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The effects of adenosine antagonists on distinct aspects of motivated behavior:

interaction with ethanol and dopamine depletion.

ABSTRACT

Adenosine is a neuromodulator in the central nervous system (CNS) that interacts with

other neurotransmitters and with some substances like alcohol, which elevates the

adenosinergic tone. It has been shown that increases in adenosine levels produce

sedation and fatigue, two behavioral effects that can have an impact on other more

complex processes such as anxiety or motivation. Adenosine acts on different receptors,

being adenosine A1 and A2A receptors the most relevant for their presence and

mechanism of action in specific brain areas involved in the modulation of mood and

motivational processes such as striatum, prefrontal cortex and amygdala. Caffeine is a

worldwide consumed methylxanthine that acts as a non-selective adenosine A1/A2A

receptor antagonist. This drug is generally consumed to reduce fatigue and increase

alert. More recently, caffeine, at high concentrations, is combined with alcoholic

beverages under the popular belief that can counteract some of the sedative and

impairing effects of ethanol. The knowledge about how high levels of caffeine can

affect complex motivated behaviors such alcohol abuse, or social interaction patterns is

limited, and potential side effects such as increases in anxiety and motor impairments

can modulate them. Thus, the first part of the present dissertation (Chapters 1-4),

reviews the literature on caffeine-ethanol interaction, and addresses the impact of high

doses of caffeine on anxiety and how they can modulate social interaction patterns in

animal models. High doses of caffeine are studied also in interaction with moderate

doses of ethanol that had demonstrated to produce anxiolysis. In order to provide

evidence about a potentially selective mechanism of action on adenosine A1 or on A2A

receptors, other selective and non-selective adenosine antagonists and A2A receptor KO

mice are also used.

On the other hand, A1 and A2A receptors have been proposed as therapeutical targets for

the treatment of motivational impairments such as psychomotor retardation and fatigue

observed in some psychopathologies such as depression. Mesolimbic dopamine (DA) is

involved in the regulation of the activational component of motivation and DA

depletion or antagonism has shown to impair this aspect of motivation in effort-based

decision making tasks, shifting preferences from high effort/high reward options to low
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effort/low reward options. Adenosine A1 and A2A are colocalized with DA D1 and D2

receptors respectively in striatal areas and they interact in antagonistic way at the

cellular and also the behavioral level. Several selective adenosine antagonists have

shown to revert the anergia-like effect induced by DA impairments. However, the

therapeutical impact of caffeine on those impairments has not been widely explored.

Thus, in Chapters 5-6 the impact of caffeine on depression is reviewed, and its potential

on effort-based decision-making tasks in animal models is studied after the

administration of a DA depleting agent. Cellular markers activated after adenosine and

DA receptor interactions were analyzed in order to elucidate the mechanism of action.
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Efecto de los antagonistas de adenosina en diferentes componentes de la conducta

motivada: estudios de interacción con alcohol y con disminución en los niveles de

dopamina.

RESUMEN

La adenosina es un neuromodulador del Sistema Nervioso Central (SNC) que interactúa

con otros neurotransmisores y otras sustancias como el alcohol, el cual incrementa los

niveles de adenosina. Se ha demostrado que estos incrementos adenosinérgicos

producen sedación y fatiga, dos efectos conductuales que pueden tener impacto en

procesos como la ansiedad o la motivación. La adenosina actúa en diferentes receptores,

siendo los A1 y los A2A los más relevantes por su presencia y mecanismo de acción en

áreas cerebrales involucradas en la modulación de procesos emocionales y

motivacionales como el estriado, el córtex prefrontal y la amígdala. La cafeína es una

metilxantina ampliamente consumida que actúa como antagonista no selectivo de los

receptores A1/A2A de adenosina. Esta droga es generalmente consumida para reducir la

fatiga e incrementar los niveles de alerta. Recientemente, la cafeína a dosis altas, se

ingiere junto a bebidas alcohólicas bajo la creencia popular de que esta metilxantina

puede compensar los efectos sedativos e intoxicantes del alcohol. El conocimiento

acerca de cómo altas concentraciones de cafeína pueden afectar directamente aspectos

complejos de conductas motivadas como el abuso de alcohol o la interacción social, es

limitado, y además estas conductas pueden verse moduladas también por los efectos

secundarios asociados a la cafeína, como es el incremento de ansiedad y las alteraciones

motoras. En este sentido, la primera parte de esta tesis (Capítulos 1-4), revisa la

literatura relacionada con la interacción cafeína-alcohol, y explora el impacto de dosis

altas de cafeína en ansiedad y como estas sustancias pueden modular la interacción

social en modelos animales. Con el objetivo de conocer el mecanismo de acción

selectivo de la cafeína sobre los receptores de adenosina A1 o A2A, se estudian también

otros antagonistas selectivos y no selectivos de los receptores de adenosina, así como

animales KO para los receptores de adenosina A2A.

Por otra parte, los receptores A1 y A2A, se han propuesto como dianas terapéuticas para

el tratamiento de alteraciones motivacionales como el enlentecimiento motor y la fatiga

observadas en algunas psicopatologías como la depresión. La dopamina (DA)
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mesolímbica está involucrada en la regulación del componente activacional de la

motivación. La disminución de los niveles de DA o el antagonismo dopaminérgico han

demostrado alterar este aspecto de la motivación en tareas de toma de decisiones

basadas en el esfuerzo, cambiando las preferencias del individuo desde la elección de

reforzadores con gran valor que requieren un alto esfuerzo a reforzadores de menor

valor que requieren menor esfuerzo. Los receptores de adenosina A1 y A2A están co-

localizados con los receptores de DA D1 y D2 respectivamente en estructuras estriatales

e interactúan de forma antagónica a nivel intracelular y conductual. Sin embargo, el

impacto terapéutico de la cafeína en dichas alteraciones motivacionales no ha sido

ampliamente estudiado. En este sentido, en los Capítulos 5-6, se revisa la literatura

sobre el impacto de la cafeína en la depresión, y se estudia su efecto potencial en tareas

de toma de decisiones basadas en el esfuerzo en modelos animales tras la

administración de un agente farmacológico que reduce los niveles de DA de manera

reversible. Con el objetivo  de conocer los mecanismos intracelulares que regulan estos

procesos, se estudia también el impacto de estas manipulaciones farmacológicas sobre

marcadores de activación de los receptores de DA y de adenosina.
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GENERAL INTRODUCTION

1. Adenosine as a neuromodulator in the CNS

Adenosine is considered a neuromodulator in the CNS, which regulates neuronal

excitability and neurotransmitter release, and modulates ion channel function through

four subtypes of G-protein-coupled receptors; A1, A2A, A2B, and A3 (Fredholm et al.,

2001). Unlike classical neurotransmitters that are synthesized, stored, and released into

the synapse in response to electrochemical stimulation, adenosine operates mainly

through volume transmission, and concentrations are regulated to a much greater extent

by ongoing production and transport (Burnstock, 1972, 2006, 2008).

Adenosine A1 receptors are present in almost all brain areas and their stimulation can

suppress neuronal excitability (Fredholm et al., 1994). Stimulation of A2A receptors has

the opposite effect to A1 receptor stimulation, and they are almost exclusively

concentrated in dopamine (DA) rich areas such as the striatum, where they reach high

levels of expression (Fredholm et al., 1994; Vontell et al., 2010). The role of A2B and A3

receptors has received considerably less attention, because they are present at very low

levels in the CNS (Zhou et al., 1992; Daly et al., 1983; Dixon et al., 1996). The

existence of pharmacological tools, such as selective adenosine receptor agonists and

antagonists, as well as the existence of genetic modified animals such as knockout (KO)

mice, has permitted the study of the role of A1 and A2A in the regulation of many

behaviors such as bradykinesia, catalepsy and tremor (Correa et al., 2004; Betz et al.,

2009; Hauber et al., 2001; Morelli et al., 2012), psychomotor stimulation or sedation (El

Yacoubi et al., 2003; Nagel et al., 2003; Pardo et al., 2014; Farrar et al., 2007; Font et

al., 2008; Mingote et al., 2008), sensorimotor gating (Hauber and Koch, 1997; Koch and

Hauber, 1998), memory (Hauber and Bareiss, 2001; Prediger et al., 2005), and in the

regulation of affective (Correa and Font, 2008; Prediger et al., 2004; Kaster et al.,

2007), and motivational processes (Salamone and Correa, 2009; Pereira et al., 2011;

Pardo et al., 2012; Correa et al., 2016).

2. Caffeine and ethanol interaction: actions on the adenosine system.

Two commonly consumed drugs that have an impact on the adenosinergic system are

caffeine and alcohol. Caffeine is a methylxanthine that acts as a non-selective adenosine
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antagonist (A1/A2A) (Fredholm et al., 2001). This mechanism of action mediates its

minor stimulant (Ferré, 2008; Urry and Landolt, 2015), anxiogenic (Prediger et al.,

2004; Correa and Font 2008) and motivational effects (Randall et al., 2011; Salamone et

al., 2009). However, the differential concentration of A1 and A2A receptors in distinctive

brain areas responsible for the modulation of different behaviors can lead to a

predominant role of A1 or of A2A receptors in these behavioral effects of caffeine.

Ethanol does not act directly on adenosine receptors, but can increase adenosine levels

by decreasing adenosine uptake (Diamond and Gordon, 1994) or by increasing

adenosine levels, since adenosine is a byproduct of ethanol metabolism (Carmichael et

al., 1991; Correa et al., 2012). There is some evidence that adenosine may contribute to

some of the sedative and motor incoordination effects of ethanol (Dar, 1990; Meng and

Dar, 1995; Correa and Font, 2008; Correa et al., 2012).

Interest in this methylxanthine and some of its metabolites, such as theophylline, has

grown since the introduction to the market of the so-called “energy drinks”. Caffeine,

and to some extent theophylline, are the main psychoactive components of these drinks

(a behavioral comparison between these two methylxantines is presented in Chapter 2

of the present dissertation). These highly caffeinated beverages are being increasingly

consumed, mainly among young populations, in combination with ethanol and under the

popular belief that caffeine can compensate the intoxicating effects of alcohol (for a

review see Correa et al., 2014). However, data from human studies and animal models

show controversial results (as summarized in Chapter 1). Moreover, the interaction

between high doses of caffeine and ethanol has not been extensively characterized in

relation to some behaviors traditionally regulated by ethanol, such as anxiety or social

interaction. Thus, chapters 3 and 4 present data on the impact of caffeine and selective

adenosine receptor antagonism alone or in combination with ethanol, on social behavior

and anxiety. The study of these two drugs in combination can reveal the nature of their

interaction and shed light on the role of A1 and A2A adenosine receptors on these

actions.

3. Social interaction and its modulation by anxiety.

Social behavior has been widely explored as a natural reinforcer in the overall context

of the study of motivation (Martin et al., 2014; Pansskep and Lahvis, 2010; Martin and
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Iceberg, 2015). Most of these studies used maternal behavior, or access to opposite sex

conspecifics, as reinforcers (Matthews et al., 2005; Martín-Sánchez et al., 2015; Pereira

and Ferreira, 2016), although rodents express a robust motivation to approach

conspecifics in general (Brodkin et al. 2004; Moy et al. 2004, 2006; Terranova et al.,

1993). Approach towards a conspecific, also referred to as social approach, is a basic

behavioral component of all social interactions (Pankssep and Lahvis, 2010). This

apparently simple behavior has reinforcing properties evaluated in classical paradigms

such as social conditioned place preference, or operant tasks that use sex-matched

conspecifics as reinforcers (Pankssep and Lahvis, 2010; Martin and Iceberg, 2015).

Time spent approaching and exploring a conspecific as opposed to exploration of a non-

social stimulus can offer information about the preference for social stimuli, and is a

measure of appetitive social motivation.

In addition to the intrinsic motivational properties of social interaction, this behavior has

shown to be sensitive to anxiolytic or anxiogenic effects of drugs and, in fact, social

interaction tasks have been widely used as animal models of anxiety (File and Seth,

2003; File, 1980). Acutely administered caffeine and ethanol have been shown to have

opposite effects on anxiety (Gulick and Gould, 2009; Correa et al., 2008). As reported

in Chapter 2, caffeine (Jain et al., 2005; Prediger et al., 2004), as well as its metabolite

theophylline, induce anxiogenic effects at moderate and high doses. The anxiolytic

effects of ethanol have been widely explored in mice and rats (Correa et al., 2008;

Prediger et al., 2004). Each of these drugs has shown to affect social interaction in a

manner that is consistent with their anxiogenic or anxiolytic profile; anxiolytic drugs

will enhance social interaction and anxiogenic drugs will decrease it (Prediger et al.,

2004). However, a direct positive relationship between anxiety and social interaction is

not always so clear, and contradictory results have been found depending on the animal

model and parameters used (Baldwin et al., 1989; Baldwin and File, 1989; Hilakivi and

Seth, 1989; Nadal et al., 1993; Guy and Gardner, 1985). Chapter 4 characterizes social

behaviors and anxiety in adenosine A2A receptor KO mice.

It has been suggested that the opposite effects of ethanol and caffeine on anxiety are due

to opposing actions on the adenosine system (Prediger et al., 2004; Correa and Font

2008): ethanol increases adenosine levels, while caffeine acts as a non-selective

adenosine A1/A2A receptor antagonist. The region specific concentration of adenosine

A1 and A2A receptors in the brain suggests that these receptors could play a differential
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role in many behaviors. For instance, the broad distribution of A1 receptors in the brain,

with a relatively high concentration in the hipoccampus (Murphy and Snyder, 1982),

suggests that they may play an important role in memory consolidation (Hauber and

Bareiss, 2001) and possibly, social memories. On the other hand, adenosine A2A

receptors are highly concentrated in olfactory tubercle, and striatum (Fredholm et al.,

2001; Schiffmann et al., 2007; Vontell et al., 2012), regions that are involved in social

behavior, motivation and motor processes (Cabib et al., 2000; Salamone and Correa,

2002; Koch and Hauber, 1998). Thus, the ability of caffeine and selective A1 and/or A2A

receptor antagonists, or genetic deletion, either alone or in combination with ethanol, to

affect social motivation and long-term memory was studied in chapters 3 and 4. The

use of a novel paradigm that allows free allocation of time to explore social versus non-

social stimuli, a situation in which social contact is not possible, gives a measure of

preference that is less affected by anxiety and social patterns like submission-

dominance.

4. Functional co-localization of DA and Adenosine receptors: relevance for the

activational component of motivation.

Mesolimbic DA is an important component of the neural circuitry that regulates

behavioral activation, energy expenditure, and the ability of organisms to overcome

work-related response costs in motivated behaviors (Salamone and Correa 2002, 2009,

2012; Robbins and Everitt 2007; Floresco et al. 2008; Mai et al., 2012). This

activational aspect of motivation can be evaluated with tasks that offer the choice for

distinct reinforcers that can be obtained by instrumental behaviors with different work

requirements. Such tasks include operant procedures offering choices between

responding on ratio schedules for preferred reinforcers versus approaching and

consuming a less preferred food (Salamone et al., 1991, 2002; Randall et al., 2012;

Sommer et al., 2014), and a T-maze barrier task (Salamone et al., 1994; Mott et al.,

2009; Pardo et al., 2012), which are used in the present thesis in the experiment shown

in Chapter 5. Effort discounting tasks (Floresco et al., 2008; Bardgett et al., 2009) also

are described in the literature. Across these tasks, low doses of DA antagonists and

accumbens (NAcb) DA depletions have been demonstrated to shift choice behavior,

decreasing selection of high effort/high reward options, and increasing selection of low

effort/low reward choices (Salamone and Correa, 2002, 2012; Salamone et al., 2015;
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Mai et al., 2012; Sommer et al., 2014), leaving the primary value of the reinforcer intact

(Salamone and Correa, 2002, 2012). The study of this activational aspect of motivation

has clinical significance. Symptoms such as lethargy, tiredness or anergia are observed

in many pathologies including depression (Salamone et al., 2016). In fact, patients with

depression also have shown impairments in an effort-based decision-making task

adapted for humans (Treadway et al., 2012).

Considerable evidence indicates that brain adenosine receptor mechanisms interact with

DA systems in the regulation of motivational processes (Salamone and Correa, 2009;

Farrar et al., 2007). In this regard, several recent studies have focused upon the

functional significance of adenosine receptors and their interactions with DA receptors,

in relation to aspects of behavioral activation and effort-related processes (Correa et al.,

2015; Pardo et al., 2012;Yohn et al., 2015; Farrar et al., 2007; Ferré, 2008).

As mentioned before, adenosine receptors are highly expressed in DA rich brain areas

such as neostriatum and nucleus accumbens (Vontell et al., 2010), and adenosine

receptors interact in those areas with DA receptors, having antagonistic effects on

metabotropic intracellular signaling cascades (Ferré, et al., 2008, 2004; Ferré 2008). In

this sense, adenosine A2A agonists have been shown to induce effects that resemble

those produced by DA antagonists or DA depletions, inducing anergia-like effects in an

effort-based decision making task (Font et al., 2008), whereas selective adenosine

antagonists of A2A receptors (and to a much lesser extent of A1 receptors), have been

shown to attenuate anergia-like effects induced by DA antagonists or depletors

(Salamone et al., 2009; Pardo et al., 2012; Nunes et al., 2013; Yohn et al., 2014). In this

regard, a selective A2A receptor antagonist MSX-3 reversed the anergia-like effects

induced by a DA depletor agent (tetrabenazine, TBZ) in concurrent operant /chow

feeding choice tasks and in a T-maze barrier task (Nunes et al., 2013; Randall et al.,

2014; Yohn et al., 2015). The same pattern of results has been observed in different

effort-choice tasks using D2 antagonists combined with the non-selective (A1/A2A)

antagonists caffeine and theophylline (Salamone et al., 2009; Pardo et al., 2012). These

agents restored totally or partially the shift on the choice behavior from the low

effort/low reward option to the high effort/high reward option induced by a DA

antagonist or DA depletor in concurrent choice tasks (Salamone et al., 2009; Pardo et

al., 2012; Nunes et al., 2013; Randall et al., 2014; Yohn et al., 2014). Consistent with

these results, A2A KO mice were protected from the anergia-like effects induced by the
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DA D2 antagonist haloperidol (Pardo et al., 2012; Correa et al., 2015). Although several

adenosine antagonists have been tested and have are effective preventing or blocking

the effects of DA interferences on motivation, the effects of caffeine have not been

widely explored in rodents (Salamone et al., 2009), and the data about its impact on

depression is anecdotal in humans. Thus, chapter 5 summarizes the research about

possible therapeutic actions of the non-selective A1/A2A receptor caffeine on depression,

emphasizing its effects on motivational symptoms. Moreover, a T-maze barrier task for

mice was used to study the impact of caffeine in effort based-decision making. In

addition, in chapter 6, the effects of caffeine are evaluated in a recently developed task

for mice (Correa et al., 2015), a 3-choice running wheel (RW) T-maze task (Correa et

al., 2015), that evaluates preference for activity-based reinforcers, and has shown to be

sensitive to the effects of DA D2 antagonism. Caffeine is proposed as a therapeutic

agent to reverse or attenuate the anergia-like effects induced by DA depletions.

Moreover, intracellular markers of DA and adenosine receptor activation are quantified

in order to explore the predominant role of D1-A1 or D2-A2A receptor interaction on

caffeine-TBZ effects.

5. Functional co-localization of DA and Adenosine receptors: intracellular cascade.

Several lines of evidence indicate that adenosine receptors and DA receptors interact at

the cellular level (Ferré 2008; Ferré et al., 2008; Salamone et al., 2010; Santerre et al.

2012; Nunes et al. 2013). Striatal areas such as neostriatum and nucleus accumbens are

very rich in adenosine A2A receptors and DA D2 receptors, and these two receptors are

co-localized on encephalin positive medium spiny neurons (Demet et al., 2002; Ferré et

al., 2004; 2008). There also is co-localization of DA D1 receptors and adenosine A1

receptors in these brain regions, and these receptors also interact (Ferré 2008; Ferré et

al., 2008). This neuronal co-localization and intracellular convergence can explain why

A2A receptor antagonists are effective in reversing the effort-related actions of D2

antagonists such as haloperidol and eticlopride, and why it is more difficult for

adenosine A1 receptor antagonists to reverse the effects of D2 receptor blockade

(Salamone et al., 2009; Pardo et al., 2012; Hauber et al., 2001).
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5.1. DARPP-32 phosphorylation at threonine 34 and 75 as an index of DA

receptor D1 or D2 activation.

As discussed above, a wide range of behavioral studies have been performed in order to

study DA-adenosine interactions, and more specifically characterize the ability of D1-A1

and D2-A2A receptor interactions to modulate the brain circuitry regulating effort-related

decision making (Salamone et al., 2010; Pardo et al., 2012, 2015; Yohn et al., 2014).

Some of these studies have also focused on the effects of this interaction at the

intracellular level (Santerre et al., 2012; Nunes et al., 2013; Svenningson et al., 1999).

It has been observed that a D2 antagonist, haloperidol, induced an increase on cFos

protein synthesis (an index of neuronal activation) and this increase was reversed by

selective A2A antagonists (Santerre et al., 2012; Pardo et al., 2012). This interaction on

cFos was also observed after the administration of haloperidol to KOA2A mice (Correa

et al., 2015; Pardo et al., 2012). Haloperidol induced a shift in effort-based choice in

WT animals but not in KOA2A mice, and it also increased cFos synthesis in WT but not

in KOA2A mice, showing again a relation between intracellular markers of neural

activity and motivated behavior (Correa et al., 2015; Pardo et al., 2012). However, in

order to identify an specific pathway of activation, that is, to understand the

involvement of D1 or D2 DA receptors and A1 or A2A receptors, more specific

intracellular markers should be evaluated.

Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32) is highly

present in medium spiny neurons (MSNs) in dorsal and ventral striatum projection

neurons (Walaas, 1984; Ouimet et al., 1998; Greengard, 2001). There are two subtypes

of MNS, which selectively express one of two peptides; enkephalin or dynorphin.

Enkephalinergic MSNs predominantly express dopamine D2 and A2A receptors, while

dynorphinergic MSNs, which also express the peptide substance P, predominantly

express dopamine D1 receptors and adenosine receptors of the A1 subtype (Ferré et al.

1997; Agnati et al. 2003). DARPP-32 is phosphorylated after activation of D1-A1 or D2-

A2A receptors and can be used as an index of DA activation (Svenningsson et al., 1997,

2004; Nunes et al., 2013). DARPP-32 function depends on its relative state of

phosphorylation at two main regulatory sites, threonine 34 and 75 (Thr34 and Thr75).

When DARPP-32 is phosphorylated at Thr34 by protein kinase A (PKA) it becomes a

potent inhibitor of protein phosphatase 1 (PP-1), which in turn regulates the

phosphorylation state of several classes of effector proteins including transcription
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factors, ionotropic receptors, and ion channels (Greengard et al.,1999). When

phosphorylated at Thr75 by cdk5, DARPP-32 becomes an inhibitor of PKA signaling,

thereby relieving inhibition of PP-1 (Bibb et al., 1999). The phosphorilation of DARPP-

32 at Thr34 or Thr75, seems to be directly related with activation or DA D1 or D2

receptors and also is modulated by adenosine receptors (Nunes et al., 2013;

Svenningsson et al., 1998; 2004; 1999).

Activation of either D1 or A2A receptors increases the activity of adenylyl cyclase and

the resulting increase in cyclic AMP levels activates cyclic AMP-dependent protein

kinase (cAMP-PK), which, in turn results in an increase of the phosphorylated form of

DARPP-32 (pDARPP-32(Thr34)) (Figure 1). In this sense, DA D1 receptor agonist

SKF 81297, or A2A receptor agonist CGS21680, increased pDARPP-32(Thr34)

(Svenningson et al., 1998). This effect was blocked by D2 receptor agonist quinpirole

(Svenningson et al., 1998). However, the D2 antagonist eticlopride increased pDARPP-

32(Thr34), and such effect was not observed in A2AKO mice and in animals pre-treated

with a selective adenosine A2A antagonist SHC58261 (Svenningsson et al., 1999).

Etriclopride-induced increases in pDARPP-32(Thr34) was also decreased by

pretreatment with the D1 antagonist SHC23390 (Svenningson et al., 1999). Moreover,

the D1 antagonist SHC23390 but not the A2A receptors antagonist SHC58261 was able

to abolish the pDARPP-32(Thr34) increase induced by cocaine (Svenningson et al.,

1999). On the other hand, activation of D2 receptors decreases cAMP levels, thereby

increasing pDARPP-32(Thr75), however this pathway has received less attention

(Greengard et al., 1999). It seem that opposite modulation of D1 and D2 and also A2A

receptor agonism or antagonism on DARPP-32 phosphorylation is taking place in

different populations of neurons (Nunes et al., 2013; Svenningon et al., 1998; 1999)

(Figure 1).

In the present thesis (Chapter 6), in order to study the effects of the drugs used in the

behavioral procedures (the DA depleting agent TBZ alone or in combination with

caffeine as a non-selective A1/A2A receptor antagonist) on intracellular markers of

D1/A1 and D2/A2A receptor activity, DARPP-32, pDARPP-32(Thr34) and pDARPP-

32(Thr75) were quantified by western blot.
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Figure 1. Diagram showing the intracellular cascade in the A2A–D2, A1–D1, and A1–A2A receptor

heteromers and effect of DA on DARPP-32 phophorylation. D1 receptor stimulation increases c-AMP

production and PKA activity, which phosphorylates DARPP-32 to yield pDARPP-32(Thr34). D2 receptor

stimulation decreases c-AMP production and PKA activity, which decreases the dephosphorylation of

pDARPP-32(Thr34) and therefore increases on pDARPP-32(Thr75) expression (for details, see

Svenningsson et al., 2004; Bateup et al., 2008; Yger and Girault, 2011; Ferré 2008; Nunes et al., 2013).

5.2. TBZ as a tool to induce anergia-like effects in animal models: impact on

DARPP-32 phosphorlation patterns.

The pharmacological tool used in Chapter 6 to induced

anergia-like effects is the monoamine depleting agent TBZ.

This drug is a selective and reversible inhibitor of vesicular

monoamine transporter-2 (VMAT-2). It blocks storage and

depletes monoamines (Figure 2), but its greatest impact is

upon striatal DA (Pettibone et al., 1984; Tanra et al., 1995;

Nunes et al., 2014). TBZ is used to treat hyperkinetic

movements in Huntington’s disease, but depressive

symptoms including fatigue are major side effects (Frank, 2009, 2010). TBZ has been

used in studies involving animal models of depression (Kent et al., 1986; Wang et al.,

2010), and also has been shown to induce anergia-like effects on effort-based decision-

making tasks in rats producing decreases on selection of high effort/high reward options

and a compensatory increase in selection of low effort/low reward choices (Yohn et al.,

2014; Nunes et al., 2013; Pardo et al., 2015).

