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Presentació 

Aquesta tesis s’ha desenvolupat sota la direcció del professor Dr. Jordi Recasens 

Guinjuan i el Dr. Joel Torra Farré dins del grup de recerca consolidat de Malherbologia 

i Ecologia Vegetal del Departament d’Hortofructicultura, Botànica i Jardineria de 

l’Escola Tècnica Superior d’Enginyeria Agrària (ETSEA) de la Universitat de Lleida. El 

present treball s’emmarca dins de dos convenis de recerca (projectes C10060 i C14048) 

finançats per les empreses Dow AgroScience i DuPont de Nemours i desenvolupats 

entre els anys 2012 i 2015.  

L’Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) de la Generalitat de 

Catalunya em va concedir una beca de doctorat des del febrer de 2013 al gener de 2016. 

Durant la realització d’aquesta tesis s’han dut a terme dos estades en altres centres 

d’investigació nacionals: 

-En la Universidad de Huelva, Huelva amb el Dr. Julio Menéndez Calle (octubre 2014-

desembre 2014). 

-En la Finca de la Orden, CICYTEX, Badajoz amb la Dra. María Dolores Osuna Ruíz 

(abril 2015). 

A partir dels resultats obtinguts durant el desenvolupament d’aquesta tesis, s’han 

elaborat diferents articles que ressenyem a continuació: 

 - Article 1: Resistance mechanisms to ALS inhibiting herbicides in Spanish Papaver 

rhoeas populations: molecular basis and cross resistance patterns. Rey-Caballero J., 

Menéndez J., Osuna M.D., Salas M. & Torra J. Enviat a la revista Pest Management 

Science a principis de març de 2016. 

- Article 2: Unravelling the resistance mechanisms to 2,4-D (2,4-dichlorophenoxyacetic 

acid) in corn poppy (Papaver rhoeas). Rey-Caballero J., Menéndez J., Giné-Bordonaba 

J., Salas M., Alcántara R. & Torra J. Publicat en Pesticide Biochemistry and Physiology 

en març de 2016. 

- Article 3: New management options for herbicide resistant Papaver rhoeas 

populations in Europe. Rey-Caballero J., Royo-Esnal A., Recasens J., González I. & 

Torra J. Enviat a la revista Pest Management Science a principis d’octubre de 2015. 

A més, durant el transcurs del present treball s’ha dut a terme la difusió dels resultats 

obtinguts a diversos congressos i grups de treball d’àmbit nacional e internacional: 

 Rey-Caballero J., Torra J., Royo-Esnal A., Gonzalez I., Ferrer R. & Recasens J. 

Nuevas opciones de manejo integrado de poblaciones de Papaver rhoeas 



 
 

resistentes a herbicidas. XIV Congreso de la Sociedad Española de 

Malherbología, Valencia, octubre 2013. (Comunicació oral). 

 Rey-Caballero J., Menéndez J., Osuna M.D., Alcántara R., Salas M. & Torra J. 

Resistencia a inhibidores  de la ALS en biotipos de Papaver rhoeas (L.) 

resistente. Comité para la prevención de resistencias a herbicidas, Madrid, gener 

2014. (Comunicació oral). 

 Rey-Caballero J., Montull J.M., Taberner A. & Torra J. Resistance study of 

(Spanish) Papaver rhoeas (biotypes) to bromoxynil. 17th European Weed 

Research Society Symposium, Montpellier, abril 2015. (Pòster). 

 Rey-Caballero J., Menéndez J., Salas M. & Torra J. Resistance mechanisms to 

2,4-D (2,4-dichlorophenoxy acetic acid) in Spanish biotypes of Papaver rhoeas. 

Resistance Event, Rothamsted Research, Harpenden, setembre 2015. (Pòster). 

 Rey-Caballero J., Giné-Bordonaba J., Edo-Tena E. & Torra J. Análisis de la 

producción de etileno en biotipos de Papaver rhoeas L. resistentes y sensibles a 

2,4-D. XV Congreso Soc. Española de Malherbología, Sevilla, octubre 2015. 

(Pòster). 

 Rey-Caballero J., Montull J.M., Taberner A. & Torra J. Estudio de sensibilidad 

al bromoxinil de un biotipo de Papaver rhoeas L. XV Congreso Soc. Española 

de Malherbología, Sevilla, octubre 2015. (Pòster). 

 Rey-Caballero J., Menéndez J., Salas M. & Torra J. Estudio de mecanismos de 

resistencia “Non-Target-Site“en biotipos de Papaver rhoeas L. con resistencia 

múltiple. XV Congreso Soc. Española de Malherbología, Sevilla, octubre 2015. 

(Comunicació oral). 

 Rey-Caballero J., Menéndez J., Osuna M.D., Salas M. & Torra J. Bases 

moleculares de la resistencia a inhibidores de la ALS en Papaver rhoeas (L.). 

Comité para la prevención de resistències a herbicidas, Lleida, gener 2016. 

(Comunicació oral). Premi Phytoma al millor treball presentat per un jove 

investigador predoctoral. 

 Torra J., Royo-Esnal A., Rey-Caballero J., Recasens J. & Salas M. Opciones de 

manejo de Papaver rhoeas con resistencia múltiple a herbicidas. XV Congreso 

Soc. Española de Malherbología, Sevilla, octubre 2015. (Comunicació oral). 

Premi Actas SEMh a la millor comunicació.  
 

 



 
 

Al llarg d'aquest període també he publicat articles en revistes de divulgació: 

 Rey-Caballero J., Pallares LL. & Rodríguez G. (2012) Mecanismos de acción de 

los herbicidas en plantas. Phytoma. 

 Rey-Caballero J., Torra J. & Recasens J. (2014) Opciones de manejo integrado 

de amapola resistente a herbicidas en cereales de invierno. Vida Rural: 373. 

 Rey-Caballero J., Torra J. & Recasens J. (2014) Manejo integrado de amapola 

(Papaver rhoeas) resistente. Situación actual y nuevas opciones de manejo 

integrado. Tierras:220. 

 Rey-Caballero J. & Montull J.M. (2014) Valoración Económica del Manejo de 

Resistencias en Amapola y Vallico. Tierras: 220. 

 Rey-Caballero J., Menéndez J., Salas M. & Torra J. (2016) Mecanismos de 

resistencia Non-Target-Site en biotipos de amapola (Papaver rhoeas) con 

resistencia múltiple.  Phytoma: 269. 

A finals de 2015 vaig publicar un treball de la meva fase investigadora prèvia a la 

realitzada en el grup de Malherbologia i Ecologia Vegetal de la Universitat de Lleida: 

 Aguilar-Fenollosa E., Rey-Caballero J., Blasco J.M., Segarra-Moragues J., 

Hurtadi M.A., & Jacas J.A. (2015) Patterns of ambulatory dispersal in 

Tetranychus urticae can be associated with host specialization. Experimental 

and Applied Acarology. 
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Resumen 

La presencia de biotipos de amapola (Papaver rhoeas L.) resistentes a herbicidas 

constituye uno de los principales problemas de muchas áreas cerealistas de secano. La 

solución del mismo pasa por una correcta caracterización de la resistencia y por el 

establecimiento de una adecuada estrategia de manejo integrado. El presente trabajo se 

ha planteado precisamente con este fin. Para ello a) se han seleccionado biotipos con 

resistencia múltiple (a inhibidores de la acetolactato sintasa -ALS- y a herbicidas 

auxínicos) y biotipos únicamente resistentes a 2,4-D originarios de las zonas cerealistas 

del noreste peninsular de los que se han estudiado las bases moleculares y fisiológicas 

de estas resistencias; b) se ha querido discernir bajo condiciones controladas 

(invernadero), si los fallos de control observados en campo, mediante herbicidas 

inhibidores del fotosistema II (bromoxinil) son debidos al estadio fenológico de la mala 

hierba en el momento de aplicación o a la presencia de una posible resistencia 

incipiente, y c) se han establecido diferentes estrategias de manejo integrado de amapola 

en campos comerciales de cereales de secano del noreste peninsular. 

Respecto a la caracterización molecular de la resistencia a inhibidores de la ALS se ha 

verificado que las diferentes mutaciones encontradas en la posición Prolina 197 del gen 

que codifica la enzima ALS (6 para un total de 13 genotipos diferentes) son las 

responsables de la fuerte resistencia a tribenurón-metil, y que ni la absorción ni la 

translocación de este herbicida han resultado tener una implicación directa en dicha 

resistencia. Por el contrario, sólo la substitución por Serina o por Triptófano parece 

tener, respectivamente, alguna significación en la resistencia a la triazolopirimidina 

florasulam y a la imidazolinona imazamox. Aparte de estas mutaciones, unas pocas 

plantas han presentado mutaciones (ácido Glutámico 427 y Leucina 648) fuera de las 

regiones conservadas del gen, no descritas anteriormente. Una falta de correlación entre 

el genotipo y el fenotipo de aquellas plantas tratadas con imazamox y florasulam junto a 

la aparición de plantas no mutadas capaces de resistir las aplicaciones de imazamox, son 

indicios que nos hacen pensar en la presencia de mecanismos de resistencia “non-target-

site” para aquellos inhibidores de la ALS no sulfonilureas.  

Los estudios llevados a cabo con 2,4-D han revelado aspectos clave acerca del 

mecanismo de resistencia de la amapola a herbicidas auxínicos. Las poblaciones con 

resistencia a 2,4-D también presentaron resistencia cruzada a otras auxinas sintéticas 

(dicamba y aminopiralid). Se han observado también diferencias significativas en la 
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síntesis de etileno entre plantas resistentes y sensibles tras la aplicación de 2,4-D. El 

empleo de 2,4-D marcado ha permitido verificar, en biotipos resistentes, tanto a nivel 

cuantitativo como cualitativo, la falta de movilidad de este herbicida. Estos resultados 

podrían per se, explicar la resistencia de estos biotipos. En este sentido, la falta de 

movilidad podría explicarse por una distorsión de las principales proteínas implicadas 

en el transporte de las auxinas. Pero esta falta de translocación podría ser también 

consecuencia de otro mecanismo de resistencia, dado que la metabolización del 

herbicida auxínico podría alterar su posterior transporte.  

El deficiente control de amapola con bromoxinil observado en campo se atribuye, a 

priori, a la presencia de plantas con una fenología avanzada en el momento de la 

aplicación. No obstante, los resultados observados en uno de los biotipos, establecieron 

una respuesta diferencial respecto al homólogo sensible cuando el bromoxinil se aplicó 

en una fenología avanzada.  

Los ensayos de manejo integrado han demostrado que las rotaciones cereal-girasol y 

cereal-guisante son capaces de reducir la infestación de amapola notablemente ya que 

rompen el ciclo de la mala hierba, además de permitir la integración de herbicidas que 

pertenecen a familias químicas distintas a la de las ALS o a la de los herbicidas 

auxínicos. Sin embargo, la rotación con colza no ha resultado una estrategia 

recomendable para el manejo de esta mala hierba. La necesidad de una siembra precoz 

de este cultivo no constituye una herramienta cultural adecuada para interferir en el 

ciclo de la amapola. Además, existen pocas materias activas capaces de controlar esta 

mala hierba en colza. En estos ensayos se han obtenido mejores resultados en los 

tratamientos precoces (pre y post-emergencia precoz) que en los tratamientos en post-

emergencia, probablemente gracias a que los primeros han reducido la variabilidad 

fenológica de la amapola en el momento de la intervención y, por lo tanto, los posibles 

escapes.  

Los resultados obtenidos han permitido avanzar considerablemente en el estado de la 

ciencia de los mecanismos que confieren resistencia a herbicidas inhibidores de la ALS 

y herbicidas auxínicos en Papaver rhoeas, conocer la existencia de una respuesta 

diferencial de biotipos a bromoxinil así como explicar los fallos de control detectados 

en campo y establecer un programa de manejo integrado de amapola en cereales de 

secano. 
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Resum 

La presència de biotips de rosella (Papaver rhoeas L.) resistents a herbicides constitueix 

un dels principals problemes de moltes àrees cerealistes de secà. La solució del mateix 

passa per una correcta caracterització de la resistència així com en l'establiment d'una 

adequada estratègia de maneig integrat. El present treball s'ha plantejat precisament amb 

aquesta finalitat. Per això a) s'han seleccionat biotips amb resistència múltiple (a 

inhibidors de la acetolactato sintasa -ALS- i a herbicides auxínics) i biotips únicament 

resistents a 2,4-D originaris de les zones cerealistes del nord-est peninsular i s’han 

estudiat les bases moleculars i fisiològiques d'aquestes resistències; b) s'ha volgut 

discernir sota condicions controlades (hivernacle), si la manca de control observada en 

camp, mitjançant herbicides inhibidors del fotosistema II (bromoxinil), és deguda a 

l'estadi fenològic de la mala herba en el moment de l’aplicació o a la presència d' una 

possible resistència incipient i c) s'han establert diferents estratègies de maneig integrat 

de rosella en camps comercials de cereals de secà del nord-est peninsular. 

Pel que fa a la caracterització molecular de la resistència a inhibidors de l'ALS s'ha 

verificat que les diferents mutacions trobades en la posició Prolina 197 del gen que 

codifica l'enzim ALS (6 per a un total de 13 genotips diferents) són les responsables de 

la forta resistència a tribenuron-metil, i que ni l'absorció ni la translocació d'aquest 

herbicida han resultat tenir una implicació directa en aquesta resistència. Per contra, 

només la substitució per Serina o per Triptòfan sembla tenir, respectivament, alguna 

significació en la resistència a la triazolopirimidina florasulam i a la imidazolinona 

imazamox. A banda d'aquestes mutacions, unes poques plantes han presentat mutacions 

(àcid Glutàmic 427 i Leucina 648) fora de les regions conservades del gen, no descrites 

anteriorment. Una manca de correlació entre el genotip i el fenotip d'aquelles plantes 

tractades amb imazamox i florasulam conjuntament amb l'aparició de plantes no 

mutades que van resistir les aplicacions d’imazamox, semblen ser indicis que ens fan 

pensar en la presència de mecanismes de resistència "non target-site" per a aquells 

inhibidors de l'ALS no sulfonilurees. 

Els estudis duts a terme amb 2,4-D han revelat aspectes clau sobre el mecanisme de 

resistència de la rosella a herbicides auxínics. Les poblacions amb resistència a 2,4-D 

també van presentar resistència creuada a altres auxines sintètiques (dicamba i 

aminopiralid). També s'han observat diferències significatives en la síntesi d'etilè entre 

plantes resistents i sensibles després de l'aplicació de 2,4-D. Emprant 2,4-D marcat s'ha 
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pogut verificar en biotips resistents, tant a nivell quantitatiu com qualitatiu, la manca de 

mobilitat d'aquest herbicida. Aquests resultats podrien per se explicar la resistència 

d'aquests biotips. En aquest sentit, la manca de mobilitat podria explicar-se per una 

distorsió de les principals proteïnes implicades en el transport de les auxines. Però 

aquesta manca de translocació podria ser també conseqüència d'un altre mecanisme de 

resistència, atès que la metabolització de l'herbicida auxínic podria alterar el seu 

posterior transport. 

El deficient control de rosella amb bromoxinil observat en camp s'atribueix, a priori, a 

la presència de plantes amb una fenologia avançada en el moment de l'aplicació. No 

obstant, els resultats observats en un dels biotips, han establert una resposta diferencial 

respecte a l’homòleg sensible quan el bromoxinil es va aplicar en una fenologia 

avançada. 

Els assajos de maneig integrat han demostrat que les rotacions cereal-gira-sol i cereal-

pèsol poden reduir la infestació de rosella de manera notable ja que trenquen el cicle de 

la mala herba, a més de permetre integrar herbicides que pertanyen a famílies químiques 

diferents a la de les ALS o la dels herbicides auxínics. Per contra, la rotació amb colza 

no resulta una estratègia recomanable per al maneig d'aquesta mala herba. La necessitat 

d'una sembra precoç d'aquest cultiu no constitueix una eina cultural adequada per 

interferir en el cicle de la rosella. A més a més, en colza existeixen poques matèries 

actives que controlin aquesta mala herba. En aquests assajos es van obtenir millors 

resultats en els tractaments precoços (pre i post-emergència precoç) que en els 

tractaments en post-emergència, probablement gràcies a que els primers redueixen la 

variabilitat fenològica de la rosella en el moment de la intervenció, i per tant, possibles 

fuites. 

Els resultats obtinguts han permès avançar considerablement en l'estat de la ciència dels 

mecanismes que confereixen resistència a herbicides inhibidors de l'ALS i herbicides 

auxínics en rosella, conèixer l'existència d'una resposta diferencial de biotips a 

bromoxinil així com explicar la manca de control detectada en camp, i establir un 

programa de maneig integrat de rosella en cereals de secà. 
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Summary 

The persistence of resistant corn poppy (Papaver rhoeas L.) biotypes is one of the most 

pressing problems in rainfed Spanish cereal crops. Resolution to this problem begins 

with the proper characterization of the resistant profile, followed by the establishment of 

an appropriate integrated management system. The study herein has been conducted 

precisely  towards this end, while maintaining the following bases as a general 

framework: a) corn poppy biotypes with multiple resistance (acetolactate synthase -

ALS- inhibiting herbicides and auxinic herbicides) and only 2,4-D resistance from 

north-eastern Spain were selected for analysis of molecular and physiological resistance 

matrices; b) we have tried to investigate under controlled conditions, if failures 

observed in the field, by photosystem II inhibiting herbicides (bromoxynil), could be 

directly attributed to the phenological stage of the weed at application time or  inherent 

resistance and c) the creation of integrated management strategies for corn poppy  and 

rainfed cereal fields in North-Eastern Spain. 

In the molecular characterization of ALS resistant inhibitors, our study confirms that the 

different mutations found at the Proline 197 position of the gene encoding ALS enzyme 

(6 for a total of 13 different genotypes) are responsible for resistance to tribenuron-

methyl, and that neither the absorption nor translocation of this herbicide have proven to 

be directly involved in resistance. By contrast, only the substitution of Serine or 

Tryptophan seems to have some significance in resistance to triazolopyrimidine 

florasulam and imidazolinone imazamox, respectively. Aside from these mutations, 

select plants have introduced mutations (i.e. Glutamic acid, 427; and Leucine, 648) 

outside the conserved regions of the gene. A lack of correlation between genotype and 

phenotype in some plants treated with imazamox and florasulam together with the 

presence of non-mutated plants able to resist imazamox applications, is evidence 

suggesting the presence of "non-target-site" resistance mechanisms for non- 

sulfonylureas ALS inhibitors. 

Studies carried out with 2,4-D have revealed important aspects of the resistance 

mechanism of corn poppy against these auxinic herbicides. 2,4-D resistant populations 

also showed cross-resistance to other auxinic herbicides (dicamba and aminopyralid). 

Furthermore, significant differences between resistant and susceptible plants in ethylene 

biosynthesis after 2,4-D application were observed. In both quantitative and qualitative 

studies, bio-marked 2,4-D was observed to have a lack of mobility  in resistant biotypes. 
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In the case that these results explain the resistance of the biotypes, the lack of mobility 

may be explained by a distortion of the main proteins involved in auxin transport. On 

the other hand, lack of translocation may, be the result of another mechanism of 

resistance, for example altered metabolism and subsequent transport of the auxinic 

herbicide. 

In the field, lack of corn poppy control with bromoxynil observed in field is attributed 

to the presence of plants with advanced phenology at the time of application. Analysis 

of the results for one of the biotypes did however reveal a differential response between 

these plants and susceptible ones when bromoxynil was applied during advanced 

phenology. 

The integrated management experiments have revealed that cereal-sunflower and 

cereal-pea crop field rotations are able to significantly reduce corn poppy infestation 

because they break the lifecycle of this weed and permit the integration of herbicides 

belonging to the same chemical families as ALS or auxinic herbicides. In contrast, the 

cereal-oilseed rape rotation has proven to be an unsuitable strategy for corn poppy 

management. The need for early sowing of this crop is not an appropriate cultural tool 

for interfering with the corn poppy lifecycle; moreover, in the case of oilseed rape, there 

are few active ingredients able to control this weed. Trials showed that early treatment 

(pre- and early post-emergence) have led to better results than post-emergence 

treatments, most likely because earlier treatment reduces the phenological variability of 

corn poppy at the time of intervention, therefore reducing the possibility of treatment 

failure. 

Results obtained in this study have been instrumental in catalysing the progress required 

to elucidate the mechanisms in  Papaver rhoeas that confer resistance to ALS-inhibiting 

and auxinic herbicides. We now know that there is a differential response of biotypes to 

bromoxynil, explaining the lack of control detected in fields; which has led to the 

establishment of an integrated corn poppy programme in rainfed cereal. 
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Managing resistant weeds, from molecular bases to field solutions 

Weeds can produce potential crop losses of over the 34%, but weed control practices 

reduce these overall potential penalties to actual losses of about 10% (Oerke 2005). 

Herbicides are the basis of weed control in commercial agricultural systems. However, 

herbicide resistant weed biotypes are evolving rapidly as a natural response to selection 

pressure imposed by this modern agricultural weed management techniques 

(Norsworthy et al., 2012). The added cost associated with the management of herbicide 

resistance has been quantified and it goes from 26 to 60 €/ha in some of the most 

sophisticated agricultural systems (Mueller et al., 2005; Norsworthy et al., 2012). In this 

scenario, finding sustainable and highly effective weed management strategies is 

mandatory. But to achieve this goal the process is long and needs to recruit essential 

information in several phases and at different scales, from gen to farm (Figure 1.1). This 

information will assist farmers and advisers (or steakholders) in the development of 

effective weed control systems for the field in addition to assist herbicide manufacturers 

in the development of appropriate stewardship programmes for their products (Heap 

2005). Checking if the lack of control observed in fields is due to a natural variation in 

the response of weed populations or to a resistance mechanism is the first step in this 

process. Greenhouse experiments (dose-response experiments) will assist in this aim, 

moreover, these experiments are convenient to quantify the level of resistance, when it 

is present. Clarify the precise details of the physiologic and molecular means by which 

weeds evolve herbicide resistance will contribute to wiser use of precious herbicide 

resources, new innovations, and more sustainable strategies for weed management 

(Powles and Yu 2010). Besides, knowledge of herbicide resistant weeds biology 

(emergence patterns, fecundity, dispersal mechanisms, etc.) allows practitioners to 

develop strategies that target the most sensitive life stages to management (Norsworthy 

et al., 2012). Finally, in order to provide farmers with an effective weed management 

strategy, all proposals generated through all this information need to be validated under 

field conditions.  

Corn poppy (Papaver rhoeas) in Spanish winter cereal areas 

Corn poppy (Papaver rhoeas L.) is amongst the most important broad-leaf weeds 

infesting cereals across Europe; mostly in southern areas with a Mediterranean climate 

(Kaloumenos 2014).  
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Figure 1.1. Information recruitment process previous to designing a suitable Integrated Weed 

Management programme for herbicide resistant weeds 

In North-Eastern Spain, corn poppy, together with other grasses such as Lolium rigidum 

Gaudin, Avena sterilis L. and Bromus diandrus Roth are the main problematic weeds 

infesting winter cereals (Cirujeda 2001). Corn poppy is an insect-pollinated, diploid 

hermaphrodite species (2n = 14) with very high self-incompatibility (Délye et al., 2011). 

Outcrossing contributes to high levels of genetic variation and heterozygosity 

(Aguinagalde et al., 2005). It is a competitive species and, depending on its density 

causes significant yield reductions (up to 32% of the yield) (Torra and Recasens 2008). 

