
 

 

 

 

 

 

 

 
 

PICTURE LANGUAGES GENERATED BY SPLICING AND ASSEMBLING TILES 
 

Anthonath Roslin Sagaya Mary 

 

 
 

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 

de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 
 
 
ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los 

derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices. 
 
 
WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 

can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes. 



Presented by

Anthonath Roslin Sagaya Mary

Picture Languages Generated
by Splicing and Assembling

Tiles

Doctoral Thesis

Supervised by

K. G. Subramanian
Paola Bonizzoni

Co-Supervised by
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Abstract

The extension of the study of formal languages over string case to two
dimensional languages or picture languages has been of interest for long
for its vast applications.

The objective of this thesis concentrates on the study of generation of
Picture language classes by bio-inspired operations namely, ‘Splicing’ and
‘Self-Assembly’ of DNA-Computing. Henceforth the study presented is
given by two formalisms in which former is an extension of String case H-
Splicing with given set(sequence) of Domino Splicing Rules and the later
a new formalism emerging again with Tiling rules (in sequence) which
assemble tiles. Thus Pictures are generated by applying these rules in
columns and rows.

One of the formalism is H-Array Splicing Systems HAS introduced
as an extension of string case also including its restriction languages to
produce language classes Self-Cross Over Array Languages L(ASCO) and
Simple Array Splicing Languages L(SASL) . The Splicing Operation to
cut a context of the strings and paste by concatenation is extended sim-
ilarly to Picture Languages by set of Domino Splicing Rules. These se-
quence of Domino Splicing Rules generate pictures by cutting and pasting
set of initial pictures in columns and rows according to the rules. Various
Picture languages enhancing itself by iterative applications of the rules
are constructed for each classes. And incomparability results are proved
between the classes L(HASL) , L(ASCO) , L(SASL) and 2D-RLG, LOC.
But the classes intersect since we have proved common picture languages.
Also, a Parallel Grammar System based formalism called Splicing Array
Grammar Systems is introduced and studied by obtaining, elegant com-
parisons with string case Regular, CF, CS languages. The comparisons
are done based on its component being 2D-RLG.

Then we also study a cell biology inspired formalism called Pictural
Networks of Evolutionary Processors. We apply contextual insertion, dele-
tion and substitution to the formalism in the process of Picture generation.
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Also, we compare this language class with that of Puzzle grammars. Then
we study some properties of extending pictures to three dimensional no-
tions of recognizability given already.

Another main formalism introduced and studied in the thesis is Tiling
Rule System TRuS . This formalism generates picture by set of tiling rules,
assembling tiles. We have proved that the class of L(TS) (Tiling System,
recognizable language) is contained in TRuS . Also, we prove there exist a
construct of the formalism based on generating pictures in rows or columns
which is equivalent to L(TS) . Thus leading to an interesting notion of
bio-inspired (self-assembling) operation to picture generation.
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Chapter 1

Introduction

1.1 Background

One of the extensions of string language theory is to two-dimensional
languages (picture languages). There has been a continued interest in
adapting the techniques of formal string language theory for developing
methods to study the problem of picture generation and description. As
early as 1964, Narasimhan [35] suggested a syntactic model for the solu-
tion of problems in picture processing where pictures are considered as
connected, digitized finite arrays in the two-dimensional plane. All these
approaches were initially motivated by problems arising in the framework
of pattern recognition and image processing. In syntactic approaches to
generation and recognition of images or picture patterns, considered as
digitized arrays, several two-dimensional grammars have been proposed
and studied in [40, 37, 42, 45, 48, 47]. These studies adapt the techniques
of formal string language theory and introduce various types of picture or
array grammars. Most of the array grammars developed to handle picture
languages, are based on Chomskian string grammars.

The study of picture languages has vast applications, some of which are
tiling problems in math, topology, physics and biology too. In the thesis
and the most common two-dimensional object studied is a picture which
is a rectangular array of symbols taken from a finite alphabet. We restrict
ourselves mainly to the study of languages build from such objects. These
languages are called Picture languages.

This thesis is titled as “Picture Languages Generated by Splicing and
Tile Assembling” which in elaborate are the classes of picture languages

11
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12 CHAPTER 1. INTRODUCTION

generated by bio-inspired similar operations. i.e. of DNA computing,
particularly the nature of recombinant DNA sequences. Splicing and Self
Assembling is extended to sequence of dominoes and tile assembling with
defined set of domino splicing rules or tiling rules to generate Picture
Languages. i.e. it is the construction of the systems by forming rules
with dominoes and tiles to apply on the rows and columns of the pictures.
The idea in application is analogous to the splicing operation and self-
assembling nature of DNA sequences defined for the string case.

Extension of the splicing operation to graphs has been proposed by
Freund in [19]. Relationship between graph splicing languages of Freund
in [19] and Hyper-edge replacement graph languages in [29] is examined in
[23]. Sakakibara and Ferretti in [48] have introduced and studied splicing
of tree structures. Krithivasn in [28] has considered a different kind of
splicing of graphs. As an extension of the ideas Splicing of arrays struc-
tures which could be thought of as graphs on grid structures that has been
considered in [29, 25]. A simple but effective method of splicing on images
of rectangular arrays is introduced in [25] as an extension of the operation
of splicing on strings.

Firstly, the class of Picture languages proposed and studied in the the-
sis, with the bio-inspired operation Splicing for string case by T. Head
in [23] is called H-Array Splicing Systems in [24]. The approach to Ar-
ray(Picture) splicing considered in subramanian et.al in [24] is different
from the one considered by Krithivasan et.al [29].

Dassow and Mitrana in [13] investigated a very simple and natural
restriction on the splicing operation, namely cross-over rule applicable
only on identical strings in trying to capture features of the recombination
of genes in a chromosome. The self cross-over operation on arrays is also
introduced in [24] and the resulting language is called self cross-over array
languages where it is defined by the H-array splicing on identical arrays.
This family is referred by L(SASL) in the thesis and with further results
of incomparability with main Recognizable picture language class L(TS)
and the 2D-Right Linear Grammar class studied in [31].

Mateescu et. al in [32] introduced a special kind of a splicing rule,
called Simple Splicing Rule and investigated the effect of this type of rules
on words. This notion of simple splicing has been examined in [8] for
circular words. As an application of the concept of simple splicing, it is
natural to extend this special form of splicing to higher dimensional struc-
tures such as graphs, trees and arrays in [43] called Simple Array Splicing
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1.1. BACKGROUND 13

Systems and the language class as L(SASL) . We state the results on var-
ious examples and counter examples of the L(SASL) class in the thesis.

The theory of Grammar systems is a well-investigated field of formal
language theory, providing a theoretical framework for modeling various
kinds of multi-agent systems at the symbolic level [12]. A grammar system
consists of several grammars or other language identifying mechanisms,
that cooperate according to some well-defined protocol. The components
of the system correspond to the agents, the current string(s) in generation
to a symbolic environment, and the system’s behaviour is represented by
the language. Among a variety of grammar system models, Parallel Com-
municating Grammar Systems, in which the components are generative
grammars working on their own sentential forms in parallel and communi-
cating with each other by sending their sentential forms by request, have
been of intensive study [12, 11].

A new type of Parallel Communicating grammar systems has been in-
troduced in [13] by replacing communication by splicing of strings. Păun
[21] has investigated Splicing Grammar Systems improving the results of
[13].
Freund [20] has introduced and investigated cooperating distributed array
grammar systems extending the concept of cooperation in string grammar
systems and using array grammars. Motivated by the study of Dassow and
Mitrana (1996), we consider Grammar Systems that describe Images or
Pictures of rectangular arrays in [44]. The components of the Grammar
system consist of two-dimensional Grammars in [22] and domino splic-
ing rules [11] with the grammars working in parallel and splicing rules
acting on arrays of two components yielding rectangular arrays of sym-
bols. The resulting systems are called Splicing Array Grammar Systems
which is given the study of L(HASL) in the thesis. Different component
grammars such as Regular Matrix grammars [22, 40], Context-free Matrix
grammars [22, 40], are considered and properties such as generative power,
comparison etc in [44].

An interesting Computing model inspired by cell biology, called Net-
work of Evolutionary processors, was introduced by Castellanos et al [6]
and the investigation of this model continued in Castellanos et al [7] and
Martin-Vide et al [30]. This notion has been carried over to pictures and
Pictural Networks of Evolutionary Processors (PNEP) have been consid-
ered by Mitrana et al [34] . We also include the notion of Contextual Pic-
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14 CHAPTER 1. INTRODUCTION

tural Network of Evolutionary Processors using contextual insertion and
deletion rules that we introduced in [18]. These rules are a special case of
contextual insertion/deletion studied by Mitrana [33]. We have presented
this notion also with some results of extending three dimensional notion
for the existing ideas of two dimension, three dimension recognizability
being introduced for languages defined by [16].

The other new and the main formalism of the thesis called Tiling Rule
System (TRuS) which is based on assembling tiles along the columns and
rows of the pictures is introduced and studied in [4, 5]. The idea of tile as-
sembling being inspired by the vast DNA computing area with mainly self-
assembly in [49] with its universality result of Turing-Machine. We have
considered the Wang Systems to compare with TRuS since Wang Sys-
tems is an interesting system derived from Wang Tiles for Tiling problem
results. Wang Systems in [47] is proved to be equivalent to Recognizable
Picture Language class L(TS) .

1.2 Study and Contribution

1.2.1 Picture languages : Splicing and Assembling
Tiles in (rows)columns

H-array Splicing Systems ( HAS )

H-array Splicing Systems HAS is a bio-inspired formalism extended from
H-Splicing from string case, a vastly investigated study introduced by T.
Head. HAS formalism contributes to the aspects of over grammar, au-
tomata theory for picture languages. In particular it is structured as a
mechanism by studying two-dimensional right linear grammars. In elab-
orate this formalism is a mechanism which is applied on finite number
of pictures called initial pictures I with given set of column and row
domino splicing rules. A column or row domino splicing rule is given
by δ1; δ2 : δ3; δ4, where δ1 and δ2 are two adjacent columns or rows over a
given picture p1 ∈ I and similarly δ3 and δ4 two adjacent columns or rows
over picture p2 ∈ I. It operates by ‘cutting’ two given pictures p1 and p2

at the identified context of columns and rows with that of the one formed
by δ1 and δ2 in a sequence by the given set of domino splicing rules. The
context site where the two pictures are cut in columns and rows are de-
cided by the sequence of adjacent dominoes in the set of rules. And then
the ‘pasting’ of the first part (or sub-array) of the picture p1 to the second
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1.2. STUDY AND CONTRIBUTION 15

part of the picture p2 is done by column and row concatenations respec-
tively. The column and row concatenation operation, various geometrical
rotation over the pictures is proved to be closed for the class of H-Array
Splicing languages L(HASL) .

The idea of Self-cross over from string case is applied to HAS .i.e. by
restricting the system to apply HAS rules over two identical pictures are
called Self-cross over array languages L(ASCO) . This class of languages
are proved not be closed under union and concatenation operation. Then
also Simple Splicing rules are extended which is a restriction over the
domino splicing rules for HAS . Simple Domino Splicing rules are given
by δ1;λ : δ2;λ. Thus applying the splicing operation at any column and
row or the initial picture. This class of language L(SASL) also seems to
be having properties corresponding to that of string case and analogous
to L(HASL) .

One of the main classification of the Picture language class is Recog-
nizability by the Tiling Systems L(TS) in [22] defined by LOC languages.
i.e. Picture language obtained as projection on alphabets of pictures in
LOC, which are pictures identified by a given set of two by two windows
otherwise called as tiles. This class of language have been constantly ex-
plored for its close relation to regular language of string case, specifically
with closure properties. And that the formalism concerns also with this
structure on finding an automata for Picture language. Recently there
have been approaches introduced as subclasses to this class of language
L(TS) to study the deterministic properties and unambiguity properties
specially with columns and rows.

As of giving grammar based systems to Picture languages there has
been a constant interest and introduction to formalisms that are derived
from string case. One of the grammars that has been studied with au-
tomata for Pictures is called 2D-Right Linear Grammar (2D-RLG) also in
[22]. This grammar has been of interest to compare also since its elegant
approach extending the string grammars straight away for constructing
pictures. The first horizontal string is generated as intermediate string
until generating all the vertical strings from each intermediate alphabet
symbol of the string to form the pictures.

In the study of this thesis with examples and counter examples in the
list of the results for the classes of HAS and its restriction languages
defined, the results are incomparable with the above two described main
notions LOC and 2D-RLG, but are not disjoint i.e. in [24, 31, 43] we
have L(HASL) , L(ASCO) , L(SASL) are incomparable with LOC and
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16 CHAPTER 1. INTRODUCTION

2D-RLG but are not disjoint, since we have obtained common examples
of each class. Also, L(HASL) and L(ASCO) seem to be incomparable
but not disjoint, which is analogous with the string case formalism.

Although the main study is on picture languages with defined bio-
inspired operations over its columns and rows and its properties. The con-
struction of the systems studied in this thesis also concerns on contributing
to the formation of grammars and automata for picture languages.

The defined operations in the form of rules which are in accord to apply
over columns and rows of pictures are also consider in construction of a
formalism with Grammar System called Splicing Grammar Systems. It is
done by applying the defined H-array splicing operation of domino splicing
rules on pictures of the grammar model (2D-Right linear grammar lan-
guages), generating them and following or simulating existing string case
language classes Regular, CF or CS, which are studied for the build of au-
tomata, to be more elegant for extending from the string case. This Splic-
ing array Grammar System is also compared with small variant grammar
for Picture language called 2D-Tabled matrix grammar. Various inclusion
results are of the language class similar to the string case are obtained.
In conclusion of the class L(HASL) presented above with descriptions, it
is an expected simple and elegant contribution in the extension of string
case to picture language case. Note that this formalism captures one of
the Grammar System branch called parallel Grammar Systems naturally
extending to Picture language class and the H-Array Splicing Systems,
explicitly self explaining in [44]. Hence we state the definition straight
away with out including the the vast study on Grammar Systems and its
branches. And all its already existing inspiration to array languages by
Freund.et.al [20].

Further more on the underlying study of Picture language comparisons
we have another cell biology inspired formalism called Pictural Networks
of Evolutionary Processors (PNEP) in consideration. A PNEP has nodes
that are very simple processors able to perform just one type of opera-
tion, namely insertion or deletion of a row or substitution of a symbol in
rectangular arrays. These nodes are endowed with filters defined by some
membership or random context conditions. We also include the notion of
Contextual Pictural Network of Evolutionary Processors using contextual
insertion and deletion rules that we introduced in [18]. We have studied
comparisons with Puzzle Grammars and also for the three dimensional
notions in [16] extending 2D pictures to higher dimensions.
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1.2. STUDY AND CONTRIBUTION 17

Tiling rule systems

Also, investigation of Picture Languages has moved towards the definition
of formal models capable of characterizing special classes of languages that
are not included in the family of recognizable languages generated by tiling
systems of Giammaresi and Restivo [22]. An example of such models is
tile rewriting grammars (TRG) defined in [10] and further investigated.
Indeed, while tiling systems represent an extension to the two dimensional
case of regular string grammars, TRG provide an analogue of context-free
grammars in the two dimensions, and can generate interesting picture lan-
guages that generalize context-free string languages, including for example
Dyck languages. Grammar approaches, besides tiling systems and cellular
automata (see [22] for a complete survey), reflect the efforts done towards
a generalization of classical formal language theory to the two dimensional
case. This research direction is now a rich field of investigation (see [1],
[2], [27] and [3] as an example).

In this chapter 5, our investigation of picture languages goes in a dif-
ferent direction, since we propose new operations that are not general-
izations of classical formal language concepts, but are instead inspired by
operations used in modeling DNA self assembly [49]. More precisely, our
approach for generating pictures is based on a notion of tiling rule system,
consisting of an initial finite set of pictures and a set of rules that can be
iteratively applied to the initial language to generate a picture language.

A rule consists of a pair of tiles: a context site and a replacement site
tile. Context site is used to specify where the rule can be applied, while
the replacement site is used to change part of the context site. This type
of rule generalizes to the 2-dimensional case a typical behavior of rules
acting on DNA strings, i.e. a context is needed to allow the applications
of rules, while replacement specifies how the context will be modified.

In a tiling rule system, at each step a set of rules is simultaneously
applied to a picture from the initial language or assembled in a previous
computation step. The effect of the simultaneous application of rules is
the replacement and insertion of a row or column, respectively, so allowing
the growth of a new picture according to the rule system.

Formally a tiling rule system, TRuS system in short, is a triple
(I, R,Σ), where I is an initial finite set of pictures, R is a finite set of
tiling rules and Σ is the alphabet of the generated pictures.

Observe that our notion of tiling rule system is different from tiling
systems, but also from Wang systems [15], which model DNA self assembly
by pure growth and which are proved to be equivalent to tiling systems.
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18 CHAPTER 1. INTRODUCTION

In tiling systems by Giammaresi and Restivo [22], picture languages are
defined by a projection function applied to a local language defined by a
set of tiles.

We show that TRuS systems have greater generative capacity than
the tiling systems, even in the case of systems generating one-letter alpha-
bet picture languages. More precisely, the constructive proof of a TRuS
system that simulates a tiling system shows that recognizable languages
are generated by rules that act always by growing pictures along their bor-
ders. On the contrary the class of languages generated by TRuS systems
includes languages that seem to strictly require rules acting on specific
positions inside the pictures in order to grow the language. This is for
example the case of the language of palindromic columns, that has been
proved not being a recognizable language in [4]. In this study we have
proved L(TS) = L(sTRuS) ⊂ L(TRuS) . Where L(TS) is the recog-
nizable class of picture languages defined with the LOC class. L(sTRuS)
is called the simple Tiling Rule Systems where the picture grows only in
columns or rows with tiling rules.

1.3 Structure of the thesis

In Chapter 2 we give the preliminaries for the rest of the Chapters to
follow. In section 2.1 we have stated all notations, definitions and examples
of Picture Language theory that are relevant to the study. Namely, that of
Tiling System Recognizable languages, Wang Systems, Puzzle Grammars,
2D-Right Linear Grammars. Then section 2.2 refers all string case Splicing
notions relevant to the thesis.

In Chapter 3 introduces the HAS language class, its restriction lan-
guage classes, L(ASCO) and L(SASL) , giving definitions in 3.1, examples
and counter examples in 3.2 along with the comparison study of L(HASL)
, L(ASCO) and L(SASL) . Language class of Simple Tree Splicing Sys-
tems L(STSS) is stated and studied in section 3.3. And the last section of
this chapter 3.4 contains the notion of Splicing Array Grammar Systems
and its comparison study.

In Chapter 4 the Pictural Network of Evolutionary Processors is stud-
ied with contextual insertion, deletion and substitution rules. In section
4.2 three dimensional picture languages are introduced for the notion and
some comparison results are followed in the subsections.

In Chapter 5 introduces the new main formalism TRuS and its results.
Section 5.1 gives the formalism, its construction and examples. Section
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1.3. STRUCTURE OF THE THESIS 19

5.2 gives the generative power of the formalism, one of the main results.
Then in section 5.3 also comparison of the structure of the formalism with
Wang Systems is done.

In Chapter 6 concludes the various results and the structure the study
with the two main formalism given, also stating its main results with some
proposals for the further study. Each Chapter consists of its References
and the full list of Bibliography follows the last chapter.

UNIVERSITAT ROVIRA I VIRGILI 
PICTURE LANGUAGES GENERATED BY SPLICING AND ASSEMBLING TILES 
Anthonath Roslin Sagaya Mary 



Chapter References

[1] M. Anselmo, D. Giammarresi, and M. Madonia. New operations
and regular expressions for two-dimensional languages over one-letter
alphabet. Theoretical Computer Science, 340:408 – 431, 2005.

[2] M. Anselmo and M. Madonia. Deterministic two-dimensional lan-
guages over one-letter alphabet. Lecture Notes in Computer Science,
4728:147–159, 2007.

[3] A. Bertoni, M. Goldwurm, and V. Lonati. On the complexity of unary
tiling-recognizable picture lanaguages. Lecture Notes in Computer
Science, 4393:381–392, 2007.

[4] P. Bonizzoni, C. Ferretti, Anthonath Roslin Sagaya Mary, and
G. Mauri. Picture languages generated by assembling tiles. volume
Lecture Notes in Computer Science, pages 224–235, 2009.

[5] P. Bonizzoni, C. Ferretti, Anthonath Roslin Sagaya Mary, and
G. Mauri. Picture languages generated by assembling tiles. Fundam.
Inform. 110, 1-4:77 – 93, 2011.
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Chapter 2

Preliminaries

This chapter contains the pre-requisites of the study to follow in the next
chapters. Based on formal language theory all basics of literature can
be referred in [6]. We mainly give prerequisites of Picture languages and
also string case Splicing languages. The later is given just to refer the
generalization of the string case definitions to the new definitions of the
study in Picture languages.

