
Escola d’Enginyeria

Departament d’Arquitectura de
Computadors i Sistemes Operatius

Modeling performance degradation in OpenMP
memory bound applications on multicore

multisocket systems.
Thesis submitted by César Allande
Álvarez for the degree of philosophae
Doctor by the Universitat Autònoma de
Barcelona, under the supervision of Dr. Ed-
uardo César Galobardes and Dr. Josep
Jorba Esteve, developed at the Com-
puter Architectures and Operating Sys-
tems department, PhD in High Performance
Computing.

Barcelona, November 2015

Modeling performance degradation in OpenMP memory
bound applications on multicore multisocket systems.

Thesis submitted by César Allande Álvarez for the degree of Philosophiae Doctor by the
Universitat Autònoma de Barcelona, under the supervision of Dr. Eduardo César Galobardes
and Dr. Josep Jorba Esteve, at the Computer Architecture and Operating Systems Department,
Ph.D in High performance Computing.

Supervisors

Dr. Eduardo César Galobardes Dr. Josep Jorba Esteve

Barcelona, November 2015

ii

César Allande. PhD Thesis 2015.

Dedications

To my family.
To my friends.

Had I the heavens’ embroidered cloths,
Enwrought with golden and silver light,

The blue and the dim and the dark cloths
Of night and light and the half-light,

I would spread the cloths under your feet:
But I, being poor, have only my dreams;
I have spread my dreams under your feet;

Tread softly because you tread on my dreams.

The cloths of Heaven – William Butler Yeats

iv

César Allande. PhD Thesis 2015.

Acknowledgements

I would like to express sincere thanks to my advisors Dr. Eduardo César and Dr. Josep Jorba
for their support during the undertaking of this research.

I would like to thank all the members of the examining committe for their thoughful
comments and suggestions in this dissertation.

I am indebted to Dr. Karl Fuerlinger of Munich Network Mangement Team for his
hospitality, and participation along my research stay at Ludwig-Maximilians-Universität
München. The completion of this dissertation would not have been possible without his
encouragement and guidance. Furthermore, I would like to extend my gratitude to Prof. Dr.
Dieter Kranzlmüller and all the members of the MNM team.

I would also like to thank all the people in the Leibniz-Rechenzentrum for their welcome
and support. Sincerely in debt with Dr. Reinhold Bader and Dra. Sandra Mendez for the
assistance, prolific discussions and feedback along my stay.

I would like to thank all the people at the Barcelona Supercomputing Center and my
fellows at the Riding on Moore’s Law project (RoMoL) for the participation, support and
guidance, specially to prof. Dr. Mateo Valero, Dr. Miquel Moretó, Dr. Marc Casas, Luc
Jaulmes, Vladimir Dimic, Xubin Tan, Dimitrios Chasapis, Emilio Castillo, and Lluc Alvarez.

I also want to thank all the members and staff at the Computer Architectures and Operating
Systemps department at the UAB, especially to Dolores Rexachs, Emilio Luque, Joan Sorribes,
Sandra Méndez, Aprigio Bezerra, Eduardo César Cabrera, Hugo Meyer, Arindam Choudhury,
Marcela Castro, Tharso Souza, Roberto Solar, Joao Gramacho, Alex Guevara, Julio César
Vizcaı́no, Alejandro Chacón, Tomás Artés, Gemma Sanjuan, Gemma Roque, Javier Navarro,
Daniel Ruiz, and Manuel Brugnoli (r.i.p.).

vi

César Allande. PhD Thesis 2015.

Abstract

The evolution of multicore processors has completely changed the evolution of current HPC
systems. The multicore architectures were mainly designed to avoid three design walls,
instruction level parallelism, power wall, and finally the memory wall. The last because of the
increasingly gap between processor and memory speeds.

Performance of memory intensive applications executed on multi-core multi-socket en-
vironments is closely related to the utilization of shared resources in the memory hierarchy.
The shared resources utilization can lead to a significant performance degradation. The
exploration of different thread affinity configurations allows the selection of a proper configu-
ration that balances the performance improvement obtained by increasing parallelism with
the performance degradation due to memory contention.

The main contributions of this thesis is the definition of a methodology for developing
dynamic tuning strategies in multicore multisocket environment which has provided the
definition of two performance models for memory intensive applications.

The first performance model, based on runtime characterization, estimates the execution
time for different configurations of threads and thread distributions in a multicore multisocket
system. To do that, the model requires a runtime characterization from the exhaustive
execution on a single socket to determine the memory contention.

The second performance model, based on pre-characterization of the application, estimates
at runtime the impact of the memory contention for concurrent executions based on profiling
the memory footprint from traces of the application using small workloads.

Keywords: Performance Model, Multicore, Multisocket, Memory Contention, OpenMP
Applications, Memory Footprint

viii

César Allande. PhD Thesis 2015.

Resumen

La evolución de los procesadores multicore ha cambiado completamente la evolución de los
actuales sistemas de HPC. Las arquitecturas multicore han sido diseñadas principalmente para
evitar tres barreras de diseño, el paralelismo a nivel de instrucción, el consumo energético y
la contención de memoria. La última debido a la creciente diferencia de velocidad entre el
procesador y la memoria.

El rendimiento de aplicaciones intensivas en memoria ejecutadas en entornos multicore
multisocket está relacionado directamente a la utilización de los recursos compartidos en la
jerarquı́a de memoria. La utilización de recursos compartidos puede llevar a una degradación
de rendimiento significativa. La exploración de diferentes configuraciones de afinidad de
threads permite la selección de configuraciones que pueden llegar a equilibrar la mejora
de rendimiento obtenido por el incremento de paralelismo con la degradación debida a la
contención de memoria.

La principales contribuciones de esta tesis es la definición de una metodologı́a para el
desarrollo de estrategias de sintonización en entornos multicore multisocket que ha pro-
porcionado la definición de dos modelos de rendimiento para aplicaciones intensivas en
memoria.

El primer modelo de rendimiento, basado en una caracterización en tiempo de ejecución,
estima el tiempo de ejecución para diferentes configuraciones de numero y distribución de
threads para entornos multicore multisocket. Para ello, el modelo requiere de una carac-
terización exhaustiva en tiempo de ejecución sobre un solo procesador con el objetivo de
determinar la contención de memoria.

El segundo modelo de rendimiento, basado en la pre-caracterización de la aplicación,
estima en tiempo de ejecución el impacto de la contención de memoria para ejecuciones
concurrentes basado en un perfil del memory footprint extraı́do de trazas de la aplicación
ejecutada con pequeñas cargas de trabajo.

Palabras clave: Modelo de Rendimiento, Multicore, Multisocket, Contención en memoria,
aplicaciones OpenMP, Perfil de memoria

x

César Allande. PhD Thesis 2015.

Resum

L’evolució dels processadors multicore ha canviat completament l’evolució dels actuals
sistemes de HPC. Les arquitectures multicore han estat dissenyades principalment per evitar
tres barreres de disseny: el paral·lelisme a escala d’instrucció, el consum energètic i la
contenció a memòria. La darrera és deguda a la creixent diferència de velocitat entre el
processador i la memòria.

Les prestacions de les aplicacions intensives a memòria executades en entorns multicore
multisocket estan directament relacionades a la utilització dels recursos compartits a la
jerarquia de memòria. La utilització dels recursos compartits pot portar a una degradació de
les prestacions significativa. L’exploració de diferents configuracions d’afinitat de threads
permet la selecció de configuracions que poden arribar a equilibrar la millora de prestacions
obtinguda deguda a l’increment del paral·lelisme amb la degradació deguda a la contenció a
memòria.

Les principals contribucions d’aquesta tesi és la definició d’una metodologia pel desenvolu-
pament d’estratègies de sintonització en entorns multicore multisocket que ha proporcionat la
definició de dos models de rendiment per aplicacions intensives a memòria.

El primer model de rendiment, basat en una caracterització en temps d’execució, estima el
temps d’execució per diferents configuracions de número i distribució de threads en entorns
multicore multisocket. Per aquesta finalitat, el model requereix una caracterització exhaustiva
en temps d’execució en un únic processador amb l’objectiu de determinar la contenció a
memòria.

El segon model de rendiment, basat en la pre-caracterització de l’aplicació, estima el
temps d’execució i l’impacte de la contenció a memòria per execucions concurrents basat en
el perfil del memory footprint extret de traces de la mateixa aplicació executada amb petites
càrregues de treball.

Paraules clau: Model de Rendimient, Multicore, Multisocket, Contenció a memoria, apli-
cacions OpenMP, Perfil de memòria

xii

César Allande. PhD Thesis 2015.

Contents

1 Introduction 1
1.1 Context . 2
1.2 Motivation . 4
1.3 Objectives . 5
1.4 Contribution . 6
1.5 Thesis outline . 7

2 Background 9
2.1 High performance computing . 10
2.2 Multicore architectures . 12

2.2.1 State of the art multicore processors 13
2.3 OpenMP specification . 19
2.4 System characterization, monitoring, and instrumentation tools 24

2.4.1 System characterization by benchmarking 25
2.4.2 Monitoring tools . 27
2.4.3 Performance analysis tools . 28
2.4.4 Dynamic Instrumentation . 29

2.5 Related work . 31
2.6 Summary . 32

3 Methodology for developing tuning strategies for OpenMP applications 35
3.1 Objective . 36
3.2 Methodology . 37

3.2.1 System characterization . 38
3.2.2 Analysis of performance factors . 41
3.2.3 Modeling performance and defining tuning strategies 45
3.2.4 Evaluating the impact . 46

xiv

3.3 Summary . 46

4 Methodology application to a case study 49
4.1 Methodology application on NAS Parallel Benchmarks 50
4.2 Context analysis for the identification of performance factors 50

4.2.1 System Characterization . 50
4.2.2 Analysis of performance factors . 61

4.3 Evaluating a strategy for tuning the number of threads 64
4.3.1 Context . 65
4.3.2 Modeling performance and defining tuning strategies 69
4.3.3 Evaluating the impact . 70
4.3.4 Applying the dynamic tuning strategy 71

4.4 Summary . 72

5 Performance model based on runtime characterization 75
5.1 Introduction . 76
5.2 Objective . 76
5.3 Related work . 77
5.4 Performance Model proposal . 78

5.4.1 Defining the performance model 79
5.5 Experimental validation . 83

5.5.1 Applying the model for the SP application on the T7500 system. . . 85
5.5.2 Selecting a configuration for SP and MG benchmarks on FatNode . 86
5.5.3 Exploration of the affinity configurations. 88

5.6 Summary . 90

6 Performance model based on profiling the memory footprint 91
6.1 Introduction . 92
6.2 Objective . 92
6.3 Related work . 93
6.4 Methodology for selecting a configuration to avoid memory contention . . . 94

6.4.1 Trace generation and characterization of iteration footprint 95
6.4.2 Estimation of memory footprint at runtime 97
6.4.3 Estimation of execution time for all configurations at runtime 97

6.5 Experimental Validation . 100

xv

6.5.1 Obtaining memory footprints and execution times 100
6.5.2 Estimating the best configuration at runtime 105
6.5.3 Experimental Results . 107

6.6 Summary . 110

7 Conclusions 111
7.1 Conclusions . 112
7.2 Future Work . 114
7.3 List of publications . 115
7.4 Acknowledgements . 117

Bibliography 119

xvi

César Allande. PhD Thesis 2015.

xvii

List of Figures

1.1 Evolution of number of cores in a socket of the top 500 supercomputers from
Top500 list Juny 2006 to 2015. 4

2.1 Power8 processor from IBM. A processor based on multi-level cache hierarchy
of 3 levels in processors, and an external L4 cache. This processor provides
SMT of 8 hardware threads per core. cores with L3 cache partitioning. . . . 16

2.2 NUMA environment with 2 processors containing 2 NUMA clusters each. . 16
2.3 big.LITTLE processor from ARM. Heterogeneous processor with a set of 4

faster Cortex-A15 cores for high performance and a set of 4 Cortex-A7 in
order cores for power efficiency. 17

2.4 GM107 Maxwell processor from NVIDIA, a multi/many-core coprocessor
device. 17

2.5 Coprocessor execution flow on a CUDA device. 18
2.6 Knights Landing processor from Intel, with a 2D mesh tile interconnection of

36 tiles, were every tile contains 2 cores with SMT of 8 hardware threads per
each. 18

3.1 Methodology for generating dynamic tuning strategies in multicore systems 38
3.2 Context characteristics development template 42
3.3 Performance problems on OpenMP applications 43

4.1 Processor architecture on System FatNode 51
4.2 Evaluation of memory latencies on FatNode system with lat mem rd 51
4.3 Processor architecture on System T7500 52
4.4 Evaluation of memory latencies on t7500 system with lat mem rd 53
4.5 Scalability analysis on EP benchmark . 54
4.6 Scalability analysis on CG benchmark . 55
4.7 Scalability analysis on FT benchmark . 56
4.8 Scalability analysis on MG benchmark . 57

xviii

4.9 Scalability analysis on BT benchmark . 58
4.10 Scalability analysis on LU benchmark . 59
4.11 Scalability analysis on SP benchmark . 60
4.12 Total cache misses and execution time on parallel region x solve for SP.C . 62
4.13 SP.C x solve – Heatmap of hardware counter Total Instructions 62
4.14 SP.C x solve – Heatmap of hardware counter Total Cache Misses 63
4.15 Scalability analysis for SP Classes B and C for systems Sysα and Sysβ . . 66
4.16 System Sysβ (4 threads) - 1 SP.C iteration 67
4.17 System Sysβ (5 threads) - 1 SP.C iteration 67
4.18 Methodology to select the configuration providing the minimum execution

time based on an exhaustive runtime characterization on the first iterations of
the application. 69

5.1 Methodology for the selection of the number of threads and its affinity distri-
bution. 79

5.2 Evaluation of execution time between estimated boundaries. 87
5.3 SP C xsolve local allocation . 88
5.4 MG C R0011 local allocation . 89

6.1 Methodology to select a configuration that avoid memory contention based
on the analysis of the concurrent memory footprint in LLC 94

6.2 Full memory trace visualization for x solve parallel region on SP Class W . . 101
6.3 Detailed view of memory trace for x solve parallel region on SP Class W . . 101
6.4 Analysis of concurrent footprint for x solve parallel region for all workload

classes in an architecture with LLC of 20MB 104
6.5 Comparison of measured and the estimated sequential iteration time using a

linear regression interpolation from classes S, W and A. 106
6.6 Estimation of iteration time degradation on x solve parallel region on SP.C . 106
6.7 Comparison of model estimated execution times against real execution times

on different architectures (MN3, SuperMUC Fat and Thin nodes) for parallel
regions Copy and Add from the stream benchmark. 108

6.8 Comparison of model estimated execution times against real execution times
for parallel regions x solve for the SP benchmark using distribution policies
compact (AFF0) and scattered (AFF1). 109

xix

List of Tables

4.1 Sysβ Class C execution time (sec.) and cumulative percentage (relative to
total time Tre f) of use for the weightiest parallel regions (x,y and z solve, and
rhs). 68

4.2 x solve parallel region on Sysβ Class C for one iteration execution. Where
Tit n is the time for n-iteration and Tre f is the measured time for 400 iterations. 68

4.3 Execution time (sec.) for the dynamic tuning strategy and execution without
tuning for classes B and C. The tuning strategy uses 5% of total iterations for
the characterization stage. 72

5.1 Table of parameters used to estimate the execution time of N threads for a
given configuration. 80

5.2 System hardware characteristics at node level. 84
5.3 T7500 system. Input data for x solve parallel region from SP benchmark class

C. 85
5.4 T7500 system. SP class C with affinity AFF1. Estimation and evaluation of

TCM for parallel region x solve. 86
5.5 Selection of configuration for SP and MG benchmarks 87
5.6 Execution time for selected configuration and speedups. 90

6.1 Description of system architectures for performance evaluation 100
6.2 Preprocessed information from traces of small classes. This information is

required to estimate performance at runtime. The profile information of the
memory intensive parallel region x solve specifies the per cluster memory
footprint for one iteration. Besides, inputs for the performance model such
as the cumulative iteration footprint (iterFoot print) and the iteration serial
execution time, are shown. 103

6.3 Stream Benchmark configuration, and the iteration footprint estimation per
operation . 103

xx

6.4 Estimation of memory footprint for a concurrent execution of x solve parallel
region, where † f irst contention on MN3 and Thin nodes, and * f irst contention for

system Fat node . 104
6.5 Estimation of serial iteration time in seconds on MN3 with 20MB LLC. The

highlighted cells refer to information obtained on the characterization phase.
Serial Estimation time (Est.) is obtained from an interpolation of a linear
regression function between footprints and measured times for classes S, W,
and A . 105

6.6 Speedup evaluation of the selected configuration compared with best configu-
ration. 110

xxi

1
Introduction

”Changes and progress very rarely are gifts from above. They come out

of struggles from below.”

- Noam Chomsky

In this chapter we present a general overview of High Performance Computing (HPC)
and the scope of this thesis. This work is focused on performance analysis and performance
modeling of OpenMP memory intensive applications executed in multicore systems. This
chapter introduces motivation, the objectives we have defined, and the contributions we have
provided. Finally, we present the thesis outline.

1

INTRODUCTION

1.1 Context

Performance of parallel applications in High Performance Computing (HPC) is expected to
increase proportionally to the number of used resources. In order to do that, HPC systems
take benefit of the interconnection of multiple nodes by managing a coordinated parallel
execution. Nowadays, due to the increasing integration capacity of components, parallelism
takes benefit of multicore processors. Performance on current processors does not depend
only on the processor frequency, but on their number of cores.

However, multicore architectures have such heterogeneity, that programming frameworks
and/or languages have to manage parallelism and take into consideration many possible
configurations, going from multicore processors based on a shared memory hierarchy to
network based interconnection topologies such as the mesh on-chip network on Tilera[1]
with 64 to 72 cores, or the upcoming Intel’s Xeon Phi Knights Landing processor with 72
Silvermont-based cores, both processors with a 2D mesh interconnection. Furthermore,
current designs are decoupling from a very powerful general purpose multicore processor to
approaches based on co-processing and accelerators such as Intel’s Many Integrated Core
architecture [2] or the NVIDIA’s CUDA General-Purpose computing on Graphics Processing
units (GPGPU).

Therefore, to improve the benefit of using HPC systems, applications use one or more
programming models to deal with the underlying architecture. The Message Passing Interface
(MPI) has been designed for distributed memory systems, but it is able to take benefit of
shared memory system by coordinating processes at the same node. However, multicore
systems are usually managed by frameworks implementing the shared memory programming
model, such as OpenMP [3], OmpSs [12], Intel Threading Building Blocks (Intel TBB) [4],
OpenACC [5], or Cilk [6].

Consequently, to obtain the full potential of a parallel system it is necessary to deal with
the programming frameworks. We rely on them to effectively manage and coordinate the
parallel execution. Nevertheless, the execution of parallel application does not always achieve
the expected performance.

The main reason for this problem is that modern multicore systems are designed to
integrate cores within a processor sharing some module units such as last level cache, memory
controllers, interconnect, or prefetching hardware, and the management of shared resources
and coordination of processing units can limit the overall performance of applications. On
multicore architectures, the access to the memory hierarchy is possibly the most important
limiting factor, specially for memory intensive applications [7].

Chapter 1 2

INTRODUCTION

A way for improving the application’s performance is to dynamically adjust the parallel
execution configuration to the characteristics of the hardware architecture. This can be done
by identifying a performance bottleneck and dynamically tuning the management of the
parallelism to meet the application’s requirements.

In those Shared memory APIs, a runtime library manages the parallelism, and that library
can be adapted for deploying performance strategies. To adjust the runtime execution, it is
possible to implement a performance tuning functionality on an existent library, using an
interposition library, or using dynamic instrumentation tools, such as Pin[8] or Dyninst[9] in
order to tune the parameters of an existent parallel library.

OpenMP is one of the most widely spread Application Program Interface (API) for
multi-platform shared-memory parallel programming in C/C++ and Fortran. The OpenMP
specification defines a collection of compiler directives, library routines, and environment
variables for shared-memory parallelism programs. There are several OpenMP-compliant
implementations and it is extensively used on HPC systems. The OpenMP implementations
provide a interface between the application and the runtime library responsible of managing
the thread parallelism. Using an instrumentation tool, it is possible to intercept the API library
calls to modify the applications/library runtime behaviour.

It is possible to use a interposition library to tune significant parameters of the OpenMP
runtime library in order to modify the number of threads, the thread mapping policy, or the
workload scheduling for a parallel region, among others. We consider these as the tuning
parameters to be adjusted by a tuning tool.

A tuning tool must contain three main components, the monitoring points, the perfor-
mance problem identification and a tuning strategy. We use analytical models to identify
a performance problem and evaluate its impact on the application performance, and when
necessary apply a specific tuning strategy.

In this work, we define a methodology for providing all the elements required to develop a
tuning tool to supervise the execution of OpenMP scientific applications in HPC systems. To
do that, we have described a significant performance problem based on memory contention,
which has been analytically modelled, describing the monitoring points, its impact on perfor-
mance, and estimate the parameters that can be tuned in the parallel runtime library providing
a solution which avoids or minimizes the performance problem.

In this chapter, we present a general overview of the thesis, by introducing the following
subsections: the motivation of this research, its general and specific objectives, and its
contributions. Finally, the last subsection introduces the thesis outline.

Chapter 1 3

INTRODUCTION

1.2 Motivation

The evolution of multicore processors has completely changed the evolution of current
HPC systems. Figure 1.1 shows the number of cores per processors in the top 500 HPC
supercomputers [10].

Figure 1.1: Evolution of number of cores in a socket of the top 500 supercomputers from Top500 list
Juny 2006 to 2015.

It can be observed that the processing units integrated in such systems tend to provide
more parallelism within processors year after year. In almost ten years the dominant number
of cores per processors has changed from mono-processors to 8 core processors. Furthermore,
nowadays the tendency is to integrate coprocessors such as the Intel Xeon Phi providing up to
60 cores using x86 instruction set.

Despite the sharp increase on the number of resources on HPC systems, the benefit of
using multicore systems is usually not for free. The applications require to be adapted to use
these parallel resources manly by exposing their parallelism through parallel programming
models. Eventhough applications express well balanced data partitioning and full parallelism
on their codes, the performance is not always linear to the number of resources, as expected.
There are different factors limiting their scalability, which are mainly related to the design of
the multicore architectures.

Chapter 1 4

INTRODUCTION

Multicore processors are a compact design of processing units encapsulated on a single
chip. In order to improve integration there are some modules which are shared among cores.
To do that, there are different protocols managing the coordinated access to shared elements
to grant its usability and data integrity. That shared utilization of resources can lead to
application bottlenecks which can slowdown performance.

The performance analysis is a procedure for quantifying in a valid and consistent manner
the key elements of performance. Performance analysis of applications executed in multicore
environment can provide the insights of performance problems and consequently the key
factors to consider in order to find a solution.

A performance model is a formal way of describing the performance key elements and their
relations. The performance model lead us to pre-empt performance problems by exploring
different values on its parameters. This can be used to identify the proper conditions for the
execution context.

All of this, can be summarized in the motivation of this work; expose the intrinsics of
performance problems to relate application characteristics to the hardware architecture in
the context of parallel applications executed in multicore systems .

1.3 Objectives

The ultimate goal of this work is to identify performance problems in the context of OpenMP
applications executed in multi-core multi-sockets environments and relate the key elements
within the performance problem through a performance model that considers the application
characteristics and the hardware architecture.

With the aim of achieving this objective we have developed the following specific objec-
tives:

• Definition of a work methodology to identify performance problems on OpenMP
applications by evaluating its impact on performance, analysing relevant observable
runtime metrics, and describing possible tuning strategies to be performed at runtime.
This methodology can be summarized in the following steps:

– Context characterization.

– Identifying performance problems.

– Evaluation of the impact on performance.

Chapter 1 5

INTRODUCTION

– Evaluation of tuning parameters

– Take benefit of iterative patterns of the application to apply a tuning strategy.

• Through the development of the methodology, identify a relevant performance
factors and define a performance model providing a performance estimation at
runtime and the tuning parameters to be modified in order to improve performance.

• Defining a performance model based on performance degradation on memory bound
applications executed in multicore multisocket systems. Following this, we aimed
for a performance model to perform a runtime only characterization, and following
this, a performance model based on pre-characterization of the application in order
to improve the automation of the tuning strategy. This can be summarize as the
following specific objectives:

– A performance model based on LLC misses characterization on a single socket.

– A performance model based on spatial access pattern characterization using a
memory profile of the application.

1.4 Contribution

The contributions of this work are focused on achieving the ultimate goal presented in the
previous section. To this end, we have designed and developed a methodology to analyze
performance problems in OpenMP applications, and developed two performance models for
memory intensive applications to identify memory contention and to provide a configuration
of number of threads and the thread distribution in a multicore multisocket system.