The ability of this species to invade, grow, and remain in arable fields can be attributed 

to several factors as: the development of a persistent seed bank, viability of their seeds  

up to 70% then of 77 months after burial (Cirujeda et al., 2006); an extended 

germination period that goes from early autumn to early spring (Cirujeda et al., 2008); 

and a high seed production, up to 40,000 seeds per plant in competition with wheat 

(Torra and Recasens 2008). Probably due to both, its above mentioned high genetic 

variability and the overuse of 2,4-D and tribenuron-methyl in its control, corn poppy has 

become an increasing problem in the last decades due to the appearance of herbicide 

resistant biotypes to synthetic auxins and/or to acetolactate synthase (ALS) inhibitors 

Lack of control detected in fields by farmers

Field Prospection

Biotypes Selection

Sensitive Plants Resistant Plants

Laboratory Experiments Greenhouse Experiments 

Resistance Mechanisms

Absorption/Translocation Metabolism

Target-Site MechanismNon-Target-Site Mechanism

ED50 Quantification Heterogeneity

Enzyme assayTranscriptome AND sequencing

Diagnosis of the Problem

Field Trials

Chemical Control Mechanical Control Cultural Measures Biological Control

Integrated Weed Management Programme Design

Biological Traits 



 

13 
 

(Claude et al., 1998). A survey conducted in North-Eastern Spain between 1990 and 

2001 in those fields where local farmers reported poor corn poppy control following 

tribenuron-methyl applications, indicated that 85% and 72% of sampled P. rhoeas 

populations were resistant to 2,4-D and tribenuron-methyl, respectively (Cirujeda 

2001). Moreover, in the last years, lack of control of corn poppy with some post-

emergence mixtures containing both synthetic auxins and photosystem II (PS II) 

inhibitor herbicides (ioxynil + bromoxynil + MCPP p) has been reported in a few cases 

(Cirujeda 2001; Kaloumenos 2014). 

Resistance towards 2,4-D 

2,4‐Dichlorophenoxyacetic acid (2,4‐D), an auxinic herbicide (group O according to the 

Herbicide Resistance Action Committee, HRAC), was the first synthetic herbicide to be 

commercially developed (Song 2014). The introduction of this herbicide in the Spanish 

agriculture started in the 50's and due to its high efficacy and the lack of alternative 

products the use of 2,4-D for cereal broad-leaf weeds became very frequent (Cirujeda 

2001). Poor control of corn poppy in Spain with 2,4-D was first reported in 1992 

(Taberner et al., 1992). Nowadays, there are 32 auxinic herbicide resistance species 

worldwide, 15 of those are resistant to 2,4-D (Heap 2015). Usually, 2,4-D, or other 

similar auxinic herbicides are applied in cereal fields in post-emergence and mainly 

mixed with ALS inhibitors, PS II inhibitors or inhibitors of carotenoid biosynthesis. 

Despite their extensive use, the precise mode of action and consecutively the resistance 

mechanisms to auxinic herbicides in weeds is not completely understood (Mithila et al., 

2011). However, new discoveries of nuclear auxin receptors, influx and efflux carriers 

and research in the metabolism of auxinic herbicides (2,4-D) have provided basic 

information which could help in the description of those resistance mechanisms 

(Peterson et al., 2015). 

Resistance towards tribenuron-methyl 

The sulfonylurea tribenuron-methyl is an ALS inhibitor (group B according to the 

HRAC). This herbicide binds within the substrate-access channel of ALS enzyme in 

plants and blocks the substrate access to the active site (Duggleby et al., 2008). ALS is a 

key plant enzyme responsible for the biosynthesis of branched-chain, essential amino 

acids valine, leucine, and isoleucine. Consequently, plants affected by this herbicide die 

due to the lack of those branch-chain amino acids. ALS inhibitors have been 
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revolutionary to the herbicide market because they are highly effective at low rates and 

environmentally safe (Tranel and Wright 2002). However, ALS inhibiting herbicides 

are the most prone mode of action worldwide in evolving herbicide resistant weeds due 

to very high selection pressures (Yu and Powles 2014). To date, 155 species all over the 

word have evolved resistance to ALS inhibitors (Heap 2015). Tribenuron-methyl has 

been sold in Spain since 1986 (Cirujeda 2001) and in 1998 the first case of a well-

studied corn poppy biotype resistant to both 2,4-D and tribenuron-methyl was published 

(Claude et al., 1998). Nowadays tribenuron-methyl resistant corn poppy has evolved in 

other numerous countries across Europe. In Spain the resistance to tribenuron-methyl is 

conferred by Pro197 to Ser substitutions in the ALS gene (Durán-Prado et al., 2004). 

This target site mutation makes that increased doses of tribenuron-methyl do not have 

any effect in tribenuron-methyl resistant corn poppy plants and confers some degree of 

cross resistance to other ALS inhibitors. 

Integrated management of herbicide resistant corn poppy biotypes. Current 

situation. Limitations and future prospects. 

As mentioned above, problems with corn poppy in Spain are mainly located in rainfed 

cereal areas of Northern Spain. It is precisely in these areas where fewer rotations with 

spring or summer crops are practised (CPRH 2013). Since decades zero or minimum 

tillage is the most frequent soil tillage practice in North-Eastern Spain (Álvaro-Fuentes 

et al., 2007) and further West, in Huesca, Navarra and Burgos ploughing is still 

conducted more frequently (Cirujeda 2001). Additionally, in all these zones weed 

control is based largely on herbicides. Frequently, one single post-emergence tank mix 

of herbicides controlling both grasses and broad-leaf weeds is applied between 

November and March. A second application with the same or different herbicides is less 

frequent, and it is practised in order to control surviving or new emerged weeds. 

Moreover, rotations of herbicides with different modes of action (MOA onward) from 

year to year is not very common (Cirujeda 2001). In this scenario, the development of 

Integrated Weed Management (IWM) programmes are mandatory because multiple 

resistant corn poppy biotypes have been selected as a result of the overuse of few 

molecules and  the reduction of cultural management techniques in the last decades. 

IWM is a component of integrated pest management (IPM) that focuses primarily on 

weeds (Buchanan 1976). It is described as the integration of various control strategies 

and application of ecological principles to control pests in agricultural systems (Smith 



 

15 
 

and Van den Bosch 1967). Several tools have been proposed to be introduced in an 

integrated resistant corn poppy management programme. Mechanical control of this 

species through post-emergence harrowing was found to be an effective method when 

corn poppy density was not extremely high and under dry conditions. Likewise, 

ploughing was considered an effective method for placing a proportion of corn poppy 

seeds in non-optimal germination situations, but this method should not be repeated for 

a few years (Cirujeda et al., 2003). Other cultural management practices such as delayed 

sowing or fallows showed good results in reducing corn poppy densities, but only when 

these cultural methods were combined with chemical or cultivation methods (Torra et 

al., 2011). Although in some dry Spanish cereal areas crop rotations are limited, it is 

interesting to check the effect of these few options (oil-seed rape, peas and sunflower) 

on corn poppy infestations. It is well known that crop rotations provide farmers with 

opportunities to employ variable crop life cycles, sowing dates, harvest dates, tillage 

and weed management practices to restrict the evolution of weeds adapted to cereal 

monocrop. In addition, crop rotation allows the introduction of herbicides having 

different MOA’s. 

Research objectives 

The main objectives of this thesis are: 

1- Deepen into the corn poppy molecular bases of ALS inhibitors resistance. 

2- Unravelling and characterize the resistance mechanisms involving 2,4-D in corn 

poppy. 

3- Understand which causes may be involve in the lack of control with bromoxynil 

detected in some fields. 

4- Design new options for an integrated management of multiple resistant corn 

poppy populations. 

Each of these objectives is presented as a chapter in this thesis taking the shape of a 

scientific paper (with the corresponding sections: abstract, introduction, material and 

methods, results, discussion, conclusions and references), which allows readers to 

understand each one independently of the others. Finally and to address the main goal of 

the thesis, results from the different chapters are jointly discussed, leading to the main 

conclusions. 
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Methodology and outline of the thesis 

To achieve Objective 1, different corn poppy populations were picked up in fields 

where problems with florasulam had been reported. Dose-response experiments were 

conducted with ALS inhibitors herbicides belonging to three different families: 

sulfonylureas, imidazolinones and triazolopyrimidines. From there, ALS gen was 

sequenced and comparisons of the genotype with the phenotype were performed in 

order to determine the cross resistant patterns among ALS inhibitors families. Finally, 

penetration and translocation of [
14

C]-tribenuron-methyl in S and R plants were also 

examined. Results of this work are reported in Chapter 2. 

To answer Objective 2, both greenhouse and lab experiments were conducted. First 

steps were to characterize the 2,4-D response of some resistant (R) and susceptible (S) 

populations through dose-response experiments. In order to explore some non-target-

site resistant mechanisms, penetration and translocation of 2,4-D among S and R plants 

was studied with [
14

C]-2,4-D. In addition, ethylene production in R and S populations 

was analyzed after spraying 2,4-D. Finally in those 2,4-D resistant plants, cross resistant 

patterns among other synthetic auxins were also checked. Results of all these studies are 

collected in Chapter 3. 

To meet Objective 3, corn poppy seeds from fields where the post-emergence mixture 

of ioxynil + bromoxynil + MCPP p did not achieve a good control of this species were 

collected. Dose-response experiments at different phenological stages were done in 

order to establish if lack of control was due to an incipient resistant process or to a 

unsuitable phenological stage when this product was sprayed. Results and 

recommendations are exposed in Chapter 4. 

To evaluate the effect of different integrated weed management strategies (Objective 4), 

experiments in two commercial fields with multiple resistant corn poppy populations (to 

2,4-D and tribenuron-methyl) were conducted during three years. Different chemical 

and cultural tools (different crop rotations, delayed sowing, different herbicide 

programmes) were assessed. Results and recommendations are exposed in Chapter 5. 

In Chapter 6 results for the preceding chapters are jointly discussed and general 

conclusions are exposed.   
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Abstract 

In the present study target-site and non-target-site resistance mechanisms to ALS 

inhibitors have been investigated in multiple resistant (tribenuron-methyl and 2,4-D) 

and only 2,4-D resistant, corn poppy populations. Six amino-acid replacements at the 

Pro197 position (Ala197, Arg197, His197, Leu197, Thr197 and Ser197) have been 

found in three multiple resistant populations. These replacements were responsible for 

the high tribenuron-methyl resistance response, and some of them, especially Thr197 

and Ser197, elucidated the cross-resistant pattern for imazamox and florasulam, 

respectively. Mutations outside of the conserved regions of the ALS gene (Gly427 and 

Leu648) were identified, but their implication(s) in resistance remains uncertain. 

Moreover, non-mutated plants were found to survive imazamox applications. Lack of 

[
14

C]-tribenuron-methyl translocation in the sensitive population, compared to the 

resistant populations, was attributed to the process of phytotoxicity. Mobility of labelled 

tribenuron-methyl in only 2,4-D resistant plants was, however, similar to plants with 

multiple resistance. Lack of correlation between phenotype and genotype in plants 

treated with florasulam or imazamox revealed signs of the presence of non-target-site 

resistance mechanisms to non-sulfonylureas. On this basis, selection pressure with ALS 

inhibitors bears the risk of promoting the evolution of non-target-site resistance 

mechanisms in corn poppy.  

 

Keywords: Target-site resistance, non-target-site resistance, mutation, amino-acid 

residue, synthetic auxins and translocation pattern. 
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Introduction 

Acetohydroxy acid synthase (AHAS, EC 4.1.3.18), also referred to as acetolactate 

synthase (ALS, EC2.2.1.6), is the first enzyme involved in the biosynthesis of branched 

chain amino-acids valine, leucine and isoleucine (Duggleby et al., 2008; Singh et al., 

1991). This enzyme is the target site of five herbicide chemical groups: sulfonylureas 

(SU), imidazolinones (IMI), triazolopyrimidines (TP), pyrimidinyl-thiobenzoates (PTB) 

and sulfonyl-aminocarbonyl-triazolinones (SCT). These herbicides, commonly referred 

to as ALS inhibiting herbicides, are highly effective at a low rate and environmentally 

safe (Duggleby et al., 2008). Only five years after the introduction of the first SU, 

resistant biotypes of Lactuca serriola L. (Mallory-Smith et al., 1990) and Kochia 

scoparia L. (Primiani et al., 1990) were reported. To date, 155 species in locations all 

over the world (94 dicots and 61 monocots) have evolved resistance to ALS inhibitors 

(Heap 2015). 

The SU and IMI herbicides are not competitive inhibitors of ALS because they do not 

directly bind to the substrate's active site. Instead, these herbicides bind within the 

substrate-access channel of the ALS enzyme in plants. In this way, both herbicides 

inhibit ALS by blocking substrate access to the active site. It is well documented that 

SU are better ALS inhibitors than IMI because SU fit better (more hydrogen bonds are 

involved) and deeper into the channel (closer to the active site) (Duggleby et al., 2008). 

In most cases, resistance to ALS inhibitors is caused by mutation of the ALS gene, 

which results in the change of a single amino-acid residue in the herbicide-binding site 

(Target-site resistance, TSR) (Tranel and Wright 2002). Thus far, 28 amino-acid 

substitutions endowing ALS inhibitors resistance have been reported, mainly at the 

Pro197 site (Ala, Arg, Asn, Gln, His, Ile, Leu, Lys, Met, Ser, Thr, Trp and Tyr), and 

also at Ala122 (Thr, Tyr and Val), Ala205 (Val), Asp376 (Glu), Trp574 (Arg, Leu, Gly 

and Met), Ser653 (Asn, Ile and Thr) and Gly654 (Glu and Asp) in resistant weed 

species (Beckie and Tardif 2012; Heap 2015). There is a wide variation in the resistant 

response among species with a given substitution (Beckie and Tardif 2012), as ALS 

inhibitors cross-resistance is also dependent on specific mutations, ALS inhibitor 

chemical groups, specific herbicides within a given group, and sometimes even weed 

species (Yu and Powles 2014). Generally, a high level of resistance is conferred by 

Pro197 substitutions to SU and by Trp574 substitutions to all classes of ALS inhibitors. 

A second mechanism of resistance to ALS inhibitors is to reduce the amount of 
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herbicide reaching ALS to be below the lethal level (Non-target-site resistance, NTSR). 

Reduced absorption and translocation rarely underlay resistance to ALS inhibitors 

(Cruz-Hipolito et al., 2009; 2013; Poston and Wilson 2001; Veldhuis et al., 2000), and 

in only a few cases they have been reported as a partial resistance mechanism (Riar et 

al., 2013; White et al., 2002). On the other hand, an enhanced herbicide metabolism rate 

has been well documented in Lolium rigidum L., (Christopher et al., 1991) Sinapis 

arvensis L. (Veldhuis et al., 2000) and Echinochloa phyllopogon L. (Yasuor et al., 

2009). 

An amalgam of different factors has been proposed to contribute to the number of ALS 

inhibitor-resistant cases. Additionally, the repeated use of these herbicides is an most 

important aspect (Tranel and Wright 2002), though genetic, molecular and 

physiological biology of this resistance must be considered. High mutation rates in ALS 

genes of some species account for the relatively high frequency of resistant alleles to 

ALS inhibitors in natural populations (Harms et al., 1991; Preston and Powles 2002). 

Moreover, resistant ALS alleles are dominant over susceptible alleles and because ALS 

is a nuclear gene, resistant alleles are disseminated by both pollen and seed (Tranel and 

Wright 2002). Studied resistant species have not shown any fitness cost associated to 

the most common mutations of the ALS gene (Pro197 and Trp574) (Légère et al., 2013; 

Li et al., 2013; Yu et al., 2010). For this reason, it has been considered that these 

resistant characteristics will persist in the populations and not decline with time (Yu and 

Powles 2014). 

Papaver rhoeas L. (corn poppy) is the most common dicotyledonous weed in winter 

cereals in southern Europe (Torra et al., 2011), it is an annual, diploid species that is 

insect-pollinated and self-incompatible (Délye et al., 2011). In recent years, corn poppy 

with multiple resistance to 2,4-D and tribenuron-methyl has been reported in Spain 

(Claude et al., 1998) and Italy, and independent resistance to ALS inhibitors has 

evolved in a number of other countries across Europe (Belgium, Denmark, France, 

Germany, Greece, Poland, Sweden and United Kingdom) (Heap 2015). In Spain, the 

resistance to tribenuron-methyl is conferred by Pro197 to Ser substitutions (Duran-

Prado et al., 2004). In addition, irregular responses to other ALS inhibitors (mainly IMI 

and TP) have been reported in post-emergence field applications. Recently, the presence 

of NTSR mechanisms in Italian corn poppy has been suggested because plants resistant 

to imazamox, but not carrying mutant ALS alleles, were identified (Scarabel et al., 
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2015). These resistance mechanisms and how they affect the different ALS inhibitor 

chemistries still needs to be uncovered. 

The objectives of this study were to (1) to characterise, the cross resistance patterns of 

four Spanish corn poppy populations primarily to ALS inhibitors with dose-response 

experiments, and secondarily to 2,4-D; (2) to sequence the ALS gene from these corn 

poppy populations in order to identify potential mutations; (3) to compare the genotype 

with the phenotype of individual plants in order to establish a relationship between the 

molecular results and the ALS inhibitors response; and (4) to determine if absorption or 

translocation are NTSR mechanisms contributing to the resistance response of these 

corn poppy populations. 

Materials and Methods 

Plant material 

Before winter cereal harvest, mature corn poppy capsules were collected from four 

fields in North-Eastern Spain where corn poppy control with ALS inhibitors and/or 2,4-

D had been reported as a failure. In addition, seeds from two susceptible (S) populations 

were obtained; one was provided by a seed dealer (Herbiseed, Twyford, UK) and the 

other was collected from the same region where suspicious resistant populations were 

collected. Further details regarding these populations are summarized in Table 2.1. Corn 

poppy seeds previously sterilized in a 30% hypochlorite solution were sown in Petri 

dishes with 1.4% agar supplemented with 0.2% KNO3 and 0.02% gibberellin GA3. 

Seeds were placed in a growth chamber at 20/10 °C day/night, a 16 h photoperiod under 

350 µmol photosynthetic photon-flux density m
-2

 s
-1

. After 14 days, seedlings were 

transplanted in pots filled with a silty loam:sand:peat (40:20:40, w/v) potting mix. Pots 

were placed in a greenhouse (41°37’43.1”N - 0°35’52.6”E) and were watered as 

needed. All plants produced in this manner were employed in the subsequent 

experiments. 

Dose-response assays 

Five seedlings were sown per pot and afterwards thinned to three per pot. At the six leaf 

stage (a 5-6 cm rosette), plants were sprayed with tribenuron-methyl, florasulam, 

imazamox and 2,4-D at a range of herbicide rates (rates are detailed in Table 2.2). Four 

replicates (pots) were applied with each herbicide rate. Herbicides were applied using a 

precision bench sprayer delivering 200 l ha
−1

, at a pressure of 215 kPa. Four weeks after 
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treatment, plants were harvested (above ground). Samples were dried at 65 °C for 48h, 

and the dry weights were measured. Finally, weight reduction was calculated as a 

percentage of the untreated control for each population. 

DNA extraction, ALS gene sequencing and restriction analysis 

At the six leaf stage, a total of fifty-one plants per population were sprayed with 

tribenuron-methyl, florasulam and imazamox (seventeen plants for each product) at the 

recommended field rate. Plants from the S-113 population were not included in this 

experiment, but results from unpublished work did not detect any mutation among thirty 

plants. 

Table 2.1. Location and date of collection of corn poppy (Papaver rhoeas) populations used in 

the experiments. 

Code 
Sampling location 

Year collected 
Herbicide management in the field during 

preceding years. Location Latitude Longitude 

S-013 -- -- -- 2008 
Susceptible standard population obtained 

from Herbiseed (Herbiseed,Twyford, UK). 

S-113 
Belorado 

(Burgos) 
42º24’57.8”N 3º10’49.3”W 2013 

Susceptible standard population collected in 

a non-treated zone, far from fields.  

R-213 
Baldomar 

(Lleida) 
41°54’39.0”N 1°00’21.2”E 2013 Florasulam plus 2,4-D in post-emergence.  

R-313 
Tosantos 

(Burgos) 
42°24’43.7”N 3°14’39.9”W 2013 

Aminopiralid plus florasulam, bifenox plus 

isoproturon and bromoxinil plus ioxinl plus 

MCPP in post and early post-emergence. 

R-114 
Sant Antolí 

(Lleida) 
41°37’58.4”N 1°19’44.6”E 2014 

Iodosulfuron-methyl plus mesosulfuron-

methyl and florasulam plus 2,4-D in post-

emergence. 

R-703 
Almacelles 

(Lleida) 
41°43’39.6”N 0°27’29.5”E 2003 -- 

 
 

Table 2.2. Herbicide used in dose-response experiments. 
 

 

Herbicide active 

ingredient 

Commercial 

product 
Field rate (g a.i.·ha-1) Manufacture Dose  rate used (g a.i.·ha-1) 

Tribenuron-methyl Granstar 50 SX 18.7 DuPont 

R 
1200, 600, 150, 75, 37.5, 

18.7, 9.3, 4.6 and 0 

S 
18.7, 9.3, 4.6, 2.3, 1.1, 0.5, 

0.25 and 0 

Florasulam Nikos 7.5 
Dow 

AgrosciencesIberica 

R 
480, 240, 60, 15, 7.5, 3.7, 

1.8, 0.9 and 0 

S 
7.5, 3.7, 1.8, 0.9, 0.4, 0.2, 

0.1 and 0 

Imazamox Pulsar 40 50 BASF España 

R 
3200, 1600, 400, 100, 50, 

25, 12.5, 6,2 and 0 

S 
50, 25, 12.5, 6.2, 3.1, 1.5, 

0.7 and 0 

2,4-D Esteron 60 600 
Dow 

AgrosciencesIberica 

R 
4800, 1200, 600, 300, 150, 

75 and 0 

S 
600, 300, 150, 75, 37.5, 

18.7, 9.3 and 0 
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The herbicide was applied as described above. One week before application, a leaf 

fragment (~100 mg) from each plant was taken and frozen for subsequent molecular 

analyses. Four weeks after treatment, individual plant responses were evaluated. Dead 

plants were classified as susceptible (S). Plants re-growing from the centre of the rosette 

were classified as moderately resistant (r) and plants that were unaffected by herbicide 

were classified as resistant (R) (Figure 2.1). DNA from the leaf fragment was extracted 

using the Speed tools Plant DNA Extraction Kit (Biotools B&M Labs S.A., Valle de 

Tobalina, Madrid, Spain) and the DNA sample concentration was measured in a 

NANODROP Thermoscientific spectrophotometer (ThermoFisher, Nano-Drop 

Products, Wilmington, DE). Each DNA sample was diluted to a final concentration of 

10 ng/µl, which was immediately used for the polymerase chain reaction (PCR) test or 

stored at -20ºC until use. 

 

 
 

Figure 2.1. Corn poppy (Papaver rhoeas) phenotype characterisation four weeks after ALS 

inhibitor treatments. Resistant plants (R), plants with re-growth from the centre rosette (r), and 

dead plants (S). 

 

All mutations conferring ALS resistance in corn poppy have been detected in the C, A, 

D domains of the gene (Pro197) (Durán-Prado et al., 2004; Kaloumenos et al., 2009; 

Marshall et al., 2010; Scarabel et al., 2004), only one corn poppy plant out of 729 tested 

was classified as resistant because of a mutation in the B, E domains (Trp574) (Délye et 

al., 2011). Based on this, C, A, D domains were analysed first for all the samples. B, E 

domains were checked in 153 samples out of the 255, and analyses on this region are 

still ongoing. To date no mutations at the B, E domains have been found. Fragments of 

the ALS gene that included the regions of domains C, A, D were amplified using corn 

poppy primers described in a previous work (Kaloumenos et al., 2009). The 

amplification was accomplished following the procedures described in the above 

mentioned work (Kaloumenos et al., 2009). PCR amplification products were separated 

R r S
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in a 1.5% agarose gel. Gels were then observed under ultraviolet light (320 nm; ALPHA 

DIGI DOC Pro instrument, Alpha Innotec Corporation, Johannesburg, South Africa) 

and images recorded with gel photography. Amplified DNA fragments were purified 

using the Speed tools PCR Clean-Up Kit (Biotools, B&M Labs, Madrid, Spain), then 

sequenced.  Restriction analyses were conducted to define double-peaks detected in the 

sequence chromatograms. For this analysis, primers and procedures were utilized as 

described by Kaloumenos et al. (2009). The resulting electrophoresis bands were 

visualized under UV light after being stained with GelRed (Biptium, California, USA). 

The digestion profile for each population was compared with its respective, non-

digested control profile as well as the S-control digestion profile. Haplotype inference 

was determined by comparing sequences obtained from the other samples within the 

same population. In some specific cases where the same genotype at C, A, D domain 

expressed different responses to the same herbicide, other possible positions of the ALS 

gene were examined. Methodology for this part was conducted as described in a 

previous work (Délye et al., 2011).   

