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Summary

In this thesis I develop statistical methodology for analyzing discrete data to be ap-

plied to stylometry problems, always with the Bayesian approach in mind. The statistical

analysis of literary style has long been used to characterize the style of texts and authors,

and to help settle authorship attribution problems. Early work in the literature used

word length, sentence length, and proportion of nouns, articles, adjectives or adverbs to

characterize literary style. I use count data that goes from the frequency of word fre-

quency, to the simultaneous analysis of word length counts and more frequent function

words counts. All of them are characteristic features of the style of author and at the

same time rather independent of the context in which he writes.

Here we intrude a Bayesian Analysis of word frequency counts, that have a reverse

J-shaped distribution with extraordinarily long upper tails. It is based on extending

Sichel’s non-Bayesian methodology for frequency count data using the inverse gaussian

Poisson model. The model is checked by exploring the posterior distribution of the Pear-

son errors and by implementing posterior predictive consistency checks. The posterior

distribution of the inverse gaussian mixing density also provides a useful interpretation,

because it can be seen as an estimate of the vocabulary distribution of the author, from

which measures of richness and of diversity of the author’s writing can be obtained.

An alternative analysis is proposed based on the inverse gaussian-zero truncated Poisson

mixture model, which is obtained by switching the order of the mixing and the truncation

stages.

An analysis of the heterogeneity of the style of a text is proposed that strikes a

compromise between change-point, that analyze sudden changes in style, and cluster

analysis, that does not take order into consideration. Here an analysis is proposed that

strikes a compromise by incorporating the fact that parts of the text that are close

together are more likely to belong to the same author than parts of the text far apart.

The approach is illustrated by revisiting the authorship attribution of Tirant lo Blanc.

A statistical analysis of the heterogeneity of literary style in a set of texts that simul-

taneously uses different stylometric characteristics, like word length and the frequency of

function words, is proposed. It clusters the rows of all contingency tables simultaneously

into groups with homogeneous style based on a finite mixture of sets of multinomial

models. That has some advantages over the usual heuristic cluster analysis approaches

ix
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as it naturally incorporates the text size, the discrete nature of the data, and the de-

pendence between categories. All is illustrated with the analysis of the style in plays by

Shakespeare, El Quijote, and Tirant lo Blanc.

Finally, authorship attribution and verification problems that are usually treated sep-

arately are treated jointly. That is done by assuming an open-set classification framework

for attribution problems, contemplating the possibility that neither one of the candidate

authors, with training texts known to have been written by them is the author of the

disputed texts. Then the verification problem becomes a special case of attribution prob-

lems.A formal Bayesian multinomial model for this more general authorship attribution

is given and a closed form solution for it is derived. The approach to the verification

problem is illustrated by exploring whether a court ruling sentence could have been writ-

ten by the judge that signs it or not, and the approach to the attribution problem is

illustrated by revisiting the authority attribution of the Federalist papers.



Resumen

En esta tesis se desarrolla, siempre con el enfoque bayesiano en mente, una metodoloǵıa

estad́ıstica para el análisis de datos discretos en su aplicación en problemas estilometŕıa.

El análisis estad́ıstico del estilo literario se ha utilizado para caracterizar el estilo de

textos y autores, y para ayudar a resolver problemas de atribución de autoŕıa. Para

caracterizar el estilo literario trabajos anteriores usaron la longitud de las palabras, la

longitud de las oraciones, y la proporción de los sustantivos, art́ıculos, adjetivos o adver-

bios. Los datos que aqu se utilizan van, desde la frecuencia de frecuencias de palabras,

hasta el análisis simultáneo de frecuencias de longitud de palabra y de las palabras fun-

cionales más frecuentes. Todos estos datos son caracteŕısticos del estilo de autor y al

mismo tiempo independiente del contexto en el que escribe.

De esta forma, se introduce un análisis bayesiano de la frecuencia de frecuencias

de palabra, que tiene una distribución en forma de J inversa con las colas superiores

extraordinariamente largas. Se basa en la extensión de la metodoloǵıa no bayesiana de

Sichel para estos datos utilizando el modelo Poisson inversa gaussiana. Los modelos

se comprueban mediante la exploración de la distribución a posteriori de los errores de

Pearson y por la implementación de controles de consistencia de la distribución predictiva

a posteriori. La distribución a posteriori de la inversa gausiana tiene una interpretación

útil, al poder ser vista como una estimación de la distribución vocabulario del autor, de

la cual se pueden obtener la riqueza y diversidad de la escritura del autor. Se propone

también un análisis alternativo basado en la mixtura inversa gaussiana - poisson truncada

en el cero, que se obtiene cambiando el orden de la mezcla y truncamiento.

También se propone un análisis de la heterogeneidad de estilo, que es un compromiso

entre el modelo de punto de cambio, que busca un cambio repentino de estilo, y el

análisi de conglomerados, que no tiene en cuenta el orden. Aqúı se propone un análisis

que incorpora el hecho de que partes prximas de un texto tienen más probabilidades

de pertenecer al mismo autor que partes del texto ms separadas. El enfoque se ilustra

volviendo a revisar la atribución de autoŕıa del Tirant lo Blanc.

Para el análisis de la heterogeneidad del estilo literario, se propone también un análisis

estad́ıstico que utiliza simultáneamente diferentes caracteŕısticas estilométricas, como la

longitud palabra y la frecuencia de las palabras funcionales más frecuentes. Las filas de

todas tablas de contingencia se agrupan simultáneamente basandose en una mezcla finita

xi
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de conjuntos de modelos multinomiales con un estilo homogéneo. Esto tiene algunas

ventajas sobre las heuŕısticas utilizadas en el análisis de conglomerados, ya que incorpora

naturalmente el tamao del texto, la naturaleza discreta de los datos y la dependencia

entre categoŕıas. Todo ello se ilustra a través del análisis del estilo en las obras de teatro

de Shakespeare, el Quijote y el Tirant lo Blanc.

Finalmente, los problemas de atribución y verificación de autoŕıa, que se tratan nor-

malmente por separado, son tratados en forma conjunta. Esto se hace asumiendo un

escenario abierto de clasificación para el problema de la atribución, contemplando la posi-

bilidad de que ninguno de los autores candidatos, con textos conocidos para aprendijaje,

es el autor de los textos en disputa. Entonces, el problema de verificación se convierte

en un caso especial de problema de atribución. El modelo multinomial bayesiano prop-

uesto permite obtener una solución exacta y cerrada para este problema de atribución

de autoŕıa más general. El enfoque al problema de verificación se ilustra mediante la

exploración de si un fallo judicial condenatorio podŕıa haber sido escrito por el juez que

firma o no, y el enfoque del problema de la atribución se ilustra revisando el problema

de la autoŕıa de los Federalist Papers.



Chapter 1

Introduction

This thesis deals with methods for the analysis of discrete data in the context of the

statistical analysis of literary style. The statistical analysis of literary style has long

been used to characterize the style of texts and authors, and to help settle authorship

attribution problems. Early work used word length and sentence length to characterize

literary style. Other characteristics widely used for this purpose have been the proportion

of nouns, articles, adjectives or adverbs, the frequency of use of function words, which

are independent of the context. In Chapter 2 the frequencies of word frequency count is

the one used in the analysis while in Chapters 3, 4 and 5 deal with with the analysis of

data like word length counts and the frequency of function words.

Moreover, one can also characterize literary style by analyzing word frequency counts.

Given that most words appear very few times and very few words are repeated many

times, word frequency count data have reverse J-shaped distributions with extraordi-

narily long upper tails. In Chapter 2 word frequency counts are use as data in the

analysis.

In Chapter 2, it is shown that the zero truncated inverse gaussian-Poisson model, ob-

tained by first mixing the Poisson model assuming its expected value has an inverse gaus-

sian distribution and then truncating the model at zero, is very useful when modeling

frequency count data. A Bayesian analysis based on this statistical model is implemented

on the word frequency counts of various texts, and its validity is checked by exploring

the posterior distribution of the Pearson errors and by implementing posterior predictive

consistency checks. The analysis based on this model is useful because it allows one to

use the posterior distribution of the model mixing density as an approximation of the

posterior distribution of the density of the word frequencies of the vocabulary of the

1
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author, which is useful to characterize the style of that author. The posterior distri-

bution of the expectation and of measures of the variability of that mixing distribution

can be used to assess the size and diversity of his vocabulary. An alternative analysis is

proposed based on the inverse gaussian-zero truncated Poisson mixture model, which is

obtained by switching the order of the mixing and the truncation stages. Even though

this second model fits some of the word frequency data sets more accurately than the

first model, in practice the analysis based on it is not as useful because it does not allow

one to estimate the word frequency distribution of the vocabulary.

In Chapter 3, one proposes a classification analysis of literary style that takes order into

consideration. The statistical analysis of the heterogeneity of the style of a text often

leads to the analysis of contingency tables of ordered rows. When multiple authorship

is suspected, one can explore that heterogeneity through either a change-point analysis

of these rows, consistent with sudden changes of author, or a cluster analysis of them,

consistent with authors contributing exchangeably, without taking order into considera-

tion. Here an analysis is proposed that strikes a compromise between change-point and

cluster analysis by incorporating the fact that parts close together are more likely to

belong to the same author than parts far apart. The approach is illustrated by revisiting

the authorship attribution of Tirant lo Blanc.

In Chapter 4, one proposes a statistical analysis of the heterogeneity of literary style in a

set of texts that simultaneously uses different stylometric characteristics, like word length

and the frequency of function words. Data consist of several tables with the same number

of rows, with the i-th row of all tables corresponding to the i-th text. The analysis

proposed clusters the rows of all these tables simultaneously That has the advantage

over the usual heuristic cluster analysis approaches that it naturally incorporates in

the analysis the text size, the discrete nature of the data, and the dependence between

categories. All this is illustrated through an analysis of the heterogeneity in the plays by

Shakespeare and in El Quijote, and by revisiting again as in Chapter 3 the authorship-

attribution of Tirant lo Blanc.

Finally, in Chapter 5, a unified approach to authorship attribution and verification prob-

lems is proposed. In authorship attribution problems one needs to assign a text or a set

of texts from an unknown author to either one of two or more candidate authors on the

basis of the comparison of the disputed texts with texts known to have been written by

the candidate authors. In authorship verification problems one needs to decide whether

a text or a set of texts could have been written by a given single author or not. These two

problems are usually treated separately. By assuming an open-set classification frame-

work for the attribution problem, contemplating the possibility that neither one of the

candidate authors is the unknown author, the verification problem becomes a special
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case of attribution problem. Here both problems are posed as a formal Bayesian multi-

nomial model selection problem and are given a closed form solution. The approach to

the verification problem is illustrated by exploring whether a court ruling sentence could

have been written by the judge that signs it or not, and the approach to the attribution

problem is illustrated by revisiting the authorship attribution of the Federalist papers.

Note that, Chapters 3, 4 and 5 deal with classification analysis techniques. In Chapters

3 and 4 the techniques are for unsupervised classification and in Chapter 5 they are for

supervised classification.
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Chapter 2

Bayesian Analysis of Frequency

Count Data

The zero truncated inverse gaussian-Poisson model, obtained by first mixing the Pois-

son model assuming its expected value has an inverse gaussian distribution and then

truncating the model at zero, is very useful when modelling frequency count data. A

Bayesian analysis based on this statistical model is implemented on the word frequency

counts of various texts, and its validity is checked by exploring the posterior distribution

of the Pearson errors and by implementing posterior predictive consistency checks. The

analysis based on this model is useful because it allows one to use the posterior distri-

bution of the model mixing density as an approximation of the posterior distribution

of the density of the word frequencies of the vocabulary of the author, which is useful

to characterize the style of that author. The posterior distribution of the expectation

and of measures of the variability of that mixing distribution can be used to assess the

size and diversity of his vocabulary. An alternative analysis is proposed based on the

inverse gaussian-zero truncated Poisson mixture model, which is obtained by switching

the order of the mixing and the truncation stages. Even though this second model fits

some of the word frequency data sets more accurately than the first model, in practice

the analysis based on it is not as useful because it does not allow one to estimate the

word frequency distribution of the vocabulary.

5
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2.1 Introduction

To characterize literary style one often relies on the analysis of word frequency counts.

Texts written by an author are treated as samples from his vocabulary and word fre-

quency counts are used to help distinguish his style from the style of others (see, e.g.,

Holmes, 1985). Given that most words appear very few times and very few words are

repeated many times, word frequency count data have reverse J-shaped distributions

with extraordinarily long upper tails.

Typically, the process generating frequency count data can be modelled through a two

stage process, with each count being Poisson distributed but with an expected value

randomly changing from count to count with a distribution that relates to the class

frequency distribution in the population. That naturally leads one to the use of Poisson

mixture models for this kind of data.

The inverse Gaussian-Poisson mixture model was introduced by Holla (1966) to model

highly skewed non-negative integer data, and it has been widely used ever since in many

different fields of application involving frequency count data. In particular, this model

has been widely used in the analysis of the frequency of word or species frequency data

ever since Sichel (1975), where given that one can not count unobserved words or species

it is necessary to truncate this model at zero. Even though this model is typically

recommended because it provides good fits, what makes it useful is that it allows one

to interpret the inverse gaussian mixing distribution as the distribution of the word

frequencies of the vocabulary from which the text is coming from.

The first goal of the paper is to propose a Bayesian analysis based on this statistical

model, and to illustrate how it allows one to use the posterior distribution of the inverse

of the mean and of measures of the variability of the model mixing distribution to

estimate the size and lack of diversity of vocabulary. The second goal is to explore

the usefulness of an alternative Bayesian analysis based on the statistical model that

results from switching the mixing and the truncation stages and leading to the inverse

Gaussian-Truncated Poisson mixture model.

The paper is organized as follows. Section 2.2 describes word frequency count data

and it motivates the use of the truncated inverse gaussian-Poisson mixture model in

the analysis of that type of data. Section 2.3 proposes a Bayesian analysis based on

this later model and it uses it on the word frequency counts of texts by Macaulay,

Carroll, Wells and Doyle. The validity of this Bayesian model is checked by exploring

the posterior distribution of the Pearson errors and by implementing various posterior
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predictive consistency checks. The texts considered were purposely chosen to be long to

test the limitations of the model and to illustrate the type of departures found through

the model checking diagnostic tools proposed as part of the Bayesian analysis. Section

2.3 also investigates the role that the posterior distribution of the model mixing density

plays as an approximation of the posterior distribution of the density of vocabulary, and

its use as a fingerprint of the literary style of the author in his texts.

Section 2.4 considers an alternative analysis based on the inverse gaussian-truncated

Poisson mixture model, first considered in Puig, Ginebra and Font (2010). In Section

2.5 the two analysis are compared based on the posterior distribution of the sum of

the squares of the Pearson errors and on the value taken by overall goodness of fit test

statistics; even though the analysis in Section 2.4 based on the model that first truncates

and then mixes is not as meaningful as the one in Section 2.3 based on the model that

first mixes and then truncates, because it does not allow one to link the data with the

distribution of the word frequencies of the vocabulary of the author, this alternative

model fits some of the word frequency count data sets a bit more accurately than the

usual inverse gaussian-Poisson model. Finally, Section 2.6 ponders some of the practical

implications of what is exposed in the paper.

2.2 Word frequency count data and statistical model

2.2.1 Description of the data

To characterize the style of an author through its vocabulary the basic assumption made

is that the author has available a list of all the words that he knows, and that the i-th

word in that list is characterized through the proportion of times that that word would

be found in a text of infinite length by that author, which is denoted by πi. The set of

probabilities πj when j ranges over all the v words known by an author, (π1, . . . , πv),

with
∑v

i=1 πi = 1, constitute the distribution of the vocabulary of that author.

For mathematical convenience, one treats the πj’s as a continuous variable with a density

function ψ(π). This frequencies density function characterizes the vocabulary of the

author and it should be of interest to anyone characterizing the style of an author. In

particular, the larger the number of words in the vocabulary of an author, v, the smaller

the πj’s, which links a small expected value for ψ(π) with a rich vocabulary. Furthermore,

given v, the closer the distribution (π1, . . . , πv) is to the uniform distribution, the more

peaked ψ(π) is around 1/v, which links variability of ψ(π) with lack of diversity of
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vocabulary, as recently discussed in detail in Ginebra and Puig (2010).

As an approximation, texts written by an author will be treated as if they were random

samples drawn from his vocabulary. If one denotes the total number of words (tokens) in

a given text by n, the number of occurrences of the i-th word by ni, and the proportion

of occurrences of that word in that text by π̂i = ni/n, the expected value of π̂i is πi.

Let vn denote the number of different words (types) in a text of size n, and let vr:n denote

the number of different words appearing exactly r times in it. The proportion of different

words appearing exactly r times in a text of size n will be denoted by p̂r:n = vr:n/vn and

its expectation, which depends on n, will be denoted by pr:n.

By counting the number of words used once, v1:n, the number of words used twice,

v2:n, and so on, one obtains the vector (v1:n, v2:n, . . . , vn:n) of word frequency counts.

Table 2.1 presents the word frequency count for the nouns in the Macaulay’s essay on

Bacon, considered in Sichel (1975), and of all the words in a Turkish archeology text, in

Alice in Wonderland and in Through the Looking Glass by Carroll, in The Hound of the

Baskervilles by Doyle, and in The War of the Worlds by Wells, which are all considered

in Baayen (2001). Other than for the essays on Bacon, in these data sets all parts of

speech are counted including articles, prepositions, conjunctions, nouns, adjectives, verbs

and adverbs.

For example, the third row in Table 2.1 indicates that Alice in Wonderland has a total

of n = 26505 words out of which vn = 2651 are different words; in it 1176 words appear

once, 402 words appear twice, 233 words appear three times and so on, with the most

frequent word appearing 1631 times. Given that most of the words appear only a few

times and few words are repeated many times, the distribution of (v1:n, v2:n, . . . , vn:n) is

reverse J-shaped with a very long upper tail.

2.2.2 The zero truncated IG-Poisson mixture model

If a specific word, i, has a probability πi of being used each time that an author writes

a word, the number of times that this word appears in one of its texts with a total of n

words would be distributed as a binomial(n, πi). Hence, if its distribution of vocabulary

was ψ(π), the probability that a word from that vocabulary appears exactly r times in

a text of size n, pr:n, can be modelled through a ψ(π)-binomial mixture model. Usually

n will be large and all the πi will be small, and one can approximate pr:n through a

ψ(π)-Poisson mixture model.
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v1:n v2:n v3:n v4:n v5:n v6:n v7:n v8:n v9:n v10:n v11:n . . . n vn
Turkish A. 2326 477 178 107 53 33 22 26 7 7 12 . . . 6939 3302

E. Bacon 990 367 173 112 72 47 41 31 34 17 24 . . . 8049 2048

Alice in W. 1176 402 233 154 99 57 65 52 32 36 23 . . . 26505 2651

Through L. 1491 460 259 148 113 78 61 47 28 26 26 . . . 28767 3085

Hound B. 2836 889 449 280 208 137 116 92 86 52 48 . . . 59241 5741

War of W. 3613 1138 567 340 250 177 135 93 72 67 44 . . . 59938 7112

Table 2.1: Part of the word frequency count data sets of the nouns in the Macaulay’s

essay on Bacon, and of all the words in a Turkish archeology text, in Alice in Wonderland,

in Through the Looking Glass, in The Hound of the Baskervilles and in The War of the

Worlds.

Given that one can not count the words that an author knows but are not observed in

the text, one needs to consider the zero truncated version of it,

ptpmr:n =
1

1−
∫
R+ e−nπψ(π)dπ

∫
R+

(nπ)re−nπ

r!
ψ(π)dπ, for r = 1, 2, . . . . (2.1)

This argument entitles one to interpret the model mixing density ψ(π) as the density of

the word frequencies of the vocabulary. Following a recommendation in Good (1953) ,

Sichel (1975, 1986a) models the mixing distribution through an inverse gaussian distri-

bution, denoted by IG(b, c), which is defined on R+ and has a density function

ψ(π|b, c) =
b

2

√
c

pi
ebπ−3/2e−

π
c
− b

2c
4π , (2.2)

where b is in (0,∞), c is in (0,∞), and where pi is the known irrational number. Even

though the support of (2.2) is (0,∞), under the values of (b, c) that one considers in

practice (2.2) is negligible for π > .1. For details on this distribution see for example

Seshadri (1998).

By replacing (2.2) in (2.1) and solving the integral one obtains that the probability

function of the zero truncated IG-Poisson mixture model is

ptigpr:n (b, c) =
1

(1 + cn)−1/4K−1/2(b)−K−1/2(b
√

1 + cn)

(1
2

bcn√
1+cn

)r

r!
Kr−1/2(b

√
1 + cn),

(2.3)

for r = 1, 2, . . ., where Ka(·) is the modified Bessel function of the third kind of order

a. The support of (2.3) is unbounded but in practice ptigpr:n (b, c) dies out very fast with

increasing r. This two parameter model is actually a special case of the three parameter

generalized inverse gaussian-Poisson mixture model considered in Sichel (1975).
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Sichel (1975, 1986a), Pollatschek and Radday (1981), Holmes (Holmes1992), Holmes

and Forsyth (1995), Baayen (2001) and Riba and Ginebra (2006) fit this model to word

frequency count data, and find that it provides very good fits when the texts are in

English and have less than n = 10000 words. The texts considered in this paper were

purposely chosen to have n larger than that in order to illustrate the type of departures

from the model found through the model checking diagnostic tools considered next.

2.3 Bayesian analysis based on the zero truncated

IG-Poisson

2.3.1 Posterior distributions

If one assumes that word frequencies are independent and identically distributed as a

zero truncated IG-Poisson distribution, the likelihood function is such that:

Ltigp(v1:n,...,vn:n)
(b, c) ∝ Πr(p

tigp
r:n (b, c))vr:n , (2.4)

and the posterior distribution of (b, c), is

π(b, c|Data) ∝ π(b, c)Ltigp(v1:n,...,vn:n)
(b, c), (2.5)

where π(b, c) is the prior distribution. We report the results based on a reference prior

assuming that b and c are independently distributed Gamma(.001, .001).

The posterior distribution (2.5) is too complex to be computed analytically. Instead, we

simulated samples from the posterior distribution of (b, c) through the Markov Chain

Monte Carlo method implemented through WinBUGS (Spiegelhalter et al., 2003). Un-

fortunately, not all the distributions needed to simulate from our models are available

in WinBugs. To solve this problem one can use the WinBUGS Development Interface

(Lunn, 2003; Wetzels et al., 2009) to program functions and distributions that are un-

available in WinBUGS; in particular for this model we used this WBDev to simulate

from the zero truncated IG-Poisson.

We have monitored the convergence of every chain by visual inspection of graphical

histories and by computing the R̂ statistic proposed by Gelman and Rubin (1992) based

on four initially overdispersed sampling chains. The burning period of 4000 iterations has

been determined from this preliminary analysis, by checking that it is what is required

for the R̂ statistic to be less than 1.05 for all parameters. The MCMC based estimation
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has been performed with the subsequent 2500 values of each series. Our descriptions of

posterior distributions are thus based on sample size of 10000 values.

Figure 2.1 presents samples from the posterior distributions of (b, c) for the word fre-

quency count data sets in Table 2.1, under our reference prior. That figure also presents

a non-parametric kernel posterior density estimate based on these samples. When we

tried different priors, we obtained very similar results, which is a combined consequence

of having word frequency count data sets from very large texts and hence being very

informative, coupled with the lack of information about (b, c) in the prior distribution

used. That also explains that, except for the Turkish archeology text, all the posterior

distributions have a very normal like behavior.

For the Turkish archeology text the maximum likelihood estimate of (b, c) is (0., 0.0013),

on the boundary of the parameter space, which explains that its posterior distribution

is concentrated near that boundary. For these situations, Puig et al. (2009) proposes

an extension of the parameter space of the IG-Poisson model that allows for better

model fits but which does not allow one to interpret the extended part of the model as

a Poisson mixture model, and hence it does not allow one to make inferences about the

model mixing distribution.

2.3.2 Model checking

To check the validity of the model we explore the posterior distribution of the Pearson

errors,

εpr:n(b, c) =
vr:n − vnpr:n(b, c)√

vnpr:n(b, c)
(2.6)

for each category r. To compute these errors the categories were aggregated the least so

that the posterior expected count in each category was at least 5.

The samples from the posterior distributions of εpr:n(b, c), in Figure 2.2, indicate that

this model fits the word frequency count data of the Essays on Bacon very well, and it

fits the word frequency count data of Alice in Wonderland and of Through the Looking

Glass fairly well.

It is also clear from Figure 2.2 that for the Turkish archeology text this model sys-

tematically leads to positive errors, (and therefore larger observed vr:n counts than the

expected vnpr:n(b, c) counts), for all the categories except for r = 1 and for the categories

representing the tail of the distribution for which negative errors with anomalously large
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Turkish Archeology Text Essay on Bacon

Alice in Wonderland Through the Looking Glass

The Hound of the Baskervilles The War of the Worlds

Figure 2.1: Sample of 10000 observations from the posterior distribution of (b, c) under

the truncated IG-Poisson model, in (2.3), with independent Gamma(.001, .001) priors

for b and c, together with a non-parametric posterior density estimate based on those

samples.
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absolute values occur.

To a smaller degree, these features are repeated in the posterior of the εpr:n(b, c)’s for The

Hound of the Baskervilles and The War of the Worlds, with the only difference that for

them systematic negative errors with anomalously large absolute values happen for a few

small r categories but not for r = 1. This partial failure follows from the fact that these

two texts have a total of almost 60.000 words each, which puts them outside the range

of applicability of this simple two parameter model because it fails to capture the large

over-dispersion present in word frequency count data for texts of this length.

To further understand where does this model fail when it does, posterior predictive

consistency checks were implemented along the lines advocated for in chapter 6 of Gelman

et al. (2004). The idea is that if the model is accurate, replicates of the data obtained

by simulation from the Bayesian model should look similar to the observed data. To

simulate replicates of the data using the Bayesian model, we simulated a sample of

10000 (b, c)’s from its posterior distribution and for each simulated (b, c) we used the

corresponding IG(b, c) distribution as if it was the vocabulary distribution and simulated

a word frequency count set from it forcing all the simulated count sets to have the same

total number of words, n, as the observed sample. To quantify the discrepancy between

simulated and observed data we compared the number of words appearing once, v1:n,

the number of words appearing twice, v2:n, and the total number of different words, vn,

in the various samples of the simulated data and in the observed data.

Figure 2.3 presents the results from these checks. Observe that this model only fails

to explain the number of words observed once, v1:n, for the Turkish archeology text for

which almost all the simulated word frequency count data set samples have less than the

3302 words observed once in it. This Bayesian model adequately explains the number

of different words, vn, and the number of words observed twice, v2:n, even though for

the two longest texts the simulated values for v2:n tend to be smaller than the observed

values.

2.3.3 Density, richness and diversity of vocabulary

The main advantage in using the zero truncated Poisson mixture models is that they

allow one to interpret the mixing density as the density of the vocabulary of the author.

When the Bayesian analysis based on the truncated IG-Poisson model reproduces ad-

equately the features of interest in the data, one can use the posterior distribution of

the density of IG(b, c) as an approximation to the posterior distribution of the density



Chapter 2. Bayesian Analysis of Frequency Count Data 14

1 3 5 7 9 11 13 15 17 19

−
4

−
2

0
2

4

r

Turkish Archeology

1 3 5 7 9 11 13 15 17

−
4

−
2

0
2

4

r

Essay on Bacon

1 5 9 14 19 24 29 34 39 44 49 54 59

−
4

−
2

0
2

4

r

Alice in Wonderland

1 5 9 14 20 26 32 38 44 50 56 62

−
4

−
2

0
2

4

r

Through the Looking Glass

1 7 14 22 30 38 46 54 62 70 78 86

−
4

−
2

0
2

4

r

The The Hound of the Baskervilles

1 7 14 22 30 38 46 54 62 70 78 86

−
4

−
2

0
2

4

r

The War of the Worlds

Figure 2.2: Box-plots of samples of 10000 observations from the posterior distribution of

the Pearson errors, εpr:n(b, c), under the zero truncated IG-Poisson model, in (2.3), with

independent Gamma(.001, .001) priors for b and c.
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Figure 2.3: Observed value and sample of 10000 observations from the posterior predic-

tive distribution of v1:n, of v2:n and of vn under the zero truncated IG-Poisson model, in

(2.3), with independent Gamma(.001, .001) priors for b and c.
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of vocabulary of the author.

Figure 2.4 presents samples from the posterior distribution of the model mixing IG(b, c)

density function for the data in Table 2.1, together with the densities of the IG(b̂pm, ĉpm)

distribution summarizing those samples, where (b̂pm, ĉpm) is the posterior mode for (b, c)

obtained by maximizing the kernel joint density estimate in Figure 2.1. Given that the

analysis based on the truncated IG-Poisson model does not capture the main features

of the word frequency counts in the Turkish archeology text and in the two longest texts

well, one should interpret the samples of the posterior distribution of the mixing densities

for these texts with caution.

One could compare these density samples with the help of functional data analysis tools

(Ramsey and Silverman, 2005), but it is better to summarize them through real valued

quantities that help characterize literary style. In particular, Note that the smaller the

values of the πj’s, the larger the total number of words in it, v, the smaller the expected

value of the πj’s under ψ(π), and the richer the vocabulary. Sichel (1986a, 1986b)

proposes estimating the size v through the closest integer to

v(ψ) =
1

Eψ[π]
=

2

bc
, (2.7)

where the last equality holds only when ψ(π) is the IG(b, c).

To measure the diversity of (π1, . . . , πv), note that given v, the higher and narrower

the peak of ψ(π), the closer the vocabulary distribution (π1, . . . , πv) is to the uniform

distribution, the smaller the variability of the πj’s under ψ(π) and the more even and

diverse the distribution of vocabulary. Simple measures of the diversity of the vocabulary

of the author would be the negative or the inverse of V arψ[π] or of any other measure

of the variability of ψ(π), like

e(ψ) = − log V arψ[π] = − log
bc2

4
, (2.8)

where the last equality holds only when ψ(π) is the IG(b, c) distribution. Another useful

measure of the diversity in (π1, . . . , πv) is the Gini-Simpson index, D1(π1, . . . , πv) =

1 −
∑v

i=1 π
2
i , which is the probability that two words picked at random from a text of

infinite length would be different. If one assumes that the πj’s are identically distributed

as ψ(π). The expected value of this index is:

D1(ψ) = 1−
v∑
i=1

Eψ[π2] = 1− c

2
(1 + b), (2.9)

where the last equality holds only when ψ(π) is the IG(b, c) distribution. For more details

on the relationship between measuring the variability of ψ(π) and measuring the lack of
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diversity of the corresponding vocabulary or population, see Ginebra (2007) and Ginebra

and Puig (2010).

Figure 2.5 presents samples from the posterior distribution of log10 v(ψ), of e(ψ) and

of D1(ψ). We also sampled from the posterior distribution of the expectation of the

entropy of (π1, . . . , πv), which is another measure of the diversity in the vocabulary of

the author, but it had a huge dispersion and it was not as useful as the Gini-Simpson

index based measure.

According to Figure 2.5 the richest vocabulary is the one from which the Turkish arche-

ology text was produced. That figure also indicates that the word frequency count set

coming from the least rich vocabulary seems to be one for the essays on Bacon, which

makes a lot of sense because that is the only case in which word frequency counts refer

only to the names in the text and not to all types of words. According to that figure the

texts by Carroll, Alice in Wonderland and Through the Looking Glass are the ones that

come from the least diverse vocabulary of all the texts under consideration.

A non-Bayesian way of assessing richness and diversity of vocabulary would estimate

(2.7), (2.8) and (2.9) by replacing (b, c) by its maximum likelihood estimator, which

would be close to the posterior modes for v, e and D1. The advantage of the Bayesian

way of assessing richness and diversity of vocabulary through Figure 2.5 is that it also

provides a convenient estimate of the uncertainty in those richness and diversity measure

estimates, which is something that is a lot more difficult to obtain in the non-Bayesian

setting.

2.4 Bayesian analysis based on the IG-Truncated Pois-

son

As an alternative to (2.1) the order of the mixing and the truncation stages can be

switched, leading to a mixture of the truncated Poisson model. That is, let the proba-

bility of a word being repeated exactly r times in a text of size n be modelled through

pmtpr:n =

∫
R+

(nπ
′
)re−nπ

′

(1− e−nπ′ )r!
ψ
′
(π
′
)dπ

′
, for r = 1, . . . , n. (2.10)

As discussed in Puig, Ginebra and Font (2010), the model mixing density ψ
′
(π
′
) in (2.10)

represents the vn words that have appeared at least once in the given text of size n, and

not all the v words in the vocabulary of the author. Hence here ψ
′
(π
′
) heavily depends
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Figure 2.4: Samples of 25 densities of the posterior distribution of the mixing

density, IG(b, c), under the zero truncated IG-Poisson(b, c) model with independent

Gamma(.001, .001) priors for b and c. The density in red is the one of IG(b̂pm, ĉpm).

These samples serve as an approximation to the posterior distributions of the density of

vocabulary of the authors.
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Figure 2.5: Box-plots of samples of 10000 observations from the posterior distribution of

log10 v(ψ), which measures the richness, and of e(ψ) = − log10 V arψ[π] and D1(ψ), which

measure the diversity of the vocabulary of the author. The model is the zero truncated

IG-Poisson with independent Gamma(.001, .001) priors for b and c.

on the text size n and it can not be interpreted as the density of vocabulary of the author

in the way the mixing density ψ(π) associated with (2.1) was interpreted in subsection

2.3.3. That puts the IG-Truncated Poisson model in a disadvantage when it is compared

with the truncated IG-Poisson model.

The model obtained from (2.10) when ψ
′
(π
′
) is an inverse gaussian distribution, IG(b, c),

is the IG-TruncatedPoisson mixture model and the corresponding pr:n is denoted as

pigtpr:n (b, c).

The right panel of Figure 2.6 presents samples from the posterior distribution of (b, c)

for the word frequency count data in Table 2.1, assuming that the likelihood function is

proportional to:

Ligtp(v1:n,...,vn:n)
(b, c) ∝ Πr(p

igtp
r:n (b, c))vr:n , (2.11)

and that the prior is such that b and c are independent Gamma(.001, .001). The pos-

terior distribution here is again too complex to be computed analytically, and we again

simulated samples from the posterior distribution of (b, c) through the MCMC method

implemented through WinBUGS (Spiegelhalter et al., (2003). Here we used the WBDev

Interface (Lunn, 2003; Wetzels et al., 2009) to simulate from the inverse gaussian distri-

bution and from the zero-truncated Poisson distribution because they were not originally

available in WinBugs.

Bayesian analysis based on truncated mixture models are easier to interpret than the
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ones based on the mixture of truncated models, and yet both approaches can be helpful

when discriminating between the style of different authors as illustrated in Figure 2.6

through the simultaneous representation of samples from the posterior distributions of

(b, c) under both models. Observe that the samples for Alice in Wonderland and for

Through the Looking Glass are very close, in line with the fact that both texts share the

same author.

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0
0.

00
5

0.
01

0
0.

01
5 *

*
*
*
*
*

Bacon
Alice
Through
Hound
War
Turkish

c

b

0.05 0.10 0.15 0.20 0.25 0.30

0.
00

5
0.

01
0

0.
01

5

*
*
*
*
*
*

Bacon
Alice
Through
Hound
War
Turkish

c

b

Figure 2.6: Samples of 10000 observations from the posterior distribution of (b, c)

under the truncated IG-Poisson model, in the left hand side panel, and under the

IG-TruncatedPoisson model, in the right hand side panel, both under independent

Gamma(.001, .001) priors for b and c and for the word frequency count sets in Table

2.1.

The posterior of (b, c) for the Turkish archeology text in the right panel of Figure 2.6,

is not concentrated near the boundary the way it is for the posterior of (b, c) in the

left panel of Figure 2.6, because the maximum likelihood estimate of b under the IG-

Truncated Poisson model is not in that boundary. The strong inverse dependence in the

posterior distributions of (b, c) in the right hand side panel of Figure 2.6, which is not

present in the posterior distributions in the left hand side panel of that same Figure 2.6,

follows from the fact that here the mixing ψ
′
=IG(b, c) distribution represents only the

observed vocabulary with a size known to be vn, which links b and c through vn = 2/bc,

as in (2.7).

Figure 2.7 explores the posterior distribution of the Pearson errors in (2.6), εpr:n(b, c),

for the same aggregated categories used in Figure 2.2. The samples of the posterior

of εpr:n(b, c) for the Turkish archeology text and for the essays on Bacon indicate that
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this model fits their word frequency counts very well. That figure also indicates that

the model fits the word frequency counts of Alice in Wonderland and of Through the

Looking Glass fairly well, only mildly failing with the frequency of a few categories with

a small r and with the frequency of the category of the most frequent words. These mild

failures become more serious for the two longest texts, which require three parameter

models.

Figure 2.8 presents the results of the posterior predictive consistency checks described

in Section 2.3 for this alternative Bayesian IG-TruncatedPoisson model. Different from

what happens in Figure 2.3, here the word frequency counts simulated under this model

have values for v1:n, v2:n and vn that closely match the observed values for all the six

texts considered.

2.5 Model comparison

The truncated mixture models in (2.1), like the one in Section 2.3, are more natural to

formulate and to interpret than the mixture of truncated models in (2.10), like the one

in Section 2.4, because they let one make inferences about the density of the vocabulary

of the author. Nevertheless, the later models might be theoretically easier to treat and

they might yield better fits.

One could formally chose between the Bayesian models in Sections 2.3 and 2.5 by comput-

ing the corresponding Bayes factor, but it is more meaningful to compare them through

the posterior distribution of their Pearson errors in Figures 2.2 and 2.7, because that

points towards the differing behavior of both models. In our case for example, Figure

2.7 indicates that the IG-Truncated Poisson model captures the overdispersion in the

word frequency counts of the Turkish archeology text and of the two longest texts than

the truncated IG-Poisson model, which is a fact that would be missed by just computing

the Bayes factor.

To compare their overall goodness of fit one can also explore the posterior distribution

of the sum of the squares of their Pearson errors,

χ2(b, c) =
∑
r

εpr:n(b, c)2 =
∑
r

(
vr:n − vnpr:n(b, c)√

vnpr:n(b, c)
)2. (2.12)

The samples of the posterior distribution of χ2(b, c) in Figure 2.9 indicate that the

alternative IG-Truncated Poisson model provides a better overall fit than the truncated

IG-Poisson model for the word frequency count data sets of the Turkish archeology text
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and of the two longest texts in Table 2.1. The performance of these two models on the

word frequency count data sets of the essays on Bacon and of the two texts by Carroll

is very similar. Note that, differently from what happens in the non-Bayesian model

comparison approach based on the values adopted by goodness of fit test statistics, the

posterior distributions in Figure 2.9 capture the degree of the uncertainty behind the

conclusion reached.

Table 2.2 presents the posterior modes for (b, c), (b̂pm, ĉpm), obtained by maximizing the

smoothed estimate of the joint posterior densities for (b, c) in Figures 2.1 and 2.6, next

to their maximum likelihood estimates, (b̂ml, ĉml), under both models. Note that these

two estimates are very similar. Table 2.2 also includes the maximum of the loglikelihood

function and the values taken by the goodness of fit test statistic obtained as the sum of

the squares of the Pearson residuals,

X2(b̂, ĉ) =
∑
r

(
vr:n − vnpr:n(b̂, ĉ)√

vnpr:n(b̂, ĉ)
)2. (2.13)

To evaluate it the categories are aggregated the least so that their expected count is at

least 5. An alternative goodness of fit test statistic that we have tried is the one obtained

by replacing pr:n(b̂, ĉ) in (2.13) by an estimate of the posterior expected value of pr:n(b, c)

based on a sample from the posterior distribution of (b, c).

The values in Table 2.2 are in agreement with the conclusions reached elsewhere. The

truncated IG-Poisson model in Section 2.3 fits the count data sets of the essays on Bacon

and of the two texts by Carroll fairly well. On the other hand the IG-Truncated Poisson

model in Section 2.4 fits fairly well the count data sets of all the texts except the ones

of the two longest texts, which are still better fit by this model than by the model in

Section 2.3.

2.6 Concluding remarks

The zero truncated IG-Poisson(b, c) model used in Sections 2.3 is known to provide

good fits for word frequency count data sets from texts with less than 10000 words.

Nevertheless, we purposely chose to illustrate our Bayesian analysis based on this two-

parameter model with data from texts that are considerably longer than that in order

to test the limits of this model and to check the model checking diagnostic tools. Even

though we were surprised by the flexibility allowed by this simple two-parameter model,

we indeed find this model fails to capture the large degree of overdispersion present in

the count data from the longer texts.
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Figure 2.7: Box-plots of samples of 10000 observations from the posterior distribution

of the Pearson errors, εpr:n(b, c), under the IG-TruncatedPoisson model with independent

Gamma(.001, .001) priors for b and c.
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Figure 2.8: Observed value and sample of 10000 observations from the posterior predic-

tive distribution of v1:n, of v2:n and of vn under the IG-Truncated Poisson model with

independent Gamma(.001, .001) priors for b and c.
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Text Model b̂ml ĉml max lglik X2(b̂ml, ĉml) b̂pm ĉpm X2(b̂pm, ĉpm)

Turkish Tr.IG-Poiss 0. .0013 -3882.65 88.68 (19) .00056 .0013 89.31 (19)

IG-TrPoiss .1458 .0027 -3831.61 35.10 (22) .1495 .0026 33.92 (22)

E. Bacon Tr.IG-Poiss .0836 .0037 -4008.89 17.69 (30) .0739 .0037 17.75 (29)

IG-TrPoiss .2228 .0038 -4008.86 18.91 (30) .2169 .0040 19.53 (30)

Alice Tr.IG-Poiss .0229 .0095 -6281.12 85.85 (59) .0195 .0097 86.83 (59)

IG-TrPoiss .0734 .0098 -6283.07 90.56 (59) .0702 .0106 85.19 (60)

Through Tr.IG-Poiss .0119 .0089 -6887.62 82.56 (61) .0100 .0091 83.32 (61)

IG-TrPoiss .0635 .0097 -6887.45 88.76 (61) .0645 .0094 85.12 (61)

Hound Tr.IG-Poiss .0068 .0057 -12445.73 181.26 (89) .0057 .0058 186.03 (89)

IG-TrPoiss .0515 .0064 -12437.07 175.66 (88) .0524 .0063 176.43 (88)

War Tr.IG-Poiss .0061 .0038 -14654.54 216.11 (90) .0048 .0039 216.07 (90)

IG-TrPoiss .0598 .0044 -14631.83 188.88 (90) .0592 .0045 188.62 (90)

Table 2.2: Maximum likelihood estimate, (b̂ml, ĉml), and posterior mode, (b̂pm, ĉpm), max-

imum of the log-likelihood function, and X2(b̂, ĉ) goodness of fit test statistics for the

posterior mode and maximum likelihood fits, under the truncated IG-Poisson and the

IG-Truncated Poisson models with independent Gamma(.001, .001) priors for b and c.

