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Chapter 1

Introduction

Science may be described as the art of systematic over-simplification

—the art of discerning what we may with advantage omit.

Karl Popper

LUIDS ARE PART OF OUR DAILY LIVES. Furthermore, they comprise two (possibly
Fthree) states of matter, and are ubiquitous: the ratio of solid to fluid matter in
the observable universe is negligible. Moreover, if the solid state is defined as that in
which atoms’ positions are fixed, when averaged over sufficiently long times, and the
fluid state as that in which they are not, then, in full rigour, only crystals are solids.
Amorphous matter is characterised by an order parameter lacking not only the discrete
translational symmetry found in crystals, but also, for fixed temperature and pressure, a
state of global equilibrium. Interestingly, there are systems, microscopically considered as
fluids according to the definition just given, that, however, present discrete translational
invariance at larger length scales, i.e., mass density shows a crystalline structure when it is
probed at length scales which are large enough to contain a statistically meaningful number
of atoms, typically in the 10 nm—1 pm range. These systems have features reminiscent
of solids if the word ‘atoms’ in the definition above is replaced by ‘cells’, a cell being a
spatial sampling window large enough to allow the observation of statistical trends of the
underlying microscopic fields, i.e., of a mesoscopic size. Matter showing these features is
amenable to re-classification: in fact, it was baptised as the liquid crystalline state.

Early theoretical studies of fluids were exclusively based on the continuum hypothesis.

9



10

1. Introduction

By 1830, the Navier-Stokes equations had become the equations of fluid motion par ez-
cellence, a prime example of a model for nonequilibrium phenomena decades ahead of a
rigorous formulation of either kinetic theory or Gibbsian equilibrium statistical mechanics.
It was not before the end of the 1930s that statistical mechanics had matured enough to
be able to provide consistent mesoscopic condensed matter theories accounting for fluc-
tuations and phase transitions. It was in 1932 that Onsager solved the two-dimensional
Lenz-Ising model exactly, modelling a phase transition; in 1935 Landau published his phe-
nomenological mean-field treatment of phase transitions; in 1940, Fowler & Guggenheim
extended the quasi-chemical method of liquid solutions to take into account long-range in-
teractions; in 1955, Noll proved that by taking appropriate phase averages, any molecular
system modelled by statistical mechanics can be shown to satisfy exactly the equivalent
field equation for a continuous material; in 1957 Alder & Wainwright computationally dis-
covered a phase transition in a gas of hard spheres. Computer simulation was employed
as a necessary tool in solving models of matter which incorporate microscopic informa-
tion. Examples of these are kinetic models, mainly used for the calculation of transport
properties of simple gases and their mixtures, and Ising-like, Monte Carlo and molecular
dynamics models, used to study phase transitions, correlation functions and transport

properties of liquids [1, 2, 3].

The advent of scaling theories in modelling polymer solutions [4] made it possible to
tackle fluid systems of a more complex nature than the ones investigated hitherto; the
distinction between ‘simple’ and ‘complex’ fluids came into existence for the first time.
Also called ‘soft matter’ following P.-G. de Gennes, complex fluids encompass a range
of systems whose common, defining feature is the presence of a mesoscopic length scale
which necessarily plays a key role in determining their properties. At a first glance, features
such as a multi-species composition or molecular self-assembly might also be considered
as alternative definitions of a complex fluid. However, there are counter-examples to
this: fluid mixtures do not necessarily present a mesoscopic length scale determining their
properties, and, regarding the second feature, systems such as colloidal suspensions of
particles of fixed molecular weight do not show self-assembly. Complex fluids invariably
show ‘anomalous’ properties, in the form of rheological, optical, electrical and magnetic
responses which are nonlinear, i.e., they are not proportional to the external ‘force’ causing
them. In all of these cases, it is the supramolecular scale of the fluid that allows the
molecular responses to superpose and yield a ‘strong’, co-operative effect; its behaviour is

determined by several length and time scales.

It is enough to mention some examples of complex fluids to recognise their immediate
and overwhelming practical importance. In fact, micellised surfactants provide the ba-
sis for numerous industrial processes and cosmetic and detergent applications; polymers

constitute the most important class of synthetic materials due to their ample range of
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structural, optical and rheological properties; most biological and geological fluids (e.g.
blood, cell cytoplasm and mud) are colloidal suspensions of some kind. Furthermore, bio-
logical cell membranes are made up of closed bilayers of phospholipids, of an amphiphilic
nature; on a more fundamental level, proteins and DNA are biopolymers.

As we shall see briefly, they consist of a surfactant-like species dispersed in a fluid
which in turn can have internal structure, e.g., an immiscible fluid. Despite the fact that,
e.g., surfactant molecules can have a relatively small size compared with that of polymers
and colloids, they can give rise to striking modifications of the macroscopic behaviour of
the fluid in which they are dispersed due to the broad range of length and time scales
spanned as a result of their self-assembly. For this reason, amphiphilic systems can be
considered a paradigm class of complex fluids of low molecular weight. Since they are
S0, it is reasonable to regard them as ideal testbeds for models aiming to incorporate, in
a bottom-up fashion, following a complexity paradigm, the simplest possible molecular
detail into existing fluid flow solvers in the mesoscopic domain such as lattice gases, and
related lattice-Boltzmann methods.

Our objective for the research presented in this thesis has been the validation of vari-
ants of the lattice-Boltzmann and lattice-gas mesoscopic models for fluid dynamics by
investigating surface tension, phase segregation, self-assembly and shear-induced proper-
ties in two types of complex fluids, binary immiscible and ternary amphiphilic mixtures.
Within the broad context of condensed matter, these methods are generically classified
as mesoscopic since they deliberately retain only a reduced set of the microscopic degrees
of freedom. This makes them gain several orders of magnitud more algorithmic efficiency
than fully-microscopic methods—the job of the modeller is, then, to map out their physi-
cally relevant parameter space.

The research carried out in this PhD project generated a number of papers accepted
and/or published in both peer-reviewed international journals and conference proceedings,
and a further work in the form of a preprint of imminent submission by this thesis’ sub-
mission date. Copies of these papers, except the ones indicated, are included in chapters 3
and 4. The papers of whose work reported therein and writing I am the main contributor

are, in inverse chronological order, the following:

1. N. Gonzélez-Segredo, J. Harting and P. V. Coveney, “Stress response and struc-
tural transitions in sheared gyroid and lamellar amphiphilic mesophases: lattice-
Boltzmann simulations.” (Preprint, Centre for Computational Science, 2004.) (An-

nexed on p. 95.)

2. N. Gonzilez-Segredo and P. V. Coveney, “Coarsening dynamics of ternary amphi-
philic fluids and the self-assembly of the gyroid and sponge mesophases: lattice-
Boltzmann simulations.” Phys. Rev. E, (in press, 2004). (Annexed on p. 73.)
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3. N. Gonzdlez-Segredo and P. V. Coveney, “Self-assembly of the gyroid cubic mesophase:
lattice-Boltzmann simulations.” Europhys. Lett. 65, 795 (2004). (Annexed on
p. 65.)

4. N. Gonzdlez-Segredo, M. Nekovee and P. V. Coveney, “Three-dimensional lattice-
Boltzmann simulations of critical spinodal decomposition in binary immiscible flu-

ids,” Phys. Rev. E 67, 046304 (2003). (Annexed on p. 47.)

5. N. Gonzélez-Segredo and M. Foster, “pLRME2D: A parallel implementation of a
two-dimensional hydrodynamic lattice-gas model with long-range interactions,” Pro-
ceedings of the Sixth European SGI/Cray MPP Workshop, Manchester, UK (2000).
(Annexed on p. 107 and available online,

cf. URL: http://mrccs.man.ac.uk/mpp-workshop6 /proc/gonzalez.htm .)

The papers of which I am not first author are:

6. P. J. Love, M. Nekovee, P. V. Coveney, J. Chin, N. Gonzilez-Segredo, and J. M.
R. Martin, “Simulations of amphiphilic fluids using mesoscale lattice-Boltzmann
and lattice-gas methods,” Comp. Phys. Commun. 153(3), 340-358 (2003). (Not
included in this thesis.)

7. M. Nekovee, J. Chin, N. Gonzélez-Segredo, and P. V. Coveney, “A parallel lattice-
Boltzmann method for large scale simulations of complex fluids,” E. Ramos et al.
(eds), Computational Fluid Dynamics, Proceedings of the Fourth UNAM Super-
computing Conference, Singapore (World Scientific, 2001). (Not included in this
thesis.)

It is worth noting that a new line of research at the Centre for Computational Science
(Christopher Ingold Labs, University College London), namely, the study of defect dy-
namics in gyroid cubic mesophases, sprouted from the study of amphiphilic self-assembly
presented in this thesis [5]. The first landmark of this ongoing line of research has been
the successful TeraGyroid project [6, 7], aimed at harnessing the power of remote high-
performance compute and visualisation platforms and storage devices via grid-enabled
computational steering tools to explore the parameter space of the amphiphilic lattice-
Boltzmann model presented herewith.

This dissertation is structured as follows. The remainder of this Introduction presents
the physical features of the systems subject of our investigation. Section 1.2 gives an
account of existing models for the simulation of multiphase fluids. Starting from kinetic
theory and molecular dynamics basics, we justify the need for, and give an exposition
of, methods in the mesoscopic scale which are able to either (a) contract the overwhelm-
ing amount of molecular information available from the microscopic realm and reduce

the computational burden associated to their description, or (b) incorporate particulate
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features, since continuum approaches are insufficient in dealing with phenomena such as
self-assembly. Section 1.2 finishes with a presentation of the role of computer simulations in
the study of fluid and soft matter and of the burgeoning field of high-performance comput-
ing. I finalise the Introduction with a presentation of the research reported in this thesis.
In Chapter 2 I give a summary of the results and discuss them. In Chapter 3 I include
copies of the papers published and accepted for publication in peer-reviewed international
journals. In Chapter 4 I substantially complement the previous chapter by including one
preprint to be imminently submitted, and one paper published in the Proceedings of an

international conference. In Chapter 5 I provide the final conclusions.

1.1 Amphiphilic fluids are complex fluids

What is a ‘simple’ fluid? Figure 1.1 is a typical pressure-temperature phase diagram for a
noble gas, such as argon, and let us consider a sample of which containing a large number
of atoms. At sufficiently high temperature and moderate pressures, the sample will be in
its gas or vapour phase; upon gradual cooling, the gas will undergo condensation which,
depending on the pressure, will proceed via coalescence of liquid droplets or solidification
into crystalline flakes. This phase transition from vapour to denser states can also occur
at fixed temperature by increasing the pressure. Distinctive states in this diagram are
given by the triple point, where three phases share the same thermodynamic variables,
and the critical point, beyond which the transition between vapour and liquid is no longer
first-order: it does not require a latent heat and the specific volume does not go through
a step discontinuity.

Phase diagrams such as the one just described are characteristic of what we call ‘simple’
substances. We can include water among these; despite the unusual properties that this
ubiquitous liquid exhibits, its equilibrium phases are still vapour, liquid and crystalline
solid, its transitions are first-order, and areas of phase coexistence are of zero measure. In
addition, ‘simple’ fluids are Newtonian: the stress is well described as being proportional
to the velocity-field gradient, or strain rate, the proportionality constant being, in general,
a tensor which does not depend on the velocity or its gradients.

Complex fluids are invariably characterised by equilibrium phase diagrams of a different
nature, see Fig. 1.2. Their phases can be numerous and greatly depend upon the par-
ticular system under consideration (polymeric, colloidal, amphiphilic, liquid crystalline);
the following phases are examples: sponge (dispersed or bicontinuous microemulsions),
lamellar, columnar (or tubular), cylindrical or elongated micellar, cubic (fcc, bee, micellar
cubic, bicontinuous), and liquid crystalline isotropic, columnar, and nematic and smectic,
the latter two names derived from Greek for ‘filament’ and ‘to slide’, respectively. Complex

fluids’ phase diagrams can present regions of phase coexistence of the same dimension-
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ality, n, of the phase diagram itself, instead of n — 1 as it occurs in phase diagrams of
simple substances. Complex fluids’ non-equilibrium properties are, in addition, typically,
non-linear.

The term amphiphilic fluid is
broadly used to denote multiphase
fluids in which at least one species
is of a surfactant nature (from sur-
face active agent, also called an
amphiphile). The kind of amphi-
philic fluid we shall deal with in

this thesis is that consisting of a

crystalline
solid

pressure

binary immiscible fluid in which

an amphiphile has been dispersed. vapour

I shall use the terms ‘amphiphile’

and ‘surfactant’ interchangeably,
although others may understand tenperature
the latter as only man-made and . ] ) )
Figure 1.1: Phase diagram of a hypothetical ‘simple’ sub-

refer to the former in a different )
stance, showing the most common states of matter, first-order

or broader context. o )
transitions between them and areas of phase coexistence of zero

A surfactant molecule contains || cire.
a polar headgroup attached to a

hydrocarbon or aliphatic tail which, dispersed in a binary immiscible fluid mixture, such
as oil and water, is driven towards and adsorbed at the interface between the two flu-
ids. The selective chemical affinity between each part of the surfactant molecule and the
components of the binary fluid is the mechanism responsible for such a taxis [9]. This
is a process which is energetically favoured relative to their entropically beneficial dis-
persion in the bulk, provided that the amount of amphiphile is below the critical micelle
concentration. Such a concentration is a threshold for the formation of globular clusters
(colloidal aggregates) of amphiphilic molecules, bound together by the chemical affinity of
their aliphatic chains and the repulsion from the ionic solvent; this is an activated process
which can be favoured by certain changes in solution pH, and leads to sudden variations
in interfacial tension once it starts, due to the fact that the micelle population eventually

shoots off.

The interfacial tension of an immiscible fluid, or the surface tension of a liquid-vapour
interface for a pure fluid, is a free energy per surface area in the sense of the amount of work
needed to create a unit area; this is equivalent to the force per unit length associated to
the (reversible) process of creating such a unit area. During the adsorption of amphiphile

onto the interface, the temporal evolution of the interfacial tension depends upon the rate
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and spatial distribution of the amphiphile adsorbed onto it. In a liquid-vapour mixture,
interfacial tension is the result of intermolecular cohesion forces being different for the
two phases, hence creating different molecular correlation lengths. In a binary immisicible
fluid, intermolecular forces can predominantly be either cohesive or repulsive; either way,
or both, this effectively creates a molecular selection mechanism which leads to molecular
repulsion and, hence, phase segregation. The fact that the amphiphile has affinities for both
of the phases or species leads to its interfacial adsorption, and, as soon as a statistically
significant number has been locally adsorbed, to functioning as an anchor between the
phases. The gradient of the order parameter, i.e., of the difference in compositions or
densities, experiences a net local reduction due to the presence of a density of adsorbed
surfactant, and hence so does the interfacial tension since it is proportional to such a
gradient. This reduction makes the interface locally floppier and creates a local imbalance
of lateral forces on the fluid layer defined between the interface and a depth into the bulk
which will depend on the size of the surfactant molecule’s head or tail and its correlation
with the surrounding fluid. In other words, the fluid surrounding the interfacial region
where surface tension has dropped will exert a force per unit length tangentially to the
interface which will not be balanced by the forces from the region of lower surface tension.
As a result, an unsteady and spatially nonuniform tangential shear stress will kick in,
causing the interface to stretch, spreading the amphiphile monolayer and entraining the

fluid below, deforming the interface. This kind of flow is generically called Marangoni
flow.

The renowned property that amphiphiles lower the interfacial tension of a binary im-
miscible fluid (see, e.g., Ref. [10]) occurs for an equilibrated and homogeneous distribution
of adsorbed amphiphile, which may well not be the general, nonequilibrium case. Local
reduction of interfacial tension makes the interface locally floppier, causing the creation of
interfacial surface. As more interfacial surface is created, so more amphiphile dispersed in
the bulk can be accommodated on it. However, this mechanism is in competition with the
Marangoni spreading flow, which causes the interfacial tension to increase to a value close
to that for zero surfactant concentration. The actual fluid dynamics related to amphiphile
adsorption is hence highly dependent on the particularities of the system, i.e., for example,

densities, shear viscosities and chemical affinities.

Amphiphilic fluids are not only important in physical chemistry, structural biology, soft
matter physics and materials science from a fundamental perspective, but their applica-
tions are also widespread. Detergents and mammalian respiration are two common exam-
ples in which surfactants are present. Living cell membranes are complex macromolecular
assemblies comprised in large part by self-assembled phospholipids, of an amphiphilic na-
ture [11]. Sponge mesophases are formed as a result of an amphiphile dispersion or melt at

an appropriate composition, and enjoy numerous applications in medical research as well
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as the pharmaceutical, cosmetic, food, and agro- and petrochemical industries [12, 13].
Lipidic, liquid crystalline mesophases, ubiquitous in biological systems, are also formed
from amphiphilic dispersions or melts, and have important applications in membrane
protein crystallisation, controlled drug release and biosensors [14, 15]. These phases are
termed mesophases since their intrinsic internal length scales range between characteristic

molecular and hydrodynamic (or macroscopic) ones [9, 10, 11].

Depending on temperature,

pressure and fluid composition,

ing attraction-repulsion mecha-

W+ L
the amphiphile can self-assemble 1
and force the oil-water mixture
into a wealth of equilibrium struc-
tures. The self-assembling pro- )
cess is dictated by the compet- é L

nisms present among the species.
Lamellae and hexagonally-packed
cylinders are examples of these
mesophases, also referred to as

L, and H, respectively, with trans-

lational symmetry along one or concentration
two directions. Other examples

are the sponge (Lg) mesophase Figure 1.2: Phase diagram of a common nonionic surfactant,
and the micellar (Q223 or Pm3n, polyoxyethylene alkyl ether C12Eq, where C,, is the hydrophobic,
or Q227 or F'd3m), primitive (“P”, methylene or methyl chain, and E, is the hydrophilic, oxyethy-
Q229 or I’m3m), diamond (“D”, lene chain. ‘W’ denotes the surfactant-containing water phase,
“F7, Q224 or Pn3m) and gyroid ‘L’ denotes an inverse micellar phase, ‘Vi’ denotes a normal
(“G”, Q2% or Ia3d) cubic meso- bicontinuous structure, and ‘S’ denotes a solid phase. Adapted
phases, all of which lack trans- from Hamley [8].

lational symmetry [16]. Among

all the aforementioned phases, only the sponge mesophase is devoid of long-range order
and so cannot be classified as a liquid crystal: it is rather characterised by glassy features.
Figure 1.3 shows a schematic depiction of some mesophases formed from a blend of two
amphiphilic fluids. These mesophases are termed lyotropic since it is the mass fraction of

the components that determines the transitions.

A sponge mesophase formed by the (amphiphilic) stabilisation of a binary immiscible
fluid mixture is called a microemulsion. Since we shall be dealing with oil and water in
equal proportions, we shall be concerned with bicontinuous microemulsions. A bicontin-

uous microemulsion is a structure consisting of two percolating, interpenetrating oil and
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Figure 1.3: Schematic depiction of some mesophases formed from a blend of two amphiphilic fluids, A

and B. In this example, the transition between the four renowned mesophases is lyotropic, i.e., driven by
concentration. From left two right, the pictures correspond to the micellar, tubular, gyroid and lamellar

mesophases.

water phases separated by a monolayer of surfactant molecules adsorbed at the interface.
Oil and water are isotropically mixed, and ordering is short range. Sponge phases formed
by the dispersion of amphiphile in a single phase solvent differ from microemulsions in
that it is a surfactant bilayer which underlies the structure, and the regions it divides are
occupied by the same fluid component. A gyroid phase is also a bicontinuous, interpene-
trating structure; however, ordering is evidently long range, whence its classification as a
liquid crystal. In the gyroid, the locus where most of the surfactant resides is a triply pe-
riodic minimal surface (TPMS) whose unit cell is of cubic symmetry. The surface has zero
mean curvature, no two points on it are connected by a straight segment, and no reflexion
symmetries are present. Isosurfaces of the gyroid phase for which oil and water are not at
equal composition (minority phases) form mutually percolating, three-fold coordinated,
regular lattices. Other examples of triply periodic surfaces of zero mean curvature arise
in the P and D mesophases, the minority phase isosurfaces of which exhibit coordination

numbers of six and four, respectively.

1.2 Modelling and simulation of multiphase fluids

Classically, the theoretical study of the non-equilibrium behaviour of fluids has been based
on the solution of the Navier-Stokes equations [17]. These are equations for the balance

of momentum and mass, which, for a compressible fluid and using an Eulerian system of
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reference, have the form:

Op+V-(pu) = 0, (1.1)
O(pu) +V-(puu—-0) = F, (1.2)
o= —pl+N , N=2n(Vu) +(V-u)l (1.3)

where puu—o is the momentum flux density tensor, o is the stress tensor, p is the scalar or
hydrostatic equilibrium pressure, p = %tra, I1is the deviatoric, non-equilibrium or ‘viscous’
stress tensor, 71 is the dynamic shear viscosity, ¢ is the bulk viscosity, the circle subtracts

the trace, trVu = V - u, which is zero in an incompressible fluid, the “s”

superscript
denotes the symmetrisation %(a +a™), where a is a generic 2-tensor, | is the unit 2-tensor,
and, finally, F' is an external force. Setting aside the obvious effect of the external force,
cf. Eq. (1.2), except when causing an initial perturbation, this Eulerian representation
clearly shows the irreversible evolution of the system: the momentum density is locally
increased at a rate set by V-0 = —Vp+nV2u+(VV -u, where we have assumed uniform
viscosities. Alternatively, it is customary to find the last equations written in a Lagrangian

representation; for an incompresible fluid, they appear as

Diyp = —pV-u, (1.4)
pDiu = —Vp+nV?u+F, (1.5)
V-u = 0, (1.6)

where Dy = 0y + u - V is the time derivative along the streamline.

The Navier-Stokes equations have been the paradigm equation of motion used by
continuum fluid dynamicists for more than 150 years [18, 19]. Finding analytical solutions
for them has drawn the attention of mathematicians seeking theorems of existence and
uniqueness [20], and made significant contributions to the theory of non-linear equations.

The Navier-Stokes equations, however, remain an approximation to fluid motion, al-
though this is frequently overlooked. From a kinetic-theoretic perspective, as we shall see
in Section 1.2.1, they are derived at a restricted level of microscopic detail. In modelling
multiphase flows, characterised by the presence of a moving boundary condition, much
computational effort needs to be spent in tracking the evolution of the interface itself,
although some recent progress has been made in this respect [21]. Indeed, the fact that
the interface width is zero, i.e. diffusive effects are excluded, is a limitation in dealing
with problems in which the fluid’s length scales are comparable to such a width, such as

in phase segregation, interfacial phenomena and flow in porous media.

1.2.1 Kinetic theory

Classical kinetic theory offers an alternative approach to the study of non-equilibrium fluid

phenomena to continuum fluid dynamics. The time evolution of the system is described by
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means of a single equation, the transport equation, whose only unknown, the distribution
function, not only carries all the information on the spatial distribution of the fluid’s
molecular contituents, but also on their velocity distribution.

Kinetic theory is in turn an approximation to the full description of the system in terms
of its microscopic, many-body, Newtonian dynamics. The BBGKY hierarchy [22, 23] for a
system of N interacting molecules, equivalent to the Liouville equation for the (classical)
motion of their N-particle probability distribution function in a 6/N phase space, is an
equation for the reduced, r-particle distribution, F}., where 1 < r < N, as a function of
F,4+1. The reduced distribution F, is defined as the integral of Fiy over the phase space
of the remaining 6(N — r) dynamic variables. The recursive character of the hierarchy is
what holds up its equivalence to the fundamental, many-body, Liouville equation; for the

hierarchy to be solved, it needs to be self-contained, i.e. it needs to be ‘closed.’

Boltzmann equation

The closure of the BBGKY hierarchy is what defines the passing from a many-body theory
to a kinetic or transport theory approach, which is done by defining F,.,; as a function
of F, in an ad hoc fashion. For most gases and liquids, and for practical reasons,the
description is kept to its coarsest levels, namely » = 1 and 2. The closure at » = 1 is what

is defined as the Boltzmann equation, which has the form
F . . I
o v Vi Ver = [[[vusiim(sr - i) eewies an

where f = f(x,£,t) = Fy, a prime means that the coordinates in question are those of the
partner molecule in a binary collision whereas a tilde denotes pre-collisional coordinates,
and V(ff] ff ) is a scattering function, or probability of the transition from the ingoing
distribution, f f’ , to the outgoing distribution, f f’. This equation requires assumming the
Stosszahlansatz, or molecular chaos assumption, i.e. the evolution of any one particle is

sufficiently described by using single-particle distributions, and hence

B =7frf. (1.8)

The Stosszahlansatz, Eq. (1.8), restricts the range of validity of the Boltzmann equation
to what is known as the Boltzmann-Grad Limit (BGL) [24]. Effectively, the BGL is a
prescription for the coarsest mean-field approximation that can be carried out on the

equations of motion of the system.

Contraction of information

The Boltzmann equation is an integro-differential equation for the single-particle distribu-

tion function, f. This distribution, which lives on a 6-dimensional (position and velocity)
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phase space, not only provides information on how probable it is for a molecule to be found
around a given spatial position but also with what microscopic (or molecular) velocity; in

other words, how populated such a microscopic velocity is at that position.

Continuum fluid dynamicists are, however, not concerned about the population of
molecular velocities. Rather, they are ultimately interested in predicting macroscopic
quantities such as the fluid velocity, stress and temperature fields. Even in regimes in
which many-body quantum-mechanical effects [25] are negligible, such as for a broad
range of temperatures and pressures in gases and liquids without chemical reactions, the
uncertainty principle renders it impossible for experimental probes to fully explore micro-
scopic information, which effectively becomes averaged out. This indicates the need to
resort to averaging the minimally detailed information available at the microscopic level
that a kinetic description provides in order to obtain one which can be directly related

with experience.

This contraction of information is performed by integrating the transport equation
over the whole subspace of microscopic velocities, in a similar fashion to the contraction of
a subset of the Liouville equation’s dynamic variables, leading to the BBGKY hierarchy.
Since the macroscopic quantities of interest, such as mass and linear momentum density,
stress (pressure tensor) and kinetic energy density are defined as moments of the distri-
bution function with respect to the microscopic velocity &, by multiplying the transport
equation by a polynomial of £ and integrating over velocities, in what is called the Grad’s
moment method, leads to the macroscopic, hydrodynamical balance equations [26]. At this
level, all reference to microscopic information has been lost. These equations, however,
are not a closed set since they contain unknowns which are moments of higher order than
those of the quantities being advected; in fact, they are related to the fluxes of the latter.

These higher-order moments appear, in the Grad’s method, as independent variables.

In theory, the determination of these higher-order variables poses no difficulty to the
transport kineticist since a knowledge of the distribution function (solution of the trans-
port equation) allows to determine directly and exactly all of its moments. A purely
macroscopic approach, however, requires the closure of the set, i.e. the use of an Ansatz:
the constitutive relations. Following such an approach, having obtained a non-closed set
of balance equations by integrating the Boltzmann equation, the Navier-Stokes equations
arise when the stress (second moment of f with respect to the excess or peculiar molecular
velocity) is considered proportional to the strain rate; if the proportionality (transport)
coefficient is independent of the latter, the fluid is termed Newtonian. In this scheme, the
ideal hydrodynamic, or Euler, equations arise for an inviscid fluid, i.e. a fluid with zero
shear viscosity. Newton’s constitutive relation can be generalised to take into account
viscoelastic effects by assuming a model for the dependence of the shear viscosity with

the strain rate [27]. In order to close the energy balance equation, the heat flux needs to
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be assumed proportional to the temperature gradient (Fourier’s law), and its transport
coefficient of proportionality (thermal conductivity) independent of it.

From the microscopic point of view, the Navier-Stokes-Fourier equations (Navier-
Stokes equation along with the energy balance equation) are only an approximation and
never exact, and they remain undetermined since the transport coefficients are unknown.
In fact, in a microscopic approach, the balance equations are not needed in order to com-
pute the evolution of the macroscopic variables. Instead, it is the Boltzmann equation
which contains all the information required.

Naturally, the Boltzmann equation, as I have presented it so far, is limited to the
BGL, which restricts the systems it can exactly model, for at least short times, to dilute
and electrically neutral gases without internal structure so that collisions are binary and
localised, and excluded-volume effects negligible. The BGL also precludes contributions
to the energy from intermolecular force fields, since the latter are negligible; an alternative

limit would need to be considered in order to include these effects.

Chapman-Enskog method

Even assuming the existence of solutions to the Boltzmann equation, it is, however, un-
realistic to suppose that we would have fully detailed information of f at any instant,
or, equivalently, the infinite set of its moments. In fact, Hilbert uniqueness theorem [22]
states that “if f can be expanded in powers of some small parameter, then f is uniquely
determined for times ¢ > 0 by the values at ¢ = 0 of its first five moments {p, u, T'}
only,” i.e. by the mass density, baricentric or hydrodynamic velocity and temperature
[22]. This small parameter can be identified with the Knudsen number, Kn, or ratio of
a microscopic to a macroscopic length or time, and the solutions satisfying the assertion
are called normal solutions. The macroscopic variables chosen are the only collisional
invariants under binary collisions, the latter being the only ones allowed in the BGL. The
Chapman-Enskog method [22, 23] is based on such an expansion of f in powers of Kn,
and assumes that the system features a clear scale separation in which Kn is small. A
zeroth-order expansion leads to the Euler equations for an inviscid fluid, whereas a first-
order expansion yields the Navier-Stokes equations. The expressions for the stress and
heat flux (second and contracted-third moments of f, respectively) used to obtain the
Navier-Stokes-Fourier equations by closing the hydrodynamic balance equations emerge
naturally from the method at second order of approximation. These expressions are linear
relations between thermodynamic forces and fluxes, in the sense of the bilinear expression
for the entropy production in local equilibrium thermodynamics [28], valid in a wide class
of phenomena for small Kn numbers [27]. Most importantly, the Chapman-Enskog method
gives expressions for the transport coefficients in terms of microscopic information.

Linear constitutive relations are, however, insufficient for high-frequency and high-



22

1. Introduction

wavenumber phenomena, chemical reactions and viscoelastic behaviour. An improvement
on this direction is meant to be given by the Chapman-FEnskog method to second order,
which leads to corrections to the first-order stress and heat flux (implicit in the Navier-
Stokes-Fourier equations) in the form of first-order derivatives of the thermodynamic forces
or products of two different of such forces. The closed set of equations obtained by using
these corrected relations are called the Burnett equations, albeit still based on the Hilbert
uniqueness theorem, i.e. leading to normal solutions.

Despite the fact that they are corrections to the Navier-Stokes equations, the Burnett
equations have enjoyed considerably less success than the former, owing to a lack of knowl-
edge of this type of partial differential equations, of the form of the boundary conditions
needed to determine the higher-order derivatives in them, and of their validity in regimes

where the first-order approximations cease to be valid [23].

Grad’s moment method

In the search for a more general method of solution of the transport equation, including,
in particular, solutions which are not normal (i.e. not well described by the hydrody-
namic variables alone), Grad’s method provided a suitable alternative [26]. Instead of
expanding f in powers of a small parameter, leading to normal solutions, Grad’s method
expands it in terms of a basis of tensor Hermite polynomials of the microscopic velocity,
the expansion coeflicients being the moments of f with respect to the relevant polynomial.
The advantage of this method rests on its generality: along with the hydrodynamic vari-
ables (p, u and T'), it employs higher moments of f which are not collisional invariants,
hence termed non-hydrodynamic, and whose balance equations can be derived. Also, the
linear, or non-linear ad hoc forms for the constitutive equations hitherto mentioned are
replaced in this approach by hyperbolic balance equations, and the idea is that using an
increasing number of statistical moments of f provides for increasingly higher detail in
the description, closer to that of the full transport equation. An expansion on the first
thirteen moments, namely p, u, T', {0;} and {¢;}, where the last two are the stress tensor
and the heat flux, respectively, and T o tro/p is the temperature, leads to an important
generalisation of the Navier-Stokes equations, which includes the balance equations for
the fluxes {0;;} and {g;}. There have been attempts to use the Grad approximation at
higher orders than the first thirteen moments, aimed at reproducing transport coefficients
depending not only on the frequency, such as in the 13-moment approximation, but on the
wavenumber too [29, 30]. Last but not least, Grad’s moment method has been an inspira-
tion for the formulation of thermodynamic theories of irreversible processes extending the
number of state variables to include non-hydrodynamic, measurable fluxes [27]. Despite
the apparent greater generality of Grad’s method compared to Chapman and Enskog’s,

it nonetheless also has drawbacks, namely, the lack of an expansion parameter allowing
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for control of the order of the approximation; moreover, transport coefficients obtained
from the balance equations are less precise than those provided by a Chapman-Enskog

procedure in the regimes where both are comparable [30].

Simplified Boltzmann models

In the foregoing paragraphs I have given a brief overview of the role of kinetic theory in
fluid modelling. The Navier-Stokes equations are obtained from the Boltzmann equation
at first order of approximation in the Chapman-Enskog method. This implies that the
upper bound for the Knudsen number needs to be small enough, and certainly away from
that of the transition regime between reversibility and irreversibility. On the other hand,
the Boltzmann equation is valid only in the Boltzmann-Grad limit, i.e. for binary, localised
collisions, which imposes a lower bound on the collision length and time scales, that is
to say, on Kn. These two conditions restrict the range of applicability of the Boltzmann
equation in reproducing Navier-Stokes flow.

Transport equations other than Boltzmann’s are also available in order to deal with
a broader range of systems [31]. An example is the Enskog equation, an extension of
Boltzmann equation to dense gases with hard sphere’s intermolecular potential [22, 23].

Finding analytical solutions to the full Boltzmann equation is a daunting task. For
this reason, it is customary to adopt models for the collision term. Examples are the
single relaxation time approximation (or Bhatnagar-Gross-Krook, BGK, model), multiple
relaxation time models, Kac’s, Carleman’s and Broadwell’s models [22]. Despite fact
that these methods are simpler than the full Boltzmann equation, hence containing less
information, their parameters provide a means of mapping their solutions to experimental
data. In addition, in modelling phenomena at a given value of the Knudsen number, their
algorithmic implementations are also more efficient.

In this thesis, one of the methods employed to model fluid dynamics is the lattice-
Boltzmann (LB) method. This can be regarded as a discretisation of the Boltzmann
equation, and hence it would be straightforward to think that such a method will inherit
the properties of the latter, including the range of validity in Kn number. However, we
shall see that, since the LB equation can also be derived from applying the Stosszahlansatz
to a lattice gas, its validity is not particularly restricted to low densities [32].

The applications that we are concerned about in this thesis are binary immiscible
and ternary amphiphilic fluids under creeping, slow flows. We are interested in their
dynamics and the formation of structure, i.e., nonhomogeneities of the order parameter.
The common denominator in these applications is the existence of different phases in the
fluid. Kinetic theoretic methods to this end incorporate phase segregation in the form of

repulsive pair potentials [33], which is the way it is incorporated in our LB model.
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1.2.2 Mesoscopic models

Fluid dynamical methods in the mesoscopic scale came to light as a way to grasp the
relevant thermohydrodynamical behaviour with as little computational effort as possible.
This is achieved by evolving a microworld in which the usual vast number of molecular
degrees of freedom and characterisation have been drastically reduced, based on the fact
that, away enough from critical points, a fluid’s macrostate is pretty much insensitive to

many of its microscopic properties.

The mesoscopic scale comprises lengths and times which are intermediate between
those of the atomistic and the macroscopic worlds. Since it can be defined by the size
of a spatial or temporal probing window which is large enough so that statistical trends
of the underlying microscopic fields can be extracted upon averaging, the actual size of
the mesoscopic scale will depend on the system under scrutiny. Figure 1.4 shows how a
scalar quantity measured on a hypothetical system will vary with the size of such a window

increasing up to the hydrodynamic scale; different behaviours can be distinguished.

The upper limit of the mesoscale is, however, not set by the aforementioned defini-
tion. Depending on the number of statistical moments (of the distribution of the relevant
observable) that we might pay attention to, we could obtain a description which is closer
to one or the other limit in the scale. This vagueness in the definition of the mesoscale
translates into a degree of freedom for the development of theoretical methods of analysis,

which has led to a wealth of numerical approches for the study of complex fluids.

The aim of mesoscopic methods is to contract the amount of information needed for a
fully atomistic description, aiming at grasping macroscopic behaviour which is insentitive
to some of the microscopic details. Since (a) the methods are constrained by what it is
experimentally observed, and (b), due to the contraction of information, in many cases it
is necessary to introduce parameters in them in an ad hoc fashion, most of the methods
fall in the category of phenomenological theories, as opposed to microscopic or ab initio

methods.

There is a clear divide in the approaches taken by mesoscopic methods to date, based
upon how close they are to the macroscopic limit to be modelled; I shall refer to them as
top-down and bottom-up approaches. In connection with my mentioning of the number of
statistical moments to use in probing the microdynamics, at the beginning of this section,
phenomenological approaches ought to be based either on the idea that the micrody-
namics need to be gradually and explicitly replaced by thermohydrodynamic descriptions
as we near the large-scale realm, or that the space of ad hoc parameters, introduced in
order to coarse-grain microscopic interactions, needs to be mapped onto the large-scale

phenomenology.



1.2 Modelling and simulation of multiphase fluids

25

molecular fluctuations

variation due to the
spatia distribution
of the scalar

AN

"local" value of
the scalar

measured scalar

volume of probing cell

Figure 1.4: Variation of a scalar quantity measured on a hypothetical system by a probing
cell of varying size. We assume that time and spatial variations have been smoothed out via
averaging. The variation in the measured quantity with cell size is due to various mechanisms
acting on different length scales: molecular interactions lead to considerable stochastic effects, and
long-wavelength inhomogeneities lead to macroscale variations. In the middle is a ‘mesoscale’, well
defined by a plateau in the plot. Adapted from Boon and Yip [2].

The Ginzburg-Landau theory and model H

Top-down approaches to multiphase fluid modelling assume the local equilibrium hypothe-
sis and use a thermodynamic potential accounting for the phase transition between homo-
geneity and nonhomogeneity, which in a canonical ensemble is the Helmholtz free energy
accounting for interfacial energetics and entropy. The method, known as the Ginzburg-
Landau theory, is similar to the van der Waals’ formulation of liquid-gas transitions [34],
and the equilibrium properties of the fluid structure are obtained through numerical min-
imisation of the thermodynamic potential with relevant constraints. In the case of mul-
tiphase fluids where the inhomogeneities arise as a result of the self-assembly of amphi-
philic molecules, such as in surfactant-containing fluids or co-polymer melts, the actual
expression of the thermodynamic potential is computed from a mesoscopic model of such
molecules under a mean-field approximation [35, 36]. As the reader might have realised,
Ginzburg-Landau methods do not deserve the classification of mesoscopic since they are
at the local thermodynamic level of description, that is to say, only the first-order sta-
tistical moments of the underlying microscopic observables are retained and studied at
stationarity.