Figure 2. Tetrabenazine (TBZ)
mechanism of action.
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Figure 3. TBZ, which depletes DA, was hypothesized to have the opposite effect of DA, increasing

pDARPP-32(Thr75) in substance-P-positive neurons and pDARPP-32(Thr34) in enkephalin-positive

neurons (For more details: Nunes et al., 2013)

TBZ substantially reduced extracellular DA in NAcb core measured by microdialysis,

and also affected DA-related signal transduction in a manner consistent with reduced

NAcb D1 and D2 receptor transmission (Robertson et al., 1992; Santerre et al., 2012;

Nunes et al., 2013). TBZ increased cFos immunoreactivity in NAcb core and shell,

which is consistent with a reduction in D2 transmission (Robertson et al., 1992; Santerre

et al., 2012). In addition, immunocytochemical studies have evaluated the different

forms of phosphorylated DARPP-32 after TBZ administration. This drug significantly

increased NAcb expression of both pDARPP-32(Thr34) and pDARPP-32(Thr75), and

previous results suggest that TBZ-induced increases in pDARPP-32(Thr75) would

reflect reduced transmission at DA D1 receptors, whereas the increase in pDARPP-

32(Thr34) would mark reduced transmission at D2 receptors (Svenningsson et al., 2004,

1999; Bateup et al., 2008; Yger and Girault, 2011; Nunes et al., 2013) (see Figure 3).

Nunes et al., (2013) showed an increase pDARPP-32(Thr34) and pDARPP-32(Thr75)

in NAcb after TBZ administration in rats. Administration of the selective adenosine A2A

antagonist MSX-3 reversed the increase of pDARPP-32(Thr34) but not the pDARPP-

32(Thr75) increase induced by TBZ (Nunes et al., 2013). Again, this was consistent

with studies showing that adenosine A2A receptors are co-localized with D2 receptors on

enkephalin positive neurons, but not with D1 receptors on substance-P positive neurons

(Svenningsson et al., 1999), and that A2A and D2 receptors can form heteromers and

interact via convergence onto c-AMP signal transduction cascades with opposite effects

(Ferré et al., 2008; Svenningsson et al., 1999). Moreover, TBZ at the same doses used in
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the immunochemical study, shifted response choice in rats, producing a decrease in

lever pressing and a concomitant increase in chow intake in the concurrent fixed-ratio

5/chow feeding choice task (Nunes et al., 2013) and this effect was reversed by MSX-3

(Nunes et al., 2013). Thus, these markers can be studied as an index of DA-adenosine

activity in the context of the study of motivation, and probably are involved in the

behavioral effects observed after DA-adenosine manipulations, as suggested by

previous studies showing that DARPP-32-KO mice are less sensitive to catalepsy

induced by a DA D2 antagonist (Fienberg et al., 1999).
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OBJECTIVES

The present dissertation reviews and studies the role of caffeine as a non-selective

adenosine A1 and A2A receptor antagonist in different mood and motivational processes.

The effects of caffeine will be compared with other selective and non-selective

adenosine antagonists.

Because ethanol is often consumed in combination with high doses of caffeine, and

since ethanol increases adenosine levels, several studies will address the interacting

effects of both substances on a motivated behavior that is also modulated by anxiety,

i.e., social interaction.

Adenosine receptors are co-localized with DA receptors and their activation leads to

functionally opposite effects. Thus, a second group of studies will evaluate the

interaction between caffeine and a DA depleting agent on the activational component of

motivation and its implications for depression.

Chapter 1 reviews human and animal studies that have focused so far on the behavioral

interaction between caffeine and ethanol, explaining the potential mechanism of action

for the interaction.

Chapter 2 compares the effect of high doses of caffeine and its active metabolite

theophylline (also present in some “energy drinks”), on behavioral activation,

coordination, anxiety and endocrine parameters.

Chapters 3 studies the effect of a broad range of doses of caffeine and selective

adenosine antagonists on their own or in combination with ethanol in order to explore

the adenosinergic substrate underlying the effect of caffeine-ethanol combinations,

focusing on their effects on social motivation and long-term social memory.

Chapter 4 evaluates the impact of A2A receptor deletion on social interaction and its

interaction with ethanol. The impact of the A2A deletion on social interaction will be

compared to its effect on anxiety.

Chapter 5 reviews the literature about the possible therapeutic effects on of caffeine on

depression in humans. In addition it reviews animal data on the impact of caffeine and

selective adenosine antagonists on animal models of depression, including a study about

the impact of caffeine on anergia-like impairments induced by a DA depleting agent
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(tetrabenazine (TBZ), which is known to induce symptoms of depression in humans),

using a T-maze barrier choice task for mice.

Chapter 6 explores the effect of caffeine on motivational impairments induced in mice

by a DA depleting agent (TBZ), using a novel 3-choice T-maze task for the assessment

of preferences between reinforcers with different effort demands. Intracellular markers

of DA receptor activity are also evaluated in order to assess the interaction between D2-

A2A or D1-A1 receptors after TBZ-caffeine administration.
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CHAPTER 1:

The Impact of Caffeine on the Behavioral Effects of Ethanol

Related to Abuse and Addiction: A Review of Animal Studies
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ABSTRACT:

The impact of caffeine on the behavioral effects of ethanol, including ethanol consumption

and abuse, has become a topic of great interest due to the rise in popularity of so-called

“energy drinks”. Energy drinks high in caffeine are frequently taken in combination with

ethanol under the popular belief that caffeine can offset some of the intoxicating effects of

ethanol. However, scientific research has not universally supported the idea that caffeine

can reduce the effects of ethanol in humans or in rodents, and the mechanisms mediating

caffeine-ethanol interactions are not well understood. Caffeine and ethanol have a common

biological substrate; both act on neurochemical processes related to the neuromodulator

adenosine. Caffeine acts as a non-selective adenosine A1 and A2A receptor antagonist,

while ethanol has been demonstrated to increase the basal adenosinergic tone via multiple

mechanisms. Since adenosine transmission modulates multiple behavioral processes, the

interaction of both drugs can regulate a wide range of effects related to alcohol

consumption and the development of ethanol addiction. In the present review we discuss

the relatively small number of animal studies that have assessed the interactions between

caffeine and ethanol, as well as the interactions between ethanol and subtype selective

adenosine receptor antagonists, in order to understand the basic findings and determine the

possible mechanisms of action underlying caffeine-ethanol interactions.

KEYWORDS: ethanol intake, energy drink, adenosine, methylxanthine, anxiety,

locomotion, withdrawal.
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1. Caffeine as a modulator of ethanol abuse

Caffeine and ethanol are widely consumed recreational drugs.1,2 Alcohol abuse is a

worldwide health problem, with serious medical, economic, and social consequences.3,4 On

the other hand, caffeine intake, even in excess, appears to be relatively well accepted

because methylxanthines have activating and attention preserving properties that can help

productivity and enhance performance. Interest in caffeine has grown ever since the

introduction to the market of the so-called “energy drinks”, which contain caffeine and

related substances in quite high concentrations. These drinks are being increasingly

consumed, often in combination with substances that have abuse potential.5 In addition,

research with animals has demonstrated the ability of methylxanthines, and in particular

caffeine, to modulate the psychopharmacological effects of drugs of abuse such as

methamphetamine6, amphetamine7, nicotine8,9, cocaine10, and ethanol.11 The reasons for

combining caffeine with ethanol may stem from the popular belief that caffeine can

antagonize the intoxicating effects of alcohol.12 Some studies have supported this

hypothesis, demonstrating that caffeine attenuates ethanol-induced changes in

psychological parameters in humans such as information processing, memory,

psychomotor performance, and others (for a review13).

Caffeine has been shown to indirectly modulate the activity of many neurotransmitters and

neuromodulators, including dopamine, acetylcholine or glutamate14-17 in various brain

areas. But in terms of direct actions, caffeine is most widely described as an adenosine

receptor antagonist that is nonselective for A1 and A2A subtypes of adenosine receptors in

the central nervous system (CSN). 1,17-19 Several papers have demonstrated that there are

interactions between adenosine and ethanol. Ethanol can increase extracellular adenosine

levels by increasing adenosine release20,21, and by decreasing adenosine uptake22 that takes

place via a facilitative nucleoside transporter.23,24 Inhibition of this transporter in the
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presence of ethanol would lead to an increase in extracellular adenosine and could thereby

modulate some of the effects of ethanol.21 Secondarily, ethanol increases adenosine levels

because acetate generated by ethanol metabolism promotes adenosine synthesis25 (see

Figure 1).

Fig. 1. Schematic showing ethanol regulation of adenosine production (1) release (2), and uptake (3), as well

as caffeine blockade of adenosine receptors (4) in the CNS. Abbreviations: A1R and A2AR, adenosine A1 and

A2A receptors; ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; ATP, adenosine triphosphate;

AMP, adenosine monpohospahte; CAT-H2O2, catalase; CYP-2E1, cytochrome P4502E1; ENT, equilibrative

nucleoside transporters.

In contrast to the studies showing that caffeine can blunt the effects of ethanol, there also is

evidence that fails to support the idea of an antagonistic behavioral interaction between

caffeine and ethanol, either in humans26,27 (for review13), or in rodents.28,29,30 A

considerable number of studies employing experimental animal models have been

performed to elucidate the impact of caffeine on the effects of ethanol and on ethanol

consumption. In the present review we have emphasized those studies addressing

behaviors that can be relevant for the development of alcohol consumption, abuse, and
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addiction as a compulsive habit, as well as studies that evaluate signs of dependence after

withdrawal, such as physical abstinence and craving, which are factors that can lead to

relapse.

Drug addictions, including alcoholism, can be conceptualized as disorders of motivation

characterized by an excessive control of the drug over behavior.31-33 This disorder involves

a reorganization of the preference structure of the person, dramatic changes in the

allocation of behavioral resources towards the addictive substance34,35, and alterations in

the elasticity of demand for the drug.36 Typically, there is a heightened tendency to engage

in drug-reinforced instrumental behavior and drug consumption, often at the expense of

other behavioral activities. Addicts will go to great lengths to obtain the drug, overcoming

numerous obstacles and constraints. In addition, the development of addiction is attributed

to a profound sensitization in the neural processes that mediate drug-seeking behavior,

which can facilitate the incentive properties of drugs and drug-related stimuli as the

addiction process proceeds.37,38 Thus, as addiction progresses, the drug itself, as well as

drug-associated stimuli, trigger an automatic seeking response that ultimately resolves in

the consumption of the drug. This automatism has compulsive characteristics that are

devoid of instrumental feedback, leading to the formation of drug-related habits.39,40 Thus,

addiction is a very complex set of behavioral and physiological processes that range all the

way from drug consumption, to tolerance for some effects, sensitization of motor activity,

establishment of implicit and explicit learning, initial sensitivity to reward and punishment,

attention shifts, responsivity to Pavlovian cues, and other processes.

In the present review, studies addressing the impact of caffeine on some of those behaviors

modulated by ethanol will be summarized. Because the opposing actions of ethanol and

caffeine on the adenosine system, studies focusing on the effects of selective adenosine

receptor agonists and antagonists and their interaction with ethanol will be also presented

in an attempt to shed light upon potential receptor mechanisms involved.
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2. Caffeine-ethanol interactions: effects on locomotion

Evaluation of the behavioral stimulant or suppressant actions of drugs is frequently

conducted by analyzing the locomotor activity of animals.41,42 Although ethanol is

generally classed as a sedative-hypnotic and caffeine is considered to be a minor stimulant,

both drugs are able to stimulate locomotor activity in rodents at some dose43-48, typically

with bell-shaped (or inverted-u) dose response functions. Rodents (more in mice than rats)

show a time- and dose-dependent locomotor response to acute ethanol administration, with

low doses stimulating and high doses reducing locomotion.46,49-52 Methylxanthines such as

caffeine also can affect locomotor activity in a biphasic way.53-56 However, few studies

have evaluated caffeine-ethanol interactions using locomotion as a measure.51,53,57,58

Waldeck (1974) evaluated the effect of ethanol (1, 3 or 4 g/kg, intraperitoneal; IP) and

caffeine (25, 50 or 100 mg/kg, IP) on locomotor activity in female mice, and observed that

a moderate dose of caffeine (25 mg/kg) that stimulated locomotion also potentiated the

stimulation induced by ethanol administered at the lowest dose (1 g/kg), although it

abolished the stimulant effect of a higher dose of ethanol (3 g/kg). On the other hand, a

motor suppressant dose of caffeine (100 mg/kg) totally blocked the stimulant effect of

ethanol (1 g/kg). Moreover, the motor suppressant effect of the higher dose of ethanol (4

g/kg) was potentiated by all doses of caffeine employed51. These results with female mice

are in close agreement with the observations obtained from cats reported by Pilcher (1911).

This author concluded that “when small doses of caffeine and alcohol are combined, the

result is generally a qualitative algebraic summation of both actions, i.e. each drug

produces, qualitatively, its ordinary effects. However, when large doses of the two drugs

are combined, the effects of the stimulant drug tend to be reversed, resulting in a greater

suppression than the suppressant drug alone”.57
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Oral administration of both drugs in mice could be a useful tool for studying the effects of

ethanol-caffeine interactions, since both drugs are consumed orally in humans. Indeed, as

mentioned above, energy drinks contain high concentrations of caffeine, and their

consumption in combination with alcoholic beverages is a common practice among young

people. The popular belief suggests that, in humans, energy drinks could reduce the

intensity of the motor suppressant effects of ethanol.26 However, only one study has

explored the effects of ethanol on the stimulant effects of energy drinks in animal

models.59 In this study done in mice, the oral administration of energy drinks did not

significantly alter the effects of moderate oral doses of ethanol (0.5, 1.0 or 1.5 g/kg), but

was able to reduce the suppressant effects of a higher dose of ethanol (2.5 g/kg). It is

possible that in this study some effects could be attributed to other stimulant components

of the energy drinks, such as taurine, which has been shown to interact with ethanol on

locomotion.60,61 However, acute oral co-administration of caffeine at a low dose (10

mg/kg) combined with ethanol (1.6, 2.4 and 3.2 g/kg) was demonstrated to increase

locomotor activity compared with the effect observed after separate administration of each

individual drug.53

It is also relevant to consider the effects of acute administration of caffeine or ethanol on

the chronic actions of these substances.58,62-64 Chronic caffeine intake reduces spontaneous

locomotion in mice62, and rats.58 However, chronic caffeine consumption (0.1% during 30

days) increased sensitivity (relative to water consumption) to the activating effects of an

acute dose of ethanol (1.5 g/kg, IP) in rats.58 In contrast, in mice exposed to chronic

caffeine (1 g/L during 7 days), acute doses of ethanol (1.5 and 2.5 g/kg, IP) significantly

induced locomotion, but never to the level of animals in the water control group.62-64

Furthermore, acute caffeine administration (10-35 mg/kg) increased locomotion to a

similar extent in mice chronically consuming ethanol (5%, v/v) and those in the water

control group (in this case ethanol did not affect spontaneous locomotion). Thus, chronic
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consumption of ethanol did not change the acute stimulant effects of caffeine.62 The same

pattern of results was found after acute administration of 5'-N-ethylcarboxamidoadenosine

(NECA), an adenosine agonist with high affinity for both A1 and A2A adenosine receptors.

In this case, NECA suppressed locomotion in a similar manner in mice chronically

consuming either water or ethanol.62

Adolescence is a vulnerable time for organisms exposed to drugs of abuse such as

ethanol.65 It is widely acknowledged that the human adolescent brain is not fully

mature66,67, and there is evidence from animal studies that exposure to alcohol during

adolescence can affect subsequent brain/behavior development.68,69 Voluntary consumption

of ethanol (at a concentration of 8.5 g/L that led to a dose of 1.0-1.5 g/kg), caffeine (at a

concentration of 170 mg/L that led to a dose of 20-30 mg/kg), or an ethanol-caffeine

combination during late adolescence in male and female rats had effects on subsequent

adult behavior that were dependent on the sex of the rats.70 Males showed more ambulation

following exposure to the alcohol-caffeine mixture, while females exposed to the mixture

showed the opposite effects, i.e., suppressed ambulation.70 This pattern of results could be

related to sex differences in the sensitivity to the neurotoxic effects of caffeine.71 In

hippocampal cultures pre-exposed to 5 mM ethanol for 10 days, caffeine (5 or 20 µM)

produced greater neurotoxicity in cultures from female tissues than from male ones,

specifically in the dentate gyrus and CA1 region.71 These results demonstrate the

importance of including both sexes in investigations of this sort.

In summary, the interacting effects of caffeine and ethanol on locomotor activity are quite

complex. It seems that at low doses, acute caffeine administration can increase the

stimulant effects of acute doses of ethanol. However, when caffeine or ethanol doses are

higher, a potentiation of the suppressant effects of both substances is most evident. On the

other hand, chronic administration of either substance does not appear to change the acute

doses at which locomotion can be stimulated.
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3. Caffeine-ethanol interactions: effects on motor coordination

At medium to high doses, a typical action of ethanol is to impair motor coordination.72-76

This effect generally shows tolerance with repeated ethanol exposure.77,78 The

development of tolerance appears to be relevant for the emergence of ethanol abuse and

dependence, because it can attenuate the performance impairing effect of the drug, which

promotes the use of escalating doses.79 Several studies have investigated the ability of

caffeine to modulate ethanol-induced motor incoordination and have explored the possible

involvement of adenosine receptors.28,29,76,80-82

A single injection of a broad range of doses of caffeine (5 - 75 µg) administered in the

brain ventricles (ICV) or peripherally (2.5 - 62.5 mg/kg, IP) did not alter motor

coordination in mice evaluated in the rotarod test.80,81 However, pretreatment with low

doses of caffeine (2.5-25.0 µg ICV, or 2.5-5.0 mg/kg IP) was effective in decreasing the

degree and duration of motor incoordination produced by a single dose of ethanol (2 g/kg,

IP). The antagonism by caffeine of ethanol-induced motor incoordination was dose related,

since higher doses of caffeine (75 µg ICV, or 62.5 mg/kg IP) enhanced ethanol-induced

motor incoordination.80,81 The methylxanthine (and caffeine metabolite) theophylline was

less potent, but dose-dependently attenuated (100-150 µg, ICV, 50 mg/kg IP) the motor

incoordinating effect of acute ethanol (1.5-2 g/kg, IP).73,74 On the other hand, potentiation

of ethanol-induced ataxia was also observed after pretreatment with another

methylxanthine, 3-isobutyl-1-methylxanthine (IBMX).81

Chronic oral administration of caffeine for 10 days (45 and 90 mg/kg/day) and IBMX (30

and 60 mg/kg/day), potentiate acute ethanol-induced motor incoordination (1.5 g/kg, IP),

an effect that was associated with increased adenosine A1 receptor binding compared to tap

water controls.28 However, no interaction with ethanol-induced motor incoordination (1.5
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g/kg, IP) was observed after chronic theophylline (75 and 150 mg/kg/day) consumption.28

This lack of effect of chronic theophylline on motor incoordination induced by ethanol was

paralleled with the lack of changes in A1 receptor density.28

More recently, it has been demonstrated that acute oral co-administration of caffeine (20

mg/kg) and ethanol (2.5 g/kg) attenuated the ethanol-induced motor impairment in rats

evaluated in the accelerating rotarod.29 This effect was also observed after acute IP

administration of an A1 selective receptor antagonist (8-cyclopentyl-1,3-dipropylxanthine;

DPCPX) injected after oral ethanol administration, but not with an A2A selective receptor

antagonist 2-(2-Furanyl)-7-(2-phenylethyl)-7H- pyrazolo[4,3-e][1,2,4]triazolo[1,5-

c]pyrimidin-5-a mine (SCH 58261), suggesting again that A1 adenosine receptors are

involved in motor incoordination induced by ethanol.29 However, microinfusions of both

the A1 receptor-selective agonist cyclohexyladenosine (CHA) and the A2A selective agonist

5’-Nethylcarboxamido-2-[2-(4-phenyl-(3-propanoic acid)] (CGS21680) into the rat motor

cortex significantly accentuated motor incoordination induced by ethanol (1.5 g/kg IP) in a

dose-related manner.76 CHA was more potent than CGS21680 in producing this effect.

However, the potentiation induced by A1 and A2A agonists was attenuated by the A1-

selective antagonist DPCPX but not by the A2A receptor-selective antagonist 8-(3-

chlorostyryl)caffeine (CSC), further emphasizing the involvement of the adenosine Al

receptor subtype in these effects.76

The involvement of different adenosine receptors in the development of rapid tolerance to

ethanol-induced motor incoordination in mice has also been evaluated.82 A single

administration of caffeine (3, 10 or 30 mg/kg, IP) or selective antagonists of A1 or A2A

receptors did not change the performance of animals treated with ethanol (2.5 g/kg) on the

first day of testing. However, caffeine administered on the first day was able to block the

development of tolerance to ethanol that was manifested on the second day. Moreover,
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caffeine’s blockade of the rapid tolerance to ethanol-induced incoordination appears to be

mediated by A1 rather than A2A receptors, because DPCPX but not 4-(2-[7-Amino-2-(2-

furyl)[1,2,4]tri azolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM241385) also

blocked rapid tolerance. These data are in agreement with previous studies29,76, and it is

reasonable to suggest that this effect may be due to the high number of A1 receptors in

areas controlling motor coordination, such as the cortex and cerebellum.83

To summarize, acute low doses of caffeine can reduce the incoordination effects of

ethanol, but high doses of caffeine can potentiated them. Moreover, adenosine A1 receptors

appear to be more important for these effects than A2A receptors. The ability of caffeine to

attenuate the rapid tolerance to ethanol-induced incoordination effects also has been

attributed more to A1 than A2A receptors.

4. Caffeine-ethanol interactions: sedation and narcosis

Ethanol intoxication produces sedative and, at high doses, even hypnotic effects.72,84-86 In

contrast, caffeine enhances wakefulness and alertness, effects that are associated with its

ability to block adenosine receptors.87-91 Although the effects of ethanol or caffeine on

sedation and alertness have been widely described, their interaction is much less well

characterized, and only a few studies have explored the impact of caffeine on the narcosis

or loss of the righting reflex (LORR) induced by ethanol in rodents.28,92-95

For example, it has been demonstrated in mice that when coffee (15 mg/ml) or caffeine

(0.5 mg/ml) were orally administered before ethanol (75% v/v), the latency to LORR

increased.92 However, this effect was not observed when caffeine was administered after

ethanol. Moreover, this effect was not due to pharmacokinetic interference, since no

decrease in plasma ethanol levels was detected in mice pretreated with coffee or caffeine.92

In another study in mice, an intermediate dose of caffeine (25 mg/kg, IP) administered
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before an IP injection of narcotic doses of ethanol also blunted the effect of ethanol, in this

case by reducing the duration of LORR.93 This effect was not seen with higher doses of

caffeine (40-100 mg/kg).81,93 Theophylline (50 mg/kg, IP), produced the same pattern of

effects, prolonging the onset and shortening the duration of ethanol-induced LORR81,73,

however IBMX (12.5 mg/kg IP) did not altered LORR induced by ethanol.81

Comparisons between caffeine and theophylline have also been conducted in long-sleep

(LS) and short-sleep (SS) mice, which are selectively bred for differences in sensitivity to

the LORR induced by ethanol but also have differential sensitivity to purinergic agonists

and antagonists.94 LS and SS mice showed differences in sensitivity to the non-selective

adenosine antagonists, theophylline and caffeine.95 These drugs also produced a distinct

pattern of effects in the two strains of mice; while theophylline reduced the duration of

LORR induced by ethanol in both strains of animals (at a broader range of doses in LS

mice), caffeine only did so in LS mice. Moreover, caffeine at doses of 10 and 20 mg/kg

increased LORR in SS mice. Theophylline did not change blood or brain ethanol

elimination rate, but the effects of caffeine on blood ethanol levels were affected.95 The A1

receptor-selective agonists CHA and l-phenylisopropyladenosine (PIA), as well as the non-

selective A1-A2A agonists, 2-chloroadenosine (CAD) and N-ethylcarboxamidoadenosine

(NEC), increased LORR in both LS and SS mice.95 In general, LS mice were more affected

than SS mice by purinergic drugs, suggesting that there may be differences in the

adenosine systems of these lines of mice; this observation may aid in understanding how

they differ in ethanol sensitivity as well.

As discussed above, adenosine is involved in mediating many of ethanol’s intoxicating

effects, such as ataxia 74,96,97 and sedation (for review98,99). However, in rodents, adenosine

analogues seem to increase LORR only during interactions with hypnotic drugs, rather

than causing a direct deep hypnotic effect or unconsciousness.100 Thus, dipyrimadole (30-
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40 mg/kg IP), an inhibitor of adenosine uptake, increased duration of LORR in mice only

following the administration of hypnotic doses of ethanol (3.5-4.0 g/kg, IP).73,93 In regard

to the specific adenosine receptors implicated in the modulation of the hypnotic effects of

alcohol, more recent studies using novel selective A2A antagonists suggest that A2A rather

than A1 receptors seem to mediate this effect. The A2A antagonist SCH58261 but not the

A1 antagonist DPCPX blocked LORR induced by ethanol.93 In addition, female and male

mice lacking the adenosine A2A receptor (i.e., A2A KO mice) showed a reduced duration of

LORR compared to their wild-type (WT) siblings after ethanol administration.93,101

In summary, adenosine agonists seem to potentiate the duration of LORR, while adenosine

antagonists reduce LORR induced by high doses of ethanol. In general, non-selective

adenosine receptor antagonists, as well as selective A2A antagonism or genetic deletion,

reduce ethanol induced LORR.

5. Caffeine-ethanol interactions: effects on learning and memory.

High doses of ethanol can also cause learning impairments, amnesia, or impaired retrieval

of information, effects that can persist long after the drug wears off.102-104 Complete or

partial memory impairment occurs commonly from episodes of binge drinking in both

alcoholics and nonalcoholics.105 This memory impairment may reflect a disruption of

encoding, storage, consolidation, and/or retrieval capability.106,107 Other studies have

shown that moderate doses of ethanol delivered after learning generally enhance or have

little effect on memory examined the next day108,109, and caffeine at moderate doses has

been shown to facilitate memory acquisition and retention in animals assessed on various

learning tasks.110-113

A few papers have focused on the interaction between caffeine and ethanol on memory in

rodents.114,115 Ethanol and caffeine co-administration has demonstrated to be

neuroprotective in different models of ischemia.114,116,117 Thus, an acute administration of
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caffeinol (combination of 10 mg/kg caffeine plus 0.65 g/kg alcohol, IP) 15 minutes after

traumatic brain injury in rats, produced an improvement in working memory tasks in the

Morris water maze, compared to vehicle treated animals.114 This protection was not due to

effects on motor performance.