Specifically, this thesis presents the following contributions:

• A methodology for defining dynamic tuning strategies in multicore systems; This
methodology has been defined in order to structure the workflow with the aim of
identifying significant performance problems in the context of HPC and to explore
the strategies required to tune the runtime system in order to improve the application
performance. The application of this methodology has allowed the identification
of an effective way to approach strategies to minimize performance degradation on
memory bound applications. Furthermore, the effectiveness of the tuning strategies
has been evaluated.

Chapter 1 6

INTRODUCTION

• A performance model for memory bound applications in multisocket systems based
on an exhaustive runtime characterization on a single socket to determine the best
configuration of number of threads and thread distribution among multiple sockets.

• A performance model based on memory footprint for OpenMP memory bound
applications. The objective of this model is to reduce the runtime overhead by
characterizing the application before the execution. This is done by profiling the
spatial address pattern of the applications and a performance sampling from small
workloads of the application.

1.5 Thesis outline

The work presented in this thesis is divided in the following chapters.

• Chapter 2: Background; In this chapter we present an overview of general High
Performance Computing and a more detailed description of multicore and OpenMP
environments. Following this we describe monitoring, performance analysis and
tuning tools in the context of HPC with a special attention on tools used along the
research of this thesis.

• Chapter 3: Methodology for developing tuning strategies for OpenMP appli-
cations; In this chapter, it is presented and described the methodology and the
performance analysis of OpenMP applications in HPC environments with the aim
of providing a dynamic tuning strategy based on a performance model for a relevant
performance factor.

• Chapter 4: Methodology application to a case study; In this chapter, the method-
ology is applied to the case study of NAS parallel benchmarks. The first part of the
chapter is focused on characterizing the benchmark suite in order to identify relevant
performance factors, while the second part of the chapter, is dedicated to describe a
tuning strategy based on an exhaustive characterization of possible configurations in
of number of threads to minimize a performance factor based on memory contention
for the SP benchmark.

• Chapter 5: Performance model based on runtime characterization; This chap-
ter introduces a performance model based on runtime characterization on a single

Chapter 1 7

INTRODUCTION

socket which allows to estimate a configuration of number of threads and thread
distribution to improve performance on a multicore multisocket system.

• Chapter 6: Performance model based on profiling the memory footprint; This
chapter presents a runtime performance model based on the pre-characterization of
the memory footprint of the application for small workloads and a dynamic tuning
strategy to estimate a configuration of number of threads and thread distribution to
improve performance by detecting and avoiding memory contention.

• Chapter 7: Conclusions; This chapter presents the experiences gained and con-
clusions derived from this thesis. It is also described the viable open lines that can
be considered in the future in order to provide further strategies and performance
models in the area of dynamic tuning of parallel applications.

Chapter 1 8

2
Background

”Ignorance might be bliss for the ignorant, but for the rest of us it’s a

right fucking pain in the arse :)”

twitter @rickygervais – (comedian) Ricky Gervais

In this chapter we present an overview of the current state of High Performance Computing
and a more detailed description of multicore and OpenMP environments. Following this we
describe monitoring, performance analysis and tuning tools in the context of HPC with a
special attention on tools used along the research of this thesis.

9

BACKGROUND

2.1 High performance computing

High Performance Computing (HPC) or supercomputing is the technology and the research
field in computer engineering which aims for reducing the time required for solving computa-
tional problems, enhance its productivity, and enlarge its size and complexity. To make this
possible supercomputers or clusters of computers working in parallel are used to obtain the
application’s solution.

Supercomputers are the hardware platforms designed to obtain the maximum performance
on an application execution, but they are also research laboratories that allows users to model
and simulate solutions to problems for a wide range of scientific disciplines.

In computer science, problems are defined as algorithms, which is a self-contained step-by-
step set of operations to be performed for solving a specific problem. The way that algorithms
are historically described is sequential, which is the easiest way for humans to perform a
formal description of the problem. However, by analyzing algorithms it is possible to identify
sequences of instructions that can be executed in parallel by a computational system.

The history of supercomputing starts with machines fully designed for the HPC purpose.
However, nowadays they are built using commodity devices mainly to reduce costs. That
is why, the evolution of commodity processors has a significant impact on supercomputers
performance, in particular since the becoming of multicore processors.

Commodity multicore processors appeared on 2001 [11], and before this, market strategies
tend to provide better performance by increasing the clock frequency. Multicore processors
started to revolutionized the market as a solution for the lack on improvement and power
consumption on frequency scaling. Initial multicore designs were focused on replicating some
processor units within the same chip, but nowadays, processors integrate dozens of cores
specially designed for a coordinated parallel execution (e.g. accelerators and coprocessor),
which are commonly named as manycore processors. Currently, multicore and manycore
processors are dominant in supercomputers.

The architecture design of current supercomputers is based on the interconnection of
a massive number of compute nodes containing one or multiple processors. This design
allows two scopes in parallelism utilization, the distributed memory on separate nodes and
shared memory within the node. These scopes of memory can be combined in a hybrid
parallelization.

Distributed memory systems in a parallel execution requires a interconnection of comput-
ing nodes, a coordination and data transfer along the execution. In HPC systems it is possible
to use a vendor Message Passing Interface (MPI) implementation. MPI is a standardized and

Chapter 2 10

BACKGROUND

portable message-passing library interface specification oriented to the parallel execution in
distributed systems.

Shared memory systems in a parallel execution are usually supported by the operating
systems through the utilization of threads. On the one hand, POSIX threads provide a
standardized and portable low-level application program interface (API), which allows a
extremely fine-grained control over thread management such as creation, synchronization,
mutual exclusion mechanism, and so on. On the other hand, a set of different high level
programming models provide an abstraction of threads being OpenMP, OmpSs, intelTBB,
OpenACC, and Cilk some of the most common in HPC systems.

Cilk extends programming languages such as C and C++ with constructs to express
parallel loops and the fork-join paradigm. It has been originally designed at Massachusetts
Institute of Technology (MIT) Laboratory for computer Science. Intel is the current developer
of an increased compatibility of Cilk with existing C and C++ named Cilk Plus. One of
the most interesting features of Cilk is the work-stealing scheduling policy used to balance
workload among threads or working units. In this policy, every processor maintains a stack
for storing frames whose execution has been suspended, and when a processor remains in idle
state, it tries to randomly steal suspended jobs from other processor’s stacks.

IntelTBB is a C++ template library developed by Intel for writing programs that take
advantage of multicore-processors. The library consists of data structures and algorithms
to abstract the utilization of threads on the development of parallel programs. IntelTBB
is an implementation based on task parallelism and uses a work-stealing task scheduling
policy. Parallel template patterns hide the manipulation of tasks and they are accessed
through interfaces for pipelined execution, parallel loops, parallel reduction over a range,
work partitioning for parallel loops, and more.

OmpSs [12] is a programming model designed to extend the OpenMP programming
model with new directives and to support asynchronous parallelism and heterogeneity. OmpSs
has been developed at the Barcelona Supercomputing Center (BSC) with the aim of providing
a framework for improving research and productivity. OmpSs environment is composed by a
set of flexible and modular tools for compiling (Mercurium [13]), executing (Nanos runtime
[12]) and analyze performance (Extrae [14] and Paraver [15]) of OmpSs applications. Its
development and research has directly influenced the current OpenMP specification.

The Open Multi-Processing (OpenMP) is a high-level standardized API for developing
highly-scalable and portable parallel applications. OpenMP consists on a set of compiler direc-
tives, library routines, and environmental variables to manage threads in a parallel executions.

Chapter 2 11

BACKGROUND

It also provides a unified code for both serial and parallel applications: OpenMP constructs
are treated as comments when the application is compiled to be executed sequentially.

The development of parallel applications in HPC requires a fundamental knowledge of
parallelism and the programming model, however, obtaining the best performance usually
requires a deep knowledge of the executing environment. The performance analysis is a field
of study dedicated to evaluate performance, identify performance bottlenecks and provide
specific solutions, however, providing general solutions is far more complicated. Through the
expertise obtained in performance analysis, it is possible to define the rules to automatically
identify a performance problem and apply a dedicated solution.

Performance tuning is the action performed to improve performance given a performance
problem. This can be performed at the application, at hardware level or at the library
responsible of managing parallelism. For the first case, the application source code is not
always provided, and for the second one, making hardware modifications can be more difficult
or expensive. Furthermore, these approaches provide an ad-hoc solution. To perform a more
general tuning strategy it is possible to take advantage of the runtime management library.
Parallel manager libraries also depend on the programming model and implementations, but
they provide an interface which can be used to apply dynamic tuning strategies. With this
aim, dynamic instrumentation tools such as Intel Pin, Dyninst or linker preload techniques
can be used to dynamically tune the application at runtime .

Finally, because OpenMP is a standardized API and a programming model widely used in
HPC environments, and with the aim of providing the most extensible solution, the analysis of
performance and the development of tuning strategies for OpenMP applications can generate
a great impact on HPC environments. To do this, we research on performance analysis for
OpenMP applications in multicore environments to provide the identification of relevant
performance problems and the definition of tuning strategies to be applied at manager library
level.

Following this, we describe the most relevant aspects in our research by introducing
in the following sections: Multicore architectures, OpenMP specification, and tools for
characterizing, monitoring and performing dynamic instrumentation.

2.2 Multicore architectures

Multicore architectures were mainly designed to avoid three hardware design walls. First,
the instruction level parallelism (ILP) wall because the increasingly difficulty of finding

Chapter 2 12

BACKGROUND

enough parallelism in a single instruction stream to keep the processor busy, secondly, the
power wall, when processors tend to improve performance based on increasing the frequency
and consequently the power consumption, and finally, the memory wall because of the
increasingly gap between processor and memory speeds.

The first commercial multicore processor was the 2001 IBM’s POWER4 [11]. This
1GHz processor integrates more than 170 million transistors at a scale of 180 to 130nm
providing two identical cores with speculative super-scalar out-of-order execution design.
With a theoretical eight instructions issued per cycle and a sustained completion rate of five
instructions per cycle.

Nowadays, the most common number of cores per socket in HPC systems is 8 cores (as
shown in Figure 1.1), but today’s Intel Xeon Phi (Knights Corner) coprocessors provide up to
61 cores [16] in a single device.

Multicore processors take benefit of the high integration capabilities to encapsulate
multiple functional processors (cores) within a die. Because of the high density and integration
degree, they are designed to share some modules and interfaces, for this reason, it was also
required to integrate the functionality to concurrently access shared elements and maintain
coherency.

The shared elements in a multicore processor are mainly the integrated shared caches and
memory interfaces. Caches are used to reduce the memory gap between main memory and
core speeds by taking benefit of spatial and temporal locality. As we move farther away from
the core, the memory in the level below becomes slower and larger.

In order to keep memory coherency, there are different hardware solutions. On the one
hand, a coherency based on snoopy bus is a faster solution but with a withdraw that does
not scale well. On the other hand, directory based schemes increase latency but improve
scalability. Every mechanism can implement different coherency protocols such as MSI [17]
(Modified-Shared-Invalid) and derivatives (MESI [18], MOESI [19], MESIF [20], and more),
Firefly protocol [21], DRAGON protocol [22], and so on.

2.2.1 State of the art multicore processors

Following the previous section, to summarize state of the art processors and to illustrate
the diversity of shared memory systems used in multicore processors, we describe current
tendencies in multicore designs.

Commonly, multicore processor use a hierarchical topology based on different levels of
shared caches used by a set of cores. This allows a limited scalability up to tens of cores.

Chapter 2 13

BACKGROUND

As an instance, IBM Power8 processor [23] described in Figure 2.1 integrates 12 cores in a
single processor, and each cores has support for Symmetric MultiThreading (SMT) allowing
up to 8 hardware threads per core, with an aggregated parallelism of 96 hardware threads per
processor. Every core has a private 64KB L1 cache and 512KB L2 cache. The L3 cache is
unified and every core has 8MB local L3, but the agreggated capacity is 96MB. Furthermore,
this processor includes an off-core memory cache of 128MB.

In order to combine the full potential of several multicore processors in a node in a
single shared memory system, current systems provide interfaces such as Intel Quick Path
Interconnect [24](Intel QPI) or HyperTransport [25] (AMD) technologies. However, this
interconnection creates a non-uniform memory access environment (NUMA), where accessing
remote memory is more expensive than accessing local memory. Figure 2.2 shows an example
of a multicore multisocket environment where two processors contain two NUMA clusters.
Every NUMA cluster has an attached memory interface and the address space is global to all
clusters. The all-to-all interconnection links between clusters allow access to remote memory
in 1 hop. The aggregated parallelism in a multi-socket system can easily provide tens or
hundreds of available cores.

The utilization of combined multicore resources allows a high degree of computational
power and it has been one of the strategies to minimize the effect of ILP wall by increasing
aggregated parallelism, and the memory wall by defining a multilevel memory hierarchy.
However, regarding the power wall, the efficiency of using these environments must be taken
into consideration.

Power efficiency is one of the main aspects to take into account when referring to mobile
devices. For this purpose, multicore processors have been specifically designed to provide the
most power to the lowest power consumption. This is related to user utilization switching
between high performance utilization when using computationally intensive applications and
low consumption to extend battery live for normal profile of utilization.

Figure 2.3 shows ARM big.LITTLE technology [26], an heterogeneous multicore proces-
sor which integrates two different sets of cores. On the one hand, four complex out-of-order
and multi-issue pipelines Cortex-A15 processors, and on the other hand, four simple in-order
with 8 stage pipelines Cortex-A7. This processor allows to balance highest performance and
energy efficiency.

Energy efficiency is already a primary concern in HPC systems, and it is unanimously
recognized that future Exascale systems will be strongly constrained by their power consump-
tion, and it is a research field of study in projects such as the Mont-Blanc European Project

Chapter 2 14

BACKGROUND

[27]. This project explores the possibility of using mobile commodity processors to build
supercomputer, such as the big.LITTLE processor.

When referring to energy efficiency in current supercomputers, the actual systems pro-
viding the best relation between performance and power efficiency are co-processors such
as the General Purpose Graphic Processing Units (GPGPU) CUDA devices (NVIDIA), and
OpenCL devices (AMD/ATI Radeon’s), and accelerators such as Intel Xeon Phi, and others.

Figure 2.4 shows a description of the GM107 first generation Maxwell processor from
NVIDIA. This coprocessor provides 640 cores distributed in 5 symmetric multiprocessors
with 4 sets of 8×4 cores. The utilization of CUDA based coprocessor is associated with the
use of CUDA programming model, which translate the source code to the specific Instruction
Set Architecture (ISA) of the device.

The co-processors require a host processor to initiate the parallel execution. Figure 2.5
exemplifies the execution flow on a CUDA device. First, the data must be copied from the
host memory to the device memory, and following this the instructions are submitted to the
device which performs the computation, and finally, the data must be copied back to the host
device.

Intel Xeon Phi is the technology developed by Intel to provide high performance co-
processors. These co-processors are used in the same way as CUDA devices, but implementing
a x86 ISA. The upcoming Knights Landing processor technology goes further, by providing
a processors which can be used as a co-processor or as a host processors. Figure 2.6 shows
the architecture design of the Knights Landing processor, containing 36 tiles in a mesh
interconnection with 2 cores and x4 SMT per core in each tile. Tiles can be configured using
3 modes, All-to-All, Quadrant and Sub-NUMA clustering (SNC). All-to-All provides an
uniform memory coherency between all the tiles (lower performance). Quadrant, where chip
is divided into four virtual quadrants providing lower latency and higher bandwidth and it is
software transparent. Finally, Sub NUMA Clustering, each quadrant is exposed as a separate
NUMA domain to the operating system with lowest latency of all nodes but software requires
NUMA optimize to get benefit.

Chapter 2 15

BACKGROUND

Figure 2.1: Power8 processor from IBM. A processor based on multi-level cache hierarchy of 3 levels
in processors, and an external L4 cache. This processor provides SMT of 8 hardware threads per core.
cores with L3 cache partitioning.

Figure 2.2: NUMA environment with 2 processors containing 2 NUMA clusters each.

Chapter 2 16

BACKGROUND

Figure 2.3: big.LITTLE processor from ARM. Heterogeneous processor with a set of 4 faster Cortex-
A15 cores for high performance and a set of 4 Cortex-A7 in order cores for power efficiency.

Figure 2.4: GM107 Maxwell processor from NVIDIA, a multi/many-core coprocessor device.

Chapter 2 17

BACKGROUND

Figure 2.5: Coprocessor execution flow on a CUDA device.

Figure 2.6: Knights Landing processor from Intel, with a 2D mesh tile interconnection of 36 tiles,
were every tile contains 2 cores with SMT of 8 hardware threads per each.

Chapter 2 18

BACKGROUND

2.3 OpenMP specification

OpenMP (Open Multi-Processing) [28] is an Application Program Interface (API) that sup-
ports multi-platform shared memory multiprocessing programming. It combines a set of
compiler directives, library routines, and environment variables that can be used to manage
parallel programs while permitting portability of C, C++ and Fortran programs.

OpenMP extends the programming language to a parallel programming model based on
fork/join execution model. However, the model also considers implementation design patterns
such as single-program multiple data (SPMD) constructs, loop-level parallelism, which
allows the definition of parallel algorithm patterns based on data-parallelism, task-parallelism,
pipelining, or geometric decomposition.

OpenMP is managed by the non-profit technology consortium OpenMP Architecture
Review Board [29] (or OpenMP ARB), composed by hardware and software vendors such as
AMD, ARM, Cray, Fujitsu, HP, IBM, Intel, Micron, NEC, NVIDIA, Oracle Corporation, Red
Hat, Texas instruments, and more.

First OpenMP specification appeared on 1997 for Fortran programming language, and
in 1998 for C/C++ programming languages. The first environments to take benefit of this
API were symmetric multiprocessor architectures (SMP) such as Uniform Memory Access
(UMA) architectures and Non-Uniform Memory Access (NUMA) and their variants. How-
ever, currently the environment for the execution of OpenMP programs is becoming more
complex and specialized with the income of new SMP architectures such as the heterogeneous
processors (e.g. ARM big.LITTLE) or the co-processors (e.g. Intel Many Integrated Cores
MIC). For this reason the specification is successfully evolving.

The initial specification defines a parallel programming model mainly focused on data
parallelism, were the compiler transforms parallel regions into template structures making use
of OpenMP routine libraries which are going to control the runtime execution by coordinating
the thread execution and define the work partitioning. These libraries usually rely on a thread
interface such as the POSIX threads API to manage threads at runtime.

On the most current version of the specification, OpenMP includes task parallelism,
support for accelerators, thread affinity and more capabilities providing a more flexible
parallel programming model according to the evolution of multicore/manycore architectures.

Following this, we present a brief description of relevant elements within the evolution of
the OpenMP specification, and a description of common parallel programming patterns in
OpenMP;

Chapter 2 19

BACKGROUND

OpenMP v1.0

– Parallel control structures; governs flow of control in the program (parallel
directive)

– Worksharing; distributes work among threads (parallel for and sections)

– Data environment; scopes and variables (shared and private clauses).

– Synchronization; coordinates thread execution (critical, atomic, barrier).

– Runtime functions and environmental variables (omp get num threads,
omp set schedule, etc.).

– Nested parallelism; OpenMP uses a fork-join model of parallel execution.
When a thread encounters a parallel construct, the thread creates a team
composed of itself and some additional (possibly zero) number of threads. The
encountering thread becomes the master of the new team.

OpenMP v2.0

– Added num threads clause which allows a user to request a specific number
of threads for a parallel construct.

– Copyprivate clause added. A mechanism to broadcast a value from one
member of the team to the other members. The clause can only appear on the
single directive.

– Timing routines omp get wtick and omp get wtime performing a wall clock
timing.

OpenMP v3.0

– Task parallelism is supported by including task, taskwait constructs.

– Combine perfectly nested loops by the clause collapse.

– The schedule kind auto gives the implementation the freedom to choose any
possible mapping of iterations in a loop construct to threads in a team.

– The omp set schedule and omp get schedule will change at runtime the
default scheduling policy in a loop construct.

– The omp thread limit controls the maximum number of threads participat-
ing in the OpenMP program.

Chapter 2 20

BACKGROUND

– The omp get max active levels and omp set max active levels in a
nested execution manages number of nested levels.

OpenMP v4.0

– Support for accelerators. The OMP DEFAULT DEVICE environmental variable,
omp set default device, omp get num devices, omp get num teams,
omp is initial device were added to support execution on devices.

– SIMD constructs to vectorize both serial as well as parallelized loops.

– Error handling. Capabilities to improve the resiliency and stability of OpenMP
applications in the presence of system-level, runtime-level, and user-defined
errors.

– Thread affinity. The proc bind clause, the OMP PLACES, and the
omp get proc bind runtime routine were added to support thread affinity
policies

– Tasking extensions. deep task synchronization and task groups can be aborted.
Task-to-task synchronization is now supported through the specification of
task dependency. The depend clause was added to support task dependen-
cies.

– Support for Fortran 2003. This includes interoperability of Fortran and C,
which is one of the most popular features in Fortran 2003.

– User-defined reductions. New reduction operations min and max were added.

– Sequentially consistent atomics. A clause has been added to allow a pro-
grammer to enforce sequential consistency when a specific storage location is
accessed atomically.

Chapter 2 21

BACKGROUND

Parallel programming patterns on OpenMP Scheme

Fork-join; The fork-join model is an implementation
strategy pattern which has been the basic model for
the parallel execution in the OpenMP framework. In
a fork-join model the main execution unit forks off some
number of other execution units that then continue in
parallel to accomplish some portion of the overall work.
OpenMP accomplishes this by creating, executing and
synchronizing threads. The OpenMP specification is
flexible enough to describe or allow other low level par-
allel design patterns such as loop parallelism (parallel
loop construct), Single Program Multiple Data (parallel
construct), master/worker (master construct) or even the
combination of basic design patters to create compound
parallel algorithm patterns such as pipelining (sections),
geometric decomposition (reductions in parallel loops).

Nested parallelism; OpenMP allows for nested paral-
lel regions during the execution. Nested parallelism
can be enabled and disabled through the use of the
OMP NESTED environmental variable or by calling the
omp set nested() routine. The support for nested par-
allelism expands the coverage of parallel patterns, for
example, nested parallelism allows the implementation
of divide and conquer patterns.

Chapter 2 22

BACKGROUND

Parallel programming patterns on OpenMP Scheme

Task parallelism; A task parallel computation is one
in which parallelism is applied by performing distinct
computations or tasks at the same time. When a thread
encounters a task construct, a new task is generated, but
the moment of execution of the task is up to the runtime
system. Execution can be either immediate or delayed.
The completion of a task can be enforced through a
task synchronization construct. The utilization of task
parallelism tries to obtain a more efficient and more
scalable utilization of resources, and also transfer more
charge to the runtime scheduling.

Task parallelism with dependences; The enforced task
dependence establishes a synchronization of memory ac-
cesses performed by a dependent task with respect to ac-
cesses performed by the predecessors tasks. It is respon-
sability of the programmer to synchronize properly with
respect to other concurrent accesses that occur outside
of those tasks. Task dependency support involves decen-
tralized selective synchronization operations that should
scale better than taskwait-based approaches. Informa-
tion about task dependencies also enables the runtime
system to optimize further, such as improving task and
data placement within the memory hierarchy. OpenMP
defines in, out, and inout dependencies at the depend

clause in the task construct. An example, the in de-
pendence type defines the current task as dependent of
all previously generated sibling tasks that reference at
least one the list items in an out or inout dependency
list. Therefore, the out dependence type works in the
opposite way.

Chapter 2 23

BACKGROUND

2.4 System characterization, monitoring, and instrumenta-
tion tools

The first rule of C.Gordon Bell on ”the eleven rules of supercomputer design” [30], is:
performance, performance, performance.

Performance can be measured by the effectiveness of the computer system, including
speed on a task completion, throughput, and/or availability. The criteria in HPC is mainly
focused on task completion. Assuming this, the less time for a time completion, the best
performance.

Determining the overall performance on a machine is usually done by benchmarking. For
example, the TOP500 list is a ranking based on the evaluation of performance (FLoating
OPeration per Seconds or FLOPS) for the execution of Linpack benchmark performing
different numerical linear algebra operations.

In order to improve performance for a given application, it is necessary to monitor, analyze
and tune the critical elements involved in the execution.

Processors designers are aware of the importance of providing performance information
related to the hardware utilization such as cycles, instructions, cache metrics, and so on.
The Performance Monitor Units (PMU) are Model Specific Registers (MSR) which can be
configured to provide an insight of performance in processor utilization.

PMU registers are accessible through a kernel module and at user space through a high
level Performance Application Performance Interface [31] (PAPI), libpfm4 which provides
a mapping mechanism to implementation specific hardware events (used by PAPI), or the
low level perf which is a library that exposes the kernel performance counters subsystem to
userspace code.