In order to model dynamics, such as phase segregation and self-assembly, the free

energy is used to specify the chemical potential in a diffusion equation for the order pa-
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rameter. Designed for regimes sufficiently far from criticality, i.e., where the correlation
length and hence fluctuations are small, thermal effects are injected as a correction noise
term into the diffusion equation. This noise term is what incorporates mesoscopic infor-
mation in the system, albeit in an ad hoc fashion and not as a result of a renormalisation
group, consistent coarse-graining procedure, as exemplified in Ref. [37]. The inclusion of
hydrodynamics in phase-segregating fluids was carried out by Cahn and Hilliard [38] and
termed Model H [39], which we present as follows. The model couples an anti-diffusion

equation
OF

8t¢+gu-v¢:MV2%+«9, (19)
where ¢ = ¢(x,t) = pp — pa is the order parameter (difference between the components’
densities), the functional derivative is the local chemical potential of the mixture, §F/d¢ =
i, M is a phenomenological transport coefficient (the mobility), which serves to tune the
interfacial tension, g is a coupling parameter, and 6 is a Gaussian white noise source,

correlated according to

@ = o, (1.10)
O(x,)0(x'", 1)) o d(x—x)5(t—1), (1.11)

where the proportionality coefficient is a normalisation constant. In Eq. (1.9), F is the

following free energy functional

Fol = [ate{ywer o)}, (112)
F6) = ad?+bot. (113

Here, d is the space dimensionality, f is the local free energy density, and a and b are
scalar functions of the temperature such that there is only one minimum (¢ = 0) above
the critical temperature, T;, and two symmetric minima (¢ = £¢g) below it; the order
parameter becoming non-zero signals the symmetry breaking in the initial homogeneous
phase, ¢ = 0. Equation (1.9) models a purely diffusional phase segregation when u = 0
and M > 0; in general, this equation is coupled to the Navier-Stokes momentum balance

equation as follows

oF
pDyu = —Vp + nViu — ¢v£, (1.14)
where the last term of the right hand side accounts for a dissipative force proportional to

the gradient of the chemical potential.

Lattice-gas models

The principle of similarity in fluid dynamics states that provided two fluids sharing the

same Reynolds number, then, irrespectively of their microscopic differences, their flows
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will behave identically. This justifies why wind or water tunnels may indifferently be used
for testing low-Mach number flows. In fact, two fluids with quite different microscopic
structures can have the same macroscopic behaviour because the form of the macroscopic
equations is entirely governed by the microscopic conservation laws and symmetries. These
observations, among others, led in 1986 to a novel simulation strategy for fluid dynamics,
the lattice-gas automaton [40, 41], based on cellular automata. Cellular automata, first
introduced by von Neumann [42], consist of a lattice, each site of which can have a finite
number of states (usually coded by Boolean variables); the automaton evolves in discrete
time steps, the sites being simultanously updated by a deterministic or nondeterministic
rule, and typically, only a finite number of neighbours are involved in the updating of
the states [32]. In addition to these features, lattice gases introduce particular constraints,
such as mass and momentum conservation and the correct lattice symmetry, so as to recre-
ate a fictitious discrete microworld approximation to that of continuum, ‘real’ molecular
dynamics in a way that fluid dynamics is recovered in the macroscopic limit; in this sense,
lattice gases are genuinely bottom-up, mesoscopic models.

The principle of similarity was not the only motivation in the development of lattice
gases. It is known that numerical instabilities are a common cause for concern for most
algorithms solving continuum fluid equations, especially at high Reynolds numbers. Aside
from the intrinsic accuracy of the algorithm, precision is also a major contributing factor.
In fact, since floating-point representations favour bits in the most significant places, the
algorithm is rendered vulnerable to machine-dependent round-off noise [43].

Following Frisch et al. [32], I now give a general presentation of lattice gases and
their hydrodynamics. Consider a D-dimensional regular, Bravais lattice £ in R of finite
extension L (eventually, we shall make L — oo). Assume that each node, x,, of such
a lattice has a coordination number b, i.e., there are b ‘velocity’ vectors ci of the same
modulus ¢ linking the node to its nearest neighbours, x, + cx. In addition, for any pair
of links ¢, and c;, there exists an element in the “crystallographic” group G of isometries
which maps c; into c;.

The automaton is constructed by associating to each node a b-bit state N(x.) =
{Nk(xx), k=1,...,b}, where each Ny is a Boolean variable. The evolution of the lattice,
more precisely, the update of the Boolean field N{(.), is ruled by two steps, collision followed

by propagation, also called advection. Propagation is defined by the spatial translation
Nk(x*) <—Nk(X*—Ck), (1.15)

where periodical (i.e., wrap-around) boundary conditions are mostly used at the lattice
edge, although others such as no-slip (bounce-back) or sliding periodic (Lees-Edwards’)
can also be implemented; eventually, the particular choice will be irrelevant for the prop-

erties of the bulk since hydrodynamics will emerge for . — oo. The collision step is the
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simultaneous application at each node of nondeterministic transition rules from an in-state
5={8k, k=1,...,b} to an out-state s = {sg, k = 1,...,b}; § and s are particular assign-
ments that state N(x,) can take on. Each transition is assigned a probability A(s|5) > 0,
normalised to one (ZS A(s|s) = 1,V§>, and depending only on § and s and not on the

node. More conditions are imposed on the transition probabilities, namely

e Conservation laws: the only collections of b real numbers a; such that

> (s — k) A(s|8)ar =0, V3, s (1.16)
k
are linear combinations of unity and of the links’ cartesian components cg1, ..., cip,

i.e., only particle number and linear momentum are conserved.

e Invariance under all isometries preserving the velocity set:
A(g(s)l9(3)) = A(sl3), Vg, Vas. (1.17)

e Semi-detailed balance:

ZA(syg) =1, Vs. (1.18)

Note that the stronger, detailed balance condition is A(s|5) = A(S]s).

Specific forms of the transition probabilities can be given through examples of lattice-
gas models, of which we shall give three. The Hardy-Pomeau-de Pazzis (or HPP) model
uses a two-dimensional rectangular lattice, whence b = 4. In general, the Boolean rep-
resentation of a state s is (s,_12°7%, ..., s,2%, ..., 512", 502°), where s, = 0 or 1, and
k=0,...,b—1 are velocity vectors’ labels. In the HPP model, numbering the velocity
vectors as non-negative integers (modulo 4) counterclockwise, the collision rules consist
in exchanging, at each node, the four-bits states 1010 and 0101 and leaving all the other
states unchanged. That is to say, head-on collisions, represented by occupied “input chan-
nels” {k,k + 2} lead to occupied “output channels” {k + 1,k + 3}; in brief, HPP simply
rotates head-on collisions’ incoming velocities by /2, which conserves mass (number of
particles) and momentum. The crucial property of the HPP lattice gas is the existence
of thermodynamic equilibria, despite the fact that no ergodic theorem is known for it [43].
These equilibria are factorised over nodes and directions, independent of node position
but dependent on direction, and have free continuous parameters (the ensemble-averaged
mass and momentum). When density and momentum are varied slowly in space and time,
emerging macrodynamical equations arise which differ from the Navier-Stokes equations
owing to a lack of Galilean invariance and isotropy.

The Frisch-Hasslacher-Pomeau (or FHP) series of models are variants, still in two

dimensions, of the HPP model, with a larger invariance group. The lattice is triangular,
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hence b = 6. The larger group invariance is seen through the fact that head-on collisions
are now degenerate: for in-state {k, k+3} there are two out-states which conserve mass and
momentum, {k+1,k+4} and {k—1,k —4}. Systematically choosing one of the outcomes
leads to a chiral lattice gas, of broken specular symmetry; a random choice will lead to a
nondeterministic lattice gas. The actual random chain needs not be flat-distributed, and,
as we shall see in the annexed paper on page 107, will certainly be node-dependent for

multiphase models, in disagreement with the definition we put forward here.

The FHP collision rules, as they have been laid out so far, lead to invariants other
than just mass and momentum. These so-called spurious invariants are the difference
of particle numbers in any pair of opposite directions, occurring for head-on collisions.
Unless they are removed from the microdynamics, the macrodynamical equations will
differ drastically from the Navier-Stokes equations. One way to achieve this is to introduce
triple collisions {k,k+2,k+4} — {k+1,k+3,k+5}. Another way to remove them is to
add zero-velocity rest particles in binary collisions; at low densities, these remove spurious
conservations more efficiently than triple collisions do. There are three versions of the FHP
models, named FHP-I, FHP-IT and FHP-III, depending on the increasing complexity of
their collision rules, respectively. FHP-III contains rest and spectator particles, the latter

being particles of non-zero velocity which are not affected upon collision.

Finally, as we shall see later, three-dimensional Bravais lattices do not have enough
symmetry to guarantee macroscopic isotropy [43]; instead, isotropy is recovered when
the underlying lattice is a four-dimensional, face-centred hypercube (FCHC), defined by
vectors (x1,x2, 3, 24) such that their cartesian components are signed integers satisfying
that x1 4+ x9 + 3+ x4 is even. From each node there are velocity vectors of length ¢ = V2
linking to b = 24 nearest neighbours, two cartesian components of which differing by +1.
The collision rules should conserve mass and four-momentum whilst avoiding spurious
conservations; this can be achieved with just binary collisions, yet there are different
strategies [32, 44]. Non-deterministic rules are needed to ensure that the collisions and
the lattice have the same invariance group. Three-dimensional fluids are modelled using
a projection of the FCHC model called the pseudo-four-dimensional or projected FCHC
model. This is defined as a spatial three-dimensional cubic lattice with an underlying
four-dimensional velocity lattice. The way the velocity lattice is embedded into the spatial
lattice is by breaking the isotropy of the latter during the advection step: particles with a
non-zero fourth component of the velocity, cp4 = £1, are only allowed to advect to nearest-
neighbouring nodes, one lattice unit apart, whereas particles with a null fourth component,
cpa = 0 are only allowed to advect to the next-nearest nodes, /2 lattice units apart. Nodes
which are v/3 lattice units apart do not intervene in advection. This prescription then
allows for up to two particles to simultaneously advect to nearest-neighbour sites, whereas

there is an exclusion principle for those travelling to the next-nearest sites: there can be
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only one. Collision rules are identical to those for the FCHC model, preserving mass and
four-momentum. A common notation referring to the spatial dimension, d, of the lattice
and the number of velocities, ¢, on each node is DdQyq.

So far we have specified the microdynamics of particular lattice-gas models in terms
of their collision rules. It is however possible to give a compact representation of it in
the form of an equation governing the node’s population, N(x,) [32]. For brevity’s sake,
we shall restrict ourselves to the HPP model; expressions for more complex collision rules
such as those of the FHP and FCHC models are obtained in a similar fashion and involve
many more factors and terms. It can be verified that the right-hand side of the following
collision-advection equation is the out-state, expressed using Boolean operations on the

in-state at node x,,

Nk(X* +ci,t + 1) =
(Nk A =(Ni A Nyo A 7Niyp1 A _‘Nk+3)) % (Nk+1 A Ng43 A 2 Ng A _‘Nk+2)
(1.19)

where the symbols A, = and V stand for AND, NOT and OR, respectively. This equation
can be re-arranged in the form Ny (x. +ck,t+ 1) = Ni(X4,t) + Ag(N), where the collision
operator is a mapping of the type Ay : N(x4,t) — 0,£1. Since Boolean operations can

be cast as base-10 operations, the HPP collision term can also be written as

Ap(N) =
Ni41Ngt3(1 = Nig)(1 = Niy2) = NiNig2(1 = Nigga) (1 = Nigy) (1.20)

It is worth showing that the lattice-gas dynamics is the lattice equivalent of the Louville
equation in phase space. For that, let us define the collision operator as C : Ni(x,) +—
Ni(x4) + Ap(Ni(x4)), the streaming operator as S @ Ni(xs) — Ni(xx — ci), and their
composition, £ = S o, as the automaton’s evolution operator. Then we define the phase
space T' as the set of all possible assignments s(.) = {s} of the Boolean field N(x,), at
X, € L. We now consider at time t, = 0 an ensemble of initial conditions, each endowed
with a probability P(s(.), 0) > 0, such that }° (\cp P(s(.), 0) = 1. Each element of such
an ensemble evolves via the automaton’s evolution operator £, whence the time evolution
of phase space I', i.e., the Liouville equation, can be written as the following equation for

the conservation of probability

P(s(.),t* + 1) - P(E_ls(.),t*) . (1.21)

Evidently, we are considering a deterministic automaton which allows for £ to be invertible.
An expression for Eq. (1.21) in terms of transition probabilities is readily obtainable for

the nondeterministic case.



1.2 Modelling and simulation of multiphase fluids

31

Keeping the analogy, we can now define a macroscopic quantity or observable, ¢ =

q(x,tx), as the mean value of a microscopic quantity Q(s()) as

<Q(s(.))> =Y P(s(.),t*)Q(s(.)). (1.22)
s(.)er

For example, the particle density, ni(xx,t.), which is a quantity evolved by coarse-grained,
transport schemes (such as the LB method), specified at a certain point in position, velocity
and time space, as we shall see, is defined by Eq. (1.22) with Q = N,

<Nk(x*,t*)> = (%, t0) = N (s ) (1.23)

where N is the total number of particles and f; is a probability distribution function, not
necessarily single-particle, in the new, reduced phase space {x,{}. Macroscopic variables
can be calculated by further averaging a la kinetic theory, i.e., as moments of the distribu-
tion function: for example, p =mY , ng, j=m)_, cpny and m Y, (cp —u)(c, —u)ny, for
the mass, momentum, and flux of momentum densities, respectively, where the latter in-
cludes the baricentric or peculiar velocity, (cx —u), in terms of the mean or hydrodynamic

velocity u, defined through j = pu, and m is the particle mass.

The lattice-Boltzmann approximation

The LB method has an double origin: it is not only an approximation to the contin-
uum Boltzmann equation, but also a coarse-grained lattice-gas microdynamics. In this
introduction I shall only elaborate on the former following a derivation after Luo [45]. A
derivation from the latter, the lattice-gas cellular automaton, is conceptually analogous to
the derivation of the Boltzmann equation from the N-body Liouville equation, and is left
at the reader’s discretion [32, 46].

For the sake of generality, we consider the Enskog equation [23] as a starting point. The
Enskog equation is an ad hoc extension of the Boltzmann equation to include the excluded-
volume effect present in dense gases. The equation is restricted to identical hard spheres
(henceforth of radius o), which makes the chances of multiple simultaneous encounters
negligible. Keeping the notation of Eq. (1.7) regarding pre- and post-collisional velocities,
we consider the collision of two of such spheres with velocities £ and &', respectively, being
subjected to an external acceleration field a. Letting X be a unit vector pointing from the

centre of the ‘primed’ to that of the ‘unprimed’ sphere at the instant of contact, and ¢ be
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the relative velocity £ — &, the Enskog equation in absence of external forcing reads
th:J[f], that—I—f-V,
1= [[ @t 0 {100 £ x  0%)

X (x— 0% f ) (x — aﬁ)} ,
(1.24)

where g is the radial distribution, and d?Q(c - %) is a solid angle which is a function of
the projection of the relative velocity ¢ onto the apse line X. For the point particles of
the Boltzmann equation, such a projection is one; also, whilst the Boltzmann equation
assumes the Stosszahlansatz, the Enskog equation utilises a different Ansatz: a non-zero
correlation between the two colliding particles separated by vector r, absorbed entirely by
a radial correlation function g, i.e. Fy(x,&,x+r,&) =g(r)ff .

It can be shown [45] that the single relaxation time or BGK approximation (see Sec-
tion 1.2.1) for Eq. (1.24), assuming the fluid to be isothermal and incompressible, is

Dif = =317 = fM+ 7, (1.25)

where )\ is a scalar relaxation time and J’' depends on the variables describing the volume
exclusion effect, J' = — fIMpg(¢ —u) - VIn(p?g); b is the second virial coefficient in the
virial expansion of the equation of state. In addition, Eq. (1.25) includes the local Maxwell

equilibrium distribution

—u)?
FIM = p(270) P 2 exp [— %] , (1.26)

where D is the spatial dimension, and p, u and © = kgT'/m are the mass density, mean
velocity and specific thermal energy (@1/ 2 is the thermal velocity), respectively, where kg
is the Boltzmann constant and T is the kinetic temperature.

Following Luo [45], a formal solution of Eq. (1.25) can be obtained by integrating along
a characteristic streamline £ over a time interval d;,

x40, & t+0) = e f(x,6,t)
Ot ,
+ %e*‘”g“ / At X9/ fEM(x L et! €t +-1)
0
Ot
+ e‘gfg/*/ A’ P9 J (x4 €t €, t+ 1)
0
(1.27)

Assuming that §; is small enough and that f"M and f have sufficient smoothness in

the kinetic phase space, terms of order O(62) or smaller can be neglected in the Taylor
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expansions of the integrands of last equation. With these approximations, the following

BGK-Enskog equation in continuous space and time is obtained [45, 47|
Ot €0, &t 6) — F(x60) = —T[f(xE0) — S 6 0)
+ J/(Xuéut)(st ’ (128)
where 7 = \/J; is a dimensionless relaxation time. The local Maxwellian Eq. (1.26) can

be Taylor-expanded around £ = 0; a good approximation for an isothermal fluid at low

Mach number is a second-order expansion in u [47],

o0 — u (Cuw? uw
MO = @)1+ 6 e 2@]’
2
w(€) = @2r0) P Pexp [%] (1.29)

From this equation, the lattice-BGK approximation emerges from the correct discreti-
sation of velocity space. ‘Correct’ here means choosing the basis of the discrete space
such that not only the hydrodynamic variables but the higher moments of the distribution

function are preserved ezactly, i.e. the following quadrature is exact [47]
/d3£ w(g)f(xv 57 t) - Z Wk¢(ck)f(xa Ck, t) ) (130)
k

where (&) is a polynomial of £ and W, is the relevant weight coefficient of the quadra-
ture corresponding to microscopic discrete velocity ci. The existence of this quadrature
means that, for example, the hydrodynamic moments can be written as p = mN ), fi =
mN Y, ,50) and pu=mN Y, cpfr =mN ) ckf,io), where fr = fr(x,t) = Wi f(x, &k, t)
and £\ = £19x 1) = W fO(x, & 1), both of the same units of fd3¢. m is the particle
mass and N is the number of particles in the system. The actual values for the weights
Wj, can be obtained by evaluating the equilibrium expectation value I = [ d3¢ v (¢)f(©
for a particular discretisation of the velocity space. I is best calculated in polar coordi-
nates, with the measure d3¢ = £d¢d¢ and the Sonine polynomial form 1(£) = ¥ n(€) =
EMTM cos™ ¢sin™ ¢. In particular, the 9-bit two-dimensional model adopts the following

velocity discretisation

(070) fOI‘ :IC = 07
cp =4 (cos ¢y, singy)e, dp = (k—1)m/2 fork=1,...,4 (1.31)
(cos dr, sin ¢p)V2¢, ¢ = (k—5)r/2+7/4 fork=05,...,8

where ¢ = 0, /0, is the “speed of light” and ¢, is the smallest lattice parameter. Note that
for an ideal gas, since the equation of state is p = p©, the specific thermal energy defines
the speed of sound, © = ¢2, and, for this model, ¢ = V/3¢s. This model’s lattice geometry

leads to the following discretisation for the continuous low-Ma equilibrium, Eq. (1.29),

0 _ 3(cr-u) | 9(cx-w)?  3u’
i = P [1 + c2 + 2ct 2c2

(1.32)
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which is exact only if
4/9  for k =0,
wp=4¢ 1/9 fork=1,...,4, (1.33)
1/36 for k=5,...,8,

and with the discretised volume-exclusion collision term, J;, = —f©bpg(ci —u)-V In(p?g),
to the lattice-BGK Enskog equation

Fe(x + ciby, t+6,) — fulx,t) = —g[fk(x, t) — FO(x, )] + JL(x, )5, , (1.34)

This equation reduces to the lattice-BGK Boltzmann equation for b = 0 and g = 1.

Other mesoscopic models: dissipative particle dynamics

Originally introduced by Hoogerbrugge & Koelman in 1992 [48] as a discrete time algo-
rithm, dissipative particle dynamics (DPD) was reinterpreted as the discrete approxima-
tion to an underlying continuous-time Langevin dynamics with momentum conservation
by Espanol and Warren in order to guarantee the existence of a Gibbsian equilibrium
state [49]. Further developments include the demonstration of detailed balance and an
H-theorem for the continuous-time limit [50], an investigation of the equilibrium for dis-
crete time steps [51], the proof of detailed balance and the existence of an H-theorem for
interacting multicomponent fluids [52], and a procedure for deriving a coarse-grained DPD
model from molecular dynamics [53]. A top-down DPD model has also been put forward
by Pagonabarraga and Frenkel [54].

In its “traditional” version, the method evolves a set of point particles via Newtonian
dynamics; since each particle represents a mesoscopic portion of fluid, dissipative and
random forces are introduced in addition to Newtonian, pairwise additive and conservative
forces. The dissipative forces model the viscous drag between the particles, whilst the
random forces incorporate thermal effects and are the fingerprint that the particles are
mesoscopic entities representing the underlying molecular realm. The DPD equations are

the following stochastic differential equations for each particle 4,

p, = > {F+F)+FL}, (1.36)
J#

where the forces, between particles ¢ and j, all of equal mass, are

1 99
Fi, = —— 1.37
K m@xij’ ( )
FB‘ = —ywp(zi){ey - vije;, (1.38)

F% = UWR(xij)eijCij- (139)
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Here, ¢ is a potential energy, x;; = x; — X; is the relative separation vector, e;; is the unit
vector in the direction of x;; and z;; is its modulus. The functions wp(x;;) and wr(z;;)
are weighting functions which limit the action of the dissipative and random forces to a
finite range, whereas the random variable (;; is sampled from Gaussian white noise, i.e.,
such that ((i;) and (GijCri) = (0irdji + 0i105,)0(t — t'). These forces conserve linear and

angular momentum, but not energy.

1.2.3 High-performance computing

From the early studies of fluid dynamics at the time of positivism, through the devel-
opment of kinetic theory and the observation of Brownian motion, to the more recent
use of techniques such as neutron scattering and transmission electron microtomography
and the appeararance of discrete and multi-scale models, fluid research has had a long
and rich history. Theoreticians have been presented with the increasingly difficult task
of extending their models’ validity to broader regimes or incorporating in them new ex-
perimentally observed phenomenology. Naturally, computer simulations started to play a
growing importance in the testing and application of the models.

It would be redundant to recall the vertiginous progress of computer hardware minia-
turisation and relevant performance increase during the past few decades. Computer
simulations such as the first simulation of a liquid, carried out at Los Alamos in 1953
on MANIAC, one of the most powerful mainframe computers available at the time [55],
can be performed nowadays on a laptop personal computer. This availability of computer
power has enormously contributed to computer simulations becoming a methodological
approach in itself to the study of nature, on an equal footing to analytical theory and
experimentation.

Scientific computing interfaces analytical theory and experimentation in providing a
tool to (a) solve the equations of analytical theory at scales and regimes comparable to
the ones found in experiment, hence allowing for both prediction and feedback into theory,
and (b) investigate the behaviour of the underlying mechanisms observed in experiment in
order to predict laws. The term in-silico experimentation has been appropriately coined
to describe the latter role of scientific computing. This role is becoming a complement and
sometimes a substitute to analytical theory in explaining the physical world: in fact, the
analytical approach breaks down when, due to technical difficulties, the ruling continuum
equations cannot be solved analytically or numerically, let alone when the phenomenon
under scrutiny cannot be represented in terms of continuum equations. This approach to
the modelling of natural phenomena does not use continuum equations; they are rather
replaced by discrete equations or algorithms which directly model the phenomenon under
investigation. In this line of thought, recent and controversial interpretations dare to assert

that spacetime is ultimately discrete and to extrapolate the application of the algorithmic
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approach to all natural phenomena [56].

The advent of readily available computing power to the broad scientific community
has made the computational approach operationally feasible. Such an availability has
always been linked to the development of new, faster and more miniaturised hardware,
and of efficient compilers tailored for such new architectures. The advance of the frontier
of high-performance computing, at the renown current pace of doubling performance ev-
ery two years, transmits the advantage of reducing costs down to existing, less powerful

architectures.

The term high-performance computing (HPC) implies the use of the so-called massively
parallel architectures. These are computers in which the number of processing elements
(PEs or processes) can be counted in hundreds and thousands. Each processing element
consists of one or more central processing units (CPUs or processors) accessing random
access memory (RAM) which can be shared among all the PEs or local to each PE. Each
CPU has a small RAM memory called cache, aimed at temporarily storing information
being managed by the CPU, and its size and its latency (time taken by an operation to
access the cache from the instant it is issued) are crucial, along with the latencies in ac-
cessing buses and RAM. Communication and data buses in these architectures are usually
the among fastest the current technology can provide, allowing for the fast exchange of
large amounts of information between the CPUs, the RAM and the input/output devices,

also of the highest performance available.

As important as processing speed for the execution of scientific algorithms is the avail-
ability of compilers specific to the CPU architecture. The CPUs of HPC architectures
usually differ from off-the-shelf, personal computers in the type of the instruction set.
Personal computers are based on what is called a Complex Instruction Set Computer
(CISC): the minimal set of machine-language instructions (operons) aimed at moving
data between the registers and the Arithmetic-Logic Unit (ALU), and towards the buses,
contains a small number of instructions, each representing a macro for smaller level oper-
ons. On the other hand, HPC machines are home to CPUs which are purpose-built with
a different approach in mind: maximally simplify the complexity of the instruction set
in what is called a Reduced Instruction Set Computer (RISC), and translate the burden
of producing machine-level code compatible with the new, simpler operons from a high-
level, user-friendly programming language entirely to the compiler. In addition, RISC
processors incorporate pipelining: the execution of operations by the CPU is dictated by
a pacemaker, the clock; CISC machines take four clock ticks to perform one operation,
whereas on a RISC machine four consecutive operations are held in a queue so that one
operation is flushed at each clock tick. RISC machines hence show higher performances

than CISC machines for similar clock frequencies.

Machine performance in HPC is usually measured by the number of floating point op-
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erations that can be executed per second of wallclock time (flops). Distinctively, the ALU
performs integer arithmetic separately from floating point arithmetic, which is slower. Ob-
viously, the number of flops a HPC machine can reach is associated to the particular code
executing those floating point operations, usually a linear algebra package. Sometimes,
mistakingly, comparisons of this number between machines are given without specifying
the software employed for it.

Instead, high-performance computers are compared by weighing a series of parame-
ters as a whole rather than individually, and ultimately, by benchmarking the software
applications of interest on them. Among such parameters are: CPU architecture (chipset,
clock frequency, cache size, latency, peak and sustained flops, processor interconnects), bus
architecture (structure, latency), random access memory (size per PE, on distributed mem-
ory machines, or total size for shared-memory machines), hard-disk (latency, read/write
speed), compilers (availability of flags for tailoring to machine-specific features, code bech-
marks).

In Table 1.1 we show a list of HPC architectures and their most relevant characteristics,
taken from the TOP500 list [57].

RANK | MANUFACTURER, COMPUTER, Riax, Rpeak INSTALLATION SITE, COUNTRY,
No. PEs (in Gflops) YEAR
1 NEC, Earth Simulator, 5120 35860.0, Earth Simulator Center, Japan,
40960.0 2002
7 Linux Networx, 7634.0, Lawrence Livermore National
MCR Linux Cluster 11060.0 Laboratory, USA, 2002
Xeon 2.4GHz-Quadrics, 2304
12 HP, AlphaServer SC ES45 4463.0, 6032.0 | Pittsburgh Supercomputing
1 GHz, 3016 Center, USA, 2001
15 HP, AlphaServer SC ES45 3980, 5120 Commisariat a I’Energie
1 GHz, 2560 Atomique (CEA), France, 2001
16 IBM, pSeries 690 Turbo 3241.0, 6656.0 | HPCx, UK, 2002
1.3 GHz, 1280
36 IBM, SP Power3 375 MHz 2106, 2880 Atomic Weapons
16 way, 1920 Establishment, UK, 2002
210 Cray Inc., T3E-1200E, 812 671.0, 974.0 CSAR (U. Manchester), UK,
2000

Table 1.1: Some HPC architectures and their most relevant characteristics, as of May 2004,
where the field COMPUTER specifies the chipset and its clock frequency, and performance is given
by parameters Rpmax and Rpeak [57]. Listed in rank 210 is one of the machines used to produce

some of the results included in this thesis, now decommisioned.

High-performance computing hosts a range of working methodologies worth mention-

ing. From the elaboration of an algorithm for the model, the next step is its implementa-
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tion in a high-level language, such as FORTRAN9O, C or C++. Occasionally, more than
one language is chosen in cases that only off-the-shelf libraries already implemented and
optimised are available, or certain routines perform better, for one language and not the
other. Care needs to be taken in checking for reduction of perfomance in inter-language
calls.

The obvious advantage of parallel computing is the decoupling between compute-time
and wall-clock time: many processes can concurrently tackle a (properly parallelised) single
task and speed up the lengthy serial turn-around times. Hence, implementation demands
a parallelisation strategy.

We shall deal here exclusively with the Single Program Multiple Data (SPMD) parallel
paradigm: a master process farms out identical copies of the parallel program to slave
processes for concurrent execution. The parallelised code contains directives placed at
strategic points in the program flow which are executed depending on which PE the copy
of the program is running on, i.e. on its rank. These directives consist of library calls for
exchange of the data stored on the RAM assigned to each PE with other PEs.

Any parallelisation strategy aims at assigning a portion of the system to each PE, in
a way such that inter-process communication is minimised since that is a pervasive factor
in the reduction of code performance. In this department, there are several possibilities,
highly dependent on the specifics of the system to be modelled: domain decomposition,
toroidal, etc.

What parallelisation strategy to follow on a serial algorithm is determined by its struc-
ture. For example, an Ising model algorithm, which is a cellular automaton with nearest-
neighbour, short-range interaction, updates the state of each lattice node at each time
step of its evolution towards equilibrium only from its nearest neighbours; therefore, only
information from nearest neighbouring cells in memory will needs to be exchanged. Par-
allel molecular dynamics algorithms, on the contrary, usually tag the atoms and logically
group them in clusters, the elements of which need not be spatially close, in order to assign
one PE for the computation of the evolution of each one of such clusters; also, interac-
tions are long-ranged, implying that the structure of the inter-process communications can
become complex and heavy. Indeed, molecular dynamics suites such as NAMD include a
communications library at a higher level of abstraction than, e.g., MPI, for dealing with

the complexity of intermolecular interactions [58].

The lattice-Boltzmann algorithm

Since the LB method originated as a coarse grained version of the lattice-gas method, many
of the cellular automaton features of the latter are retained in the former [59]. One of them
is locality, i.e., the state of a lattice site only depend on the state of its nearest neighbours

and of itself at the previous time step. Not surprisingly, the adjective ‘embarrasingly
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parallel’ has been coined for the LB algorithm; clearly, however, more recent variants of
it which include long-range interactions are discharged from the embarrassment. Locality
leads to a parallelisation strategy which uses a cartesian topology for distributing the state
of the lattice sites onto each process’ memory, and communicates an amount of information
between parallel processes which is much reduced with respect to computational fluid
dynamics methods based on the solution of the Navier-Stokes equations. As a result, the
algorithm can be optimised such that to sustain an optimal parallel efficiency up to a large
number of processors.

Nonetheless the LB method shares features with lattice gases, it is also endowed with
some of its own. In fact, the kind of variables needed to hold the state of the system
differ between them: lattice gases use integers and lattice Boltzmann method employs
floating point numbers. This leads to an important difference: the amount of memory
required in both methods. For example, when space and velocity is discretised with a
D3Q25 projected-FCHC lattice of N? sites, such as is the case in the LB method used in
the papers reported in this dissertation, the number of bytes required to store the state
of one fluid species in memory is M = 25bN3/8, where b is the number of bits needed
to store the state variable per velocity link, i.e., a particle number for lattice gases and a
probability density for LB methods. Since lattice-gases are usually designed so that the
number of particles per velocity link and species is limited to one, b = 1 for them. For
LB methods with double-precision arithmetics, b = 32 or 64, depending on the platform,
which makes M between one and two orders of magnitude higher than for lattice gases. In
practice, the lattice-gas update (collision) rule employs a search through a list holding all
possible post-collisional states conserving, at least, mass and momentum, which adds an
additional and important memory expense over LB methods. However, this expense does
not scale with the lattice size, N, as M does, which makes LB methods more memory

consuming than lattice gases for large enough lattices.

1.3 The research presented in this thesis

I begin my exposition with the published paper annexed on page 47, summarised on
page 41. This aims to treat a paradigm phenomenon in complex fluids’ dynamics known
as spinodal decomposition employing a three-dimensional Shan-Chen lattice-Boltzmann
model for binary fluids. For a number of symmetric mixtures, I study the segregation
kinetics.

Once the capabilities and limitations of the lattice-Boltzmann method in modelling
phase segregation have been put forth, I present its extension to modelling flow in ternary
amphiphilic fluids (two binary immiscible fluids containing amphiphilic molecules) in the

two papers included on pages 65 and 73. Therein I investigate the effect of the gradual
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addition of amphiphile into a phase-segregating binary fluid, and report the finding, for
the first time using a kinetic-theoretic method, of the gyroid cubic mesophase.

The dynamical properties of gyroid mesophases observed in the study just mentioned
motivated the first part of a study of their rheology. Its results are included in the paper
of page 95. In there, I report on three aspects of shear-induced transitions in mesophases:
shear thinning, morphology transitions and stress transients.

The last paper covering the research reported in this dissertation, on page 107, is a
study of the role of long-range interparticle interactions in the interfacial properties of a
ternary amphiphilic fluid, using a two-dimensional lattice-gas model. We also briefly report
on algorithm parallelisation. Long-range interactions are commonplace in amphiphilic self-
assembly, and our aim is to lay a first stepping stone in lattice-gas modelling on its role
in vesicle morphogenesis. The results found are of relevance to lattice-Boltzmann models

in virtue of the similarity of how amphiphile is modelled in both methods.



Chapter 2

Summary of results

IN THIS CHAPTER I provide summaries of each of the papers included in this dissertation.

N. Gonzalez-Segredo, M. Nekovee and P. V. Coveney, “Three-dimensional
lattice-Boltzmann simulations of critical spinodal decomposition in bi-
nary immiscible fluids,” Phys. Rev. E 67, 046304 (2003). (Annexed on
p. 47.)

We use a modified Shan-Chen, noiseless lattice-BGK model for binary immiscible, in-
compressible, athermal fluids in three dimensions to simulate the coarsening of domains
following a deep quench below the spinodal point from a symmetric and homogeneous
mixture into a two-phase configuration. The model is derivable from a continuous-time
Boltzmann-BGK equation in the presence of an intercomponent body force. We find the
average domain size growing with time as t”, where « increases in the range 0.545+0.014 <
v < 0.717+0.002, consistent with a crossover between diffusive ¢'/3 and hydrodynamic vis-
cous, t1'?, behaviour. We find good collapse onto a single scaling function, yet the domain
growth exponents differ from others’ works’ for similar values of the unique characteristic
length Ly and time T that can be constructed out of the fluid’s parameters. This re-
buts claims of universality for the dynamical scaling hypothesis. For Re = 2.7 and small
wavenumbers, ¢, we also find a ¢% < ¢* crossover in the scaled structure function, which
disappears when the dynamical scaling reasonably improves at later stages (Re = 37).
This excludes noise as the cause for a ¢?> behaviour, as analytically derived from Yeung
and proposed by Appert et al. and Love et al. on the basis of their lattice-gas simulations.

We also observe exponential temporal growth of the structure function during the initial

41



42

2. Summary of results

stages of the dynamics and for wavenumbers less than a threshold value, in accordance
with the diffusive Cahn-Hilliard Model B. However, this exponential growth is also present
in regimes proscribed by that model. There is no evidence that regions of parameter space
for which the scheme is numerically stable become unstable as the simulations proceed,
in agreement with finite-difference relaxational models and in contradistinction with an
unconditionally unstable lattice-BGK free-energy model previously reported. Those nu-
merical instabilities that do arise in this model are the result of large intercomponent

forces which turn the equilibrium distribution negative.

N. Gonzalez-Segredo and P. V. Coveney, “Self-assembly of the gyroid
cubic mesophase: lattice-Boltzmann simulations.” Europhys. Lett. 65,
795 (2004). (Annexed on p. 65.)

We present the first simulations of the self-assembly kinetics of the gyroid cubic mesophase
using a Boltzmann transport method. No macroscopic parameters are included in the
model and three-dimensional hydrodynamics is emergent from the microscopic conser-
vation laws. The self-assembly arise from local inter-particle interactions in an initially
homogeneous, phase segregating binary fluid with dispersed amphiphile. The mixture
evolves in discrete time according to the dynamics of a set of coupled Boltzmann-BGK
equations on a lattice. We observe a transient microemulsion phase during self-assembly,
the structure function peaks and direct-space imaging unequivocally identifying the gy-
roid at later times. For larger lattices, highly ordered subdomains are separated by grain
boundaries. Relaxation towards the ordered equilibrium structure is very slow compared
to the diffusive and microemulsion-assembling transients, the structure function oscillating

in time due to a combination of Marangoni effects and long-time-scale defect dynamics.

N. Gonzalez-Segredo and P. V. Coveney, “Coarsening dynamics of ternary
amphiphilic fluids and the self-assembly of the gyroid and sponge meso-
phases: lattice-Boltzmann simulations.” Phys. Rev. E, (in press, 2004).
(Annexed on p. 73.)

By means of a three-dimensional amphiphilic lattice-Boltzmann model with short-range
interactions for the description of ternary amphiphilic fluids, we study how the phase
separation kinetics of a symmetric binary immiscible fluid is altered by the presence
of the amphiphilic species. We find that a gradual increase in amphiphile concentra-
tion slows down domain growth, initially from algebraic, to logarithmic temporal depen-

dence, and, at higher concentrations, from logarithmic to stretched-exponential form. In
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growth-arrested stretched-exponential regimes, at late times we observe the self-assembly
of sponge mesophases and gyroid liquid crystalline cubic mesophases, hence confirming
that (a) amphiphile-amphiphile interactions need not be long-ranged in order for period-
ically modulated structures to arise in a dynamics of competing interactions, and (b) a
chemically-specific model of the amphiphile is not required for the self-assembly of cubic
mesophases, contradicting claims in the literature. We also observe a structural order-
disorder transition between sponge and gyroid phases driven by amphiphile concentration
alone or, independently, by the amphiphile-amphiphile and the amphiphile-binary fluid
coupling parameters. For the growth-arrested mesophases, we also observe temporal oscil-
lations in the structure function at all length scales; most of the wavenumbers show slow
decay, and long-term stationarity or growth for the others. We ascribe this behaviour to

a combination of complex amphiphile dynamics leading to Marangoni flows.