Retrograde amnesic effects of ethanol, caffeine or a combination of both agents have been

evaluated in rats with an olfactory memory test that uses social odors.115 A high dose of

ethanol (3.0 g/kg, IP) administered after exposure to a novel odor produced memory recall

or retrograde memory impairments the following day, and caffeine (5 mg/kg, IP), either 20

min before or 1 h after exposure to the novel odor prevented this ethanol disruption in

recognition memory.115

In humans, ethanol and caffeine can also produce state-dependent memory effects.118,119

State dependent learning or memory is the term applied to the condition in which a

behavior that is learned in a drug state is most readily recalled when the organism is in the

same drug state.120 In rodents, administration of ethanol before training can impair the

retrieval of tasks learned in a state- dependent manner, which is reversible by re-

administering ethanol before the retrieval test.121,122 This type of study also reflects the

ability of ethanol to serve as an interoceptive cue that can aid learning and performance of

a specific operant response.123 Defined in this way, acute ethanol administration can exert

state-dependent effects on conditioned avoidance responding.124,125 However, caffeine (100

mg/kg, IP) does not change the performance of rats already trained to discriminate the

interoceptive cue produced by ethanol administration (1.5 g/kg, IP) in an active avoidance

task performed in a typical 3-chamber apparatus.126

The interaction between caffeine and ethanol also has been evaluated using the acquisition

of an avoidance task performed in a plus-maze discrimination apparatus.127 This apparatus

uses an elevated plus-maze consisting of two opposing open arms and two opposing
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enclosed arms. During training, animals are free to explore all four arms but are

conditioned to avoid one of the enclosed arms (the aversive arm) by the presentation of

both light and white noise stimuli when they enter that arm. During the testing session (24h

after the training session), animals are free to explore all four arms again, but no cues are

presented. Time in the aversive arm was used as an index of memory. Ethanol alone (1.0

and 1.4 g/kg, IP) or in combination with caffeine (20 and 40 mg/kg, IP) administered

before the training session produced a learning deficit manifested during the test session.

Only the highest dose of caffeine alone (40 mg/kg) produced that effect. However, that was

not due to a state-dependent effect since the administration of this dose of caffeine before

the test did not reverse the learning deficit.127

Caffeine also does not change the conditioned avoidance of a sweet solution produced by

ethanol. This conditioned taste avoidance (CTA) is produced by administering an acute

dose of ethanol following voluntary consumption of sacharine, and is observed as a

reduction in saccharine consumption the following day.128 Caffeine (2.5-10 mg/kg, IP) did

not block the association between taste and ethanol effects (1.0-1.5 g/kg, IP), thus

saccharine consumption was not restored. However, caffeine by itself was able to produce

CTA at a moderate dose (20 mg/kg, IP).128

Taken together, these studies indicate that caffeine appears to prevent explicit memory

deficits induced by high doses of ethanol, but does not affect the perception of the

interoceptive cue generated by ethanol, and it does not prevent the disruptive effects of

ethanol on avoindance learning in discriminative procedures, suggesting a lack of effect of

caffeine on implicit learning processes regulated by ethanol.

6. Caffeine-ethanol interactions: effects on anxiety and stress
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Considerable evidence indicates that ethanol is capable of reducing anxiety levels in

humans and other animals129-131, and adenosine has been proposed as a mediator of this

anxiolytic effect.132-134 In this regard, adenosine itself, as well as adenosine receptor

agonists, have anxiolytic effects as assessed by a number of ethological tests in rodent

models.135,136 On the other hand, methylxantines such as caffeine and theophylline have

been demonstrated to increase anxiety in humans137-140 and in rodents in different anxiety

paradigms.127,141-144

Caffeine modulation of the effects of ethanol on anxiety has been explored in a handful of

studies70,127,132, which also assessed the role of adenosine receptor subtypes in this

interaction. Thus, caffeine, across a broad range of doses that extended into the anxiogenic

range (10-40 mg/kg) was shown to reduce the anxiolytic-like effect of ethanol (1.0-1.4

g/kg, IP) in the elevated plus-maze in mice.127,132 The effects of caffeine on acutely

administered ethanol appeared to be mediated by A1 adenosine receptors, since the

selective adenosine A1 receptor antagonist DPCPX but not the A2A receptor antagonist

ZM241385 significantly reduced the anxiolytic-like effect of ethanol (1.2 g/kg).132

Moreover, an anxiolytic response was observed after co-administration of non-anxiolytic

doses of the A1 adenosine agonist 2-Chloro-N6-cyclopentyladenosine (CCPA) and

ethanol.132

A different pattern emerges when these substances are administered chronically. The

anxiety-related effects of chronic oral consumption of alcohol (1.0-1.5 g/kg) combined

with oral consumption of caffeine (20-30 mg/kg) during adolescence was evaluated in

male and female rats when they reached mid-adulthood.70 Males that had previously

consumed alcohol plus caffeine showed anxiolysis in the light and dark box and in the

open field. However, females exposed to the drug mixture showed an anxiogenic-like

effect.70 Thus, as described above, results in females and males seem to be opposite.
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Caffeine and ethanol not only regulate anxiety-like behavior, but also regulate stress

responses involving activation of the hypothalamo–pituitary–adrenal (HPA) axis.144-151

HPA axis activation ultimately leads to increases in the biosynthesis and systemic secretion

of adrenocorticosteroids. The effects of alcohol and other drugs of abuse on this axis are

relevant because a link between the stress response and drug abuse and addiction has been

observed. Stress is one of the main factors stimulating drug consumption and the relapse to

drug taking in abstinent addicts.152,153 Furthermore, chronic drug exposure affects the brain

stress response systems. Thus, drug abuse is often accompanied by enhanced brain stress

responses, which in turn may contribute to the addiction process.153

In regard to ethanol and caffeine, moderate acute doses of ethanol145-148 or caffeine144,149-151

have been shown to increase plasma corticosterone levels in rodents and cortisol in

humans. But only one study so far has explored the interaction of caffeine and ethanol on

corticosterone release.154 In this study, a low dose of caffeine (5 mg/kg IP) delivered before

a low dose of ethanol (0.8 g/kg IP) elevated plasma corticosterone levels. This increase

was not observed after ethanol or caffeine were administered alone.154

In summary, more studies need to evaluate this complex interaction, but so far, the

evidence suggests that caffeine and ethanol can counteract each other’s effects on acute

anxiety levels in rodents, and some of this evidence points to A1 adenosine receptors as

being responsible for the anxiolytic effects of ethanol as well as of the reversal of this

effect by caffeine. It would be very important to have a clearer view of the interaction

between these substances after chronic consumption, because tension reduction theories

suggest that the anxiolytic effects of alcohol facilitate alcohol use by anxious

individuals.155,156 Moreover, a growing body of evidence shows that corticosterone may

directly modulate alcohol drinking.157-160

7. Effect of caffeine on alcohol self-administration
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Epidemiology studies have shown that a positive correlation may exist between the

consumption of caffeine and that of ethanol.161,162 Moreover, it has been demonstrated that

people who use energy drinks consume alcohol more frequently than people who do not

(for review13). Studies in rodents have shown a complex relationship between caffeine and

ethanol intake.11,163-165 Caffeine administered in the diet of malnourished female rats has

been shown to facilitate voluntary ethanol drinking in a free access two-bottle paradigm163-

164, and removal of caffeine from the diet restored alcohol consumption to baseline levels.

This effect was not taste-related, because quinine did not produce the same pattern as

caffeine.164 However, slow-release caffeine pellets (200 mg/day during 21 days) failed to

alter ethanol intake in an un-limited free choice paradigm in female rats.166. This lack of

effect was specific to caffeine, since slow-release pellets containing other stimulants did

increase ethanol consumption.166 Caffeine administered acutely did not produce a

consistent pattern of effects; a low dose of caffeine (5 mg/kg, IP) promoted ethanol

drinking in male rats using a limited-access two-bottle choice paradigm.11 However, a high

acute dose of caffeine (50 mg/kg, IP) decreased ethanol as well as food intake in deprived

male and female rats.167 The lack of caffeine effects on ethanol intake has been also

demonstrated in a recent study.168 The presence of caffeine (1g/L) in alcoholic solutions

(10% v/v) did not increase the ethanol consumption of male rats exposed to a free-choice

procedure during 50 days. Interestingly, it did prevent the alcohol deprivation effect

(ADE), blocking an increase of ethanol intake after an abstinent period of 7 days.168

Because ADE has been suggested as an animal model of human alcohol craving and

relapse169, the effect of caffeine on such effect is a very relevant finding.

Research on the role of adenosine receptor subtypes in ethanol intake has mainly focused

on A2A receptors. Ethanol intake and preference was increased in male and female KOA2A

mice compared to their WT counterparts in a free choice task.101 Results in the same
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direction have been observed in studies employing pharmacological manipulation of

adenosine transmission. Both acute and subchronic (7 days) IP administration of the A2A

receptor antagonist 8-Ethoxy-9-ethyl-9H-purin-6-amine (ANR94) increased levels of

ethanol intake in alcohol-preferring rats assessed in a free choice task.170 Conversely, a

reduction of ethanol intake was observed after acute IP administration of the A2A receptor

agonists CGS21680 and 5′-N-ethylcarboxamido-2-(2-phenethylthio (VT7).170

The involvement of adenosine A2A receptors in ethanol seeking and intake also has been

evaluated in operant chambers in which animals have to exert various levels of effort to

have access to ethanol (e.g. lever pressing on fixed ratio (FR) schedules ranging from FR1

to FR3.170-173 In this case, the pattern of effects produced by different A2A receptor

antagonists was more complex. While SCH58261 reduced the number of ethanol-

reinforced responses and ethanol consumption173, ANR94 increased responding.170

Moreover, DMPX had a multiphasic effect on the number of lever presses and amount of

ethanol consumed during operant self-administration.171,172 The A2A agonists CGS21680

and VT7 decreased lever pressing and alcohol consumption in alcohol-preferring rats

tested on a FR1 schedule.170 Using the same behavioral procedure, no effect was observed

with an adenosine A1 antagonist DPCPX.171,173

Taken together, it appears that the results so far are not conclusive. The specific effects of

adenosine antagonism on ethanol self-administration may depend on factors such as food

restriction, sex, ethanol-intake or reinforcement paradigms, or other factors. For instance, it

has been suggested that the suppressive effects of caffeine on ethanol intake seen in some

studies could be due to the use of high toxic doses of caffeine.166,167 However, the fact that

chronic caffeine blocked the ADE effect168 suggests that caffeine could be promising as a

treatment for protrective abstinence, although more studies should assess this point.
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Free intake

Drug Mechanism of
action Sex/Species Ethanol

concentration
Ethanol
Intake Refs.

Caffeine
Non selective

antagonist
A1/A2A

Male and
female rats 10% (v/v) Increase

11, 163,
164

Male and
female rats

5% (w/v)
10% (v/v)

Decrease 166, 167

Male rats 10%(v/v) No effect 168

ANR94 A2A antagonist
Male alcohol-
preferring rats

10% (v/v) Increase 170

A2A genetic deletion
Male and
female mice

3%-20% (v/v) Increase 101

CGS 21680
A2A agonist

Male alcohol-
preferring rats

10% (v/v) Decrease 170

VT7 A2A agonist
Male alcohol-
preferring rats

10% (v/v) Decrease 170

Operant self-administration

Drug Mechanism of
action Sex/Species

Ethanol
concentration/

schedule

Ethanol
Intake Refs.

ANR94 A2A antagonist
Male alcohol-
preferring rats

10 % (v/v), FR1 Increase 170

SCH58261 A2A antagonist
Male alcohol-
preferring rats

10 % (v/v), FR3 Decrease 173

DMPX A2A antagonist
Male rats

10% (w/v)
FR1

Decrease 172

Male rats
10 % (v/v),

FR3
Bimodal

effect
171

DPCPX A1 antagonist
Male
Alcohol-
preferring rats

10 % (v/v), FR3 No effect 171, 173

CGS21680 A2A agonist
Male alcohol-
preferring rats

10 % (v/v), FR1 Decrease 170

VT7 A2A agonist
Male alcohol-
preferring rats

10 % (v/v), FR1 Decrease 161

Table 1. Summary of the effects of pharmacological and genetic manipulations of adenosine receptors on

free ethanol intake and operant self-administration.
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8. Effect of caffeine on ethanol withdrawal

Withdrawal is a defining characteristic of drug dependence and is often characterized by

impaired physiological function and enhanced negative affect, symptoms strongly

associated with relapse.174 Symptoms of ethanol withdrawal appear between 12 and 24 hrs

after the time when ethanol levels in blood are no longer detectable. For instance, acute

withdrawal appears several hours after a high dose of ethanol has been administered, and

produces a mild set of symptoms (i.e., hangover) that, among other effects, can include

increased anxiety.133 Moreover, the withdrawal syndrome after chronic administration or

chronic consumption of significant amounts of ethanol is also characterized by an

increased anxiety response (for review175). Other common symptoms of this syndrome in

rodents are marked hyperalgesia176, tremors, piloerection177,178, changes in

cardiovascular179 and gastrointestinal functions177, seizures or convulsions180,181, which

corresponds to the withdrawal symptoms observed in humans (for review see 175,177).

Although there are no animal studies focusing on the impact of caffeine on anxiety induced

by ethanol withdrawal, other adenosine receptor modulators have been shown to regulate

signs of ethanol withdrawal. The administration of adenosine 18 h after an acute ethanol

injection in mice, which is at the onset of the peak of withdrawal as characterized by high

levels of anxiety, reduced increases in anxiety observed in an elevated plus-maze.133 This

reversal effect was also observed after the administration of a selective adenosine A1

receptor agonist CCPA, but not after a selective adenosine A2A receptor agonist N6-[2-(3,5-

dimethoxyphenyl)-2-(2methylphenyl)ethyl]adenosine (DPMA).133 Moreover, the

anxiolytic effect of CCPA on ethanol withdrawal-induced anxiety was reversed by the

selective adenosine A1 antagonist DPCPX.133 The results from studies involving chronic

ethanol administration appear to be different from those observed after acute ethanol

administration. In this case the A1 receptor antagonist CPT reduced the anxiogenic effect
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produced by ethanol withdrawal in the elevated plus-maze and in the dark/light test in

rats.176

Removal of a liquid diet containing ethanol (6.7%, v/v) after chronic exposure led to

handling-induced hyperexcitability, a less frequently used behavioral measure of

withdrawal.182 Administration of an adenosine A1 receptor agonist R-PIA and the

adenosine A2A receptor agonist CGS21680 significantly reduced this withdrawal sign,

suggesting the involvement of both A1 and A2A receptors.182 In this study there were no

changes in adenosine A1 and A2A receptors or in adenosine transporter binding sites in the

frontal cortex and cerebellum. However, a reduction in adenosine transporter binding sites

was observed in the striatum of ethanol-withdrawn mice.182

The administration of adenosine, adenosine analogs, or dipyridamole (an inhibitor of

adenosine reuptake) has been shown to reduce the number of rats in which audiogenic

convulsions appeared during ethanol withdrawal.180 The adenosine A1 receptor agonist

CCPA also produced a dose-dependent reduction of the convulsions induced by an intense

audiogenic stimulus, as well as tremors, which were apparent 24 h after repeated high

doses of oral ethanol administration (12-18 g/kg per day) in rats.183 Moreover,

administration of the adenosine A1 antagonist DPCPX completely abolished the

antagonistic effects of the adenosine A1 agonist CCPA on both tremors and audiogenic

seizures during ethanol withdrawal.183 The A2A adenosine receptor also has been

implicated in withdrawal-induced convulsions.184,185 In fact, these receptors are expressed

in areas of the brain involved in epileptogenesis, including the striatum, neocortex and

hippocampus.186 A2AR KO mice are less susceptible to seizures caused by ethanol

withdrawal that was induced by the cessation after 10 consecutive days of ethanol intake

(up to 6.3% v/v). This effect has also been observed when the A2A adenosine receptor

antagonist ZM 241385 was administered during the last 5 of 10 days of ethanol intake.181
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Similarly, subchronic coadministration of theophylline (1 g/kg, IP; twice daily) during

chronic ethanol intake (6.5% w/v) was demonstrated to decrease hyperalgesia and

withdrawal scores in rats during ethanol withdrawal.187 However, the “protective” effect of

A2A receptor antagonism or repeated theophylline administration was not observed after the

acute administration of caffeine or theophylline (5-25 mg/kg, IP); in this case, there was no

effect on the audiogenic seizures observed during ethanol withdrawal in rats.180 However,

caffeine and theophylline did antagonize the suppressive effects of adenosine analogs on

these withdrawal symptoms.180

In summary, adenosine seems to play an important role in the regulation of ethanol

withdrawal. Agonism of the adenosinergic system, especially via stimulation of A1

adenosine receptors, reduces some of the withdrawal symptoms that occur after acute or

chronic ethanol administration. More importantly, pharmacological antagonism or genetic

deletion of adenosine A1 and/or A2A receptors could have a role in prevention of

withdrawal during ethanol intake.181,187 Nevertheless, most of these studies have employed

manipulations affecting specific adenosine receptor subtypes rather than caffeine itself, and

therefore have not directly assessed the popular believe that a cup of strong coffee can

antagonize some of the symptoms of ethanol-withdrawal, especially after an acute episode

of alcohol consumption in non alcoholic individuals.

9. Future directions

After reviewing the literature on caffeine-ethanol interactions one can see that a significant

body of work has been performed. However, a clear pattern of results does not easily

emerge. Further experiments are needed to establish the specific range of doses, patterns of

administration, sex differences, and other factors that could clarify some of the apparent

contradictions in the results observed in many of the studies presented above.
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More importantly, there is a dearth of studies about the interactions of both agents on

processes that are particularly relevant for addiction, such as Pavlovian conditioning, habit

formation, or motor sensitization, which seem to contribute to the acquisition and

intensification of compulsive drug-seeking behavior.38,40 Although sensitization of

locomotor activity by caffeine as well as cross-sensitization with other drugs such as

amphetamine188 and nicotine189 has been observed, so far there are no studies of possible

cross-sensitization between ethanol and caffeine. In fact, preliminary studies from our

laboratory show that caffeine reduces locomotion in animals repeatedly exposed to a

sensitizing dose of ethanol.190 Furthermore, the effects of caffeine-ethanol interactions on

learning processes are not well understood, in part due to the complexity of learning

processes per se. Caffeine has been demonstrated to induce conditioned place

preference191-193, and also to modulate conditioned place preference induced by

methamphetamine or cocaine6 It also would be important to study the effects of caffeine on

the acquisition of Pavlovian cues associated with ethanol in this paradigm.

In summary, despite the fact that this area of inquiry has grown increasingly important due

to the potential dangers of combining high-caffeine “energy” drinks with ethanol, animal

researchers have only scratched the surface of this complex and multifaceted field.

Additional investigations will be required to identify how caffeine and ethanol interact to

modulate the behavioral processes related to ethanol consumption, dependence, abuse and

addiction.
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Abstract

Rationale. Caffeine and theophylline are methylxanthines that are broadly consumed,

sometimes at high doses, and act as minor psychostimulants. Both are nonselective

adenosine antagonists for A1 and A2A receptors, which are colocalized with dopamine D1

and D2 receptors in striatal areas. Adenosine antagonists generally have opposite actions

to those of dopamine antagonists. Although the effects of caffeine are widely known,

theophylline has been much less well characterized, especially at high doses.

Methods. Adult male CD1 mice were used to study the effect of a broad range of doses

(25.0, 50.0 or 100.0 mg/kg) of caffeine and theophylline on measures of spontaneous

locomotion and coordination, as well as the pattern of c-Fos immunoreactivity in brain

areas rich in adenosine and dopamine receptors. In addition, we evaluated possible

anxiety and stress effects of these doses.

Results. Caffeine, at these doses, impaired or suppressed locomotion in several

paradigms. However, theophylline was less potent than caffeine at suppressing motor

parameters, and even stimulated locomotion. Both drugs induced corticosterone release,

however caffeine was more efficacious at intermediate doses. While caffeine showed an

anxiogenic profile at all doses, theophylline only did so at the highest dose used (50

mg/kg). Only theophylline increased c-Fos immunoreactivity in cortical areas.

Conclusion. Theophylline has fewer disruptive effects than caffeine on motor parameters

and produces less stress and anxiety effects. These results are relevant for understanding

the potential side effects of methylxanthines when consumed at high doses.

Key Words: methylxantines; incoordination; behavioral activation; anxiety; striatum;

prefrontal.



CHAPTER 2

79

1. Introduction

Caffeine is the most widely used psychoactive substance worldwide [1,2]. Average

consumption ranges from 100 to 400 mg per day, but consumption increased in some

groups of consumers with the introduction in the market of energy drinks [2].

Theophylline is a metabolite of caffeine that is also present in teas, as well as some

common dietary products [3].

Both methylxanthines exert their psychostimulant effects mainly through adenosine

receptor blockade [4,5]. Adenosine is a neuromodulator that is involved in multiple

functions such as sleep, attention, locomotion, and anxiety [6-8]. Adenosine acts on four

G-protein-coupled receptors: A1, A2A, A2B and A3 [4]. A1 and A2A receptors are the main

target for both caffeine and theophylline [4,5]. Whereas A1 receptors are widely

expressed in the brain, A2A receptors are mainly concentrated in the striatal complex

[4,9]. On striatal medium spiny neurons, A1 receptors are colocalized with dopamine D1

receptors while A2A receptors are colocalized and interact with D2 receptors; adenosine

and dopamine receptors can interact by forming heteromeric complexes, and also by

convergence onto the same signal transduction pathways [10,11]. Moreover, there is a

substantial amount of behavioral and neurochemical data showing that antagonism of

adenosine receptors, either with nonselective or A2A selective drugs, can reverse the

effects of dopamine D2 receptor antagonists on motor and motivational functions that

involve nucleus accumbens (Acb) and neostriatum [12-15]. Caffeine is being considered

as a possible therapeutic agent because of its ability to interact with dopamine receptors

and affect signal transduction in striatal neurons. In addition, caffeine has been proposed

as a neuroprotective agent to counteract the effects of dopaminergic neural loss [16,17].

Thus, caffeine is potentially useful for the pharmacological treatment of some

symptoms of Parkinson disease [18-20], depression [21] and other disorders that

involve dopamine transmission or basal ganglia circuitry.

However, although low doses of caffeine stimulate locomotion and do not impair motor

coordination in rodents [6,22,23], high doses can suppress locomotion [6,24,25]. High

doses of caffeine that are able to suppress locomotion also increase c-fos markers

throughout the striatum [26,27]. In addition, high doses of caffeine have been shown to

increase physiological parameters of stress such as plasma cortisol levels in humans

[28], and corticosterone levels in rats [8,29], and also to promote anxiety in humans (for

a review see [7]), and anxiogenic-like behaviors in animal models [30,31].
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Theophylline, despite its similar therapeutical potential [13,32] has been much less

explored, but it has been demonstrated that theophylline can suppress parkinsonian

symptoms in humans [33,34]. As is the case with caffeine, low doses of theophylline

can induce motor stimulant effects in rodents [32,35]. Nevertheless, there is a general

lack of information about the effects of theophylline, especially at higher doses.

Thus, the present experiments were undertaken to explore and compare systematically

the effects of moderate to high doses of caffeine and theophylline on measures of motor

activity, anxiety and neuroendocrine parameters, as well as their effect on c-Fos

immunoreactivity (to provide a marker of neuronal activation in dopamine and

adenosine-receptor rich brain areas). The effects of both drugs on different aspects of

exploration, vigorous exercise, and motor coordination, as well as the knowledge of

their impact on mood and stress responses, could be useful information for

understanding their potential side effects at high doses.

2. Materials and methods

2.1 Animals

CD1 adult male mice (N=406) purchased from Harlan-Interfauna Ibérica S.A.

(Barcelona, Spain) were 9 weeks old (30-45 g) at the beginning of the study. Mice were

housed in groups of three or four per cage, with standard laboratory rodent chow and tap

water available ad libitum. Subjects were maintained at 22 + 2 ºC with 12-h light/dark

cycles (lights on at 13:00 hours). To habituate the animals to the procedures, they were

handled and received a single saline injection the day before experimental procedures

started. Different groups of animals were used in each experiment, except for the anxiety

tests in which the same animals were serially tested in both paradigms. All animals were

under a protocol approved by the Institutional Animal Care and Use Committee of

Universitat Jaume I, and all experimental procedures complied with European

Community Council directive (86/609/ECC).

2.2. Drugs

Caffeine and Theophylline (Sigma-Aldrich, Spain) were dissolved in 0.9% w/v saline.

Saline solution was used as the vehicle control. All solutions were administered

intraperitoneally (IP) 30 minutes before behavioral testing, 90 minutes before brain
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extraction in the immunohistochemical study and 60 minutes before blood samples were

collected.

2.3. Behavioral apparatus and testing procedures

2.3.1. Locomotion in the open field arena (OF). The OF apparatus consisted of a clear

glass cylinder 25 cm in diameter and 30 cm high. The floor of the cylinder was divided

into four equal quadrants by two intersecting lines drawn on the floor. The behavioral

test room was illuminated with a soft light, and external noise was attenuated. Tests were

videotaped and locomotor activity was registered manually during 10 minutes. An

activity count was registered as horizontal locomotion each time the animal crossed one

quadrant with four legs. Animals were not pre-exposed to the OF in order to study

novelty-induced exploration and locomotion.

2.3.2. Locomotion in the running wheel (RW). The RW consists of a stainless steel

activity wheel (circumference = 24 cm) situated in a Plexiglas box (35 x 20 cm) with a

magnetic switch attached to a LCD counter for recording number of wheel turns.

Animals were exposed to the RW during 30 minutes in two consecutive days previous to

the test. The test day, counts on the wheel were registered during 30 minutes. The RW

generates stable basal high levels of activity when the animals are trained, and thus is

useful for evaluating conditions that suppress voluntary self-induced locomotion.

2.3.3. Motor coordination in the rotarod. The rotarod apparatus (UGO Basile, 7650)

consisted of an elevated rotating rod that requires coordinated movement in order to

avoid falling. Each mouse was placed in the rotating rod accelerating from 4 rpm to 20

rpm in increments of 4 rpm every 30 seconds. Animals were trained during 5 trials, and

tested for 5 more trials. A 390 seconds maximum cut-off on the rod was used. The

apparatus automatically recorded the time (in seconds) at the moment in which the

animal fell off the rod.

2.3.4. Anxiety in the elevated plus maze (EPM). The EPM consists of two open and two

enclosed arms arranged in a plus configuration. This anxiety paradigm measures the

avoidance that rodents show to elevated open spaces. The behavioral test room was

illuminated with a soft light. Animals were placed in the central platform facing the
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closed arm and assessed during 5 minutes. Tests were videotaped and a trained observer

registered time spent in the open arms, ratio of entries in the open arms to total arm

entries, latency to enter the open arms and total entries in the 4 arms as an index of

locomotion. An entry into an arm was recorded when the animal crossed the line that

connected that arm with the central platform with all four legs.

