the brackets indicate average
over the spatial coordinate x. Figures 8(a), (b) and (d)
are the yz ‘scattering patterns’ of the structures in Fig. 6,
produced by summing up the structure function along the
x direction; these patterns represent characteristic stages
in the plastic deformation of the gyroid. At ∆t = 1000
(not shown), the maximum intensity is reduced to 29%
of its value at ∆t = 0, while there appear horizontal
‘smeared out filaments’ of very weak intensity, intrinsi-
cally related to the shearing process, as we shall conclude
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(a)
P

ky
S(k), ∆t = 0 (b)
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ky

S(k), ∆t = 5000

(c)
P

ky
S(k), ∆t = 21 000 (d)

P
kz

S(k), ∆t = 21 000

FIG. 8: Projected structure function (‘scattering pattern’) as a function of the time step for the sheared gyroid, as calculated
using Eq. (7). Shear velocity is U = 0.20. Figures (a), (b) and (c) are scattering patterns before shear and at intermediate
and late times after the onset of shear, respectively, while, for completeness, Fig. (d) details the side view of the structure
function corresponding to Fig. (c). The initial condition for shearing was a gyroid on a 1283 lattice at 15 000 time steps of
self-assembling. Time steps after the start of shear for these snapshots are indicated below each. Darkness in the greyscale
grows with the scattering intensity—filled isocurves correspond to values S = 1, 80, 200, 700. The spikes are shear-dependent
features; see Fig. 9 and text for discussion. All quantities reported are in lattice units, and N ≡ Nx = Nz.

from Fig. 9. At ∆t = 5000 a clear cardioid shape has
developed, which persists for the rest of the simulation;
this confirms our observation that the system reaches a
steady state at time step 5 000; in addition, there is no
trace of gyroidal patterns along the x-direction.

In order to investigate the origin of the cardioid shape,
we computed the scattering pattern for a ‘synthetic gy-

roid’,

G(x) ≡ sin qx cos qy + sin qy cos(qz − δ(x)) +

sin(qz − δ(x)) cos qx . (9)

where δ(x) = (x − Nx/2)δmax is a spatially-varying de-
phase used to obtain a linear strain on the morphology
(its maximum value, δmax, is reached at the lattice bound-
aries), and q = const. is a wavenumber controlling the size
of the surface’s unit cell. It is known that G(x) = 0 for
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(a) δmax = 0 (b) δmax = 8 (c) δmax = 16

FIG. 9: Structure function of the ‘synthetic gyroid’, as calculated using Eq. 7 on the field G(x), cf. Eq. 9. Parameter δmax is the
maximum value of the dephase δ(x) = (x − Nx/2)δmax, which serves to mimic a uniform strain across the structure. The case
δmax = 0 [lattice sites] gives an approximation to the Schoen G (or ‘ideal gyroid’) structure. Darkness in the greyscale grows
with the scattering intensity, and the filled isocurves shown correspond to S = 1, 80, 200, 700. For nonzero kx, the strain appears
to shift the pattern leftwards and smear the peaks, while leaving the zero kx intact. The smearing not in direct relation to the
strain—panel (b) shows more smearing than panel (c)—explains the spikes shown in Fig. 8. The ‘cardioid’ shape reported in
Fig. 8 originates from the combination of the structure undergoing a structural transition (losing its kz �= 0, kx �= 0 peaks) whilst
being sheared with a velocity profile of positive slope (cf. Fig. 3, which orients the ‘atria’ leftwards). All quantities reported
are in lattice units, and N ≡ Nx = Nz.

δmax ≡ 0 is a good approximation to the Schoen “G”
triply periodic minimal surface of Ia3d cubic symme-
try [22]. Figure 9 shows the scattering patterns for the
unstrained morphology and for dephases δmax = 8, 16.

Comparing the structure function maps, Figs. 8 and 9,
at the same value of the strain rate might prove useful.
For the ideal gyroid, strain is controlled by the number
of unit cells that the dephase causes the structure to shift
at the lattice boundary, following a linear profile as we
approach the other boundary through a zero at the lat-
tice core. For the amphiphilic gyroid, however, the strain
does not follow a linear profile at early times; instead, the
strain at time t would need be computed from the integral
1

Nx

∫ t

0

∫ Nx

0
dt′dx ∂xuz(x, t′), where t′ is the time parame-

ter. For the purposes of this paper, however, this analysis
would be superfluous; in fact, Fig. 9 already provides us
with enough information to understand the origin of the
cardioid shape. For all panels, (a), (b) and (c) therein, the
position of the peaks at kx = 0 (kz/(2π/N) ≈ −14, 15,
where N = 128) are invariant under the strain (dephase);
not so with the peaks at kx �= 0, which shift leftwards.
(The shift would be rightwards were ∂xuz < 0.) The
shape of the maps in Figs. 8(c) and 8(d) is that of a trans-
formed scattering pattern shifted leftwards. This trans-
formation occurs early, between ∆t = 0 and ∆t = 3 000,
and is characterised by two strong (S ≥ 700) peaks sim-
ilar to those of the gyroid at kx = 0, and two weaker
(200 ≤ S < 700) peaks at kz = 0.

IV. SHEARING THE LAMELLAR

MESOPHASE: DEPENDENCE ON THE

AMPHIPHILE DENSITY

In the last section we reported on the gyroid display-
ing lower shear stress than the molten gyroid. Since the
structural transition between these two mesophases can
be driven by the density of amphiphile and/or the inter-
amphiphile coupling parameter, as González-Segredo and
Coveney reported [11], our aim in this section is to eluci-
date the role of the amphiphile density alone on the stress
response to shear; we choose the lamellar mesophase as
the subject of the study, since it has the simplest possible
internal interface.

The initial configuration employed was a cubic 1283

lattice with 16 lamellae, stacked perpendicularly to unit
vector ẑ. The lamellae were of alternating, oil-water com-
positions, separated by a thin monolayer of amphiphile.
The thickness of the immiscible and amphiphilic lamel-
lae were 7 and 1 lattice sites, respectively. We populated
each lattice site with a value of density which kept con-
stant over the region corresponding to a same species;
each microscopic velocity is assigned the same fraction
of this value. We gave amphiphilic regions the densities
n(0)s = 0, 0.80, 0.95, and oil and water regions the den-
sities n(0)r = n(0)b = 0.7. Shear was applied perpendicu-
larly to the lamellae via with the same LEBC’s presented
in the last section, with speed U = 0.10.

Before shearing, the case without amphiphile of the
lamellar initial condition just described is, a priori, a
metastable state in our LB model. In fact, the structure
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has a stationary morphology since short-range oil-water
forces and the absence of fluctuations maintain immisci-
bility while keeping the interface’s shape; however, a large
enough perturbation in φ can make these forces drive the
interface to a radically different shape. Moreover, shear
will work against the interfacial tension by reducing the
interface steepness (i.e., |∇φ|), which will lead to miscibil-
ity (phi ≡ 0) for high enough strain rates. Despite these
arguments, we observed stability for the sheared lamellar
mesophase without amphiphile, as we report next.

Figure 10 shows the stress as measured in the same
fashion carried out in the last section (see Fig. 4), for
several amphiphile densities. The behaviour observed is
diverse. For zero amphiphile concentration (solid curve),
the stress reaches a peak at early times before it proceeds
to a second, lower maximum at late times, going through
a trough at intermediate times due to the fact that |∇φ|
experiences a transient decrease.