N. Gonzalez-Segredo, Jens Harting and Peter V. Coveney, “Stress re-
sponse and structural transitions in sheared gyroid and lamellar amphi-
philic mesophases: lattice-Boltzmann simulations” (Preprint, Centre for
Computational Science: London, 2004.) (Annexed on p. 95.)

We report on the stress response of the gyroid cubic mesophase to a steady Couette
flow simulated by means of a bottom-up lattice-Boltzmann model for amphiphilic flu-
ids and sliding periodic (Lees-Edwards) boundary conditions. We employ two gyroidal
mesophases, the gyroid per se (above the sponge-gyroid transition, of high crystallinity)
and the molten gyroids (within such a transition, of shorter-range order). These were
allowed to self-assemble from a homogeneous mixture of two immiscible fluids with added
amphiphile, the longer-range gyroid having 50% higher amphiphile concentration and
inter-amphiphile coupling than the molten gyroid. We find that both mesophases exhibit
shear thinning, more pronounced and at lower strain rates for the molten gyroid. We
also find that, at late times after the onset of shear, the skeleton of the longer-range
gyroid becomes a structure of interconnected irregular tubes and toroidal rings, mostly
oriented along the velocity ramp imposed by the shear—in contradistinction with free-
energy Langevin-diffusion studies finding a much simpler structure of disentangled tubes.
We also compare the shear stress and deformation of lamellar mesophases with and with-
out amphiphile in a steady Couette flow applied normally to the lamellae. We find that
the presence of amphiphile allows (a) the shear stress at late times to be higher than in
the case without amphiphile, and (b) the formation of rich patterns on the shear interface,

characterised by alternating regions of high and low curvature.
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2. Summary of results

N. Gonzalez-Segredo and M. Foster, “pLRME2D: A parallel implemen-
tation of a two-dimensional hydrodynamic lattice-gas model with long-
range interactions,” Proceedings of the Sixth European SGI/Cray MPP
Workshop, Manchester, UK (2000). (Annexed on p. 107 and available
online,

cf. URL: http://mrccs.man.ac.uk/mpp-workshop6/proc/gonzalez.htm .)

Using a two-dimensional hydrodynamic lattice-gas model for the simulation of binary im-
miscible and ternary amphiphilic fluids, we investigate the effect of long-range interactions
in the surface tension of a planar interface between two immiscible fluids of equal density
with and without a layer of surfactant particles lying on it. This is the first stepping stone
towards the simulation of the dynamics of fluid vesicles: the surface tension is one of the
parameters of some continuum-mechanical descriptions [60] for vesicles, and long-range
interactions are believed to be crucial in attaining stability. The parallel implementation
of the lattice gas algorithm employs a new communication wrapper providing an object
orientated approach to distributed memory programming of n-dimensional grid-based cal-
culations. We find that the surface tension increases with the range of interactions of the
immiscible fluid particles but not with that for the surfactant particles. We also find good
scalability and minimal impact of the parallelisation strategy on the structure of the base

serial code.
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Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition
in binary immiscible fluids

Nélido Gonzalez-Segredo™
Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street,
London WCIH 0AJ, United Kingdom

Maziar Nekovee”
Complexity Research Group, BT Laboratories, Martlesham Heath, Ipswich, Suffolk IP5 3RE, United Kingdom

Peter V. Cc)veneyi
Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street,
London WCIH 0AJ, United Kingdom
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‘We use a modified Shan-Chen, noiseless lattice-BGK mode] for binary immiscible, incompressible, athermal
fluids in three dimensions to simulate the coarsening of domains following a deep quench below the spinodal
point from a symmetric and homogeneous mixture into a two-phase configuration. The model is derivable from
a continuous-time Boltzmann-BGK equation in the presence of an intercomponent body force. We find the
average domain size grows with time as 7”, where v increases in the range 0.545+0.014<y<<0.717
+0.002, consistent with a crossover between diffusive ' and hydrodynamic viscous, ' behavior. We find
good collapse onto a single scaling function, yet the domain growth exponents differ from previous results for
similar values of the unique characteristic length Ly and time T, that can be constructed out of the fluid’s
parameters. This rebuts claims of universality for the dynamical scaling hypothesis. For Re=2.7 and small
wave numbers g we also find a g%«+g* crossover in the scaled structure function, which disappears when the
dynamical scaling reasonably improves at later stages (Re=37). This excludes noise as the cause for a ¢
behavior, as analytically derived from Yeung and proposed by Appert et al. and Love et al. on the basis of their
lattice-gas simulations. We also observe exponential temporal growth of the structure function during the initial
stages of the dynamics and for wave numbers less than a threshold value, in accordance with the diffusive
Cahn-Hilliard Model B. However, this exponential growth is also present in regimes proscribed by that model.
There is no evidence that regions of parameter space for which the scheme is numerically stable become
unstable as the simulations proceed, in agreement with finite-difference relaxational models and in contradis-
tinction with an unconditionally unstable lattice-BGK free-energy model previously reported. Those numerical
instabilities that do arise in this model are the result of large intercomponent forces which turn the equilibrium
distribution negative.

DOI: 10.1103/PhysRevE.67.046304

L. INTRODUCTION

Homogeneous binary fluid mixtures segregate into two
phases with different compositions when quenched into ther-
modynamically unstable regions of their phase diagram, a
process also called spinodal decomposition. This is achieved
by lowering the temperature well below the so called spin-
odal temperature. For incompressible, 50:50 mixturcs, also
called critical or symmetric mixtures, these phases form in-
terconnected domains, which at late times produce a bicon-
tinuous structure with sharp, well developed interfaces. For
asymmetric mixtures (phases with different densities) there
is a phase transition at early times from an interpenetrating
“bicontinuous”™ structure to the so-called “droplet phase,”
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Barcelona, 08193 Bellaterra, Barcelona, Spain. Email address:
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*Email address: maziar.nekovee@bt.com
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PACS number(s): 47.55.Kf, 47.11.+j, 83.10.Bb, 05.90.+m

which in turn undergoes subsequent coarsening via coales-
cence [1]. The composition of a binary immiscible fluid is
one of the variables affecting its dynamics. Fields where
spinodal decomposition is of industrial relevance comprisce
the metallurgical, oil, food, paints, and coatings industrics.
Polymer blends and gels immersed in a solvent are also po-
tentially important applications, where phase separation oc-
curs and needs to be controlled [2,3].

Spinodal decomposition has been extensively studied by
experimental [4], analytical [5,6], and numerical [7—16] ap-
proaches. The fact that it entails a variety of mechanisms that
can act concurrently and at different length and time scales
has made it a testbed for complex (luid simulation methods.
Among the latter are hydrodynamic lattice gases [17], the
lattice Boltzmann equation [ 18], and dissipative particle dy-
namies [19].

Despite all the interest attracted by the subject, how the
mechanisms responsible for domain separation act remains
on unscttled grounds. In particular, the dynamics of the late
time, true asymptotic growth is unclear. Also, the dynamical
scale invariance hypothesis (Lo be explained later on in this

©2003 The American Physical Society
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paper), which is treated almost as canonical by analytical and
numerical approaches to solving the continuum, local-
thermodynamic Cahn-Hilliard equations, has been proven to
fail experimentally at least under certain conditions [20].

Numerical studies on spinodal decomposition include
methods at the macroscopic scale, based on the numerical
solution of either the Navier-Stokes [21,22] or the Cahn-
Hilliard equations [23,7,24], the mesoscopic scale, where
lattice-Boltzmann (LLB) methods [25,26], lattice gases [9,10],
dissipative particle dynamics [27], and Tsing [28] approaches
are examples, and the microscopic scale, with classical mo-
lecular dynamies [14].

Fluid dynamical methods in the mesoscopic scale came to
light as a way to grasp the relevant thermohydrodynamic
behavior with as little computational effort as possible. This
is achieved by evolving a microworld in which the usual vast
number of molecular degrees of freedom and characteriza-
tion have been drastically reduced, based on the fact that, far
enough from critical points, a fluid’s macrostate is largely
insensitive to many of its microscopic properties. Some re-
gard the Cahn-Hilliard equations to be within the mesoscopic
scale. They derive from the van der Waals’ formulation of
quasilocal thermodynamics [29], extended by Cahn and Hil-
liard [23], and aim at solving a Langevin-like diffusion equa-
tion for the conserved order parameter. This equation in-
volves a chemical potential derived [rom a
phenomenological, Ginzburg-Landau expansion for the free
energy, and leads to phase segregation if the temperature is
below a critical value. The scheme commonly used for the
study of phase segregation in immiscible fluids is termed
Cahn-Hilliard Model H [30]; hydrodynamics is included by
introducing mass currents, which couple the diffusion equa-
tion with the Navier-Stokes equation. Thermal effects are
sometimes included in the dynamics by the addition of a
noise term satisfying a fluctuation-dissipation theorem.

Cahn-Hilliard equations have been applied to model the
segregation dynamics of deep and sudden thermal quenches
of fluid mixtures. Such quenches are usually chosen to be
sudden to avoid thermal noise effects and set up an initial
condition that quickly leads to a state of steep domain walls
and where diffusion is negligible compared with hydrody-
namic effects, thus leaving the conditions that the dynamical
scaling hypothesis requires. However, local equilibrium can-
not be guaranteed for a mixture undergoing a sudden quench,
which puts the existence of a free energy and the equilibrium
states modeled by it on rather shaky grounds.

The lattice-Bollzmann method we use in this work is the
Shan-Chen lattice-BGK scheme for binary immiscible and
incompressible fluid flow [25]. The equilibrium state for
each pure fluid is chosen to be a local isothermal Maxwell-
ian, and Shan and Chen’s contribution to the lattice-BGK
scheme comes through the phase separation prescription.
This is incorporated via intercomponent repulsive mean-ficld
forces between fluid elements (meant to be at a mesoscopic
scale) which alter the local equilibrium, rather than through a
local cquilibrium reproducing a chemical potential derived
from a free-energy functional. The Shan-Chen method has
been used by Martys and Douglas [31] to qualitatively simu-
late spinodal decomposition for critical and off-critical
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quenches in 3D (three dimensions). There have been recent
quantitative studies in 2D using this method for critical spin-
odal decomposition [32,33]. An early study on critical 2D
and 3D spinodal decomposition was put forward by Alex-
ander, Chen and Grunau [34] using the lattice-Boltzmann
method proposed by Gunstensen et al. [35].

Lattice-BGK methods based on a Ginzburg-Landau free-
energy functional [26] achieve multiphase behavior by using
two separate distribution functions: one for the mass density
and one for the order parameter, this being defined as the
difference between the phases’ densities. Higher-order veloc-
ity moments of these distributions are imposed to coincide
with thermomechanical quantities obtained from the free en-
ergy. The term “top-down” is used in the literature to ad-
dress this type of approach, whereas we shall use “bottom-
up” in the remainder to signify fully mesoscopic methods.
Some criticisms of top-down approaches [36] include their
frequent lack of Galilean invariance (although Inamuro [37]
presented a model that does exhibit this property), and their
phenomenological character. Studies of spinodal decomposi-
tion using these methods are described in the works of Wag-
ner and Yeomans [12,38], Kendon et al. [11], and Cates et al.
[39].

Numerical instabilities are a great cause for concern in
lattice-Boltzmann methods, a study of which will be ad-
dressed for the lattice-BGK method we employ in this work.
Their sources are two-fold: (a) the finite-difference, discrete-
velocity scheme used to solve the BGK-Boltzmann equation
prevents the existence of an H theorem, and (b) the approxi-
mations used for the equilibrium distribution do not guaran-
tee its positivity, and hence that of the nonequilibrium distri-
bution. Linear stability analyses have been applied to the
lattice-BGK model by Sterling [40], and in more detail by
Lallemand and Luo [41] comparing a lattice-BGK model to a
generalized I.B model with a different relaxation time for
each physical flux. Qian, d’Humieres, and Lallemand [42]
gave conditions for the Mach number and the shear viscosity,
such that the lattice-BGK scheme produces positive mass
densities. New approaches to unconditionally stable lattice-
Boltzmann models have recently appeared too [43-46].
They prove the existence of functionals satisfying an H theo-
rem.

Our objective in this work is to present a bottom-up
lattice-BGK method for the study of scaling laws in the spin-
odal decomposition of critical fluid mixtures in three dimen-
sions. This method has certain advantages over lattice-BGK
methods based on a free-energy functional, namely, a smaller
number of free paramelers (o une, Galilean invariance guar-
anteed, and a simpler equilibrium distribution. Moreover, it
refuses to inject macroscopic information into the mesos-
copic dynamics as the top-down methods do, on the grounds
that for lattice-BGK methods there is no / theorem available
that guarantees an unconditional approach to a given equilib-
rium. Indeed, in the context of gencral complex fluid appli-
cations, an expression for the free-energy itself may be un-
known, and/or its validity be questioned for regimes far
cnough from local equilibrium, making a top down approach
not even viable.

The remainder of the paper is structured as follows. In
Sec. II we discuss the dynamical scaling hypothesis, which
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asserts that after the quench all length scales in the mixture
share the same growth law with time. The modified Shan-
Chen model we use is explained in Sec. III; Sec. IV intro-
duces the method we use to measure surface tension, while
in Sec. V we describe the simulations performed and the
growth laws and scaling functions drawn from them, which
allow to test the validity of the dynamical scaling hypothesis.
Finally, we present our conclusions in Sec. VIL

II. SPINODAL DECOMPOSITION

After domain walls have achieved their thinnest configu-
ration via diffusion, the time evolution of the bicontinuous
structure that is produced in the phase segregalion process
that symmetric mixtures undergo presents geometrical self-
similarity to the initial stages of such a process when the
structure is viewed at increasing magnification. This leads us
to the dynamical scaling hypothesis, which states that at late
times, when diffusive effects have died out, there is a unique
characteristic length scale L which grows with time such that
the geometrical structure of domains is (in a statistical sense)
independent of time when lengths are scaled by L [47]. This
amounts to saying that all length scales have the same time
evolution. Such a characteristic length scale must be univer-
sal for all fluids with the same shear viscosity #, density p,
and surface tension o, provided that no mechanisms are in-
volved in their late stage growth other than viscous dissipa-
tion, fluid inertia, and capillary forces, respectively. This is
so because, as we shall see later on, only one length scale can
be constructed out of the fluid’s parameters », p, and o,
these being the only ones present in a hydrodynamic descrip-
tion of the mixturc via the Navier-Stokes cquations.

The characteristic length scale is usually measured by
looking at the first zero crossing of the equal-time pair-
correlation function of the order parameter fluctuations [2],

C(r.1)=(¢'(x+r.T)¢'(x.7)). ¢

where, on the lattice, ()=3,5/V, V is the spatial volume, s
is the volume of the lattice’s unit cell (hence V/s is the
number of nodes in the lattice), T is the lime parameler in
time steps, r and x are spatial vectors, and ¢’ =¢p—{p) are
the order parameter fluctuations, where H(x)=pR(x%)
—pB(x) is the order parameter for our binary fluid [say, a
mixture of red (R) and blue (B) phases]. The units of C(r,T)
are squared mass density. In the remainder, “lattice units”
will mean unity for the mass, length, and time units, respec-
tively, in an arbitrary unit system. The Fourier transform of
C(r,T), called the structure function, is

ST = 2| @

The units for the structure function are the same as those for
the correlation function, and ¢y is the Fourier transform of
the fluctuations. Function (2) is volume normalized, and
gives no power spectrum for infinite lengths, i.e.,
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’

S
= > S(k,T)=1, S(k=0,T)=0,
V' 'k

where ¢’ is the unit cell volume in reciprocal space, and
V'=Q2a/L)YVis=(2m)’/s is the reciprocal space volume;
in fact, s'/V'=s/V. Although Egs. (1) and (2) are numeri-
cally equivalent, the intensity of X ray and neutron scattering
is directly proportional to the structure function, which is
hence easily measurable; it is thus this quantity that we pre-
fer to use to measure the system’s characteristic length
scalcs.

We define the (time-dependent) characteristic size L of the
domains as

L(D=—=—, 3
(D=1 ®
in lattice units, where &,(7T) is the first moment (mean),
> kS(k,T)
3
k()=——"", )
> S(k,T)
3

of the spherically averaged structure function S(k,T), de-
fined by

> S(k.T)
T ) e — )

21

where K indicales the set of wave veclors conlained in a
spherical shell of thickness one (in reciprocal-space lattice
units) centered around k, ie., such that n—1=<(VY32m)k
=p+1%, n being an integer. £ is the modulus of k which is
smaller than the Nyquist critical frequency k.= m to prevent
aliasing. In the limit of short distances and large momenta,
scaling arguments lead [47] to the relation

1
Sk, 1)~ I (6)

valid for kL3> 1, also known as Porod’s law, where D is the
spatial dimension. Short distances here means &<€r<€L,
where £ is the interface thickness.

Other measures have also been used for the system’s char-
acleristic length scale, namely, the position of the structure
function’s maximum, and the structure function’s second
moment, k, [2]. We chose to use the first moment &, as it is
the simplest quantity among the aforementioned. Appert
et al. [48] found that the structure function’s maximum’s
wave number provided a length evolving similarly, although
in a noisier fashion, to that derived from the first moment.

Mathematically, the dynamical scaling hypothesis can be
written as
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C(r,T)=f(r/L), 7
or
S(k,T)=LPg(kL), 8)

where L=L(T) is a function of time, and g is the Fourier
transform of £, both of which are the same for any late time
slice.

Using methods introduced by Kendon et al. [11], there are
unique length and time units that can be defined from the
fluid’s density, shear viscosity, and surface tension, p, 7, and
o, respectively, as follows:

Loy=—, Ty=—s>. &)

We can think of these as a wavelength and a period associ-
ated with the system’s fluctuations, respectively, although
they do not necessarily have to refer to actual fluctuation
averages. We can define the dimensionless variables

I=L/Ly, t=(T—Ty)/T,. (10)
which serve to express the universal character of the dynami-
cal scaling hypothesis. Parameter T, is an offset that allows
one to account for early time diffusional transients and lattice
effects. Due to the finite resolution of the lattice the initial
condition is not an infinitely fine-grained thorough mixture
(¢=0) but there is a non-negligible domain size measured
at time 7=0. We have then to specify a time origin prior to
T=0, corresponding to a fictitious zero domain size.

For a critical binary immiscible mixture in three dimen-
sions, scaling arguments applied to the terms of the Cahn-
Hilliard Model-H equations show that Eq. (7) holds in the
asymptotic limit [47], or, equivalently, that

[et7, (1)

where y=1 and y=2/3 for the cases when hydrodynamic
viscosity and inertia dominate the dynamics, respectively.
From the Cahn-Hilliard Model B, which is a Langevin dif-
fusion cquation without noisc conserving the order parameter
[30], an exponent of y=1/3 is derived, identical to that ob-
tained from the Lifshitz-Slyozov theory for the growth of a
minority phase whose volume fraction is negligible, and is
expected to appear at diffusive stages, before hydrodynamics
kicks in. Scaling theories do not give any prediction for the
crossovers’ positions in time other than that they are “of
order unity” [49].

Using a free-energy based, lattice-BGK method, Cates
et al. [39] reached the viscous regime ([o¢¢) for Ly~5.9 and
Re<<0.1, and the inertial regime (/o<+*”*) for Ly=0.0003 and
Re<350. The Reynolds number is defined in this domain-
coarsening context as

Re=——=1i, (12)
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where v is the kinemalic viscosily of the fluid mixture, as

defined in the following section, and / is the time derivative
di/de.

There is also experimental [20] and 2D simulation [12]
evidence of breakdown of scale invariance in symmetric bi-
nary immiscible quenches. In those experiments, the break-
down of scale invariance occurs [20] for symmetric binary
mixtures in confined geometries under the influence of wet-
ting, and a universality has been reported to hold. The pro-
cess consists of a hydrodynamic coarsening occurring faster
than mass diffusion, leaving the system with macroscopic
domains whosc concentrations arc ncar to but not at the co-
existing equilibrium ones. Metastability or instability of the
domains then causes a secondary phase separation (o kick in
via diffusion. Scale invariance and self-similarity have also
been recently found to break down for viscoelastic binary
fluid mixtures [50]. Finally, there is simulation evidence of
breakdown of scale invariance coming from free-energy
based, lattice-BGK simulations in 2D. The rationale for this
is the coexistence of competing mechanisms at all times in
the mixture: diffusion, hydrodynamic modes, and surface
tension, giving rise to length scales with different growth
exponents [12].

III. OUR LATTICE-BOLTZMANN MODEL

Initially introduced as a coarse grained version of the
lattice-gas automaton method for (luid flow simulation, the
lattice-Boltzmann model can also be interpreted as a finite
difference solver for the Bhatnagar-Gross-Krook (BGK) ap-
proximation to the Boltzmann transport equation [18]. From
lattice gases it inherits a particulate, mesoscopic character, as
their particles can be assimilated to any physical size which
is negligible at a hydrodynamic scale; moreover, unlike
lattice-gas automata, no fluctuations are present within the
scheme [51]. From the simplicity of the Boltzmann-BGK
collision term the LB method gains algorithmic efficiency in
simulating fluid flow over solving the incompressible
Navier-Stokes equations. When extended to multiphase
flows, these features are especially valuable in looking at the
complicated domain interfaces that arise in the coarsening of
binary mixtures.

The method we use is a modification of the multicompo-
nent, immiscible fluid LB scheme of Shan and Chen [25],
which will be explained in detail in Sec. IIl B. The Shan-
Chen LB model employs an expansion in Mach number of a
Maxwellian equilibrium distribution. Phase-segregating in-
teractions are introduced by means of a self-consistently gen-
erated mean-field force hetween particles. The inclusion of
this force gives rise to a nonideal gas equation of state
through the Navier-Stokes equation, which is reproduced via
the usual multiscale Chapman-Enskog [52] or moment
(Grad) [53] expansion of the distribution function. No ther-
mohydrodynamic behavior is imposed on the equilibrium
distribution, as aforementioned free-energy based, lattice-
BGK methods do [26], partly because none of the lattice-
Boltzmann implementations reported in the literature so far
exhibit an H theorem ensuring the existence of an asymptote
towards a prescribed equilibrium, and partly because a
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purely mesoscopic, mean-field approach is preferred here.
The coefficients of the equilibrium distribution expansion are
determined by the conservation of mass and momentum, the
property that Galilean invariance holds, and an isotropic
pressure tensor.

In this work we employ a pseudo-four-dimensional lat-
tice, which is the projection onto 3D of the D4Q24 face-
centered hypercubic (FCHC), single-speed lattice, where the
notation implies the spatial dimension (4) and the number of
vectors linking a site to its nearest neighbors (24). The
FCHC lattice guarantees isotropic behavior for the macros-
opic momentum balance equation [17].

In the following sections we introduce our modified Shan-
Chen model, first by looking at a noninteracting mixture of
gases, and second including the mean-field force term that
gives rise to a nonideal gas equation of state. Then, we
modify the collision term such that the Shan-Chen scheme is
consistent with that derived from a Boltzmann-BGK equa-
tion in the presence of a force.

A. Mixture of ideal gases

The finite-difference, finite-velocity fully-Lagrangian [40]
scheme for the numerical solution of the multicomponent
Boltzmann cquation,

ng(x+e t+ D) —ni(x0)=0;, (13)

governs the time cvolution of the kth velocity’s particle num-
ber density ng for the fluid species o in a noninteracting
mixture of gases. The lattice-BGK collision term is

nf(x,1)—n"P(x 1)
Qf(XJ)E—%, (14)
T

where the time increment and lattice spacing are both unity,
¢, is one of the 24 discrete velocity vectors plus one null
velocity, x is a point of the underlying Bravais lattice, and
a=R.B [e.g., oil (R) or water (B)]. The parameter 7% de-
fines a single relaxation rate towards equilibrium for compo-
nent «. The function n,f(eq)(x,t) is the discretisation of a
third-order expansion in Mach number of a local Maxwellian
[54],

) 1 1 , 1,
nF(x,1)= wn4(x,1) 1+7ck-u+?(ck~u) ——u

2
c c 2c;

. (15)

o1,
+ (e w)’— Fu (e )

& &

where w; are the coefficients resulting from the velocity
space discretisation, and c¢; is the speed of sound, both of
which are determined by the choice of the lattice. For the
projected-D4Q24 lattice we use, the speed of sound is c;
=1//3, and w,=1/3 for the speed c,=0 and 1/36 for
speeds ¢, = 1,2 [42]. (The projection from 4D to 3D puts an
additional speed into play, v2.) In Eq. (15), u is the macro-
scopic velocity of the mixture, through which the collision
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term couples the different velocities ¢, and is a function of
x and 1. Also, n%(x,1) is the local particle density for the ath
component, defined as Iy (x,1).

The judicious choice of the coefficients in the expansion
of the equilibrium distribution (15) allows for mass and mo-
mentum to be conserved,

> 08=0, > m,> ¢0Q¢=0. (16)
k @ k

Momentum conservation requires the fluid’s macroscopic ve-
locity u to be defined in terms of the macroscopic velocity
u® for component ¢,

na(x,t)uazz ne(x, )¢, 17)
3

as the solution of the three equations
Z(w)=v, (18)
where
B w=2—-3u®)u;+3u] +3uul,  +3uui,, (19)

with the Cartesian index 7 ranging in the imod3 set, and v
being defined as the special average,

paua pa
- / > = (20)
T o T

Based on previous experience with lower orders, our
choice of a third-order Taylor expansion in Mach number for
the Maxwellian equilibrium distribution is an attempt to im-
prove the approximation for velocities which, within the in-
compressibility limit, are large enough to make either the
distribution function become negative or the error in the ex-
pansion too large.

B. Mixture of interacting, nonideal gases

In order to deal with nonideal gases, in particular, fluid
mixtures whose volume elements interact among themselves,
each fluid is forced to relax to a local equilibrium which is
modified by the presence of its surrounding volume ele-
ments. The mean-field force density felt by phase « at site x
and time ¢ from its surroundings is defined as

FAx,D=— g x02 gaa #(x DX —x), 1)

where g,z (>0 for immiscible fluids) is a coupling matrix
whose nondiagonal elements control interfacial tension, and
¥ is the so-called effective mass, which serves as a func-
tional parameter and can have a general form for modeling
various types of fluids. For simplicity in our implementation,
we have chosen ¢“(x,)=n%(x,#) [32] and only allowed
nearest-neighbor interactions, x’ =x+¢, . Other choices for
s have also been made [25].
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Shan and Chen [25] incorporated the above force term in
the collision substep of the LB dynamics by adding the in-
crement

Fa/
Aut=—7* (22)
p

to the velocity u that enters the second-order expansion of
the equilibrium distribution function. We perform the same
procedure for our third-order expansion (15), obtaining addi-
tional terms

nf e (u+ Au®)=n{ P (u)

: 2
¢—u (2¢,-u—u)
ton®| —S— | a%r"
cy 2c;
1 a%-a® (¢, a%)?
+§wkn“ — T
CS CS
a2
- ()
CS
1 3
+—w (e, a%7)”, (23)

(‘6

§
where a*=F%/p®.
Luo [36] and Martys, Shan, and Chen [55] expanded both
the velocity space gradient in the BGK-Boltzmann equation
force term,

a-Ven, 24)

and the equilibrium distribution in Hermite polynomials in
the lattice velocities. Then they rearranged the acceleration a
such that it explicitly modifies the macroscopic velocity in
the equilibrium distribution, leaving a term linear in a. I
only linear terms were to appear in Eq. (23), the Shan-Chen
prescription for an interparticle force would then coincide
with the way it is included in the continuum BGK-
Boltzmann equation, as pointed out by Luo and Martys et al.
To this end, following Nekovee et al. [32], we simply drop
from Eq. (23) any term nonlinear in the acceleration a. We
thus obtain a modified Shan-Chen collision term, which is
why our model is termed modified Shan-Chen. The modified
Shan-Chen collision term is

Q=0+ 2/ A ?, 25)
where

Aa&— i 5 -, — - —ﬂ & @ 26
Kl T @k T, ( waCk gaacl) + gaa C4 C|-a T ( )
K K

and
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where we have made use of the condition Eq. (29) below.
The second term arising in Eq. (25) accounts for interparticle
interactions other than the binary collisions implicit in the
Boltzmann collision term, €} [56]. This includes a collision

operator AZ/ resulting from mean-field interactions among
different fluid components [32], which gives rise to phase
separation for immiscible multicomponent systems.

The inclusion of a mean-field force in the Shan-Chen
model leads to the breakdown of the local momentum con-
servation that holds for noninteracting ideal gases, cf. Sec.
IT A. However, the forces felt by neighboring portions of
fluid follow an action-reaction mechanism that leads to glo-
bal momentum conservation (i.e., over the whole lattice).
This was numerically confirmed for our third-order-
equilibrium, modified Shan-Chen model too.

It can be shown that the condition for momentum conser-
vation in the absence of interactions, Eq. (18), leads to that
needed when using a sccond-order expansion of the cquilib-
rium distribution, namecly

u=v, 28)
only in the limit of creeping flows to second order, ie.,
u?=~0. (29)

We therefore implemented the computation of the velocitly
according to Eq. (28) rather than Eq. (18). The condition Eq.
(29) is satisfied, as global momentum would not be con-
served otherwise. In addition, we confirmed in our simula-
tions that the fluid velocity was kept under 28% of the speed
of sound by 67% of the lattice nodes. This means squared
Mach numbers under 0.08. This purports to show that the
expansion to third order, implemented in this model to ex-
tend the parameter space for which the equilibrium distribu-
tion remains positive, for momentum conservation at least
adds very little.

In our LB model, the kinematic viscosity of the mixture is
given by

a

_0_ 1
v—p—cs (2 XoTw 2), (30)

where c;2= 3 for our lattice, 7, is the relaxation time of the
ath component and x,, is its mass concentration defined as
po/p [25]. For a rcgion of pure ath component

1 1
V=§(7'—5), (31)

which also holds for our case of a 50:50 mixture, for which
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2 XoT= 7'2 Xo=T (32)
(<3 (<3
since all rclaxation times arc the same.

IV. THE SURFACE TENSION

The surface tension o arises as an emergent effect due to
intercomponent interactions. It is calculated by measuring
the components of the pressure tensor P={P; j} across a pla-
nar interface perpendicular to the z-axis through the formula

7= J‘jx[PZZ(Z)iP.\‘x(z)]dz, (33)

where P;; is the flux of the ith component of the momentum
across a surlace perpendicular to the jth cartesian axis. This
pressure tensor, consistent with the force Eq. (21), is

1 -
P=2 2 pimeet 7 2 oo [ (091X

+ PP T(x—x ) (x—x"), 34)

with X' =x+¢, in this study. This leads to the same expres-
sion for the scalar pressure as that in the momentum balance
equation obtained by multiplying the LB equation (13) using
the collision term Eq. (25) by ¢, and summing over 4. Here,
pi(x) is the mass density of species a with velocity ¢, at the
site x. Equation (34) contains a kinetic term due to the free
streaming of particles corresponding to an ideal gas contri-
bution, plus a potential or virial term due to the momentum
transfer among particles of equal and distinct color, through
the interparticle force [52].

As previously noted, the surface tension in the modified
Shan-Chen model is an emergent, hence not directly tunable
quantity, in contradistinction to the situation with free-energy
based lattice-Boltzmann models. It depends on the density p,
the coupling g, and the relaxation time 7, and has to be
determined by simulation. We computed its dependence on
these parameters to be as follows:

70, o0, g 35
%) s @) S (35)

This behavior is useful when steering through the parameter
space in search of specific values of Ly and 7y. Numerical
results on the surface tension are reported in the following
section.

V. SIMULATIONS

We restrict ourselves to critical (50:50) mixtures, which
are the type of configurations leading to a spinodal decom-
position process as opposed to nucleation. Experimentally,
spinodal decomposition is characterized by long-wavelength,
infinitesimal density perturbations which are unstable after
the quench, hence favoring the segregation, whereas nucle-
ation generally presents short wavelength, finite perturba-
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TABLE 1. Model parameters studied, including the surface ten-
sion o(p,7.g) mcasurcd for a planar interface on a 4:X4 X128
lattice, and the characteristic length Ly and time T for each param-
eter set. The existence of the latter two is based on the validity of
the dynamical scaling hypothesis, and that diffusive currents are
negligible with respect to hydrodynamic currents and capillary
forces.

Parameterset p 7 g 0(p.,7.8) Lo(p.7.8) Tolp.7.8)
1 0.8 2.000 0.06 0.002059 97.1 18 870
I 0.8 1.500 0.06 0.004777 18.6 1038.8
I 0.8 1.000 0.06 0.010292 2.16 28.0
v 0.8 0.625 0.05 0.017458 0.0796 0.152

tions, and metastability is not uncommon. Nucleation is
hence a more complex phenomenon which is usually consid-
ered after an initial study in spinodal decomposition has been
performed.

We aim at reproducing the early time diffusive and later
time viscous and inertial regimes predicted by carrying out
scaling analyses on the Cahn-Hilliard Model-H equations
[2,47]. Growth laws predicted for those are [t'?, [y, and
1123, respectively. Under the assumptions of the dynamical
scaling hypothesis made in the introduction, those regimes
are uniquely characterized by the length and time

S
90\ 2] T detpnp ! 2]
(36)

oblained by inserting Eq. (31) into Eq. (9).

Having in mind keeping simulation time at a minimum,
the values of p, 7, and g must be such as to allow the fluids
to be immiscible and approach equilibrium quickly whilst
ensuring numerical stability and positive shear viscosity.
This amounts to keeping p as high as possible, 7 close to
172, and g as large as allowed by the onset of numerical
instabilities which set in when the forcing term is too large. A
large g allows for the early time transient, dominated by
diffusion, to be of short duration. Finally, sccking the diffu-
sive regime means looking at very early times, which is at-
tained for large values of T,. Conversely, the hydrodynamic
inertial behavior requires as small values of T; as possible.

In Table I we present the parameters selected in this study,
along with the measured surface tension. We also include the
length and time scales associated with them, which are used
to compute dimensionless lengths and times in the model.

The initial condition used for all the simulations was a
thorough mixture of the two phases, with randomly distrib-
uted fluctuations. To realize this, each velocity direction £ at
each lattice site was populated with one density pg(X,r)
=mn;(x,t) for each species @=R,B as a white-noise,
pseudorandom floating point number between 0.0 and 0.8,
where m® are the particle masses, all sel to unity. Note that
the density p in Table I is defined as the lattice average

p=(p*(x,0)+p"(x,1)), (37)
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where p*(x,t)=3,p(x,t), and due (o the crilical composi-
tion we use, amounts to the maximum value of either of the
summands.

Lattice sizes used were 128% and then 256 to check for
finite size effects. Simulations for 128° systems were run for
700 or 1400 time steps, and for 200 or 250 time steps for
256" systems, depending on the parameter set. Following
prescription of Kendon et al. to keep finite size effects at bay
[11], we neglected domain sizes larger than a quarter of the
lattice side size. There is no reason a priori to choose this
particular threshold. As we shall see, this allows the genera-
tion of a domain size range broad enough for data acquisi-
tion; furthermore, finite size effects were quantified by using
the two aforementioned lattice sizes.

Surface tension was measured on 4X4X128 and 16
X 16X 128 lattices, allowing plenty of room along the
nonisotropic direction z for the fluid’s physical quantitites to
achieve values characteristic of the bulk before being af-
fected by the second interface with periodic boundary con-
ditions imposed. We found that the surface tension did not
vary by more than 1% when the length along the z direction
was doubled, which is the only direction where we would
cxpect any variation as translational symmetry is broken.

To compute the average domain size, Eq. (3), we perform
discrete Fourier transforms. The sampling theorem [57]
warns us to ensure that our fluid mixture does not exhibit
spatial frequencies larger than the Nyquist critical frequency
f., defined as half the sampling frequency. This is not being
the case, the power spectrum in the interval [0,f,] is altered
by frequencies larger than f, as a result of aliasing. Because
the sampling frequency on the lattice is one, the maximum
frequency any relevant quantity of our fluid mixture is al-
lowed to have according to the sampling theorem is 1/2, ie.,
of wavelength two. This means that any spatial variation is
bound to happen between two contiguous lattice sites, which
is something we already knew: the resolution of the lattice is
finite and dictated by the lattice size. We used the FFT rou-
tine rlft3() for real, 3D data sets [57].

Calculation of the reduced time ¢ requires an assessment
of Ty, . Ty serves to redeline the time such that the domains
have zero size at the time origin, which is not the case in the
actual simulations. Depending on the regime reached by the
parameter set employed, domains may start to grow imme-
diately after time step zero, completely avoiding the diffu-
sive stage.

We assess T, in the following way. We first compute the
intersection with the abscissae of a linear fit interpolating all
data starting after the initial purely diffusive transient is com-
pleted, that is, for which interfaces are thin enough and L(T)
just starts to grow. The intercept is used as an initial guess
for a; in a Levenberg-Marquardt nonlinear least-squares fit
of the form

y=ag(x—a;)®. (38)

Once Ty, is computed, and the data scts arc normalized by
Ly and T, hence becoming (¢,/) data pairs, we perform fits
to the function Eq. (38) to determine the growth exponent
a,. Initial guesses for the fitting coefficients are a8= 1.0,
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a"=0.1, and a=1.0. The Lolerance for these fits was sel (o
107>, this being defined as the unsigned increment of y?
between two consecutive iterations, divided by the number
of degrees of freedom.

Uncertainties in parameters are also taken care of. Be-
cause standard errors {A,S} are incurred in the structure
function spherical averaging (35), these transmit down to L
and /, and to ¢ through the determination of T;,. In this
study, however, errors in the abcissae are disregarded as they
do not depend on time, and therefore represent equal weights
for data points in the least-squares functional to minimize.

We performed the simulations using a number of proces-
sors ranging from 32 to 128 on a Cray T3E-1200E and on
SGI Origin2000 and Origin3800 supercomputers. The code
is an implementation in Fortran90 using the message passing
interface (MPI) as parallelization protocol, and it shows scal-
ing with the number of processors between 50% to 90% of
linearity on the Cray T3E platform [58] up to 64 PEs, and
better behavior on SGI Origin platforms. CPU times used up
to run a 1287 lattice for 1400 time steps, or a 256° lattice for
250 time steps, took up to 6 h per parallel process.