2.3.5. Anxiety in the dark and light (DL). The DL test is based on the conflict between

the inherent tendency of mice to explore a novel environment against their natural

avoidance of a brightly lighted open field. The DL apparatus consisted of a

polypropylene chamber divided in two compartments by a partition containing a small

opening. One chamber was open and illuminated while the other was closed and dark.

The behavioral test room was illuminated with a soft light. Each subject was placed in

the dark chamber. Tests were videotaped and the latency of the first entry into the lit

chamber, total time spent in the lit chamber and total number of crosses between

chambers, were recorded manually over 5 minutes. The same animal was first evaluated

in the EPM for 5 minutes and then immediately placed in the chamber for evaluation in

the DL during 5 more minutes.

2.4. Plasma corticosterone determination.

Mice received drug injections 60 minutes before being sacrificed by decapitation under

anesthesia. This time was chosen based on previous studies showing significant

increments in corticosterone levels between 30 and 100 minutes after caffeine

administration [8] and [29]. Blood samples were collected in heparinized (15 units/ml of

blood) Eppendorf tubes and centrifuged at 4000 rpm for 10 minutes. Supernatant was

taken and stored at -20°C until corticosterone determination. Plasma corticosterone

levels were measured spectophotometrically using a commercially available enzymatic

immunoassay kit (Rodents Corticosterone Enzyme Immunoassay System, OCTEIA

Corticosterone; Immunodiagnostic Systems LTD, Boldon, England). The ng/ml of blood

corticosterone concentration was determined using a logarithmic adjustment of the

standard curve.

2.5. c-Fos visualization and quantification.

Mice were anesthesized and perfused 90 minutes after receiving treatments. Brains were

collected and stored in 3.7% formaldehyde solution during 24 h and refrigerated in
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sucrose (30%), sodiumazide (2%) and PB 0.1M solution prior to slicing. Free floating

coronal sections (40 µm) were serially cut using a microtome cryostat (Weymouth, MA,

USA), rinsed in 0.01 M PBS (pH 7.4) and incubated in 0.3% hydrogen peroxide for 30

minutes to block endogenous staining. Sections were then rinsed in 0.01 M phosphate

buffer (PBS) (3 × for 5 minutes) and transferred into the primary antibody, anti-c-Fos

(Calbiochem, Germany) for 24 h incubation. Following the primary antibody treatment,

the sections were rinsed in PBS and incubated in the secondary antibody, anti-rabbit

HRP conjugate, envision plus (DAKO, Denmark) for 1.5 h. The immunohistochemical

reaction was developed using diaminobenzidine (DAB) as the chromagen (DAKO).

Processed sections were then mounted to gelatin-coated slides, air dried, and cover-

slipped using Eukitt® (Sigma Aldrich) as a mounting medium. The sections were

examined and photographed using a Nikon Eclipse E600 (Melville, NY, USA) upright

microscope equipped with an Insight Spot digital camera (Diagnostic Instruments, Inc).

Placements for the photographs were counterbalanced between right and left

hemispheres for all the animals and structures. Images of the regions of interest were

magnified at 20X and captured digitally using Stereo Investigator software. Cells that

were positively labeled for c-Fos were quantified with ImageJ software (v. 1.42,

National Institutes of Health sponsored image analysis program) in three sections per

animal, and the average value per mm2 was used for statistical analysis.

2.6. Statistics

Experiments used a between-groups design. Normally distributed and homogeneous

data were evaluated by a parametric two-way analysis of variance (ANOVA) followed

by non-orthogonal planned comparisons using the overall error term ([36] Keppel,

1991). Non-parametric data were analyzed with a Kruskal-Wallis one-way analysis by

ranks. The Mann-Whitney U test was used to compare between two groups for the

analysis of non-parametric data. A probability level of 0.05 or smaller was used to

indicate statistical significance. Effect size calculations (R2 values) were performed to

assess the magnitude of the effect for every drug in every parameter tested [36]. With

this type of effect size calculation, the magnitude of the treatment effect is independent

of the number of animals, and is expressed as the proportion of total variance accounted

for by treatment variance (for example R2 = 0.3 reflects 30% of the variance explained)

across experiments and measures (see Table. 2). Results are graphically depicted as

means ±SEM. Statistics were conducted using STATISTICA 7 software.
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3. Results

3.1. Effect of caffeine and theophylline on locomotor activity in the OF.

The two-way ANOVA (Treatment x Dose) showed a significant effect of the treatment

factor [F(1,67)= 6.33, p<0.05], a significant effect of dose [F(3,67)= 9.54, p<0.01], and

a significant treatment x dose interaction [F(3,67)= 6.36, p<0.05]. Planned comparison

analysis revealed a significant stimulant effect of 50.0 mg/kg theophylline (p<0.01) and

a depressant effect on locomotion of the highest dose of caffeine used (100.0 mg/kg)

(p<0.05), both compared with their respective vehicle treatment. Caffeine and

theophylline were significantly different from each other in their effects at the higher

doses, 50.0 and 100.0 mg/kg (p<0.01), as measured by planned comparisons.

3.2. Effect of caffeine and theophylline on locomotor activity in the RW.

The two-way ANOVA (Treatment x Dose) showed a significant effect of the treatment

factor [F(1,64)= 3.75, p<0.05], a significant effect of dose [F(3,64)= 16.05, p<0.01] and

a significant treatment x dose interaction [F(3,64)= 6.36, p<0.01]. Planned comparisons

analysis revealed that caffeine significantly decreased locomotion in the RW at all doses

used (25.0, 50.0 and 100.0 mg/kg) compared with vehicle (p<0.01), while theophylline

only showed this suppressant effect at the two highest doses (50.0 and 100.0 mg/kg)

compared with vehicle treatment (p<0.01) (see Fig. 1B). Thus, caffeine seems to be

more potent than theophylline at suppressing running in the RW.

3.3. Effect of caffeine and theophylline on rotarod performance.

The two-way ANOVA (Treatment x Dose) revealed that there was not an overall effect

of treatment on rotarod performance [F(1,46)= 0.09, n.s]. However, a significant effect

of dose [F(3,46)= 29.81, p<0.01], and a significant effect of treatment x dose interaction

[F(3,46)= 5.47, p<0.05] were observed. Planned comparisons revealed that caffeine at

doses of 50.0 and 100.0 mg/kg decreased time spent on the rotating rod (p<0.01) and

theophylline only showed this effect at the highest dose (100 mg/kg) (p<0.01). Caffeine

and theophylline were significantly different from each other at the dose of 50.0 mg/kg;

caffeine induced a greater suppressant effect than theophylline at this dose (p<0.01) (see

Fig. 1C). These results indicate that caffeine is more potent than theophylline at

suppressing motor performance in the rotarod.
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Fig. 1. Effect of caffeine and theophylline on A) horizontal locomotion in the OF (N=9-10 per group), B)

running in the RW (N= 7-8 per group), and C) performance in the rotarod (N=7-8 per group). Data are

expressed as mean (±SEM) number of counts during 10 minutes. *p<0.01**p<0.05 significantly different

from vehicle. ##p<0.01 #p<0.05 significant differences between treatments at the same dose.

3.4. Effect of caffeine and theophylline on plasma corticosterone levels.

Figure 2 shows data on plasma corticosterone levels. A two-way ANOVA (Treatment x

Dose) revealed a significant effect of treatment [F(1,43)= 19.25, p<0.01], a significant
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effect of dose [F(3,43)= 37.65, p<0.01], and a significant treatment x dose interaction

[F(3, 43)= 3.53, p<0.05].  Planned comparisons revealed that caffeine at all doses (25.0,

50.0 and 100.0 mg/kg) significantly increased plasma corticosterone levels (p<0.01).

This effect was also observed after theophylline administration at all doses employed

(25.0 mg/kg, p<0.05; 50.0 and 100.0 mg/kg p<0.01). Caffeine and theophylline were

significantly different from each other at the two lower doses (25.0 and 50.0 mg/kg).

Caffeine was more potent than theophylline at inducing corticosterone.

Fig. 2. Effect of caffeine and theophylline on plasma corticosterone levels (N=6-7 per group). Data are

expressed as mean (± SEM) nanograms of corticosterone per mililiter of plasma. **p<0.01 significantly

different from vehicle. ##p<0.01 significant differences between treatments at the same dose.

3.5. Effect of caffeine and theophylline in the EPM and in the DL.

For the anxiety experiments, only the two smallest doses of caffeine and theophylline

(25.0 and 50.0 mg/kg) were used in order to minimize the impact of ataxia and

incoordination on the anxiety measurements. Animals were evaluated first in the EPM

and immediately after were evaluated in the DL. For the EPM results, a non-parametric
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Kruskal-Wallis test of the median values for the dependent variable latency to enter into

one of the open arms showed a significant effect [H(5 df)= 20.2, p<0.01]. The Mann-

Whitney U test showed that caffeine at both doses (25.0 and 50.0 mg/kg) increased

latency to enter into the open arm compared to the vehicle group [U=22.0, and U=27.0,

p<0.01, respectively]. This effect was only observed with the highest dose of

theophylline (50.0 mg/kg; U=27.0, p<0.01), indicating an anxiogenic-like effect of

caffeine that was more potent than that of theophylline in this parameter (Fig. 3A). The

non-parametric Kruskal-Wallis test for the dependent variable time in open arms showed

a significant effect [H (5 df)=27.7, p<0.01]. Caffeine produced an anxiogenic effect as

measured by the reduction in time spent in open arms. Thus, Mann-Whitney U test

showed significant differences between both doses of caffeine (25.0 and 50.0 mg/kg)

and vehicle [U=16.0, and U=18.0, p<0.01, respectively]. However, only the highest dose

of theophylline (50.0 mg/kg) showed this significant decrement in time spent in open

arms in relation to its control group [U=21.0, p<0.01]. Comparisons between caffeine

and theophylline at the same dose revealed significant differences [U=47.5, p<0.05]

between both drugs at dose of 25.0 mg/kg. However, this difference disappeared with

the highest dose explored (50.0 mg/kg) in which both drugs reduced the time spent in

open arms (Fig. 3B), suggesting a more potent anxiogenic effect of caffeine than

theophylline. For the variable ratio of entries into open arms, the non-parametic Kruskal-

Wallis test of the median values showed a significant effect [H(5 df)= 25.1, p<0.01].

Mann-Whitney U test revealed that both doses of caffeine (25.0 and 50.0 mg/kg)

significantly reduced the ratio of entries into the open arms [U=16.0, p<0.01; U=25.0,

p<0.05, respectively] compared to vehicle. However, consistently with previous results,

this effect was only observed with the highest dose of theophylline (50.0 mg/kg)

[U=24.0, p<0.01]. Comparisons between caffeine and theophylline at the same dose

revealed significant differences [U=47.5, p<0.05] between both drugs at dose of 25.0

mg/kg. However, this difference disappeared with the highest dose explored (50.0

mg/kg) in which both drugs reduced the ratio of entries to open arm (Fig. 3C). Finally,

for the total arm entries a parametric test was performed. The two-way factorial

ANOVA (Treatment x Dose) showed a significant effect of the treatment [F(1,66)=3.77,

p<0.05] and a significant effect of dose factor [F(2,66)=4.80, p<0.05] as well as a

significant effect for the interaction [F(2,66)=4.02, p<0.05]. Planned comparisons

showed that caffeine reduced total arm entries at the highest dose (50.0 mg/kg)

compared to its vehicle (p<0.01) and compared to theophylline at the same dose
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(p<0.05). Consistently with the data obtained in the motor studies, this result indicates a

suppressor effect of caffeine on locomotor activity at the high dose (Fig. 3D).

Fig. 3. Effect of caffeine and theophylline on the EPM (N=11-13 per group). Data are expressed as mean

(±SEM) of A) latency (seconds) to enter an open arm, B) time (sec) spent in the open arms, C) ratio of

open arm entries, and D) total arm entries during 5 minutes. ##p<0.01 significant differences between

treatments at the same dose. **p<0.01 significant differences in ranks between treatments in A, or

**p<0.01 significantly different from vehicle in B, C and D.

The effects of caffeine and theophylline in the DL are shown in figure 4 A-C. Although

the results showed the same pattern as in the EPM, the non-parametic Kruskal-Wallis

test of the median values showed that none of the variables explored (latency to lit

compartment, time in lit compartment, and total number of crosses) were statistically

affected by drug treatment.
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Fig. 4. Effect of caffeine and theophylline on the behavior of mice in the DL. Data are expressed as mean

(±SEM) of A) latency (seconds) to lit compartment, B) time (seconds) in lit compartment, and C) crosses

during 5 minutes.

3.6. Effect of caffeine and theoplhylline on c-Fos immunoreactivity in different brain

areas.
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The c-Fos immunoreactivity levels were analyzed separately for every brain area. The

one-way ANOVA (Treatment x Dose) revealed an effect of treatment on c-Fos

immunoreactivity in the anterior cingulate (ACC) [F(2,16)= 16.36, p<0.01). The post

hoc test showed that only theophylline significantly increased c-Fos expression in ACC

compared to vehicle (p<0.01) and compared to caffeine (p<0.01). A significant effect of

treatment was also observed in the dorsomedial striatum (DMS) (F(2,16)= 3.46, p<0.05).

Theophylline induced higher levels of c-Fos expression than caffeine in this striatal

region (p<0.05). No statistically significant effects were observed in the other areas

explored (dorsolateral (DLS), and ventrolateral striatum (VLS), accumbens (Acb) shell

and core (see Table 1). These results suggest that theophylline seems to be more

efficacious than caffeine at inducing c-Fos in the ACC and DMS regions.

Vehicle Caffeine Theophylline

ACC

Acb Core

Acb Shell

DMS

DLS

VLS

22.8 ± 13.7

10.4 ± 3.0

5.9 ± 1.0

12.8 ± 3.3

6.8 ± 1.7

3.3 ± 1.3

34.2 ± 14.0

8.5 ± 3.8

9.5 ± 1.8

5.5 ± 1.5

6.9 ± 2.7

4.0 ± 1.1

132.8 ± 18.8**##

9.1 ± 1.9

9.6 ± 3.0

20.3 ± 5.7#

14.8 ± 7.2

3.5 ± 1.2

Table 1.  Effect of caffeine and theophylline administration on c-Fos immunoreactivity in several brain

areas (N=5-6 per group). Mean (±SEM) number of c-Fos positive cells per mm2. **p<0.01 significantly

different from vehicle, ##p<0.01 #p<0.05 significantly different from caffeine in the same structure.
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Fig. 5. Upper part: Diagram of coronal sections with bregma coordinates taken from Franklin and Paxinos

2007, showing location of the brain areas for c-Fos counting. Lower part: Photomicrographs of c-Fos

staining in ACC from representative animals in the vehicle, caffeine 50 mg/kg, and theophylline 50

mg/kg groups. Low power images (20x), scale bar = 250 μm.
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Table 2. Effect size calculations (R2 values). Marker of the magnitude of the effect for caffeine and

theophylline in the behavioral, endocrine and biochemical parameters explored.

4. Discussion

The present work offers a comparative study, between two of the most well known and

widely consumed methylxantines, caffeine and theophylline, at a range of doses that are

Dependent Variables Caffeine Theophylline

Open field 0.394 0.360

Running Wheel 0.375 0.499

Rotarod 0.823 0.545

Plasma corticosterone levels 0.886 0.689

Elevated plus-maze

Time in open arms

Latency to open arms

Ratio of open arms entries

Total arm entries

0.298

0.225

0.279

0.589

0.190

0.172

0.202

0.001

Dark and Light

Time in lit compartment

Latency to lit compartment

Crosses

0.038

0.156

0.074

0.040

0.052

0.040

C-Fos inmunochemistry

ACC

AcbCore

AcbShell

DMS

DLS

VLS

0.034

0.014

0.235

0.249

0.010

0.109

0.704

0.232

0.127

0.109

0.136

0.001
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not usually explored (i.e., moderate to high doses), using animal models of motor

performance and mood.

Evaluation of the motor stimulant actions of drugs is frequently conducted by analyzing

the locomotor activity of animals in an OF [37,38]. This paradigm can offer an index of

exploration induced by novelty when the animals are exposed to a chamber for the first

time, and it has been demonstrated that psychostimulant drugs potentiate reaction to

novelty in the OF, both in rodents as well as humans [39,40]. In our study the two

lowest doses of caffeine showed a tendency to stimulate locomotion, but the effect was

not statistically significant. Increases in locomotion with moderate doses of caffeine are

clearly seen in studies that habituate mice to the OF, and thus reduce basal activity [6].

In the present study with non-habituated animals, caffeine produced a biphasic effect

with a non-significant tendency to increase locomotion and clear suppression of

locomotion at the highest dose, in consonance with previous studies using also high

doses [6,24]. On the other hand, theophylline, under the same conditions, produced

significant stimulant effects at 50 mg/kg, and no suppressant effects. Previous data

show that theophylline at lower doses (10-20 mg/kg) than the ones used in the present

study also increase motor activity in mice [41,32]. Thus, theophylline- and caffeine-

treated groups at the two highest doses (50 and 100 mg/kg) were significantly different

from each other, indicating that theophylline is less potent than caffeine at suppressing

exploration. These results (see Fig. 1A) suggest that at this range of doses, theophylline

seems to be more efficacious at stimulating locomotion while caffeine is either more

efficacious or more potent at suppressing activity in a novel OF.

In research with rodents, one of the most common ways of studying voluntary and

vigorous physical activities is wheel running. This paradigm induces high levels of

locomotion [42,43], and is useful for the assessment of motor suppressant effects of

drugs. In our experiment, caffeine suppressed wheel running at all doses while

theophylline only showed this effect at the highest doses (50 and 100 mg/kg). These

results indicate again that theophylline is less potent than caffeine at reducing

spontaneous running behavior. Another relevant motor parameter is coordination and

balance. In the present study, those aspects of locomotion were assessed using a rotating

rod that forces the animal to move in order to avoid falling from the elevated rod. Thus,

this paradigm has an aversive component and also is a way to evaluate forced

locomotion. Once again, we observed a suppressant effect of caffeine at the two highest

doses (50 and 100 mg/kg) while theophylline only showed this effect at the highest
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dose. Thus, the effect size for caffeine in this parameter is greater than for theophylline

(see table 2). While low to moderate doses of caffeine (3-30 mg/kg) have demonstrated

not to produce motor incoordination in mice in the rotarod [22,44], the present results

on moderate to high doses of caffeine are in agreement with a study that evaluated the

stumbling frequency in the holeboard test as a measure of motor coordination after

moderate to high doses of caffeine (30-120 mg/kg), and demonstrated a dose-dependent

increase in stumbling frequency [25]. Our data on theophylline are also consistent with

a previous study showing that intraventricular administration of theophylline (150

µg/5µl) in mice did not affect endurance on the rotarod [45].

In addition to these behavioral effects, the present range of doses produced an increase

in corticosterone levels, indicating a strong endocrine stress response to administration

of these methylxantines. More importantly, caffeine reached higher levels of

corticosterone than theophylline at moderate doses (25 and 50 mg/kg), although these

differences disappeared at the highest dose (100 mg/kg). These results suggest that both

drugs are efficacious at inducing increments in corticosterone levels, but caffeine seems

to be more potent as also shown by the effect size analysis (see table 2). Previous

studies have showed dose-related increases in plasma corticosterone levels, associated

with changes in ACTH [8,29], after acute administration of caffeine in rats at a broad

range of doses [8,29,46,47]. However, there was a lack of information about

theophylline on this parameter.

Caffeine also has been demonstrated to induce anxiety in some humans (for a review

see [9]. In the present work, we confirmed that caffeine is an anxiogenic agent. In the

EPM, moderate (25 mg/kg) and high doses (50 mg/kg) of caffeine increased the latency

to enter into the open arm, and decreased the time spent and ratio of entries into the

open arms, causing a significant preference for the protected sections of the maze, an

index of its anxiogenic-like effects. These results are in accordance with previous

experiments in rats and mice using similar range of doses (15-100 mg/kg)

[30,31,48,49]. In contrast, theophylline only produced anxiogenic effects at the highest

dose used (50 mg/kg). The total number of entries into the different compartments was

only affected at the highest dose of caffeine, showing again a motor suppressant effect

of caffeine but not of theophylline. This difference is also observed in the effect size

calculations (see table 2). In our study, neither caffeine nor theophylline produced

statistically significant effects in the DL paradigm. However, there was a tendency of

caffeine to produce greater anxiogenic effects than theophylline. Conflicting results
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have been reported in the DL test after caffeine administration [48,50]. While caffeine

has previously demonstrated to have anxiogenic properties in the DL test at a range of

doses similar to those used above (25-100 mg/kg) [48], another study did not observed

this effect after caffeine administration (15-45 mg/kg) [50]. It is possible that in our

results the lack of clear effects is due to the experimental procedure. Animals were

evaluated in the DL immediately after being tested in the EPM, which could possibly

have masked the anxiogenic effects of both drugs in this paradigm. However, this serial

testing procedure has been previously used to assess anxiolytic and anxiogenic effects

of other drugs, and both effects were constant in both paradigms [51,52]. It is possible

then, that the anxiogenic reaction produced by methylxantines is not very strong, and

habituates easily. In summary, the overall results suggest that caffeine is more potent

than theophylline at inducing anxiety and at suppressing locomotion.

In spite of its anxiety inducing properties at medium to high doses, caffeine is orally

self-administered in rodents at medium to low doses. CD1 mice, independently of their

baseline anxiety levels, seem to consume caffeine at a low concentration that

nevertheless yielded a dose of 35 mg/kg per day [53]. Consumption of caffeine, at least

at lower doses (around 12 mg/kg per day) [55], seems to be regulated by A2A rather than

A1 adenosine receptors ([54,55], since A1 KO and WT counterparts seem not to differ in

terms of caffeine consumption [54], but A2A KO mice drink less caffeine than WT mice

[54]. It has also been demonstrated that rats prefer to drink only very low concentrations

of caffeine ([56]. Moreover, after pavlovian conditioning, rats develop preference vs.

avoidance to caffeine associated flavor solutions in a dose dependent manner: flavors

associated with low concentrations of caffeine produce preference and flavors

associated with high ones produce avoidance [56]. It has also been demonstrated that

high doses of caffeine such as the ones used in the present study (25-50 mg/kg)

associated to a place generate avoidance in rats [57,58], while only lower doses induce

place preference [57-59]. To our knowledge, there are no studies about the impact of

theophylline on these parameters.

Finally, the pattern of c-Fos expression has been used in past research as an index of

neuronal activation in different brain areas in which adenosine and dopamine receptors

are abundant [60,61]. Thus, in the present study we included dorsal and ventral areas of

the striatum as well as the two subregions of the Acb and an area of the frontal cortex;

the ACC. All these structures seem to be important for behavioral activation, exertion of

effort, habit formation, locomotion and voluntary movement in general [62,63], among
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other processes. In this case, our results show a greater efficacy of theophylline than

caffeine. Thus, c-Fos immunoreactivity after theophylline administration at a dose of 50

mg/kg is increased in ACC. The effect size for theophylline in ACC (R2=0.704) was the

biggest across all the structures, and was much larger than that of caffeine (R2=0.034).

Caffeine at this dose, did not induce c-Fos in any of the structures studied. Reports in

the literature show that, at least in rats, caffeine at high doses (50-100 mg/kg) produces

induction of c-fos expression or the amount of c-Fos protein in striatum and Acb

[27,64,65], as well as in ACC [66]. Thus, it is possible that a higher dose of caffeine

than the one used in the present study (e.g. 50 mg/kg) would induce c-Fos as well in

mice. The present results showing an effect of theophylline on c-Fos is relevant due to

the relative lack of studies on this methylxanthine. In mice, lower doses of theophylline

(15 mg/kg) than the ones used in the present work did not induce c-Fos

immunoreactivity in different areas of striatum or Acb [13,32]. However, a study in rats

showed that a high dose of caffeine and of theophylline (100 mg/kg) did induce c-fos

expression in the striatum [67]. Our results in mice indicate that the difference between

the two drugs is evident at a lower dose. The mechanism of action for methylxanthines,

specifically caffeine, on immediate early gene expression is not clear, but it has been

related to dopamine regulation [65]. Previous studies in rats have demonstrated that

dopamine D1, and to a lesser extent D2, receptor antagonists blocked potentiation of c-

fos expression by a high dose of caffeine (100 mg/kg) in different areas of striatum [65].

In turn, the effect of caffeine on c-fos induced by dopamine D1 and D2 receptor

blockade is probably regulated by the actions of caffeine on A1 and A2A receptors

respectively [65,68,69]. In most mammals, A2A receptors are highly concentrated in the

striatum, with very low concentrations in prefrontal cortex [4]. However, A1 receptors

are highly concentrated in prefrontal cortex as well as striatum [4]. Considering the

higher ratio of A1 versus A2A receptors in prefrontal cortex, it seems reasonable that the

present results (induction of c-Fos only in ACC) are probably due to theophylline

effects on A1 receptors. However, previous studies in rats, using A1 and A2A receptor

agonists alone or in combination, demonstrate that in order to produce changes in c-fos

expression in cingulate cortex, is necessary to have combined stimulation of both

receptors [70].

Taking all these results together, we have demonstrated that caffeine is more potent than

theophylline at suppressing voluntary physical activity, motor exploration and

coordination. In humans, one of the few experimental studies comparing both drugs
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found that subjects receiving a single dose of caffeine (6 mg/kg) or of theophylline (4.5

mg/kg), showed a delayed exhaustion time in a cycling task compared to placebo, and

there was not a significant difference between both drugs at these doses [71].

The average consumption of caffeine worldwide ranges from 100 mg to 400 mg per day

[72]. However, with the introduction of energy drinks (which can contain up to 500 mg

per unit) these levels are much higher in some consumers [2]. It has been reported that

most of the beneficial effects of caffeine show a linear dose–response relationship up to

about 300 mg, but at higher doses there is either a flattening of the curve, or impaired

performane [73]. However, there are clear individual differences in response to some

effects of caffeine, such as sleep disturbances or anxiogenic effects [74].

Thus, although caffeine is generally consumed with the purpose of potentiating an alert

state, or improving endurance and performance, our results suggest that at high doses it

can induce quite different actions. Our data do not support the idea that high doses of

caffeine can be used to potentiate endurance and performance, specially, when physical

activity is already performed at a high level (for a review see [75]).

The rank order in potency for the motor actions of methylxanthines has been established

from more potent to less as paraxanthine, caffeine, theophylline and theobromine

[67,76,77]. Behavioral and neurochemical reports confirmed this order [76-79].

However, there is a surprising lack of information about the less potent methylxantines.

The present study offers a necessary comparison between caffeine and theophylline in a

range of behaviors that can be affected after administration of these substances.

Moreover, these results could help to better understand the potential effects of two

nonselective adenosine receptor antagonists, caffeine and theophylline, that are being

widely consumed in food, coffee and tea, or as “energy” drinks [71], and that are being

proposed as possible therapeutic agents [80-84].