That is firstly, we give the notations of picture languages (two-dimensional
languages) followed by the definitions of language classes studied with
some examples. Then we state the definitions of string case Splicing lan-
guage classes that we have tried to generalize to picture languages.

In particular we give in the section 2.1 the definitions and examples of
the most important classes of picture languages used in our study (that
are the 2D Matrix Grammars or 2D Right Linear Grammar, Basic Puzzle
Grammars, Local Languages and the Tiling System Recognizable Lan-
guages, Wang Systems, in [9], [3], [8, 10], [2]).

Section 2.2 states the definitions of string case Splicing languages.
Namely, H-Splicing Systems, Self Cross-Over Languages and Simple Splic-
ing Languages in [4, 7, 1].

2.1 Pictures, Picture languages

2.1.1 Notations

Let Σ be a finite alphabet. Σ∗ is the set of all words over Σ including the
empty word λ. An image or a picture p over Σ is a rectangular n×m array
of elements in Σ of the form

24
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2.1. PICTURES, PICTURE LANGUAGES 25

p =

a1,1 · · · a1,m
...

. . .
...

an,1 · · · an,m

or in short we write a picture p = [ai,j]n×m where it is without enclosing
in square brackets when there is no confusion. The set of all pictures is
denoted by Σ∗∗. Also, the notation V is used for denoting the set of
alphabet instead of Σ in some formalisms in the following chapters but is
mentioned explicitly.

The size of the picture p is n×m or a pair (n,m) where n is the number
of rows and m the number of columns of p. The i-th row, the j-th column
and the element belonging to both of them in picture p will be denoted
by pr[i], pc[j] and p[i, j] (or pij) respectively. Moreover, by pr[i..i + k]
(pc[i..i + k], respectively) we denote the sub-array of p consisting of the
rows (columns, respectively) of p from index i to i+ k.

The only picture of size (0, 0) is the empty picture, denoted by λ.
Then Σ++ denotes the set of all nonempty pictures over Σ, and define
Σ∗∗ = Σ++ ∪ {λ}.

The bordered version of a picture p of size (n,m) is the array p̂, i.e.
of size (n + 2,m + 2) obtained by surrounding p with special symbols
in ∆ = {#, �}. Since the alphabet ∆ consists of two symbols, we call
canonical pictures those bordered uniquely with the boundary symbol #.

Given a picture p of size (n,m), a partial bordered version of p, or simply
a partial picture, is the picture p̄ of size either (n′,m + 2) or (n + 2,m′)
for n′ = n + 1,m′ = m + 1, obtained from p by adding borders partially
along the picture (see example 2.1).

Observe that a partial bordered picture is a bordered one that has a
missing border only on one side of the picture.

In the chapter by pseudo-canonical picture we mean a picture that
is completely bordered using also the symbol � or is partially bordered
obtained from a picture p (without border). The notation p̂ will be used
for pseudo-canonical or canonical pictures that are obtained from picture
p and partially bordered pictures p̄. Moreover, observe that the size of a
pseudo-picture is the size of the array over the extended alphabet ∆ ∪ Σ.

Example 2.1. Pseudo-canonical pictures : partially bordered pictures over
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26 CHAPTER 2. PRELIMINARIES

one letter alphabet and (b) a completely bordered picture with the � symbol:

# # # #
# a a a
# a a a
# a a a
# # # #

# # # #
a a a #
a a a #
a a a #
# # # #

(b)

# # # # #
# a a a #
# a a a �
# a a a #
# # # # #

# # # # #
# a a a #
# a a a #
� a a a #

# a a a #
# a a a #
# a a a #
# # # # #

A sub-picture p̂′ of a (pseudo-canonical) picture p̂ is a picture that is a
sub-array of p̂. Given picture p̂ then Bh,k(p̂) denotes the set of sub-pictures

of size (h, k). A tile
a b
c d

also denoted by t =
a b

c d
is a (2, 2) picture

over the alphabet Σ∪∆, where tiles containing symbols from alphabet ∆
are called border tiles. A domino is a (1, 2) or a (2, 1) picture denoted by
a
b

a column domino or a b a row domino for some a, b ∈ Σ∗ ∪ {#},

where dominoes over the border symbol # are border dominoes.

A picture language or a two dimensional language over Σ is a subset
of Σ∗∗.

Let p =

a1,1 · · · a1,i
...

. . .
...

an,1 · · · an,i

, q =

b1,1 · · · b1,m
...

. . .
...

bj,1 · · · bj,m

.

The column concatenation p : q of p and q is defined only when
n = j and is given by

p: q =

a1,1 · · · a1,i b1,1 · · · bj,m
...

. . .
...

...
. . .

...
an,1 · · · an,i bj,1 · · · bj,m

.

Similarly, the row concatenation p 	 q of p and q is defined only
when i = m and is given by
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2.1. PICTURES, PICTURE LANGUAGES 27

p	 q =

a1,1 · · · a1,i
...

. . .
...

an,1 · · · an,i
b1,1 · · · b1,m

...
. . .

...
bj,1 · · · bj,m

.

The column and row concatenation with empty picture λ is defined by
λ: p = p: λ = p and λ	 p = p	 λ = p.

The reflection of p on the base or the mirror image of p is
defined as the picture

pb =

an,1 · · · an,i
...

. . .
...

a1,1 · · · a1,i

=

pr[n]
pr[n− 1]
...
pr[1]

= mirror(p)

The above notion is used to define the palindromic column picture
language. The reflection of p on the right leg is

prl =

a1,i · · · a1,1
...

. . .
...

an,i · · · an,1

If L1, L2 are two picture languages over an alphabet Σ, the column
concatenation L1 : L2 of L1 and L2 is defined by

L1 : L2 = {A:B | A ∈ L1 and B ∈ L2}.

The row concatenation L1 	 L2 of L1 and L2 is defined by

L1 	 L2 = {A	B | A ∈ L1 and B ∈ L2}.

2.1.2 Definitions and Examples

Grammars for picture languages

Definition 2.1. A 2D Matrix grammar is a 2− tuple grammar (G1, G2)
where G1 = (H1, I1, P1, S) is a grammar, G2 = (G21, G22, · · · , G2k)
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wherein G2i = (V2i, I2, P2i, Si) ∀ 1 ≤ i ≤ k are regular grammars and
are given by,

H1 : a finite set of horizontal nonterminals,
I1 : {S1, S2, · · · , Sk}, a finite set of intermediates, H1 ∩ I1 = ∅,
P1 : a finite set of production rules called horizontal production rules,
S : the start symbol, S ∈ H1,
V2i : a finite set of vertical nonterminals, V2i ∩ V2j = ∅, i 6= j,
I2 : a finite set of terminals,
P2i : a finite set of right linear production rules,
Si : the start symbol.

The grammar type of G1 is the grammar type of G , i.e. we say that
the given grammar is G regular, context-free, context sensitive, recur-
sively enumerable 2D (two-dimensional) Matrix grammars if G1 is regular,
context-free, context sensitive or arbitrary respectively.

Derivations are defined as follows: First a string Si1Si2 · · · Sik ∈ I∗1
is generated horizontally using the horizontal production rules P1 in G1.
That is, S ⇒ Si1Si2 · · · Sim ∈ I∗1 . Vertical derivations proceed as follows:
We write

Ai1 · · · Aim

⇓

ai1 · · · aim

Bi1 · · · Bim

if Aij → aijBij are rules in P2j, 1 ≤ j ≤ m. The derivation terminates
if Aj → amj are all terminal rules in G2. The set L(G) of all matrices
generated by G is defined to be n × m arrays [aij] such that 1 ≤ i ≤
n, 1 ≤ j ≤ m and S ⇒∗G1

Si1Si2 · · · Sim ⇒∗G2
[aij] . If the type of G1 is

regular, we call G a Two-Dimensional Right-Linear Grammar and denote
it by 2RLG [3]. If there exists a 2RLG, G such that L = L(G). L(2RLG)
denotes the family of all picture languages generated by 2RLG.

We recall the definition of a Puzzle Grammar introduced and studied
in [8, 10].

Definition 2.2. A Basic Puzzle Grammar (BPG) is a structure
G = (N, T,R, S) where N and T are finite sets of symbols; N∩T = φ. Ele-
ments of N are called non-terminals and elements of T , terminals. S ∈ N
is the start symbol or the axiom. R consists of rules of the following forms:
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A → a©B, A → aB©, A → B a©, A → B©a

A → a©
B
, A → a

B©
, A → B

a©
, A → B©

a

A→ a©,where A, B, ∈ N and a ∈ T
Derivations begin with S written in a unit cell in the two-dimensional

plane, with all the other cells containing the blank symbol #, not in N∪T .
In a derivation step, denoted →, a non-terminal A in a cell is replaced
by the right- hand member of a rule whose left-hand side is A. In this
replacement, the circled symbol of the right-hand side of the rule used,
occupies the cell to the right or the left or above or below the cell of the
replaced symbol depending on the type of rule used. The replacement is
possible only if the cell to be filled in by the non-circled symbol contains
a blank symbol.

The set of pictures or figures generated by G, denoted by L(G), is the
set of connected, digitized finite arrays over T , derivable in one or more
steps from the axiom.

Definition 2.3. A Context-Free Puzzle Grammar (CFPG) is a structure
G = (N, T,R, S) where N, T, S are as in definition 2.2 and R is the set of
rewriting rules of the form A→ α, where α is a finite, connected array of
one or more cells, each cell containing either a nonterminal or a terminal
symbol, with a symbol in one of the cells of α being circled.

. The set of pictures generated by a context-free puzzle grammar G is
defined analogous to definition 2.2

Example 2.2. The BPG G1 = (N, T,R, S) where N = {S,A,B}, T =
{a}.

R = {S → a©S, S → a©A,B → a©S,B → a,A→ A

a©
, A→ B

a©

This BPG generates the picture language of pictures describing ’stair-
cases’ is shown below.

a
a

a a a
a
a

a a a
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Example 2.3. Consider the Context Free Puzzle Grammar, G2 = (N, T,R, S)
where
N = {S,C,D,B}, T = {a}

R = {S → C a©D

B
, B → a©

B
, C → C a©, D → a©D,C → a ,

D → a ,B → a}

This CFPG generates the picture language of pictures describing token-
T shown below.

a a a a a a
a
a
a

We now recall the notion of recognizability for picture languages where
it takes as starting point a well known characterization of recognizable
string languages in terms of local languages and projections. Namely, a
defined Local picture language by means of a set of square arrays i.e. 2×2
pictures (or tiles) is Tiling system recognizable language when is obtained
as a projection of Local picture language.

Tiling system recognizable languages

Definition 2.4. A picture language L consists of a subset of Σ∗∗. L is
local if there exists a finite set Θ of tiles over alphabet Σ ∪ {#} such that
L = {p ∈ Σ∗∗|B2,2(p̂) ⊆ Θ where p̂ are canonical pictures }. Then L is the
local language defined by Θ.

We consider the set Θ as the set of all possible blocks of size 2 × 2
of pictures that belong to L. The language L is local if, given such a set
Θ, we can exactly retrieve the language L and we write L = L(Θ). The
empty picture λ belongs to L if and only if Θ contains the tile with four
# symbols. The family of local picture languages is denoted by L(LOC).

Let us now recall the notion of a tiling system and language generated
by such system [3].

Definition 2.5 (Tiling systems). A Tiling system is a 4-tuple τ =
(Σ,Γ,Θ, π), where Σ and Γ are two finite alphabets, Θ is a finite set of
tiles over the alphabet Γ ∪ {#} and π : Γ→ Σ is a projection.

Given system τ , the language defined by the system, denoted L(τ), is
the projection by π of the local language defined by Θ.
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In this study we denote by L(TS) the class of languages defined by
tiling systems, known as the class of recognizable languages, that has been
deeply investigated in [3].

A further type of tiling systems we are interested in is that of Wang
systems in [2].

Wang systems

Definition 2.6. A labelled Wang tile consists of 4 colors, chosen in a
finite set of colors Q, and of a label taken from a finite alphabet Γ, with
the label at the center, can be represented as

Ca
Cb (l) Cc

Cd

.

A Wang system is a triple W = (Γ, Q, T ), where T is a set of labelled
Wang tiles. In Q there has to be a particular color B.

Informally, given a Wang system W , a picture M over its set of tiles
is a tiling if the color B is exactly present only along the boundary of the
picture, and if for each pair of adjacent tiles in the picture the two colors
presented by them on the touching side are identical. (See [2] for a formal
definition.)

We say that a Wang system W generates the set of pictures of Γ∗∗

defined by the sets of labels of its tilings: each tiling corresponds to a
picture having the same dimension, and having as symbol in position (i, j)
the label of the tile at the same position in the tiling.

The family of all picture languages generated by Wang systems is de-
noted by L(WS) .

2.2 Splicing

We first recall the notion of splicing in string case introduced by Tom
Head, which has been adapted to Picture Languages in H-array Splicing
Systems defined in [5].

Definition 2.7 (Splicing on strings). Let V be an alphabet. A splicing rule
over V is a string of the form r = u1;u2 : u3;u4, where ui ∈ V ∗, 1 ≤ i ≤ 4.
For such a rule r and strings x, y, z ∈ V ∗, we write

(x, y) `r z iff x = x1u1u2x2, y = y1u3u4y2, z = x1u1u4y2
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for some x1, x2, y1, y2 ∈ V ∗. We say that z is obtained by splicing
x, y, as indicated by the rule r; u1u2 and u3u4 are called the sites of the
splicing.

Definition 2.8. An H scheme is a pair σ = (V,R), where V is an
alphabet and R ⊆ V ∗;V ∗ : V ∗;V ∗ is a set of splicing rules. For a given H
scheme σ = (V,R) and a language L ⊆ V ∗, we define

σ(L) = {z ∈ V ∗ / (x, y) `r z for some x, y ∈ L, r ∈ R }

We can apply σ to L iteratively and obtain

σ◦(L) = L,

σi+1(L) = σi(L) ∪ σ(σi(L)), i ≥ 0,

σ∗(L) =
⋃
i≥0

σi(L).

Definition 2.9 (2D Splicing system). S = (Σ, I, B, f), where Σ = A ∪
A′, A∩A′ = ∅, A is the alphabet, A′ is the set of special symbols, f : A′ →
A is a mapping, I is the set of initial images, B = (B1, B2, B3, B4), where
Bi is the set of Type-i patterns. A pattern p is a 9-tuple (x1, x2, x3, x4, x5, x6, x7, x8, x9)
where x1, x2, x3, x4, x6, x7, x8, x9 ∈ Σ∗∗, x5 ∈ Σ++ subject to the condition
that p is a proper sequence of cardinality(3, 3). The middle term x5 is
called the crossing of p. The matrix image of p is called the site of the
pattern p.

Four types of splicing operations are defined for images and a splicing
operation between two images is uniquely specified by giving the two im-
ages, the type of splicing and two matrix splits of cardinality (5, 5), one
for each of the two images. The result of the splicing operation consists
of two resultants . For the splicing to take place , certain conditions have
to be satisfied.

A splicing system S is said to be null-context if all the patterns of S are
of the form (Λ,Λ,Λ,Λ, c,Λ,Λ,Λ,Λ), and c ∈ Σ++. In such a system, the
crossing itself is a site. The patterns of this form are called null-context
patterns.

Definition 2.10 ( A self cross-over system). is a triple (V,A,R) where
V is an alphabet, A is a finite subset of V ∗, R is a finite commutative
relation , R ⊂ (V ∗ × V ∗)2 ; With respect to a self cross-over system, we
define for x ∈ V +
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x ./ y if and only if x = x1αβx2 = x3γδx4; y = x1αδx4 ; (α, β)R(γ, δ).
./∗ is the reflexive and transitive closure of the relation ./. The lan-

guage generated by a self cross-over system is L(SCO) = {x ∈ V ∗ / w ./∗ x,w ∈ A} .
We first recall the notion of simple splicing on words [7]. For notions

of language theory we refer to [6].

Definition 2.11. Let V be an alphabet. $,# are two special symbols,
not in V . A simple splicing rule over V is a string of the form r =
a# λ $ a# λ, where a ∈ V . For such a rule r and strings x, y, z ∈ V ∗, we
write (x, y) `r z if and only if x = x1ax2, y = y1ay2, z = x1ay2 for some
x1, x2, y1, y2 ∈ V ∗. We say that z is obtained by splicing x, y, as indicated
by the rule r.

Definition 2.12. A simple splicing scheme is a pair σ = (V,R), where V
is an alphabet and R is a set of simple splicing rules. A simple splicing
scheme is also referred to as a simple H scheme [7]. For a given simple
splicing scheme σ = (V,R) and a language L ⊆ V ∗, we define σ(L) =
{z ∈ V ∗ / (x, y) `r z for some x, y ∈ L, r ∈ R }
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Chapter 3

H-array Splicing System

This Chapter contains the defined formalism H-array Splicing System (
HAS ) introduced as a generalization of H-Splicing from the string case
to Picture languages mainly in [5] with comparisons with other Picture
language classes. Then the study follows extending with its restriction
languages from same inspiration of the string case. Namely, Self-Cross
over Array Languages, Simple H-array Splicing Systems in [9, 14].

The formalism HAS is described by set of domino splicing rules de-
fined over the columns and rows of pictures, to cut a specific column(row)
by the given domino splicing rules, of two given pictures in axiom and
column(row) concatenate the first picture with the next. Thus making a
simple extension of splicing operation to picture languages.

Then such Splicing operations defined in pictures is studied also in
problem solving formalisms like Grammar Systems and Network of Evo-
lutionary Processors. i.e. we give new formalisms namely, Splicing Array
Grammar Systems (SAGS) in [15] and Pictural Network of Evolutionary
Processors in [3]. SAGS is formalized with the Splicing operation in group
or set of pictures in parallel, i.e. by deriving the formalism more on gener-
alizing the Parallel Grammar Systems defined in formal language theory.

Section 3.1 states all the definitions of the introduced formalism on
H-array Splicing Systems and its restriction languages with descriptions.
Then the section 3.2 gives the examples and counter examples followed by
the subsections on each language class comparisons.

Section 3.3 introduces a study on trees for the Simple Array Splic-
ing Systems and its results. Section 3.4 gives the definition of Splicing
Array Grammar Systems and its comparisons with regular, Context-free,
Context-Sensitive languages for bi-dimensions explicitly stated in.

35
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36 CHAPTER 3. H-ARRAY SPLICING SYSTEM

3.1 Definitions

Definition 3.1 (Domino splicing rules). A Domino column splicing rule
is defined as r = α1 ;α2 : α3 ;α4 where each αk for 1 ≤ k ≤ 4 is a column
domino over Σ∗ ∪ {#}.

A Domino row splicing rule is defined as r = β1 ; β2 : β3 ; β4 where
each βk for 1 ≤ k ≤ 4 is a row domino over Σ∗ ∪ {#}.

We refer to α1, α2, α3, α4 of a column splicing rule r = α1 ; α2 : α3 ;α4

as the first, second, third and fourth dominoes of r respectively. Similarly,
β1, β2, β3, β4 for a row splicing rule r = β1 ; β2 : β3 ; β4 are the first, second,
third and fourth dominoes of r respectively.

Definition 3.2 (H-array splicing rules). The set of domino column splic-
ing rules Rc given by,

ri =
ai,j
ai+1,j

;
ai,j+1

ai+1,j+1
:

bi,j′

bi+1,j′
;

bi,j′+1

bi+1,j′+1

and the set of domino row splicing rules Rr given by,

rj = ai,j ai,j+1 ; ai+1,j ai+1,j+1 : bi′,j bi′,j+1 ; bi′+1,j bi′+1,j+1

for all i, i′, j, j′ such that 0 ≤ i ≤ n, 0 ≤ i′ ≤ n′, 0 ≤ j ≤ m, 0 ≤ j′ ≤ m′

are called H-array splicing rules.

Given two pictures p̂ = [aij]n×m and q̂ = [bij′ ]n×m′ ,

p =

a11 · · · a1,j a1,j+1 · · · a1m

a21 · · · a2,j a2,j+1 · · · a2m
...

. . .
...

...
. . .

...
an1 · · · an,j an,j+1 · · · anm ,

q =

b11 · · · b1,j′ b1,j′+1 · · · b1m′

b21 · · · b2,j′ b2,j′+1 · · · b2m′

...
. . . · · · ...

. . .
...

bn1 · · · bn,j′ bn,j′+1 · · · bnm′

aij, bij′ ∈ Σ, for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ v′ ≤ m′. As explained
in chapter 2, p̂ and q̂ are the bordered pictures or arrays of sizes (n +
2)× (m+ 2), (n+ 2)× (m′ + 2) obtained by surrounding p and q with #
symbols, as shown below.
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3.1. DEFINITIONS 37

p̂ =

# # · · · # # · · · # #
# a11 · · · a1,j a1,j+1 · · · a1m #
# a21 · · · a2,j a2,j+1 · · · a2m #
...

...
. . .

...
...

. . .
...