An important issue in dealing with the lattice sizes em-
ployed here is to have access to massive disk storage. For our
largest lattices, 1.9 Gbytes of measurements were dumped
onto disk at each measurement time step. A lattice of 256°
sites run for 700 time steps, measuring every 25, requires 40
Gbytes to store the order parameter, the density fields for
each phase, momenta, and checkpoint files, the latter being
needed if we wish to restart the simulation at the point where
it stops. To that we need to add some additional working
space for converting the dumped binary data into machine-
portable XDR format [59]. For this work we required 200
Gbytes on disk, plus tape storage to free up space when
required. XDR files were visualized using the commercial
package AVS [60].

It is worth noting that our results did not undergo a pro-
cess of lattice size reduction, in the sense of averaging over
nearest-neighboring sites in order to deal with limited com-
putational resources, as was done in previous studies on 3D
spinodal decomposition [49,61]. Hence, we benefitted from
measuring and visualizing all data output from our simula-
tions. Current limitations in computing resources prevented
us from simulating lattices of 512° or 1024° sizes, which
would otherwise be desirable in order to decrease the fluid’s
minimum Knudsen number, helpful in reaching the thermo-
hydrodynamic limit as a multiscale Chapman-Enskog expan-
sion procedure shows. However, this situation is bound (o
change soon with the advent of terascale computing capabili-
ties (see http://www.RealityGrid.org).

A. Growth exponents

Figure 1 shows the average domain size in lattice units as
obtained straight from the simulations, for all parameter sets
(cf. Table I). Reynolds numbers achieved for each of these
are Re=0.18, 0.49, 2.7, and 37. For parameter set I, we can
see that after a transient during which there is a rapid mass
convection to nearest neighbors, domain growth flattens out
and starts growing at about 77=400. Wc will look at this in
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FIG. 1. Evolution of the average domain size for parameter sets
I, II, I, and IV (cf. Table 1) with the time step. Error bars are
included and represent the uncertainty transmitted from the standard
error of the structure function spherical average. Lattice size is
128%, All quantities are reported in lattice units.

further detail; for now it can be seen that the breadth of the
plateau decreases with the Reynolds number. Finally in Fig.
2 we show the same curves after rescaled to Ly and T, in
reduced units.

Fits to the model y=ag(x—a,)*? for Fig. 2 are given in
Table 1, and they proved to be quite sensitive to the number
of points fitted. Domain growth shows an increasing segre-
gation speed, {0345 40593 0623 g 40717 with increasing
Reynolds number. These data sets correspond to characteris-
tic lengths and times in the ranges 0.0796<<Ly<(97.1 and
0.152<<T ;<18 870. These contain the values for which Ken-
don et al. [11] observed a viscous linear exponent, Ly=5.9
and T,=71. This, therefore, invalidates the universality of

1000 T T T T v

100 | +* 1

10 7 :

o1f 3
0.01 : ‘ . : .
001 01 1 10 100 1000 10000

t

FIG. 2. Log-log plot of reduced length versus reduced time for
the 128%-lattice data sets. Error bars are included. The four data sets
correspond to parameter sets I, II, III, and IV (cf. Table I), from left
to right. Viewed from a grazing angle, one can see that a simple,
algebraic interpolating curve is not truly obtainable here. The first
few points of each set correspond to diffusive, zero-growth stages.
The units on both axes are dimensionless.
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the dynamical scaling hypothesis.

By looking at Fig. 2 from a grazing angle one can easily
see that a simple, algebraic interpolating curve is not obtain-
able here. Kendon et al. [11,49] and Pagonabarraga, Wagner,
and Cates [15,62] used a method to improve this curve. They
left T, as an adjustable fitting parameter such that there is a
reasonable collapse onto a simple, single algebraic curve for
all parameter sets simulated; from this they obtained a win-
dow of Ty, in which collapse is reasonable. Then they
checked whether the different values for T, from each indi-
vidual parameter set lay within such a window. Quoting Ken-
don et al. (cf. Sec. IX C in Ref. [49]), “although this [proce-
dure] is capable of falsifying the scaling hypothesis [ - - -],
its nonfalsification [ - - - ] may not represent persuasive proof
that the scaling is true.” We adhere to this comment and
prefer not to manipulate the data sets in such a way.

B. Structure function

For parameter set I (cf. Table I) we show in Fig. 3 a
family of spherically-averaged structure functions versus
wave numbers, corresponding to time steps 200, 400, 600,
800, 1000, 1200, and 1400, from right to left. Just as in
scattering cross-section measurements [2], we observe the
peaks to grow and approach small wave numbers as time
evolves. In Figs. 4 and 5 we show the same family of curves
using time steps as abscissas and wave numbers as param-
eters. Regions of linear growth with time on such a logarith-
mic scale indicate that a diffusive process is dominating the
dynamics. In fact, an exponential time growth for the struc-
ture function shortly after the quench below the spinodal
curve was predicted from the linearised Cahn-Hilliard
Model-B equations without noise [2], which although incor-
porating order-parameter conservation, does not include hy-
drodynamics. This Cahn-Hilliard equation might be appli-
cable to regimes in our fluid where hydrodynamic effects
were unimportant, as in the initial stages. Assuming linear
perturbations ¢’ to the order parameter, Cahn predicted that
for fluctuations of small amplitude and long wavelength
there is an instability of the form

S(k,t)=S(k,0)e™20H" (39)

for k<<k., where k., depends on the diffusion constant. Here,
t is the time, w(k)<<0, and S(k,1)%{| g (1)|?), the brackets
denoting averaging in reciprocal space over a shell of radius
k.

Exponential growth occurs in our simulations, as can be
seen from Figs. 4 and 5 for aboul the first 350 time steps for
most of the wave numbers, indicating its transient character.
The plateau of Fig. 1, set I, lasts during the first 400 time
steps, and we can see, Fig. 3, that up to 400 time steps the
peak in the structure factor varies in height and very little in
wave number, and is located at 0.491 (lattice units). This
leads us to think that at these early stages the dynamics is
mainly making walls thinner while average domain sizes
barely change. In addition, visual inspection of the order
parameter confirms the latter and suggests that hydrody-
namic currents are weak, leaving diffusion as the mechanism
leading the phase segregation process. When we check the
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TABLE II. Levenberg-Marquardt nonlinear least-squares (its of / vs ¢ data to model (38), for each
parameter set attempted. The first line for each set belongs to 128% data, the second line to 256° data, the
latter being unavailable for set 1. Fitting parameters are given, plus the weighted sum of squared residuals
(x?) divided by the fit’s number of degrees of freedom. Weights are the inverses of squared uncertainties.
Note that x?/ndf, also referred to as the variance of residuals, is expected to approach unity. Values larger
than 1.0 may be due to an insufficient number of data points, data errors not normally distributed, or an
incorrect model function. Values smaller than 1.0 may be the result of too large error bars, or too general a

model function.

Parameter set ag a, as Xz/ ndf
I 0.644+0.014 —2%1077+0.002 0.545+0.014 046
I 0.924+0.004 6 107°+0.007 0.607+0.006 123
0.922+0.003 —2X107°+0.007 0.593+0.007 048
1 1.248+0.031 —0.007=0.100 0.650+0.007 271
1.362=0.010 —1X107*%+0.03 0.623%0.002 0.68
v 0.941+0.019 0.01=39 0.743%=0.002 0.10
1.139+0.017 —0.01x3.6 0.717+0.002 0.14

structure function temporal evolution, Figs. 4 and 5, for the
curves at and around k=0.491, we see that up to exactly 400
time steps do they show exponential growth, as the Cahn-
Hilliard Model B predicts for a diffusive scenario. Also, ex-
ponential growth does not hold for all wave numbers, but
only for those smaller than about 0.7, in agreement with the
existence of an upper cutoff for the validity of Eq. (39),
predicted from Model B.

However, nol all the wave numbers follow Model B’s
predictions, namely, that exponential growth is a transient
and occurs up to a threshold wave number. In fact, exponen-
tial growth holds for all the time steps of the simulation for
the larger length scales (wave numbers up to about 0.245),
suggesting that diffusion never ceases to dominate their dy-
namics. Also, cxponential growth is scen for very small do-
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FIG. 3. Spherically averaged structure function versus wave
number, for parameter set I (cf. Table I). 128 lattice. Error bars
represent the standard error of the structure function spherical av-
erage. Time slices shown are time step 200, 400, 600, 800, 1000,
1200, and 1400 from right to left. All quantities are reported in
lattice units.

main sizes (wave numbers larger than 0.736) for time steps
well advanced in the coarsening dynamics, after 600 time
steps. These wave numbers are close to and above the ex-
pected Model-B upper cutoff for exponential growth, set by
the change in slope from positive to negative in Fig. 5. These
departures from Model B’s predictions hold nonetheless for
domain sizes far from the first moment of the structure fac-
tor, which is close to its peak and is our average domain size
measure. It would be desirable in future works to investigate
diffusional processes at £<0.245 for all of the simulation
time, and k>0.736 at late times: according to the Cahn-

1000 T v T T T T

100

SkT)

0 200 400 600 800 1000 1200 1400
Time step, T

FIG. 4. Evolution of the spherically averaged structure function
with the time step for parameter set I and a 128" lattice, on a
logarithmic scale. When observed along the ordinate 7=200, the
curves correspond to wave numbers £=0.147, 0.196, 0.245, 0.295,
0.344, 0.393, and 0.442 from bottom to top, respectively. Error bars
represent the standard error of the structure function spherical av-
erage. Regions of linear growth are those for which the exponential
behavior Eq. (39) holds. For wave numbers up to 0.2 exponential
and therefore diffusive behavior is seen for all the simulation time.
For larger wave numbers (and hence smaller domain sizes) diffu-
sion occurs as a transient. All quantities are reported in lattice units.
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FIG. 5. Similar to Fig. 4, but the curves correspond to wave
numbers k=0.491, 0.540, 0.589, 0.638, 0.687, 0.736, 0.785, and
0.834 from top to bottom, respectively. We can see that linear
growth ceases to hold for wave numbers larger than about 0.736, in
accordance with existence of an upper cutoff for the validity of Eq.
(39). All quantities are reported in lattice units.

Hilliard linearized Model B, for these cases diffusion is neg-
ligible or forbidden, respectively.

Analogous bchavior to Fig. 3 is cxhibited for paramcter
sets II, I, and IV (cf. Table I) in Figs. 6, 7, and 8, respec-
tively. For the last two time slices taken in Fig. 9, the peaks
scem no longer to drift to the left, as a result of finite size
effects (arrest of domain growth). Regarding regions of ex-
ponential growth with time, the three data sets confirm Eq.
(39), with an upper bound for .

480 - 1

S(k)

0.375 0.5 0625 075 0.875 1
k

FIG. 6. Spherically averaged structure function versus wave
number, for parameter set I (cf. Table I). 128 lattice. Error bars
represent the standard error of the structure function spherical av-
erage. Time slices shown are time step 200, 400, 600, 800, 1000,
1200, and 1400 from right to left. All quantities are reported in
lattice units.
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FIG. 7. Spherically averaged structure function for parameter set
III (cf. Table I). 128° lattice. Error bars represent the standard error
of the structure function spherical average. Time slices shown are
time step 100, 200, 300, 400, 500, 600, and 700 from right to left.
All quantities are reported in lattice units.

Figure 9 shows the collapse (matching) of the structure
functions corresponding to parameter set IIT (cf. Table T), for
a 128° lattice size and time steps from 450 to 700, when they
are scaled by Eq. (8), the abscissas being rescaled by a factor
of (2m) 7!, and the ordinates by the peak’s maximum. Ear-
lier times are represented in Fig. 8 by empty symbols, and
later times by filled symbols. There is good collapse, and,
therefore, scaling according to the scaling hypothesis, in the
region from ¢=0.4 to about g~3, where g=kL is dimen-
sionless. The middle of the region 1<{g<2 follows a ¢~ °
behavior, in accordance with Tomita’s prediction of an expo-
nent —6 or more negative [63].
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FIG. 8. Spherically averaged structure function versus wave
number, for parameter set IV (cf. Table I). 128* lattice. Error bars
represent the standard error of the structure function spherical av-
erage. Time steps shown are 100, 200, 300, 400, 500, 600, and 675,
from right to left. All quantities are reported in lattice units.

046304-11



58

3. Articles published and in press

GONZALEZ—SEGREDO, NEKOVEE, AND COVENEY

10' T T

0

10

107

1 10
KL

FIG. 9. Scaled spherically averaged structure function for pa-
rameter set 1II (cf. Table I), as defined by Eq. (8). Lattice size is
128*. Time steps are as shown in the legend. Earlier times corre-
spond to the empty symbols; later times to the filled symbols. Error
bars are smaller than the size of the symbols. Straight lines serve as
slope guides to the reader only, and represent power laws g2, ¢*,
¢~ °, and Porod’s law ¢~ *, from left to right, respectively, with g
=kL. All quantities are reported in lattice units.

Close to g==3 we observe the presence of a shoulder, as
has been reported in experiments [64] and numerical simu-
lations [48,65]. Most strikingly, the shape of our large-g tail
is very reminiscent of that of Fig. 4 in Ref. [48] and that of
Fig. 3 in Ref. [65]: (1) there is still a time dependence indi-
cating that interfaces have not yet been fully resolved (we are
probing the smallest scales, where diffusion still exists and
&/L is not small enough); and (2) the tail decreases with an
exponent which is in fact more negative than that of the
Porod tail, Eq. (6), despite what these authors [48,63] claim.

For ¢<<0.4, data points do not seem to collapse onto the
same curve of those for ¢>0.4. This is similar to, but with
more data than, the results of Koga and Kawasaki [65]. Our
results show an exponent growing with time: the slope of a
line (not shown) joining the first two empty circles (T
=450) is 1.61, while the slope of a line (not shown) joining
the last two filled downward triangles (7'="700) is 2.12. This
resembles the temporal growth cited by Appert ef al. [48] on
the results of Alexander, Chen, and Grunau [34]; nonethe-
less, we consider the amount of data in the latter insufficient
to draw firm conclusions. Given that the points at 7="700 arc
closer to the asymptotic regime, we take such a slope as our
best approximation to the asymptotic regime.

In the small-g region, Yeung [66] predicted a ¢* behavior
for the asymptotic limit (L—, or at late times). Addition-
ally, at earlier stages, a term proportional to L™ 2¢> caused by
thermal noise would also come into play. Now, the estimate
of Appert et al. [48] applies well for our results: such a qua-
dratic term is less dominant than the quartic one only for ¢
>0.4, given that the largest value of L(T) for which there
are no finite size effects is also about 25. This happens to be
the region where we find the g%>—¢* crossover.
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FIG. 10. Scaled spherically averaged structure function for pa-
rameter set IV (cf. Table 1), as defined by Eq. (8). Lattice size is
128*. Time steps shown are from 450 up to 675, every 25. Earlier
times correspond to the innermost lines; later times to the outermost
lines. Error bars are smaller than the size of the symbols, except for
the two leftmost, detached data sets, for which they are slightly
larger. Straight lines serve as slope guides to the reader only, and
represent power laws ¢°, g%, ¢7%, ¢77, and the fit to the large-g
tail, ¢ ~*%, from left to right, respectively, with g=kL. All quan-
tities are reported in lattice units.

Figure 10 shows similar curves for parameter set IV (cf.
Table I), where only time steps 450 to 675 are displayed and
we have also normalized the curve such that the peak is
located at (1,1). We have again neglected carly time steps
because of poor collapse. A fit to the tail in 2<g<C10 gives
g%, close to being a Porod’s law. It is when we probe the
finest length scales, at g== 10 that it ceases to apply, due to
lattice discretization effects.

The behavior at intermediate wave numbers is between
g % and ¢, again in agreement with Tomita’s theory [63],
and close to ¢~ 7 as computed using a dissipative particle
dynamics method by Jury et al. [13] and a lattice-gas au-
tomaton by Love, Coveney, and Boghosian [9].

For small momenta (large domains) we found a behavior
close to ¢°, in agreement with the numerical results of Love,
Coveney, and Boghosian [9] and in disagreement with Ye-
ung’s predictions [66].

The most notable difference between Figs. 9 and 10 is the
behavior above g~ 1.5. Figure 10 shows a neal Porod (ail,
which bends down dramatically for ¢>10, whereas Fig. 9
shows either a poor Porod tail in the region 3<(g<(5, or a
minute one in the region 1.5<{¢<{3. A condition assumed in
the derivation of Porod’s law [47] is that the sampling length
r satisfies £<€r<€L, which in wave numbers means

L<k< /g (40)

By “eyeball™ inspection of the system’s order parameter we
found that interface widths naturally shrink with an increas-
ing number of time steps, going from about 5 or 6 lattice unit
spacings at 200 time steps down to about 3 at 675 time steps,
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FIG. 11. Order parameter (p®—p?) snapshot at time step 200
for parameter set IV (cf. Table I). We show a 256X256 <40 slab of
the lattice.

regardless of the data set, IIT or IV (cf. Table I). Simulations
for a 256° lattice size revealed similar widths, and snapshots
of the order parameter at 200 and 700 time steps are shown
in Figs. 11 and 12. With these widths in mind, assuming
domain sizes of a quarter of the lattice side length (the
threshold imposed by our prescription for eliminating finite
size effects), and a 128 lattice, condition (40) becomes

1<g<10, 41

which contains our large-g region. Despite this, we do not
observe a Porod tail for data set ITI, or, as in data set IV, the

FIG. 12. Order parameter (p®—p®) snapshot at time step 700
for parameter set IV (cf. Table I). We show a 256 X256 %64 slab of
the lattice.
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TABLE III. Model parameters leading to numerical instability,
including the surface tension o(p,7.g) gencrated some time steps
before the instability sets in, and the associated characteristic time.
The lattice used was 4 X4 X 128, and the instability sets in before
4000 ts.

p T 8 o(p,7.8) Ty
0.5 0.5625 0.06 0.0115 0.0169
0.5 0.5625 0.03 0.0052 0.0122
0.3 0.5625 0.10 0.0068 0.0174
0.3 0.5500 0.08 0.0061 0.0112

tail obtained is only close to being a Porod tail. This is in
agreement with the fact Eq. (40) is necessary but not suffi-
cient for a Porod tail to hold.

Finally, it is worth noting in Fig. 12 that the existence of
nested domains and droplets much smaller than the average
domain size.

VI. NUMERICAL STABILITY OF OUR
LATTICE-BOLTZMANN ALGORITHM

As is well known, owing to the lack of an H theorem, an
approach to equilibrium is not guaranteed in all lattice-
Boltzmann models to date; recent theoretical developments
to address and solve this have been made [43-46]. For
single-phase lattice-Boltzmann models, equilibrium states
are well defined in the collision term; if the automaton does
relax to these, the pertinent macroscopic momentum (and
sometimes energy) balance equations are reproduced in the
low-Knudsen number limit. Interacting, multicomponent
lattice-Boltzmann models exhibit the same situation in the
bulk of pure fluid regions where intercomponent interactions
are negligible. For regions where they are not, there is not
even a well-established thermohydrodynamic theory which
could provide equilibria to which the automaton could relax
to, or with which to compare the stationary state to which it
can evolve. Whether dealing with a single or multiphase sys-
tem, lattice-BGK stationary regimes ought to be treated with
caution and contrasted with experiment.

Numerical instabilities are the reflection of the lack of an
H theorem, which is a direct consequence of space and time
discretization on the BGK-Boltzmann equation and the free-
dom in the choice of the equilibrium distribution function
[45,46]. These instabilities can be defined as follows. As is
generally the case for a finite difference method with a single
relaxation parameter, such as our lattice-BGK model for a
zero phase-coupling constant [42], linear stability occurs
within a finite interval of such a parameter. If multicompo-
nent interactions are introduced, additional parameters may
influence the stability: density, intercomponent coupling
strength, and even composition. The mechanism is simple:
certain choices of parameters can turn the lattice-BGK colli-
sion term positive (therefore increasing the mass density) for
long enough to generate floating-point numbers larger than
the largest the machine can deal with, hence causing an over-
flow signal. Numerical instabilities are defined in this work
as the gencration of such floating-point numbers. We con-
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FIG. 13. Evolution of the collision term maximum absolute
value, 6, Eq. (42), with the time step on a 323 lattice for parameters
{p=0.3, g=0.06, 7=0.5125}. All quantities are in lattice units.

sider it crucial to be able to map out regions in the model’s
parameter space leading to unstable configurations, and to
report them alongside any lattice-BGK simulations.

Using the same initial conditions as explained in Sec. V,
we found our algorithm to be unstable for regimes with the
smallest length and time scales, Ly and T, which coincide
with those of the largest Mach numbers. In Table III we
show some of the paramaters leading to numerical instability.
The dependence of the surface tension on the model param-
eters, as given in Sec. IV, should be taken into consideration
as a guide to steering through the parameter space. Note that
all values of At included are larger than that for parameter
set IV.

We then investigated the nature of our instabilities, as
others have done. The group of Cates found troublesome
numerical instabilities with their free-energy based, lattice-
BGK model in 3D in regions in which quiescent binary por-
tions of fluid go into a checkerboard state [61]. They re-
ported that their model is unconditionally unstable [49].
Nonetheless, by improving the way gradients were treated
numerically they were able to considerably reduce this un-
physical behavior. For our model, we looked at the time
evolution of the quantity

6()y=max{|Q;*(x,t)|VxV LV a}, 42)
for parameters {p=0.3, g =0.06, 7=0.5125}, where the col-
lision term, %, is defined in Eq. (25). We also monitored
the maximum and average values of the fluid mixture’s

speed, ty, and u, respectively, on the lattice. We show these
quantities for a 32° lattice in Figs. 13-15. We see how 6
reverses its decreasing trend in a few time steps; after that, it
blows up at 7=152 time steps. We only show data up to T
=49, as (T=51)~10"". i .. blows up in similar style: at
T=50, 1, =7498, and #=~107'; at T=51, u,,,, has ex-
ceeded the maximum floating-point value that the computer
can deal with, and overflow signals are generated. This indi-

FIG. 14. Evolution of the maximum speed u ,,, with the time
step on a 32° lattice for parameters {p=0.3, ¢=0.06, 7
=0.5125}. The interpolating curve serves as a guide to the eye
only. All quantities are in lattice units.

cates that at the time steps immediately prior to the onset of
the instability the lattice gets more and more populated with
increasing speeds until in two or three time steps they grow
by ten or more orders of magnitude. That the population of
lattice sites with rapidly increasing speeds over time is small
compared to the lattice volume can be concluded from con-
trasting the time variation in the standard error (one sigma)
of u to the time variation of u, Fig. 15. The same parameter
set run on a 1287 lattice seems to make the instability set in
much quicker, as it occurs during the first 10 time steps. As a
final check, we ran a 128’ lallice with parameter set I (cf.
Table I) for 20 000 time steps and found no instabilities. The
time evolution of @, u, and u is shown in Figs. 1618, re-
spectively. We conclude that the occurrence of instabilitics
only depends on the set of parameters used, regardless of the
number of time steps simulated.

08 | 9

06 |

04 | E

02 1

average speed

02 | 4

06 ) L s s ) L ' L s

FIG. 15. Evolution of the speed average u, with the time step on
a 32° lattice for parameters {p=0.3, ¢=0.06, r=0.5125}. Error
bars represent the standard error of the average (one sigma). All
quantities are in lattice units.
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FIG. 16. Evolution of the collision term maximum absolute
value, 6, Eq. (42), with the time step on a 128* lattice for parameter
set T (cf. Table I). We can see a decreasing trend for most of the
simulation, which accentuates after time step 10 000. The interpo-
lating curve serves as a guide to the cye only. All quantitics arc in
lattice units.

VII. CONCLUSIONS

We have presented a quantitative study of the phase sepa-
ration dynamics in three dimensions for critical (50:50) fluid
mixturcs (spinodal decomposition) for a modificd Shan-Chen
lattice-BGK model of multicomponent, isothermal immis-
cible fluids.

‘We found that, after a brief diffusional transient in which
interconnected regions of fluid species embedded into one
another are formed, the average size of such regions grows
with time as /s tY, where vy~ 2/3. The trend is for the value
to increase in the range 0.545+0.014<<y<<0.717%£0.002 as
the Reynolds number increases. This increase is consistent
with a crossover from [« "3 diffusive behavior to hydrody-
namic viscous growth /=t predicted by the Cahn-Hilliard

0.012 T T T T T T

0.008

0.006

maximum spesd

0.004

0.002

0 L L s L L s
0 2000 4000 6000 8000 10000 12000 14000
T

FIG. 17. Behavior of the maximum speed u,,, with the time
step for a 128% lattice with parameter set I (cf. Table I). It shows an
overall decreasing trend. The interpolating curve serves as a guide
to the eye only. All quantities are in lattice units.
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FIG. 18. Evolution of the speed average « with the time step on
a 128* lattice for parameter set I (cf. Table I). We can see a decreas-
ing trend of the average and its error. All quantities are in lattice
units.

Model H. Owing to the significant amount of diffusion
present at low Reynolds number, we do not consider our
results to be indicative of a genuinely hydrodynamic inertial
%7 regime.

We observed exponential growth in the time dependence
of the structure function for wave numbers up to a threshold
value, in qualitative agreement with predictions from the lin-
earized Cahn-Hilliard Model B. Tor small wave numbers,
such an exponential growth is seen at all simulation times,
whereas it is only an initial transient for larger wave num-
bers. These departures from Model B predictions are for
wave numbers far from the one characterizing the average
domain size. A natural continuation of this work would be o
investigate the nature of diffusion currents for these cases.

We have found very good agreement with the dynamical
scaling hypothesis in the form of a neat collapse of the struc-
ture function curves for Re=2.7 and Re=37 when they are
appropriately scaled according to Eq. (8). This collapse holds
roughly for the second half of the simulation time, as diffu-
sional transients act during the first. By looking at order pa-
rameter snapshots we observed the formation of nested do-
mains and smaller droplets for the largest Reynolds numbers
achieved, as Wagner and Yeomans also found [12]. However,
unlike them, in our case these are transients rather than a
result of length scales growing at different speeds, as poor
collapse of the scaling functions would then occur due to
breakdown of scale invariance.

Yeung predicted a g> behavior at the small-g end of the
spectrum as the result of thermal effects at preasymptotic
stages [66]. Love, Coveney, and Boghosian [9] conjectured
that a ¢? behavior, and a crossover to ¢*, could be caused by
(a) lattice-gas noise, or (b) a poor scaling collapse, and that
their +* domain growth, instead of #, might be justified by
the former. Appert et al. [48] ascribed the ¢ behavior and
the crossover to not having reached the asymptotic limit, L
—o0 (poor scaling collapse again). Our noiseless model re-
produced the ¢?«sg* crossover at Re=2.7 and did not at
Re=37, for which there is better scaling collapse, and also
produced a 2/3 domain growth (crossover) exponent. All this
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leads us to conclude that noise may not play as important a
role as the lack of scaling collapse in explaining the g>—¢*
crossover, and is delinitely not a requirement for the repro-
duction of a 2/3 domain growth exponent. A g2 behavior is
the only one experimentally observed by Kubota et al. [64]
for a mixture of isobutyric acid and water; they cite surface
tension effects, measurement difficulties, multiple light scat-
tering, and even specificity to the mixture’s molecular weight
as reasons for not seeing a ¢* behavior, and definitely discard
thermal noisc. Not surprisingly, in his prediction Yeung as-
sumed a diffusive domain growth exponent of 1/3, which is
rather seen in quenches of polymer mixtures and metal al-
loys.

In the case Re=237, the spectrum shows a ¢° behavior in
the small-g limit, in disagreement with Yeung’s prediction.
Tn fact, his analysis is based on a Cahn-Hilliard model with-
out hydrodynamics.

The numerical instabilities seen in our runs are caused by
large speeds turning the cquilibrium distribution negative for
long enough to incur floating-point overflows. This happens
for characteristic times (cf. Table I) below T;=0.0172, and
the population of lattice sites undergoing such a burst in the
fluid’s macroscopic speed is small compared to the lattice
volume. We found no evidence that an initially stable regime
becomes unstable at later times, as typically happens in re-
laxational models (such as is our model for g,z=0). This is
in stark contrast with the findings of Kendon et al. [49] and
Cates et al. [61] in their spinodal decomposition studies us-
ing a free-energy based, lattice-BGK model, who reported
their algorithm to be unconditionally unstable.

A search for a crossover to growth laws other than ¢
Reynolds numbers higher than Re= 37 faces two major prob-
lems: (a) the triggering of numerical instabilities due to large
interspecies coupling and smallness of relaxation time val-
ues; and (b) the approach to the compressible limit, whose
macrodynamic behavior for pure phases cannot, by construc-

2/3 at

PHYSICAL REVIEW E 67, 046304 (2003)

tion, be correctly described by our method. On the other
hand, there is still scope to achieve Reynolds numbers
smaller than Re=0.18 in search of the end of the crossover
to +'%. Closeness to the miscibility threshold may make this
endeavour difficult, as it is reached for characteristic times
ca. Tp=1.43%105.

Our results clearly challenge the claim that a domain
growth linear with time is universal for all models of phase
separating fluids sharing similar values of Ly and T, since
we obtained excellent collapse of scaled structure functions
yet our domain growth exponents are in the crossover region
between diffusive and hydrodynamic viscous regimes.

The properties of this binary immiscible fluid model are
important for underpinning the more complex domain
growth observable in ternary amphiphilic (oil/water/
surfactant) fluids which we expect to report in forthcoming
publications.
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Abstract. — We present the first simulations of the self-assembly kinetics of the gyroid cubic
mesophase using a Boltzmann transport method. No macroscopic parameters are included in
the model and three-dimensional hydrodynamics is emergent from the microscopic conservation
laws. The self-assembly arises from local inter-particle interactions in an initially homogeneous,
phase-segregating binary fluid with dispersed amphiphile. The mixture evolves in discrete time
according to the dynamics of a set of coupled Boltzmann-BGK equations on a lattice. We
observe a transient microemulsion phase during self-assembly, the structure function peaks and
direct-space imaging unequivocally identifying the gyroid at later times. For larger lattices,
highly ordered subdomains are separated by grain boundaries. Relaxation towards the ordered
equilibrium structure is very slow compared to the diffusive and microemulsion-assembling
transients, the structure function oscillating in time due to a combination of Marangoni effects
and long-time-scale defect dynamics.

Block copolymer melts or dispersions, and homopolymer-block copolymer blends are exam-
ples of systems that self-assemble into regular, liquid-crystalline structures when subjected to
the appropriate temperature or pressure quenches [1-4]. These structures, called mesophases
due to their features being intermediate between those of a solid and a liquid, are also found
in fluid mixtures of a surfactant in a solvent, binary immiscible fluids containing a third,
amphiphilic phase, and lipidic biological systems [1,5]. They all form due to the competing
attraction-repulsion mechanism between the species. The morphology of these mesophases
is defined by the spatial loci where most of the amphiphile concentrates, forming multi- or
mono-layer sheets of self-assembled amphiphile. Common equilibrium mesophases include
lamellae, hexagonal columnar arrays, and the primitive “P”, diamond “D” and gyroid “G”
cubic phases [1,2]. The sheets of these cubic phases are surfaces or labyrinths of zero mean
curvature, the skeletons of which form double (inter-weaving), chirally symmetric bicontin-
uous cubic lattices which are 6-, 4- and 3-fold coordinated, respectively. The gyroid is the
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phase which exhibits the least surface area per unit cell among those, and is ubiquitous in na-
ture; we show in this paper that it can spontaneously self-assemble from a purely microscopic,
kinetic-theoretical lattice model with hydrodynamic interactions.

Simulation approaches to the dynamics of mesophase formation have been hitherto based
on Monte Carlo [6], Brownian dynamics [7], dissipative particle dynamics [7-9], Langevin dif-
fusion equation [10,11] and molecular-dynamics methods [12]. In Langevin-diffusion methods,
mass currents arise from chemical potential gradients, computed in turn from equilibrium free
energies. Much of the published work is based on Ginzburg-Landau expansions for the latter,
assuming that all surfactant is adsorbed as a continuum on the self-assembled sheets, incor-
porating white noise and excluding hydrodynamics [10]. More recently, extensions appeared
including hydrodynamics and free energies explicitly calculated for the amphiphile, modelled
as Gaussian bead-spring chains in a mean-field environment [11]. Dissipative particle dynam-
ics (DPD) methods also model the amphiphile as bead-spring chains, yet the beads as well as
the particles constituting the fluid species enter in the model as mesoscopic entities, undergo-
ing 2-body interactions. In DPD, space is continuous and hydrodynamics is emergent from
the mesodynamics. The presence of hydrodynamics is an important [eature in modelling the
nonequilibrium pathways of mesophase self-assembly and the possible metastable states they
can lead to, but is absent in Monte Carlo [6] and Brownian dynamics [7] methods.

In this work we use a hydrodynamically correct lattice-Boltzmann model of amphiphilic
fluids [13] to simulate the self-assembly of a liquid crystalline, double gyroid cubic phase
from a randomly mixed initial binary immiscible fluid (say, of “oil” or “red”, and “water”
or “blue”) with an amphiphilic species dispersed in it. The model [13] does not require the
existence of a thermodynamic potential describing the local equilibria and a phase transition;
rather, self-assembly arises as an emergent property of the microscopic interactions between
the species. The dynamics is obtained by solving a set of coupled Boltzmann-BGK transport
equations on a spatial lattice in discrete time steps with a discrete set of microscopic velocities;
the scheme is known as the lattice-Boltzmann (LB) BGK method and has proved useful
for single- and multi-phase flow modelling during the last decade [14]. At each time step,
the probability density evolved by each LB equation is advected to nearest neighbours and
modified by molecular collisions, which are local and conserve mass and momentum. A single
time parameter controls relaxation in the collision term for all microscopic speeds, and in our
model there is no stochastic noise present other than in the amphiphile dynamics. The mass
density defines fluid elements on each lattice node which can be mapped onto experimental
scales that are intermediate with respect to molecular and macroscopic lengths and times.
Immiscible fluid behaviour is incorporated via scalar inter-particle forces of a mean-field form
limited to nearest neighbours. The force enters in the hydrodynamics by modifying the local
macroscopic velocity of the whole (luid and hence the local Maxwellian to which each species
relaxes. For the correct lattice symmetry, and in the limits of low Mach and Knudsen numbers,
the Navier-Stokes equations for incompressible flow hold in the bulk of each fluid phase. The
model also leads to the growth exponents and dynamical self-similarity observed in binary
immiscible spinodal decomposition experiments [15]. An amphiphile density is evolved by
an additional coupled LB equation, and the bipolar, amphiphilic molecules are modelled as
dipole vectors moving between the nodes of the lattice. Their orientations vary continuously
and relax towards a Gibbsian canonical equilibrium which minimises the interaction energy
between the local dipole and the mean fields generated by their nearest neighbours. The
evolution of the surfactant density is also coupled to that of the other species [13].

The initial condition in our simulations is a random dispersion of surfactant in a random
mixture of equal amounts of oil and water. The maximum values chosen for the (uniformly
distributed) random densities were 0.70 for oil or water and 0.40, 0.60, 0.90 = n(% for the
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Fig. 1 — Isosurfaces of the order parameter ¢(x) for a surfactant density of 9% = 0.60 at time step
t = 15000 in a highly ordered 33® subdomain of a 128% lattice. Panels (a), (b), and (c) display the
¢ = 0.40, high-density isosurface viewed along the (100), (111) and (110) directions, respectively.
Panel (d) shows the oil-water interface (¢ = 0) of the same lattice subdomain along the direction
(1171), where between three and four units cells fit laterally in the subdomain. Black and white have
been used in panel (d) to distinguish one immiscible fluid phase from the other, and the scale for
panels (a) and (c) varies from that for (b) and (d).

surfactant. These, as well as all magnitudes and parameters in the model, are in lattice units.
All relaxation times were set to 1.0, the thermal noise parameter for dipolar relaxation was
set to 10.0, and the parameters controlling the strength of the inter-species forces were set
to g = 0.08, gns = —0.006 and g, = —0.003. We employed periodic boundary conditions
on cubic lattices of 643, 128% and 2562 nodes, the latter two initially being required to check
that finite-size effects were absent. The choices made of densities and parameters were based
on previous tests searching for regimes of oil-water immiscibility (i.e., below the spinodal) for
which, within the computing time and resources available, phase segregation was sufliciently
fast, while flows were dominated by hydrodynamics and surface tension as opposed to diffusion.

We are interested in studying the nonequilibrium pathways that follow from the initial
condition, {or which we track the evolution of mass densities via direct-space imaging and
analysis of the structure function. Defining a scalar order parameter, ¢(x), at a particular time
step as the oil density minus the water density, the oil-water structure function, S(k), is the
Fourier transform of the spatial auto-correlation function for the fluctuations of ¢(x) around
its lattice average, proportional to the intensities probed in scattering techniques widely used
in the analysis of mesophase structure; the spherically averaged structure function, S(k), is
the average of S(k) in a shell of radius k& = |k| and thickness one lattice unit, corresponding
to the contribution of structures of size L = 2x/k.

Figure 1 shows isosurfaces of the order parameter at time step # = 15000 in a 332 subdomain
of a 128> lattice for an initial surfactant density fatly distributed up to n(®® = 0.60. We
display three viewpoints of the isosurface ¢ = 0.40 (in lattice units), corresponding to a water-
in-oil, “rod-like” scenario where water is a minority phase and oil is in excess. Whereas on 643
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Fig. 2 — Temporal evolution of (k,, k) slices of the structure function viewed along the (100) direction.
The fluid is the same of fig. 1. Left and right columns show slices at k. /(27 /N) = 0, £14, respectively,
where N = 128 is the lattice lateral size. Rows from top to bottom correspond to time steps t = 500
and 15000, respectively. Conlours denole intensities 8 = 1,50 and 100, where lighter shades denote
higher intensities. The spherical shell structures in the top row indicate the presence of a sponge
{(microemulsion) phase, which becomes anisotropic at later times. In lattice units.

(or smaller) lattices the liquid crystalline structure uniformly pervades the simulation cell, on
1283 (or larger) lattices there are some imperfections present, more prevalent as the lattice
size is increased, resulting in liquid crystalline subdomains with slightly varying orientations
between which exist domain boundaries —“defects”.

The resemblance of the simulated structures in fig. 1 to transmission electron microtomog-
raphy (EMT) images of the gyroid “G” cubic morphology is evident [4]: the morphology of
+o, ¢ # 0 (excess) isosurfaces is that of gyroid skeletons. The lattice resolution is insufficient
to detect multiple peak fingerprints in plots of S(k), as observed experimentally with SAXS
techniques [3,4]. However, its unaveraged counterpart (fig. 2) shows complete agreement of
ratios of reciprocal vector moduli with those observed in diffraction patterns of the gyroid [4],
which, in addition to visual (direct space) inspection of the unit cell, leads to unequivocal
identification. EMT images and experimental self-assembly times of the gyroid phase allow
us to broadly associate a length and time scale to our LB dynamics; e.g., the systems in [4, 16]
require resolutions to be 2.3 nm per LB-lattice unit and 10 ys up to 40ms per LB time step.
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Fig. 3 — Temporal evolution of the spherically averaged structure function and its error (one-standard-
deviation uncertainty in the average), for the wave numbers indicated next to each curve. The fluid
is the same as in fig. 1. All quantities are in lattice units.