Between brackets, the number of categories that intervene in the computation of X2(b̂, ĉ).

The large amount of information in word frequency count sample data from texts with

more than 10000 words would over-ride the information that one might want to incorpo-

rate into the analysis through informative priors making use of substantive information

about literary style. That is why instead of requiring more informative priors, a more

precise Bayesian analysis of word frequency counts in longer texts requires that it be

based on more flexible three parameter Poisson mixture models with mixing distribu-

tions that better adapt to the typical word frequency distributions of the vocabulary of

most authors.

The first candidate that comes to mind for that is the three parameter zero truncated gen-

eralized inverse Gaussian-Poisson model considered in Sichel (1975, 1986a). A Bayesian

analysis based on this model would be very convenient computationally speaking, be-

cause the generalized inverse Gaussian distribution is a conjugate prior for the Poisson

model. A different Bayesian analysis for word frequency count data from texts with more

than 10.000 words could be based on the zero truncated version of the three-parameter

Tweedie-Poisson mixture model first considered by Gerber (1991) and Hougaard et al.

(1997).

One nice feature of both the extended approach based on the generalized inverse gaussian

mixing model as well as of the one using the Tweedie mixing model is that both mixing
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models include the gamma and the inverse gaussian models as special cases. Hence by

resorting to either one of these three-parameter Poisson mixture models one can always

test wether the simpler negative binomial or inverse gaussian-Poisson models provide a

good enough fit for any particular word frequency count data set analyzed.

Under either one of these extended approaches we recommend the use of the three-

parameter models obtained by first mixing the Poisson model and then truncating it,

which generalize the approach in Section 2.3, instead of the models obtained by first

truncating the Poisson model at zero and then mixing it as in Section 2.4. Thanks to

the flexibility gained through the additional parameter it is expected that one will obtain

good fits for counts from long texts in either case, but using models that mix first and

truncates later allows one to estimate the frequency distribution in the population, which

is not the case if one uses models truncating first and mixing later.

Even though the usefulness of the bayesian analysis of frequency count data using Poisson

mixture models, with a focus on the use of the mixing distribution, has been illustrated in

the context of the analysis of word frequency count data in stylometry, everything can be

trivially extended to the analysis of frequency of frequency data in many other fields. In

particular, this type of analysis should be very useful when modelling species frequency

count data in ecology, with the goal of learning about the species distribution in the

population of an ecosystem, and in particular about the size, evenness and diversity of

that population.
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Chapter 3

Classification of Literary Style that

Takes Order into Consideration

The statistical analysis of the heterogeneity of the style of a text often leads to the

analysis of contingency tables of ordered rows. When multiple authorship is suspected,

one can explore that heterogeneity through either a change-point analysis of these rows,

consistent with sudden changes of author, or a cluster analysis of them, consistent with

authors contributing exchangeably, without taking order into consideration. Here an

analysis is proposed that strikes a compromise between change-point and cluster analysis

by incorporating the fact that parts close together are more likely to belong to the same

author than parts far apart. The approach is illustrated by revisiting the authorship

attribution of Tirant lo Blanc.

3.1 Introduction

The statistical analysis of literary style has often been used to settle authorship attribu-

tion problems both in the academic as well as in the legal context. Early work used word

length and sentence length to characterize literary style. Other characteristics widely

used for this purpose have been the proportion of nouns, articles or adjectives, the fre-

quency of use of function words, which are independent of the context, and the diversity

of the vocabulary used by the author. As a consequence, data in this context is almost

always categorical.

In the particular case where one suspects that there might be more than one author, one

typically carries out an heterogeneity analysis of the style of the text or corpus of texts

29
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after splitting it down into smaller pieces. Under most of the stylometric characteristics

listed above, that leads to the analysis of a contingency table that will often have ordered

rows, with each row corresponding to a different piece of the text or corpus, and each

column corresponding to the counts of a given category, like of a function word or words

or sentences of a given length.

One approach to that problem is through single change-point analysis, assuming that the

ordered rows share style and hence the same distribution all the way up to a given point

of the row sequence, where the author changes and hence the style and that distribution

changes and stays the same for the remaining sequence of rows in the table. The goal in

that type of analysis is estimating both the change-point, as well as the before and after

the change-point distributions that help characterize the differences in style between

authors. This naturally generalizes to multiple change-point analysis, and it is useful in

settings where one can assume that the change of author has been sudden.

An alternative approach is through cluster analysis, also recognized as unsupervised

classification, which consists on partitioning the rows of the table into groups that are

more homogeneous than the whole and could be sharing the same style, without imposing

any order restriction when forming the groups. That approach can be implemented based

on finite mixture models and it is useful when authors can be assumed to be intervening

exchangeably.

Between change-point analysis that force all consecutive observations except the ones at

change-points to belong to the same group, and cluster analysis, that assign observations

to groups without taking order into consideration, there is a whole range of analysis that

incentive but do not force consecutive observations to belong to the same group. That fits

well the authorship attribution settings where one is willing to assume that consecutive

parts are more likely to belong to the same author than parts that are far apart.

Here one such analysis is proposed based on an extension of the finite mixture models

that incorporate the fact that the role of authors could be changing along the text. By

letting neighboring observations be related, the model will also capture the correlation

that one expects to find as a consequence of the way the writing process works.

Most of the alternative classification methods that are used in the literature of authorship

attribution and of the analysis of the heterogeneity of literary style assume data to

be continuous, when in practice most of the time data is categorical. We avoid that

continuity assumption. Furthermore, the usual classification methods employed by the

authorship attribution literature use ad hoc heuristic partitioning algorithms that tend

to be easy to apply and work well, but do not allow one to assess cluster uncertainties
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and do not provide rigorous inference based methods to allocate individual observations

to clusters, (see, e.g., Kaufman and Rousseeuw, 1990, Gnanadesikan, 1997, or Gordon,

1999).

Instead, in this manuscript Bayesian model based clustering approaches are adopted, un-

der which observations are assumed to come from one of two sub-populations, each with

a distinctive distribution. These approaches provide a complete probabilistic framework

assuming a finite mixture model under which observations (texts) belonging to the same

cluster (author) have the same distribution, and then estimating the mixed distributions

and assigning observations to these distributions. Each one of the two distributions in-

volved in the mixture characterize each one of the two styles. Model based approaches

simultaneously group objects and estimate the distribution of each group, and that avoids

the biases appearing whenever these two stages are tackled separately.

Model based Bayesian methods also have the advantage over the usual heuristic classifi-

cation methods of providing a measure of the uncertainty in the allocation of individual

observations into clusters, and of casting the decision of the number of clusters (authors)

as a statistical testing problem. Good introductions to Bayesian and non Bayesian model

based classification methods can be found in Bock (1996), McLachlan and Peel (2000)

and Fraley and Raftery (2002).

To illustrate our novel approach, the authorship attribution problem of Tirant lo Blanc

will be revisited by analyzing the word lengths and the use of function words in its

chapters, and the results will be compared with the ones of the change-point and cluster

analysis of this data carried out in Giron, Ginebra and Riba (2005).

The paper is organized as follows. Section 3.2 presents the authorship attribution prob-

lem that will be used to illustrate the method and motivate its need. In Section 3.3

the model proposed is presented and compared with the multinomial change-point and

cluster models. In Section 3.4 the results of the analysis for Tirant lo Blanc is presented,

and in Section 3.5 possible extensions are discussed.

3.2 Description of the authorship problem

Tirant lo Blanc is a chivalry book written in catalan, hailed to be “the best book of its

kind in the world” by Cervantes in El Quixote, and considered by many to be the first

modern novel in Europe, (see, e.g., Vargas Llosa, 1991, 93). The main body of the book

was written between 1460 and 1464, but it was not printed until 1490, and there has been

a long lasting debate around its authorship, originating from conflicting information in
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its first edition.

Where in the dedicatory letter at the beginning of the book it is stated that “So that

no one else can be blamed if any faults are found in this work, I, Joanot Martorell, take

sole responsibility for it, as I have carried out the task singlehandedly,” in the colophon

at the end of the book it is stated that “Because of his death, Sir Joanot Martorell could

only finish writing three parts of it. The fourth part, which is the end of the book, was

written by the illustrious knight Sir Mart́ı Joan de Galba. If faults are found in that part,

let them be attributed to his ignorance.” Over the years, experts have split between the

ones defending the existence of a single author for all its 487 chapters, in line with the

dedicatory letter, and the ones backing a change of author somewhere between chapters

350 and 400, in line with the colophon. For a detailed overview of this debate, see Riquer

(1990).

It is well accepted by all medievalists that the main (and maybe single) author, Joanot

Martorell, died in 1465, and did not start work on the book before 1460, and that if

there were any additions, they would be close to the end of the book and made by the

second author much later, when the book was printed in 1490. Neither Martorell nor

the candidate to be the book finisher left any other texts comparable with this one.

An analysis of the diversity of the vocabulary carried out in Riba and Ginebra (2006)

finds that it becomes significantly less diverse after chapter 383. Giron et al (2005)

carried out a multinomial change-point analysis and a multinomial two-cluster analysis

based on word lengths and on the frequency of words that do not depend on context,

called function words; under both characteristics a stylistic boundary is detected between

chapters 371 and 382, apparently with a few chapters misclassified by that boundary.

Section 3.1 describes and motivates these two types of analysis. As in these previous

studies, here the edition of Tirant lo Blanc by Riquer is used; after excluding from

consideration the titles of chapters, the quotations in latin and the chapters with less

than 200 words, that leads to the analysis of a total of 398242 words split down into 425

chapters.

The literature on the statistical analysis of style characterized through word length and

through the use of function words is far too large to be covered in detail here. Early uses

of word length can be found for example in Mendenhall (1887), Mosteller and Wallace

(1984), Brinegaar (1963), Bruno (1974), Williams (1975), Morton (1978), Smith (1983)

and Hilton and Holmes (1993). Early uses of function words can be found in some of

these references as well as in Burrows (1987, 92), Holmes (1985, 92), Binongo (1994) or

Oakes (1998). Function words are proven to be more sensitive than word length when

trying to tell authors apart.
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Word length counts

Chapter 1 2 3 4 5 6 7 8 9 10+ Ni wli
1 21 59 44 19 33 20 16 17 9 17 285 4.47

2 53 113 80 49 52 33 28 36 16 16 476 4.14

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

487 48 49 62 53 41 36 21 9 16 13 348 4.20

Function word counts

Chapter e de la que no l com molt és jo si dix

1 12 15 9 8 1 7 2 1 6 0 3 0

2 26 28 19 9 3 2 3 8 3 1 3 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

487 29 13 8 10 2 10 3 9 0 0 0 0

Table 3.1: Part of the 425×10 table of word length counts in chapters of more

than 200 words of Tirant lo Blanc, and of the 425×12 table of counts of twelve

function words in them. Ni is the total number of words and wli is the average

word length. Authors will provide the full data set to anyone requesting it.

In the example of Tirant lo Blanc the analysis of word length leads to the analysis of the

425×10 table of word length counts partially presented in Table 3.1, and the analysis of

the twelve function words used in Giron et al. (2005) leads to the analysis of the 425×12

table of function words partially presented in that table. These twelve function words

were chosen in that paper by first doing a change-point and a cluster analysis of the

chapters of the book based on the 25 most frequent words, and then selecting the subset

of these words that best discriminated between the estimated two groups of chapters.

If the book had been written by a single author, one might expect the proportion of

words of each length and the frequency of use of each function words to be similar in all

chapters. As a consequence, one would expect that once taken into account the fact that

chapters have different lengths, all the rows in each one of the two sub-tables of Table

3.1 would have similar distributions. If instead, the distribution of these rows either

changed suddenly or kept switching back and forth between two different distributions,

it could indicate the existence of a second author that either took over at some point

and completed the book, or contributed chapters all over the book.

Figure 3.1 presents the sequence of the proportions of words of each length in each

chapter, the sequence of the average word length per chapter and the sequence of the

ratio between the number of long words, (with six or more letters), and of short words,

(with less than six letters). Note that, for example, the average word length and the

proportion of single lettered words and of ten or more lettered words seems to be larger

at the end of the book. Figure 3.2 presents the sequence of frequencies of the twelve
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Figure 3.1: Sequence of proportion of words of each length in each chapter of

Tirant lo Blanc, with L = l meaning words of l characters, sequence of average

word length, and sequence of the ratio between the number of long words and

of short words in them.
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Figure 3.2: Frequency of appearance in the chapters of Tirant lo Blanc of the

twelve function words used in the analysis.
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function words selected. Note that there is also a clear shift in the level of use of words

like e, que, no, l, molt, jo or dix towards the end of the book. What is found in both

figures might be consistent both with the existence of two authors and a single change-

point, as well as with the existence of a second author filling in material mostly at the

end of the book.

In some instances, one might explain changes in style through differences in chronology

or topic, specially when one is dealing with works that were written during a long span

of time. In our case though it is known that the main author (single author according

to some) of the book worked on the book during a short span of time, shortly before

his death, and therefore in our example differences in style should not be attributed to

breaks in writing. That the estimated changes in style do not coincide with shifts in

topic needs to be checked after the chapters are classified according to style.

The three models considered next assess whether the observations in these sequences can

be adequately classified into two different populations, each corresponding to a different

style. The first model assumes that the change happens once suddenly, the second model

assumes that the two styles alternate exchangeably all over the text, and the third model

strikes a compromise somewhere in between.

3.3 Description of the models

For each chapter in the book (or part in the corpus of texts), i with i = 1, . . . , n, one has

a vector valued categorical observation, yi = (yi1, . . . , yik), where k denotes the number

of categories of the stylistic characteristic. In our example, yi will be the ten dimensional

vector of word length counts in the i-th chapter, presented as the i-th row in the first sub-

table of Table 3.1, and the twelve dimensional vector of frequency counts of the function

words selected in that chapter, presented as the i-th row in the second sub-table. The

set of all the rows in each sub-table will be denoted by y = (y1, . . . , yn).

Under all the three models considered next, the i-th row of the table, yi, will always

be assumed to be multinomially distributed, Mult(Ni, θi), where Ni =
∑k

j yij denotes

the i-th row total and hence the total number of words considered in that row, and

where θi = (θi1, . . . , θik) is such that
∑k

j=1 θij = 1, with θij being the probability of the

j-th category for the i-th row. In our example k will be ten for the first table of word

lengths and twelve for the second table of function words. Thus, the rows of these two

tables will be considered to form sequences of conditionally independent observations
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with probability density function (pdf):

Mult(yi|Ni, θi) =
Ni!

Πk
j=1yij!

Πk
j=1θ

yij
ij . (3.1)

The vector of probabilities, θi = (θi1, . . . , θik), can be seen as a fingerprint of the style

of the author in his texts, because one expects that on average he will use different

categories of words with the same relative frequencies. That will lead to the texts by the

same author sharing the same set of average probabilities, θi. Under that assumption, θi
characterizes the style of the author while Ni naturally takes into account the text size

and therefore the weight to be allocated in the analysis to each row of each table.

If all the chapters belong to the same author and were written at about the same time, it

is reasonable to expect that they will share the same style and therefore one would expect

the vector of probabilities, θi, for all the rows in the two sub-tables considered to stay

approximately constant along the whole sequence of 425 chapters. In that case, the rows

of these sub-tables could be modeled as a random sample of Mult(Ni, θ) distributions.

On the other hand, if one detects a sudden shift in the vector of probabilities, θi, through

a change-point analysis, that might indicate a sudden change in style and therefore a

sudden change of author, of topic, or of writing time. If, instead, one identifies the rows

of the tables as belonging to two distinct populations through a cluster analysis, with

each population of rows sharing a different vector of probabilities, that might indicate

the existence of two different styles and therefore of two different authors intervening

more or less exchangeably all along the book. Next, these two settings are modeled

probabilistically.

3.3.1 Multinomial change-point and cluster models

In a multinomial single change-point analysis one assumes that y = (y1, . . . , yn) is a

sequence of conditionally independent multinomial random variables such that θi = θb
for i ≤ r and θi = θa for i > r, and thus with a probability density function (pdf):

p(y|r, θb, θa) =
r∏
i=1

Mult(Ni, θb)
n∏

i=r+1

Mult(Ni, θa). (3.2)

This model assumes that the first r chapters (rows) before the change-point have been

written by the first author with a style characterized by the first set of probabilities θb,

while the remaining set of n−r chapters (rows) after that change-point have been written

by the second author with a style characterized by the second set of probabilities θa. The

goal in change-point analysis is to learn about the change-point, r, as well as about the
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before and after the change-point multinomial probabilities, θb, θa, characterizing the

two styles.

As an alternative, in multinomial two-cluster analysis, the n rows of the table, y =

(y1, . . . , yn), are considered to be conditionally independent and identically distributed

according to a finite mixture of two multinomial distributions, with pdf:

p(y|ω, θ1, θ2) =
n∏
i=1

(ω ∗Mult(Ni, θ1) + (1− ω) ∗Mult(Ni, θ2)), (3.3)

where θs = (θs1, . . . , θsk) for s = 1, 2 determine the distribution of the rows in the

s-th cluster, and hence characterize the style in that cluster, and where ω is a weight

determining the proportion of rows belonging to the first cluster and hence the probability

that any given row will be allocated to that cluster. This model assumes that the chapters

(rows) allocated to the cluster 1 were written by an author with a style characterized by

the set of probabilities θ1, while the remaining chapters (rows) allocated to the cluster 2

were written by a different author with a style characterized by θ2.

To allocate rows into clusters, which is an essential feature in cluster analysis, one has

to introduce a vector of unobserved (latent) categorical variables ζ = (ζ1, . . . , ζn), where

ζi takes values in {0, 1} and is such that ζi = 1 when the i-th row belongs to the first

cluster and ζi = 0 when it belongs to the second cluster. A variable is considered to

be latent whenever one can not observe it but is willing to estimate it, very much like

one does for a parameter. Here the ζi are assumed to be conditionally independent and

identically distributed, with π(ζi = 1|ω) = ω and π(ζi = 0|ω) = 1−ω. As a consequence

the joint pdf for y = (y1, . . . , yn) and ζ = (ζ1, . . . , ζn) becomes:

p(y, ζ|ω, θ1, θ2) =
n∏
i=1

(ω ∗Mult(Ni, θ1))
ζi((1− ω) ∗Mult(Ni, θ2))

1−ζi . (3.4)

The allocation of rows into clusters can be inferred through point estimates of ζ.

Fitting these multinomial change-point and cluster models through the classical frequen-

tist inference techniques is complicated, specially when it turns to assessing the uncer-

tainty of the estimates of the multinomial probabilities and to estimating ζ. Instead,

we adopt the Bayesian inference approach, that requires eliciting a prior distribution on

the parameters of the models that summarize the knowledge one has about them, and

then updating these distributions in the light of the data. For an introduction to the

Bayesian approach to data analysis, see, e.g., Gelman et al. (2013) or Carlin and Louis

(2008).

As a prior distribution, one typically assumes by default that the vectors of multinomial

probabilities in the change-point analysis, (θb, θa), and in cluster analysis, (θ1, θ2), are
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independent and Dirichlet(as1, . . . , ask) distributed, with either s = a, b or s = 1, 2, and

hence with pdf:

π(θs) = π(θs1, . . . , θsk) =
Γ(
∑k

j=1 asj)∏k
j=1 Γ(asj)

θas1−1s1 . . . θask−1sk , (3.5)

where Γ(·) stands for the Gamma function. Depending on the values chosen for (as1, . . . , ask),

the prior can go from being very subjective to reflecting vague information about the

multinomial vector of probabilities, (θb, θa) and (θ1, θ2). In particular, note that the prior

expected value for θs = (θs1, . . . , θsk) will be (as1, . . . , ask)/(
∑k

j=1 asj), and one can chose

the asj to reflect the fact that one knows that some categories have larger probabilities

than others. One can also rely on the fact that the larger
∑k

j=1 asj, the smaller the

prior variances of the probabilities θsj, and hence the more informative the prior will be

about θs. In the implementation that follows all the (as1, . . . , ask) are set to be equal

to (1, . . . , 1), which corresponds to assuming a uniform distribution on the simplex and

hence that E[θsj] = 1/k for all j, and that all the possible values for θs = (θs1, . . . , θsk)

are equally likely, but more informative distributions have also been tried. In particular

note that in the case of function words the categories are ordered from words appearing

more frequently to words appearing less frequently, and hence it is also be natural to

chose (as1, . . . , ask) such that as1 ≥ as2 ≥ . . . ≥ ask, which lead to E[θsj] being decreasing

with j.

As a prior distribution for the change-point, r, in the change-point model, one typically

chooses a uniform distribution on {1, . . . , n}, which assumes that the change in style

could happen anywhere in the book equally likely. Nevertheless, if one suspects that

the change-point is more likely to happen in certain chapters than in certain others, one

should incorporate that information in a more informative prior.

In the cluster analysis model, as a prior for the cluster weight, ω, which is the probability

that any chapter belongs to Cluster 1 and therefore takes values between 0 and 1, one

typically assumes it to be Beta(b, c) distributed and independent of (θ1, θ2), which is a

very flexible family of distributions supported on [0, 1] with pdf:

π(ω) =
Γ(b+ c)

Γ(b)Γ(c)
ωb−1(1− ω)c−1, (3.6)

where, again, Γ(·) stands for the Gamma function. In the implementation (b, c) is set

to be equal to (1, 1), which is the same as assuming that ω takes a uniform distribution

on [0, 1], and hence that all possible values for ω are equally likely. For more details on

the Dirichlet and Beta distributions, see Johnson, Kemp and Kotz (2005) and Johnson,

Kotz and Balakrishnan (1997).
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Note that beta and Dirichlet probability models are the default Bayesian choices as

prior distributions when one needs to model proportions and vectors of probabilities,

respectively. We also tried more informative priors, incorporating the fact that the

categories in the second sub-table are ordered from more frequent to less frequent function

words. More informative priors for r and ω were also tried, but sample sizes are large

enough so that data is so much more informative than any of the prior distributions used

and hence the posterior distributions were insensitive to the choice of prior distribution.

Hence these distributional choices have very limited impact on the results of the analysis

presented in Section 3.4. For more technical details on these multinomial change-point

and cluster models, see Giron et al. (2005).

3.3.2 Multinomial cluster model with dependence

When carrying out a cluster analysis based on (3.4) one assumes that all rows and

corresponding allocation variables, (yi, ζi) for i = 1, . . . , n, are conditionally independent

and identically distributed. As a consequence, one is implicitly assuming that the two

styles mix exchangeably along the text, without taking into consideration the order in

which rows appear, which most often runs against what one anticipates to be happening.

One extension of the finite mixture model in (3.3) that corrects for that, first considered

by Fernandez and Green (2002) in the context of Poisson mixtures for spatially indexed

data, lets the weights in the mixture vary from row to row, ω = (ω1, . . . , ωn), which leads

to:

p(y|ω, θ1, θ2) =
n∏
i=1

(ωi ∗Mult(Ni, θ1) + (1− ωi) ∗Mult(Ni, θ2)), (3.7)

where ωi = (ωi1, ωi2 = 1−ωi1) is such that 0 < ωi1 < 1, and hence to the rows of the table,

y = (y1, . . . , yn), becoming conditionally independent but not identically distributed. As

a consequence of that modification, the probability that the i-th row is allocated to

the first cluster, ωi, will be changing from row to row and the set of latent allocation

variables, ζ = (ζ1, . . . , ζn), indicating whether each row belongs to cluster 1 or 2, will

be conditionally independent but not identically distributed, with π(ζi = 1|ω) = ωi and

π(ζi = 0|ω) = 1− ωi. The joint pdf of y = (y1, . . . , yn) and ζ = (ζ1, . . . , ζn) becomes:

p(y, ζ|ω, θ1, θ2) =
n∏
i=1

(ωi ∗Mult(Ni, θ1))
ζi((1− ωi) ∗Mult(Ni, θ2))

1−ζi , (3.8)

and the allocation of the i-th row into either one of the two clusters will be done again

based on point estimates of ζi. The posterior distribution of ωi is closely related to the

one of ζi, and it also helps determine the role of the two authors along the text.

A second feature of the basic cluster model in (3.3) that runs against what one anticipates
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in most authorship attribution settings is that it does not consider rows (chapters) that

are close to be more likely to belong to the same cluster (author) than rows (chapters)

that are far apart. Here, certain degree of sequential dependence in chapter authorship

is incorporated through a prior structured distribution of the weights, ωi, making it more

likely that rows in nearby locations have more similar allocation probabilities than rows

that are located far apart. More specifically, here one will let ωi be such that its log odds

are:

log
ωi

1− ωi
= αi + βi, (3.9)

where the αi’s and the βi’s for i = 1, . . . , n are terms playing a different role each, and

are treated as random effects and hence linked by a hierarchical structure that lets their

relative contributions be determined by data.

The term αi is assumed to be conditionally independent and Normal(µα, σ
2
α) distributed,

and hence with a contribution to the log odds of ωi that is comparable for all i, thus

capturing the global unstructured heterogeneity in ωi induced by a likely large set of

unobserved covariates. The term βi is assumed to be conditionally independent and

Normally distributed, with their mean and variance being equal to (βi−1 + βi+1)/2 and

σ2
β/2 for i = 2, . . . , n−1, and with mean and variance being equal to β2 and σ2

β for i = 1,

and being equal to βn−1 and σ2
β for i = n. By relating the mean of βi, corresponding to

the i-th row (chapter) to the values taken by βi−1 and βi+1 corresponding to the (i−1)-th

and the (i + 1)-th rows (chapters), that term captures the local dependence effect that

one expects to find when the degree of intervention of the authors shifts smoothly in the

book.

The distribution for ωi chosen here mimics the priors used by the disease mapping

literature to obtain spatially smoothed estimates of Poisson means ever since Besag et

al (1991) and Mollie (1996). The novelty is that here the prior is used on time and not

space indexed data and that it is used to model dependence through the mixing weights

of a cluster model and not through the mean parameter of a single cluster distribution.

One can think of other ways of inducing sequentially dependent allocations of rows into

clusters, but as long as they are flexible enough and use enough information about

neighboring observations, they should all lead to similar results.

Fitting this model to the data through classical frequentist inference tools would be ex-

tremely difficult, and that is why here again the Bayesian inference approach is adopted.

That requires one to chose a prior distribution on the parameters of the model to start

with, and then compute the posterior distribution by incorporating the information in

the data.
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If the prior distributions chosen have little information compared with the information

in the data, as it will be the case in our implementation, the choice of prior distribu-

tion barely has any influence on the posterior distribution, and hence on the inferences

reached. Hence, in that case one can think of the choice of a prior distribution as a

default technical step where one only needs to be careful to match the parameter set

with the support of the priors chosen.

Here, as a prior distribution for µα, the expected value of the αi, one assumes that it

is Normal(m, s) distributed, centered at the value expected for the average of the log

odds for ωi, which in our example will be m = 0, and with a large variance, that in

our example will be set to be s = 100. By choosing a normal distribution with a large

variance, one is assuming that one knows very little about the mean of the αi and hence

the inferences about these parameters will be very weakly influenced by the choice of

that prior.

The inverse of σ2
α and of σ2

β are non-negative real valued, and by default they are typically

assumed to be Gamma(c, d) distributed, and hence to have a pdf:

π(σ) =
dc

Γ(c)
σc−1e−dσ. (3.10)

In the implementation that follows one chooses c = 1 and d = .01, which correspond

to assuming that the distributions for σ2
α and for σ2

β have large variances, which is the

standard choice when one wants to use prior distributions that assume that very little is

known about σ. Hence, that choice barely influences the conclusions of the analysis.

As a prior distribution for the multinomial probabilities, (θ1, θ2), one assumes that

they are independent and with each θs = (θs1, . . . , θsk) with s = 1, 2 having again a

Dirichlet(as1, . . . , ask) distribution with a pdf as in (3.5). In the actual implementation

that follows the (as1, . . . , ask) are also set to be equal to (1, . . . , 1), which corresponds

to a reference uniform distribution on the simplex and hence to treating all k categories

symmetrically and assuming that all possible values for θs = (θs1, . . . , θsk) are equally

likely. For the details on this default choice as a distribution for (θ1, θ2), and for alterna-

tive choices that are more informative, we refer to the discussion at the end of Subsection

3.3.1. Even though the model in (3.7) and (3.8) is more general than the one in (3.3)

and (3.4), the role played by these parameters is basically the same in both cases.

The whole Bayesian model, including both the statistical model as well as the prior

distributions described above, can be found summarized in Table 3.2.

An extensive sensitivity analysis has been carried out by trying priors that incorporated

different information about the parameters of the hyper prior and of the multinomial
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(y1, . . . , yn)|θ1, θ2, ζ ∼
∏n
i=1 Mult(Ni, θ1)

ζiMult(Ni, θ2)
1−ζi ,

(θ1, θ2) ∼
∏2
j=1 Dirichlet(aj1, . . . , ajk),

(ζ1, . . . , ζn)|(ω1, . . . , ωn) ∼
∏n
i=1 Bernoulli(ωi),

ωi = eαi+βi/(1 + eαi+βi), i = 1, . . . , n

(α1, . . . , αn)|µα, σ2α ∼
∏n
i=1 Normal(µα, σ

2
α)

β1|β2, σ2β ∼ Normal(β2, σ
2
β)

βi|βi−1, βi+1, σ
2
β ∼ Normal((βi−1 + βi+1)/2, σ

2
β/2), i = 2, . . . , n− 1,

βn|βn−1, σ2β ∼ Normal(βn−1, σ
2
β),

µα ∼ Normal(m, s)

σ−2α ∼ Gamma(cα, dα)

σ−2β ∼ Gamma(cβ, dβ)

Table 3.2: Bayesian multinomial two-cluster model with dependence.

parameters. Here it is also found that data is so much more informative than the priors

used, that the posterior distribution barely changes by changing the prior choices.

The posterior distribution for the parameters of these models are too complex to be

computed analytically. Instead of that, to update the model and simulate from it the

WinBugs MCMC implementation has been used (see, Lunn et al. 2000). The conver-

gence of the chains has been assessed through the visual inspection of the sample traces

and the monitoring of various diagnostic measures. The authors will provide the code

and the data of the example to anyone that requests them.

3.3.3 Selection of the number of authors and testing

Under each one of the three models contemplated above, that is, the change-point model

in (3.2), the cluster model in (3.4), and the cluster model with dependence in (3.8), one

needs to chose between the single author (style) case and the two authors (styles) case.

In all these situations, that issue can be posed as a choice between two models, and

hence can be answered through a formal statistical hypothesis test.

In the change-point model, for example, one needs to test whether r = n (single author)

or r 6= n (two authors), and in the basic cluster model, one needs to test whether

ω = 1 (single author) or ω 6= 1 (two authors). Resorting to a Bayesian analysis has

the advantage that one can select the model with the largest posterior probability. The

posterior probability that the Mr model is the one generating the data is:

P (Mr|y) =
P (Mr)P (y|Mr)∑S
r=0 P (Mr)P (y|Mr)

, (3.11)
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where P (Mr) is the prior probability of model r and where P (y|Mr) is the marginal

likelihood of Mr. When one is only interested in comparing models Mr and Ms, one

resorts to:
P (Mr|y)

P (Ms|y)
=
P (Mr)

P (Ms)

P (y|Mr)

P (y|Ms)
. (3.12)

In general, one will select the model with the largest posterior probability; when each

model is considered equally likely a priori, the larger the marginal likelihood of a model,

P (y|MS), the more attractive that model.

Most often, computing P (y|MS) exactly is too complicated to be attempted in practice,

but one can estimate P (y|MS) through the MCMC simulations used to update the model,

(see, e.g., Gelfand and Dey 1994 or Raftery and Newton, 1995), which is what will be

used next to choose between single and multiple author hypotheses.

3.4 Results of the analysis of Tirant lo Blanc

Here the word length and the function word data in Table 3.1 is analyzed using the

two-cluster model with dependence just presented, and the result of that analysis is

compared with the results obtained using the change-point and basic cluster model in

Section 3.3.1.

A single change-point analysis based on the model in (3.2) leads to a posterior distri-

bution of the change-point, r, highly concentrated around Chapter 371 for the word

length data, and highly concentrated around Chapter 382 for the function word data.

That explains why the top panels of Figures 3.3 and 3.4 assign chapters to authors the

way they do. Under both the word length as well as under the function words case,

one finds that the posterior probability of the single author (no change-point) model is

basically zero; As a consequence, Subsection 3.3.3 indicates that one should reject the

single author hypothesis. Under both tables, the sequence of rows clearly have a change

in distribution, indicating a change in style, somewhere between Chapters 371 and 382

of the book.

Under both the basic cluster model in (3.4) as well as the cluster model with dependence

in (3.8), the posterior probability that yi belongs to the first cluster, E[ζi|y], can be

estimated through the MCMC simulated samples. Given that E[ζi|y] can be interpreted

to be the probability that the i-th chapter belongs to cluster (author) 1, it is natural to

allocate that chapter to cluster (author) 1 whenever E[ζi|y] > .5, and to allocate that

chapter to cluster (author) 2 otherwise.
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Figure 3.3: Chapter classification for word length under the single change-

point model and under the two-cluster models with and without dependence.

The curve on the bottom panel is the posterior expectation of ωi, which helps

describe the role of author 1 in that part of the book.

The second panel in Figures 3.3 and 3.4 presents the classification of chapters into authors

according to this rule under the basic cluster model in (3.4). Using word length data,

Figure 3.3 indicates that 319 chapters are attributed to the first author, which represents

75.06% of the 425 chapters considered, and only 75 chapters are classified differently than

through the change-point model, of which 38 are attributed to the second author but are

located before chapter 371, while 37 are attributed to the first author but are located after

that chapter. For the function word data, in Figure 3.4 one finds 304 chapters attributed

to the first author, which represents 71.53% of the total; in this case, 59 chapters are

attributed to the second author but located before chapter 382, while 32 chapters are

attributed to the first author but located after it. When one tests the single author

hypothesis against the double author hypothesis, using the idea described in Subsection

3.3.3, one finds that under both tables the probability of the two-authors hypothesis is

almost one, and therefore one again clearly rejects the single author hypothesis.

The third panel in Figures 3.3 and 3.4 presents the chapter classification based on the

E[ζi|y] under the cluster model with dependence in (3.8). The classification under this
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Figure 3.4: Chapter classification for the function word data under the single

change-point model and under the two-cluster models with and without de-

pendence. The curve on the bottom panel is the posterior expectation of ωi,

which helps describe the role of author 1 in that part of the book.

more sophisticated model is similar to the one obtained through the basic cluster model,

and the corrections are in the direction of making the classification more similar to

the one obtained through the change-point model. For the word length data here only

23 chapters are classified differently than through the basic cluster model, with only 27

chapters located before chapter 371 and yet attributed to the second author, and only 25

chapters located after that chapter and yet attributed to the first author. Using function

word data only 9 chapters are classified differently than through the basic cluster model,

with 56 chapters being attributed to the second author but located before chapter 382

and 28 chapters being located after that chapter but attributed to the first author.

According to the model with dependence, the chapters located before the 371 − 382

change-points that are consistently allocated to Author 2 instead of Author 1 under both

stylometric characteristics are chapters 2, 4, 28, 52, 54, 107, 144, 185, 190 and 349 while the

chapters located after these change-points that are consistently allocated to Author 1

are 410− 412, 424, 432− 435, 475 and 477.
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The posterior expected value of ωi, in the third panel of Figures 3.3 and 3.4, also helps

describe the role of each author along the book. Whether E[ωi|y] is larger or smaller

than .5 serves as an indication of which author plays the main role in that part of the

book. Note the close agreement between E[ωi|y] and the classification of chapters into

authors according to the change-point model. This tool is unavailable under the basic

two-cluster model.

Once the existence of two authors is settled and chapters are allocated into each one

of the styles according to each one of the models, the question arises as to how do the

components in θi = (θi1, . . . , θik) change when one switches from one style to the other

according to each one of the models. To address that, Figures 3.5 and 3.6 plot a sample

of the posterior distribution of log (θbj/θaj) under the change-point model in (3.2) and

of log (θ1j/θ2j) under the cluster models in (3.4) and in (3.8). Note the high degree of

agreement between the three models, and specially between the cluster models with and

without dependence, that follows from the agreement in the way these models allocate

chapters into styles.

Figure 3.5 indicates that two, three, four and five lettered words are more abundant in

the style of the author writing most of the book, while one, six, seven, eight, nine and

ten or more lettered words are more abundant in the style of the author writing mostly

at the end of the book. Figure 3.6 indicates that words que, no, com, és, jo, si and dix

are more abundant in the part of the book written by the main author, while e, de, la,

l and molt are more abundant in the parts of the book written by the second author.

3.5 Final comments

The statistical analysis identifies a change in style near chapters 371–382, with a few

chapters being misclassified by that change-point. That agrees with the boundary de-

tected in chapter 383 through the analysis of the diversity of vocabulary in Riba and

Ginebra (2006), and it is in line with the hypothesis supported by experts attributing

more credibility to the colophon of the book than to its dedicatory letter.

The change-point model, (3.2), is very strict in that it assumes that all consecutive

chapters (except the r-th and the (r + 1)-th chapters) belong to the same author, and

that will not adapt to most practical settings. The cluster model that does not allow

for dependence, (3.4), is more flexible in that it does not take order into consideration

when allocating chapters to authors, and that will also fail to model many practical

instances. Instead, the cluster model with dependence proposed in (3.8) strikes a com-

promise somewhere in between, allowing for neighboring chapters to be more likely by
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Figure 3.5: Boxplot of a sample of the posterior distribution of log (θbj/θaj)

under the change-point model, in (3.2), and of log (θ1j/θ2j) under the clusters

models with and without dependence, in (3.4) and (3.8), for the word length

data.

the same author without imposing the restriction that they have to be so. Hence the

model in (3.8) has the advantage of fitting better the scenarios typically faced in many

authorship attribution settings.

As an alternative to the cluster model based on a mixtures of two multinomial models

considered here, one could have started with a more flexible framework under which

all rows belonging to the same cluster where multinomially distributed with a θi that

varied from row to row, but with all these θi sharing a common distribution. If in

particular one assumes that these θi are Dirichlet distributed, one would end up basing

the analysis on mixtures of two Dirichlet-multinomial models and hence adding two

parameters determining the degree of heterogeneity of the multinomial parameters in

each cluster. We have tried that approach, but carrying out predictive checks to validate

models has lead us to conclude that this type of data does not require these more

sophisticated models.

Even though the presentation has focused on the use of word length and function words,
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Figure 3.6: Boxplot of a sample of the posterior distribution of log (θbj/θaj)

under the change-point model, in (3.2), and of log (θ1j/θ2j) under the cluster

models with and without dependence, in (3.4) and (3.8), for the function word

data.

and on the two-authors case, it all extends to other stylometric characteristics and to

the authorship attribution of texts with more than two authors. A slight modification

of the prior for the cluster weights, ωi, can also accommodate for dependence structures

other than the one used here for texts or corpus that are sequentially ordered.
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Chapter 4

Bayesian Analysis of the

Heterogeneity of Literary Style

A statistical analysis of the heterogeneity of literary style in a set of texts that simul-

taneously uses different stylometric characteristics, like word length and the frequency

of function words, is proposed. Data consist of several tables with the same number of

rows, with the i-th row of all tables corresponding to the i-th text. The analysis proposed

clusters the rows of all these tables simultaneously into groups with homogeneous style,

based on a finite mixture of sets of multinomial models. That has the advantage over the

usual heuristic cluster analysis approaches that it naturally incorporates in the analysis

the text size, the discrete nature of the data, and the dependence between categories. All

this is illustrated through an analysis of the heterogeneity in the plays by Shakespeare

and in El Quijote, and by revisiting the authorship-attribution of Tirant lo Blanc.

4.1 Introduction

The statistical analysis of literary style has often been used to characterize the style of

texts and authors, and sometimes help settle authorship-attribution problems both in

the academic as well as in the legal context. Work as early as Mendenhall (1887, 1901)

and Yule (1938) already used word length and sentence length to characterize literary

style. Other characteristics widely used for this purpose have been the proportion of

nouns, articles, adjectives or adverbs, the frequency of use of function words, which

are independent of the context, or of characters, and the richness and diversity of the

vocabulary used by the author. Good reviews about the statistical analysis of literary

style can be found in Holmes (1985, 94, 98, 99) and Stamatatos (2009).

51
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The range of statistical methods used in this setting is wide, most often involving the

use of classification tools. In typical authorship-attribution and verification problems

one has a set of candidate authors and a list of known texts from each one of them

that can be used as training texts, and one needs to assign texts of unknown author to

one of the authors in the set by comparing their style to the one of the training texts.

In these settings, one resorts to discriminant analysis, also recognized as supervised

classification/learning.

Instead, in the analysis of the heterogeneity of literary style that is tackled in this paper,

the setting is a lot less structured because one does not assume to have a reference set

of candidate authors and of training texts, and one needs to resort to cluster analysis,

also recognized as unsupervised classification/learning.

The goal in cluster analysis is to partition observations (texts) into meaningful subgroups,

without assuming much about the number of subgroups and about the composition of

the groups. Most of the literature on cluster analysis is devoted to continuous data and

uses ad hoc heuristic partitioning algorithms that tend to be easy to apply and work well,

but that do not allow one to assess cluster uncertainties and do not provide inference

based methods to choose the number of clusters and allocate individual observations to

clusters. Good introductions to that literature are Greenacre (1988) or Kaufman and

Rousseeuw (1990).

Instead, model based clustering assumes that observations come from a population with

several subpopulations, and one models the overall population through a finite mixture

of the subpopulation models. Bayesian model based cluster analysis provides a complete

probabilistic framework for the problem by assuming a finite mixture model under which

observations belonging to the same cluster have the same distribution, and then estimat-

ing the mixed distributions and assigning observations to these component distributions.

Model based approaches simultaneously group objects and estimate the component pa-

rameters, and that avoids the biases appearing whenever that is done separately. These

methods also have the advantage of providing a measure of the uncertainty in the allo-

cation of individual observations into clusters, and of casting the choice of the number of

clusters and hence of component distributions as a statistical model selection problem.

For early examples of the use of Bayesian model based cluster analysis, mostly using

mixtures of multivariate normal distributions, see Murtagh and Raftery (1993), Banfield

and Raftery (1993), Fernandez and Green (2002) and Fraley and Raftery (2002).

To help settle the debate around the authorship of Tirant lo Blanc, Giron, Ginebra and

Riba (2005) explored the heterogeneity of its style by carrying out a Bayesian model
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based cluster analysis of word length and of the frequency of the most frequent words in

its chapters. The data consisted of two contingency tables of ordered rows, with the i-th

row in both tables corresponding to the i-th chapter of the book, and the cluster analysis

of the rows of each one of these two tables was carried out separately based on a finite

mixture of multinomial models. Resorting to these models allows one to implement a

cluster analysis based on the whole vector of word length or of function word counts

instead of basing it on individual counts. That also has the advantage over heuristic

and/or normal based clustering approaches that it naturally incorporates in the analysis

the text size, the discrete nature of the data and the dependence between categories.