The high-density regions for one of the immiscible
species (say, oil) is shown in Fig. 11(a) at late times,
∆t = 8 000; for the lamellar morphology, these are rep-
resentative of the shape of the oil-water interface. Away
from the boundaries (x = 0, 128), there is a large surface
area of interface with zero curvature, where we define the
curvature as H ≡ ∂2

zzxφ(z), xφ(z) being the curve re-
sulting from projecting of the φ = 0.18 surface onto the
xz plane. Curiously, we observe two changes of curva-
ture passing through an inflexion point as we follow the
curve xφ(z) around x = 64 for y = const.—we would
have expected the steady, late-time configuration for the
sheared lamellar mesophase to minimise the interfacial
area showing non-zero concavity. We can associate a cur-
vature energy density (per unit of interfacial area) to H2,
following Helfrich’s definition of the rigidity modulus [23].

The stress curve corresponding to n(0)s = 0.80, cf.
Fig. 10 shows the absence of a trough, as it occurs for the
n(0)s = 0 case, despite the fact that interfacial tension
is drastically reduced by the presence of the amphiphile.
In addition, the stress grows with time to higher values
than those achieved by the n(0)s = 0 case at late times.
The late time order-parameter configuration is displayed
in Fig. 11(b), showing a rich interfacial pattern. Using
the same arguments of the last paragraph, this struc-
ture could be characterised by a higher curvature energy,∫

I
dσH2, where σ is a measure on the oil-water interface,

I, and H is now defined as the inverse radius of curva-
ture, parameterised on the arclength, s. Figure 11(b)
shows similar regions of high curvature at an equal dis-
tance from the shearing walls, where uz = const., which
we shall call nodal planes. Also note that the interface, as
approximately depicted by the boundary of the φ ≥ 0.22
volume, joins the lattice boundary at an angle close to 90
degrees.

The stress curve for the n(0)s = 0.95 case shows a dra-
matically different situation for the first 5 000 time steps:
the presence of a trough, deeper than that present for
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FIG. 10: Temporal evolution of the average shear stress
response of a lamellar mesophase at a shear speed of
U = 0.10, for different amphiphile densities. The solid,
dashed, and dash-dotted curves correspond, respectively, to
n(0)s = 0, 0.80, 0.95. The average is computed over the three-
dimensional domain [8, Nx − 8] × [1, Ny] × [16, Nz − 16],
where Nx = Ny = Nz = 128 and error bars are not included
since they are negligible. All quantities reported are in lattice
units.

the n(0)s = 0 density. After that, there appears a shoot-
off whereby the stress rapidly grows and equals the late
time value achieved in the n(0)s = 0.80 case. However,
the order-parameter displays a configuration analogous
to the n(0)s = 0.80 case, cf. Fig. 11(c). By looking at the
amphiphile density field, ρs(x), for the case n(0)s = 0.95,
we observed that the high curvature regions arise close to
the boundaries first (∆t < 1000), and then rapidly move
away from them as the strain progresses.

V. CONCLUSIONS

In this paper we reported on the shear stress response
of two gyroidal cubic amphiphilic mesophases previously
self-assembled using the same bottom-up LB model we
employ here, namely, the gyroid per se, which shows
high crystallinity at late self-assembly times, and the
molten gyroid, endowed with shorter-range order and lo-
cated within the sponge-gyroid lyotropic structural tran-
sition [11]. Shear was imposed via sliding periodic (Lees-
Edwards) boundary conditions, and we investigated the
system’s response to several values of the strain rate. In
addition, in order to investigate the dependence of the
shear stress on the amphiphile density, we also sheared a
lamellar mesophase, of a much simpler morphology than
the gyroidal mesophases.

We found that the gyroidal mesophases exhibit shear
thinning, more pronounced and at lower strain rates for
the molten gyroid than the gyroid. In other words, mo-
mentum is transported more easily across the mesophase
from the shearing walls for the mesophase containing
more amphiphile, of longer-range ordering.

We also found a shear-induced transition from an ini-
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(a) n(0)s = 0 (b) n(0)s = 0.80 (c) n(0)s = 0.95

FIG. 11: Slabs 0 ≤ y ≤ 8 of the order parameter φ for the lamellar mesophases with different amounts of amphiphile density,
n(0)s, at time step ∆t = 8 000 after the onset of a shear of velocity U = 0.10. (The coordinate system is the same of Fig. 6.)
In panel (a), the regions opaque to incident (volume rendering) light are those for which φ ≥ 0.18, where |φ| ≤ 0.36 across the
system. In panel (b), the opaque regions are those for which φ ≥ 0.22, where |φ| ≤ 0.45 across the system. In panel (c), the
opaque regions are those for which φ ≥ 0.24, where |φ| ≤ 0.48 across the system. It is worth noting that the surfactantless case,
(a), exhibits a curved interface. The amphiphilic cases, (b) and (c), display the formation of irregularities in the interface and
nodal planes, as a result of the inter-amphiphile interaction. All configurations have translational symmetry along the y-axis.
All quantities reported are in lattice units.

tial gyroid morphology to a mesophase at large strain
characterised by the coexisting elongated tubules and
toroidal, ring-like structures. This mesophase is in con-
trast with one found by Zvelindovsky et al. with free-
energy Langevin-diffusion methods by shearing a bicon-
tinuous structure reminiscent of a molten gyroid [3]. The
structure they found is of a shorter-range ordering than
that of the molten gyroid employed for the study reported
in this paper, and the high-strain structure consists of co-
existing lamellae and hexagonally packed tubes elongated
along the direction of the imposed shear velocity. Our
shear molten gyroid also shows enlongated tubes along
this direction, but the structure is far more complicated
than that found by Zvelindovsky et al. in that it exhibits
remnant toroidal rings and ‘hard shoulders’ reminiscent
to gyroidal skeletons, and hexagonal packing and coex-
isting lamellae are absent.

The shear performs a plastic deformation which effec-
tively breaks the gyroidal skeleton’s links which interpose
an (oil-water) interface whose normal, n, is parallel or an-
tiparallel to the flow, u. In other words, by shearing we
apply a (mixing) force which is not only in competition
with the oil-water force, generating immiscibility, but also
with the inter-amphiphile force. Our hypothesis here is
that adsorbed dipoles sitting on interfacial regions with
an angle θ ≡ ∠(u,n) in the range 0 < θ < 180 degrees re-
quire more work from the shear forces to draw them away
from the interface than those regions placed normally
to the flow, since the (shear-induced) mixing reduces as
cos θ. In particular, when θ = 0, the inter-amphiphile
force can sustain considerably long interfaces—shear in-

duces a preferential direction along which the long-range
order present before shearing is not reduced. These ar-
guments explain not only the formation of the elongated
tubules but also their reconnection (increase in coordina-
tion number). In fact, the toroidal, ring-like structures
are not only vestigial gyroid defects which have survived
the gradient ∇u, but also born anew resulting from re-
connections.