Values higher than n(®* = 0.60 also produce gyroid structures at late times, whereas there
is gradual loss of long-range ordering for 0.40 < n(9® < 0.60, leading to a molten gyroid phase.
At n(®® = 0.40, the late-time structure becomes a sponge (microemulsion), isotropic and of
short-range order, for which S(k) is similar to that shown in fig. 2, top row. Although the
observation of gyroid-related morphologies has earlier been claimed in Langevin-diffusion [11]
and DPD [8] methods, the evidence was purely pictorial and not comprehensive —in fact, the
structures more closely resemble molten gyroid states.

Figure 3 shows the time evolution of the spherically averaged structure function for the
n(®s = 0.60 gyroid case and wave numbers corresponding to average domain sizes in 6.4 < L <
64. Note three characteristic features of the curves: there are oscillations, decay (for k& < 0.83
and k > 1.1, the latter not shown), and growth (for 0.88 < k < 1.0 or 6.1 < L < 7.1, close to
the average domain size value). Modes of k > 1.3 (L < 4.7) decay fast enough (S(k) < 0.1 for
t ~ 1000) that they do not contribute to the structure. The analogue curves for the n(®s = 0.40
case, leading to a sponge phase, exhibit similar oscillations, albeit of longer period. The fact
that there are two types of temporal evolution, corresponding to increasing and decreasing
modes, is a reflection of a phase segregation process still taking place. In the course of time,
more domains accumulate in the 0.88 < k& < 1.0 range; we discard increasing interface steep-
ness as another contributing factor to this, since oil/water diffusion is negligible in this regime.

Direct-space observation of the interface (¢ = 0) superimposed on surfactant density maps
for a series of time slices allows us to ascribe the oscillations that mainly allect the growing
modes to “self-sustained” Marangoni effects. These are caused by collective and inhomoge-
neous amphiphile adsorption and desorption to and from the (periodically modulated) inter-
face, a region of high surfactant density. This permits us to sct a time scale of between 100
and 500 time steps during which interfacial surfactant from regions of high density diffuses
towards an adjacent interface (also with adsorbed surfactant), effectively forming a bridge
between the two sheets. If the interfaces belong to boundary, inter-domain regions, where the
global translational symmetry is broken, defects form, change shape and annihilate on the
same time scale. Perusal of fig. 2 confirms that the smallest period of the oscillations is not
dissimilar to such a time scale. The frequency spectrum of the time evolution of S(k) gives
a rich structure of peaks with a decaying envelope, higher-frequency modes becoming excited
as the surfactant concentration increases.
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Direct-space observation also shows an essential feature of the mesophase dynamics: each
unit cell in the gyroid wanders in time about a fixed spatial position, whereas for the sponge
the interface shows nonperiodic displacements. In other words, the temporal average of the
displacement is zero for a gyroid’s unit cell and nonzero for an interface clement in the sponge
phase. Displacements are small in the former: they are not larger than ca. 20% of the unit
cell size and are in-phase with those of the unit cells belonging to the local, defect-delimited
subdomain. We therefore expect the gyroid structure to be stable, i.e. the dynamics would
relax to it for late times.

Temporal oscillations in the structure function of sponge phases have been reported pre-
viously by Gompper and Hennes via a stochastic Langevin diffusion equation method with
hydrodynamics, based on a Ginzburg-Landau free energy [17]. This approach does not ex-
plicitly consider an order parameter for the amphiphile since it assumes that amphiphile
relaxation is fast compared to that of the oil-water order parameter. The oscillations re-
ported therein range from overdamped to underdamped depending on the wave number, and
their frequency spectrum shows a single peak at finite frequency. This is in contradistinction
to our finding of multiple-peak spectra, which we ascribe to the absence in that model of
scalar or vector degrees of freedom for the amphiphile. In fact, Gompper and Hennes put
forward a linearised Navier-Stokes model for Poiseuille flow wherein oscillations arise due to
incompressibility competing with pressure gradients. Our LB method reproduces the same
linearised, incompressible Navier-Stokes dynamics away from interfaces for the quiescent flows
we observe, and, despite this, we obtain multiple-peak spectra. In addition, since stochas-
tic sources are not present in the oil/water evolution, they cannot account for this spectral
multiplicity. While it is true that randomness in the adsorbed surfactant directors may effec-
tively reduce amphiphile adsorption strength, this effect is negligible compared to surfactant
diffusion currents, facilitated by gradients of ¢(x) from nearby interfaces.

Since the systems we simulate are dissipative and isolated (there is no mass or momentum
exchange with external sources), oscillations are bound to die out at sufficiently late times.
We observe interfacial widths to have reached their minimmum (and hence interfacial tension its
maximum) at about time step 1000, at which time the structure has a sponge-like morphology.
Then the structure undergoes slow relaxation on a time scale which is O(10*). We observe the
pathway to equilibration to be a slow process dominated by currents created by surface tension
and Marangoni effects acting on similar time scales. A free energy “leading the way” towards
the equilibrium morphology might be less useful than a correct mesodynamics, and even bias
the evolution; methods which are intrinsically mesoscopic bottom-up such as ours and DPD are
better suited. From DPD simulations of copolymer melts [8], Groot and Madden found that
melts of symmetric amphiphile led to lamellar phases, whereas a gyroid-like structure appeared
only for asymmetric amphiphile as a transient phase precursor to a hexagonal columnar phase.
Our results are in contradistinction to these: although our amphiphiles are symmetric, the
gyroids we find are stable.

Finally, our reproduction of periodically modulated mesostructures rebuts claims that a
necessary condition for their self-assembly is a disparity in the ranges of interaction of the
competing morphogenic mechanisms, namely, short range vs. long range [18]. Unlike other
mesoscopic approaches such as DPD, ours is strictly local, being based on nearest-neighbour
interactions on a lattice.

The simulation of the gyroid cubic phase reported here highlights the richness of our
model’s parameter space. Our LB model represents a kinetically and hydrodynamically cor-
rect, bottom-up, mesoscale description of the generic behavior of amphiphilic fluids, which
is also algorithmically simple and cxtremely computationally cfficient on massively parallel
platforms [19]. Natural extensions of this work include the search for regimes leading to equi-
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librium mesophases of varied symmetries, the study of shear-induced symmetry transitions
and the analysis of defect dynamics in large-scale simulations. Computational steering tools
should prove invaluable in these respects [20].
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Coarsening dynamics of ternary amphiphilic fluids and the self~assembly of the gyroid

and sponge mesophases: lattice-Boltzmann simulations
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By mcans of a three-dimensional amphiphilic lattice-Boltzmann model with short-range intcrac-
tions for the description of ternary amphiphilic fluids, we study how the phasce separation kinetics of a,
symmetric binary immiscible fluid is altered by the presence of the amphiphilic specics. We find that
a gradual increase in amphiphile concentration slows down domain growth, initially from algebraic,
to logarithmic temporal dependence, and, at higher concentrations, from logarithmic to stretched-
exponential form. In growth-arrcsted stretched-cxponential regimes, at late times we obscerve the
sclf-assembly of sponge mesophasces and gyroid liquid crystalline cubic mesophascs, henee confirming
that (a) amphiphilc-amphiphile intcractions need not be long-ranged in order for periodically modu-
lated structures to arise in a dynamics of competing interactions, and (b) a chemically-specific model
of the amphiphile is not required for the sclf-assembly of cubic mesophasces, contradicting claims in
the literature. We also observe a structural order-disorder transition between sponge and gyroid
phases driven by amphiphile concentration alone or, independently, by the amphiphile-amphiphile
and the amphiphile-binary fluid coupling paramecters. For the growth-arrested mesophases, we also
observe temporal oscillations in the structure function at all length scales; most of the wavenumbers
show slow dccay, and long-term stationarity or growth for the others. We aseribe this behaviour to

a combination of complex amphiphile dynamics leading to Marangoni flows.

I. INTRODUCTION

The term amphiphilic fluid is broadly used to denote
multiphase fluids in which at least one species is of a
surfactant nature. A surfactant molecule (from surface
active agent, which we shall also refer to as an am-
phiphile) contains a polar headgroup attached to a hy-
drocarbon tail which, dispersed in a binary immiscible
fluid mixture, such as oil and water, is driven towards
and adsorbed at the interface between the two fluids. The
selective chemical affinity between each part of the surfac-
tant molecule and the components of the binary mixture
is the mechanism responsible for such a taxis [1]. Not
only are amphiphilic fluids important in physical chem-
istry, structural biology, soft matter physics and mate-
rials sclence from a fundamental perspective, but their
applications are also widespread. Detergents and mam-
malian respiration are two common examples in which
surfactants are present. Living cell membranes are com-
plex macromolecular assemblies comprised in large part
of self~assembled phospholipids, of an amphiphilic nature
[2]. Sponge mesophases are formed as a result of an am-
phiphile dispersion or melt at an appropriate composi-
tion, and enjoy numerous applications in medical research
as well as the pharmaceutical, cosmetic, food, and agro-
and petrochemical industries [3, 4]. Liquid-crystalline bi-

*n.gonzalez-segredo@ucl.ac.uk. Also at Departament de
Fisica, Universitat Autonoma de Barcclona, 08193 Bellaterra,
Barcclona, Spain.

fp.v.coveney@ucl.ac.uk

continuous cubic mesophases of monoglycerides and the
lipid extract from archaebacterium Sulfolobus solfatari-
cus have been found at physiological conditions in cell
organelles and physiological transient processes such as
membrane budding, cell permeation and the digestion
of fats [5]. Amphiphilic cubic mesophases can also be
synthesised for important applications in membrane pro-
tein crystallisation, controlled drug release and biosensors
[6, 7]. These phases are termed mesophases not only be-
cause their intrinsic internal length scales range between
those characteristic of molecular and hydrodynamic (or
macroscopic) realms, but also their mechanical properties
are half-way between those found in a liquid and a solid
L 2, 8.

Amphiphiles have the property of lowering the interfa-
cial tension in a binary immiscible, say oil-water, fluid [8].
Given the bipolar nature of their molecular structure, am-
phiphile adsorption at the oil-water interface is a process
which is energetically favoured relative to their entrop-
ically beneficial dispersion in the bulk. This effectively
reduces the pressure tensor at the interface, making the
immiscible species more alike. As more interfacial surface
is created, so more amphiphile dispersed in the bulk can
be accommodated at it.

The effect of adding surfactant above a critical con-
centration to an oil-water mixture undergoing phase sep-
aration is to slow down the demixing process, which,
with the addition of sufficient amphiphile, can be to-
tally arrested. Langevin, molecular dynamics and lattice
gas simulations have shown that, as the concentration
of dispersed surfactant increases, the temporal growth
law of the average size of the immiscible oil-water do-
mains, of the power-law form t* in the surfactantless
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case [9, 10], is seen to cross over to a slower, logarith-
mic growth of the form (Int)?, where a and 0 are fitting
parameters and ¢ is the time [11 13]. Emerton et al.
showed that increasing the surfactant concentration even
further leads to growth well described by the stretched
exponential A — B exp(—CtP), where A, B, C and D are
fitting parameters, including halted segregation at suffi-
ciently late times [13]. Depending on temperature, pres-
sure and fluid composition in such a stretched exponential
regime, the amphiphile can self-assemble and force the
oil-water mixture into a wealth of equilibrium structures.
The self-assembling process is dictated by the compet-
ing attraction-repulsion mechanisms present among the
species. Lamellae and hexagonally-packed cylinders are
examples of these mesophases, also referred (o as L, and
H, respectively, with continuous translational symmetry
along one or two directions. Other examples are the
sponge (L3) mesophase and the micellar (Q*?% or Pm3n,
and Q227 or Fd3m), primitive (“P”, Q222 or Im3m), dia-
mond (“D”, “F”, Q%?* or Pn3m) and gyroid (“G”, Q*°
or Ja3d) cubic mesophases, all of which lack continuous
translational symmetry [14]. Among all the aforemen-
tioned phases, only the sponge mesophase is devoid of
long-range order and so cannot be classified as a liquid
crystal: it is rather characterised by glassy features.

A sponge mesophase [ormed by the amphiphilic sta-
bilisation of a phase-segregating binary fluid mixture is
called a microemulsion. Since we shall be dealing with
oil and water in equal proportions, we shall be concerned
with bicontinuous microemulsions.
croemulsion is a structure consisting of two percolat-
ing, interpenetrating oil and water phases separated by a
monolayer of surfactant molecules adsorbed at the inter-
face. Oil and water are isotropically mixed, and ordering
is short range. Sponge phases formed by the dispersion
of amphiphile in a single phase solvent differ from mi-
croemulsions in that it is a surfactant bilayer which un-
derlies the structure, and the regions it divides are oc-
cupied by the same fluid component. A gyroid phase is
also a bicontinuous, interpenetrating structure; however,
ordering is evidently long range, whence its classification
as a liquid crystal. In the gyroid, the locus where most of
the surfactant resides is a triply periodic minimal surface
(TPMS) whose unit cell is of cubic symmetry. The sur-
[ace has zero mean curvature, no two points on it are con-
nected by a straight segment, and no reflexion symmetries
are present. Isosurfaces of the gyroid phase for which oil
and water are not at equal composition (minority phases)
form mutually percolating, three-fold coordinated, regu-
lar lattices. Other examples of triply periodic surfaces of
zero mean curvature arise in the P and D mesophases, the
minority phase isosurfaces of which exhibit coordination
numbers of six and four, respectively.

A bicontinuous mi-

The purpose of the present paper is to report on a the-
oretical study of the segregation kinetics in ternary am-
phiphilic fluids and the self-assembly of the sponge and

gyroid mesophases. By progressively adding surfactant
to an initially homogeneous immiscible oil-water mixture
on the way to achieving arrested domain growth, we shall
give an account of how the segregation kinetics of the
fluid domains is affected by the addition of surfactant,
and study the features of the associated mesophases that
are formed. The mesophases corresponding to such late
time, arrested growth regimes are sponges which turn
into gyroids as we increase the surfactant concentration.
We shall also see that these phases exhibit temporal os-
cillations in the size of the oil-water domains, which we
ascribe to Marangoni flows.

II. OVERVIEW OF MODELLING AND
SIMULATION OF AMPHIPHILIC FLUID
SELF-ASSEMBLY

Various methods have been used to date to model
and simulate ternary amphiphilic mixtures and to study
their phase segregation kinetics and the formation of mi-
croemulsions and liquid crystalline phases. We briefly
review them in this section.

Kawakatsu et al. studied segregation kinetics employ-
ing a two dimensional hybrid model with thermal noise
but without hydrodynamics, combining a continuum,
Langevin diffusion equation for the oil-water dynamics
and Newtonian dynamics with dissipation for bipolar par-
ticles modelling the surfactant [11]. They used a free
energy in the form of a ¢*-Gingburg-Landau expansion
[15] plus terms modelling the surfactant-interface and
surfactant-surfactant interactions. They found the av-
erage domain size of symmetric binary immiscible fluids
with amphiphile to grow with time more slowly than ¢1/3,
the latter expected for binary alloys in two and three
dimensions. Laradji et al., instead of modelling the am-
phiphile as a particulate species, regarded it as a continu-
ous density coupled to the oil-water order parameter in a
¢*-Gingburg-Landau free energy [12]. In their work, they
studied several cases of two-dimensional Langevin diffu-
sion equations, one of which being the so-called Model D
[16]. Model D incorporates noise, a conserved order pa-
rameter and surfactant density, but excludes hydrody-
namics. Laradji et al. not only found logarithmic growth
for the behaviour of the average domain size with time,
but also observed a slowdown from it for higher surfac-
tant concentrations and dynamical scaling for the struc-
ture function at intermediate times. Yao & Laradji, us-
ing a modified Lifshitz-Slyozov nucleation theory for con-
tinuum fields in two and three dimensions, studied how
the Ostwald ripening dynamics of an asymmetric mixture
of oil and water is altered by the presence of a surfac-
tant species [17]. They found results similar to those of
Laradji et al. [12].

The segregation kinetics of amphiphilic fluids have also
been studied with fully particulate methods such as clas-
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sical molecular dynamics and, more recently, hydrody-
namic lattice gases. Using a minimalist molecular dy-
namics model in two dimensions, Laradji et al. [18] found
a crossover scaling function similar to previous Langevin
[11] and Lifshitz-Slyozov models [17], yet with a differ-
ent algebraic exponent, and a slowing down from the
algebraic growth laws for binary mixtures. Using two-
dimensional hydrodynamic lattice gas models for sym-
metric [13] and asymmetric mixtures [19], the group of
Coveney found that surfactant induces a crossover to a
logarithmic slow growth, and, with sufficient surfactant,
full arrest of domain growth which is well described by
a stretched exponential function. The group found simi-
lar results with a three-dimensional hydrodynamic lattice
gas model [20].

Particulate methods have also been used to tackle
mesophase self-assembly. Using classical molecular dy-
namics methods, Marrink ef al. simulated evolution of
a surfactant bilayer, initially set up on the morphology
of a “D” TPMS, to study both the surfactant packing
structure and how close such a bilayer would remain to
the TPMS after relaxation [6]. They, however, did not
address self-assembly dynamics: time scales required for
that are orders of magnitude above those reachable with
atomistic techniques on present-day cutting-edge super-
computers. In dissipative particle dynamics (DPD) ap-
proaches, a Langevin dynamics with momentum conser-
vation is solved to model ill-defined, mesoscopic dissipa-
tive particles interacting via repulsive, soft potentials;
hydrodynamics is emergent and the amphiphile is rep-
resented by dissipative particles bound together by rods
or springs [21-23]. The DPD simulations of Groot &
Madden of copolymer melts [21] showed that melts of
symmetric amphiphile led to lamellar phases, whereas a,
gyroid-like structure appeared only for asymmetric am-
phiphile as a transient phase, precursor to a hexagonally
packed tubular phase. Nekovee & Coveney, using the
lattice-Boltzmann model we employ in this work, were
able to reproduce the “P” mesophase in a binary am-
phiphilic mixture of surfactant and solvent [24].

Many of the simulation studies on the formation kinet-
ics of microemulsion and liquid crystalline mesophases
have made use of stochastic Langevin diffusion methods,
in which mass currents are driven by chemical potential
gradients computed from free energies of the ubiquitous
¢*-Ginzburg-Landau expansion form. These models treat
the amphiphile only implicitly through the functional de-
pendence of the surface tension parameter with the am-
phiphile density [25-29]. In cases in which the amphiphile
is a copolymer, however, the free energy is often derived
from polymer models which aim at accounting for the
amphiphile’s molecular structure with a certain degree of
specificity [30 32]. The validity of these Flory-Huggins
type approaches rests on being able to derive the free
energy from a microscopic model of the complex fluid
mixture, which not only might entail considerable diffi-

culty but does require the segregation to be a quasi-static,
local equilibrium process. Under general far from equi-
librium conditions, such as occurs in the sudden-quench
scenario so often employed in the literature, equilibrium
thermodynamic potentials are known not to adequately
describe the process. Besides, free energy based methods
also require surfactant adsorption and relaxation on the
interface to be much faster than interface motion, a so-
called adiabatic approximation. Free energy approaches
are frequently represented as paradigms of thermodynam-
ically consistent mesoscopic methods; some of them also
pursue chemical specificity in elaborate empirical exer-
cises amounting to little more than parameter fitting of
polymer models. The philosophy behind them, nonethe-
less, is the use of macroscopic, local equilibrium infor-
mation to specify a stochastic, and hence mesoscopic,
non-equilibrium dynamics. None of these methods offers
a dynamics satisfying detailed balance, let alone an H-
theorem (Lyapunov function) guaranteeing irreversible
evolution towards the equilibrium state described by the
prescribed free energy. As a consequence, the ‘thermo-
dynamic consistency’ of these methods remains on shaky
grounds.

The fact that some free energy approaches [31, 32] fo-
cus on the specific molecular structure of the amphiphile
raises the question ol what use particulate methods, such
as is the one we report in this paper, have in the simula-
tion of amphiphilic fluid systems. Our method, by reduc-
ing the description of the amphiphilic molecule to its min-
imal possible expression—a point dipole, retains the min-
imum number of degrees of freedom necessary to model
interfacial adsorption and micellisation, and, addition-
ally, in a hydrodynamically consistent framework which
does not require processes to be quasi-static. With these
basic properties at our disposal, we want to fully exploit
our model’s capabilities to determine the non-equilibrium
amphiphilic dynamics and the equilibrium fluid struc-
tures arising from it. The minimalistic bottom-up ap-
proach is in line with the fact that, far enough from crit-
icality, distinct molecular structures and microscopic dy-
namics can produce similar macroscopic behaviour this
is universality emerging from microscopic complexity [33].
In addition, particulate methods are much more suitable
than conventional continuum fluid dynamics methods [34]
for the simulation of interface dynamics. Such dynamics
is an emergent property of the underlying inter-particle
interactions among the immiscible species; a set of con-
tinuum partial differential equations describing the lo-
cus of the interface is, rather, ils macroscopic manifes-
tation, and its solution a much more labourious endeav-
our. A fortiori, modelling surfactant adsorption and self-
assembly in an explicit fashion via particulate methods
provides a more realistic picture of the microscopics than
doing so at the continuum, macroscopic limit described
by free-energy approaches.

Lattice-Boltzmann (LB) methods were originally de-
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veloped as a means of reducing the computational cost
associated with lattice-gas automaton (LGA) algorithms
[35]. LB methods evolve a single-particle distribution
function via a discretised Boltzmann equation, usually
in the linearised, relaxation-time (BGK) approximation.
Such a single-particle distribution, at a particular time
slice and spatial position on the lattice, is an average
over the LGA velocity space for a statistically large num-
ber of different microscopic realisations (initial condi-
tions). The fact that much of the phenomenology of
binary immiscible and ternary amphiphilic fluids occurs
for small spatio-temporal gradients permits us to take
the mean-field (or molecular chaos) approximation, and
the Boltzmann-Grad limit in which such an approxima-
tion holds, as heuristically appropriate for the modelling
of their universal properties. Heuristics come into play
in that tunable parameters are introduced in LB models
in order to reproduce desired quantities of dense and/or
complex fluids, such as surface tension, viscosity and ther-
mal conductivity (for required values of Reynolds and
Prandtl numbers), stress tensors (for required viscous or
viscoelastic behaviour), and equations of state (for liquid-
gas and phase segregating transitions). It is worth noting
that the increasing popularity of LI3 methods in recent
years is primarily based on pragmatic considerations as-
sociated with their simplicity and algorithmic efficiency.

This paper presents the first quantitative account of
amphiphilic phase segregation dynamics using a three-
dimensional model based on the Boltzmann transport
equation. It describes the spontaneous self-assembly
of the gyroid liquid crystalline cubic mesophase and
an order-disorder transition between the latter and the
sponge mesophase, of glassy features. The remainder of
the paper is structured as follows. In Section III we de-
scribe the model. In Section IV we look at how the seg-
regation kinetics of the fluid domains is affected by the
addition of surfactant. Section V studies the temporal
oscillations of the average domain size and the structure
function, which are only observed for segregation-halted
regimes. In Section VI we characterise the morphol-
ogy of the mesophases corresponding to those regimes
via direct- and Fourier-space imaging, and identify the
sponge«—gyroid structural transition. Finally, we provide
cornclusions in Section VII.

III. A LATTICE-BOLTZMANN MODEL FOR
TERNARY AMPHIPHILIC FLUIDS

The amphiphilic lattice-Boltzmann model we employ
in this paper is derived from that originally proposed by
Chen et al. [36, 37]. The method can be regarded as a
fully mesoscopic, bottom-up approach, which does not
require the existence of a thermodynamic potential de-
scribing phase transitions. In fact, the method is ather-
mal in the sense that, for algorithmic efficiency reasons,

the microdynamics is devised ex professo to conserve
velocity moments of the distribution function only up
to first-order; this simplification is valid wherever ther-
mal fluctuations are negligible, e.g. away from critical-
ity. This is, for example, the case of deep quenches into
the spinodal region of the fluid’s phase diagram, which
is our case in this paper. As opposed to top-down LB
methods, based on the imposition of a free energy func-
tional [38, 39], the global dynamics arise as an emergent
property of the interactions between mesoscopic levels of
description, in agreement with a complexity paradigm
[33]. Oil-water segregation is achieved via inter-species
forces which modify the fluid’s macroscopic velocity. The
dynamics in the bulk of each binary immiscible species
(e.g. oil and waler) can be derived from a Bollzmann
equation with a forcing term. An amphiphilic molecule
is modelled as a continuously orientable massive point
dipole subjected to thermal noise and relaxing towards
an equilibrium that minimises its interaction energy with
mean fields generated by its nearest neighbours on the
lattice. The densities of surfactant, oil and water evolve
via coupled lattice-BGK equations. This is a mean-field
approach which exhibits Galilean invariance and repro-
duces correct hydrodynamics. We have also shown, in
a previous paper which serves as a reference benchmark
for this study [9], that the model reproduces the dynam-
ical scaling hypothesis during the phase segregation ex-
perienced by binary immiscible (oil-water) fluids. Its al-
gorithmic simplicity allows it to achieve extremely high
performance on massively parallel computers [40], and
substantially reduces the domain of numerical instability
present in free-energy-based LB methods [9]. Because an
H-theorem is lacking in essentially all multiphase lattice-
Boltzmann models hitherto proposed [41], we consider
it artificial to try to enforce a prescribed thermodynamic
equilibrium in these schemes; a method which is algorith-
mically simpler, fully mesoscopic, mean-field and bottom-
up is of greater fundamental interest.

A. Binary immiscible fluids

The core of our model is a lattice-BGK equation gov-
erning the evolution of the mass density distribution
mong(x,t) of component « in an interacting fluid mix-
ture at position x, instant ¢, and for discrete molecu-
lar velocity ¢, on a regular lattice and in discrete time.
Here, m®™ is the particle mass which we set to unity for
convenience, and the single-particle distribution n{(x, )
obeys the lattice-BGK relaxation-streaming mechanism:

Rt et + 1)~ nf(at) = OF, W

where the collision term has two contributions accounting
for the kinetics of non-interacting (ideal) plus interacting
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FIG. 1: Surface tension dependence on the surfactant coneen-
tration (mass fraction, ¢f. Table I) as mcasured at a planar
interface making usc of Eq. (15). A lattice of size 4 x 4 x 128
was allowed to cvolve up to time step 25000, and pressure
tensor components were measured every 1000 time steps. The
surface tension tends to grow with time and reaches a hori-
zontal asymptote; at that time step the surface tension only
differs in 16% from that at the previous measurement. Inter-
polation scrves as a reference to the eye. Coupling constants
used were gne = 0.08, gns = —0.006, and g, = —0.003. Oil
and water densitics used were n{OF = @B = 0.7, All quan-
titics arc reported in lattice units.

(non-ideal) multicomponent species, respectively:
P =00 ) YN AT (2)
a 1

the sums extending over all available species and direc-
tions, and

Cng(xt) — ng(eq) (x,t)

i

Q,(Co)a(x, t) =

)
Here, the time increment and lattice spacing are both
unity, x is a node of such a lattice, « = r,b (e.g. cil (r)
or water (b)), and ¢y is one of the 24 (= N,..) discrete
velocity vectors plus one null velocity of the projected
face centred hypercubic D4Q25 lattice we use to guaran-
tee isotropy in the macroscopic equations that the mocdel
reproduces for a bulk, single phase fluid [12]. The param-
eter 7 defines a single relaxation rate towards equilib-
rium for component «. A can be regarded as a matrix
element of a cross-collision operator A which is a func-
tion of both 7% and the acceleration a®, the latter being
experienced by a fluid element due to its neighbours, as
will be defined later. The function ng(eq)(x, t) in Eq. (3)
is the discretisation of a third-order expansion in Mach
number of a local Maxwellian [9], representing the local
equilibrium state of the ath component,

1 1
Vet = w1+ Serut g (or - w? -

1 1 1
ﬁuQ + @(c;C cu)d — ng(c;C . u)] (4)
"5 "5 =

14

where wy, are the coeflicients resulting from the velocity
space discretisation, and ¢, is the speed of sound, both
of which are determined by the choice of the lattice. For
the projected D4Q25 lattice we use, the speed of sound
is ¢; = 1/4/3, wy = 1/3 for the speed ¢, = 0, and 1/36
for speeds ¢, = 1 and v2. In Eq. (4), u = u(x,t) is
the macroscopic velocity of the mixture, through which
the collision term couples the different molecular veloc-
ities c¢g. This is because u is a function of the compo-
nents’ macroscopic velocities, defined as n™(x,t)u® =
Zk ng(xa t) Ck-

A judicious choice of the coeflicients in the expansion
of the equilibrium distribution Eq. (4) allows for mass
and momentum to be (non-locally) conserved for the non-
interacting, ideal gas mixture case, i.e.

Sal =0, Y mad a0 =0. (5
k [ k

It can be shown that in the limit of creeping flows to
second order, i.e. u2 & 0, the expression for the fluid
mixture’s macroscopic velocity u required for momen-
tum conservation in the absence of interactions, as a
function of u®, simplifies to that obtained for a second-
order expagsiuon of thf, equilibrium distribution, namely
w=y, Ly
our implementation.

The form of the collision term (2) derives from adding
an increment Au® to the fluid mixture’s macroscopic ve-
locity u which enters in the equilibrium distribution (4),
ie. Q¢(u) = Sl,go)a(u + Au®) where Au® = a®*r* and
a”=TF"/p™. Here

FO(x, t) = —p(x, 1) Z Goa Y_ 7 )X —x) (6)

which we have incorporated in

is the mean-field force density felt by phase « at site x
and time ¢ due to its surroundings; g.s is a coupling
matrix controlling the interfacial tension between the
fluid species, interface adsorption/desorption properties
of the surfactant molecules, and the surfactant-surfactant
interaction; ¢¥™ is an effective mass which serves as a
functional parameter and can have a variety of forms
for modelling various types of fluids. We only allow
nearest-neighbour interactions, ¥’ = x + ¢, and choose
P™(x,t) = 1 —exp | — n%(x,t)|, where n® = Y, nf.
This choice for 1 has also been made by Shan and Chen
to model liquid-gas phase transitions [43] although, as we
shall see, our motivation here is different.

B. Amphiphilic fluids

The incorporation of a third, amphiphilic species not
only requires the inclusion of an extra variable (“s”) for
the superscript denoting the species in Eq. (1), but also
a modification of the cross-collision operator A since am-
phiphiles interact with fluid elements and between them-
selves. In addition, the physics of amphiphilic molecules,
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namely, self-assembly and adsorption to immiscible fluid
interfaces, cannot be modelled without introducing a new
type of body force: in Subsection IITA ordinary bulk
fluid species are thought of as point-like particles given
that their interactions depend on their relative distances
alone. For surfactant molecules, however, their orienta-
tions are important too [36], and a dipole is the simplest
configuration to mimic their essential character. In short,
we must extend the scalar lattice-BGK model hitherto
described into a vector model.

Each surfactant molecule is represented by an average
dipole vector d(x,t) at each site and time step, whose ori-
entation is allowed to vary continuously. The average is
taken over nearest neighbours before advection, accord-
ing Lo the propagation equation

n*(x,t+ d(x,t+ 1) = Z 5 (x — cp, 1)d(x — ¢,y 1),
k‘

)
where the tildes denote post-collisional values, as defined
by Eq. (1) for the A =0 (gaa = 0) case if we replace the
leftmost summand with 78(x,t). For the sake of sim-
plicity and computational efficiency, the model does not
assign microscopic velocities ¢ to single dipole vectors
but to site-averaged surfactant densities instead, as can
be seen, for example on the right hand side of Eq. (7).

Dipole relaxation is governed by the BGK process

d(x,t) = d(x. 1) — Ti l[det) —dex 0], )

where 7° is a new parameter controlling the relaxation to-
wards the local equilibrium d®1(x, t), which is understood
as the average orientation with respect to the Gibbs mea-
sure, i.e.

j’ A20 efﬁHQ(x,t)Q

T =0T g o

(9)
where d2Q is an element of solid angle whose director is
the unit vector § representing the dipole orientation, and
3 is an inverse temperature-like parameter. The modulus
of the distribution (9) ranges between 0 and the scale
value dy, chosen to be unity for convenience. That, along
with 78 > 1, guarantee the magnitude of the dipole vector
to be less than dy at all times. Equation (9) favours
surfactant orientations which minimise the energy Hs =
—Q - h(x,t), where h(x,t) is the sum of the mean fields
created by surrounding bulk fluid and surfactant, namely

hc(x,*t) = ZQQZ’la(X+Ck$t)Ck s (10)
= k
h*(x,t) = Z [nz (x, H)d(x,t) +
k
3tk - dix + e, t)] . (1)
10
allowing for nearest-neighbour interactions only. The first

equation is a discrete approximation to the colour gra-
dient for the immiscible species, where ¢, = 0,41 is
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FIG. 2: Temporal cvolution of the average fluid-fluid domain
size for surfactant concentrations 0.0, 0.15, 0.22, 0.30, 0.35,
0.40, 0.60 and 0.90 for curves from top to bottom and corre-
sponding to simulation runs 01, 02, 03, 04, 05, 06, 07 and 08,
respectively (¢f. Table I). Mceasurements have been taken ev-
cry 25 time steps, and the plots include error bars, which rep-
resent the uncertainty (once standard crror) transmitted from
the standard crror of the structure function spherical average.
We used a lattice of size 128” for simulation run 01 and 643
for the remaining curves, since finite size cffects start to creep
in for domain sizes larger than L & 30. All quantitics arc
reported in lattice units. Note that the surfactant-containing
fluids lack the zero-growth, lincar transient found for simula-
tion run 01 [11].

the colour charge of species a. The second equation is
a dipole vector density, where summation over k per-
forms local dipole averaging, summation over [ includes
all nearest neighbour contributions, and the second-rank
tensor §; = I — Dcjc;/c?, where ¢ is the modulus of ¢;
and D is the spatial dimension, picks up desired orien-
tations from nearest-neighbour dipoles. Finally, Eq. (9)
can be integrated analytically in three dimensions to give

det — d [coth(gh) . Tl,] b, where A is the magnitude of

h and h its unit vector.

The new interactions that modify the interspecies col-
lision operator A are the force on an immiscible fluid el-
ement from other fluid elements and amphiphiles, F* =
go: F®° + g F*S, where F*¢ is that in Eq. (6), and
the force on an amphiphilic molecule from neighbouring
fluid elements and amphiphiles, F* = g, F*° + g F*>*.
In these expressions, g, gns and g are coupling scalar
parameters, and the analytical expressions for each force
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term, derived in [36], are

F» = —2¢.,.4%x,t) Z d(x + ¢, )0 - Y3 (x + ¢, 1)
k20

(12)

F = 208X, )d(X + €1,t) - Y gae Y 06t (X + 1)
[ k#0
(13)
5,5 4D s 3 3

F® = —?gss'l/f (X. t) ; {d(X -+ C}C.t) . (Jk . d(X. t)Ck

+ [&(x +eptd(x.t) + d(x, Hd(x + cp, t)] : ck} x
W (x+ cput). (14)

Equations (12), (13), and (14) were derived consider-
ing only nearest-neighbour interactions, modelling each
dipole as a dumbell of oppositely colour-charged parti-
cles displaced £d/2 from the dipole's centre of mass lo-
cation x, and carrying out Taylor expansions of the force
(6) to leading order in d about x as well as those at the
neighbouring sites [36]. Also, Eq. (13) is the reaction to
force (12), and Taylor expansions in the ratio of |ci| to
the length scale that the colour gradient sets can be used
to further simplify the expressions. Finally, additional
coupling parameters g,s have been introduced, where g,
should be chosen negative to model attraction between
two amphiphile heads or tails, and repulsion between a
head and a tail.

C. Selection of the parameters for the simulations

The model is implemented as a parallel code in For-
tran90 making use of the Message Passing Interface paral-
lel paradigm [44] and spatial domain decomposition, and
incorporating wrap-around, periodical boundary condi-
It was executed on 16 to 64 processors on SGIl
Origin2000 and Origin3800 parallel platforms. The form
1 =1 — exp[—n(x, t)] for the effective mass in the force
in Eq. (6) was heuristically chosen so as to broaden the
region of numerical stability in parameter space: numer-
ical instabilities can arise as the result of high values of
forces and speeds, and are more likely to occur in our
model when surfactant interactions are included than for
binary immiscible fluids [9, 45].

Preliminary studies allowed us to determine the val-

tions.

ues of the model’s various parameters for which an ini-
tially thorough mixture of two immiscible fluid phases
plus a dispersed amphiphilic species produced a segre-
gated mixture with arrested domain growth [45]. Those
values were the surfactant thermal parameter 3 — 10.0,
all particle masses and relaxation times set to 1.0, and
coupling constants g, = 0.08, gns = —0.006, and
gss = —0.003. (Masses, m®, enter in the description
through p*(x,t) = >, mon{(x,t).) We simulated the
behaviour of a ternary mixture by varying the coupling

1 1 1 1 1 | 1 1
700 800 1000 2000 3000 4000 5000 6000 7000

(a)

50

401 /
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FIG. 3: Pancl (a) shows the timc cvolution of the average
domain size for simulation runs 01, 02 and 03, scc Fig. 2.
The log-log scale helps to visually detect behaviours following
Eq. (18)—in this casc, that of the uppermost curve. The
straight linc above it scrves as a guide to the cye only and its
slopc is given by ¢1 in Table I1. Pancl (b) shows the evolution
of the average domain size with the logarithm of the time step
for simulation runs 01, 02 and 03, on a log-log scalc. This is
uscful to discriminate growth between that of Eq. (18) and
Eq. (19); scc Table 1T for the fitting paramcters. The straight
solid linc shown indicates a good fit to Eq. (19) for ¢ > 1100
(Int &~ 7). For t < 1100, the curve is better fit by Eq. (18),
albeit still quite poorly. Measurements have been taken every
25 time steps, and the plot includes error bars representing the
uncertainty (onc standard deviation) of the spherical averaged
structure function. We usc a 1283 lattice for simulation run
01 and a 64% lattice for the remainder. All quantitics arc
reported in lattice units.

constants around the values mentioned above, and for
initial surfactant particle densities ranging in the interval
0.00 < n(®s < 0.90. The lattice sites and directions were
initially populated with flatly distributed mass densities,
0 < p(x.0) < m*n®@%/ N, where n(O= is the particle
density of phase «, and & numbers each of the Ny, = 24
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velocity vectors. In addition, we used periodic bound-
ary conditions in all three dimensions. We determined
thai seiting n(®< > 0.6 for both species guaranieed im-
miscibility. In all the simulations we present here we set
oil:water mass fractions to 1:1, specifically at n(0« = 0.7
for a =r,b.