To evaluate the performance on parallel applications, it is necessary to identify the monitor-
ing points and provide performance metrics. Parallel applications commonly use standardized
interfaces, and tools have been defined to identify these points to obtain information along the
execution. On the one hand, profilers provide a coarse grained performance information with
a small overhead, and on the other hand, tracing tools provide a fine grained performance
information at the cost of greater overheads.

Finally, using the collected information of an application execution, it is possible to find
a candidate optimization or tuning strategy. One option is to implement an application or
compiler specific optimizations at the cost of generating a non portable solution, and moreover,
some problems are runtime specific only. It is possible to address runtime performance

Chapter 2 24

BACKGROUND

problems by tuning the parallel library manager.
In order to maintain portability, dynamic performance instrumentation tools can be used to

insert binary code to modify the parallel library manager behaviour. This is done by defining
monitoring points and metrics, a performance model module to evaluate the execution and
tuning strategies.

2.4.1 System characterization by benchmarking

Performance rankings in HPC hardware systems is done by benchmarking using compute
intensive applications. However, it is possible to use specific applications to determine the
abilities of different components of the architectures. One of the most well known bottlenecks
is the memory subsystem, and therefore, memory intensive applications are used to provide
empirical peaks in memory performance.

Furthermore, the utilization of a parallel paradigm via a parallel programming model
can lead to performance overheads. This is going to depend on the implementation of the
library. Benchmarking is also used to determine the overheads of a programming model
implementation.

Following this, the benchmarks described below can be used for characterizing shared
memory subsystems and OpenMP overheads.

STREAM benchmark

STREAM benchmark [32], by John D. McCalpin, is a simple synthetic benchmark program
that measures sustainable memory bandwidth (in MB/s) and the corresponding computation
rate for simple vector kernels.

The STREAM benchmark is specifically designed to work with datasets much larger than
the available cache on any given system, so that the results are (presumably) more indicative
of the performance of very large vector style applications.

There are versions of STREAM benchmark using different programming models such as
OpenMP, pthreads, and MPI.

It is composed of four parallel vector kernels performing the following operations:

1. Copy: c[j] = a = [j]

2. Scale: b[j] = scalar ∗ c[j]

3. Add: c[j] = a[j]+b[j]

Chapter 2 25

BACKGROUND

4. Triad: a[j] = b[j]+ scalar ∗ c[j]

STRIDE benchmark

The STRIDE benchmark [33] is designed to severely stress the memory subsystem on a node
using a series of sequential kernels.

The STRIDE benchmark consists of STRID3, VECOP, CACHE, STRIDOT, and CACHE-
DOT. The first three benchmarks include C and Fortran language versions. All of the
benchmarks utilize combinations of loops of scalar and vector operations and measure the
MFLOP rate delivered as a function of the memory access patterns and length of vector
utilized.

The observed rates of computation of the various access patterns within an individual test
can then be compared to provide an understanding of the performance implications.

LMBench

LMBench [34] is a micro-benchmark suite designed to focus attention on the basic building
blocks of many common system applications, such as databases, simulations, software
development, and networking based on reported common performance problems.

The different set of tools within the suite test cached reads, memory (reads, writes, copies),
context-switching, network connections, file creation and deletions, and so on.

From them, lat mem rd is used to measure memory read latency for varying memory
sizes and strides. The entire memory hierarchy is measured, including onboard cache latency
and size, external cache latency and size, main memory latency, and TLB miss latency. The
benchmark runs as two nested loops, for the stride in the outer loop and the array size in the
inner loop, and the results are reported in nanoseconds

EPCC OpenMP micro-benchmark suite

EPCC OpenMP micro-benchmark suite [35] is intended to measure the overheads of synchro-
nisation, loop scheduling and array operations in the OpenMP runtime library.

Currently, the micro-benchmark includes an extension in order to measure the overhead of
the task construct introduced in the OpenMP 3.0 standard, and associated task synchronisation
constructs.

The evaluation of EPCC is used to evaluate different compilers [36] and hardware plat-
forms [37], and it allows to expose significant differences in performance between different

Chapter 2 26

BACKGROUND

OpenMP implementations or programming models.

The Barcelona OpenMP Task Suite (BOTS)

The Barcelona OpenMP Task Suite [38] (BOTS) provides a collection of applications that
allows to test OpenMP tasking implementations. The different kernels allow to test different
possibilities of the OpenMP task model such as scheduling alternatives, cut-offs, single/multi-
ple generators, task tiedness, and o so on.

The Benchmark suite contains the kernels Alignment, FFT, Floorplan, Health, NQueens,
Sort, SparseLU, Strassen and Unbalanced Tree Search (UTS).

2.4.2 Monitoring tools

Unix-like operating systems are the most common on HPC environments [10], and systems
like Linux provide a set of generic tools that can be used to analyze performance. Pre-builded
command line performance tools in Linux environments provide useful information about
performance related to executed processes (top, htop), virtual memory statistics (vmstat),
list of opened files (lsof), network analyzers (netstat), disk utilization (iostat, iotop)
and so on.

Supercomputer centres require specific tools for managing distributed systems, such as
the Ganglia Distributed Monitoring System [39] which is a scalable system monitor tools for
high-performance computing systems .

In the context of shared memory tools such as taskset, likwid [40] and numactl [41],
are utilities which can be used to control scheduling policies to bind processes to processors.
Furthermore, likwid and numatcl are capable of characterizing the memory hierarchy. The
numactl utility also provides a library interface to provide control for memory allocation in
the shared memory hierarchy.

PAPI - Performance Application Program Interface

The Performance Application Program Interface [31] (PAPI) is a high-level API that provides
the ability to start, stop and read the counters for a specified list of events in most current
processors. One of the benefits of using a high-level API, rather than the low-level API, is
that it is easier to use and requires less additional calls. PAPI provides a interface for C and
Fortran programming models.

Chapter 2 27

BACKGROUND

PAPI names a number of predefined or preset events. This set is a collection of events
typically found in many CPUs that provide performance couters. A PAPI preset event name is
mapped onto one or more of the countable native events on each hardware platform. Therefore,
a preset event can be an available single counter, a combination of counters or unavailable.

Preset PAPI counters can be categorized into Conditional Branching, Cache Request,
Conditional Store, Floating Point Operations, Instruction Counting, Cache Access, Data

Access, and TLB Operations. The list of specific preset counters in a system with a PAPI
installation can be obtained with papi avail command.

Every different hardware platform would provide a different repertory of native events.
Native events may have optional settings, or unit masks. PAPI also provides access to native
events. These events can be listed with papi native avail command. As an example, in
Intel Nehalem Microarchitecture events L1D CACHE LD counts L1 data cache read requests
for the unit mask 0x0f, but with unit mask 0x08 it provides more specific information when
the cache line to be loaded is in the M (modified) state.

2.4.3 Performance analysis tools

Two types of tools can be used to develop a performance profile of an application. On the
one hand, profiling aggregates statistics along the execution of the application and after the
execution provides a classified and summarized report. On the other hand, tracing collects
data and timestamps from triggered events. This information is called a trace and some trace
formats allow their visualization. Given that the information in profiling is summarized and
tracing provides information for all the events, the amount of data generated tend to be small
in contraposition with traces which generates a great deal of information.

Unix-like operating systems provide a set of different tools for analyzing performance like
gprof [42], strace or sysstat [43] utilites such as sar, sadf, mpstat, iostat, nfsiostat,
cifsiostat or pidstat.

On HPC environments, there are different parallel oriented tools for profiling, tracing and
some of them also include automatic analysis.

Common profiling tools such as ompP [44], mpiP [45], HPCview [46], perfSuite [47],
Integrated Performance Monitoring [48] (IPM), FPMPI-2 [49], and Intel VTune Amplifier

[50] can be used to analyze different aspects related to performance and programming model
such as OpenMP, MPI, hardware counters information, bottlenecks, and more.

Tracing tools such as VampirTrace [51] and Extrae [14][52] tools provide traces which can
be visualized correspondely with Vampir [53] and Paraver [15]. Furthermore, Open|SpeedShop

Chapter 2 28

BACKGROUND

[54] and HPCtoolkit [55] combine the possibility of selecting profiling and tracing analysis.
Finally, TAU [56] provides an application profile and automatic analysis, and Scalasca

[57] generate automatic analysis based on traces.
We have used the following tools within the context of our research to perform the

performance analysis.

OmpP – Profiling

ompP is a profiling tool for OpenMP applications. ompP’s profiling report becomes available
immediately after program termination in a human-readable ASCII format. ompP supports
the measurement of hardware performance counters using PAPI and it supports productivity
features such as overhead analysis and detection of common inefficiency situations (called
performance properties).

Extrae and Paraver – Tracing and visualizing

Extrae is a package developed at the Barcelona Supercomputing Center responsible of the
generation of Paraver trace-files for a post-mortem analysis. Extrae is a tool that uses different
interposition mechanisms to inject probes into the target application so as to gather information
regarding the application performance.

The package provides mechanism to support programming model such as MPI, OpenMP,
CUDA, OpenCL, pthread, OmpSs, Java and Python. The tools is supported in Linux clusters
(x86 and x86-64), BlueGene/Q, Cray, nVidia GPUs, Intel Xeon Phi, ARM and Android
platforms.

Extrae gives the user the possibility to manually instrument the application and generate
its own events if the previous mechanisms do not fulfil the user’s needs.

Along with Extrae, Paraver is a performance analyzer based on Paraver traces with a great
flexibility to explore the collected data. The combination of both tools allows the analyst to
generate and validate hypothesis to investigate the trails provided by the execution trace.

2.4.4 Dynamic Instrumentation

The objective of performance analysis is to provide an insight of performance problems. This
analysis can infer the elements involved in the performance problem with the aim of providing
an optimization strategy.

Chapter 2 29

BACKGROUND

The performance optimization can be done by modifying the application or providing a
compiler optimization. However, some performance problems only arise at runtime. Tuning
strategies can be performed at runtime by using dynamic instrumentation tools [58] [59] [60].

Dynamic instrumentation allows to intercept program execution in some strategic points
to evaluate performance and modify the execution. Tuning strategies can be described as the
combination of monitoring elements, analysis functions and tuning elements and parameters.

Following this, we describe some tools which allow dynamic instrumentation.

Intel Pin

Pin [8] is a dynamic binary instrumentation framework for the IA-32 and x86-64 instruction-
set architectures that enables the creation of dynamic program analysis tools.

The tools created using Pin are called Pintools, and they can be used to perform program
analysis on user space applications in Linux and Windows. Instrumentation is performed at
runtime on the compiled binary files.

Pin provides a rich API that abstracts away the underlying instruction-set idiosyncrasies
and allows context information, such as register contents, to be passed to the injected code as
parameters.

Dyninst

The Dyninst [9] API library provides an interface for instrumenting and working with binaries
and processes.

In the framework of Dyninst, the target process to be tuned is defined as a mutatee, and
the user defined tuning strategy is defined as a mutator, which uses the Dyninst API library.

There are two primary abstractions in the API, the points and the snippets. A point is a
location in a program where instrumentation can be inserted, and a snippet is a representation
of some executable code to be inserted into a program at a point.

Linker preload

This technique is based on function interpositions. This can be done by injecting a shared
library into an application before the application gets actually loaded. If the library that
is being preloaded provides the same symbols as those contained in shared libraries of the
application, such symbols can be wrapped in order to inject code in these calls.

Chapter 2 30

BACKGROUND

This technique is commonly used in Linux systems, and accessible by using the LD-
PRELOAD environment variable.

The function interposition makes possible to modify the execution on the interposition
points and also to bypass the execution to the real funciton. Performance analysis tools use
this technique to capture the specification defined functions in programming models to profile
and trace the applications, such as, for example, ompP profiler and Extrae tracing tools.

2.5 Related work

In the context of our research we consider different fields of study, such as dynamic instru-
mentation which is used in performance analysis environments to tune applications at runtime,
dynamic schedulers, which interact with the runtime manager to determine the best way to
execute parallel units of work, and finally performance models.

MATE[61] performs automatic dynamic tuning by inserting code into the application
through the Dyninst library. This framework uses externally provided strategies for taking
tuning decisions.

Active Harmony [62] is an automated performance tuning infrastructure for distributed
systems, optimizing programs regarding network and systems resources. Active Harmony
employs an empirical off-line auto-tuner that improves the performances of all exchangeable
libraries in the program.

Autopilot [63] is another tuning environment for parallel and wide area distributed systems
based on fuzzy logic to automate the decision-making process. In this case, the developer
must insert sensors and actuators into the source code prior to the execution of the parallel
execution.

The previous tools are focused on distributed systems but, Wicaksono et al.[64] demon-
strates the functionality of a collector-based dynamic optimization framework called DAR-
WIN that uses collected performance data as feedback to affect the behaviour of the program
through the OpenMP runtime. It is able to take different actions, such as modifying the num-
ber of threads, adjusting core frequency, or memory allocations on ccNUMA systems. This
environment has been evaluated on ccNUMA systems for the NAS Parallel Benchmarks Suite
[65] of kernel applications (up to class B workloads). This works relies on off-line analysis
of empirical collected data, and the decision making strategy requires a training for every
different system, and on the other hand, our approach proposes the definition of performance
models describing the relations of the elements involved in performance problems to provide

Chapter 2 31

BACKGROUND

a portable solution.
Regarding scheduling strategies, works such as Stephen Olivier et al.[66] and A.Duran et

al.[67], are focused on performance issues related to task managing. The former discusses task
managing work-stealing algorithm, where it is necessary to define the appropriate number of
tasks to be stolen from a remote queue, as well as the performance results achieved on several
architectures. While the latter proposes a cut-off strategy for limiting the space required to
deploy tasks using a threshold for limiting the task graph. Various strategies are evaluated to
reduce the number of created tasks, and consequently the creation overhead is reduced.

In addition to task scheduling implementations, the utilization of different compilers
could be determinant for tasks based applications performance, as shown in an evaluation for
different compilers supporting task parallelization in Stephen Olivier and Jan Prins[68] for
the evaluation of the Unbalance Tree Search (UTS) algorithm using different compilers.

Finally, the performance model Roofline [69] is designed to assist in software development
and optimization by providing detailed and accurate information about machine characteristics.
The Roofline model is a visually intuitive performance model used to bound the performance
of various numerical methods and operations running on multicore, manycore, or accelerator
processor architectures. However, the Roofline model is used to identify what is deficient but
does not define how to fix it.

2.6 Summary

In this chapter, we have introduced the current state of High Performance Computing and
supercomputers as its facilities. We have defined performance as the key objective on this
context, and how performance has been affected by the evolution of current processors.

Parallelism is the key for improving performance and, to take benefit of parallel systems,
programming models have been designed to facilitate the development of applications.

OpenMP is a standardized parallel programming model that facilitates the utilization of
parallel resources in shared memory systems, such as multicore processor based systems. It is
one of the most utilized programming models in HPC systems because its annotations style
for expressing parallelism let developers to focus on the functional part of the development
but obtaining great scalability.

Multicore architectures are inherently parallel machines that have been developed to
overcome former performance issues, however, taking performance to the limit, new perfor-
mance problems have arisen. Sometimes, the performance obtained do not always meet the

Chapter 2 32

BACKGROUND

expectations, and performance analysis is required to identify the performance bottlenecks in
order to tune the execution environment.

Performance analysis is a field of study focused on obtaining the maximum benefit of
parallel systems. To do that, performance analyst require tools for characterize, monitor, and
instrument applications. These tools are used the tune the execution environment to get its
full potential.

Finally, we have introduced some related work on dynamic tuning and runtime scheduling.
These two fields of study are related to the topic of this thesis in the sense that we provide
dynamic tuning strategies to configure the runtime scheduling library. This is done in order to
minimize the effect of performance degradation in OpenMP memory bound applications on
multicore multisocket systems. To do that, we have developed a methodology that lead us
to identify a relevant performance factors, which has been modeled to provide two dynamic
tuning strategies.

Chapter 2 33

César Allande. PhD Thesis 2015.

34

3
Methodology for developing tuning
strategies for OpenMP applications

”Wer mit Ungeheuern kämpft, mag zusehn, dass er nicht dabei zum

Ungeheuer wird. Und wenn du lange in einen Abgrund blickst, blickt der

Abgrund auch in dich hinein.”

Jenseits von Gut und Böse – Friedrich Nietzsche

In this chapter, we present the methodology and the description of performance analysis
with the aim of providing a dynamic tuning strategy based on a performance model for a
relevant performance problem.

35

METHODOLOGY FOR DEVELOPING TUNING STRATEGIES FOR OPENMP APPLICATIONS

3.1 Objective

In order to obtain the maximum performance for the execution of an application in current
HPC systems, it is necessary to consider the diversity of parallel contexts (distributed or
shared memory) and the heterogeneity of environments (multicore processors, multisocket
nodes, co-processors, etc) as factors for performance analysis.

A common consideration within the development of a parallel application is deciding
whether describing a distributed memory model expecting unlimited scalability but increased
overheads due to message passing protocol, or a shared memory model with memory limitation
expecting no overheads but contention due to the concurrence access on shared components.

However, these initial performance assumptions can be proven wrong at runtime, and
the developer would require a performance analysis and tuning of his application. This
optimization in some cases requires a good understanding of the computer architecture, and
automatic performance tuning tools integrate optimization solutions with the aim to extend
their utilization to all kinds of users.

The objective of automatic performance tuning tools is to effectively hide the user the
intrinsics of common performance problems. To do that, the performance tuning tools require
the knowledge of relevant performance problems and the tuning strategies that can be applied.

As nowadays, the evolution of current HPC environments is highly related to multicore
systems, is it desirable to evaluate the performance of applications on such systems, and
evaluate impact of common performance problems, and new ones as well.

On the basis that multicore systems are systems designed as shared memory systems and
OpenMP is the most used API for the shared memory programming model in HPC systems,
and with the aim of modeling performance and providing tuning strategies, we define our
specific objective as follows:

Definition of a work methodology to identify performance problems on OpenMP applications

by evaluating its impact on performance, analysing relevant observable runtime metrics, and

describing possible tuning strategies to be performed at runtime.

Following this, in section 3.2 we present the methodology developed with the aim of
systematically developing performance runtime tuning optimization strategies for specific
application patterns taking into consideration hardware characteristics. These performance
optimizations are intended to be applied by means of the management code provided by
most high level libraries. Finally, in section 3.3 we summarize the principal stages of the
methodology.

Chapter 3 36

METHODOLOGY FOR DEVELOPING TUNING STRATEGIES FOR OPENMP APPLICATIONS

3.2 Methodology

The objective of the proposed methodology is to guide the performance analysis needed
to identify relevant performance problems and the study required to provide an analytical
performance model, which, can determine parameters to tune at runtime manager library level
to effectively improve the performance at runtime.

Fig. 3.1 shows a diagram of the different stages defined in order to define the tuning
strategies for tuning applications based on performance models.

The diagram is composed of the main phases for the context definition and the problem
evaluation. The objective of the context phases is to provide a candidate performance factor
to be modeled on the evaluation phase, which, needs to define whether a tuning strategy can
be applied to the manager library or not. Finally, the tuning strategy and overheads generated
must be evaluated, in order to provide an effective strategy.

Firstly, it is required to identify a context for a performance problem. We assume that
a performance problem is going to be expressed regarding the context. For example, an
execution on a specific architecture can present a performance problem, and on a different
architecture the performance problem is not detected. However, in both cases there is a latent
performance factor within the context that depends on the hardware architecture to express
the performance problem.

To provide a performance factor within a context, we are going to consider representative
applications and performance analysis tools of HPC environments, moreover, benchmarking
applications and vendor provided system information is used to characterize the systems.

Chapter 3 37

METHODOLOGY FOR DEVELOPING TUNING STRATEGIES FOR OPENMP APPLICATIONS

Figure 3.1: Methodology for generating dynamic tuning strategies in multicore systems

3.2.1 System characterization

In order to identify the impact of different performance problems in OpenMP applications
executed in HPC multicore systems, it is necessary to describe the scope of the context to
be analyzed. We propose a characterization of the application, the manager library, and the
hardware. To do that, it is possible to uses different tools and benchmarks characterizing
such elements. This characterization is going to provide empirical peaks and boundaries in
performance.

Application

In order to identify the key elements of performance problems, the characteristic of the
application must be considered, at global and at specific level.

Scientific programs can be classified at a global scope by its pattern design (Master/Worker,
Pipeline, SPMD), and some specific strategies can be applied at this level of abstraction.
However, common but less application dependant characteristics can be considered such

Chapter 3 38

METHODOLOGY FOR DEVELOPING TUNING STRATEGIES FOR OPENMP APPLICATIONS

as iterative or recursive execution patterns. Furthermore, taking into consideration the
performance of the parallel part of the execution, the application can be characterized as
computational bounded or memory bounded.

Every parallel application is developed with a functional purpose, however, parallel
applications are usually developed on the principles of structured modularity and reutilization.
Parallel applications tend to utilize parallel structural patterns. The last is also emphasized
by the use of standardized parallel programming models. Following this, we assume that
analyzing performance and providing a performance optimization for a representative set of
applications in a context will provide a solution that can be extended on applications with the
same characteristics.

A representative set of HPC applications are the NASA Parallel Benchmark suite [65]
(NAS benchmarks or NPB), which is composed of a set of pseudo-applications and kernels
used in a wide range of scientific applications. Assuming this, a performance improvement
on these functions and kernels would improve applications using them or applications with
the same structural characteristics.

The NAS benchmark suite is provided with 10 OpenMP benchmarks: Five kernels:

• IS - Integer Sort, random memory access

• EP - Embarrassingly Parallel

• CG - Conjugate Gradient, irregular memory access and communication

• MG - Multi-Grid on a sequence of meshes, long- and short-distance communication,
memory intensive

• FT - discrete 3D fast Fourier Transform, all-to-all communication

Three pseudo applications;

• BT - Block Tri-diagonal solver

• SP - Scalar Penta-diagonal solver

• LU - Lower-Upper Gauss-Seidel solver

Benchmarks for unstructured computation, parallel I/O, and data movement.

• DC - Data Cube

Chapter 3 39

METHODOLOGY FOR DEVELOPING TUNING STRATEGIES FOR OPENMP APPLICATIONS

• UA - Unstructured Adaptive mesh, dynamic and irregular memory access

Application characterization can be done using profilers and tracing tools in order to
determine performance problems on different parts of the application. The ompP [44] profiler
provides a summarized information for all the OpenMP parallel regions, such as execution
time per parallel execution element, performance counters information, and library overheads.
The Extrae tracing library provides a wrapper for OpenMP applications that generates a
trace of events for all parallel OpenMP constructions, which can also be combined with
performance hardware counters information.

Manager library

Compiler distributions supporting OpenMP implement the specification OpenMP through a
set of compiler directives and providing a dynamic library to manage the runtime API function
calls. Runtime libraries examples are libiomp for Intel Compiler and libgomp for GNU GCC.

The analysis of the performance of the runtime library can be used to evaluate the library
overheads and to compare different implementations of the library. The EPCC [36] OpenMP
micro-benchmark suite provides overheads for synchronisation, loop scheduling and array
operations in the OpenMP runtime library.

In Performance analysis of OpenMP data parallel applications the overheads of the
manager library are mostly considered as a constant, however, in task parallel applications
the runtime management is more relevant and consequently has more impact in performance
overhead. That is, management in task parallel applications is not only generated by task
constructs, but also due to scheduling infrastructure (distributed or centralized), the number
of tasks and size of task queues, the task creation scheduling pattern (e.g.: breath-first, width
first), time consumed on dependences analysis, and so on. A good option to measure the
impact of the runtime library for an applications is to use tracing and profiling tools, for
example ompP and Extrae.

Hardware

Hardware characterization can be done by considering vendor provided system information,
system aware tools, and benchmarking applications.

Static architecture information is usually accessible through the operating system. This
information can be summarized or enhanced by third-party utilities such as numatcl utility or
likwid tool. These utilities provide a human readable memory subsystem description from the

Chapter 3 40

METHODOLOGY FOR DEVELOPING TUNING STRATEGIES FOR OPENMP APPLICATIONS

command line. Using these tools we obtain information about number of processors, number
of cores, processor frequency, memory hierarchy and memory sizes, and core associativity.

In some cases, vendor provided information defines the theoretical performance for its
architecture but, in order to validate sustained peak performance, it is necessary to use
benchmarking.

The objective of benchmarking is to express some intensive patterns to evaluate a specific
performance metric. To evaluate compute intensiveness, Linpack benchmark can be used to
determine FLOPS. To evaluate performance of memory subsystem, STREAM and STRIDE
benchmarks provide the memory bandwidth evaluated on a parallel execution. Furthermore,
LMBench suite provides a set of different benchmarks to measure context-switching, network
connections, and also, characterize effective cache memory latencies (lat mem rd).

3.2.2 Analysis of performance factors

Presumably, the strategies applied for solving a problem within an application could be
applied for other applications in the same context. By assuming this, for a given performance
problem, we propose to develop a performance model to provide an early detection based on
runtime monitoring to determine the best configuration of the environment.