Tribenuron-methyl absorption and translocation experiment 

[
14

C]-tribenuron-methyl ([
14

C]-Tri) with a specific activity of 1.422 MBq/mmol 

(Institute of Isotopes Co. Ltd. Budapest, Hungary) was mixed with commercial 

formulated tribenuron-methyl in distilled water up to a final concentration of 0.093 g L
-1

 

(18.7 g a.i.·ha
-1

 dissolved into 200 L ha
-1

 of distilled water). Four 0.5 μL droplets of this 

mixture were applied per plant to the adaxial surface of the fourth leaf at the six true 

leaf stage of development (a 5-6 cm rosette). Every plant received a radioactivity of 

166.5 Bqmmol
-1

. Five repetitions (considering every plant as a repetition) from each 

population were harvested at 12, 24, 48, and 96 h after treatment (HAT). Unabsorbed 

[
14

C]-Tri was rinsed from the treated leaves of each plant using 2 ml of an acetone and 

water (1:1 v/v) solution. The rinse of each replication was mixed with 15 mL 

scintillation fluid (UltimaGold
TM

, Perkin-Elmer, Packard Bioscience BV), and analyzed 

by liquid scintillation spectrometry (LSS) (Beckman LS 6000 TA scintillation counter; 

Beckman Instruments, CA, USA). Washed plants were separated into treated leaf, 

shoots and root, dried at 70ºC for 48 h and parts were combusted in a sample oxidizer 

(OX 500; R. J. Harvey Instrument, Tappan, NY, USA). The radioactivity of the 

resulting [
14

C]-CO2 was determined by LSS. Foliar absorption (%) was calculated as (1) 
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Foliar absorption (%) =
[Radioactivity recovered from plant parts]

[Total radioactivity recovered]
 𝑋 100                          (1) 

 

and translocation (%) was calculated as (2). Percentage or recovery was always greater 

than 80%. 

Translocation(%) =
[Taken−up radioactivity in treated leaf,shoot or root]

[Taken−up radioactivity in all tissues]
 𝑋 100                         (2) 

Statistical analysis  

For the dose-response experiment, statistical analyses were carried out with a nonlinear 

regression model with the drc (Knezevic et al. 2007) package in R (R Development 

Core Team 2013). The herbicide rate causing 50% of plant growth reduction (GR50) was 

calculated via four type (3) parameter logistic curves: 

𝑦 = c +
(𝑑−𝑐)

1+EXP[𝑏(log(𝑥)−log(𝐺𝑅50)]
                                              (3) 

 

Where c = the lower limit, d = the upper limit and b = the slope at the GR50. In this 

regression equation, the herbicide rate (g a.i.·ha
-1

) was the independent variable (x) and 

the dry weight (percentage of the untreated control for each population) was the 

dependent variable (y). The resistance index (RI) was computed as GR50(R)/GR50(S). 

Analysis of variance (ANOVA) was conducted with [
14

C]-Tri percentages. Data were 

transformed as needed (arcs[√(x+0.5)]) when normal assumptions were not met. 

Population means from each evaluation time were compared using a post-hoc Tukey´s 

pairwise test (Hothorn et al. 2008), at P = 0.05. Data were then back transformed for 

their presentation. 

Results 

Dose-response experiments 

R-213, R-313 and R-114 plants were 286-, 695- and 351-fold more resistant to 

tribenuron-methyl than susceptible plants (Table 2.3). The R-703 population displayed a 

very small resistant index (RI) to tribenuron-methyl (2 times more resistant than the S-

013 plants). Results for the TP florasulam revealed some degree of cross-resistance to 

this herbicide. Florasulam GR50 was 0.16 g a.i. ha
-1

 in S-013 plants; this parameter was 

increased 24-fold in R-213 plants (3.90 g a.i. ha
-1

) and 18-fold in both R-313 and R-114 

populations (2.90 and 2.92 g a.i. ha
-1 

respectively). R-703 plants were two times more 

resistant to florasulam than H-S013 plants (Table 2.3). Cross-resistance to the IMI 
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imazamox was also observed in these populations. The GR50 value for imazamox in the 

susceptible population (S-013), was 0.61 g a.i. ha
-1

. This parameter was 30 (18.08 g a.i. 

ha
-1

), 40 (24.37 g a.i. ha
-1

) and 24 (14.73 g a.i.ha
-1

) times greater in R-213, R-313 and 

R-114 populations, respectively. R-703 plant results exposed them to be 6 times more 

resistant (a GR50 value of 4.05 g a.i. ha
-1

) to imazamox than the susceptible biotype 

(Table 2.3). Dose-response experiments conducted with 2,4-D revealed that all 

populations were resistant to 2,4-D, their RI’s ranging from 12 to 18 (Table 2.3). 

Minimal differences in the two S population responses were observed for the different 

tested herbicides. 

Table 2.3. Equation parameters of the log-logistic model used to estimate the GR50 of 

tribenuron-methyl, florasulam, imazamox and 2,4-D in S-013, S-012, R-213, R-313, R-114 and 

R-703 populations of corn poppy (Papaver rhoeas). 

 
 

 

a
GR50, herbicide concentration for 50% reduction of corn poppy dry weight.

 

b
Slope at the GR50

 

c
Res SS, residual sum of square.

 

d
 RI (resistance index) = GR 50(Population) ÷ GR50(S-013). 

Biotype GR50 ± SE (g a.i.·ha
-1

)
a
 b± SE

b
 Res SS

c
 RI

d 
Tribenuron-metil 

S-013 0.08 ± 0.02 0.49 ± 0.08 5171 -- 
S-113 0.05 ± 0.04 0.57 ± 0.17 2689 0.6 
R-213 25.22 ± 6.38 0.58 ± 0.09 10084 286 
R-313 61.27 ± 12.00 0.63 ± 0.07 22189 695 
R-114 30.92 ± 8.06 0.61 ± 0.09 10609 351 
R-703 0.17 ± 0.04 0.52 ± 0.11 328 2 

Florasulam 
S-013 0.16 ± 0.03 0.69 ± 0.12 21738 -- 
S-113 0.37 ± 0.08 0.88 ± 0.16 8530 2 
R-213 3.90 ± 0.38  2.01 ± 0.36 3899 24 
R-313 2.90 ± 0.68 0.60 ± 0.11 2311 18 
R-114 2.92 ± 0.30 0.87 ± 0.08 1529 18 
R-703 0.41 ± 0.08 1.27 ± 0.41 1704 2 

Imazamox 
S-013 0.61 ± 0.10 0.76 ± 0.16 8917 -- 
S-113 0.22 ± 0.08 0.41 ± 0.15 2428 0.5 
R-213 18.08 ± 1.00 4.26 ± 1.23 4534 30 
R-313 24.37 ± 3.50 1.76 ± 0.43 6544 40 
R-114 14.73 ± 1.00 1.15 ± 0.10 966 24 
R-703 4.05 ± 0.55 1.50 ± 0.32 1098 6 

2,4-D 
S-013 68.60 ± 10.20 1.15 ± 0.16 23693 -- 
S-113 71.37 ± 24.01 0.81 ± 0.21 10303 1 
R-213 816.60 ± 96.00 1.27 ± 0.16 2872 12 
R-313 1238.40 ± 436.20 0.80 ± 0.27 18435 18 
R-114 925.80 ± 156.01 1.02 ± 0.28 5038 13 
R-703 1039.70 ± 402.00 0.74 ± 0.18 8399 15 
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Table 2.4. Herbicide sensitivity to three ALS inhibitors applied at the field rate and ALS alleles identified in five different corn poppy (Papaver rhoeas) 

populations (three multiple resistant: R-213, R-313 and R-114; one synthetic auxin resistant: R-703; and one susceptible: S-013). 

 

 

a
R-213 R-313 R-114 R-703 S-013 

b
Tri Flo Ima Tri Flo Ima Tri Flo Ima Tri Flo Ima Tri Flo Ima 
c
R R r S R r R r S R r S R S R r S R r S S r S S S r S 

d
Pro/Pro         1   1  3   3   17 17 4 12 17 17 1 16 

Ala/Pro       1                     

Leu/Leu 2  3  2 1  1                    

Leu/Pro   1  1                       

Ser/Ser 3 3   2 2 2      2  1 1   1         

Ser/Pro 8 1  1   2    2  3   1   1         

Thr/Thr       3 5  1   5   1 1 3    1      

Thr/Pro       2  1 2 1  1   1 2 3 1         

Ser/Thr       4 6 1 5 3  2   3 1 1 2         

Ser/Leu 4 1 7  6 2 1         1            

Thr/His       1                     

Thr/Leu             1    1 3 2         

Thr/Arg         2 1 1                 

Leu/Arg      1                      

 
a
 Corn poppy population.

 

b
 Herbicide applied, tribenuron-methyl (Tri), florasulam (Flo) and imazamox (Ima).

 

c
 Herbicide response to ALS inhibitors. R, resistance; r, moderately resistance (re-growth) and S, susceptible. For every product, only reported responses have been 

represented. 
 

d
Genotype at codon 197. 
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Table 2.5. Correlation between observed individual response to imazamox or florasulam and individual nucleotide and amino-acid sequence of corn poppy 

(Papaver rhoeas) acetolactate synthase. Only positions related with ALS resistance (Ala122, Pro197, Ala205, Asp376, Trp574, Ala653 and Gly654) and those 

positions where mutations were found (Glu427 and Leu648) have been represented. All sequences were compared with the wild type corn poppy ALS gene 

(GenBank: AJ577316). In sensitive ALS corn poppy, codon 653 encodes an alanine and not a serine residue as in other species.  

 

Code Ala122 Pro197 Ala205 Asp376 Trp574 Glu427 Leu648 Ala653 Gly654 Response  
Wild type ALS GCA CCT GCA GAT TGG GAA TTG GCT GGT -- 

Imazamox 
S-013

a
 (21)

b
 GCA CCT GCA GAT TGG GAA TTG GCT GGT r 

S-013 (22) GCA CCT GCA GAT TGG GAA TTG GCT GGT S 
R-703 (24) GCA CCT GCA GAT TGG GAA TTG GCT GGT r 
R-703 (29) GCA CCT GCA GAT TGG GAA TTG GCT GGT r 
R-703(30) GCA CCT GCA GAT TGG GAA TTG GCT GGT r 
R-703 (21) GCA CCT GCA GAT TGG GAA TTG GCT GGT S 
R-114 (26) GCA *MYT* GCA GAT TGG *RAA* *TYG* GCT GGT R 
R-114 (25) GCA *MYT* GCA GAT TGG *RAA* TTG GCT GGT r 

Florasulam 
R-114 (20) GCA *ACT* GCA GAT TGG *AAA* TTG GCT GGT r 
R-114 (17) GCA *ACT* GCA GAT TGG *AAA* TTG GCT GGT S 

 

a
 Population code.

 

b
 Code of the sample within the population 

* indicate mutated residue nucleotides 
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ALS sequencing 

No substitutions at codon Pro197 were found in S-013 plants. However, six amino-acid 

replacements were identified at this position (Ala197, Arg197, His197, Leu197, Ser197 

and Thr197) in populations R-213, R-313 and R-114. Only one plant out of fifty-one in 

R-703 population presented a substitution (Thr197). Six different genotypes were 

identified in R-213 (Leu/Leu; Leu/Pro; Ser/Ser; Ser/Pro; Ser/Leu and Leu/Arg), with 

76% of the plants being classified as resistant homozygous (RR), 24% resistant 

heterozygous (RS), and 0% susceptible homozygous (SS). In R-313, twelve different 

genotypes were detected (Pro/Pro; Ala/Pro; Leu/Leu; Ser/Ser; Ser/Pro; Thr/Thr; 

Thr/Pro; Ser/Thr; Ser/Arg; Ser/Leu; Thr/His and Thr/Arg) 76%, 20% and 4% of these 

plans were RR, RS and SS, respectively. Finally, eight different genotypes were 

observed in R-114 plants (Pro/Pro; Ser/Ser; Ser/Pro; Thr/Thr; Thr/Pro; Ser/Thr; Ser/Leu 

and Thr/Leu), 61% of the plants belonging to this population were characterised as RR, 

25% as RS and 14% as SS (Table 2.4). Results obtained by the multiple resistant 

populations (R-213, R-313 and R-114), revealed that all plants carrying at least one 

mutant ALS allele showed a R response to tribenuron-methyl treatments. Those few 

plants which were classified as S (3 out of 51) did not show any mutation at position 

197. Opposite, the majority of the plants treated with imazamox were classified as R or 

r and most of the imazamox R plants carried at least one Thr197 or Leu197 allele. The 

response to florasulam was also different and few plants treated with this herbicide were 

R, most of them were r or S. The majority of the plants which did not survive 

florasulam application had a Thr197 substitution (Pro/Pro genotype not included), and 

all plants with R response to this herbicide carried at least one Ser197 allele (Table 2.4). 

No mutant plants were found in population S-013 and no survivors were found for 

either to tribenuron-methyl nor to florasulam, nevertheless only one plant survived the 

imazamox (r). All plants in population R-703 died when they were sprayed with 

tribenuron-methyl or florasulam, however, five plants survived to imazamox (r) and 

only one plant presented a substitution (Thr/Thr) at position 197 (Table 2.4). Some 

plants identically genotyped at C, A, and D domains displayed different responses to 

florasulam or imazamox (Table 2.5). Moderate imazamox resistance (r) and susceptible 

(S) responses from populations S-013 and R-703 did not show any difference at the 

other studied positions (Table 2.5). Samples 25 and 26 from population R-114 were r 

and R (respectively) to imazamox and both plants carried a Leu/Thr substitution at 
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position 197. Additionally, these plants displayed a heterozygous mutation at position 

427 (Glu/Lys) and only sample 26 also carried a heterozygous mutation at position 648 

(Leu/Ser). Samples 20 and 17 from population R-114 showed a Thr homozygous 

mutation at position 197, but r (20) and S (17) responses to florasulam were observed. 

Apart from this, both plants also carried a homozygous mutation at position 427 

(Lys/Lys) (Table 2.5). 

 

 

Figure 2.2. [
14

C]-tribenuron-methyl absorption (ABS, expressed as % recovered radioactivity), 

remained in the treated leaf (TFL, % penetrated radioactivity), translocation to the shoot (SHT, 

% penetrated radioactivity) and translocation to the root (RT, % penetrated radioactivity) in corn 

poppy (Papaver rhoeas) populations S-013, R-213, R-313, R-114 and R-703. Bars represent 

standard error of the means. * indicates significant differences between S-013 and the rest of 

populations (p<0.05) at a given time 

[
14

C]-tribenuron-methyl experiments 

There were no differences in [
14

C]-Tri absorption patterns between corn poppy 

populations (Figure 2.2). In addition, there were no significant time-related differences 
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in terms of [
14

C]-Tri absorption among all the tested populations, with percentages 

ranging from 24.3% (at 12 HAT) to 37.8 % (at 96 HAT) of the recovered radioactivity 

(Figure 2.2). Different behaviours in the translocation of the [
14

C]-Tri were detected 

between populations. These differences started 48 HAT, with a maximum at 96 HAT, 

being statistically significant (Figure 2.2). While radioactivity in susceptible plants 

remained asymptotic, radioactivity evaluated in the treated leaf of R-213, R-313, R-114 

and R-703 decreased. Therefore, at 96 HAT the percentage of [
14

C]-Tri found in the 

treated leaves of the S plants was 70.9%, which was statistically different from the rates 

obtained for the rest of populations. These data were consistent with those observed in 

the shoot, where significant differences were only detected at 96 HAT. R-313 plants 

translocated almost 3-fold more [
14

C]-Tri to the shoots (68.9% of the penetrated 

radioactivity) than S-013 plants (25.6%). Radioactivity detected in R-213, R-114 and R-

703 shoots at the same evaluation time was 46.8, 49.1 and 51.2%, respectively (Figure 

2.2). No differences between populations in terms of herbicide translocation to roots 

were detected at any evaluation time, thus radioactivity evaluated in this part was 

negligible (Figure 2.2). Percentages of recovered radioactivity ranged from 80 to 88% in 

the H-S013 population, from 85 to 99%, from 80 to 85%, from 77 to 97% and from 80 

to 86% in R-213, R-313, R-114 and R-703 populations, respectively (data not show). 

Discussion 

Multiple resistance to tribenuron-methyl and 2,4-D was detected in R-213, R-313 and 

R-114 corn poppy populations. GR50 values for these products were consistent with 

those reported in Greek ALS resistant and multiple resistant corn poppy populations 

(Kati et al., 2014). As observed in previous studies (Kaloumenos et al., 2011), the 

degree of resistance varied among ALS inhibitors, resistant factors being much lower 

for florasulam and imazamox than for tribenuron-methyl. 

In our study, six amino-acid replacements at the Pro197 position have been found 

(Ala197, Arg197, His197, Leu197, Thr197 and Ser197); the first five replacements 

being new for Spanish corn poppy populations, and consistent with previously 

published European works (Délye et al., 2011; Kaloumenos et al., 2009; Marshall et al., 

2010). The strong resistance to tribenuron-methyl showed by any kind of substitution at 

Pro197 is because Pro197 amino-acid residue is directly involved in anchoring the 

aromatic ring of SU. Any replacement in this position will affect SU binding, resulting 

in strong resistance to this herbicide (Duggleby et al., 2008; Shane-Friesen 2007). 
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Cross-resistance patterns between ALS inhibitors depend on both the codon mutated 

and the specific amino-acid replaced at the codon (Han et al., 2012). Due to this, 

different substitutions at Pro197 can give strong, moderate, or no resistance among IMI 

and TP. In concordance with results in another study (Délye et al., 2011), corn poppy 

plants carrying the Thr197 substitution were resistant or moderately resistant to 

imazamox. Although Pro197 is not involved in binding IMI (Duggleby et al., 2003), 

certain substitutions of these amino-acid residues may result in IMI resistance because 

the replacement of Pro by a bulky amino-acid obstructs the entry of IMI into the ALS 

tunnel (Duggleby et al., 2008). Additionally, it has been suggested that Thr197 

substitution can confer strong negative interactions with Arg199, Met200 and Asp257 

amino-acid residues, which have been proposed to play a relevant role in the binding of 

some IMI (Shane-Friesen 2007). Regarding TP, our results show that the substitution of 

Pro197 by Ser lead to plants that were moderately cross-resistant to florasulam, as 

observed by Délye et al. (2011) To date, the florasulam crystal structure is unknown, 

and no data is available regarding the behaviour and binding’s sites of this molecule in 

the ALS tunnel. The florasulam response of Ser197 mutated plants is hypothesized to 

occur in the same terms as the Thr197 substitution for IMI. 

The overuse of tribenuron-methyl during the early 80’s in Spanish fields probably 

selected a wide variety of Pro197 substitutions in corn poppy. Consecutive ALS 

herbicide management practices in each field contributed to the reduction, or not, of 

ALS genotype diversity, depending on which ALS herbicide family were predominantly 

used. This case is clearly apparent in R-213 plants continuously treated with florasulam 

+ 2,4-D in recent years, as this population has the highest florasulam resistant index, 

together with the highest Ser allele frequency reported. 

Plants carrying a double mutation at positions Pro197 and Gly427 (by Lys), and a triple 

mutation at positions Pro197, Gly427 and Leu648 (by Ser), were detected in this study. 

Results from a previous work conducted with ALS resistant corn poppy from Spain also 

detected a point mutation located outside the conserved domains: a replacement of 

Gly281 by Glu (Durán-Prado et al., 2004). It was difficult to attribute any direct 

implication of these two new mutations in the observed herbicide response, especially 

when plants carrying these mutations displayed different responses to the same 

herbicide. Nevertheless, position Leu648 is near other important positions involved in 

IMI anchoring (Ser653) (Duggleby et al., 2008), and a similar interaction could be 

occurring as that above described between Pro197 and Arg199, Met200 and Asp257. 
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In this research, plants with the same genotype at ALS did not always show the same 

phenotype when they were treated with florasulam or imazamox. Analogous results 

were reported in ALS inhibitors resistant Raphanus raphanistrum L. and P. rhoeas 

(Shane-Friesen 2007; Scarabel et al., 2015). Délye et al. (2011) and Scarabel et al. 

(2015) indicated that a NTSR mechanism to ALS inhibitors, yet to be determined, could 

be behind the mismatch between the genotype and phenotype. Moreover, five plants 

without any mutation were able to survive imazamox application among all populations. 

In other weeds, NTSR mechanisms (metabolism related) were assumed to be present by 

identifying sensitive ALS in plants with resistant phenotypes (Scarabel et al., 2015; Yu 

and Powles 2014; Yu et al., 2009).
 
Neither the present nor previously mentioned studies 

were able to find evidence of NTSR mechanisms conferring resistance to SU. In terms 

of the unique Pro197 mutated plant found in the R-703 population, gene flow via pollen 

or seed from other fields is presumed to explain this result.  

As observed in corn poppy, no differences in absorption between resistant and 

susceptible biotypes were also reported in other studies conducted with ALS inhibitors 

(Cruz-Hipolito et al., 2009; 2013; Dimeo et al., 2013; Riar et al., 2013).
 
Results with 

Sinapis arvensis L. and [
14

C]-ethametsulfuron-methyl were similar to the present ones, 

detecting more translocation in resistant than in susceptible plants (Veldhuis et al., 

2000). Hyper-accumulation of carbohydrates in susceptible Pisum sativum L. leaves 

treated with ALS inhibitors has been reported (Zabalza et al., 2004), suggesting that 

ALS inhibitors affect the transport of assimilates into the phloem (Bestman et al., 1990). 

On these bases, perhaps this is the explanation for lower [
14

C]-tribenuron-methyl 

translocation in susceptible plants. In agreement with previous studies (Cruz-Hipolito et 

al., 2013), minimum [
14

C]-tribenuron-methyl root translocation was detected in the corn 

poppy roots of all populations.  

The [
14

C]-tribenuron-methyl translocation pattern in R-703 plants resulted controversial 

because it was similar to those observed for ALS resistant populations (R-213 and R-

114). What marked R-703 plants different from the other populations was that these 

plants were only resistant to 2,4-D (only one plant out of 51 presented a mutation in the 

Pro197 position). Data suggested that tribenuron-methyl phytotoxicity in R-703 plants, 

which all died at the end, was not evolving as in susceptible plants (S-013), almost 

during the 96 hours following the herbicide application. Moreover, four plants without 

any mutation that survived the imazamox application had baffling results for R-703. It 

must be stressed that this study lacked a population that was both SU resistant and 2,4-
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D susceptible so that, it was impossible to disentangle, if possible, NTSR mechanisms 

from ALS inhibitors are directly related to 2,4-D resistance or vice versa. Divergences 

above mentioned in the [
14

C]-tribenuron-methyl translocation pattern between multiple 

resistant, synthetic auxin resistant and susceptible populations, could suggest that the 

2,4-D resistance mechanism interferes with the normal phytotoxic processes triggered 

by tribenuron-methyl a few hours after its application.  

Conclusions 

In the present study, three populations were multiple resistant while one population was 

only resistant to synthetic auxins. Substitutions at Pro197 took charge of the tribenuron-

methyl resistance response, although it resulted difficult to extrapolate this conclusion 

the other tested ALS inhibitors. Non-target-site resistance mechanisms affecting 

sulfonylurea herbicides, if any, did not become evident under the strong resistance 

conferred by any amino-acid substitution at Pro197 to this chemical group. 

Nevertheless, for non-SU ALS inhibitors, the presence of these NTSR mechanisms may 

become more evident, as plants with the same genotype did not express the same 

phenotype. This was especially true for the IMI imazamox, where non-mutated plants 

were able to survive its application. Therefore, selection pressure with ALS inhibitors 

has the risk to promote the evolution of NTSR mechanisms in corn poppy, such as in 

grasses. It is unknown if those mechanisms affect other modes of action, which are 

crucial for the management of herbicide resistance. The results exposed in this work 

will help in the development of future experiments aimed at disentangling the 

relationship between the ALS inhibitors and the synthetic auxins resistant response, and 

to deepen in the NTSR mechanisms to non- sulfonylurea ALS inhibitors. 