It is experimentally known that the addition of am-
phiphile into an immiscible fluid mixture reduces the in-
terfacial tension, as has also been reported for various lat-
tice gas models in two and three dimensions [13, 20]. To
confirm that our model reproduces this important prop-
erty, we ran simulations on a 4 x 4 x 128 lattice of a pla-
nar interface with surfactant adsorbed onto it and whose
initial density was varied between simulation runs. The
surface tension was calculated with the line integral along
the normal to the interface [46]

oo

- / [Poa) — Pra(2)] 2. (15)
—00

where, for the pressure tensor P = {P;;}, we used the

expression [9]

Px) = D> ri(o)cre
a  k
+ izgaaz [w‘“(x)w“(x/)+w"“(x)wa(x/)] x

x’

(x—xx—-%). (16)

We restrict ourselves in this study to nearest-neighbour
interactions, X’ = x + ¢;, and transversal symmetry
allows the second summand within the integrand in
Eq. (15), which in general is 1(Py+P,,), to be simplified
as shown. Equation (16) contains a kinetic (first) term,
the momentum flux, due to the free streaming of par-
ticles corresponding to an ideal gas contribution, plus a
potential or virial (second) term due to the inter-particle
momentum transfer derived from the force (6) [47, 48].

Figure 1 shows the surface tension o plotted against
initial surfactant density, and details on parameters and
densities used are included in the caption. Notice that
in the regime the binary fluid is in, and for the values of
surfactant density we use, the surface tension decreases
linearly with surfactant concentration. It is entirely pos-
sible that there may be departures from linearity were
we to increase the surfactant concentration beyond that
shown in Fig. 1 because of interfacial saturation with sur-
factant, as observed in two and three-dimensional lattice-
gas studies [13, 20].

IV. DOMAIN GROWTH KINETICS

We ran simulations starting with a homogeneous mix-
ture of oil and water particles mixture to which surfactant
was randomly added across on the lattice. Lattice sizes
employed were 642 and 128> to assess finite size effects.

Each lattice site was populated with a density uniformly
distributed in the range zero up to the values summarised
in Table I.

simulation run|{01| 02 | 03 | 04 | 05 | 06 | 07 | 08
0% 0.0/0.15(0.22]0.30/0.35|0.40|0.60|0.90
2 0.0/0.21]0.31]0.43|0.50|0.57|0.86| 1.3

TABLE I: Surfactant densitics cmployed in the study of
the algebraic-to-logarithmic and logarithmic-to-stretched ex-
ponential transitions. The mass fraction, 2°, is the ratio of
(0% to O = 7 = 0.7, and the rest of the parameters
uscd were gy = 0.08, ghe = —0.006, g« = —0.003, masscs and
relaxation times sct to 1.0, and 3 = 10.0. The lattice used
was sized 642 for all simulation runs cxcept 01, for which it
was 128 in order to avoid finite size cffects entering at about
L =~ 25.

The average size of the oil-water domains is a natu-
ral measure of the degree of segregation within the mix-
ture. We define it as the inverse first moment of the
spherically averaged oil-water structure [unction, L(t) =
27 /k1(t), where ky(t) = >, kS(k,t)/ >, S(k,t). The
spherically averaged oil-water structure function, S(k,t),
is Yo S(k,t)/ > i1, where the S(k,t) is the oil-water
structure function,

2

S(k,t)

ol ()

=5
v

and ) ;. denotes summation over the set of wavevectors
contained in the spherical shell n—% < %_‘/Sk < n+%, for
integer n. Equation (17) is the Fourier transform of the
spatial auto-correlation function for the oil-water order
parameter ¢ = p* — pP, where V is the lattice volume, ¢
the volume of the lattice unit cell, and ¢ (¢) is the Fourier
transform of the fluctuations of the order parameter, ¢.
Our choice of the structure function, rather than alterna-
tive measures of domain size such as the auto-correlation
function, was made on the basis that it is directly pro-
portional to X-ray or neutron scattering intensities, hence
facilitating direct comparison with empirical data [49].

In Fig. 2 we plot the temporal evolution of the aver-
age domain size L for the surfactant concentrations of
Table I. The amount of surfactant needed to slow down
the kinetics of the binary immiscible oil-water mixture
(simulation run 01) is seen to be relatively low. We now
need to find the growth laws that best fit these data. Pre-
vious simulation studies, for 1:1 oil-water fluid mixtures
with or without surfactant [9, 13, 20, 37], have found al-
gebraic, logarithmically slow and stretched exponential
behaviours, as follows

al (t - bl)cl s (18)
az(Int)e=, (19)
a3 — bzexp [ —c3(t— d3)63] ; (20
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FIG. 4: Spherically averaged structure functions for the oil-
water order paramcter simulation run 06 (¢f. Table TIT). Ac-
cording to how closc to asymptotic behaviour the distribution
of domain sizes appears to be, we have clagsified simulation
times for this simulation run in three groups: carly times (time
steps 25, 50, 75, 125, 150, 175, and 300 in the plot), interme-
diate times (time steps roughly from 800 to 1700), and late
times (time steps 1800, 2300, 2800, 3300, 3800, 4300, 4800,
6000, 10000, 14000, 18000, 22000, 26000, and 30000 in the
plot). Error bars represent the standard crror of the shell av-
crage. Lattice size is 64%. All quantitics arc reported in lattice
units.

to be those characterising the temporal growth of the av-
erage domain size, L(t), of an oil-water mixture without
surfactant, Eq. (18) [9], and when surfactant is added
above a minimum threshold concentration, Eq. (19), and
at a sufficiently high amphiphile concentration, Eq. (20),
the latter being a regime for which arrested growth is
reached at late times. The coefficients a; and b; (i =
1,2,3) are fitting parameters. While we shall take these
functional forms as suggested choices, we would also like
to find out how closely they in fact fit our data.

Linearity in the (¢, L) data cloud on a log-log plot would
permit us to ascertain whether or not the data follow Eq.
(18), regardless of the zero-time offset value b, since this
is a horizontal displacement. To find out which data may
be better fit by Eq. (19), we would require (logt, L) pairs
of data in a search for linearity on a log-log plot. This
method, however, is not likely to be ol much help given
the small difference between plots of the logarithm of a
data series and plots of the logarithm of such logarithmic
data, as we shall see. We therefore prefer to adopt the cri-
terion of considering candidates for the model of Eq. (18)
from the log-log linearity method, while resorting to both
visual inspection and a search for a reduced chi-squared
statistic (x2/ndf) close to 1.0 in order to identify a slower
growth such as that of Eq. (19) (ndf is the number of de-
grees of freedom). Finally, Eq. (20) possesses a distinctive
horizontal asymptote which best fits data whose domain
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FIG. 5: Log-lincar plots of the spherically averaged structure
functions at time step 7200 for increasing surfactant concen-
trations indicated by the numerical labcelling on cach curve,
corresponding to simulation runs 01, 02, 03, 04, 05, 06, 07
and 08, respectively, ¢f. Table T.
pancl (a), we can sce how the peaks move to higher wavennm-
bers, decrease in height, and broaden. Note that for short
wavelengths, pancl (b), the only straight tail is for curve
(% = 0.0, whosc slope is —4.46 x 10~%. Error bars rep-
resent one standard crror of the shell average S(k). Lattice
size is 1287 for simulation run 01 and 64 for the others. All
quantitics arc reported in lattice units.

For large wavclengths,

growth at late times is fully arrested.

From the linearity of curves in Fig. 3 we can infer that
simulation runs 01 and 02 (Table I) are good candidates
for the growth model of Eq. (18). Figure 3, however,
leads to the same conclusion, as expected given the small
difference between these two plots. We then resort to
looking at the x2/ndf statistic in assessing how well Egs.
(18) and (19) fit simulation runs 01, 02 and 03, see Ta-
ble II. The binary immiscible fluid simulation run 01,
with no surfactant present, exhibits an exponent consis-
tent with the system being in a crossover between the
known diffusive (t1/3) and viscous hydrodynamic (¢1-)
regimes, already reported for binary immiscible fAuids
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FIG. 6: Temporal cvolution of the average domain size for
simulation runs 06, 07, 09, 10, and 08, as scen from top to
bottom at ¢+ = 10000 (¢f. Table IIT). Mcasurcments have
been taken every 25 time steps; crror bars arc included and
represent the uncertainty (“one sigma”™) transmitted from the
standard crror of the spherically averaged structure function.
Caveat lector: an oscillation in the average domain size is gen-
uinely representative of oscillations in the domain sizes only if
crror bars arc smaller than the oscillation amplitude. Lattice
size is 64%. All quantitics arc reported in lattice units.

simulated with the lattice-BGK model we employ in this
paper [9]. Simulation run 02 has the peculiarity that Eq.
(18) holds (poorly) only during an initial transient, and
Eq. (19) takes over to give a very good fit at later times,
t > 1100. This transient is due to the time required
by the surfactant to adsorb onto the interface and af-
fect the binary immiscible interfacial dynamics. Finally,
simulation run 03 is best fit by Eq. (19), although the
high x2/ndf value indicates that the data contain more
detail than the model does. In addition, from Fig. 3b,
this mixture segregates at a slower speed than that given
by Eq. (19), yet it does not reach total arrest, at least
up to 7200 time steps. Rather, total arrest is seen at
higher surfactant concentrations, as in runs 06 and 07
(see Fig. 6). We conclude that simulation run 03 repre-
sents a fluid which is in a transition regime between the
logarithmic and the stretched exponential behaviours. A
similar behaviour was previously observed by others us-
ing lattice-gas methods in two [13] and three-dimensions
[20], and lattice-Boltzmann methods in two dimensions
[37]. Emerton et al., using a two-dimensional lattice-gas
model, reported the divergence of the coeflicients of Eq.
(20) in an attempt to fit data for which total growth ar-
rest had not been achieved [13]. The fits to our data,
which include error bars, also produced the same diver-
gences. Their fluid mixtures as well as ours, we conclude,
were, rather, in a transitional regime well described by
a growth law slower than Eq. (19) which still allowed
for domain growth. It is, however, possible that growth

10

arrest could be achieved at later times; this pre-arrest
regime would then be a long-lived transient.

simulation run ¢ X2 /ndf ca X2 /ndf
01 0.896 4 0.007 0.18 — —
02 0.644 +£0.004 7.5 |3.8504+0.010 0.92
03 — — 12.6494+0.022 39

TABLE II: Fits of the average domain size growth with time
to the models of Eqs. (18) and (19) for simulation runs corre-
sponding to surfactant mass fractions 0.0, 0.21 and 0.31, from
top to bottom, respectively, as detailed in Table I. Lattice
sizes used were 128° for simulation run 01 and 64> for the
rest. Poor fits are indicated as blank ficlds. Simulation run
02 shows two behaviours in its temporal cvolution, Eq. (18)
for ¢ < 1100 and Eq. (19) for ¢ > 1100. Notc the very good
value of the x?/ndf statistic for the latter. The poor value of
the statistic for simulation run 03 indicates that Eq. (19) is
insufficient and a more detailed model is required, albeit not
Eq. (20).

We now look at wavenumbers of the spherically aver-
aged structure function, S(k), other than the first mo-
ment, already provided by L(t). Figure 4 shows the
spherically averaged structure function for simulation run
06 at several time steps. The temporal evolution of the
curves

resembles the segregation kinetics for binary immisci-
ble fluid mixtures, except that domain growth arrest for
late times makes them tend to superimpose. Note that
a hump appears at these times, indicating the formation
of structures, statistically weak, of size close to half the
lattice side length. Inspection of ¢(x) snapshots suggests
the spurious presence of elongated domains of such sizes
which are extended rather than folded. At the late times
we examined, these elongations tend to vanish or fold.
Still in Fig. 4, it is worth noting that for all length
scales above a threshold (about k& < 0.9), curve super-
position is not sharp. This is a consequence of the fact
that for the fluid composition of simulation run 06, and
those of higher surfactant concentrations, there are small
temporal oscillations in S(k). All these mixtures have in
common that they have achieved total growth arrest—
in fact, L(¢) decreases in time for simulation run 08, as
we shall see later on and discuss in more detail. Os-
cillations in the structure function and a hump at low
wavenumbers have been reported previously in a hydro-
dynamic Langevin model of sponge phase dynamics, us-
ing field-theoretic methods [28]. However, this approach
did not consider the amphiphile concentration explicitly
but, rather, embedded it into a Ginzburg-Landau free
energy through the surface tension, in a scenario where
amphiphile relaxation is assumed to be fast compared to
that of the oil-water order parameter.

In Figs. ba and 5b we show the spherically averaged
structure function at time step 7200 of the mixtures in Ta-
bleI, for the larger and smaller length scales, respectively.
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S(k)

FIG. 7: Structurc functions at late time step 17000 for simu-
lation runs 06, 07, 09, 10 and 08 (¢f. Table IIT). Error bars
represent the standard crror of the shell average S(k). Lattice
size is 643, All quantitics arc reported in lattice units.

As the initial density of surfactant is increased in a se-
ries of replica initially homogeneous water-oil-surfactant
fluid mixtures, as indicated by Table I, it is expected
that the oil-water structure function peaks will move to
higher wavenumbers, decrease in intensity, and broaden
[4, 8, 50]. This is indeed what we observe in Fig. ba.
Note that at smaller length scales, Fig. 5b, the exponen-
tial decay of the structure function that occurs for sim-
ulation run 01 does not hold for the ternary amphiphilic
mixtures. This can be explained by the contribution of
small micellar structures that form in the bulk of each
immiscible phase, more likely to take place for mixtures
of higher surfactant concentration. Indeed, in Fig. 5b,
the latter exhibit the most manifest deviations.

V. SELF-SUSTAINED OSCILLATIONS

Arrest of domain growth occurs for high surfactant
density only, ¢f. Fig. 2, as expected. Further inspection,
however, shows that not only are there small temporal os-
cillations of the average domain size, as we mentioned at
the end of the last section, but also that they do not die
out during the simulation window. Similarly to what was
previously reported using a bottom-up lattice-Boltzmann
method in two dimensions akin to the one employed here
[37], the amplitude of the oscillations is very small com-
pared to the average domain size, and smaller than pre-
vious lattice-gas simulations in two and three dimensions
[13, 20]. The fact that, in lattice-gas methods, these os-
cillations persist after ensemble averaging is consistent
with their occurrence in lattice-Boltzmann approaches,
since the latter are effectively ensemble-averaged versions
of the former. Since the systems we simulate are dissi-
pative and isolated (there is no mass or momentum ex-

11

change with external sources), oscillations, however, are
expected to die out at sufficiently late times.

Motivated by the observation of oscillating average do-
main sizes, we performed additional simulation runs in
order to check the role of the coupling constants g5 and
ghs In the reproduction of such oscillations, our hypoth-
esis being that both an increased surfactant-surfactant
interaction and an increased tendency for surfactant to
adsorb on the interface might be expected to have an in-
fluence on their frequency and amplitude. In Table 111
we summarise the parameters used in the new simulation
runs (09 and 10) along with those of previous ‘oscillating
fluid mixtures.’

simnlation run|n{®s| & e Obs
06 0.4010.57|-0.0030(-0.006
07 0.60 |0.86|-0.0030[-0.006
08 0.90| 1.3 |-0.0030(-0.006
09 0.60 |0.86|-0.0045 [-0.006
10 0.60 |0.86|-0.0030(-0.009

TABLE TII: Paramcters employed in studying domain size
oscillations, whosce onsct occurs for surfactant mass fractions
2° > 0.57; the remaining paramcters of the model arc stated
in the caption of Table I, also for the additional runs 09 and
10. In lattice units.

Figure 6 shows the temporal oscillations in the aver-
age domain size for the mixtures of Table ITI, and Fig. 7
shows their structure functions at time step 17000. All
these mixtures exhibit domain growth arrest; interest-
ingly, Fig. 6 shows that the average domain size shrinks
in time for some of them (mixtures 08 and 09). In addi-
tion, we uncover the role that the coupling constants g,
and gps have in the oscillations: whilst increasing |ges|
seems to enhance their frequency, an increase in |gps|
drastically dampens them and reduces their amplitude.
However damped the oscillations of simulation run 10
may seem, zooming into smaller scales reveals the ex-
istence of minute oscillations (less than 0.10 lattice sites
in amplitude), which is not the case for simulation runs
01 through to 05. (Note that the length scales reported in
Fig. 6 are lattice averages; an amplitude being less than
one lattice site hence remains physically meaningful.) Os-
cillations are, therefore, the signature of all growth-halted
regimes.

The structure function plots of Fig. 7 provide further
insight into the role of coupling constants g and gpe in
the oscillation dynamics. Note that mixture 08 produces
a peak of intensity similar to that of mixture 07, a fea-
ture already seen at much earlier times (see Fig. 5a).
This peak height similarity could have been ascribed to
a transient, such as turned out to be the case for the dif-
ference in peak intensities between mixtures 06 and 07;
however, it persisted in time. Mixture 09 also shows a
peak intensity similar to that of mixture 07. Peak inten-
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FIG. 8 Temporal dependence of the structure function for
simulation run 09, ¢f. Table III. Pancls (a) and (b) show the
short and long wavclengths, respectively. Measurements have
been taken every 25 time steps; crror bars have been included.

Lattice size is 643, All quantitics arc reported in lattice units.

sities bear a direct relation to the steepness of oil-water
domain walls and, hence, to their surface tension. The
fact that increasing the surfactant concentration (in mix-
ture 08 compared to mixture 07) does not reduce the
surface tension denotes that the interface is close to its
saturation limit with respect to surfactant adsorption. If
enough surfactant is dispersed in the bulk, a process of
diffusion towards and adsorption onto the interface could
continue to occur, much slower compared to the initial
adsorption leading to growth arrest, which could explain
the slow domain size reduction. In the cases of simulation
runs 08 and 09, close to interface saturation, surfactant
concentration in the bulk is high. An amphiphilic mixture
being close to the saturation limit implies that the value
of its surface tension is the lowest among all amphiphilic
mixtures sharing the same composition, relaxation times
and coupling constants g.s. Surface tension may be fur-
ther reduced only by allowing more surfactant molecules
onto the interface, which can be done by increasing |gps|-
This is exactly what we observe in Fig. 7 for fluid com-
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FIG. 9: Frequency power spectra of the structure function for
simulation runs 06, 07, 09 and 10 (¢f. Table IIT) at wavenum-
ber 0.589. Pancl (b) is a blowup of pancl (a) for long periods of
oscillation. Error bars were neither considered for the Fourier
analysis nor plotted here. All quantitics are reported in lattice
units, and w is the inverse period.

position 10.

As we saw in Fig. 4, small oscillations in the average
domain size indicate that the structure function varies in
time back and forth between distributions of sizes which
are close to each other. The first moment of such distri-
butions, as studied in Fig. 6, may not be representative
of the dynamics at other length scales, as we shall see
immediately. In Fig. 8 we show the temporal evolution
of S(k) for mixture 09 for a range of wavelengths. Note
three characteristic features of the S(k) curves: they all
oscillate, decrease [or & < 0.785 and k£ > 1.08, and in-
crease or remain stationary in the long time average for
k 2~ 0.884 and k ~= 0.982. This behaviour corresponds to
the sharpening of the distribution S(k) with time. Modes
with & > 1.28 (L < 4.91) decay fast enough (S(k) < 0.1
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for ¢ ~ 1000) for them to be negligible in terms of their
contribution to the luid mesostructure. Other decreasing
modes take much longer (¢ > 30000) to vanish.

Our study of the oscillations would be incomplete with-
out looking at frequency power spectra. The time se-
ries we analyse correspond to S{k — 0.589) of fluids
06, 07, 09 and 10; this choice is made on the basis
that this wavenumber apprehends characteristic features
of each data set. From each time series we subtracted
its longest waves (i.e. its envelope), computed as the
average % >ouS(k,t'), X being a lag large enough so
as to decouple high-frequency from low-frequency waves
(A = 5000 time steps), the sum extending over the inter-
val t — \/2 <# <t — \/2. The Fourier transform of the
resulting time series we take as the definition of S(k,w),
¢f. Fig. 9. Note therein two high peaks for simulation
run 06, and a collection of weak peaks (which we define
as those whose heights are less than 5% the height of the
largest peak) occuring for higher frequencies. An increase
in surfactant density (simulation run 07) causes the num-
ber of excited high-frequency modes to grow slightly, yet
they also decrease in intensity. Simulation run 09, which
differs (rom mixture 07 in having an increased |gg|, very
clearly exhibits a substantial increment in the number of
excited high-frequency modes. Finally, the spectrum for
mixture 10 corroborates the quenching effect on fluctua-
tions caused by increasing |gps|-

The term Marangoni instability describes a convective
flow caused wherever an inhomogeneous temperature or
mass distribution locally alters the interfacial tension [51].
By visualising the oil-water interface [or mixtures 06 to 10
we observed that the density of adsorbed surfactant is not
evenly distributed on it; hence the conditions are set for
the appearance of Marangoni instabilities. Figure 10 dis-
plays the late time evolution of a subdomain of a fluid of
the same composition as simulation run 09 but simulated
on a larger (128%) lattice. We display the surfactant den-
sity on a slice through the mid-plane of the subdomain,
along with the locus of the oil-water interface depicted
as an isosurface cropped close to the plane. Surfactant
inhomogeneities on the interface are evident from these
images, as well as the existence of a slow, creeping flow.
Distinctive features include the regularity of the order pa-
rameter (which we shall study in detail shortly), the exis-
tence of high surfactant density necks bridging adjacent
portions of the interface, and local regions where regu-
larity is absent, reminiscent of the defects in crystalline
materials, which possess their own larger-scale dynamics.

VI. THE SPONGE AND GYROID
MESOPHASES

It is known that, in an initially homogeneous 1:1 oil-
water mixture, the arrest of phase segregation experi-
enced through the addition of sufficient amphiphile can
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FIG. 10: Slices of the surfactant density in 33% subscts of a
1283 lattice, for composition 09 (¢f. Table T). Pancls (a), (b)
and (c) arc snapshots at ¢ = 14000, 14600 and 15000 timc
steps, respectively, which are times for which the structure is
close to equilibration. We only show regions where surfactant
density is the highest (0.31 < p° < 0.35), in grey and white,
where lighter shading denotes a higher value. We can sce that
the surfactant mainly concentrates around the oil-water inter-
face (¢(x) = 0), whosc intersection with the slice is depicted as
open undulating or closed lines. Also, there arc ordered, crys-
talline regions along with smaller regions lacking long-range
order and cvolving in time. Finally, p° is non-uniform on the
imterface (as regions with lighter shading show), favouring the
formation of “surfactant bridges” between adjacent portions
of the interface; this leads to Marangoni effects which account
for the obscrved oscillatory behaviour. All quantitics arc in
lattice units.
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FIG. 11: Equilibrium minority-phase order paramcter isosurfaces ¢(x) = 0.37 (in lattice units), taken at time step ¢ = 30000,
at which —0.69 < ¢ < 0.68 over the whole lattice. Snapshot (a) corresponds to simulation run 06, snapshot (b) to simulation
run 07, and snapshot (c) to simulation run 08, ¢f Table I. Shown arc 16 < z < 48 slabs of a 64° lattice. Note that increasing
surfactant concentration leads to an increased ordering in the mesostructure: simulation run 06 exhibits sponge-like features,

whereas simulation run 08 is a liquid crystalline cubic gyroid mesophase. Snapshot (b) is a crossover state in this lyotropic

transition—a “molten gyroid”.

lead to the formation of a thermodynamically stable bi-
continuous sponge phase [11, 13, 20]. In Fig. 11 we show
the late time morphologies for fluid compositions 06, 07
and 08. They are displayed as the ¢(x) = 0.37 isosur-
face, corresponding to a water-in-oil, “rod-like” scenario,
where water is a minority phase and oil is in excess (the
order parameter ranges as —0.69 < ¢ < 0.68 over the
lattice at that time slice). The structure suggested by
minority-phase isosurfaces and the structure of the in-
terface (¢p(x) = 0) for fluid composition 06 resembles
that of a microemulsion, for which structural disorder is
the predominant feature. Fluid composition 08, by con-
trast, shows an evident resemblance to minority-phase
images seen in transmission electron microtomography
of the gyroid “G” cubic phase [52]. The morphology
is an interweaving, chirally symmetric, three-fold coor-
dinated, bicontinuous lattice. Fluid mixture 07 seems
to be a crossover, conatus structure, sharing a substan-
tial amount of disorder with the presence of three-fold
coordinated “unit cells”; the latter can be seen as vesti-
gial in fluid system 06. Fluid systems 09 and 10 show
that this sponge«—rgyroid structural order-disorder tran-
sition not only occurs via an increase in surfactant con-
centration (a lyotropic transition), but in the interaction
strength between surfactant with itself and with the inter-
face. We leave for further work a systematic investigation
of the {n{9% gr., ges, gor} parameter space in mapping
out the equilibrium mesostructures’ phase diagram. In
this endeavour, recently developed compusteering tools
[63, 54] may prove valuable in optimising expensive sim-
ulation time: they allow the user to postprocess and visu-
alise the compute job's output at run-time with negligible

turnaround times, and eventually temporarily stop exe-
cution in order to modify simulation parameters which
are fed back into the algorithm on immediate restart.

Finite size effects can play an important role in the sta-
bilisation of fluidic structures like these, given that we are
using periodic boundary conditions. With this in mind,
and using the same parameters as for mixture 09, we
computed the wavenumber-averaged difference (A x n+S)
for each time step of evolution of the spherically aver-
aged structure function S(k) between lattices of sizes N3
and N3, where N, N’ — 64,128,256. Note that the lat-
tice size is increased eight and sixty-four times from the
original 64° size. Finite size effects would be present
if (An,n+S) were larger than the error derived from
the dillerences and the averages. Nonetheless we [ound
{An,n+S) to be larger than the error (27% larger on aver-
age for N =128 and N’ = 256), the fact that it strongly
decreased with N (i.e. (Aj252569) ~ 0.38(Ag4,1285))
provides the confidence necessary to assert that finite
size effects are not significant in the N — 128 simula-
tions we are about to report. Moreover, as we shall see
immediately, since the structures corresponding to a 64>
lattice exhibit the same morphologies as do the 128% and
2563 cases, the qualitative features of the former are the
same as those for the asymptotic limit N — oo. This
also extends to the oscillation of the structure function:
the equivalent of Fig. 8 for the 1282 and 256 cases (not
shown) exhibits similar features, albeit including more
wavenumbers for which S(k) grows.

Figure 12 displays three viewpoints of the isosurface
¢ — 0.40 for the same composition of fluid mixture 09 as
simulated on a 1282 lattice. We show the restriction to a
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FIG. 12: Isosurfaces of the order parameter at time step ¢ =
15000 in a highly ordered 33% subdomain on a 128% lattice
for fluid composition 09. Pancls (a), (b) and (c) display the
o(x) = 0.40 (in lattice units) minority phasc isosurface viewed
as axonomctric projections along the (100), (111) and (110)
dircctions, respectively. Pancl (d) shows the interface of the
same lattice subdomain along dircction (111), where black
and white have been used to distinguish one immiscible fluid
phasc from the other.

333 subdomain, all at time step t = 15000, together with
the oil-water interface. Whereas on 643 (or smaller) lat-
tices the liquid crystalline structure uniformly pervades
the simulation cell, on 1283 (and larger) lattices there are
some imperfections present resulting in ordered subdo-
mains with slightly varying orientations between which
there exist domain boundaries. These boundaries can
be considered as defects in the structure, the presence
of which is a characteristic feature of liquid crystals. A
time scale for the dynamics of some of these defects for
our simulated gyroids (simulation run 09) can be roughly
estimated from Fig. 10: we observe for that particular
slice that the topological genus of the interface changes
in an interval ranging between 500 and 1000 time steps.
State-of-the-art visualisation proved key in the analysis
of results, and virtual reality technologies can enhance its
usefulness by increasing interactivity with the data [54].

Small-angle x-ray scattering (SAXS) techniques have
been widely used in the determination of the nanostruc-
ture of fluid mesophases [14, 52, 55, 56]. SAXS spectra, or
their numerically computed versions [57], give peak pat-
terns for these mesophases that are used as fingerprints

in determining unknown structures. However, the lattice
resolution of our simulations is insufficient to detect mul-
tiple peak fingerprints in plots of the spherically averaged
structure function. Instead, its unaveraged counterpart,
S(x), shows complete agreement of ratios of reciprocal
vector moduli with those observed in diffraction patterns
of the gyroid, as we display in Fig. 13 for fluid composi-
tion 09 [55]. In addition, visual inspection of the unit cell
of the oil-water interface unequivocally identifies it with
that of the gyroid. The size of such a unit cell as seen
in optical textures allows us to associate a length scale
to the lattice for a particular experimental realisation.
For the system reported by Hajduk et al. [55], the lattice
would need to be 291 nm in side length with a resolution
of 2.3 nm per lattice unit.

Although previous simulation papers on amphiphilic
mixtures using free-energy based Langevin diffusion
equations have reported the reproduction of structures
resembling the gyroid [31, 32], none of them have studied
its features or dynamics, or incontestably demonstrated
its gyroid morphology. Furthermore, in one of these ar-
ticles we observe that the fluid mesostructure is not sta-
tionary [31], whereas by eyeballing the whole simulation
cell in another [32] one becomes aware that the structure
has a morphology which is reminiscent of the molten gy-
roid we describe here.

In our simulations we observe that, at late times, the
gyroid is much closer to stationarity than the sponge
mesophase: for equal time slices in their evolution, tem-
poral changes of the mesostructure over a period of 1000
time steps are considerable for the sponge (e.g. simu-
lation run 06) whereas for the gyroid (e.g. simulation
run 09) they appear as slight interfacial rearrangements
and undulations, reminiscent of breathing modes, keeping
the variation in the position of each unit cell small com-
pared to the lattice size N. This late-time (ca. 30000
time steps) structural dynamics is characterised in our
simulations by the fact that the topological genus is (sta-
tistically) preserved [or the gyroid; for the sponge, it is
not. This can be understood as structural stabilisation
by rigidity in the gyroid, and a flowing, glassy dynam-
ics for the sponge. Such a distinctive behaviour for the
sponge may have a bearing on its density fluctuations and
render them different to those occurring in a topology-
conserving dynamics. It is therefore not surprising that
(a) we found the oscillation modes for the sponge (simu-
lation run 06) to be at least one order of magnitude more
intense than those for the different gyroids we simulated
(simulation runs 08, 09 and 10, ¢f. Fig. 9), and (b) recent
experimental studies, using dynamic light scattering and
various relaxation methods [58], do not report on fluctu-
ations for the gyroid [59], whereas they do for the sponge
mesophase.

It is accepted wisdom [60], and a working hypothesis
in many simulation studies [25, 61, 62], that periodically
modulated phases may arise in fluid mixtures whenever a
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TIG. 13: Temporal evolution of (ke, ky) slices of the structure function S(k) for flnid composition 09, viewed along the (100)
dircction. Pancls (a) and (b) show slices at time step ¢ = 500, where k. /(2x/N) = 0 for (a) and k. /(27 /N) = £14 for (b).
Similarly, pancls (c) and (d) arc slices at time step ¢ = 15000 for k. /(27/N) = 0, £14, respectively; N = 128 is the lateral lattice
size. Shading denote intensitics S = 1, 50 and 100, where lighter greys up to white mean higher intensitics. The spherical shell
structurc in (a) and (b) indicates the presence of a sponge (microcmulsion) phase, which becomes anisotropic at later times, (c)
and (d). The superposition of slices (c) and (d), namely, the ratio of peaks’ positions of 7, S(k), arc in full agrcement with
SAXS experimental data for the gyroid mesophase. All quantitios are in lattice units.

repulsive long-range interaction competes with an attrac-
tive short-range one for a configuration that minimises
the interfacial Hamiltonian, possibly also in the presence
of a thermal, entropic contribution. Little is said about
whether non-locality is not only a sufficient but also a
necessary condition, or whether the non-locality of the
relevant model needs to be imposed ab initio or is rather
an effective emergent feature picked up by the order-
parameter autocorrelation function. The LB model we
employ in this paper only incorporates local interactions

in its mesodynamics; this feature allows its algorithm to
be easily parallelised and achieve exceptionally good per-
formance [40]. Nonetheless, we have demonstrated that
the model is able to simulate liquid crystalline, cubic
mesophases, such as the gyroid in binary immiscible fluid
mixtures with an amphiphile, and the primitive “P” in
binary, amphiphile-solvent mixtures [24], whose density-
density correlations are markedly non-local, and in the
formation of which hydrodynamic interactions play a vi-
tal role. Non-locality, in our case, is an emergent property
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of a local model.

It is worthwhile pointing out that Prinsen et al. [23],
using a DPD model and basing their claims on Monte
Carlo studies of equilibrium cubic phases by Larson [63],
suggested that cubic phases could be engineered to ap-
pear if their bead-rod model were elaborated beyond
dimers. If fact, Groot & Madden’s (inconclusive) finding
of a gyroid-like structure with a DPD model for bead-
spring chain copolymers [21] might be considered to sup-
port such an assertion. Part of the importance of our
simulations, as well as those of Nekovee & Coveney [24],
is to refute such conjectures, by demonstrating that cu-
bic mesophases arise in very simple, minimalist, ather-
mal and hydrodynamically-correct fluid models, with a
locally-interacting vector order parameter and reproduc-
ing universal behaviour.

VII. SUMMARY AND CONCLUSIONS

Our simulations furnish the first quantitative account
of phase segregation kinetics and mesophase self~assembly
in amphiphilic fluids with a three-dimensional model
based on the Boltzmann transport equation. The method
is hydrodynamically correct, athermal, and models the
amphiphilic species as bipolar, point-like particles expe-
riencing short-range interactions with mean fields created
by the surrounding binary immiscible (“oil-water”) and
amphiphilic medium.

We studied the phase segregation pathway in a ho-
mogeneous oil-water-surfactant mixture at composition
1:1: x, respectively, where 0 < z < 1.3 is the surfactant-
to-water (or to oil) mass fraction. We observed seg-
regation slowdown in the average size of oil-water do-
mains with increasing z, and the reproduction of known
crossovers, namely, from algebraic to logarithmic to
stretched exponential functions. This confirms the use-
fulness of our method in apprehending the fundamental
phenomenology of amphiphilic fluid mixtures; the pres-
ence of transients in these crossovers is gratifying given
their experimental observation. In order to rule out an
increase in total density as z is increased as a factor con-
tributing to the slowdown along with the reduction in
surface tension, future work should investigate domain
growth at constant total density.

The stretched exponential functional form occurring at
domain growth arrested regimes can be ascribed to the
accumulation of a large number of relaxation modes asso-
clated with surfactant dynamics onto and at the oil-water
interfaces [19]. The late-time structure at these regimes
are (a) disordered non-stationary sponge mesophases
if the initial amphiphile concentration is lower than a
threshold region or (b) well-defined liquid-crystalline cu-
bic gyroid mesophases of pinned domain sizes with defects
if this initial concentration is higher than such a thresh-
old. We also found thresholds in the surfactant coupling
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strengths, |g.s| and |gss|, for a sponge-to-gyroid transi-
tion. In the transition region we observed a crossover
structure sharing the structural features of both the gy-
roid and sponge. We also found that, for the number of
time steps simulated, both sponge and gyroid exhibit un-
damped oscillations at all length scales. For some length
scales, the temporal trend of their Fourier amplitudes is
to slowly die out; for others, it increases.

We found that extremely slow domain growth can be
mistaken for genuine arrested growth if attention is not
paid to minute length scales. Truly segregation-halted
regimes exhibit oscillations in average domain size, which
can be seen at sufficiently late times. These oscilla-
tions are caused partly by Marangoni flows generated by
inhomogeneities in the surfactant adsorbed on the oil-
water interface, and partly by a surfactant dynamics dic-
tated by competing mechanisms, namely, surfactant at-
traction towards the interface and surfactant-surfactant
Because our model does not presuppose
that all the surfactant is adsorbed on the interface, as
Langevin approaches based on the adiabatic approxima-
tion do [25, 28, 60], surfactant-surfactant interactions are
not limited to repulsion. Hence, in regimes of large sur-
factant concentration, and especially in those for which
regions of the (oil-water) interface can be sufficiently close
to each other, surfactant is not constrained to dwell on
the interface; rather, it is reasonable to propose the exis-
tence of an adsorption-desorption dynamics driving sur-
factant towards and away from it. Our results showing
that (a) an increase in |gss| excites higher frequencies, (b)
an increase in |gns| dampens most frequencies, and (c)
there appear surfactant currents bridging adjacent inter-
facial regions, confirm this proposal.

interactions.

Our method is not only the first lattice-Boltzmann
model to deal with segregation kinetics in three-
dimensional amphiphilic fluid mixtures, but the first com-
plex fluid model to unequivocally reproduce the gyroid
cubic mesophase, using a high level of abstraction in mod-
elling the amphiphile. The truly mesoscopic, particulate
nature of the surfactant in this model accounts for the
complex, dynamical behaviour observed, even in a noise-
less scenario like ours. It is not surprising that Ginzburg-
Landau-based Langevin models which treat surfactant
implicitly through a scalar parameter modifying the free
energy are only able to exhibit oscillations which de-
cay rapidly in time and whose frequency spectrum has
but one peak. Our simulations of liquid crystalline
mesophases prove that, contrary to what has been previ-
ously claimed [60 62], surfactant-surfactant interactions
need not be long ranged in order for periodically modu-
lated, long-range ordered structures to self-assemble. In
addition, our findings rebut the suggestion [23] that cubic
mesophases can be simulated only when the amphiphile
is modelled with a high degree of molecular specificity.