This analysis based on finite mixtures of multinomial models is generalized here by:

1. carrying out a single cluster analysis using more than one stylometric characteristic

at once, by treating a set of more than one vector of counts as an observation,

2. by incorporating a model-checking stage that compares the realization of statistics

in the data with their realization in predictive simulations from the models, and

3. by providing closed form expressions for the exact calculation of the probabilities

of the models considered being correct, to be used to select models.

The combination of the model-checking and model selection stages will help determine

the number of mixture components required by the data, and hence the number of

clusters. As a by product of the model-checking stage, the analysis allows one to check

whether finite mixtures of a small number of purely multinomial models are flexible

enough to capture all the variability in the data. If they were not, one would need to

resort to more complicated finite mixtures of sets of continuous mixtures of multinomial

models instead.

To illustrate the analysis, it is implemented on three examples, each dealing with the

main work of a different literature. The first case study explores the heterogeneity of

style in the plays in the first folio edition of Shakespeare’s drama. In the second case

study, the authorship-attribution problem of Tirant lo Blanc is revisited. Finally, the

same type of heterogeneity analysis is implemented on the chapters of El Quijote.

In all the examples the analysis will be mostly exploratory, without attempting to assess

whether the heterogeneities found are linked to differences in authorship or otherwise

could be explained by differences in chronology, genre or topic. Some might question the

legitimacy of limiting the approach to be exploratory in the Shakespeare case, which is

the most structured of the three. Note though that, without making explicit a list of

candidate authors and of training texts, there is no legitimate statistical way of going

beyond proposing tentative explanations for the heterogeneities detected in the corpus.
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4.2 Description of the data

The methodology advocated for here combines in the analysis as many stylometric char-

acteristics as one needs to. All the characteristics considered will have to involve counting

features that are categorical and have a fixed number of categories. That includes for ex-

ample counting characters, words or sentences of certain lengths, function words, nouns

or adjectives. As a consequence, data will consist of a set of tables with the same number

of rows, with one table for each characteristic. We use word length and the count of the

most frequent function words as illustrating examples.

Early uses of word length to help characterize style can be found in Mendenhall (1887,

1901), Mosteller and Wallace (1964, 84), Brinegaar (1963), Bruno (1974), Williams

(1975), Morton (1978), Smith (1983), Hilton and Holmes (1993). Even though present

day surveys on the use of stylometric variables in authorship attribution of texts writ-

ten in English rarely find word length as a useful discriminating feature, Giron et al

(2005) find that feature to be very useful in the authorship attribution of a text written

in Catalan. Furthermore, note that in Figure 4.1 word length discriminates well be-

tween comedies on one side and histories and tragedies on the other, and therefore word

length is useful to detect heterogeneities of style in English texts not necessarily linked

to differences in authorship.

The frequency of use of function words has proved to be one of the best tools when it

comes to discriminating styles. Early uses of function words can be found in some of the

references already listed above, as well as in Burrows (1987, 92), Holmes (1992), Binongo

(1994) or Oakes (1998). Recent discussions on the use of stylometric variables, and, in

particular, of function words, can be found in Zhao and Zobel (2005), Miranda-Garcia

and Calle-Martin (2007), Luyckx (2010), Hope (2010) and Rybicki and Eder (2011).

In those cases where the analysis of word length and word counts separately lead to very

different results, their combination will be problematic. But when separately they lead

to similar results, as was found to be the case in Tirant lo Blanc by Giron et al (2005),

their combination in a single analysis is warranted. By combining them, the uncertainty

in the classification of texts into clusters will be reduced.

When one decides to simultaneously analyze word length and function word counts in

the example of Tirant lo Blanc, one is lead to the simultaneous analysis of the 487× 10

table of word length counts and of the 487 × 12 table of counts of twelve of the most

frequent function words partially presented in Table 4.1.
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Word length counts

Chapter 1 2 3 4 5 6 7 8 9 10+ N1
i wli

1 21 59 44 19 33 20 16 17 9 17 285 4.47

2 53 113 80 49 52 33 28 36 16 16 476 4.14

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

487 48 49 62 53 41 36 21 9 16 13 348 4.20

Most frequent word counts

Chapter e de la que no l com molt és jo si dix

1 12 15 9 8 1 7 2 1 6 0 3 0

2 26 28 19 9 3 2 3 8 3 1 3 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

487 29 13 8 10 2 10 3 9 0 0 0 0

Table 4.1: Part of the table of word length counts in the chapters of Tirant lo

Blanc, and of the table of counts of twelve of the most frequent function words

in them. N1
i is the total number of words and wli the average word length.

In general, for each chapter i in a book (or act of a play) with i = 1, . . . , n, and each

stylometric characteristic, r, with r = 1, . . . , R, one has a vector valued categorical

observation, yri = (yri1, . . . , y
r
ik(r)), where k(r) denotes the number of categories of the

r-th characteristic. This vector, yri , becomes the i-th row of the r-th table considered.

In the Tirant lo Blanc example, y1i is the ten dimensional vector of word length counts

of its i-th chapter, and y2i is the twelve dimensional vector of function word counts in

that chapter. More generally that leads to a set of R different n× k(r) tables, one table

for each characteristic. The set of all the n rows in the r-th table will be denoted by

yr = (yr1, . . . , y
r
n), and the set of all the R tables will be denoted by y = (y1, . . . , yR). The

goal is to cluster the rows of all these tables simultaneously into S different groups with

homogeneous style, assuming that the rows in a group are multinomially distributed.

One of the main shortcomings of the heuristic based cluster analysis approaches typically

used in stylometry, like the ones based on PCA, k-means or hierarchical methods, is that

they implicitly assume data to be continuous or are at least tailored to work best when

data is continuous. But stylometric data is mostly categorical, and the methodology for

it should move in the direction of addressing the specificities of that kind of data.

In particular, most of these mostly ad-hoc heuristic methods have a difficult time taking

into account that texts of different length have different amount of information about

the style of their author and hence they should be weighted differently in the analysis.

These basic methods also have a hard time taking into consideration the dependence

present between counts of categories of the same stylometric characteristic.
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The cluster analysis proposed next, based on carefully modeling the data probabilis-

tically using mixtures of multinomial models, avoids the continuity assumption and it

naturally weights texts according to text size, which avoids the need to deal with texts

of similar sizes to avoid biasing the results. Furthermore, by assuming the observations

in each cluster to be multinomially distributed, one also naturally takes into account the

dependence between counts of categories of the same characteristic.

4.3 Description of the Multinomial cluster model

The i-th row of the r-th table is assumed to be multinomially distributed, Mult(N r
i , θ

r
i ),

where θri = (θri1, . . . , θ
r
ik(r)) is such that

∑k(r)
j=1 θ

r
ij = 1, where θrij is the probability of the

j-th category for the i-th row and the r-th characteristic, and where N r
i =

∑k(r)
j=1 y

r
ij.

If all the chapters of the book or acts in the plays shared the same style, one might

expect the distribution of all the n rows for any given characteristic to remain the same,

in which case they could all be modeled as a random sample of a single Mult(N r
i , θ

r)

distribution.

Instead, if the style in the n chapters or acts was not homogeneous, but these chapters

grouped themselves in S different styles, maybe because they had been written by S

different authors, then the n rows of the r-th table, yr = (yr1, . . . , y
r
n), could be considered

to be conditionally independent and modeled through a finite mixture of S multinomial

distributions, with probability density function (pdf):

p(yr|ω, θr1, . . . , θrS) =
n∏
i=1

S∑
s=1

ωsMult(N r
i , θ

r
s), (4.1)

where θrs = (θrs1, . . . , θ
r
sk(r)) determines the distribution of the rows in the s-th cluster

of the r-th table, and where ω = (ω1, . . . , ωS) is a set of weights, with 0 ≤ ωs ≤ 1 and∑S
s=1 ωs = 1, determining the proportion of rows (chapters or acts) belonging to each

cluster.

To be able to allocate rows into clusters, which is an essential feature in cluster analysis,

one introduces a vector of unobserved (latent) categorical variables ζ = (ζ1, . . . , ζn),

where ζi takes values in {1, . . . , S} and is such that ζi = s whenever the i-th row belongs

to the s-th cluster. Here the ζi are assumed to be conditionally independent and hence:

p(yr, ζ|ω, θr) =
n∏
i=1

ωζiMult(N r
i , θ

r
ζi

), (4.2)

where θr = (θr1, . . . , θ
r
S) is the set of multinomial probabilities for the r-th table. The

latent variable ζ assigning chapters or acts into clusters does not depend on r, and hence
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it takes a common value for all the stylometric characteristics considered. That is, the

i-th rows in all the tables are always allocated into the same cluster.

In Bayesian statistics, one needs to choose a distribution for the parameters of the

model that captures what one knows about them before observing the data, which is

denoted as the prior distribution. Here, that prior distribution will assume that all

vectors of probabilities across clusters and tables, θrs for s = 1, . . . , S and r = 1, . . . , R,

are independent, and that the θrs are Dirichlet(ars1, . . . , a
r
sk(r)) distributed. The weights

ω determining the relative sizes of the clusters are assumed to be Dirichlet(b1, . . . , bS)

distributed. In our examples all the (ars1, . . . , a
r
sk(r)) and (b1, . . . , bS) are set to be equal

to (1, . . . , 1), which corresponds to assuming a uniform distribution on the simplex. The

R = 1 and S = 2 special case of this model is the one used in Giron et al. (2005).

In Bayesian statistics one combines the distribution chosen for the parameters before

obtaining the data (the prior distribution) with the data, to compute an updated dis-

tribution that incorporates the information contributed by the data. That updated

distribution for the parameters is called as the posterior distribution, and in our case

it is too complicated to be computed analytically. Instead of that, one can update the

model and simulate from it with the WinBugs implementation (see, Lunn et al. 2013).

4.4 The choice of the number of clusters

A difficulty of the heuristic clustering algorithms is that they often lack a statistically

grounded method for determining the number of clusters. Instead, under model based

clustering the choice of the number of clusters, S, coincides with the choice of model.

The safest way to build a model is through the iterative use of model checking tools that

help discover aspects of reality not adequately captured by the models and suggest ways

of improving them. To help support that model choice, one can also resort to formal

model selection methods, based on the computation of the posterior probability that

each one of the models considered is the one generating the data.

Cluster analysis is useful only when the answer contains a relatively small number of

clusters, and hence it will typically be better to settle with an approximate model that

has a small number of clusters but explains a large portion of the variability, than with

a model that is “true” and captures all the variability but requires a large number of

clusters.
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4.4.1 Choice of s through model-checking

Building a Bayesian model is like building a data simulation model. Hence, they should

be assessed and chosen based on whether it is plausible that they could simulate data

like the one observed in reality or not. Following the lead of Gelman et al (2004), we will

graphically compare the set of R observed tables, with analogous sets of tables simulated

from the posterior predictive distribution of the models.

To compare the table with the word length data to the corresponding tables with the

replicated data are summarized through the proportion of words of L letters in each

chapter or act for L = 1, . . . , 9 and for L > 9. We also summarize them through the

average word length, through the ratio between the number of words with more than 5

and of less than 6 letters, and through the first correspondence analysis components of

each table. To compare the table with the observed word counts with the corresponding

simulated tables, they are summarized through the frequency of appearance of each one

of these words separately, and through the first correspondence analysis components of

each table.

A sampler of these predictive comparisons will be presented in the first case study. We

do not report on the predictive checks for the other examples for the sake of brevity.

For more examples of posterior predictive checks used to assess Bayesian models in the

context of the analysis of literary style, see Font et al (2013), and for similar examples

in the context of choosing the number of clusters, see Puig and Ginebra (2014a, b).

4.4.2 Choice of s through model selection

The formal way to select a model is through the posterior probability of each model,

P (MS|y), which is the probability that the S-cluster model, MS, is the one generating

the data, assessed after the data has been observed. It can be computed through:

P (MS|y) =
P (MS)P (y|MS)∑ST
s=1 P (Ms)P (y|Ms)

, (4.3)

where P (MS) is the prior probability assigned toMS, (i.e., the probability that this model

is correct, assessed before data is available), whereP (y|MS) is the marginal likelihood of

MS, and where ST is the largest number of clusters that one is willing to contemplate.

To select the number of clusters one needs to select a single model, and the most natural

choice is the model with the highest posterior probability. If all models were considered

equally likely a priori, the larger P (y|MS), the more attractive MS would be. But there
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is a big debate on how prior probabilities on model space should be chosen, due to the

large difference in complexity between models (see, e.g., Casella et al, 2014).

Most often, computing P (y|MS) exactly is too complicated, and one approximates its

logarithm through the BIC, as in Fraley and Raftery (2002). Alternatively, one can

estimate P (y|MS) through the simulations used to update the model, as in Gelfand and

Dey (1994). In our special multinomial mixture setting though, compute these marginal

likelihoods exactly through the closed form expression given in an Appendix.

It is important to emphasize that adopting the formal Bayesian approach to model

choice presented here does not help identify what are the shortcomings of the models,

when they have them. Hence, computing the posterior probabilities of the models under

consideration does not spare one having to check models on the side, the way described

in Section 4.4.1.

4.5 Case study 1: Shakespeare’s drama

William Shakespeare (1564-1616) is regarded by many to be the greatest writer in the

English literature. Very little is known about his personal life, which has fueled a debate

around the authorship of plays and poems attributed to him. Even though only a

minority of the experts question his authorship, some claim that the true author of some

or all of the works attributed to him could be Francis Bacon, Cristopher Marlowe, Ben

Johnson, Sir Walter Raleigh or Edward de Vere. That debate has been going on for more

than 150 years, and far too many people has contributed to it to be able to summarize

it adequately here. For recent overviews of that debate see, for example, Hope (1994,

2010), Edmondson and Wells (2013) or Shahan and Waugh (2013).

The statistical analysis of the literary style in Shakespeare’s drama also started a long

time ago. Mendenhall (1901) is one of the earliest examples of the use of statistics to

compare the style of Shakespeare’s plays with the style of some of its contemporaries,

like Marlowe and Bacon; He found that the word length distribution in Shakespeare’s

plays was extremely close to the one in plays by Marlowe. The list of contributions to

the quantitative analysis of the style in texts linked to Shakespeare is very long, and it

includes, for example, Smith (1990), Jackson (2003), Vickers (2004) and more recently

Craig and Kinney (2009).

The type of statistical analysis carried out next is different of most of the statistical

analysis carried out on Shakespeare’s drama in two main regards. The first difference

arises from the fact that here one is trying to identify any heterogeneities in the style of
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Shakespeare’s drama, irrespective of whether they are linked to authorship differences

or not, while the literature on Shakespeare’s drama has understandably focused mainly

on authorship attribution issues. The second difference with other published statistical

analysis of Shakespeare’s drama, is that they heavily rely on the use of “training” groups

of texts of undisputed authorship to help determine the authorship of the disputed texts,

while we do not rely on any of such texts to start with. That explains that they mainly

resort to the use of supervised classification (discriminant analysis) tools, while here we

present a method to carry out unsupervised classification (cluster) analysis.

To explore the heterogeneity of style in Shakespeare’s drama, here a cluster analysis

is carried out on the 35 plays gathered in the first printing of the first folio edition of

Shakespeare’s plays published posthumously in 1623. That edition includes fourteen

comedies, ten histories, and eleven tragedies, and it is the only reliable version for about

twenty of these plays. Common wisdom supports the idea that some of the plays, and

specially the early histories, might have been revised by other writers. Troilus and

Cressida did not appear in the first printing of that edition and Pericles and the two

noble kinsmen did not appear in any of its printings, and they have not been included

in this study even though they are also attributed to Shakespeare.

In the analysis, plays are broken down into five acts each, and hence a total of 175 textual

units are considered. The goal of the analysis is to check whether acts naturally cluster

themselves together into more than one cluster when one takes into account word length

and the frequency of the twenty most frequent function words in them. Hence data will

consist of a 175× 10 table with the word length counts, and of a 175× 20 table with the

twenty most frequent word counts. In this case study the analysis will be exploratory

because a different style might be related to many different factors, such as the time of

writing, the kind of play, or the author, and it is not easy to know which factors are at

play.

To help choose the number of clusters, one needs to assess whether the models involved

capture the relevant features in the data. As a sample of this exercise, Figure 4.1

compares the observed proportion of words of one, two, three, nine and of more than nine

letters in these 175 acts, the average word length, the ratio of the number of long words

and of short words with the ones corresponding to a sample simulated from the posterior

predictive distribution under the one-, the two-, and the three-cluster model. The data

plots on the left column of Figure 4.1 correspond to the actual plays by Shakespeare,

while the data plots on the remaining three columns of that figure correspond to data

replicates obtained from the three simplest multinomial mixture models.

Figure 4.2 compares the frequency of the, and, I, you, it, your and his actually observed
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Figure 4.1: In the left column, proportion of words of one, two, three, nine and

more than nine letters, average word lengths, ratio between the number of long and

of short words in the acts of the plays in Shakespeare’s drama, and first correspon-

dence analysis component of the table of word lengths. Next to each of these plots,

posterior predictive replicates under the one-, two- and three-cluster models.
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Figure 4.2: In the left column, frequency of appearance of the, and, I, you, it, your

and his in the acts of the plays in the first folio edition of Shakespeare, and first

correspondence analysis component of the table with the twenty most frequent word

counts. Next to each of these plots, posterior predictive replicates under the one-,

two- and three-cluster models.
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Figure 4.3: Classification of each one of the five acts of each of the plays in

the first folio edition of Shakespeare under the two-cluster model, first using

only word counts and second using both word length as well as word counts.
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Figure 4.4: Classification of each one of the five acts of each of the plays in

the first folio edition of Shakespeare under the three-cluster model, first using

only word counts and second using both word length as well as word counts.
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and when using both word length as well as word counts.
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(θwl1 , θ
wl
2 , θ
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3 ), and for word counts, (θmf1 , θmf2 , θmf3 ), in the three clusters of

acts of plays in the first folio edition of Shakespeare, all in a logarithmic scale.
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in the plays by Shakespeare, on the left column, with the corresponding frequencies in

a sample simulated from the same multinomial mixture models, on the remaining three

columns. Figures 4.1 and 4.2 also compare the first correspondence analysis component

summarizing the two tables of data considered here with the components summarizing

analogous tables obtained by simulating from these models.

Note for example that the average word length tends to be smaller and the proportion of

one and three lettered words tends to be larger for comedies than for histories or tragedies,

while for example the use of the words I and you tends to be more frequent for them. It

is worth remarking the fact that, even though current common wisdom states that word

length is not an effective stylometric variable when trying to discriminate the style of

English authors (see, e.g., Mosteller and Wallace, 1984), word length does indeed help

distinguish the style used in Shakespeare’s comedies from the style used in his histories

and tragedies.

One now has to check whether either one of the one-, two- or three-cluster models

considered in Section 4.3 capture the patterns in Figures 4.1 and 4.2 adequately or not.

Figures 4.1 and 4.2, and many other posterior predictive checks made on the side, not

reported here, all indicate that here these finite mixtures of multinomial models are able

to reproduce most of the variability in the data. To choose among the one-, the two- and

the three-cluster models, several of the statistics in Figures 4.1 and 4.2 indicate that at

least three clusters are needed to capture the variation in the levels of these statistics.

Here the natural logarithm of P (y|MS) under the one-, two-, three- and four-cluster

models are equal to −25488.4, −23608.0, −22988.9 and −22677.3 respectively. If one

computes the posterior probabilities that each one of these four cluster models is the

correct one through (4.1), one chooses the four-cluster model. But if one penalizes models

with more clusters by assigning them much smaller prior probabilities, as recommended

by Casella et al (2014), one settles with the two- or three- cluster models. In fact, Figures

4.1 and 4.2 indicate that the two- and the three-cluster models already account for most

of the variability in the data.

In order to compare the result of the cluster analysis combining the information of both

word length and the use of word counts, with the results of the cluster analysis using

only word counts, both analysis are carried out.

Figure 4.3 allocates acts into either one of two clusters using the posterior probabilities

for ζi under the two-cluster model. It indicates that the two-cluster analysis classifies

acts mostly along genre. Under this analysis, most of the acts in comedies fall into

Cluster 1, most of the acts in histories fall into Cluster 2, while the acts in tragedies are
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more or less evenly split across both clusters. As an exception to that rule, most of the

acts of “A Midsommer Nights Dreame” are classified as a history instead of a comedy.

Note also that all the acts of the tragedies of Titus Andronicus and of Machbeth are

classified as histories, while the acts of all other tragedies are split between both clusters.

When one compares the result of the analysis combining word length and word counts,

with the analysis based only on word counts, one finds that only a small number of acts

change allocation. The results of both analysis are different and yet, similar enough, to

justify the combination of both characteristics into a single analysis.

Figure 4.4 allocates acts into clusters under the three-cluster model, again first based

only on word counts and second, based on both word counts as well as word lengths.

Here it also appears that the classification of acts into clusters is mostly made along

genre, with Cluster 1 being mostly formed by acts in tragedies, Cluster 2 mostly by

acts in comedies, and Cluster 3 mostly by acts in histories. The result of the analysis

combining word length and word counts and the analysis based only on word counts are

again different, and yet, similar enough to justify the combination of both characteristics

into a single analysis.

To help interpret the results, Figure 4.5 presents the first correspondence analysis com-

ponents for the table of word counts in the acts of Shakespeare’s drama. Correspondence

analysis is analogous to PCA but tailored for categorical instead of continuous data (see,

e.g., Greenacre, 2007). Acts are stratified first across genre, which helps emphasize that

the heterogeneity of style found in Shakespeare’s drama mostly relates to genre. Acts in

Figure 4.5 are also stratified according to their three-cluster classification, which shows

how clusters mostly group observations close together in the space of the first correspon-

dence analysis components, and which helps appreciate what changes from combining

word length and word counts in the analysis instead of just using word counts.

To help understand what distinguishes the style of clusters, Figure 4.6 presents a sample

of the posterior distribution of the multinomial probabilities for word length counts and

for the most frequent words under the three-cluster model. Cluster 2, mostly formed

by comedies, has the largest proportion of words with one, two or three letters and the

smallest proportion of words with five, six, seven, eight, nine or more than nine letters.

Cluster 2 also has the largest frequencies of I, a, you, it, and of me, and the smallest

frequencies of and and of his. Clusters 1 and 3 seem to be much more similar in terms

of most of the categories considered, with Cluster 3 being special for having smaller

frequencies of I, you, it and your, and larger frequencies of the, of and with than the

other two clusters.
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4.6 Case study 2: Tirant lo Blanc

Tirant lo Blanc is a chivalry book written in catalan and hailed to be “the best book of

its kind in the world” by Miguel de Cervantes. The main body of the book was written

between 1460 and 1464, but it was not printed until 1490, and there has been a long

lasting debate around its authorship, originating from conflicting information given in

its first edition. Where in the beginning of the book it is stated that “So that no one

else can be blamed if any faults are found in this work, I, Joanot Martorell, take sole

responsibility for it,” at the end of the book it is stated that “Because of his death, Sir

Joanot Martorell could only finish writing three parts of it. The fourth part, which is the

end of the book, was written by the illustrious knight Sir Mart́ı Joan de Galba.” Over

the years, experts have split between the ones favoring the single authorship hypotheses,

and the ones backing the hypotheses of a change of author somewhere between chapters

350 and 400.

It is well accepted that the main (and maybe single) author died in 1465, and neither he

nor the candidate to be the book finisher left any other texts comparable with this one.

Different from the situation in the previous example, here the analysis is more structured

because there are not as many factors that could explain differences in style other than

differences in authorship, and hence the analysis is less of an exploratory nature.

An analysis of the diversity of the vocabulary in Riba and Ginebra (2006) finds that it

becomes significantly less diverse after chapter 383. Giron et al (2005) and Riba and

Ginebra (2005) carried out a change point and a two-cluster analysis first for word length

and second for the most frequent words separately. In both cases a stylistic boundary is

detected between chapters 371 and 382.

This agreement between the results reached through the analysis of word counts and

through the analysis of word lengths was what triggered our interest in combining the

information in word length with the information in word counts in a single combined

analysis. Different from what happens for English texts, it turns that in other languages

word length might be useful when discriminating between authors.

These papers formally tested for the existence of more than one cluster under each

characteristic, by computing the probabilities in (4.1) under each one of the two tables

separately, and it was decided that there were two clusters, but it was also conjectured

that finite mixtures of Dirichlet-multinomials might be better able to capture the vari-

ability in the data than finite mixtures of multinomials.
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Figure 4.7: Probability that chapters in Tirant lo Blanc belong to Cluster 1.
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Figure 4.8: Box-plots of a sample of the multinomial probabilities for word

length, (θwl1 , θ
wl
2 ), and for word counts, (θmf1 , θmf2 ), for the two clusters in Tirant

lo Blanc, all in a logarithmic scale.
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Here a cluster analysis is carried out simultaneously based on both the 425× 10 table of

word length counts as well as on the 425× 12 table with the count of the twelve words

chosen in Giron et al (2005) based on their discrimination power between the beginning

of the book and its ending. As in that paper, only chapters with more than 200 words

are considered. Posterior predictive model checks carried out here similar to the ones

in Figures 4.1 and 4.2 for the plays of Shakespeare indicate that here one can also rely

on a finite mixture of sets of purely multinomial models. Hence the conjecture that one

might need mixtures of sets of Dirichlet-multinomial models instead is not called for.

Figure 4.7 presents the posterior probability that the i-th row (chapter) belongs to

Cluster 1, ζi = 1, which is what one needs to classify the chapters of Tirant lo Blanc into

either one of the two clusters. Cluster 1 mostly includes chapters previous to chapters

375-385, while Cluster 2 mostly includes chapters that come after that boundary, but

there are a fair amount of chapters misclassified by that boundary. This partition of

chapters into clusters is similar to the partitions obtained through the analysis carried

out in Giron et al (2005) considering the two characteristics separately.

The distribution of the multinomial probabilities under the two-cluster model presented

in Figure 4.8 indicate that two and three lettered words are more abundant in Cluster 1,

while one, six, seven, eight, nine and more than nine lettered words are more abundant

in Cluster 2. That figure also indicates that the words que, no, com, és, jo, si and dix

are significantly more abundant in Cluster 1, mostly in the first part of the book, while

e, de, la, l’ and molt are more abundant in Cluster 2, mostly at the end of the book.

Note that the results presented in this case study are based on the analysis of the counts

of twelve words that were selected by Giron et al (2005) based on their discriminating

power between the style at the beginning and at the ending of that book. They first did

the analysis with a larger set of words and realized that the main difference in style as

between the first four fifths of the book and the last one fifth, and then they repeated

the analysis with the twelve most discriminating subset of words that we have also used

here. This sequential approach that starts with about twenty words and then repeats

the analysis with the most discriminating words among them is useful, because it helps

sharpen the classification power of the method.

Finally, note that different from the previous case study, in this example texts (chap-

ters) are ordered sequentially, and that order is not taken into consideration in the cluster

analysis model used here. Puig, Font and Ginebra (2014) proposes an alternative anal-

ysis that treats the two stylometric variables separately, but incorporates the fact that

chapters close together are more likely to belong to the same author than chapters that

are far apart. In that way, one strikes a compromise between change-point analysis, as-
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suming all neighboring chapters to belong to the same cluster except the boundary ones,

and the kind of cluster analysis considered here, that treat all chapters exchangeably, as

if order did not matter whatsoever. In this case the results of the analysis are similar.

4.7 Case study 3: el Quijote

El Quijote, written by Cervantes (1547-1616), is considered to be the most important

book in the Spanish literature. It was published in two parts, with the first part having

52 chapters and appearing in 1605, and the second part having 74 chapters and appearing

in 1615. The cluster analysis of this book, broken down into its 126 chapters, is carried

out to check how our approach fares when it is used on a text that is considered to have

a rather homogeneous style. Given that no one disputes the single authorship of this

book and the contents in the two parts of the book are similar, this exercise allows one

to check whether there are any differences in the style of the two volumes that could be

explained by the ten year lapse between them.
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Chapter

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 20 40 52 21 41 61 74

Figure 4.9: Probability that the chapters in El Quijote belong to Cluster 1.

Here the analysis is based on the 126 × 10 table of word length counts and on the

126× 20 table of counts of the twenty most frequent function words. Here, the posterior

predictive checks that compare the actual data with simulations from the multinomial

based S-cluster models already indicate that there is not much to be gained from going

beyond one- or two-cluster models in terms of the variability explained by the models.

That, and the lack of any meaningful reason why one should expect to find more than

one style in El Quijote, explains why we only report the result for the two-cluster analysis

next.

Figure 4.9 indicates that Cluster 1 is formed by 47 chapters in the second part and 24



Chapter 4. Bayesian Analysis of the Heterogeneity of Literary Style 72

0.
05

0.
10

0.
15

0.
25

L1 L2 L3 L4 L5 L6 L7 L8 L9 L+10

0.
02

0.
05

0.
10

qu
e y

de la a en el no lo
s se co
n

po
r

la
s lo le su

do
n

de
l

m
e

co
m

o

Figure 4.10: Box-plots of a sample of the multinomial probabilities for word

length, (θwl1 , θ
wl
2 ), and for word counts, (θmf1 , θmf2 ), for the two clusters in El

Quijote, all in a logarithmic scale.
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chapters in the first part of the book, while Cluster 2 is evenly split between the two

parts of the book. Hence, there does not seem to be any significant differences in style

between the first and second parts of the book. Figure 4.10 describing the stylometric

characteristics of the two clusters indicates that they are a lot more similar than the

two clusters found for Tirant lo Blanc, specially when it comes to the word length

distribution, in line with the fact that in El Quijote there is a single author. The two

clusters seem to be mainly distinguished by the frequency in the use of the words que,

no, los, las, lo, don, del and me, but one should not try to make too much out of it since

that variation can be most likely explained through the variation in the contents of the

respective chapters.

4.8 Final comments

The paper deals with the analysis of the heterogeneity of literary style, which is differ-

ent from authorship attribution in that one does not have a list of candidate authors

and of training texts of known authorship to help build the list of best discriminating

words needed to determine authorship of disputed texts. Without them, there is no

statistical ground on which to determine whether the heterogeneities detected are due

to authorship, chronology, genre, topic or otherwise.

When the original problem is unstructured, because there do not exist any training texts

on which to test specific authorship hypothesis, one can only proceed in a way similar

to the one used here. That is the case of Tirant lo Blanc.

In settings like the one of Shakespeare’s drama, that are a lot more structured, one will

typically want to use discriminant analysis tools to help determine authorship, instead of

the approach taken here. If one is provided with lists of Shakespeare’s preferred words,

and of words that are more used by his contemporaries than by him, like the ones used

in Craig and Kinney (2009), one could analyze the heterogeneity of style based on them.

That would be similar to carrying out a discriminant analysis to attribute authorship.

We intend to work on a paper presenting a more formal Bayesian discriminant analysis

framework tailored to deal with authorship attribution and verification problems.

In the first and third case studies the results presented are based on twenty of the most

frequent words. In both of these studies we also repeated the analysis using only the

subset of these words that better discriminate between clusters according to what is

found in Figures 4.6 and 4.10. We consider this sequential approach to selecting the list

of words, starting with about twenty words and then repeating the analysis with the

most discriminating words among them, to be very useful. Using far more than twenty
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words to start with is usually problematic, because that includes in the analysis many

words that do not distinguish between styles and hamper the classification power of the

algorithm.

On a more technical level, note that when one bases heterogeneity analysis of style

on word length and word counts, our predictive checks in case studies covering three

different literatures indicate that finite mixtures of multinomial models capture most

of the variability in the data. That settles the issue raised in Giron et al (2005) on

whether or not this kind of models were flexible enough for typical stylometric data. In

this setting, one does not need to resort to hierarchical models, like the finite mixtures

of Dirichlet-multinomial models used in Puig and Ginebra (2014a), to account for any

extra variability in the data.

Appendix: Computation of marginal likelihoods, P (y|Ms)

Under the single cluster model, M1, the marginal likelihood is:

p(y|M1) =
R∏
r=1

∏n
i=1N

r
i !∏k(r)

j=1

∏n
i=1 y

r
ij!

∏k(r)
j=1(

∑n
i=1 y

r
ij)!

(
∑n

i=1N
r
i )!

Dir-Mult(yr;
n∑
i=1

N r
i , a

r), (4.4)

where yr is the vector of aggregated counts of the r-th table, yr = (
∑n

i=1 y
r
i1, . . . ,

∑n
i=1 y

r
ik),

and where Dir-Mult(x;N, a) denotes the pdf of a Dirichlet-multinomial distribution with

parameters N and a = (a1, . . . , ak) evaluated at x = (x1, . . . , xk),

Dir-Mult(x;N, a) =
N !Γ(

∑k
j=1 aj)

Γ(N +
∑k

j=1 aj)

k∏
j=1

Γ(xj + aj)

xj!Γ(aj)
. (4.5)

The marginal likelihood under the S-cluster model, MS, is

p(y|MS) =
R∏
r=1

∏n
i=1N

r
i !∏k(r)

j=1

∏n
i=1 y

r
ij!

S∏
s=1

∏k(r)
j=1(

∑n
i=1 y

r
ijI[ζ̂i=s])!

(
∑n

i=1N
r
i I[ζ̂i=s])!

Dir-Mult(y[ζ̂i=s]r ;
n∑
i=1

N r
i I[ζ̂i=s], a

r
s),

(4.6)

where I[ζ̂i=s] denotes the indicator function that is 1 when the i-th observation is esti-

mated to belong to the s-th cluster and it is 0 otherwise, and where y
[ζ̂i=s]
r denotes the

vector of aggregated counts of all the observations estimated to belong to the s-cluster,

y
[ζ̂i=s]
r = (

∑n
i=1 y

r
i1I[ζ̂i=s], . . . ,

∑n
i=1 y

r
ikI[ζ̂i=s]).



Chapter 5

Unified Approach to Authorship

Attribution and Verification

In authorship attribution problems one needs to assign a text or a set of texts from

an unknown author to either one of two or more candidate authors on the basis of

the comparison of the disputed texts with texts known to have been written by the

candidate authors. In authorship verification problems one needs to decide whether a

text or a set of texts could have been written by a given single author or not. These

two problems are usually treated separately. By assuming an open-set classification

framework for the attribution problem, contemplating the possibility that neither one

of the candidate authors is the unknown author, the verification problem becomes a

special case of attribution problem. Here both problems are posed as a formal Bayesian

multinomial model selection problem and are given a closed form solution, tailored for

categorical data and naturally incorporating text length in the analysis. The approach to

the verification problem is illustrated by exploring whether a court ruling sentence could

have been written by the judge that signs it or not, and the approach to the attribution

problem is illustrated by revisiting the authorship attribution of the Federalist papers

and through a simulation study.

5.1 Introduction

The statistical analysis of literary style has long been used to characterize the style

of texts and authors, and to help settle authorship attribution problems. Early work

(see, e.g., Mendelhall, 1887, or Yule, 1938) used word length and sentence length to

75
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characterize literary style. Other characteristics widely used for this purpose have been

the proportion of nouns, articles, adjectives or adverbs, the frequency of use of function

words, which are independent of the context, or of characters, and the richness and

diversity of vocabulary.

Early applications involved the study of literary, religious or legal texts, but recently lots

of new challenging problems have appeared due to widespread availability of electronic

texts, leading for example to new applications in homeland security, computer forensics

or spam detection. Good reviews about the statistical analysis of literary style can be

found in Holmes (1985, 94, 98, 99). The range of statistical methods used in this setting

is wide, but they most often involve various approaches to classification.

In the analysis of the heterogeneity of the style in a given text or set of texts, one

does not always know how many authors might have contributed to the text, and one

typically does not have a reference set of candidate authors and training texts. In these

settings one needs to resort to cluster analysis techniques, also recognized as unsupervised

classification/learning. A Bayesian approach to the analysis of the heterogeneity of style

using mixtures of multinomial models is presented in Giron et al (2005).

Instead, in this manuscript one deals with authorship attribution problems, where one

has a set of S candidate authors, and for each one of these authors one has a set of texts

known to have been written by him or her, recognized as training texts. With the help

of these training texts, one needs to assign a text or several texts by an unknown author

to either one of the authors in the set. As a consequence, in these settings one needs

to resort to the use of discriminant analysis techniques, also recognized as supervised

classification/learning.

In most authorship attribution applications one adapts a closed-set classification frame-

work, assuming that one knows with certainty that the unknown author is one of the

S hypothesized candidates. Instead, nothing is lost by adopting a more prudent and

flexible open-set classification framework contemplating as an extra hypothesis the pos-

sibility that the unknown author is not included among the list of S candidate authors.

By adopting this open-set classification framework, the authorship verification problem

that requires one to decide whether a text or a set of texts of unknown author have been

written by a known author with comparable texts, becomes a special case of authorship

attribution with S = 1.

In this paper we address the open-set authorship attribution and the verification prob-

lems using stylometric characteristics that involve counting features that are categorical

and have a fixed number of categories, and are frequently observed. That covers count-
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ing word lengths, sentence lengths, letters, function words, nouns or adjectives. Our

approach excludes the analysis based on the word frequency counts used in vocabulary

richness and diversity analysis, because the number of categories in such type of data is

the frequency of the most frequent word, which typically grows with text size.

By restricting attention to such stylometric features, data will consist of a contingency

table with as many rows as texts under consideration. The “training rows” will corre-

spond to the texts that are known to belong to one of the S candidate authors, and the

remaining rows will correspond to the texts of unknown author.

A huge variety of statistical tools have been used to tackle authorship attribution and

verification problems. Even though Mosteller and Wallace (1964, 84) used probability

models to drive the authorship attribution in one of the earliest seminal authorship study,

most of that literature resorts to ad-hoc heuristic classifiers using linear or quadratic

discriminant analysis (Stamatatos et al, 2000, Tambouratzis et al, 2004), support vector

machines (Joachims, 1998, Diederich et al, 2003, Li et al, 2006), decision trees (Zheng

et al, 2006), neural networks (Matthews and Merriam, 1993, Merriam and Matthews,

1994, Tweedie et al, 1996) or other machine learning based feature selection algorithms

(Forsyth and Holmes, 1996, Forman, 2003, Binongo, 2003, Koppel et al, 2006). Recent

applications of these supervised classification tools in authorship problems can be found,

for example, in Stamatatos et al (2001), Holmes et al (2001), Burrows (2002, 2007),

Hoover (2001, 2004), Abbasi and Chen (2005), Chaski (2005), Grant (2007), Argamon

(2008), or Holmes and Crofts (2010). Recent reviews can be found in Stamatatatos

(2009) and in Sebastiani (2002), and recent comparisons of some of these classification

approaches in Zhao and Zobel (2005), Juola et al (2006), Yu (2008), Jockers et al (2008),

Jockers and Witten (2010)

One of the shortcomings of most of these algorithmic based approaches is that they

implicitly assume data to be continuous, or at least are tuned to work best when data is

continuous. But the data in authorship attribution problems is mostly categorical, and

one should adapt to the specificities of that kind of data. In particular, one needs to

adequately take into account the length of texts and to accommodate for the dependence

between the counts of different categories of a given stylometric characteristic, which is

not easy to do in the framework of most of the classifiers typically used in authorship

attribution.

Another shortcoming of the algorithmic based approaches advocated for in machine

learning is that they are tailored to work with large training samples, and hence do

not tend to fare well when one has a small number of training texts as it is often the

case in authorship attribution practice. Furthermore, they can not accommodate for the
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classification of disputed texts to unknown authors, without training texts, and therefore

they can not be used in an open-set classification framework.

Here we adopt a formal Bayesian model based approach, in the spirit of Mosteller and

Wallace (1984), that addresses all these shortcomings and it allows one to assess the

uncertainty in the classification of the disputed texts as belonging to each one of the

candidate authors. Adopting the Bayesian framework allows one to assign the disputed

texts to either one of the S candidate authors or to neither one of them based on the

posterior probability that disputed texts were written by each one of the candidate

authors. Note also that Bayesian models are probabilistic models, and building them

is like building a data simulation model. Hence, resorting to them allows one to check

the assumptions on which the analysis is based by comparing the data observed with

the data simulated from the selected model. That is in stark contrast with alternative

algorithmic approaches that do not make explicit the stochastic assumptions on which

they are grounded.

One of the strengths of the specific Bayesian approach adopted here is that, different

from the approach taken by Mosteller and Wallace, here the whole vector of counts is

analyzed simultaneously, instead of analyzing the count for each category separately.

A second strength of our approach is that it provides closed form expressions for the

posterior probabilities used to assign the disputed texts to an author, and hence they

can be evaluated without the need to resort to iterative algorithms or to heuristic ap-

proximations to these posterior probabilities, as in other solutions to these classification

problems.

To illustrate our approach, an authorship verification case study involving a court ruling

sentence is presented, and the authorship attribution of the Federalist papers is revisited.

There is a growing agreement that the frequency of high frequency function words is one

of the most reliable features in authorship attribution (see, e.g., Hoover, 2003, Zhao

and Zobel, 2005, Uzuner and Katz, 2005, Grieve, 2007). Even though word length has

rarely proven to be useful in the authorship attribution of texts written in English, it

has been found to be useful for texts in other languages (see, e.g., Giron et al, 2005).

In the verification case study involving court rulings written in Spanish, the problem

will be tackled through the analysis of word lengths and of the use of the most frequent

function words, while in the Federalist papers case study, one focuses on the use of

frequent function word counts.

A small simulation experiment is also carried out to help assess the performance of our

Bayesian model driven approach under repeated use and to compare it to three of the

main alternative approaches available for the authorship attribution problem.
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5.2 Bayesian model building

5.2.1 Description of the model

In authorship attribution problems one starts with n0 disputed texts that are assumed

to have been written by the same unknown author, and with S potential authors for

these texts. One also has ns texts that are comparable to the disputed ones and are

known to belong to the s-th candidate author, for s = 1, . . . , S. In order for texts to be

comparable, ideally they all should have been written at around the same time, belong

to the same genre and deal with a similar topic, even though in practice that might be

difficult to attain.

Given a stylometric characteristic that involves counting features that are categorical

with a fixed number of categories, k, like counting the appearance of the k = 25 most

frequent function words, the i-th text of the unknown author will become a vector valued

categorical observation, y0i = (y0i1, . . . , y
0
ik), for i = 1, . . . , n0, where y0ij is the number of

counts of the j-th category (the j-th most frequent word) in the i-th disputed text.

Analogously, the i-th text known to be by the s-th author will yield the vector of counts

ysi = (ysi1, . . . , y
s
ik), for i = 1, . . . , ns. Table 5.1 presents two examples of the kind of data

that one will be dealing with in this paper, with each row of the table corresponding to

either one of the training or one of the disputed texts, and playing the role of a ysi or a

y0i observation.