The separation between therapeutic efficacy and adverse side effects remains a challenge

in the discovery and development of novel adenosine-based medicines, but this also is

important for the naturally occurring ones. Although both methylxantines should have

similar properties at low doses, caffeine is more potent than theophylline at inducing

adverse effects at moderate and high doses; this would suggest that theophylline has a

wider therapeutic window than caffeine. The present study can help to establish a range

of doses that can induce undesirable side effects related to locomotion, anxiety and

physiological stress responses in animal models. Future translational research should
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assess the therapeutic window for each substance in disease animal models as well as

human studies.
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CHAPTER 3:

Effect of caffeine and ethanol coadministration on social

interaction and recognition in mice: role of adenosine

receptors.
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Abstract

Rationale. Caffeine and ethanol are frequently consumed in combination. Ethanol

increases adenosine levels, but caffeine is a non-selective adenosine A1/A2A receptor

antagonist. These receptors are highly expressed in striatum and olfactory tubercle,

brain areas involved in exploration and social interaction in rodents. Ethanol modulates

social interaction processes, but the role of adenosine in social behavior is still poorly

understood.

Objectives. These studies were undertaken to study the impact of caffeine and ethanol

and their combination on social behavior, and explore the involvement of A1 and A2A

receptors on those actions.

Methods. Male CD1 mice were evaluated in a social interaction three-chamber

paradigm, for preference of conspecific vs. object and for long-term recognition

memory of familiar vs. novel conspecific.

Results. Caffeine (7.5-60.0mg/kg) decreased social preference in a dose dependent

manner. Ethanol (0.25-1.5g/kg) showed a biphasic effect, blocking social preference at

high doses. However, ethanol reversed some impairments induced by caffeine (15.0-

30.0 mg/kg). CPT (A1 antagonist) did not modify social preference on its own, or in

combination with ethanol. MSX- (A2A antagonist) increased social preference, but did

not block totally ethanol-impairing effects on preference. Both, ethanol and caffeine, or

their combination, produced amnesic effects. MSX-3 blocked the amnesic effects of low

doses of ethanol but CPT did not.

Conclusions. Caffeine can reduce social interaction and preference possibly via A1

receptor antagonism but not A2A, since MSX3 potentiated rather than reduce social

preference. Low doses of ethanol can counteract caffeine reduction in preference.

Ethanol has a potent effect impairing recognition. However, adenosine antagonists do

not seem to have a strong effect on the prevention of memory loss.
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1. Introduction

Caffeine and alcohol are the most consumed psychoactive drugs worldwide. In recent

times, it has become common to consume high doses of caffeine in combination with

ethanol in order to reduce the intoxicating effects of the alcohol (Ferré and O’Brien

2011; López-Cruz et al. 2013; Correa et al. 2014). Caffeine and ethanol act on the

adenosine system in distinct ways that can result in opposite physiological and

behavioral effects. Caffeine is a non-selective adenosine antagonist that acts mainly on

A1 and A2A receptors (Fredholm 1999), whereas ethanol has been demonstrated to

increase the adenosinergic tone by inhibiting the endonucleotid transporter type-1, thus,

blocking adenosine uptake (Nagy et al. 1990; Krauss et al. 1993), and also by increasing

the synthesis of adenosine during ethanol metabolism (Carmichael et al. 1993).

Adenosine is a neuromodulator in the central nervous system (CNS) that plays an

important role in the regulation of synaptic transmission and neuronal excitability

(Sebastiao et al. 2009). Several subtypes of adenosine receptors are expressed in the

brain, with A1 and A2A being the most abundant. A2A receptors are expressed at high

levels, and almost exclusively, in the striatum and olfactory bulbs and tubercle

(Fredholm et al. 2001; Schiffmann et al. 1991), regions that are involved in the

regulation of motivated (Hauber and Sommer, 2009; Salamone and Correa 2002; 2012),

and social behaviors (Sano et al. 2008). However, A1 receptors have a widespread

distribution in the brain, with a somewhat higher concentration in hipoccampus

(Schwarzschild et al. 2006; Fuxe et al. 2003).

Caffeine was shown to decrease social interaction at high doses in mice (60 mg/kg)

(Hilakivi et al. 1989) and rats (20 and 40 mg/kg) (Baldwin and File, 1989; Baldwin et

al. 1989), effects that have been suggested to be related to its anxiogenic actions

(Baldwin et al. 1989; Hilakivi et al. 1989). However, other studies have shown that

caffeine increases the number of social contacts after similar doses (20 mg/kg) in rats

(Nadal et al. 1993). Ethanol consumption was shown to facilitate interactions with peers

and to alleviate anxiety (Kirchner et al. 2006; Varlinskaya and Spear, 2002). In rodent

models of social interaction, acute ethanol administration at low doses produces social

facilitation (Nadal et al. 1993; Varlinskaya and Spear, 2009; Procópio-Souza et al.

2011), but dose-related decrements in social interaction after high doses also have been

observed in mice (Hilakivi et al. 1989; Lister and Hilakivi, 1988). However, there are

almost no reports of interactions between these two drugs in this important aspect of
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motivated behavior (Hilakivi et al. 1989). In the only study so far, a high dose of

caffeine (30 mg/kg) that did not modify the time spent engaged in social interaction by

itself was able to reverse the impairment induced by a high dose of ethanol (2 g/kg)

(Hilakivi et al. 1989). The same lack of information applies to the impact of caffeine-

ethanol interactions in another important aspect of social behavior, long-term social

recognition memory. In the only interaction study on this type of memory, a low dose of

caffeine (5 mg/kg), blocked the retrograde memory impairments induced by a high dose

of ethanol (3 g/kg) in a social odor recognition test in rats (Spinetta et al. 2008). The

amnesic effect of ethanol is well known. Although ethanol at low doses was shown to

act as a short-term social memory enhancer in mice (Manrique et al. 2005), high doses

of ethanol can cause amnesia, or impaired retrieval of memory, after the drug wears off

(Goodwin 1995; Hartzler and Fromme, 2003). This effect of ethanol could be explained

by the fact that adenosine and adenosine receptor agonists impair short-term social

recognition memory in rats (Prediger and Takahashi, 2005). On the other hand, selective

A1 and A2A receptor antagonists can improve short-term social memory (Prediger and

Takahashi, 2005).

The present work evaluated the effect of a broad range of doses of caffeine, in

combination with ethanol, on social motivation as measured by preference towards a

conspecific versus a neutral object. Our procedure minimized anxiety induced by

aggression, avoiding whole-body contact. We also evaluated the impact of high doses of

caffeine on plasma corticosterone levels (a measure of physiological stress) and

assessed if a low dose of ethanol that improved caffeine-induced reductions in

preference was able to modulate those hormonal levels. In a second phase of the

behavioral test, long-term social recognition memory was studied 24 hours after the

preference test took place. In addition, the role of A1 and A2A receptors on social

motivation and memory were also evaluated using selective adenosine antagonists alone

or in combination with ethanol.
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2. Methods

2.1. Subjects

Adult male CD1 mice (30-45 g) were purchased from Janvier (France). Mice were

housed in groups of three per cage, with standard laboratory rodent chow and tap water

available ad libitum. They were maintained in the colony at 22 ± 1ºC with lights on

from 8:00 to 20:00 hours. All experimental procedures complied with the European

Community Council directive (86/609/ECC) for the use of laboratory animal subjects

and with the “Guidelines for the Care and Use of Mammals in Neuroscience and

Behavioral Research” (National Research Council 2003).

2.2. Drugs

Caffeine (Sigma-Aldrich, Spain) and MSX3 ((E)-phosphoric acid mono-[3-[8-[2-(3-

methoxphenyl)vinyl]-7-methyl-2,6-dioxo-1-prop-2-ynyl-1,2,6,7-tetrahydropurin-3-yl]

propyl] ester disodium salt; synthesized at the laboratory of Dr. Christa E. Müller at the

Pharmazeutisches Institut, Universität Bonn, Germany) were dissolved in 0.9% w/v

saline. CPT (8-cyclopentyltheophylline; purchased from Sigma-Aldrich, Spain) was

dissolved in distilled water (pH=8). All these drugs were administered IP

intraperitoneally (IP) 30 minutes before testing. Ethanol (Panreac Quimica S.A., Spain)

was diluted to 20% (v/v) in physiological saline (0.9 % w/v) and administered IP 10

minutes before testing. Saline solution was used as vehicle. These doses of ethanol were

selected based on previous studies done in our laboratory with the same strain of mice

(Correa et al. 2008).

2.3. Behavioral apparatus and testing procedures

Social preference and social recognition tests. The effects of adenosine antagonists on

social preference were measured in a three-chambered social box (originally developed

by Crawley 2004). The general procedure was adapted from Chévere-Torres and

colleagues (2012). Every mouse had two consecutive habituation sessions in the

chambers: in the first one, they freely explored the empty social arena during 15

minutes, and immediately there was a second exploration session, that lasted 30 minutes,

in the presence of two wire cages, one in each of the side-compartments. After the 45

minute habituation period, different groups of animals received their corresponding

treatment and were placed in an individual cage during 10 or 30 minutes (depending of

drug). After this time, mice were placed in the center chamber of the social interaction
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apparatus and test started. During the test session (10 minutes), the three-chambered

arena contained a caged with a conspecific in one side, and in the other side there was a

small wire cage with an object. The center compartment was empty (see Figure 1 for a

schematic on the procedure). The placement of the conspecific or the object was

counterbalanced between animals. A trained experimenter who was unaware of the

experimental conditions, registered manually time spent sniffing each target (conspecific

versus object) as a measure of social preference. Vertical and horizontal locomotion

were also registered. Twenty-four hours after the social preference test, mice were

placed back in the central chamber and were subjected to a 10 minutes social recognition

test (Moy et al. 2004). No drugs were administered before this second test. During the

recognition test a novel mouse replaced the object, and the experimental mice were

given the choice to interact with the familiar conspecific (same conspecific used in the

social preference test the day before) versus a novel conspecific. Time sniffing each

conspecific was registered.

Figure 1. Schematic representation of social preference and social recognition tests settings and timeline.

Plasma corticosterone determination. Mice received caffeine (0.0, 15.0 or 30.0 mg/kg)

plus vehicle or the dose of ethanol that in experiment 3 had been more effective at

reversing the suppressant effects of caffeine on social preference (0.5 g/kg). Animals

received injections 80 and 60 min respectively before being sacrificed by decapitation
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under deep anesthesia. Animals were anesthetized with a 1.0 ml/kg IP injection of a

cocktail solution containing 10.0 ml of 100 mg/ml ketamine plus 0.75 ml of 20.0 mg/ml

xylazine (both from Phoenix Scientific, Inc., St. Joseph, MO, USA), 30 minutes before

decapitation. Blood samples were collected in heparinized (15 units/ml of blood)

Eppendorf tubes and centrifuged at 4000 rpm for 10 min. Supernatant was taken and

stored at -20°C until corticosterone determination. Plasma corticosterone levels were

measured spectrophotometrically using a commercially available enzymatic

immunoassay kit (Rodents Corticosterone Enzyme Immunoassay System, OCTEIA

Corticosterone; Immunodiagnostic Systems LTD, Boldon, England). Blood

corticosterone concentration (ng/ml) was determined using a logarithmic adjustment of

the standard curve.

2.4. Statistics

One-way ANOVA was used to analyze the effect of drug administration on the different

dependent variables; time sniffing conspecific, object, familiar and novel conspecific,

and vertical and horizontal locomotion. Two-way factorial ANOVA was used for the

interaction studies. When the overall ANOVA was significant, non-orthogonal planned

comparisons using the overall error term were used to compare each treatment with the

control group (Keppel, 1991). For these comparisons,  level was kept at 0.05 because

the number of comparisons was restricted to the number of treatments minus one.

Student's t-test for dependent samples was used to analyse “preference” (e.g.

conspecific vs. object, or familiar vs. novel conspecifics). A probability level of 0.05 or

smaller was used to indicate statistical significance. Statistics were done using

STATISTICA 7 software.

3. Results

Experiment 1: Effect of the non-selective adenosine A1/A2A antagonist caffeine on

social preference and locomotion: impact on long-term social recognition memory.

Mice (N=44) were injected with saline or caffeine (7.5, 15.0, 30.0 or 60.0 mg/kg) 30

minutes before the social interaction test started. The following day (24 hours later) no

drugs were administered and social recognition was evaluated as described before.

The one-way ANOVA revealed an overall effect of caffeine on time sniffing the

conspecific (F(4,39)=21.12, p<0.01). Planned comparison analysis showed a significant
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decrement on time spent sniffing the conspecific after caffeine administration at doses

of 15.0, 30.0 and 60.0 mg/kg (p<0.01). The one-way ANOVA for the effect of caffeine

on time sniffing the object (F(3.39)=4.03, p<0.01) was also significant, and the planned

comparisons revealed that the same doses of caffeine (15.0, 30.0 and 60.0 mg/kg)

decreased time sniffing the object compared to vehicle (p<0.05. p<0.01 and p<0.01,

respectively). The Student’s t-test for dependent samples was used to compare time

spent sniffing the conspecific with time spent sniffing the object. The vehicle treated

group spent more time exploring the conspecific than the object (t=5.24, p<0.01), and

this pattern of behavior was also preserved after the administration of moderate doses of

caffeine (7.5 and 15.0 mg/kg; t=6.28, p<0.01, t=3.84, p<0.01 respectively) but not after

the highest doses of caffeine (30.0 and 60.0 mg/kg; t=0.04, p=0.97 and t=2.15, p=0.06

respectively) (Fig 2. A)

Figure 2. Effect of caffeine on social preference and recognition tests. Data are expressed as mean

(±SEM) of time sniffing A) conspecific and object in the social preference test, B) familiar and novel

cosnpecifics in the social recognition test, and C) horizontal and D) vertical locomotion during the social

preference test. **p<0.01, *p<0.05 significant differences from vehicle for the same target. ##p<0.01

significant differences between time sniffing both targerts for the same dose of caffeine.
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The one-way ANOVA revealed an overall effect of caffeine on horizontal locomotion

(F(4,39)=7.90 p<0.01). Caffeine significantly increased horizontal locomotion at low to

intermediate doses (7.5 and 15.0 mg/kg; p<0.01) compared to vehicle, but did not have

a significant effect at higher doses. The one-way ANOVA for vertical locomotion

(F(4,39)=4.60 p<0.01) was also significant, but for this dependent variable, planned

comparisons revealed that the higher doses (30.0 and 60.0 mg/kg), significantly

decreased vertical locomotion in comparison with the vehicle treated group (p<0.05 and

p<0.01, respectively) (Fig 2. C and D). This increase in locomotion could be

influencing the reduction in time dedicated to targeted exploration, more importantly, to

conspecific exploration.

For the social recognition results, the one-way ANOVA revealed no significant effect of

the previous treatment with caffeine on time spent sniffing the familiar conspecific

(F(4,39)=1.37, n.s.). However, there was an overall effect of previous caffeine treatment

on time sniffing the novel conspecific (F(4,39)=3.83, p<0.01). Planned comparisons

revealed that the highest doses of caffeine (30.0 and 60.0 mg/kg) significantly decreased

time spent sniffing the novel conspecific compared with vehicle (p<0.05 and p<0.01,

respectively) (Fig 2.B). Student’s t-test for dependent samples showed that the vehicle

group spent more time sniffing the novel conspecific than sniffing the familiar one (t=-

3.40, p<0.01) and this was also observed in the group that received 15.0 mg/kg of

caffeine (t=-3.31, p<0.01), but not 7.5 mg/kg, 30.0 or 60.0 mg/kg (t=1.58, p=0.17;

t=0.16, p=0.87; t=-1.14, p=0.29, respectively) (Fig 2.B).

Experiment 2: Effect of ethanol on social preference and locomotion: impact on

long-term social recognition memory.

In this experiment mice (N=45) received saline or ethanol (0.25, 0.5, 1.0 or 1.5 g/kg) 10

minutes before been evaluated in the social preference test. The following day, the same

animals were tested for social recognition memory.

Ethanol treatment, as shown by the one-way ANOVA, had a significant effect on time

sniffing the conspecific (F(4,40)=20.12, p<0.01), and planned comparisons revealed

that ethanol at the lowest dose (0.25 g/kg) increased direct conspecific exploration

(p<0.01) in comparison with vehicle treatment, while higher doses decreased time with

conspecific (1.0 and 1.5 g/kg, p<0.05 and p<0.01 respectively). The one-way ANOVA

for time sniffing the object (F(4,40)=4.45, p<0.01) was also significant. However, only
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the highest dose of ethanol (1.5 g/kg) significantly reduced (p<0.01) time spent sniffing

the object compared to the vehicle treated group (Fig 3.A). When comparing time

exploring both stimuli in the same animals, Student t-test for dependent samples showed

that in the vehicle group there was a significant difference in time spent sniffing the

conspecific versus the object (t=-8.28, p<0.01), a pattern that was repeated at all doses

of ethanol (0.25 g/kg, t=-5.49, p<0.01; 0.5 g/kg, t=-5.75, p<0.01; 1.0 g/kg, t=2.61,

p<0.05; 1.5 g/kg t=-2.76, p<0.01) (Fig 3.A). Thus, independently of the ethanol dose

used, all groups explored more the conspecific than the object.

There were no significant effect of ethanol treatment on total crosses (F(4,40)=0.59,

n.s.) (Fig 3.C) and on vertical locomotion (F(4,40)=2.25, n.s.) (Fig 3.D).

Figure 3. Effect of ethanol in social preference and recognition tests. Data are expressed as mean (±SEM)

of time sniffing A) conspecific and object in the social preference test, B) familiar and novel cosnpecifics

in the social recognition test, and C) horizontal and D) vertical locomotion during the social preference

test. **p<0.01, *p<0.05 significant differences from vehicle for the same target. ##p<0.01 #p<0.05

significant differences between time sniffing both targerts for the same dose of ethanol.

One day after the social interaction test took place, social recognition was evaluated,

and the results of the one-way ANOVA showed an overall effect of previous exposure
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to ethanol on time sniffing the familiar conspecific (F(4.40)=2.08, p<0.05). Ethanol at

doses of 0.25 and 1.5 g/kg increased time sniffing the familiar conspecific (p<0.05 and

p<0.01 respectively) compared to the group previously treated with vehicle. A

significant effect of ethanol administered the previous day was also observed on time

sniffing the novel conspecific (F(4,40)=5.78, p<0.01). Only the lowest dose of ethanol

(0.25 g/kg) increased time sniffing the novel conspecific in comparison with the vehicle

group (p<0.01) (Fig 3.B). Student’s t-test for dependent samples showed significant

differences in the vehicle group between time spent sniffing familiar versus novel

conspecific. These animals spent more time sniffing the novel than familiar conspecific

(t=5.32, p<0.01), a pattern that was only observed on the group that had received the

lower dose of ethanol (0.25 g/kg, t=2.46, p<0.05), suggesting that ethanol, even at doses

that had no effect on social exploration the day before (0.5 g/kg), can impair social

recognition 24 hours after been administered.

Experiment 3: Effect of caffeine-ethanol coadministration on social preference and

locomotion: impact on long-term social recognition memory.

For experiment 3 mice (N=74) received and injection of saline or caffeine (15.0 or 30.0

mg/kg; 30 minutes before being tested) plus vehicle or a dose of ethanol (0.5 or 1.0

g/kg; 10 minutes before test), and were evaluated for social preference and locomotion.

The following day, the same animals were tested in the social recognition test.

Factorial ANOVA (caffeine x ethanol) on time sniffing the conspecific showed overall

effects of caffeine (F(2,65)=13.33, p<0.01), and ethanol (F(2,65)=9.97, p<0.01) and

also a significant interaction (F(4,65)=8.99, p<0.05). Planned comparisons confirmed

that when compared with the vehicle-vehicle group only the highest dose of ethanol

used in the present study (1.0 g/kg) reduced conspecific exploration (p<0.05), and that

the two doses of caffeine (15.0 and 30.0 mg/kg) selected for this experiment also

reduced social exploration (p<0.01). In terms of the interactions, the group that received

the lowest dose of caffeine (15.0 mg/kg) in combination with the lowest dose of ethanol

(0.5 g/kg) was significantly different (p<0.01) from the group that had received that

dose of caffeine but no ethanol, pointing to a reversal effect of ethanol on the caffeine-

induced impairment. However, the effect of this dose of caffeine was not reversed when

given in combination with the highest dose of ethanol (1.0 g/kg). As for the impairing

effect on conspecific exploration observed in the group that had received the highest
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dose of caffeine (30.0 mg/kg) plus vehicle, this effect was partially reversed by the two

doses of ethanol (p<0.05 and p<0.01 respectively). (Fig 4.A).

The factorial ANOVA (Caffeine x Ethanol) for the dependent variable time sniffing the

conspecific did not show a significant effect of caffeine (F(2,65)=1.31, n.s.), of ethanol

(F(2,65)=1.69, n.s.) or the interaction (F(4,65)=0.71, n.s.), (Fig 4.B).

Figure 4. Effect of caffeine plus ethanol interaction in the social preference test. Data are expressed as

mean (±SEM) of time sniffing A) conspecific, B) object, C) horizontal and D) vertical locomotion during

the social preference test. **p<0.01, *p<0.05 significantly different from the vehicle group in the same

dose of ethanol. ##p<0.01 #p<0.05 significantly different from the group that received the same dose of

caffeine plus ethanol 0.0 g/kg.

Factorial ANOVA (Caffeine x Ethanol) for total crosses as a measure of horizontal

locomotion revealed an overall effect of caffeine (F(2,65)=7.22, p<0.01), and ethanol

(F(2,65)=6.27, p<0.01), but no significant interaction (F(4,65)=0.77, n.s.), (Fig. 4.C). A

separate factorial ANOVA for vertical locomotion showed the same pattern of results. It

revealed an effect of caffeine (F(2,65)=4.23, p<0.05) and of ethanol (F(2,65)=7.74,

p<0.01), but no significant caffeine-ethanol interaction (F(4,65)=0.81, n.s.), (Fig. 4.D).
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The results for the impact of these pharmacological manipulations on social recognition

memory evaluated the day after the drug injection, and the preference test, are shown in

Table 1. The factorial ANOVA (Caffeine x Ethanol) showed an overall effect of

caffeine (F(2,65)=3.72, p<0.05), and of ethanol (F(2,65)=8.27, p<0.01) on time sniffing

the familiar conspecific. However, there was no significant caffeine x ethanol

interaction (F(4,65)=1.49, n.s.). The factorial ANOVA for variable time sniffing a novel

conspecific revealed a significant effect of caffeine (F(2,65)=3.43, p<0.05), but no

significant effect of ethanol (F(2,65)=2.37, n.s.), and a significant interaction effect

(F(2,65)=0.91, p<0.01). The Student’s t-test for dependent samples comparing time

spent sniffing familiar conspecific versus novel conspecific revealed that the group that

had received vehicle-vehicle injections the day before spent significantly more time

sniffing the novel conspecific than the familiar conspecific (t=4.96, p<0.01), and the

same was true for the animals treated with caffeine (15.0 mg/kg) plus saline (t=2.85,

p<0.05). However, caffeine 30 mg/kg plus saline impaired social recognition the day

after, since there was no difference between the time spent exploring the two

conspecifics (t=0.15, n.s.) as expected from the results in experiment 1. All doses of

ethanol employed (0.5 and 1.0 g/kg) impaired social recognition memory as it had been

observed in experiment 2 (t=0.47, n.s., t=-0.43, n.s., respectively). Moreover, combining

caffeine (15.0 or 30.0 mg/kg) with ethanol (0.5 or 1.0 g/kg) did not improve the

impairing effect produced by ethanol (caffeine 15 mg/kg plus ethanol 0.5 g/kg; t=-0.82,

n.s.; caffeine 15 mg/kg plus ethanol 1.0 g/kg, t=1.49, n.s.; caffeine 30.0 mg/kg plus

ethanol 0.5 g/kg, t=1.69, n.s.; caffeine 30.0 mg/kg plus ethanol 1.0 g/kg t=0.66, n.s.).

Time sniffing (sec)

Etoh (g/kg) 0.0 0.5 1

Caff
(mg/kg) Familiar Novel Familiar Novel Familiar Novel

0.0 87.5±9.1 136.4±12.1## 111.4±14.5 124.1±16.6 115.9±21.7 106±19.1

15.0 71.2±7.1 100.1±13.2# 120.6±27.3 98.1±12.5 72.1±10.5 102.3±21.7

30.0 33.0±11.1 31.9±21.1 103.6±11.8 137.2±21.9 83.3±11.2 91.1±12.7
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Table 1. Effect of caffeine-ethanol coadministration on social recognition memory. Data are expressed as

mean ± SEM of time in seconds sniffing the novel and the familiar conspecifics. ##p<0.01, #p<0.05

significant differences between time in familiar vs time in novel conspecific for the same treatment group.

Experiment 4: Effects of caffeine-ethanol co-administration on plasma

corticosterone levels.

Independent groups of mice (N=35) received one injection of saline or caffeine (15.0 or

30.0 mg/kg) plus a second injection of saline or ethanol (0.5 g/kg). Blood samples were

extracted 80 minutes after caffeine administration (60 minutes after ethanol

administration). Data are shown in Table 2. A two-way ANOVA (caffeine x ethanol)

showed a significant effect of caffeine treatment on plasma corticosterone levels

(F(2,24)=21.59, p<0.01). However, ethanol did not produce a significant effect

(F(1,24)=0.16, n.s), and there was not a significant interaction (F(2,24)=1.14, n.s). Thus,

ethanol did not modify the increase in corticosterone produced by caffeine, suggesting

that the effects seen in experiment 3 were not the result of a reduction on stress levels.

Plasma corticosterone levels (ng/ml)

Caffeine     /   Etoh (g/kg)

(mg/kg)

0.0 0.5

0.0 38.3 ± 11.6 36.8 ±17.8

15.0 76.4 ± 12.0 90.4 ± 9.0

30.0 128.3 ± 16.7 129.6 ± 14.5

Table 2. Effects of caffeine (0.0, 15.0 or 30.0 mg/kg) plus ethanol (0.0 or 0.5 g/kg) on corticosterone

levels. Data are expressed as mean (±SEM) plasma corticosterone levels (ng/ml).

Experiment 5: Effect of the selective adenosine A1 receptor antagonist CPT on

social preference and locomotion. Impact on long-term social recognition memory.

Mice (N=37) were injected with vehicle or CPT at doses of 3.0, 6.0, or 9.0 mg/kg 30

minutes before being tested in the social preference task. The following day (24 hours

later) the same animals were tested in the social recognition test.