The simulation of the sponge and gyroid phases, and
their complex oscillatory dynamics, confirms the richness
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of our model's parameter space. Our lattice-Boltzmann
model provides a kinetically and hydrodynamically cor-
rect, bottom-up, mesoscale description of the generic be-
haviour of amphiphilic fluids, which is also extremely
computationally efficient on massively parallel platforms.
Future extensions of this work include the search for
regimes leading to equilibrium mesophases of more varied
symmetries, the study of shear-induced symmetry transi-
tions, and large scale studies of defect dynamics in liquid
crystalline phases. In fact, the TeraGyroid project, a
successful Grid-based transatlantic endeavour employing
more than 6000 processors and 17 teraflops at six super-
computing facilities [64], has its scientific raison d’étre
based on the results we report in this paper. TeraGyroid
proves the value of computational steering tools [53] in
mapping new parameter space regions of our model.
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Chapter 4

Other articles

r I 1HIS CHAPTER contains two articles: one preprint of imminent submission by this the-
sis’ submission date, and one paper in the proceedings of an international conference,

as follows:

e N. Gonzélez-Segredo, Jens Harting and Peter V. Coveney, “Stress response and struc-
tural transitions in sheared gyroid and lamellar amphiphilic mesophases: lattice-
Boltzmann simulations” (Preprint, Centre for Computational Science: London, 2004.)
(Cf. p. 95.)

e N. Gonzdlez-Segredo and M. Foster, “pLRME2D: A parallel implementation of a
two-dimensional hydrodynamic lattice-gas model with long-range interactions,” Pro-
ceedings of the Sixth European SGI/Cray MPP Workshop, Manchester, UK (2000).
(Cf. p. 107 and available online:
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Stress response and structural transitions in gyroid and lamellar amphiphilic

mesophases: lattice-Boltzmann simulations

Nélido Gonzélez-Segredo,* Jens Harting, and Peter V. Coveney?
Centre for Computational Science, Department of Chemistry,
University College London, 20 Gordon Street, London WCI1H 0AJ, United Kingdom
(Dated: October 12, 2004)

We report on the stress response of the gyroid cubic mesophase to a steady Couette flow simulated
by means of a bottom-up lattice-Boltzmann model for amphiphilic fluids and sliding periodic (Lees-
Edwards) boundary conditions. We employ two gyroidal mesophases, the gyroid per se (above the
sponge-gyroid transition, of high crystallinity) and the molten gyroids (within such a transition,
of shorter-range order). These were allowed to self-assemble from a homogeneous mixture of two
immiscible fluids with added amphiphile, the longer-range gyroid having 50% higher amphiphile
concentration and inter-amphiphile coupling than the molten gyroid. We find that both mesophases
exhibit shear-thinning, more pronounced and at lower strain rates for the molten gyroid. We also
find that, at late times after the onset of shear, the skeleton of the longer-range gyroid becomes
a structure of interconnected irregular tubes and toroidal rings, mostly oriented along the velocity
ramp imposed by the shear—in contradistinction with free-energy Langevin-diffusion studies finding
a much simpler structure of disentangled tubes. We also compare the shear stress and deformation
of lamellar mesophases with and without amphiphile in a steady Couette flow applied normally to
the lamellae. We find that the presence of amphiphile allows (a) the shear stress at late times to
be higher than in the case without amphiphile, and (b) the formation of rich patterns on the shear

interface, characterised by alternating regions of high and low curvature.

I. INTRODUCTION

The study of the response to shear in amphiphilic
mesophases has been the subject of attention for numer-
ical modellers only in recent years. The interest in the
subject is sustained not only by the wide range of applica-
tions in materials science and chemical engineering, but
also by the need to gain a fundamental understanding of
the universal laws ruling the self-assembly processes and
competing mechanisms present.

The research has been mainly focused on the structural
changes induced by steady and oscillatory shear, near and
far from critical points, on block copolymer systems [1-
5]. The morphologies studied have been cubic micel-
lar, lamellar and hexagonally-packed tubular mesophases;
more complex structures such as bicontinuous morpholo-
gies, and, in particular, mesophases of cubic symmetry
have been looked at in lesser, insufficient detail [3].

The purpose of this paper is to report on the rheol-
ogy of amphiphilic mesophases simulated with a bottom-
up kinetic-theoretic model for fluid flow. The numeri-

*Email: nelido@amolf.nl; now at the FOM Institute for Atomic
and Molecular Physics (AMOLF), P. O. Box 41883, 1009 DB Am-
sterdam, The Netherlands. Also at the Department of Physics,
Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain.
tEmail: j.harting@ical.uni-stuttgart.de; now at the Institut
fiir Computerphysik, Pfaffenwaldring 27, D-70569 Stuttgart, Ger-
many.

tEmail: p.v.coveney@ucl.ac.uk

cal studies measuring the stress response to shear have
been hitherto concentrated on two opposite ends of com-
plex fluid research: in phase-segregating binary immisci-
ble fluids [6], and in polymeric [7] and glassy systems [8].
Since our model is genuinely particulate in the sense that
no hypothesis of desirable macroscopic behaviour is im-
posed on the microdynamics, we consistently adhere to a
complexity paradigm [9, 10]. In addition, since our model
describes the amphiphilic molecule with the minimal pos-
sible amount of information—a dipole—the rheology to
report is expected to cover features, in a broad range of
amphiphilic systems, which are independent of the molec-
ular structure.

This paper is structured as follows. In the next sec-
tion we briefly introduce the model and describe the
boundary conditions allowing the imposition of shear on
the mesophases. In Section III we report our measure-
ments of shear stress in long-range and molten gyroids
as a function of time after the onset of shear, and study
their shear-thinning non-Newtonian behaviour. We also
report, in direct and Fourier space, on the plastic de-
formation of the longer-range gyroid into a tubular-like
mesophase as the strain increases, and show how the
stress decays as the steady shear is abruptly ceased. In
section IV we reveal how the presence of amphiphile in-
duces the formation of rich interfacial patterns in lamellar
mesophases and allows the stress to reach higher values
than in lamellar mesophases without amphiphile. Finally,
we provide some conclusions in Section V.



96

4. Other articles

II. THE MODEL AND THE LEES-EDWARDS
BOUNDARY CONDITIONS

We employed an existing bottom-up lattice-Boltzmann
(LB) model for amphiphilic fluids [10, 11], extended to
simulate shear flow by means of Lees-Edwards boundary
conditions [12]. The model is in turn based on an exten-
sion made to the bottom-up Shan-Chen LBGK model for
immiscible fluids to model amphiphilic fluids, and utilises
25 microscopic velocities, of speeds 0, 1 and v/2, in three
dimensions (D3Q25 lattice) [13, 14]. The model repro-
duces the Navier-Stokes (NS) equation in the bulk of each
immiscible fluid phase (“0il” and “water” hereafter) for
large enough lattices [15], and it exhibits correct growth
kinetics for the average size of the immiscible domains in
the absence [16] and presence [11] of a third amphiphilic
(surfactant-like) species. In addition, the model simulates
the nonequilibrium self-assembly and relaxation dynam-
ics of sponge and gyroid mesophases [10, 11]. It endows
gyroids with rigidity, arising from their crystalline order-
ing, which gradually fades away as the amphiphile density
is reduced, since a lyotropic transition causes the cor-
relation length to decrease towards that of the sponges
through a molten-gyroid state. This idea is central to
the work we present herewith: we shall see that the
mesophase’s crystalline ordering enhances its stress re-
sponse; indeed, we find shear-thinning to occur at higher
strain rates for gyroids than for sponges.

The Lees-Edwards boundary conditions (LEBC) were
originally proposed by Lees and Edwards in the context
of molecular dynamics simulations [12]. They showed
that these boundary conditions gave rise to a desired
linear, wedged velocity profile whilst avoiding the trou-
blesome spatial inhomogeneities arising when solid walls
were used to induce the shear flow [17]. A particular re-
alisation of the LEBC on the cartesian simulation box
[0, Ny] x [0, Ny] x [0, N,] is established by letting the peri-
odic images, for which Ny < x < 2Ny and —Ny <z <0,
move parallel to unit vectors +e,, respectively, both with
speed U. The LEBC are expressed as a Galilean transfor-
mation from the unprimed to the primed position (z,y, z)
and velocity (&, &y, &) co-ordinates of a particle, as fol-
lows

2’ = zmod Ny

' = ymod Ny
(z+ A,)mod N, , x> Ny,

7 = zmod N, ,0< 2 < Ny, (1)
(z—A,)modN, ,z <0,

& = &

& =&
&+ U , x> Ny,

¢ =g ,0< 2 < Ny, 2)
& —-U |, x <0,

where A, = UAt is the image’s shift at time At after

starting shearing.

An implementation of the LEBC on a lattice differs
from that of molecular dynamics in that the shift A, is
not in general a multiple of the lattice unit, as Wagner
and Pagonabarraga have pointed out [17], and hence an
interpolation scheme is needed. We use a parallel im-
plementation of the LEBC in three dimensions which in-
cludes this interpolation scheme to move mass densities
with velocity ¢ for each (fluid and amphiphilic) species
a, nY(x), and amphiphile dipoles, d(x). The spatial
displacement follows Egs. (1); the velocity shift, how-
ever, is not enforced by replacing the discrete microscopic
speeds cg - z for the continuum velocity component &, in
Egs. (2), where k = 1,...,25, since the velocities ¢ are
constant vectors. Instead, this is enforced by modifying
the macroscopic fluid velocity contained in the truncated
local Maxwellian, towards which the BGK scheme makes
the density relax, in the same fashion that immiscibility
is enforced [11, 16]. This procedure guarantees that all
accelerations in the fluid are ruled by the same BGK pro-
cess, controllable via the shape of the distribution func-
tion and the relaxation time parameter.

Our LEBC implementation is embedded into an effi-
cient parallel LB algorithm [18] which allows us to employ
large lattices and hence reach the small Knudsen number
limit where (a) regions away from interfaces satisfy the
incompressible NS equation in the limit of low Mach num-
bers (Ma) [16], and (b) observables vary by less than 10%
when the lateral lattice dimension is doubled. Gonzélez-
Segredo and Coveney previously found that the lattice
size guaranteeing condition (b) is 1283 for the parame-
ters generating the mesophases investigated here [10, 11].

III. SHEARING GYROID MESOPHASES

We sheared two gyroidal mesophases differing in the
density of amphiphile dispersed and the value of the
inter-amphiphile interaction coupling parameter. Each
of these structures was allowed to self-assemble from a
thorough, homogeneous mixture of oil and water with
an third added amphiphilic species. They have been ap-
propriately characterised by probing direct and Fourier-
space late-time snapshots of the density order parameter
¢ = p°l — pWater: more precisely, they correspond to gy-
roid (cf. Fig. 1) and molten gyroid mesophases, as previ-
ously reported by Gonzélez-Segredo and Coveney [10, 11].

The common parameters used for both gyroids were
oil and water densities flatly distributed in the range 0 <
nOP = pOr < 0.7, coupling strengths gy, = 0.08, gps =
—0.006, relaxation times 7° = 7* = 75 = 74 = 1, and, for
the amphiphile’s dipoles, 8 = 10 and dy = 1.

Their differing parameters were surfactant densities
flatly distributed in the ranges 0 < n(®% < 0.9 (gy-
roid) and 0 < n(®% < 0.6 (molten gyroid), with cou-
pling strengths g« = —0.0045 (gyroid) and gss = —0.003
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(molten gyroid). These parameters for the gyroid are
50% higher than those for the molten gyroid.

FIG. 1: High-density volume rendering of one of the two im-
miscible fluids in the gyroid mesophase employed, before the
application of shear. This configuration, on a 128 lattice, is
reached after 15000 time steps of self-assembly from an ini-
tial homogeneous mixture of “oil”, “water” and amphiphile,
with the amphiphile density being flatly distributed across the
lattice in the range 0 < n(®% < 0.9 and an inter-amphiphile
coupling parameter of gss = —0.0045. The regions visible to
the reader are those for which the density order parameter
is ¢ = p°l! — p¥ > 0.36 (oil), whilst over the whole fluid
—0.79 < ¢ < 0.79; the regions for which ¢ < —0.36 (water,
not shown) display a similar structure which is complemen-
tary (interweaving) to the one shown here.

While the gyroid relaxes to a highly crystalline struc-
ture [19], the molten gyroid shows both shorter-range
order and stronger temporal oscillations than the for-
mer [11]. In order to allow for the latter to relax suf-
ficiently, we took the structure at time step 32500 as
initial condition for the shear; regarding the gyroid, the
time slice chosen was time step 15000. For practical
reasons, we generated the molten gyroid by upscaling a
mesophase of the same parameters and similar features,
previously self-assembled on a 642 lattice [11], onto a
1282 lattice. Upscaling consisted in replicating identical
copies of the system—the periodic boundary conditions
used to generate the former guarantee that the density
field is smooth across the replica boundaries. Upscaling
produces a mesophase with an added, undesirable long-
wavelength periodicity of half the lattice size, whose gy-
roidal unit cell sizes in general do not match those of a
molten-gyroid allowed to self-assemble on a 1282 lattice.
However, we observed that this mesophase takes less than
1000 time steps to relax to a structure in which the long
wavelength periodicity has disappeared [19]. Since this
relaxation occurs during a short transient period, we took
the upscaled, unrelaxed structure as an initial condition
for our shearing study.

It is worth noting that we did not require an elongated

aspect ratio for the lattices along the direction parallel
to the translation of the shearing walls since spatial den-
sity fluctuations were much smaller than the lattice size.
This is not the case when shearing phase segregating flu-
ids without a growth-arresting species, such as an am-
phiphile, as was recently reported by Harting, Venturoli
and Coveney with this LB model using lattices of up to
128 : 128 : 512 sizes and aspect ratio [20].

A. Stress response and transients

Shear thinning occurs when the shear viscosity drops
as the strain rate increases. For structured fluids such
as the ones we used here, the dynamic shear viscosity,
71, is not expected to be a constant of the strain rate
¥ = %((%(UZ + J,uyx), as is assumed in Newton’s law of
viscosity,

n # n(¥) (3)

where Py, is one off-diagonal component of the pressure
or stress tensor. Throughout this paper we work with
the steady shear described in Section II, i.e., the shear
is generated by the two image cells of the LB lattice
located along the z-axis moving in opposite directions.
As a consequence, Oxu, becomes the only non-vanishing
component of the velocity gradient, also true for the Py,
component of the stress tensor (and P, since the phys-
ical requirement that the vorticity, W = %(@uz — Oyuy),
remains bounded above requires the stress tensor to be
symmetric).

As done previously by Gonzdlez-Segredo, Nekovee and
Coveney to compute diagonal components of the pressure
tensor [10, 11, 16], we measured Pk, from its definition
as the sum of a kinetic term plus a virial mean-field term
accounting for interactions giving rise to non-ideal gas
behaviour, namely,

DD A (er — u(x))(er — u(x))
a  k

Py, :7277'7‘

P(x) =

+ % Z Goa Y [w“(x)w"*(x') + % (X)) | x

(x =x)(x=x), (4)

where 9 has the form 1) = 1 — exp[—n(x)], saturating at
high density values in order to avoid unbounded inter-
particle forces whilst reproducing a meaningful equation
of state [11]. In addition, since the interaction matrix
{gaa} is symmetric with all diagonal elements identically
zero, and only nearest neighbour interactions are being
considered, the virial term reduces to

% D Gaa D V()Y (x + cr)exer (5)
aFa k

Since in the incompressible limit our LB model repro-
duces the NS equation away from interfaces [13, 15], or,
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FIG. 2: Shear stress response of a gyroid mesophase along the
direction of the velocity gradient. As initial condition, we have
taken a gyroid on a NxNyN, = 1283 cubic lattice at time step
t = 15000 of self-assembly [10, 11]. The Lees-Edwards walls move
with speed U = 0.10 (Ma = 0.17). For each z coordinate, the
original field has been averaged on the plane [1, Ny] x [16, N, — 16],
where the excluded interval on the z-axis account for wrapped-
round densities. Standard errors of the averages are about 6 x 10~8
throughout, and are not shown. Each line represents the response
at At time steps after the start of steady shear: At = 0 (dotted
line), At = 100 (dash-dotted), At = 800 (dashed) and At = 9000
(solid), where the last is ca. the time at which the core (i.e., the
plane z = 64) fully responds. From the figure we can see that
momentum transfer decreases as it reaches the core from the walls.
Also, note that the stress inverts its sign at late times adjacent to
the boundaries, |z — zo| < 2 (z¢ = 0, 128). All quantities reported
are in lattice units.

equivalently, for g,z = 0, the source term for momentum
with V-u = 0,
where | is the unit second-rank tensor and s denotes the
same symmetrisation done for 4 above. The dissipative

balance is given by V - (pl - 277(Vu)s)

term is the contribution to stress from shearing a single
phase fluid, which coincides with Newton’s law, Eq. (3),
since in this model n = pc2(r — 1/2) is a constant, where
¢s = 3712 is the speed of sound in our LB model and 7
is the (oil or water) relaxation time parameter. We hence
set out to study the response to shear modelled by the
off-diagonal components of the virial term, whose diag-
onal entries are already known to give rise to a correct
interfacial tension [10, 11, 16].

In order to probe the function 7 = n(¥) for the gyroid
and molten gyroid mesophases, we measured Py, for a
number of different applied shear rates. The chosen val-
ues for U were such that fluid speeds remained within the
incompressibility limit, i.e., small compared to the speed
of sound for the model, ¢ = 371/2 &~ 0.58. Values chosen
were U = 0.05,0.10,0.15,0.20, corresponding to Mach
numbers Ma = 0.086,0.17,0.26, 0.34, respectively. Part
of the merit of meso- and microscopic numerical simula-
tion rests in their ability to measure quantities with finer
resolution than is possible with many experimental tech-
niques. In fact, all observables we report in this paper
are spatial averages, at least on x = const. planes where
a simple fluid under the same shear would show transla-
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FIG. 3: Spatially averaged velocity component u, for the molten
gyroid and the gyroid mesophases sheared with U = 0.10, at late
times and over the z > 64 half of the system. The dashed thin
and thick curves correspond to the molten gyroid at time steps
At = 9000 and 13 000, respectively. The solid thin and thick curves
correspond to the gyroid at time steps At = 9000 and 13000,
respectively. The average is over the same two-dimensional domain
as described in Fig. 2, for each z, and its standard error is shown
as negligible error bars. Note that the velocity shows a maximum
located from 2 to 4 sites away from the boundary, unlike a simple
fluid which would display it exactly at the boundary. The value
of this maximum coincides with the actual velocity at which the
BGK relaxation process of our LB model is forcing the fluid to
move, which needs not coincide with the input parameter U = 0.10.
Note that the inversion in the sign of the stress that we reported
in Fig. 2 occurs precisely for |z — xg| < 2, zg = 0, 128 and at
(late) times close and after At = 9000. The behaviour at the other
boundary region is similar and symmetric to that displayed here.
All quantities reported are in lattice units.

tional symmetry for the velocity field, i.e., perpendicular
to the velocity gradient.

Figure 2 shows how the (averaged) stress varies across
the system for the sheared gyroid. Several curves therein
allow us to depict the time evolution of momentum mak-
ing its way to the core (i.e., the plane z = 64) of the gy-
roid as the strain grows. Distinctively, the profiles have
spatial fluctuations, which is a result of the presence of
the gyroid’s convoluted structure whose (internal) inter-
facial tension modifies the momentum transport expected
for a simple fluid. The u, component of the velocity field,
averaged in the same way as stated for (—Py,) in the cap-
tion of Fig. 2, is however not inhomogeneous but follows a
transient similar to that expected for a simple fluid—we
observe the setting up of a steady, smooth and wedge-
shaped profile, except at the borders, see Fig. 3, which
also includes the behaviour of the averaged velocity pro-
file for the molten gyroid at late times.

Remaining with the gyroid, we show in Fig. 4 the tem-
poral evolution of the stress displayed in Fig. 2; the values
plotted are averages of the latter on the 8 <z < Ny —8 =
120 interval, which amounts to averaging over the whole
lattice except thin slabs adjacent to the boundaries. In
addition to Fig. 2, we include higher and lower shear
velocities, namely U = 0.05, 0.15, 0.20. Were the strain
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FIG. 4: Temporal evolution of the average shear stress of
the gyroid for different values of steady shear. The initial
condition is the same mentioned in Fig. 2. The curves, as
seen, e.g., at At = 4000 from bottom to top, correspond to
Lees-Edwards walls moving with speeds U = 0.05, 0.10, 0.15, 0.20
(shear rates S/1073 = 0.39, 0.78, 1.17, 1.56), respectively. The
dotted curves are the responses after a sudden termination of
shear; they are also referred to as the system’s relaxation func-
tions for the relevant shear speeds. The average here is in
the three-dimensional domain [8, Ny — 8] x [1, Ny] x [16, N, — 16],
where Nx = Ny = N, = 128 and error bars are the standard error
of the average. All quantities reported are in lattice units.

s

FIG. 5:  Both the gyroid (solid line) and the molten gyroid
(dashed) mesophases exhibit shear thinning. Shown is the stress
averaged over the interval 24000 < ¢ < 28 000. From the figure it
is clear that the gyroid manifests greater stiffness than the molten
gyroid and its (effective) viscosity drops for higher strain rates. All
quantities reported are in lattice units.

rate at which the gyroid deforms coincident with the ap-
plied shear rate, this curve would itself confirm shear
thinning to be occurring and would be the first indica-
tion of shear thinning reported by means of a bottom-up
kinetic-theoretic model for fluid flow. In fact, while the
increments in applied shear rate between these curves are
kept constant, the increments in the (absolute) values of
the stress at late times do not remain so but decrease. In

Fig. 5 we show the stress averaged over time steps 24 000
to 28000, plotted against the true strain rate, where the
latter was measured from the linear velocity profile gen-
erated at At > 9000 (¢ > 24000), as displayed in Fig. 3.
Figure 5 clearly shows shear thinning: the slope, i.e.,
the effective viscosity n° = 9P,,/0%, decreases with the
strain rate.

Figure 5 also contains the analogous curve for the
molten gyroid, which shows shear thinning for the lat-
ter at lower strain rates than those at which the gyroid
does, and at of higher intensity, i.e.

87]eif aneff
8"}/ molten 8’y

<0. (6)

gyroid

B. Morphological transitions

Figure 6 shows the configuration of the gyroid in the
40 < y < 52 slab of the 128 : 128 : 128 lattice, before and
at late times after applying a shear of U = 0.20. The
volume rendering graphics method employed [21] makes
regions where ¢ > 0.37 opaque to the (normally inci-
dent) lighting rays; since —0.79 < ¢ < 0.79 over the
whole system, these regions are the high-density locus of
one of the species (say, oil). Before shear, the structure
contains highly ordered subvolumes of gyroid symmetry
and diagonal length from about 32 to 64 lattice sites,
cf. Fig. 6(a). The gyroid is hence depicted as a regular
tubular structure making up two three-fold coordinated,
interweaving chiral lattices. Since the size of the unit cell
for the LB parameters employed is approximately 5 to 6
lattice sites, the depth (y-dimension) of the slabs shown
in Fig. 6 is of about two gyroid unit cells. As can be seen
in Fig. 6(a), the interfaces between these gyroid subvol-
umes are defective regions where long-range order and
symmetry drastically reduce [10, 11]. Two features char-
acterising them is the spatial variation in coordination
number and chirality, seen by the presence of elongated
tubules and toroidal rings, cf. figure 7.

At late times after the start of shear, At = 21000, the
structure has lost any resemblance with the initial gy-
roid, except for the persistence of the toroidal rings, see
Fig. 6(c). Also, the structure at these times is essentially
the same as that at time steps between At = 3000 and
At = 5000—it is a nonequilibrium steady state at least
for the previous 16 000 time steps, a time longer than that
required for the initial configuration to self-assemble from
a homogeneous mixture of oil, water and amphiphile. The
structure at At = 21000 consists of a non-crystalline net-
work of mostly the same elements characterising the de-
fective regions before shear, i.e. elongated tubules, with a
tendency to align along the (1,0, 1) direction (characteris-
ing the velocity profile), and toroidal, ring-like structures.
This description is independent of the subvolume of the
lattice visualised.

‘We also looked into the structure of the sheared molten
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(a) At=0

(b) At = 1000

(c) At = 21000

FIG. 6: High-density regions of one species (say, oil) in the gyroid mesophase, before shearing, Fig. (a), and at an early (Fig. (b))
and late time slice (Fig. (c)) after the onset of shear. The shear speed is U = 0.20. The complementary immiscible fluid (water)

fills the voids with a similar, inter-weaving structure.

The system is on a 128 x 128 x 128 lattice, and all figures show the

subvolume 40 < y < 52 and the reference system in use (the y-axis enters the reader’s plane). The initial configuration is a

Oll W'Lter

gyroid at 15000 time steps of self-assembly. These images are volume renderings of the density order parameter, ¢ = —p
the regions visible to the reader are those for which ¢ > 0.36 whilst over the entire fluid —0.79 < ¢ < 0.79. All quantltles

reported are in lattice units.

ring

tubul e
gyroid

FIG. 7: Schematic representation of the skeleton (locus of
highest density) of the gyroid mesophase we employ, and two
of its structural features before and at late times after the on-
set of steady shear. The thickness provides a sense of perspec-
tive, and represents how close each segment is to the reader;
note that the figures on the right are planar. The skeleton
denoted by ‘gyroid’ depicts a portion of one of the two chiral
lattices making up the long-range order regions of the gyroid
before shear, cf. Fig. 6a—the coordination number is three at
each node. In the regions of the gyroid containing defects,
as well as in most of the sheared mesophase at late times,
the coordination number can be reduced to two, describing
a ‘tubule’. We also show the skeleton of the ‘ring’ structure
ubiquitous in the sheared gyroid at late times, also present
in smaller proportion as a defect in the mesophase before the
onset of shear. At lower values of density, this ring appears
as toroidal.

gyroid at late times. In contradistinction to the gyroid’s
state at high strain, showing tubules of shape similar to
that included in Fig. 7 and at an angle with the z = const.
planes, the highly strained molten gyroid display tubes
which are more stretched and placed along the z direc-
tion. The toroidal rings, also present for the molten gy-
roid before shear, represent a much smaller volume frac-
tion for the sheared molten gyroid than for the sheared
gyroid.

Figure 8 shows the summed structure function
Zky S(k), or scattering pattern, for the sheared gyroid
mesophase, where S(k,t) is the structure function, com-
puted according to [11, 16]

st = Sl @

Here, k is the discrete wavevector, V is the lattice volume,
¢ is the volume of the D3Q25 lattice unit cell, and ¢ (t)
is the Fourier transform of the fluctuations of ¢. S(k,t)
is the Fourier transform of the autocorrelation function
for the order parameter,

Cop(r, 1) = (B((x,1))p(x + 1,1)) (8)

where r is a vector lag and the brackets indicate average
over the spatial coordinate x. Figures 8(a), (b) and (d)
are the yz ‘scattering patterns’ of the structures in Fig. 6,
produced by summing up the structure function along the
x direction; these patterns represent characteristic stages
in the plastic deformation of the gyroid. At At = 1000
(not shown), the maximum intensity is reduced to 29%
of its value at At = 0, while there appear horizontal
‘smeared out filaments’ of very weak intensity, intrinsi-
cally related to the shearing process, as we shall conclude
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FIG. 8: Projected structure function (‘scattering pattern’) as a function of the time step for the sheared gyroid, as calculated
using Eq. (7). Shear velocity is U = 0.20. Figures (a), (b) and (c) are scattering patterns before shear and at intermediate
and late times after the onset of shear, respectively, while, for completeness, Fig. (d) details the side view of the structure
function corresponding to Fig. (c). The initial condition for shearing was a gyroid on a 128? lattice at 15000 time steps of
self-assembling. Time steps after the start of shear for these snapshots are indicated below each. Darkness in the greyscale
grows with the scattering intensity—filled isocurves correspond to values S = 1,80, 200, 700. The spikes are shear-dependent
features; see Fig. 9 and text for discussion. All quantities reported are in lattice units, and N = Ny = N,.

from Fig. 9. At At = 5000 a clear cardioid shape has
developed, which persists for the rest of the simulation;
this confirms our observation that the system reaches a
steady state at time step 5000; in addition, there is no
trace of gyroidal patterns along the z-direction.

In order to investigate the origin of the cardioid shape,
we computed the scattering pattern for a ‘synthetic gy-

roid’,

G(x) = singzcosqy + sin gy cos(qz — 6(x)) +

9)

where §(x) = (z — Ny/2)0max is a spatially-varying de-
phase used to obtain a linear strain on the morphology
(its maximum value, dpay, is reached at the lattice bound-
aries), and ¢ = const. is a wavenumber controlling the size
of the surface’s unit cell. It is known that G(x) = 0 for

sin(gz — 0(x)) cos gz .
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FIG. 9: Structure function of the ‘synthetic gyroid’, as calculated using Eq. 7 on the field G(x), cf. Eq. 9. Parameter dmax is the
maximum value of the dephase §(x) = (x — Nx/2)dmax, which serves to mimic a uniform strain across the structure. The case
Omax = 0 [lattice sites| gives an approximation to the Schoen G (or ‘ideal gyroid’) structure. Darkness in the greyscale grows
with the scattering intensity, and the filled isocurves shown correspond to S = 1, 80, 200, 700. For nonzero ky, the strain appears
to shift the pattern leftwards and smear the peaks, while leaving the zero kx intact. The smearing not in direct relation to the
strain—panel (b) shows more smearing than panel (¢)—explains the spikes shown in Fig. 8. The ‘cardioid’ shape reported in
Fig. 8 originates from the combination of the structure undergoing a structural transition (losing its k, # 0, kx # 0 peaks) whilst
being sheared with a velocity profile of positive slope (cf. Fig. 3, which orients the ‘atria’ leftwards). All quantities reported
are in lattice units, and N = Ny = N,.

Omax = 0 is a good approximation to the Schoen “G” IV. SHEARING THE LAMELLAR
triply periodic minimal surface of Ia3d cubic symme- MESOPHASE: DEPENDENCE ON THE
try [22]. Figure 9 shows the scattering patterns for the AMPHIPHILE DENSITY

unstrained morphology and for dephases d,,.x = 8, 16.

In the last section we reported on the gyroid display-
ing lower shear stress than the molten gyroid. Since the
structural transition between these two mesophases can

Comparing the structure function maps, Figs. 8 and 9, be driven by the density of amphiphile and/or the inter-
at the same value of the strain rate might prove useful. amphiphile coupling parameter, as Gonzélez-Segredo and
For the ideal gyroid, strain is controlled by the number Coveney reported [11], our aim in this section is to eluci-
of unit cells that the dephase causes the structure to shift date the role of the amphiphile density alone on the stress
at the lattice boundary, following a linear profile as we response to shear; we choose the lamellar mesophase as
approach the other boundary through a zero at the lat- the subject of the study, since it has the simplest possible
tice core. For the amphiphilic gyroid, however, the strain internal interface.

does not follow a linear profile at early times; instead, the The initial configuration employed was a cubic 1283
strain at time ¢ would need be computed from the integral ~ lattice with 16 lamellae, stacked perpendicularly to unit
NL fot fON* dt'dx 9, u,(x,t’), where ¢’ is the time parame- vector z. The lamellae were of alternating, oil-water com-

ter. For the purposes of this paper, however, this analysis positions, separated by a thin monolayer of amphiphile.
would be superfluous; in fact, Fig. 9 already provides us ~ The thickness of the immiscible and amphiphilic lamel-
with enough information to understand the origin of the  lae were 7 and 1 lattice sites, respectively. We populated
cardioid shape. For all panels, (a), (b) and (c) therein, the each lattice site with a value of density which kept con-
position of the peaks at kx = 0 (k,/(27/N) ~ —14, 15, stant over the region corresponding to a same species;
where N = 128) are invariant under the strain (dephase); ~ each microscopic velocity is assigned the same fraction
not so with the peaks at ky # 0, which shift leftwards. of this value. We gave amphiphilic regions the densities
(The shift would be rightwards were d,u, < 0.) The n®s =0, 0.80, 0.95, and oil and water regions the den-
shape of the maps in Figs. 8(c) and 8(d) is that of a trans-  sities nOr = p(OP — 0.7, Shear was applied perpendicu-
formed scattering pattern shifted leftwards. This trans-  larly to the lamellae via with the same LEBC’s presented
formation occurs early, between At = 0 and At = 3000, in the last section, with speed U = 0.10.

and is characterised by two strong (S > 700) peaks sim- Before shearing, the case without amphiphile of the
ilar to those of the gyroid at kx = 0, and two weaker lamellar initial condition just described is, a priori, a
(200 < S < 700) peaks at k, = 0. metastable state in our LB model. In fact, the structure
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has a stationary morphology since short-range oil-water vag’f ‘ ‘ ‘ ‘ ‘ ‘ =
forces and the absence of fluctuations maintain immisci- r 1
1x10"

bility while keeping the interface’s shape; however, a large
enough perturbation in ¢ can make these forces drive the
interface to a radically different shape. Moreover, shear
will work against the interfacial tension by reducing the
interface steepness (i.e., |V¢|), which will lead to miscibil-
ity (phi = 0) for high enough strain rates. Despite these
arguments, we observed stability for the sheared lamellar
mesophase without amphiphile, as we report next.

Figure 10 shows the stress as measured in the same
fashion carried out in the last section (see Fig. 4), for
several amphiphile densities. The behaviour observed is
diverse. For zero amphiphile concentration (solid curve),
the stress reaches a peak at early times before it proceeds
to a second, lower maximum at late times, going through
a trough at intermediate times due to the fact that |V
experiences a transient decrease.

The high-density regions for one of the immiscible
species (say, oil) is shown in Fig. 11(a) at late times,
At = 8000; for the lamellar morphology, these are rep-
resentative of the shape of the oil-water interface. Away
from the boundaries (z = 0, 128), there is a large surface
area of interface with zero curvature, where we define the
curvature as H = 02,24(2), z4(2) being the curve re-
sulting from projecting of the ¢ = 0.18 surface onto the
xz plane. Curiously, we observe two changes of curva-
ture passing through an inflexion point as we follow the
curve z4(z) around z = 64 for y = const.—we would
have expected the steady, late-time configuration for the
sheared lamellar mesophase to minimise the interfacial
area showing non-zero concavity. We can associate a cur-
vature energy density (per unit of interfacial area) to H?,
following Helfrich’s definition of the rigidity modulus [23].

The stress curve corresponding to n(®® = 0.80, cf.
Fig. 10 shows the absence of a trough, as it occurs for the
n(®s = 0 case, despite the fact that interfacial tension
is drastically reduced by the presence of the amphiphile.
In addition, the stress grows with time to higher values
than those achieved by the n(®)% = ( case at late times.
The late time order-parameter configuration is displayed
in Fig. 11(b), showing a rich interfacial pattern. Using
the same arguments of the last paragraph, this struc-
ture could be characterised by a higher curvature energy,
f ,do H 2. where o is a measure on the oil-water interface,
I, and H is now defined as the inverse radius of curva-
ture, parameterised on the arclength, s. Figure 11(b)
shows similar regions of high curvature at an equal dis-
tance from the shearing walls, where u, = const., which
we shall call nodal planes. Also note that the interface, as
approximately depicted by the boundary of the ¢ > 0.22
volume, joins the lattice boundary at an angle close to 90
degrees.

The stress curve for the (0% = 0.95 case shows a dra-
matically different situation for the first 5000 time steps:
the presence of a trough, deeper than that present for
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FIG. 10: Temporal evolution of the average shear stress
response of a lamellar mesophase at a shear speed of
U = 0.10, for different amphiphile densities. The solid,
dashed, and dash-dotted curves correspond, respectively, to
n(®s =0, 0.80, 0.95. The average is computed over the three-
dimensional ~domain (8, Nx — 8] x [1, Ny| x [16, N, — 16],
where Ny = Ny = N, = 128 and error bars are not included
since they are negligible. All quantities reported are in lattice
units.

the n(9% = 0 density. After that, there appears a shoot-
off whereby the stress rapidly grows and equals the late
time value achieved in the n(®)® = 0.80 case. However,
the order-parameter displays a configuration analogous
to the n(9% = 0.80 case, cf. Fig. 11(c). By looking at the
amphiphile density field, p*(x), for the case n(®% = 0.95,
we observed that the high curvature regions arise close to
the boundaries first (At < 1000), and then rapidly move
away from them as the strain progresses.

V. CONCLUSIONS

In this paper we reported on the shear stress response
of two gyroidal cubic amphiphilic mesophases previously
self-assembled using the same bottom-up LB model we
employ here, namely, the gyroid per se, which shows
high crystallinity at late self-assembly times, and the
molten gyroid, endowed with shorter-range order and lo-
cated within the sponge-gyroid lyotropic structural tran-
sition [11]. Shear was imposed via sliding periodic (Lees-
Edwards) boundary conditions, and we investigated the
system’s response to several values of the strain rate. In
addition, in order to investigate the dependence of the
shear stress on the amphiphile density, we also sheared a
lamellar mesophase, of a much simpler morphology than
the gyroidal mesophases.

We found that the gyroidal mesophases exhibit shear
thinning, more pronounced and at lower strain rates for
the molten gyroid than the gyroid. In other words, mo-
mentum is transported more easily across the mesophase
from the shearing walls for the mesophase containing
more amphiphile, of longer-range ordering.

We also found a shear-induced transition from an ini-
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FIG. 11: Slabs 0 < y < 8 of the order parameter ¢ for the lamellar mesophases with different amounts of amphiphile density,
n(®% at time step At = 8000 after the onset of a shear of velocity U = 0.10. (The coordinate system is the same of Fig. 6.)
In panel (a), the regions opaque to incident (volume rendering) light are those for which ¢ > 0.18, where |¢| < 0.36 across the
system. In panel (b), the opaque regions are those for which ¢ > 0.22, where |¢| < 0.45 across the system. In panel (c), the
opaque regions are those for which ¢ > 0.24, where |¢| < 0.48 across the system. It is worth noting that the surfactantless case,
(a), exhibits a curved interface. The amphiphilic cases, (b) and (c), display the formation of irregularities in the interface and
nodal planes, as a result of the inter-amphiphile interaction. All configurations have translational symmetry along the y-axis.

All quantities reported are in lattice units.

tial gyroid morphology to a mesophase at large strain
characterised by the coexisting elongated tubules and
toroidal, ring-like structures. This mesophase is in con-
trast with one found by Zvelindovsky et al. with free-
energy Langevin-diffusion methods by shearing a bicon-
tinuous structure reminiscent of a molten gyroid [3]. The
structure they found is of a shorter-range ordering than
that of the molten gyroid employed for the study reported
in this paper, and the high-strain structure consists of co-
existing lamellae and hexagonally packed tubes elongated
along the direction of the imposed shear velocity. Our
shear molten gyroid also shows enlongated tubes along
this direction, but the structure is far more complicated
than that found by Zvelindovsky et al. in that it exhibits
remnant toroidal rings and ‘hard shoulders’ reminiscent
to gyroidal skeletons, and hexagonal packing and coex-
isting lamellae are absent.

The shear performs a plastic deformation which effec-
tively breaks the gyroidal skeleton’s links which interpose
an (oil-water) interface whose normal, n, is parallel or an-
tiparallel to the flow, u. In other words, by shearing we
apply a (mixing) force which is not only in competition
with the oil-water force, generating immiscibility, but also
with the inter-amphiphile force. Our hypothesis here is
that adsorbed dipoles sitting on interfacial regions with
an angle # = Z(u,n) in the range 0 < 6 < 180 degrees re-
quire more work from the shear forces to draw them away
from the interface than those regions placed normally
to the flow, since the (shear-induced) mixing reduces as
cosf. In particular, when 6 = 0, the inter-amphiphile
force can sustain considerably long interfaces—shear in-

duces a preferential direction along which the long-range
order present before shearing is not reduced. These ar-
guments explain not only the formation of the elongated
tubules but also their reconnection (increase in coordina-
tion number). In fact, the toroidal, ring-like structures
are not only vestigial gyroid defects which have survived
the gradient Vu, but also born anew resulting from re-
connections.