The set of all the n0 vector valued observations corresponding to the n0 disputed texts,

denoted y0 = (y01, . . . , y
0
n0), are assumed to be conditionally independent and multino-

mially distributed,
∏n0

i=1 Mult(y0i ;N
0
i , θ

0), where N0
i =

∑k
j=1 y

0
ij is the total count for

the i-th disputed text, and where θ0 = (θ01, . . . , θ
0
k) with θ0j being the probability of the

j-th category for all the disputed texts, and hence with
∑k

j=1 θ
0
j = 1. Analogously, the

set of all the ns observations that correspond to the ns texts known to be by the s-th

author, ys = (ys1, . . . , y
s
ns), are assumed to be

∏ns

i=1 Mult(ysi ;N
s
i , θ

s) distributed, with

N s
i =

∑k
j=1 y

s
ij and θs = (θs1, . . . , θ

s
k), where

∑k
j=1 θ

s
j = 1.

When one is willing to assume that all the n0 disputed texts share the same multinomial

parameter θ0, which is an assumption that will have to be checked, nothing is lost by

combining all these n0 texts into a single text and work with the vector of aggregated

counts, y0 = (
∑n0

i=1 y
0
i1, . . . ,

∑n0

i=1 y
0
ik), that is known to follow a Mult(y0;N

0, θ0) distribu-

tion, where now N0 =
∑n0

i=1N
0
i is the total count of words in the texts by the disputed

author. Analogously, if all the observations that correspond to texts by the s-th author

are indeed conditionally independent and multinomially distributed, and do share the
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same θs, which again is an assumption that should be checked, nothing is lost by working

with the corresponding vector of aggregated counts, ys = (
∑ns

i=1 y
s
i1, . . . ,

∑ns

i=1 y
s
ik), that

follows a Mult(ys;N
s, θs) distribution, where N s =

∑ns

i=1N
s
i .

If the author of the disputed texts was the s-th candidate author for some s ∈ {1, . . . , S},
then one expects that the distribution of the aggregated counts in the disputed texts,

y0, will be distributed as the aggregated counts of texts by that author and hence have a

Mult(y0;N
0, θ0 = θs) distribution. If one further assumes that the sample counts of all

texts are conditionally independent, then the probability density function of the whole

set of data, y = (y0, y1, . . . , yS), will be:

ps(y|θ1, . . . , θS) = Mult(y0;N
0, θs)Mult(ys;N

s, θs)
S∏

r=1,r 6=s

Mult(yr;N
r, θr), (5.1)

which will be recognized from now on as the Ms model.

In most authorship attribution studies one adopts a closed-set classification framework,

where one acts as if one had the certainty that the unknown author was one of the S

candidates. In that case, one would only consider the M1, . . . ,MS models.

Instead, in the open-set classification setting adopted here one also contemplates the

possibility that the author of the disputed texts might not be included in the set of S

candidate authors. That requires one to consider an extra (S + 1)-th sub-model, M0,

under which θ0 6= θs for s = 1, . . . , S, and hence with pdf:

p0(y|θ0, θ1, . . . , θS) = Mult(y0;N
0, θ0)

S∏
s=1

Mult(ys;N
s, θs). (5.2)

In this open-set classification framework, determining whether the disputed texts were

written by either one of the S candidate authors and hence share his or her style, or by

someone else, becomes the problem of choosing one model among M0,M1, . . . ,MS, in

the light of data.

The framework covered by the S = 1 case corresponds to the authorship verification

problems, requiring one to choose between the model M1, indicating that the single

candidate author has written both the disputed texts as well as the training texts, and

the model M0, indicating that the disputed texts were written by someone else.

In a Bayesian setting, one needs to choose a distribution for the parameters of the model

that captures what one knows about them before observing the data, which is denoted

as the prior distribution. As a prior distribution for the multinomial probabilities, θr, for
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r = 0, 1, . . . , S, it will be assumed that they are independent and Dirichlet(ar1, . . . , a
r
k)

distributed, where ar = (ar1, . . . , a
r
k) is such that arj > 0. Depending on the values chosen

for ar, the prior will capture different types of information and it will be more or less

informative. In particular, the expected value of θr will be (ar1, . . . , a
r
k)/(

∑k
j=1 a

r
j), and

one can choose the arj to reflect the fact that some categories might be known to appear

with larger probabilities than others. That is the often the case, for example, when one

is modeling word frequencies. Also, the larger
∑k

j=1 a
r
j the smaller the variances of θrj

and the more informative the prior chosen for θr.

Choosing this prior distribution is convenient, because it leads to closed form expressions

for the posterior probabilities of each one of the S + 1 sub-models, which will be key

in selecting a model and hence an author for the disputed texts. In the examples that

follow all the ar = (ar1, . . . , a
r
k) are set to be equal to (1, . . . , 1), which corresponds to

assuming a uniform distribution on the simplex for θr. The amount of information in this

prior distribution is equivalent to the one in a sample text with a count total of N = k.

Given that the total number of words (counts) in the texts analyzed will always be a lot

larger than k, by choosing the uniform prior distribution the influence of the prior on

the posterior distribution will always be a lot weaker than the influence of the data on

the posterior through the likelihood function. As a consequence, varying the parameters

of the prior distribution around the chosen (1, . . . , 1) does not alter the conclusions of

the analysis.

It will also be assumed that all S + 1 sub-models, and hence all S + 1 authorship

hypotheses, are equally likely a priori, and hence that their prior probabilities are

P (Mr) = 1/(S + 1) for r = 0, 1, . . . , S, but that can be trivially set to be otherwise.

5.2.2 Author selection through model selection

A difficulty of the heuristic algorithms is that they often lack a statistically well grounded

method for selecting an author for the disputed texts. Here that problem is tackled first

through the use of a formal model selection method, based on the posterior probability

that each one of the models considered is the one active. Model checks will also be used

to help support the choice of model, and hence of author.

Resorting to a Bayesian analysis has the advantage that one can update the prior proba-

bilities and select the model (author) with the largest posterior probability. The posterior

probability that the Mr model is the one generating the data is:

P (Mr|y) =
P (Mr)P (y|Mr)∑S
r=0 P (Mr)P (y|Mr)

, for r = 0, 1, . . . , S, (5.3)
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where P (Mr) is the prior probability of model r and where P (y|Mr) is the density

function of the prior predictive distribution under model Mr evaluated at the observed

data, also recognized as the marginal likelihood of Mr. Hence, the posterior probability

of Mr is proportional to P (Mr) and P (y|Mr). One will select the model (author) with

the largest posterior probability, and when each model (author) is considered equally

likely a priori, that means picking the Mr with the largest marginal likelihood, P (y|Mr).

Often, computing P (y|Mr) exactly is too complicated to be attempted in practice, and

one approximates its logarithm through the BIC, or through the MCMC simulations used

to update the model. But in our case, by choosing a Dirichlet prior for the multinomial

probabilities one has a closed form expressions for P (y|Mr), that can be easily evaluated.

In particular, when y = (y0, y1, . . . , yS) one has that:

p(y|M0) = Dir-Mult(y0;N
0, a0)

S∏
s=1

Dir-Mult(ys;N
s, as), (5.4)

where Dir-Mult(x;N, a) denotes the pdf of a Dirichlet-multinomial distribution with

parameters N and a = (a1, . . . , ak) evaluated at x = (x1, . . . , xk),

Dir-Mult(x;N, a) =
N !Γ(

∑k
j=1 aj)

Γ(N +
∑k

j=1 aj)

k∏
j=1

Γ(xj + aj)

xj!Γ(aj)
. (5.5)

The marginal likelihood under Mr for r ∈ {1, . . . , S} becomes:

p(y|Mr) =
N0!N r!

(N0 +N r)!

∏k
j=1(

∑n0

i=1 y
0
ij +

∑nr

i=1 y
r
ij)!∏k

j=1(
∑n0

i=1 y
0
ij)!
∏k

j=1(
∑nr

i=1 y
r
ij)!
× (5.6)

Dir-Mult(y0 + yr;N
0 +N r, ar)

S∏
s=1,s 6=r

Dir-Mult(ys;N
s, as). (5.7)

In this way, one can compute P (y|Mr), and hence P (Mr|y), exactly, and select the

model (author) with the largest P (Mr|y). That allows one to classify the disputed texts

as either belonging to the r-th author, when P (Mr|y) is the largest with r ∈ {1, . . . , S},
or as having an author not in the list, when P (M0|y) is the largest.

Note that here one is computing the exact posterior probabilities, P (Mr|y), conditional

on the training as well as the disputed texts, y = (y0, y1, . . . , yS), based on the simultane-

ous use of all these texts counts. That is different from taking an approximate two-stage

approach, first “estimating” the posterior distribution of the multinomial probabilities θr

of the r-th author for r = 1, . . . , S, based only on the counts in the training texts by that

author, yr, and using (2.3) with y = y0 and replacing P (y = y0|Mr) by an approximation
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P (y = y0|θ̂r), where θ̂r is an estimate of θr. One often uses the maximum likelihood

estimate of θr, which is also the posterior mode under a uniform prior. Examples of the

use of this approximate Bayesian approach can be found in Gale et al (1993), McCal-

lum and Nigan (1998), Lewis (1998), Schneider (2003), or Peng et al (2004). Note that

this two-stage approximation can not be used in the open-set classification framework

adopted here.

5.2.3 Model checking

The solution given here to the authorship attribution and verification problems relies

on the model comparison just described, which in turn relies on the assumption that

the model considered is correct. Before standing by the conclusions reached, one should

check whether that model does indeed capture all the relevant features in the data or

not.

The main model assumption is that all the vectors with the counts of the texts by the

same author, s, are conditionally independent and distributed as a Mult(Ni, θ
s), where

the multinomial parameter θs is identical for all the texts by that author. Even though

inference is made after aggregating all texts by the same author in a single text, to

check that assumption one needs to resort back to the sample of ns vectors of counts,

ys1, . . . , y
s
ns , or the texts available for each author before aggregation. The two most likely

deviations from that assumption, and the way to check them, are:

1. The style of one or several of the texts attributed to the s-th author might not be

comparable to the style of the other texts by him, or might not even be by that

author. In such a situation, some of the observation(s) assumed to be from the s-th

author, ysi , for i = 1, . . . , ns, might be independent and multinomially distributed

but with different and unrelated multinomial parameter values.

To verify whether all the ns texts assumed to be comparable and by the same

author are indeed so, one can verify whether each one of them is by that author

by treating the other ns − 1 texts as training set. That is, one would go author

by author, and resort to the S = 1 special case of the model in Section 5.2.1 to

test whether each training text shares the same style (model) as the other training

texts by that author. This use of the solution to the verification problem to check

this model assumption will be illustrated in the two case studies that follow.

2. The vectors of counts ysi , for i = 1, . . . , ns, corresponding to the training texts

from the s-th author, might be multinomially distributed with similar but not

identical values of θsi . That leads to the count data from the s-th author being

more dispersed than anticipated by (2.1) or (2.2). If these θsi can be assumed
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to be exchangeable and follow a given distribution, one can improve the model

by switching from the purely multinomial models considered here to multinomial

mixtures instead.

To check whether the vector of counts for the texts of a given author are identically

distributed as a multinomial or not, one can assess whether it is plausible that one

could simulate data like the data observed through the predictive distributions (see,

e.g., Gelman et al, 2004). We do not report on the predictive checks carried out

in the examples that follow, but in them it was found that the purely multinomial

based models in Section 5.2.1 match closely the variability of the counts observed.

5.3 Authorship verification case study

Here, one compares the style of a Spanish patent court ruling sentence, denoted by D,

with the style of four other patent court ruling sentences written at around the same

time and dealing with similar issues, denoted by S1, S2, S3 and S4. Even though all the

five sentences considered were signed by the same judge, there is grounded suspicion

that the disputed sentence was actually written by someone else. The goal is to verify

whether the style of the disputed sentence is similar enough to the style of the other four

sentences to back the single authorship hypothesis or not.

In order to verify whether that is the case, the comparison will be based both on word

length distribution, as well as on the frequency with which the twenty most frequent

function words are used in these sentences. Before counting the number of l-lettered

words and the number of times function words appear in the sentences, we have excluded

from the text all citations, acronyms, capital lettered words, numbers, dates and names

of persons and of cities. On top of that, we have only considered the factual, the legal

basis and the final verdict, excluding from the analysis the formal paragraphs that are

always repeated at the end of all sentences. These twenty most frequent function words

are: de, la, que, el, en, y, a, los, se, por, del, las, no, una, con, es, o, para, su y al.

Note that, different from what happens in the authorship attribution problem case, with

S > 1, in the authorship verification case, with S = 1, one can not choose the list of

words or features based on their discriminating power, because one only has a single

candidate author. This is, in fact, the only feature that distinguishes verification studies

from attribution studies, other than the number of candidate authors involved.

The resulting data, on which the statistical analysis will be based, are partially presented

in Table 5.1. The first row of the first sub-table for example indicates that in the disputed
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word length counts

court ruling 1 2 3 4 5 6 7 8 9 10+ Ni

D 598 4069 1882 673 707 689 1145 997 737 1554 13051

S1 158 942 397 149 249 191 220 196 200 318 3020

S2 629 2587 1200 450 690 573 631 579 680 1070 9089

S3 186 978 413 160 257 192 241 198 224 316 3165

S4 560 3049 1257 499 810 582 705 629 683 1126 9900

Function word counts

court ruling de la que el en y a los se por . . .

D 1269 851 568 437 480 240 277 229 260 204 . . .

S1 310 184 107 129 85 67 39 34 54 56 . . .

S2 806 509 392 297 289 236 192 144 147 116 . . .

S3 320 202 115 143 77 77 58 36 62 61 . . .

S4 1067 642 376 312 317 214 147 164 157 137 . . .

Table 5.1: Number of l-lettered words for l = 1, 2, . . . , 9 and for l > 9, and

number of times that the ten most frequent words appear in the sentences. D

is the disputed sentence, and S1, S2, S3 and S4 is a training set of comparable

sentences signed by the same judge that also signed D.

sentence, D, there are 598 one-lettered words, 4069 two-lettered words and so on, and

that one has considered a total of 13051 words. The first row of the second sub-table

indicates that the most frequent word in that disputed sentence is de, appearing 1269

times, the second most frequent word is la, appearing 851 times and so on. The remaining

rows of that table have the counts for the four training sentences, known to have been

written by the judge signing the disputed one. Note that if all the texts had been written

by the same author, one might expect all the rows in each sub-table to come from the

same multinomial distribution, and hence the model M1 in (2.1) holds. If instead, the

distribution of the first row is different from the distribution of the other four rows and

hence the model M0 in (2.2) holds, it indicates that its style is different and hence the

disputed sentence might very well have been written by a different person.

Figure 5.1 compares the proportion of l-lettered words observed in the disputed sentence

D with the proportion observed in the other four sentences, S1 to S4. It indicates that

the proportion of words of 3, 4, 7, 8 and more than nine letters in the D sentence is

the largest, and the proportion of words of 1, 5, 6 and 9 letters in D is the smallest of

all the five sentences considered. Figure 5.2 compares the frequency of appearance of

the twenty most frequent words in sentence D with the one observed in the other four

sentences. Note that the frequency of appearance of que, en, a, los, las and no in D is

the highest, and the frequency of y, con, o and su in D is the lowest among all the five
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Figure 5.1: Dots indicate the proportion of l-lettered words, Ll, observed in

the four training sentences, S1 to S4. Lines indicate the proportions observed

in the disputed sentence, D.

Sentence word length function words

S1 1.00 1.00

S2 0.99 1.00

S3 1.00 1.00

S4 1.00 1.00

D 0.00 0.00

Table 5.2: Posterior probability that the style of a sentence is the same as the

style in the other ones, P (M1|y). D is not used in the first four rows, checking

whether S1 to S4 share style.

sentences considered.

In order to check first whether all the four sentences used as a training sample of the

style of the known judge, S1 to S4, are comparable and do indeed have a similar style

and hence can all be safely attributed to that judge, we compare each one of them with

the other three sentences in that sample, excluding the disputed sentence D.

The first four rows of Table 5.2 present P (M1|y) = 1−P (M0|y), which is the probability

that the counts for the corresponding Si sentence shares the same multinomial distri-

bution as the counts obtained by adding up the other three rows of the sub-table that

correspond to the remaining training texts, Sj with j 6= i, and hence that all the four

training sentences share the same style. Note that the probability that the distribution

observed in each of the undisputed training sentences is the same as in the other undis-

puted training sentences is basically equal to one. This is consistent with the hypotheses

that these four sentences all share the same style, and hence that a single author wrote
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Figure 5.2: Dots indicate the frequency of appearance of the twenty most

frequent function words in the four training sentences, S1 to S4. Lines indicate

the frequency of appearance observed in the disputed sentence, D.

them, the judge signing them.

But the style in S1 to S4 seems to be very different from the style for the disputed

sentence D. The word length and the word count distributions of D is compared with

the corresponding distributions of the four training sentences, S1 to S4, by computing the

probability that the counts for D in Table 5.1 share the same multinomial distribution

as the counts obtained by adding up the other four rows of the sub-table, P (M1|y).

According to the last row in Table 5.2, that probability is zero under both features

considered.

That indicates that these distributions are clearly different, and hence that the style of

the disputed sentence is very different from the style of the remaining sentences. That is

consistent with what is observed in Figures 5.1 and 5.2, comparing the actual counts in

D, with the counts in S1 to S4. Hence it is likely that the disputed sentence was actually
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written by someone other than the one signing it.

5.4 Authorship attribution case study

The Federalist papers were published anonymously between 1787 and 1788 by Alexander

Hamilton, John Jay, and James Madison to persuade New Yorkers to adopt a new con-

stitution of the United States. Of the seventy seven essays, having somewhere between

900 and 3500 words each, it is generally agreed that Jay wrote five, Hamilton wrote

forty three, Madison wrote fourteen, and three papers are known to be the joint work of

Madison and Hamilton. That leaves the twelve papers, numbered 49 to 58, 62 and 63,

which is not clear whether were written by Hamilton or by Madison.

Mosteller and Wallace (1964, 84) carried extensive comparisons of the frequencies of

a carefully chosen set of common words in writings known to be by Hamilton and by

Madison, with the frequencies of these words on the twelve disputed papers. That seminal

case study involves a clearly defined set of candidate authors, with a clear set of texts

known to be by them and which are comparable to the disputed ones. That explains

that the federalist papers soon became a benchmark on which alternative authorship

attribution approaches test themselves. Recent studies re-visiting that problem are, for

example Holmes and Forsyth (1995), Martindale and McKenzie (1995), Tweedie et al.

(1996), Bosch and Smith (1998), Khmelev and Tweedie (2001), Collins et al (2004), and

Jockers and Witten (2010).

Our approach to authorship attribution is Bayesian, as the one taken by Mosteller and

Wallace, but it is different from the one taken by them in that we model the whole

vector of counts jointly, using multinomial distributions instead of modeling each count

separately assuming that they were independent with a Poisson or a negative binomial

distribution. Analyzing the whole vector of counts simultaneously, instead of the in-

dividual counts of each category separately, allows one to take into consideration the

dependency that one always has between the counts of different categories. A second

difference with respect to the analysis by Mosteller and Wallace is that we take the open-

set classification approach described in Section 5.2, instead of a closed-set approach.

Mosteller and Wallace (1964, 84) tentatively explores the use of word length as a way

to help determine authorship, but concludes that this feature is of no use when distin-

guishing Hamilton and Madison styles. Our analysis have confirmed that fact.

Hence, in this case study we focus the analysis on word counts. Different from what

happens in authorship verification studies, where there is a single candidate author and
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a single set of training texts, when one has more than one candidate author one has the

privilege of picking up a list of words that best discriminate among them. Mosteller and

Wallace (1964, 84) base their main analysis on the counts of thirty frequent words that

are assessed to discriminate best between the style of Madison and the style of Hamilton

using both federalist papers as well as external texts known to have been written by

these authors.

Besides carrying out our authorship attribution analysis based on the thirty words used

by Mosteller and Wallace, we have also carried out parallel analysis based on two new

lists of words. The first list contains the twenty function words that are most frequent

in the federalist papers, without taking into consideration their discriminating power.

The second list consists of thirty function words that we found to be most discriminant

between the forty three federalist papers known to be by Hamilton and the fourteen

federalist papers known to be by Madison, without using any texts external to the

federalist papers.

In order to select our list of the thirty most discriminant words, we started with the

list of 200 most frequent words in the papers known to be by Hamilton and the 200

most frequent words in the papers known to be by Madison. By merging these two lists,

one obtains a set of 240 different words. In order to assess the discriminating power of

each one of these words, we modeled the 240-dimensional vector with the counts of these

words in the papers by Hamilton, yH , and the corresponding vector with the counts in

the papers by Madison, yM , as:

p(yH , yM |θH , θM) = Mult(yH ;NH , θH)Mult(yM ;NM , θM) (5.8)

where θH and θM are the multinomial probability vectors modeling the relative frequency

of these words in the papers by Hamilton and by Madison, and where NH and NM are

the sum of the counts of these words in these papers. As a prior distribution on θH and

θM , one uses the same one used for θr in Section 5.2. Words are then ranked from having

better discriminating power to having worse discriminating power based on the statistic:

Ti =

∣∣∣∣ E(log
θHi
θMi
|yH , yM)√

V ar(log
θHi
θMi
|yH , yM)

∣∣∣∣ (5.9)

where i is the index identifying each word in the list of 240 words.

The thirty words with the largest Ti were selected, after discarding the ones that clearly

depended on context. The list of words selected in this manner, together with the value

of the corresponding Ti between brackets, were: on (10,73), would (8,16), upon (7,69),

there (7,54), by (7,47), to (6,94), and (6,81), the (5,42), these (4,82), in (4,39), at
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(4,19), latter (4,16), several (3,96), I (3,8), if (3,69), might (3,62), any (3,51), kind

(3,48), had (3,46), between (3,45), those (3,34), an (3,2), he (3,19), this (3,19), very

(3,17), against (3,12), no (2,95), were (2,9), into (2,89) and same (2,88).

Only eight of our thirty most discriminating words obtained based only on Federalist

papers, (an, by, kind, on, there, this, to and upon), appear also in the list of Mosteller

and Wallace thirty most discriminating words obtained based on texts by Hamilton and

Madison different from the Federalist papers. Figure 5.3 compares the frequencies of

appearance of our thirty most discriminating words in the federalist papers by Hamilton

and by Madison, and the corresponding frequencies of appearance in the twelve disputed

Federalist papers.

In order to check whether all the forty three federalist papers used as a training sample

of the style of Hamilton are comparable and do indeed have a similar style, one verifies

whether each one of these papers has a style that is similar to the style of the other

forty two papers by Hamilton. Using the same approach as the one in the case study in

Section 5.3 on each one of these papers separately, one classifies all of them as belonging

to Hamilton, with probability one. When one repeats the same verification exercise on

each one of the fourteen federalist papers used as training samples of Madison, one also

classifies all of them as belonging to Madison with probability one.

text Unknown Hamilton Madison

49 0. 0. 1.

50 0. 0. 1.

51 0. 0. 1.

52 0. 0. 1.

53 0. 0. 1.

54 0. 0. 1.

55 0. .59 .41

56 0. 0. 1.

57 0. 0. 1.

58 0. 0. 1.

62 0. 0. 1.

63 0. 0. 1.

Table 5.3: Posterior probabilities of the three authorship hypotheses considered

for each one of the disputed papers, based on the analysis of the vector with

the counts of our set of thirty most discriminant words.

To settle the authorship attribution of the twelve disputed texts, we carried out the anal-

ysis described in Section 5.2 on each one of these twelve papers separately, considering as
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tentative hypothesis that each one of then had been authored by Hamilton, by Madison,

or by an unknown someone else. Table 5.3 presents the posterior probabilities of each

one of these three hypothesis for each one of the twelve disputed papers based on our

set of thirty most discriminating words. From these probabilities it is clear that all the

disputed papers, except paper 55, should be clearly attributed to Madison. Figure 5.3

indicates what is that makes the style of paper 55 different from the style of the rest of

disputed papers by Madison, and closer to the style of the papers by Hamilton. This

might indicate the collaboration of Madison and Hamilton in the writing of that paper.

When one repeats the same type of analysis based on the use of the thirty most discrim-

inating words used by Mosteller and Wallace, the only difference is that the posterior

probability that paper 55 follows Hamilton style is .05 instead of .59. When one bases

the same analysis on the use of the twenty most frequent function words instead, with-

out filtering out the words that do not discriminate between Hamilton and Madison, one

finds that all the disputed papers except papers 49 and 55 are again clearly attributed

to Madison with probability close to one. All these findings are in close agreement with

the ones in Mosteller and Wallace (1964, 84), and in the other studies looking into this

authorship problem.

5.5 Simulation study

To assess the performance of the Bayesian multinomial model driven classification method

proposed above, and to compare it to alternative supervised classification techniques, two

perfectly known simulation scenarios are designed. In the first scenario, word length data

from five training texts by Author 1 and from five training texts by Author 2 are simu-

lated, to be used to help settle the authorship attribution of three disputed texts, D1, D2

and DU. In the second simulation scenario, word length data from fifty texts by Author

1 and from fifty texts by Author 2 are simulated, to be used to settle the authorship

of texts D1, D2 and DU. All texts in the simulation exercise are set to have N = 500

words.

The multinomial probabilities used to simulate the word length data by Author 1 are

θ1 = (.04, .17, .22, .20, .14, .09, .06, .04, .02, .02), while the probabilities used for Author

2 are θ2 = (.035, .16, .23, .19, .15, .095, .065, .045, .015, .015). The disputed text D1 is

simulated to be by Author 1, and hence with θ0 = θ1, the disputed text D2 is simulated to

be by Author 2, and hence with θ0 = θ2, and the disputed text DU is simulated to neither

be by Author 1 nor by Author 2, with θ0 = (.07, .13, .17, .15, .13, .11, .09, .06, .05, .04, .07).

Under each one of these two simulation scenarios, one first checks how our authorship
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attribution method behaves under repeated use. Second, one compares the performance

of our method with the performance of three popular methods being used in supervised

classification. In both cases, the assessment will be based on repeating the two simulation

experiments described above 1000 times, each time simulating the word length data of

all the training texts as well as the word length data of the three disputed texts.

To assess how the Bayesian multinomial approach fares under repeated use, Figure 5.4

presents the histograms of the 1000 posterior probabilities of the three authorship hy-

potheses, (Author is 1, Author is 2, and Author is neither 1 nor 2 and hence unknown),

for each one of the three disputed papers under the two simulation scenarios.

In the case of the disputed text D1, which we know it to be by Author 1, in 733 (824) of

the 1000 realizations for the 5 training texts (50 training texts) scenario one finds that

the posterior probability that it is by Author 1 is the largest one, while in 267 (176)

of these realizations one finds that the probability that it is by Author 2 is the largest

one. In almost all these 1000 sample realizations, these two posterior probabilities are

far from 0 or 1, due to the fact that the styles of Authors 1 and 2 are set to be similar,

which makes the classification problem significantly more difficult than the ones in the

case studies in Sections 5.3 and 5.4. In contrast, Figure 5.4 indicates that all 1000

realizations lead to a posterior probability close to 0 that D1 is by an unknown author,

and hence that it is neither by Author 1 nor by Author 2. Something similar is observed

through the histograms of the posterior probabilities for the disputed D2 text.

Instead, the style of the disputed DU text is purposely set to be very different from the

styles of Authors 1 and 2, and therefore in most (but not in all) the 1000 realizations

our multinomial model driven method assigns a posterior probability close to 1 that the

author is neither 1 nor 2, and hence close to 0 that it is by Author 1 or by Author 2. The

scenario with 50 training texts per author is a bit more conclusive than the one with 5

training texts, as one would expect it to be.

Next, our Bayesian multinomial model driven method is compared to a decision tree

classification method, to a support vector machine method and to a logistic regression

method. To do that, the three alternative methods together with the method proposed

in this manuscript are used to classify each one of the 1000 realizations of the D1, D2

and DU disputed texts based on each one of the corresponding 1000 realizations of the

training texts. And that is done again under both simulation scenarios.

For a description on how the alternative classification methods work, see Chapters 4, 8

and 9 of Gareth et al (2014). To implement the decision tree method, the tree() function

from the tree library in R has been used, to implement the support vector machine
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method, the svm() function from the e1071 library has been used, and to implement the

logistic regression method, the glm() function has been used. The optimal level of model

complexity under each one of these three approaches has been determined through cross

validation.

By restricting consideration to texts that have 500 words, one avoids the need to de-

cide how to incorporate text length in these three alternative analysis, which is an issue

not adequately settled in authorship attribution practice. Note also that these alterna-

tive approaches are tailored to work with large training samples and hence with many

training texts, which is not what one has in our first simulation scenario, with only five

training texts per author. In contrast, the Bayesian multinomial model driven approach

advocated for in this manuscript naturally incorporates text size in the analysis, and

it works well with any number of training samples, including instances with a single

training text.

Table 5.4 presents the proportion of times each one of the three disputed texts is correctly

attributed to the author that actually wrote it. These proportions are estimates of the

long run (frequentist) probability that the method correctly classifies the disputed text

to the actual author. The first row of that table, for example, indicates that the decision

tree approach correctly classifies D1 to be by Author 1 in 639 out of the 1000 realizations,

the support vector machine approach does that 588 times and the logistic regression ap-

proach does that 653 times, all compared to the 733 times that the Bayesian multinomial

approach correctly classifies D1. Different from the Bayesian multinomial method, the

three top-of-the-counter alternative supervised classification approaches considered here

do not allow for an open-set classification framework, because they can not handle the

hypothesis that neither Author 1 nor Author 2 wrote a text. Hence, no proportion of

correct classifications can be provided for DU under these alternative approaches.

Table 5.4 indicates that the Bayesian multinomial method implemented with a uniform

prior for the multinomial parameters performs better than the logistic regression based

approach and that, in turn, the logistic regression approach performs better than the

decision tree and the support vector machine based approaches. The performance of

the three alternative methods considered is specially poor in the five training texts per

author scenario, because they are designed to work with many training samples and not

just a few.

When text length, Ni, and/or the number of training samples increase, the authorship

attribution problem becomes easier, and one finds that the performance of the logistic

regression and of the support vector machine methods becomes closer to the performance

of the Bayesian multinomial model driven method. We have repeated this kind of sim-
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ulation exercise under many other simulation scenarios, and using different alternative

classification methods, reaching similar conclusions.

5 training texts per author

text BM DT SVM LR

D1 0.733 0.639 0.588 0.653

D2 0.717 0.577 0.584 0.616

DU 0.946 – – –

50 training texts per author

text BM DT SVM LR

D1 0.824 0.671 0.784 0.793

D2 0.816 0.674 0.704 0.793

DU 0.989 – – –

Table 5.4: Estimated probability of correct classification under the Bayesian

multinomial method (BM), under a decision tree method (DT), under a sup-

port vector machine method (SVM), and under a logistic regression method

(LR). The first three rows correspond to the five training texts per author

scenario and the last three to the fifty training texts per author scenario.

5.6 Final Comments

Different from the algorithmic based supervised classification methods typically used for

authorship attribution, the Bayesian multinomial model driven approach advocated for

here has the advantage of being tailored for categorical data, of naturally incorporating

text size in the analysis, of adequately dealing with settings with a small number of

training texts, and of easily adapting to an open-set classification context. On top of that,

it also comes with the scientific advantage of making explicit the list of distributional

assumptions on which the conclusions of the analysis are based; by checking whether

those assumptions are adequate, one can check the validity of the analysis carried out.

Even though the presentation has focused on the use of word length and of word counts,

and it has only been illustrated with examples with at most two candidate authors,

our approach naturally extends to any stylometric characteristic with a fixed number

of categories, and to any number of candidate authors. In the authorship attribution

(verification) analysis proposed here, one carries out as many separate Bayesian discrim-

inant analysis as stylometric characteristics used. Instead, one could also implement a

single discriminant analysis combining the information of all the characteristics at once,

by extending the models in Section 5.2 to apply to the analysis of several contingency

tables at once.
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Even though the main goal in authorship attribution is to classify the disputed texts by

making inference about Mr, one can also benefit from exploring the posterior distribu-

tions for (θ0, θ1, . . . , θS), to help characterize what distinguishes the style of authors.
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Figure 5.3: Comparison of the frequencies of appearance of the thirty most

discriminating words in the papers known to be by Hamilton and by Madison,

and in the twelve disputed papers. The counts for the disputed paper 55, with

a style closer to Hamilton than to Madison are shaded lighter.
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Figure 5.4: Histogram of the sample of 1000 posterior probabilities of the three

authorship hypotheses, with D1 being by Author 1 and thus having θ0 = θ1,

with D2 being by Author 2 and thus having θ0 = θ2, and with DU being by

an unknown author.
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Chapter 6

Future Work

Listed below are some topics related to this thesis on which we have done some ground

work and on which we intend to continue working in the future.

6.1 Extension of the methods in Chapter 2 by using

a three parameter mixing distributions

1. Extend of the IG mixing distribution used in Chapter 2 to three parameters mixing

distributions, as the Generalized Inverse Gausian (GIG) and Tweedie distribution,

that include the IG as a special case. This extension is called for in these instances

where texts are large, because we find the IG based models fail to fit data properly

Sichel (1975,1986a,1986b,1997) developes a very complete and useful non Bayesian

methodology for the analysis of frequency count data based on the IG- and the

GIG-Poisson mixture models. Many authors, like Pollatschek and Radday (1981),

Holmes (1992), Holmes and Forsyth (1995), Baayen (2001), Riba and Ginebra

(2006), Puig, Ginebra and Perez-Casany (2009) and Puig, Ginebra and Font(2010)

build on that methodology.

About Tweedie and the resulting Tweedie-Poisson, the framework for the analysis

of frequency count data has not yet been developed but one expects that switching

from using the GIG to using the Tweedie as mixing distribution might have some

advantages. A complete characterization of this distribution would be needed,

which would require to:

99
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a) Isolate the role of the parameters of the Tweedie mixing model from the role

of the text size, to be able to estimate the probability density of the word

frequencies of the author through estimate of that mixing distribution.

b) Provide an interpretation of the parameters of the Tweedie mixing model in

terms of the size, evenness and diversity of the vocabulary of the author and

in terms of the overdispersion in the data. One of the main advantages of

using the Tweedie-Poisson model instead of the GIG-Poisson model lies in

the interpretation of its third parameter.

c) Find eficient ways to estimate the parameters of both the Tweedie-Poisson

model as well as the one for the zero truncated Tweedie-Poisson model, and

to find efficient ways of estimating the uncertainty of those estimates.

d) Find the way to estimate and represent the density of the Tweedie mixing

distribution, which is not as trivial as it might seem because there is no ana-

lytic closed form expression for that density and one has to rely on the Fourier

inversion of its characteristic function (see Dunn(2008)). This is extremely

useful in stylometry (ecology) because this density can be used as an estimate

of the density of the word (species) frequencies distribution which can be used

as a fingerprint of the style of the author (cosystem) in his texts (samples).

e) Word frequency count data are zero-truncated. Aspects like the extension of

the parameter space due to truncation and the effect of switching the mixing

and the detruncation stages will have to be taken into consideration.

2. Perform a Bayesian frequency count data analysis based on the GIG-Poisson and

on the Tweedie-Poisson models.

Chapter 2 shows a whole methodology for the Bayesian analysis based on the

truncated IG-Poisson model. In the future we intend to implement a Bayesian

analysis based on the GIG-Poison model and on the Tweedie-Poisson model.

a) For the Bayesian analysis based on the GIG-Poisson mixture model, one can

take advantage of the fact that the generalized inverse Gaussian distribution

can be seen as a model playing the role of the prior distribution of the param-

eter of the Poisson and as a prior it is a conjugate one. Our first goal is to

obtain a closed form expression for the posterior distribution of the param-

eter, taking advantage of the fact that the posterior predictive distribution

in the GIG-Poisson model that can be obtained in closed form. Note that

having a closed form for the density of the Poisson mixture allows one to get

the posterior distribution when we are using the mixing distribution as prior

distribution for the parameter of the Poisson.
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For the bayesian analysis based on the Tweedie-Poisson model, the scenario

is more complex because the lack of a closed form expression for the distri-

bution function of the Tweedie model means that it is not possible to obtain

analytical closed form of the posterior distribution. Hence we will need to

develop MCMC algorithms that simulate from it, and from the correspondent

posterior predictive distribution.

These analysis will provide a generalization of the classic conjugate bayesian

analysis which use a Gamma as prior distribution. Note that gamma is a

limiting case of the Generalized Inverse Gaussian distribution and a particular

case of Tweedie family of distributions. The extra flexibility of the GIG and

of the Tweedie together with large degrees of skewness allowed by them make

them excellent candidates for a non-informative reference Bayesian analysis.

b) In practice one will have to choose a prior on the parameters of the GIG model

and on the Tweedie model because the goal of the frequency count data anal-

ysis is to estimate them, and not the Poisson parameter. To implement this

Bayesian analysis we would have to go to the R and WinBUGS computa-

tional tricks learned when implementing the Bayesian analysis based on the

IG-Poisson model. WinBUGS is no longer developed though, and hence other

alternatives might need to be considered.

Implementing this Bayesian analysis will also require that we enhance all the

Bayesian model checking techniques that we already developed for the IG-

Poisson Bayesian model, so that they better fit the analysis based on the GIG-

and Tweedie-Poisson models. We also intend to find the ways to compute the

DIC of these models, and friendly graphical ways to present the results of our

analysis.

c) Finally we also plan to implement Bayesian hierarchical generalization of the

non-hierarchical approach.

3. Performance comparison between Poisson mixture Models.

a) Compare the performance of the three parameter (truncated) Tweedie-Poisson

model with the performance of some of its two parameter submodels, like the

(truncated) negative binomial and the (truncated) IG-Poisson models, on a

wide array of sample texts.

b) Compare the performance of the (truncated) GIG-Poisson model with the

performance of the (truncated) Tweedie-Poisson model on a wide spectrum

of word frequency count data.

c) Explore the performance of the untruncated Tweedie-Poisson model on un-

truncated frequency count data, like insurance claims frequency count data,

and compare it with the performance of the untruncated GIG-Poisson model.



Chapter 6. Future Work 102

6.2 Cluster analysis of frequency count data

1. Bayesian cluster analysis of frequency of word frequency data.

Giron, Ginebra and Riba (2005) implements a Bayesian cluster analysis of multi-

nomial data based on the non-hierarchical Dirichlet-Multinomial model and Puig

(2009) extends that analysis basing it on a hierarchical Dirichlet-Multinomial

model. Here we use these models for word length counts and more frequent func-

tion words counts but not for the frequency of word frequency that can be modeled

by IG-Poison mixture models and their proposed three parameter extensions.

We intend to implement Bayesian cluster analysis of frequency count data that

mimic the work already done for multinomial type data. To do that we will take

advantage of all the tools developed for the IG-Poisson and planned for the GIG-

Poisson and the Tweedie-Poisson models under the homogeneous single population

case.

To implement this cluster analysis of frequency count data we will have to learn

how to:

a) Simulate from the posterior and from the predictive posterior distribution,

b) Implement useful posterior predictive checks,

c) Find ways to present the results in a friendly graphical maner, usually through

clever graphs.

2. Here we use Dirichlet-Multinomial cluster models for simultaneous analysis of word

length counts and most frequent function words counts, but this idea of simulta-

neous analysis of more than one contingency table is not limited to the use of a

single reference model like the Dirichlet-Multinomial.We can extent it to the Pois-

son mixtures described above. Then the frequency of word frequency, word length

counts and most frequent function word counts could be analyzed simultaneously.

3. A typical problem when simulating from a Bayesian cluster model is label switch-

ing, which occurs as a result of the symmetry in the likelihood of the model param-

eters. Recent studies have focused in this problem, trying to remove the symmetry

by using artificial identifiability constraints, but that does not solve the problem.

This problem makes interpretation the MCMC chains difficult. Here we reject all

the simulations with label switching problems that could not be fixed through sim-

ple relabeling. But that problem becomes harder to solve with more than 3 cluster

and that opens a way for new identifiability constraints research.
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6.3 Extend the authorship attribution analysis

1. The authorship attribution (verification) analysis, proposed in Chapter 5, carries

out as many separate Bayesian discriminant analysis as stylometric characteristics

used. Instead, one could also implement a single discriminant analysis combining

the information of all the characteristics at once, by extending the models to apply

to the analysis of several contingency tables at once in a way analogous to the one

used in Chapter 4 for cluster analysis.



Chapter 6. Future Work 104



Appendix A

Bayesian Computation with

WinBUGS

To do our computations we use WinBUGS, a free software for Bayesian analisys of

complex statistical models using Markov chain Monte Carlo (MCMC) methods. Win-

BUGS can be executed from R by means of R2WinBUGS library. The combination of

WinBUGS and R, becomes a perfect platform to update our bayesian models.

WinBUGS has a powerful and flexible way to define models, which speeds up the pro-

cess of building and refining an appropriate model. Really useful in modeling mixture

multinomial models, as the one used in Chapters 3, 4 and 5. Unfortunately this ease

of modeling is absent in the case of zero truncated Inverse Gaussian mixtures of poison

distribution, used for modelling frequency count data in Chapter 2. These models are

not easy to define. The problem is that these models are not in the list of WinBUGS

models available by default.

All the simulations in this thesis were obtained with the last version of WinBUGS (1.4.3),

released in August 2007. Unfortunately, WinBUGS is no longer updated. Although this

version still remains available, it is expected that in the future other MCMC implemen-

tations will take among Bayesian data analysis practitioners.
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A.1 Simulations on IG-Poisson mixture models

The main difficulty to perform simulations on models related withInverse Gaussian -

Posisson mixture models was that this model is not among the list of WinBUGS models

available and that on top of that we need a truncated version of an existing one. The

list of distribution we need is:

• the zero truncated IG-Poisson model needed to update the bayesian model pre-

sented in Section 3 of Chapter 2.

• the IG-zerotruncated Poisson model needed to update the bayesian model pre-

sented in Section 4 of Chapter 2.

WinBUGS allow the user to define new sampling distributions by means of an advanced

use of the BUGS language called ”Zeros Triks”. This method produces high auto-

correlation, poor convergence and high MC error, and so it is computationally slow and

long runs are necessary.

A harder but more precise way to solve this problem is to take advantage of WinBUGS

Development Interface (WBDev), that allows restricted access to areas of the WinBUGS

source that have been used for defining elements of the BUGS language. One can imple-

ment one’s own sampling distributions, ’hard-wiring’ them into the WinBUGS framework

via compiled Pascal code. WBDev ’hard-wired’ components can be computed much more

quickly and can lead to more simplified, clearer and better interpretable WinBUGS code

which reduces the possibility of making coding errors.

In this way, we implemented three WBDev components;

• dIGP.zerotrunc(b,c,N) for the the zero truncated IG-Poisson mixture

• dpoisson.zerotrunc(l) for the zero truncated Poisson

• dinverse.gaussian (b,c) for the inverse Gausian

For more details on definition of these modules see Section 3, 4 and 5 of Appendix A.