Applying shear to a lamellar mesophase, we found that
the presence of amphiphile on the oil-water interface of
the mesophase causes the interface to fold into a wealth
of structures with a (discrete) translational symmetry
on planes equidistant to the shearing walls and along
the direction of the shear velocity. In other words, the
inter-amphiphile force couples the adsorbed amphiphilic
dipoles so that the interface locally increases its curvature
energy density. It is worth investigating whether this
local increase is due to the amphiphile being incapable
of sustaining interfacial regions of low curvature under
shear, i.e., whether shear induces a ‘breaking’ mechanism.
Regarding the shear stress, our amphiphile-containing
lamellae responded with higher stress at late times than
those without. This contrasts with the results found for
the gyroidal mesophases, and leads us to conclude that it
is the gyroid’s cubic morphology that allows this struc-
ture to be stiffer.
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pLRME2D: A parallel implementation of a two-dimensional
hydrodynamic lattice gas model with long-range interactions

Nélido González-Segredo ∗1 and Martyn Foster †2
1Centre for Computational Science, Queen Mary & Westfield College,

University of London, Mile End Road, London E1 4NS, UK
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Using a two-dimensional hydrodynamic lattice-gas model for the simulation of binary immiscible
and ternary amphiphilic fluids, we investigate the effect of long-range interactions in the surface
tension of a planar interface between two immiscible fluids of equal density with and without a
layer of surfactant particles lying on it. This is the first stepping stone towards the simulation of
the dynamics of fluid vesicles: the surface tension is one of the parameters of some continuum-
mechanical descriptions [5] for vesicles, and long-range interactions are believed to be crucial in
attaining stability. The parallel implementation of the lattice gas algorithm employs a new commu-
nication wrapper providing an object orientated approach to distributed memory programming of
n-dimensional grid-based calculations. We find that the surface tension increases with the range of
interactions of the immiscible fluid particles but not with that for the surfactant particles. We also
find good scalability and minimal impact of the parallelisation strategy on the structure of the base
serial code.

I. INTRODUCTION

A wide range of fluids found in nature and in in-
dustrial processes are in the form of immiscible mix-
tures. Oil and water are archetypical examples of such
systems, important in the food and petroleum indus-
tries, although polymeric and colloidal solutions are
also common cases.

The addition of amphiphilic (also called surfactant)
chemicals in a fluid or in an immiscible mixture gives
rise to the self-assembling of complex morphologies
of great interest in physical chemistry, biology and
chemical engineering [1]. The mechanism for their
formation relies in the polar nature of the surfactant
molecules, with an ionic head attached to a hydrocar-
bon tail. In immiscible mixtures, opposite parts are
attracted to different phases, thereby favouring their
absortion at, and causing the formation of, binary im-
miscible interfaces [2]. When dispersed in single fluids,
either organic or ionic, they aggregate such that the
part of the molecule which is insoluble in the medium
is shielded from it.

Examples of these self-assembled, fluidic struc-
tures are spherical and wormlike micelles, lamellar
and sponge phases, microemulsions, and bicontinu-
ous tubular structures, and are also termed lyotropic
liquid crystals [3]. Their properties have produced a
wealth of applications: the very low surface tension
in amphiphilic microemulsions has led to the use of
surfactants as detergents; the viscoelasticity of worm-
like micelles is a desirable property for food products
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de F́ısica, Universitat Autònoma de Barcelona, 08193

Bellaterra, Barcelona, Spain.
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and paints; spherical micelles can be used as carriers
in drug transport and delivery by the pharmaceutical
industry.

The aim of this work is to lay down a first stepping
stone in the modelling of amphiphilic membranes with
a mesoscopic technique such as the lattice gas automa-
ton [2]. We are interested in simulating vesicles, which
are the backbone of many biological structures, such
as cell membranes. They are made up of closed bilayer
sheets of phospholipids,of an amphiphilic nature.

A hydrodynamic lattice gas automaton for am-
phiphilic and immiscible fluids is a class of cellu-
lar automata. Our model, based on the Boghosian-
Coveney-Emerton (BCE) model [2], consists in a reg-
ular lattice of the required symmetry which is pop-
ulated with particles of different species with dis-
crete velocities, colliding and advecting in discrete
timesteps, and satisfying local conservation of mass
and momentum. The collision operator is nondeter-
ministic in that local, postcollisional states are sam-
pled from a distribution which enforces phase separa-
tion of immiscible fluid species. In the macroscopic,
spatial averaging limit, the Navier-Stokes equations
for incompressible, viscous, low Mach number (creep-
ing) flows are recovered for each single phase. The
added feature to the BCE model is the incorporation
of long range interactions.

Long-range interactions were introduced into cellu-
lar automata to model phenomena in which inhomo-
geneities may become more stable than homogeneous
phases [8–10].

In the macroscopic modelling of vesicles, many con-
tinuum mechanical models have appeared [4], initially
motivated by the study of the sickle red blood cell
shape [5]. They all introduce the vesicle’s surface ten-
sion, bending elasticity and osmotic pressure as key
parameters of their model determining the vesicle’s
equilibrium shapes.

Our novel approach is to propose a fluid model, en-
tirely based on mesoscopic particle interactions, which
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could not only mimic the shape of surfactant vesicles
at late times (equilibrium) but be able to reproduce
their dynamic, nonequilibrium behaviour [6]. There
have already appeared other mesoscopic approaches
to the problem [7], yet injecting macroscopic informa-
tion about the interface back down to the underlying
transport dynamics. Length scale-wise, our aim is to
follow a down-to-top-only approach.

Because surface tension and bending rigidity arise
as a result of spatial correlations of the fluid’s
molecules, it seems plausible that in our model they
can be a function of the range of the particle inter-
actions. In this work we focus our attention on the
surface tension alone.

In section II the lattice-gas model itself is explained.
We deal with a binary system (two-dimensional,
planar interface) comprising two immiscible phases
which, for simplicity, we will refer to as water and
oil, and a ternary system when adding a third, surfac-
tant phase. Finally a method for measuring its surface
tension is outlined.

In section III we present details on the parallel im-
plementation of the algorithm. We use a set of wrap-
per functions acting as a general-purpose interface to
MPI directives. Section IV contains the results of our
simulations, and in section V we conclude and propose
a natural continuation to this work.

II. AN AMPHIPHILIC IMMISCIBLE
LATTICE GAS WITH LONG RANGE

INTERACTIONS

The lattice-gas model we use is an extension
of the nearest-neighbour-interaction model used by
Boghosian, Coveney and Emerton (BCE) [2], which
in turn is a generalisation of the immiscible lattice
gas of Rothman and Keller [11], with the inclusion
of surfactant particles. Before tackling the extension
to long-range interactions on the Boghosian-Coveney-
Emerton model, we will give as follows a detailed de-
scription of it.

The BCE automaton is a two-dimensional triangu-
lar lattice containing up to seven particles per node.
The choice of a triangular lattice guarantees isotropic
behaviour in the macroscopic limit leading to the
correct Navier-Stokes equations for incompressible,
single-phase fluids. The particle velocities may take
on any of the six unit vectors ci (i = 1, ..., 6) that the
geometry permits, or a null vector c0 representing a
particle at rest. To allow for different fluid types to
be modelled, they assign colour to the particles. In
this way, the state of the 2D model at site x and time
t is completely specified by the occupation numbers
nα

i (x, t) for particles of colour α and velocity ci/∆t.
These occupation numbers can be either zero or one,
and there can be at most one particle of either species
per direction. The latter is a form of exclusion princi-
ple that, while restricting the application of the model
to systems with low density gradients, constitutes a
major assumption necessary for algorithm simplicity

and speed of execution.
To consider the amphiphilic species, the surfactant

particles are modelled as colour-dipole vectors σi(x, t),
their occupation numbers being denoted as nS

i (x, t).
The evolution of this lattice gas occurs in two sub-

steps. In the propagation substep the particles at a
site x hop to neighbouring sites along the directions
corresponding to their velocity vectors. In the colli-
sion substep, the newly arrived particles change their
velocities such that the mass of each species and the
total momentum at the site (‘total’ meaning summed
over all the species) is conserved. The outgoing state
allowed by the conservation laws can be degenerate,
and so each possible outgoing state is numbered and
assigned a probability value. Then, the outgoing state
is sampled according to these probabilities. If there
are two states with equal probability, they are ran-
domly chosen.