References 

Beckie HJ, Tardif FJ (2012) Herbicide cross resistance in weeds. Crop Prot 35: 15–28 

Bestman HD, Devine MD, Born WH (1990) Herbicide chlorsulfuron decreases 

assimilate transport out of treated leaves of field pennycress (Thlaspi arvense L.) 

seedlings. Plant Physiol 93: 1441–1448 

Christopher JT, Powles S, Liljegren DR, Holtum JAM (1991) Cross-resistance to 

herbicides in annual ryegrass (Lolium rigidum): II. Chlorsulfuron resistance 

involves a wheat-like detoxification system. Plant Physiol 95: 1036–1043 



 

43 
 

Claude JP, Gabard J, De Prado R, Taberner A (1998) An ALS-resistant population of 

Papaver rhoeas in Spain. in Proceedings of the Compte Rendu XVII Conference 

COLUMA, Journées internationales sur la lutte contre les mauvaises herbes, 

ANPP; Montpellier, pp141-147. 

Cruz-Hipolito H, Osuna MD, Vidal RA, De Prado R (2009) Resistance mechanism to 

bensulfuron-methyl in biotypes of Scirpus mucronatus L. collected in Chilean rice 

fields. J Agric Food Chem 57: 4273–8 

Cruz-Hipolito H, Rosario J, Ioli G, Osuna MD, Smeda RJ, González-Torralva F, De 

Prado R (2013) Resistance mechanism to tribenuron-methyl in white mustard 

(Sinapis alba) from Southern Spain. Weed Sci 61: 341–347 

Délye C, Pernin F, Scarabel L (2011) Evolution and diversity of the mechanisms 

endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn 

poppy (Papaver rhoeas L.). Plant Sci 180: 333–42 

Juglam M, Dimeo N, Veldhuis LJ, Walsh M, Hall JC (2013) Investigation of MCPA (4-

Chloro-2-ethylphenoxyacetate) resistance in wild radish (Raphanus raphanistrum 

L.). J Agric Food Chem 61: 12516−12521 

Duggleby RG, Pang SS, Yu H, Guddat LW (2003) Systematic characterization of 

mutations in yeast acetohydroxyacid synthase: Interpretation of herbicide-

resistance data. Eur J Biochem 270: 2895–2904 

Duggleby RG, McCourt JA, Guddat LW (2008) Structure and mechanism of inhibition 

of plant acetohydroxyacid synthase. Plant Physiol Biochem 46: 309–324 

Durán-Prado M, Osuna MD, De Prado R, Franco AR (2004) Molecular basis of 

resistance to sulfonylureas in Papaver rhoeas. Pestic Biochem Physiol 79: 10–17 

Han H, Yu Q, Purba E, Li M, Walsh M, Friesen S, Powles SB (2012) A novel amino 

acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance 

across ALS-inhibiting herbicides. Pest Manag Sci 68: 1164–1170 

Harms CT, DiMaio JJ, Jayne SM, Middlesteadt LA, Negrotto DN, Thompson-Taylor H, 

Montoya AL (1991) Primisulfuron herbicide-resistant tobacco plants: mutant 

selection in vitro by adventitious shoot formation from culturéd leaf discs. Plant 

Sci 79: 77–85 



 

44 
 

Heap IM (2015) International Survey of Herbicide Resistant Weeds, 

http:/weedscience.org. Accessed: May, 2015 

Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric 

models. Biometrical Journal 50: 346–363 

Kaloumenos NS, Dordas CA, Diamantidis GC, Eleftherohorinos IG (2009) Multiple Pro 

197 substitutions in the acetolactate synthase of corn poppy (Papaver rhoeas) 

confer resistance to tribenuron. Weed Sci 57: 362–368 

Kaloumenos NS, Adamouli VN, Dordas CA, Eleftherohorinos IG (2011) Corn poppy 

(Papaver rhoeas) cross-resistance to ALS-inhibiting herbicides. Pest Manag Sci 

67: 574–85 

Kati V, Chatzaki E, Le Core V, Délye C (2014) Papaver rhoeas plants with multiple 

resistance to synthetic auxins and ALS inhibitors. in Proceedings of the Herbicide 

Resistance in Europa: Challenges, Opportunities and Threats. EWRS-Herbicide 

Resistant Working Group; Frankfurt am Main, pp 24 

Knezevic SZ, Streibig JC, Ritz C (2007) Utilizing R software package for dose-

response studies: the concept and data analysis. Weed Technol 21: 840–848 

Légère, A, Stevenson FC, Beckie HJ, Warwick SI, Johnson EN, Hrynewich B, Lozinski 

C (2013) Growth characterization of Kochia (Kochia scoparia) with substitutions 

at Pro 197 or Trp 574 conferring resistance to acetolactate synthase–inhibiting 

herbicides. Weed Sci 61: 267–276 

Li M, Yu Q, Han H, Vila-Aiub M, Powles SB (2013) ALS herbicide resistance 

mutations in Raphanus raphanistrum: evaluation of pleiotropic effects on 

vegetative growth and ALS activity. Pest Manag Sci 69: 689–95 

Mallory-Smith CA, Thill DC, Dial MJ (1990) Identification of sulfonylura herbicide-

resistant prickly lettuce (Lactuca serriola). Weed Technol 4: 163–168 

Marshall R, Hull R, Moss SR (2010) Target site resistance to ALS inhibiting herbicides 

in Papaver rhoeas and Stellaria media biotypes from the UK. Weed Res 50: 621–

630 

Poston DH, Wu J, Hatzios KK, Wilson HP (2001) Enhanced sensitivity to cloransulam-

methyl in imidazolinone-resistant smooth pigweed. Weed Sci 49: 711–716 



 

45 
 

Preston C, Powles SB (2002) Evolution of herbicide resistance in weeds: initial 

frequency of target site-based resistance to acetolactate synthase-inhibiting 

herbicides in Lolium rigidum. Heredity (Edinb) 88: 8–13 

Primiani MM, Cotterman JC,  and Saari LL (1990) Resistance of Kochia (Kochia 

scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol 4: 169–172 

R: A lenguaje and enviromental for statistical computing development core team, R 

Foundation for Statistical Computing, Vieana, Austria (2013) 

Riar DS, Norsworthy JK, Srivastava V, Nandula V, Bond JA, Scott RC (2013) 

Physiological and molecular basis of acetolactate synthase-inhibiting herbicide 

resistance in barnyardgrass (Echinochloa crus-galli). J Agric Food Chem 61: 278–

89 

Scarabel L, Carraro N, Sattin M, Varotto S (2004) Molecular basis and genetic 

characterisation of evolved resistance to ALS-inhibitors in Papaver rhoeas. Plant 

Sci 166: 703–709 

Scarabel  L, Pernin F, Délye C (2015) Occurrence, genetic control and evolution of non-

target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in 

the dicot weed Papaver rhoeas. Plant Sci 238: 158–69 

Shane-Friesen JL (2007) Identification of the mechanisms of wild radish herbicide 

resistance to PSII inhibitors, auxinics and AHAS inhibitors. Ph.D dissertation. The 

Uniersity of Western Australia, Australia pp 221-249 

Singh B, Schmitt G, Lillis M, Hand JM, Misra R (1991) Overexpression of 

acetohydroxyacid synthase from Arabidopsis as an inducible fusion protein in 

Escherichia coli: production of polyclonal antibodies, and immunological 

characterization of the enzyme. Plant Physiol 97: 657–662 

Torra J, Royo-Esnal A, Recasens-Guinjuan J (2011) Management of herbicide-resistant 

Papaver rhoeas in dry land cereal fields. Agron Sustain Dev 31: 483–490 

Tranel PJ, Wright TR (2002) Resistance of weeds to ALS-inhibiting herbicides : what 

have we learned?. Weed Sci 50: 700–712 

Veldhuis LJ, Hall LM, O’Donovan JT, Dyer W, Hall JC (2000) Metabolism-based 

resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-

methyl. J. Agric Food Chem 48(7): 2986–2990 



 

46 
 

White AD, Owen MDK, Hartzler RG, Cardina J (2002) Common sunflower resistance 

to acetolactate synthase–inhibiting herbicides. Weed Sci 50: 432–437 

Yasuor H, Osuna MD, Ortiz A, Saldain NE, Eckert JW, Fischer AJ (2009) Mechanism 

of resistance to penoxsulam in late watergrass [Echinochloa phyllopogon (stapf) 

koss.]. J Agric Food Chem 57: 3653–3660 

Yu Q, Abdallah I, Han H, Owen M, Powles SB (2009) Distinct non-target site 

mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting 

herbicides in multiple herbicide-resistant Lolium rigidum. Planta 230: 713–723 

Yu Q, Han H, Vila-Aiub MM, Powles SB (2010) AHAS herbicide resistance endowing 

mutations: Effect on AHAS functionality and plant growth. J Exp Bot 61: 3925–

3934 

Yu Q, Powles SB (2014) Resistance to AHAS inhibitor herbicides: current 

understanding. Pest Manag Sci 70: 1340–50 

Zabalza A, Orcaray L, Gaston S, Royuela M (2004) Carbohydrate accumulation in 

leaves of plants treated with the herbicide chlorsulfuron or imazethapyr is due to a 

decrease in sink strength. J Agric Food Chem 52: 7601–7606 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

49 

 

 

 

 

 

 

 

 

 

 

Understanding the resistance mechanisms to 2,4-D  

(2,4-dichlorophenoxyacetic acid) in corn poppy (Papaver rhoeas) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Published in Pesticide Biochemistry and Physiology (March 2016). 

On line: DOI 10.1016/j.pestbp.2016.03.002

http://dx.doi.org/10.1016/j.pestbp.2016.03.002


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

51 

 

Abstract 

In southern Europe, the intensive use of 2,4-D (2,4-dichlorophenoxyacetic acid) and 

tribenuron-methyl in cereal crop systems has resulted in the evolution of resistant (R) 

corn poppy (Papaver rhoeas L.) biotypes. Experiments were conducted to elucidate (1) 

the resistance response to these two herbicides, (2) the cross-resistant pattern to other 

synthetic auxins and (3) the physiological bases of the auxin resistance in two R (R-213 

and R-703) populations. R plants were resistant to both 2,4-D and tribenuron-methyl 

(R-213) or just to 2,4-D (R-703) and both R populations were also resistant to dicamba 

and aminopyralid. Results from absorption and translocation experiment revealed that R 

plants translocated less [
14

C]-2,4-D than S plants at all evaluation times. There was 

between four and eight-fold greater ethylene production in S plants treated with 2,4-D, 

than in R plants. Overall, these results suggest that 2,4-D does not promote the signaling 

pathway in the R plants because does not activate the nuclear receptor, either due to its 

alteration or as a consequence of reduced translocation. 

Keywords: Auxinic herbicide, cross resistance, ethylene production, herbicide 

resistance, radioactivity, translocation. 
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Introduction 

Agricultural weeds cause major crop losses by competing for nutrients, water or light. 

Even though a lot of non-chemical methods have been used for controlling weeds, 

herbicides are considered the most effective (Deng et al., 2015). 2,4-D (2,4-

dichlorophenoxyacetic acid), an auxinic herbicide, was commercially released in 1946 

becoming the first successful selective herbicide to specifically target dicotyledonous 

weeds. 2,4-D still remains as one of the most commonly used herbicides in the world as 

a consequence of its low cost, selectivity, efficacy and wide spectrum of weed control 

(Mithila et al., 2011). The auxinic herbicide family (group O according to the Herbicide 

Resistance Action Committee, HRAC; and group 4 according to the Weed Science 

Society of America, WSSA) contains four chemical groups, including pyridine-

carboxylic acids (i.e. aminopyralid), quinolinecarboxylic acids (i.e. quinclorac), benzoic 

acids (i.e. dicamba), and phenoxy-carboxylic acids (i.e. 2,4-D). 

After 60 years of widespread and repeated usage, few examples of resistance to this 

herbicide’s mode of action have been reported. Generally, the selection of synthetic 

auxin resistant biotypes requires more generations than for other modes of action 

herbicides, particularly acetolactate synthase (ALS) and acetyl-coenzyme A carboxylase 

(ACCase) inhibitors (Riar et al., 2011). Several reasons have been proposed to explain 

this phenomenon, including low mutation rates, fitness penalties and redundancy in 

auxin receptors within the plant (Mithila et al., 2011; Preston and Malone 2014). 

Nowadays, there are 32 species resistant to auxinic herbicides, 15 of those being 

resistant to 2,4-D (Heap 2015). The precise mode of action for these herbicides, and 

consequently, the resistance mechanisms in weeds are, however, still poorly understood 

(Mithila et al., 2011; Song 2014). Nonetheless, new discoveries and frontiers involving 

nuclear auxin receptors (F-box proteins), influx and efflux carriers and plasma 

membrane bound receptors have provided basic clues as to the molecular mode of 

action of these herbicides (Guilfoyle and Janvier 2007; Krecek et al., 2009; Song 2014; 

Tan et al., 2007; Tromas et al., 2010). 

The characterization of resistance mechanisms has been investigated in few auxinic 

herbicide-resistant weeds. Differential absorption, translocation, or metabolism were not 

the bases for resistance in the majority of the assessed species (Cranston et al., 2001; 

Van Eerd et al., 2005; Kern et al., 2005; Peniuk et al., 1993; Valenzuela-Valenzuela et 

al., 2001). Only in a few weeds these non-target-site mechanisms (NTSM) have been 

related with the resistance response (Jugulam et al., 2013; Riar et al., 2011; Weinberg et 
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al., 2006). Additionally, it has been reported that the application of auxinic herbicides 

stimulates ethylene biosynthesis in sensitive, but not in resistant plants (Abdallah et al., 

2006; Van Eerd et al., 2005; Valenzuela-Valenzuela et al., 2001). This unregulated 

auxin response and the resulting hyperaccumulation of ethylene, abscisic acid (ABA) 

and reactive oxygen species (ROS) in auxinic herbicide sensitive plants may be 

involved in the induction of tissue damage and cell death after synthetic auxins 

application (Romero-Puertas et al., 2004). 

Corn poppy (Papaver rhoeas L.) is a major weed of cereal crops in Southern Europe 

(Délye et al., 2011). Its extended germination period, high seed production, and seed 

bank persistence makes it especially difficult to manage. It has been estimated that corn 

poppy can decrease wheat yields up to 32% (Torra et al., 2011). Moreover, the increase 

in both monoculture farming and overuse of 2,4-D since the 60s, followed by 

tribenuron-methyl application in the early 80s, have selected ALS and/or 2,4-D 

herbicide-resistant biotypes. The International Survey of Herbicide Resistant Weeds 

records ALS inhibitors herbicide-resistant biotypes of corn poppy in ten different 

European countries. Furthermore, 2,4-D resistant biotypes have been detected in Italy 

(Heap 2015). While it is well known that resistance to ALS inhibitors in corn poppy is 

caused by a single point mutation in the ALS gene (target-site mechanisms, TSM) 

(Délye et al., 2011; Durán-Prado et al., 2004; Kaloumenos et al., 2009; Marshall et al., 

2010), no studies have attempted to understand the resistance mechanisms to synthetic 

auxins in this specie. A better understanding of the 2,4-D resistant mechanisms in corn 

poppy may also improve resistance management by better defining herbicide use 

patterns to delay or avoid resistance to this herbicide’s mode of action (Preston and 

Malone 2014). 

This study was thus conducted in order (1) to determine the herbicide rate causing 50% 

mortality (GR50) and the resistance index (RI) of a resistant (R) and a susceptible (S) 

population to 2,4-D and tribenuron-methyl, (2) to characterize the cross-resistance 

response of R and S plants to other synthetic auxins chemical groups used in cereals 

systems, (3) to compare the physical and physiological features by means of contact 

angle and absorption and translocation of  [
14

C]-2,4-Dtyhj between R and S plants and 

(4) to examine the ability of 2,4-D to induce ethylene biosynthesis in R and S corn 

poppy plants.  

 



 

55 

 

Material and Methods 

Plant material 

Before winter cereal harvest, corn poppy mature capsules form at least twenty different 

plants were collected in two fields where failure of corn poppy control with ALS 

inhibitors and/or 2,4-D had been reported. R-213 population, suspected to be multiple 

resistant, was collected from a field located in Baldomar, north of Spain (41º54’39.0”N 

and 1º00’21.2”W) in 2013. R-703 population, with suspected resistance to 2,4-D, was 

collected from a field located in Almacelles (41°43’39.6”N and 0°27’29.5”E) in 2003. 

Two susceptible populations (S-013 and S-012) were included in this study. S-013 was 

obtained from a seed dealer (Herbiseed, Twyford, UK) in 2008, and S-012 was 

collected in 2012 from a cereal field in Almenar (41º47’30.5”N and 0°27’29.5”E) where 

no resistance problems had been reported. Corn poppy seeds were sterilized in a 30% 

hypochlorite solution. Sterilized seeds were sown in Petri dishes with 1.4% agar 

supplemented with 0.2% KNO3 and 0.02% gibberellin GA3. Seeds were placed in a 

growth chamber at 20/10 °C day/night, 16 h photoperiod under 350 µmol 

photosynthetic photon-flux density m
-2

 s
-1

. After 14 days, seedlings were transplanted in 

7 x 7 x 7 cm plastic pots filled with the following soil mixture: silty loam soil 40% 

(w/v), sand 30% (w/v), peat 30% (w/v). Pots were placed in a greenhouse in Lleida, 

north-eastern Spain (41° 37’N, 0° 38’W) and were watered regularly to field capacity. 

Dose-response experiments 

Five seedlings were sown per pot and after establishing, were thinned to three per pot. 

At the six leaf stage (5-6 cm), all populations were tested with tribenuron-methyl and 

2,4-D. Tribenuron-methyl (Granstar 50 SX, DuPont, 50%) was applied at 0, 4.6, 9.3, 

18.7 (field dose), 37.5, 75, 150, 600 and 1200 g a.i.·ha
−1

 to R plants and at 0, 0.25, 0.5, 

1.1, 2.3, 4.6, 9.3, and 18.7 g a.i.·ha
−1

 to S plants. 2,4-D (Esteron 60, Dow AgroSciences, 

60%) was applied at 0, 75, 150, 300, 600 (field dose), 1200 and 4800 g a.i.·ha
−1

 to R 

populations and at 0, 9.3, 18.75, 37.5, 75, 150, 300 and 600 g a.i.·ha
−1

 to S plants. Non-

treated plants were used as controls. A total of four replicates (three plants per pot) were 

included at each dose. Herbicides were applied using a precision bench sprayer 

delivering 200 L·ha
−1

, at a pressure of 215 kPa. Four weeks after treatment, plants were 

harvested (above ground) and the dry weight (65 °C for 48 h) was measured.  
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Cross-resistance patterns of synthetic auxins 

Both R populations (R-703 and F-R213) and S-013 plants were sprayed with dicamba 

(Benzoic acid) and aminopyralid (Pyridine-carboxylic acid) in order to study the effects 

of other synthetic auxins. Dicamba (Banvel D, Syngenta, 48%) and aminopyralid (Dow 

AgroSciences, 3.9%) were sprayed at their field rates (144 and 9.9 g a.i.·ha
−1

, 

respectively) as well as two times their field rates. Five replicates (three plants per pot) 

and five control pots (non-treated plants) were included at each dose. Applications and 

evaluations were done as described above. 

[
14

C]-2,4-D uptake and translocation experiments 

Ring labeled [
14

C]-2,4-D with specific activity of 1576 MBq·mmol
-1

 was provided by 

Dow AgroSciences (Dow AgroSciences, Indianapolis, USA). Seedlings from S-013 and 

both R populations at six true leaves of development (5-6 cm), were treated with four 

droplets of 0.5 μL (2 μL per plant) of radio labeled herbicide solution containing [
14

C]-

2,4-D and commercial 2,4-D mixed to a final herbicide concentration of 3 g·L
-1

 

(equivalent to a 600 g a.i.·ha
-1

 delivered at 200 L·ha
-1

 spraying volume). Every plant 

received a total activity of 18.4 MBq mmol
-1

. Five plants from each population were 

harvested at 12, 24, 48, and 96 h after treatment (HAT). Unabsorbed herbicide was 

rinsed from the treated leaves using 2 ml of an acetone/water (1:1 v/v) solution. The 

rinse solution was mixed with 15 mL of scintillation fluid (Ultima Gold
TM

, Perkin-

Elmer, Packard Bioscience BV). Washes were analyzed by liquid scintillation 

spectrometry (LSS) (Beckman LS 6000 TA scintillation counter; Beckman Instruments, 

CA, USA). Plants were separated into three parts; treated leaf, shoot and root, each of 

which was dried at 70 °C for 48 h and combusted in a sample oxidizer (OX 500; R. J. 

Harvey Instrument, Tappan, NY, USA). The trapped [
14

C]-CO2 was determined by 

LSS. Foliar absorption (%) was calculated as () and translocation (%) was calculated as 

() x 100.  
 

Foliar absorption (%) =
[Radioactivity recovered from plant parts]

[Total radioactivity recovered]
 𝑋 100                               (1) 

 

Translocation(%) =
[Taken−up radioactivity in treated leaf,shoot or root]

[Taken−up radioactivity in all tissues]
 𝑋 100                     (2) 

 

To assess translocation of 2,4-D, two treated plants for H-S013, D-R703 and F-R213 

populations were removed from pots 48 HAT. Roots were rinsed and whole plants were 
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dried (65 °C for 48 h) and pressed against a 25 by 12.5–cm phosphor storage film 

(PerkinElmer Life and Analytical Sciences, Shelton, CT) for 6 h, and scanned using a 

phosphor imager (Cyclone, Perkin-Elmer, Packard Bioscience BV). 
 

Contact angle and microroughness assays 

To assess any effects of leaf surface, 2,4-D was applied as one drop of 0.5 µL in the 

adaxial surface of the fourth leaf. Immediately after, individual droplets were 

photographed using a laboratory-built device consisting of a dissection microscope 

(Leica MZ6; Leica Microsystems Ltd., Heerbrugg, Switzerland) plus a high-definition 

digital camera with macro objective (Leica Dililux 4.6; Leica Camera AG, D35606 

Solms, Germany). Thirty drops for each population (from different plants) were 

photographed and contact angle of the drops were analyzed using image processing 

software (Image J 1.31v; US National Institutes of Health, Bethesda, MD, USA). The 

same procedure was followed for the microroughness determination, where an 

acetone/water (1:1 v/v) solution was used instead of the herbicide.  

 Ehylene production 

Experiments were conducted to evaluate the amounts of endogenous ethylene produced 

by R (R-213 and R-703) and S (S-013 and S-012) plants in response to 2,4-D treatment. 

Two seedlings were sown in a 145 ml pot (BeltaLab, Barcelon, Spain) and once 

established, were reduced to one per pot. Plants were sprayed, as described above, with 

commercial 2,4-D at 0, 150, 300 and 600 g a.i.·ha
−1

. Treatments were replicated six 

times. Prior to each treatment, the soil mixture was covered with a layer of perlite to 

avoid deposition of the herbicide on the substrate. Immediately following treatments, 

the pots were closed with a specific hermetic top and the two holes beneath the pot were 

sealed with vaseline and Parafilm. Ethylene was measured by withdrawing a 1 ml gas 

sample from the head-space with a syringe and injecting it into a gas chromatograph 

(GC; Agilent Technologies 6890, Wilmington, Germany) equipped with an alumina 

column F1 80/100  (2m x 1/8 x 2.1, Teknokroma, Barcelona, Spain) and a flame 

ionization detector (FID) (Giné Bordonaba et al., 2014). This experiment was repeated 

twice; in October 2014 and again in February 2015 (the later only with S-012 as a S 

population). 
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Statistical analysis 

Data from dose-response experiments were analyzed using a non-linear regression 

model (1). The herbicide rate required for 50% growth reduction of plants (GR50) was 

calculated with the use of a four parameter logistic curve of the type: 

𝑦 = c +
(𝑑−𝑐)

1+EXP[𝑏(log(𝑥)−log(𝐺𝑅50)]
                                             (3) 

 

where c = the lower limit, d = the upper limit and b = the slope at the GR50. In this 

regression equation, the herbicide rate (g a.i.·ha
-1

) was the independent variable (x) and 

the plants’ dry weight expressed as percentage of the untreated control was the 

dependent variable (y). The resistance index (RI) was computed as GR50(R)/GR50(S). 