With the model complexity hidden in the WBDev ’hard-wired’ components, we obtain

clear WINBUGS models for the zero truncated IG-Poisson and for the IG-zerotruncated

Poisson.
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• WinBUGS model for the bayesian zero truncated IG-Poisson:

model {

for (i in 1:V) {

y[i] ~ dIGP.zerotrunc (b,c,N)

}

b ~ dgamma(0.001,0.001)

c ~ dgamma(0.001,0.001)

}

• WinBUGS model for the bayesian IG-truncated Poisson:

model {

for (i in 1:V) {

y[i] ~ dpoisson.zerotrunc (Npi[i])

Npi[i]<-N*pi[i]

pi[i] ~ dinverse.gaussian (b,c)

}

b ~ dgamma(0.001,0.001)

c ~ dgamma(0.001,0.001)

}

We take special care with the selection of reference prior distributions. The usual prior

for real positive parameters is the Gamma distribution. We select it as priori for the

parameters b and c and we chose the hiperparameters alpha=beta=0.001, so that the

priori does not impact significantly on the posteriori. We made a sensitivity study to

make sure that they really were little informative.

Figure A.1 shows an example of trace plots of the sample values of two independent

Markov chains. The convergence looks reasonable after only 500 warming iterations are

needed. The initial values for the two chains are (b=0.01, c=0.01) and (b=0.5, c=0.1).

In all simulations three chains of simulations were run. No convergence problems were

found. Convergence was quickly obtained after a few warming iterations. The use of

’hard-wiring’ distributions slowed down the simulation speed. One simulation takes over

6h for 1000 iterations for the zero truncated IG-Poisson and over 8h for the IG-truncated

Poisson.
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Figure A.1: Convergence check: trace for the parameters b and c, of the two computed

Montecarlo chains, for the the zero truncated IG-Poisson mixture and for the frequency

count data of Alice in Wonderland

Node stat. mean sd MC error 2.5% median 97.5% start sample

b 0.01896 0.003324 1.134E-4 0.01292 0.01882 0.02596 501 1000

c 0.01036 0.00164 6.123E-5 0.007779 0.01019 0.01406 501 1000

Table A.1: Summary for the parameters b and c, of the two computed Montecarlo

chains, for the the zero truncated IG-Poisson mixture and for the frequency count data

of Alice in Wonderland. They are based on 1000 simulations folowing 500 iterations of

the warming period
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One way to assess the accuracy of the posterior estimates, in Table A.1, is by calculating

the Monte Carlo error for each parameter. This is an estimate of the difference between

the mean of the sampled values (which we are using as our estimate of the posterior mean

for each parameter) and the true posterior mean. As a rule of thumb, the simulation

should be run until the Monte Carlo error for each parameter of interest is less than

about 5% of the sample standard deviation. We can see in the example that the MC

error fulfills this rule.

WinBUGS automatically implements the DIC model comparison criterion that trades off

goodness-of-fit against model complexity by means of an effective number of parameters

pD. This information has not been useful due to the different structure of the two models

analyzed lead to very different values of pD and non comparable values of DIC. It happens

because in WinBUGS one can not indicate in which level of the hierarchical model are

the parameters on study.

A.2 Simulations on Multinomial cluster models

Because the distributions required to define these models are included in WinBUGS, the

model definition was a simple task. A particular model have been established for the

case of one cluster. Models for two or more clusters has the same structure.

• For the model of 1 cluster:

model {

thetaL[1, 1:KL] ~ ddirch(alphaL[])

thetaP[1, 1:KP] ~ ddirch(alphaP[])

for (i in 1 : I) {

z[i]<- 1

L[i,1:KL] ~ dmulti( thetaL[z[i], 1:KL] , NL[i] )

NL[i] <- sum(L[i,])

P[i,1:KP] ~ dmulti( thetaP[z[i], 1:KP] , NP[i] )

NP[i] <- sum(P[i,])

}

}
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• For the model of 2 cluster:

model {

thetaL[1, 1:KL] ~ ddirch(alphaL[])

thetaL[2, 1:KL] ~ ddirch(alphaL[])

thetaP[1, 1:KP] ~ ddirch(alphaP[])

thetaP[2, 1:KP] ~ ddirch(alphaP[])

p[1:2] ~ ddirch(alpha2[])

for (i in 1 : I) {

z[i]~ dcat(p[1:2])

L[i,1:KL] ~ dmulti( thetaL[z[i], 1:KL] , NL[i] )

NL[i] <- sum(L[i,])

P[i,1:KP] ~ dmulti( thetaP[z[i], 1:KP] , NP[i] )

NP[i] <- sum(P[i,])

}

}

It is also important to pay attention to the convergence of the chains resulting from the

simulation. One must always verify that convergence has been achieved. If one has not

achieved it, one needs to increase the number of warming simulations. A quick way to

assess convergence is visual inspection of multiple chains ran in parallel with initial values

randomly taken. This procedure also allowed us to highlight problems of identifiability

which are frequent when the number of clusters increases.

In Figure B.1 a typical example of the identifiability is given. In one of the chains

(in blue) labels of clusters 1 and 2 are switched with respect to the other two chains

(in red and green). In this case the identifiability problem is easy to fix, because the

index assignation to the clusters is stable inside each chain, and it is possible to relabel

clusters. When problems of identifiability happen inside a chain, resulting in cluster

labels switching, the simulations were rejected and one started trying again from other

initial conditions.

We used 5000 warming iterations. After that convergence was generally obtained. Then

the model was run for 20.000 iteration/chain x 3 chains = 60.000 iterations more, with

a thinning parameter of 4 (only 1 of each 4 iteration was saved to the results file). As
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Figure A.2: Convergence check: trace for the parameters p[i], of the three computed

Montecarlo chains, for the three cluster model for Don Quijote
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initial values for the three chains we use a non informative dirichlet with initial values;

alphaL[i] = 1 and alphaP [i] = 1 for the multinomial prior, an equiprobable distribution

p[i] = 1/s where s is the number of clusters for the relative size of each cluster and

a random assignation to clusters 1 to s for the categorical variable that carries the

assignation to the label of one cluster, z[i].

As an example, the summary for the parameters are shown in Table A.2 for the two

cluster model from Don Quijote chapters. The accuracy of the posterior estimates is

assessed again by calculating the Monte Carlo error for each parameter and checking

that it is less than about 5% of the sample standard deviation.

Node stat. mean sd MC error 2.5% median 97.5% start sample

p[1] 0.5679 0.04836 2.265E-4 0.4721 0.5683 0.6617 1251 60000

p[2] 0.4321 0.04836 2.265E-4 0.3384 0.4317 0.5279 1251 60000

thetaL[1,1] 0.07671 6.307E-4 2.697E-6 0.07547 0.07672 0.07796 1251 60000

thetaL[1,2] 0.2311 9.878E-4 4.076E-6 0.2292 0.2311 0.2331 1251 60000

thetaL[1,3] 0.1762 9.055E-4 3.868E-6 0.1744 0.1762 0.178 1251 60000

... ... ... ... ... ... ... ... ...

thetaL[2,1] 0.07708 6.478E-4 2.648E-6 0.0758 0.07708 0.07835 1251 60000

thetaL[2,2] 0.2371 0.001056 4.301E-6 0.2351 0.2371 0.2392 1251 60000

thetaL[2,3] 0.1727 9.163E-4 3.832E-6 0.1709 0.1727 0.1745 1251 60000

... ... ... ... ... ... ... ... ...

thetaP[1,1] 0.138 0.001355 5.728E-6 0.1354 0.138 0.1407 1251 60000

thetaP[1,2] 0.1274 0.0013 5.702E-6 0.1249 0.1274 0.13 1251 60000

thetaP[1,3] 0.1319 0.001408 6.608E-6 0.1292 0.1319 0.1347 1251 60000

... ... ... ... ... ... ... ... ...

thetaP[2,1] 0.156 0.001554 7.073E-6 0.1531 0.156 0.1592 1251 60000

thetaP[2,2] 0.1305 0.001356 5.325E-6 0.1278 0.1305 0.1332 1251 60000

thetaP[2,3] 0.1252 0.001392 6.5E-6 0.1225 0.1252 0.1279 1251 60000

... ... ... ... ... ... ... ... ...

z[1] 1.446 0.4971 0.0022 1.0 1.0 2.0 1251 60000

z[2] 1.0 0.0 2.357E-13 1.0 1.0 1.0 1251 60000

z[3] 1.0 0.0 2.357E-13 1.0 1.0 1.0 1251 60000

... ... ... ... ... ... ... ... ...

Table A.2: Summary of the three computed Montecarlo chains, for the two cluster

multinomial model, both for word length counts and for the most frequent function

words counts data from Don Quijote

Finally, the WinBUGS model for the Multinomial cluster model with dependence used

in Chapter 3 is:
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model{

for (i in 1 : I) {

Y[i,1:K] ~ dmulti(theta[index[i], 1:K] , N[i] )

N[i] <- sum(Y[i,])

index[i] <- z[i]+1

z[i] ~ dbern(p[i])

logit(p[i]) <- h0 + h[i] + b[i]

h[i] ~ dnorm(0, tau.h)

for (k in 1:K) {

AUX[i,k] <- Y[i,k]*log(theta[index[i],k])-logfact(Y[i,k])

}

LL[i] <- logfact(N[i]) + sum(AUX[i,])

}

b[1:I] ~ car.normal(adj[], weights[], num[], tau.b)

for(k in 1:sumNumNeigh) {

weights[k] <-1

}

pz <- mean(z[])

# PRIORIS

theta[1, 1:K]~ddirch(alpha[])

theta[2, 1:K]~ddirch(alpha[])

h0 ~ dnorm(0,0.1)

tau.h ~ dgamma(20, 0.1)I(0.0001,100000) # taula01

tau.b ~ dgamma(3, 0.1)I(0.01,1000) # taula01

L <- sum(LL[])

}
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A.3 WinBUGS Development Interface (WBDev)

Implementing new univariate distributions

With WebDev (Winbugs Development Interface) one can implement new custom distri-

butions. This section summarizes the steps required to do it. For complete instructions

on how to add new univariate distributions to WinBUGS by ”hardwiring” them into the

system, see the document ”WinBUGS Development Interface (WBDev) Implementing

your own univariate distributions” available on the WBDev website (http://winbugs-

development.mrc-bsu.cam.ac.uk/ ).

Computer code for a new distribution have to be defined by a Component Pascal mod-

ule .odc. Then one have to set up the system so that Component Pascal code can be

compiled with the source code of WinBUGS. For it, one needs to install the BlackBox

Component Builder (http://www.oberon.ch/blackbox.html). Once it is installed it is in-

cluded a module, named UnivariateTemplate.odc, that could be use as a template. As

an example of adding a new distribution, this template defines the zero truncated nor-

mal distribution. We have started from this template to define our new distributions,

changing only the necessary parts of code on it.

The following instructions should be followed when defining a new WinBUGS distribu-

tion via the template:

1. Choose a name for the new component, NewDistribution. Then save the template

under the new name, WBDev/Mod/NewDistribution.odc

2. Now modify the code in the new module according to the desired distributional

form, declare the types of arguments required and redefine this procedures:

• DeclareProperties(.), this procedure is used to specify two important pieces of

information about the new distribution. First, whether the distribution is dis-

crete or continuous (isDiscrete = ”TRUE”/”FALSE”); and, second, whether

or not we can evaluate its cumulative distribution function (canIntegrate =

”TRUE”/”FALSE”)

• NaturalBounds(.), this procedure should specify the natural bounds of the

new distribution.

• LogFullLikelihood(.),LogPropLikelihood(.),LogPrior(.), these procedures all

return the natural logarithm of a number that is proportional to the proba-

bility density function evaluated at the current value. The reason for having
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three procedures that all do essentially the same thing is that WinBUGS

doesnt always require the same level of ”exactness”. Sometimes WinBUGS

needs the log-pdf specifying exactly, in which case the LogFullLikelihood(.)

procedure is called by the core software. Other times, normalizing constants

can be ignored, in which case LogPropLikelihood(.) is called. Often, however,

only those factors of the pdf that are functions of the value are needed. Then

the software calls the LogPrior(.) procedure. Of course, as there is no harm

done in including normalizing constants when they are not actually required,

one can always simply call LogFullLikelihood(.) from within both LogProp-

Likelihood(.) and LogPrior(.) to save coding. However, considerable gains in

efficiency can often be made by avoiding unnecessary calculations, especially

in cases where normalizing constants are cumbersome to calculate.

• Cumulative(.), this procedure should be used to return the value of the new

distributions cumulative distribution function at the real-valued input pa-

rameter. In cases we can not evaluate it, one could specify ”canIntegrate :=

FALSE;” in the DeclareProperties(.) procedure to skip it.

• DrawSample(.), this procedure should return, a sample from the new distri-

bution

3. Once the new module has been successfully compiled (and saved) then it can be

linked into the WinBUGS software by modifying the file WBDev/Rsrc/Distributions.odc.

The first line of this file contains the required entry for the truncated normal dis-

tribution defined in the WBDevUnivariateTemplate module:

s ∼ ”dnew.distribution”(s, s)I(s, s) ”WBDevNewDistribution.Install”
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A.4 WBDev implementation of the Inverse Gaus-

sian (IG) model

There are many different parameterizations of the inverse Gaussian distribution. For this

implementation we use the one given by Tweedie (1956) with two parameters ν ∈ (0,∞)

and λ ∈ (0,∞). The probability density function of the inverse Gaussian distribution,

IG(ν, λ), is:

f(x|ν, λ) =

√
λ

2πx3
e−λ

(x−ν)2

2ν2x .

The log-likehood of one observation x is:

logL(ν, λ|x) = 0.5 (ln(λ)− ln(2π)− 3 ln(x))− λ(x− ν)2

2ν2x
,

this expression is needed for the definition of LogFullLikelihood(.),LogPropLikelihood(.)

and LogPrior(.) procedures.

The cumulative distribution function is:

F (x|ν, λ)) = Φ

[√
λ

x

(x
ν
− 1
)]

+ e2λ/νΦ

[√
λ

x

(x
ν

+ 1
)]

,

where Φ[] is the standard normal distribution function, that is available as WBDevSpec-

func.Phi(.) function in the WBDev environment. This expression is used for the defini-

tion of the Cumulative(.) procedure.

Seshadri V (1993) gives a method for simulate from a Inverse Gaussian, which it is based

on a general procedure for sampling that starts in finding a Y = Ψ(X) that follows a

well known distribution. In this case the used distribution is a Chi-square of one degree

of freedom:

Y = Ψ(X) =
λ(X − ν)2

ν2X
∼ χ2

1
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Applying this methodology the steps for generating random numbers distributed as an

Inverse Gaussian, IG(ν, λ), are:

1. Sample a random value y from a chi-square distribution of one degree of freedom;

Y ∼ χ2
1

2. Calculate x1 = ν + ν2y
2λ
− ν

2λ

√
4νλy + ν2y2

3. Sample a random value u from an uniform [0, 1]; U ∼ uniform[0, 1]

4. If u ≤ ν
ν+x1

then x = x1, otherwise x = ν2

x1

Then x is a a random value from a X ∼ IG(ν, λ)

A.4.1 Source code for the odc module for the Inverse Gaussian

model

(*1*) MODULE WBDevInversaGaussianaMF;

IMPORT

WBDevUnivariate,

(*2*) WBDevRandnum, WBDevSpecfunc,

(*3*) Math;

CONST

(*4*) location = 0; inverseScale = 1;

TYPE

StdNode = POINTER TO RECORD (WBDevUnivariate.StdNode) END;

Left = POINTER TO RECORD (WBDevUnivariate.Left) END;

Right = POINTER TO RECORD (WBDevUnivariate.Right) END;

Interval = POINTER TO RECORD (WBDevUnivariate.Interval) END;

Factory = POINTER TO RECORD (WBDevUnivariate.Factory) END;

VAR

(*5*) log2Pi: REAL;

fact-: WBDevUnivariate.Factory;

(*6*) PROCEDURE DeclareArgTypes (OUT args: ARRAY OF CHAR);

(*7*) BEGIN

(*8*) args := "ss";

(*9*) END DeclareArgTypes;

(*10*) PROCEDURE DeclareProperties (OUT isDiscrete,canIntegrate: BOOLEAN);

(*11*) BEGIN
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(*12*) isDiscrete:= FALSE;

(*13*) canIntegrate := TRUE;

(*14*) END DeclareProperties;

(*15*) PROCEDURE NaturalBounds (node: WBDevUnivariate.Node; OUT lower, upper: REAL);

(*16*) BEGIN

(*17*) lower := 0;

(*18*) upper := INF;

(*19*) END NaturalBounds;

(*20*) PROCEDURE LogFullLikelihood (node: WBDevUnivariate.Node; OUT value: REAL);

(*21*) VAR

(*22*) x, nu, lam: REAL;

(*23*) BEGIN

(*24*) x := node.value;

(*25*) nu := node.arguments[location][0].Value();

(*26*) lam := node.arguments[inverseScale][0].Value();

(*27*) value :=0.5*(Math.Ln(lam)-log2Pi-3*Math.Ln(x))

- lam*((x-nu)*(x-nu)/(2*nu*nu*x));

(*28*) value := value;

(*29*) END LogFullLikelihood;

(*30*) PROCEDURE LogPropLikelihood (node: WBDevUnivariate.Node; OUT value: REAL);

(*31*) BEGIN

(*32*) LogFullLikelihood(node, value);

(*33*) END LogPropLikelihood;

(*34*) PROCEDURE LogPrior (node: WBDevUnivariate.Node; OUT value: REAL);

(*35*) VAR

(*36*) x, nu, lam: REAL;

(*37*) BEGIN

(*38*) x := node.value;

(*39*) nu := node.arguments[location][0].Value();

(*40*) lam := node.arguments[inverseScale][0].Value();

(*41*) value := 0.5*(Math.Ln(lam)-log2Pi-3*Math.Ln(x))-

lam*((x-nu)*(x-nu)/(2*nu*nu*x));

(*42*) END LogPrior;

(*43*) PROCEDURE Cumulative (node: WBDevUnivariate.Node; x:

REAL; OUT value: REAL);

(*44*) VAR

(*45*) nu, lam, v1, v2, v3: REAL;

(*46*) BEGIN

(*47*) (* HALT(126);*)

(*48*) nu := node.arguments[location][0].Value();

(*49*) lam := node.arguments[inverseScale][0].Value();

(*50*) v1 := Math.Sqrt(lam/x)*((x/nu)-1);

(*51*) v2 := Math.Sqrt(lam/x)*((x/nu)+1);
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v3 := Math.Exp(-2*lam/nu);

(*52*) value := WBDevSpecfunc.Phi(v1) + v3* WBDevSpecfunc.Phi(v2);

(*53*) END Cumulative;

(*54*) PROCEDURE DrawSample (node: WBDevUnivariate.Node; censoring:

INTEGER; OUT sample: REAL);

(*55*) VAR

(*56*) nu, lam, left, right,y,y2,sqrt1,x1,u: REAL;

(*57*) BEGIN

(*58*) nu := node.arguments[location][0].Value();

(*59*) lam := node.arguments[inverseScale][0].Value();

(*60*) node.Bounds(left, right);

(*61*) CASE censoring OF

(*62*) |WBDevUnivariate.noCensoring:

y := WBDevRandnum.Normal(0, 1);

y2 := y*y;

sqrt1 := Math.Sqrt(4*nu*y2*lam + nu*y2*nu*y2);

x1 := nu + 0.5*nu/lam*nu*y2 - 0.5*nu/lam*sqrt1;

u := WBDevRandnum.Uniform(0,1);

IF (u > nu/(x1+nu)) THEN;

sample:= nu*nu/x1;

ELSE;

sample:= x1;

(*63*) END;

(*64*) |WBDevUnivariate.leftCensored:

(*65*) sample := WBDevRandnum.NormalLeftTruncated(nu,lam, left);

(*66*) |WBDevUnivariate.rightCensored:

(*67*) sample := WBDevRandnum.NormalTruncated(nu, lam, lam, right);

(*68*) |WBDevUnivariate.intervalCensored:

(*69*) sample := WBDevRandnum.NormalTruncated(nu, lam, left, right);

(*70*) END;

(*71*) END DrawSample;

PROCEDURE (f: Factory) New (option: INTEGER): WBDevUnivariate.Node;

VAR

node: WBDevUnivariate.Node;

stdNode: StdNode; left: Left; right: Right; interval: Interval;

BEGIN

CASE option OF

|WBDevUnivariate.noCensoring:

NEW(stdNode);

node := stdNode;

|WBDevUnivariate.leftCensored:

NEW(left);

node := left;

|WBDevUnivariate.rightCensored:

NEW(right);

node := right;
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|WBDevUnivariate.intervalCensored:

NEW(interval);

node := interval;

END;

node.SetCumulative(Cumulative);

node.SetDeclareArgTypes(DeclareArgTypes);

node.SetDeclareProperties(DeclareProperties);

node.SetDrawSample(DrawSample);

node.SetLogFullLikelihood(LogFullLikelihood);

node.SetLogPropLikelihood(LogPropLikelihood);

node.SetLogPrior(LogPrior);

node.SetNaturalBounds(NaturalBounds);

node.Initialize;

RETURN node;

END New;

PROCEDURE Install*;

BEGIN

WBDevUnivariate.Install(fact);

END Install;

PROCEDURE Init;

VAR

f: Factory;

BEGIN

(*5*) log2Pi := Math.Ln(2 * Math.Pi());

NEW(f); fact := f;

END Init;

BEGIN

Init;

(*1*) END WBDevInversaGaussianaMF.
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A.5 WBDev implementation of the Truncated IG-

Poisson model

The truncated IG-Poisson model ptigpr:n (b, c) is defined in (2.3)

ptigpr:n (b, c) =
1

(1 + cn)−1/4K−1/2(b)−K−1/2(b
√

1 + cn)

(1
2

bcn√
1+cn

)r

r!
Kr−1/2(b

√
1 + cn)

,

for r = 1, 2, · · · ,+∞, where Kα() is the modified Bessel function of the third kind of

order α. This function is not available in the WBDev enviroiment, but this function has

a recursive property :

Kν+1(z) = (2ν/z)Kν(z) +Kν−1(z)

It makes that ptigpr:n (b, c) can be calculated recursively:

ptigpr:n (b, c) =

[
cn

1 + cn
(1− 3

2r
)

]
ptigpr−1:n(b, c) +

[
(bcn)2

4r(r − 1)(1 + cn)

]
ptigpr−2:n(b, c)

for r = 3, 4, · · · ,+∞

where first two probabilities are:

ptigp1:n (b, c) =
bcn

2(1 + cn)
1
2 (eb((1+cn)

1
2−1) − 1)

ptigp2:n (b, c) =
cn(1 + b(1 + cn)

1
2 )

4(1 + cn)
ptigp1:n (b, c)

Once the value ptigpr:n (b, c) is achieved, the log-likelihood logptigpr:n (b, c) is directly calculated.

The cumulative distribution function has no closed form and should be calculated by

summing:

F tigp
r:n (b, c) =

r∑
i=1

ptigpi:n (b, c) (A.1)
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As the definition of the cumulative distribution function is optional, we decided not to

incorporate it. We must use this expression for generating random numbers distributed

as Zero-Truncated IG-Poisson model:

1. Sample a random value u from an uniform [0, 1]; U ∼ uniform[0, 1]

2. Get the minimum value of r that accomplish:

r∑
i=1

ptigpi:n (b, c) > u

A.5.1 Source code for the odc module for the Truncated IG-

Poisson model

(*1*) MODULE WBDevSichelMF;

IMPORT

WBDevUnivariate,

(*2*) WBDevRandnum, WBDevSpecfunc,WBDevBesselKMF,

(*3*) Math;

CONST

(*4*) alpha = 0; theta = 1; tamany=2;

TYPE

StdNode = POINTER TO RECORD (WBDevUnivariate.StdNode) END;

Left = POINTER TO RECORD (WBDevUnivariate.Left) END;

Right = POINTER TO RECORD (WBDevUnivariate.Right) END;

Interval = POINTER TO RECORD (WBDevUnivariate.Interval) END;

Factory = POINTER TO RECORD (WBDevUnivariate.Factory) END;

VAR

(*5*) log2Pi: REAL;

fact-: WBDevUnivariate.Factory;

(*6*) PROCEDURE DeclareArgTypes (OUT args: ARRAY OF CHAR);

(*7*) BEGIN

(*8*) args := "sss";

(*9*) END DeclareArgTypes;

(*10*) PROCEDURE DeclareProperties (OUT isDiscrete, canIntegrate: BOOLEAN);

(*11*) BEGIN

(*12*) isDiscrete := TRUE;
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(*13*) canIntegrate := FALSE;

(*14*) END DeclareProperties;

(*15*) PROCEDURE NaturalBounds (node: WBDevUnivariate.Node; OUT lower, upper: REAL);

(*16*) BEGIN

(*17*) lower := 0;

(*18*) upper := INF;

(*19*) END NaturalBounds;

(*20*) PROCEDURE LogFullLikelihood (node: WBDevUnivariate.Node; OUT value: REAL);

(*21*) VAR

(*22*) r, a, t,value1,value2: REAL;

r_int,j: INTEGER;

(*23*) BEGIN

(*24*) r := node.value;

r_int := SHORT(ENTIER(r));

(*25*) a := node.arguments[alpha][0].Value();

(*26*) t := node.arguments[theta][0].Value();

value2:= Math.Ln((a*t/2)/(Math.Exp(a*(1-Math.Sqrt(1-t)))-1));

value1:= value2+Math.Ln(t/4)+Math.Ln(1+a);

IF r_int=1 THEN;

value:=value2;

ELSE

IF r_int=2 THEN;

value:=value1;

ELSE

j:=3;

REPEAT

value:= t*(1 -(3/(2*j))) * Math.Exp(value1);

value:= value + (Math.IntPower(a*t,2)

/ ((4*j)*(j-1))) * Math.Exp(value2);

value:=Math.Ln(value);

j:=j+1;

value1:=value;

value2:=value1;

UNTIL j>r_int;

END;

END;

(*29*) END LogFullLikelihood;

(*30*) PROCEDURE LogPropLikelihood (node: WBDevUnivariate.Node; OUT value: REAL);

(*31*) BEGIN

(*32*) LogFullLikelihood(node, value);

(*33*) END LogPropLikelihood;

(*34*) PROCEDURE LogPrior (node: WBDevUnivariate.Node; OUT value: REAL);

(*37*) BEGIN

(*38*) LogFullLikelihood(node, value);
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(*42*) END LogPrior;

(*43*) PROCEDURE Cumulative (node: WBDevUnivariate.Node; x: REAL; OUT value: REAL);

(*44*) VAR

(*45*) mu, tau, sqrtTau: REAL;

(*46*) BEGIN

(*47*) HALT(126);

(*53*) END Cumulative;

(*54*) PROCEDURE DrawSample (node: WBDevUnivariate.Node; censoring: INTEGER; OUT sample: REAL);

(*55*) VAR

(*56*) a, t, left, right,r,u,N, prob1, prob2, prob, probacc: REAL;

(*57*) BEGIN

(*25*) a := node.arguments[alpha][0].Value();

(*26*) t := node.arguments[theta][0].Value();

N:=node.arguments[tamany][0].Value();

node.Bounds(left, right);

CASE censoring OF

(*62*) |WBDevUnivariate.noCensoring:

u := WBDevRandnum.Uniform(0,1);

prob1:=0.5*a*t/(Math.Exp(a*(1-Math.Sqrt(1-t)))-1);

prob2:=0.25*t*(1+a)*prob1;

r:=1;

probacc:=prob1;

IF probacc>u THEN;

sample:=r;

ELSE

r:=2;

probacc:=probacc+prob2;

IF probacc>u THEN;

sample:=r;

ELSE

r:=3;

REPEAT

prob:= t*((r -1.5)/r)*prob2

+ (a*a*t*t)/(4*r*(r-1))*prob1;

probacc:=probacc + prob;

r:=r+1;

prob1:=prob2;

prob2:=prob;

UNTIL probacc>u;

sample:=r-1;

END;

END;

(*64*) |WBDevUnivariate.leftCensored:

(*65*) sample := 1;



Appendix A. Bayesian Computation with WinBUGS 125

(*66*) |WBDevUnivariate.rightCensored:

(*67*) sample := 1;

(*68*) |WBDevUnivariate.intervalCensored:

(*69*) sample := 1;

(*70*) END;

(*71*) END DrawSample;

PROCEDURE (f: Factory) New (option: INTEGER): WBDevUnivariate.Node;

VAR

node: WBDevUnivariate.Node;

stdNode: StdNode; left: Left; right: Right; interval: Interval;

BEGIN

CASE option OF

|WBDevUnivariate.noCensoring:

NEW(stdNode);

node := stdNode;

|WBDevUnivariate.leftCensored:

NEW(left);

node := left;

|WBDevUnivariate.rightCensored:

NEW(right);

node := right;

|WBDevUnivariate.intervalCensored:

NEW(interval);

node := interval;

END;

node.SetCumulative(Cumulative);

node.SetDeclareArgTypes(DeclareArgTypes);

node.SetDeclareProperties(DeclareProperties);

node.SetDrawSample(DrawSample);

node.SetLogFullLikelihood(LogFullLikelihood);

node.SetLogPropLikelihood(LogPropLikelihood);

node.SetLogPrior(LogPrior);

node.SetNaturalBounds(NaturalBounds);

node.Initialize;

RETURN node;

END New;

PROCEDURE Install*;

BEGIN

WBDevUnivariate.Install(fact);

END Install;

PROCEDURE Init;

VAR

f: Factory;

BEGIN

(*5*) log2Pi := Math.Ln(2 * Math.Pi());
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NEW(f); fact := f;

END Init;

BEGIN

Init;

(*1*) END WBDevSichelMF.
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A.6 WBDev implementation of the Zero Truncated

Poisson model

One may be under the impression that this distribution could be specified straightfor-

wardly in Win- BUGS by applying the I(0,.) construct to dpois(.). Whilst in some

circumstances this may lead to the same results, the I(.,.) construct was originally de-

signed only to denote censored observations and shouldnt really be used in an attempt

to model truncation in which the likelihood expression changes;

ptpr (λ) =
λr

r!

e−λ

(1− e−λ)
for r = 1, 2, · · · ,+∞

Then the log-likehood of the zero truncated Poisson model is;

logLtp(λ|r) = −λ− ln(1− e−λ) + r ln(λ)− ln(r!)

for r = 1, 2, · · · ,+∞

The cumulative distribution function should be expressed by a sum of the probabilities

up to a given value r, It would be cumbersome and slow to calculate. As the definition

of this function is optional, we decided not to incorporate the cumulative procedure into

our module.

There is a function WBDevRandnum. PoissonTruncated(.), to simulate from a zero

truncated poisson, available in the WBDev environment. We directly use this function

in DrawSample procedure to generate a random sample of the zero truncated Poisson.

A.6.1 Source code for the odc module for the Truncated Pois-

son model

(*1*) MODULE WBDevTrPoissonMF;

IMPORT

WBDevUnivariate,

(*2*) WBDevRandnum, WBDevSpecfunc,WBDevBesselKMF,
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(*3*) Math;

CONST

(*4*) lambda = 0;

TYPE

StdNode = POINTER TO RECORD (WBDevUnivariate.StdNode) END;

Left = POINTER TO RECORD (WBDevUnivariate.Left) END;

Right = POINTER TO RECORD (WBDevUnivariate.Right) END;

Interval = POINTER TO RECORD (WBDevUnivariate.Interval) END;

Factory = POINTER TO RECORD (WBDevUnivariate.Factory) END;

VAR

(*5*) log2Pi: REAL;

fact-: WBDevUnivariate.Factory;

(*6*) PROCEDURE DeclareArgTypes (OUT args: ARRAY OF CHAR);

(*7*) BEGIN

(*8*) args := "s";

(*9*) END DeclareArgTypes;

(*10*) PROCEDURE DeclareProperties (OUT isDiscrete, canIntegrate: BOOLEAN);

(*11*) BEGIN

(*12*) isDiscrete := TRUE;

(*13*) canIntegrate := FALSE;

(*14*) END DeclareProperties;

(*15*) PROCEDURE NaturalBounds (node: WBDevUnivariate.Node; OUT lower, upper: REAL);

(*16*) BEGIN

(*17*) lower := 1;

(*18*) upper := INF;

(*19*) END NaturalBounds;

(*20*) PROCEDURE LogFullLikelihood (node: WBDevUnivariate.Node; OUT value: REAL);

(*21*) VAR

(*22*) x,lam: REAL;

x_int: INTEGER;

(*23*) BEGIN

(*24*) x := node.value;

x_int := SHORT(ENTIER(x));

(*25*) lam := node.arguments[lambda][0].Value();

value:= -lam - Math.Ln(1-Math.Exp(-lam)) + x*Math.Ln(lam)

- WBDevSpecfunc.LogFactorial(x_int);

(*26*)

(*29*) END LogFullLikelihood;

(*30*) PROCEDURE LogPropLikelihood (node: WBDevUnivariate.Node; OUT value: REAL);

(*31*) BEGIN
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(*32*) LogFullLikelihood(node, value);

(*33*) END LogPropLikelihood;

(*34*) PROCEDURE LogPrior (node: WBDevUnivariate.Node; OUT value: REAL);

(*37*) BEGIN

(*38*) LogFullLikelihood(node, value);

(*42*) END LogPrior;

(*43*) PROCEDURE Cumulative (node: WBDevUnivariate.Node; x: REAL; OUT value: REAL);

(*44*) VAR

(*45*) mu, tau, sqrtTau: REAL;

(*46*) BEGIN

(*47*) HALT(126);

(*53*) END Cumulative;

(*54*) PROCEDURE DrawSample (node: WBDevUnivariate.Node; censoring: INTEGER; OUT sample: REAL);

(*55*) VAR

(*56*) lam, left, right: REAL;

right_int: INTEGER;

(*57*) BEGIN

(*25*) lam := node.arguments[lambda][0].Value();

(*26*) node.Bounds(left, right);

CASE censoring OF

(*62*) |WBDevUnivariate.noCensoring:

right_int:=SHORT(ENTIER(right));

sample := WBDevRandnum.PoissonTruncated(lambda,1,right_int);

(*64*) |WBDevUnivariate.leftCensored:

(*65*) sample := 1;

(*66*) |WBDevUnivariate.rightCensored:

(*67*) sample := 1;

(*68*) |WBDevUnivariate.intervalCensored:

(*69*) sample := 1;

(*70*) END;

(*71*) END DrawSample;

PROCEDURE (f: Factory) New (option: INTEGER): WBDevUnivariate.Node;

VAR

node: WBDevUnivariate.Node;

stdNode: StdNode; left: Left; right: Right; interval: Interval;

BEGIN

CASE option OF

|WBDevUnivariate.noCensoring:

NEW(stdNode);

node := stdNode;

|WBDevUnivariate.leftCensored:

NEW(left);

node := left;

|WBDevUnivariate.rightCensored:
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NEW(right);

node := right;

|WBDevUnivariate.intervalCensored:

NEW(interval);

node := interval;

END;

node.SetCumulative(Cumulative);

node.SetDeclareArgTypes(DeclareArgTypes);

node.SetDeclareProperties(DeclareProperties);

node.SetDrawSample(DrawSample);

node.SetLogFullLikelihood(LogFullLikelihood);

node.SetLogPropLikelihood(LogPropLikelihood);

node.SetLogPrior(LogPrior);

node.SetNaturalBounds(NaturalBounds);

node.Initialize;

RETURN node;

END New;

PROCEDURE Install*;

BEGIN

WBDevUnivariate.Install(fact);

END Install;

PROCEDURE Init;

VAR

f: Factory;

BEGIN

(*5*) log2Pi := Math.Ln(2 * Math.Pi());

NEW(f); fact := f;

END Init;

BEGIN

Init;

(*1*) END WBDevTrPoissonMF.
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Data Sets

In this annex, most of the data sets used in this thesis are presented. The word frequency

counts data sets in Chapter 2 where obtained from Baayen (2001), and here we summarize

the information appearing there about them.

Word length and function words counts that are used in all of the other main chapters,

were obtained from the original texts from an ebook edition. Some of these raw text

files were obtained from the Project Gutenberg, http://www.gutenberg.org/, that is a

website that facilitates the distribution of eBooks. None of the text used are protected

by copyright law because their copyrights have expired.

The first step to obtain data, was to split the whole text file in individual text files for

each unit of study; be it play act, chapter, sentence, or papers. To help to process this

list of text files in a semi-automatized way, a basic tool was developed in Visual Basic

for Windows. It performs the following tasks:

1. Remove punctuation, numbers, and other signs, to convert each text into a clean

list of words.

2. Search, check and remove proper names, allowing one to do so interactively based

on the list of words that appear capitalized (fully or partially) in the original text.

Thus the original text becomes a text file that includes only words that have passed the

filter and they are prepared in a way such that they can be treated directly with a R

script, to obtain the contingency tables of count data we need in a simple way:

131
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Figure B.1: Snapshot of the Analitzador de Paraules v2.1 , tool developed to filter texts.

In the left side, the tree of capitalized words shows a green arrow head (red square) when

the word is included (excluded) from the text

* To obtain a row of word length frequencies from 1 to 9, plus a category 10 or more,

from a text file (textfile.txt):

wordlist <- tolower(scan("textfile.txt",what=’character’))

row<-table(cut(nchar(wordlist), breaks=c(0:9,100), labels=F))

* To obtain a row of function words frequencies, where fwords is a list of the function

words, from a text file (textfile.txt):

wordlist <- tolower(scan("textfile.txt",what=’character’))

row<-table(Sh01.1)[fwords]

In cases where there is a 0 count on any of the function words, it will result in an

error. To avoid that, the whole list of function words is added to the text and then

the resulting counts are decreased in one unit.
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B.1 Frequency of word frequency counts

B.1.1 Turkish text on archeology

Text in Turkish on archeology. Compared with English, Turkish is a language with a

much richer morphologic system that allows one to create thousands of complex words

from the same simple root.

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14

vr:n 2326 477 178 107 53 33 22 26 7 7 12 8 4 3

r 15 16 17 18 20 21 22 23 24 28 32 34 36 38

vr:n 2 7 4 2 1 4 1 1 2 2 2 1 1 1

r 43 44 51 56 68 69 193 222

vr:n 1 1 1 1 1 1 1 1

Table B.1: Word frequency count data set for all the words in Turkish Archeology
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B.1.2 Macaulay’s Essay on Bacon

Data set based on the frequency count of the frequency of use names in an essay on

Bacon from historian Thomas Babington Macaulay. This data set has been previously

analysed by Yule, Good, Sichel. This author, in his books History of England (5 volumes,

1848-1861) and especially in his Critical and Historical Essays (1843), expressed high

satisfaction of the English middle classes with the growing political power and prosperity

they were enjoying. The sharpness and balance of Macaulay style, reflecting familiarity

with the practice of parliamentary debate, contrasted with the sensitivity and beauty of

the prose as contemporary authors John Henry Newman.

Text Critical and Historical Essays (2 vol.)

Author Thomas Babington Macaulay

Country United Kigdom

Language English

Literary genre Essay

Editor Alexander James Grieve

Publication date 1843

r 1 2 3 4 5 6 7 8 9 10 11 12 13

vr:n 990 367 173 112 72 47 41 31 34 17 24 19 10

r 14 15 16 17 18 19 20 21 22 23 24 25 26

vr:n 10 13 7 6 6 6 6 3 3 3 3 3 4

r 27 28 29 30 31 32 33 34 35 36 37 38 39

vr:n 3 3 3 3 2 1 1 1 1 1 1 2 4

r 40 41 45 48 57 58 65 76 81 89 255

vr:n 1 1 2 1 1 1 1 1 1 1 1

Table B.2: Word frequency count data set for all the words in Essay on Bacon
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B.1.3 Alice’s Adventures in Wonderland

Alice’s Adventures in Wonderland (1865) is a work of fiction written by ECharles Lutwidge

Dogson under the pseudonym of Lewis Carroll. It explains the story of a girl named Alice

falling into a fantastic realm inhabited by peculiar anthropomorphic creatures. The story

is full of references to Dogson friends (and their enemies), and the lessons that British

schoolchildren were expected to memorize. It is considered one of the most characteristic

books in the genre of the absurd.

The book is commonly referred to by short title Alice in text Wonderland. This alternate

title was popularized by the numerous films and television adaptations of the story

produced over time.

Author Lewis Carroll

Illustrator John Tenniel

Country United Kingdom

Language English

Literary Genre Fiction Story

Editor Macmillan

Publication date 1865

Aprox. N Pages. 224 pp

Continued by Through the Looking-Glass
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r 1 2 3 4 5 6 7 8 9 10 11 12 13 14

vr:n 1176 402 233 154 99 57 65 52 32 36 23 20 34 20

r 15 16 17 18 19 20 21 22 23 24 25 26 27 28

vr:n 12 9 9 10 8 5 6 3 3 6 9 4 6 3

r 29 30 31 32 33 34 35 37 38 39 40 41 42 43

vr:n 6 6 3 4 4 3 4 1 4 4 4 2 2 2

r 44 45 46 47 48 49 50 51 52 53 54 55 56 57

vr:n 1 4 1 1 1 4 2 4 3 1 3 3 1 2

r 58 59 60 61 62 63 67 68 73 74 75 77 79 80

vr:n 2 1 2 3 1 1 2 4 1 1 1 2 1 1

r 81 82 83 85 87 88 90 93 94 96 98 102 108 113

vr:n 1 2 2 1 1 2 1 1 1 2 1 2 1 1

r 114 121 128 131 133 136 144 145 148 151 153 170 177 179

vr:n 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r 182 194 211 247 263 280 356 364 365 386 410 460 510 528

vr:n 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r 540 629 726 866 1631

vr:n 1 1 1 1 1

Table B.3: Word frequency count data set for all the words in Alice’s adventures in

wonderland
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B.1.4 Through the Looking-Glass

Through the Looking-Glass (1871) is a children’s literature work written by Lewis Carroll

(pseudonym of Charles Lutwidge Dodgson), generally classified within the genre of the

absurd. It is the sequel to Alice’s Adventures in text Wonderland (1865).

Although it refers to the events described in the first book, the theme and setting of

Through the Looking-Glass makes it a sort of mirror image of Wonderland. The first

book begins outdoors in temperate month of May in the the anniversary of Alice (May

4), frequently changes size as story develops, and it draws an imaginary world based

on playing cards. The second book begins inside on a snowy winter night exactly six

months later, on November 4, frequently changes time and spatial directions as a story

develops, and it draws an imaginary world from Chess.