...
# an1 · · · an,j an,j+1 · · · anm #
# # · · · # # · · · # # ,

q̂ =

# # · · · # # · · · # #
# b11 · · · b1,j′ b1,j′+1 · · · b1m′ #
# b21 · · · b2,j′ b2,j′+1 · · · b2m′ #
...

...
. . .

...
...

. . .
...

...
# bn1 · · · bn,j′ bn,j′+1 · · · bnm′ #
# # · · · # # · · · # #

i.e. by bordered arrays we refer to the top and bottom rows of the
arrays with border symbol # as the 0th and n + 1th row. Similarly for
the leftmost and rightmost columns with symbol # as the 0th and m+ 1th

column.
Firstly, we describe an application of the defined sequence of rules Rc

(set of domino column splicing rules) in the given set of H-array splicing
rules. Applying Rc to any two arrays p̂ and q̂ to yield an array ŝ is
described as below. We write (p, q) |: s iff there exists a sequence of
rules Rc = r0, r1, r2, ...rn (not necessarily all different) such that for all
i, 0 ≤ i ≤ n and for some j, j′ 0 ≤ j ≤ m+ 1, 0 ≤ j′ ≤ m′ + 1 :

ŝ =

# # · · · # # · · · # #
# a11 · · · a1,j b1,j′+1 · · · b1m′ #
# a21 · · · a2,j b2,j′+1 · · · b2m′ #
...

...
. . .

...
...

. . .
...

...
# an1 · · · an,j bn,j′+1 · · · bnm′ #
# # · · · # # · · · # #

In other words, we can imagine that a 2×1 window is moved down the
jth column of p̂. The sequence of dominoes collected are the first dominoes
of the rules r0, r1, r2, ..., rm (not all necessarily different). When a 2 × 1
window is moved down the j + 1th column of p̂, the sequence of dominoes
collected are the second dominoes of the rules r0, r1, r2, ..., rm. Likewise
for the j′th and j′+1th columns of q̂. When such rules exist in the system,
the column splicing of the arrays p and q amounts to the array p̂ being
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38 CHAPTER 3. H-ARRAY SPLICING SYSTEM

vertically “cut” between jth and j + 1th columns and the array q̂ between
j′th and j′ + 1th columns and the resulting left subarray of p̂ “pasted”
(column catenated) with the right subarray of q̂ to yield ŝ. We now say
that s is obtained from p and q by domino column splicing in parallel,
where s is ŝ with surrounding # symbols deleted.

We can similarly define row splicing operation on any two arrays p and
q of sizes n ×m and n′ ×m′, using domino row splicing rules which are
H-array splicing rules to yield an array t.

p =

a11 a12 · · · a1m
...

...
. . .

...
ai,1 ai,2 · · · ai,m
ai+1,1 ai+1,2 · · · ai+1,m

...
...

. . .
...

an1 an2 · · · anm ,

q =

b11 b12 · · · b1m′

...
...

. . .
...

bi′,1 bi′,2 · · · bi′,m′
bi′+1,1 bi′+1,2 · · · bi′+1,m′

...
...

. . .
...

bn1 bn2 · · · bn′m′

aij, bi′j ∈ Σ, for 1 ≤ i ≤ n, 1 ≤ i′ ≤ n′, 1 ≤ j ≤ m. Similarly consider-
ing p̂ and q̂ the bordered arrays of sizes (n+2)×(m+2), (n′+2)×(m′+2)
obtained by surrounding p and q with # symbols.

We write (p, q) |	 t iff there is a sequence of row splicing rules
r0, r1, r2, · · · rn (not necessarily all different) such that for all j, 0 ≤ j ≤ n
and for some i, i′ 0 ≤ i ≤ n+ 1, 0 ≤ i′ ≤ n′ + 1 :

t̂ =

# # # · · · # #
# a11 a12 · · · a1m #
...

...
...

. . .
...

...
# ai,1 ai,2 · · · ai,m #
# bi′+1,1 bi′+1,2 · · · bi′+1,m #
...

...
...

. . .
...

...
# bn1 bn2 · · · bnm #
# # # · · · # #

As done for the column splicing of arrays, we can imagine 1 × 2 win-
dows being moved over respective rows. The row splicing of the arrays p
and q can be thought of as p̂ being horizontally “cut” between the ith and
i+ 1th rows and q̂ between i′th and i′+ 1th rows and the upper subarray of
p̂ “pasted” (row catenated) to the lower subarray of q̂ to yield t̂. We now
say that t is obtained from p and q by domino row splicing in parallel,
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where t is t̂ with # symbols deleted.

We now introduce an H-array scheme and an H-array splicing system.

Definition 3.3. An H-array scheme is a triplet Γ = (Σ, Rc, Rr) where
Σ is an alphabet, Rc = a finite set of domino column splicing rules, and
Rr = a finite set of domino row splicing rules.

For a given H-array scheme Γ = (Σ, Rc, Rr) and a language L ⊆ Σ∗∗,
we define

Γ(L) = {s, t ∈ Σ∗∗ / (p̂, q̂) |: ŝ or (p̂, q̂) |	 t̂ for some p, q, s, t ∈ L}.
In other words, Γ(L) consists of arrays obtained by column or row

splicing any two arrays of L using the array column or row splicing rules.
Iteratively we define

Γ◦(L) = L

Γi+1(L) = Γi(L) ∪ Γ(Γi(L)), i ≥ 0

Γ∗(L) =
⋃
i≥0

Γi(L)

An H-array splicing system HAS is defined by S = (Γ, I) where
Γ = (Σ, Rc, Rr) and I is a finite subset of Σ∗∗. The language of S is defined
by L(S) = Γ∗(I) and we call it an H-array splicing language HASL and
denote the class of such languages by L(HASL) We note that in this
chapter we consider I only as a finite subset of Σ∗∗ although I can be an
infinite subset.

Definition 3.4 (A Self cross-over array system ( ASCO )). A Self cross-
over array system denoted as ASCO is defined by S = (Ω, I) where
Ω = (Σ, Rc, Rr) is a H-array splicing scheme and I is a finite subset
of Σ∗∗ and the set of domino splicing rules is applied each time to two
identical copies of the same array.

A Self cross-over array language is defined as in the case of linear
strings and we denote the class of Self cross-over array languages by L(ASCO)
.

We now introduce the notions of simple domino splicing rules and sim-
ple array splicing Systems ( SAS ). These systems are a special kind of H
array splicing systems with restriction introduced and studied in [2].
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40 CHAPTER 3. H-ARRAY SPLICING SYSTEM

Definition 3.5 (Simple domino splicing rules). A Simple column or row
domino splicing rule is a column or row domino splicing rule of the form
r = α1;λ : α3;λ or r = β1;λ : β3;λ respectively and are called Simple
domino splicing rules.

In other words in Simple domino splicing rules α2 = α4 = λ and
β2 = β4 = λ of a column domino splicing rule or row domino splicing rule

respectively. Note that λ =
λ
λ

or λ = λ λ in domino column splicing

rules or domino row splicing rules respectively.

Definition 3.6 (Simple array splicing rules). The set of Simple column
domino splicing rules Rc given by,

ri =
ai,j
ai+1,j

;
λ
λ

:
bi,j′

bi+1,j′
;

λ
λ

and the set of Simple row domino splicing rules Rr given by,

rj = ai,j ai,j+1 ; λ λ : bi′,j bi′,j+1 ; λ λ

for all i, i′, j, j′; 0 ≤ i ≤ n + 1, 0 ≤ i′ ≤ n′ + 1, 0 ≤ j ≤ m + 1, 0 ≤
j′ ≤ m′ + 1 are called the Simple array splicing rules.

For the given two arrays p and q of sizes n×m and n×m′ respectively,

p =

a1,1 · · · a1,j · · · a1,m

a2,1 · · · a2,j · · · a2,m
...

. . .
...

. . .
...

an,1 · · · an,j · · · an,m ,

q =

b1,1 · · · b1,j′ · · · b1,m′

b2,1 · · · b2,j′ · · · b2,m′

...
. . . · · · . . .

...
bn,1 · · · bn,j′ · · · bn,m′

ai,j, bi,j′ ∈ Σ, for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ j′ ≤ m′. Let p̂ and q̂ be
bordered arrays of sizes (n+ 2)× (m+ 2), (n′+ 2)× (m′+ 2) obtained by
surrounding p and q with # symbols, as shown below.
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p̂ =

# # · · · # · · · # #
# a1,1 · · · a1,j · · · a1,m #
# a2,1 · · · a2,j · · · a2,m #
...

...
. . .

...
. . .

...
...

# an,1 · · · an,j · · · an,m #
# # · · · # · · · # # ,

q̂ =

# # · · · # · · · # #
# b1,1 · · · b1,j′ · · · b1,m′ #
# b2,1 · · · b2,j′ · · · b2,m′ #
...

...
. . .

...
. . .

...
...

# bn,1 · · · bn,j′ · · · bn,m′ #
# # · · · # · · · # #

We write (p, q) |: z if there is a sequence of simple column splicing
rules r0, r1, r2, ...rn (not necessarily all different) such that and ai,j = bi,j′
for all i, 0 ≤ i ≤ n and for some j, j′ 0 ≤ j ≤ m+ 1, 0 ≤ k ≤ m′ + 1 and

ẑ =

# # · · · # # · · · # #
# a11 · · · a1,j b1,j′ · · · b1m′ #
# a21 · · · a2,j b2,j′ · · · b2m′ #
...

...
. . .

...
...

. . .
...

...
# an1 · · · an,j bn,j′ · · · bnm′ #
# # · · · # # · · · # #

In other words, we can imagine that a 2×1 window is moved down the jth

column of p̂. The sequence of dominoes collected are the first dominoes of
the rules r0, r1, r2, ..., rn (not all necessarily different). Likewise for the j′th

column of q̂ except that the dominoes collected are the third dominoes of
the rules. When such rules exist in the system, the simple column splicing
of the arrays p and q amounts to the array p̂ being vertically “cut” after
jth column and the array q̂ after j′th column and the resulting left subarray
of p̂ “pasted” (column catenated) with the right subarray of q̂ to yield ẑ.
We now say that z is obtained from p and q by simple domino column
splicing in parallel, where z is ẑ with surrounding # symbols deleted.

We can similarly define simple row splicing operation of the two arrays
p and q of sizes n×m and n′×m′, using simple domino row splicing rules
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to yield an array z′. We write (p, q) |	 z′. As done for the column splic-
ing of arrays, we can imagine 1× 2 windows being moved over respective
rows. The row splicing of the arrays p and q can be thought of as p̂ being
horizontally “cut” below the jth row and q̂ below j′th row and the upper
subarray of p̂ “pasted” (row catenated) to the lower subarray of q̂ to yield
ẑ′. We now say that z′ is obtained from p and q by simple domino row
splicing in parallel, where z′ is ẑ′ with # symbols deleted.

We now introduce the main notion of Simple array splicing systems.

Definition 3.7 (Simple array splicing scheme ). A Simple array splicing
scheme is a triplet Γ = (Σ, Rc, Rr) where Σ is an alphabet, Rc = a
finite set of simple domino column splicing rules, and Rr = a finite set
of simple domino row splicing rules. For a given Simple array scheme
Γ = (Σ, Rc, Rr) and a language L ⊆ Σ∗∗, we define
Γ(L) = {z, z′ ∈ Σ∗∗ / (p̂, q̂) |: ẑ or (p̂, q̂) |	 ẑ′ for some p, q, z, z′ ∈ L}.

In other words, Γ(L) consists of arrays obtained by column or row
splicing any two arrays of L using the simple domino column or row splic-
ing rules.

A Simple array splicing system SAS is defined by S = (Γ, I) where
Γ = (Σ, Rc, Rr) and I is a finite subset of Σ∗∗. The language of S is defined
by L(S) = Γ∗(I) and we call it a Simple array splicing language SASL
and denote the class of such languages by L(SASL) .

We illustrate the above defined L(HASL) and its restriction languages
L(ASCO) , L(SASL) with examples in the section below.

3.2 Examples and counter examples

Below example describes HAS rules and its application.

Example 3.1. Let Σ = {a, b}, I =


# # # #
# a b #
# b a #
# # # #

 ,

Rc = {r1, · · · , r6} and Rr = {r7, · · · , r12} given by,
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r1 =
a
b

;
#
#

:
#
#

;
b
a

r2 =
b
a

;
#
#

:
#
#

;
a
b

r3 =
#
a

;
#
#

:
#
#

;
#
b

r4 =
#
b

;
#
#

:
#
#

;
#
a

r5 =
a
#

;
#
#

:
#
#

;
b
#

r6 =
b
#

;
#
#

:
#
#

;
a
#

r7 = a b ; # # : # # ; b a

r8 = b a ; # # : # # ; a b

r9 = # b ; # # : # # ; # a

r10 = # a ; # # : # # ; # b

r11 = b # ; # # : # # ; a #

r12 = a # ; # # : # # ; b #

On column splicing in parallel, the initial array I with itself using HAS
rules r2, r4, r5, we obtain the array which is a column concatenation of I
with itself, i.e. given by,

# # # #
# a b #
# b a #
# # # #

|:
# # # # # #
# a b a b #
# b a b a #
# # # # # #

.

In fact, the splicing operation can be described in pictures more elab-
orately as,
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# # #
# a b
# b a
# # #

∣∣∣∣∣∣∣∣
#
#
#
# ,

#
#
#
#

∣∣∣∣∣∣∣∣
# # #
a b #
b a #
# # #

 |:


# # # # # #
# a b a b #
# b a b a #
# # # # # #


Likewise, row splicing in parallel using r7, r8, r9, r12 gives


# # # # # #
# a b a b #
# b a b a #
# # # # # # ,

# # # # # #
# a b a b #
# b a b a #
# # # # # #

 |	


# # # # # #
# a b a b #
# b a b a #
# a b a b #
# b a b a #
# # # # # #


and using r7, r8, r9, r12 gives


# # # # # #
# a b a b #
# b a b a #
# a b a b #
# b a b a #
# # # # # # ,

# # # # # #
# a b a b #
# b a b a #
# a b a b #
# b a b a #
# # # # # #

 |
	



# # # # # #
# a b a b #
# b a b a #
# a b a b #
# b a b a #
# a b a b #
# b a b a #
# # # # # #


A vertical bar ‘| ’ or a horizontal bar ‘−−’ is used to indicate the place

where splicing is done. L is the language consisting of all “chessboards”
with even side-length given in [4]. i.e. pictures of the form in Figure 3.1

The picture or pattern of Figure 3.1 can be represented by an array
M , where ‘a’ stands for white and ‘b’ for black and

M =

a b a b a b a b a b
b a b a b a b a b a
a b a b a b a b a b
b a b a b a b a b a
a b a b a b a b a b
b a b a b a b a b a

.
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Figure 3.1: Chessboard Pattern

Now, we illustrate the above chessboard pattern example with SAS
rules.

Example 3.2. Let Σ = {a, b}, I =

{
a b
b a

}
, Rc = {r1, .., r4} and

Rr = {r5, ..., r8} given by,

r1 =
b
a

;
λ
λ

:
b
a

;
λ
λ

r2 =
#
b

;
λ
λ

:
#
b

;
λ
λ

r3 =
a
#

;
λ
λ

:
a
#

;
λ
λ

r4 =
a
b

;
λ
λ

:
a
b

;
λ
λ

r5 = a b ; λ λ : a b ; λ λ

r6 = b a ; λ λ : b a ; λ λ

r7 = # b ; λ λ : # b ; λ λ

r8 = a # ; λ λ : a # ; λ λ

The above given sequence of rules enables the application at any col-
umn or row of the two spliced (identical) initial pictures. This is unlike
for the HAS rules which were given in example 3.1 also obtaining picture
language with pattern in figure 3.1.

The following are more examples of SASL .
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Example 3.3. Let Σ = {x, a}, I =


x x x x
x a a x
x a a x
x x x x

 , Rc = {r1, ..., r5}

and Rr = {r6, ..., r10} given by,

r1 =
x
a

;
λ
λ

:
x
a

;
λ
λ

r2 =
a
a

;
λ
λ

:
a
a

;
λ
λ

r3 =
a
x

;
λ
λ

:
a
x

;
λ
λ

r4 =
#
x

;
λ
λ

:
#
x

;
λ
λ

r5 =
x
#

;
λ
λ

:
x
#

;
λ
λ

r6 = x a ; λ λ : x a ; λ λ

r7 = a a ; λ λ : a a ; λ λ

r8 = a x ; λ λ : a x ; λ λ

r9 = # x ; λ λ : # x ; λ λ

r10 = x # ; λ λ : x # ; λ λ

L is the language consisting of pictures of the form in Figure 3.2, where
white area of the rectangle is interpreted as ‘a’ and black as ‘x’.

Example 3.4. Let Σ = {x, .}, I =


x . .
x . .
x x x

 ,

Rc = {r1, .., r4} and Rr = {r5, ..., r8} given by,
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Figure 3.2: Rectangles of ‘a’ surrounded by ‘x’

r1 =
#
.

;
λ
λ

:
#
.

;
λ
λ

r2 =
.
.

;
λ
λ

:
.
.

;
λ
λ

r3 =
.
x

;
λ
λ

:
.
x

;
λ
λ

r4 =
x
#

;
λ
λ

:
x
#

;
λ
λ

r5 = # x ; λ λ : # x ; λ λ

r6 = x . ; λ λ : x . ; λ λ

r7 = . . ; λ λ : . . ; λ λ

r8 = . # ; λ λ : . # ; λ λ

L is the picture language consisting of all n × m arrays describing
token-L of ‘x’.

Remark 3.1. Note that we consider finite set of rules in the following
results, though the rules can be infinite. Also, note that controlling the
number of application of Rc and Rr in strict order can also obtain lan-
guages describing size and pattern of the rectangles/arrays. i.e. leaving
intermediate pictures according to a defined strict application process of Rc

and Rr can obtain the pictures in the defined language class with described
size and pattern.
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x . . . . .
x . . . . .
x . . . . .
x . . . . .
x . . . . .
x . . . . .
x x x x x x

x
x
x
x
x
x
x x x x x x

Figure 3.3: Arrays describing token L of ‘x’

In the following sections we study some of the properties of the above
defined language classes and its comparisons with some of the other given
well studied language classes for recognizability in two-dimensional lan-
guages/picture languages. Firstly, we state the results of L(HASL) stud-
ied in [6].

3.2.1 H-array splicing systems

Now we examine certain closure properties :

Theorem 3.1. The class L(HASL) is closed under reflections on the base
and right leg and rotations by 90◦, 180◦ and 270◦.

Proof. We first prove that L(HASL) is closed under reflections. Let S =
(Γ, I) where Γ = (Σ, Rc, Rr) and I is a finite subset of Σ∗∗ be a splicing
system, with rules in Rc of the form

r1 =
a1

b1
;

c1

d1
:

a2

b2
;

c2

d2

and in Rr of the form

r2 = a1 b1 ; c1 d1 : a2 b2 ; c2 d2

describing a picture language L.
The picture language consisting of images which are reflections of ar-

rays of L on the base can be obtained by an H array splicing system
consisting of rules of the form

b1

a1
;

d1

c1
:

b2

a2
;

d2

c2
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corresponding to r1 and rules of the form

c2 d2 ; a2 b2 : c1 d1 ; a1 b1

corresponding to r2.
Similarly, the reflections of arrays of L on the right leg can be obtained

by an H array splicing system with modified rules

c2

d2
;

a2

b2
:

c1

d1
;

a1

b1

and

b1 a1 ; d1 c1 : b2 a2 ; d2 c2

corresponding to r1 and r2 respectively.

We next prove that L(HASL) is closed under rotations by 90◦, 180◦

and 270◦. We mention only the modified rules of Rc and Rr

c2

d2
;

a2

b2
:

c1

d1
;

a1

b1

and

b1 a1 ; d1 c1 : b2 a2 ; d2 c2

for rotation by 90◦;

d2

c2
;

b2

a2
:

d1

c1
;

b1

a1

and

d2 c2 ; b2 a2 : d1 c1 ; b1 a1

for rotation by 180◦;

b1

a1
;

d1

c1
:

b2

a2
;

d2

c2

and

c2 d2 ; a2 b2 : c1 d1 ; a1 b1

for rotation by 270◦.
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Theorem 3.2. The class L(HASL) is not closed under union and row
and column concatenation.

Proof. Let L1 = {(x2m)3,m ≥ 1} and L2 = {(x3m)3,m ≥ 1} , where (x2m)3

is an array with 3 rows and 2m columns with each entry in the array as
the symbol x and (x3m)3 has a similar meaning. But on column splicing
two initial arrays of the form

x x
x x
x x ,

x x x
x x x
x x x

by “splicing” either inside the array or at ends and then “pasting” the
resulting arrays according to any domino rules we will obtain arrays which
will not be elements of L1 ∪ L2.