The objective of the analysis of performance factors, is to identify latent performance
problems to model. A performance factor is a latent performance problem only expressed
under certain conditions, for example, depending on the workload and degree of parallelism.
The performance problem has to significantly impact on performance and represent a common
pattern in HPC applications.

An analysis of performance factors requires to identify problems. To do that, it is necessary
to describe where in the parallel execution is the problem located, which is the performance
factor, and what are the consequences of the realization of the factor on the application
performance. This must be done considering the application characteristics, the runtime
manager library or the hardware architecture.

In figure 3.2 we describe some common considerations to be taken on performance
analysis for OpenMP applications executed in multicore environments.

Chapter 3 41

METHODOLOGY FOR DEVELOPING TUNING STRATEGIES FOR OPENMP APPLICATIONS

Figure 3.2: Context characteristics development template

Following this, in the context of this research, we describe some recurrent performance
problems from the literature [70], [71], [72], [73] to consider under the performance factor
analysis.

• Thread imbalance; the execution time between threads along the execution of a
parallel region is significantly different.

• Performance degradation; the execution time at thread level given a fixed work-
load is significantly different when changing the degree of parallelism and threads
distribution policy. When compared, it can be observed that the execution time per
workload unit is increased.

Chapter 3 42

METHODOLOGY FOR DEVELOPING TUNING STRATEGIES FOR OPENMP APPLICATIONS

• Thread starvation; some of the threads remain idle along the parallel execution for
a given workload and degree of parallelism.

• Management overheads; the overhead required for managing the parallel execution
dominates performance compared to the computational part.

(a) Thread imbalance (b) Performance degradation

(c) Thread starvation (d) Management overheads

Figure 3.3: Performance problems on OpenMP applications

The previous problems can be caused by one or a combination of the following perfor-
mance factors.

1. Memory contention; data dependencies among threads or concurrent threads ac-
cessing a shared memory interface can cause memory contention generating im-
balance or performance degradation. On the one hard, data dependencies can be
inherent to the data access pattern and, consequently, prefetching strategies or cache
line data alignments can alleviate the performance problem. On the other hand,
cache contention can be produced by the limitation of bandwidth, high latencies or
small sizes in shared memory devices. In some cases, it can be useful to balance
the performance degradation and the degree of parallelism to minimize the effect of
performance degradation.

Chapter 3 43

METHODOLOGY FOR DEVELOPING TUNING STRATEGIES FOR OPENMP APPLICATIONS

2. Data imbalance; differences in the amount of data assigned to each thread can
cause thread imbalance. This performance factor can be implicit to the application
workload. However, adequate dynamic strategies can be applied for data partitioning
and scheduling such as data reordering.

3. Affinity in memory hierarchy; when an application is executed on an architec-
ture, a mismatch between the application configuration and computing elements
sharing memory resources can originate performance degradation. Trying to take
advantage of collaborating threads and memory re-utilization sometimes can cause
a false-sharing condition. Analyzing the behaviour of the application and assigning
collaborative threads to the appropriate hierarchy levels will promote collaborative
computation.

4. Task management [66],[67], [74]; there is an extensive variety of performance
factors in the task parallel model. Tasks, as executing units, are also affected by the
same performance factors described above. Furthermore, due to its highly dynamic
nature, they also present specific performance factors such as those originated at
application level due to task creation patterns or task dependencies; as well as at
library level due to task creation overhead, task scheduling policies, the amount of
tasks created, and memory utilization per task. Some strategies can be applied, such
as adapting dynamically the granularity of the task level parallelism, and adjusting
the scheduler behaviour to be aware of the application and hardware requirements.

Because some performance problems only occur depending on the context, in order to
characterize them, it is necessary to evaluate different configurations of the application, and
execute on different environments.

A first approach is to perform a strong scalability evaluation by fixing a workload for the
application and evaluate the performance obtained partitioning the problem using different
number of threads.

A week scalability evaluation is based on fixing a workload per computational unit to
evaluate linear scalability. To accomplish that, the execution time should stay constant while
the workload is increased in direct proportion to the number of processors. This scalability
analysis is widely used in distributed systems to evaluate nearest-neighbour communication
patterns. In shared memory systems, this analysis can be used to determine scalability on
NUMA systems because using more processors would increase the per processor memory
and data locality.

Chapter 3 44

METHODOLOGY FOR DEVELOPING TUNING STRATEGIES FOR OPENMP APPLICATIONS

The previous analysis can be based only on the execution time, but in order to obtain
a fine grain analysis it is possible to use profiling and tracing tools providing summarized
information at different levels.

To refine the analysis, the information provided by hardware counters can be used to eval-
uate the behaviour of the hardware architecture, in order to identify limitations or bottlenecks.

3.2.3 Modeling performance and defining tuning strategies

Performance modeling can consist in representing performance with analytic expressions.
In parallel executions the optimal performance is accomplished when the parallel execution

time (T (n)) is proportional to the number of computational resources (n);

T (n) =
T (1)

n
(3.1)

However, this assumption can only be done in the parallel parts of the application, as
pointed by the Amdahl’s law. The speedup of a program using multiple processors in parallel
computing is limited by the time needed for the sequential fraction of the program.

n ∈ N

B ∈ [0,1]

T (n) = T (1)
(

B+
1
n
(1−B)

) (3.2)

Therefore, the theoretical Speedup(n) that can be obtained by executing a given algorithm
on a system providing n resources is:

Speedup(n) =
T (1)
T (n)

=
T (1)

T (1)
(
B+ 1

n(1−B)
) = 1

B+ 1
n(1−B)

(3.3)

In computer architectures the Speedup metric is used to describe the relative performance
improvement when executing a task. Moreover, this metric can also be used when evaluating
a tuning strategy in order to compare the default execution environment against the tuned
execution.

When running an algorithm with linear Speedup, doubling the number of processors

Chapter 3 45

METHODOLOGY FOR DEVELOPING TUNING STRATEGIES FOR OPENMP APPLICATIONS

doubles the speed. The Efficiency is a value, typically between zero and one, estimating
how well-utilized the processors are in solving the problem, compared to how much effort is
wasted in communication and synchronization. Efficiency is defined as follows:

E(n) =
Speedup(n)

n
=

T (1)
nT (n)

(3.4)

These are fundamental expressions to model performance. However, in this thesis proposal,
analytic expressions must represent and consider metrics from the hardware architecture,
runtime configuration and application in order to allow the prediction of the application
performance for different execution contexts and provide configurable parameters for the
tuning strategy.

Finally, considering a model providing the tuning parameters, it is necessary to define
the tuning strategy to apply at runtime. To do this, dynamic instrumentation tools such as
Intel Pin, Dyninst or Linker preload techniques can be used to create a interposition function
layer in order to interact with the implementation of the programming model to integrate the
monitoring, analysis and tuning of the runtime library.

3.2.4 Evaluating the impact

The utilization of a interposition library containing the required instrumentation, analysis and
tuning must consider the overheads derived from the tuning tool and the tuning strategy. The
evaluation of the overheads measures and compares an execution with no instrumentation
against the tuned execution.

Furthermore, the impact evaluation requires to estimate the quality of the performance
model predictions. Therefore, the evaluation phase is iterative because this quality refinement
could require a redefinition of the model or the tuning strategy.

3.3 Summary

In this chapter, we have described a methodology to define tuning strategies for OpenMP
parallel applications based on the definition of performance models. To define a performance
model it is required to accurately describe a picture of the execution context to be modeled
and the relation of the key performance elements.

Chapter 3 46

METHODOLOGY FOR DEVELOPING TUNING STRATEGIES FOR OPENMP APPLICATIONS

Firstly, the methodology describes a context stage to identify a relevant performance
factor to be modeled. This is done by characterizing a set of relevant applications in the
context of HPC.

Because the degree of complexity required on defining a performance model, we define an
evaluation iterative stage to allow the redefinition of the performance model and the tuning
strategy. This decision has to be taken by evaluating the impact of the proposed solution.

Finally, to exemplify the proposed methodology, an experimental evaluation of the model
is shown in the following chapters of this thesis.

Chapter 3 47

César Allande. PhD Thesis 2015.

48

4
Methodology application to a case study

”Cuando hayas acabado no habrás hecho más que empezar.”

Todos ellos – (songwriter) Nacho Vegas

In this chapter, the methodology is applied to the case study of NAS parallel benchmarks.
The first part of the chapter is focused on characterizing the benchmark suite in order to
identify relevant performance factors, while the second part of the chapter, is dedicated to
describe a tuning strategy based on an exhaustive characterization of possible configurations
in of number of threads to minimize a performance factor based on memory contention for
the SP benchmark.

49

METHODOLOGY APPLICATION TO A CASE STUDY

4.1 Methodology application on NAS Parallel Benchmarks

In order to exemplify the use of the proposed methodology, in this chapter we show its
application on the NAS Parallel Benchmark suite, which is a representative set of kernels and
pseudo applications used in scientific applications.

Section 4.2 presents an analysis to identify a relevant performance factor within the set of
benchmarks on two different system architectures.

Section 4.3 introduces a tuning strategy and its evaluation developed to minimize perfor-
mance degradation by dynamically tuning the number of threads at parallel region level. This
is done by taking benefit of the iterative pattern of the application. This section replicates
the previously observed performance problem on two new hardware systems to evaluate the
impact of the performance problem in different architectures.

4.2 Context analysis for the identification of performance
factors

The NAS parallel benchmarks version evaluated is the 3.3.1, which provides benchmarks
for the programming models MPI, OpenMP and a hybrid versions of MPI+OpenMP. The
OpenMP distribution consist of 10 different OpenMP benchmarks (C and Fortran); all of
them implement a data parallel paradigm.

In order to execute and validate its execution, each benchmark provides a set of predefined
workloads named Classes and labelled S for small, W for workstation, and a bigger set of
workloads starting from A to E. Moreover, every predefined executed workload is validated
by comparing the execution results against the pre-calculated solutions within the benchmark.

4.2.1 System Characterization

Hardware characterization

FatNode; The evaluation environment for the NAS benchmarks has been developed in a
FatNode of the SuperMUC supercomputer at the Leibniz-Rechenzentrum (LRZ). The node is
composed of four Westmere-EX Intel Xeon E7-4870 processors at 2,4GHz, and an aggregated
64GB main memory per processor, which provides a total of 256GB of shared memory.

Figure 4.1 shows the characteristics of the processor. It is composed of 10 cores with
Hyperthreading capabilities.

Chapter 4 50

METHODOLOGY APPLICATION TO A CASE STUDY

Each processor has a separated data and instructions level 1 cache of 32KB, and a private
level 2 cache of 256KB. This version of Westmere-EX provides 30MB of unified level 3
cache or LLC. However, this LLC is partitioned, meaning that there is a slice of the L3 for
each core o group of cores, and data is shared along a ring interconnection.

Figure 4.1: Processor architecture on System FatNode

Figure 4.2 shows the execution results of the benchmark lat mem rd in order to charac-
terize memory latencies within the different levels of the memory subsystem. This benchmark
measures memory read latency for varying memory sizes and strides. The results are reported
in nanoseconds per load. The entire memory hierarchy is measured, including onboard cache
latency and size, external cache latency and size, main memory latency, and TLB miss latency.
However, current architectures provide latency hiding techniques such as prefetching, cache
coherency, and relaxing the memory consistency requirements.

Figure 4.2: Evaluation of memory latencies on FatNode system with lat mem rd

Chapter 4 51

METHODOLOGY APPLICATION TO A CASE STUDY

System T7500; The evaluation of the performance factor based on performance degra-
dation is evaluted on the T7500 system provided by the CAOS department at the UAB.
This system is composed of two Intel Xeon E5645 processors developed with the Westmere
micro-architecture. Figure 4.3 depicts the processor architecture. It can be observed that it
is composed of two sets of three cores encapsulated in a single die. It provides an unified
L3 cache of 12MB (6MB+6MB). Each processing element is a x2 multithreaded core with
separated 32KB L1 cache for instruction and data, and individual L2 of 256KB.

Figure 4.3: Processor architecture on System T7500

Figure 4.4 shows the execution results of the benchmark lat mem rd. The experimental
results shows the evaluation for different strides in order to identify the saturated latency
values corresponding to the different levels of caches. Level 1 cache has 1.5ns latency, Level
2 cache 7.73ns latency, Level 3 cache about 19ns, and local access to main memory requires
around 55ns.

Chapter 4 52

METHODOLOGY APPLICATION TO A CASE STUDY

Figure 4.4: Evaluation of memory latencies on t7500 system with lat mem rd

Manager library characterization

In order to characterize the application using the NAS parallel benchmarks, firstly, an analysis
of scalability for each different benchmark and different workloads is presented. The results
have been obtained with the ompP profiling tool and, for each benchmark, figures for the
execution time, efficiency and overhead analysis are provided.

The execution time and efficiency show the execution time using a fixed workload and
different number of threads. Ideally, the best scalability will follow the ideal scalability
equation, Eq.3.1.

We use the method described by Fürlinger and Gerndt in [70] to analyze the overheads
limiting the scalability of OpenMP applications in order to identify performance problems in
our experimental context. To do that, we use the ompP profiler report information showing a
cumulative per thread analysis of time consumption between different parts of the management
library. In this representation the ideal execution is defined as a constant cumulative time
(black ruler). The different overheads are defined as follows:

• Management; startup time or thread creation, and shutdown or thread destruction
in parallel, parallel loop, parallel sections and parallel workshare

OpenMP constructions.

• Limited parallelism; time consumed in the implicit exit barrier for sections and
parallel sections OpenMP constructions.

Chapter 4 53

METHODOLOGY APPLICATION TO A CASE STUDY

• Imbalance; time consumed in the implicit exit barrier for loop, workshare,
single, parallel, parallel loop, and parallel workshare OpenMP con-
structions

• Synchronization; execution time consumed on accessing or consimung locked re-
gions such as atomic, barrier, flush, critical, and omp_set_lock constructs.

Application characterization

In this evaluation, a characterization of the NAS Parallel Benchmarks using different work-
loads is presented by performing exhaustive executions using different number of threads.

The execution environment is a FatNode of the SuperMUC supercomputer, which provides
up to 4 processors, and each processor contains 10 cores. In these experiment Hyperthreading
capabilities have not been evaluated. Therefore, the maximum degree of parallelism in this
context is a 40 threads execution.

• EP (Embarrassingly parallel); This kernel generates pairs of Gaussian random
deviates according to a specific scheme. The goal is to establish the reference point
for peak performance of a given platform.

Figure 4.5(a) shows that the scalability is this system is high, and the efficiency
greater than 80%. Regarding the per thread overheads, there cause seems to be a
small increase in thread execution time and imbalance. No significant performance
problems or factors can be observed.

(a) Exection time an efficiency on EP.D (b) Overhead analysis on EP.D

Figure 4.5: Scalability analysis on EP benchmark

Chapter 4 54

METHODOLOGY APPLICATION TO A CASE STUDY

• CG (Conjugate Gradient); CG uses a Conjugate Gradient method to compute an
approximation to the smallest eigenvalue of a large, sparse, unstructured matrix.

Figure 4.6(a) shows that the overall performance does not scale for more than
20 threads and a performance degradation when using 20 to 21 threads, which is
probably due to the latency increment on the third socket accesses. Figure 4.6(b)
shows the relevance of synchronization elements, which at the end, can lead to
thread imbalance.

However, Figures 4.6(c) and 4.6(d) shows a performance evaluation for class D
with completely different results. Efficiency is maintained over 80%, and significant
overheads are observed.

Finally, we conclude that the scalability of the application is good, but class B
presents a limitation of parallelism.

(a) Exection time an efficiency on CG.B (b) Overhead analysis on CG.B

(c) Exection time an efficiency on CG.D (d) Overhead analysis on CG.D

Figure 4.6: Scalability analysis on CG benchmark

Chapter 4 55

METHODOLOGY APPLICATION TO A CASE STUDY

• FT (Fourier Transform); This benchmark contains the computational kernel of
a 3-D fast Fourier Transform (FFT)-based spectral method. FT performs three
one-dimensional (1-D) FFT’s, one for each dimension.

Figure 4.7(a) presents the execution for the smallest workload with a limited scal-
ability beyond 1 processor. That is mainly because of the NUMA effect. Figure
4.7(b) presents the significant impact of the management library for small execution
times.

The execution of class B, Figure 4.7(c) presents a more realistic workload configu-
ration. However, efficiency starts decreasing from 80% beyond 1 socket execution
up to 40% in a 40 threads execution.

The increase in per thread time shown in Figure 4.7(d) could be due to an imbalance
on a multisocket execution or a limited parallelism for this system.

(a) Exection time an efficiency on FT.W (b) Overhead analysis on FT.W

(c) Exection time an efficiency on FT.B (d) Overhead analysis on FT.B

Figure 4.7: Scalability analysis on FT benchmark

Chapter 4 56

METHODOLOGY APPLICATION TO A CASE STUDY

• MG (Multi-Grid); The MG benchmark uses a V-cycle MultiGrid method to com-
pute the solution of the 3-D scalar Poisson equation. The algorithm works continu-
ously on a set of grids that are varying between coarse and fine. It tests both short
and long distance data movement, and it is a memory intensive application.

Figure 4.8(a) shows a limited parallelism for class B up to 1 processor as can be
deduced by the impact on management overhead in Figure 4.8(b).

The increased class D shows a better scalability and the efficiency drops more
progressively. Figure 4.8(d) shows an increasing on execution time and imbalance,
probably generated by the NUMA effect because it is defined as a memory intensive
application.

(a) Exection time an efficiency on MG.B (b) Overhead analysis on MG.B

(c) Exection time an efficiency on MG.D (d) Overhead analysis on MG.D

Figure 4.8: Scalability analysis on MG benchmark

Chapter 4 57

METHODOLOGY APPLICATION TO A CASE STUDY

• BT (Block Tri-diagonal); BT benchmark is a simulated CFD application that uses
an implicit algorithm to solve 3-dimensional (3-D) compressible Navier-Stokes
equations.

Performance for class B in Figure 4.9(a) shows a good scalability up to 20 threads,
and a significant overhead and imbalance in Figure 4.9(b).

Class D (Figure 4.9(c)) shows a better efficiency and scalability. The overheads in
Figure 4.9(d) point to an increasing in execution time and imbalance which can be
generated because of the NUMA effect.

(a) Exection time an efficiency on BT.B (b) Overhead analysis on BT.B

(c) Exection time an efficiency on BT.D (d) Overhead analysis on BT.D

Figure 4.9: Scalability analysis on BT benchmark

Chapter 4 58

METHODOLOGY APPLICATION TO A CASE STUDY

• LU (Lower-Upper Gauss-Seidel solver);

LU is a simulated CFD application that uses a symmetric successive over-relaxation
(SSOR) method to solve a seven-block-diagonal system resulting from finite-
difference discretization of the Navier-Stokes equations in 3-D by splitting it into
block Lower and Upper triangular systems.

Figure 4.10(a) shows a significant performance degradation on class B with a sharp
deterioration for more than 2 sockets. The cause of this degradation can be the
limited parallelism and the syncronization elements as shown in Figure 4.10(b).

For class D execution, the application shows a better scaling, Figure 4.10(c), but
a drop on efficiency when using more than 2 sockets. Figure 4.10(d) shows that
the impact of this contention can be generated by the utilization of synchronization
elements.

(a) Exection time an efficiency on LU.B (b) Overhead analysis on LU.B

(c) Exection time an efficiency on LU.D (d) Overhead analysis on LU.D

Figure 4.10: Scalability analysis on LU benchmark

Chapter 4 59

METHODOLOGY APPLICATION TO A CASE STUDY

• SP (Scalar Penta-diagonal); SP is a simulated CFD application that has a similar
structure to BT. The finite differences solution to the problem is based on a Beam-
Warming approximate factorization that decouples the x, y and z dimensions. The
resulting system has Scalar Pentadiagonal bands of linear equations that are solved
sequentially along each dimension.

Figure 4.11(a) shows performance for class B, with a limited scalability for more
than 1 socket, were efficiency goes from 80% to 20%. Figure 4.11(b) shows an
increasing overhead in management and imbalance, and also execution time per
thread.

The class C execution in Figure 4.11(c) shows a performance contention around
16 threads, and performances degrades in the full thread execution. Figure 4.11(d)
shows a pattern of increased overhead around the 20 threads execution.

(a) Exection time an efficiency on SP.B (b) Overhead analysis on SP.B

(c) Exection time an efficiency on SP.C (d) Overhead analysis on SP.C

Figure 4.11: Scalability analysis on SP benchmark

Chapter 4 60

METHODOLOGY APPLICATION TO A CASE STUDY

Discussion
Performance and scalability have been characterized on the NAS parallel benchmarks. It

can be observed that for large workloads performance and scalability in EP, CG and BT is
good. In this environment, the evaluation of efficiency for large workloads in FT and LU is
40%, MG is 30% and finally on SP 20%.

From this results, we conclude that it is necessary to evaluate the benchmark with higher
performance degradation (SP), by replicating the performance problem on a different sys-
tem architecture, in order to justify the necessity of identifying and model the associated
performance factor.

4.2.2 Analysis of performance factors

A deeper analysis is done for the SP application using a different system architecture and
different workloads. The experimental environment is the T7500 system (DELL workstation).
This shared memory system is a dual processor system with 6 cores per processor, providing
up to 12 threads per node (no Hyperthreading). The execution has been profiled with ompP,
to obtain a fine grained detailed report for parallel regions within the application, and metrics
from different hardware counters have been considered.

In the following experiments, threads are binded to cores using the likwid-pin tool. There
are two different thread scheduling policies, the compact distribution policy (#AFF0) sched-
ules threads using the minimum number of different processors, and a scattered distribution
policy (#AFF1) which distributes threads along the processors.

The performance analysis is focused on the x solve parallel regions, which is the parallel
regions with the higher degree of performance degradation. The execution time for the x solve
parallel region is shown in Figure 4.12(a). A performance degradation can be seen on the
parallel execution on 1 processor (from 1 to 6 threads). However, the full thread execution
obtains the best performance in this case.

On the other hand, the execution of a scattered distribution policy (#AFF1) shows a
completely different performance. In this case, the best performance is obtained with half of
the threads available (6 threads), which in this policy represents 3 threads per processor. A
performance degradation appears when using more than 6 threads.

The hardware subsystem is evaluated by monitoring the total cache misses for the three
levels of cache, and results presented as the overlapped lines in Figures 4.12(a) and 4.12(b).
At this point, we consider the hypothesis that the behaviour of total cache misses seems to be
correlated with the execution time, but a further analysis needs to be done.

Chapter 4 61

METHODOLOGY APPLICATION TO A CASE STUDY

(a) Compact distribution (AFF0) (b) Scattered distribution (AFF1)

Figure 4.12: Total cache misses and execution time on parallel region x solve for SP.C

To analyze the hardware implications on the performance degradation of this application
we start analyzing the number of total instructions shown in Figures 4.13(a) and 4.13. Each
figure contains two relevant plots. The diagonal matrix is a heatmap representation of total
instruction per thread. For example, in a three thread execution (x-axis), we have a hardware
counters value for each thread (y-axis). The second plot, at the bottom of the figure, represents
a heatmap of cumulative values for the counters, in this case, total number of instructions.

(a) AFF0 – Total Instructions (b) AFF1 – Total Instructions

Figure 4.13: SP.C x solve – Heatmap of hardware counter Total Instructions

In both figures, the diagonal matrix presents an almost regular gradient, meaning that the
total instructions are evenly distributed for all the thread configurations. The scale of the
heatmap in the second plot presents a gradient between the minimum and maximum values,
which are same scale values. Therefore, we can assume that the work is evenly distributed
among threads, and this is not a performance factor.

Chapter 4 62

METHODOLOGY APPLICATION TO A CASE STUDY

Following this, the same representation is used in Figures 4.14(a) to 4.14(f) to evaluate
cache misses for the different levels of the cache hierarchy.

(a) AFF0 – L1 TCM (b) AFF1 – L1 TCM

(c) AFF0 – L2 TCM (d) AFF1 – L2 TCM

(e) AFF0 – L3 TCM (f) AFF1 – L3 TCM

Figure 4.14: SP.C x solve – Heatmap of hardware counter Total Cache Misses

Chapter 4 63

METHODOLOGY APPLICATION TO A CASE STUDY

Figures 4.14(a) and 4.14(b) do not present a significant differentiation. Total cache misses
in L1 remains almost constant, as can be seen in previous figures 4.12(a) and 4.12(b).

However, Figures 4.14(c), 4.14(d), 4.14(e) and 4.14(f) present a differentiate pattern in
thread behaviour. The compact (AFF0) figures, present a hotspot in the six thread execution
which is equivalent to the 1 processor execution, and this hotspot slightly tends to relax in
a gradient until the cache misses is balanced between the two processors. There is a visual
differentiation between the workloads of the two processors.