Author Lewis Carroll

Illustrator John Tenniel

Country Unite Kingdom

Language English

Literary Genre Fiction Story

Editor Macmillan

Publication Date 1871

Aprox. N Pages 224 pp

Preceded by Alice’s Adventures in Wonderland
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r 1 2 3 4 5 6 7 8 9 10 11 12 13

vr:n 1491 460 259 148 113 78 61 47 28 26 26 30 22

r 14 15 16 17 18 19 20 21 22 23 24 25 26

vr:n 19 12 21 12 11 16 9 7 9 2 3 1 5

r 27 28 29 30 31 32 33 34 35 36 37 38 39

vr:n 3 7 5 2 5 3 2 5 5 2 5 3 2

r 40 41 42 45 46 48 49 50 51 52 53 54 55

vr:n 1 2 2 1 3 4 2 2 3 4 2 4 2

r 56 57 58 59 60 61 62 63 64 65 66 67 69

vr:n 1 2 1 1 1 2 2 3 3 1 1 3 1

r 70 72 73 74 75 78 79 80 84 86 87 89 90

vr:n 4 1 1 2 1 1 2 1 2 2 1 1 1

r 93 94 101 104 112 113 115 116 119 121 123 132 135

vr:n 1 1 1 1 1 1 1 1 1 2 2 1 1

r 139 140 145 147 150 151 177 180 193 195 209 211 229

vr:n 1 1 1 1 1 1 2 1 1 1 1 1 1

r 247 268 300 309 354 399 425 470 502 505 517 545 705

vr:n 1 1 1 1 1 1 1 2 1 1 1 1 1

r 739 836 1555

vr:n 1 1 1

Table B.4: Word frequency count data set for all the words in Through the looking-

glass and what Alice found there
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B.1.5 The Hound of the Baskervilles

Hound of the Baskervilles is a novel halfway between mystery and terror written by Sir

Arthur Conan Doyle, originally published as a series in the Strand Magazine from August

1901 to April 1902, and located mainly in the region of Dartmoor. It is a relevant fact

that Conan Doyle was Plymouth doctor at the time of writing the book. In the novel,

the detective Sherlock Holmes and his assistant Dr. Watson are called to investigate an

alleged curse that falls on the Baskervilles house that could explain the death of its last

owner.

Author Arthur Conan Doyle

Country United Kingdom

Language English

Series Sherlock Holmes

Literary Genre Thriller

Editor George Newnes

Publication Date 1901 to 1902

Aprox. N Pages 243 pp
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r 1 2 3 4 5 6 7 8 9 10 11 12 13

vr:n 2836 889 449 280 208 137 116 92 86 52 48 40 33

r 14 15 16 17 18 19 20 21 22 23 24 25 26

vr:n 25 34 22 20 15 13 13 17 14 9 12 7 16

r 27 28 29 30 31 32 33 34 35 36 37 38 39

vr:n 5 8 7 7 7 4 6 8 2 7 5 3 5

r 40 41 42 43 44 45 46 47 48 49 50 52 54

vr:n 4 3 3 8 3 3 4 1 1 2 1 1 4

r 55 57 58 60 61 62 63 64 65 66 67 68 69

vr:n 5 3 1 2 1 5 3 2 3 2 3 2 2

r 70 71 72 73 74 77 80 82 84 85 86 87 88

vr:n 1 1 1 1 2 2 1 1 2 1 2 1 3

r 89 90 92 94 97 99 102 104 105 107 110 111 112

vr:n 1 2 1 1 2 2 1 1 1 1 2 1 1

r 113 114 118 123 128 137 140 141 143 146 149 151 155

vr:n 3 1 2 1 1 2 1 1 1 1 1 1 1

r 165 167 171 175 178 182 185 190 192 199 200 201 202

vr:n 1 1 1 1 2 1 1 1 1 1 1 2 1

r 205 207 209 211 215 222 233 240 242 244 264 286 298

vr:n 1 1 1 1 1 1 1 1 1 1 1 1 1

r 314 315 326 329 337 350 364 374 400 405 416 419 441

vr:n 1 1 1 1 1 1 1 1 1 1 1 1 1

r 453 479 506 541 624 689 803 827 911 914 980 1132 1305

vr:n 1 1 1 1 1 1 1 1 1 1 1 1 1

r 1407 1465 1592 1627 3327

vr:n 1 1 1 1 1

Table B.5: Word frequency count data set for all the words in Hound of the

Baskervilles
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B.1.6 War of the Worlds

The War of the Worlds (1898), written by H.G. Wells is an early science fiction novel

which describes an invasion of England by aliens from Mars. It is one of the first and

best known descriptions of an alien invasion of Earth, and has had influence on many

others. It has generated many films and TV series based on it.

Author Herbert George Wells

Country United Kingdom

Language English

Literary Genre Science fiction novel

Editor William Heinemann

Publication Date 1898

Aprox. N Pages 303 pp
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r 1 2 3 4 5 6 7 8 9 10 11 12 13

vr:n 3613 1138 567 340 250 177 135 93 72 67 44 46 44

r 14 15 16 17 18 19 20 21 22 23 24 25 26

vr:n 42 38 31 24 26 16 18 14 13 11 7 8 10

r 27 28 29 30 31 32 33 34 35 37 38 39 40

vr:n 8 6 9 9 4 8 2 6 9 6 6 7 4

r 41 42 43 44 45 46 47 48 49 50 52 53 55

vr:n 6 3 6 3 4 2 3 6 6 5 1 4 3

r 57 58 59 60 61 63 65 66 67 68 69 70 71

vr:n 4 2 2 2 3 3 2 4 3 3 2 1 4

r 72 73 74 75 76 78 79 82 85 87 88 90 91

vr:n 1 1 1 2 1 2 1 1 3 1 1 1 1

r 94 96 99 100 101 102 103 108 112 114 116 117 120

vr:n 1 1 3 1 5 2 1 1 1 1 2 1 2

r 124 128 129 140 142 146 150 154 158 164 166 167 171

vr:n 1 1 2 1 1 1 1 3 1 1 2 1 2

r 174 177 181 184 185 191 198 199 207 213 218 231 243

vr:n 1 1 1 1 1 1 1 1 1 1 1 1 1

r 247 248 250 254 266 292 320 327 343 378 379 420 441

vr:n 1 1 1 1 1 1 1 1 1 1 1 1 1

r 446 447 469 579 647 766 850 991 1172 1257 1605 2297 2487

vr:n 1 1 1 1 1 1 1 1 1 1 1 1 1

r 4775

vr:n 1

Table B.6: Word frequency count data set for all the words in War of the Worlds
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B.1.7 Max Havelaar

Max Havelaar: Or the Coffee Auctions of the Dutch Trading Company (1860) written

by Multatuli (pseudonym of Eduard Douwes Dekker) is a novel that played a key role in

shaping and modifying policy the colonial Dutch East Indies in the nineteenth century

and the beginning twentieth century In the novel, Max Havelaar tries to fight a corrupt

system of government of the island of Java, which was a Dutch colony at the time.

Despite its laconic and concise writing style, it raised the consciousness of Europeans

living in Europe that the wealth they enjoyed was the result of suffering in other parts of

the world. This awareness eventually led to the new political ethics through which the

Dutch colonial government tried to repay its debt to the colonies by providing education

to its inhabitants.

Max Havelaar was partly responsible for the end of Dutch colonialism in Indonesia in

1945, which helped to later decolonize Africa and other parts of the world.

Original Tittle Max Havelaar, of de koffie-veilingen

der Nederlandse Handel-Maatschappij

Author Eduard Douwes Dekker

Country Netherlands

Language Dutch

Literary Genre Fiction Novel

Publication Date 1860
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r 1 2 3 4 5 6 7 8 9 10 11 12 13

vr:n 6004 1731 819 491 368 258 168 137 123 108 80 52 60

r 14 15 16 17 18 19 20 21 22 23 24 25 26

vr:n 57 39 34 37 33 19 33 21 19 20 18 14 13

r 27 28 29 30 31 32 33 34 35 36 37 38 39

vr:n 9 9 13 13 9 9 10 9 6 5 10 7 9

r 40 41 42 43 44 45 46 47 48 49 50 51 52

vr:n 6 8 8 8 5 3 6 4 4 2 6 3 4

r 53 54 55 56 57 58 59 61 62 63 64 65 66

vr:n 1 3 5 4 3 4 8 8 2 2 4 2 5

r 67 68 69 70 71 72 73 74 75 76 78 79 80

vr:n 5 2 3 3 1 2 1 1 3 3 4 2 2

r 81 82 83 86 87 88 90 92 93 96 98 101 102

vr:n 1 2 4 1 2 2 1 1 2 3 2 3 1

r 105 106 107 109 110 111 113 114 115 116 120 121 122

vr:n 1 1 1 3 1 1 2 1 1 1 1 1 1

r 123 125 126 127 128 135 139 145 147 151 154 156 161

vr:n 1 1 3 1 2 1 1 2 3 1 1 1 1

r 162 165 169 170 171 177 184 188 190 194 198 202 208

vr:n 1 1 1 1 1 1 1 1 1 1 1 3 1

r 222 223 228 234 235 236 238 242 244 262 272 283 285

vr:n 1 1 1 1 1 1 1 2 2 1 1 1 1

r 286 289 300 308 317 323 344 358 360 365 369 384 391

vr:n 1 1 1 1 1 1 1 1 1 1 1 1 1

r 416 430 437 443 452 453 477 479 494 541 631 650 653

vr:n 1 1 2 1 1 1 1 1 1 1 1 1 1

r 710 714 736 920 957 990 1159 1168 1267 1335 1423 1644 1686

vr:n 1 1 1 1 1 1 1 1 1 1 1 1 1

r 1834 1894 1955 2032 2306 2782 4826

vr:n 1 1 1 1 1 1 1

Table B.7: Word frequency count data set for all the words in Max Havelaar
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B.2 Word length and frequent function words counts

B.2.1 Tirant lo Blanc

Tirant lo Blanc is a chivalry book written in catalan, hailed to be ”the best book of its

kind in the world” by Cervantes in El Quixote, and considered by many to be the first

modern novel in Europe, (see, e.g., Vargas Llosa, 1991, 93). The main body of the book

was written between 1460 and 1464, but it was not printed until 1490, and there has been

a long lasting debate around its authorship, originating from conflicting information in

its first edition.

Where in the dedicatory letter at the beginning of the book it is stated that “So that

no one else can be blamed if any faults are found in this work, I, Joanot Martorell, take

sole responsibility for it, as I have carried out the task singlehandedly,” in the colophon

at the end of the book it is stated that “Because of his death, Sir Joanot Martorell could

only finish writing three parts of it. The fourth part, which is the end of the book, was

written by the illustrious knight Sir Mart́ı Joan de Galba. If faults are found in that part,

let them be attributed to his ignorance.”

Author Joanot Martorell

Mart́ı Joan de Galba (?)

Country Kingdom of Valencia

Language Catalan

Literary Genre Chivalric Romance

Publication Date 1490
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Chap. 1 2 3 4 5 6 7 8 9 10+ Chap. 1 2 3 4 5 6 7 8 9 10+ Chap. 1 2 3 4 5 6 7 8 9 10+

1 21 59 44 19 33 20 16 17 9 17 123 78 157 146 66 78 82 29 37 20 17 245 16 60 39 14 16 25 17 15 1 8

2 53 113 80 49 52 33 28 36 16 16 124 213 384 390 195 175 198 108 97 77 32 248 43 103 70 42 46 42 23 16 12 15

3 109 274 239 128 112 110 76 51 43 32 125 257 461 440 198 216 246 106 112 63 52 249 54 146 120 50 63 56 29 21 12 20

4 69 150 126 71 60 71 47 32 23 21 126 136 258 272 122 111 138 54 49 35 27 250 35 116 57 32 42 57 21 25 14 12

5 119 207 231 123 128 102 61 55 29 34 127 231 477 380 209 216 212 117 119 51 32 251 56 148 145 59 63 54 46 29 11 15

6 69 136 126 69 60 61 37 27 15 15 128 68 102 105 53 64 40 30 21 12 15 252 33 101 91 44 32 68 23 26 9 8

7 32 63 51 18 29 28 15 15 19 13 129 184 397 395 160 182 197 82 106 50 51 253 41 87 81 50 39 58 14 15 7 7

8 26 52 41 19 27 29 11 16 5 11 130 46 112 95 48 44 58 30 23 16 15 254 100 157 159 82 78 75 42 53 20 20

9 23 42 48 16 15 28 12 15 14 10 131 146 211 273 142 127 134 59 44 41 31 255 33 109 101 29 43 49 28 18 12 9

10 92 191 190 93 84 72 47 47 27 24 132 215 506 392 184 235 195 112 104 57 29 256 48 80 79 44 37 26 23 20 11 6

11 60 132 144 62 55 50 26 27 9 14 133 465 872 970 587 517 471 242 189 130 93 257 38 88 63 47 50 51 15 17 8 14

12 43 66 94 66 44 29 27 13 9 13 134 238 382 387 204 182 219 114 83 69 46 258 129 263 263 113 142 123 53 45 35 36

14 125 217 245 92 101 131 59 54 28 33 136 26 59 45 28 18 30 13 10 12 5 259 24 68 54 42 23 25 16 10 5 10

15 41 118 129 38 40 44 27 25 16 7 137 159 297 352 152 173 139 84 64 46 33 260 139 303 238 130 131 121 76 59 29 36

16 27 64 59 42 16 28 16 17 14 6 138 261 563 482 271 252 297 133 142 94 44 262 352 844 701 328 361 353 205 128 79 75

17 68 151 135 73 57 82 33 46 20 15 139 49 65 75 62 51 59 22 23 9 6 263 141 286 256 141 129 126 61 42 15 29

18 57 134 119 48 65 74 25 25 10 9 140 153 259 293 178 185 153 64 66 37 34 264 211 418 375 196 176 196 92 70 38 53

19 130 302 328 150 128 132 75 59 26 37 141 422 792 808 404 407 393 208 148 140 92 265 79 153 132 68 62 67 51 21 15 14

20 53 117 98 70 51 60 28 26 14 22 142 73 164 183 111 81 101 35 31 33 9 266 41 133 119 42 44 45 27 17 27 12

21 56 142 136 67 45 64 25 28 14 13 143 475 897 789 394 466 427 302 219 131 106 267 21 67 63 23 34 25 18 19 12 3

22 69 179 137 85 58 66 32 47 20 26 144 54 84 98 59 52 42 19 24 22 19 268 93 270 226 97 118 108 69 35 24 24

23 85 163 217 99 108 79 53 27 37 24 145 245 444 449 214 229 214 104 91 96 57 269 179 413 369 179 185 168 82 83 41 40

24 66 139 171 77 78 59 35 33 13 11 146 366 800 705 341 352 318 152 175 136 80 270 18 67 55 17 26 20 23 21 3 6

25 116 174 205 128 134 98 68 29 22 13 148 146 257 290 128 129 157 70 57 39 21 271 58 131 124 65 56 35 24 43 13 10

26 158 316 274 136 157 150 80 61 37 32 149 199 428 335 209 165 202 90 63 44 18 272 37 69 57 23 39 28 20 24 11 8

27 222 442 452 188 221 218 94 89 49 36 151 78 224 163 76 83 83 44 46 22 10 273 30 81 82 35 42 30 23 16 12 12

28 52 72 78 48 43 54 18 15 21 20 153 150 309 329 141 146 163 84 55 39 30 274 20 78 58 29 30 39 19 22 4 6

29 47 128 111 49 50 47 26 19 13 17 154 398 1033 932 414 414 466 228 170 165 75 275 74 118 117 58 54 61 39 31 21 14

30 33 54 48 30 16 26 6 16 5 10 155 236 461 450 255 178 247 110 74 75 43 276 33 107 81 62 47 45 21 25 14 12

31 38 67 60 27 31 45 13 10 4 9 156 66 131 126 57 73 75 46 37 32 12 277 105 202 164 108 91 91 53 48 23 20

32 84 120 152 77 85 66 42 42 18 18 157 406 782 753 383 403 455 232 153 109 66 278 57 105 76 38 53 62 36 32 11 17

33 76 133 162 75 80 66 31 50 17 19 159 199 499 459 205 218 263 110 84 67 27 279 65 128 106 47 52 43 22 17 12 17

34 72 143 134 76 56 43 23 35 16 27 161 502 1125 971 453 477 475 239 213 153 69 280 42 110 86 39 41 39 22 17 16 12

35 73 184 174 79 96 79 37 40 23 23 162 178 358 307 186 161 155 96 64 53 39 281 165 305 272 161 141 157 62 73 34 41

36 43 92 111 47 54 34 28 31 11 17 163 329 746 667 344 345 372 156 119 99 69 282 117 252 236 102 122 122 56 62 26 25

37 38 53 55 22 35 37 15 15 18 16 164 319 634 665 380 387 351 180 116 60 59 283 187 387 351 169 197 165 84 67 26 55

38 79 154 150 66 76 77 33 35 9 13 165 22 44 41 21 25 38 16 25 15 7 284 25 62 47 29 35 35 23 20 8 18

39 132 212 211 116 82 134 51 36 25 33 166 179 380 342 189 167 165 68 81 50 32 285 31 99 66 39 35 26 20 13 4 18

40 24 51 55 28 22 33 14 10 9 6 167 125 220 200 99 108 118 51 54 34 31 286 141 264 284 148 162 122 72 51 38 26

41 83 194 208 100 112 100 42 27 22 34 169 59 124 108 49 47 63 23 32 16 15 288 177 357 339 168 168 164 90 70 44 36

42 75 115 106 75 91 94 57 22 14 14 170 23 61 61 32 29 24 7 11 9 8 289 23 43 45 24 25 16 11 9 16 3

43 28 62 72 36 25 23 17 11 9 13 171 37 92 71 41 32 29 22 15 7 10 290 83 222 183 112 87 82 43 27 35 23

44 90 160 125 86 78 82 51 43 24 16 172 115 271 299 124 116 129 63 51 43 19 291 220 472 457 220 198 214 100 94 76 43

52 111 128 139 73 107 62 34 39 30 22 173 109 196 204 90 107 110 41 40 23 36 292 205 399 384 200 175 214 84 81 50 38

53 41 91 83 52 48 44 13 17 9 8 174 29 86 52 22 39 39 17 14 5 5 293 91 153 143 77 67 84 38 40 26 20

54 27 65 59 22 29 37 12 24 12 10 175 39 74 79 40 32 29 9 10 9 6 294 32 99 72 43 44 37 32 30 13 9

55 115 220 195 135 128 105 49 59 23 32 176 55 115 103 54 45 53 24 17 13 15 295 74 242 201 112 122 77 75 45 41 35

56 109 207 220 95 104 96 34 44 28 23 177 58 121 114 52 36 60 25 25 16 21 296 82 169 153 76 78 65 51 42 13 24

57 129 304 282 144 146 121 70 57 28 32 178 109 233 190 115 94 104 42 41 29 21 297 34 109 107 41 44 47 25 17 11 15

58 41 61 74 27 42 31 15 13 8 14 179 57 156 121 59 63 36 33 27 13 14 299 232 583 520 300 288 233 136 93 45 56

59 181 297 282 157 162 140 66 76 48 39 180 61 148 139 68 68 52 34 39 14 14 300 24 89 85 43 31 32 22 12 6 7

60 127 272 238 132 126 121 71 45 24 25 181 68 80 148 58 61 53 41 41 18 12 301 173 374 367 180 165 159 80 91 44 30

61 23 45 60 20 29 27 12 7 6 4 182 81 204 205 86 75 83 48 66 23 21 302 48 95 74 35 50 32 35 16 12 12

63 44 77 79 25 39 46 11 9 9 4 183 76 170 182 64 61 90 41 39 20 22 303 34 114 112 36 39 32 40 16 9 7

64 115 235 221 80 117 90 46 33 34 26 184 30 100 105 30 29 26 21 18 12 9 304 207 361 373 205 207 224 94 76 43 36

65 164 320 335 121 181 144 67 54 45 31 185 47 69 50 21 26 32 31 16 25 9 305 17 57 56 29 22 14 16 10 6 11

66 27 75 92 25 37 34 8 12 10 7 189 754 1462 1246 642 739 717 315 307 200 139 306 29 51 46 9 27 37 22 18 11 5

67 273 532 523 273 301 240 115 86 66 45 190 36 71 63 35 47 34 35 14 20 11 307 133 293 282 140 127 133 78 43 38 22

68 467 798 781 420 452 380 191 156 98 86 191 39 67 53 37 29 28 18 11 15 4 308 29 119 93 40 45 28 19 19 14 9

71b 291 490 516 268 282 258 113 103 103 63 192 37 99 111 63 47 53 18 27 19 12 309 235 499 495 235 230 229 131 106 63 55

72 128 192 191 111 111 120 34 37 14 20 194 29 61 50 31 26 23 19 21 9 6 310 265 616 569 294 286 231 158 111 59 51

73 151 226 224 103 138 134 72 58 26 13 195 43 89 93 33 44 49 17 7 16 18 311 28 84 67 40 26 29 20 10 10 7

74 152 302 295 128 134 137 84 76 38 33 201 69 129 103 60 71 52 42 27 18 11 312 105 233 203 90 85 126 38 52 30 13

75 34 87 96 33 38 36 16 17 3 6 202 62 138 119 61 77 54 28 21 19 15 313 59 102 107 60 39 51 24 15 9 12

76 87 196 162 94 66 81 36 45 20 18 207 30 55 68 26 31 25 13 11 9 7 314 32 74 50 26 31 28 16 12 8 7

78 79 143 151 80 94 68 22 31 22 19 208 54 170 143 64 72 63 30 34 18 22 315 254 419 422 240 226 204 112 65 48 51

80 134 235 263 131 141 114 47 50 27 36 209 53 162 134 61 65 67 37 34 12 13 316 24 91 90 39 43 24 18 23 11 9

81 329 652 561 256 313 270 143 146 72 53 210 78 239 191 90 102 106 59 56 31 31 317 82 227 211 98 90 79 42 51 24 28

82 84 130 127 74 59 66 30 38 12 8 211 39 111 82 37 42 42 23 20 26 10 318 42 86 91 45 28 38 19 23 10 8

83 29 63 57 26 23 32 15 17 6 10 212 29 67 59 34 30 19 20 18 12 10 319 145 365 380 160 143 160 88 68 52 27

84 133 222 179 105 133 124 59 64 23 28 214 78 198 178 63 72 85 34 34 20 19 320 22 49 52 21 16 22 10 14 3 8

85 182 354 310 122 152 188 80 75 38 47 215 92 216 220 80 95 102 39 33 29 20 321 146 315 340 135 159 144 81 60 41 33

92 160 210 161 108 115 91 46 37 20 29 216 80 211 208 110 99 75 38 50 23 13 322 40 107 104 41 45 41 30 18 10 12

96 40 71 72 26 36 31 16 17 8 10 217 24 107 82 38 40 44 26 24 6 13 323 46 136 133 47 60 55 35 31 11 15

97 79 105 102 60 49 76 33 24 18 11 218 172 370 296 178 144 149 84 73 60 41 324 57 196 135 88 60 59 39 34 17 20

98 246 633 529 321 241 262 157 115 73 52 219 30 68 66 29 30 33 18 18 19 15 325 48 146 106 57 51 58 37 25 23 19

99 161 309 317 176 160 170 91 78 62 41 220 139 249 217 93 98 97 54 28 40 38 326 24 67 59 29 34 19 12 23 14 8

100 383 768 779 354 387 374 169 168 73 76 221 110 238 187 107 109 112 69 66 50 47 327 51 156 138 59 56 51 31 30 26 17

101 240 507 418 198 208 228 110 73 46 36 222 229 346 371 196 223 158 80 80 80 46 328 94 128 188 66 82 76 53 44 25 19

102 29 65 59 30 28 29 18 10 3 7 223 28 71 73 24 34 44 16 13 9 6 329 67 139 130 53 66 56 36 35 20 11

103 39 116 108 50 48 42 21 11 13 8 224 97 205 181 88 74 111 40 47 30 18 330 121 228 232 110 110 106 72 56 37 20

104 204 466 415 197 190 217 118 73 77 41 225 72 223 194 95 78 85 31 31 10 19 331 46 118 87 61 67 38 23 19 9 10

105 176 324 330 149 175 209 95 56 36 35 226 86 239 229 105 94 106 43 59 15 20 332 17 72 68 16 34 37 13 11 8 3

106 240 438 438 227 260 205 112 65 32 21 227 71 176 168 81 90 86 30 46 21 13 333 61 153 155 78 79 66 30 32 26 13

107a 92 172 144 91 77 96 48 31 37 23 228 123 342 310 125 122 132 71 71 32 17 334 182 320 335 187 180 154 98 76 54 33

107b 58 111 96 43 56 64 33 36 31 15 229 147 307 264 135 145 154 62 67 30 24 335 77 135 158 90 82 64 35 27 24 9

108 145 284 309 138 142 173 88 49 37 23 230 66 208 143 49 77 55 23 33 16 15 336 12 63 51 17 21 21 5 12 3 11

109 272 559 533 245 297 262 156 85 72 62 231 125 351 293 135 124 158 45 65 35 31 337 111 220 228 106 117 119 46 28 30 28

110 374 873 775 338 386 371 221 136 45 38 232 48 84 100 36 39 53 21 18 12 6 338 24 54 59 22 24 28 22 18 8 10

111 108 226 208 89 103 119 58 33 30 22 233 248 495 429 195 247 201 103 86 38 37 339 100 207 225 99 94 111 71 32 15 16

112 45 70 74 32 26 47 19 14 8 5 234 192 447 393 175 205 181 109 86 39 36 340 241 353 476 235 237 225 113 85 79 39

113 156 306 302 138 170 150 74 57 36 30 235 19 57 54 20 22 25 11 15 4 9 341 22 61 61 25 17 29 10 14 10 3

114 202 440 376 172 210 207 96 80 41 34 236 209 493 446 206 209 216 83 83 54 34 343 147 241 308 142 157 140 81 58 35 29

116 154 264 261 122 124 124 70 64 49 35 237 30 88 86 42 39 43 22 16 15 18 344 109 203 185 108 107 94 61 43 28 16

117 141 311 251 139 120 157 77 49 43 30 238 109 225 197 105 78 112 39 41 31 15 345 84 163 186 86 72 80 38 29 28 19

118 73 147 123 76 83 65 33 29 18 12 239 144 305 301 149 128 167 66 47 46 30 346 48 107 107 51 33 41 29 34 9 20

119 422 813 766 373 417 440 237 196 130 86 240 33 132 122 31 57 50 23 30 8 12 347 65 145 167 76 74 62 41 30 26 24

120 25 59 55 31 19 24 9 9 4 3 241 42 110 70 33 51 46 25 17 9 7 348 26 57 36 22 28 18 20 15 8 5

121 129 238 255 121 144 138 68 66 39 28 242 24 106 76 38 38 32 14 24 5 10 349 234 446 446 246 253 254 126 104 84 76

122 23 55 50 28 27 38 15 19 13 18 244 47 136 129 57 57 54 39 21 15 16 350 121 232 240 104 122 120 54 49 38 37

Table B.8: Word length counts for all the words in Tirant lo Blanc (1/2)
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Chap. 1 2 3 4 5 6 7 8 9 10+ Chap. 1 2 3 4 5 6 7 8 9 10+ Chap. 1 2 3 4 5 6 7 8 9 10+

351 42 96 96 30 49 33 27 33 10 12 395 33 46 43 38 26 29 14 9 9 10 442 86 163 155 61 75 89 41 44 28 25

352 23 43 40 22 27 24 17 8 6 7 397 41 76 76 30 36 47 9 17 10 14 443 26 47 21 9 20 36 17 20 13 18

353 71 156 156 86 60 58 42 55 31 23 399 26 42 42 15 29 21 6 5 8 9 444 80 114 133 60 79 61 46 36 24 26

354 77 198 188 92 73 71 39 46 44 24 400 32 88 57 27 30 38 28 24 17 21 445 96 225 168 75 75 112 53 58 37 23

355 145 361 313 154 140 163 102 81 47 50 401 109 175 202 95 96 92 43 28 33 34 446 115 233 240 142 117 121 68 52 47 57

356 29 106 98 35 41 40 26 31 12 10 402 29 62 46 31 40 36 26 27 17 13 447 58 74 64 45 33 43 19 21 17 18

357 87 231 217 102 96 105 50 42 31 41 403 102 258 225 117 101 98 69 54 45 39 448 147 213 226 129 127 133 72 62 49 28

358 21 67 58 38 19 26 18 16 9 7 404 63 91 92 55 58 49 17 16 19 11 449 56 100 112 48 46 42 31 22 27 13

359 38 67 69 27 32 27 21 19 5 6 405 33 65 53 33 19 26 11 4 4 13 450 178 276 208 119 159 135 96 68 52 39

360 37 91 89 45 34 45 26 24 9 16 406 71 128 111 58 55 51 30 28 20 21 451 57 126 89 46 41 77 41 45 18 16

362 44 87 100 43 35 58 24 23 15 17 407 36 79 72 52 37 38 15 16 8 17 452 176 254 239 107 121 170 85 67 70 54

363 21 53 46 40 31 20 11 6 10 6 408 151 291 252 133 139 125 59 40 32 32 454 37 77 53 22 35 22 27 21 12 16

364 24 84 80 34 38 30 11 26 10 12 409 137 241 281 134 127 114 53 47 52 37 456 169 303 275 155 153 163 95 68 55 51

365 18 69 54 27 29 22 12 17 5 8 410 229 382 373 219 194 150 86 73 34 37 457 31 45 45 16 27 28 13 12 5 9

366 68 134 105 69 52 66 31 20 14 20 411 29 69 81 39 38 38 26 16 14 9 458 34 78 55 23 39 47 21 11 12 10

367 68 134 105 69 52 66 31 20 14 20 412 29 68 45 28 28 27 15 17 7 7 459 135 302 220 138 158 146 109 68 57 29

368 37 82 71 42 23 27 19 11 6 13 413 49 68 49 34 54 39 13 16 15 20 460 30 72 66 27 36 55 27 16 16 15

369 35 119 88 42 44 51 36 25 8 15 414 137 256 243 133 106 135 63 39 42 34 462 28 72 68 39 40 32 24 11 15 14

370 53 116 92 52 48 62 31 22 16 13 415 117 206 165 75 107 101 40 45 31 35 463 211 335 219 148 189 149 120 91 63 54

371 71 197 156 78 80 59 26 45 17 21 416 85 164 134 67 94 58 39 31 19 23 464 46 59 53 30 24 36 18 17 21 17

372 91 184 172 86 93 96 49 58 27 36 417 29 42 26 20 24 26 26 17 10 13 465 58 95 71 40 45 66 32 23 8 15

373 42 79 80 40 46 38 19 18 14 12 418 147 241 276 160 171 147 48 48 34 34 466 73 111 93 40 68 56 30 33 24 23

374 147 296 241 120 138 130 142 78 73 76 420 141 192 204 78 89 115 36 44 39 22 467 56 128 114 49 48 73 36 22 28 28

375 42 77 53 37 29 31 24 26 16 22 422 50 111 129 52 53 66 34 22 22 24 468 45 66 62 51 40 51 26 32 19 19

376 86 140 108 74 64 77 57 48 52 46 423 62 76 93 51 48 60 22 18 8 20 471 96 196 183 80 93 96 42 36 33 26

377 34 74 45 21 33 23 27 13 16 17 424 85 180 177 64 96 103 29 33 19 23 472 100 182 171 92 99 103 52 49 41 24

378 46 118 92 71 48 34 45 30 18 21 425 43 88 101 69 69 59 26 26 20 31 473 53 126 106 72 75 68 29 29 30 15

379 12 51 41 15 34 26 15 18 3 15 426 39 55 47 35 39 31 18 23 23 24 474 99 260 252 126 157 118 84 37 50 41

380 31 97 66 44 51 38 19 27 20 21 427 57 130 127 74 73 63 33 23 31 30 475 34 98 76 36 38 39 19 23 15 6

381 27 66 43 24 21 30 14 22 12 13 428 31 71 91 22 33 43 25 15 17 9 476 128 198 199 93 89 79 53 52 31 29

382 41 72 61 30 32 44 12 20 8 10 429 29 61 77 25 27 24 18 24 8 14 477 140 233 179 130 105 88 42 38 33 24

383 42 60 52 30 30 30 16 17 16 16 430 129 205 152 90 108 77 67 53 40 30 478 165 298 283 131 127 152 62 72 43 38

384 57 101 110 58 43 50 32 24 19 18 431 76 166 159 76 68 72 44 52 33 35 479 107 183 175 77 89 84 51 35 34 34

385 30 53 58 37 16 27 21 16 13 16 432 92 196 202 69 86 110 57 53 17 31 480 78 123 150 57 54 65 42 25 34 13

386 64 117 113 55 53 79 39 34 20 14 433 27 63 54 33 34 31 14 16 8 0 481 159 282 262 137 124 122 63 71 56 46

387 163 321 350 170 180 165 103 80 63 44 434 120 291 235 102 117 113 62 54 32 28 482 50 47 61 18 32 47 23 32 14 11

388 56 76 53 39 32 29 19 17 16 20 435 25 101 70 35 40 45 18 16 14 10 483 158 220 207 80 120 93 65 54 62 50

390 43 99 109 40 38 52 15 29 17 12 436 30 66 53 26 25 48 24 23 11 6 484 59 67 68 37 26 32 15 14 17 6

391 54 71 60 27 30 30 13 22 9 17 437 17 61 55 20 28 31 16 18 9 13 485 96 174 106 57 77 86 42 54 24 25

392 42 51 59 25 24 39 9 10 14 14 438 47 97 92 42 48 52 30 25 7 21 486 45 88 91 46 40 28 13 30 11 10

393 55 70 58 19 28 36 10 18 14 19 439 43 108 58 34 37 52 21 28 11 12 487 48 49 62 53 41 36 21 9 16 13

394 106 190 198 121 117 131 71 50 43 32 440 54 74 60 29 32 40 23 12 16 5

Table B.9: Word length counts for all the words in Tirant lo Blanc (2/2)



Appendix B. Data Sets 148

Chap. e de la que lo en a per no l Chap. e de la que lo en a per no l Chap. e de la que lo en a per no l

1 12 15 9 8 10 6 1 4 1 7 85 87 80 61 48 57 35 20 13 12 15 172 66 43 45 42 22 31 19 33 28 11

2 26 28 19 9 10 12 11 8 3 2 92 63 31 34 32 18 18 33 18 10 27 173 49 32 37 40 18 19 29 18 13 17

3 66 46 48 53 26 20 22 20 19 9 96 23 7 12 12 15 7 8 7 2 4 174 15 12 19 13 6 5 7 3 4 2

4 33 29 34 13 9 21 13 11 5 7 97 31 25 12 15 9 5 18 11 8 11 175 16 10 14 11 9 4 8 8 9 5

5 63 46 42 34 33 17 16 21 8 12 98 140 103 97 114 90 54 35 42 36 32 176 24 17 24 16 5 6 9 5 7 10

6 35 15 27 23 27 16 13 11 7 10 99 95 63 42 56 43 34 19 19 17 16 177 24 18 20 18 20 6 10 13 5 11

7 20 20 10 16 3 6 4 5 5 5 100 209 149 141 136 59 82 68 58 43 26 178 58 32 42 28 21 15 23 23 10 13

8 13 9 13 6 1 9 6 6 4 5 101 133 79 85 65 64 41 48 41 27 18 179 23 22 25 18 9 16 16 8 11 7

9 12 9 9 7 6 4 4 7 3 4 102 13 11 12 11 4 4 4 3 2 4 180 35 18 22 24 8 11 12 14 15 6

10 44 27 29 21 16 14 19 18 11 15 103 18 13 19 14 10 7 8 7 15 1 181 37 15 10 23 13 5 5 15 5 10

11 23 18 23 25 19 6 18 8 6 11 104 123 93 83 86 60 51 36 36 21 18 182 43 29 29 31 25 20 10 26 20 8

12 20 8 8 13 13 5 5 5 4 4 105 105 64 58 64 51 23 30 27 11 14 183 39 27 20 29 24 14 11 19 14 12

14 64 37 27 36 35 17 20 20 6 22 106 127 72 80 80 59 41 35 36 31 31 184 17 10 8 13 22 7 4 8 7 3

15 21 26 13 23 15 9 10 9 16 4 107 50 41 22 23 21 19 17 11 5 14 185 22 16 17 7 2 7 6 3 3 10

16 12 6 9 19 10 4 8 9 6 4 107 33 18 22 13 7 10 15 8 10 3 189 354 232 245 187 168 133 104 101 95 135

17 42 19 25 22 22 11 9 9 13 4 108 84 44 37 59 41 35 32 30 12 7 190 15 16 12 4 7 11 3 4 3 6

18 37 25 18 12 19 15 8 12 5 1 109 146 102 103 84 46 42 50 41 33 24 191 16 6 10 6 8 6 8 2 3 8

19 71 40 45 43 48 24 18 19 18 19 110 178 115 121 125 148 73 78 56 45 54 192 20 18 8 17 11 11 3 6 12 5

20 29 25 17 15 14 15 13 6 7 1 111 50 38 45 40 18 16 24 21 6 8 194 19 9 18 17 3 8 4 2 2 5

21 35 21 16 23 9 16 10 16 8 3 112 25 22 7 8 14 7 5 3 2 7 195 27 16 10 12 8 7 6 15 7 3

22 44 28 45 19 10 14 14 12 7 5 113 78 49 65 34 33 48 25 20 16 16 201 34 23 27 9 8 9 17 9 7 7

23 47 24 27 34 22 14 14 15 12 2 114 113 98 69 58 49 45 45 24 20 15 202 32 24 28 19 18 10 10 10 5 12

24 33 23 19 27 15 15 10 12 11 7 116 75 58 40 42 25 27 23 24 17 27 207 15 9 12 13 5 5 4 4 0 5

25 60 20 30 32 35 15 18 11 9 14 117 68 44 81 39 31 25 25 34 17 27 208 27 32 30 24 13 15 10 16 13 10

26 86 48 61 37 44 32 24 17 7 14 118 33 37 20 28 10 12 18 9 16 6 209 19 20 20 29 12 10 15 5 17 4

27 114 72 79 79 67 31 35 26 32 25 119 196 177 127 146 78 68 76 58 42 65 210 31 37 41 35 17 23 21 17 18 12

28 26 15 10 14 10 8 8 9 4 6 120 10 2 4 10 6 5 4 3 9 1 211 26 13 16 18 6 14 5 7 5 4

29 24 23 21 18 20 13 7 14 2 7 121 59 37 40 45 20 30 31 29 19 22 212 16 7 13 11 1 6 9 12 4 0

30 10 12 4 7 5 4 6 0 6 14 122 16 16 12 9 5 6 1 4 3 2 214 32 27 26 33 11 18 20 12 15 9

31 12 15 6 13 4 9 8 5 2 12 123 30 36 25 29 5 14 16 8 10 13 215 48 34 17 32 16 18 15 19 23 7

32 54 28 12 26 18 17 10 13 8 9 124 105 71 91 67 34 39 42 47 24 34 216 46 34 33 46 19 12 14 18 14 5

33 37 28 16 19 19 10 13 16 12 18 125 119 83 75 86 30 34 45 34 28 47 217 10 14 17 23 7 10 4 6 13 5

34 32 30 22 17 22 11 13 12 9 16 126 66 54 43 49 16 20 26 27 20 23 218 83 57 53 45 33 29 30 17 31 20

35 34 26 21 18 42 19 10 18 5 19 127 106 65 87 70 36 38 45 24 33 23 219 18 15 12 7 4 9 3 11 6 3

36 15 19 2 17 18 5 7 11 4 11 128 35 20 17 22 9 10 13 9 8 6 220 59 30 43 60 10 19 28 14 26 29

37 22 14 4 6 8 9 5 3 5 5 129 79 69 75 70 29 28 44 41 28 22 221 67 34 63 54 24 20 7 8 14 8

38 45 20 34 23 28 11 8 18 8 12 130 21 16 20 20 8 11 8 10 6 11 222 109 64 45 42 54 27 35 32 20 31

39 61 37 21 37 25 15 22 20 9 26 131 71 44 40 39 22 22 26 30 11 21 223 13 7 4 11 9 9 5 6 8 3

40 12 10 6 7 5 5 8 4 1 0 132 108 104 80 52 54 35 35 25 27 29 224 41 35 33 28 15 28 21 10 25 16

41 45 36 23 36 33 18 10 16 18 6 133 233 136 132 146 117 81 95 69 71 49 225 33 21 25 43 23 20 21 14 22 2

42 43 31 13 19 13 11 7 6 6 2 134 124 68 48 62 49 26 45 28 35 29 226 42 29 39 43 19 14 21 22 20 7

43 14 10 15 6 11 5 3 5 1 4 136 12 15 7 7 5 6 5 5 2 2 227 28 29 29 28 12 9 13 22 22 11

44 58 41 32 14 14 12 8 12 3 4 137 75 57 47 53 24 16 39 32 18 13 228 62 46 53 51 15 37 26 25 32 12

52 60 26 11 19 17 8 13 8 5 6 138 137 97 91 72 47 51 49 51 42 37 229 71 52 41 36 25 31 26 27 30 22

53 24 17 11 14 15 9 4 6 5 1 139 27 13 13 8 13 7 12 9 0 5 230 32 22 29 22 7 13 11 10 18 6

54 14 20 14 5 5 4 5 5 2 0 140 79 57 35 35 59 17 28 22 7 17 231 62 42 60 64 30 35 24 21 26 14

55 62 49 21 34 19 30 11 15 10 11 141 220 135 130 133 110 62 66 66 57 67 232 24 12 6 24 4 10 7 7 3 7

56 60 46 20 30 30 8 24 15 20 8 142 41 24 15 32 26 14 18 9 16 6 233 132 58 96 81 45 35 36 32 48 29

57 69 38 47 49 34 17 22 29 26 9 143 256 142 114 124 66 89 81 67 96 49 234 84 53 72 84 45 42 40 26 33 29

58 17 15 5 4 13 3 7 6 3 5 144 35 8 6 16 18 6 5 9 1 7 235 9 8 8 7 3 4 4 5 7 0

59 92 35 42 38 59 35 33 11 12 34 145 119 62 65 63 54 40 46 34 25 35 236 101 57 62 84 54 41 43 39 47 31

60 62 57 44 43 28 22 27 22 15 12 146 164 115 111 146 53 77 61 71 78 63 237 16 13 20 16 7 9 5 8 5 4

61 15 4 6 14 8 2 5 6 1 0 148 73 37 37 35 44 25 27 24 19 13 238 49 36 25 34 30 21 15 9 21 24

63 21 9 9 17 11 7 5 13 5 7 149 103 70 49 58 65 28 37 26 23 16 239 69 57 51 53 31 27 18 24 18 17

64 60 46 31 28 16 12 22 21 15 12 151 39 36 23 24 26 22 13 16 16 7 240 16 21 15 25 11 12 9 11 8 1

65 77 60 42 46 34 31 34 27 30 20 153 74 49 41 31 32 25 35 35 22 5 241 24 15 18 16 7 9 5 3 10 5

66 11 10 2 13 12 6 8 9 7 4 154 201 164 124 139 116 86 80 78 103 42 242 10 11 16 20 6 8 6 7 7 3