Let L1 be a language consisting of arrays with 3 rows and any number
of columns with left border made of symbol ‘a’, right border of symbol
‘b’ and inner part of symbol ‘x’. A member of L1 is shown in figure 3.4.
Similarly, let L2 be another language of arrays as in L1 but left border
made of symbol ‘c’, right border of symbol ‘d’. In order to obtain arrays
of L1 : L2 (a member of which is shown in figure 3.4), the column splic-
ing of two arrays should maintain the leftmost column of symbol ‘a’, the
rightmost column of symbol ‘d’ and two successive innermost column of
symbols ‘b’ and ‘c’. But this is not possible due to the “cutting” and “past-
ing” nature of rules. An analogous argument applies to row concatenation.

a x x x x x b
a x x x x x b
a x x x x x b

c x x x x x d
c x x x x x d
c x x x x x d

a x b c x d
a x b c x d
a x b c x d

Figure 3.4: a member/picture of L1, L2 and L1 : L2

We now compare the generative power of H array splicing systems
with other models of picture description.

Theorem 3.3. The classes L(LOC) of local array languages and L(HASL)
of H array splicing languages are incomparable but not disjoint.
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Proof. The picture language M consisting of all n×m arrays (n ≥ 2,m ≥
2) describing token-L of symbol ‘1’ (interpreting symbol ‘0’ as blank) in
figure 3.5 is in LOC. A member of M is shown in figure 3.5.

1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 1 1 1 1 1

1
1
1
1
1 1 1 1 1 1

Figure 3.5: pictures describing token-L of symbol ‘1’

We give an H array splicing system S = (Σ, Rc, Rr, I) to describe M .

Let Σ = {0, 1}, I =

{
1 0
1 1

}
, Rc = {r1, ..., r4} and Rr = {r5, ..., r8}

given by,

r1 =
0
1

;
#
#

:
1
1

;
0
1

r2 =
0
0

;
#
#

:
1
1

;
0
0

r3 =
#
0

;
#
#

:
#
1

;
0
0

r4 =
1
#

;
#
#

:
1
#

;
0
0

r5 = 1 0 ; 1 1 : # # ; 1 0

r6 = 0 0 ; 1 1 : # # ; 0 0

r7 = # 1 ; # 1 : # # ; # 1

r8 = 0 # ; 1 # : # # ; 0 #
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The picture language L of all images over Σ = {a} with 3 columns,
some given in figure 3.6, is not in L(LOC). In fact, it is not possible
to fix the number of columns using only one symbol. i.e. the block[
a a
a a

]
can be moved without restriction on the columns. But L is

obtained by an H array splicing system where I = {a a a}, Rc = ∅
and Rr = {r1, r2, r3} below,

r1 = a a ; # # : # # ; a a

r2 = # a ; # # : # # ; # a

r3 = a # ; # # : # # ; a #

a a a
a a a

a a a
a a a
a a a

a a a
a a a
a a a
a a a

Figure 3.6: 3 column pictures over Σ = a

It is known [4] that the picture language of square images in which di-
agonal positions carry symbol ‘1’ but the remaining positions carry symbol
‘0’ is in L(LOC). But it is not in HAS. Since row and column splicing
are independently done, it is clear that arrays with a proportion between
rows and columns and in particular pictures with only square size cannot
be generated.

Remark 3.2. The class L(HASL) intersects L(TS) since L(LOC) ⊆
L(TS) .

Theorem 3.4. The class L(HASL) of H array splicing languages and
L(2RLG) of picture languages generated by two dimensional right linear
grammar are incomparable but not disjoint.
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Proof. The picture language of “chessboards” with even side-length in
example 3.1 is generated by a HAS, and is known in [4] to be generated
by a 2RLG.

The picture language L1 consisting of arrays describing token-H cannot
be generated by any 2RLG, as the horizontal row of symbol ‘x’ cannot be
maintained by any 2RLG given in [13]. Two members of L1 are shown in
figure 3.7

x . . . . x
x . . . . x
x x x x x x
x . . . . x
x . . . . x
x . . . . x

x . . . . x
x . . . . x
x . . . . x
x x x x x x
x . . . . x
x . . . . x

Figure 3.7: Arrays of Token-H

But it is described by the following HAS :

Let Σ = {x, .}, I =


x . x
x x x
x . x

, Rc = {r1, ..., r5} andRr = {r6, ..., r15}

given by,

r1 =
.
x

;
x
x

:
x
x

;
.
x

r2 =
.
.

;
x
x

:
x
x

;
.
.

r3 =
x
.

;
x
x

:
x
x

;
x
.

r4 =
#
.

;
#
x

:
#
x

;
#
.

r5 =
.
#

;
x
#

:
x
#

;
.
#
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r6 = x . ; # # : x x ; x .

r7 = . x ; # # : x x ; . x

r8 = . . ; # # : x x ; . .

r9 = # x ; # # : # x ; # x

r10 = x # ; # # : x # ; x #

r11 = # x ; # x : # # ; # x

r12 = x . ; x x : # # ; x .

r13 = . x ; x x : # # ; . x

r14 = . . ; x x : # # ; . .

r15 = x # ; x # : # # ; x #

The picture language L2 = {((ab)p ∪ (ba)q)n / p, q, n ≥ 1} cannot be
described by any HAS. This is due to the fact that the column splicing
of any two arrays ((ab)p)n and ((ba)q)n will yield an array which is not in
L2. But it is generated by the following 2RLG :

Σ = {a, b};

ΣI = {A1, A2, A3, A4};

Vh = {S,X};

Rh =

 S → A1A2X, S → A3A4Y, X → A1A2X,

Y → A3A4Y, X → A1A2, Y → A3A4;

Vv = {A1, A2, A3, A4};

Rv =


A1 → aA1, A1 → a, A2 → bA2,

A2 → b, A3 → bA3, A3 → b,

A4 → aA4, A4 → a.
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Theorem 3.5. The class L(HASL) intersects the class of null-context
splicing array languages in [8].

Proof. Let Grid < X, Y, n,m > represent an image G of size < n,m >
where n,m are odd positive integers n,m ≥ 3, and G is given by

G[i, j] =

{
X if i is odd or j is odd
Y otherwise

where 1 ≤ i ≤ n, 1 ≤ j ≤ m. G is said to be a Grid defined over < X, Y >
of size < n,m >. GRIDS < X, Y > represent the set of all Grids over
< X, Y > . A member of GRIDS < X, . > is shown in below Figure 3.8

X X X X X X X
X . X . X . X
X X X X X X X
X . X . X . X
X X X X X X X
X . X . X . X
X X X X X X X

Figure 3.8: Grid < X, ., 7, 7 >

It is known that GRIDS < X, ., n,m > is a null-context splicing array
language in [8]. We give an H array splicing system S = (Σ, Rc, Rr, I),
generating it.

Let Σ = {X, .}, I = Grid < X, ., 3, 3 > =


X X X
X . X
X X X

, Rc =

{r1, .., r4} and Rr = {r5, .., r8} given by,

r1 =
X
X

;
λ
λ

:
X
X

;
X
.

r2 =
X
X

;
λ
λ

:
X
X

;
.
X

r3 =
#
X

;
λ
λ

:
#
X

;
#
X
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r4 =
X
#

;
λ
λ

:
X
#

;
X
#

r5 = X X ; λ λ : X X ; X .

r6 = X X ; λ λ : X X ; . X

r7 = # X ; λ λ : # X ; # X

r8 = X # ; λ λ : X # ; X #

Definition 3.8. [4] Let Σ be a finite alphabet and let S1 and S2 ⊆ Σ∗ be
two string languages over V . The row-column combination of S1 and S2 is
a picture language L = S1 ⊕ S2 ⊆ Σ∗∗ such that a picture p ∈ Σ∗∗ belongs
to L if and only if the strings corresponding to the rows and columns of p
belong to S1 and S2 respectively.

Theorem 3.6. The class L(HASL) intersects the class of picture lan-
guage of the form L = S1⊕S2 ⊆ Σ∗∗ which is the row column combination
of S1 and S2.

Proof. We describe a picture language L in HAS which is a row-column
combination picture language given by,

Σ = {0, 1}, I =

{
1 0 1
1 0 1 ,

1 0 1
1 1 1 ,

1 1 1
1 0 1 ,

1 1 1
1 1 1

}
,

Rc = {r1, r2, r3} where xi ∈ {0, 1}, for 1 ≤ i ≤ 8 and
Rr = {r4, r5, r6} where yi ∈ {0, 1}, for 1 ≤ i ≤ 4 are given by,

r1 =
x1

x2
;

1
1

:
1
1

;
x3

x4

r2 =
#
x5

;
#
1

:
#
1

;
#
x6

r3 =
x7

#
;

1
#

:
1
#

;
x8

#
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r1 = y1 y2 ; λ λ : λ λ ; y3 y4

r2 = # 1 ; λ λ : λ λ ; # 1

r3 = 1 # ; λ λ : λ λ ; 1 #

Here L consists of all pictures over Σ = {0, 1} whose first and last
columns consist only of symbol ‘1’. In fact L = ({1}S1{1}) ⊕ Σ∗ where
S1 ⊆ Σ∗.

Remark 3.3. The concept of controlling the application of rules in a
derivation of a word in a grammar is standard in literature [7]. Here, by
controlling the application of domino column/row splicing rules, we can
obtain square arrays which cannot be described by domino column/row
splicing rules.

Let Σ = {a} , I =

{
a a
a a

}
, Rc = {r1, r2, r3} and Rr = {r4, r5, r6}

given by,

r1 =
a
a

;
#
#

:
#
#

;
a
a

r2 =
#
a

;
#
#

:
#
#

;
#
a

r3 =
a
#

;
#
#

:
#
#

;
a
#

r4 = a a ; # # : # # ; a a

r5 = # a ; # # : # # ; # a

r6 = a # ; # # : # # ; a #

Let the control language be {RcRr}n. Then L the language of squares
of order 2n × 2n, n > 0 over one letter alphabet {a} is obtained.
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Now we recall the notion of Self cross-over array languages in [6] which
was based on the study of Mitrana et. al for string case and we also state
its closure properties.

Based on the study of [1] on strings, we now introduce self cross-over
array systems based on H-array splicing systems and state them with the
results in [6],[9].

In this section we give the examples, counter-examples and thus some
comparison results with various other Picture Language classes for Self
cross-over array languages L(ASCO) in [6],[9].

3.2.2 Self Cross-Over Array Languages

By the following results it can be seen that various properties of Self
cross-over array languages are analogous to the properties of H-array splic-
ing systems. We now prove a comparison of string case H-splicing lan-
guages and Self cross-over languages extended to family of H-array splic-
ing languages L(HASL) and the family of self cross-over array languages
L(ASCO) .

Theorem 3.7. The family L(HASL) is incomparable with the language
family L(ASCO) and is not disjoint.

Proof. It is known in [5] that the language L cannot be generated by any
ASCO for L = {(ap)n(bq)n(ar)n(bs)n/n ≥ 2, p, q, r, s ≥ 0} where (xm)n is an
array consisting of n rows with each row having xm elements for a given m.

Now, to prove that L can be generated by a H-array splicing system.
We give the HAS generating the language : Let Σ = {a, b},

I =

{
a a b a b
a a b a b

,
a b a b
a b a b

,
a b a a b b
a b a a b b

}
,

Rc = {r1, r2, r3} and Rr = {r4, r5, r6} given by,

r1 =
#
b

;
#
a

:
#
b

;
#
a

r2 =
b
b

;
a
a

:
b
b

;
a
a

r3 =
b
#

;
a
#

:
b
#

;
a
#
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r4 = a a ; # # : # # ; a a

r5 = a b ; # # : # # ; a b

r6 = b a ; # # : # # ; b a

we illustrate the column and row splicing rules given above:[
a a b a b
a a b a b

,
a b a a b b
a b a a b b

]
|Rc

[
a a b a a b b
a a b a a b b

]

[
a a b a a b b
a a b a a b b

,
a a b a a b b
a a b a a b b

]
|Rr


a a b a a b b
a a b a a b b
a a b a a b b
a a b a a b b



Thus, we know that iterating the above rules proves L ∈ L(HASL) .
Now consider language L′ = {(b)n(a2m)n(b)n / n ≥ 2, m ≥ 0} where n

is the number of rows and the power counts the column by denoting the
number of that element in that row. We write the rules of ASCO language
L′. It can be seen that this language cannot be generated by a H-array
splicing system. Now we construct the rules ;

Let Σ = {a, b}, I =

{
b a b
b a b

}
, Rc = {r1} and Rr = {r2, r3} given by,

r1 =
a
a

;
b
b

:
b
b

;
a
a

r2 = b a ; # # : # # ; b a

r3 = a b ; # # : # # ; a b
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we can illustrate the column and row splicing rules similar to the above
illustration. Thus we prove that the family of H-array splicing system
is incomparable with the family of Self cross-over array system. And by
various common examples of the classes given and illustrated in section
3.2 we know that the classes are not disjoint.

We now compare L(ASCO) with two-dimensional classes of languages
L(LOC),L(2RLG) .

Theorem 3.8. The family L(ASCO) is incomparable with the class of
local languages L(LOC) but is not disjoint with it.

Proof. The picture language L′ consisting of all n × m arrays for (n ≥
2,m ≥ 2) describing token-L of symbol ‘x’ is in L(LOC). Now we give an
ASCO , S = (Σ, Rc, Rr, I) to describe L′.

Let Σ = {0, x}, I =

{
x 0
x x

}
, Rc = {r1, ..., R4} and Rr = {r5, ..., r8}

given by,

r1 =
0
x

;
#
#

:
x
x

;
0
x

r2 =
0
0

;
#
#

:
x
x

;
0
0

r3 =
#
0

;
#
#

:
#
x

;
0
0

r4 =
x
#

;
#
#

:
x
#

;
0
0

r5 = x 0 ; x x : # # ; x 0

r6 = 0 0 ; x x : # # ; 0 0

r7 = # x ; # x : # # ; # x

r8 = 0 # ; x # : # # ; 0 #
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The picture language L′′ of all images over Σ = {a} with three columns
is not in LOC. In fact, it is not possible to fix the number of columns using
only one symbol. i.e. we can be move without restriction on the number

of columns the block

[
a a
a a

]
. But it is obtained by an ASCO where

I = {a a a}, Rc = {∅} and Rr = {r1, r2, r3} given by,

r1 = a a ; # # : # # ; a a

r2 = # a ; # # : # # ; # a

r3 = a # ; # # : # # ; a #

It is known in [4] that the picture language of square images in which
diagonal positions carry symbol ‘1’ but the remaining positions carry sym-
bol ‘0’ is in LOC. But it is not in L(ASCO) . Since row and column splicing
are independently done, it is clear that arrays with a proposition between
rows and columns and in particular pictures with only square size cannot
be generated.

Theorem 3.9. The family L(ASCO) is incomparable with the language
family of two-dimensional right linear grammars L(2RLG) but is not dis-
joint with it.

Proof. The picture language of chessboards with even side-length is gen-
erated by a L(ASCO) and is known to be generated by a 2RLG given in
[4].

The picture language L2 = {((ab)p ∪ (ba)q)n / p, q, n ≥ 1} cannot be
described by any ASCO . This is due to the fact that the column splicing
of any two arrays ((ab)p)n and ((ba)q)n will yield an array which is not
in L2. But it is generated by 2RLG, i.e. we refer to the 2RLG example
given in [4] to prove the comparison with HAS .

The picture language L1 consisting of arrays describing token-H cannot
be generated by any 2RLG, as the horizontal row of symbol ‘x’ cannot
be maintained by any 2RLG. But it is described by the ASCO where

Σ = {x, 0}, I =


x 0 x
x x x
x 0 x

, and Rc is such that the domino rules are

written to cut the last column and the first column of the two identical
copies of I to paste and make the pattern of more number of columns.
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Similarly Rr is such that the cutting and pasting is at the bordered row
to enlarge the pattern of I. Thus the incomparability result.

Remark 3.4. As a corollary of the theorem above the family of L(ASCO)
is incomparable with the families of regular and context-free two-dimensional
matrix languages given in [12].

We recall some closure properties in [6] of the family of L(ASCO) un-
der certain operations given in [12].

Theorem 3.10. The family L(ASCO) is

(i) not closed under union and column (row) concatenation.

(ii) closed under reflections on the base and right leg and rotations by
90◦, 180◦ and 270◦.

The non-closure result can be seen by constructing picture languages
analogous to the linear string case given in [6]. The closure under the
geometric operations in (ii) can be shown as in the case of H-array splicing
languages given in section 3.2.1.

We now compare some of the picture language classes studied with its
examples above for generative power of L(HASL) and L(ASCO) also with
L(SASL) .

3.2.3 Simple array splicing langauges

Theorem 3.11. The class of L(LOC) of local array languages and L(SASL)
of Simple array splicing languages are incomparable but not disjoint in [6].

Proof. The picture language M consisting of all n×m arrays (n ≥ 2,m ≥
2) describing token-L of symbol ‘1’ is in LOC given in [6]. It is also de-
scribed by a Simple array splicing system S = (Σ, Rc, Rr, I) as in example
3.4.

It is known in theorem 3.3 that the picture language L of all rectangular
arrays over Σ = {a} with three columns is not in LOC. But it is generated
by a Simple array splicing system where

I =


a a a
a a a
a a a

, Rc = ∅ and Rr = {r1, r2, r3}
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r1 = a a ; λ λ : a a ; λ λ

r2 = # a ; λ λ : # a ; λ λ

r3 = a # ; λ λ : a # ; λ λ

It is known [4] that the picture language of square images in which di-
agonal positions carry symbol ‘1’ but the remaining positions carry symbol
‘0’ is in L(LOC). But it is not in L(SASL) . Since row and column splicing
are independently done, it is clear that arrays with a proportion between
rows and columns and in particular pictures with only square size cannot
be generated by any L(SASL) .

Theorem 3.12. The class L(SASL) of Simple array splicing languages
and L(2RLG) in [9] of picture languages generated by two dimensional
right linear grammars are incomparable but not disjoint.

Proof. The picture language of ”chessboards” with even side-length given
in Figure 3.1 is also generated by a SAS given in example and is known
to be generated by a 2RLG.

The picture language L1 consisting of arrays describing token-H given
in figure 3.9 cannot be generated by any 2RLG, as the horizontal row of
symbol ‘x’ cannot be maintained by any 2RLG. But the language consist-
ing of picture arrays describing token-H with three rows and any number
of columns can be generated by the following SAS :

Let Σ = {x, .}, I =


x . . x
x x x x
x . . x

, Rc = {r1, ..., r4} and Rr = ∅

r1 =
.
x

;
λ
λ

:
.
x

;
λ
λ

r2 =
x
.

;
λ
λ

:
x
.

;
λ
λ

r3 =
#
.

;
λ
λ

:
#
.

;
λ
λ

r4 =
.
#

;
λ
λ

:
.
#

;
λ
λ
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. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

Figure 3.9: Token-H

Note that the above defined language by SAS is also given by HAS
in theorem comparing 2DRLG. Also, we already know that the picture
language L2 = {((ab)p ∪ (ba)q)m / p, q,m ≥ 1} cannot be described by any
HAS . This is due to the fact that the column splicing of any two arrays
((ab)p)m and ((ba)q)m will yield an array which is not in L2. Similarly,
for the same property of SAS to that of HAS there can be no SAS
generating L2. But as stated before it is generated by the 2RLG.

Remark 3.5. We have the following relationship among L(SASL) ,
L(LOC),L(2RLG) as seen from the above theorems

HAS

SHAS

LOC 2RLG

Note that the picture language of “chessboards” with even side-length
is generated by a SAS in example 3.1 and is known to be generated by a
2RLG in the example in 3.4. It is also a local language.Thus it is a picture
language in all the three classes.
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In fact the set Θ of 2× 2 windows describing this language is

Θ =



# # # # # b a # # # # #
# a, b #, # #, # #, a b, b a

# b a # a b b a a b b a
# a, b #, # #, # #, b a, a b

1 0 0 0 # a b #
1 1, 1 1, # b, a #



3.3 Simple Tree Splicing Systems

We now introduce the notion of Simple splicing on trees as an applica-
tion of the simple splicing rules introduced in [14]. The splicing of trees
considered here is a special form of a general notion of splicing of trees
considered in [11].

We consider labelled rooted trees T which are connected cycle-free
graphs with a designated node r called the root of the tree and a label
l(v) for every node v. Since there is a unique simple path from the root
r to any other node v in T , this determines a direction to the edges of
the tree and thus tree is viewed as a directed graph with a precedence
relationship such that every node has zero or more descendant nodes. A
node with a zero descendant is called a leaf and any other node is called
an interior node. A subtree of a given tree T is also a labelled rooted tree
with its root as an interior vertex of tree.

It is usual to denote a tree T with root label a and subtrees T1, ..., Tn
with root labels b1, ..., bn in linear form as given below T = a(T1, ..., Tn).
We call a labelled rooted tree T with labels in a set V , simply as a tree T
over V . The yield of a tree T is a string obtained by reading the labels of
the leaves from left to right.

Example 3.5. Let V = (a, b, c). let T = c(a, c(a, c(a, c, b), b), b) where T
is a tree. The yield of tree T is a3cb3.