Data from [
14

C]-2,4-D uptake and translocation experiments were subjected to analysis 

of variance (ANOVA). The requirement of homogeneity of variance was checked by 

visual inspection of the residual plots and residuals were analyzed using Shapiro–Wilk 

Test. Where variances were not homogeneous, Generalized Linear Models (GLM’s) 

were used. The binomial distribution (Logit-link) was used in all GLM, because this 

distribution resulted in normally distributed residues. Populations’ means were 

compared using a post-hoc Tukey´s pairwise procedure at P = 0.05. Data from the cross 

resistant experiment (efficacy) and ethylene production assay (µLC2H4·g
-1

·h
-1

) were 

subjected to analysis of variance (ANOVA) and means were separated using Tukey´s 

pairwise comparison at 0.05 probability level. Repetitions from the ethylene experiment 

(October and February) were not pooled due to statistical differences found between 

experiments. All statistical analyses were carried out with the use of the R programming 

language (R Development Core Team 2013). drc packag (Knezevic et al., 2007) for the 

non-linear regression and multcom (Hothorn et al., 2008) for the post hoc Tukey´s test 

were employed 

Results 

Both R and S plants showed morphological damage after 2,4-D application. Plant 

growth was reduced, and leaves were curled. R plant produced new growth within a few 

days of herbicide application. S and R plants treated with 600 g a.i.·ha
-1

 and 4800 g 

a.i.·ha
-1

 of 2,4-D, respectively, died 14 days after application. Regarding to GR50 

comparisons, no differences were observed between S populations treated with 2,4-D 

(66.3 vs 68.6 g of a.i.·ha
-1

). R-213 and R-703 plants were 12-fold (816.6 vs 68.6 g of 
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a.i.·ha
-1

) and 15-fold (1039.7 vs 68.6 g of a.i.·ha
-1

) more resistant to 2,4-D than S-013 

plants, respectively. There was very little control of R-213 plants with tribenuron-

methyl at 600 g a.i.·ha
-1

 (thirty-two times the field rate), and GR50 was 25.2 g a.i.·ha
-1

, 

286-fold more resistant than S-013 plants. Tribenuron-methyl at 18.7 g a.i.·ha
-1

 (field 

rate) controlled the population R-703 (Figure 3.1), and it showed a very low RI (Table 

3.1). Differences between S populations in the response to tribenuron-methyl were 

minimal (Figure 3.1). 
 

Table 3.1. Estimated GR50 and resistance index (RI) values to tribenuron-methyl and 2,4-D for 

S-013, S-012, R-703 and  R-213 corn poppy (Papaver rhoeas) populations. 

 

Herbicide Field dose Population GR50 (g a.i.·ha
-1

) ± SE RI 

Tribenuron-

methyl 
18.75 g a.i.·ha

-1
 

S-013 0.08 ± 0.02 -- 

S-012 0.10 ± 0.02 1.1 

R-703 0.17 ± 0.04 2 

R-213 25.22 ± 6.4 286 

2,4-D 600 g a.i.·ha
-1

 

S-013 68.60 ± 10.2 -- 

S-012 66.36 ± 20.4 0.9 

R-703 1039.70 ± 402.0 15 

R-213 816.60 ± 96.0 12 

 

 

Figure 3.1. Dose-response regression curves of susceptible (S-013 and S-012), and resistant (R-

703 and R-213) corn poppy (Papaver rhoeas) populations to 2,4-D (A) and tribenuron-methyl 
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(B) (log scale). Data were expressed as percentage of the mean dry weight of untreated control 

plants. 

The R-703 and R-213 populations were also resistant to dicamba and aminopyralid at 

field rate (144 and 9.9 g a.i.·ha
-1

, respectively; Figure 3.2). The effectiveness of auxinic 

herbicides on the R population increased when they were applied at two times the field 

rate, but other than dicamba on R-213, they failed to control the populations (Figure 

3.2).  

 

Figure 3.2. Efficacy of aminopyralid (AMI), dicamba (DIC) and 2,4-D at the field rate: 9.9, 144 

and 600 g a.i.·ha
-1

 (1x) and two-fold the field rate: 19.8, 288 and 1200 g a.i.·ha
-1

 (2x) on S-013 

(black), R-703 (dark grey) and R-213 (grey) corn poppy (Papaver rhoeas) populations. Vertical 
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bars represent the standard error. Columns with different letters indicate significant differences 

(P<0.05) for each product and dose. 

There were no significant differences between R (R-703 and R-213) and S (S-013) 

plants in the quantity of [
14

C]-2,4-D absorbed, with between 65 to 70% of the herbicide 

applied absorbed at 12 HAT. R-213 and R-703 plants translocated much less [
14

C]-2,4-

D than S-013 plants with, significantly less translocation to the shoots and roots 

compared to the susceptible population (Table 3.2). Percentages of recovered 

radioactivity ranged from 89 to 96% in S-013 plants and from 85 to 98% in the R 

plants. Images obtained from the qualitative studies at 48 HAT confirmed the above 

results (Figure 3.3). Data from the contact angle and microroughness assays did not 

reveal any kind of differences between R and S plants (data not shown).  

 

Table 3.2. Absorption (percentage of recovered radioactivity) and translocation (percentage of 

penetrated radioactivity) of [
14

C]-2,4-D in S-013, R-213 and R-703 populations of corn poppy 

(Papaver rhoeas) at different times. Data are means with standard error and means followed by 

different letters indicate significant differences in each time and location (Absorption, treated 

leaf, shoots and roots) (P<0.05). 

 

Population 12 h 24 h 48 h 96 h 

Foliar absorption (% recovered radioactivity) 

S-013 70.98 ± 3.3
 
a 78.06 ± 5.7 a 62.71 ± 5.7 a 65.81 ± 5.5 a 

R-703 65.67 ± 5.3 a 69.55 ± 5.5 a 69.26 ± 8.7 a 71.98 ± 5.6 a  

R-213 65.83 ± 9.1 a 78.22 ± 8.7 a 70.54 ± 7.5 a 76.98 ± 7.8 a 

Remainder in the treated leaf (% penetrated radioactivity) 

S-013 93.79 ± 1.21 a 83.60 ± 3.1 a 78.36 ± 3.8 a 70.04 ± 6.5 a  

R-703 97.34 ± 0.71 b 96.45 ± 1.1 b 98.56 ± 0.2 b 96.87 ± 1.2 b 

R-213 99.08 ± 0.06 b 96.26 ± 1.5 b 98.29 ± 0.4 b 97.49 ± 0.3 b  

Translocation to the shoots (% penetrated radioactivity) 

S-013 4.25 ± 0.97 a 12.77 ± 2.5 a 15.05 ± 3.3 a 22.22 ± 6.1 a 

R-703 2.23 ± 0.76 ab 2.27 ± 0.5 b 0.77 ± 0.2 b 2.44 ± 1.1 b 

R-213 0.32 ± 0.04 b 2.69 ± 1.3 b 0.55 ± 0.1 b 1.04 ± 0.3 b 

Translocation to the roots (% penetrated radioactivity) 

S-013 1.95 ± 0.49 a 3.61 ± 0.6 a 6.57 ± 0.5 a 7.73 ± 1.0 a 

R-703 0.41 ± 0.15 b 1.26 ± 0.8 ab 0.65 ± 0.2 b 0.34 ± 0.1 c 

R-213 0.58 ± 0.06 b 1.04 ± 0.3 b 1.14 ± 0.3 b  1.46 ± 0.1 b 

 

No differences in ethylene production among populations were detected in untreated (0 

g a.i·ha
-1

) or plants sprayed at 150 g a.i·ha
-1

 of 2,4-D. There were differences between R 

and S populations starting at 300 g a.i.·ha
-1 

of 2,4-D, with maximum differences at the 

field rate (600 g a.i.·ha
-1

), when S plants produced between five and eight times more 

ethylene than R plants (Figure 4.4). Even though statistical differences in ethylene 
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production were determined between repeated trials (October and February), similar 

patterns between R and S populations were confirmed in both experiments (Figure 4.4).  

 

 

Figure 3.3. Digital image (upper panel) and autoradiographic image (lower panel) depicting 

[
14

C]-2,4-D translocation throughout plants tissues of S-013, R-703 and R-213 populations of 

corn poppy (Papaver rhoeas), 48 HAT. Arrows in the upper image indicate the leaf where 

[
14

C]-2,4-D droplets were applied. 

 

 

S-013 R-703 R-213
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Figure 3.4. Ethylene production (µL C2H4·g
-1

·h
-1

) in susceptible (S-013 and S-012), and 

resistant (R-703 and R-213) corn poppy (Papaver rhoeas) populations after foliar application of 

2,4-D at different concentrations. The experiment was repeated twice, in October 2014 (A) and 

February 2015 (B). Ethylene was measured 16 h after treatment (HAT). Vertical bars represent 

the standard error. * indicate significant differences (P<0.05) between R and S plants for each 

application dose. 

Discussion 

Resistance to both tribenuron-methyl and 2,4-D in R-213 plants was confirmed in our 

study. Multiple resistant corn poppy populations have also been previously detected in 

Italy and Greece (Heap 2015; Kati et al., 2014). Resistance to both auxinic and ALS 
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inhibitor herbicides have been reported in others dicots weed as: Gallium spurium L. 

(Van Eerd et al., 2005), Sisymbrium orientale L. (Preston and Malone 2014), Kochia 

scoparia L. (Kern et al., 2005), Limnocharis flava L. and Raphanus raphanistrum L. 

(Heap 2015). Resistant factors obtained to tribenuron-methyl and 2,4-D were similar to 

those observed in other studies (Kaloumenos et al., 2011; Kati et al., 2014; Evangelia 

Chatzaki 2014).  

The resistant plants were also resistant to dicamba and aminopyralid. Resistance to 

multiple synthetic auxins was also observed in Lactuca serriola L. (Burke et al., 2009), 

Sinapis arvensis L. (Peniuk et al., 1993), and K. scoparia (Kern et al., 2005). New 

discoveries of proteins involved in auxins’ mode of action have indicated that specific 

alterations in nuclear receptors might contribute as a potential resistance mechanisms in 

auxinic herbicide resistant dicotyledonous weeds (Mithila et al., 2011). Similar to the 

results presented in this study, cross-resistance between 2,4-D and dicamba was also 

found in a F-box receptor mutant of Arabidopsis thaliana L. (Gleason et al., 2011) 

There was no difference in absorption of 2,4-D, however, reduced [
14

C]-2,4-D 

translocation was observed in 2,4-D resistant corn poppy populations. Reduced 

synthetic auxin translocation has previously been reported for resistant populations of 

Galeopsis tetrahit L. (Weinberg et al., 2006) and L. serriola (Riar et al., 2011). 

Alteration to the auxin efflux carriers (PIN-FORMD, PIN; ATP-binding cassette, ABC) 

could explain the lack of translocation observed in 2,4-D resistant corn poppy plants. 

Members of the PIN and ABC efflux carrier families have been considered the main 

mechanism involved in active and long-distance auxin transport (Zazímalová et al., 

2010). Recent studies conducted with A. thaliana suggested that ABCB4 transporter 

(ABC family) is the target of 2,4-D (Kubeš et al., 2012). In addition, a mutation in A. 

thaliana in another efflux carrier of ABC family, ABCG9, has been reported to provide 

increased tolerance to 2,4-D without affecting endogenous auxin Indole-3-acetic-acid 

(IAA) transport (Ito and Gray 2006).  

Results from the ethylene experiments are consistent with previous studies conducted 

with other species. A three-fold increase in ethylene was induced in quinclorac-sensitive 

G. spurium plants compared with quinclorac-resistant plants (Van Eerd et al., 2005). 

Sensitive and resistant K. scoparia plants demonstrated greater than four-fold difference 

in ethylene production when they were treated with dicamba and sampled 24 HAT 

(Howatt et al., 2006). The stimulation of ethylene biosynthesis through the expression 

of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase has been described as one of 
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the first phases after 2,4-D and F-box proteins binding (Grossmann 2010). Therefore, 

our results suggest that in R plants 2,4-D may not be binding this nuclear receptor.  

Overall, these results suggest that 2,4-D does not promote the signaling pathway in R 

plants because its receptor is not activated, either due to its alteration or as a 

consequence of reduced translocation involving any of the known auxin transporter 

families. The first step toward uncovering this mechanism could be seeking an 

alteration in these specific proteins affecting the auxinic nuclear reception or auxin 

efflux carriers (a specific transporter belonging to PIN or ABC families). In addition, 

2,4-D metabolism studies should be considered since this resistance mechanism could 

be present in the studied populations together with those proposed above as it has been 

suggested in 2,4-D resistant R. raphanistrum (Goggin and Powles 2014). A 

comprehensive understanding of the resistance mechanisms in corn poppy biotypes, 

especially in those with multiple resistance to auxinic and ALS inhibitor herbicides, is 

needed to further understand the risk of resistance evolution to others modes of action. 

This information will be crucial to assist in the design of integrated weed management 

strategies. 
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Abstract 

In the last decades Papaver rhoeas L. (corn poppy) has evolved resistant towards 

tribenuron-methyl and/or 2,4-D herbicides, both an ALS inhibitor and a synthetic auxin, 

respectively. In the wake of those resistances other post-emergence herbicides have 

been extensively used. One of these herbicides is the photosystem II (PS II) inhibitor 

bromoxynil. Recently, lack of proper control following applications with mixtures 

containing bromoxynil has been reported in some specific fields in North-Eastern Spain. 

Seeds from these fields were collected and dose-responses experiments at different 

phenological stages were conducted in greenhouse in order to determine if a bromoxynil 

resistant process is behind the responses observed at the fields. Populations studied in 

this work (R-313, R-413 and R-213) were multiple resistant to 2,4-D and tribenuron-

methyl. However, minimum differences between susceptible plants and those collected 

from fields were detected when bomoxynil was sprayed at the recommended growth 

stage (5-6 cm of rosette). Applications on larger plants (phenological stage 10-11 cm of 

rosette) caused a slight shift in the dose-response curve of population R-313. This shift 

was less marked for populations R-413 and R-213. Based on these results, lack of 

control detected on the fields could be attributed to the presence of larger corn poppy 

plants at post-emergence application. 

Keywords: corn poppy, photosystem II inhibitor, phenological stage, mixture, 

tribenuron-methyl and 2,4-D. 
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Introduction 

Photosystem II (PS II), which is the first protein complex involved in the photosynthetic 

process, catalyzes the oxidation of water and the reduction of plastoquinone (QA and 

QB) using energy derived from light (Minagawa and Takahashi 2004). This complex is 

the target site of herbicides commonly named as PS II inhibitors. These herbicides 

inhibit electron flow by competing with QB for anchoring to the binding pocket of D1 

protein of the PS II (Hess 2000). As a result of this process, susceptible plants treated 

with the PS II inhibitors produce large amounts of 
3
Chl, 

1
O2, H2O2 and O2

-
 that destroy 

the integrity of membranes and lead to the plant death (Fuerst and Norman 2011). PS II 

inhibitors are generally classified in three separated herbicide groups, according to how 

they bind to the D1 binding pocket (Sobolev and Edelman 1995). These are named C1: 

Triazines, Triazolinone, Triazinones, Pyridazinone, Phenylcarbamates and Uracils; C2: 

Ureas and Amides; and C3: Nitriles, Phenyl-pyridazines and Benzothiadiazinone, 

according to the Herbicide Resistance Action Committee, HRAC (homologous of 

groups 5, 6 and 7 designed by the Weed Science Society of America, WSSA) (Mallory-

Smith and Retzinger 2003). First case of resistance to PS II inhibitors was reported in 

1970 in a Senecio vulgaris L. population that evolved resistant to triazine (Ryan 1970). 

To date, 105 biotypes all over the world have evolved resistance to PS II inhibitors. Of 

these, 73 biotypes are resistant to C1, 28 to C2 and only 4 to C3 (Heap 2015). Resistance 

to these herbicides is mainly due to an alteration of the D1 protein (target-site 

resistance, TSR), which is encoded by the chloroplast psbA gene (Gronwald 1994). In 

higher plants, mutations at five positions (Val219, Ala251, Phe255, Ser264 and 

Asn266) have been related with resistance cases to PS II inhibitors. Substitution of Ser 

by Gly at position 264 is, by far, the most frequently evolved mutation in weeds and 

causes resistance of 100-fold the field atrazine dose (Gronwald 1994). However, 

mutations in psbA gene are not the unique mechanism that confer resistance to PS II 

inhibitors. Some non-target-site resistance (NTSR) mechanisms have also been 

identified. For example a simazine resistant biotype of Sonchus oleraceus L. showed 

enhanced glutathione S-transferase (GST) activity (Fraga and Tasende 2003) and 

increased detoxification with cytochrome P450 was the main resistance mechanism to 

different triazine herbicides in a Lolium rigidum L. resistant population (Powles 1993). 

Corn poppy (Papaver rhoeas L.) is the most common dicotyledonous weed in winter 

cereals in southern Europe (Torra et al., 2011). It is a competitive species and, 

https://en.wikipedia.org/wiki/Protein_complex


 

82 
 

depending on its density, its presence within the crop results in significant yield 

reduction (Wilson et al., 1995). In Spain multiple resistant 2,4-D and tribenuron-methyl 

corn poppy populations have been reported in the last decades (Heap 2015). As occur in 

other European regions (Cruz-Hipolito et al., 2013; Kaloumenos et al., 2009), a single 

nucleotide substitution at position Pro197 of the ALS gene is responsible for the 

resistant response (Durán-Prado et al., 2004). With regard to 2,4-D resistance, a new 

study conducted with Spanish 2,4-D resistant corn poppy populations suggested that 

lack of translocation in resistant plants could be the main resistant mechanism against 

2,4-D (Rey-Caballero et al., 2016a). Recently lack of control of corn poppy has been 

described in a few fields in Spain where post-emergence mixtures containing 

bromoxynil were applied (Kaloumenos 2014). Recommendations about the use of 

herbicide rates are based on weed growth stages found at the application moment. 

However, it is highly unlikely to find uniform phenological stages within weed 

populations, especially in species like corn poppy which have an extended germination 

period (Cirujeda et al., 2008). This source of variability leads to a variation in the active 

ingredient quantity that arrives by unit weight or leaf area of the target plants. This can 

produce a “diluting effect” of the herbicide in those firstly emerged weeds (largest 

plants), promoting sub-lethal conditions (Vila-Aiub and Ghersa 2005). Generally, low 

doses of herbicides (sub-lethal doses) have the potential of accelerating resistance 

evolution and leading to more cross-resistance by metabolic resistance (Neve et al., 

2014). Recent studies conducted with different species have demonstrated that 

bromoxynil efficacy depends on the phenological stage (Corbett et al., 2004; Forcella et 

al., 2015). For all this, the objectives of this work were (1) to characterise the resistance 

patterns to ALS inhibiting herbicides and 2,4-D of some Spanish corn poppy 

populations which were not controlled with post-emergence mixtures containing 

bromoxynil (bromoxynil + ioxynil + MCPP-p) with dose-response experiments; and (2) 

to study the effect of bromoxynil on these problematic biotypes at different 

phenological stages in order to confirm or discard a resistance process. 

Material and Methods 

Plant material and dose-response experiments  

Seeds were collected from a few fields where post-emergence mixtures containing 

bromoxynil (bromoxynil + ioxynil + MCPP-p) did not reach a good control of corn 

poppy. R-313, R-413 and R-213 seeds were picked up during summer 2013. Only R-
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313 population was resampled during 2014. Additionally, seeds from two susceptible 

(S) populations were obtained from a seed dealer (Herbiseed, Twyford, UK) and 

collected in the same region where problematic populations came from (Table 4.1).  

Table 4.1. Location and date of collection of corn poppy (Papaver rhoeas) populations used in 

the experiments. 
 

Code 
Sampling location 

Year collected 
Town Latitude Longitude 

S* 
S-013 -- -- -- 2008 

S-113 Belorado (Burgos) 42º24’57.8”N 3º10’49.3”W 2013 

R-313 Tosantos (Burgos) 42°24’43.7”N 3°14’39.9”W 2013 and 2014 

R-413 Belorado (Burgos) 42°24’55.8”N 3°11’55.1”E 2013 

R-213 Baldomar (Lleida) 41°54’39.0”N 1°00’21.2”E 2013 
 

* susceptible populations 

 

All populations were sown in 23 x 15 x 4 cm aluminum trays with 1 cm of peat and 

were watered regularly. Trays were placed in a growth chamber at 20/10 °C day/night, 

16-h photoperiod under 350 µmol photosynthetic photon-flux density m
-2

 s
-1

. After 14 

days, seedlings were transplanted in pots (three seedlings per pot) and filled with the 

following substrate: silty loam soil 40% (w/v), sand 20% (w/v), peat 40% (w/v). 

Bromoxynil was applied at two different phenological stages: at 5-6 cm of rosette (the 

recommended growth stage) and at 10-11 cm of rosette (Figure 4.1).  

 

Figure 4.1. (A) First phenological stage, 5-6 cm of rosette, and (B) second phenological stage, 

10-11 cm of rosette of corn poppy (Papaver rhoeas), used in the bromoxynil dose-response 

assays. 

The PS II inhibitor bromoxynil (Buctril, Bayer, 24%) was applied at 0, 49.5, 99, 198, 

396 (maximum field dose), 792 and 1584 g a.i.·ha
−1

 on the suspicious populations and 

at 0, 24.7, 49.5, 99, 198, 396, 792 and 1584 g a.i.·ha
−1

 on the susceptible populations. 
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Eight replicates at each dose were included and the experiment was conducted twice 

(March 2014 and February 2015). Moreover, tribenuron-methyl and 2,4-D 

characterisation of these populations was also performed at field recommended growth 

stage. Tribenuron-methyl (Granstar 50 SX, DuPont, 50%) was applied at 0, 4.6, 9.3, 

18.7 (field dose), 37.5, 75, 150, 600 and 1200 g a.i.·ha
−1

 in suspicious plants. Rates 

applied for this herbicide in the susceptible populations were 0, 0.25, 0.5, 1.1, 2.3, 4.6, 

9.3, and 18.7 g a.i.·ha
−1

. The 2,4-D (Esteron 60, Dow AgroSciences, 60%) was applied 

at 0, 75, 150, 300, 600 (field dose), 1200 and 4800 g a.i.·ha
−1

 in suspicious populations 

and at 0, 9.3, 18.75, 37.5, 75, 150, 300 and 600 g a.i.·ha
−1

 in susceptible plants. A total 

of four replicates (three plants per pot) were included at each dose. All herbicides were 

applied using a precision bench sprayer delivering 200 l·ha
−1

, at a pressure of 215 kPa. 

Four weeks after all treatments, dry aboveground biomass was measured after drying 

the plant at 65 °C during 48h. 

 Statistical analysis  

For the dose-response experiments, statistical analysis was carried out with a non-linear 

regression model with drc package in R. The herbicide rate causing 50% of growth 

reduction (GR50) of plants was calculated with the use of four parameter logistic curves 

of the type (1): 

𝑦 = c +
(𝑑−𝑐)

1+EXP[𝑏(log(𝑥)−log(𝐺𝑅50)]
                                               (1) 

 

Where c = the lower limit, d = the upper limit and b = the slope at the GR50. In this 

regression equation, the herbicide rate (g a.i.·ha
-1

) was the independent variable (x) and 

the efficacy of the treatment (100 - percentage of weight reduction referred to the 

untreated control) was the dependent variable (y). The resistance index (RI) was 

computed as GR50 (suspicious population)/GR50 (susceptible). Analysis of variance 

(ANOVA) for the bromoxynil dose-response experiments showed no significant 

interaction between experiments conducted in March 2014 and February 2015, so data 

from the two experiments were pooled prior to non-linear regression analysis. Also both 

susceptible populations (S-013 and S-113) were considered as a unique population (S) 

because ANOVA did not established differences in the responses between both 

populations and experiments.   
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Results and Discussion 

Multiple resistance to 2,4-D and tribenuron-methyl was confirmed for populations R-

313, R-413 and R-213. On the bases of the resistance index (RI), these populations were 

612, 373 and 252 fold more resistant to tribenuron-methyl than susceptible plants. In a 

previous work, molecular studies conducted with R-313 and R-213 plants, identified 

different mutant ALS alleles: Ala197, Arg197, His197, Leu197, Ser197 and Thr197 

(Rey-Caballero et al., 2016b). When all these populations were sprayed with 2,4-D, R-

313 and R-213 plants showed a RI of 19 and 12 respectively, while R-413 plants 

obtained a much more reduced RI, just 4 times more resistant to 2,4-D than the 

susceptible plants (Table 4.2). Experiments conducted with [
14

C]-2,4-D had revelled 

abnormal translocation rates in some resistant corn poppy populations (R-213 plants 

included) (Rey-Caballero et al., 2016a). Additionally, in a recent review, lack of 2,4-D 

translocation in those resistant plants has been attributed to the 2,4-D metabolism 

process (Peterson et al., 2015).  