The probability values referred to in the last para-
graph depend on the interaction of site x′ with its
neighbouring site y, which in turn depends on the
states of x′ and y. We say that we incorporate long-
range interactions in our model when we consider not
only the nearest neighbours but sites further away
from x′ to compute these probability values.

The probability values have the form of Boltzmann
weights

e−β∆H , (1)

where β is an inverse “thermal noise” parameter and
∆H has the form of an electrostatic interaction Hamil-
tonian,

∆H = α∆Hcc + µ∆Hcd + ε∆Hdc + ζ∆Hdd

= αJ · E∆t + µJ · P∆t

+ ε
(
σ′ · E + J : E∆t

)

+ ζ
(
σ′ · P + J : P∆t

)
(2)

and represents the work carried out by the outgo-
ing particles, when they hop to neighbouring lattice
sites, against the field produced by the neighbour-
ing particles. Subscript c stands for “colour”, and
d for “dipole”, and α, µ, ε, and ζ are coupling pa-
rameters. ∆Hcc represents the work performed by a
colour charge in the colour field produced by fixed sur-
rounding colour charges, and corresponds to the rela-
tive immiscibility of oil and water; ∆Hcd is the work
performed by a moving colour charge in the dipolar
field created by surrounding fixed surfactant particles,
and models the tendency of surrounding surfactant to
bend around oil or water droplets, and hence favours
micelle formation; ∆Hdc is the work carried out by
an outgoing dipole when moving in a colour field pro-
duced by surrounding fixed colour charges, and corre-
sponds to the propensity of surfactant dipoles to align
across oil-water interfaces; and ∆Hdd is the dipole-
dipole interaction. Here, ∆t is the time step, and
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· and : denote contraction of one and two tensor in-
dices, respectively. Following an electrostatic analogy,
we have defined the colour flux of an outgoing state
at an arbitrary site x and time t as

J(x, t) ≡
6∑
i

ci

∆t
q′i(x, t), (3)

where the prime denotes that the charge is computed
on an outgoing state. The colour field has been defined
as

E(x, t) ≡
∑
y∈L

f1(y)yq(x + y, t), (4)

where f1(y) is a derivative of the potential shape func-
tion f(y)

fl(y) ≡
(
− 1

y

d

dy

)l

f(y) (5)

where l = 0, 1, ..., and f(y) is analogous to the elec-
tric potential in electrostatics: it conveys the idea of
shape and type of the interaction, i.e., how it decays
with distance and whether a test particle would be at-
tracted or repelled by a particle of alike colour gener-
ating the field. In addition, y is a displacement vector
from site x, y its module, L is the lattice, and q(x, t)
is the colour charge of the relevant site at time t. The
latter is defined as the sum over all the directions of
the colour charge per direction

qi(x, t) = nR
i (x, t) − nB

i (x, t), (6)

where R stands for a red particle and B for a blue
particle. Note that qi(x, t) is positive when it is only
a red particle that moves along i and negative for a
blue particle.

We have also defined the dipolar-field vector

P(x, t) ≡ −
∑
y∈L

[
f2(y)yy − f1(y)I

]
· σ′(x + y, t), (7)

where σ′ is the sum of the outgoing colour dipole vec-
tor σi over all the directions i, and I is the rank-two
unit tensor. The dipolar-flux tensor is

J (x, t) ≡
6∑
i

ci

∆t
σ′(x + y, t), (8)

the colour-field gradient tensor is

E(x, t) ≡
∑
y∈L

[
f2(y)yy − f1(y)I

]
q(x + y, t), (9)

and the dipolar-field gradient tensor is defined as

P(x, t) ≡ −
∑
y∈L

[
f3(y)yyy− f2(y)y ·Ω

]
· σ′(x + y, t),

(10)
where Ω is the completely symmetric and isotropic
fourth-rank tensor.

It is worth mentioning that the prescription for im-
miscibility (phase separation) is contained in the sam-
pling process of the collision substep. In fact, it is
most likely to obtain outgoing states with the highest
probability values, which according to (1) correspond
to the lowest values for ∆H. Thus, the velocity con-
figurations that leave J and E antiparallel are the ones
with the highest chance of being chosen by the sam-
pling. As a result of these vectors being antiparal-
lel, particles move towards regions of particles of like
colour, and hence phase separation is induced.

Long-range interactions come into play in this
scheme if we allow the sum in (4) to range over not
just the nearest neighbours to x (i.e., y = 1) but a few
layers of sites further away or even the whole lattice.
The extension carried out in this work consists in us-
ing 3, 4, 5, 6, 7 and 8 layers of nearest neighbours,
cases that we will refer to in the sequel as LR3, LR4,
LR5, and so on, the nearest-neighbour case being de-
noted by SR.

As to what form for fl(y) in (4) and (7) was used,
we chose one that is constant within the interaction
range and whose value is that at nearest neighbouring
sites, i.e., such that

fl(y) ≡
{

fl(1) if y ≤ interaction range
0 otherwise (11)

We have used f(y) = −1/y as a suitable general func-
tion. (The negative sign allows inducing cohesion in
immiscible mixtures.) This particularisation leaves
(4) and (7) as

E(x, t) ≡
∑
y∈L

r(y)ŷq(x + y, t), (12)

P(x, t) ≡ −
∑
y∈L

r(y)
[3
2
ŷŷ − I

]
· σ′(x + y, t),(13)

where ŷ is the unit vector y/y, I is the rank-two unit
tensor, and r(y) is a step function that controls the
extent of the interactions, namely

r(y) =
{ −1 if y ≤ interaction range

0 otherwise (14)

This choice of the interaction potential allows us to
focus our attention on the effect of varying the number
of neighbours as a parameter, without the additional
complications associated with a decaying function of
distance.
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The factor 3/2 in (13) is a choice necessary to guar-
antee that the dipole-dipole interaction work has well-
defined minima, i.e., such that there are a finite num-
ber of angles towards which the dipoles tend to tilt and
that they show the correct self-assembly behaviour:
Aligning in parallel, head to head and tail to tail.
When using the factor 2 instead of 3/2, as would di-
rectly follow from (5), those minima turn out to be a
continuum of values.

Incrementing the number of neighbours to sum over
in (4) is always done at the expense of increasing the
computing time needed compared to what the nearest-
neighbour case requires. However, to get round this
problem, our code exploits to great advantage the fact
that both (12) and (13) have the form of a convolution.
For two arbitrary scalar functions f and g defined over
a subset Ω of the integers, the convolution can be
defined as

f ∗ g =
∑
τ∈Ω

fτ gt−τ . (15)

If we generalise this to one-dimensional real functions
over the lattice L ⊂ Z2 and replace g by q and f by
f(y)y, we realise that the cartesian components of E
are

E1 = f(y)y1 ∗ q, E2 = f(y)y2 ∗ q, (16)

where the subscripts 1 and 2 denote x and y com-
ponents, respectively. The benefit of expressing the
colour and dipolar fields in this way comes about be-
cause the convolution of two functions is the inverse
Fourier transform of the product of the functions’
Fourier transforms,

f ∗ g = F−1
[
(Ff) (Fg)

]
. (17)

Because the Fourier transforms are computed over the
whole lattice regardless the range of the interactions,
there is no increase in computational expense when
increasing this range. Moreover, Fourier transforms
can be calculated very efficiently using Fast-Fourier-
Transform (FFT) algorithms.