We now introduce the notion of simple splicing of two trees, by con-
sidering simple splicing rules used in the splicing of words [10].
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Definition 3.9. Let V be an alphabet. Let r be a simple splicing rule
r = (c ; λ : c ; λ) where c ∈ V . Let T1 and T2 be two trees such that c
is a root label of a subtree T

′
1 of T1 and a subtree T

′
2 of T2. We say that

a tree T3 is obtained by simple tree splicing of T1 with T2, if T3 is the tree
obtained from T1 removing the subtree T

′
1 with root v having label c and

attaching T
′
2 at the node v.

Definition 3.10. A simple tree splicing system S = (V,A,R) where V is
an alphabet, A is a finite set of trees over V and R is a finite set of simple
tree splicing rules. The tree language T (S) consists of all trees obtained
from the trees in A by repeatedly applying the tree splicing rules of R. The
string language associated with the system S is the set L(S) of words which
are the yields of the trees in T (S).

Example 3.6. Let V = (a, b, c). let T be a tree T = c(a, c, b). Let
S = (V, T, r) where r = (c;λ : c;λ). On splicing T with itself we ob-
tain a tree T

′
= c(a, c(a, c, b), b). Repeatedly using the splicing operation,

we obtain a set of trees c(a, c, b), c(a, c(a, c, b), b), c(a, c(a, c(a, c, b)b)b), ...
which constitutes the tree language T (S). The string language of S is
L(S) = ancbn : n ≥ 1.

We exhibit the relation between the set of derivation trees of a context
free grammar and the tree language of a simple tree splicing system.

Theorem 3.13. Given a context free language G = (VN , VT , P, S), there
exists a simple tree splicing system S such that the tree language T (S) is
exactly the set of derivation trees of G. As a consequence the context free
language L(G) generated by G is simply the string language of L(S)

Proof. Assume that the given CFG is in Chomsky Normal Form with rules
of the form A → BC or A → a where A,B,C are non-terminals and a
is a terminal. For each rule A → BC we associate a tree A(B,C). For
each rule A → a we associate a tree A(a). A corresponding simple tree
splicing system S is constructed as follows : S = (VN ∪ VT , A

′
, R) where

A
′

consists of trees associated with the rules of P . R consists of simple
splicing rules of the form X;λ : X;λ whenever X is the left hand side of
a rule in G and is a symbol in the right hand side of a rule in G. It is
straight forward to see that T (S) consists of exactly the derivation trees
of G.
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Remark 3.6. It is known that the string language of a simple H system
[10] is regular. It is of interest to note from the theorem 3.1 that the
string language of a simple tree splicing system is context free and thus
the generative power of the simple splicing rules is increased when they
are applied on the tree structures.

Now in addition to the above study on the Splicing operation and its
variants or restriction over Picture languages, we define a new formalism
of this kind of Splicing defined with Grammar Systems. Grammar System
being a well studied notion of formal languages for problem solving, we
have tried to study set of pictures as components of such systems with
operation of splicing ( HAS ) defined.

3.4 Splicing Array Grammar Systems

We now introduce the notion of Splicing grammar systems in which the
component grammars are 2DMatrix Grammars, named Image Splicing
Grammar Systems.

Definition 3.11. An Image Splicing Grammar System is a construct
Γ = (Vh,ΣI , Vv, T, (S1, R

h
1 , R

v
1), ..., (Sn, R

h
n, R

v
n),M) where,

Vh is a finite set of variables called horizontal variables;
Vv is a finite set of variables called vertical variables;
ΣI ⊆ Vv is a finite set of intermediates;
T is a finite set of terminals;
Si, 1 ≤ i ≤ n is the start symbol of the corresponding horizontal compo-
nent;
Rh
i , 1 ≤ i ≤ n is a finite set of rules called horizontal productions

and the rules can be regular or context free or context sensitive;
Rv
i , 1 ≤ i ≤ n is a finite set of right linear rules called vertical productions;

M = {Rc, Rr} is a finite set of domino column or row splicing rules of the
form

m = α1 ; α2 : α3 ; α4 or β1 ; β2 : β3 ; β4

where αi =
a
b

and βi = c d for some a, b, c, d ∈ Vv ∪ {T} ∪ {λ}.

The derivations take place in two phases as follows :
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Each component grammar generates a word called intermediate word,
over intermediates starting from its own start symbol and using its hori-
zontal production rules ; the derivations in this phase are done with the
component grammars working in parallel.

In the second phase any of the following steps can take place :

(i) each component grammar can rewrite as in a two dimensional matrix
grammar using the vertical rules, starting from its own intermediate
word generated in the first phase. (The component grammars rewrite
in parallel).Note that the component grammars together terminate
or together continue rewriting in the vertical direction.

(ii) At any instant the array X generated in the ith component for some
1 ≤ i ≤ n and the array Y generated in the jth component for
some 1 ≤ j ≤ n can be spliced using column / row domino splicing
rules as in definition 3.1, thus yielding array Z in ith component
and W in the jth component; In fact Z will have a prefix of X
column concatenated with a suffix of Y and W will have a prefix of
Y , column concatenated with a suffix of X, the prefixes and suffixes
being given by the splicing rules. In any other components (other
than ith, jth components), the arrays generated at this instant will
remain unchanged during this splicing process.

There is no priority between steps (i) and (ii).

The language Li(Γ) generated by the ith component of Γ consists of
all arrays, generated over T , by the derivations described above.

This language will be called the individual language of the system and
we may choose this to be the language of the first component and Lt(Γ) =⋃n
i=1 Li(Γ) as the total language. The family of individual languages gen-

erated by ISGS with n components of type X for X ∈ {REG,CF} is
denoted by IisgsLn(X), and the corresponding family of total languages
by TisgsLn(X) respectively and YisgsLn(X) when Y ∈ {I, T}. We basi-
cally deal with individual languages although the results obtained apply
to total languages as well.

Example 3.7. Let Γ = ({S,X} , {A,B,C} , {A,B,C,D} {., x} ,
(S,Rh, Rv), (S,Rh, Rv), (S,Rh, Rv),M) where

UNIVERSITAT ROVIRA I VIRGILI 
PICTURE LANGUAGES GENERATED BY SPLICING AND ASSEMBLING TILES 
Anthonath Roslin Sagaya Mary 



3.4. SPLICING ARRAY GRAMMAR SYSTEMS 69

Rh = {S → AX, X → BX, X → C }
Rv = {A→ xA, A→ x, B → xD,D → .D,

D → x, C → xC, C → x},
M = {Rc, Rr} given below,

x
.

;
x
x

:
λ
λ

;
x
x

.

.
;

x
x

:
λ
λ

;
x
x

.
D

;
x
C

:
λ
λ

;
x
A

x . ; A D : λ λ ; x x

. . ; D D : λ λ ; x x

. x ; D D : λ λ ; x x

The horizontal rules in a component generate intermediate words of
the form ABnC with the same value of n ≥ 1 at a time. The vertical
rules of the components generate from an intermediate word rectangle
pictures of (.)’s surrounded or bordered by x’s except the bottom border
which will be of the form ADnC. At this stage with domino splicing rules,
column or row splicing of the array in a component with the array in
another component can take place before rewriting is terminated in the
components with terminating vertical rules. In fact any picture generated
in the individual language of this Image splicing grammar system will be
either (i) rectangular pictures in which any row, except the first and the
last, will be of the form (x(.)n)kx for some kε{1, 2, 3} or (ii)rectangular
pictures in which any column, except the first and the last, will have a
similar feature or (iii) simply a column of x′s. Two such pictures obtained
are shown in Figures 3.10 and 3.11.

Example 3.8. Let

Γ = ({S,X} , {A,B,E} , {A,B,C,D,E}
{., x} , (S,Rh, Rv), (S,Rh, Rv), (S,Rh, Rv),M)
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x x x x x x x x x x x x x
x . . . x . . . x . . . x
x . . . x . . . x . . . x
x . . . x . . . x . . . x
x x x x x x x x x x x x x

Figure 3.10: Horizontal boxes with ‘x’ frame

x x x x x
x . . . x
x . . . x
x x x x x
x . . . x
x . . . x
x x x x x
x . . . x
x . . . x
x x x x x

Figure 3.11: Vertical boxes with ‘x’ frame

where

Rh = {S → EXE, X → AXB, X → AB}
Rv = {A→ aC, C → .C, C → a, B → bD,

D → .D, D → b, E → xE, E → x } and
M = {Rc} given by,

b
.

;
x
x

:
x
x

;
a
.

.

.
;

x
x

:
x
x

;
.
.

.
D

;
x
E

:
x
E

;
.
C

The horizontal rules generate in a component intermediate words of
the form EAnBnE with the same value of n ≥ 1 at a time. The verti-
cal rules of the components generate from an intermediate word rectangle
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pictures of (.)’s bordered on the top by words of the form xambmx, on the
bottom by words of the form ECmDmE , the leftmost column being a
column of x’s ending with E and the rightmost column being a column
of x’s ending with E. At this stage with domino splicing rules, column
splicing of the array in a component with the array in another component
can take place before rewriting is terminated in the components with ter-
minating vertical rules. One such picture obtained is shown in Figure 3.12.

x . . . . . . . . . . . . x
x . . . . . . . . . . . . x
x . . . . . . . . . . . . x
x a a b b a a b b a a b b x
x . . . . . . . . . . . . x
x . . . . . . . . . . . . x
x . . . . . . . . . . . . x

Figure 3.12: Xa2b2a2b2a2b2X

3.4.1 Comparisons

Theorem 3.14. For Y ∈ {I, T},

(i) 2DRML = YisgsL1(REG)

(ii) 2DRML ⊂ YisgsL2(REG)

(iii) 2DCFML = YisgsL1(CF )

(iv) 2DCFML ⊂ YisgsL2(CF )

Statements (i) and (iii) are obvious. The proper inclusion in state-
ment (ii) is a consequence of Example 3.7. In fact the pictures in Figures
3.10 and 3.11 cannot be generated by any 2DRMG as both the rules in
both the horizontal and vertical phases are only regular rules. Likewise
the proper inclusion in statement (iv) is a consequence of Example 3.8
since the rules in the horizontal phase of a 2DCFMG are only CF rules
and so the pictures as in Figure 3.12 require CS rules in the first phase.
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Example 3.9. Let

Γ = ({S1, · · ·Sn, X} , {A1, · · · , An, B1, · · · , Bn, C1, . . . , Cn, } ,
{A1, · · · , An, B1, · · · , Bn, C1, . . . , Cn, D1, . . . , Dn} , {., x, a, b} ,
(S,Rh1 , Rv1), (S,Rh2 , Rv2), · · · , (S,Rhn , Rvn),M)

where

Rh1 = {S1 → A1X,X → B1X,X → C1

Rv1 = {A1 → xA1, A1 → x,B1 → aD1, D1 → .D1, D1 → a,

C1 → xC1, C1 → x,Di → a if i ≥ 2 and i odd,

Di → b if i ≥ 2 and i even, Ci → x}

For i > 1 and i even

Rhi = {Si → AiX,X → BiX,X → Ci

Rvi = {Ai → xAi, Ai → x,Bi → bDi, Di → .Di, Ci → xCi, }.

For i > 1 and i odd

Rhi = {Si → AiX,X → BiX,X → Ci

Rvi = {Ai → xAi, Ai → x,Bi → aDi, Di → .Di, Ci → xCi, }.

M = {Rc} given below,

a
.

;
x
x

:
λ
λ

;
x
x

b
.

;
x
x

:
λ
λ

;
x
x

.

.
;

x
x

:
λ
λ

;
x
x

.
Di

;
x
Ci

:
λ
λ

;
x
Ai
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We note that the top and bottom rows of the rectangular arrays gen-
erated in the individual language will be of the form xamxbmxamxbm...x
as there are n component grammars.

Theorem 3.15. For Y ∈ {I, T},

(i) 2DRML = YisgsL1(REG) ⊂ YisgsL2(REG) ⊂
· · · ⊂ YisgsLn(REG) ⊂ · · ·

(ii) 2DCFML = YisgsL1(CF ) ⊂ YisgsL2(CF ) ⊂
· · · ⊂ YisgsLn(CF ) ⊂ · · ·

The first statement follows in view of the Example 3.15. The second
can be shown on similar lines.

We now give the various results studied in [2] which were studied in
the same line as section 3.4 where we incorporate the HAS on 2D Matrix
Grammars along with grammar system, in parallel.

Now introduce the notion of Splicing array grammar system in which
the component grammars consist of rules of 2d tabled matrix grammars.
And we give some comparisons explaining the construction of the formal-
ism. Even though its a simple variant of the above defined Image Splicing
Grammar System, we again state the definition below.

Definition 3.12. A Splicing Array Grammar system (SAGS) is a con-
struct
Γ = (Vh,ΣI , Vv, T, (S1, R

h
1 , R

v
1), ..., (Sn, R

h
n, R

v
n),M) where,

Vh is a finite set of variables called horizontal variables;
Vv is a finite set of variables called vertical variables;
ΣI ⊆ Vv is a finite set of intermediates;
T is a finite set of terminals;
Si, 1 ≤ i ≤ n is the start symbol of the corresponding horizontal compo-
nent;
Rh
i , 1 ≤ i ≤ n is a finite set of rules called horizontal productions

and the rules can be regular or context free or context sensitive;
Rv
i , 1 ≤ i ≤ n is a finite set tables of right linear rules called vertical pro-

ductions;The productions in a table are all either of the form A→ aB or
of the form A→ a;
M = {Rc, Rr} is a finite set of domino column or row splicing rules of the
form
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m = α1 ; α2 : α3 ; α4 or β1 ; β2 : β3 ; β4

where αi =
a
b

and βi = c d for some a, b, c, d ∈ Vv ∪ {T} ∪ {λ}.

The derivations take place in two phases as follows :

Each component grammar generates a word called intermediate word,
over intermediates starting from its own start symbol and using its hori-
zontal production rules ; the derivations in this phase are done with the
component grammars working in parallel.

In the second phase any of the following steps can take place :

(i) each component grammar can rewrite as in a two dimensional matrix
grammar using the tables of vertical rules, starting from its own
intermediate word generated in the first phase. (The component
grammars rewrite in parallel and the rules of a table are applied
together). Note that the component grammars together terminate
or together continue rewriting in the vertical direction.

(ii) at any instant the array X generated in the ith component for some
1 ≤ i ≤ n and the array Y generated in the jth component for
some 1 ≤ j ≤ n can be spliced using column / row domino splicing
rules as in definition 3.1, thus yielding array Z in ith component
and W in the jth component; In fact Z will have a prefix of X
column concatenated with a suffix of Y and W will have a prefix of
Y , column concatenated with a suffix of X, the prefixes and suffixes
being given by the splicing rules. In any other components (other
than ith, jth components), the arrays generated at this instant will
remain unchanged during this splicing process.

There is no priority between steps (i) and (ii).

The language Li(Γ) generated by the ith component of Γ consists of
all arrays, generated over T , by the derivations described above.

This language will be called the individual language of the system and
we may choose this to be the language of the first component and Lt(Γ) =⋃n
i=1 Li(Γ) as the total language. The family of individual languages gen-

erated by SAGS with n components of type X for X ∈ {REG,CF} is
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denoted by IsagsLn(X), and the corresponding family of total languages
by TsagsLn(X) respectively and YsagsLn(X) when Y ∈ {I, T}. We basi-
cally deal with individual languages although the results obtained apply
to total languages as well.

Remark 3.7. The image splicing grammar system (ISGS) introduced in
[2] in which the component grammars are 2D Matrix grammars [13] is a
special case of SAGS.

Example 3.10. Let

Γ = ({S,X, Y, Z} , {A,B,E,C} , {A,B,C,D,E, F, T, U} {., x} ,
(S,Rh, Rv), (S,Rh, Rv), (S,Rh, Rv),M)

where,

Rh = {S → AX,X → BX,X → BY, Y → EZ,Z → C}
Rv = {t1, t2, ..., t6}
t1 = {A→ xA,B → .B,E → .E, C → xC}.
t2 = {A→ xA,B → .D,E → .F, C → xC}.
t3 = {A→ xA,D → .D, F → .F, C → xC}.
t4 = {A→ xA,D → xT, F → yU,C → xC}
t5 = {A→ xA, T → .T, U → .U, C → xC}
t6 = {A→ x, T → ., U → ., C → x}

M = {Rc} given by,

.

.
;

x
x

:
x
x

;
.
.

.
y

;
x
x

:
x
x

;
.
x

y
.

;
x
x

:
x
x

;
x
.

.
U

;
x
C

:
x
A

;
.
T
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76 CHAPTER 3. H-ARRAY SPLICING SYSTEM

The horizontal rules in a component generate intermediate words of
the form ABnEC with the same value of n ≥ 1 at a time. The vertical
rules of the components generate from an intermediate word rectangular
pictures of digitized token H surrounded in the left and right by x’s and
the bottom border of the form AT nUC. At this stage with domino splic-
ing rules, column splicing of the array in a component with the array in
another component can take place before rewriting is terminated in the
components with terminating vertical rules. In fact any picture generated
in the individual language of this splicing array grammar system will be
rectangular pictures in which any row, except a middle row, will be of the
form x(.)knx and a middle row will be of the form x((x)ny)kx for some
kε{1, 2, 3}. One such picture obtained is shown in Figure 3.13.

x . . . . . . . . . . . . x
x . . . . . . . . . . . . x
x x x x y x x x y x x x y x
x . . . . . . . . . . . . x
x . . . . . . . . . . . . x
x . . . . . . . . . . . . x

Figure 3.13: Xx3nyx
3
nyx

3
nyx

3
nX

Example 3.11. Let

Γ = ({S,X} , {A,B,E} , {A,B,C,D,E}
{., x} , (S,Rh, Rv), (S,Rh, Rv), (S,Rh, Rv),M)

where,

Rh = {S → EXE,X → AXB,X → AB}
Rv = {t1, t2, t3, t4, t5}
t1 = {A→ .A,B → .B,E → xE}
t2 = {A→ .C,B → .D,E → xE, }
t3 = {C → aY,D → bZ,E → xE, }
t4 = {Y → .Y, Z → .Z, E → xE, }
t5 = {Y → ., Z → ., E → x} and

M = {Rc}, given by,
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b
.

;
x
x

:
x
x

;
a
.

.
b

;
x
x

:
x
x

;
.
a

.

.
;

x
x

:
x
x

;
.
.

.
Z

;
x
E

:
x
E

;
.
Y

The horizontal rules generate in a component intermediate words of the
form EAnBnE with the same value of n ≥ 1 at a time. The vertical rules
of the components generate from an intermediate word rectangle pictures
of (.)’s with a middle row of the form xambmx, and the bottom row of the
form ECmDmE , the leftmost column being a column of x’s ending with
E and the rightmost column being a column of x’s ending with E. At this
stage with domino splicing rules, column splicing of the array in a compo-
nent with the array in another component can take place before rewriting
is terminated in the components with terminating vertical rules. One such
picture obtained is already shown for ISG, it can be referred in Figure 3.12.

Theorem 3.16. For Y ∈ {I, T},

(i) 2dRML = YisgsL1(REG) ⊂ 2dTRML = YsagsL1(REG)

(ii) 2dRML ⊂ YisgsL2(REG)

(iii) 2dCFML = YisgsL1(CF ) ⊂ 2dTCFML = YsagsL1(CF )

(iv) 2dTRML ⊂ YsagsL2(REG)

(v) 2dTCFML ⊂ YsagsL2(CF )

(vi) YsagsL3(REG)− CS 6= φ.

Proof. The equalities in statements (i) and (iii) are clear from definitions
and the proper inclusions are known in [13]. Statement (ii) is proved in
[2]. Inclusions in statement (iv) and (v) are clear. The proper inclusion
in statement (iv) is a consequence of Example 3.10. In fact the picture
language of the Example 3.10 even with k = 2, cannot be generated by
any 2dTRMG as the rules in both the horizontal and vertical phases are
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78 CHAPTER 3. H-ARRAY SPLICING SYSTEM

only regular rules. Likewise the proper inclusion in statement (v) is a
consequence of Example 3.11 even with two components since the rules
in the horizontal phase of a 2dCFMG are only CF rules but the pictures
generated will require CS rules.The last statement follows from example
3.10 as the the pictures in Figure 3.13 require CS rules in the first phase
to generate these.

Example 3.12. Let

Γ = ({S1, · · ·Sn, X} , {A1, · · · , An, B1, · · · , Bn, C1, . . . , Cn, } ,
{A1, · · · , An, B1, · · · , Bn, C1, . . . , Cn, D1, . . . , Dn} ,
{., x, a, b} , (S,Rh1 , Rv1), (S,Rh2 , Rv2), · · · , (S,Rhn , Rvn),M)

where,

Rh1 = {S1 → A1X,X → B1X,X → C1}
Rv1 = {A1 → xA1, A1 → x,B1 → aD1, D1 → .D1, D1 → a,

C1 → xC1, C1 → x,Di → a if i ≥ 2 and i odd,

Di → b if i ≥ 2 and i even, Ci → x}.