 

Table 4.2. GR50 and Resistant Index (RI) obtained from the log-logistic model for B-R313, B-

R413, F-R213 and susceptible (S) corn poppy (Papaver rhoeas) populations (two pooled 

populations) when they were sprayed with tribenuron-methyl and 2,4-D at 5-6 cm of rosette. 

Population GR50 ± SE (g a.i.·ha
-1

) Res SS RI 

Tribenuron-methyl 

S 0.10 ± 0.02 9140 -- 

R-313 61.27 ± 12.00 22189 612.7 

R-413 37.33 ± 6.28 27571 373.3 

R-213 25.22 ± 6.38 10084 252.2 

2,4-D 

S 64.16 ± 22.40 10990 -- 

R-313 1238.40 ± 436.20 18435 19.3 

R-413 253.20 ± 49.80 9744 3.9 

R-213 816.60 ± 96.00 2872 12.7 

 

No resistance was detected for bromoxynil when this herbicide was applied at 5-6 cm of 

rosette which corresponds to the field recommended growth stage. GR50 for bromoxynil 

in susceptible plants was 41.67 (± 5.54) g a.i. ha
-1

 and minor differences were detected 

in the equation parameters with suspicious populations. RI’s for those populations were 

1.7, 1.2 and 1.7 for R-313, R-413 and R-213, respectively (Table 4.3). No susceptible 

plant survived neither full (396 g a.i. ha
-1

) nor half (198 g a.i. ha
-1

) of the maximum 

bromoxynil field dose and efficacies at these dosages ranged from 100 to 97 and from 

100 to 93 in the suspicious populations, respectively. Bromoxynil efficacies of 
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susceptible and R-313 and R-213 plants were significantly different at 99 g a.i. ha
-1

. At 

this dose, 92 (± 2) % of the susceptible plants were controlled, however efficacy in R-

313 and R-213 was 72 (± 5) and 67 (± 4) %, respectively (Figure 4.2).  

Applications at the second phenological stage showed a slight shift in the dose-response 

curves. Thus, GR50 in the susceptible populations was 54.92 (± 6.73) g a.i. ha
-1

, while 

this parameter was 2.2 (120.47 ± 18.61 g a.i. ha
-1

) times higher in population R-313 

(Table 4.3). GR50 for R-413 and R-213 populations increased slightly but these values 

were similar to the GR50 observed in susceptible plants (83.95 ± 8.3 and 89.16 ± 8.3, 

respectively), therefore RI’s for these populations were 1.5 and 1.6, also similar to those 

obtained in the first phenology (Table 4.3). This herbicide reached efficacies of 91 (± 

3), 94 (± 3) and 95 (± 3) % at 198 g a.i. ha
-1

 in susceptible, R-413 and R-213 plants 

respectively, but efficacy in R-313 population at this dose was significantly lower (67% 

± 6) (Figure 4.2).  

Table 4.3. Equation parameters obtained from the log-logistic model for B-R313, B-R413, F-

R213 and susceptible (S) corn poppy (Papaver rhoeas) populations (two pooled populations) 

when they were sprayed with bromoxynil at two different phenological stages (5-6 cm and 10-

11 cm of rosette). 

Population GR50 ± SE (g a.i.·ha
-1

)
a
 b ± SE

b
 c ± SE

c
 d ± SE

d
 Res SS

e
 RI

f
 

First phenological stage (5-6 cm of rosette) 

S 41.67 ± 5.54 2.11 ± 0.15 3.74 ± 1.80 102.01 ± 1.23 43854 -- 

R-313 70.38 ± 2.77 3.25 ± 0.33 3.13 ± 0.10  99.31 ± 1.49 28484 1.7 

R-413 52.99 ± 2.38 3.33 ± 0.57 3.70 ± 0.10 100.01 ± 1.78 18790 1.2 

R-213 72.41 ± 4.24 2.44 ± 0.29 3.24 ± 0.01 99.98 ± 1.95 4388 1.7 

Second phenological stage (10-11 cm of rosette) 

S 54.92 ± 6.73 1.08 ± 0.10 2.43 ± 2.12  107.01 ± 3.17 33979 -- 

R-313 120.47 ± 18.61 1.38 ± 0.26 5.27 ± 0.11 106.15 ± 6.42 35631 2.2 

R-413 83.95 ± 8.36 2.66 ± 0.39 4.52 ± 0.09 101.14 ± 2.50 13513 1.5 

R-213 89.16 ± 8.32 3.45 ± 1.04 6.25 ± 0.64 98.13 ± 4.23 3129 1.6 
 

a 
GR50, herbicide concentration for 50% reduction of corn poppy dray weight.

 

b 
Slope at the GR50. 

c 
Lower limit. 

d 
Upper limit. 

e 
Res SS, residual sum of square. 

f 
RI (resistance index) = GR50 (Population) / GR50 (S). 
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Figure 4.2. Dose-response regression curves of R-313, R-413, R-213 and susceptible (S) corn 

poppy (Papaver rhoeas) populations (two pooled populations) treated with bromoxynil at two 

different phenological stages: 5-6 cm (A) and 10-11 cm (B) of rosette. Efficacy was expressed 

as percentage of the mean dry weight of untreated control plants. Red asterisks indicate doses 

(those similar to field rates, from 120 to 210 g a.i. ha
-1

) where significant differences in efficacy 

(P<0.05) were detected between suspicious (R-313, R-413, R-213) and S plants 

 

At the moment, few resistance cases to nitriles have been described (Heap 2014) and in 

even fewer cases bromoxynil resistance has been studied. A Senecio vulgaris L. biotype 

collected from peppermint fields in Oregon, was reported to be 10 times more resistant 

to bromoxynil than its susceptible homologous plants (Mallory-Smith 1998; Park and 

Mallory-Smith 2006). GR50 of those susceptible and resistant biotypes were 2.5 and 26 

g a.i. ha
-1

 (Mallory-Smith 1998) and 9 and 91 g a.i. ha
-1

 (Park and Mallory-Smith 2006), 

respectively. It has to be noted that GR50 values described for susceptible S. vulgaris 

biotypes were much lower than GR50 values obtained by susceptible corn poppy plants 

in this study (41.6 g a.i. ha
-1

). Moreover, GR50 obtained by R-313 plants in the first 

phenological stage (70.43 g a.i. ha
-1

) was comprehended between GR50 values obtained 

in those bromoxynil resistant S. vulgaris biotypes (Mallory-Smith 1998, Park and 

Mallory-Smith 2006). Those bromoxynil resistant S. vulgaris biotypes showed a 
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substitution at codon Asn266 (Thr) of the psbA gene. Plants carrying Thr266 psbA allele 

displayed low-level of resistance to triazinones metribuzin and hexazinone (RI’s of 4.2 

and 2.6 respectively) and no resistance to triazine herbicides atrazine and simazine or to 

the urea herbicide diuron (Park and Mallory-Smith 2006).  

In those fields where bromoxynil did not achieve a good corn poppy control, this 

product was sprayed in mixture with ioxynil and MCPP-p (Image, Nufarm, 12%, 12%, 

36%). Recommended field dose of this mixture goes from 1 to 1.75 l/ha, so that 

commercial bromoxynil rate ranges between 120 to 210 g a.i. ha
-1

. As it has been 

described above R-313 plants are not controlled with bromoxynil when they are spayed 

at the larger phenology and at 198 g a.i. ha
-1

 of this herbicide. Because corn poppy has 

an extended period of germination (Holm et al., 1997) different phenological stages can 

be found at herbicide application time, especially in those post-emergence herbicides. 

Thus, lack of control with mixtures containing bromoxynil could be explained because 

large corn poppy plants are present at herbicide application timing in those highly-

infested fields. As it has been demonstrated in this and in other experiments (Cirujeda 

2001; Forcella et al., 2015), bromoxynil efficacy decreases as phenological growth stage 

advances. Larger plants receive less effective dosage compared to smaller plants; these 

sub-lethal rates can be the conditions to select non-target site resistances mechanisms 

(Cirujeda et al. 2008, Vila-Aiub and Ghersa 2005), like for bromoxynil. On the other 

hand, and contrary to other cases, target site resistance to bromoxynil (substitutions in 

position 266 of the psbA gene) has displayed moderate RI (Park and Mallory-Smith 

2006). Low rates of this type of mutations could also explain why some plants were 

able to survive this herbicide in this study.   

Further researches should focus on obtaining a second generation from those surviving 

plants and test again through dose-response experiments, if exist differences in the RI’s 

of those resistant and susceptible populations. In addition, it could be interesting to 

study the most commonly mutated positions of the psbA gene. In this research, the 

population which could be bromoxynil resistant was also 2,4-D resistant, and therefore, 

it should be investigated if there is a relationship between those non-target site 

resistance mechanisms that confer resistance to synthetic auxines and the response of 

those few corn poppy plants able to survive nitriles. 

Finally, it is important to underline that post-emergence applications of mixtures 

containing bromoxynil should be done in early-post-emergence at full rates, and that 

further field escapes should be monitored.  
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Abstract 

Papaver rhoeas (L.) is the most widespread broadleaved weed infesting winter cereals 

in Southern Europe. Resistant (R) biotypes to both 2,4-D and tribenuron-methyl have 

evolved in recent decades, thus complicating its control. In this study, the effects of 

different strategies on P. rhoeas management, including crop rotations, delayed sowing, 

and different herbicide programmes were tested in field experiments at two locations 

over three seasons. R profiles for 2,4-D and tribenuron-methyl were characterized with 

dose-response experiments and both biotypes were confirmed to be R to both 

herbicides. After three years, all integrated management strategies reduced the initial 

density of P. rhoeas. The most successful systems were those which either included a 

suitable crop rotation (sunflower or field peas), or had a variation in the herbicide 

application timing (early post-emergence or combining pre-emergence and post-

emergence). The efficacy of the tested management systems differed between both 

locations, possibly due to a different cross R pattern to ALS inhibitors between 

biotypes. Integrated management of multiple herbicide R P. rhoeas is necessary in order 

to reduce selection pressure by herbicides, mitigate the evolution of new resistant 

biotypes and reduce the weed density in highly infested fields. Moreover, a deeper 

understanding of biotypes is necessary to improve the design of chemical strategies. 

Keywords: corn poppy, integrated weed management strategy, 2,4-D, tribenuron-

methyl, crop rotation, herbicide management. 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

99 
 

Introduction 

Weeds are the major cause of yield losses because they compete with the crop for 

nutrients, water and light (Oerke 2005). Herbicides are the principal tool used for weed 

control in modern agriculture and they are highly effective on most weeds, but are not a 

complete solution to the complex challenge that weeds represent (Harker et al., 2013). 

The overuse of herbicides has imposed a strong selection for any trait that enables plant 

populations to survive and reproduce under recurrent herbicide pressure. This has 

contributed to the evolution of weed resistance to herbicides worldwide. Herbicide 

resistance (HR) in weeds must be avoided because it is a major limiting factor to food 

security in global agriculture (Busi et al., 2013). Also, HR causes higher short-term 

costs on weed management, as well as crop yield loss, weed-seed contamination, 

reduced land values, increase of mechanical and cultural management costs, and 

additional expense of eventual alternative herbicides or cropping systems (or both) for 

managing these populations (Norsworthy et al., 2006). The best way to prevent the 

evolution of HR weeds is to implement diversified cropping systems with less frequent 

herbicide use by employing non-chemical weed management practices (Beckie 2006). 

Papaver rhoeas L. is a major weed of arable crops in southern Europe (Délye et al., 

2011). Its competitive nature, which can decrease cereal yields up to 32%, makes it 

especially noxious in winter cereals (Torra et al., 2011). The ability of this species to 

invade, grow, and remain in arable fields can be attributed to several factors: the 

development of a persistent seed bank, an extended germination period and high seed 

production (Torra and Recasens 2008). Papaver rhoeas is becoming an increasing 

problem due to the appearance of HR biotypes to synthetic auxins and/or to acetolactate 

synthase (ALS) inhibitors. Poor control of P. rhoeas in Spain with the synthetic auxin 

2,4-D was first reported in 1992 (Taberner et al., 1992), and a biotype resistant to both 

2,4-D and tribenuron-methyl (ALS inhibitor) was first reported in 1998 (Claude et al., 

1998). A survey conducted in North-Eastern Spain between 1990 and 2001 was 

intended to identify fields containing HR P. rhoeas populations. The majority of the 

samples were collected in fields where local farmers reported poor weed control 

following tribenuron-methyl applications. Results indicated that 85% and 72% of 

sampled P. rhoeas populations were resistant to 2,4-D and tribenuron-methyl, 

respectively (Cirujeda 2001). Resistance to ALS inhibitors in P. rhoeas has also 

evolved in numerous other countries across Europe (from Sweden to Italy and from the 
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UK to Poland) (Heap 2015). In all studied cases, resistance was attributed exclusively to 

mutant ALS alleles (Délye et al., 2011; Kaloumenos et al., 2009; Marshall et al., 2010). 

In Spain, the resistance to tribenuron-methyl is reported to be due to a single point 

substitution in domain A of the ALS gene (Duran-Prado et al., 2004). Multiple 

resistance of P. rhoeas to 2,4-D and tribenuron-methyl has also been reported in Italy 

(Heap 2015), but the resistance mechanism to synthetic auxins in this weed still remains 

unknown. 

Because herbicides alone are not always enough to control HR P. rhoeas populations, 

and in order to prevent the appearance of new resistant biotypes to other modes of 

action (MOA’s), the development of new management tools is required. Chemical 

control strategies should be combined with non-chemical ones in an integrated weed 

management (IWM) programme. This programme should be specifically designed and 

tested for each region (Powles and Bowran 2000), taking into account climatic and 

socioeconomic factors. For example, in Spanish dry land areas where cereal yields are 

low and possibilities of crop rotations are limited (Cantero-Martínez et al., 2007). 

Various chemical and non-chemical tools have been analyzed to control many HR 

weeds species. Crop rotations provide farmers with opportunities to employ variable 

crop life cycles, sowing dates, harvest dates, tillage and weed management practices to 

restrict the evolution of weeds adapted to monocultures (Liebman and Staver 2001). 

Crop rotations have been proposed to manage several HR weeds like Alopecurus 

myosuroides L. (Moss et al., 2007), Lolium rigidum Gaud. (Busi and Powles 2013) or 

Avena fatua L. (Harker et al., 2009). In addition, for HR management, crop rotation 

allows for the introduction of herbicides having different MOA’s (Vencill et al., 2012). 

Mechanical control of P. rhoeas by ploughing was considered to be an effective method 

for placing a proportion of the seeds in non-optimal germination situations, but this 

method should not be repeated for a few years because new seeds would move upwards 

in the soil strata due to their high survival capacity (Cirujeda et al., 2003). Harrowing is 

a good technique for P. rhoeas management, but is highly dependent on the initial P. 

rhoeas densities (Cirujeda et al., 2003; Torra et al., 2011). Delayed sowing (three 

months) and different types of fallow (physical and chemical) conducted in Spain 

showed their effectiveness in reducing P. rhoeas densities, but only combined with 

other control methods, like chemical control or cultivation (Torra et al., 2011). The 

results observed in Spanish winter cereals indicate that 2,4-D and/or tribenuron-methyl 

resistant P. rhoeas populations can be controlled by application of pre-emergence 
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(PRE) or post-emergence (POST) herbicides with alternative MOA’s (Torra et al., 

2010). Up to now, the effects of several available cultural methods on the management 

of HR P. rhoeas have not been studied, including crop rotation or variation of herbicide 

application timings between years in a chemical programme. This knowledge is 

necessary in order to implement and design effective integrated weed management 

programmes, particularly in context of the present scenario where no new MOA has 

been discovered in recent decades and some of the herbicides which currently provide 

good results controlling P. rhoeas will probably not be available in the future. The aims 

of this study are: first, to characterize the herbicide resistance patterns of the P. rhoeas 

populations that are object of this study; and secondly, to analyze the integrated effect 

of some management strategies (different crop rotations, delayed sowing, different 

herbicide programmes) over three years on their capacity to control P. rhoeas 

populations in winter cereals whilst providing new data on the effect of individual 

methods, which are later combined in IWM programmes. 

Materials and Methods 

Sites description 

Experiments were conducted on two commercial winter cereal fields in the Lleida 

province, North-Eastern Spain, with high P. rhoeas infestations. At Baldomar (Location 

1, L-1) (41° 54'N, 1° 0'W), at 334 m height, the soil was silty–clay loam (48.2% sand, 

15% clay, and 36.8% silt), pH was 8.2, and organic matter content was 2.5%. At Sant 

Antolí (Location 2, L-2) (41° 37'N, 1° 19'W), at 581 m height, the soil was silty–clay 

loam (25.2% sand, 23.4% clay, and 51.4% silt), pH was 8.1, and organic matter content 

was 2.8%. In the years preceding the trials, the fields had been under a monocrop of 

continuous winter cereals, managed with minimum tillage. Selective POST herbicides 

(florasulam + 2,4-D in L-1 and iodosulfuron-methyl + mesosulfuron-methyl alternating 

with florasulam + 2,4-D in L-2) were employed for weed control during recent years at 

both sites. 

Resistance profile of the Papaver rhoeas populations 

Seeds from the two field experiments were collected and stored during summer 2012. In 

autumn, dose response experiments were conducted with L-1 and L-2 populations 

together with one susceptible (SC) population purchased from a seed dealer (Herbiseed, 

Twyford, UK). Seeds were sterilized in a 30% hypochlorite solution and sown in Petri 
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dishes with 1.4% agar supplemented with 0.2% KNO3 and 0.02% gibberellin. Petri 

dishes were placed in a growth chamber at 20/10°C day/night, and a 16-h photoperiod 

under 350 µmol photosynthetic photon-flux density m
-2

s
-1

. After 14 days, seedlings 

were transplanted to 8 x 8 x 8cm plastic pots filled with a mixture of silty loam soil 40% 

(w/v), sand 30% (w/v), and peat 30% (w/v). Five seedlings were transplanted per pot, 

which were later thinned to three per pot. In the suspected resistance populations, at the 

5- to 6-leaf stage (5-6 cm) the ALS inhibitors tribenuron-methyl (tribenuron-methyl 500 

g a.i. Kg
-1

, SG)  and florasulam (florasulam 22.8 g  a.i. l
-1

, WG) were applied at 1200, 

600, 150, 75, 37.5, 18.7, 9.3, 4.6 and 0 g a.i. ha
-1

, and 480, 240, 60, 15, 7.5, 3.7, 1.8, 0.9 

and 0 g a.i. ha
-1

, respectively. 2,4-D (2,4-D ethyl-hexyl 600 g a.i. L
-1

, EC) was applied 

at 4800, 1200, 600, 300, 150, 75 and 0 g a.i. ha
-1

. Susceptible plants were sprayed at the 

same phenological stage at 18.7, 9.3, 4.6, 2.3, 1.1, 0.5, 0.25 and 0 g a.i. ha
-1

 of 

tribenuron-methyl; 7.5, 3.7, 1.8, 0.9, 0.4, 0.2, 0.1 and 0 g a.i. ha
-1

 of florasulam and 600, 

300, 150, 125, 75, 37.5, 18.7, 9.3 and 0 g a.i. ha
-1

 of 2,4-D. A total of four replicates 

were included at each dose. Herbicides were applied using a precision bench sprayer 

delivering 200 L ha
-1

, at a pressure of 215 kPa. Pots were placed in a greenhouse in 

Lleida, Spain (41°37’43.1”N - 0°35’52.6”E) and were watered regularly to field 

capacity. Four weeks after treatment, (WAT) above ground biomass of the plants from 

each dose were harvested. Samples were dried at 65°C for 48h, and the dry weights 

were measured. 

Field experimental design 

The experiments were carried out during three consecutive cropping seasons (2011–12, 

2012–13 and 2013–14) to evaluate the effect of eight different weed management 

strategies on two HR P. rhoeas populations.  

The eight management systems were: 1-Traditional (TRA), wheat monocrop with POST 

chemical control; 2-Herbicide Rotation (HROT), wheat monocrop with POST chemical 

control (active ingredient rotation); 3-Early Post (EAPOST), wheat monocrop with 

chemical control (active ingredient rotation and application timing rotation); 4-PRE plus 

POST (PRE+POST), wheat monocrop with chemical control (active ingredient rotation 

and application timing rotation); 5-Oilseed rape rotation (OSR), wheat–Oilseed rape–

wheat with chemical control; 6-Field pea rotation (FPR), wheat–field pea–wheat with 

chemical control; 7-Sunflower rotation (SFLR), wheat–sunflower–wheat with chemical 

control; 8-Seed delay (DLY), wheat monocrop with seed delay in the first and third 
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seasons (almost one month) and chemical control (active ingredient rotation). The 

experimental design was a complete randomized block with three replicates and eight 

plots (10 × 10 m). A 4 m corridor was left between plots. Sowing doses for wheat cv. 

‘Berdún’ was 200 kg ha
-1

, 260 kg ha
-1

 for oilseed reap cv. ‘Arsenal’, 180 kg ha
-1 

for 

field peas cv. ‘Enduro’, and 9 kg ha
-1

 for sunflower cv. ‘Limasun’. Sowing dates for 

each management system are specified in Table 5.1. The applications were performed 

with a backpack plot sprayer using a 2-m-wide boom calibrated to deliver 300 l ha
-1

 of 

water at 253 kPa pressure. All details about the herbicide applications are summarized 

in Table 5.2. Agronomic practices were the constant in the areas of study.  

 

Table 5.1. Sowing dates for each management system in 2011-12, 2012-13 and 2013-14 

seasons at Baldomar (L-1) and Sant Antolí (L-2). 

 

 

 

 

 

 

 

 

 

Papaver rhoeas density was counted monthly, from sowing to harvest, by randomly 

throwing ten frames of 0.10 m
2
 into each plot. Initial densities were estimated between 

December and February in each season. These estimations were proxies of the 

management effects of the preceding season in the P. rhoeas seed bank. These values 

were considered more appropriate and less time consuming for estimating the P. rhoeas 

seed bank than other methodologies, which are of limited predictive efficacy due to 

extended seed longevity (i.e. germination in greenhouse) and/or tiny seed size (i.e. 

cleaning of samples). The experiment ended in June 2014 (2013-14 season), but P. 

rhoeas densities were also counted at the beginning of the 2014-15 season in January 

Management strategy 
2011-12 2012-13 2013-14 

 (L-1)  (L-2)  (L-1)  (L-2)  (L-1)  (L-2) 

1-TRAD 
Wheat Wheat Wheat 

26/10 30/10 25/10 30/10 22/10 04/11 

2-HROT 
Wheat Wheat Wheat 

26/10 30/10 25/10 30/10 22/10 04/11 

3-EAPOST 
Wheat Wheat Wheat 

26/10 30/10 25/10 30/10 22/10 04/11 

4-PRE+POST 
Wheat Wheat Wheat 

26/10 30/10 25/10 30/10 22/10 04/11 

5-OSR 
Wheat Oilseed rape Wheat 

26/10 30/10 01/10 01/10 22/10 04/11 

6- FPR 
Wheat Field peas Wheat 

26/10 30/10 15/11 15/11 22/10 04/11 

7- SFLR 
Wheat Sunflower Wheat 

26/10 30/10 29/04 29/04 22/10 04/11 

8- DLY 
Wheat Wheat Wheat 

30/11 28/11 25/10 30/10 26/11 26/12 
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2015. This sampling was considered as a proxy of the overall cumulative effect of the 

three years of management strategy application on the P. rhoeas seed bank. 