Furthermore, the scattered distribution can also be visualized on the right size hotspot
figures. The interleaving on number of threads in the odds configurations indicates its natural
imbalance. On the contrary, even number of threads distributions remain well balanced.

The scattered distribution, on the right side of the figures, is displacing the hotspot to the
most concurrent configurations.

Discussion

We conclude from this analysis that a significant performance problem exists in SP benchmark,
and performance degradation can be avoided. To do that, it is possible to define an appropriated
thread scheduling policy and number of threads. The associated performance factor is based
on performance degradation due to memory contention, which is caused by the over
utilization of the last levels of cache in a single processor execution at certain degree of
concurrency.

From this, we propose to model the associated performance factor and evaluate a strategy
to dynamically characterize at runtime the different configurations of number of threads to
identify the best configuration of number of threads for a parallel region. By doing this, for
all the parallel regions, the overall performance can be improved.

4.3 Evaluating a strategy for tuning the number of threads

By considering the previously described performance factor candidate on the Scalar Penta-
diagonal solver (SP) application of the NAS Parallel Benchmark suite, we proceed to apply
the second part of the methodology to model the performance factor and define a strategy for
dynamically tune the number of threads.

To do that, we evaluate the context to expose the performance problem on two new
different architectures with the aim of validating the persistence of the performance factor for
different systems.

Chapter 4 64

METHODOLOGY APPLICATION TO A CASE STUDY

In this section we are going to define the new context, propose an initial approach for
performance modeling, evaluate the impact of performing a static strategy and finally, to
evaluate a dynamic tuning strategy.

4.3.1 Context

The experimental environment has been provided by the Universitat Oberta de Catalunya
(UOC) and the CAOS department at the UAB, and it is composed of two different cluster
nodes environment.

System characterization

Taking into consideration that the candidate performance factor is memory contention, especial
emphasis is made on the description of the hardware memory subsystem and the application
memory related parameters.

• Application: Experimental evaluation of SP benchmark of NPB-3.3.1 suite (OpenMP
version), for classes B and C. Problem workload sizes are based on cubic structures
of 102 dimension elements on class B and 162 dimension elements on Class C. The
algorithm performs an iterative factorization process, and convergence is evaluated
after 400 iterations, and compared with a precalculated solution. This implementa-
tion decouples the x, y and z dimensions and provides a solver function for each
dimension.

• Manager library: Both systems uses the GCC compiler 4.5.2, which provides the
libgomp OpenMP runtime library implementing OpenMP 3.1 specification.

• Hardware:

– Sysα ; NUMA system with 2x AMD Opteron 6128 @ 2GHz processors with 8
cores; total amount of 16 cores and 32GB of main memory. Shared cache L1
of 64KB per core pair, Cache L2 of 512KB shared by core pairs and shared
5MB of Cache L3 by groups of 4 cores.

– Sysβ ; NUMA system with 2x Intel Xeon E5430 @ 2,6GHz processors with 4
cores; total amount of 8 cores and 16GB of main memory. Dedicated Cache
L1 of 32KB and 6MB Cache L2 shared by core pairs.

Chapter 4 65

METHODOLOGY APPLICATION TO A CASE STUDY

Analysis of performance factors

For the analysis of the performance factor, we proceed to configure the environment for the
classes B and C and perform a strong scalability analysis to identify the possible performance
degradation in systems Sysα and Sysβ .

Firstly, we have to notice that cache sizes on these systems are noticeable different to the
previous ones. On the one hand, Sysα has 5MB of L3 cache shared by groups of four cores,
and Sysβ has 6MB of L2 cache shared by groups of two cores.

In the previous evaluation, Figure 4.11(a), the scalability analysis for class B reported a
performance contention and the analysis of overheads in Figure 4.11(b) showed an increasing
imbalance and management overhead.

(a) Sysα Class B (b) Sysα Class C

(c) Sysβ Class B (d) Sysβ Class C

Figure 4.15: Scalability analysis for SP Classes B and C for systems Sysα and Sysβ

Figure 4.15(a) for Sysα shows the scalability analysis for class B and Figure 4.15(b) for

Chapter 4 66

METHODOLOGY APPLICATION TO A CASE STUDY

class C. A performance degradation can be observed. By using half of the available threads
the application achieves its best performance.

For Sysβ , Figure 4.15(d) also expresses the performance degradation but in Figure 4.15(c)
the best performance is obtained with the maximum threads configuration. However, the
difference between the 4 thread and 8 thread executions is less than 4 seconds, 128.34 vs.
124.86 respectively.

We have traced 10 applications iterations for Sysβ using a configuration of 4 threads(559
seconds) and 5 threads (725 seconds). Figure 4.16 and Figure 4.17 show the execution
timeline for one iteration. The information provided by Paraver consists on execution time
represented by dark blocks and the light blocks represent overheads due to synchronization,
scheduling, and idle states.

Using the tracing analysis, the execution imbalance for the 5 thread configuration can be
observed. The previous evaluation using the ompP profiler indicated an increasing imbalance
and management overhead on the multiple socket execution, and Paraver also reports the
same information.

Figure 4.16: System Sysβ (4 threads) - 1 SP.C iteration

Figure 4.17: System Sysβ (5 threads) - 1 SP.C iteration

The profiling based on trace analysis shows that the summarized imbalance for 4 threads
configuration is less than 1%, but for the 5 threads execution it raises to 14%.

The application is analyzed at parallel region level for the 4 most representative functions
in SP. The percentage of the execution time expended in each parallel region is presented in
Table. 4.1. This table shows that the four main parallel regions represent about the 80% of the
execution time of the application.

Chapter 4 67

METHODOLOGY APPLICATION TO A CASE STUDY

Table 4.1: Sysβ Class C execution time (sec.) and cumulative percentage (relative to total time Tre f)
of use for the weightiest parallel regions (x,y and z solve, and rhs).

Number of threads
Parallel Region 1 2 3 4 5 6 7 8 %degradation

x solve 175 87 60 46 85 88 103 120 160%
y solve 199 100 70 53 87 90 99 106 100%
z solve 224 112 79 60 94 96 105 113 88%

rhs 537 327 331 277 328 342 330 315 13%
Tre f 1,331 797 683 559 725 732 765 777 38%
% 85.2 82.8 79.3 78.3 81.8 81.9 83.2 84.4

The performance degradation between the 4 thread execution in comparison with the 8
thread execution, of x solve(160%), y solve(100%), z solve(88%) and the rhs(13%), is quite
significant.

Next, we proceed to analyze hardware performance implications for the most degraded
parallel region (x solve) using PAPI hardware counters for the L2 cache misses percentage
%CL2 in a single iteration in Sysβ for the class C.

Table 4.2 shows that the L2 cache misses ratio for 8 threads is 16 times higher than for 4
threads.

Table 4.2: x solve parallel region on Sysβ Class C for one iteration execution. Where Tit n is the time
for n-iteration and Tre f is the measured time for 400 iterations.

Parallel Region Number of threads

x solve 1 2 3 4 5 6 7 8

ratio o f L2 cache misses 1 1 1 1 7 11 14 16

First Iteration execution time 0.45 0.25 0.16 0.13 0.22 0.22 0.27 0.3

Single sample Estimation(x400) 180 100 64 52 88 88 108 120

Total execution time (400 iters.) 175 87 60 46 85 88 103 120

Relative error 2.8% 14.9% 6.6% 13% 3.52% 0% 4.8% 0%

In this case, the concurrency within the same cache level is not generating a performance
degradation, however, the performance is degrade when using different sockets.

We conclude, that in some cases the performance degradation is generated due to cache

Chapter 4 68

METHODOLOGY APPLICATION TO A CASE STUDY

memory over utilization (such as FatNode system in Section 4.2.2), and also can be expressed
due to the NUMA effect, such as in Sysβ .

4.3.2 Modeling performance and defining tuning strategies

We have observed that a performance factor based on performance degradation can be
expressed in a different way depending on the system architecture. On the one hand, a
performance degradation is expressed at certain degree of concurrency at processor level
when sharing the same LLC (e.g. FatNode System) and, on the other hand, some architectures
express performance degradation when using more than 1 processors in NUMA systems (e.g.
Sysβ System).

We have shown in Table 4.1 that in the SP application the most significant performance
degradation (%degradation) occurs in the x solve parallel region, and Table 4.2 shows that
the estimation based on single application iteration achieves an acceptable degree of accuracy
compared with the full execution time, with a maximum relative error of 15%.

Figure 4.18: Methodology to select the configuration providing the minimum execution time based
on an exhaustive runtime characterization on the first iterations of the application.

Figure 4.18 presents an initial performance model based on sampling the first iterations of
the application using different configurations of number of threads in order to determine the
overall performance (expression 4.1). By doing this, it is possible to obtain a configuration
that minimizes performance degradation (equation 4.2).

Chapter 4 69

METHODOLOGY APPLICATION TO A CASE STUDY

samples = {timei, timei+1, .., time MaxCores} ,where i ∈ 1..MaxCores (4.1)

BestCon f = i ,where samplesi = MIN(samples) (4.2)

The number of threads can be dynamically tuned to the BestCon f value by instrumenting
the application and inserting previously to the definition of the OpenMP parallel region a
omp set num threads(VALUE) library function call, which explicitly defines the number of
threads of the work-sharing construct for the subsequent parallel region. Taking advantage of
this previous knowledge, an initial coarse grained strategy is presented.

The SP application is iterative, therefore, it is possible to invest some iterations to acquire
a prior knowledge of the performance. A fraction of the 400 iterations required to compute the
solution in classes B and C can be used to characterize its performance. Following this, the
best configuration can be selected to tune the application for the remaining iterations. In order
to reduce the overheads, the number of iterations invested in characterizing the performance
must be as small as possible.

4.3.3 Evaluating the impact

To evaluate the impact, the strategy has been implemented in the application source code. The
class C on Sysβ reports an execution time of 562 seconds, which represents only an overhead
of 0.5% compared to the 559 seconds of the best configuration execution using 4 threads.

This strategy requires a characterization based on an exhaustive exploration of all the
possible configurations of number of threads. Furthermore, to obtain a more precise accuracy
every sample can be averaged from different iterations of the application for the same
configuration. Therefore, the overhead of this strategy is going to depend mainly on the
characterization phase. Furthermore, it could happen that the overhead generated on the
characterization phase would exceed the improvement in performance.

The analysis of performance factors have shown that the cache behaviour due to memory
occupancy at cache level, and the thread distribution within the NUMA environment for some
configurations of number of threads can generate performance contention and performance
degradation. Therefore, by defining a performance model identifying these critical configura-
tion would reduce the current overheads generated on the exhaustive characterization, and
provide a more scalable strategy.

Chapter 4 70

METHODOLOGY APPLICATION TO A CASE STUDY

Algorithm 1 Pseudocode of the tuning strategy applied by using the linker preload mechanism
for the interposition of the OpenMP dynamic library. The strategy performs time characteriza-
tion on the firsts iterations. The retuning value of function characterization Phase is based
on a user defined threshold determining the number of iterations used for characterizing the
application (greater than NC).
Function GOMP parallel start(params)

1 if characterization Phase(appIter) then
2 config Params = generate Config(appIter)
3 Start Timer()
4 real GOMP parallel start (config Params)

else
5 real GOMP parallel start (tuning Params)

end
End Function
Function GOMP parallel end()

1 real GOMP parallel end()
2 if characterization Phase(appIter) then
3 Stop Timer()

else
4 if last charact phase (appIter) then
5 tuning Params = time Analysis()

end
6 appIter++

End Function

4.3.4 Applying the dynamic tuning strategy

With the aim of demonstrating the benefit and feasibility of dynamically tuning the OpenMP
scheduling library, and to analyze the tuning overheads, we have implemented the rough
strategy described in the previous section by using a dynamic tuning strategy.

To do that, we have selected a technique based on a library interposition of the OpenMP
runtime library at linking time.

The most relevant parallel functions within the SP application use parallel regions and
parallel loops with static scheduling. The low level templated transformations performed
at compilation time defines the entry and exit points as function calls to the runtime library.
The interception of these function calls is used to embed the monitoring, the analysis and the
tuning required for the strategy. The algorithm for the dynamic tuning strategy is defined in
Algorithm 1.

The dynamic tuning strategy has been evaluated in the SP benchmark for Sysα and Sysβ .

Chapter 4 71

METHODOLOGY APPLICATION TO A CASE STUDY

During the characterization phase 5% of the total number of iterations is used to test the
candidate thread configurations. The speedup obtained with the tuning strategy is shown in
table 4.3.

Table 4.3: Execution time (sec.) for the dynamic tuning strategy and execution without tuning for
classes B and C. The tuning strategy uses 5% of total iterations for the characterization stage.

Class Tuning Sysα . Sysβ . Class Tuning Sysα . Sysβ .

B max. threads 118 124 C max. threads 604 777

B Dynamic 128 86 C Dynamic 485 586

Speedup 0.92 1.44 Speedup 1.24 1.32

The results on Table 4.3 shows a slowdown of 0.92% for class B on Sysα . This is because
the best configuration for class B uses the maximum number of threads, and the performance
slowdown is generated on the characterization an instrumentation phases. However, on the
rest of the experiments the best configuration uses half of the threads and the speedup is
improved by the tuning strategy. Sysβ for class B achieves the best speedup of 1.44x.

4.4 Summary

In this chapter we have evaluated the OpenMP version of the NAS parallel bencharmk
suite, a representative set of kernels and pseudo application mimicking the behaviour or real
HPC applications. The performance evaluation shown in the methodology presents strong
scalability analysis on different system architectures, from systems with a small scalability to
highly scalable environments. The performance evaluation on such systems has shown a good
performance in all context for EP, BT, and performance contention or degradation on some
scenarios for CG, FT, MG, LU, SP in some cases due to limited parallelism for the context
workload, and in other cases due to hardware architecture characteristics.

Through the analysis of SP benchmark by using performance counters we have deeply
analyzed a memory contention problem on a single socket execution, and the alleviation of
the memory contention by spreading the execution units along a multisocket system obtaining
a better speedup compared with the execution using all the execution units.

Following this, we have tried to extrapolate this problem from the context of the evaluated
system architectures, and we have analyzed two different systems (Sysα and Sysβ) with the

Chapter 4 72

METHODOLOGY APPLICATION TO A CASE STUDY

aim of replicate the same performance problem on a different context. These systems have
also express the performance problem, also for class B in Sysβ .

In order to prevent the performance degradation, we have proposed and evaluated a
dynamic tuning strategy based on characterizing the first iterations of the application by
using different configuration of number of threads and selecting the best configurations by
measuring the execution time for each parallel region.

The tuning strategy evaluated has provided the best configuration in all cases, with a
negligible overhead. However, we have pointed that the initial strategy requires an exhaustive
characterization, and we expect that the characterization overheads will increase on more
scalable systems architectures.

In order to provide a better detection of the performance problems, we suggest a new
iteration on the methodology in order to provide a performance model with smaller overheads.

To do that, in the following chapter we define a performance model based on the estimation
of the execution time for a reduced number of configurations. This model is focused on the
analysis of hardware counters, because the hotspot analysis of hardware counters has shown a
relation between performance contention at last levels of cache and performance degradation.

Chapter 4 73

César Allande. PhD Thesis 2015.

74

5
Performance model based on runtime

characterization

”Ne marche pas devant moi, je ne suivrai peut-être pas. Ne marche pas

derrière moi, je ne te guiderai peut-être pas. Marche juste à côté de moi et

sois mon ami.”

Les justes - Alber Camus

This chapter introduces a performance model based on runtime characterization on a single
socket which allows to estimate a configuration of number of threads and thread distribution
to improve performance on a multicore multisocket system.

75

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

5.1 Introduction

Following the previous chapter, we have defined a tuning strategy based on an exhaustive
characterization at runtime, however, the overhead generated on the characterization phase
can significantly impact performance. To reduce the characterization phase, we propose a
characterization of the performance of parallel regions to estimate cache misses and execution
time by limiting the characterization phase to an exhaustive execution on a single socket.

Furthermore, this model is used to extrapolate performance for different number of threads
and different affinity distribution for each parallel region in a multisocket system. The model
is applied for SP and MG benchmarks from the NAS Parallel Benchmark Suite using different
workloads on two different multicore, multisocket systems. These benchmarks have been
selected because they are memory intensive applications, and the previous evaluation of NAS
benchmark in Section 4.2.2, they have shown the smallest degree of efficiency, being 20% for
SP, and 30% for MG.

As we will see in Section 5.5.1, the estimation preserves the behavior shown in measured
executions for the affinity configurations evaluated. Section 5.5.2, shows how the estimated
execution time is used to select a set of configurations in order to minimize the impact of mem-
ory contention, achieving significant improvements compared with a default configuration
using all threads.

This chapter is structured as follows. Section 5.2 introduces the objective and scope of this
model. Section 5.3 introduces related work about analytical performance modeling. Section
5.4 introduces our performance model for estimating total cache misses (TCM) at the last
level cache (LLC) and estimated execution time. The model is validated in Section 5.5, where
it is evaluated using the SP and MG benchmarks for two different architectures. Finally,
Section 5.6 summarizes our conclusions.

5.2 Objective

Performance on shared memory systems must consider multicore multisocket environments,
with different sharing levels of resources in the memory hierarchy. To take advantage of
shared memory systems, the high performance computing community has developed OpenMP
Application Program Interface (OpenMP) defining a portable model for shared-memory
parallel programming. However, depending on the memory utilization, the memory interface
can become a bottleneck. It is possible to group threads to take advantage of sharing memory

Chapter 5 76

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

or, on the other hand, distribute them in the memory hierarchy or restrict their number to
avoid degradation due to memory contention.

To this aim, we propose a performance model based on characteristics of the multicore
multisocket architectures and the application memory pattern. The model estimates the
runtime of an application for a full set of different configurations in a system regarding the
thread distribution among cores (affinity) and number of threads. The model is evaluated
using runtime measurements on a partial execution of the application in order to extract the
application characteristics.

To develop our approach we have made the following assumptions:

1. The application is iterative and all iterations have uniform workload;

2. Workload is evenly distributed among threads;

3. Performance degradation is mainly generated by memory contention at LLC

4. All processors in the socket are homogeneous. Our input parameters for the model
are based in the measurement in a single socket execution.

Taking into account these assumptions, our contributions are the following:

• A performance model to estimate the LLC misses for different affinities at the level
of individual parallel regions.

• A performance model to estimate the execution time for a parallel region, consider-
ing an empirical value to adjust the parallelism degree at the memory interface level
and data access pattern.

5.3 Related work

There are several approaches to estimate shared memory systems performance. Tudor [75]
presents a performance analysis for shared memory systems, and a performance model. It is
validated with NAS parallel benchmarks. This model considers idleness of threads, which is
present in context switching, specially when more than one thread per core is executed. We
consider our model to focus on the cache behavior because memory contention is the main
cause for performance degradation in memory bound HPC applications.

Chapter 5 77

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

We use the idea of performance degradation in the context of parallel executions. Follow-
ing this, [76] presents the impact of cache sharing. The analysis is based on the character-
ization of applications on isolated threads and, Zhuravlev in [77] presents two scheduling
algorithms to distribute threads based on miss rate characterization. Dwyer et al. [78] present
a practical method for estimating performance degradation on multicore processors. Their
analysis is based on machine learning algorithms and data mining for attribute selection of
native processor events. We also obtain information from performance hardware counters but
without using database knowledge obtained on a postprocessing analysis, that information
is obtained by using empirical data from a reduced sample of data that could be achieved at
runtime.

Regarding the hardware, the Roofline model [69] is a visual computational model to help
identifying applications characteristics such as memory bound limitations. This model shows
how operational intensity can provide an insight of architecture and application behavior, and
provides an insight of the architecture, however this model is oriented to help development
and provide suggestions to make code optimizations on the source code. In our case, we
present a model in order to select an affinity configuration with the aim of being used at
runtime in an automatic tuning tool.

5.4 Performance Model proposal

Performance degradation in memory bound applications considered in this work can be
produced depending on application data access pattern and its concurrency at cache level.
Therefore, characteristics such as workload and data partitioning, the degree of data reutiliza-
tion of the data access pattern based on temporal and spatial locality, data sharing between
threads, and data locality on the memory hierarchy must be considered. Consequently, a deep
knowledge of the application behavior and system architecture to improve performance is
required.

Iterative applications can provide similar performance among iterations as we have shown
in section 4.3 from previous chapter. For this case, it is possible to apply a strategy (Figure
5.1) to evaluate the behavior of the application for a reduced set of iterations with different
configurations regarding the degree of parallelism and thread pinning configurations. Our
model considers these measurements to estimate the execution time for the total set of
configurations in the system.

Chapter 5 78

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

Characterization

 Performace
modeling

1..NC executions
 on an isolated socket

Compute concurrency factors
 and time degradation vectors

 TCM_i
 mmTimes_i

Estimation of TCM
 per socket

 CF and BF vectors

Execution time estimation
 per socket

 estTCM

Estimation selection
based on memory access pattern

 TOvhd (SUM)
TOvhd (MAX)

Configuration selection
 with minimum execution time

 estTime

Figure 5.1: Methodology for the selection of the number of threads and its affinity distribution.

5.4.1 Defining the performance model

In order to apply the proposed model, NC executions with parallel region profiling are
required, NC being the number of cores in a single socket, the i-th execution runs on threads 0
to i−1. This allows us to obtain the model’s input parameters for time and hardware counters
(LLC MISSES). We consider that ideal run time is mainly altered by memory contention at
shared cache level, and this contention is measured by the LLC MISSES hardware counter,
which provides the number of inclusive miss events at LLC for the system architecture,
meaning that the data is not present on the socket and must be acquired on memory. We
collect the total cache misses (TCM) generated at last level cache for each parallel region in
order to analyze the concurrency overhead.

The parameters involved in our model are described on Table 5.1.

Chapter 5 79

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

Table 5.1: Table of parameters used to estimate the execution time of N threads for a given configura-
tion.

Parameter Description

NC the number of cores in a socket
NS the number of sockets in the system.
c fi concurrency factor for i threads in a socket. It is expressed as TCM rate

for the i execution over 1 thread execution. Being i≥ 1 and i≤ NC. these
coefficients are measured at runtime for an isolated socket.

CF NC size vector containing c fi concurrency factor coefficients.
βi time degradation for i threads measured in a single socket. Being i > 1 and

i≤ NC.
BF NC size vector containing βi factor coefficients.
a f fs number of threads in the s-th socket for an AFF configuration.
AFF affinity configuration, described as an NS size vector containing the specific

number of threads per each socket for a given configuration.
estTCM estimated TCM on the s-th socket for the AFF configuration.
TOvhd estimated overhead time for the s-th socket on the execution of the AFF

configuration
mmime measured execution time.
idealTime estimated ideal execution time.
estTime estimated execution time.

Model input parameters

We propose to measure performance degradation on an isolated socket. Therefore, the model
considers two known elements, the increase of TCM on a single socket due to concurrency,
and its overhead time (taking into account the parallelism at memory level).

Concurrency behavior in a single socket at last level cache is represented by the vector
(CF) of concurrency factors, defined in expression 5.1.

CF = {c f1,c f2, ...,c fi}, where i ∈ 1..NC (5.1)

Where each c fi is the relation, defined in expression 5.2, between the measured TCM for
a 1 thread execution and the measured cumulative TCM for an execution with i threads in the
socket. This vector can be generated for each parallel region.

Chapter 5 80

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

c fi =
TCMi

TCM1
, where i ∈ 1..NC (5.2)

On the other hand, to estimate the overhead time generated on memory accesses, we must
consider that the memory interface is capable of achieving a degree of parallelism resolving
the access requests. The full utilization of parallelism depends on the application data access
pattern. Therefore, to express the relation between the achieved memory parallelism on a
single socket and the application behavior, we define the vector (BF) of β factors in expression
5.3. These values are also obtained with the measured values in a single socket execution.

BF = {β1,β2, ...,βi}, where i ∈ 1..NC (5.3)

Each βi factor (defined by 5.4) represents, for the i threads execution in a socket, the
relation between the measured time (mmTime), and the overhead for the worst case scenario,
providing a ratio of memory parallelism. The worst case is a serialized data miss access with
no memory parallelism, implying a latency overhead per data miss. Also, we consider ideal
time (idealTimei) as T1

NTi
, being T1 execution time for 1 thread, and NTi the number of thread

for the i-th execution.

βi =
mmTimei− idealTimei

TCMi
, where i ∈ 1..NC (5.4)

Following this, to represent the set of possible configurations in a system with NS sockets,
the thread configuration is represented in expression 5.5 as the affinity vector AFF , where
each component represents the number of threads in the s− th socket.