For i > 1 and i even

Rhi = {Si → AiX,X → BiX,X → Ci}
Rvi = {Ai → xAi, Ai → x,Bi → bDi, Di → .Di, Ci → xCi, }.

For i > 1 and i odd

Rhi = {Si → AiX,X → BiX,X → Ci}
Rvi = {Ai → xAi, Ai → x,Bi → aDi, Di → .Di, Ci → xCi, }.

M = { Rc} given by,

a
.

;
x
x

:
λ
λ

;
x
x

b
.

;
x
x

:
λ
λ

;
x
x
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.

.
;

x
x

:
λ
λ

;
x
x

.
Di

;
x
Ci

:
λ
λ

;
x
Ai

We note that the top and bottom rows of the rectangular arrays gen-
erated in the individual language will be of the form xamxbmxamxbm...x
as there are n component grammars and the example is given in [2].

Theorem 3.17. For Y ∈ {I, T},

(i) 2dRML = YisgsL1(REG) ⊂ YisgsL2(REG) ⊂
· · · ⊂ YisgsLn(REG) ⊂ · · ·

(ii) 2dCFML = YisgsL1(CF ) ⊂ YisgsL2(CF ) ⊂
· · · ⊂ YisgsLn(CF ) ⊂ · · ·

(iii) 2dTRML = YsagsL1(REG) ⊂ YsagsL2(REG) ⊂
· · · ⊂ YsagsLn(REG) ⊂ · · ·

(iv) 2dTCFML = YsagsL1(CF ) ⊂ YsagsL2(CF ) ⊂
· · · ⊂ YsagsLn(CF ) ⊂ · · ·

The first statement has been proved in [2] using the Example 3.12.
The remaining statements can be seen similarly.
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Chapter 4

Pictural Networks of
Evolutionary Processors

We now introduce the notion of contextual pictural networking of evo-
lutionary processors using contextual insertion and deletion rules. These
rules are a special case of contextual insertion/deletion studied by Mitrana
[3].

4.1 Contextual Pictural Networks of Evo-

lutionary Processors

A contextual pictural network of evolutionary processors (CPNEP) of size
n is a construct

Γ = (V,N1, N2, . . . , Nn, G,Ni0),

where:

• V is an alphabet,

• for each 1 ≤ i ≤ n, Ni = (Ai,Mi, P Ii, F Ii, POi, FOi) is the i-th
evolutionary node processor of the network. The parameters of every
processor are:

– Ai is a multiset of finite support of 2D pictures over V . This
multiset represents the 2D pictures existing in the i-th node at
the beginning of any computation. Actually, in what follows,
we consider that each 2D picture appearing in any node at any
step has an arbitrarily large number of copies in that node, so

81
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82 CHAPTER 4. PNEP

that we identify multisets by their supports. Therefore, the set
Ai is the set of initial pictures in the i-th node.

– Mi is a finite set of contextual evolution rules of one of the
following forms:

A→ B(substitution rules),

(a, ε)→ (a,A)(r)(right cell insertion rules),

(ε, a)→ (A, a)(l)(left cell insertion rules),(
ε
a

)
→
(
A
a

)
(u)(up cell insertion rules)(

a
ε

)
→
(
a
A

)
(d)(down cell insertion rules)

(a,A)→ (a, ε)(r)(right cell deletion rules),

(A, a)→ (ε, a)(l)(left cell deletion rules),(
A
a

)
→
(
ε
a

)
(u)(up cell deletion rules)(

a
A

)
→
(
a
ε

)
(d)(down cell deletion rules)

More clearly, the set of evolution rules of any processor contains
either substitution, or deletion or insertion rules.

– PIi and FIi are subsets of V representing the input filter. This
filter, as well as the output filter, is defined by random context
conditions; PIi forms the enforcing context condition and FIi
forms the forbidding context condition. A 2D picture w ∈ V ∗2
can pass the input filter of the node processor i, if w contains
each element of PIi irrespective of the direction in which it
appears, but w can contain no element of FIi. Note that any
of the random context conditions may be empty, in which case
the corresponding context check is omitted.

With respect to the input filter we define the predicate

ρi(w) : w can pass the input filter of the node processor i.

– POi and FOi are subsets of V representing the output filter.
Analogously, a 2D picture can pass the output filter of a node
processor if it satisfies the random context conditions associated
with that node. Similarly, we define the predicate

τi(w) : w can pass the output filter of the node processor i.
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4.1. CPNEP 83

• G = ({N1, N2, . . . , Nn}, E) is an undirected graph called the un-
derlying graph of the network. The nodes of G correspond to the
evolutionary processors of the CPNEP. The edges of G, that is, the
elements of E, are given in the form of sets of two nodes.

• Ni0 is the output node of the network.

By a configuration (state) of an CPNEP as above we mean an n-tuple
C = (L1, L2, . . . , Ln), with Li ⊆ V ∗2 for all 1 ≤ i ≤ n. A configuration
represents the sets of 2D pictures (remember that each 2D picture appears
in an arbitrarily large number of copies) which are present in any node at
a given moment; clearly the initial configuration of the network is C0 =
(A1, A2, . . . , An). A configuration can change either by an evolutionary
step or by a communicating step. When changing by an evolutionary
step, each component Li of the configuration is changed in accordance
with the evolutionary rules associated with the node i.

Formally, we say that the configuration C1 = (L1, L2, . . . , Ln) directly
changes for the configuration C2 = (L′1, L

′
2, . . . , L

′
n) by an evolutionary

step, written as C1 → C2 if L′i is the set of 2D pictures obtained by
applying the rules of Ri to the 2D pictures in Li as follows (we present
one of the cases of contextual insertion/deletion, the other cases being
similar):

• A node having substitution rules performs a substitution as follows:
one occurrence of the lefthand side of a substitution rule is replaced
by the righthand side of that rule. If a letter can be replaced by
more than one new letter (there are more than one substitution
rules with the same lefthand side), then this replacement will be
done in different copies of the original 2D picture, thus resulting in
a multiset of new pictures, in which each 2D picture appears in an
arbitrary number of copies.

If the procedure above is applicable to more than one occurrence
of the same letter, then each such occurrence will be replaced ac-
cordingly, thus resulting again in an even larger multiset of new 2D
pictures, in which each 2D picture appears in an arbitrary number
of copies.

• A node having a left cell insertion rule

(ε, a) → (A, a)(l) performs a cell insertion as follows: A is inserted
on the left of the cell containing a. Similarly for the other insertion
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rules. Each newly inserted cell is formed by a combination of the
symbols appearing in the righthand side of the cell insertion rules of
the nodes, thus resulting in a multiset of new 2D pictures, in which
each 2D picture appears in an arbitrary number of copies.

• A node having a left cell deletion rule

(A, a) → (ε, a)(l) performs a cell deletion as follows: A is deleted
on the left of the cell containing a. Similarly for the other deletion
rules. A cell can be deleted if it contains symbols in the lefthand
side of the cell deletion rule, only.

More precisely, since an arbitrarily large number of copies of each 2D
picture is available in every node, after an evolutionary step, in each node
one gets again an arbitrarily large number of copies of any 2D picture
which can be obtained by using any rule associated with that node as
defined above. By definition, if Li is empty for some 1 ≤ i ≤ n, then L′i is
empty as well.

We say that the configuration C1 = (L1, L2, . . . , Ln) directly changes
for the configuration C2 = (L′1, L

′
2, . . . , L

′
n) by a communication step, writ-

ten as C1 ` C2 if for every 1 ≤ i ≤ n,

L′i = Li\{w ∈ Li | τi(w) = true}∪
⋃

{Ni,Nj}∈E

{x ∈ Lj | (τj(x)∧ρi(x)) = true}.

Note that the 2D pictures which can pass the output filter of a node
are sent out irrespective of they being received by any other node.

Let Γ = (V,N1, N2, . . . , Nn, G,Ni0) be an CPNEP. By a computation
in Γ we mean a sequence of configurations C0, C1, C2, . . . , where C0 is the
initial configuration, C2i → C2i+1 and C2i+1 ` C2i+2 for all i ≥ 0.

If the sequence is finite, we have a finite computation. The result of any
finite or infinite computation is a 2D picture language which is collected
in a designated node called the output (master) node of the network. If
C0, C1, . . . is a computation, then all 2D pictures existing in the node Ni0

at some step t – the i0-th component of Ct – belong to the 2D picture
language generated by the network. Let us denote this language by L(Γ).

Example 4.1. Consider the CPNEP generating pictures of staircases

Γ = ({a,A,B}, N1, N2, N3, N4, N5, K5, N5)
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4.2. 3D-PICTURAL NETWORKOF EVOLUTIONARY PROCESSORS85

N1 = ({a}, (a, ε)→ (a,A)(r), (A, ε)→ (A,A)(r),
(A, ε)→ (A,B)(r), (C, ε)→ (C,A)(r), {C}, {A,B}, {B}, φ

N2 = (φ,A→ a, {A,B}, φ, {a,B}, {A})

N3 = (φ,

(
ε
B

)
→
(
B
B

)
(u),

(
ε
B

)
→
(
C
B

)
(u), {B}, {A}, {C}, φ)

N4 = (φ,B → a, {B,C}, {A}, {a, C}, {B})

N5 = (φ,C → a, {a, C}, {A,B}, φ, {a})

Example 4.2. Consider the CPNEP generating pictures of token-T

Γ = ({a,A,B}, N1, N2, K2, N2)

N1 = ({aAa}, (a, ε)→ (a, a)(r), (ε, a)→ (a, a)(l),(
A
ε

)
→
(
A
A

)
(d),

(
A
ε

)
→
(
A
B

)
(d), φ, φ, {B}, φ)

N2 = (A→ a,B → a, {B}, φ, φ, {a})

Theorem 4.1. (i) The families L(2D-CPNEP) and L(BPG) intersect.

(ii) The family L(2D-CPNEP) also intersects L(CFPG).

The above statements of the theorem are clear from Examples 4.1 and
4.2.

4.2 3D-Pictural Network of Evolutionary Pro-

cessors

4.2.1 Three Dimensional Picture Languages

For a given alphabet V , a 3D picture p of size l ×m × n over V is a 3D
array of the form p = (aijk)i∈1,l, j∈1,m, k∈1,n with aijk ∈ V for i ∈ 1, l, j ∈
1,m, k ∈ 1, n. We denote V ∗∗∗ the set of all 3D pictures over V (including
the empty picture denoted by λ). A 3D picture language over V is a subset
of V ∗∗∗ . A 3D subpicture of a 3D picture p is a 3D sub array of p. A
(2 × 2 × 2) subpicture of p is called a cube of p. The set of all cubes of
p is denoted by B2,2,2(p). In the sequel, we will identify the boundaries of
a picture by surrounding it with the marker #. A picture p bounded by
markers # is denoted by p̂.
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4.2.2 Recognizability of 3D-rectangles by cubic sys-
tem

Here we consider local and recognizable 3D-rectangular languages [1].
A 3D-rectangle of the form given below is called a cube over the alphabet
{a, b, c, d, e, f, g, h}.

�
�
�

�
�
�

�
�
�

�
�
�

a b

c d

e f

g h

Hereafter we follow this notation for representing a cube. Given a 3D-
rectangle p, Bi,j,k(p) denotes the set of all sub 3D-rectangles p of size
(i, j, k), cube is a 3D-rectangle of size (2, 2, 2).We denote by Σl×m×n the
set of 3D-rectangles of size (l,m, n) over the alphabet Σ. B2,2,2 is in fact
a set of cubes.

Definition 4.1. Let Σ be a finite alphabet. The 3D-rectangular language
L ⊂ Σ??? is local if there exists a set of cubes

a
⊆ (Σ ∪ {#})2×2×2 such

that L = {p ∈ Σ???|B2,2,2(p̂) ⊆
a
}.

The family of local picture languages, denoted by 3D-LOC, is a gen-
eralization of the two dimensional case of local languages defined in [2].
Given a set of cubes ∆, the 3D-local picture language L generated by ∆
is denoted by L(∆).

Definition 4.2. Let Σ be a finite alphabet. A 3D-rectangular language
L ⊆ Σ???is called recognizable if there exists a local 3D-rectangular lan-
guage L′ (given by a set

a
of cubes) over an alphabet of Γ and a mapping

Π : Γ→ Σ such that L = Π(L′) .

Example 4.3. The language L of 3D-rectangular pictures over single al-
phabet of any size (l,m, n) surrounded by # symbol on all 6 faces is a
local 3D rectangular language [1]. Note that the 3D-rectangular languages
over one letter alphabet with all sides of equal length is not local but it is
a recognizable languages.

4.2.3 The Family 3D-PNEP

We now extend the notion of PNEP to 3D rectangular pictures
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A 3D- pictural network of evolutionary processors (3D-PNEP for short)
of size n is a construct

Γ = (V,N1, N2, . . . , Nn, G,Ni0),

where the components are as in [4] except the objects are 3D rectangular
pictures and evolution rules are as follows.

a→ b, a, b ∈ V (substitution rules),

a→ ε(x)(b), a ∈ V (back face deletion rules),

a→ ε(x)(f), a ∈ V (front face deletion rules),

a→ ε(y)(r), a ∈ V (right face deletion rules),

a→ ε(y)(l), a ∈ V (left face deletion rules),

a→ ε(z)(t), a ∈ V (top face deletion rules),

a→ ε(z)(bo), a ∈ V (bottom face deletion rules),

ε→ a(x)(b), a ∈ V (back face insertion rules),

ε→ a(x)(f), a ∈ V (front face insertion rules),

ε→ a(y)(r), a ∈ V (right face insertion rules),

ε→ a(y)(l), a ∈ V (left face insertion rules),

ε→ a(z)(t), a ∈ V (top face insertion rules),

ε→ a(z)(bo),a ∈ V (bottom face insertion rules),

a→ ε(x)(/), a ∈ V (front or back face deletion rules),

a→ ε(y)(−), a ∈ V (left or right face deletion rules),

a→ ε(z)(|), a ∈ V (top or bottom face deletion rules),
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ε→ a(x)(/), a ∈ V (front or back face insertion rules),

ε→ a(z)(|), a ∈ V (top and bottom face insertion rules),

ε→ a(y)(−), a ∈ V (left or right face insertion rules),

More clearly, the set of evolution rules of any processor contains either
substitution, or deletion or insertion rules.

Let Γ = (V,N1, N2, . . . , Nn, G,Ni0) be an 3D-PNEP. By a computation
in Γ we mean a sequence of configurations C0, C1, C2, . . . , where C0 is the
initial configuration, C2i → C2i+1 and C2i+1 ` C2i+2 for all i ≥ 0 where →
denotes evolution and ` denotes communication.

If the sequence is finite, we have a finite computation. The result of
any finite or infinite computation is a 3D rectangular picture language
which is collected in a designated node called the output (master) node
of the network. If C0, C1, . . . is a computation, then all 3D rectangular
pictures existing in the node Ni0 at some step t – the i0-th component
of Ct – belong to the 3D rectangular picture language generated by the
network. Let us denote this language by L(Γ).

4.2.4 Comparison

We start with some examples which constitute our basis for comparing
the class of 3D rectangular picture languages generated by 3D-PNEP with
other 3D rectangular picture generating devices.

Example 4.4. Let L1 denote the set of all 3D rectangular pictures p over
the alphabet {a}. The 3D rectangular language L1 described as
L1 = {p ∈ {a}∗∗∗|x(p), y(p), z(p) ≥ 1}. The language L1 can be generated
in the fourth node N4 by the following 3D-PNEP of size 4.

Γ = ({a,W}, N1, N2, N3, N4, K4, N4), where
N1 = ({ε}, {ε→ a(x)(/), ε→ W (x)(/)}, φ, {A, T}, {W}, φ)
N2 = (φ, {ε→ a(y)(−), ε→ T (y)(−)}, {W}, φ, {T}, φ)
N3 = (φ, {T → a,W → a}, {W,T}, φ, {, a}, {W,T})
N4 = (φ, {ε→ a(z)(|)}, {a}, {T}, φ, {a})
Here L(Γ) = L1.

Example 4.5. Let X be the 3D-rectangular picture of size (2, 2, 2) over
the alphabet {a}. Let L2 be the set of all 3D-rectangular pictures p over
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the alphabet {a} with all sides equal. This 3D-rectangular language L2 can
be formally described as

L2 = {p ∈ {a}∗∗∗ | x(p) = y(p) = z(p) ≥ 1}.

L2 can be generated in the output node N5 by the following complete 3D-
PNEP of size five:

Γ = ({a,A,B,C}, N1, N2, N3, N4, N5, K5, N5),

where N1 = ({X}, {ε→ A(x)(b)}, {a}, {A,B,C}, {a,A}, ∅)
N2 = (∅, {ε→ B(z)(bo)}, {a,A}, {B,C}, {a,A,B}, ∅)
N3 = (∅, {ε→ C(y)(l)}, {a,A,B}, {C}, {a,A,B,C}, ∅)
N4 = (∅, {A→ a,B → a, C → a}, {a,A,B,C}, ∅, {a}, {A,B,C})
N5 = (∅, {a→ a}, {a}, {B,C}, ∅, {a}).
Here L(Γ) = L2

Now we set:

3D-LOC is the class of local 3D picture languages [1].

3D-REC is the class of recognizable picture languages

L(3D-PNEP) is the class of 3D-rectangular picture languages gen-
erated by 3D-PNEP’s.

Now we are ready to give the result:

Theorem 4.2. The family L(3D-PNEP)
(i) is incomparable with family 3D-LOC but not disjoint.
(ii) intersects the family 3D-REC.

Proof. (i) The language of 3D-rectangular pictures over {a} from Example
4.4 is in 3D-LOC ([1]) and L(3D-PNEP). On the other hand, the language
from Example 4.5 is not in 3D-LOC ([1]) but is in L(3D-PNEP). The
language of 3D-arrays of equal size in which all the diagonal elements are
1 and the remaining elements are 0 and it is known to be in 3D-LOC
[1] but it cannot be generated by any 3D-PNEP as, informally speaking,
3D-PNEP’s have no ability to fix the position of symbols 1 in the diagonal
when using face insertion rule. Hence 3D-LOC and L(3D-PNEP) are
incomparable.
(ii) The language generated by the 3D-PNEP in Example 4.5 is in 3D-
REC[1]
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Chapter 5

Tiling Rule Systems

In this Chapter we give the new formalism called Tiling Rule Systems in
[1, 2] which is based on tiles instead of domino rules, where the picture
is generated by assembling tiles in columns(rows) with given rules over
tiles. This formalism is also a bio-inspired one generating pictures again
with application on its columns(rows), it seems natural to extend the
inspiration from self-assembling nature of the DNA sequences. Here we
just try to take the inspiration and apply tiling rules that we define to
assembling tiles generating picture language classes. We then study the
generative power of the classes.

Section 5.1 introduces the formalism. Sections 5.2 and the next section
5.3 are with the results on TRuS which has one of the first results and
the main results of the given study.

5.1 Tiling Rule Systems (TRuS)

In this section, we define the notion of tiling rule and tiling rule system.

A general tiling rule r over a set Θ of tiles is defined by a pair t1, t2 of
tiles in Θ, where t1 is the context site of rule r, while t2 is the replacement
site of rule r. Then r is denoted as r = t1→ t2 . We distinguish two types
of rules: row and column rules. The context site of a row rule is denoted
by a tile t = a b

c d
, while the context site of column rules is denoted by a

tile t = a b
c d

.

When a row rule r is applied, then t2 replaces the bottom row domino
of tile t1. Similarly, when a column rule is applied then t2 replaces the
rightmost column domino of tile t1. A rule acts together with other rules
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to enlarge a picture: this fact is formalized by the notion of rule sequence
defined below.

Definition 5.1 (row rule sequence). A sequence S = r1 ·r2 · ... ·rm of rules
is a row rule sequence, in short r-sequence, iff for each j, 1 ≤ j ≤ m,

it holds that rj =
aj aj+1

bj bj+1
→ a′j a

′
j+1

b′j b
′
j+1

(tiles in rj horizontally overlaps with

tiles in rj+1).

Given a row rule sequence S in the above Definition 5.1, the application
of rules in S defines the pseudo-pictures p(S,r) and q(S,r) consisting of 2
rows and m+ 1 columns called the context site and replacement site of S
respectively, such that p(S,r)[1, j] = aj, p(S,r)[2, j] = bj, while q(S,r)[1, j] =
a′j and q(S,r)[2, j] = b′j for each column j.

Definition 5.2 (column rule sequence). A sequence S = r1 · r2 · ... · rn
of rules is a column rule sequence, in short c-sequence, iff for each i,

1 ≤ i ≤ n, it holds that ri = ai bi
ai+1 bi+1

→ a′i b′i

a′i+1 b
′
i+1

(tiles in ri vertically

overlaps with tiles in ri+1).