For computer implementation, we need to store our
triangular lattice in memory arrays, whose unit cells
are squares and not hexagons. That is, we have to
transform the lattice into a square one. We do so
by moving every even row in the triangular lattice by
half the lattice constant along the negative x direc-
tion (ie., to the left). In order to keep the particles
moving in the same way as they do in a triangular
lattice, particles are not allowed to move along all the
diagonals: those lying on an even row cannot move
along any diagonal towards the left, and particles on
an odd row cannot move along any diagonal towards
the right. These selection rules ensure that we have
the behaviour of a triangular lattice, and therefore
that our model leads macroscopically to isotropic be-
haviour [12].

A. Surface tension of a planar interface

The surface tension σ of a planar interface between
two immiscible fluids [13] is given by

σ =
∫ +∞

−∞
[PN (x) − PP (x)]dx, (18)

where the interface is perpendicular to the x axis, and
PN (x) and PP (x) are projections of the pressure ten-
sor along the direction normal and parallel to the in-
terface, Pxx(x) and Pyy(x), respectively.

Interactions σ (nx = 64) σ (nx = 128) σ (nx = 256)

SR 0.340 ± 0.006 0.341 ± 0.013 0.339 ± 0.025

LR3 0.403 ± 0.007 0.401 ± 0.013 0.409 ± 0.025

LR4 0.413 ± 0.007 0.412 ± 0.013 0.412 ± 0.025

LR5 0.398 ± 0.007 0.401 ± 0.013 0.413 ± 0.025

LR6 0.396 ± 0.006 0.473 ± 0.013 0.592 ± 0.025

LR7 0.424 ± 0.006 0.511 ± 0.013 0.639 ± 0.025

LR8 0.516 ± 0.006 0.823 ± 0.013 1.358 ± 0.025

TABLE I: Surface tension of a planar interface as the oil-
water interaction range increases, for three different lattice
sizes.

The definition of the pressure tensor in our 6-
velocity lattice gas is

Pαβ =
6∑

i=0

ciαciβNi, (19)

where ciα is the α−component of the velocity vector
along the direction i, and Ni is defined as the num-
ber of particles on direction i at the relevant site and
averaged over an ensemble of systems prepared with
different initial conditions, but subjected to the same
external constraints (ensemble averaging). According
to this, the components we are interested in become

PN (x) =
∑

i

c2
ixNi = N0 + N3 +

1
4
(N1 + N2 + N4 + N5),

PP (x) =
∑

i

c2
iyNi =

3
4
(N1 + N2 + N4 + N5), (20)

where Ni is the number of particles in the direction
i of the site under consideration and cix and ciy are
the x and y components of the (unit) velocity vector
along that direction. It is vital that we state here how
we label directions in our automaton,

ci = (cos 2πi/6, sin 2πi/6), i = 0, ..., 5, (21)

where direction i = 6 denotes the rest particle, with
zero velocity.

In kinetic theory the pressure tensor is expressed
as the average of mcc over the molecular velocities,
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with m the particle mass and c the molecular velocity
relative to the macroscopic velocity,

Pαβ =
∫

mcαcβf dv, (22)

where f is the velocity distribution function. For lat-
tice gases the pressure tensor is given by (19), in which
the ensemble averaging performs the velocity averag-
ing and the fact that the elements of the ensemble
are uncorrelated with each other guarantees that the
velocity domain is uniformly sampled. In this paper
averaging over lattice velocities is carried out by en-
semble and time averaging over states which are ap-
proximately stationary. Ensemble averaging is done
over independent runs, which guarantees uncorrelated
realisations of lattice velocities; time averaging, on the
other hand, is performed for every single time step of
the simulation, and hence there is correlation of ve-
locities at least for the few measurements adjacent in
time to every single time step. In future work we could
calculate the time correlation neighbourhood inside of
which averaging would be pointless in terms of a rig-
orous calculation of Ni, and therefore measure outside
it.

Moreover, a vertical interface exhibits translational
symmetry along the y axis and therefore we also av-
erage over the y coordinate for fixed x, as these sites
have to have uncorrelated pressure due to the transla-
tional symmetry. According to this, we compute (18)
as

σ =
〈

1
2ny

nx−1∑
ix=0

f(ix)
ny−1∑
iy=0

[PN (ix, iy) − PP (ix, iy)]
〉

,

(23)
where the brackets denote time averaging, ix and iy
are the x and y coordinates on our lattice, nx and
ny are the width and height of the lattice respec-
tively, and f(ix) is a factor coming from the integra-
tion method. We used an integration method of the
same order of Simpson’s rule, for which

f =




3/8 if ix = 0 or nx − 1
7/6 if ix = 1 or nx − 2
23/24 if ix = 2 or nx − 3
1 elsewhere.

Dividing by 2ny in (23) comes from vertical averag-
ing and the fact that, as we use periodic boundary

Interactions σ (nx = 64)

SR 0.2692 ± 0.0069

LR3 0.2708 ± 0.0069

LR8 0.2708 ± 0.0069

TABLE II: Surface tension of a planar interface with sur-
factant, as the range of the potential for the surfactant
particles absorbed at the interface increases.

conditions both on the vertical and horizontal direc-
tions, there are actually two interfaces contributing
to the surface tension, at ix = nx/2 and at ix = 0.
As we will mention later, we work with nx = 64 and
ny = 512.

In practice the interface is not flat but has irregu-
larities that can make sites of equal x coordinate lie at
different distances from the interface. As the pressure
profile theoretically depends on that distance, verti-
cal averaging over an irregular interface would give
rise to a statistical error (increased dispersion around
the mean) in addition to that coming from the noise
of our automaton.

There is an added difficulty apart from averaging:
the configuration of the system for the initial time step
has to be such that the total linear momentum is zero,
at least along the direction perpendicular to the inter-
face. When this is not the case, the interface moves
aside with constant speed, making time-averaging dif-
ficult. In other words, a non-zero initial momentum
does not allow the system to achieve stationary con-
figurations. To achieve stationarity, it was enough for
us to remove around 80% of the initial momentum of
the automaton before letting it evolve in time. Co-
hesion keeps the interface in place, which otherwise
would drift due to residual momentum in the lattice.

An important caveat to be considered is that
enough amount of surfactant has to be added to the
interface for it to reflect a reduction in surface tension.
Due to for a surfact particle sitting at the interface is
energetically favoured, that reduction only occurs if
the interface length has to be increased to accommo-
date all the surfactant particles present. Let NI be
the number of sites of the interface, NS the number
of sites with the added surfactant, and ρs the reduced
density of surfactant. Then the condition for increase
of interface length is

7ρsNS > 7NI (24)

For the planar interface, NS = θny, where θ is the
thickness of the surfactant layer, and NI = ny. Then
Eq.(24) reduces to

ρs > 1/θ (25)

Hence, for example, for a surfactant layer of 1.2, re-
duced densities smaller than 0.83 will not produce a
reduction in surface tension.

III. PARALLEL IMPLEMENTATION

The development of the algorithms to encompass
parallel environments was driven by the desire to
study problems too large for workstation class ma-
chines both in memory and computation time. An un-
derlying aim in the development of a parallel version
was to produce a code-base in which the paralleliza-
tion had minimal impact on the structure and layout
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of the original code. This enables a more seamless
transition to high performance machines and main-
tains accessibility for those inexperienced in HPC de-
velopment who can take a toolkit approach to building
applications for high end machines.