Table 5.2. Herbicide application date, herbicide hanagement, active ingredient and rate (g a.i. 

ha
-1

) used for different management systems in 2011-12, 2012-13 and 2013-14 seasons at 

Baldomar (L-1) and Sant Antolí (L-2). 

 

a
 Post: Post-emergence application.

 

b
 Early-Post: Early Post-emergence application.

 

c
 Pre: Pre-emergence application. 

d 
g a.i. ha

-1
. 

e
 Hormonal mixture. Hormonal mixture containing a new synthetic auxin was employed in the early post-

emergence applications. 

 

 

MANAGEMENT 
STRATEGY 

2011-12 2012-13 2013-14 

 (L-1)  (L-2)  (L-1)  (L-2)  (L-1)  (L-2) 

1-Traditional (TRAD) 

05/01 09/01 05/02 20/02 18/02 19/02 
a Post Application Post Application Post Application 

Bromoxynil + Ioxynil + 

MCPP 

Bromoxynil + Ioxynil + 

MCPP 

Bromoxynil + Ioxynil + 

MCPP 

210 + 210 + 630d 210 + 210 + 630 210 + 210 + 630 

2-Herbicide Rotation (HROT) 

05/01 09/01 05/02 20/02 18/02 19/02 
Post Application Post Application Post Application 

Aminopyralid + Florasulam 
Bromoxynil + Ioxynil + 

MCPP 
Aminopyralid + Florasulam 

10 + 4.5 210 + 210 + 630 10 + 4.5 

3-Early Post (EAPOST) 

05/12 20/12 05/02 20/02 21/01 01/02 
b Early Post Application Post Application Early Post Application 

e Hormonal mixture 
Bromoxynil + Ioxynil + 

MCPP 
e Hormonal mixture 

-- 210 + 210 + 630 -- 

4-Pre  + Post  (PRE+POST) 

02/11 01/11 05/02 20/02 18/12 18/12 
c Pre Aplication 

Post Application 
Pre Application 

Isoxaben Isoxaben 

125 Bromoxynil + Ioxynil + 
MCPP 

125 
05/12 20/12 18/02 19/02 

Post Application 

210 + 210 + 630 

Post Application 

Aminopyralid + Florasulam Aminopyralid + Florasulam 
10 + 4.5 10 + 4.5 

5- Oilseed rape rotation (OSR) 

05/12 20/12 05/11 25/10 18/02 19/02 

Post Application 
Pre Application 

Post Application 
Propyzamide 

Aminopyralid + Florasulam 
700 

Aminopyralid + Florasulam 
01/02 01/02 

10 + 4.5 

Post Application 

10 + 4.5 Aminopyralid + Clopyralid 

6.25 + 127 

6- Field peas rotation (FPR) 

05/12 20/12 15/11 15/11 18/02 19/02 

Post Application Pre Application Post Application 

Aminopyralid + Florasulam Pendimenthalin Aminopyralid + Florasulam 
10 + 4.5 1,365 10 + 4.5 

7- Sunflower rotation (SFLR) 

05/12 20/12 29/04 29/04 18/02 19/02 

Post Application Pre Application Post Application 

Aminopyralid + Florasulam Benfluralin Aminopyralid + Florasulam 
10 + 4.5 990 10 + 4.5 

8- Seed dealy (DLY) 

05/01 09/01 05/02 20/02 18/02 19/02 

Post Application Post Application Post Application 

Aminopyralid + Florasulam 
Bromoxynil + Ioxynil + 

MCPP 
Aminopyralid + Florasulam 

10 + 4.5 210 + 210 + 630 10 + 4.5 
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Statistical analysis 

Data from dose-response experiments were analyzed using a non-linear regression 

model. The GR50 of plants was calculated using a four parameter logistic curve of type 

1: 

                                                     𝑦 = c +
(𝑑−𝑐)

1+EXP[𝑏(log(𝑥)−log(𝐺𝑅50)]
                                         (1) 

where c is the lower limit, d is the upper limit, GR50 is the herbicide rate required for 

50% growth reduction and b, the slope at GR50. In this equation, the herbicide rate (g 

a.i. ha
-1

) was the independent variable (x) and the dry weight (percentage of the 

untreated control for each population) was the dependent variable (y). 

For the field experiment, the effect of treatments on both initial and final P. rhoeas 

densities in each season was tested with Linear Mixed-effects Models (LMM). 

Densities for each location were analyzed separately because different P. rhoeas 

biotypes were considered at each site. The treatments were established as fixed factors, 

whereas replicates blocks were used as random factors. Papaver rhoeas density data 

were transformed as needed (log (x+1) or √ (x+0.5)) prior to the analysis because 

exploratory analysis revealed some non-normal data distributions and heterogeneity of 

variances (Zuur et al., 2010). Only in two cases (2011/12 and 2012/13 final densities of 

L-2) where these assumptions were not met, a non-parametrical tests (Kruskal-Wallis) 

was employed. Finally, a post-hoc Tukey´s pairwise comparison was used to test 

differences between treatment means (at P<0.05). Data was back-transformed to the 

original scale for presentation. Data from management involving PRE treatments or a 

seed delay were not included in initial P. rhoeas density analysis because these 

interventions disturbed the natural germination pattern of P. rhoeas seedlings. 

The reduction in initial P. rhoeas densities (seedlings m
-2

) between 2011 and 2015 (DR) 

was calculated as (2): 

DR = 100 − [
(Initial Density in 2015∗100)

Initial Density in 2011
]                                (2)                                    

Analysis of variance (ANOVA) was conducted with DR values. Data were transformed 

as needed with (arcs[√(x+0.5)]) when normal assumptions were not met. DR means of 

the different managements were separated using Tukey´s pairwise comparison at a 0.05 

probability level. Data were back-transformed for presentation. 
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All statistical analyses were carried out with the use of the R programming language (R 

Development Core Team 2013). drc package (Knezevic et al., 2007) for the non-linear 

regression  and LME4 (Bates et al., 2014) together with nlme (Pinheiro et al., 2014) 

packages for the LMM were employed. 

Results and Discussion

 Resistance profile of the Papaver rhoeas populations, greenhouse experiment 

The presence of multiple HR resistant biotypes was confirmed at both localities. No 

mortality of populations from L-1 and L-2 at the herbicides' commercial label rates was 

found (data not shown). In contrast not a single SC plant survived at field rates of 

tribenuron-methyl (18.7 g a.i. ha
-1

), florasulam (7.5 g a.i. ha
-1

) or 2,4-D (600 g a.e. ha
-1

). 

In contrast, there was. The GR50 for tribenuron-methyl were 320 and 392 times higher 

in plants from L-1 and L-2 than in the SC population (Table 5.3).  

 

Table 5.3. Estimated GR50, slope at GR50 and resistance factor (RF) values for Baldomar (L-1), 

Sant Antolí (L-2) and susceptible (SC) corn poppy (Papaver rhoeas) populations when sprayed 

with tribenuron-methyl, florasulam and 2,4-D. 

Population GR50 ± SE (g a.i. ha
-1

)
a
 Slope ± SE

b
 Res SS

c
 RF

d 

tribenuron-methyl 

L-1 25.22 ± 6.38 0.58 ± 0.09 10084 286 
L-2 30.92 ± 8.06 0.61 ± 0.09 10609 351 
SC 0.08 ± 0.02 0.43 ± 0.08 4894 1 

florasulam 
L-1 3.90 ± 0.38 2.01 ± 0.36 3899 24 
L-2 2.92 ± 0.30 0.87 ± 0.08 1529 18 
SC 0.16 ± 0.03 0.69 ± 0.12 21738 1 

2,4-D 
L-1 816.60 ± 96.00 1.27 ± 0.16 2872 12 
L-2 925.80 ± 156.01 1.02 ± 0.28 5038 13 
SC 68.60 ± 10.20 1.15 ± 0.16 23693 1 

 

a
GR50, ALS inhibitor concentration for 50% reduction of P. rhoeas dray weight biomass.

 

b
The slope at GR50.

 

c
Res SS, residual sum of square.

 

d
RF (resistance factor) = GR 50(Population L-1 or L-2) / GR50(SC). 

Resistance factors obtained for tribenuron-methyl in this study were similar to those 

observed in resistant P. rhoeas biotypes in Greece (Kaloumenos et al., 2011). In that 

study multiple substitutions in Pro197 were also determined. Resistance to tribenuron-

methyl established in L-1 and L-2 biotypes could also be the result of different 
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substitutions of this amino acid. In addition, cross resistance between sulfonylureas and 

triazolopyrimidines was observed in plants at both locations, and L-1 and L-2 biotypes 

were 24 and 18 times more resistant to florasulam than SC plants (Table 5.3). Similar 

experiments conducted with tribenuron-methyl-resistant P. rhoeas confirmed cross 

resistance between these two different ALS-inhibiting herbicide classes (RF for 

florasulam went from 5 to 25) (Kaloumenos et al., 2011). Resistance to 2,4-D was also 

confirmed and plants from L-1 and L-2 were 12 and 13 times more resistant to this 

herbicide than the SC plants (Table 5.3). Results obtained for a multiple HR resistant 

Greek biotype established a GR50 for 2,4-D of 1127 g a.i. ha
-1

 (Kati et al., 2014). In our 

experiment, these values were 816 and 925 g a.i. ha
-1

 for L-1 and L-2, respectively. 

Papaver rhoeas density evolution 

At the beginning of the first season (2011-12), the densities within each location were 

homogenous, and no statistical differences were detected between plots. Initial P. 

rhoeas density at L-1 reached on average 326 seedlings m
-2

, being lower than at L-2, 

where 740 seedlings m
-2

 were counted on average (Figure 5.1 and Table 5.4). In this 

first season, three herbicide management strategies were used (PRE, Early POST and 

POST application) and only one cultural management (DLY) was performed. All these 

treatments significantly reduced the P. rhoeas density at the end of this season, but the 

strategy that achieved best results in both locations was PRE+POST, with 3 and less 

than 1 plants m
-2

 at L-1 and L-2, respectively (Table 5.4).  

Overall, initial density in the second season (2012-13) was lower than those initial 

densities observed in the preceding season (Figure 5.1). At L-2 the system PRE+POST 

obtained statistically less initial density (36 seedlings m
-2

) than the other management 

systems (from 83 to 119 seedlings m
-2

) (Table 5.4). Similarly, at L-1 the strategy 

PRE+POST also obtained the lower initial density (49 seedlings m
-2

), but it was not 

different from densities obtained by other strategies such as DLY, EAPOST and HROT 

(54, 66 and 77 seedlings m
-2

, respectively) (Table 5.4). In the second season, one 

herbicide management strategy was used in cereals (POST), reducing the P. rhoeas 

density at the end of the season to on average of 11 plants m
-2

 at L-1 and less than 1 

plants m
-2

 at L-2. 
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Figure 5.1. Corn poppy (Papaver rhoeas) density (plants m
-2

) during four seasons for each 

management strategy at Baldomar, L-1 (a) and Sant Antolí, L-2 (b). TRAD, wheat monocrop 

with chemical control; HROT, wheat monocrop with active ingredient rotation; EAPOST, wheat 

monocrop with active ingredient rotation and application timing rotation; PRE+POST, wheat 

monocrop with active ingredient rotation and application timing rotation; OSR, wheat–Oilseed 

reap–wheat rotation; FPR, wheat–field pea–wheat rotation; SFLR, wheat–sunflower–wheat 

rotation; DLY, wheat monocrop with seed delay in the first and third seasons. 
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Table 5.4. Mean corn poppy (Papaver rhoeas) densities (plants m
-2

) in different management systems in 2011-12, 2012-13, 2013-14 and 2015 for data 

collected at Baldomar (L-1) and Sant Antolí (L-2). Data are back-transformed means used for the LMM. TRAD, wheat monocrop with chemical control; 

HROT, wheat monocrop with active ingredient rotation; EAPOST, wheat monocrop with active ingredient rotation and application timing rotation; 

PRE+POST, wheat monocrop with active ingredient rotation and application timing rotation; OSR, wheat–Oilseed reap–wheat rotation; FPR, wheat–field 

pea–wheat rotation; SFLR, wheat–sunflower–wheat rotation; DLY, wheat monocrop with seed delay in the first and third seasons. 

 

a
Sampling dates included in the statistical analysis. Initial density: Season 2011-12: 20/12/2011 Season 2012-13: 09/01/2013; Season 2013-14: 21/01/2014 in Baldomar and 

10/02/2014 in Sant Antoli and in 2015: 15/01/2015. Final density: Season 2011-12: 03/05/2012; Season 2012-13: 08/05/2013; Season 2013-14:  27/05/2014.
 

b
Means within a column followed by the same letter indicate that no significant difference (P < 0.05) was detected by means of the Tukey (HSD) test at the 5% level of 

probability
 

c
Initial density data from those managements with any intervention that avoid the natural germination pattern of P. rhoeas seedlings (seed delay and PRE treatments) were not 

included in the analysis.
 

d
Due to the abundance of zeros non parametric test were conducted with 2011-12 and 2012-13 final density data in L-2.  

 
a2011-12 2012-13 2013-14 2015 

L-1 L-2 L-1 L-2 L-1 L-2 L-1 L-2 

 
Initial 

Density 

Final 

Density 

Initial 

Density 

dFinal 

Density 

Initial 

Density 

Final 

Density 

Initial 

Density 

dFinal 

Density 

Initial 

Density 

Final 

Density 

Initial 

Density 

Final 

Density 

Initial  

Density 

Initial 

Density 

1-TRAD 320.27 (bA) 26.87 (CB) 616.62 (A) 1.53 (BA) 144.44 (A) 17.70 (A) 83.65 (A) 0.30 (A) 366.80 (A) 29.31 (A) 200.81 (A) 11.48 (BA) 276.41 (AB) 57.24 (AB) 

2-HROT 274.79 (A) 28.97 (A) 666.35 (A) 1.22 (BA) 77.42 (BC) 10.20 (CBA) 99.12 (A) 0.91 (A) 206.63 (B) 11.76 (B) 229.48 (AB) 11.12 (BA) 182.93 (B) 56.22 (AB) 

3-EAPOST 284.71 (A) 19.79 (CB) 616.53 (A) 0.91 (B) 66.87 (B) 9.92 (CBA) 93.93 (A) 0.30 (A) 141.10 (BC) 10.92 (B) 117.80 (C) 12.07 (BA) 71.89 (DC) 56.51 (AB) 

4-PRE+POST c -- 2.99 (D) -- 0.30 (B) 49.25 (B) 7.00 (DB) 36.74 (B) 0.30 (A) -- 0.23 (D) -- 0.78 (C) 42.36 (D) 24.41 (C) 

5-OSR 266.53 (A) 26.72 (A) 627.06 (A) 2.14 (BA) -- 12.50 (BA) -- 8.87 (B) 611.67 (D) 3.79 (DC) 320.46 (B) 14.33 (A) 294.43 (A) 87.39 (A) 

6-FPR 280.71 (A) 19.82 (BA) 620.92 (A) 1.83 (BA)  -- 2.83 (DC) -- 0.30 (A) 174.76 (BC) 1.74 (DC) 128.08 (C) 3.89 (CB) 97.70 (DC) 44.19 (BC) 

7-SFLR 294.61 (A) 38.43 (A) 588.29 (A) 1.53 (BA) 114.53 (AC) 1.05 (D) 92.33 (A) 0.30 (A) 101.99 (C) 0.47 (D) 233.22 (AB) 11.87 (BA) 82.25 (DC) 57.24 (AB) 

8-DLY -- 9.10 (DC) -- 8.26 (A) 54.93 (B) 11.07 (BA) 119.84 (A) 0.30 (A) -- 6.11 (CB) -- 12.47 (A) 102.45 (C) 81.98 (A) 
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The results for the crop rotations at the end of this second season were unequal, FPR (3 

and less than 1 plants m
-2 

at L-1 and L-2, respectively) and SFLR (1 and less than 1 

plants m
-2 

at L-1 and L-2, respectively) also significantly reduced the number of plants, 

while OSR was the management system that achieved more density in May 2013 (12 

and 8 plants m
-2

 at L-1 and L-2, respectively) (Table 5.4). 

The analysis of the initial P. rhoeas density in the third season (2013-14), revealed that 

in both locations the OSR rotation obtained the highest density. These results highlight 

the importance of avoiding the incorporation of new seeds into the soil in order to 

achieve an effective management strategy in the mid to long term (Norsworthy et al., 

2012), especially for weeds like P. rhoeas, with persistent and abundant seedbanks 

(Cirujeda et al., 2008). On the contrary, at L-1 the SFLR system was the management 

strategy that obtained the lowest initial P. rhoeas density (101 seedlings m
-2

), but this 

was not statistically different from that observed in other managements (FPR and 

EAPOST) (Table 5.4). At L-2, those strategies that reached a lower initial density were 

EAPOST and FPR with mean values of 117 and 128 seedlings m
-2

, respectively (Table 

5.4).  

With less than one plant per square meter in both locations, the PRE+POST strategy 

was the alternative with the least amount of plants at the end of the third season. TRAD 

at L-1 and OSR at L-2 were the managements where the most plants were counted in 

May 2014: 29 and 14 plants m
-2

 (Table 5.4).  

Three-year assessment of management systems 

The initial density evaluated in 2015 reflects the cumulative effect of the three 

preceding seasons for the different evaluated management systems. Data collected in 

both locations (before any POST herbicide applications) showed that out of all the 

different management strategies, those which included sunflower or field peas, or those 

that introduced a modification to herbicide timing (PRE+POST and EAPOST) 

registered the lowest initial P. rhoeas densities after three years (Table 5.4). The 

favorable results observed for SFLR management can be explained by the agronomic 

practices used in sunflower which contributed to the elimination of emerged seedlings 

of a great number of P. rhoeas plants. Sunflower sowing begins in April, and P. rhoeas 

emergence in semi-arid Mediterranean conditions occurs mainly in autumn and winter 

(Cirujeda et al., 2008). For this reason, seedbed preparation and crop sowing in winter 

break the weed life-cycle, thus eliminating almost all P. rhoeas plants. Despite the 
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significant reduction in P. rhoeas density achieved by this system, lack of rainfall in 

spring and summer in North-Eastern Spain hinders the integration of this type of crop 

rotation. In other areas of Spain with higher rainfall, and where herbicide resistant P. 

rhoeas is present, this crop rotation is a real option for resistant population control. P. 

rhoeas reduction obtained by the FPR strategy was achieved mainly due to the use of 

pendimethalin in PRE. This herbicide has been proposed as one of the best chemical 

options for HR P. rhoeas control in Spanish dry land areas (Torra et al., 2010). The use 

of a FPR could be improved using spring varieties of field peas, which again would 

allow eliminating seedlings in winter and, thus, breaking the life cycle of P. rhoeas. 

Regarding the management strategies that introduced an herbicide timing modification 

(PRE+POST and EAPOST), it is hypothesized that early applications (both PRE and 

early POST) achieve higher efficacy because variability in weed phenology at 

application time is avoided compared to POST treatments. Finally, it was proposed that 

drastic tools could be necessary in those highly infested fields with herbicide resistant 

weeds (Cirujeda and Taberner 2009). As PRE+POST showed, this strategy could be 

seriously considered in cases where P. rhoeas densities are high and its control is tough. 

A sowing delay of one month did not improve P. rhoeas control within a season when 

compared to the other systems with normal sowing dates (Table 5.4). An extended 

sowing delay is most likely necessary to improve the management of this weed due to 

its broad emergence, which can last from December to March (Cirujeda et al., 2008). 

The use of cereal varieties with short life cycles and delaying the sowing three months 

was proposed as a management option that can improve the P. rhoeas seed bank 

depletion (Torra et al., 2011). OSR was also inefficient in the management of P. rhoeas 

in this study. This strategy obtained more initial density in 2015, as in 2013-14, 

especially at L-1 where an average of 294 seedlings m
-2

 were counted (Table 5.4). 

Contrary to the situation with SFLR, the agronomic practices required by oilseed rape 

(the majority of them conducted in September when sown), extend the emergence 

period of P. rhoeas within a crop situation, and thus do not break its life cycle. 

Moreover, oilseed rape is not a competitive crop in its early life stages, and a small 

number of active ingredients are available for dicotyledonous weed control in POST. 

Finally, TRAD management system did not achieve good results, (276 and 57 seedlings 

m
-2

 at L-1 and L-2, respectively) especially at L-1 (Table 5.4). At high densities, even if 

the timing of POST application is optimal, some overgrown P. rhoeas individuals will 
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escape treatments. Few of those uncontrolled plants can be enough to replenish the 

seedbank for the subsequent seasons due to their high fecundity (Torra et al., 2008). 

Over three years of management (from the end 2011 until early 2015), it was possible to 

reduce P. rhoeas infestations levels at both locations. It is striking that reduction was 

much higher for L-2 than for L-1 being on average 57% at L-1 and 90% at L-2 (Table 

5.5). At L-1, PRE+POST (81%) and SFLR (72%) were the strategies which led to a 

more drastic reduction of the initial P. rhoeas densities, but these percentages were not 

significantly different from those obtained by other management strategies like 

EAPOST or FPR. However, OSR, TRAD and HROT were the alternatives that less 

density reduction (DR) reached (20, 33 and 41%, respectively). At L-2, PRE+POST and 

FPR managements, followed by HROT and TRAD, obtained the highest percentages of 

initial P. rhoeas DR after three years (95, 92, 91 and 90 %, respectively), while OSR, 

SFLR and DLY obtained lower DR values (84, 89 and 87%, respectively) without 

statistical differences among them (Table 5.5). 

 

Table 5.5. Reduction of the initial corn poppy (Papaver rhoeas) density between initial density 

in December 2011 and initial density in January 2015 (DR) at Baldomar (L-1) and Sant Antolí 

(L-2). TRAD, wheat monocrop with chemical control; HROT, wheat monocrop with active 

ingredient rotation; EAPOST, wheat monocrop with active ingredient rotation and application 

timing rotation; PRE+POST, wheat monocrop with active ingredient rotation and application 

timing rotation; OSR, wheat–Oilseed reap–wheat rotation; FPR, wheat–field pea–wheat 

rotation; SFLR, wheat–sunflower–wheat rotation; DLY, wheat monocrop with seed delay in the 

first and third seasons. 

 L-1 L-2 
1-TRAD 33.28 (

a
A) 90.45 (AB)  

2-HROT 41.71 (A) 91.67 (AB)  
3-EAPOST 74.58 (B)  90.17 (B)  
4-PRE+POST 81.87 (B)  95.65 (A)  
5-OSR 20.62 (A)  84.87 (C)  
6-FPR 65.74 (B)  92.56 (AB)  

7-SFLR 72.14 (B)  89.44 (BC)  

8-DLY 65.84 (B)  87.88 (BC)  
 

a
Means within a column followed by the same letter indicate that no significant difference (P < 0.05) was 

detected by DR means of the Tukey (HSD) test at the 5% level of probability. 

As noted above, all strategies achieved much more density reduction at L-2 than at L-1. 

The differences could be due to the different efficacy levels achieved to florasulam 

(ALS inhibitor) plus aminopyralid (synthetic auxin) in the first and third year, which 
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were applied in all management strategies except TRAD (Table 5.2). P. rhoeas 

population from L-2 was more susceptible than population from L-1 which could be 

explained by differences in the ALS cross resistant patterns between biotypes (L-1 and 

L-2). Recent work has shown that only plants carrying a Ser197 ALS allele were 

moderately resistant to florasulam compared to plants carrying ALS alleles with other 

substitutions, which were susceptible (Délye et al., 2011). In this study, the RF for 

florasulam was six points higher in L-1 compared to L-2, highlighting higher 

frequencies of Pro197 to Ser mutants in the first location (L-1). More complete 

knowledge on the genetic basis of resistance and cross resistance patterns for ALS-

inhibiting herbicides has been described as important for formulating adequate chemical 

control strategies of local P. rhoeas populations (Torra et al., 2010). 

Conclusions  

To summarize, the integration of different control tools, both chemical and cultural, 

were useful for the management of multiple HR P. rhoeas populations in winter cereals. 