Given a column rule sequence S in the above Definition 5.2, the appli-
cation of S produces the pseudo-pictures p(S,c) and q(S,c) consisting of n+1
rows and 2 columns called the context site of S and replacement site of S
respectively, such that p(S,c)[i, 1] = ai, p(S,c)[i, 2] = bi, while q(S,c)[i, 1] = a′i,
q(S,c)[i, 2] = b′i for each row i.

Example 5.1. Let the row rules be given by, r1 =
a b
e f →

a′ b′

e′ f ′
,

r2 =
b c
f g →

b′ c′

f ′ g′
and r3 =

c d
g h →

c′ d′

g′ h′
. Then S = r1 · r2 · r3 is a r-

sequence, picture p(S,r) is the context site of S, while picture q(S,r) is the
replacement site of S in figure 5.1.

Example 5.2. Let the column rules be given by, r1 = a e
b f →

a′ e′

b′ f ′
,

r2 = b f
c g →

b′ f ′

c′ g′
and r3 = c g

d h →
c′ g′

d′ h′
. Then S = r1 · r2 · r3 is a c-

sequence, such that the context site of S is p(S,c) and the replacement site
of S is q(S,c) in figure 5.1.

Now a rule sequence S can be applied to pictures to generate new ones,
whenever the context site of S is inside the picture.
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p(S,r) =
a b c d
e f g h

, q(S,r) =
a′ b′ c′ d′

e′ f ′ g′ h′
,

p(S,c) =

a e
b f
c g
d h

, q(S,c) =

a′ e′

b′ f ′

c′ g′

d′ h′

Figure 5.1: Rule sequence

Definition 5.3 (application of row rule sequences). Let S = r1 ·r2 ·...·rm−1

be a r-sequence having context site p(S,r). Then S can be applied to the
picture p̂ of size (n,m) at the i-th row of p̂, where 1 ≤ i < n iff p̂r[i..i+1] =
p(S,r).

Definition 5.4 (application of column rule sequences).
Let S = r1 · r2 · ... · rn−1 be a c-sequence having context site p(S,c). Then S
can be applied to the picture p̂ of size (n,m) at the i-th column of p̂, where
1 ≤ i < m iff p̂c[i..i+ 1] = p(S,c).

Observe that by the above definitions, a rule sequence S can be applied
at the i-th row (or column) of a picture p̂ if the context site of S is given
by the i-th and (i+ 1)-th rows (or columns) of p̂.

p̂

...
...

. . .
...

...
ai,1 ai,2 · · · ai,m ai,m
ai+1,1 ai+1,2 · · · ai+1,m ai+1,m

ai+2,1 ai+2,2 · · · ai+2,m ai+2,m
...

...
. . .

...
...

→

...
...

. . .
...

...
ai,1 ai,2 · · · ai,m ai,m
a′1 a′2 · · · a′m a′m
b′1 b′2 · · · b′m b′m

ai+2,1 ai+2,2 · · · ai+2,m ai+2,m
...

...
. . .

...
...

Figure 5.2: Application of S to the i-th row of p̂

Then a new picture can be generated by the application of S to picture
p̂ by means of the replacement site q(S,r) of S. Indeed, the first row (or
column) of q(S,r) (or q(S,c)) will replace the i+1-th row (or column) of p̂,
while the second row (or column) of q(S,r) (or q(S,c)) will be inserted in
between the replaced row (or column) and the (i+ 2)-th row (or column)
of p̂ (if present); see Figure 5.2 and 5.3.
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p̂

. . . a1,i a1,i+1 a1,i+2 . . .

. . . a2,i a2,i+1 a2,i+2 . . .

. . .
...

...
...

. . .

. . . an,i an,i+1 an,i+2 . . .

. . . an,i an,i+1 an,i+2 . . .

→

. . . a1,i a′1 b′1 a1,i+2 . . .

. . . a2,i a′2 b′2 a2,i+2 . . .

. . .
...

...
...

...
. . .

. . . an,i a
′
n b′n an,i+2 . . .

. . . an,i a
′
n b′n an,i+2 . . .

Figure 5.3: Application of S to the i-th column of p̂

Observe that the application of a rule sequence to a picture produces
an array over alphabet Σ ∪∆ which could not be a canonical or pseudo-
canonical one. Thus in following Definitions 5.5 and 5.6 we will only refer
to the application to pictures p̂ of rule sequences generating new pictures
q̂.

Definition 5.5 (row derived picture). Let S be a r-sequence such that
S can be applied at the i-th row of a picture p̂ of size (n,m). Then the
picture q̂ of size (n+ 1,m) is derived from p̂ by S iff the following holds:

q̂r[1..i] = p̂r[1..i], q̂r[i + 1..i + 2] is equal to the replacement site q(S,r)

of S, and q̂r[i+ 3..n+ 1] = p̂r[i+ 2..n] (if present).

Definition 5.6 (column derived picture). Let S be a c-sequence such that
S can be applied to a picture p̂ of size (n,m). Then the picture q̂ of size
(n,m+ 1) is derived from p̂ by S iff the following holds:

q̂c[1..i] = p̂c[1..i], q̂c[i + 1..i + 2] is equal to the replacement site q(S,c)

of S, and q̂c[i+ 3..m+ 1] = p̂c[i+ 2..m] (if present).

The rule sequence S of the above two definitions is called admissible
for picture p̂ since it allows the generation of a new array which is still a
picture. The application of S to p̂ to derive picture q̂ is denoted by p̂→S q̂.
The i-iterated application of S over a picture p̂ to generate picture q̂ is
denoted by p̂→i

S q̂
A picture p̂′ is derived from a picture p̂, denoted by p̂ ⇒R p̂

′, iff there
exist rule sequences S1, · · · , Sk such that p̂ →S1 p̂1 →S2 p̂2... →Sk

p̂′.
Then p̂ →S1 p̂1 →S2 p̂2... →Sk

p̂′ is called derivation of p̂′ from p̂, while
d = S1, · · · , Sk is the derivation sequence applied to derive p̂′ from p̂.

A derivation sequence d = S1, · · · , Sk is called strict iff for each i, with
1 ≤ i < k, the context site of Si+1 is the replacement site of Si.

A strict derivation sequence is unambiguous if given sequence Si it can
be only followed by sequence Si+1, given a set of available rules.

Given an initial finite set of pictures and a finite set of rules, then
rules can be combined to produce c-sequences or r-sequences that can be
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applied iteratively to the initial pictures to generate an infinite language
of pictures. This process of generating pictures is described by the notion
of a tiling rule system and language generated by such type of systems.

Definition 5.7 (Tiling Rule System ( TRuS )). A tiling rule system, in
short TRuS system, is a triple T = (I, R,Σ) where I is a finite set of
canonical pictures, called initial set and R is a set of rules over alphabet
Σ ∪∆, where ∆ is a special two symbols alphabet disjoint from Σ.

Thus let us define the language generated by a TRuS system.

Definition 5.8 (language). Given a TRuS system T , then the language
generated by T , denoted by L(T ) is the set {p : p̂ ∈ L}, where L = I∪{p̂1 :
p̂ ⇒R p̂1, p̂ ∈ I, p̂1 is canonical }. Language L is the canonical language
generated by the system.

Then L(TRuS) denotes the class of languages generated by TRuS
systems.

Remark 5.1. Assume that p′ ∈ L(T ) and p̂ →S1 p̂1 →S2 p̂2 → ... →Sk−1

ˆpk−1 →Sk
p̂′, where p̂ ∈ I. Observe that by Definition 5.8, the intermediate

pictures p̂i, with 1 ≤ i < k are not necessarily canonical pictures, but are
pseudo-canonical ones.

5.2 First Results on TRuS

In this section we investigate the computational power of TRuS systems.
The class of languages generated by TRuS systems properly includes the
one of recognizable languages. Indeed, we first show by Proposition 5.1
that recognizable languages are generated by a subclass of TRuS systems.

The strict inclusion will follow by the fact that the language of palin-
dromic columns can be generated by TRuS systems, while it has been
proved in [3] that it is not in the class L(TS) .

Let us first define the notion of simple TRuS systems.

Definition 5.9 (Simple Tiling Rule System ( sTRuS )). A tiling rule
system T = (I, R,Σ) is simple, in short sTRuS system if R is over
alphabet Σ ∪ {#}.

The language generated by a sTRuS system is defined by considering
only standard derivations.
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A derivation is called standard if and only if rules generate pictures in
the language first generating a pseudo-canonical (2,m) picture and then
rows are added to generate a (n,m) canonical picture.

Definition 5.10 (language of sTRuS ). Given a sTRuS system T , then
the language generated by T , denoted by L(T ) is the set {p : p̂ ∈ L},
where L = {p̂1 : pε ⇒R p̂1, p̂1 is canonical } and pε ⇒R p̂1 is a standard
derivation.

Then L(sTRuS) denotes the class of languages generated by sTRuS
systems.

Proposition 5.1. L(TS) ⊆ L(sTRuS) .

Proof. Let L be a recognizable language and let τ = (Σ,Γ,Θ, π) be a
tiling system for L where Σ, Γ are finite alphabets, Θ is a set of tiles over
(Γ∪#) and π : Γ −→ Σ is a projection. Let us define the following binary

relations =r and =c over pairs of tiles in Θ: t1 =c t2 iff t1 =
a1 a2

a3 a4
, t2 =

b1 b2

b3 b4
where a2 = b1, a4 = b3, t1 =r t2 iff t1 =

b1 b2

b3 b4
, t2 =

c1 c2

c3 c4
where

b3 = c1, b4 = c2.

In the following we define a TRuS -system T = (I, R,A) for generating

L, where I consists of the empty picture
# #

# #
and alphabet A consists

of Σ ∪ Γ ∪ A′, being A′ = {[a b] :a, b ∈ Γ}.
Now, the set R of rules are listed below and are grouped according

to the pair of tiles in Θ related by the relations =c and =r, respectively.
Indeed, rules should reproduce the tiling of a local picture and at the same
time the projection of the local language. In order to do so, given a pair of
tiles t1, t2 such that t1 =r t2, we build a row rule r having the replacement
site given by tile t such that the upper row of t (i.e. tr[1]) will project
the upper row domino of tile t2, while the bottom row of t (i.e. tr[2])
“memorizes” by using symbols in A′ the tile t2 that will have the upper
row projected. Similarly, for the context-site of rule r. More precisely,

given a pair of tiles where
a b

c d
=r

c d

e f
then we should build a row rule of

the form
π(a) π(b)
[a c] [b d] →

π(a) π(b)

[a c] [b d]
.

Similarly we build rules for pair of tiles related by the =c relation.
Clearly, when tiles have border symbols then the construction of rules will
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be specific, as described below. In the following column rules are grouped
into the set Rc,U = Rc,U,1 ∪Rc,U,2 ∪Rc,U,3 ∪Rc,U,4 of column rules that are
derived by every pair of border tiles in Θ related by the binary relation
=c.

Note that rules in Rc,U only form c-sequences of length one that can
be combined to form derivation sequences that apply to the initial empty
picture to reproduce the tiling of the uppermost rows of a picture in L.
Then row rules are grouped into three sets. The set Rr,L = Rr,L,1∪Rr,L,2∪
Rr,L,3 ∪ Rr,L,4 groups rules, called l-type rules, that are based on pair of
left most column (bordered) tiles, while set Rr,R = Rr,R,1∪Rr,R,2∪Rr,R,3∪
Rr,R,4 groups rules, called r-type rules, that are based on rightmost pairs
of (bordered) tiles in Θ.

Finally, set Rr,M = Rr,M,1∪Rr,M,2∪Rr,M,3∪Rr,M,4 groups6 rules, called
intermediate rules or m-type rules, that are based on tiles that are non
bordered on the left and right column dominoes and that form r-sequences
starting with a l-type rule and ending with a r-type rule.

Rc,U,1 = # #
# # → # #

a #
:

# #

# a
=c

# #

a #
,

Rc,U,2 = # #
# # → # #

a [a b]
:

# #

# a
=c

# #

a b
,

Rc,U,3 = # a
# [a b] → # #

b [b c]
:

# #

a b
=c

# #

b c
,

Rc,U,4 = # a
# [a b] → # #

b #
:

# #

a b
=c

# #

b #
.

Rr,L,1 =
# #
# a → # π(a)

# #
:

# #

# a
=r

# a

# #
,

Rr,L,2 =
# #
# a → # π(a)

# [a b]
:

# #

# a
=r

# a

# b
,

Rr,L,3 =
# π(a)
# [a b] → # π(b)

# [b c]
:

# a

# b
=r

# b

# c
,

Rr,L,4 =
# π(a)
# [a b] → # π(b)

# #
:

# a

# b
=r

# b

# #
.
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98 CHAPTER 5. TILING RULE SYSTEMS

Rr,R,1 =
# #
a # → π(a) #

# #
:

# #

a #
=r

a #

# #
,

Rr,R,2 =
# #
a # → π(a) #

[a b] #
:

# #

a #
=r

a #

b #
,

Rr,R,3 =
π(a) #
[a b] # → π(b) #

[b c] #
:

a #

b #
=r

b #

c #
,

Rr,R,4 =
π(a) #
[a b] # → π(b) #

# #
:

a #

b #
=r

b #

# #
.

Rr,M,1 =
# #
a b → π(a) π(b)

# #
:

# #

a b
=r

a b

# #
,

Rr,M,2 =
# #
a b → π(a) π(b)

[a c] [b d]
:

# #

a b
=r

a b

c d
,

Rr,M,3 =
π(a) π(b)
[a c] [b d] → π(c) π(d)

[c e] [d f ]
:

a b

c d
=r

c d

e f
,

Rr,M,4 =
π(a) π(b)
[a c] [b d] → π(c) π(d)

# #
:

a b

c d
=r

c d

# #
.

Now, assume that p ∈ L is a picture of size (n,m) that is the projection
of a local picture q. Then we show how the picture is generated by the
iterations of the above defined rules.

Assume first that n = m = 1. Assume that p = π(a), for a ∈ Γ. Then,
there exists a rule r0, with r0 ∈ Rc,U,1 that applies to the empty picture to
generate the pseudo-canonical picture q̂r[1..2] with the single element a.
Then, there exists a r-sequence r1 · r2 with r1 ∈ Rr,L,1 and r2 ∈ Rr,R,1 such
that is applied at the context site given by the pseudo-canonical picture
q̂r[1..2] producing the canonical picture p̂.

Assume now that n = 1 and m > 1. We first prove the generation of
the pseudo-canonical picture q̂r[1..2] (the picture made by the first 2 rows
of q̂). In the following define tile ti,j as the sub-picture of q̂ of size (2, 2)
with the first element consisting of q̂i,j. Clearly, it holds that t1,j =c t1,j+1

for each j, 1 ≤ j < m + 2 and thus there exists a column rule rj ∈ Rc,U

corresponding to this pair of tiles, where rj ∈ Rc,U,2 if j = 1 and rj ∈ Rc,U,4

if j = m+ 1, otherwise rj ∈ Rc,U,3. It follows that the derivation sequence
d consisting of the c-sequences S1, S2, ..., Sm+1, where Sj = rj will produce
the tiling of q̂r[1..2] as required.

Once q̂r[1..2] is generated, then it is easy to verify the existence of rules
r0
j ∈ Rr,M,1 for 1 < j < m + 1, based on the pair of tiles t2,j =r t3,j that

will produce the projection of symbols in tile t2,j. Similarly, there is a rule
r0

1 ∈ Rr,L,1 based on the pair of tiles t2,1 =r t3,1 and rule r0
m+1 ∈ Rr,R,1

corresponding to the pair of tiles t2,m+1 =r t3,m+1 that will produce the
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5.2. FIRST RESULTS ON TRUS 99

projection of the first and last symbol of the picture q̂r[1..2].

Then the r-sequence r0
1 ·r0

2 ·r0
j ·r0

m+1 is applied to picture q̂r[1..2] having
the required context site, thus producing the canonical picture p̂r[1..3].

Assume now that n > 1 and m ≥ 1. We first list the rule sequences
that will be used to generate the rows from 1 to n − 1 of picture p̂. Let
us recall that for each indexes i, j, with 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ m+ 1
there are tiles tij =r ti+1,j. Then, we distinguish two cases.

Case 1: assume i = 1. Then by construction there exists rule r1
j

in Rr,M,2 corresponding to such pair of tiles for j 6= 1 and j 6= m +
1 and rules r1

1, r
1
m+1 respectively in Rr,L,2 and Rr,R,2, such that the r-

sequence S2,m = r1
1 · r1

2 · · · r1
j · · · r1

m+1 will produce the context site picture
consisting of q̂r[1..2] and the replacement site consisting of the two rows
[#, π(q11), · · · , π(q1m),#] and [#, [q11 q21], · · · , [q1m q2m],#].

Case 2: assume that 1 < i < n. Recalling that for each index j,
1 ≤ j ≤ m + 1 there are tiles tij =r ti+1,j, by construction there exists a
m-type rule rij in Rr,M,3 corresponding to such pair of tiles for j 6= 1 and
j 6= m + 1. Moreover, there exists a l-type rule ri1 ∈ Rr,L,3 and a r-type
rule rim+1 ∈ Rr,R,3 corresponding to the above pair of tiles for j = 1 and
j = m+ 1, respectively.

It is immediate to verify that the r-sequence S3,i,m = ri1·ri2 · · · rij · · · rim+1

produces the context site picture with rows [#, π(qi1), · · · , π(qim),#],
[#, [qi1 qi+1,1], · · · , [qim qi+1,m],#] and the replacement site picture with
rows [#, π(qi+1,1), · · · , π(qi+1,m),#], [#, [qi+1,1 qi+2,1], · · · , [qi+1,m qi+2,m],#].

Now, let us show the construction of p̂ using the above specified rule
sequences S2,m and S3,i,m.

The first step will consist of the generation of the pseudo-picture
p̂0 = q̂r[1..2] which has been detailed above for the case n = 1,m > 1.
Then, as a second step, the r-sequence S2,m is applied to picture p̂0 to gen-
erate picture p̂1. The derivation p̂1 →S3,1,m→S3,2,m · · · →S3,i,m

· · · →S3,n−1,m

p̂n will produce the picture p̂n such that p̂n[1..n] = p̂[1..n], that is p̂n
and p̂ have the same n rows. By the property stated above picture
p̂n will have last two rows consisting of [#, π(qn−1,1), · · · , π(qn−1,m),#],
[#, [qn−1,1 qn,1], · · · , [qn−1,m qnm],#].

Finally, the last step consists of applying the r-sequence S4,m = rn1 ·
rn2 · · · rnj · · · rnm+1, where rules rn1 ∈ Rr,L,4, rnm+1 ∈ Rr,R,4 and rnj ∈ Rr,M,4

are based on pairs of tiles tnj =r tn+1,j. Applying S4,m to p̂n will produce
the picture p̂ as required.

Let us now show that L(T ) ⊆ L. We prove the equivalent statement
that for any canonical picture q̂ ∈ L(T ) there exists a picture p̂ such that
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100 CHAPTER 5. TILING RULE SYSTEMS

B2,2(p̂) ⊆ Θ
∧
q̂ = π(p̂) (“full property”). Here, for the sake of simplicity,

we consider π extended by the mapping #→ #.

The proof will focus on the case when n,m > 1. It will be by induction
on the number of rows, showing that q̂ is built by growing a series of
pseudo-canonical pictures, where each pseudo-canonical picture qi with i
rows generates i − 1 rows of the projection of p̂ i.e. there exists pi such
that B2,2(pi) ⊆ Θ∧ qri [1..i− 1] = π(pi)(“weak property”). We finally state
that the target full property is obtained when eventually producing q̂ by
applying the r-sequence adding the bottom border.

The base case of induction, and the only possible starting steps in T , is
the building of qi having i = 3 rows, obtained by starting from the empty
picture in I and by applying rules in two phases:

– a derivation sequence of c-sequences over the empty picture ; S1 →
S2,1 → S2,2 · · · → S2,m → S3 where rules of S1 are in Rc,U,2, rules of S2,k in
Rc,U,3 and rules of S3 are in Rc,U,4, producing the pseudo-canonical picture
q0.

– then a r-sequence over picture qo
where combining rules of the r-sequence are from Rr,L,2, Rr,M,2, Rr,R,2,

in that order.

The definition of rule sets involved with the second phase, and the
requirement of combining of rules in row sequences, imply that qri [1..2] is
the projection of a two rows partial picture covered by tiles from Θ, thus
satisfying the (weak) property being induced.

Over pictures with such 3 rows, or more rows, only rules fromRr,{L,M,R},3
may be applied (before adding bottom border with rules from Rr,{L,M,R},4).
This is our induction step: applying a row sequence of rules fromRr,{L,M,R},3
to a picture qi with i rows, we obtain a picture qj with j = i + 1 rows,
where qri [1..i − 1] = qrj [1..i − 1] satisfies the property, while the bottom
qri [i] is replaced in qj by two new rows. qrj [1..j − 1] satisfies the property
because the added set of tiles B2,2(qrj [i− 1..j− 1]) on it are the projection
of two rows covered by tiles from Θ, as a consequence of the definition of
the applied rules.