67 138 86 69 81 69 43 55 38 26 32 155 96 72 81 77 40 45 55 40 30 46 244 24 24 25 28 5 9 9 8 12 3

68 213 140 100 108 118 67 86 55 42 58 156 39 20 32 14 7 14 14 12 10 3 245 10 8 8 9 6 6 1 1 7 1

71 149 96 78 85 75 46 49 37 33 39 157 210 147 152 105 108 58 74 56 41 57 248 17 11 24 14 4 7 9 4 11 6

72 51 31 29 40 28 13 13 14 15 42 159 112 84 74 78 85 32 32 36 36 22 249 21 21 23 22 11 11 11 10 15 10

73 74 38 18 45 29 29 25 13 16 27 161 248 165 182 187 101 71 106 100 85 71 250 15 20 14 14 12 8 3 2 6 3

74 75 65 42 48 34 28 33 30 16 15 162 92 37 60 55 24 30 29 22 27 18 251 24 14 20 24 8 9 9 9 16 5

75 21 13 7 20 9 6 6 6 7 3 163 182 109 95 131 82 50 49 55 67 34 252 13 21 15 12 7 12 13 6 8 4

76 37 34 22 15 15 19 14 9 10 9 164 181 119 114 88 71 62 50 32 39 31 253 19 11 12 14 10 10 11 6 5 2

78 43 21 23 17 16 10 9 13 4 9 165 7 11 9 9 2 3 2 7 6 2 254 47 25 33 20 10 16 17 15 11 22

80 77 41 36 36 47 15 17 27 8 12 166 100 67 57 56 38 30 30 22 26 22 255 16 14 13 18 9 7 4 11 7 6

81 163 96 96 83 77 55 70 49 46 46 167 56 48 36 34 21 27 27 14 13 22 256 21 7 6 17 4 6 10 7 6 4

82 40 18 19 24 18 8 14 9 7 14 169 31 13 29 17 6 5 15 8 11 6 257 13 8 10 15 8 9 8 9 8 7

83 19 11 9 8 1 6 4 9 3 1 170 6 12 5 13 4 0 7 10 2 4 258 65 40 47 45 14 23 17 26 22 26

84 64 45 30 27 33 19 28 15 6 18 171 15 14 8 11 5 4 7 10 9 6 259 13 9 7 10 3 6 3 7 5 5

Table B.10: Most frequent function word counts in Tirant lo Blanc (1/2)
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Chap. e de la que lo en a per no l Chap. e de la que lo en a per no l Chap. e de la que lo en a per no l

260 63 38 55 52 30 32 16 11 19 23 334 111 46 51 56 32 20 22 31 22 12 410 131 55 54 52 53 37 32 28 35 27

262 168 93 130 127 69 104 63 46 76 59 335 35 18 24 27 17 11 17 12 10 8 411 15 11 12 21 4 12 9 9 3 1

263 65 36 36 48 30 30 24 17 16 19 336 7 6 11 8 5 2 3 3 6 0 412 17 10 14 13 6 9 4 6 4 2

264 94 68 66 79 24 37 38 35 35 32 337 62 30 28 24 40 23 19 12 18 6 413 36 15 17 7 7 4 7 7 3 3

265 37 31 30 22 15 19 16 15 5 11 338 13 11 7 13 2 7 4 5 3 1 414 81 63 40 35 36 26 21 15 10 26

266 30 19 15 15 8 17 3 13 16 3 339 66 28 35 37 20 23 10 15 16 7 415 60 51 45 29 16 9 18 20 7 24

267 15 10 2 9 5 8 3 8 11 0 340 142 66 59 73 54 36 39 41 19 13 416 44 24 48 38 14 13 14 14 7 13

268 55 41 34 37 21 11 15 20 26 7 341 10 16 5 12 2 7 7 7 6 1 417 10 10 13 3 1 3 7 6 4 5

269 84 41 60 63 36 40 34 44 24 25 343 88 45 31 45 30 24 26 15 21 6 418 92 51 50 62 24 25 16 16 20 20

270 10 10 13 8 2 9 1 5 5 2 344 61 29 29 28 39 16 20 11 12 10 420 79 39 49 44 24 12 24 23 9 27

271 33 16 22 19 8 12 5 15 10 4 345 47 22 25 21 25 18 17 15 14 4 422 31 18 15 33 21 8 9 12 19 3

272 20 12 12 10 7 9 10 7 4 5 346 36 13 14 13 14 12 4 9 5 3 423 35 19 14 24 6 5 10 3 1 4

273 15 14 16 18 7 5 6 6 9 1 347 37 23 21 17 18 9 17 14 14 4 424 53 26 34 44 14 15 15 18 10 6

274 7 19 16 14 2 4 6 8 4 3 348 17 9 10 5 3 4 5 3 5 1 425 27 18 15 15 20 12 7 10 3 1

275 35 20 11 20 8 15 14 18 11 17 349 135 71 78 71 71 37 45 36 18 13 426 17 14 10 4 3 6 9 4 1 2

276 24 15 19 14 8 14 2 7 4 0 350 61 39 52 47 20 20 26 16 7 9 427 30 23 32 26 16 17 12 12 11 5

277 52 28 34 31 21 25 16 13 18 18 351 23 18 18 21 10 7 9 6 9 2 428 16 15 12 14 15 2 12 10 8 1

278 30 25 17 11 5 16 9 6 4 9 352 14 9 3 6 3 5 6 3 7 1 429 21 11 7 11 9 7 4 11 4 0

279 32 14 15 20 10 9 15 6 13 5 353 33 29 21 29 9 12 14 14 14 7 430 67 34 62 16 16 20 24 11 3 31

280 14 12 10 12 9 13 10 8 13 4 354 51 37 32 24 13 16 14 21 21 4 431 38 31 37 33 10 23 13 10 8 12

281 72 54 53 54 19 30 27 20 21 21 355 71 61 55 39 26 38 26 20 31 15 432 46 32 28 33 12 17 20 25 18 13

282 48 34 35 45 26 29 29 24 24 17 356 13 13 13 20 8 8 5 11 11 0 433 13 7 12 8 6 5 6 4 9 4

283 88 56 77 64 31 50 33 28 19 26 357 48 41 45 31 18 24 15 20 17 12 434 51 47 69 48 20 20 39 14 15 12

284 10 12 10 7 2 5 5 4 5 0 358 14 8 10 10 9 5 4 4 1 1 435 9 14 22 16 9 9 6 5 9 3

285 18 13 16 7 7 15 3 3 6 1 359 22 8 9 16 11 7 3 4 8 3 436 12 11 12 9 1 2 3 5 15 5

286 63 34 50 41 19 20 36 21 28 11 360 20 9 17 17 13 4 5 6 4 4 437 4 9 15 13 3 4 8 3 7 1

288 87 57 59 58 25 29 33 25 26 18 362 23 16 25 12 6 12 7 7 6 6 438 17 13 24 19 8 7 7 6 8 6

289 14 9 10 8 3 3 3 0 6 1 363 12 15 9 8 4 4 1 3 4 7 439 18 14 24 15 5 9 10 7 5 6

290 40 24 34 31 14 16 24 7 33 8 364 11 17 8 10 12 8 7 8 6 0 440 22 13 14 14 8 5 9 5 6 14

291 120 61 81 62 44 41 44 33 37 23 365 7 10 14 14 6 4 3 4 4 1 442 42 30 35 29 18 18 18 23 10 14

292 102 57 83 89 41 41 37 27 21 31 366 40 24 28 17 9 21 9 11 7 8 443 11 9 11 2 7 3 6 1 2 1

293 37 25 34 31 12 13 16 14 13 18 367 40 24 28 17 9 21 9 11 7 8 444 41 22 16 32 18 9 15 16 8 11

294 17 15 12 6 8 13 8 6 10 1 368 20 6 12 19 9 8 6 5 7 2 445 39 33 61 31 31 13 24 18 10 13

295 34 38 45 33 18 16 17 25 21 8 369 7 27 10 11 7 9 7 11 15 6 446 79 48 36 55 40 23 23 15 11 6

296 45 29 38 32 13 19 17 7 10 6 370 29 28 26 18 9 6 11 13 8 5 447 26 15 15 13 10 6 10 3 4 7

297 22 22 13 14 4 7 7 9 9 3 371 36 27 31 35 11 17 14 15 10 3 448 82 48 42 28 25 32 20 15 6 32

299 108 77 120 89 36 59 40 47 29 36 372 47 34 39 36 17 19 16 13 10 13 449 36 24 9 20 12 12 10 8 4 5

300 9 12 11 16 5 9 6 6 9 1 373 23 16 18 19 1 6 7 6 8 5 450 86 68 55 19 39 22 31 17 3 43

301 96 53 51 47 53 35 29 28 17 16 374 86 49 57 39 12 26 28 17 34 10 451 30 27 23 17 10 7 11 6 12 9

302 21 14 6 13 16 14 9 7 4 5 375 33 9 15 7 4 4 8 1 8 0 452 85 50 49 46 35 23 29 26 11 41

303 17 20 9 22 4 12 9 8 13 0 376 55 24 25 11 12 13 12 12 15 10 454 16 18 14 6 11 9 7 4 3 9

304 117 52 47 56 55 28 35 29 29 16 377 25 14 13 2 6 5 1 7 9 4 456 109 58 73 39 54 8 21 21 10 10

305 6 9 9 9 0 2 5 7 3 1 378 27 14 14 15 9 11 8 11 16 5 457 16 10 12 5 3 3 7 0 3 4

306 16 10 13 6 8 4 9 7 1 0 379 8 8 8 4 4 7 0 3 9 4 458 20 14 17 5 11 3 4 4 2 3

307 74 41 38 47 28 26 25 26 20 11 380 10 16 17 7 9 12 2 8 10 5 459 82 60 64 37 46 26 15 20 5 14

308 16 22 8 12 8 10 7 13 15 1 381 6 12 10 9 6 2 8 6 4 1 460 7 14 17 11 5 5 6 5 8 3

309 130 98 58 89 56 47 36 35 41 18 382 19 14 8 9 9 2 9 8 5 3 462 21 17 9 9 15 11 4 8 2 2

310 163 93 95 76 89 50 30 48 32 18 383 25 21 10 9 3 8 3 5 1 7 463 102 80 118 39 10 27 31 28 7 35

311 15 11 9 19 8 6 1 7 7 2 384 39 22 18 10 15 16 9 13 2 2 464 23 13 25 6 3 5 9 13 2 9

312 58 31 33 42 30 16 12 11 19 12 385 14 16 14 6 9 3 4 6 1 6 465 41 26 20 8 16 6 1 14 4 9

313 26 12 13 19 11 7 10 15 5 7 386 38 29 32 17 17 5 7 9 6 3 466 40 33 23 10 13 11 11 15 6 14

314 19 17 12 8 1 3 8 1 5 1 387 92 70 57 63 45 30 25 27 23 14 467 32 22 15 18 21 14 9 14 7 10

315 142 64 91 63 37 34 38 40 20 27 388 24 14 15 6 10 6 10 7 1 19 468 16 11 15 6 6 11 9 6 2 3

316 13 9 17 20 8 6 4 9 3 1 390 28 19 17 17 14 9 7 11 3 3 471 59 52 32 24 32 13 13 17 3 8

317 46 38 32 26 24 28 14 19 19 8 391 25 21 18 15 2 5 8 1 3 16 472 33 37 32 17 22 12 15 13 9 16

318 15 13 12 17 13 7 9 8 12 6 392 20 15 12 7 2 4 9 1 3 7 473 29 21 28 16 16 5 5 5 10 5

319 75 54 50 68 40 30 26 27 32 11 393 29 18 19 9 8 5 8 5 1 14 474 67 43 48 44 26 23 14 13 18 6

320 12 5 7 9 7 4 7 6 8 2 394 62 38 51 19 22 14 19 29 15 8 475 16 18 11 11 7 8 6 4 9 4

321 80 71 41 58 48 30 21 29 21 13 395 24 9 11 7 4 3 6 2 0 3 476 70 42 35 27 14 25 35 12 11 10

322 21 17 19 20 7 6 5 5 8 1 397 25 9 14 21 9 12 4 6 7 6 477 74 42 39 26 16 23 27 16 11 18

323 21 25 14 26 12 12 8 18 16 3 399 17 8 10 6 3 10 2 5 2 5 478 126 60 66 23 14 35 14 20 11 5

324 29 26 24 34 12 14 10 11 18 1 400 16 12 15 6 11 7 8 6 3 1 479 57 50 41 34 16 17 19 17 5 18

325 26 19 23 21 6 15 10 13 16 2 401 75 57 23 37 24 16 19 16 2 4 480 45 32 15 33 19 9 9 19 3 12

326 13 12 11 10 7 8 4 1 3 1 402 15 13 11 4 11 3 5 8 2 2 481 82 54 42 40 43 26 32 37 12 28

327 20 26 19 33 11 14 12 14 8 6 403 54 53 47 36 19 30 16 27 19 16 482 31 8 11 14 1 3 9 7 5 7

328 52 25 8 25 24 16 14 20 2 6 404 43 24 12 14 16 6 5 7 2 5 483 85 59 39 36 24 12 23 16 14 25

329 42 24 19 12 16 16 11 10 3 4 405 18 11 10 6 16 9 7 3 0 7 484 31 19 13 12 10 7 15 3 2 7

330 65 45 32 33 36 23 19 19 9 8 406 42 30 16 11 21 17 15 9 3 6 485 59 66 28 14 12 21 7 8 2 15

331 25 17 8 20 7 9 6 3 19 3 407 18 21 11 16 17 8 8 10 3 7 486 28 29 14 10 14 13 4 14 1 8

332 10 5 8 17 4 12 3 4 11 1 408 96 104 56 33 35 17 23 8 7 16 487 29 13 8 10 8 4 4 4 2 10

333 40 30 23 26 19 14 12 18 12 2 409 87 61 44 33 27 29 17 33 6 6

Table B.11: Most frequent function word counts in Tirant lo Blanc (2/2)
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B.2.2 Don Quijote de la Mancha

Don Quijote de la Mancha, fully titled in spanish; El ingenioso hidalgo don Quijote

de la Mancha, is a Spanish novel by Miguel de Cervantes Saavedra. Published in two

volumes, in 1605 and 1615, Don Quixote is considered one of the most influential works

of literature from the Spanish Golden Age and the entire Spanish literary canon. As a

founding work of modern Western literature and one of the earliest canonical novels, it

regularly appears high on lists of the greatest works of fiction ever published, such as the

Bokklubben World Library collection that cites Don Quixote as authors’ choice for the

”best literary work ever written”. It follows the adventures of a nameless hidalgo who

reads so many chivalric romances that he loses his sanity and decides to set out to revive

chivalry, undo wrongs, and bring justice to the world, under the name Don Quixote.

Author Miguel de Cervantes

Country Spain

Language Spanish

Literary Genre Burlesque

Editor Francisco de Robles

Publication Date 1605 part I 1615 part II
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PART I PART II

Chap. 1 2 3 4 5 6 7 8 9 10+ Chap. 1 2 3 4 5 6 7 8 9 10+

1 155 428 304 181 229 199 151 74 70 87 12 179 537 440 195 252 208 190 131 99 98

2 166 489 385 157 277 232 193 133 93 81 13 178 526 394 253 262 228 153 107 74 86

3 178 511 392 215 301 199 217 134 81 89 14 322 924 769 340 419 424 346 222 166 129

4 186 547 428 260 288 249 194 126 81 79 15 61 172 124 55 80 75 64 48 32 24

5 130 372 270 157 214 164 139 61 39 54 16 256 893 623 288 428 351 298 177 132 146

6 175 575 457 294 333 229 185 120 77 78 17 327 881 681 360 459 373 291 200 132 138

7 133 432 360 173 231 173 138 91 77 59 18 236 742 536 253 375 264 259 144 103 104

8 194 710 537 287 327 315 242 189 98 94 19 181 690 495 253 317 267 218 147 106 112

9 158 451 341 166 238 167 151 122 69 82 20 238 745 531 303 376 316 280 193 103 101

10 128 455 340 204 247 188 147 96 77 49 21 196 584 378 196 296 201 210 136 94 96

11 163 458 407 188 258 189 173 125 80 95 22 246 622 443 292 353 248 220 133 114 125

12 168 563 423 250 285 210 177 84 71 92 23 279 881 645 388 476 387 305 166 135 174

13 268 793 639 304 401 323 291 195 132 165 24 185 565 386 217 313 244 162 121 88 92

14 187 737 517 240 337 273 236 155 113 116 25 284 858 644 372 487 310 266 142 128 110

15 214 610 501 249 373 281 213 139 106 84 26 254 683 507 297 419 263 213 169 106 137

16 238 614 486 262 335 255 257 143 102 103 27 193 558 442 249 313 218 205 125 108 92

17 237 750 570 318 391 308 236 145 110 108 28 139 476 341 217 200 206 168 101 46 46

18 268 853 716 390 438 413 332 188 152 128 29 217 497 417 226 292 229 173 118 95 94

19 207 620 468 295 331 286 203 130 106 113 30 149 451 297 163 218 171 148 104 73 51

20 376 1146 927 531 674 524 378 250 161 127 31 243 687 513 318 320 292 251 174 106 91

21 301 1049 790 484 520 418 348 179 129 124 32 413 1196 928 446 634 490 370 260 193 215

22 315 911 720 423 431 400 333 190 169 101 33 212 651 512 290 326 262 183 113 81 67

23 308 891 699 372 523 398 323 213 129 126 34 212 654 476 254 343 274 204 129 108 110

24 244 853 587 271 405 305 276 228 114 128 35 235 630 430 261 292 288 176 131 86 121

25 462 1485 1109 689 731 690 434 297 196 184 36 159 540 326 192 271 202 163 110 77 81

26 228 743 512 282 380 271 223 138 96 75 37 57 174 131 80 93 62 47 52 34 17

27 444 1571 1071 618 809 528 460 394 217 226 38 175 528 380 206 258 207 172 137 86 115

28 415 1417 1041 565 684 501 379 372 172 234 39 69 189 153 79 122 101 69 63 43 40

29 363 1076 812 475 543 398 366 255 155 136 40 137 454 350 184 244 190 155 113 79 57

30 256 893 591 422 457 330 307 180 89 115 41 290 850 661 402 477 399 274 175 115 118

31 263 826 621 398 435 372 256 161 103 82 42 133 463 346 170 215 199 130 95 68 74

32 166 581 431 269 310 255 194 108 73 101 43 163 479 377 212 215 234 149 99 53 83

33 585 1804 1345 702 952 654 675 317 234 269 44 249 816 586 291 359 271 284 181 113 120

34 541 1752 1219 651 917 748 635 319 215 266 45 233 652 365 300 316 267 160 122 100 89

35 262 827 552 357 417 332 279 125 85 97 46 115 331 243 120 162 144 121 94 50 60

36 317 854 673 353 434 334 304 258 114 138 47 255 800 464 339 388 319 210 145 97 132

37 300 960 683 411 480 382 311 222 112 140 48 267 726 527 335 379 316 254 136 105 108

38 125 367 290 143 218 150 129 83 45 65 49 358 955 666 440 510 426 261 186 133 166

39 252 735 505 283 336 325 261 170 95 116 50 284 777 590 361 419 346 214 173 84 86

40 354 1061 825 498 588 431 367 226 115 164 51 231 746 551 303 334 321 206 143 110 122

41 629 1797 1329 712 966 739 593 447 236 289 52 241 612 430 275 333 247 203 131 75 82

42 217 657 476 269 335 196 253 169 85 94 53 182 494 337 211 264 202 129 148 59 82

43 259 911 645 379 429 325 267 188 110 125 54 261 621 466 276 376 331 192 160 83 109

44 262 809 579 344 448 253 255 164 88 106 55 216 603 464 273 332 258 217 118 72 102

45 233 705 523 323 345 201 261 133 105 109 56 128 460 296 157 229 180 165 87 61 66

46 232 757 527 302 348 265 236 181 123 128 57 70 292 210 92 142 112 92 98 43 45

47 310 861 630 319 464 356 271 187 168 186 58 299 907 802 344 487 408 344 250 159 182

48 204 626 552 250 316 255 212 140 120 150 59 197 644 501 271 325 310 234 167 92 90

49 196 656 444 236 340 264 206 151 106 109 60 402 1000 786 375 566 387 426 251 194 187

50 193 524 436 226 315 200 202 163 97 86 61 84 207 182 69 104 108 80 63 59 44

51 167 471 357 184 298 149 187 108 54 89 62 326 1017 813 414 477 452 382 215 156 158

52 285 862 692 333 447 391 303 232 140 147 63 261 816 635 312 422 367 285 213 138 117

PART II 64 129 413 262 146 185 148 139 90 72 50

1 296 946 680 390 481 373 353 223 132 174 65 143 477 364 186 219 175 158 119 62 71

2 124 397 337 148 180 191 139 78 60 57 66 140 449 298 196 217 180 142 90 66 62

3 163 651 539 264 275 273 197 188 105 112 67 124 414 311 161 176 156 126 112 82 82

4 149 480 301 200 230 181 130 91 58 66 68 157 400 323 153 216 198 134 90 65 71

5 197 560 406 228 281 240 186 137 67 45 69 154 420 315 167 224 213 117 104 65 79

6 164 495 384 170 228 174 158 127 82 83 70 180 606 479 260 276 270 221 145 92 91

7 203 620 465 243 275 265 187 146 84 86 71 153 486 351 210 246 245 178 87 62 60

8 206 600 487 236 353 268 215 156 113 103 72 123 413 342 159 207 205 142 78 63 50

9 105 309 252 138 182 137 106 79 50 28 73 149 386 314 150 188 182 134 91 71 66

10 273 709 545 338 394 357 273 177 101 103 74 173 567 402 269 261 235 224 129 76 112

11 190 564 405 207 260 241 206 118 104 82

Table B.12: Word length counts for all the words in El Quijote
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PART I

Chapter q
u

e

y d
e

la a en el n
o

lo
s

se co
n

p
or

la
s

lo le su d
on

d
el

m
e

co
m

o

1 88 105 120 33 44 38 40 20 21 30 27 17 8 16 23 35 5 18 4 13

2 113 103 92 64 58 54 45 33 17 30 29 20 29 21 26 33 12 15 6 18

3 125 118 113 69 59 46 33 34 30 44 33 28 36 18 30 30 21 13 5 18

4 131 126 100 64 57 38 59 41 22 24 30 35 17 27 31 24 19 15 12 16

5 90 71 78 34 56 23 46 24 20 20 14 10 12 12 31 20 13 17 4 4

6 124 135 134 53 38 41 93 36 41 40 28 29 21 11 25 20 4 29 7 14

7 108 83 83 32 44 38 39 29 24 27 21 30 7 27 24 18 19 10 10 3

8 165 119 143 65 65 74 65 55 25 34 31 34 29 29 40 41 30 25 15 18

9 98 109 102 62 44 42 50 25 23 26 26 23 18 17 20 18 12 13 12 9

10 118 76 91 43 48 44 29 41 17 21 14 15 16 17 16 19 17 11 14 11

11 122 106 91 49 56 40 40 25 36 25 26 21 28 20 18 18 8 18 18 11

12 125 111 131 67 52 52 47 41 42 40 24 25 8 28 11 39 9 20 9 16

13 187 169 191 91 96 83 69 47 66 47 39 35 24 35 23 34 22 26 15 21

14 153 101 145 88 68 61 66 49 46 33 45 42 28 16 14 38 5 21 28 16

15 150 117 133 56 87 57 36 45 28 37 29 18 31 24 25 25 23 15 21 15

16 141 135 124 109 100 58 62 44 31 44 29 14 29 17 26 30 23 26 11 13

17 185 155 152 71 77 64 65 54 34 48 44 31 27 32 44 39 22 21 17 20

18 207 177 189 83 79 85 83 61 78 46 32 32 50 20 27 36 32 37 22 26

19 134 119 120 77 73 58 62 44 25 28 34 22 25 26 29 29 26 26 15 20

20 317 219 230 104 135 92 100 108 50 64 46 51 45 59 36 37 40 27 26 38

21 239 174 196 132 106 84 105 85 36 63 37 60 41 36 34 41 24 27 26 27

22 221 193 184 107 109 84 79 84 54 45 45 53 38 35 37 27 40 20 25 21

23 236 197 185 81 95 69 75 74 42 47 44 62 22 56 55 29 29 21 22 17

24 204 138 169 93 97 65 65 52 32 40 50 37 22 45 37 44 23 18 41 26

25 399 294 296 145 142 146 96 107 42 57 42 74 63 65 55 39 34 37 51 42

26 170 142 144 78 73 69 62 56 26 47 14 30 23 31 63 35 17 25 10 25

27 383 277 307 195 149 164 138 90 55 75 75 58 39 59 55 60 29 28 79 34

28 347 247 281 135 149 142 100 109 83 67 68 68 34 51 37 51 27 19 76 33

29 279 210 199 123 136 88 103 69 43 71 52 49 35 49 51 48 42 18 27 26

30 198 165 137 98 80 93 65 84 24 39 45 44 14 36 35 22 29 19 36 20

31 225 147 164 76 102 68 33 71 27 42 27 40 13 30 37 31 29 19 47 16

32 154 119 123 61 41 37 65 45 26 29 31 18 12 30 22 18 14 14 19 17

33 502 366 349 202 191 163 126 144 82 89 99 103 59 69 76 90 0 37 46 62

34 461 312 334 213 210 149 108 153 47 86 94 66 52 79 100 103 0 26 32 38

35 187 161 161 108 92 75 82 63 27 43 35 37 16 32 49 49 9 25 16 15

36 218 188 139 110 120 87 79 70 47 42 57 39 26 37 30 26 27 14 18 28

37 231 194 165 136 92 105 92 65 51 59 43 43 39 46 33 43 32 28 18 30

38 106 78 86 40 38 39 29 19 25 29 16 17 28 16 24 19 5 11 5 3

39 177 153 166 93 93 88 90 25 43 38 29 20 18 30 21 27 14 16 16 19

40 278 238 201 133 108 103 107 51 54 57 60 61 25 64 26 23 0 30 36 27

41 454 356 346 236 246 172 141 113 100 104 90 74 54 60 59 64 0 32 50 44

42 162 124 140 84 86 66 73 23 34 36 39 19 32 26 30 51 12 20 11 16

43 209 148 183 110 90 72 61 76 27 51 44 36 28 34 42 40 17 25 26 21

44 199 146 143 96 108 74 80 59 39 43 30 30 19 43 44 42 38 16 16 23

45 149 131 145 76 92 58 82 60 42 52 28 29 13 27 31 30 53 17 13 21

46 158 164 164 95 63 65 60 57 28 42 27 38 29 37 35 32 34 22 14 22

47 190 200 207 94 91 84 79 59 62 37 44 36 31 25 30 29 26 24 18 27

48 195 143 139 72 51 59 46 42 50 40 45 23 52 37 17 13 4 17 12 27

49 154 128 176 73 58 63 52 38 38 29 22 20 21 29 19 18 18 12 13 30

50 131 132 121 55 54 32 53 34 36 25 26 24 24 19 17 17 8 21 16 24

51 118 101 126 76 59 41 37 26 28 33 22 14 19 9 12 37 1 13 1 7

52 205 171 209 103 109 87 111 44 68 52 40 25 39 25 34 43 43 27 11 13

PART II

1 212 195 197 93 80 98 119 74 53 44 44 49 24 24 34 42 33 24 23 25

2 98 74 89 40 46 33 35 23 27 18 14 17 18 21 10 6 20 11 19 3

3 150 88 146 88 65 60 50 61 52 46 22 21 35 21 21 11 26 21 12 21

4 116 86 103 31 52 43 36 39 23 24 15 11 14 21 14 17 11 10 16 9

5 131 119 106 60 67 42 35 62 23 19 44 28 11 26 12 17 6 9 20 17

6 119 111 98 49 40 54 38 48 48 20 22 23 17 21 18 16 9 7 6 13

7 146 134 104 58 58 34 46 62 18 42 28 27 26 37 19 37 22 12 21 16

8 149 121 129 77 63 77 53 32 46 37 24 29 28 22 15 21 21 22 12 13

9 72 58 57 41 41 34 30 22 11 11 13 15 4 10 11 12 15 10 10 8

10 157 162 142 88 97 59 48 58 26 27 23 29 38 27 25 29 26 27 19 36

11 108 113 132 74 68 46 53 25 49 35 37 12 30 12 17 32 24 10 12 8

Table B.13: Most frequent function word counts in El Quijote (1/2)
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PART II

Chapter q
u
e

y d
e

la a en el n
o

lo
s

se co
n

p
or

la
s

lo le su d
on

d
el

m
e

co
m

o

12 122 112 114 70 58 44 56 29 48 36 15 20 33 24 15 18 22 30 3 13

13 107 106 109 39 65 39 65 38 20 22 26 23 14 24 15 7 0 31 18 11

14 226 205 198 103 103 82 98 63 64 35 35 38 39 41 41 44 40 52 23 16

15 33 37 33 9 21 9 27 13 5 16 8 17 3 11 8 13 12 2 2 4

16 160 163 207 111 78 92 81 67 65 41 40 35 48 28 30 29 25 23 12 20

17 213 197 155 105 117 83 97 60 65 49 41 33 37 43 30 35 49 31 22 18

18 150 137 150 91 85 55 75 37 44 42 30 26 39 36 27 28 65 20 17 12

19 147 121 157 85 51 60 79 53 40 40 39 34 27 14 19 19 15 22 11 24

20 136 175 195 85 57 66 80 41 42 36 30 28 47 26 20 8 20 22 9 17

21 116 135 135 86 60 56 52 41 37 37 26 25 27 11 19 20 7 14 10 18

22 136 153 123 81 86 60 53 46 19 37 26 19 41 21 34 12 26 16 11 14

23 185 194 165 87 69 83 78 68 45 27 49 35 51 36 38 27 25 23 44 23

24 132 112 113 82 63 44 64 49 25 24 25 30 24 20 21 12 16 13 12 16

25 198 183 133 62 86 86 130 59 39 46 29 44 35 40 42 17 23 42 17 14

26 138 177 114 80 74 73 64 55 33 48 42 25 39 22 21 36 38 20 24 10

27 143 116 112 66 71 58 44 37 34 33 22 35 26 30 32 26 19 19 6 26

28 118 85 94 44 50 51 30 28 14 26 21 17 18 17 12 6 15 14 23 9

29 101 120 108 54 70 55 47 32 38 26 23 32 26 18 16 12 21 16 8 12

30 91 84 82 57 60 45 35 27 22 26 19 9 11 11 15 22 20 17 13 8

31 171 125 137 96 100 65 54 48 34 39 37 31 20 36 30 15 34 22 18 19

32 261 261 233 173 131 111 100 97 80 46 67 69 58 38 47 31 35 31 34 40

33 163 143 130 87 59 40 51 53 31 26 23 36 27 26 23 17 8 21 23 19

34 127 137 137 78 70 65 81 40 49 41 28 26 26 18 25 14 22 17 6 20

35 117 142 152 67 78 44 53 43 45 28 24 32 27 18 9 15 9 16 25 12

36 104 99 111 78 52 40 53 32 24 23 25 18 15 17 17 16 6 10 23 9

37 44 31 29 22 22 19 17 13 10 13 6 9 11 6 2 4 3 0 6 8

38 101 110 119 92 58 38 50 35 34 28 14 27 27 16 7 18 13 19 21 17

39 36 54 45 44 13 19 10 8 15 13 19 6 11 6 5 7 5 2 3 9

40 100 76 81 61 50 45 45 30 25 23 24 35 31 9 16 10 5 11 14 17

41 202 185 152 100 90 81 77 79 53 44 43 53 42 27 21 23 22 34 27 24

42 107 80 101 70 46 36 36 37 20 20 26 14 25 15 12 7 3 24 4 13

43 139 107 74 46 50 38 50 50 31 23 18 19 9 13 8 10 11 10 18 15

44 174 153 199 113 84 68 62 62 30 40 38 31 33 17 31 31 26 28 19 18

45 118 157 97 86 64 61 80 33 35 45 21 21 26 22 36 20 3 28 27 12

46 58 75 58 58 39 27 34 22 21 19 29 16 16 12 22 16 23 9 2 5

47 158 174 166 82 69 67 82 67 30 37 21 30 26 30 26 16 5 14 26 18

48 134 174 152 112 85 72 47 51 21 35 41 29 29 20 28 25 25 19 17 22

49 218 235 192 93 102 71 93 85 62 50 53 30 21 37 27 31 0 19 32 16

50 177 187 157 88 90 54 83 51 25 32 42 31 36 34 21 26 14 16 23 22

51 189 151 133 91 71 70 64 48 47 33 37 27 33 37 21 20 7 24 24 19

52 140 135 119 88 98 51 57 33 32 27 29 26 27 23 25 17 15 15 19 15

53 98 122 96 47 51 46 48 25 25 34 25 13 18 13 28 17 1 9 25 12

54 159 157 111 47 96 71 53 45 32 42 31 29 26 27 17 28 5 15 16 23

55 139 140 135 46 69 51 53 45 26 32 21 41 12 29 25 15 16 14 18 15

56 88 88 97 61 35 40 52 29 28 24 15 25 14 13 26 26 19 13 6 4

57 54 39 53 32 30 31 19 20 20 13 12 8 26 9 9 7 10 8 11 11

58 234 194 207 108 96 96 78 60 60 47 58 42 52 37 20 26 43 30 18 20

59 153 127 133 70 62 57 54 41 28 37 26 25 25 30 22 34 56 25 13 11

60 219 220 214 96 167 109 61 80 98 46 50 45 36 37 63 48 40 15 23 10

61 38 52 54 33 29 18 37 14 23 12 13 10 18 6 6 7 17 5 0 2

62 215 204 227 125 114 94 108 71 56 58 48 54 47 43 43 32 87 17 21 26

63 194 162 144 111 88 97 103 40 52 45 46 38 30 26 34 31 20 19 15 16

64 63 66 88 73 56 34 43 25 2 19 22 13 13 13 15 12 35 11 6 14

65 102 89 75 48 52 56 53 41 15 27 38 18 11 13 23 20 41 11 13 8

66 84 79 86 45 54 28 44 32 6 24 21 15 25 28 9 12 15 12 8 10

67 82 82 95 35 33 46 39 34 47 12 10 21 22 9 8 9 13 8 12 17

68 88 86 82 47 63 37 43 22 49 17 17 10 10 11 14 6 19 14 13 9

69 75 90 87 48 61 49 42 29 30 27 22 19 29 16 13 8 13 13 9 8

70 118 107 126 61 65 61 55 49 37 21 34 34 32 17 24 25 31 20 28 14

71 122 89 76 50 57 42 44 45 18 26 24 22 13 19 19 16 19 13 23 10

72 91 77 90 44 44 38 56 25 21 12 13 20 14 13 15 21 57 13 16 6

73 90 98 76 49 45 43 34 28 22 21 12 22 13 14 11 26 18 20 6 9

74 111 111 127 54 55 45 59 28 31 29 25 21 27 14 29 30 24 23 12 19

Table B.14: Most frequent function word counts in El Quijote (2/2)



Appendix B. Data Sets 154

B.2.3 William Shakespeare Plays

The texts used are the ones from, Mr. William Shakespeares Comedies, Histories and

Tragedies is the 1623 published collection of William Shakespeare’s plays named First

Folio

Printed in folio format and containing 36 plays, it was prepared by Shakespeare’s col-

leagues John Heminges and Henry Condell. Although eighteen of Shakespeare’s plays

had been published in quarto prior to 1623, the First Folio is arguably the only reliable

text for about twenty of the plays, and a valuable source text for many of those plays

previously published. The Folio includes all of the plays generally accepted to be Shake-

speare’s, with the exception of Pericles, Prince of Tyre, The Two Noble Kinsmen, and

the two lost plays, Cardenio and Love’s Labour’s Won.

Author William Shakespeare

Country England

Language Early Modern English

Literary Genre English Renaissance theatre

Editor Edward Blount and

William and Isaac Jaggard

Publication Date 1623
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num Play num Play num Play

1 A Midsommer Nights Dreame 13 The Life of King Henry the Eight 25 The Tragedie of Julius Caesar

2 Alls well, that ends well 14 The Life of Timon of Athens 26 The Tragedie of King Lear

3 As you like it 15 The Merchant of Venice 27 The Tragedie of Macbeth

4 Loues Labours lost 16 The merry Wiues of Windsor 28 The Tragedie of Othello, the Moore of Venice

5 Measvre, for Measure 17 The Second Part of Henry the Fourth 29 The Tragedie of Richard the Third

6 Much adoe about Nothing 18 The second Part of Henry the Sixt 30 The Tragedie of Romeo and Juliet

7 The Comedie of Errors 19 The Taming of the Shrew 31 The Tragedie of Titus Andronicus

8 The First Part of Henry the Fourth 20 The Tempest 32 The Tragedy of Coriolanus

9 The first Part of Henry the Sixt 21 The third Part of Henry the Sixt 33 The two Gentlemen of Verona

10 The life and death of King John 22 The Tragedie of Anthonie, and Cleopatra 34 The Winters Tale

11 The life and death of King Richard the Second 23 The Tragedie of Cymbeline 35 Twelfe Night, or what you will

12 The Life of Hernry de Fift 24 The Tragedie of Hamlet

Table B.15: List of Willian Shakespeare plays in First Folio

Play.Act 1 2 3 4 5 6 7 8 9 10+ Play.Act. 1 2 3 4 5 6 7 8 9 10+

1.I 215 704 972 1026 667 413 292 165 83 106 19.I 211 1290 1690 1452 1007 719 497 295 228 221

1.II 207 658 841 855 509 365 234 156 64 77 19.II 237 1075 1317 1052 715 512 339 213 173 153

1.III 170 491 611 646 386 252 209 109 70 38 19.III 211 905 1270 1088 795 485 315 199 160 131

1.IV 88 301 384 463 317 195 160 86 51 51 19.IV 106 473 578 461 323 208 158 108 55 51

1.V 134 407 557 540 403 235 166 112 54 59 19.V 183 727 927 891 534 442 255 159 104 99

2.I 155 497 650 623 351 246 149 119 69 64 20.I 180 786 967 992 722 474 344 236 144 110

2.II 290 850 1143 1057 579 417 257 132 100 114 20.II 150 626 768 766 579 345 242 182 104 98

2.III 162 606 785 814 454 344 157 99 105 68 20.III 129 638 777 728 485 432 271 164 103 105

2.IV 229 591 837 736 472 279 196 102 92 54 20.IV 287 1340 1536 1553 1088 790 510 397 232 213

2.V 104 305 434 452 248 171 97 80 56 28 20.V 37 165 140 157 87 82 55 48 31 21

3.I 304 772 983 846 527 376 222 99 84 99 21.I 160 870 1146 1071 729 468 323 256 166 127

3.II 308 787 1148 1085 577 381 257 124 99 126 21.II 167 661 868 839 570 409 250 140 107 72

3.III 376 913 1091 1069 594 483 310 143 109 111 21.III 236 1144 1369 1380 924 603 381 331 177 155

3.IV 183 731 1021 850 532 354 242 136 83 101 21.IV 292 1044 1368 1357 876 597 350 232 151 120

3.V 140 418 572 485 334 236 156 69 31 72 21.V 116 495 588 553 446 242 144 119 46 59

4.I 127 577 742 622 395 285 184 116 58 75 22.I 173 772 1023 973 791 474 283 208 102 115

4.II 262 972 1297 1153 697 498 335 135 100 79 22.II 194 884 1206 1203 895 635 347 238 117 112

4.III 186 783 981 879 526 371 259 142 89 139 22.III 203 747 1051 991 641 499 261 208 82 69

4.IV 191 729 969 837 511 344 279 164 75 110 22.IV 135 723 1019 958 628 439 292 293 115 84

4.V 179 758 915 915 516 363 279 154 91 87 22.V 158 616 934 847 645 393 249 205 93 75

5.I 78 364 477 432 254 164 155 82 51 43 23.I 365 1481 1793 1744 1104 780 472 351 172 191

5.II 133 496 573 602 318 236 139 65 44 53 23.II 156 646 733 648 458 322 186 139 57 71

5.III 143 468 623 614 345 281 118 59 33 36 23.III 242 1152 1440 1418 828 560 411 278 148 174

5.IV 220 657 920 753 451 327 201 89 59 60 23.IV 272 1113 1256 1419 921 667 373 278 145 176

5.V 168 637 842 675 432 298 209 105 61 72 23.V 128 661 740 727 573 369 253 188 97 76

6.I 223 599 742 684 398 234 185 107 76 56 24.I 206 881 1134 1037 772 497 306 195 153 121

6.II 344 976 1338 1124 695 404 285 170 103 97 24.II 253 946 1292 1143 735 475 352 222 163 139

6.III 232 754 1107 851 516 353 247 141 108 72 24.III 245 939 1124 1149 730 452 322 200 137 103

6.IV 176 539 719 674 375 246 192 111 51 59 24.IV 118 459 651 531 402 222 171 130 69 56

6.V 244 745 1074 1074 576 368 284 163 91 68 24.V 230 803 1138 1027 689 440 245 185 110 111

7.I 203 627 795 639 527 349 173 127 82 85 25.I 245 1000 1357 1309 980 623 397 258 116 119

7.II 76 356 442 389 292 168 105 73 60 35 25.II 184 909 1330 1080 735 565 352 219 115 140

7.III 114 230 290 315 167 145 78 35 24 52 25.III 207 847 1166 1067 740 445 303 179 86 118

7.IV 322 957 1333 1142 819 533 321 220 123 119 25.IV 207 847 1166 1067 740 445 303 179 86 118

7.V 370 1361 1795 1714 1182 786 438 296 192 193 25.V 190 853 1131 1096 720 457 298 194 104 111

Table B.16: Word length counts for all the words in Willian Shakespeare plays

(1/2)
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Play.Act 1 2 3 4 5 6 7 8 9 10+ Play.Act. 1 2 3 4 5 6 7 8 9 10+