AFF = {a f f1,a f f2, ...,a f fs}, where s ∈ 1..NS (5.5)

The maximum number of threads in each socket is NC, allowing a number of confi-
gurations from 1 thread to NS×NC. This definition allows us to consider configurations
independently of thread positioning on the socket, that is, by considering homogeneous
threads, where a thread and its siblings in a socket are equivalent. Furthermore, configurations
with the same number of threads per socket but with different socket order are also considered

Chapter 5 81

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

equivalent (e.g. AFF={1,2} is equivalent to AFF={2,1}).
Finally, this definition provides a number of possible configurations in Equation 5.6 , being

NC the number of cores per socket, and NS the number of sockets in the system. Considering
this, the model provides the estimation for all the different numCon f affinities (AFF) in the
system, and allows to select the configuration with the minimum estimated execution time.

numCon f =
(

NC+NS
NS

)
−1 (5.6)

Estimating TCM & Execution Time

In order to estimate the TCM generated in a socket from a given affinity configuration, we
represent the estimated TCM by expression 5.7.

estTCM(AFF,a f fs) =
TCM1

sizeAFF(AFF)
×a f fs× c fa f fs (5.7)

Where s is the number of socket, and sizeAFF(AFF) expresses ∑
NS
x=1 a f fx, i.e., the total

number of threads for the AFF configuration.
Finally, time estimation for the affinity configuration is given by the ideal execution and

the overhead time (TOvhd) as shown in expression 5.8.

estTime(AFF) = TOvhd(AFF)+ idealTime(AFF) (5.8)

Where TOvhd(AFF), presented in 5.9, is the calculated overhead depending on the data
access pattern. If the pattern is unknown, the TOvhd(AFF) value can be interpolated between
the best and the worst case scenario. The serialized access pattern considers the worst case
scenario, summation (SUM) of all the socket overhead, and on the other hand, the best case
scenario is presented by the fully parallel memory access between sockets (MAX), using the
maximum value overhead estimated on all sockets.

TOvhd(AFF) =

∑

NS
s=1 TOvhd(AFF,a f fs), Serialized Mem. Access.

max TOvhd(AFF,a f fs), Parallel Mem. Access

(5.9)

Therefore, in order to describe the overhead time per socket we define TOvhd(AFF,s) ex-
pression 5.10 that represents the overhead generated by TCM in a socket minus idealTCMa f fs ,

Chapter 5 82

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

which is corrected with the β value, that corresponds to its concurrency degree (a f fs) mea-
sured in a single socket. The idealTCMa f fs is obtained from TCM1

size(AFF) ×a f fs

TOvhd(AFF,a f fs) = (estTCM(AFF,a f fs)− idealTCMa f fs)×βa f fs (5.10)

This model provides the execution time estimation for the AFF vector configuration, just
by considering the values of a single socket execution, and can be applied for all the affinity
configurations present in the system. Selecting the optimal configuration is not always trivial,
but, applying the model, it is possible to provide an estimation for each configuration an select
the one with minimum execution time.

5.5 Experimental validation

In this section we present the experimental validation of the proposed performance model.
We have used two different multicore architectures (Table 5.2), Dell T7500 workstation and
a node from LRZ SuperMUC computer (FatNode), and representative regions of interest
for the memory bound applications SP (Scalar Pentadiagonal solver), and the MG (Multi-
Grid) benchmarks from the NAS Parallel Benchmarks [65] NPB3.3.1-OMP, using different
workloads.

Firstly, we introduce application and system characterization. Next we present the valida-
tion of the model on the T7500 system with two sockets per node and 6 cores in a socket, and
the validation of the model on the FatNode system with 4 sockets and 10 cores per socket,
allowing us to evaluate the model for a greater number of configurations.

By using the definition of AFF provided in the previous section, the total number of
possible configurations (numCon f) for the T7500 system is 27, and for the FatNode system
is 1000.

The SP application has 4 principal parallel regions, where 3 parallel loops (at x solve,
y solve, and z solve functions) represent each one about 15% of the total execution time,
and one parallel region (at the rhs function) with inner loops representing between 20% and
40% of the execution depending on the degree of parallelism. The MG application presents
2 parallel loop regions of interest, Reg 011 (mg.f 614-637) and Reg 013 (mg.f 543-566),
representing 28% and 16% respectively of total execution time.

To compare the measurements and the estimations, we have executed them for different
number of threads and representative affinities. We have used the ompP [44] profiler to obtain

Chapter 5 83

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

Table 5.2: System hardware characteristics at node level.

Properties T7500 FatNode

Instruction set Intel 64 Intel 64
Processor Westmere-EP Intel Westmere-EX Intel

Xeon E5645 (2,4GHz) Xeon E7-4870 10C (2,4GHz)
of Sockets 2 sockets 4 sockets
#cores per socket 6 cores 10 cores
Hyperthreading Yes (x2) Yes (x2)
Total #PU 24 threads 80 threads

L1 cache size 32 KB (I and D) 32 KB (I and D)
L2 cache size 256 KB 256 KB
L3 cache size 12 MB unified 30 MB unified
Main Memory 96 GB 256 GB
Time per cycle 0.4166 ns 0.4166 ns

L1 cache latency 1.434 ns 1.673 ns
4 cycles 4 cycles

L2 cache latency 3.586 ns 4.182 ns
9 cycles 10 cycles

L3 cache latency 18.5 ns 20.172 ns
45 cycles 48 cycles

Local Main Mem. lat. 77 ns 116.254 ns
185-288 cycles 278 cycles

performance information at application and at parallel region level. In addition, ompP is
integrated with PAPI [31] to obtain hardware counters information. We considered the full
profiling information for the MG benchmark, and a reduced number of iterations for the SP
benchmark, being 100 iterations for class C, and 10 iterations for class D.

Information given by PAPI is based on preset counters. We observe that the load (LD INS),
store (SR INS), total (TOT INS), and floating point (FP INS) instructions are distributed
evenly between threads. TCM for cache levels 1, 2 and 3 (L1 TCM, L2 TCM, and L3 TCM)
have been evaluated to characterize the memory contention problem of the applications.

The execution with likwid-pin tool [40] allows to pin threads to cores in order to evaluate
the affinity. The affinity labeled as AFF0 assigns threads to cores at the same processor, until
it is full. Affinities AFFi define a Round-Robin distribution between sockets from a list of

Chapter 5 84

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

Table 5.3: T7500 system. Input data for x solve parallel region from SP benchmark class C.

sizeT (s1,s2) Measured Time (s) Measured TCM c fi βi

1(1,0) 123 1.19×108 1.00 0.0
2(2,0) 63 1.46×108 1.23 1.65×10−10

3(3,0) 57 7.89×108 6.61 2.58×10−10

4(4,0) 70 34.4×108 28.84 1.47×10−10

5(5,0) 74 59.3×108 49.69 1.09×10−10

6(6,0) 78 78.9×108 66.10 0.94×10−10

current threads to be executed, where i represents the chunk size of threads from the list to
assign to each socket, and until the socket is filled. For example, in a two socket system with
6 cores per processor, execution of 9 threads with AFF3 assigns the first 3 threads to socket 1,
next 3 threads to socket 2, and the last 3 threads to socket 1.

The numatcl utility has been used to evaluate the behavior for different memory mappings,
by using two configurations, localalloc to force allocation closer the master thread, and
interleave=all, where memory is allocated evenly between all set of NUMA nodes.

5.5.1 Applying the model for the SP application on the T7500 system.

In this section, we apply the model to a parallel region of interest to evaluate the NAS SP
class C on T7500 system, in order to compare the model estimation against the execution
times for two different affinity distributions.

The information from the profiled execution on a single socket is used, considering the
values from 1 thread to total number cores per socket (# cores per socket. in Table 5.2).

First step is to compute the CF vector and BF vector using TCM and times per parallel
region. Input data is shown on Table 5.3.

Following this, the CF is used to estimate the TCM for a specific AFF configuration.
In this example, if we consider AFF1, distributing threads from 1 to total number of cores
in the T7500 system, in a Round Robin distribution, we obtain the different configurations
expressed in Table 5.4, shown in column (sizeT (s1,s2)). Applying expression 5.7 for each
combination of number of threads in the sockets we obtain the estTCM(AFF, i) per socket
and the cumulative estimation Cum.TCM, which is presented in column EstimatedTCM. For
this configuration, the relative error of the estimated TCM and measured TCM is presented in
column %RelativeError.

Relative error is less than 20%, and we can observe that our estimation represents the

Chapter 5 85

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

Table 5.4: T7500 system. SP class C with affinity AFF1. Estimation and evaluation of TCM for
parallel region x solve.

NunT hreads Distribution (s1,s2) Measured.TCM Estimated TCM %Relative Error
1 (1,0) 1.19 ×108 1.19 ×108 0
2 (1,1) 1.16 ×108 1.19 ×108 2.57
3 (2,1) 1.63 ×108 1.37 ×108 15.73
4 (2,2) 1.81 ×108 1.73 ×108 18.87
5 (3,2) 6.28 ×108 5.63 ×108 15.24
6 (3,3) 9.05 ×108 7.90 ×108 12.67
7 (4,3) 2.50 ×109 2.31 ×109 7.87
8 (4,4) 3.82 ×109 3.44 ×109 9.91
9 (5,4) 5.01 ×109 4.83 ×109 3.54

10 (5,5) 6.14 ×109 5.94 ×109 3.34
11 (6,5) 6.94 ×109 7.00 ×109 0.90
12 (6,6) 7.45 ×109 7.90 ×109 5.96

behavior of the measured values.
Using the estimated TCM, we apply expression 5.8 in order to obtain the final estimation

time (estTime(AFF1)) for the affinity 1. For this case, we evaluate two different estimations,
one by considering a serialized memory access and a second one that assumes an ideal parallel
memory access. Therefore, the first case considers the overhead as the summation of overhead
times per socket, and the second assumes full parallelism on memory accesses, implying
that the overhead time is generated by the slowest socket, therefore by the maximum time
estimation of sockets.

Both estimations are shown for the two affinity distributions (0 and 1) presented in Fig-
ure5.2, which shows that the measured time is in between the two estimated boundaries, and
in this case is similar to EstimationMax., meaning that the memory accesses are parallelized
between the sockets. Furthermore, the EstimationMax. presents the same behavior and lead
us to identify the best configuration, which in this case is the AFF1 using 6 threads (equivalent
to socket configuration {3,3}), and median error for the best estimation is 5%, and the average
error is less than 8%.

5.5.2 Selecting a configuration for SP and MG benchmarks on FatNode

We present the application of the model for SP and MG, with different workloads, on the
FatNode system.

Chapter 5 86

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

(a) Evaluation for AFF0 (b) Evaluation for AFF1

Figure 5.2: Evaluation of execution time between estimated boundaries.

The experiments are configured to evaluate the two boundaries at memory level. We
use the numactl tool to allocate memory near to master thread (localalloc), to achieve a
serialized memory access at socket level, and interleaved allocation (interleave=all) to force
data distribution between sockets and parallel memory accesses.

The model is applied considering the single socket measurements and the results are
shown in Table 5.5.

Table 5.5: Selection of configuration for SP and MG benchmarks

System Bench. Par.Reg. Best Conf. Best Conf. %Avg Mem.Model

Measured Modeled Error

SP.C distr. x solve AFF1(24) = AFF1(32) = 4.64 MAX

{6,6,6,6} {8,8,8,8}

SP.C loc. x solve AFF1(20) = AFF1(20) = 8.55 SUM

{5,5,5,5} {5,5,5,5}

FatNode SP.D loc. x solve AFF1(9) = AFF1(4) = 11.40 SUM

{3,2,2,2} {1,1,1,1}

MG.C loc. R0011 AFF1(32) = AFF1(40) = 13.18 MAX

{8,8,8,8} {10,10,10,10}

MG.C loc. R0013 AFF1(32) = AFF1(40) = 21.50 MAX

{8,8,8,8} {10,10,10,10}

Chapter 5 87

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

Figure 5.3: SP C xsolve local allocation

We can observe on Table 5.5 for SP benchmark that local allocation provides a serialized
memory access. This is because data needs to be accessed through the same socket, and
this contention provides a serialized behavior. For the distributed allocation, the memory
access pattern allows more parallelism, improving performance and minimizing the memory
bottleneck. The model has provided a configuration with minimum execution time and an
average error of less than 14%.

MG has been forced with local allocation, however, it uses a different data access pattern
and higher workload. We have observed that memory access is not fully parallelized neither
serialized, therefore we used the closer boundary Max.Estimation, which not represents
exactly the data access pattern increasing the error.

5.5.3 Exploration of the affinity configurations.

In this section we discuss the benefits of applying the model in a system with multiple
sockets, and the speedup achieved by allowing the selection of a configuration with the model
compared to the execution with all threads.

The main point is to rapidly detect memory bottlenecks in parallel regions, and select a
configuration that minimizes the contention overhead. Also, to provide an estimation approach
for all the configuration ranges without a full execution.

We present a model that provides an estimation for all the configuration ranges, which can

Chapter 5 88

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

Figure 5.4: MG C R0011 local allocation

be applied with a minimum characterization on a single socket. Figures 5.3 and 5.4 show a
subset of 10 configuration affinities (considering the definition in 5.5) for the FatNode system.

Figures 5.3 and 5.4 show the measured times and the estimated execution times. We
can observe that Figure 5.3 presents a memory contention problem when using a full thread
execution. The minimum for measured and estimated execution times is shown on a contour
surface. The minimum execution time is achieved by using about 20 threads on the configura-
tion that provides less concurrency per socket (e.g. AFF1(20)= {5,5,5,5}, that is, using half
threads per socket).

Figure 5.4 shows that MG does not present significant variation between affinities, and
time is reduced using more threads.

Finally, we present in Table 5.6 the comparison between an unguided execution using all
threads, and the configuration provided by the model. The speedup is calculated using the
measured time for full execution and measured time for the selected configuration.

Even though the ideal configuration is not detected for all cases, the selection has provided
a configuration with a maximum speedup of 2.74, for the SP class C, with an affinity 1 with 20
threads. Moreover, the minimum speedup is 1, meaning that the application does not shows
memory contention, neither benefiting from reducing the number of threads or modifying the
affinity.

Chapter 5 89

PERFORMANCE MODEL BASED ON RUNTIME CHARACTERIZATION

Table 5.6: Execution time for selected configuration and speedups.

Bench. Max threads Conf. Selected Conf. Speedup

Threads Measured Threads Measured
per socket Time (s) per socket Time (s)

SP.C.xsolve distr. {10,10,10,10} 3.65 AFF1(20) = {5,5,5,5} 2.57 1.42
SP.C.xsolve.loc. {10,10,10,10} 6.81 AFF1(20) = {5,5,5,5} 2.49 2.74
SP.D.xsolve loc. {10,10,10,10} 23.58 AFF1(4) = {1,1,1,1} 20.27 1.16

MG.C.R0011 loc. {10,10,10,10} 4.09 AFF1(40) = {10,10,10,10} 4.09 1.00
MG.C.R0013 loc. {10,10,10,10} 2.26 AFF1(40) = {10,10,10,10} 2.26 1.00

5.6 Summary

We have presented a performance model to estimate the LLC misses and to estimate the
execution time based on an execution of a small set of configurations. This model allows to
estimate any possible configuration of affinity and number of threads for the system. The
performance model has been applied for the NAS SP and MG applications for classes C and
D in two different architectures. The results show an average time error of less than 14%.
Despite the error, the time estimation preserves the measured behavior that lead us to select
automatically a configuration, and the possibility to improve performance compared with the
default configuration.

Our model can rapidly detect memory bottlenecks on each parallel region in an application,
and it is possible to identify a configuration that minimizes the contention overhead.

This model has the drawback that it provides two performance boundaries (Max and Sum)
in the cases where the memory access pattern of an application is not completely serialized or
parallel. Furthermore, when the boundaries are widely separated, and the measured time is in
between, the error increases.

In order to provide a more accurate estimation, we have notice that it is needed to consider
the overheads of accessing data between different sockets.

Finally, it would be desirable to iterate upon the methodology in order to define a model
that considers the application pattern access. We assume that by knowing the pattern access
of the application will allow us to identify which one of the two boundaries is closest to the
real behaviour.

Chapter 5 90

6
Performance model based on profiling the

memory footprint

”L’interminable est la spécialité des indécis.”

De l’inconvénient d’être né - Emil Cioran

In this chapter, we present a runtime performance model based on the pre-characterization
for small workloads and a dynamic tuning strategy to estimate a configuration of number of
threads and thread distribution to improve performance by detecting and avoiding memory
contention.

91

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

6.1 Introduction

In this chapter, we propose a performance model to estimate at runtime the execution time
and the ideal configuration by defining a characterization of the memory footprint for small
workloads to identify the degree of parallelism which can lead to a performance degradation.
In the previous chapter, the model required a dynamic exhaustive characterization in a single
processor execution by analyzing all the thread configuration combinations, which at the end,
limits the scalability of the model by increasing the overhead at runtime.

To minimize memory contention, it is possible to analyze the application access pattern
for a concurrent execution to determine per thread memory characteristics, such as required
memory, total number of accesses, reutilization degree, etc. On an OpenMP parallel loop,
every thread executes iterations or units of parallel work, and each unit has an associated
memory footprint. This active data usage can be characterized for many applications for a set
of workloads. By doing this, it is possible to expose a latent performance problem given a
different workload and a thread configurations and, in most cases, to provide a configuration
that minimizes the performance contention. To do that, we analyse the reutilization degree of
this data.

This chapter is sctructed as follows. Section 6.2 defines the objective and contributions
of the model. Section 6.3 presents related work on performance models and memory access
pattern analysis. The methodology and the performance model is defined in Section 6.4,
and the validation through experimentation of two applications in Section 6.5, showing a
maximum speedup of 2.5x. Finally, a summary of this chapter is shown in Section 6.6.

6.2 Objective

The objective of the current model is based on analyzing the memory access pattern of the
application in order to obtain characteristics which can lead to identify potential performance
factors within the application.

To do that, we have developed a tracing tool in order to obtain information about the
memory access pattern of the application. By doing this, the overheads of generating the
trace increase dramatically, both in the volume of gathered information and trace generation
time. However, the methodology considers to perform an off-line characterization to extract
such characteristics from executions using small workloads. Further, this information can be
extrapolated for real workloads at runtime.

Chapter 6 92

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

Identically as the previous model, we assume the following conditions for the context;

1. The application is iterative and all the iterations have a uniform workload;

2. Workload is evenly distributed among threads;

3. Performance degradation is mainly due to memory contention at the main memory,
generated by the application memory access pattern at LLC;

4. All the cores in the processor are homogeneous

Taking into consideration these conditions, contributions from this model are the follow-
ing:

• A methodology, based on memory trace analysis, to extract the memory footprint
of parallel loop regions from an OpenMP application in order to identify memory
intensive parallel regions.

• Estimation of critical configurations of the application for a specific hardware
configuration.

• An execution time estimation for a configuration of a parallel region to dynami-
cally tune the application by identifying a configuration that minimizes memory
contention.

6.3 Related work

Performance of parallel applications is expected to increase proportionally to the number
of used resources. We have seen in chapters 3 that there are several factors that limit their
scalability. On multicore architectures, the access to the memory hierarchy is possibly the
most important limiting factor, specially for memory intensive applications [7]. This behaviour
can be noticed significantly on the LLC (Last Level Cache) in current multicore processors,
mainly because the increase on cache evictions to main memory reduces the overall data
cache reuse at this level.

During a parallel program execution, its aggregated working dataset can be defined as
the memory footprint [79] [80] [81] [82]. The continuously increasing integration of number
of cores accessing shared cache levels can lead to a performance degradation [83]. One of

Chapter 6 93

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

the reasons is an imbalanced relation between the per core cache size and the per thread
application footprint [84].

Figure 6.1: Methodology to select a configuration that avoid memory contention based on the analysis
of the concurrent memory footprint in LLC

6.4 Methodology for selecting a configuration to avoid mem-
ory contention

The memory contention problem can be generated by a large number of requests to main
memory. In parallel applications, this problem can be increased at certain levels of concurrency
because of the inter-relation of a shared resource utilization and the application data access

Chapter 6 94

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

patterns. In this model, we evaluate the average occupation of LLC, and the application data
reutilization patterns.

To obtain the memory footprint of an application, we have developed a tracing tool, in
a form of a pintool, using Intel’s PIN framework for dynamic instrumentation [8], which
extracts the memory trace in each parallel region iteration.

Figure 6.1 defines the methodology to select a configuration that avoid memory contention
based on the analysis of the concurrent memory footprint in LLC. We use the application’s
characteristics to identify memory contention at runtime which, at the end, allows us to
dynamically apply a strategy to tune the number of threads and thread distribution at runtime.
With this aim, we provide a way of identifying performance degradation due to memory
contention. Furthermore, because the pre-characterization is performed off-line, the overheads
at runtime are negligible.

6.4.1 Trace generation and characterization of iteration footprint

We instrument the application using the pintool to obtain a memory trace in the format
described in Equation 6.1. The trace is processed to obtain the memory footprint of the
most reaccessed data. To do this, consecutive addresses of memory are combined, and the
most significant regions are used to compute the memory footprint. Consecutive regions
smaller than a cache line and reutilization degrees smaller than a factor of 4 are discarded,
meaning that for the selected memory ranges, bigger than a cache line, there is an average
of more than 4 accesses per each element. This criteria is defined in order to discard effects
such as reutilization that can be solved at low level caches, or with no significant impact in
performance.

Following this, we describe the trace and profiled information obtained from an individual
iteration.

• The minimal information unit obtained from the pintool is the memOp. Every
memory operation is described by event id, as the unique key identifier on the
temporal access pattern, type refers to the memory operation (load or store), the
actual virtual memory address and the data size of the element accessed.

memOp = {event id, type,address,data size} (6.1)

• We extract the spatial access pattern by sorting the memory trace and grouping
consecutive memory references. Consecutive elements are combined into streams

Chapter 6 95

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

of memory references with equal or less than data size (e.g. 8 Bytes) spacing
between its elements. The stream information (eq. 6.2) is composed by the different
number of elements within the range, and the total number of references into the
address space (accesses). The multiset representation of streams is defined in 6.3 to
group streams with same properties. Memory references from the trace, that are not
aligned into sequential accesses, are discarded.

stream = {elements,accesses} (6.2)

Streams = ∪{stream,#streams} (6.3)

• Streams information is extended within cluster in Eq. 6.4. We extract metrics reutil

(eq. 6.6) as the reutilization degree of the elements described by the cluster, and
cluster f oot print (eq. 6.7), which is the total size of the streams. The union of
clusters is defined as a set in Eq. 6.5.

cluster = {elements,accesses,#streams, reutil,cl footprint} (6.4)

Clusters = ∪cluster (6.5)

reutil = accesses/elements (6.6)

cl footprint = elements×#streams×data size (6.7)

• The iteration footprint (eq. 6.8) is obtained from the aggregation of all the iteration
clusters footprints. The footprint makes reference to memory elements with high
reaccesses degree along the iteration execution, which must be preserved into LLC
to improve locality. The ratio of the memory footprint regarding the total memory
operations in the parallel region trace (eq. 6.9).

footprint =
#clusters

∑
i=1

cl footprinti (6.8)

footprint ratio = footprint/#memOp (6.9)

Chapter 6 96

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

6.4.2 Estimation of memory footprint at runtime

The memory trace generates a huge amount of information, in the order of GBytes for a
few execution seconds. Therefore, we obtain a memory footprint from executions of the
application using small workloads. Afterwards, we estimate the memory footprint from
a runtime execution for a real workload. To infer this value, it is possible to use runtime
information provided by hardware counters, and also by the runtime library.

First, it is necessary to assume that the information on the total number of memory
references obtained at runtime through hardware counters is going to be equivalent to the
information given by the pintool trace.

Second, as the memory trace is obtained from a single iteration of the parallel region, the
runtime information must be normalized as shown in eq.6.10. We use hardware counters to
count the number of loads and stores. The number of iterations is provided by the OpenMP
runtime library, which is in charge of scheduling iterations (work) among threads. This is
done by a wrapper of the OpenMP runtime library which intercept OpenMP calls.

rt tot memOp = (PAPI LD INS+PAPI SR INS)/#iters (6.10)

Third, we obtain the memory footprint per iteration by applying the representative ratio
(eq.6.9) from the traced workloads to the rt tot memOp (eq. 6.10).

rt footprint = rt tot memOp× footprint ratio (6.11)

6.4.3 Estimation of execution time for all configurations at runtime

After the characterization of small workloads to determine the parallel regions memory
footprint, we obtain the current execution time for the first execution of the parallel region
with the maximum concurrency (maxPar iterTime on maxCores configuration). The total
parallel region execution time is normalized to express iteration execution time.

Given that a loop iteration is the minimum work unit in an OpenMP parallel loop, the
iteration execution time should be constant for any thread configuration in the absence of
memory contention.

We consider the iteration execution time as the minimal execution unit, and this is because
parallel loops in OpenMP express an SPMD paradigm. Therefore, the computation time for
this unit should be constant, and that holds true while there is no memory contention.