A similar reasoning goes when instead we may apply a rule sequence
from Rr,{L,M,R},4, obtaining a canonical picture q̂j with j = i + 1 rows
from a picture qi with i rows. This time, the definition of the rules being
applied shows that the added set of tiles B2,2(q̂rj [i− 1..j]), which includes
the bottom border, are projection of a picture covered by tiles from Θ,
while by induction the same holds for q̂rj [1..i−1], therefore completing our
proof.
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We now consider how to build palindromic languages by using TRuS
systems.

Proposition 5.2. Let L be the palindromic column language defined as
L = {p | p = q 	 q′ : q′ = mirror(q), q is a picture over alphabet Σ}.
Then L ∈ L(TRuS) .

Proof. By x1, x
′
1, x
′′, x2, x

′
2, x3, x

′
3 we will denote the generic symbol vari-

ables over alphabet Σ, while Σ′ = Σ∪{c, d}, and ∆ = {#, �} as usual. We
construct a TRuS system T = (I, R,Σ′) that generates language L. For ev-
ery x1 ∈ Σ, I contains the canonical picture p̂1 over Σ where the picture p1

is
x1

x1
. Clearly, p1 ∈ L. We define R consisting of the set of rules defined

below where R = Rc,COL ∪Rr,INTER1 ∪Rr,INTER2 ∪Rr,INTER3 ∪Rr,END.

Rc,COL =



r1 = # #
# x1

→ # #

x1 x′1
,

r2 = # x1
# x1

→ x1 x′1

x1 x′1
,

r3 = # x1
# # → x1 x′1

# #
,

r4 =
# #
x1 x′1

→ # #

x′1 x′′1
,

r5 =
x1 x1
x′1 x′1

→ x′1 x′′1

x′1 x′′1
,

r6 = x1 x′1
# # → x′1 x′′1

# #
,

Rr,INTER1 =



r7 =
# x1
# x1

→ � c

# x1
,

r8 =
x1 #
x1 # → c #

x1 #
,

r9 =
x1 x′1
x1 x′1

→ c c

x1 x′1
,

r10 =
x′1 #
x′1 # → c #

x′1 #
,
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102 CHAPTER 5. TILING RULE SYSTEMS

Rr,INTER2 =



r9 =
# x1
� c → # x3

� d
,

r10 =
x1 #
c # → x3 #

d #
,

r11 =
x1 x′1
c c → x3 x′3

d d
,

r12 =
x′1 #
c # → x′3 #

d #
,

Rr,INTER3 =



r13 =
# x3
� d → � c

# x3
,

r14 =
x3 #
d # → c #

x3 #
,

r15 =
x3 x′3
d d → c c

x3 x′3
,

r16 =
x′3 #
d # → c #

x′3 #
,

Rr,END =



r17 =
# x1
� c → # x2

# x2
,

r18 =
x1 #
c # → x2 #

x2 #
,

r19 =
x1 x′1
c c → x2 x′2

x2 x′2
,

r20 =
x′1 #
c # → x′2 #

x′2 #
,

We denote the two possible c-sequences produced by the rules in Rc,COL

as Sc1 = r1.r2.r3 and Sc2 = r4.r5.r6. We denote the two r-sequences pro-
duced by set of rules in Rr,INTER1 by Sr1 = r7.r8 and Sr1,i = r7.(r9)i.r10

where for any integer i, r9 can be iterated i times. Similarly, we denote
each pair of r-sequences which can only be produced by the set of rules
in Rr,INTER2, Rr,INTER3, REND by Sr2 = r11.r12 and Sr2,j = r11.(r13)j.r14,
Sr3 = r15.r16 and Sr3,k = r15.(r17)k.r18, Sr4 = r19.r20 and Sr4,l = r19.(r21)l.r22

respectively.

By definition 5.1, 5.2 we can see that only rules in the same set of rules
in {Rc,COL, Rr,INTER1, Rr,INTER2, Rr,INTER3, REND} can be combined to
form specific α-sequences, with α ∈ {c, r}, while no two rules in distinct
sets can be combined to form rule sequences that can be applied to pic-
tures.
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In the following we verify that the above defined set of rules form
derivation sequences that can be uniquely applied over initial picture to
generate only column palindromic pictures. It can be seen that the α-
sequences that can be applied to p̂ ∈ I are the c-sequences Sc1 followed by
Sc2 where each of the sequence can be iterated m,m′( for some arbitrary
integers m,m′) times generating p̂m, p̂m′ respectively.

We illustrate in figure 5.4 the derivation sequence d1 over the initial
picture. We can see that after the first application of Sc1 at the left most
column as context site the iteration of the c-sequences Sc1 , Sc2 can continue
arbitrarily many times, where Sc2 can be applied at any column as context
site generating canonical palindromic pictures for each iterated number
of columns. Thus d1 generates all canonical 2 × m column palindromic
pictures, where :

d1 = p̂→m
Sc1

p̂m →m′

Sc2
p̂m′ .

p̂ →(Sc1
)m p̂m

# # # · · · # #
# x1 x′1 · · · x′1 #
# x1 x′1 · · · x′1 #
# # # · · · # #

→(Sc2
)m
′
p̂m′

# # # · · · # #
# x1 x′

1 · · · x′′1 #
# x1 x′

1 · · · x′′1 #
# # # · · · # #

Figure 5.4: Application of derivation sequence d1 (iterative Context sites, in boldface).

Also, we can see that the only possible other derivation sequence over
picture p̂ is :

d2 = p̂→Sr1
p̂′ (→Sr2

p̂′1 →Sr3
[p̂′])x →Sr4

p̂′′

where by [p̂′] we denote the pseudo-canonical picture with strictly same
context-site (r-sequences in R) as that of p̂′, 0 ≤ x ≤ n denotes the number
of iterations of the parenthesized derivation sequences.

We now verify that d2 generates all column palindromic pictures of
sizes 2n × 1. It can be seen that when only r-sequences are applied over
p̂ of size 2× 1 it can only increase the number of rows and the number of
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column remains 1. Sr1 of d2 is the only possible other r-sequence over p̂
apart from the c-sequence Sc1 of d1, where Sr1 generates pseudo-canonical
picture p̂′ such that p̂′

r
[2] = [�, c,#], i.e. the “middle row” of the picture

“marked” with the special symbols �, c.
Then the only possible r-sequences that can be applied over p̂′ are Sr2 or

Sr4 . We can see that Sr4 applied over it generates canonical 4× 1 column
palindromic picture p̂′′ by replacing the marked “middle row” of �, c,#
with the replacement sites [#, x2,#],[#, x2,#] which are palindromic.
Whereas Sr2 when applied over p̂′ at context site (“middle row”) generates

p̂′1 a pseudo-canonical picture with the replacement site p̂′1
r
[3] = [#, x3,#],

p̂′1
r
[4] = [�, d,#] which is uniquely followed by the r-sequence Sr3 gener-

ating [p̂′] with the replacement site [p̂′1]r[4] = [�, c,#], p̂′1
r
[5] = [#, x3,#].

Thus derivation sequence d2 can iterate for n number of times generating
a palindromic row sequence i.e. of 2n number of rows at each iteration.

The only possible derivation that can be applied to any picture p̂u ∈
{p̂m ∪ p̂m′} consists of d3 :

d3 = p̂u →Sr1,i
p̂u1(→Sr2,j

p̂u2 →Sr3,k
[p̂u1 ])

y →Sr4,l
p̂u4

where [p̂u1 ] denotes the pseudo-canonical picture with strictly same
context sites as that of p̂u1 , 0 ≤ y ≤ n denotes the number of iteration
of the parenthesized derivation sequences. Figure 5.5 describes the gener-
ation of derivation sequence d3 applied over p̂′′, i.e. all 2 × m canonical
palindromic pictures for m < 1 generated by d1.

We can see by the illustration given in figure 5.5 that the derivation
sequence d3 generates canonical picture only with palindromic rows on
each sequence application (iteratively) and incrementing the row by 2n for
every fixed number of columns in the chosen picture to apply as described
in the the generation of d2.

Now, let us show by induction on size that column palindromic pictures
are generated by the system. i.e. L ⊆ L(T ). It is obvious that the pictures
in L are of size 2n×m. Since the pictures in L of size 2×1 are in I (initial
language) it follows that they are included in L(T ) with bordered versions
in I. Given a column palindromic picture of size (2n×m) with arbitrary
m in L(T ), in the above definition of the rules in R we can generate the
column palindromic pictures of size 2(n+ 1)×m.

To complete the proof we have to show that L(T ) ⊆ L. We can verify
that the above defined rules form sequences which are distinctly applied
over the picture and the derivation sequences are ambiguously framed to
generate all size of column palindromic pictures. Thus we can say that
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p̂u →Sr1,i
p̂u1

# x1 · · · x′
1 #

� c · · · c #

# x1 · · · x′1 #

(d′3)y →Sr4,l

# x1 · · · x′1 #

# x2 · · · x′2 #

# x2 · · · x′2 #

# x1 · · · x′1 #

d′3 = p̂u1 →Sr2,j

# x1 · · · x′1 #

# x3 · · · x′
3 #

� d · · · d #

# x1 · · · x′1 #

→Sr3,k
p̂u1

# x1 · · · x′1 #

# x3 · · · x′
3 #

� c · · · c #

# x3 · · · x′3 #

# x1 · · · x′1 #

Figure 5.5: Application of derivation sequence d3 (iterative Context sites, in boldface).

no other pictures are possible starting from a picture p ∈ L, thus showing
that the closure of L under rules in R. Thus we have L = L(T ).

5.3 Comparing TRuS Systems with Wang

Systems

In this section we show that the computational power of the subclass
sTRuS of TRuS systems is the same as that of recognizable pictures lan-
guages.

We will show this result by using a known result stating the equivalence
of the class of picture languages defined by Wang systems with the family
of picture languages recognized by tiling systems [4].

We can now state the main comparison proved in this section, and
then we will be able to show the main theorem, summarizing the results.

Proposition 5.3. L(sTRuS) ⊆ L(WS) .

Proof. Let T = (I, R,Σ) be a simple tiling system. Let L = L(T ).
Then we build a Wang system W = (Γ, Q, Tw) and a projection π :

Γ→ Σ such that L = π(L(W )). Recalling that Wang languages are closed
under projection [4], our result follows. The following notions will be used
to define the set Tw of Wang tiles of the system.
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Given a column rule: r = a c
b d →

e f

g h
, the composition of column rule

r, denoted by comp(r) is the tile
a e

b g
. Moreover dom[r, 2] = (b, d), (g, h)

denotes the pair of bottom row dominoes of the two tiles of the rule, while
dom[r, 1] = (a, c), (e, f) denotes the pair of upper row dominoes of the two
tiles of the rule.

Similarly given a row rule: r =
a b
c d →

e f

g h
, then comp(r) is the tile

a b

e f
. Moreover dom[r, 1] = (a, c), (e, g) denotes the pair of left column

dominoes of the two tiles of the rules, while dom[r, 2] = (b, d), (f, h) de-
notes the pair of right column dominoes of the two tiles of the rule.

Let us recall that given two column rules r1, r2, then the c-sequence
r1 · r2 is defined if and only if dom[r1, 2] = dom[r2, 1]. Similarly for a
pair r1, r2 of rules, then the r-sequence r1 · r2 is defined if and only if
dom[r1, 2] = dom[r2, 1]. Thus the above notions will be used to associate
to sequences of rules to a set Wang tiles that can be correctly tied together.

Now Wang tiles in Tw are listed below.

(i) Left border column rules

For each column rule: r = t1 → t2 = # #
# # → # #

a #
, and

each row rule r′ = comp(r) → t′, then we associate the Wang tile:

wr =
B

B (t′, c) B

comp(r)

. Then, if there exist the two row rules: r1 =

# #
# a →

# a′

# #
, r2 =

# #
a # →

a′ #

# #
, then we associate the Wang tile

wr =
B

B (a′) B

B

. For each column rule: r = t1 → t2 = # #
# # →

# #

a b
,

and each row rule r′ = comp(r)→ t′, then wr =
B

B (t′, c) t2

comp(r)

.

(ii) Border internal column rules

For each column rule: r = t1 → t2 = # #
a b → # #

c d
, and each

row rule r′ = comp(r) → t′, then we associate the Wang tile: wr =
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B

t1 (t′, c) t2

comp(r)

.

(iii) Border column right rules

For each column rule: r = t1 → t2 = # #
a b →

# #

c #
, then we associate

the Wang tile: wr =
B

t1 (t2, c) B

comp(r)

.

(iv) Row left border rules

For each row rule with σ ∈ Σ ∪ {#}: r = t1 → t2 =
# σ
# a →

# b

# c
,

then we associate the Wang tile: wr =
t1

B (t2, r) dom[r, 2]

t2

(v) Row intermediate + right border rules

For each row rule σ, σ′ ∈ Σ ∪ {#}: r = t1 → t2 =
σ σ′

c d →
e f

g h
, if

we have the right border rule r′ = t′1 → t′2 =
σ #
d # →

f #

h #
, then we

associate the Wang tile: wr =
t1

dom[r, 1] (t2, r) B

t2

Otherwise we associate the Wang tile: wr =
t1

dom[r, 1] (t2, r) dom[r, 2]

t2

(vi) Row left and below border rules

For each row rule with σ ∈ Σ ∪ {#}: r = t1 → t2 =
# σ
# a →

# b

# #
,

then we associate the Wang tile: wr =
t1

B (t2, r) dom[r, 2]

B

.

(vii) Row intermediate + right and below border rules

UNIVERSITAT ROVIRA I VIRGILI 
PICTURE LANGUAGES GENERATED BY SPLICING AND ASSEMBLING TILES 
Anthonath Roslin Sagaya Mary 



108 CHAPTER 5. TILING RULE SYSTEMS

For each row rule σ, σ′ ∈ Σ ∪ {#}: r = t1 → t2 =
σ σ′

c d →
e f

# #
,

if we have the right border rule r′ = t′1 → t′2 =
σ #
d # →

f #

# #
,

then we associate the Wang tile: wr =
t1

dom[r, 1] (t2, r) B

B

.

Otherwise we associate the Wang tile:

wr =
t1

dom[r, 1] (t2, r) dom[r, 2]

B

.

To conclude the construction, we define the projection π as follows:

π((t, c)) = b if and only if t =
a b

c d
. Similarly, we define π((t, r)).

Now let Si be the c-sequence consisting of column rule of the sTRuS
system T . It is immediate to show that there exists a derivation sequence
of c-sequences S1, S2, · · · , Sm−1 producing the first two rows of a picture
p̂ of size (n,m) if and only if the Wang tiles of the system W generate a
tiling of the same two rows.

It is easy to show that there exists a r-sequence S = r1 · r2 · · · rm−1 of
rules in R having replacement site consisting of rows
s = [#, a1, a2, · · · , am−2,#] and s′ = [#, b1, b2, · · · , bm−2,#] if and only
if there exists a tiling of the row s by Wang tiles leaving a lower colored
bordered consisting of the sequence of right tiles of rules in S.

Now, S has replacement site consisting of rows
s = [#, a1, a2, · · · , am−2,#] and s′ = [#,#,#, · · · ,#] if and only if there
exists a tiling by Wang tiles of the two rows.

These observations conclude the proof of the proposition.

Now the following main result can be stated:

Theorem 5.1. L(TS) = L(sTRuS) ⊂ L(TRuS) .

Proof. The equality in the first part of the statement is proved by the
above Proposition 5.3 together with the main theorem in [4] stating that
L(WS) = L(TS) , and Proposition 5.1 of Section 5.2, where we proved
that L(TS) ⊆ L(sTRuS) .
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The inequality in the second part can be showed by Proposition 5.2 of
Section 5.2 together with the mentioned results in [3] about palindromic
languages (recalling that L(sTRuS) ⊆ L(TRuS) , by definition).
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Chapter 6

Conclusions and Future work

6.1 Conclusions

Motivated by the bio-inspired operation Splicing and the DNA computing
branch of self-assembly we have introduced two formalisms for picture
languages in this thesis. These are defined by applying the similar defined
string case operations by rules with dominoes and tiles over set of pictures.
Due to the very nature of Picture language generation and its constraints
on learning its structure and combinatorics for extending the string case
hierarchy to it, our study we hope will give some refinement in the process
though several questions towards it with are to be studied.

The first formalism we propose is the H-array Splicing Systems ex-
tending the splicing operation on string case to picture languages in [5],
cutting columns and rows by given set of domino splicing rules and past-
ing by the column and row concatenation operation. The application of
the rules iteratively, formalizes the picture languages which enhances the
picture patterns of the language obtained. In the theoretical study of the
class of H Array Splicing Systems L(HASL) in [5] also “Simple” array
splicing rules is given. And in [8, 6] more examples and counter examples
of the language classes L(ASCO) and L(SASL) is given with results anal-
ogous to the main study of L(HASL) class. Also, the power of trees for
L(SASL) is studied, which is proved to be higher than the recognizability
class.

Particularly, the closure properties of column(row) concatenation, and
under various rotations is studied for the language classes L(HASL)
, L(ASCO) , L(SASL) . Then the study on HAS and its restriction
languages L(ASCO) and L(SASL) is compared with other main two-

110

UNIVERSITAT ROVIRA I VIRGILI 
PICTURE LANGUAGES GENERATED BY SPLICING AND ASSEMBLING TILES 
Anthonath Roslin Sagaya Mary 



6.1. CONCLUSIONS 111

dimensional language classes like LOC, 2RLG wherein it is proved to be
analogous with each other and are incomparable but disjoint. Also the
same incomparability results with intersection comparison with the class
of languages L(HASL) and L(ASCO) is proved to be analogous to the
string case Self Cross-Over Systems and H Splicing Systems.

The Splicing Array Grammar System in [9] is introduced in section
3.4 turns out to be a powerful means of generating picture arrays. It
extends the image grammar system in [3] to 2D-tabled matrix grammars.
It remains to compare other picture generating mechanisms with these
systems.

We have also tried to give some insights along the study for extending
to higher dimensional case from picture languages. By considering Pictural
Network of Evolutionary Processors defined, in section 4 we have extended
the study of generation of pictures of rectangular arrays to 2D pictures of
arrays not necessarily rectangular by networks of Evolutionary Processors.
We have introduced contextual insertion, deletion and substitution rules
for picture in the network processors in [4] and studied some examples.
Extension of [7] to pictures of 3D rectangular arrays are also considered
giving some interesting examples and comparisons.

Second formalism being the study on tiles, Tiling rule systems TRuS
provide a new formalism for defining picture languages that is based on
rules to assemble tiles. Pictures of the language are generated by iter-
atively applying rules: they grow a picture of size (n,m) by locating a
(2,m) row (or (n, 2) column) context site picture where the bottom row
is replaced and and a new row (or column) is added. Now, tiling rule
systems generate a class of languages that properly includes the class of
recognizable picture languages. Actually, the proof of the inclusion shows
that pictures of a recognizable language are assembled by growing them
along a border, that is by adding new rows and columns. On the con-
trary, pictures of TRuS languages that are not recognizable languages
(see Proposition 5.2), can only be assembled by adding rows or columns
properly inside pictures of smaller size. The class TRuS seems to be a
powerful notion generating also (n, n!) picture language for unary class
given in [1]. The main results being L(TS) = L(sTRuS) ⊂ L(TRuS) .
Where L(TS) is the recognizable class of picture languages defined with
the LOC class. L(sTRuS) is called the simple Tiling Rule Systems where
the picture grows only in columns or rows with tiling rules.

Thus the study on splicing pictures in column(row) with domino rules
and assembling tiles for enhancing the pictures and framing language
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classes is done in the thesis with the above stated results. We have pro-
posed the two interesting formalisms with the bio-inspired operations for
pictures. Interesting since the very nature of the operations and picture
generation seems to be linking for the underlying study on the structure
of the pictures along with the combinatorics. Also, it is of main interest to
make the lacking automata theory or grammar theory of formal languages
to picture languages.

6.2 Future work

The bio-operations Splicing and Self-assembling in consideration or in-
spired by the formalisms are themselves in vast in investigation. Firstly,
we have tried to construct analogous Picture language classes L(HASL)
, L(ASCO) , L(SASL) . And that of Assembling Tiles namely, TRuS .
In further study to extend is the possible variants in the formalisms and
the results to the approach of string case study.

The thesis though in general has been to contribute to extending the
bio-operations to picture languages also main Chomsky hierarchy of the
string case to picture languages is in concern. There lies most important
questions on refining the already existing study on various points in cor-
respondence to string case as well to the very own bio-computing aspects
of the formalisms.

In particular, we have the questions on connecting the HAS and TRuS
, with results. Then several questions concerning the notion of tiling rule
system such as closure properties remain to be investigated, as well as the
comparison of this new approach with other grammar language classes like
Tiling Rewriting Grammars (TRG) formalism [2] is to be done.
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