Crop rotation with (spring) field peas is an interesting option, and in those areas where 

rainfall is not restrictive summer crops, such as sunflower, are very promising 

alternatives. Rotation and combination of herbicides with different application timings 

can also be effective in managing HR P. rhoeas. PRE plus POST interventions can 

provoke a significant depletion of the soil seedbank and could be an option in highly 

infested fields. This study also highlights that complete knowledge of the genetic basis 

of resistance and cross-resistance patterns for ALS inhibitors could be important in 

designing better chemical programmes adapted to local biotypes. Therefore, successful 

integrated management strategies of multiple HR P. rhoeas populations is necessary for 

reducing herbicide selection pressure and slowing down the evolution of new resistant 

biotypes. 
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The mechanisms conferring resistance to ALS inhibitors as well as to synthetic auxin 

were investigated in 2,4-D and 2,4-D and tribenuron-methyl multiple resistant Spanish 

corn poppy (Papaver rhoeas) populations. The basis of lack of control of some 

populations with the PS II inhibitor bromoxynil were also explored. To finalize, several 

integrated corn poppy resistance management strategies were designed and tested at two 

fields with high densities of multiple resistant corn poppy populations. 

The study of resistance to ALS inhibitors in multiple resistant (2,4-D and tribenuron-

methyl), 2,4-D resistant and susceptible corn poppy populations has shown six amino-

acid replacements at position Pro197 (Ala197, Arg197, His197, Leu197, Thr197 and 

Ser197). As expected, all these replacements conferred strong resistance with resistance 

indexes higher than 300 to SU’s (tribenuron-methyl), but this assumption could not be 

held for others non-SU ALS inhibitors as TP’s (florasulam) or IMI’s (imazamox). Only 

substitutions in Pro197 by Thr for imazamox and Ser for florasulam showed moderate 

to strong resistant responses to these herbicides. Perplexing results were reached when 

genotype and phenotype of some plants treated with florasulam or imazamox were 

compared between each other. Plants identically genotyped showed different responses 

to the same herbicide (florasulam or imazamox). As it has been recently published 

(Scarabel et al., 2015), non-target-site resistant (NTSR) mechanisms may explain these 

results. So, in this point we hypothesize that those NTSR mechanisms affecting SU 

herbicides, if any, do not become evident under the strong resistance conferred by any 

amino-acid replacement at Pro197. On the contrary, because Pro197 is not involved in 

anchoring those non-SU herbicides, mutation at this position does not confer a high 

level of resistance and under these conditions are when suspected NTSR mechanisms 

can co-exist and become evident together with target-site resistance (TSR) mechanisms. 

Moreover, no mutated plants from only the 2,4-D resistant population, together with one 

no mutated plant from the control susceptible population were able to survive the 

imazamox applications.The presence of metabolic resistance can be confirmed by 

identification of resistance phenotypes with a lack of ALS resistant mutations (Scarabel 

et al., 2015; Yu and Powles 2014; Yu et al., 2009). Therefore, the presence of NTSR 

mechanisms in Spanish corn poppy populations to non-SU ALS inhibitors was 

confirmed in this research. Our results suggest that this weed species may be armed 

with low-level defences against herbicides, at least for non-SU herbicides, prior to the 

imposition of any selection. Evolution of resistance simply requires them to evolve 
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enhancements of physiological capacities that this species already possess (Neve et al., 

2014). Metabolism-based resistance pre-exist in weed populations at sufficient levels 

that allow individuals in previously unselected populations to survive (Neve and Powles 

2005). In this line, a recent work reveals that metabolic resistance to ALS inhibitor 

herbicides in weeds usually mimics herbicide-tolerant crops via enhanced rates of 

herbicide metabolism, often involving cytochrome P450 (Yu and Powles 2014). 

Resistance to ALS inhibitors in corn poppy appears far more complex than previously 

thought from studies having only identified TSR in this species. Besides, in this study 

two mutations outside of the conserved regions of the ALS gene (Gly427 and Leu648) 

were also detected, but they did not seem to play a relevant role in ALS inhibitors 

resistant response. Finally, results obtained in the experiment with labelled 
14

C-

tribenuron-methyl by plants only 2,4-D resistant suggested that the 2,4-D resistance 

mechanism could interfere with the normal phytotoxical process triggered by 

tribenuron-methyl few hours after its application. Hypothesis to explain these results are 

addressed below. 

Until now, no other studies on the mechanistic basis of 2,4-D resistance in corn poppy 

have been carried out. Although leaf absorption of the herbicide was almost total and 

similar between multiple resistant, 2,4-D resistant and susceptible plants, the labelled 

2,4-D did not move out of the treated leaf in those multiple resistant and 2,4-D resistant 

plants. In contrast 
14

C-2,4-D was rapidly translocated in a susceptible biotype. Similar 

results were obtained in other dicot weeds with multiple resistance (2,4-D and ALS 

inhibitors) (Goggin and Powles 2014; Shane-Friesen 2007). An alteration in some 

specific transporters belonging to PIN-FORMD (PIN) or ATP-binding cassette (ABC), 

families, may explain why resistant plants do not transport the 2,4-D. Moreover, ABC 

transporters not only have been reported to mediate cellular transport of auxin, but these 

proteins have also been speculated to be involved in the detoxification of xenobiotics 

(Cho and Cho 2013). On these bases, these are candidate genes to be researched in 

future studies. However, it remains also possible that rapid production of polar 

metabolites, less phloem mobile than parent compounds (due to permanent 

sequestration in the vacuole and detoxification reactions), could have been decreasing 

the 2,4-D translocation (Peterson et al., 2015). 2,4-D metabolism occurs primarily 

through direct conjugation or ring hydroxylation. Direct glucose conjugation of 2,4-D 

occurs with glucosyl transferase enzymes to form glucose esters and generally; these 

conjugates are more prevalent in susceptible dicots, inducing auxin-related activity 
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similar to 2,4-D and are readily hydrolyzed back to 2,4-D acid (Hatzios and Hock 

2005). On the other hand, ring hydroxylation occurs through a reaction with cytochrome 

P450 and metabolites from this pathway cannot be hydrolyzed back to 2,4-D (Cobb and 

Reade 2010).Taking into account all this information, the lack of 2,4-D mobility in 

resistant corn poppy plants could be consequence of the above mentioned metabolic 

pathways. But an alteration in some specific transporters and metabolic processes may 

coexist in resistant plants, as it has been proposed in a similar case (Goggin and Powles 

2014). Returning to the results exhibited by plants only 2,4-D resistant in experiments 

conducted with ALS inhibitors. The above mentioned alterations of ABC transporters, 

also involved in detoxifying xenobiotics, or metabolic pathways associated to 2,4-D 

may explain the abnormal phytotoxical process triggered by tribenuron-methyl for the 

biotype only auxin resistant.  

As it has been reported in many other synthetic auxins resistant weeds (Howatt et al., 

2006), more ethylene production was detected in multiple and 2,4-D resistant corn 

poppy plants. 2,4-D spraying initiates a cascade of physiological responses within the 

plant, ultimately leading to plant death in susceptible dicots. In the first phase of this 

process ethylene production is stimulated (Grossmann 2010). Probably any of the 

previously mentioned deregulations could have a downstream effect, hence reducing the 

ethylene production in resistant plants. Our multiple and 2,4-D resistant corn poppy 

populations appeared to be also resistant to dicamba and aminopyralid, what means that 

those mechanisms conferring resistance to 2,4-D are also playing a relevant role against 

other auxinic herbicides. A new different hypothesis can explain these results: cross 

resistance between 2,4-D and dicamba in Arabidopsis thaliana was attributed to a 

mutation in the TIR-1 protein (F-box family of a nuclear auxin receptors) (Gleason et 

al., 2011). Nevertheless suspected metabolic process (P450s or glutathione S-

transferases) have been pointed to lead to cross-resistance between synthetic auxin 

chemistries (Peterson et al., 2015). All this work is just the first steps, because the 

physiological bases of lack of translocation in those resistant plants needs 

further research and the effect of these mechanisms on ALS inhibitors resistance need to 

be elucidated. The study of the mechanisms conferring resistance to synthetic auxins is 

not an easy issue; few articles addressing resistance to these herbicides have been 

published compared to other modes of action. Moreover, an important factor to consider 

when resistance to synthetic auxin herbicides matter is addressed is that it may be 

extremely difficult to disentangle the strong links between auxin receptors/binding 
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proteins, auxin transport and metabolism between natural (IAA) and synthetic auxin 

herbicides. The introduction of new transgenic 2,4-D and dicamba resistant crops may 

result in increased use of these synthetic auxin herbicides. On these bases, increased 

emphasis on mechanisms of auxin resistance and their potential to arise in weed species 

is crucial. 

Lack of control with mixtures containing bromoxynil in some corn poppy infested fields 

was attributed to an inappropriate phenological stage at herbicide application timing. 

Nevertheless, it has been described that these above mentioned circumstances, leading 

to sub-lethal dose conditions, have the potential to accelerate resistance evolution and 

lead to more cross-resistance by NTSR (Neve et al., 2014). Few plants from one 

population, however not enough to produce a significant shift in the dose-response 

curves, were able to survive recommended rates of bromoxynil. Further studies are 

being conducted with these plants in order to check the presence of mutations at psbA 

gene, as a possible TSR mechanism. If there were no mutations in these samples, NTSR 

has to be considered. Because all the populations considered in this study were multiple 

resistant, and if resistance to bromoxynil is confirmed in the future, it would remain to 

be elucidated which is the relationship between resistance mechanisms among these 

three different modes of action (ALS inhibitors, synthetic auxins and PS II inhibitors), if 

any. It could be possible that those mechanisms conferring resistance to 2,4-D were 

linked with NTSR to non-SU herbicides above mentioned and unspecific responses 

observed in bromoxynil, likely detoxification or altered transport.  

To conclude, it has been demonstrated that effective control of multiple resistant corn 

poppy populations is possible using integrated weed management strategies. Results 

from our field studies suggest that not all crop rotations are helpful in a resistant corn 

poppy management programme. This is the case of cereal-oilseed rape rotation. As it 

was suggested previously (Cirujeda 2001), the agronomic practices associated with the 

oilseed rape did not break the life cycle of corn poppy. Moreover few useful herbicides 

are available in this crop to control it. On the contrary, incorporating field peas and 

sunflower in the cereal monocrop showed good results. Both rotations were able to 

affect significantly the life cycle of corn poppy and allowed also to introduce other 

herbicides with different modes of action (MOA’s). Regarding herbicide management 

strategies, the most successful systems were those which included a variation in the 

herbicide application timing, early post-emergence or combining pre-emergence and 

post-emergence. These early applications allow avoiding largest corn poppy 
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phenologies that may reduce the treatment efficacy. Taking into account these results, 

we consider that diversification at all levels has to be the major objective in weed 

control. Crop rotations, with crops that really disturb the life cycle of weeds, must be 

the first step. Over this, modifications of the sowing date and variations on ploughing 

practices also have to be implemented. Moreover, making cropping systems more 

technical through the management of sowing densities and orientation together with the 

introduction of the most suitable irrigation practices (where it is possible) should be 

considered. Classical recipes in chemical control must be avoided and moreover, no 

single herbicide treatment will be definitive. Diversification is also necessary when 

using chemical and non-chemical methods, different MOA’s and timing of applications 

have to be alternated every season. Finally, new tools derived from new technologies as 

decision support systems or precision agriculture must be explored and used in the most 

profit way.  

In this study the complete knowledge of the genetic basis of the resistance together with 

the cross-resistance patterns between herbicides have been proposed as an important 

issue in designing better chemical control programmes. Moreover, reducing the reliance 

on herbicides for weed management through integration of cultural and mechanical 

methods must be the most important goal in the future. 

Future research to be considered in this are: 

 Bases of 2,4-D metabolism in corn poppy. The main metabolites formed from 

ring hydroxylation of 2,4-D are 4-hydroxy-2,5- dichlorophenoxyacetic acid and 

4-hydroxy-2,3-dicholorophenoxyacetic acid.  

 Gene sequencing of auxinic receptors and auxinic transporters of those 2,4-D 

resistant corn poppy plants: best candidate protein families are PIN and ABC for 

auxinic transport, and F-box (TIR-1) for nuclear receptors. 

 Gene transcription analysis (Real Time-PCR or whole transcription), both for 

2,4-D and ALS inhibitors employing ALS resistant, 2,4-D resistant, multiple 

resistant and susceptible biotypes. This would provide an insight in possible 

relationships between NTSR mechanisms, especially cytochrome P450 or 

glutation-S-tranferase, to synthetic auxins and ALS inhibitors. 

 Check the most common mutations in the psbA gene (Val219, Ala251, Phe255, 

Ser264 and Asn266) that have been described in those PS II resistant weeds as 

TSR mechanisms.   
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 Study of dose-response to bromoxynil of progeny populations coming from 

studied populations to confirm heritability and shift of resistance factors. 

 If bromoxynil resistance is confirmed and no mutations at psbA gene have been 

found, NTSR mechanisms to PS II inhibitors, absorption, translocation, and 

metabolism, need to be elucidated.  

Some of these experiments have already been initiated this year. 
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The main conclusions of this thesis are: 

Papaver rhoeas resistance to ALS inhibiting herbicides. 

1. The different substitutions which have been found at position Pro197 (Ala197, 

Arg197, His197, Leu197, Thr197 and Ser197) of the ALS gene are responsible for 

the strong resistance shown to tribenuron-methyl by the treated resistant P. rhoeas 

biotypes. 

2. The mutations at 197 amino acid provide certain degree of cross resistance to other 

ALS inhibiting herbicides. The substitutions of Pro by Ser give a moderate 

resistance to the triazolopyrimidine florasulam. Likewise, the appearance of a Thr at 

the same position shows moderate to strong resistance to the imidazolinone 

imazamox. 

3. The experiments conducted with 
14

C-tribenuron-metil demonstrated that absorption 

and translocation are not resistance mechanisms to sulfonylureas. Moreover 

differences in translocation patterns observed between resistant and susceptible 

plants, seem to be an indirect consequence of the above mentioned target-site 

resistant mechanism.  

4. The biotype resistant only to 2,4-D showed a similar translocation pattern to that 

observed in the 2,4-D and tribenuron-methyl multiple resistant biotypes. In this 

biotype, phytotoxic processes triggered after tribenuron-methyl application seem to 

happen differently to those observed in the susceptible biotype. 

5. The presence of non-target-site resistance mechanisms has been confirmed for 

imazamox and florasulam herbicides. Firstly because plants having the same ALS 

genotype showed different responses to these two herbicides. Secondly, because 

non-mutated plants in the ALS gene were able to survive imazamox. 

Investigating 2,4-D resistance in P. rhoeas 

6. Ethylene levels recorded in susceptible plants were between four and eight-fold 

greater than those levels reached in 2,4-D resistant and multiple resistant plants. 

7. The 2,4-D and multiple resistant biotypes were not controlled satisfactorily with 

other auxinic herbicides as dicamba and aminopyralid. 

8. Studies carried out with 
14

C-2,4-D did not detect differences in absorption between 

resistant and susceptible biotypes. Conversely, a lower translocation of 
14

C-2,4-D 

was detected in both only 2-4-D and multiple resistant biotypes compared with those 



 

132 
 

susceptible plants. This finding is, so far, the first resistance mechanism described in 

2,4-D resistant P. rhoeas.  

Assessing bromoxynil failures observed in the field 

9. Bromoxynil controlled P. rhoeas populations that had been problematic in the field 

when this herbicide was applied at maximum field dose and at recommended 

phenological stage (rosette 5-6 cm). Efficacies ranged from 97 to 100%. 

10. When bromoxynil was applied at a later phenological stages (11-12 cm rosette) one 

of the studied biotypes showed a shift of the dose-response curve compared to the 

susceptible biotype. This biotype presented a resistant index of 2.2. 

Integrated management of multiple resistant P. rhoeas 

12. Cereal-field peas and cereal-sunflower were crop rotations that achieved satisfactory 

results in P. rhoeas control. Percentages of P. rhoeas density reductions over three 

years of experiments ranged from 65 to 92% in the field peas rotation and from 72 

to 89% in the sunflower rotation. The application of pendimenthalin in the field peas 

cycle was decisive for the good results obtained by this rotation. The cereal-

sunflower rotation allows the incorporation of a spring sowing crop, so practices 

associated with sowing can eliminate most of the P. rhoeas plants emerged during 

autumn and winter. 

13. Cereal-oilseed rape rotation did not reduce the densities of P. rhoeas in the highly 

infested fields with resistant biotypes. Lack of herbicides able to control P. rhoeas 

in post-emergence in oilseed rape, the low competitiveness of this crop in its early 

stages and planting dates (early September) are the main factors that hinder control 

of P. rhoeas in this crop. 

14. A one-month delay in the cereal sowing date did not improve control of P. rhoeas 

respect to those managements in which a conventional sowing was done. 

15.  Those integrated management strategies which incorporated early chemical 

interventions such as pre-emergence and early post-emergence were able to reduce 

satisfactorily P. rhoeas infestation levels. Density reductions achieved by this kind 

of interventions ranged, on average, from 65 to 92% over the three years of 

experiments. Early treatments were more effective compared to post-emergence 

treatments because phenological heterogeneity is reduced at application time. 
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Las principales conclusiones que se extraen de esta tesis son las siguientes: 

La resistencia de Papaver rhoeas a herbicidas inhibidores de la enzima ALS 

1. Las diferentes substituciones encontradas en la posición Pro197 (Ala197, Arg197, 

His197, Leu197, Thr197 and Ser197) del gen de la ALS son las responsables de la 

fuerte resistencia que muestran los biotipos de Papaver rhoeas a la sulfonilurea 

tribenurón-metil.  

2. Las mutaciones descritas en el aminoácido 197 otorgan cierto grado de resistencia 

cruzada a otros herbicidas inhibidores de la ALS. La substitución de la Pro197 por 

una Ser da una resistencia moderada a la triazolopirimidina florasulam. De la misma 

forma, la aparición de una Thr en esta misma posición otorga una resistencia de 

moderada a fuerte a la imidazolinona imazamox. 

3. Los ensayos realizados con 
14

C-tribenurón-metil establecieron que la absorción y la 

translocación no son mecanismos de resistencia fuera del lugar de acción para 

sulfonilureas. Además las diferencias observadas a nivel de translocación entre 

plantas resistentes y sensibles, parece ser una consecuencia indirecta de los 

mecanismos de resistencia en el lugar de acción anteriormente mencionados. 

4. El biotipo únicamente resistente a 2,4-D presentó un patrón de translocación similar 

al observado en aquellos biotipos con resistencia múltiple (2,4-D y tribenuron-

metil). En este biotipo, los procesos fitotóxicos desencadenados tras la aplicación 

del tribenurón-metil parecen acontecer de manera distinta a los observados en el 

biotipo sensible.  

5. La presencia de mecanismos de resistencia fuera del lugar de acción ha sido 

confirmada para los herbicidas imazamox y florasulam. Primero, porque plantas que 

presentan el mismo genotipo en la ALS, manifiestan diferentes respuestas a estos 

dos herbicidas. Segundo, porque plantas sin mutaciones en el gen ALS son capaces 

de sobrevivir al imazamox.  

Investigando la resistencia de P. rhoeas al 2,4-D 

6. Los niveles de etileno registrados en planta viva fueron significativamente mayores 

(entre cuatro y ocho veces superiores) en el biotipo sensible en comparación con los 

valores establecidos por los biotipos con resistencia a 2,4-D y resistencia múltiple. 
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7. Las poblaciones de P. rhoeas con resistencia múltiple y únicamente resistentes a 

2,4-D, no fueron controladas de forma satisfactoria con otros herbicidas auxínicos, 

dicamba y aminopiralid.  

8. Los estudios llevados a cabo con 
14

C-2,4-D no detectaron diferencias en términos de 

absorción entre biotipos resistentes y sensibles. Por el contrario, una menor 

translocación del 
14

C-2,4-D fue detectada, tanto en el biotipo con resistencia 

múltiple como en el biotipo únicamente resistente a 2-4-D, respecto al biotipo 

sensible. Esto supone, hasta el momento, el primer mecanismo de resistencia 

descrito en poblaciones de P. rhoeas resistentes a 2,4-D.  
 

Evaluando los fallos del Bromoxinil observados en campo 

 

9. El bromoxinil controló de forma aceptable aquellas poblaciones de P. rhoeas que 

habían presentado problemas en campo, cuando este herbicida se aplicó a la dosis 

máxima de registro y a la fenología recomendada (5-6 cm de roseta). Las eficacias 

de este producto a la máxima dosis de campo fue del 97% y 100% en aquellas 

poblaciones sospechosas. 

10. Cuando el bromoxinil se aplicó en una fenología más avanzada (11-12 cm de roseta) 

uno de los biotipos estudiados presentó cierto desplazamiento de la curva dosis 

respuesta respecto a su homólogo sensible. Este biotipo presentó un índice de 

resistencia de 2.2 puntos. 

Manejo Integrado de P. rhoeas con resistencia múltiple.  

11. Las rotaciones cereal-guisante y cereal-girasol consiguieron resultados muy 

satisfactorios. El porcentaje de reducción de densidad inicial de P. rhoeas a lo largo 

de los tres años de experimento, osciló entre el 65 y el 92% en el caso de la rotación 

con guisante y entre el 72 y el 89% en la alternativa con girasol. La incorporación de 

la pendimentalina en pre-emergencia durante el ciclo del guisante resultó ser 

determinante en los buenos resultados obtenidos por esta rotación. La rotación 

cereal-girasol permite incorporar un cultivo que se siembra en primavera, de esta 

manera las labores asociadas a la preparación y siembra del girasol permiten 

eliminar todas las plantas de P. rhoeas emergidas durante otoño e invierno.  

12. La rotación cereal-colza no redujo los niveles de P. rhoeas en aquellos campos 

altamente infestados. La falta de materias activas en colza para el control de P. 

rhoeas en post-emergencia, la baja competitividad de este cultivo en sus estadios 
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iniciales y la  fechas de siembra recomendadas (principios de septiembre) son los 

principales factores que dificultan el control del de esta mala hierba en esta rotación.  

13. Un retraso de un mes en la fecha de siembra del cereal no mejoró el control de P. 

rhoeas respecto a aquellos manejos en los que se practicó una siembra en una fecha 

convencional.  

14. Aquellas estrategias de manejo integrado que incorporaron tratamientos químicos 

precoces como son los de pre-emergencia y post-emergencia temprana consiguieron 

reducir la infestación de P. rhoeas. La reducción de la densidad inicial tras tres años 

de ensayos conseguida por este tipo de intervenciones, obtuvo en promedio, valores 

que oscilaron entre un 65 y un 92%. Este tipo de intervenciones resultan más 

eficaces respecto a los tratamientos en post-emergencia ya que consiguen minimizar 

la heterogeneidad  fenológica en el momento de la aplicación. 
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Abbreviations used 

2,4-D [2,4-dichlorophenoxyacetic acid]; ABA[Abscisic acid]; ABC [ATP-binding 

cassette]; ACCase [Acetyl-coenzyme A carboxylase]; ACCsynthase [1-

aminocyclopropane-1-carboxylic acid synthase]; ALS [Acetolactate synthase]; GLM 

[Generalized linear models]; GR50 [Herbicide rate causing 50% mortality]; HAT [Hours 

after treatment]; HR [Herbicide resistance]; IMI [Imidazolinones]; LMM [Linear 

mixed-effects models]; MCPA [4-Chloro-2-ethylphenoxyacetate]; MOA [Modes of 

action]; NTSM [Non-target-site mechanisms]; PCR [polymerase chain reaction]; PIN 

[PIN-FORMD proteins]; POST [Post-emergence]; PRE [Pre-emergence]; PTB 

[pyrimidinyl-thiobenzoates]; R [Resistant]; RI [Resistant Index]; ROS [Reactive oxygen 

species]; RR [Resistant homozygous]; RS [Resistant heterozygous]; S [Susceptible]; 

SCT [sulfonyl-aminocarbonyl-triazolinones]; SS [Susceptible homozygous]; SU 

[Sulfonylureas]; TP[Triazolopyrimidines]; TSM [Target-site mechanisms]; TSR 

[Target-site resistance];  WAT [Weeks After Treatment]; [
14

C]-Tri [[
14

C]-tribenuron-

methyl]. 
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