By using the maxPar iterTime and estimating the ideal execution time, we propose an

Chapter 6 97

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

heuristic to determine the execution time for all the configurations of threads in a multicore
multisocket system. Additionally, this heuristic allows to estimate execution times for different
thread distribution policies.

First, to estimate the sequential execution time for the current workload, we use the
reference values obtained along the characterization of small workloads. We use serial
execution times obtained from at least three traced workloads (Eq. 6.12 and 6.13). We
assume a high correlation coefficient between memory footprint and sequential execution
time. To do that, we obtain the coefficients of a linear regression function from the three
characterized small workload considering the correlation of their sequential execution time
and their memory footprint, described as function (eq.6.14). Using the lineal regression
function, we interpolate the sequential execution time for the current footprint (rt f oot print).

sample times = {execTime wkld 1,execTime wkld 2,execTime wkld 3}; (6.12)

sample footprint = {footprint wkld 1, footprint wkld 2, footprint wkld 3}; (6.13)

ideal iterationTime = F(sample times,sample footprint, rt footprint); (6.14)

Second, we identify the iteration time (eq.6.16) for a number of threads configuration
regarding its occupation on the LLC. To do this, we determine the level of contention at
the LLC (eq.6.15). We assume the iteration time is constant for configurations with no
contention, and iteration time is going to increase up to maxPar iterTime for configurations
with contention, starting from the first configuration of number of threads that overfills the
LLC (f irst contention, eq.6.17). As described in algorithm 2 we use a linear regression
function to interpolate between the last constant iteration time point and the maximum
iteration time point (provided at runtime).

concurrent memory = footprint×num threads (6.15)

iterationTime =

constant concurrent memory < cacheSize

G(last constant,max iterTime) concurrent memory≥ cacheSize
(6.16)

first contention = min(nt) ; where concurrent memory≥ cacheSize (6.17)

We use the estimation of iterationTime for a given thread distribution policy, which is
the description of how threads are binded to processors for the current system. For example, a

Chapter 6 98

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

compact distribution places threads in closer cores, while a scattered policy distributes them
as evenly as possible across the entire system.

Algorithm 2 shows the steps to estimate all the iteration times for a given distribution
policy.

Algorithm 2 Estimation of iteration time for all possible number of threads using a particular
scheduling policy. sched(x) is a function that returns the last assigned processor id., and
interpolate() is a function for a linear regression interpolation.
Data: nt=2
Result: iterationTime[maxCores]

1 iterTime[1] = ideal iterTime
2 final point = {maxPar iterTime, maxCores}
3 while nt ≤ maxCores do
4 proc id = sched(nt)
5 footprint = base footprint * get threads on proc (proc id)
6 if f oot print ≤ cacheSize then
7 iterationTime[nt] = iterTime[nt-1]
8 base point = {iterTime[nt], nt}

else
9 iterationTime[nt] = interpolate(nt, base point, final point)

end
10 increase nt ; increase threads on proc(proc id)

end

Finally, we determine the final execution time (eq. 6.19) for all thread configurations by
transforming iteration times into parallel region execution times. To do this, we apply eq.
6.18 to determine the maximum number of iterations scheduled by the default policy in an
OpenMP parallel loop (static), and use this value to multiply the iteration time for a given
configuration.

sched iters(nt) = RoundU p(num iters/nt) (6.18)

ExectionTime(nt) = sched iters(nt)× iterationTime(nt) (6.19)

The estimation for different distribution policies can be used in a multicore multisocket
system to identify the configuration that minimizes the execution time.

Chapter 6 99

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

6.5 Experimental Validation

In this section, we apply the proposed methodology on two applications, SP (Solver Pentadi-
agonal) from NAS Benchmark suite, and a version of Stream Benchmark. Both benchmarks
have been selected because they are memory intensive applications which suffer from per-
formance degradation due to memory contention at certain degree of parallelism. This has
been previously proven for SP benchmark showing a benefit from tuning their configuration
of number of threads and thread binding in the previous evaluation. The stream benchmark
has been modified in order to meet the assumptions in section 6.2.

The benchmarks have been evaluated on the hardware architectures described in Table
6.1. The systems are compute nodes from Marenostrum supercomputer at BSC (Barcelona
Supercomputing Center) and SuperMUC supercomputer from LRZ (Leibniz Supercomputing
Center).

Table 6.1: Description of system architectures for performance evaluation

MN3 node (BSC) Fat Node (LRZ) Thin Node (LRZ)
Proc. Name Xeon E5-2670 Xeon E7-4870 Xeon E5-2680

Family Sandy Bridge-EP Westmere-EX Sandy Bridge-EP
Frequency 2.6GHz 2.4GHz 2.7GHz

Sockets per node 2 4 2
LLC size per socket 20MB 30MB 20MB

System Memory 32GB 256GB 32GB

6.5.1 Obtaining memory footprints and execution times

To apply the performance model at runtime, the characterization of the memory footprint and
the sequential iteration time for small workloads are required for both applications.

On the one hand, SP generates a complex memory access pattern. To obtain the memory
footprint, we have traced the application using small workloads to obtain the spatial access
pattern. The workloads are defined as classes and are associated to a problem size. Workloads
starts at S (small), continues with W (workstation), and follows with A, B, and C (standard
test problems), and finally classes D, E, and F for large test problems.

First, the benchmarks have been executed with classes S, W, and A, using the pintool to
obtain the memory trace. A second execution with no instrumentation is required to obtain
the iteration execution time. In both cases, the sequential version for each class is executed.

Chapter 6 100

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

Figure 6.2: Full memory trace visualization for x solve parallel region on SP Class W

Figure 6.3: Detailed view of memory trace for x solve parallel region on SP Class W

Chapter 6 101

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

Figure 6.2 provides a visualization of the memory access pattern for the class W, which
performs 10 iterations. Each iteration presents a reutilization pattern as illustrated on 6.3,
where the x-axis represents the temporal access pattern and the y-axis represents the spatial
access pattern. The footprint is evaluated on the spatial access pattern along the full iteration
execution, considering blocks of memory with high degree of reutilization in the temporal
access pattern.

Traces have been processed in the following way to obtain the memory footprint. We start
analyzing the spatial memory pattern by identifying consecutive memory address references
or streams, which afterwards, are combined into clusters of streams with same properties of
size and elements. For SP benchmark, the clustered information within the profile represents
87% of the total memory operations of the iterations for class S, and 92% for classes W and
A.

Finally, Table 6.2 shows the memory footprint (eq. 6.8) computed as the summation of
sizes for every cluster of those with significant reutilization degree, in this case, and average
of more than 4 references per memory element.

On the other hand, Stream Benchmark is a synthetic benchmark used to analyze memory
bandwidth by the execution of four parallel regions performing a repetitive set of point to point
operations in a vector structure. We use a version of the benchmark accessing matrix structures
of 64 rows per 320K elements as described in Table 6.3. The benchmark is configured to
repeat every vector operation 16 times, and parallelism is expressed in the outer loop of the
matrix data access. That is, one iteration is going to perform 320K operations 16 times. In
this case, the memory access pattern is know from the beginning, so we have analytically
defined the memory footprint and validated it through hardware counters.

The footprints for the x solve parallel region from SP Benchmark, and copy and add
parallel regions from Stream Benchmark estimated for a concurrent execution in the experi-
mental systems is described in Table 6.4. The marks show the f irst contention configuration
per processor on the validation system architectures. Figure 6.4 visualizes the concurrent
occupancy with a threadhold set on a 20MB. In this case, Class C overfills the limit on the 6
threads configuration and Class D by only using 1 thread.

Once we have defined the memory footprint for the characterized workloads, we calculate
the coefficients for a linear regression of the relation between the memory footprint and the
execution time of the serial execution, in order to interpolate the ideal execution time for a
new workload.

Chapter 6 102

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

Table 6.2: Preprocessed information from traces of small classes. This information is required to
estimate performance at runtime. The profile information of the memory intensive parallel region
x solve specifies the per cluster memory footprint for one iteration. Besides, inputs for the performance
model such as the cumulative iteration footprint (iterFoot print) and the iteration serial execution time,
are shown.

cluster accesses elems. #streams stream size reutil clust.Size
type 1 424 60 10 480 7.06 4,800B

SP.S type 2 257 60 20 480 4.28 9,600B
type 3 606 60 10 480 10,1 4,800B

iterFootprint 19,200B
seq.iterTime 5.66 s

type 1 1,408 180 34 1,440 7.82 48,960B
SP.W type 2 809 180 68 1,440 4.49 97,920B

type 3 1,950 180 34 1,440 10.83 48,960B
iterFootprint 195,840B
seq.iterTime 67.72 s

type 1 2,556 320 62 2,560 7.98 158,720B
SP.A type 2 1,453 320 124 2,560 4.54 317,440B

type 3 3,518 320 62 2,560 10.99 158,720B
iterFootprint 634,880B
seq.iterTime 240.29 s

Table 6.3: Stream Benchmark configuration, and the iteration footprint estimation per operation

N (vector elements) 320.000

Z (matrix rows) 64

D (Data Size) Bytes 8

ArraySize/ArrayFootprint 2,44MB

MatrixSize 156,25MB

Reaccess(repetitions) 16

copy (c=a) 4,88 MB

scalar (b=scalar*c) 4,88 MB

add (c=a+b) 7,32 MB

triad(a=b+scalar*c) 7,32 MB

Chapter 6 103

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

Table 6.4: Estimation of memory footprint for a concurrent execution of x solve parallel region, where
† f irst contention on MN3 and Thin nodes, and * f irst contention for system Fat node

Benchmark SP Stream
Parallel Region x solve copy add

Workload Class C Class D N=320K elements

1 thread 4MB †*25.3MB 4.88MB 7.32MB
2 threads 8MB 50.59MB 9.77MB 14.65MB
3 threads 12MB 75.89MB 14.65MB †21.97MB
4 threads 16MB 101.19MB 19.53MB 29.30MB
5 threads 20MB 126.49MB †24,41MB * 36.62MB
6 threads †24MB 151.79MB 29.30MB 43.95MB
7 threads 28MB 177.09MB *34.18MB 51.27MB
8 threads * 32MB 101.39MB 39.06MB 58.59MB

...

Figure 6.4: Analysis of concurrent footprint for x solve parallel region for all workload classes in an
architecture with LLC of 20MB

Chapter 6 104

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

6.5.2 Estimating the best configuration at runtime

We proceed to execute the applications for a new workload using the maximum number of
threads. The application is monitored at runtime to evaluate its performance. We assume the
application to be iterative, and the analysis is done after the first iteration.

Firstly, we obtain memory operations rt tot memOp (eq.6.10) from hardware counters
(PAPI LD INS and PAPI SR INS). We apply the maximum f oot print ratio (eq. 6.9) from
the characterized workloads to deduce the current rt f oot print.

Secondly, we estimate the serial execution time for the current workload. We use a linear
regression of the characterized footprint with the serial execution time. Then, this function is
used to interpolate the current footprint and obtain the sequential iteration time estimation.

Figure 6.5 shows a comparison of the measured times against the estimated serial execution
based on the linear regression of the correletation of workload and serial execution time. As
it can be seen in Table 6.5, we estimate the serial execution time with good accuracy (less
than 5% error) except for class S and D. The relative error on class S is about 42% because
its execution time is very small, but its absolute error is less than 3 seconds. For class D, the
error estimation is generated by its memory footprint, which overpasses the LLC size limit
and is expressing contention even with one thread.

Table 6.5: Estimation of serial iteration time in seconds on MN3 with 20MB LLC. The highlighted
cells refer to information obtained on the characterization phase. Serial Estimation time (Est.) is
obtained from an interpolation of a linear regression function between footprints and measured times
for classes S, W, and A

Class Footprint Estimation (s) Measured (s) Relative Error

S 19KB 3.31 5.66 41.56%

W 191KB 71.02 67.72 4.88%

A 620KB 239.34 240.29 0.39%

B 1,638 KB 639.14 633.39 0.91%

C 4,096 KB 1,605.93 1,602.95 0.06%

D 25,907 KB 10,166.47 11,945.82 14.90%

Chapter 6 105

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

Figure 6.5: Comparison of measured and the estimated sequential iteration time using a linear
regression interpolation from classes S, W and A.

(a) Compact distribution (AFF0)

(b) Scattered distribution (AFF1)

Figure 6.6: Estimation of iteration time degradation on x solve parallel region on SP.C

Chapter 6 106

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

We obtain an iteration times by applying the Algorithm 2 using f irst contention values
as identified in Table 6.4. Figures in 6.6 shows a comparison on estimated iteration times for
compact 6.6(a) (AFF0) and scattered 6.6(b)(AFF1) distributions in MN system.

These values are used to obtain the final estimation by applying Eq.6.19 to the iteration
time estimations. The number of iterations is calculated with Eq.6.18.

6.5.3 Experimental Results

This section reports the experimental results for the x solve parallel region from SP benchmark
Class C, and the parallel regions Add and Copy from the stream bencharmk. The results are
provided fro the three MN, T hinNode, and FatNode systems.

It is important to notice that these applications express memory contention, but when the
model is applied in an execution which is not expressing memory contention it provides the
configuration with maximum parallelism.

Stream benchmark is evaluated on a single processor, and the results are shown Figure
6.7, showing the estimated execution times and the measured execution times.

Figure 6.8 shows the results of the execution time estimations compared with the mea-
sured execution times for the SP application. This evaluation considers two different thread
distribution policies (compact and scattered)

The estimations for Stream Benchmark have detected the problem of memory contention in
a single processor, and the execution times estimation provides a similar behaviour compared
to the real application. On these experiments, when selecting the configuration with estimated
minimum execution time, and compared with the minimum execution times for the real
execution, the selected configuration differs at most by 1 thread from the best configuration.
By selecting the model’s provided configuration instead of the maximum threads configuration
is it possible to obtain a maximum speedup of 2.5x.

The different explorations of thread distribution policies in a multisocket environment on
the SP benchmark shows that, with the scattered distribution on 2 processors an improvement
of 2.30x speedup can be achieved using 8 threads (4 threads per processor).

Finally, Table 6.6 shows the summarized comparison of speedups obtained with the
model’s provided configurations and compared with an ideal configuration selection.

Chapter 6 107

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

(a) MN3 – Copy (b) MN3 – Add

(c) SuperMUC Fat Node – Copy (d) SuperMUC Fat Node – Add

(e) SuperMUC Thin Node – Copy (f) SuperMUC Thin Node – Add

Figure 6.7: Comparison of model estimated execution times against real execution times on different
architectures (MN3, SuperMUC Fat and Thin nodes) for parallel regions Copy and Add from the
stream benchmark.

Chapter 6 108

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

(a) MN3 system

(b) SuperMUC Fat node

(c) SuperMUC Thin node

Figure 6.8: Comparison of model estimated execution times against real execution times for parallel
regions x solve for the SP benchmark using distribution policies compact (AFF0) and scattered (AFF1).

Chapter 6 109

PERFORMANCE MODEL BASED ON PROFILING THE MEMORY FOOTPRINT

Table 6.6: Speedup evaluation of the selected configuration compared with best configuration.

Benchmark
Parallel MN3 Thin Node Fat Node
Region Selected Best Selected Best Selected Best

Stream Add
2th 3th 2th 3th 4th 3th

1.28x 1.41x 1.14x 1.23x 1.28x 1.49x

Stream Copy
4th 4th 6th 4th

1.97x 1.88x 1.28x 1.49x

SP.C x solve
10th 8th 10th 9th 27th 24th
2.21x 2.30x 1.98x 1.99x 2.5x 3.27x

6.6 Summary

The increasing number of cores in current multicore processors causes severe scalability
problems in the cache hierarchy. Memory intensive applications can experience performance
degradation on parallel region execution when increasing the number of threads for some
architectures. The analysis of application characteristics can expose latent performance
conflicts with the memory hierarchy.

In this chapter, we have defined a new model based on a pre-characterization of the
application for small workloads with the aim of reducing the number of iterations required for
characterizing the performance at runtime. This model is capable of estimating a convenient
configuration of number of threads and thread distribution policy after 1 iteration of the
application. We obtain a characterization of the memory footprint provided by a tracing the
memory access pattern of the application, and we apply a performance model to provide a
configuration of number of threads that minimizes performance degradation due to memory
contention for any workload.

The SP application from the NAS Parallel Benchmarks, and a version of Stream Bench-
mark have been characterized using a tracing tool to obtains the memory trace on parallel
regions. By analyzing the memory access pattern it is possible to obtain the most significant
part of the memory which would benefit performance by preserving this memory on the LLC.

The methodology has been applied for different workloads of the applications and the
estimations provided by the model have selected configuration minimizing the effect of
performance degradation. The experimental results show a maximum 2.5x speedup on the
class C compared with the default configuration using all the available threads.

Chapter 6 110

7
Conclusions

”His soul swooned slowly as he heard the snow falling faintly through

the universe and faintly falling, like the descent of their last end, upon all

the living and the dead.”

The dead (Dubliners) - James Joyce

This chapter presents the experiences gained and conclusions derived from this thesis. We
also describe the viable open lines that can be considered in the future in order to provide
further strategies and performance models in the area of dynamic tuning of OpenMP parallel
applications.

111

CONCLUSIONS

7.1 Conclusions

The defining aspect of this thesis is the definition of a methodology in order to develop perfor-
mance models and tuning strategies for OpenMP applications (Chapter 3). The methodology
has been successfully applied on the context of a performance factor based on memory con-
tention on multicore system architectures, and two performance models have been provided.
A first model based on runtime characterization (Chapter 5) and a second model based on
memory access pattern analysis from memory traces (Chapter 6).

We initially have had to identify a relevant performance factor based on performance
degradation and thread imbalance. This has been done by characterizing and analyzing
a representative set of applications of the HPC environments, such as the NAS parallel
benchmarks suite. Through the performance analysis of this set of applications we have
identified and evaluated the impact in performance on different hardware architectures. A
tuning strategy and an initial performance model have been defined in Chapter 4

We have put our efforts on the most relevant performance factor detected which occurs in
memory intensive applications such as the SP, MG, LU benchmarks. In these applications,
memory contention is originated by the bottleneck generated between application’s memory
access patterns and the memory subsystem in the hardware architecture. The final effect is that
performance is affected by memory contention, and furthermore, in some cases a performance
degradation, like in the case of SP application.

In order to displace the memory contention bottleneck it would be desirable to provide a
better architecture, however, this is not always possible, because sometimes the performance
problem inherent to the context. Therefore, we have evaluated and observed the persistence
of the performance memory contention problem on different available architectures, from
workstations to highly scalable multicore systems.

Once the performance factor based on memory contention has proven to be relevant, we
have considered the possibilities of alleviating the performance factor by setting a proper
configuration of the environment. This is done by configuring the runtime execution using a
proper number of threads and threads distribution along the shared memory system to avoid
performance degradation.

Following this, it is possible to configure the application of number of threads and threads
distribution to avoid performance degradation but, initially, this configuration it is not know.
We have used an initial performance model based on a runtime exhaustive characterization in
order to explore the possibilities of tuning the application at runtime. This approach can be
performed in iterative applications by sacrificing the initial iterations to perform an evaluation

Chapter 7 112

CONCLUSIONS

of every configuration. Once the characterization is finished, the best configuration is selected
and the application tune for the rest of the execution. This strategy has been implemented
using a function interposition library of the OpenMP interface. Even though the reported
overheads were less than 5%, the characterization phase of the strategy is not scalable.

After evaluating the viability of using a tuning tool to modify the OpenMP runtime
execution, a deeper analysis has been developed in order to define a performance model that
provides a configuration of number of threads and thread distribution based on the analysis of
last level cache misses (LLC˙misses).

The performance model based on runtime characterization (Chapter 5) reduces the char-
acterization phase requirements by analyzing execution times and total cache misses in a
single socket to provide the best configuration for high scalable systems such as the multicore
multisocket nodes from clusters and supercomputer centres.

This model has been evaluated in the T7500 node at the UAB and on nodes FatNode
and ThinNode from SuperMUC supercomputer at the LRZ centre. The model has been
able to detect performance degradation by providing configurations improving the overall
performance and with a maximum speedup of 2.74x for the 20 threads configuration using 5
threads per socket.

The defined performance model based on runtime characterization has some drawbacks.
The model provides two estimation threshold and the real execution is supposed to be between
these values. We have observed that the real execution tends to be close to one of the
estimations. To determine the estimation it is possible to average this distance to determine a
point in the middle. However, in some cases the distance between the boundary values is high
making the estimation inaccurate.

To determine the closest threshold to provide a not supervised version of the model with
the same degree of accuracy, we started analyzing the memory access pattern, which at the
end turned into a different performance model.

The second model is based on a pre-characterization of the application using a tracing
tool (pintool) developed with the PIN binary dynamic instrumentation tool (Chapter 6). This
methodology requires a small set of traces to obtain the memory footprint based on the
principle of identifying consecutive regions with a relevant ratio of reutilization.

We use the memory footprint to identify, for a concurrent execution, the amount of
reaccessed data that benefits from being preserved in the LLC. The model uses the data
occupancy size to determine where iteration time is going to degradate performance. The
iteration time is reconstructed for the OpenMP loop construct by using a static scheduling

Chapter 7 113

CONCLUSIONS

distribution of iteration per threads. This model also allows the exploration of different
configurations, and through the exploration of different distribution affinities a configuration
is provided. Finally, the selected configuration improves performance by minimizing the
effect of memory over occupation and reducing the LLC misses.

This model has been evaluated on nodes from the Marenostrum supercomputer and Thin
and Fat Nodes from SuperMUC supercomputer. The maximum speedup obtained is 2.5x
using a 27 threads on an scattered configuration.

Finally, the results of both models have proven to detect memory contention and provide
a configuration that improves performance on memory contention compared with a default
execution using the maximum number of threads. Furthermore, the logic of the models can
be easily integrated within the tuning tool based on library interposition with small changes.

7.2 Future Work

The work presented in this thesis will allow for further investigation into specific dynamic
tuning techniques for OpenMP environments in multicore systems.

We have classified some relevant topics that need to considered in order to increase the
scope of this research;

• New Architectures; The most directly related extension is to evaluate how to adapt
or apply the models on system a architectures with high scalability, which can
be designed with a different memory hierarchy subsystem such as Intel Xeon Phi.
The Knights Landing processor provides 72 Silvermont-based cores in a 2D mesh
interconnection network on chip.

On the other hand, taking into consideration efficient computing, processors such as
the big.LITTLE technology from ARM, which provides heterogeneous multicore
processors with two sets of cores, a pair of more powerful Cortex-A15 out-of-order
superscalar processors and a a couple of Cortex-A7 in-order processor. These
systems would be benefited by applying scheduling strategies in order to select one
or the other cores, depending on the requirements of the application, for example, in
the case of memory contention.

• Task parallelism; In the development of this thesis we have considered and eval-
uated the possibility of using the performance model for improving the dynamic
schedule of tasks. Our model’s memory footprint has the same granularity as a task,

Chapter 7 114

CONCLUSIONS

therefore it can be easily extended to memory task footprint. It is possible to use the
memory footprint to label task depending on the memory requirements. In our case,
the models limit the scalability of the application in order to relieve the concurrent
footprint at LLC. However, the concept of memory footprint can be extended by
scheduling compute intensive tasks on the unused cores.

• Programming model; Following the previous idea, the concept of memory foot-
print can also be used in the scope of distributed memory models such as MPI
(shared memory MPI threads). The model can also be extended to the upper mem-
ory subsystem with the aim of limiting the memory swapping on disk.

• Simulation; Simulation can be considered as the space between emulation and
performance modeling. A simulator could let the user to decide the accuracy
and precision of its simulation, at the cost of time. Therefore, some simulators
assume some simplifications based on using performance models to estimate some
behaviours. This sacrifices accuracy but also decrease the simulation time. We
believe our model based on memory footprint can provide some help in order to
perform simulations. As an example, our memory tracing tool is based on the
TaskSim simulation infrastructure [85] for simulating applications based on the
OmpSs programming model, and could be easily integrated within.

• Hardware support; During the development of this thesis we have seen that hard-
ware counters are not always helpful in order to understand the application’s be-
haviour. We believe that hardware performance monitoring tools can provide far
more complex hints and orientations. We have discussed the possibility of develop-
ing such elements, for example, in our case, to provide a hardware support unit to
provide the memory footprint at runtime with a small overhead.

7.3 List of publications

The work and motivation for this thesis have been published in the following papers:

1. C.Allande, J.Jorba, E.César, and A.Sikora. ”Metodologı́a para la sintonización
de aplicaciones OpenMP en entornos multicore” in XXII Jornadas de Paralel-
lismo, pp. 649-654. 2011.

Chapter 7 115

CONCLUSIONS

In this paper, we define a methodology to identify performance factors for OpenMP
applications. We present performance factors based on scheduling strategies for
iterative parallel loop and tasks parallel applications. Data parallelism is analyzed
using an embarrassingly parallel application based on image segmentation. In addi-
tion, performance factors for task parallelism are studied using different scheduling
strategies on the recursive generation of high umbalance task tree.