The parallelization of the code, a two dimensional
regular triangular problem is naively simplistic. A
number of lattices of varying data types are decom-
posed over processors in regular fashion. Initial ex-
amination of problem types demonstrate this to be
the correct approach, however the longer term usage
of the code is unlikely to reflect this, as there is no
inherent load balancing of the algorithm.

The communications API developed allows the de-
velopment of more sophisticated approaches to do-
main decomposition without requiring alteration to
the scientific portions of the code, as well as providing
abstraction of communication primitives to facilitate
optimisation on a per platform basis.

The approach taken was to develop an object orien-
tated abstraction of domain decomposed data struc-
tures as well as wrappers around the lowest level prim-
itives. In this picture the primary objects relating
to the lattice gas simulation are the decomposition,
which may be regarded as a layout of processors, and
the grid (a regular domain decomposed array). The
grid object inherits properties of the decomposition
(including its dimensionality and distribution) and
any number of different decompositions and data dis-
tributions are supported dynamically within the same
application. The code is implemented as a state ma-
chine written in ANSI c with context switches between
grids allowing parameterless calls to common opera-
tions such as halo exchange, file I/O or mathematical
transformations from a supporting library. Portabil-
ity to Irix, Linux, and the Cray T3E has been demon-
strated.

The initial implementation has been written in MPI
with an MPI Type vector used as the default type
for synchronous boundary exchange operations pro-
viding seamless access to “nearest neighbour” data.
The dominant fraction of computation time (around
50 %) is spent in complex-complex Fourier transform
routines as can be seen in Figure 1. This routine is
a management wrapper and is currently layered upon
FFTW [14]. At the current time this sustains around
80MFlops per processor including data rearrangement
and communications overheads. This proves signifi-
cantly faster than the “computation only” Numerical
Recipes original algorithm and is found to be accu-
rate in forward-reverse tests to around 15 significant
figures. Scalability of the FFT to small numbers of
processors is illustrated in Figure 2.

Current and future development of the communica-
tions interface include the development of a high per-
formance IO layer based on MPI/IO and ffio on Cray
T3E systems, abstraction to provide dynamic visual-
ization and computational steering (initially based on
COVICE [15]), and an automatic profiling and tuning
layer.

IV. SIMULATIONS

A. Oil-water system

We performed three sets of measurements. In the
first, we simulated the evolution of the planar interface
for 10000 time steps for all of the interaction poten-
tials, with 8 independent runs for each. The pressure
measurements were taken every 10 time steps, dis-
carding the first 1000 time steps for the averaging on
the assumption that any transient behaviour would
die out at the end of this interval. The system size
was 512 sites in height and 64 sites in width, which
were the values that best fit to our requirements for
a small computational demand and a large number of
samples for averaging, all leading to an error in the
surface tension smaller than 10%. We assumed that
nx = 64 was a value large enough to avoid interfer-
ence between interfaces (i.e., the transfer of momen-
tum from one to another), which would have the effect
of distorting their required flatness.

In the second set we repeated the simulations, but
doubled the size of the system to nx = 128, and in
the third set to nx = 256. Our aim was to check for
finite-size effects, and reduce the standard error of the
average.

For nx = 64 we present the profile for the integrand
in (18) and interaction potentials SR, LR4 and LR8
in Figs. 3, 4 and 5, respectively. Error bars are all
smaller than the plotting symbols and were computed
by propagating the standard errors

±s/
√

N (26)

originating from vertical averaging through further av-
erages, i.e., over time and runs. These errors cover
66% of the averaging sample, where s is the standard
deviation of the distribution of pressure measurements
and N is the number of measurements. We see that
the height of the peaks at the two interfaces (located
at the lattice centre and borders) tends to grow from
SR to LR4; from that interaction range onwards up
to LR8 the height decreases and the width broadens.
As for our interest, we are only concerned about the
area under the profile, and this increases as we move
up to longer ranges.

In Fig. 6 we plot the dependence of the surface
tension with the interaction range, for the three sets
of measurements. The error bars are the difference
between the integral of yi + εi and of yi − εi, where yi

symbolically denotes the integrand in (18), discretised
by the integration method, and εi its respective error.
For nx = 64 we see an increase in surface tension as we
go from SR to LR4, and from LR5 to LR8, but a drop-
off of 3.9% in LR5 with respect to LR4. For nx = 128
there is a similar decrease from LR3 to LR4, but for
LR5 it shows an increase. Finally, for nx = 256 we get
an increasing behaviour for all the interaction ranges.
It is expected the latter to be more reliable a result
than for narrower lattices as finite size effects are less
important. The data plotted in Fig.6 is summarised
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FIG. 1: Time line for a four processor run of the simulation. Dark grey regions are spent in FFTW, light grey represents
propagation of states and associated boundary exchange.
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FIG. 2: Time spent in FFTW wrapper per processor on
varied size processor array at fixed size per processor of
2562.

in Table I.
Finally we mention that, in the simulation of the

planar interface, the differences in code execution
times when using different long-range potentials were
0.4% at most.

B. Oil-water-surfactant system

We make now use of a lattice of the same size,
64×512, and working with reduced densities of 0.5, we

put now a layer of surfactant particles of thickness 2.4
lattice sites at the interface, following the reasoning
leading to Eq.(25). In order to check for the reduc-
tion in surface tension when adding surfactant to the

FIG. 3: Pressure profile PN − PP for a vertical planar in-
terface using nearest neighbour colour-colour interactions.
The interface is located around x = 32 and at one end (pe-
riodic boundary conditions are used). As the title intends
to indicate, this profile is the result of ensemble averaging
over 6 runs and time averaging from time steps 1500 to
10000, taking measurements every 10 time steps, in addi-
tion to vertical averaging over the 512 sites the lattice has
in height. The surface tension calculated is 0.364 ± 0.036
(9.9% error).
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FIG. 4: Pressure profile PN − PP for a vertical planar
interface. Using LR4 colour-colour interactions. Same
averaging as before. The surface tension calculated is
0.436 ± 0.037 (8.5% error).

FIG. 5: Pressure profile PN − PP for a vertical planar
interface. Using LR8 colour-colour interactions. Same
averaging as before. The surface tension calculated is
0.436 ± 0.037 (8.5% error).

interface, we also simulated a planar interface with
density 0.5 and no surfactant layer on it.

We carried out three runs: We used a surfactant
particle interaction potenttial of ranges SR, LR3 and
LR8. The results are summarised in Table II. There
is no dependence of the surface tension with the range
of the dipolar potentials.

FIG. 6: Surface tension of the planar interface as a func-
tion of the colour-colour interaction range. The dia-
monds correspond to nx=64, 15000 time steps, 8 inde-
pendent runs each, measuring at all the time steps after
the first 1000. The squares correspond to doubling the
lattice width (nx=128), other parameters remaining the
same. And the stars to doubling again the lattice width
(nx=256), same parameters.

V. DISCUSSION AND CONCLUSIONS

The principal result of this study is that our meso-
scopic, long-range lattice-gas model can control the
surface tension of the interface between two immisci-
ble fluids depending on how many layers of neighbours
are included when computing the colour field (12). In
addition, the range of the dipole interaction potential
(cf. 13) does not affect the surface tension.

If we could increase the lattice size as we please
for an immiscible mixture, there should be no other
limitation for us to compute an ever increasing sur-
face tension as we increase the range of the oil-water
interactions.