The effect of CPT on time sniffing the conspecific was analyzed by a one-way

ANOVA, but revealed no significant effect (F(3,33)=2.13, n.s.). However, the one-way
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ANOVA on the effect of CPT on time sniffing the nonsocial target was significant

(F(3,33)=5.21, p<0.01). Planned comparison revealed that CPT significantly decreased

time spent exploring the object at all doses of CPT in comparison with the vehicle group

(p<0.01) (Fig. 5.A). Student’s t-test for dependent samples showed significant

differences in time sniffing the conspecific vs. the object in all the groups. Animals

spent more time sniffing the conspecific after saline (t=5.37, p<0.05), CPT 3.0 mg/kg

(t=11.25, p<0.01), CPT 6.0 mg/kg (t=6.38, p<0.01), and CPT 9.0 mg/kg (t=5.95,

p<0.01).

These doses of CPT did not affect horizontal (F(3,33)=1.03, n.s.) or vertical locomotion

(F(3,33)=1.42, n.s.) as analyzed by one-way ANOVA’s (Fig. 5.C and 5.D).

For the social recognition test, the one-way ANOVA’s did not show a significant effect

of CPT dose on time sniffing the familiar conspecific (F(3,33)=0.14, n.s.) or on time

sniffing the novel conspecific (F(3,33)=0.02, n.s.). Student’s t-test for dependent

samples showed significant differences between time spent sniffing the novel versus the

familiar conspecific in the vehicle group (t=-3.82, p<0.01), as expected when animals

recognized the previously explored conspecific, and this effect was also observed in the

animals that had received the highest dose of CPT 9.0 mg/kg the day before (t=-3.25,

p<0.05), but not the lower doses (CPT 3.0 mg/kg, t=-0.96, n.s.; and CPT 6.0 mg/kg t=-

0.79, n.s.) (Fig 5.B).
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Figure 5. Effect of CPT in the social preference and recognition tests. A) conspecific and object in the

social preference test, B) familiar and novel cosnpecifics in the social recognition test, and C) horizontal

and D) vertical locomotion during the social preference test. **p<0.01 significant differences from

vehicle for the same target. ##p<0.01 #p<0.05 significant differences between time sniffing both targerts

for the same dose of CPT.

Experiment 6: Effect of CPT–ethanol co-administration on social preference and
locomotion: impact on long-term social recognition memory.

Mice (N=60) received and injection of vehicle or CPT 6.0 mg/kg 20 minutes before the

test and a second injection of vehicle or ethanol (0.5 or 1.0 g/kg) 10 minutes before the

social preference test started. The following day, the same animals were tested in the

social recognition test with no drug been administered.

A factorial ANOVA (CPT x Ethanol) showed an overall effect of ethanol

(F(2,41)=5.33, n.s.), but no significant effect of CPT (F(1,41)=0.32, n.s) or CPT-ethanol

interaction (F(2,41)=1.60, n.s.) on time sniffing the conspecific. (). The factorial

ANOVA for time sniffing the object did not reveal a significant effect of CPT

(F(1,41)=0.43, n.s.), of ethanol (F(2,41)=1.46, ns), or of the interaction (F(2,41)=2.21,

n.s.) either (Fig 6.A).

For the social recognition test the factorial ANOVA (CPT x Ethanol) did not show a

significant effect of CPT (F(1,41)=1.06,  n.s.), of ethanol (F(2,41)=0.97, n.s.), or of the
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interaction (F(2,41)=0.05, n.s.) on time sniffing the familiar conspecific (Fig 6.B) The

factorial ANOVA for the variable time sniffing the novel conspecific, did not show an

overall effect of CPT (F(1,41)=0.38, n.s), ethanol (F(2,41)=1.78,  n.s.) or CPT-ethanol

interaction (F(2,41)=1.11,  n.s.)

Figure 6. Effect of CPT plus ethanol interaction on the social preference test. Data are expressed as mean

(±SEM) of time sniffing A) conspecific, B) object, C) horizontal and D) vertical locomotion during the

social preference test.

Student’s t test for dependent samples showed significant differences between time

sniffing the novel vs. familiar conspecific in control group (t=4.7, p<0.01). Ethanol as

well as happened in the experiment 2 impaired social recognition at all doses employed

(0.5 g/kg, t=0.47, n.s. and 1 g/kg, t=0.14, n.s). CPT (6 mg/kg) as occurred in experiment

6 also impaired social memory since t-student test for dependent samples did not

showed differences between time sniffing novel vs. familiar conspecific in this

treatment group (t=0.79, n.s). None of the doses of ethanol co-administered with CPT (6
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mg/kg) reverted such effect (0.5 g/kg; t=0.99, p=0.35 and 1.0 g/kg; t=0.14, p=0.89)

(Table 3).

Time sniffing (sec)

Etoh (g/kg) 0.0 0.5 1.0

CPT
(mg/kg)

Familiar Novel Familiar Novel Familiar Novel

0.0 74.1±4.5 139.4±12..4## 122.6±12.4 124.1±16.6 99.0±22.0 102.5±12.4

6.0 100.1±20.5 123.5±25.3 111.0±14.6 172.3±27.8 119.6±23.3 105.0±27.8

Table 3. Effects of CPT-ethanol combination on social recognition memory. Data are expressed as mean

±SEM of time in seconds sniffing novel and familiar conspecifics. ##p<0.01 significant differences

between time in familiar vs time in novel conspecific for the same dose of CPT and ethanol.

Experiment 7: Effect of the selective adenosine A2A receptor antagonist MSX-3 on
social preference and locomotion. Impact on long-term social recognition memory.

Different groups of mice (N=36) received an acute administration of vehicle or MSX-3

at dose of 1.5, 3.0, 6.0 mg/kg, 30 minutes before the social interaction test. The same

animals were tested 24 hours later in the social recognition test.

The one-way ANOVA revealed an overall effect of MSX-3 on time spent sniffing the

conspecific (F(3,32)=4.58, p<0.01), and planned comparison showed that all doses

increased significantly time sniffing the social target (MSX-3 1.5 mg/kg, p<0.05; MSX3

3.0 mg/kg and MSX-3 6.0 mg/kg, p<0.01) compared with the vehicle treated group. The

one-way ANOVA for the dependent variable time spent exploring the object was also

significant (F(3,32)=3.63, p<0.05). MSX-3 significantly decreased the time exploring

the object at all doses employed (MSX-3 1.5 mg/kg, p<0.05; MSX3 3.0 mg/kg and

MSX-3 6.0 mg/kg, p<0.01) when compared with the vehicle group. Student t-test for

dependent samples demonstrated that there were significant differences in time spent

sniffing the conspecific versus the object in the vehicle group (t=12.96, p<0.01), but

also in all the MSX-3 treated groups (MSX-3 1.5 mg/kg, t=7.96, p<0.01; MSX-3 3.0

mg/kg, t=10.33 p<0.01, and MSX-3 6.0 mg/kg, t=6.87 p<0.01) (Fig 7.A).
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The impact of MSX-3 on locomotion is shown in Fig 7.C. and 7.D. The ANOVA for

the effect of MSX-3 on horizontal locomotion was significant (F(3,32)=3.66, p<0.05),

and planned comparisons showed a significant effect of all doses of MSX-3 on total

crosses between compartments as a measure of horizontal locomotion (MSX-3 1.5

mg/kg and MSX-3 3.0 mg/kg, p<0.05; and MSX-3 6.0 mg/kg, p<0.01). However, the

one-way ANOVA for vertical locomotion was not significant (F(3,32)=1.83, n.s.).

Figure 7. Effect of MSX3 in social preference and recognition tests. Data are expressed as mean (±SEM)

of time sniffing A) conspecific and object in the social preference test, B) familiar and novel cosnpecifics

in the social recognition test, and C) horizontal and D) vertical locomotion during the social preference

test. **p<0.01, *p<0.05 significant differences from vehicle for the same target. ##p<0.01 #p<0.05

significant differences between time sniffing both targerts for the same dose of MSX3.

For the social recognition test, the one-way ANOVA’s revealed no significant effect of

MSX-3 on time spent sniffing the familiar conspecific (F(3,32)=1.83, n.s.), and also no

significant effect of this drug on novel conspecific exploration (F(3,32)=0.61, n.s.) (Fig

7.B). Student’s t-test for dependent samples showed significant differences between

time spent sniffing novel versus familiar conspecific in the vehicle group (t=-4.71,



CHAPTER 3

127

p<0.01), as expected, and this pattern was also observed in the MSX-3 1.5 mg/kg, (t=-

2.64, p<0.05) and the MSX-3 6.0 mg/kg groups (t=-2.42, p<0.05). The intermediate

dose of MSX-3 3.0 mg/kg almost reach significant levels (t=-2.13, p=0.06). Thus MSX-

3 administered the day before did not affect social recognition memory.

Experiment 8: Effect of MSX3-ethanol co-administration on social preference and

locomotion. Impact on long-term social recognition memory.

Mice (N=50) received a dose of vehicle or of the lowest dose of MSX-3 (1.5 mg/kg)

that was effective in experiment 7. MSX-3 was administered 20 minutes before test, and

10 minutes before the social preference test a second injection of vehicle or ethanol (0.5

or 1.0 g/kg) was administered. The following day, the same animals were tested for

social long-term memory.

A factorial ANOVA (MSX-3 x ethanol) revealed an overall effect of MSX-3

(F(1,43)=40.65, p<0.01), and ethanol (F(2,43)=3.36, p<0.05) on time sniffing the

conspecific. However, there was not a significant interaction effect with this variable

(F(2,43)=0.34, n.s.) (Fig 8.A). The factorial ANOVA for time sniffing the object did not

reveal a significant effect of MSX-3 (F(1,43)=1.45, n.s.), or ethanol (F(2,43)=0.49,

p=0.61), and no significant interaction (F(2,43)=2.23, n.s.) either (Fig 8.B).

Total crosses between compartment as a measure of horizontal locomotion were overall

affected by MSX-3 (F(1,43)=21.18, p<0.01), but not by ethanol (F(2,43)=2.42, n.s.),

and there was not a significant interaction either (F(2,43)=0.30, n.s.). The one-way

ANOVA for vertical locomotion revealed a significant effect of ethanol (F(2,43)=3.99,

p<0.05), but no effect of MSX3 (F(1,43)=2.27, n.s.), and no significant interaction

(F(2,43)=0.11, n.s.).
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Figure 8. Effect of MSX3 plus ethanol interaction in the social preference test. Data are expressed as

mean (±SEM) of time sniffing A) conspecific, B) object, C) horizontal and D) vertical locomotion during

the social preference test.

As for the impact of these drugs on recognition of the conspecific presented during the

preference test, the factorial ANOVA (MSX-3 x Ethanol) for time sniffing the familiar

conspecific showed a significant effect of ethanol (F(2,43)=6.97, p<0.01), but did not

show an effect of MSX-3 (F(1,43)=0.02, n.s.), and no MSX-3 x ethanol interaction on

this variable (F(2,43)=2.14, n.s.) (Table 4). Another factorial ANOVA for the variable

time sniffing the novel conspecific, did not reveal an effect of MSX-3 (F(1,43)=0.14,

n.s.), it did not show a significant effect of ethanol although it was close to significance

(F(2,43)=2.73, p=0.08), and the interaction was not significant (F(2,43)=0.43, n.s.).

When comparing the behavior of every group of animals in the exploration of the

known and novel conspecific, the control group that had been treated with vehicle-

vehicle the day before spent significantly more time sniffing the novel conspecific vs.

the familiar conspecific as expected if the animal recognizes the known conspecific

(t=4.71, p<0.01). This result was also observed in animals treated with MSX-3 1.5

mg/kg plus vehicle (t=2.64, p<0.05), and with MSX-3 1.5 mg/kg plus the lowest dose of
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ethanol 0.5 g/kg (t=2.52, p<0.05). However, the group treated with MSX-3 1.5 mg/kg

plus the highest dose of ethanol 1.0 g/kg showed memory impairment since the time

spent exploring both conspecifics was not different (t=-0.93, n.s.). There were no

differences between time sniffing the novel conspecific vs. novel conspecific either in

mice that had received vehicle plus ethanol 0.5 g/kg (t=0.62, n.s.) or vehicle plus

ethanol 1.0 g/kg (t=-0.21, n.s.). Thus, it seems that MSX-3 had a preventive effect only

when the dose of ethanol was low.

Time sniffing (sec)

Etoh (g/kg) 0.0 0.5 1.0

MSX3
(mg/kg) Familiar Novel Familiar Novel Familiar Novel

0.0 75.1±4.9 138.3±14.0## 105.6±11.9 118.7±13.3 120.0±24.6 114.6±19.8

1.5 84.1±10.9 160.1±24.8# 68.7±7.8 109.3±12.3# 142.6±20.0 117.8±12.2

Table 4. Effects of MSX3-ethanol combination on social recognition memory. Data are expressed as

mean ±SEM of time in seconds sniffing novel or familiar conspecifics. ##p<0.01, #<p0.05 significant

differences between time in familiar vs time in novel conspecific for the same dose of MSX3 and ethanol.

4. Discussion

In the present study, we characterize the impact of two of the most commonly

consumed drugs of abuse, caffeine and alcohol, on motivation for social contact as

manifested by social preference or avoidance, and also on consolidation of social

memories. We evaluated the possibility of a common mechanism of action for both

drugs via the adenosine system. Thus, we hypothesized that low to intermediate doses

of alcohol could lead to an increase in adenosine levels that would counteract the effect

of caffeine, which acts as a non-selective A1 and A2A antagonist. For that purpose, the

effects of selective A1 and A2A receptor antagonists were also assessed alone or in

combination with ethanol.

Our results show that the suppressing effects of high doses of caffeine on social

approach and preference can be counteracted by low doses of ethanol, but this reversal

effect reaches a ceiling when ethanol starts to mildly impair social approach and
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preference on its own. Ethanol at the low dose did not improve social approach by

reducing the physiological stress response induced by caffeine, which increased plasma

corticosterone levels at these doses. However, since there is not a clear direct

relationship between endocrine measures of stress and behavioral anxiety measures

(Marquez et al. 2006), we cannot rule out anxiety as the cause of these changes in social

preference and approach. In fact, social interaction has been mostly used to evaluate

anxiety in rodents, because it was found that anxiolytics increase time spent in active

social interaction while anxiogenic drugs decrease social contact independently of any

change in activity (File and Hyde 1979; Guy and Gardner, 1985). Thus, the reduction in

social preference observed after caffeine administration could be explained by an

increase in anxiety, since doses ranging from 25 to 100 mg/kg have been demonstrated

to have a potent anxiogenic effect in this strain of mice as seen in the elevated plus

maze (López-Cruz et al. 2013). It is also possible that anxiolysis induced by ethanol

could be playing a role in potentiating social interaction as suggested by previous

researchers (Nadal et al. 1993; Hilakivi et al, 1993). However, it cannot be the only

explanation for this effect since doses of ethanol that induced anxiolysis in this strain of

mice (0.5 and 1.0 g/kg) in an elevated plus maze (Correa et al. 2008) were not able to

reverse social preferences to normal levels. Moreover, in the present study we used a

procedure developed to minimize anxiety in the experimental mouse by eliminating the

possibility of physical aggression since the target mouse was enclosed in a wire cage

(Crawley, 2004; Moy et al. 2007). Thus, in this paradigm it is possible to assess

preference or avoidance for social interaction based on free choice. Furthermore, none

of the pharmacological manipulations used in the present series of studies produced a

significant avoidance for the compartment where the conspecific was located (data not

shown). The effects of caffeine and ethanol alone or in combination on social behavior

do not seem to be mediated by their effects on locomotion either, because the range of

doses used do not clearly impair locomotion, and an increase in locomotion induced by

the lowest doses of caffeine (7.5 and 15.0 mg/kg) seem to be unrelated to social

exploration.

Although a strength of the present study was the use of a broad range of doses for all

drugs, including the studies of drug interaction (most of the previous studies have used a

single dose approach), it is not clear that the effect of high doses of caffeine were

mediated by its actions on adenosine A1 and A2A receptors, since neither of the selective
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adenosine receptors reduced social interaction at the doses tested. Because in the present

paradigm the experimental mouse has to explore a broad area that separates the two

targets (conspecific and object), we selected doses of caffeine and selective adenosine

antagonists based on results from previous work showing no impairing effects on

ambulation and rearing in an open field (López-Cruz et al. 2013; Pardo et al. 2013), in

order to avoid the possibility of mediating variables related to motor function. Thus, the

A1 antagonist CPT did not produce a significant change in social approach and

preference, although mice spent more time in the conspecific compartment at the low

doses (data not shown), and there was no interaction with ethanol on these parameters.

It is possible, however, that higher doses of CPT could mimic the effects of caffeine on

social preference. On the other hand, the A2A receptor antagonist MSX-3 did have a

significant effect, increasing preference for the social target and reducing it for the

object. It is also worth noting that although general exploration (crossings between the 3

compartments) increased, MSX-3 did not disturb focused social exploration. Moreover,

there was no significant interaction between MSX-3 and ethanol on any of these

parameters; the improving effect of MSX-3 on preference was maintained at the same

level independently of the dose of ethanol (0.5 or 1.0 g/kg) that the animals received.

Consistently, high levels of social interaction have been observed in A2A receptor KO

mice, and these animals were not affected by a dose of ethanol (1.0 g/kg) that impaired

social interaction (López-Cruz et al. submitted). Interestingly, A2AKO mice showed an

anxiogenic profile, which again argues against a straight relationship between anxiety

and social interaction (López-Cruz et al. submitted).

A decrease in exploring a familiar conspecific when a new one is also present has been

interpreted as an index of social recognition (Thor and Holloway, 1982; Moy et al.

2004; Crawley, 2004), which some authors consider to be also an index of preference

for novelty seeking (Costa et al. 2014). Whatever the interpretation, it is required that

the animal consolidates a memory for the familiar conspecific. Adenosine seems to

modulate short-term social memory in rats by acting on both A1 and A2A receptors, with

adenosine receptor agonists and antagonists respectively disrupting and enhancing

social recognition memory (Prediger and Takahashi, 2005). Thus, the selective A1

agonist CCPA and the A2A agonist DPMA disrupted juvenile recognition in adult rats

(Prediger and Takahashi, 2005). This impairment of short-term social memory induced

by adenosine agonists was reversed by caffeine, the A1 antagonist DPCPX, and the A2A
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antagonist ZM24138 (Prediger and Takahashi, 2005). Moreover, acute administration of

caffeine or selective A2A antagonists reversed the disruption of social recognition

memory in ageing rats (Prediger et al. 2005a) and also in spontaneously hypertensive

rats (Prediger et al. 2005b) in which some alterations in the adenosinergic

neurotransmission have been reported (Matias et al. 1992; Cunha et al. 1995; Lopes et

al. 1999; Davies et al. 1987). However, all these studies evaluated short-term social

memory and not long-term social memory.

If the recognition test is carried 24 hours after the first presentation it can be considered

as a test of long-term memory processes. The development and consolidation of long-

term potentiation seems to be also modulated by adenosine receptor-dependent

mechanisms in the hippocampus (Tanaka et al. 1990; de Mendonca and Ribeiro 1994;

Hauber and Bareiss, 2001). Data from the present study indicates that caffeine at high

doses impaired recognition on the following day, especially at those doses (30.0 and

60.0 mg/kg) that had reduced relative preference for social interaction the day before.

Thus, mice explored familiar and novel conspecifics equally, which could be explained

by the fact that animals had explored the conspecific much less time the day before than

animals under control conditions. It is possible that the ability of caffeine to improve

memory at low doses could be seen under different experimental conditions. In fact,

theophylline has been demonstrated to facilitate long-term spatial reference memory in

retention sessions, but not in working memory, both of which are tasks that are highly

dependent on hippocampus (Hauber and Bareiss, 2001). Thus, when the nature of the

task involves optimal performance during basal conditions is very difficult to improve

performance.

It is well know that ethanol can produce amnesic effects and impair retrieval of

memories after the drug wears off (Goodwin 1995; Hartzler and Fromme 2003; Gulick

and Gould, 2007; 2009). Ethanol-induced memory impairments can be produced by

disruption of attention, and also by affecting neural mechanisms involved in memory

consolidation such as the adenosinergic system (Tanaka et al. 1990; Gulick and Gould,

2007; 2009). In experiment 2, ethanol, even at doses that did not impair social

interaction (0.5 g/kg), impaired social recognition 24 hours later. In spite of been a

situation of low performance, caffeine (15.0 or 30.0 mg/kg) co-administration was not

able to block the amnesic effects of ethanol. A previous study in rats explored the effect

of caffeine-ethanol interaction on long-term memory using social odors (Spinetta et al.
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2008). In that study ethanol was administered immediately after exposure to the social

odor, and a recognition test was performed 24 hours later (Spinetta et al. 2008).

Caffeine, at a low dose that did not have an effect on its own (5 mg/kg), was able to

prevent the disruptive effects of ethanol (1.0 g/kg) on memory consolidation (Spinetta et

al. 2008). It is possible that in our study lower doses of caffeine could have improved

ethanol-induced deficits. The behavioral effects induced by methylxantines at low doses

are likely to be mediated by an nonselective adenosine A1/A2A receptor blockade,

while higher doses might involve additional mechanisms such as inhibition of

phosphodiesterases (Nehlig et al. 1992; Hauber and Bareiss, 2001).

As for the role of selective adenosine receptor antagonists, it appears that although CPT

did not affect social interaction, it mildly impaired long-term social recognition at low

doses, an effect that was not observed at high doses. CPT was not able to reverse the

ethanol-induced impairment of recognition memory. In contrast, the selective A2A

antagonist MSX-3, which increased preference for the conspecific when administered

alone, did not impair social recognition, and was able to block the amnesic effect of the

lower dose of ethanol (0.5 g/kg). Thus, in our studies a selective A2A antagonist was

able to improve social memory under conditions of suboptimal performance (ethanol

amnesic effects), but not under optimal performance (i.e., non-treated animals). This

improvement in memory might be due to actions on processes involved in learning,

such as attention and wakefulness, but may also be related to direct actions on learning

and memory.

Although it is clear that normal social interaction is required for normal retrieval of

social memories, the data from the present studies indicate a relative independence

between social preference and social long-term memory processes. The results available

at the present moment also suggest that A1 receptors do not seem to regulate social

motivation and social recognition, since blocking their tonic activity has very little

effect. A1 receptor antagonists appear to play only a modest role in the regulation of

dopamine-dependent aspects of motivated behaviors (Nunes et al. 2013; Salamone and

Correa 2012). Moreover, because selective A1 and A2A antagonists did not mimic the

effects of caffeine, it is possible that blockade of both receptors is necessary for

producing a caffeine-like action. Alternately, it is possible that at high doses caffeine

may not be acting solely as an adenosine antagonist. Thus, although an increase in

adenosine levels could be mediating ethanol effects, the usefulness of highly caffeinated
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drinks in counteracting ethanol-induced impairments on these normal social processes is

questionable.
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Abstract

Social interaction paradigms evaluate the natural preference of animals for exploring

other conspecifics and the ability to differentiate between familiar versus novel ones.

Anxiety is one of the factors that can induce avoidance of social interaction. It has been

demonstrated that blockade of adenosine A2A receptors can potentiate motivation for

natural reinforcers, but can also induce anxiety. However, the role of adenosine

receptors in motivation for social interaction has not been widely explored. In the

present study, A2A knockout (A2AKO) and wild-type (WT) mice were assessed for

social and anxiety-related behaviors. c-Fos immunoreactivity was evaluated as a

measure of neuronal activation in brain areas involved in motivational and emotional

processes. Although A2AKO mice showed an anxiogenic profile, they displayed higher

levels of sociability than WT mice. WT mice displayed a typical pattern of social

recognition 24 hours later, but not A2AKO mice, which explored equally both

conspecifics. There were no differences between strains in aggressiveness or social odor

preferences. c-Fos immunoreactivity in A2AKO mice was higher in anterior cingulate

and amygdala compared to WT mice. An anxiolytic dose of ethanol eliminated

differences between strains in social preference, and impaired conspecific recognition in

WT mice. In conclusion, A2AKO mice tend to engage more in social exploration and are

less sensitive to social novelty. In these animals, there seems to be a dissociation

between baseline and ethanol-related anxiety and motivation for social interaction.

Thus, A2A receptors appear to be potential targets for the improvement of pathologies

related to social function.

Key words: social preference, social recognition, adenosine, anxiety, aggressive

behavior, c-Fos, marble-burying test.
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Introduction

Adenosine is a central nervous system (CNS) neuromodulator that in the brain acts

mainly via the activation of high affinity A1 and A2A G-protein coupled receptors

(Fredholm et al., 2001). While A1 receptors are widely distributed in the brain, A2A

receptors are predominantly localized and highly concentrated in the basal ganglia.

Nucleus accumbens and caudate/putamen have a high concentration of adenosine A2A

receptors (Ferré et al., 2004; Jarvis and Williams, 1989; Vontell et al., 2010), and

considerable evidence indicates that those adenosine receptors interact with dopamine

receptors in the regulation of the activational component of motivated behaviors such as

actively seeking natural reinforcers (i.e.: food or sucrose) (Salamone and Correa, 2009).

Adenosine A2A receptors are also highly concentrated in the olfactory tubercle (Vontell

et al., 2010), and to a much lesser extent, in amygdala (Fredholm et al., 2001;

Schiffmann et al., 2007), both important regions for the regulation of social behaviors in

rodents (Sano et al., 2008).

Although adenosine has been demonstrated to modulate processes involved in social

interaction such as exploration (Florio et al., 1997), arousal (Dunwiddie & Worth,

1982), anxiety (Correa & Font, 2008), and memory (Zarrindast & Shafaghi, 1994), the

role of adenosine and adenosine A2A receptors in seeking social interaction has not been

widely explored. In some studies, caffeine, a non- selective adenosine receptor

antagonist (A1/A2A) has been shown to decrease social interaction in rodents at high

doses, which has been interpreted as an axiogenic effect (Daldwin et al., 1989; Hilakivi

et al., 1989). However, lower doses seem to potentiate social contact (Nadal et al.,

1993). Anxiolytic drugs such as ethanol (Correa et al., 2008), which increases the brain

adenosinergic tone (Nagy et al., 1990), has also been demonstrated to increase social

interaction at low doses (Nadal et al., 1993) but decrease it at high doses (Hilakivi et al.,

1989).

On the other hand, caffeine and selective adenosine antagonists for A1 and A2A

receptors improve short-term social memory in rats (Prediger & Takahashi, 2005),

while ethanol impairs social recognition in mice (Manrique et al., 2005). Thus, it is not

clear how adenosine regulates social motivation or social memory, and if adenosine

modulation of anxiety can reduce social exploration in rodents.
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In the present study, we focused on the impact of A2A receptor deletion (A2A receptor

knockout, A2AKO) on motivation for social exploration, as well as social memory, in

mice. These A2AKO mice have been shown to be more aggressive, and more anxious,

and they display lower levels of locomotion than their wild type (WT) counterparts

(Ledent et al., 1997; Berrendero et al., 2003). However, their patterns of social behavior

have not been previously explored. Thus, the present work evaluates the performance of

A2AKO mice on tests of social preference, recognition, and anxiety. The impact of an

anxiolytic dose of ethanol on social behaviors was also explored in these animals.