2. C.Allande, J.Jorba, A.Sikora, and E.César. ”A Methodology for generating
Dynamic Tuning strategies in Multicore Systems” in Proceeding of the Inter-
national Conference on Parallel and Distributed Processing Techniques and
Applications, Volume II pp 780-786, 2012.

This paper presents a methodology to systematically develop performance optimiza-
tion strategies for specific application patterns taking into consideration architecture
characteristics. This describes the methodology developed and shows how it can be
used to expose performance factors that can be dynamically tuned on an OpenMP
application.

3. C.Allande, J.Jorba, A.Sikora, and E.César. ”A Performance Model for OpenMP
Memory Bound Applications in Multisocket Systems”, in Proceeding of the In-
ternational Conference on Computational Science, Volume 29, pp.2208-2218,
2014.

In this paper, we present a performance model to select the number of threads
and affinity distribution for parallel regions on OpenMP applications executed in
multisocket multicore processors. The model is based on a characterization of
the performance of parallel regions to estimate cache misses and execution time.
Estimated execution time is used to select a set of configurations in order to minimize
the impact of memory contention, achieving significant improvements compared
with a default configuration using all threads.

4. C.Allande, J.Jorba, A.Sikora, E.César. ”Performance model based on memory
footprint for OpenMP memory bound applications”, to appear in Proceeding
of the International Conference on Parallel Computing. 2015.

This paper presents a performance model to estimate the execution time for a
number of thread and affinity distribution for an OpenMP application parallel region
based on runtime hardware counters information and the estimation of performance

Chapter 7 116

CONCLUSIONS

degradation due to memory contention generated at last level cache (LLC). The
model considers features obtained from the memory access pattern and the memory
footprint. The proposed methodology identifies the thread configurations which
maximize the application performance by preventing memory contention on main
memory.

7.4 Acknowledgements

This work has been partially supported by the MICINN-Spain under contracts TIN2007-
64974, TIN2011-28689 and TIN2012-34557, the European Research Council under the
European Union’s 7th FP, the ERC Grant Agreement number 321253, and the predoctoral
research grants (PIF 2009-2010) from the CAOS department at the UAB.

In addition, the following grants were received during the course of this work:

• ICTS 2012; access to the resources of the High Performance Computing resouces
at the CEntro de Supercomputación de GAlicia (CESGA) for the project ”Sin-
tonización dinámica de aplicaciones en entornos de memoria compartida”.

• BE-DGR 2012, ”Beca para estancias predoctorales de corta duración en el ex-
tranjero” provided by the Agencia de Gestió i d’Ajuts Universitaris i de Recerca
(AGAUR). Part of this grant involved a research stay at the Munich Network Man-
agement Team (MNM-Team) at the Ludwig-Maximillians-Universität (LMU).

The authors thankfully acknowledge the resources and technical assistance provided by
Munich Network Management Team (MNM-Team), the Leibniz Supercomputing Centre
(LRZ), the Barcelona Supercomputing Center (BSC), DPCS-UOC (Distributed, Parallel and
Collaborative Systems Research Group) from Universitat Oberta de Catalunya (UOC), and
the CAOS department at the UAB.

Chapter 7 117

César Allande. PhD Thesis 2015.

118

Bibliography

[1] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
L. Bao, J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff, W. Anderson,
E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook, “Tile64 -
processor: A 64-core soc with mesh interconnect,” in Solid-State Circuits Conference,

2008. ISSCC 2008. Digest of Technical Papers. IEEE International, Feb 2008, pp.
88–598.

[2] A. Duran and M. Klemm, “The intel many integrated core architecture,” in High Per-

formance Computing and Simulation (HPCS), 2012 International Conference on, July
2012, pp. 365–366.

[3] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-memory
programming,” Computational Science Engineering, IEEE, vol. 5, no. 1, pp. 46 –55,
jan-mar 1998.

[4] C. Pheatt, “Intel® threading building blocks,” J. Comput. Sci. Coll., vol. 23, no. 4,
pp. 298–298, Apr. 2008. [Online]. Available: http://dl.acm.org/citation.cfm?id=1352079.
1352134

[5] “The openacc application programming interface, version 2.0.” http://www.openacc.org/
sites/default/files/OpenACC.2.0a 1.pdf, accessed: 2015-10-1.

[6] R. Blumofe and et al., “Cilk: an efficient multithreaded runtime system,” SIGPLAN Not.,
vol. 30, pp. 207–216, August 1995.

[7] A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-Schaffer, “Modeling perfor-
mance variation due to cache sharing,” in High Performance Computer Architecture

(HPCA2013), 2013 IEEE 19th International Symposium on, Feb 2013, pp. 155–166.

119

http://dl.acm.org/citation.cfm?id=1352079.1352134
http://dl.acm.org/citation.cfm?id=1352079.1352134
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf

BIBLIOGRAPHY

[8] C.-K. Luk and et al., “Pin: building customized program analysis tools with dynamic
instrumentation,” SIGPLAN Not., vol. 40, pp. 190–200, June 2005.

[9] G. Lee and et al., “Dynamic binary instrumentation and data aggregation on large scale
systems,” International Journal of Parallel Programming, vol. 35, pp. 207–232, 2007.

[10] “Top500 supercomputer list,” http://http://www.top500.org/, accessed: 2015-10-1.

[11] J. Tendler, J. Dodson, J. Fields, H. Le, and B. Sinharoy, “Power4 system microarchi-
tecture,” IBM Journal of Research and Development, vol. 46, no. 1, pp. 5–25, Jan
2002.

[12] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and J. Planas,
“Ompss: a proposal for programming heterogeneous multi-core architectures,” Parallel

Processing Letters, vol. 21, no. 02, pp. 173–193, 2011.

[13] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé, and J. Labarta, “Nanos
mercurium: a research compiler for openmp,” in Proceedings of the European Workshop

on OpenMP, vol. 8, 2004.

[14] “Bsc performance tools, paraver internals and details.” http://www.bsc.es/ssl/apps/
performanceTools/files/docs/W2 Paraver details.pdf, accessed: 2015-09-22.

[15] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool to visualize and analyze
parallel code,” in Proceedings of WoTUG-18: Transputer and occam Developments,
vol. 44. mar, 1995, pp. 17–31.

[16] “Intel xeon phi coprocessor 5110p. 60 core.” http://ark.intel.com/es-es/products/71992/
Intel-Xeon-Phi-Coprocessor-5110P-8GB-1 053-GHz-60-core, accessed: 2015-09-14.

[17] F. Baskett, T. Jermoluk, and D. Solomon, “The 4d-mp graphics superworkstation:
computing+graphics=40 mips+mflops and 100000 lighted polygons per second,” in
Compcon Spring ’88. Thirty-Third IEEE Computer Society International Conference,

Digest of Papers, Feb 1988, pp. 468–471.

[18] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” SIGARCH Comput. Archit.

News, vol. 12, no. 3, pp. 348–354, Jan. 1984. [Online]. Available: http:
//doi.acm.org/10.1145/773453.808204

Chapter 7 120

http://http://www.top500.org/
http://www.bsc.es/ssl/apps/performanceTools/files/docs/W2_Paraver_details.pdf
http://www.bsc.es/ssl/apps/performanceTools/files/docs/W2_Paraver_details.pdf
http://ark.intel.com/es-es/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core
http://ark.intel.com/es-es/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core
http://doi.acm.org/10.1145/773453.808204
http://doi.acm.org/10.1145/773453.808204

BIBLIOGRAPHY

[19] G. Delzanno, “Automatic verification of parameterized cache coherence protocols,” in
Computer Aided Verification. Springer, 2000, pp. 53–68.

[20] J. R. Goodman and H. H. J. Hum, “Mesif: A two-hop cache coherency protocol for
point-to-point interconnects,” University of Auckland, Tech. Rep, 2009.

[21] C. P. Thacker and L. C. Stewart, “Firefly: A multiprocessor workstation,” SIGOPS

Oper. Syst. Rev., vol. 21, no. 4, pp. 164–172, Oct. 1987. [Online]. Available:
http://doi.acm.org/10.1145/36204.36199

[22] E. M. McCreight, “The dragon computer system,” in Microarchitecture of VLSI Com-

puters. Springer, 1985, pp. 83–101.

[23] W. Starke, J. Stuecheli, D. Daly, J. Dodson, F. Auernhammer, P. Sagmeister, G. Guthrie,
C. Marino, M. Siegel, and B. Blaner, “The cache and memory subsystems of the ibm
power8 processor,” IBM Journal of Research and Development, vol. 59, no. 1, pp.
3:1–3:13, Jan 2015.

[24] A. Intel, “Introduction to the intel quickpath interconnect,” White Paper, 2009.

[25] H. T. Consortium et al., “Hypertransport 1,” O Link Specification, 2003.

[26] “big.little technology: The future of mobile,” https://www.arm.com/files/pdf/big
LITTLE Technology the Futue of Mobile.pdf, accessed: 2015-10-1.

[27] “Mont-blanc, european approach towards energy efficient high performance,” https:
//www.montblanc-project.eu/, accessed: 2015-10-1.

[28] “The openmp specification, version 3.0.” http://www.openmp.org/mp-
documents/spec30.pdf, accessed: 2015-10-1.

[29] “About the openmp arb and openmp.org.” http://openmp.org/wp/about-openmp/, ac-
cessed: 2015-09-22.

[30] D. P. Siewiorek and P. J. Koopman, The architecture of supercomputers: Titan, a case

study. Academic Press, 2014.

[31] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface to hardware
performance counters,” in In Proceedings of the Department of Defense HPCMP Users

Group Conference, 1999, pp. 7–10.

Chapter 7 121

http://doi.acm.org/10.1145/36204.36199
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.montblanc-project.eu/
https://www.montblanc-project.eu/
http://openmp.org/wp/about-openmp/

BIBLIOGRAPHY

[32] J. McCalpin, “Stream benchmark,” Link: www. cs. virginia. edu/stream/ref. html# what,
1995.

[33] “Lawrence livermore national laboratory. stride sequoia benchmarks source code.” https:
//asc.llnl.gov/sequoia/benchmarks/, accessed: 2015-09-22.

[34] L. W. McVoy, C. Staelin et al., “lmbench: Portable tools for performance analysis.” in
USENIX annual technical conference. San Diego, CA, USA, 1996, pp. 279–294.

[35] J. M. Bull and D. O’Neill, “A microbenchmark suite for openmp 2.0,” SIGARCH Comput.

Archit. News, vol. 29, pp. 41–48, December 2001.

[36] A. Marowka, “Empirical analysis of parallelism overheads on cmps,” in
Parallel Processing and Applied Mathematics, ser. Lecture Notes in Computer
Science, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski, Eds.
Springer Berlin Heidelberg, 2010, vol. 6067, pp. 596–605. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-14390-8 62

[37] C. Liao, Z. Liu, L. Huang, and B. Chapman, “Evaluating openmp on chip multithreading
platforms,” in OpenMP Shared Memory Parallel Programming, ser. Lecture Notes in
Computer Science, M. Mueller, B. Chapman, B. de Supinski, A. Malony, and M. Voss,
Eds. Springer Berlin Heidelberg, 2008, vol. 4315, pp. 178–190. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-68555-5 15

[38] A. Duran and et al., “Barcelona openmp tasks suite: A set of benchmarks targeting the
exploitation of task parallelism in openmp,” in Parallel Processing, 2009. ICPP ’09.

International Conference on, sept. 2009, pp. 124 –131.

[39] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed monitoring
system: design, implementation, and experience,” Parallel Computing, vol. 30, no. 7,
pp. 817–840, 2004.

[40] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight performance-oriented tool
suite for x86 multicore environments,” CoRR, vol. abs/1004.4431, 2010.

[41] A. Kleen, “A numa api for linux,” Novel Inc, 2005.

[42] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph execution
profiler,” in SIGPLAN ’82: Proceedings of the 1982 SIGPLAN symposium on Compiler

construction. New York, NY, USA: ACM, 1982, pp. 120–126.

Chapter 7 122

https://asc.llnl.gov/sequoia/benchmarks/
https://asc.llnl.gov/sequoia/benchmarks/
http://dx.doi.org/10.1007/978-3-642-14390-8_62
http://dx.doi.org/10.1007/978-3-540-68555-5_15

BIBLIOGRAPHY

[43] S. Godard, “Sysstat: System performance tools for the linux os, 2004.”

[44] K. Fürlinger and M. Gerndt, “ompp: A profiling tool for openmp,” in
OpenMP Shared Memory Parallel Programming, ser. Lecture Notes in Computer
Science, M. Mueller, B. Chapman, B. Supinski, A. Malony, and M. Voss, Eds.
Springer Berlin Heidelberg, 2008, vol. 4315, pp. 15–23. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-68555-5 2

[45] J. Vetter and C. Chambreau, “mpip: Lightweight, scalable mpi profiling,” URL

http://mpip. sourceforge. net, 2005.

[46] J. Mellor-Crummey, R. J. Fowler, G. Marin, and N. Tallent, “Hpcview: A tool for
top-down analysis of node performance,” The Journal of Supercomputing, vol. 23, no. 1,
pp. 81–104, 2002.

[47] R. Kufrin, “Perfsuite: An accessible, open source performance analysis environment for
linux,” in 6th International Conference on Linux Clusters: The HPC Revolution, vol.
151. Citeseer, 2005, p. 05.

[48] J. Borrill, J. Carter, L. Oliker, D. Skinner, and R. Biswas, “Integrated performance
monitoring of a cosmology application on leading hec platforms,” in Parallel Processing,

2005. ICPP 2005. International Conference on. IEEE, 2005, pp. 119–128.

[49] W. Gropp and K. Buschelman, “Fpmpi-2 fast profiling library for mpi,” www-unix. mcs.

anl. gov/fpmpi, vol. 8, 2006.

[50] “Intel vtune amplifier.” https://software.intel.com/en-us/intel-vtune-amplifier-xe, ac-
cessed: 2015-09-22.

[51] M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix, and W. E.
Nagel, “Developing scalable applications with vampir, vampirserver and vampirtrace.”
in PARCO, vol. 15. Citeseer, 2007, pp. 637–644.

[52] “Bsc performance tools, extrae.” http://www.bsc.es/computer-sciences/extrae, accessed:
2015-09-22.

[53] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach, “Vampir:
Visualization and analysis of mpi resources,” Supercomputer, vol. 12, pp. 69–80, 1996.

Chapter 7 123

http://dx.doi.org/10.1007/978-3-540-68555-5_2
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.bsc.es/computer-sciences/extrae

BIBLIOGRAPHY

[54] M. Schulz, J. Galarowicz, D. Maghrak, W. Hachfeld, D. Montoya, and S. Cranford,
“Open— speedshop: An open source infrastructure for parallel performance analysis,”
Scientific Programming, vol. 16, no. 2-3, pp. 105–121, 2008.

[55] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. R.
Tallent, “Hpctoolkit: Tools for performance analysis of optimized parallel programs,”
Concurrency and Computation: Practice and Experience, vol. 22, no. 6, pp. 685–701,
2010.

[56] S. S. Shende and A. D. Malony, “The tau parallel performance system,” The International

Journal of High Performance Computing Applications, vol. 20, pp. 287–331, 2006.

[57] M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám, D. Becker, and B. Mohr, “The scalasca per-
formance toolset architecture,” Concurrency and Computation: Practice and Experience,
vol. 22, no. 6, pp. 702–719, 2010.

[58] E. Cesar, A. Moreno, J. Sorribes, and E. Luque, “Modeling master/worker
applications for automatic performance tuning,” Parallel Computing, vol. 32,
no. 7?8, pp. 568 – 589, 2006, algorithmic Skeletons. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819106000263

[59] A. Guevara, E. Cesar, J. Sorribes, T. Margalef, E. Luque, and A. Moreno, “A performance
tuning strategy for complex parallel application,” in Parallel, Distributed and Network-

Based Processing (PDP), 2010 18th Euromicro International Conference on. IEEE,
2010, pp. 103–110.

[60] A. Morajko, A. Martı́nez, E. César, T. Margalef, and J. Sorribes, “Mate: toward scalable
automated and dynamic performance tuning environment,” in Applied Parallel and

Scientific Computing. Springer, 2012, pp. 430–440.

[61] A. Morajko, O. Morajko, T. Margalef, and E. Luque, “Mate: Dynamic performance
tuning environment,” in Euro-Par 2004 Parallel Processing. Springer, 2004, pp.
98–107.

[62] C. Ţăpuş, I.-H. Chung, and J. K. Hollingsworth, “Active harmony: Towards
automated performance tuning,” in Proceedings of the 2002 ACM/IEEE Conference on

Supercomputing, ser. SC ’02. Los Alamitos, CA, USA: IEEE Computer Society Press,
2002, pp. 1–11. [Online]. Available: http://dl.acm.org/citation.cfm?id=762761.762771

Chapter 7 124

http://www.sciencedirect.com/science/article/pii/S0167819106000263
http://dl.acm.org/citation.cfm?id=762761.762771

BIBLIOGRAPHY

[63] R. L. Ribler, H. Simitci, and D. A. Reed, “The autopilot performance-directed
adaptive control system,” Future Generation Computer Systems, vol. 18, no. 1, pp.
175 – 187, 2001. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V06-43V9S99-K/2/ef6ab9580b90ed17bc2c5d29e62b882b

[64] B. Wicaksono and et al., “A dynamic optimization framework for openmp,” in OpenMP

in the Petascale Era, ser. LLNCS. Springer Berlin / Heidelberg, 2011, vol. 6665, pp.
54–68.

[65] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and
S. Weeratunga, “The Nas Parallel Benchmarks,” International Journal of High

Performance Computing Applications, vol. 5, no. 3, pp. 63–73, 1991. [Online].
Available: http://online.sagepub.comhttp://hpc.sagepub.com/content/5/3/63.abstract

[66] S. Olivier and et al., “Uts: An unbalanced tree search benchmark,” in Languages and

Compilers for Parallel Computing, ser. LLNCS. Springer Berlin / Heidelberg, 2007,
vol. 4382, pp. 235–250.

[67] A. Duran, J. Corbalan, and E. Ayguade, “An adaptive cut-off for task parallelism,”
in High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008.

International Conference for, nov. 2008, pp. 1 –11.

[68] S. Olivier and J. Prins, “Evaluating openmp 3.0 run time systems on unbalanced task
graphs,” in Evolving OpenMP in an Age of Extreme Parallelism, ser. LLNCS. Springer
Berlin / Heidelberg, 2009, vol. 5568, pp. 63–78.

[69] S. Williams and et al., “Roofline: an insightful visual performance model for multicore
architectures,” Commun. ACM, vol. 52, pp. 65–76, Apr. 2009.

[70] K. Fuerlinger and M. Gerndt, “Analyzing overheads and scalability characteristics of
openmp applications,” in High Performance Computing for Computational Science-

VECPAR 2006. Springer, 2007, pp. 39–51.

[71] F. Broquedis, N. Furmento, B. Goglin, R. Namyst, and P.-A. Wacrenier, “Dynamic
task and data placement over numa architectures: An openmp runtime perspective,”
in Evolving OpenMP in an Age of Extreme Parallelism, ser. Lecture Notes
in Computer Science, M. Müller, B. de Supinski, and B. Chapman, Eds.

Chapter 7 125

http://www.sciencedirect.com/science/article/B6V06-43V9S99-K/2/ef6ab9580b90ed17bc2c5d29e62b882b
http://www.sciencedirect.com/science/article/B6V06-43V9S99-K/2/ef6ab9580b90ed17bc2c5d29e62b882b
http://online.sagepub.comhttp://hpc.sagepub.com/content/5/3/63.abstract

BIBLIOGRAPHY

Springer Berlin Heidelberg, 2009, vol. 5568, pp. 79–92. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02303-3 7

[72] J. Corbalan, A. Duran, and J. Labarta, “Dynamic load balancing of mpi+openmp
applications,” in Parallel Processing, 2004. ICPP 2004. International Conference on,
Aug 2004, pp. 195–202 vol.1.

[73] J. Li, J. Shu, Y. Chen, D. Wang, and W. Zheng, “Analysis of factors affecting execution
performance of openmp programs,” Tsinghua Science & Technology, vol. 10, no. 3, pp.
304–308, 2005.

[74] A. Duran, J. Corbalán, and E. Ayguadé, “Evaluation of openmp task scheduling strate-
gies,” in OpenMP in a new era of parallelism. Springer, 2008, pp. 100–110.

[75] B. Tudor and Y.-M. Teo, “A practical approach for performance analysis of shared-
memory programs,” in Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE

International, 2011, pp. 652–663.

[76] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread cache contention
on a chip multi-processor architecture,” in Proceedings of the 11th Int. Symp. on HPCA,
ser. HPCA ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 340–351.

[77] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared resource contention
in multicore processors via scheduling,” in Proceedings of the fifteenth edition of ASP-

LOS on Architectural support for programming languages and operating systems, ser.
ASPLOS XV. New York, NY, USA: ACM, 2010, pp. 129–142.

[78] T. Dwyer, A. Fedorova, S. Blagodurov, M. Roth, F. Gaud, and J. Pei, “A practical method
for estimating performance degradation on multicore processors, and its application to
hpc workloads,” in Proceedings of the ICHPC, Networking, Storage and Analysis, ser.
SC ’12. Los Alamitos, CA, USA: IEEE Computer Society Press, 2012, pp. 83:1–83:11.

[79] M. Ghosh, R. Nathuji, M. Lee, K. Schwan, and H. Lee, “Symbiotic scheduling for
shared caches in multi-core systems using memory footprint signature,” in Parallel

Processing (ICPP), 2011 International Conference on, Sept 2011, pp. 11–20.

[80] S. Biswas, B. De Supinski, M. Schulz, D. Franklin, T. Sherwood, and F. Chong, “Exploit-
ing data similarity to reduce memory footprints,” in IPDPS, 2011 IEEE International,
May 2011, pp. 152–163.

Chapter 7 126

http://dx.doi.org/10.1007/978-3-642-02303-3_7

BIBLIOGRAPHY

[81] S. Jana and V. Shmatikov, “Memento: Learning secrets from process footprints,” in
Security and Privacy (SP), 2012 IEEE Symposium on, May 2012, pp. 143–157.

[82] C. Ding, X. Xiang, B. Bao, H. Luo, Y.-W. Luo, and X.-L. Wang, “Performance metrics
and models for shared cache,” Journal of Computer Science and Technology, vol. 29,
no. 4, pp. 692–712, 2014.

[83] B. Brett, P. Kumar, M. Kim, and H. Kim, “Chip: A profiler to measure the effect of
cache contention on scalability,” in IPDPSW, 2013 IEEE 27th International, May 2013,
pp. 1565–1574.

[84] J. R. Tramm and A. R. Siegel, “Memory bottlenecks and memory contention in multi-
core monte carlo transport codes,” Annals of Nuclear Energy, 2014.

[85] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero, “Trace-driven
simulation of multithreaded applications,” in Performance Analysis of Systems and

Software (ISPASS), 2011 IEEE International Symposium on. IEEE, 2011, pp. 87–96.

Chapter 7 127

César Allande. PhD Thesis 2015.

	Introduction
	Context
	Motivation
	Objectives
	Contribution
	Thesis outline

	Background
	High performance computing
	Multicore architectures
	State of the art multicore processors

	OpenMP specification
	System characterization, monitoring, and instrumentation tools
	System characterization by benchmarking
	Monitoring tools
	Performance analysis tools
	Dynamic Instrumentation

	Related work
	Summary

	Methodology for developing tuning strategies for OpenMP applications
	Objective
	Methodology
	System characterization
	Analysis of performance factors
	Modeling performance and defining tuning strategies
	Evaluating the impact

	Summary

	Methodology application to a case study
	Methodology application on NAS Parallel Benchmarks
	Context analysis for the identification of performance factors
	System Characterization
	Analysis of performance factors

	Evaluating a strategy for tuning the number of threads
	Context
	Modeling performance and defining tuning strategies
	Evaluating the impact
	Applying the dynamic tuning strategy

	Summary

	Performance model based on runtime characterization
	Introduction
	Objective
	Related work
	Performance Model proposal
	Defining the performance model

	Experimental validation
	Applying the model for the SP application on the T7500 system.
	Selecting a configuration for SP and MG benchmarks on FatNode
	Exploration of the affinity configurations.

	Summary

	Performance model based on profiling the memory footprint
	Introduction
	Objective
	Related work
	Methodology for selecting a configuration to avoid memory contention
	Trace generation and characterization of iteration footprint
	Estimation of memory footprint at runtime
	Estimation of execution time for all configurations at runtime

	Experimental Validation
	Obtaining memory footprints and execution times
	Estimating the best configuration at runtime
	Experimental Results

	Summary

	Conclusions
	Conclusions
	Future Work
	List of publications
	Acknowledgements

	Bibliography