Applying shear to a lamellar mesophase, we found that
the presence of amphiphile on the oil-water interface of
the mesophase causes the interface to fold into a wealth
of structures with a (discrete) translational symmetry
on planes equidistant to the shearing walls and along
the direction of the shear velocity. In other words, the
inter-amphiphile force couples the adsorbed amphiphilic
dipoles so that the interface locally increases its curvature
energy density. It is worth investigating whether this
local increase is due to the amphiphile being incapable
of sustaining interfacial regions of low curvature under
shear, i.e., whether shear induces a ‘breaking’ mechanism.
Regarding the shear stress, our amphiphile-containing
lamellae responded with higher stress at late times than
those without. This contrasts with the results found for
the gyroidal mesophases, and leads us to conclude that it
is the gyroid’s cubic morphology that allows this struc-
ture to be stiffer.
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pPLRME2D: A parallel implementation of a two-dimensional
hydrodynamic lattice gas model with long-range interactions
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Using a two-dimensional hydrodynamic lattice-gas model for the simulation of binary immiscible
and ternary amphiphilic fluids, we investigate the effect of long-range interactions in the surface
tension of a planar interface between two immiscible fluids of equal density with and without a
layer of surfactant particles lying on it. This is the first stepping stone towards the simulation of
the dynamics of fluid vesicles: the surface tension is one of the parameters of some continuum-
mechanical descriptions [5] for vesicles, and long-range interactions are believed to be crucial in
attaining stability. The parallel implementation of the lattice gas algorithm employs a new commu-
nication wrapper providing an object orientated approach to distributed memory programming of
n-dimensional grid-based calculations. We find that the surface tension increases with the range of
interactions of the immiscible fluid particles but not with that for the surfactant particles. We also
find good scalability and minimal impact of the parallelisation strategy on the structure of the base

serial code.
I. INTRODUCTION

A wide range of fluids found in nature and in in-
dustrial processes are in the form of immiscible mix-
tures. Oil and water are archetypical examples of such
systems, important in the food and petroleum indus-
tries, although polymeric and colloidal solutions are
also common cases.

The addition of amphiphilic (also called surfactant)
chemicals in a fluid or in an immiscible mixture gives
rise to the self-assembling of complex morphologies
of great interest in physical chemistry, biology and
chemical engineering [1]. The mechanism for their
formation relies in the polar nature of the surfactant
molecules, with an ionic head attached to a hydrocar-
bon tail. In immiscible mixtures, opposite parts are
attracted to different phases, thereby favouring their
absortion at, and causing the formation of, binary im-
miscible interfaces [2]. When dispersed in single fluids,
either organic or ionic, they aggregate such that the
part of the molecule which is insoluble in the medium
is shielded from it.

Examples of these self-assembled, fluidic struc-
tures are spherical and wormlike micelles, lamellar
and sponge phases, microemulsions, and bicontinu-
ous tubular structures, and are also termed lyotropic
liquid crystals [3]. Their properties have produced a
wealth of applications: the very low surface tension
in amphiphilic microemulsions has led to the use of
surfactants as detergents; the viscoelasticity of worm-
like micelles is a desirable property for food products

*n.gonzalez-segredo@qmw.ac.uk. Also at Departament
de Fisica, Universitat Autonoma de Barcelona, 08193
Bellaterra, Barcelona, Spain.

fEmail: martyn.foster@man.ac.uk. Telephone number:
+44 (0)161 275 6821

and paints; spherical micelles can be used as carriers
in drug transport and delivery by the pharmaceutical
industry.

The aim of this work is to lay down a first stepping
stone in the modelling of amphiphilic membranes with
a mesoscopic technique such as the lattice gas automa-
ton [2]. We are interested in simulating vesicles, which
are the backbone of many biological structures, such
as cell membranes. They are made up of closed bilayer
sheets of phospholipids,of an amphiphilic nature.

A hydrodynamic lattice gas automaton for am-
phiphilic and immiscible fluids is a class of cellu-
lar automata. Our model, based on the Boghosian-
Coveney-Emerton (BCE) model [2], consists in a reg-
ular lattice of the required symmetry which is pop-
ulated with particles of different species with dis-
crete velocities, colliding and advecting in discrete
timesteps, and satisfying local conservation of mass
and momentum. The collision operator is nondeter-
ministic in that local, postcollisional states are sam-
pled from a distribution which enforces phase separa-
tion of immiscible fluid species. In the macroscopic,
spatial averaging limit, the Navier-Stokes equations
for incompressible, viscous, low Mach number (creep-
ing) flows are recovered for each single phase. The
added feature to the BCE model is the incorporation
of long range interactions.

Long-range interactions were introduced into cellu-
lar automata to model phenomena in which inhomo-
geneities may become more stable than homogeneous
phases [8-10].

In the macroscopic modelling of vesicles, many con-
tinuum mechanical models have appeared [4], initially
motivated by the study of the sickle red blood cell
shape [5]. They all introduce the vesicle’s surface ten-
sion, bending elasticity and osmotic pressure as key
parameters of their model determining the vesicle’s
equilibrium shapes.

Our novel approach is to propose a fluid model, en-
tirely based on mesoscopic particle interactions, which
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could not only mimic the shape of surfactant vesicles
at late times (equilibrium) but be able to reproduce
their dynamic, nonequilibrium behaviour [6]. There
have already appeared other mesoscopic approaches
to the problem [7], yet injecting macroscopic informa-
tion about the interface back down to the underlying
transport dynamics. Length scale-wise, our aim is to
follow a down-to-top-only approach.

Because surface tension and bending rigidity arise
as a result of spatial correlations of the fluid’s
molecules, it seems plausible that in our model they
can be a function of the range of the particle inter-
actions. In this work we focus our attention on the
surface tension alone.

In section II the lattice-gas model itself is explained.
We deal with a binary system (two-dimensional,
planar interface) comprising two immiscible phases
which, for simplicity, we will refer to as water and
oil, and a ternary system when adding a third, surfac-
tant phase. Finally a method for measuring its surface
tension is outlined.

In section III we present details on the parallel im-
plementation of the algorithm. We use a set of wrap-
per functions acting as a general-purpose interface to
MPI directives. Section IV contains the results of our
simulations, and in section V we conclude and propose
a natural continuation to this work.

II. AN AMPHIPHILIC IMMISCIBLE
LATTICE GAS WITH LONG RANGE
INTERACTIONS

The lattice-gas model we use is an extension
of the nearest-neighbour-interaction model used by
Boghosian, Coveney and Emerton (BCE) [2], which
in turn is a generalisation of the immiscible lattice
gas of Rothman and Keller [11], with the inclusion
of surfactant particles. Before tackling the extension
to long-range interactions on the Boghosian-Coveney-
Emerton model, we will give as follows a detailed de-
scription of it.

The BCE automaton is a two-dimensional triangu-
lar lattice containing up to seven particles per node.
The choice of a triangular lattice guarantees isotropic
behaviour in the macroscopic limit leading to the
correct Navier-Stokes equations for incompressible,
single-phase fluids. The particle velocities may take
on any of the six unit vectors ¢; (i =1, ...,6) that the
geometry permits, or a null vector ¢ representing a
particle at rest. To allow for different fluid types to
be modelled, they assign colour to the particles. In
this way, the state of the 2D model at site x and time
t is completely specified by the occupation numbers
n$(x,t) for particles of colour o and velocity c;/At.
These occupation numbers can be either zero or one,
and there can be at most one particle of either species
per direction. The latter is a form of exclusion princi-
ple that, while restricting the application of the model
to systems with low density gradients, constitutes a
major assumption necessary for algorithm simplicity

and speed of execution.

To consider the amphiphilic species, the surfactant
particles are modelled as colour-dipole vectors ;(x,t),
their occupation numbers being denoted as n (x, t).

The evolution of this lattice gas occurs in two sub-
steps. In the propagation substep the particles at a
site x hop to neighbouring sites along the directions
corresponding to their velocity vectors. In the colli-
sion substep, the newly arrived particles change their
velocities such that the mass of each species and the
total momentum at the site (‘total’ meaning summed
over all the species) is conserved. The outgoing state
allowed by the conservation laws can be degenerate,
and so each possible outgoing state is numbered and
assigned a probability value. Then, the outgoing state
is sampled according to these probabilities. If there
are two states with equal probability, they are ran-
domly chosen.

The probability values referred to in the last para-
graph depend on the interaction of site x’ with its
neighbouring site y, which in turn depends on the
states of x’ and y. We say that we incorporate long-
range interactions in our model when we consider not
only the nearest neighbours but sites further away
from x’ to compute these probability values.

The probability values have the form of Boltzmann
weights

e PRI, (1)

where 3 is an inverse “thermal noise” parameter and
AH has the form of an electrostatic interaction Hamil-
tonian,

AH = aAHq. + pAH.q+ eAHg. + (AHgy
= aJ-EAt+ uJ - PAt

+ e<U’~E+j:€At>
+ C<0/~P+J:PAt> 2)

and represents the work carried out by the outgo-
ing particles, when they hop to neighbouring lattice
sites, against the field produced by the neighbour-
ing particles. Subscript ¢ stands for “colour”, and
d for “dipole”, and «, p, €, and ¢ are coupling pa-
rameters. AH.. represents the work performed by a
colour charge in the colour field produced by fixed sur-
rounding colour charges, and corresponds to the rela-
tive immiscibility of oil and water; AH.q is the work
performed by a moving colour charge in the dipolar
field created by surrounding fixed surfactant particles,
and models the tendency of surrounding surfactant to
bend around oil or water droplets, and hence favours
micelle formation; AHy. is the work carried out by
an outgoing dipole when moving in a colour field pro-
duced by surrounding fixed colour charges, and corre-
sponds to the propensity of surfactant dipoles to align
across oil-water interfaces; and AHgq is the dipole-
dipole interaction. Here, At is the time step, and
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- and : denote contraction of one and two tensor in-
dices, respectively. Following an electrostatic analogy,
we have defined the colour flux of an outgoing state
at an arbitrary site x and time ¢ as

6
C;

J(x,t) = Ar

g;(x,1), 3)

where the prime denotes that the charge is computed
on an outgoing state. The colour field has been defined
as

E(X7 t) . Z fl(y)yQ(X +Y, t)v (4)

yEL

where f1(y) is a derivative of the potential shape func-
tion f(y)

fily) = (— é%)lf(y) (5)

where [ = 0,1,..., and f(y) is analogous to the elec-
tric potential in electrostatics: it conveys the idea of
shape and type of the interaction, i.e., how it decays
with distance and whether a test particle would be at-
tracted or repelled by a particle of alike colour gener-
ating the field. In addition, y is a displacement vector
from site x, y its module, £ is the lattice, and g(x,t)
is the colour charge of the relevant site at time ¢. The
latter is defined as the sum over all the directions of
the colour charge per direction

qi(x,t) = nf(x, t) — nf(x7 t), (6)

where R stands for a red particle and B for a blue
particle. Note that ¢;(x,t) is positive when it is only
a red particle that moves along ¢ and negative for a
blue particle.

We have also defined the dipolar-field vector

P =Y [LW)yy - AW)] o' x+y.0), ()

yeL

where ¢’ is the sum of the outgoing colour dipole vec-
tor o; over all the directions ¢, and | is the rank-two
unit tensor. The dipolar-flux tensor is

6
J(x,t) = Z %fﬂ(x +y,1), (8)

the colour-field gradient tensor is

£ =Y [Lwyy - A)ax+y.0, )

yeL

and the dipolar-field gradient tensor is defined as

Pt ==Y [h)yyy - L)y -Q] o' (x+y,1),
YEL
(10)
where Q is the completely symmetric and isotropic
fourth-rank tensor.

It is worth mentioning that the prescription for im-
miscibility (phase separation) is contained in the sam-
pling process of the collision substep. In fact, it is
most likely to obtain outgoing states with the highest
probability values, which according to (1) correspond
to the lowest values for AH. Thus, the velocity con-
figurations that leave J and E antiparallel are the ones
with the highest chance of being chosen by the sam-
pling. As a result of these vectors being antiparal-
lel, particles move towards regions of particles of like
colour, and hence phase separation is induced.

Long-range interactions come into play in this
scheme if we allow the sum in (4) to range over not
just the nearest neighbours to x (i.e., y = 1) but a few
layers of sites further away or even the whole lattice.
The extension carried out in this work consists in us-
ing 3, 4, 5, 6, 7 and 8 layers of nearest neighbours,
cases that we will refer to in the sequel as LR3, LR/,
LR5, and so on, the nearest-neighbour case being de-
noted by SR.

As to what form for f;(y) in (4) and (7) was used,
we chose one that is constant within the interaction
range and whose value is that at nearest neighbouring
sites, i.e., such that

_ | £1i(1) if y < interaction range
fity) = { 0 otherwise (11)

We have used f(y) = —1/y as a suitable general func-
tion. (The negative sign allows inducing cohesion in
immiscible mixtures.) This particularisation leaves

(4) and (7) as

E(x,t) = Y r)yax+y,1b), (12)
yEL
Plxt) = =3 r()[555 1] o' Gety,0),013)
yYEL

where y is the unit vector y/y, | is the rank-two unit
tensor, and r(y) is a step function that controls the
extent of the interactions, namely

0  otherwise (14)

r(y) = { —1 if y < interaction range
This choice of the interaction potential allows us to
focus our attention on the effect of varying the number
of neighbours as a parameter, without the additional
complications associated with a decaying function of
distance.
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The factor 3/2 in (13) is a choice necessary to guar-
antee that the dipole-dipole interaction work has well-
defined minima, i.e., such that there are a finite num-
ber of angles towards which the dipoles tend to tilt and
that they show the correct self-assembly behaviour:
Aligning in parallel, head to head and tail to tail.
When using the factor 2 instead of 3/2, as would di-
rectly follow from (5), those minima turn out to be a
continuum of values.

Incrementing the number of neighbours to sum over
in (4) is always done at the expense of increasing the
computing time needed compared to what the nearest-
neighbour case requires. However, to get round this
problem, our code exploits to great advantage the fact
that both (12) and (13) have the form of a convolution.
For two arbitrary scalar functions f and g defined over
a subset € of the integers, the convolution can be
defined as

f*g: Zngth'

TEQ

(15)

If we generalise this to one-dimensional real functions
over the lattice £ C Z? and replace g by ¢ and f by
f(y)y, we realise that the cartesian components of E
are

By = f(y)yr * q, By = f(y)y2 * q,

where the subscripts 1 and 2 denote = and y com-
ponents, respectively. The benefit of expressing the
colour and dipolar fields in this way comes about be-
cause the convolution of two functions is the inverse
Fourier transform of the product of the functions’
Fourier transforms,

(16)

frg=FFn Fg).

Because the Fourier transforms are computed over the
whole lattice regardless the range of the interactions,
there is no increase in computational expense when
increasing this range. Moreover, Fourier transforms
can be calculated very efficiently using Fast-Fourier-
Transform (FFT) algorithms.

For computer implementation, we need to store our
triangular lattice in memory arrays, whose unit cells
are squares and not hexagons. That is, we have to
transform the lattice into a square one. We do so
by moving every even row in the triangular lattice by
half the lattice constant along the negative z direc-
tion (ie., to the left). In order to keep the particles
moving in the same way as they do in a triangular
lattice, particles are not allowed to move along all the
diagonals: those lying on an even row cannot move
along any diagonal towards the left, and particles on
an odd row cannot move along any diagonal towards
the right. These selection rules ensure that we have
the behaviour of a triangular lattice, and therefore
that our model leads macroscopically to isotropic be-
haviour [12].

(17)

A. Surface tension of a planar interface

The surface tension o of a planar interface between

two immiscible fluids [13] is given by

+oo
o= /
— 00
where the interface is perpendicular to the x axis, and

Pn(z) and Pp(x) are projections of the pressure ten-
sor along the direction normal and parallel to the in-

[Pn(z) — Pp(z)|dz,

(18)

terface, Ppy(z) and Py, (z), respectively.

Interactions| o (nx =64) | o (nx = 128) | o (nx = 256)
SR 0.340 + 0.006|0.341 + 0.013]0.339 £ 0.025
LR3 0.403 + 0.007{0.401 + 0.013]0.409 £ 0.025
LR} 0.413 £+ 0.007(0.412 £ 0.013|0.412 £ 0.025
LR5 0.398 £+ 0.007(0.401 £ 0.013|0.413 £ 0.025
LR6 0.396 + 0.006{0.473 + 0.013]0.592 £ 0.025
LR7 0.424 + 0.006{0.511 £+ 0.013]0.639 £ 0.025
LR8 0.516 + 0.006(0.823 £ 0.013|1.358 £ 0.025

TABLE I: Surface tension of a planar interface as the oil-
water interaction range increases, for three different lattice
sizes.

The definition of the pressure tensor in our 6-
velocity lattice gas is

6
Pag =Y _ CiaCigNi,

=0

(19)

where ¢;o is the a—component of the velocity vector
along the direction ¢, and N; is defined as the num-
ber of particles on direction i at the relevant site and
averaged over an ensemble of systems prepared with
different initial conditions, but subjected to the same
external constraints (ensemble averaging). According
to this, the components we are interested in become

s
2
N
Il

3
> Ni= 7V + N2+ Ny + Ns),
i

where N; is the number of particles in the direction
i of the site under consideration and c;; and c;, are
the  and y components of the (unit) velocity vector
along that direction. It is vital that we state here how
we label directions in our automaton,
¢; = (cos2mi/6,sin 27i/6), i=0,..,5, (21)
where direction ¢ = 6 denotes the rest particle, with
zero velocity.
In kinetic theory the pressure tensor is expressed
as the average of mcc over the molecular velocities,

1
Z@M=%+M+jM+M+M+ML

(20)
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with m the particle mass and ¢ the molecular velocity
relative to the macroscopic velocity,

P.s = /mca%f dv, (22)

where f is the velocity distribution function. For lat-
tice gases the pressure tensor is given by (19), in which
the ensemble averaging performs the velocity averag-
ing and the fact that the elements of the ensemble
are uncorrelated with each other guarantees that the
velocity domain is uniformly sampled. In this paper
averaging over lattice velocities is carried out by en-
semble and time averaging over states which are ap-
proximately stationary. Ensemble averaging is done
over independent runs, which guarantees uncorrelated
realisations of lattice velocities; time averaging, on the
other hand, is performed for every single time step of
the simulation, and hence there is correlation of ve-
locities at least for the few measurements adjacent in
time to every single time step. In future work we could
calculate the time correlation neighbourhood inside of
which averaging would be pointless in terms of a rig-
orous calculation of N;, and therefore measure outside
it.

Moreover, a vertical interface exhibits translational
symmetry along the y axis and therefore we also av-
erage over the y coordinate for fixed z, as these sites
have to have uncorrelated pressure due to the transla-
tional symmetry. According to this, we compute (18)
as

ng—1 ng,—1
7= <% D7 flin) Y [Pulin,iy) —Pp(im,iy)}>,
Y i,=0

iy =0

(23)
where the brackets denote time averaging, i, and i,
are the z and y coordinates on our lattice, n, and
n, are the width and height of the lattice respec-
tively, and f(i,) is a factor coming from the integra-
tion method. We used an integration method of the
same order of Simpson’s rule, for which

3/8 ifiy=00rn, —1
7/6  ifiy=1orn, —2
23/24 ifi, =2o0rn, —3
1 elsewhere.

Dividing by 2n, in (23) comes from vertical averag-
ing and the fact that, as we use periodic boundary

Interactions| o (nx = 64)
SR 0.2692 £ 0.0069
LR3 0.2708 £ 0.0069

LRS8 0.2708 £ 0.0069

TABLE II: Surface tension of a planar interface with sur-
factant, as the range of the potential for the surfactant
particles absorbed at the interface increases.

conditions both on the vertical and horizontal direc-
tions, there are actually two interfaces contributing
to the surface tension, at i, = n,/2 and at i, = 0.
As we will mention later, we work with n, = 64 and
ny = 512.

In practice the interface is not flat but has irregu-
larities that can make sites of equal z coordinate lie at
different distances from the interface. As the pressure
profile theoretically depends on that distance, verti-
cal averaging over an irregular interface would give
rise to a statistical error (increased dispersion around
the mean) in addition to that coming from the noise
of our automaton.

There is an added difficulty apart from averaging:
the configuration of the system for the initial time step
has to be such that the total linear momentum is zero,
at least along the direction perpendicular to the inter-
face. When this is not the case, the interface moves
aside with constant speed, making time-averaging dif-
ficult. In other words, a non-zero initial momentum
does not allow the system to achieve stationary con-
figurations. To achieve stationarity, it was enough for
us to remove around 80% of the initial momentum of
the automaton before letting it evolve in time. Co-
hesion keeps the interface in place, which otherwise
would drift due to residual momentum in the lattice.

An important caveat to be considered is that
enough amount of surfactant has to be added to the
interface for it to reflect a reduction in surface tension.
Due to for a surfact particle sitting at the interface is
energetically favoured, that reduction only occurs if
the interface length has to be increased to accommo-
date all the surfactant particles present. Let Nj be
the number of sites of the interface, Ng the number
of sites with the added surfactant, and ps the reduced
density of surfactant. Then the condition for increase
of interface length is

TpsNs > TNy (24)

For the planar interface, Ng = 6n,, where § is the
thickness of the surfactant layer, and N;y = n,. Then
Eq.(24) reduces to

ps >1/0 (25)

Hence, for example, for a surfactant layer of 1.2, re-
duced densities smaller than 0.83 will not produce a
reduction in surface tension.

IIT. PARALLEL IMPLEMENTATION

The development of the algorithms to encompass
parallel environments was driven by the desire to
study problems too large for workstation class ma-
chines both in memory and computation time. An un-
derlying aim in the development of a parallel version
was to produce a code-base in which the paralleliza-
tion had minimal impact on the structure and layout
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of the original code. This enables a more seamless
transition to high performance machines and main-
tains accessibility for those inexperienced in HPC de-
velopment who can take a toolkit approach to building
applications for high end machines.

The parallelization of the code, a two dimensional
regular triangular problem is naively simplistic. A
number of lattices of varying data types are decom-
posed over processors in regular fashion. Initial ex-
amination of problem types demonstrate this to be
the correct approach, however the longer term usage
of the code is unlikely to reflect this, as there is no
inherent load balancing of the algorithm.

The communications API developed allows the de-
velopment of more sophisticated approaches to do-
main decomposition without requiring alteration to
the scientific portions of the code, as well as providing
abstraction of communication primitives to facilitate
optimisation on a per platform basis.

The approach taken was to develop an object orien-
tated abstraction of domain decomposed data struc-
tures as well as wrappers around the lowest level prim-
itives. In this picture the primary objects relating
to the lattice gas simulation are the decomposition,
which may be regarded as a layout of processors, and
the grid (a regular domain decomposed array). The
grid object inherits properties of the decomposition
(including its dimensionality and distribution) and
any number of different decompositions and data dis-
tributions are supported dynamically within the same
application. The code is implemented as a state ma-
chine written in ANSI ¢ with context switches between
grids allowing parameterless calls to common opera-
tions such as halo exchange, file I/O or mathematical
transformations from a supporting library. Portabil-
ity to Irix, Linux, and the Cray T3E has been demon-
strated.

The initial implementation has been written in MPI
with an MPI_Type_vector used as the default type
for synchronous boundary exchange operations pro-
viding seamless access to “nearest neighbour” data.
The dominant fraction of computation time (around
50 %) is spent in complex-complex Fourier transform
routines as can be seen in Figure 1. This routine is
a management wrapper and is currently layered upon
FFTW [14]. At the current time this sustains around
80MFlops per processor including data rearrangement
and communications overheads. This proves signifi-
cantly faster than the “computation only” Numerical
Recipes original algorithm and is found to be accu-
rate in forward-reverse tests to around 15 significant
figures. Scalability of the FFT to small numbers of
processors is illustrated in Figure 2.

Current and future development of the communica-
tions interface include the development of a high per-
formance IO layer based on MPI/IO and ffio on Cray
T3E systems, abstraction to provide dynamic visual-
ization and computational steering (initially based on
COVICE [15]), and an automatic profiling and tuning
layer.

IV. SIMULATIONS

A. Oil-water system

We performed three sets of measurements. In the
first, we simulated the evolution of the planar interface
for 10000 time steps for all of the interaction poten-
tials, with 8 independent runs for each. The pressure
measurements were taken every 10 time steps, dis-
carding the first 1000 time steps for the averaging on
the assumption that any transient behaviour would
die out at the end of this interval. The system size
was 512 sites in height and 64 sites in width, which
were the values that best fit to our requirements for
a small computational demand and a large number of
samples for averaging, all leading to an error in the
surface tension smaller than 10%. We assumed that
n, = 64 was a value large enough to avoid interfer-
ence between interfaces (i.e., the transfer of momen-
tum from one to another), which would have the effect
of distorting their required flatness.

In the second set we repeated the simulations, but
doubled the size of the system to n, = 128, and in
the third set to n, = 256. Our aim was to check for
finite-size effects, and reduce the standard error of the
average.

For n, = 64 we present the profile for the integrand
in (18) and interaction potentials SR, LR/ and LR8
in Figs. 3, 4 and 5, respectively. Error bars are all
smaller than the plotting symbols and were computed
by propagating the standard errors

+s/VN

originating from vertical averaging through further av-
erages, i.e., over time and runs. These errors cover
66% of the averaging sample, where s is the standard
deviation of the distribution of pressure measurements
and N is the number of measurements. We see that
the height of the peaks at the two interfaces (located
at the lattice centre and borders) tends to grow from
SR to LR/; from that interaction range onwards up
to LRS8 the height decreases and the width broadens.
As for our interest, we are only concerned about the
area under the profile, and this increases as we move
up to longer ranges.

In Fig. 6 we plot the dependence of the surface
tension with the interaction range, for the three sets
of measurements. The error bars are the difference
between the integral of y; + ¢; and of y; — €;, where y;
symbolically denotes the integrand in (18), discretised
by the integration method, and ¢; its respective error.
For n, = 64 we see an increase in surface tension as we
go from SR to LR, and from LR5 to LRS, but a drop-
off of 3.9% in LR5 with respect to LR/. For n, = 128
there is a similar decrease from LRS3 to LR/, but for
LR35 it shows an increase. Finally, for n, = 256 we get
an increasing behaviour for all the interaction ranges.
It is expected the latter to be more reliable a result
than for narrower lattices as finite size effects are less
important. The data plotted in Fig.6 is summarised

(26)
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FIG. 1: Time line for a four processor run of the simulation.
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FIG. 2: Time spent in FFTW wrapper per processor on
varied size processor array at fixed size per processor of
2562,

in Table L.

Finally we mention that, in the simulation of the
planar interface, the differences in code execution
times when using different long-range potentials were
0.4% at most.

B. Oil-water-surfactant system

We make now use of a lattice of the same size,
64 x 512, and working with reduced densities of 0.5, we

4005

5005 1:00.0 1:10.0

High
USE

Dark grey regions are spent in FF'TW, light grey represents

put now a layer of surfactant particles of thickness 2.4
lattice sites at the interface, following the reasoning
leading to Eq.(25). In order to check for the reduc-
tion in surface tension when adding surfactant to the

0.10

0.08 N

0.04 ¢ -

P_N - P_P

0.02

-0.02 L L L L L L L L L L L L L L L

Horiz.latt.co—ord., x

FIG. 3: Pressure profile Py — Pp for a vertical planar in-
terface using nearest neighbour colour-colour interactions.
The interface is located around z = 32 and at one end (pe-
riodic boundary conditions are used). As the title intends
to indicate, this profile is the result of ensemble averaging
over 6 runs and time averaging from time steps 1500 to
10000, taking measurements every 10 time steps, in addi-
tion to vertical averaging over the 512 sites the lattice has
in height. The surface tension calculated is 0.364 £ 0.036
(9.9% error).
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FIG. 4: Pressure profile Py — Pp for a vertical planar
interface. Using LR/ colour-colour interactions. Same
averaging as before. The surface tension calculated is
0.436 & 0.037 (8.5% error).
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FIG. 5: Pressure profile Py — Pp for a vertical planar
interface. Using LR8 colour-colour interactions. Same
averaging as before. The surface tension calculated is
0.436 £ 0.037 (8.5% error).

interface, we also simulated a planar interface with
density 0.5 and no surfactant layer on it.

We carried out three runs: We used a surfactant
particle interaction potenttial of ranges SR, LR3 and
LR8. The results are summarised in Table II. There
is no dependence of the surface tension with the range
of the dipolar potentials.

8
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FIG. 6: Surface tension of the planar interface as a func-
tion of the colour-colour interaction range. The dia-
monds correspond to nx=64, 15000 time steps, 8 inde-
pendent runs each, measuring at all the time steps after
the first 1000. The squares correspond to doubling the
lattice width (nx=128), other parameters remaining the
same. And the stars to doubling again the lattice width
(nx=256), same parameters.

V. DISCUSSION AND CONCLUSIONS

The principal result of this study is that our meso-
scopic, long-range lattice-gas model can control the
surface tension of the interface between two immisci-
ble fluids depending on how many layers of neighbours
are included when computing the colour field (12). In
addition, the range of the dipole interaction potential
(cf. 13) does not affect the surface tension.

If we could increase the lattice size as we please
for an immiscible mixture, there should be no other
limitation for us to compute an ever increasing sur-
face tension as we increase the range of the oil-water
interactions.

The fact that the surface tension is independent of
the range of the dipole potential gives us insight on the
capability of our lattice gas in the study of surfactant
structures in a single fluid phase: we will not be able
to control the surface tension in that case.

We show in Fig.6 how the surface tension for the
planar interface exhibits a strong dependence with the
size of the system: It increased for a larger lattice. We
expect the surface tension to achieve asymptotic limits
for large enough lattices.

The model is implemented using an object based
approach to domain decomposed data structures that
allows platform specific implementation of methods
forming an efficient toolkit-like approach to parallel
programming. Core computation is layered on FFTW
which is found to provide portability and good perfor-
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mance on the Cray T3E over a range of problem sizes.
Finally, a natural continuation of this work would
be the reproduction of the bending rigidity in closed
membranes. We foresee the increase of the range of
dipole potentials having an influence on this coeffi-
cient, as some kind of long range order is enforced
among surfactant particles lying at the interface.
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Chapter 5

Conclusions and future work

N THIS THESIS I have presented investigations on the ability of two lattice methods
Ito model the behaviour of binary immiscible and ternary amphiphilic fluids: a three-
dimensional kinetic-theoretic lattice-Boltzmann (LB) model and a two-dimensional lattice-
gas (LG) model. In this last section I give general conclusions on the work done, and
suggest possible paths for its continuation.

The renowned ability of the LB and LG methods we used to model simple fluid flows
rests in the principle of similarity of fluid mechanics, and its intrinsic algorithmic structure
renders them ideal for high computational efficiency. In fact, two fluids with quite different
microscopic structures can have the same macroscopic behaviour because the form of the
macroscopic equations ruling it is entirely governed by the microscopic conservation laws
and symmetries—this allows us to employ a simplified, algorithmically efficient microworld
instead of retaining the full molecular dynamics. The fact that the lattice-Boltzmann
model we used is in fact a local cellular automata of a simple update rule allows its
algorithm to be readily deployed on massively parallel computers, and, hence, the low
Knudsen number limit—effectively, the limit of large enough lattices—in which the model
is designed to reproduce the Navier-Stokes equations can, in actuality, also be achieved in
simulations. As regards the lattice-gas model with long-range interactions that we used,
since its collision rule can be expressed as a convolution of fields on the lattice, use of
Fourier transforms makes the algorithmic efficiency of its implementation independent of
the range of the interactions. Tackling the large lattice limit can thus be achieved with
an efficient Fourier-transform algorithm.

In these methods, the macroscopic properties are emergent from, rather than imposed
on, the microscopic dynamics. In particular, interfacial tension between immiscible fluids
arises as the result of the appropriate collision rules, giving rise to an interface which does

not require to be explicitly computed, contrary to what occurs in methods solving the
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Navier-Stokes equations. As my first conclusion to lay down, our bottom-up LB sim-
ulations on interfacial behaviour show the demixing of 1:1 fluid mixtures well below the
spinodal (i.e., away from criticality) to follow domain-growth algebraic exponents com-
patible with predictions from continuum theories, which in turn reproduce experimental
observations. Furthermore, the interface kinetics reproduces the dynamic scaling hypoth-
esis, whereby the time evolution of the segregating bicontinuous morphology for times
t > to can be expressed, in the statistical sense, as a spatial scaling (‘zoom-in’) law on the
morphology at t = t(; in other words, the fluid demixes with a speed of growth common to
all domains. In addition, our simulations allow to rebut previous claims in the literature
that all fluid models showing dynamical scaling and sharing the same unique length and

timescales will show similar domain-growth algebraic exponents.

Correct kinetics for the interface between two immiscible fluids is not the only macro-
scopic property sought after for these lattice methods for fluid dynamics. We also looked at
phenomenology for which there is no satisfactory macroscopic, continuum theory: amphi-
philic adsorption and self-assembly. In fact, the behaviour of amphiphilic molecules is ad-
equately described ab initio, using particulate methods—continuum approaches are valid
only in the ‘adiabatic’ limit. My second conclusion: LB simulations show that the
amphiphilic molecules, modelled as point dipoles interacting with themselves and the im-
miscible species via coupled BGK equations and mean-field forces with nearest neighbours,
behave as experimentally observed for ternary amphiphilic fluid mixtures, i.e., adsorption
onto the interface, reduction of interfacial tension, slowdown of growth kinetics, and arrest
of domain growth and formation of a microemulsion (sponge) mesophase. We also find,
for the first time using a kinetic-theoretic model, third conclusion, a lyotropic transi-
tion between the sponge mesophase and the gyroid liquid-crystalline cubic mesophase as
the amphiphile concentration and inter-amphiphile coupling is varied, going through a
molten-gyroid mesophase. As a fourth conclusion, the gyroid mesophase found shows
slowly decaying oscillations in the size of its unit cells caused by Marangoni flows, and
coincident with the existence of structural defects which slowly annihilate, that is to say,

relax to the crystalline structure surrounding them.

Long-range interactions are commonplace in nature, and the hydrophobicity and chem-
ical affinity driving phase segregation are nothing but effective long-range electrostatic
forces between species. Increasing the range of the LB inter-particle interactions further
than nearest neighbours can have dramatic effects on the behaviour of the interfacial ten-
sion, and hence, on the growth exponents, scaling behaviour and amphiphile self-assembly
just referred to. A first approach to the problem, and considering the difficulty in laying
out an efficient long-range LB algorithm, has been my use of a LG model for ternary
amphiphilic fluids, in which performance is not affected by increasing the range of the

interactions. My fifth conclusion states that our LG simulations show that the interfa-
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cial tension of an interface between two immiscible fluids with amphiphile adsorbed on it
grows with the range of the inter-molecular interaction between these two fluids, and not

with the range of the interaction between the amphiphilic molecules.

Last, our study of amphiphilic mesophases would go incomplete without an investiga-
tion, albeit introductory, of their dynamic response to shear. My sixth conclusion reads:
the gyroid amphiphilic cubic mesophase shows shear thinning, less pronounced than that
exhibited by the molten gyroid mesophase. At late times after the onset of shear on the
gyroid, seventh conclusion, we find a complex steady nonequilibrium mesophase con-
sisting of toroidal rings and elongated tubules; in the sheared molten gyroid, the number
of toroidal rings is lower and the number of elongated tubules higher and more aligned

with the flow than in the gyroid, at late times and for the same value of shear.

Suggestions of a number of ways that the research presented in this dissertation can be
continued are duly here. Asregard the LB method, there is an ongoing line of investigation
at the Centre for Computational Science (University College London, UK) aimed at contin-
uing the rheological studies of gyroid mesophases which took off from the work I presented
here. The research can be aimed at (a) computing the gyroid’s memory function guiding
the response to a sudden interruption of steady shear, and find out its dependence with
the model parameters; (b) investigate the viscoelastic response of the gyroid mesophase to
small-amplitude oscillatory shear by plotting one component of the complex elastic shear
modulus against the other (Cole-Cole plots), i.e., by looking at the interdependence be-
tween the loss and storage elastic moduli; and (c), investigate hysteretic behaviour in the
dynamical response of gyroids to large-amplitude and high-frequency oscillatory shear, by

looking at stress versus strain plots.

Regarding the LG model we employed, the research presented herewith is the first step-
ping stone towards investigating the role of long-range interations in providing mechanical
stability to ternary amphiphilic droplets. Using the same (two-dimensional) LG model,
I started tests to compute the Canham-Helfrich stiffness coefficient (or rigidity modulus)
by fitting the (excess) pressure, p, of “oil-in-water” droplets containing a monolayer of
amphiphilic molecules adsorbed on the interface to their inverse radius of curvature, H.
Minimisation of the Canham-Helfrich energy as a functional of the interface’s curvature
gives a cubic polynomial dependence between the two, p = vH —kH3, where + is the inter-
facial tension and « is the stiffness coefficient. Fits to this law showed that an insufficient
number of points being sampled and/or their error bars (standard errors from ensemble
averaging) being large produce large uncertainty in the value of k. Ways forward could be:
(a) to substantially increase the number of points sampled (i.e., larger lattices are needed
in order to include more droplet radii) and the number of initial conditions (and their
pathways) over which to ensemble average; or (b), change the method to compute k&, e.g.,

from the functional (line integral) dependence of k on a stress tensor difference, similar to
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the one used in this thesis to compute the interfacial tension on a planar interface.

I have already pointed out in the introduction that our LB research on gyroids was
employed by TeraGyroid, a UK-USA project on the developement and application of
computational grids for distributed high-performance computing, as its scientific motiva-
tion [5, 6, 7]. During the production runs, headquartered at the SuperComputing 2003
conference, Phoenix (AZ, USA), in November 2003, grid technologies developed within
it allowed researchers to concurrently use up to ca. 6000 processors distributed among
platforms in the UK and the USA. The simulations were aimed at self-assembling gyroid
mesophases on lattices up to 10243 lattice sites and simulation times of up to one million
time steps, the data of which are still being analysed. The unique opportunity provided
by the project and its academic partners allowed researchers to simulate the whole tem-
poral pathway of defect relaxation that we probed only in its initial stages, as reported
in this thesis, and to reach sufficient spatial resolution (in terms of number of gyroid unit
cells) in order to study the spatial distribution of defective regions. Needless to say, the
information provided by our simulations, as presented in this thesis, as well as those of the
TeraGyroid project, can be of straightforward interest for materials scientists: simulation
length scales mapped onto experimental ones could supply direct-space relevant informa-
tion to experimentalists on defect dynamics, who, more often than not, are constrained

by the limitations in time-resolving the nanoscopic unsteady dynamics in question.
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