The fact that the surface tension is independent of
the range of the dipole potential gives us insight on the
capability of our lattice gas in the study of surfactant
structures in a single fluid phase: we will not be able
to control the surface tension in that case.

We show in Fig.6 how the surface tension for the
planar interface exhibits a strong dependence with the
size of the system: It increased for a larger lattice. We
expect the surface tension to achieve asymptotic limits
for large enough lattices.

The model is implemented using an object based
approach to domain decomposed data structures that
allows platform specific implementation of methods
forming an efficient toolkit-like approach to parallel
programming. Core computation is layered on FFTW
which is found to provide portability and good perfor-
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mance on the Cray T3E over a range of problem sizes.
Finally, a natural continuation of this work would

be the reproduction of the bending rigidity in closed
membranes. We foresee the increase of the range of
dipole potentials having an influence on this coeffi-
cient, as some kind of long range order is enforced
among surfactant particles lying at the interface.
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Chapter 5

Conclusions and future work

In this thesis I have presented investigations on the ability of two lattice methods
to model the behaviour of binary immiscible and ternary amphiphilic fluids: a three-

dimensional kinetic-theoretic lattice-Boltzmann (LB) model and a two-dimensional lattice-
gas (LG) model. In this last section I give general conclusions on the work done, and
suggest possible paths for its continuation.

The renowned ability of the LB and LG methods we used to model simple fluid flows
rests in the principle of similarity of fluid mechanics, and its intrinsic algorithmic structure
renders them ideal for high computational efficiency. In fact, two fluids with quite different
microscopic structures can have the same macroscopic behaviour because the form of the
macroscopic equations ruling it is entirely governed by the microscopic conservation laws
and symmetries—this allows us to employ a simplified, algorithmically efficient microworld
instead of retaining the full molecular dynamics. The fact that the lattice-Boltzmann
model we used is in fact a local cellular automata of a simple update rule allows its
algorithm to be readily deployed on massively parallel computers, and, hence, the low
Knudsen number limit—effectively, the limit of large enough lattices—in which the model
is designed to reproduce the Navier-Stokes equations can, in actuality, also be achieved in
simulations. As regards the lattice-gas model with long-range interactions that we used,
since its collision rule can be expressed as a convolution of fields on the lattice, use of
Fourier transforms makes the algorithmic efficiency of its implementation independent of
the range of the interactions. Tackling the large lattice limit can thus be achieved with
an efficient Fourier-transform algorithm.

In these methods, the macroscopic properties are emergent from, rather than imposed
on, the microscopic dynamics. In particular, interfacial tension between immiscible fluids
arises as the result of the appropriate collision rules, giving rise to an interface which does
not require to be explicitly computed, contrary to what occurs in methods solving the
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Navier-Stokes equations. As my first conclusion to lay down, our bottom-up LB sim-
ulations on interfacial behaviour show the demixing of 1:1 fluid mixtures well below the
spinodal (i.e., away from criticality) to follow domain-growth algebraic exponents com-
patible with predictions from continuum theories, which in turn reproduce experimental
observations. Furthermore, the interface kinetics reproduces the dynamic scaling hypoth-
esis, whereby the time evolution of the segregating bicontinuous morphology for times
t > t0 can be expressed, in the statistical sense, as a spatial scaling (‘zoom-in’) law on the
morphology at t = t0; in other words, the fluid demixes with a speed of growth common to
all domains. In addition, our simulations allow to rebut previous claims in the literature
that all fluid models showing dynamical scaling and sharing the same unique length and
timescales will show similar domain-growth algebraic exponents.

Correct kinetics for the interface between two immiscible fluids is not the only macro-
scopic property sought after for these lattice methods for fluid dynamics. We also looked at
phenomenology for which there is no satisfactory macroscopic, continuum theory: amphi-
philic adsorption and self-assembly. In fact, the behaviour of amphiphilic molecules is ad-
equately described ab initio, using particulate methods—continuum approaches are valid
only in the ‘adiabatic’ limit. My second conclusion: LB simulations show that the
amphiphilic molecules, modelled as point dipoles interacting with themselves and the im-
miscible species via coupled BGK equations and mean-field forces with nearest neighbours,
behave as experimentally observed for ternary amphiphilic fluid mixtures, i.e., adsorption
onto the interface, reduction of interfacial tension, slowdown of growth kinetics, and arrest
of domain growth and formation of a microemulsion (sponge) mesophase. We also find,
for the first time using a kinetic-theoretic model, third conclusion, a lyotropic transi-
tion between the sponge mesophase and the gyroid liquid-crystalline cubic mesophase as
the amphiphile concentration and inter-amphiphile coupling is varied, going through a
molten-gyroid mesophase. As a fourth conclusion, the gyroid mesophase found shows
slowly decaying oscillations in the size of its unit cells caused by Marangoni flows, and
coincident with the existence of structural defects which slowly annihilate, that is to say,
relax to the crystalline structure surrounding them.

Long-range interactions are commonplace in nature, and the hydrophobicity and chem-
ical affinity driving phase segregation are nothing but effective long-range electrostatic
forces between species. Increasing the range of the LB inter-particle interactions further
than nearest neighbours can have dramatic effects on the behaviour of the interfacial ten-
sion, and hence, on the growth exponents, scaling behaviour and amphiphile self-assembly
just referred to. A first approach to the problem, and considering the difficulty in laying
out an efficient long-range LB algorithm, has been my use of a LG model for ternary
amphiphilic fluids, in which performance is not affected by increasing the range of the
interactions. My fifth conclusion states that our LG simulations show that the interfa-
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cial tension of an interface between two immiscible fluids with amphiphile adsorbed on it
grows with the range of the inter-molecular interaction between these two fluids, and not
with the range of the interaction between the amphiphilic molecules.

Last, our study of amphiphilic mesophases would go incomplete without an investiga-
tion, albeit introductory, of their dynamic response to shear. My sixth conclusion reads:
the gyroid amphiphilic cubic mesophase shows shear thinning, less pronounced than that
exhibited by the molten gyroid mesophase. At late times after the onset of shear on the
gyroid, seventh conclusion, we find a complex steady nonequilibrium mesophase con-
sisting of toroidal rings and elongated tubules; in the sheared molten gyroid, the number
of toroidal rings is lower and the number of elongated tubules higher and more aligned
with the flow than in the gyroid, at late times and for the same value of shear.

Suggestions of a number of ways that the research presented in this dissertation can be
continued are duly here. As regard the LB method, there is an ongoing line of investigation
at the Centre for Computational Science (University College London, UK) aimed at contin-
uing the rheological studies of gyroid mesophases which took off from the work I presented
here. The research can be aimed at (a) computing the gyroid’s memory function guiding
the response to a sudden interruption of steady shear, and find out its dependence with
the model parameters; (b) investigate the viscoelastic response of the gyroid mesophase to
small-amplitude oscillatory shear by plotting one component of the complex elastic shear
modulus against the other (Cole-Cole plots), i.e., by looking at the interdependence be-
tween the loss and storage elastic moduli; and (c), investigate hysteretic behaviour in the
dynamical response of gyroids to large-amplitude and high-frequency oscillatory shear, by
looking at stress versus strain plots.