8.I 128 493 526 542 381 285 160 87 87 56 26.I 115 655 820 784 545 389 262 183 108 114

8.II 148 506 773 663 502 318 189 110 63 54 26.II 156 632 908 926 641 419 225 189 100 77

8.III 254 812 1145 1161 716 482 259 171 99 91 26.III 115 504 692 734 463 322 183 97 52 51

8.IV 108 350 485 407 285 210 112 62 44 43 26.IV 159 688 1074 919 575 426 275 146 87 75

8.V 128 474 653 674 448 309 180 90 64 61 26.V 194 686 1073 990 577 454 272 200 141 71

9.I 245 738 903 746 514 364 224 166 90 80 27.I 290 910 1222 1199 863 509 287 185 98 89

9.II 283 930 1214 1055 707 489 303 229 122 87 27.II 288 918 1151 1239 802 451 251 167 104 76

9.III 275 946 1197 1100 696 495 296 199 96 87 27.III 309 1055 1350 1431 956 575 338 217 112 96

9.IV 191 657 891 790 514 295 203 154 79 59 27.IV 145 576 675 737 462 298 169 95 49 50

9.V 136 449 603 494 355 221 141 89 33 24 27.V 176 604 690 777 519 315 176 112 71 68

10.I 219 822 1095 1000 576 381 274 178 105 70 28.I 207 711 816 903 579 376 247 165 79 92

10.II 216 713 968 909 557 366 259 142 77 77 28.II 97 358 396 453 298 187 125 65 45 41

10.III 312 1000 1318 1106 714 464 303 152 110 115 28.III 160 732 969 870 532 393 236 145 96 86

10.IV 189 491 796 686 380 258 156 97 58 61 28.IV 183 634 1039 1146 746 504 309 202 97 111

10.V 231 651 855 696 401 295 213 125 61 50 28.V 91 426 608 593 415 264 169 102 50 73

11.I 353 1176 1514 1246 795 629 363 229 167 118 29.I 208 794 1060 899 617 434 246 142 76 82

11.II 198 573 811 677 410 293 157 115 95 43 29.II 187 771 912 832 611 475 190 141 82 77

11.III 134 452 620 506 392 226 153 85 67 50 29.III 203 769 1041 907 697 538 281 148 100 61

11.IV 289 944 1371 1105 736 481 300 154 134 87 29.IV 149 576 656 684 420 311 198 112 41 55

11.V 117 419 626 503 384 250 154 82 68 34 29.V 116 483 578 650 393 286 164 121 56 31

12.I 207 744 974 865 614 427 234 154 110 124 30.I 92 600 797 754 569 390 264 162 78 96

12.II 319 977 1280 1237 732 517 299 216 127 107 30.II 103 387 599 521 427 285 164 102 46 67

12.III 203 676 856 771 544 318 210 158 83 73 30.III 129 580 845 741 550 364 246 116 75 60

12.IV 281 919 1197 1000 645 439 254 209 98 143 30.IV 166 560 802 759 534 398 232 171 67 77

12.V 196 599 859 791 470 293 176 124 61 56 30.V 107 480 606 628 486 292 176 126 50 49

13.I 268 823 1029 975 587 391 232 130 85 86 31.I 201 1224 1361 1269 814 642 333 245 134 135

13.II 262 862 1033 948 616 371 232 154 80 88 31.II 243 1019 1244 1140 685 489 318 203 124 145

13.III 280 988 1322 1073 672 506 262 175 108 91 31.III 272 1243 1521 1411 909 635 416 287 137 142

13.IV 96 315 420 385 235 124 91 46 26 35 31.IV 142 778 995 948 570 385 283 137 78 91

13.V 166 563 719 664 399 270 168 105 69 55 31.V 223 884 1141 1083 648 431 295 181 117 107

14.I 171 769 871 854 477 355 264 163 114 119 32.I 305 1163 1410 1434 866 614 415 275 153 145

14.II 162 700 864 814 509 362 190 124 99 84 32.II 217 744 1042 1037 682 479 302 175 110 110

14.III 149 560 731 638 445 287 179 123 87 73 32.III 164 598 902 894 653 348 202 150 85 101

14.IV 436 1447 1950 1769 1100 701 529 307 181 184 32.IV 227 737 1015 949 671 450 260 156 81 81

14.V 178 788 1086 951 616 442 282 181 129 81 32.V 124 506 690 686 449 266 180 117 52 54

15.I 226 1143 1404 1470 1038 698 422 222 158 190 33.I 262 1038 1159 1028 723 490 347 214 156 130

15.II 29 105 117 134 96 56 44 12 14 11 33.II 243 959 1269 1077 696 500 336 239 143 153

15.III 193 725 832 913 640 441 229 169 100 91 33.III 325 1098 1281 1243 710 536 307 191 116 118

15.IV 215 831 934 962 635 448 266 124 100 91 33.IV 260 918 1122 1035 628 436 264 183 89 76

15.V 125 757 868 837 611 366 269 127 105 113 33.V 235 693 850 841 534 380 207 134 54 58

16.I 174 885 952 895 723 449 318 222 140 114 34.I 146 671 887 801 610 421 252 178 95 80

16.II 153 920 1109 1008 754 441 308 215 129 128 34.II 232 974 1221 1251 816 586 391 205 113 87

16.III 121 750 935 957 672 490 299 157 96 130 34.III 188 999 1278 1264 799 585 442 241 139 114

16.IV 113 462 478 594 340 252 162 91 57 52 34.IV 174 790 945 1012 790 444 291 170 103 73

16.V 182 745 900 1006 713 436 242 123 64 100 34.V 150 656 701 712 541 358 206 141 84 61

17.I 199 855 1035 997 645 429 270 163 130 146 35.I 317 1037 1225 1187 787 520 347 235 134 132

17.II 437 1129 1489 1512 965 601 406 198 140 125 35.II 178 631 829 749 523 324 219 144 69 74

17.III 272 883 1140 976 708 461 301 171 104 160 35.III 242 1117 1263 1209 858 600 403 222 138 142

17.IV 113 532 697 527 420 267 179 103 77 82 35.IV 167 752 995 890 629 422 283 147 98 84

17.V 211 785 944 866 592 367 232 128 100 85 35.V 284 1127 1525 1332 956 682 447 274 194 110

18.I 216 842 1106 1003 633 497 254 167 110 140

18.II 321 996 1396 1260 806 509 379 202 129 155

18.III 183 473 823 727 401 299 170 101 53 98

18.IV 219 1120 1438 1403 968 659 393 271 192 204

18.V 200 625 859 800 520 375 252 118 64 83

Table B.17: Word length counts for all the words in Willian Shakespeare plays

(2/2)
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Play.Act th
e

an
d

i to of a yo
u

m
y

th
at

in is n
ot

it fo
r

w
it

h

m
e

yo
u
r

h
is

th
is

b
e

1.I 148 121 110 88 84 91 37 83 55 49 27 48 33 38 38 49 12 29 43 28

1.II 102 102 99 71 79 96 55 52 52 38 48 40 45 34 27 40 25 32 38 30

1.III 69 96 105 56 49 54 44 60 27 28 27 30 31 22 23 33 24 15 35 21

1.IV 47 68 51 41 30 29 29 43 20 15 22 11 13 15 33 12 17 6 31 24

1.V 78 97 83 45 48 43 45 54 35 31 27 25 12 20 18 21 20 16 38 24

2.I 85 73 95 79 44 58 60 40 36 39 29 33 39 42 29 36 37 26 10 24

2.II 102 110 175 135 62 103 121 104 73 51 68 64 52 60 48 68 51 41 30 27

2.III 74 87 96 86 54 64 34 66 70 40 56 41 35 52 31 47 35 12 23 44

2.IV 77 85 168 89 38 59 80 62 68 30 39 41 30 47 28 61 35 20 27 32

2.V 40 47 63 48 28 35 29 30 35 15 31 23 21 25 12 25 11 1 20 18

3.I 111 113 204 73 74 87 106 64 47 57 106 48 65 34 25 24 47 34 23 36

3.II 118 112 201 105 94 99 136 79 42 51 71 48 41 45 53 41 48 32 33 37

3.III 114 121 236 107 92 121 155 87 47 82 56 44 46 49 38 67 63 35 40 50

3.IV 138 105 106 85 84 74 85 62 43 51 69 39 31 30 46 30 38 28 22 44

3.V 83 88 71 49 51 66 55 27 26 36 24 25 19 12 17 23 20 9 12 24

4.I 115 90 77 88 82 50 63 34 40 56 28 40 41 32 40 29 30 21 17 23

4.II 153 118 152 153 88 105 148 57 96 74 57 70 92 53 42 41 93 36 37 56

4.III 153 109 83 139 87 101 88 40 56 66 65 34 65 41 42 22 46 38 47 44

4.IV 142 118 108 124 67 83 114 39 44 48 58 49 54 46 35 32 59 32 43 36

4.V 85 105 111 90 65 66 109 91 65 50 56 43 46 54 42 43 74 30 51 37

5.I 89 61 48 70 52 30 31 51 30 22 11 27 10 27 13 27 18 12 11 9

5.II 57 72 94 58 29 37 46 47 35 45 30 25 36 34 32 43 23 25 19 20

5.III 72 70 82 57 37 55 63 48 39 51 25 27 32 29 21 37 41 2 17 20

5.IV 119 108 136 91 41 83 104 47 61 55 50 44 42 48 33 79 25 29 27 19

5.V 100 132 120 74 64 46 56 83 48 49 26 45 38 31 40 67 19 35 43 16

6.I 101 85 120 68 60 97 83 57 47 57 59 33 52 32 34 22 30 27 27 26

6.II 171 148 199 117 98 132 124 79 69 81 74 61 69 55 45 52 41 44 23 41

6.III 141 127 117 104 72 105 104 37 56 53 67 54 65 51 45 23 37 27 24 46

6.IV 66 79 94 61 60 62 71 45 65 43 50 54 40 25 26 30 21 10 42 33

6.V 95 161 151 104 71 87 107 80 48 66 52 47 40 59 45 59 65 24 36 26

7.I 136 104 119 104 83 79 39 38 55 55 67 28 46 46 39 19 17 17 30 28

7.II 53 39 41 57 45 34 48 29 33 35 28 22 20 17 22 16 25 42 4 17

7.III 42 46 40 25 31 61 22 22 15 23 24 4 16 16 10 8 18 4 16 9

7.IV 266 133 124 121 113 158 75 63 81 90 84 63 70 74 29 31 30 36 30 32

7.V 329 235 179 156 165 166 157 91 99 121 98 96 87 84 63 58 83 58 75 50

8.I 94 86 69 81 48 50 54 49 34 42 35 12 24 23 27 22 35 12 11 15

8.II 139 131 93 46 57 49 50 36 33 50 26 47 24 33 47 45 24 18 24 22

8.III 115 166 154 107 65 78 118 49 64 62 46 65 29 38 55 76 39 31 47 34

8.IV 85 73 70 47 49 34 19 37 13 33 28 20 22 18 16 18 15 9 22 16

8.V 128 106 57 56 50 51 32 33 40 52 55 27 33 31 30 13 15 23 45 17

9.I 135 118 139 95 93 101 100 62 41 64 61 43 37 41 43 60 31 31 31 36

9.II 187 145 166 134 94 106 86 114 63 65 60 61 31 52 52 71 42 43 35 51

9.III 207 165 162 102 121 105 107 120 72 84 62 47 65 55 45 55 42 31 26 44

9.IV 176 105 116 95 85 66 82 49 46 43 49 41 61 43 25 40 41 35 39 30

9.V 111 67 78 40 51 58 63 36 33 37 33 29 46 31 26 26 22 15 17 23

10.I 135 110 154 102 82 58 114 84 75 57 60 59 36 49 54 52 55 45 33 35

10.II 132 167 129 81 82 77 67 61 70 65 47 51 38 39 36 29 35 32 37 31

10.III 180 150 153 86 136 143 119 52 91 97 100 81 63 48 53 51 36 38 25 45

10.IV 88 104 100 67 61 81 89 30 51 42 30 24 39 31 20 36 32 29 32 19

10.V 120 123 133 116 57 85 117 36 52 51 49 31 33 39 30 27 37 20 35 29

11.I 146 235 203 165 70 145 144 89 68 91 67 67 62 84 53 75 68 42 43 63

11.II 62 113 117 72 43 80 100 66 44 45 41 40 16 38 32 52 39 11 19 35

11.III 78 77 76 75 37 55 60 46 29 30 26 40 24 23 32 20 21 15 15 35

11.IV 155 216 181 134 73 108 138 89 60 54 79 55 79 55 55 61 40 16 43 50

11.V 58 88 73 67 23 44 65 49 32 20 48 29 15 26 16 27 27 17 17 15

12.I 123 122 121 90 85 82 75 75 67 78 50 41 60 38 24 26 55 52 24 46

12.II 146 172 191 150 100 113 118 129 69 65 83 73 62 52 33 47 58 36 31 37

12.III 134 96 123 79 87 76 84 55 68 55 56 42 45 32 35 23 34 48 32 25

12.IV 184 111 150 125 131 126 103 70 67 63 56 61 59 46 39 31 47 75 40 45

12.V 83 105 121 71 56 67 100 64 52 39 34 34 64 32 24 43 39 22 47 12

Table B.18: Most frequent function word counts in Willian Shakespeare plays

(1/3)
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13.I 113 109 142 92 94 110 112 83 70 81 64 55 48 42 38 32 53 21 26 41

13.II 118 107 136 93 112 106 67 95 65 55 56 56 60 43 39 54 31 14 40 42

13.III 158 142 171 109 123 102 157 81 60 58 75 63 49 61 57 58 57 44 42 50

13.IV 41 49 73 37 28 21 31 27 29 24 22 23 11 15 15 25 8 7 28 17

13.V 86 99 90 61 55 62 77 70 50 40 26 32 31 26 19 51 32 22 36 27

14.I 89 102 94 110 59 73 80 106 59 42 47 53 39 27 41 46 38 32 35 49

14.II 108 93 97 96 64 63 83 63 52 32 36 56 51 40 31 40 49 29 39 41

14.III 135 91 90 91 69 52 31 49 29 25 34 33 45 41 23 26 23 12 27 30

14.IV 260 227 251 209 180 168 166 134 110 74 81 104 84 79 62 68 101 52 74 77

14.V 162 112 112 105 99 60 85 66 68 46 45 59 56 35 37 38 66 46 28 40

15.I 217 220 115 169 206 101 62 97 120 114 59 52 45 64 56 28 79 62 109 41

15.II 10 23 18 21 13 10 4 7 10 1 9 9 7 6 10 9 0 3 5 11

15.III 115 134 87 95 103 77 35 66 73 56 42 52 30 25 39 36 20 29 49 42

15.IV 159 143 112 105 118 92 80 62 50 54 55 44 52 34 58 56 45 34 52 40

15.V 185 168 67 114 113 55 43 61 52 48 35 32 37 25 41 35 40 29 65 36

16.I 136 164 96 144 121 73 27 129 50 81 37 33 27 41 43 33 24 62 35 36

16.II 152 164 101 137 113 50 44 104 62 73 84 59 47 55 61 37 28 68 35 38

16.III 165 162 62 108 127 59 37 96 55 48 50 33 26 39 60 24 42 47 32 37

16.IV 74 76 74 69 69 37 33 64 50 33 21 21 27 16 24 24 25 20 32 17

16.V 146 134 117 93 74 58 19 93 63 51 56 51 40 44 47 48 10 39 37 34

17.I 181 194 100 103 137 91 46 58 53 65 25 41 43 56 49 27 30 35 43 50

17.II 217 200 216 120 156 200 101 100 70 101 72 83 57 64 53 60 31 37 48 59

17.III 171 204 146 94 132 118 82 83 51 101 42 45 39 32 36 52 28 30 33 29

17.IV 130 113 55 74 93 58 31 40 30 43 32 36 20 22 26 25 15 34 20 18

17.V 155 139 110 84 121 91 46 62 48 58 41 49 38 35 38 35 34 36 39 20

18.I 218 161 110 107 129 102 64 70 67 74 65 52 49 40 59 28 59 58 35 22

18.II 205 171 173 136 104 135 145 80 52 74 69 67 57 57 56 70 51 40 27 44

18.III 123 115 85 58 75 90 70 35 33 34 48 18 38 25 32 27 21 18 18 18

18.IV 259 260 114 160 193 90 95 139 87 85 73 50 89 42 77 46 64 60 55 36

18.V 116 121 122 83 78 68 96 58 46 45 36 35 28 30 38 42 47 22 20 44

19.I 313 303 87 176 242 112 101 71 113 144 70 51 66 75 88 23 68 88 51 44

19.II 252 226 103 115 146 120 81 67 56 71 106 50 54 64 54 26 54 56 16 37

19.III 238 183 92 103 128 96 41 64 59 84 56 48 51 50 50 33 16 71 31 44

19.IV 96 103 66 44 75 37 43 26 30 52 62 17 50 22 15 16 40 47 26 15

19.V 117 160 109 94 99 71 99 62 50 70 55 34 36 41 34 54 58 22 27 21

20.I 193 129 112 116 107 60 32 59 35 72 47 39 23 31 60 43 21 46 41 48

20.II 127 132 92 80 97 56 32 84 51 55 38 35 16 42 40 27 30 46 44 31

20.III 119 137 65 75 94 64 35 46 55 59 28 34 25 36 36 21 32 38 33 38

20.IV 236 288 154 189 222 118 75 133 100 99 73 63 46 64 89 57 71 67 66 100

20.V 16 32 17 21 28 20 6 14 10 12 18 7 2 11 15 4 7 7 3 13

21.I 255 206 100 101 165 53 35 95 50 82 36 31 28 58 50 43 43 55 45 64

21.II 152 158 99 100 90 61 32 93 34 54 29 36 30 32 37 31 45 37 45 36

21.III 217 197 143 145 106 90 54 127 100 84 82 55 48 71 74 60 40 90 39 63

21.IV 235 262 153 144 119 130 55 86 73 81 67 56 51 75 67 53 42 47 42 66

21.V 81 91 64 95 56 47 19 40 29 36 31 26 21 25 30 19 9 26 13 19

22.I 172 196 125 106 104 47 37 88 61 50 41 50 40 38 52 51 24 56 36 49

22.II 198 193 103 126 106 76 22 88 82 68 44 30 39 72 66 34 33 75 49 40

22.III 118 178 127 145 61 74 52 104 58 43 44 41 30 58 54 39 41 45 38 47

22.IV 149 183 97 115 83 36 56 88 65 67 34 40 21 55 48 41 37 53 35 40

22.V 163 170 89 95 51 61 21 71 60 46 33 37 16 55 47 24 14 48 34 26

23.I 234 251 224 219 170 108 149 158 181 109 64 86 80 99 76 106 64 76 59 64

23.II 102 120 96 84 68 52 52 87 32 40 42 31 28 35 31 43 33 30 27 28

23.III 248 194 156 192 143 75 117 145 78 90 48 63 52 62 63 54 101 85 55 31

23.IV 207 195 167 174 150 83 44 151 99 84 73 52 34 53 64 73 62 27 32 70

23.V 158 133 69 101 104 53 23 83 41 76 41 24 16 32 33 40 21 30 23 27

24.I 192 141 89 118 111 108 75 63 68 67 48 44 50 40 31 29 55 67 64 30

24.II 193 172 144 139 133 100 105 94 78 64 39 58 53 57 44 62 82 44 69 52

24.III 189 146 140 129 114 94 101 120 71 64 40 31 42 45 34 63 72 82 53 39

24.IV 129 84 55 59 77 49 33 24 44 40 27 20 12 15 31 37 14 39 12 14

24.V 149 158 130 111 105 97 100 82 55 53 35 38 28 49 43 45 61 34 55 43

Table B.19: Most frequent function word counts in Willian Shakespeare plays
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25.I 228 152 137 142 95 103 147 56 77 80 54 63 57 49 74 47 69 42 32 39

25.II 204 160 100 152 113 84 150 42 71 76 32 56 46 60 46 18 84 64 19 41

25.III 157 158 115 113 98 84 108 55 51 59 50 51 40 40 48 38 40 44 34 34

25.IV 157 158 115 113 98 84 108 55 51 59 50 51 40 40 48 38 40 44 34 34

25.V 167 130 97 139 92 84 107 69 52 53 39 56 39 45 78 30 76 74 48 31

26.I 119 199 67 102 83 42 50 87 66 90 21 32 15 38 55 31 35 39 37 35

26.II 137 149 82 100 54 72 40 53 53 42 42 47 36 36 48 41 34 21 59 35

26.III 75 94 62 69 38 44 15 68 48 41 25 30 26 41 46 35 8 17 22 21

26.IV 182 155 87 101 72 64 66 63 49 57 39 36 44 50 57 36 24 47 45 29

26.V 126 210 118 105 69 72 55 66 61 48 33 25 31 53 50 48 29 35 42 30

27.I 187 145 153 108 126 124 85 85 70 78 75 52 46 43 64 43 26 48 46 39

27.II 145 150 132 133 74 129 45 77 91 68 87 59 56 54 44 51 16 33 35 44

27.III 148 172 133 133 84 128 82 97 100 77 93 83 64 61 60 71 40 24 42 62

27.IV 82 92 81 89 34 37 61 51 36 42 41 35 34 36 38 46 18 12 40 35

27.V 95 131 98 85 62 53 16 64 46 51 44 29 30 28 40 53 9 20 54 31

28.I 88 86 116 117 70 82 77 73 48 45 37 44 40 28 34 41 30 36 32 30

28.II 36 61 58 50 30 37 50 48 22 24 21 24 22 7 22 27 25 17 13 13

28.III 87 118 99 106 67 55 65 100 50 53 44 47 45 45 31 33 41 75 26 31

28.IV 164 150 95 84 85 76 40 32 71 53 38 50 40 36 41 34 25 36 33 35

28.V 74 92 45 59 67 44 43 29 33 49 27 29 31 26 36 12 21 33 17 17

29.I 144 152 130 105 83 73 113 30 68 59 56 48 56 39 39 45 29 38 39 39

29.II 143 142 113 125 82 57 68 45 69 47 60 68 46 40 28 42 36 22 23 27

29.III 144 152 126 99 94 54 102 33 69 52 52 56 37 46 41 43 32 55 37 39

29.IV 63 97 96 60 49 43 77 54 38 36 39 46 32 31 27 41 40 25 26 27

29.V 83 84 65 57 44 31 30 47 41 31 43 38 27 20 14 16 12 17 41 15

30.I 153 134 50 95 83 39 43 38 60 50 38 30 34 17 31 32 34 45 20 32

30.II 114 88 57 58 49 42 28 21 30 35 28 34 36 14 23 19 15 13 21 11

30.III 142 116 71 97 70 51 61 47 52 49 41 30 31 36 40 18 33 40 18 31

30.IV 131 117 91 64 75 63 52 57 48 39 37 40 34 30 22 24 30 30 28 36

30.V 105 90 62 69 59 44 19 40 37 26 36 31 26 12 37 20 14 18 17 27

31.I 208 206 105 179 157 90 107 125 73 105 55 79 130 44 60 49 55 55 63 38

31.II 197 178 132 129 117 107 119 119 70 78 60 51 69 49 49 44 39 64 45 30

31.III 252 212 135 165 164 122 160 120 89 82 73 69 78 57 68 57 72 58 68 52

31.IV 125 136 67 99 71 72 86 62 57 58 56 46 56 46 39 26 57 52 37 34

31.V 209 128 107 111 98 106 50 73 72 59 70 54 80 37 36 52 30 56 62 37

32.I 163 178 186 141 149 107 143 158 95 73 43 66 74 47 52 52 70 47 58 56

32.II 142 118 133 102 84 71 104 94 59 47 34 68 33 28 48 50 48 37 45 29

32.III 161 118 71 90 67 77 62 68 59 54 41 30 21 19 32 32 30 41 44 19

32.IV 160 117 139 80 67 70 69 79 63 56 43 56 38 26 32 59 48 29 35 28

32.V 101 104 76 57 57 35 47 52 37 31 38 31 23 21 23 24 30 19 40 11

33.I 170 182 170 141 133 90 88 116 63 76 65 48 57 56 69 51 60 31 45 48

33.II 204 189 140 154 108 102 77 55 79 76 66 54 56 59 39 45 41 42 58 40

33.III 119 157 220 142 89 94 119 121 96 70 55 101 80 55 44 72 55 33 46 67

33.IV 112 147 172 89 58 83 108 81 65 56 58 72 79 36 39 65 48 36 34 35

33.V 88 92 155 56 52 58 84 75 67 41 44 43 47 28 24 45 21 23 40 23

34.I 144 99 85 95 77 58 62 41 44 55 46 45 38 19 44 29 22 40 26 30

34.II 179 128 149 136 89 80 110 67 62 58 66 72 64 51 52 59 45 35 32 46

34.III 199 172 111 122 120 76 85 86 76 69 57 61 47 52 46 46 38 85 32 41

34.IV 134 136 95 96 75 68 41 87 53 29 56 43 42 36 45 69 21 28 44 28

34.V 107 87 94 78 82 48 59 51 54 48 45 37 32 27 20 40 31 30 33 34

35.I 175 144 188 141 114 115 120 102 79 66 67 59 60 50 51 38 90 56 46 57

35.II 113 97 117 73 83 57 75 34 49 28 45 51 61 27 28 28 54 22 33 32

35.III 175 156 141 142 121 100 69 106 99 82 79 57 63 55 41 54 30 33 41 66

35.IV 142 112 106 92 67 59 42 61 47 49 40 62 42 37 35 34 16 44 37 38

35.V 220 183 156 160 130 122 103 103 90 76 53 55 56 65 57 63 50 57 62 54

Table B.20: Most frequent function word counts in Willian Shakespeare plays

(3/3)
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B.2.4 Federalist Papers

The Federalist Papers, first known as The Federalist, is a collection of 85 articles and

essays written under the pseudonym by Alexander Hamilton, James Madison, and John

Jay. 75 of them were published serially in The Independent Journal and The New York

Packet and they were later compiled and published together with eight additional ones in

two volumes in 1788 by J. and A. McLean. The authors of The Federalist Papers foremost

wished to influence the vote in favor of ratifying the United States Constitution.

Author A.Hamilton, J. Madison, and J. Jay

Country United States

Language English

Literary Genre Essay

Editor J. and A. McLean

Publication Date 1788
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Paper 1 2 3 4 5 6 7 8 9 10+ Paper 1 2 3 4 5 6 7 8 9 10+

1 39 355 310 222 159 99 106 85 61 147 44 47 589 583 360 351 224 182 156 148 250

2 33 311 307 287 148 132 127 103 71 142 45 23 427 452 272 192 177 134 136 100 202

3 16 304 257 213 130 139 113 87 69 109 46 46 523 538 355 265 216 175 121 106 265

4 16 322 341 236 180 116 143 88 61 123 47 41 573 605 313 234 152 186 142 182 307

5 10 238 233 220 160 103 114 90 74 94 48 44 390 351 235 180 122 113 91 120 208

6 51 378 377 264 184 144 151 121 89 179 49 35 372 334 164 177 117 105 89 90 160

7 47 485 390 282 262 181 142 116 110 235 50 19 226 200 145 104 81 103 68 46 107

8 47 422 350 263 195 167 134 136 102 170 51 48 431 349 219 169 164 145 107 88 191

9 53 433 348 263 198 130 134 119 102 194 52 40 400 337 256 211 136 121 78 91 171

10 81 619 584 376 287 230 243 199 147 228 53 53 451 427 300 178 148 174 127 117 186

11 70 529 454 315 273 175 195 139 112 226 54 39 464 369 288 192 151 128 125 76 163

12 48 461 369 288 225 184 163 134 89 180 55 59 429 375 275 238 169 138 115 79 157

13 26 202 162 146 100 77 64 56 37 87 56 48 299 305 230 159 115 98 68 96 146

14 39 455 416 286 242 175 132 124 93 174 57 41 499 458 285 236 164 125 120 86 189

15 73 707 552 399 316 214 220 169 159 264 58 56 432 391 286 206 160 134 125 89 201

16 38 482 364 257 214 153 136 99 106 183 59 52 443 351 259 218 112 107 112 97 157

17 32 300 305 187 163 123 111 110 77 154 60 59 559 397 272 224 146 139 129 96 212

18 38 356 475 258 164 196 178 123 112 185 61 40 352 277 230 150 116 80 85 63 122

19 27 368 442 240 175 161 182 141 104 178 62 82 524 444 305 216 209 145 136 93 227

20 29 271 310 168 156 102 128 101 84 161 63 69 647 591 383 281 263 214 169 161 255

21 66 458 352 238 197 155 134 105 89 197 64 32 488 476 385 192 163 151 143 112 163

22 97 776 627 445 357 266 233 200 163 308 65 45 466 381 257 223 138 133 124 86 161

23 28 393 375 212 173 148 121 101 90 154 66 54 516 428 328 189 182 110 100 110 203

24 50 433 326 216 178 118 137 109 94 156 67 29 357 336 191 143 148 101 92 103 135

25 45 465 348 256 206 165 153 115 89 139 68 31 348 312 196 132 125 93 67 73 119

26 55 575 437 307 222 206 151 114 114 194 69 64 616 585 334 244 205 180 174 136 201

27 36 314 274 208 104 103 103 72 64 139 70 75 659 614 395 288 211 212 150 178 277

28 33 341 320 188 165 117 108 88 76 152 71 46 392 343 217 146 128 113 85 95 136

29 54 549 428 281 199 147 164 122 102 183 72 58 461 408 257 188 136 140 95 114 177

30 39 426 389 246 205 137 144 123 93 160 73 65 517 455 346 223 166 131 121 126 193

31 26 404 322 231 184 129 100 103 82 147 74 30 234 187 115 109 60 61 69 57 73

32 46 320 273 173 189 94 108 81 64 134 75 57 437 362 244 195 168 133 102 104 136

33 49 357 338 241 179 116 119 74 82 129 76 55 536 437 326 242 170 141 94 101 194

34 47 496 414 288 268 151 157 115 103 170 77 73 457 355 260 190 147 103 81 113 190

35 50 493 414 308 243 166 146 141 112 175 78 64 690 588 408 274 210 167 155 162 293

36 55 646 506 383 272 197 165 159 121 223 79 25 220 211 141 98 75 53 57 50 89

37 57 549 517 386 241 205 171 142 144 297 80 43 532 478 266 295 215 165 128 120 208

38 97 700 647 478 293 278 244 159 142 277 81 95 907 730 479 380 280 228 189 189 304

39 53 617 537 291 200 209 158 159 127 253 82 32 334 295 174 185 133 99 80 78 122

40 57 651 609 396 275 229 176 151 132 333 83 157 1353 993 804 628 425 347 263 248 487

41 86 726 712 447 370 264 303 202 174 256 84 85 879 761 537 404 314 270 189 148 325

42 52 586 550 321 272 218 223 178 120 254 85 99 600 534 311 234 205 167 134 125 248

43 95 749 666 387 315 270 249 193 182 316

Table B.21: Word length counts for all the words in Federalist Papers
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1 9 2 6 2 14 70 40 126 3 26 8 1 1 14 4 2 6 0 1 0 9 11 0 14 0 1 3 1 2 1

2 8 5 1 0 10 52 83 105 4 34 10 1 0 4 3 0 1 2 4 0 2 1 0 14 7 1 1 7 6 6

3 6 2 0 1 18 55 60 91 3 25 1 1 2 3 7 0 5 1 0 0 6 3 2 6 0 3 2 1 0 2

4 11 17 0 3 14 50 90 84 6 24 2 0 2 0 13 2 5 0 3 2 4 3 1 1 0 6 1 1 10 0

5 5 37 0 0 10 44 72 64 6 28 4 0 0 1 3 6 3 1 0 3 9 4 0 6 1 5 2 6 7 5

6 2 6 4 8 10 56 72 154 6 55 6 1 0 2 5 1 0 1 4 7 7 11 4 11 1 4 0 5 7 5

7 12 51 11 9 28 80 49 201 10 40 11 1 2 0 12 4 7 1 7 8 8 15 0 22 0 1 3 9 2 3

8 9 27 3 2 11 78 52 155 3 39 10 1 1 1 7 1 1 0 3 2 6 13 0 16 2 5 3 0 5 3

9 9 8 4 3 13 70 45 168 5 37 10 1 2 6 7 2 4 4 5 3 6 13 9 15 3 4 2 11 5 2

10 18 6 0 6 39 99 121 259 8 63 8 5 0 3 6 0 4 0 1 3 4 14 4 11 0 5 5 0 9 12

11 5 50 6 8 20 82 70 186 7 66 11 1 2 1 6 7 4 3 1 4 7 15 0 24 1 1 5 2 4 3

12 12 22 7 9 15 80 62 174 8 54 13 1 1 1 6 2 7 2 3 5 3 11 1 17 2 3 2 0 7 2

13 3 14 2 9 5 42 17 72 0 14 1 0 2 0 6 0 3 0 0 1 0 3 0 5 1 1 4 0 7 3

14 17 5 0 0 18 71 60 200 2 40 7 2 1 2 6 1 3 0 3 4 13 9 0 13 0 4 10 3 2 3

15 10 13 10 18 32 116 74 251 6 73 24 0 0 4 7 0 3 6 2 2 10 18 0 24 1 4 6 8 4 6

16 4 36 6 4 13 88 42 191 2 39 11 1 1 1 14 2 11 5 5 3 10 13 0 18 2 6 6 7 3 4

17 2 12 6 4 9 57 52 160 0 29 7 2 1 2 2 3 2 1 3 4 9 9 1 11 0 2 0 4 3 3

18 15 6 1 3 33 53 79 235 4 41 4 3 2 1 0 1 2 0 23 2 5 5 3 16 3 4 2 16 5 6

19 17 4 0 1 22 57 82 203 4 41 5 0 0 0 4 1 6 0 11 4 0 9 6 12 1 6 6 5 4 0

20 7 1 1 0 19 41 54 135 7 39 8 0 3 1 1 0 0 0 3 1 1 5 8 8 2 0 2 0 3 3

21 6 12 6 8 22 54 49 182 3 48 4 0 1 2 11 2 6 8 1 4 9 10 0 17 0 6 12 2 0 2

22 8 20 13 14 30 143 80 288 3 86 12 0 5 1 9 10 7 5 3 5 13 19 2 30 1 1 6 9 4 6

23 2 4 7 4 11 96 56 185 6 26 3 0 0 4 6 0 9 0 1 2 4 11 0 14 1 1 2 1 2 3

24 11 25 7 6 14 84 54 133 9 50 7 1 1 4 13 1 6 1 5 4 1 9 18 18 0 6 3 0 1 0

25 11 21 2 2 22 89 46 173 0 40 11 1 0 1 5 8 4 4 4 2 6 7 0 20 1 4 2 1 1 4

26 7 16 6 8 21 94 49 199 3 64 12 2 0 2 16 1 10 1 7 5 5 22 2 15 3 6 4 7 8 1

27 4 3 4 8 14 59 33 144 5 28 4 1 2 4 5 2 8 1 0 2 4 5 0 8 2 0 3 0 3 2

28 1 12 3 7 7 65 35 164 3 40 7 0 0 0 10 3 2 1 3 0 4 13 0 7 0 8 6 2 1 6

29 3 19 10 13 10 111 59 220 0 41 11 2 0 4 15 1 6 1 2 1 4 14 1 14 3 3 5 6 4 5

30 8 22 13 5 14 75 45 162 4 49 6 1 0 1 4 5 8 3 0 3 5 7 2 17 2 0 5 1 6 2

31 5 5 13 6 9 81 44 160 4 49 5 4 0 2 3 5 5 2 0 1 9 12 0 13 0 5 3 0 5 4

32 14 23 2 8 10 46 41 148 2 40 2 1 0 10 6 9 6 2 2 1 1 15 0 16 1 1 7 2 1 4

33 5 15 9 2 14 66 44 156 6 33 2 1 0 5 8 4 7 1 3 0 6 8 0 18 3 5 0 4 4 6

34 11 20 10 9 4 106 48 184 6 55 6 2 2 2 12 4 8 0 2 6 10 13 0 14 2 6 8 1 2 1

35 8 16 9 5 10 100 65 186 9 47 4 0 1 5 7 4 8 0 2 7 9 13 2 14 1 1 6 4 5 4

36 6 5 6 18 21 119 66 248 1 65 4 2 3 11 8 5 10 5 3 5 9 15 0 23 1 2 5 1 4 2

37 19 7 1 2 30 84 101 228 14 62 2 3 3 1 2 1 3 0 3 5 4 10 1 17 6 1 5 3 5 4

38 15 15 4 3 37 116 94 269 9 62 6 5 2 5 6 6 9 0 6 0 3 18 6 24 3 13 17 10 7 5

39 25 8 0 0 33 90 64 298 6 73 7 3 6 0 5 2 4 0 0 2 1 6 1 21 1 1 7 6 3 6

40 13 6 0 4 55 119 99 292 22 68 7 3 7 2 8 1 2 0 17 2 7 12 1 18 2 5 9 19 7 3

41 27 9 0 1 32 118 88 334 15 63 5 3 3 5 13 3 6 1 7 1 6 20 1 28 5 14 9 6 7 9

42 22 15 2 3 31 92 96 260 6 62 3 6 6 2 4 5 11 0 4 3 6 16 0 18 7 6 8 4 8 1

43 33 12 0 2 47 111 79 354 2 55 7 3 0 2 6 5 8 0 3 5 5 12 1 22 2 15 14 1 7 8

Table B.22: Function words counts in Federalist Papers for the thirty words with

the largest Ti (1/2)
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44 28 29 0 4 28 80 88 313 12 66 4 3 6 4 8 12 15 0 10 2 4 10 0 25 2 6 18 2 11 10

45 10 11 0 3 11 65 63 276 4 40 4 9 4 3 7 2 4 0 4 2 8 7 0 5 8 5 6 6 3 2

46 32 29 0 0 21 85 73 301 13 46 6 4 2 4 5 0 6 0 3 0 6 9 0 9 4 4 4 3 4 5

47 20 4 0 3 42 64 86 325 6 62 7 4 7 6 5 1 5 0 3 0 1 10 10 24 3 1 15 7 1 14

48 16 3 0 2 28 53 51 167 10 45 4 1 5 8 2 3 1 0 10 1 4 12 0 14 2 6 6 4 3 7

49 16 22 0 2 15 57 42 176 1 34 2 1 4 2 3 6 3 0 4 1 1 11 3 5 2 9 4 2 1 4

50 11 11 1 0 11 27 33 99 3 28 9 0 4 5 4 3 5 0 9 0 1 3 0 7 3 1 0 1 2 9

51 21 9 0 4 23 49 40 200 4 50 3 4 6 2 7 4 1 0 1 2 3 5 0 13 4 8 4 4 5 5

52 19 8 0 0 22 71 37 184 7 33 7 1 2 5 5 3 7 0 2 2 4 3 1 15 6 0 4 10 1 5

53 8 6 0 2 31 72 62 191 10 45 2 0 4 3 7 3 6 0 0 7 5 6 3 15 9 2 10 4 2 2

54 19 6 2 1 26 60 38 202 3 65 2 2 3 4 5 4 7 0 3 0 6 9 2 21 6 2 8 6 5 7

55 9 10 0 5 14 77 48 180 3 30 17 3 2 11 5 1 8 0 3 5 0 4 0 12 7 4 4 6 0 3

56 11 4 0 3 10 38 53 135 6 31 5 1 1 0 0 4 5 1 1 0 4 3 0 13 10 2 2 2 4 4

57 19 6 0 4 25 73 54 214 8 40 6 0 0 4 6 1 5 0 1 4 5 6 3 13 7 5 4 2 2 4

58 18 12 0 2 22 60 47 211 6 58 5 6 2 5 6 8 5 0 2 3 4 9 0 14 2 7 5 2 2 3

59 6 16 3 7 17 72 34 176 3 62 8 1 0 3 6 6 11 1 2 2 5 24 2 18 1 3 8 2 5 0

60 6 28 8 8 21 86 36 221 4 79 9 3 3 6 6 6 12 1 0 5 8 12 0 16 1 1 4 2 5 5

61 6 17 3 5 5 60 25 149 1 47 12 1 4 5 7 4 5 1 3 1 4 5 0 14 0 3 5 0 3 8

62 19 5 0 0 28 79 69 190 6 50 5 2 0 6 5 3 6 0 0 4 5 13 2 17 0 4 9 0 6 1

63 20 11 0 8 51 87 68 288 9 68 12 6 1 11 8 5 9 0 7 2 5 18 0 17 3 8 6 5 6 6

64 14 7 0 6 30 87 103 172 7 53 5 1 1 0 8 0 8 0 3 0 15 6 3 11 5 0 4 0 1 1

65 5 25 10 5 16 84 37 218 3 51 6 3 2 1 3 9 3 0 3 2 6 11 1 18 0 3 3 1 3 4

66 7 10 11 5 13 83 41 244 2 68 1 2 3 6 16 10 7 0 2 2 6 12 0 21 2 7 5 3 2 6

67 3 5 6 3 14 83 46 181 5 36 5 1 0 5 4 3 3 0 3 1 4 8 5 12 0 2 3 0 1 0

68 3 7 2 1 12 75 30 140 3 40 6 1 1 1 4 8 8 1 0 0 4 9 2 13 0 3 3 2 0 1

69 5 27 12 9 19 93 90 301 3 66 6 1 5 2 12 2 6 1 1 5 5 12 11 30 1 3 10 3 7 4

70 14 11 6 13 15 118 79 282 8 87 12 1 2 9 10 3 13 0 5 6 9 19 4 16 1 7 9 7 3 1

71 7 16 3 3 15 75 38 173 0 37 8 1 0 1 9 8 7 1 4 2 3 9 14 7 6 1 1 3 0 3

72 6 25 5 9 17 98 52 176 7 35 12 0 0 2 5 11 2 0 8 1 1 12 26 10 2 0 6 4 0 4

73 5 29 13 5 27 82 42 203 2 62 10 2 0 2 5 10 12 1 2 1 6 9 10 26 5 5 5 3 4 5

74 4 9 3 4 2 35 23 102 1 24 2 0 1 3 3 8 3 2 3 0 3 7 1 8 0 2 0 2 2 2

75 5 27 5 3 16 90 36 206 1 44 2 2 1 5 3 5 2 1 1 1 4 12 2 14 4 2 2 0 2 2

76 4 28 10 7 25 95 55 208 1 59 5 0 2 4 3 11 6 1 2 3 7 16 9 18 1 2 6 3 0 2

77 3 32 10 3 16 71 41 180 2 60 6 0 1 9 6 6 6 0 3 0 1 19 6 17 1 1 2 2 0 2

78 10 19 9 12 25 126 74 306 4 68 3 4 2 4 10 2 9 1 3 6 10 16 2 26 2 3 18 1 2 1

79 5 5 2 3 4 41 24 87 1 35 5 2 0 2 2 2 8 0 0 2 0 2 1 8 1 0 4 0 1 1

80 9 10 6 7 13 113 68 253 12 47 3 2 3 3 5 1 7 2 1 26 15 8 1 14 0 5 7 2 1 8

81 16 21 13 19 32 156 85 375 5 130 7 4 5 9 6 7 15 0 4 4 12 22 0 42 3 6 8 2 2 9

82 0 11 4 0 4 82 41 166 6 38 2 5 0 9 2 1 1 0 0 2 6 10 0 14 0 0 3 1 1 1

83 18 48 20 22 79 213 119 474 15 207 19 5 5 22 24 11 16 2 5 9 13 20 0 59 2 6 20 2 1 9

84 20 15 11 16 28 130 85 364 8 86 10 5 5 17 7 2 30 1 1 2 8 14 2 36 3 8 26 7 2 12

85 17 6 12 10 11 113 72 240 8 73 6 1 1 30 4 1 12 0 2 3 9 19 5 13 2 5 14 2 2 1

Table B.23: Function words counts in Federalist Papers for the thirty words with

the largest Ti (2/2)
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