Because perseverative behavior, aggressiveness or odor detection problems could

regulate social behavior patterns in rodents (Liebenauer & Slotnick et al., 1996;

Bortolato et al., 2011; Doty, 1986), these processes were also evaluated. Finally,

expression of the immediate early-gene product c-Fos as a measure of neuronal

activation was evaluated in different A2A receptor containing regions, as well as areas

that are important for the regulation of motivation and emotion.

Materials and methods

Subjects

Male mice lacking the A2A adenosine receptor and WT littermates (N=9 and 10

respectively) were generated from a CD1 background by C. Ledent at Universite Libre

de Bruxelles (Belgium), as previously reported (Ledent et al., 1997). All animals

weighted 30-40 g at the beginning of the study and were housed in groups of 3 or 4

animals per cage with water and food available ad libitum. The colony was kept at

temperature of 22 + 2 ºC with lights on from 8:00-20:00h. All animals were under a

protocol approved by the Institutional Animal Care and Use committee of Universitat

Jaume I, and all experimental procedures complied with European community Council

directive (86/609/EEC).

Drugs

Ethanol (Panreac Quimica S.A., Spain) was diluted to 20% (v/v) in physiological saline

(0.9 % w/v) and administered intraperitoneally (IP) 10 minutes before testing. Saline

solution was used as vehicle. The dose of ethanol used (1.0 g/kg) was based in previous

studies with the same strain (Correa et al., 2008).
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Behavioral apparatus and testing procedures

The behavioral test room was illuminated with a soft light, and external noise was

attenuated. All tests were videotaped and dependent variables were later registered by a

trained observer unaware of the experimental condition.

Anxiety in the dark and light box (DL)

The DL test is based on the conflict between the inherent tendencies of mice to explore

a novel environment vs. their natural avoidance of a brightly lit open field. The DL

apparatus consisted of a polypropylene chamber divided in two compartments by a

partition containing a small opening. One compartment was open and illuminated while

the other was enclosed and dark. Initially each subject was placed in the dark

compartment. Latency to enter the lit compartment, latency to go back into the dark

compartment, total time spent in the lit compartment and total number of crosses

between chambers were recorded manually over 5 min.

Anxiety in the elevated plus maze (EPM)

The EPM consists of two open and two enclosed arms arranged in a plus configuration.

This anxiety paradigm measures the avoidance that rodents show to elevated open

spaces. Animals were placed in the central platform facing a closed arm and assessed

during 5 minutes. Time spent in the open arms, ratio of entries into the open arms to

total arm entries, and latency to enter the open arms as measures of anxiety were

evaluated. Total number of entries in the four arms was recorded as an index of

locomotion. An entry into an arm was recorded when the animal crossed the line that

connected that arm with the central platform with all four legs.

Marble-burying task

Burying behavior in rodents involves the displacement of bedding material in an effort

to cover an object as a defensive mechanism against potentially threatening objects

(Pinel & Treit 1978), and it can be extended in time as a sign of perseverative or

repetitive behavior (Thomas et al., 2009). Mice were placed individually in clean cages

containing fresh bedding (5-6 cm deep) on top of which were placed 25 black marbles

arranged in five evenly spaced rows of five marbles each. Testing lasted 5 minutes.

Number of non-buried marbles at the end of this period was recorded.
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Olfactory preference test

Although contact is important, olfaction is a key component of social interaction in

mice (Bluthe & Dantzer, 1993). Animals were compared in their preference between a

non-social odor and a social odor. The social odor was obtained by rubbing a cotton ball

off the body of an unknown mouse. The non-social odor consisted of a drop of a floral

essence in a cotton ball. This experiment took place in the three-chamber box used for

the social preference and novelty experiments. Testing lasted 10 minutes and time spent

sniffing each target (social vs. non-social odor) was registered by a trained observer

unaware of the experimental condition.

Social preference and social recognition tests.

Sociability was measured in a three-chambered social box (Crawley, 2004), and the

general procedure was adapted from Chévere-Torres and colleagues (2012). Mice

received two habituation sessions in the social arena in two consecutive sessions. In the

first session, they freely explored the empty social arena during 15 minutes, and then a

second exploration session (30 minutes) was allowed to be in the presence of two wire

cages, one in each of the chamber sides. After these two habituations (45 minutes total),

the social preference test lasted 10 minutes and started by placing the animal in the

empty middle compartment. Mice were allowed to explore the three-chambered arena,

which in one chamber contained a caged with a conspecific, and in the opposite side

chamber a cage with an object (Fig 4A). The placement of the conspecific or object was

counterbalanced between animals. Time spent sniffing each target (conspecific vs.

object) and time spent in each compartment were evaluated as measures of social

preference. Vertical and horizontal locomotion in all compartments were also registered

as indices of motor behavior. The following day (24 hours after social preference test)

mice were placed in the central chamber and were evaluated during 10 minutes in a

“social novelty test”. During this test a novel caged mouse replaced the object. Thus,

mice were given the choice to interact with a familiar conspecific (same conspecific

used in the social preference test) versus a novel conspecific (Fig 4B). The same

parameters were registered. The index of social recognition is based upon comparing

the time spent investigating the novel mouse vs. the more familiar one (Moy et al.,

2004).
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Fig 4. Schematic illustration of social preference (A) and social novelty tests (B).

Aggressive behavior

Since our social interaction paradigm avoids body contact, aggressive behavior was

evaluated by registering tail rattle frequency during the social recognition test (10

minutes). Tail rattling was defined as rapid vibrations of the tail, which has been

classified as reflecting threat behavior during aggressive encounters (Krsiak, 1979).

c-Fos visualization and quantification

Mice were anesthetized and perfused after the social preference and novelty tests.

Brains were collected and stored in 3.7% formaldehyde solution during 24 h and

refrigerated in sucrose (30%), sodiumazide (2%) and PB 0.1M solution prior to slicing.

Free floating coronal sections (40 µm) were serially cut using a cryostat (Microm HM

560, Weymouth, MA, USA), rinsed in 0.01 M PBS (pH 7.4) and incubated in 0.3%

hydrogen peroxide for 30 minutes to block endogenous staining. Sections were then

rinsed in 0.01 M phosphate buffer (PBS) (3 × for 5 minutes) and transferred into the

primary antibody, anti-c-Fos (Calbiochem, Germany) for 24 h incubation. Following the

primary antibody treatment, the sections were rinsed in PBS (3 × for 5 minutes) and

incubated in the secondary antibody, anti-rabbit HRP conjugate, envision plus (DAKO,
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Denmark) for 1.5 h. The immunohistochemical reaction was developed using

diaminobenzidine (DAB) as chromogen (DAKO). Processed sections were then

mounted to microscope slides (Menzel-Gläser, Superfrost ® Plus, Thermo scientific), air

dried, and cover-slipped using Eukitt® (Sigma Aldrich) as a mounting medium. The

sections were examined and photographed using a Nikon Eclipse E600 (Melville, NY,

USA) upright microscope equipped with an Insight Spot digital camera (Diagnostic

Instruments, Inc). Images of the regions of interest were magnified at 20X and captured

digitally using Stereo Investigator software. Cells that were positively labeled for c-Fos

were quantified with ImageJ software (v. 1.42, National Institutes of Health sponsored

image analysis program) in three or four sections per animal, and the average value per

mm2 was used for statistical analysis.

Statistical analysis

Normally distributed data with homogeneity of variance were evaluated by Student's t-

test for independent samples, and Mann-Whitney U test was used to analyse non-

parametric data. Student's t-test for dependent samples was used to analyse “preference”

(e.g. conspecific vs. object). A probability level of 0.05 or smaller was used to indicate

statistical significance. Statistics were done using STATISTICA 7 software.

Results

Experiment 1: Anxiety in the DL test.

Statistical analysis revealed that KO mice spent significantly less time in the lit

compartment (t=-2.56, p<0.05), and had a higher latency to enter into the lit

compartment (U=27,0, p<0.05) compared to their WT counterparts (Figs. 1A and B).

Latency to go back to the dark compartment did not reach statistical significance

(U=50.0, n.s.) (Fig. 1C). There were no differences between strains in the total number

of crosses between compartments (t=-0.84, n.s.) (Fig. 1D).
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Fig 1. WT and KO mice performance in the elevated plus-maze. Data are expressed as mean

(±SEM) of time spent in the open arms (A), latency to enter in one of the open arms for the first

time (B), ratio of open arm entries versus total entries (C) and total crosses between arms (D).

**p<0.01, *p<0.05 significant differences between strains.

Experiment 2: Anxiety in the EPM test.

Also in this test, KO mice displayed an anxiogenic profile in comparison with their WT

counterparts. They spent significantly less time in the open arms (t=-2.84, p<0.05), and

had a lower ratio of entries into the open arms compared to WT mice (t=-2.15, p<0.05)

(Fig. 2A and C). No differences in latency to enter into an open arm for the first time

(U=49.0, n.s.) (Fig. 2B) or in total number of crosses (Fig. 2D) were observed between

the strains in this paradigm (t=0.98, n.s.). Thus, in both paradigms, locomotion does not

seem to be the source of differences in anxiety.
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Fig 2.WT and KO mice performance in the dark and light box. Data are expressed as mean (±SEM) of

time in lit compartment (A), latency to enter the lit compartment (B), latency back to the dark

compartment (C) and number of crosses between compartments. **p<0.01, *p<0.05 significant

differences between strains.

Experiment 3: Anxiety-perseverative behavior in the marble burying test.

The Mann-Whitney U test showed no differences between WT and KO mice in number

of non-buried marbles in 5 minutes (U=116.5, n.s.), although there was a non-

significant tendency of the KO mice to bury more marbles than WT in the same period

of time (Fig. 3A).
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Experiment 4: Odor preference tests.

The Student's t-test showed that both strains of mice, KO and WT, spent significantly

more time exploring social odors than non-social odors (t=-8,44, p<0.01, t=-5.83,

p<0.01, respectively). Although there was a tendency for the KO mice to spend more

time sniffing social odors than the WT mice, this effect did not reach statistical

significance (t=-1.78, n.s.) (Fig. 3B).

Experiment 5: Social preference test.

In the social preference test, when comparing preference between stimuli for each

strain, the Student's t-test for dependent samples showed that both types of mice spent

Fig 3. WT and KO mice performance in

the marble burying test, and the odor

preference test. Data are expressed as mean

(±SEM) of number of non-buried marbles

(A), and time sniffing the cottons with the

social and non-social odors (B). #p<0.05

significant differences in time spent

exploring the different odors in the same

strain.
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significantly more time sniffing a conspecific than an object; KO (t=7.36, p<0.01) and

WT (t=3.23, p<0.05). They also remained in the compartment with the conspecific

longer than in the object compartment; KO (t=3.80, p<0.01) and WT (t=2.44, p<0.05).

Thus both WT and KO mice showed a clear social vs. non-social preference. In

addition, Student's t-test for independent samples comparing both strains for each

stimuli indicated that KO mice spent more time sniffing the conspecific compared to

their WT counterparts (t= -2.32, p<0.05), and they also spent more time in the

compartment with the conspecific than their WT counterparts (t=-2.03, p<0.05). There

were no significant differences between strains in relation to object exploration (t=0.26,

n.s). However, a Student's t-test for independent samples showed that KO mice spent

less total time in non-social compartments (object plus middle compartments) than WT

mice (t=-3.01, p<0.05). These results suggest that KO mice allocate more time into

social exploration than WT mice. There was not a significant effect of the strain on

horizontal (t=1.18, p= n.s) and vertical locomotion (t=0.82, p= n.s). For all these data

see Fig. 5A to 5D.

Fig 5. WT and KO mice performance in the social preference test. Data are expressed as mean (±SEM) of

time sniffing the conspecific or the object (A), time spent in the compartments were the conspecific or the

object are located (B), total time spent in non-social compartments (middle plus object) (C), and total
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horizontal and vertical locomotion (D). *p<0.05, **p<0.01 significant differences between strains.

#p<0.01, ##p<0.05 significant differences in the same strain.

Experiment 6: Social recognition test, and aggressive behavior.

In the social recognition test, WT mice spent more time sniffing a novel conspecific

than a familiar one (t=-2.81, p<0.05), and the tendency was the same in the variable

time in compartments (novel versus familiar conspecific), though it did not reach

statistical significance (t=-1.84, n.s.). Thus, control mice displayed a normal recognition

pattern. However, in KO mice, there were no differences either in time sniffing familiar

versus novel conspecific (t=0.42, n.s.), or in time spent in those compartments (t=0.96,

n.s.) (Fig. 6A and B). When comparing between strains, the Student’s t-test showed that

KO mice spent more time sniffing the familiar conspecific (t=-2.33, p<0.05), and

remained more time in the familiar conspecific compartment (t=-2.61, p<0.05) in

comparison with WT mice, showing again a higher level of social exploration. The

Mann-Whitney U test did not show differences between WT and KO mice in threat

behavior evaluated as the number of total tail-rattling behaviors during the social

recognition test; neither during interaction with familiar conspecifics, nor with novel

mice (U=26.00, n.s., U=20.5, n.s.) (Fig. 6C). No differences in total crosses and rearing

were observed between strains (t=2.08, n.s.; t=1.78, n.s., respectively) (Fig.6D).
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Fig 6. WT and KO mice performance in the social novelty test. Data are expressed as mean (±SEM) of

time sniffing the familiar or the novel conspecifics (A), time spent in compartments (B), number or tail

ratling bouts during conspecific exploration (C), and total horizontal and vertical locomotion (D).

*p<0.05, significant differences between strains. #p<0.05 significant differences in the same strain.

Experiment 7: c-Fos immunoreactivity in different brain areas.

Fig 7. Left part: Sagital plane of the mouse brain with bregma coordinates: 1.94 mm (A), 1.18 mm (B)
and -1.34 mm (C). Right part: Diagram of coronal sections with bregma coordinates (A, B and C)
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showing location of the brain areas for c-Fos counting taken from Franklin and Paxinos, 2007. Lower
part: Photomicrographs of c-Fos immunoreactivity staining in ACg and ACo from representative WT and

KO animals. Images at 20x, scale bar = 250 μm.

Differences in c-Fos immunoreactivity between WT and KO mice were assessed in

brain areas rich in A2A receptors, some of which are traditionally implicated in social

exploration. These data are shown in Table 1 and Fig. 7. When analyzing data for c-

Fos immunoreactivity in brain regions such as all prefrontal cortex, all striatum and all

amygdala, there were no significant differences between strains either in cortical or in

striatal regions (t=-1.66, n.s., t=-1.17, n.s. respectively). However, in amygdala KO

mice showed higher c-Fos immunoreactivity than their WT counterparts (t=-2.47,

p<0.05).

Separate analysis for every specific brain area showed significant differences in c-Fos

staining between WT and KO mice in ACg. KO mice showed significantly more c-Fos

immunoreactivity than WT in this region (t=-2.24, p<0.05). However no differences

between strains were observed in the other cortical regions explored, PrL and IL (t=-

0.88, n.s; t=-0.72, n.s, respectively). There were no differences in c-Fos

immunoreactivity in regions of dorsal striatum; DMS and DLS (t=0.44, n.s. and t=0.75

n.s., respectively), or ventral striatum; AcbC and AcbSh (t=0.95, n.s. and t=1.00, n.s.,

respectively). Although KO mice showed almost double c-Fos staining in the OT, this

difference did not reach statistical significance (t=-1.64, n.s). The same pattern was

observed in specific amygdala regions, in which no differences were seen between WT

and KO in c-Fos expression in individual nuclei; BLA, CeA, MeA, or ACo (t=-0.54,

n.s; t=-0.44, n.s; t=-1.50, n.s; t=1.49, n.s, respectively).
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Strain

Brain area WT KO

Prefrontal Cortex

ACg 61.5 ± 14.9 100.0 ± 8.6*

PrL 21.7 ± 3.2 32.4 ± 11.8

IL 23.2 ± 5.3 33.3 ± 13.0

Striatum

DMS 53.8 ± 13.7 38.6 ± 12.8

DLS 23.7 ± 5.9 21.3 ± 4.6

AcbSh 21.7 ± 4.3 21.7 ± 6.8

AcbC 27.4 ± 5.7 27.9 ± 7.1

Olfactory system

OT 7.6 ± 2.8 14.5± 3.2

Amygdala *

BLA 9.1 ±1.8 18.24 ± 5.2

CeA 18.6 ± 6.9 23.52 ± 8.7

MeA 34.5 ± 12.3 58.80 ± 9.4

ACo 26.9 ± 4.9 54.5 ± 17.8

TABLE 1. c-Fos immunoreactivity in several brain areas of WT and KO mice (N=5-6 per group). Mean

(±SEM) number of c-Fos positive cells per mm2. *p<0.05 significant differences between strains. ACg

anterior cingulated cortex; PrL, prelimbic cortex; IL, infralimbic cortex; DMS, dorsomedial striatum;

DLS, dorsolateral striatum; AcbSh, nucleus accumbens shell; AcbC, nucleus accumbens core; OT,

Olfactory tubercle; BLA, basolateral nucleus of amygdala; CeA, central nucleus of amygdala; MeA,

medial nucleus of amygdala; ACo, anterior cortical nucleus of the amygdala.

Experiment 8: Effect of an anxiolytic dose of ethanol on social preference.

After receiving an anxiolytic dose of ethanol (1.0 g/kg) both strains behave similarly in

the social preference test (Fig. 8A and B). A Student’s t-test for dependent samples

showed that both strains spent significantly more time sniffing a conspecific than an

object; WT (t=6.84, p<0.01) and KO (t=4.01, p<0.01). In addition, WT mice remained

in the compartment with the conspecific longer than they did in the object compartment
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(t=3.51, p<0.01). This tendency was also observed in KO mice, however it did not reach

statistical significance (t=1.72, n.s.). When comparing both strains, the Student’s t-test

for independent samples showed no differences between WT and KO mice after

receiving ethanol, neither in time sniffing the conspecific (t=0.35, n.s.), nor in time

exploring the object (t=-1.45, n.s.). Both strains also were not different in time spent in

compartments (conspecific and object, t=0.41 n.s., t=-1.34, n.s., respectively). Time in

non-social compartments (middle plus object compartment, Fig. 8C) was not different

between both strains after ethanol administration (t=0.01, n.s.). Thus, both strains

showed a clear but equal social preference after ethanol administration. Horizontal

locomotion after receiving ethanol was significantly lower in KO than in WT (t=2.60,

p<0.05), but no differences were observed in vertical locomotion (t=1.49, n.s) (Fig. 8D).

Fig 8. WT and KO mice performance in the social preference test after receiving 1.0 g/kg of ethanol. Data

are expressed as mean (±SEM) of time sniffing the conspecific or the object (A), time spent in the

compartments were the conspecific or the object are located (B), total time spent in non-social

compartments (middle plus object compartments) (C), and total horizontal and vertical locomotion (D).
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Experiment 9: Effect of an anxiolytic dose of ethanol administered before the

preference test on social recognition the following day.

Ethanol produced recognition memory impairments in both strains of mice, since both

WT and KO mice spent the same amount of time (or even more) with the familiar

conspecific compared to the novel one. Thus, Student’s t-test for dependent samples

revealed that WT mice spent significantly more time sniffing the familiar conspecific

than the novel conspecific (t=2.91, p<0.05, Fig. 9A), and there was no differences in

time in compartments (familiar vs. novel) (t=0.82, lllln.s., Fig. 9B). KO mice spent

similar time sniffing novel and familiar conspecifics (t=1.11, n.s.), and they spent more

time in the familiar conspecific compartment than in the novel conspecific compartment

(t=2.74, p<0.05), which suggests a lack of recognition. When comparing between

strains, KO mice spent significantly more time sniffing the novel conspecific than did

the WT mice (t=-2.91, p<0.01), although there were no differences in time spent in the

novel conspecific compartment (t=0.15, n.s.). There were no differences between strains

in time sniffing the familiar conspecific (t=-0.90, n.s.), however, KO mice spent

significantly more time than their WT counterparts (t=-2.43, p<0.05) in that

compartment. Thus, KO mice had a tendency to spend more time with both conspecifics

compared to WT animals. Finally, a dose of ethanol administered 24 hrs before seemed

to have an impact on vertical locomotion (t=2.02, p<0.05) in KO mice, however

horizontal locomotion was not affected (t=1.74, n.s).
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Discussion

The present study evaluated anxiety and social behavior patterns in A2AKO mice. The

results demonstrate that the lack of A2A receptors induces an anxiogenic pattern of

behavior that does not seem to impair social behaviors. Thus A2AKO mice, in

comparison with WT mice, were more anxious in the DL box, delaying the first

entrance into the lit compartment, and spending less time there. The same pattern of

results was observed in the EPM, in which A2AKO mice spent less time in the open

arms and had a lower ratio of entries to the open arms compared with total entries. Our

results in the anxiety paradigms are in agreement with previous studies (Ledent et al.

1997; Berrendero et al. 2003). In spite of been more anxious, A2AKO mice are more

Fig 9. WT and KO mice performance in the

social novelty test after receiving 1.0 g/kg

of ethanol. Data are expressed as mean

(±SEM) of time sniffing the familiar or the

novel conspecifics (A), time spent in

compartments (B), and total horizontal and

vertical locomotion (C). *p<0.05 significant

differences between strains. #p<0.05

significant differences in the same strain.
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sociable than WT mice; they spent more time exploring or in proximity to conspecifics.

Traditionally, social interaction paradigms in rodents have been used as models of

anxiety (File & Hyde, 1978; File & Seth, 2003). Thus, increases in social interaction

after drug administrations have been interpreted as reflecting anxiolytic actions,

whereas a specific decrease in social interaction has been considered as being due to an

anxiogenic effect (File & Seth, 2003). However, this correspondence between anxiety

levels and social interaction is not always clear (Egashira et al., 2007), as it has been

shown by the present results.

Social preference and social novelty tests in the three-chamber social paradigm provide

information about central aspects of social behavior, such as social motivation or

sociability, as well as novelty seeking or recognition of conspecifics. Sociability in this

case is defined as propensity to spend time with another conspecific compared to time

spent alone (Moy et al., 2004) or with an object in our case. Preference for social

novelty is defined as propensity to spend time with a novel conspecific and can be

interpreted in terms of novelty seeking (Costa et al., 2014), or also of recognition and

memory of the already know animal (Moy et al., 2004; Crawley, 2004). In our study,

A2AKO mice showed poor recognition of a familiar mouse, allocating equal amounts of

time exploring both conspecifics. This lack of social recognition could not be explained

by deficits in spatial memory, since A2AKO mice have previously been shown to have

better results in spatial memory tasks such as the Y test in comparison with WT mice

(Wang et al. 2006). Although greater exploration of a novel versus familiar conspecific

is a normal pattern of social recognition in rodents (Moy et al., 2004), it is possible that

since these mice seem more sociable they do not show distinctive preferences when the

two stimuli are conspecifics.

Lower horizontal and vertical activity has been previously reported for A2AKO mice in

an open field (Ledent et al. 1997; Chen et al. 2007; Berrendero et al. 2003; Pardo et al.

2013). However, in the present study, no significant differences in baseline locomotion

were observed between A2AKO mice and their WT counterparts in any of the

paradigms. Thus, differences between WT and A2AKO mice in this social task do not

seem to be influenced by differences in motor parameters leading to less exploration of

the chambers.
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A number of factors could be influencing this potentiated sociability observed in the

A2AKO mice. More aggressive tendencies, avoidance of non-social odors, or repetitive

and perseverative behaviors when checking other conspecifics, all could underlie an

apparent increase in sociability. For that reason we explored those behaviors. In the

marble test, A2AKO mice did not differ from WT controls, although the KO animals did

show a tendency to bury marbles in 5 minutes. Pharmacological studies established this

paradigm as a model of anxiety-related behavior (Broekkamp et al., 1986), although it

also has been suggested as test for preservative or repetitive behavior (Thomas et al.,

2009). Is possible that our conditions generated high levels of anxiety in both strains in

this paradigm, making difficult to observe clear differences in burying behavior. Odor

cues are known to be important for rodents in different contexts (Schellinck & Brown,

1998) and many behavioral tasks designed for mice depend on these cues. Olfactory

deficits could interfere with performance in our social tests and produce false positive

results. Thus, accurate assessment of olfaction is critical for proper interpretation of

mice behaviors within the social domain (Yang and Crawley, 2009). In addition, A2A

receptors are highly concentrated in the olfactory tubercle and olfactory bulbs (Kaelin-

Lang et al., 1999; Vontell et al., 2010). In experiment 4 of the present study, when a

social odor (rubbed in a cotton ball) was presented concurrently to a non-social odor

(floral odor in a cotton ball) in the three-chambered box, all animals spent more time

exploring the social odor, and no differences in non-social odor exploration were

observed between WT and A2AKO mice. There was a tendency for A2AKO to spend

more time than WT sniffing social cues, which could suggest a stronger sociability in

KO mice, though this effect was not significant. Previous studies have demonstrated

that A2AKO mice displayed an increased number of attacks and tail rattles, as well as a

decreased latency to attack the intruder in the resident-intruder test of aggression

(Ledent et al., 1997). However, no differences between WT and A2AKO mice were

observed in our experiment when evaluating the number of tail rattles as a measure of

basal levels of threat behavior towards the cage enclosed conspecific, possibly because

our setting did not potentiate aggressive behaviors.

Analyses of the c-Fos immunoreactivity data indicated that A2AKO mice showed greater

neuronal activation in brain regions that are important for the regulation of social

behavior. Amygdala is a region in which adenosine A1 and A2A receptors have been

identified (Brass et al., 1986; Svenningsson et al., 1997, 1999; Rosin et al., 1998), and
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this region, especially the medial nucleus, has been implicated in processing social

information in humans (Critchley et al., 2000) and in rodents (Young et al., 2002). In

our study, there was greater c-Fos immunoreactivity in A2AKO mice compared with WT

mice in the amygdala. OT is an area rich in A2A receptors that also is very important for

social behavior in rodents (Wesson et al., 2011), which receives inputs from the

accessory and main olfactory systems (Ubeda-Bañona et al., 2007; Martinez-Marcos,

2009). Although there was a tendency for the number of c-Fos positive cells in the OT

to be higher in A2AKO compared to WT animals, there was not a significant difference.

However, A2AKO mice did show significantly higher levels of c-Fos immunoreactivity

in ACg compared to WT animals. ACg is an important prefrontal area that is involved

in the regulation of aspects of motivation (Schweimer et al., 2005). Allocating more

time into social exploration (as the KO mice did) indicates increased preference, which

is an index of the directional component of motivation. ACg has also been implicated in

enhancing stimulus discrimination (Schweimer et al., 2005).