Regarding the LG model we employed, the research presented herewith is the first step-
ping stone towards investigating the role of long-range interations in providing mechanical
stability to ternary amphiphilic droplets. Using the same (two-dimensional) LG model,
I started tests to compute the Canham-Helfrich stiffness coefficient (or rigidity modulus)
by fitting the (excess) pressure, p, of “oil-in-water” droplets containing a monolayer of
amphiphilic molecules adsorbed on the interface to their inverse radius of curvature, H.
Minimisation of the Canham-Helfrich energy as a functional of the interface’s curvature
gives a cubic polynomial dependence between the two, p = γH−κH3, where γ is the inter-
facial tension and κ is the stiffness coefficient. Fits to this law showed that an insufficient
number of points being sampled and/or their error bars (standard errors from ensemble
averaging) being large produce large uncertainty in the value of κ. Ways forward could be:
(a) to substantially increase the number of points sampled (i.e., larger lattices are needed
in order to include more droplet radii) and the number of initial conditions (and their
pathways) over which to ensemble average; or (b), change the method to compute κ, e.g.,
from the functional (line integral) dependence of κ on a stress tensor difference, similar to
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the one used in this thesis to compute the interfacial tension on a planar interface.
I have already pointed out in the introduction that our LB research on gyroids was

employed by TeraGyroid, a UK-USA project on the developement and application of
computational grids for distributed high-performance computing, as its scientific motiva-
tion [5, 6, 7]. During the production runs, headquartered at the SuperComputing 2003
conference, Phoenix (AZ, USA), in November 2003, grid technologies developed within
it allowed researchers to concurrently use up to ca. 6000 processors distributed among
platforms in the UK and the USA. The simulations were aimed at self-assembling gyroid
mesophases on lattices up to 10243 lattice sites and simulation times of up to one million
time steps, the data of which are still being analysed. The unique opportunity provided
by the project and its academic partners allowed researchers to simulate the whole tem-
poral pathway of defect relaxation that we probed only in its initial stages, as reported
in this thesis, and to reach sufficient spatial resolution (in terms of number of gyroid unit
cells) in order to study the spatial distribution of defective regions. Needless to say, the
information provided by our simulations, as presented in this thesis, as well as those of the
TeraGyroid project, can be of straightforward interest for materials scientists: simulation
length scales mapped onto experimental ones could supply direct-space relevant informa-
tion to experimentalists on defect dynamics, who, more often than not, are constrained
by the limitations in time-resolving the nanoscopic unsteady dynamics in question.
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P. V. Coveney, N. González-Segredo, R. Haines, J. Harting, M. Harvey, M. A. S.
Jones, M. McKeown, R. L. Pinning, A. R. Porter, K. Roy, M. Riding, “The Tera-
Gyroid Experiment.” Workshop on Case Studies on Grid Applications, Proceedings of
the Global Grid Forum GGF10 Conference, Berlin, 2004. (Available online, cf. URL:
http://www.zib.de/ggf/apps/meetings/ggf10.html .)

[7] J. Harting, M. J. Harvey, J. Chin and P. V. Coveney, “Detection and tracking of
defects in liquid crystals.” (Submitted for publication, 2004.)

[8] I. W. Hamley, “Introduction to soft matter.” (Chichester, UK: Wiley, 2000.)

[9] W. M. Gelbart, D. Roux, and A. Ben-Shaul, “Modern ideas and problems in amphi-
philic science.” (Berlin: Springer, 1993.)

[10] G. Gompper and M. Schick, In Phase Transitions and Critical Phenomena. C. Domb
and J. Lebowitz (eds), Vol. 16, pp. 1–176 (London: Academic Press, 1994).

121



122 BIBLIOGRAPHY

[11] D. Chapman and M. N. Jones, “Micelles, Monolayers, and Biomembranes.” (Chich-
ester: Wiley, 1994).

[12] P. Kumar and K. L. Mittal (eds), “Handbook of Microemulsion Science and Technol-
ogy.” (New York: Marcel Dekker, 1999).

[13] G. Gompper and M. Schick, In Handbook of microemulsion science and technology.
P. Kumar & K. L. Mittal (eds) (New York: Marcel Dekker, 1999.)

[14] S.-J. Marrink and D. P. Tieleman, J. Am. Chem. Soc. 123, 12383 (2001).

[15] V. Luzzati, R. Vargas, P. Mariani, A. Gulik, and H. Delacroix, J. Mol. Biol 229, 540
(1993).

[16] J. M. Seddon and R. H. Templer, in Handbook of Biological Physics. R. Lipowsky
and E. Sackmann (eds) (Elsevier Science B. V., London, 1995.) Vol. 1, pp. 97–153.

[17] L. D. Landau and E. M. Lifshitz, “Fluid mechanics.” (London: Pergamon Press,
1959.); G. K. Batchelor, “An introduction to fluid dynamics.” (Cambridge : Cam-
bridge University Press, 1967.)

[18] G. K. Batchelor, “An introduction to fluid dynamics.” (Cambridge: Cambridge Uni-
versity Press, 1967).

[19] D. Gueyffier, J. Lie, A. Nadim, R. Scardovelli, and S. Zaleski, J. Comput. Phys. 152,
423 (1999).

[20] O. A. Ladyzhenskaia, “The mathematical theory of viscous incompressible flow.”
(New York: Gordon & Breach, 1969.)

[21] G. Tryggvason, B. Bunner, O. Ebrat, W. Tauber, in Computations of Multiphase
Flows by a Finite Difference/Front Tracking Method. I Multi-Fluid Flows, 29th Com-
putational Fluid Dynamics Lecture Series 1998–03 (Von Karman Institute for Fluid
Dynamics) (Cf. URL: http://www-personal.engin.umich.edu/˜gretar .)

[22] S. Harris: “An Introduction to the Theory of the Boltzmann Equation.” (New York:
Holt, Rinehart & Winston, 1971.)

[23] J. H. Ferziger and H. G. Kaper, “Mathematical theory of tranport processes in gases.”
(Amsterdam: North-Holland, 1972.)

[24] The limit N → ∞, m → 0, λ → 0, with both Nλ2 ≡ (mean free path)−1 and Nm

fixed, where N stands for the number of particles, m is their mass, and λ is the range
of the interparticle, hard-sphere potentials, was baptised ‘the Boltzmann-Grad limit’



BIBLIOGRAPHY 123

by O. E. Landford III. In addition, the density has to be sufficiently low so that only
binary collisions need be considered (consequence of λ → 0), and spatial gradients
small enough such that collisions can be thought of as localised in space. The most
rigorous proof that in this limit the Stosszahlansatz, and therefore the Boltzmann
equation (without a body force term), is exact for at least short times was provided by
Landford in 1981 (Physica A 106, 70 (1981)), the system described being an ideal gas.
In 1985 Reinhard Illner and Mario Pulvirenti extended the result to three dimensions
(cf. C. Cercignani, R. Illner and M. Pulvirenti, in The mathematical theory of dilute
gases, Applied Mathematical Sciences 106 (New York: Springer-Verlag, 1994)). See
also http://www.ann.jussieu.fr/publications/1995/R95026 Perthame.ps.gz for a list
of references on collision models in Boltzmann’s theory.

[25] M. Bonitz, “Quantum Kinetic Theory.” (Stuttgart: Teubner Verlag, 1998. ISBN 3-
519-00238-8.)

[26] H. Grad, Comm. Pure Appl. Math. 2, 331 (1949).

[27] D. Jou, J. Casas-Vázquez and G. Lebon, “Extended Irreversible Thermodynamics.”
(Berlin: Springer, 1996.)

[28] I. Prigogine, “Introduction to thermodynamics of irreversible processes.” (New York:
Interscience, 1967.)

[29] R. M. Velasco and L. S. Garćıa-Coĺın, J. Non-Equilib. Thermodyn. 20, 1 (1995).
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