Previous studies using WT and A2AKO mice with the same CD1 background as the ones

used in the present study have shown how A2AKO mice have increased sensitivity to the

anxiolytic effects of low doses of ethanol (Houchi et al. 2008). Thus, we tried to assess

if a low dose of ethanol that has been shown to be anxiolytic in CD1 mice in previous

studies (Correa et al., 2008) can regulate social interaction in A2AKO mice. Although

ethanol did not change social exploration in WT mice, it did eliminate differences

between WT and A2AKO animals. Since ethanol increases adenosine levels (see López-

Cruz et al., 2013), it is possible that an ethanol-induced increase in adenosine tone can

counteract the effects of reduced A2A receptor transmission in KO animals, possibly by

acting on A1 receptors. An increase in adenosine after receiving ethanol can also explain

a reduction in locomotion in A2AKO mice seen in the social test. Thus, our studies with

A2AKO mice do not support the idea of a simple and direct relationship between anxiety

and social interaction in these mice, since ethanol reduced social exploration in A2AKO

mice but it induced anxiolysis in these animals (Houchi et al. 2008). In addition, ethanol

disrupted social recognition the following day in both strains, with a bigger impact on

WT animals that spent less time with the novel animals than the familiar ones. A2AKO

mice spent equal time with both conspecifics, suggesting that they had a higher

preference for social contact overall.
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Thus, the present results suggest that the A2A receptors are potential targets for the

regulation of social function, an aspect of behavior that seems to be affected in a variety

of neuropsychiatric disorders (Landau et al., 1991; Mueser et al., 1991). Future studies

should investigate pharmacological antagonists with different selectivity profiles for A1

and A2A receptors in order to elucidate the role of the adenosine system in socially

motivated behaviors. Moreover, since A2A receptors are localized in regions that also

are rich in neuropeptides such as oxytocin and vasopressin, which are important for the

establishment of social attachment (Tobin et al., 2010; Ferguson et al., 2011), A2A

receptors could be also important for modulating the actions of those neuropeptides.
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CHAPTER 5:

Does caffeine have a therapeutic role in depression?:

relevance for the treatment of motivational symptoms.
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Abstract

Major depressive disorder is one of the most common and debilitating psychiatric

conditions. Some of its motivational symptoms, such as anergia (lack of self-reported

energy) and fatigue, are resistant to traditional treatments with serotonin uptake inhibitors,

so new pharmacological targets are being investigated. Limited epidemiological data

indicate that caffeine consumption has an impact in some aspects of depressive

symptomatology. In animal studies, drugs that act on adenosine receptors are being

assessed for their effects on the modulation of behavioral functions related to depression.

Caffeine is a non-selective adenosine antagonist that binds to both A1 and A2A receptors,

and has been shown to modulate behavior in classical animal models of depression. This

review focuses on the effects of caffeine and selective adenosine antagonists on different

aspects of depression in humans, as well as in animal models. The effects of caffeine on

motivational symptoms of depression such as anergia and psychomotor slowing receive

particular attention. In that regard, the ability of caffeine to reverse the anergia induced by

dopamine antagonism or depletion is of special interest. In conclusion, it appears that

caffeine and adenosine antagonists could have potential as therapeutic agents for the

treatment of motivational dysfunction in depression.

KEYWORDS: caffeine, depression, adenosine, anergia, fatigue, amotivation, anxiety.
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Major Depression Disorder: symptomatology and current treatment

Major depression disorder (MDD) is one of the most debilitating psychiatric disorders

in the world (World Health Organization, 2004), and the most commonly diagnosed

(American Psychiatric Association, 2013). The Diagnostic and Statistical Manual

(DSM) in its last edition (DMS-V) defines this disorder as a set of symptoms that

include depressed mood, decreased interest or pleasure in almost all activities nearly

every day, appetite changes (changes in body weight), sleep disturbances, feelings of

worthlessness or guilt, diminished ability to concentrate or indecisiveness, psychomotor

agitation or retardation and fatigue or loss of energy (American Psychiatric Association,

2013).

Symptoms such psychomotor retardation, fatigue and loss of energy are related to the

activational component of motivation. Motivated behavior is directed towards or away

from particular stimuli, but it also is characterized by a high degree of activity, effort,

vigor, and persistence (Salamone and Correa, 2002). People with depression commonly

show profound activational impairments, such as lassitude, listlessness, fatigue and

anergia (low self-reported energy) that affect their motivation (Tylee et al., 2002; Stahl,

2002). In fact, among depressed people, energy loss and fatigue are the second most

commonly reported symptoms, only behind depressed mood itself (Tylee et al., 1999),

and depressed patients with anergia are more common than patients with anxiety related

symptoms (Tylee et al., 2002). Furthermore, in a factor analytic study of depressed

patients, “lack of energy” was a factor that correlated highly with problems such as

energy/fatigability, inability to work, and psychomotor retardation, loading most

strongly onto a second order general depression factor (Gullion and Rush 1998).

Moreover, many people with major depression have fundamental deficits in reward

seeking, exertion of effort, and effort-related decision making that do not simply depend

upon any problems that they may have with experiencing pleasure (Treadway et al., 2012).

Lack of energy is the symptom most highly correlated with impaired social function in

depressed patients, and is closely related to various work-related problems such as days

in bed, days of lost work, and low work productivity (Swindle, 2001). In addition, this

cluster of symptoms can be highly resistant to treatment (Stahl, 2002), and they are the

best predictors of lack of remission after antidepressant drug treatment (Stahl, 2002;

Gorwood et al., 2014).
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Treatments for the motivational and activational symptoms in depression.

The severity of effort-related motivational symptoms in depression is related to

problems with social function, employment absence, and treatment outcomes (Tylee et

al. 1999; Stahl 2002). Patients with high scores in psychomotor retardation also have

longer duration of illness, an earlier age of onset, and more depressive episodes (Calugi

et al., 2011; Gorwood et al., 2014). These symptoms are a predictor of delayed response

to treatment with either interpersonal psychotherapy or selective serotonin (5-HT)

reuptake inhibitor pharmacotherapy (Frank et al., 2011), often remaining as residual

symptoms even in patients in remission (Stahl, 2002; Fava et al. 2014; Gorwood et al.,

2014).

Most of the present treatment strategies for MDD focus on drugs that block the

inactivation (i.e., inhibitors of enzymatic breakdown or uptake) of the monoamine

neurotransmitters 5-HT and norepinephrine (NE). The classical antidepressants include

monoamine oxidase inhibitors (MAOIs), which affect one of the major catabolic

enzymes for monoamines (Quitkin et al., 1979), and drugs that inhibit uptake of one or

more monoamines (Feighner, 1999; Richelson et al., 1982; Yildiz et al., 2002).

Although 5-HT and NE reuptake inhibitors have become the most frequently prescribed

medications for MDD, they fail to induce symptom remission in 40%-60% of all

patients (Rush and Trivedi, 1995; Fava et al., 2014), and it is widely accepted that at

least 20% of all depressed patients do not respond adequately to most antidepressant

drugs (Crown et al., 2002). Many common antidepressants, including 5-HT transport

inhibitors such as fluoxetine, are relatively ineffective at treating anergia and fatigue,

and in fact, can induce or exacerbate these symptoms (Padala et al. 2012; Stenman and

Lilja 2013; Fava et al. 2014).

Interestingly, some clinical studies suggest that drugs that inhibit dopamine (DA)

transport, such as the catecholamine uptake inhibitor bupropion, are relatively more

effective than 5-HT uptake inhibitors for treating effort-related motivational symptoms

(Rampello et al. 1991; Stahl 2002; Demyttenaere et al. 2005; Pae et al. 2007).

Furthermore, a recent paper (Bell et al. 2013) reports that individual differences in

behavioral traits can differentiate between depressed patients that are more responsive

to bupropion (i.e., motivated, achievement-oriented, active, exercise-oriented people)

vs. fluoxetine (people with mood problems, irritability, and rumination). Stimulant

drugs that are not considered to be antidepressants in the classical sense, such as
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methylphenidate and modafinil, have been shown to increase energy and motivation in

depressed patients (Zisook et al., 2006). Thus, clinical studies, together with preclinical

investigations (e.g. Salamone et al. 2006, 2007; Salamone and Correa, 2012;

Argyropoulos and Nutt, 2013; Yohn et al., 2015ab), have led to the suggestion that DA

systems and related circuits are particularly involved in effort-related motivational

symptoms.

In addition to DA, another possible therapeutic target for the anergia component of

depression is the adenosinergic system. In the present review, we focus on studies that

assessed the effect of caffeine and selective adenosine antagonists on different aspects

of depression in humans, as well as in animal models of depression, with special

emphasis on motivational/psychomotor symptoms.

Caffeine consumption, depression and related mood symptoms.

Caffeine is a naturally occuring methylxanthine that acts mainly as a non-selective A1

and A2A adenosine receptor antagonist (Fredholm et al., 1999). This methylxantine is

found in common beverages including coffee, tea, soft drinks, and products containing

cocoa, as well as a variety of medications and dietary sources (Barone and Roberts

1996; Andrews et al., 2007). Thus, caffeine ranks as one of the most commonly

consumed dietary ingredients throughout the world (Heckman et al., 2010). Daily intake

of caffeine among consumers in US is about 280 mg, and higher intakes are estimated

in some European countries (Gilbert, 1984; Barone and Roberts, 1996). Caffeine is

typically consumed in order to increase alertness, arousal, activation and self-reported

energy (Malinauskas et al., 2007; Smith et al., 2002). Its consumption has been related

to changes in cognitive performance and mood in the normal population (Smith et al.,

2002), as well as in people with fatigue (Childs and de Wit, 2001).

There are very few studies on the relation between caffeine consumption and

depression-related symptoms, and in many cases, its use is related to self-medication

patterns. Some of these studies focus on the role of caffeine as a drug that prevents

depression, while others discuss caffeine as a possible treatment for existing depression.

Thus, in a longitudinal study in women free from depressive symptoms at baseline, high

levels of caffeine consumption (>550 mg/day) were negatively correlated with the

appearance of depressive symptoms (Lucas et al., 2011). In fact, the relative risk for

depression was higher for those women with lower caffeine consumption (<100
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mg/day; Lucas et al., 2011). However, in women with multiple sclerosis, high doses of

caffeine (>400 mg/day) increased the prevalence of MDD (Patten et al., 2000).

Moreover, in non-clinical samples, although caffeine consumption at moderate doses

was related to decreases in suicide risk (Kawachi et al., 1996; Tanskanen et al., 2004),

excessive consumption (750 mg/day) was correlated with a higher risk of suicide

(Tanskanen et al., 2004; Kawachi et al., 1996). Thus, from the present studies, it seems

that intermediate levels of caffeine consumption (300-550 mg/day) may produce

beneficial effects in non-clinical populations, but not in people with some neurological

pathologies. Higher doses appear to have negative effects, even in non-clinical

populations.

Multiple reports have lent support to the idea that depressed people could use caffeine

as self-medication. It has been reported that psychiatric patients show a relatively high

degree of caffeine consumption compared to the normal population (Greden et al, 1978;

Scott et al, 1989; Rihs et al., 1996, Leibenluft et al., 1993). This appears to be

particularly true in patients that have experienced depressive symptoms (Leibenlugt et

al., 1993). Different profiles of patients (i.e. with alcohol dependence, seasonal affective

disorder and people with MDD) have been shown to have higher levels of caffeine

consumption after experiencing depressive symptoms (as shown by the Halmilton

Rating Scale for depression; Leibenluft et al., 1993; Halmilton et al., 1967). Among

youth with depression, there is higher caffeine consumption that in the general

population (Whalen et al., 2008). Moreover, the degree of caffeine consumption seems

to be a predictor of improvement of somatic symptoms and hostility in depressed

patients medicated with fluoxetine (Worthington et al., 1998), suggesting that caffeine

could be an effective co-treatment for some of the symptoms of depression.

Impact of caffeine on energy/fatigability and behavioral activation in humans.

A wide range of studies have demonstrated that caffeine can increase alertness and

subjectively reported energy, and also can reduce fatigue (Lieberman et al., 2001; Yu et

al., 1991; Johnson et al., 1990; Smith et al., 1992; 1997). Caffeine has also been

demonstrated to increase feelings of efficiency, self-confidence, motivation to work

(Fredholm et al., 1999), to increase the desire to socialize (Griffiths et al.,

1990; Silverman et al., 1994; Griffiths and Mumford, 1995), and to improve

psychomotor performance (Rees et al., 1999). The behavioral effects of caffeine can be
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influenced by baseline arousal levels and also by the nature of the task requirements. It

has been argued that the effects of caffeine on fatigue should be most clearly evident in

situations of low baseline arousal or high fatigue, or in tasks placing high demands on

controlled processing (Bachrach, 1966; Liberman et al., 1986; Weiss and Laties, 1962).

In fact, beneficial effects of caffeine have been observed in people in low states of

alertness, such as after benzodiazepines administration (Johnson et al., 1990), sleep loss

(Bonnet et al., 1995), when the person is suffering from a common cold (Smith et al.,

1997), or when the experiment is done in the early morning (Smith, 1992). In addition, a

broad range of studies have reported effects of caffeine withdrawal on different markers

of motivation using descriptors such as fatigue, decreased energy or vigor, lethargy,

amotivation for work, etc. (for a review see Juliano and Griffiths, 2004). For example,

in controlled studies, after 10 days of high levels of caffeine consumption (1,250

mg/day), withdrawal results in increased subjective ratings of headache, sleepiness,

laziness and fatigue, as well as decreased alertness, activation and vigor (evaluated with

the Profile of Mood State, POMS) (Griffiths et al., 1986). Abstinence from intermediate

doses in daily coffee and cola consumers (average of 579 mg/day) increased ratings of

drowsy/sleepy, fatigue/tired, lazy/sluggish/slow-moving, and decreased ratings of

active/energetic/excited, and motivated to work, as well as performance in psychomotor

tasks (Liguori and Hughes, 1997). Even at low doses (100 mg/day, in a controlled

study), caffeine withdrawal increased ratings of lethargy, fatigue, tiredness, and

sluggishness, and decreased ratings of energy, motivation and urge to work (Griffiths et

al., 1990). Silverman et al. (1992) reported that caffeine withdrawal in non-depressed

moderate caffeine users increased fatigue and decreased self-reported vigor, and also

increased the number of people with abnormally high scores on the Beck Depression

Inventory.

Effect of caffeine and adenosine antagonists on classic animal models of

depression.

Preclinical studies have attempted to elucidate the effect of caffeine and selective

adenosine antagonists on classic animal models of depression (El Yacoubi 2001). Two

of the classic tests for the assessment of antidepressant properties of different

substances in rodents are the forced swim test (FST) and the tail suspension test (TST).

In the FST, animals are placed in an inescapable cylinder filled with water, and after an
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extended period of swimming, eventually become immobile (Porsolt et al., 1977; Petit

de Mouliere et al., 2005). The TST is based on the observation that a mouse suspended

by the tail shows alternate periods of agitation and immobility (Sterú et al., 1985).

Classical antidepressants reduce immobility time in these paradigms, which have

become the classical models for evaluating the antidepressant effects of drugs or

showing depressive symptoms induced by behavioral manipulations (Armario and

Nadal 2013).

There are a number of stress-based models used to study behavioral processes related to

depression. Learned helplessness has been considered as one of the factors leading to

the development of depression in vulnerable individuals that suffer stressful life events

(Abelaira et al., 2013). Learned helplessness can be produced in animal models in which

the depressive-like state is induced either by chronic uncontrollable and unpredictable

stressors (CUS), typically electrical foot-shock, and subsequently fails to escapable

shock (Overmier and Seligman, 1967). In addition to deficits in escape and avoidance,

animals that develop learned helplessness show decreases in weight gain, increased

immobility in the FST or TST, and reduced locomotion, all symptoms associated to

some degree with depression (Maier and Seligman, 1976). More recently, the chronic

mild stress (CMS) model was developed.  CMS is induced by irregular exposure to a

combination of different types of stressors over a period of weeks (Katz et al., 1981;

Willner, 2005). These conditions reduce sucrose consumption in rodents (Willner,

2005). After the administration of substances with antidepressant properties, animals

exposed to CUS or CMS consume normal levels of sucrose (Willner, 2005), and display

escape-directed behaviors, reducing time of immobility (Porsolt et al., 1977; Steru et al.,

1985).

All these tests and manipulations have been used to study the potential therapeutic

properties of caffeine and selective adenosine antagonists or genetic deletion of

adenosine receptors in rodents. In one of the seminal papers, Porsolt and colleagues

(1978) demonstrated that an acute dose of caffeine reduced immobility time in the FST

in Sprague-Dawley rats. In later studies, this effect has been confirmed using other

strains of rats and mice, after acute or repeated administration of a broad range of doses

and using diverse animal tests (see table 1). Consistent with the effects of caffeine,

selective adenosine A2A receptor antagonists have also been effective in these tests.

Thus, SCH 58261 and istradefinille (KW6002), reduced total immobility time in both
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the TST and the FST in mice (El Yacoubi, 2001). SCH 58261 also reduced immobility

time in a selectively bred ‘helpless’ CD1 mice strain in the TST (El Yacoubi, 2001).

Moreover, A2A receptor knockout (A2AKO) mice showed reductions in immobility time

compared to wild type (WT) animals in both tests (El Yacoubi, 2001).

Using the learned helplessness model for inducing depressive symptoms, it has been

demonstrated that acute doses as well as chronic administration of caffeine can reduce

the impact of CUS. Thus, caffeine prevented as well as reversed CUS-induced

behavioral and physiological signs of depression such as decreased weight gain,

increased corticosterone levels, escape behavior impairments in a shuttle box, increased

immobility time in the FST and TST, increased anxiety, and decreased sucrose

consumption, locomotion and spatial reference memory (see table 1). In agreement with

these findings, mice that received the selective A2A receptor antagonist istradefylline, as

well as constitutive A2AKO mice, were protected from the CUS-induced behavioral

impairments in the FST, TST, and memory tests (Kaster et al., 2015), suggesting a key

role for A2A receptors in acute and chronic stress-induced depressive effects.

Based on these results some researchers have focused on adenosine receptor

antagonists, including caffeine, as tools to reverse behavioral impairments induced by

pharmacological manipulations of the adenosine system (Pechlivanova et al., 2012;

Minor et al., 2008; 1994; Woodson et al., 1998; Kulkarni and Mehta, 1985; Hunter et

al., 2003). Thus, a high dose of adenosine (100 mg/kg, intraperitoneally; IP), or its

analog 1-chloroadenosine (2.0 mg/kg, IP) induce immobility in the FST in mice, and

caffeine and theophylline (8.0 mg/kg, IP), reversed this effect (Kulkarni and Metha,

1985). Theophylline is a psychoactive methylxanthine found in tea and other

substances, and is also a metabolite of caffeine that acts as a non-selective adenosine

antagonist for A1/A2A receptors (Gu et al., 1992). In contrast, Kaster and colleagues

(2004) used low doses of adenosine administered via two different routes of

administration (IP: 1-10 mg/kg, and intracerebroventricular, ICV: 0.1-10 ug/site), and

observed antidepressant-like effects in the FST and TST. Moreover, the A1 adenosine

receptor agonist, adenosine N6-cyclohexyladenosine (CHA) (0.05-1.0 mg/kg, IP), and

the A2A agonist N6-[2-(3,5-dimethoxyphenyl)- 2-(methylphenyl)ethyl]adenosine

(DPMA) (1.0-5.0 mg/kg, IP) also decreased the immobility time in this test (Kaster et

al., 2004). In addition, pretreatment with non-effective doses of caffeine (3.0 mg/kg,

IP), the A1 antagonist DPCPX, and the A2A antagonist ZM241385, inhibited the
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antidepressant effect induced by a low dose of adenosine in the FST (Kaster et al.,

2004). These authors also observed that a higher dose of adenosine (50.0 mg/kg, IP) did

not have antidepressant effects (Kaster et al., 2004). As a whole, these studies suggest

that adenosine might elicit antidepressant actions only at low doses (1.0-10.0 mg/kg,

IP), having no effect at intermediate doses (50.0 mg/kg) and depressant-like effects at

higher doses (100 mg/kg) (Kulkarni and Metha, 1985).

Figure 1. Adenosine synthesis and metabolism. Abbreviations: ADA, adenosine deaminase;

AK, adenosine kinase; A1R and A2AR, adenosine A1 and A2A receptors, cNT: cytosolic endo-

nucleotidase; ENT, equilibrative nucleoside transporter; eNT, exo-nucleotidase.  (Adapted from

Ruby, 1999).

Consistent with the results from studies using high doses of IP adenosine, increases in

central adenosine transmission have been also associated with escape deficits in the

inescapable shock paradigm (Minor et al., 1994a; Woodson et al., 1998; Kurlarni and

Mehta, 1985; Minor and Hanff, 2015). Thus, it has been demonstrated that ICV

administration of NBTI (S-(4-nitrobenzyl)-6-theoinosine), an equilibrative nucleoside

transport (ENT) blocker that increases extracellular adenosine levels by blocking its

reuptake, impaired escape latency in rats (Jacobson et al., 1992; Noji et al., 2004; Minor

et al., 2008). Moreover, ICV administration of erytrho-9(2-hydroxy/3/nonyl adenine

(ENHA), a selective adenosine deaminase (ADA) inhibitor which blocks adenosine
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metabolism, mimicked the effect of inescapable shock (Woodson et al., 1998). Low

doses of caffeine reversed the escape deficits induced by EHNA (Woodson et al., 1998).

The reversal effects of caffeine appear to be specific to actions on adenosine receptors,

and not as a general psychomotor stimulant effect, since amphetamine exacerbated the

behavioral impairments induced by inescapable shocks. Moreover, the amphetamine-

induced impairment was reversed by caffeine and theophylline (Minor et al., 1994b),

and also by the A2A antagonist CSC, but not by the selective A1 adenosine antagonist

DPCPX (Minor et al., 2008). Injections of glutamate into prefrontal cortex have been

shown to impair escape performance (Petty et al., 1985), and later work reported that

caffeine can reverse these glutamate-induced escape deficits (Hunter et al, 2003). This

pattern of results is consistent with studies showing that increases in glutamate are

counterbalanced by an increase in adenosine production and release (Deckert and

Gleiter, 1994).

Caffeine has also been used to enhance the effect of monoaminergic antidepressants

(especially 5HT and NE uptake inhibitors) that are been used in clinical practice and

also have been shown to reduce immobility in classical animal tests of depression. Thus,

caffeine administered at doses that do not have an effect on their own can potentiate the

effects of desipramine, imipramine, duloxetine, fluoxetine and paroxetine on FST

performance (Robles-Molina et al., 2012; Kale et al., 2014; Szopa et al., 2016). In

addition, a low dose of caffeine can also enhance the behavioral and neurochemical

effects of bupropion, which blocks catecholamine uptake (Kale et al., 2014).

Impact of caffeine on behavioral activation and effort-related processes:

preclinical studies

In the animal literature, as with the human data, there are studies showing how caffeine

and selective adenosine antagonists affect the willingness to work depending on the

demands of the task. Caffeine and theophylline produced rate-dependent effects on lever

pressing to obtain palatable food in rats (Randall et al., 2011). Caffeine (5.0-20.0 mg/kg,

IP) and theophylline (10.0-40.0 mg/kg, IP) increased responding on the schedule that

generated low baseline rates of responding (a fixed interval 240 seconds (FI-240 sec)

schedule). In contrast, caffeine and theophylline decreased responding on a fixed ratio

20 (FR20) schedule that typically generates high rates of responding (Randall et al.,

2011) (see table 2). The A2A antagonists MSX-3 and istradefylline increased FI-240 sec
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lever pressing but did not suppress FR20 lever pressing in the dose range tested. In fact,

there was a tendency for istradefylline to increase FR20 responding at a moderate dose.

A1 antagonists failed to increase lever-pressing rate, and actually DPCPX decreased

FR20 responding at higher doses. These results suggest that the work potentiating

effects of methylxantines are mediated by their actions on adenosine A2A receptors,

while their A1 receptor antagonist action could be mediating the suppressant effects.

Progressive ratio (PR) schedules, which require gradually increasing work output, have

been also employed to explore the effect of caffeine on motivation to work for sucrose

or food reinforcement in rats and monkeys (Sheppard et al., 2012; Retzbach et al., 2014;

Buffalo et al., 1993). Acutely and chronically moderate doses of caffeine elevated PR

lever pressing for sucrose (Sheppard et al., 2012; Retzbach et al., 2014). Caffeine had

no effect on inactive lever presses suggesting that this increase was not due to an

increase in general motor activity (Retzbach et al., 2014). However, in rhesus monkeys

intravenous (IV) caffeine decreased percent of task completed, and breakpoint in a PR

for palatable food (Buffalo et al., 1993), possibly because this dose directly

administered in the blood stream resulted in higher levels in the brain. Thus, it seems

that low-to-moderate doses of caffeine increase behavioral output in tasks that evaluate

willingness to work for a reinforcer, while high doses decrease responding.

Caffeine modulation of DA-related postsynaptic signaling.

As described above, caffeine is a non-selective adenosine receptor antagonist. In the

brain, adenosine acts upon both A1, and A2A G-protein-coupled receptors (Fredholm et

al., 2011; Jackobson and Gao, 2006). The distribution of adenosine receptors within the

brain (Fredholm et al., 2011) allows a wide range of effects, including modulation of

other neurotransmitter systems (Cuhna-Reis et al., 2007). Thus, adenosine A2A receptors

are highly expressed in DA rich areas such as neostriatum and accumbens (Acb)

(Shiffmann et al., 1991; deMet et al., 2002). In fact, it has been demonstrated that in

these areas, there is a functional interaction between DA D2 and adenosine A2A

receptors (see Figure 2), which are co-localized on enkephalin-containing medium spiny

neurons, form hetromeric complexes, and converge onto the same signal transduction

pathways in an antagonistic manner (Ferré, 2008; Ferré et al., 1997, 2008; Fink et al.,

1992; Fuxe et al., 2003). Similarly, A1 and D1 receptors antagonistically interact in

substance P-containing medium spiny neurons (Ferré et al., 1997; 2008).
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Figure 2. Impact of caffeine on the functional interaction between adenosine and DA

receptors. A1R and A2AR: adenosine A1 and A2A receptors, D1: DA type 1 receptor, D2: DA

type 2 receptor (adapted from Ferré 2008).

The behavioral significance of this interaction has frequently been studied in the context

of neostriatal motor functions and pathologies (Correa et al., 2004; Ferré et al., 1997;

Collins et al., 2010; Pinna et al., 2007; Simola et al., 2004, 2006; Wardas et al., 2001).

Thus, selective A2A receptor antagonists are been tested in clinical trials for pathologies

involving DAergic dyfunctions such as Parkinson disease (LeWitt et al., 2008), and

positive results indicate that they can be used as adjuvant therapies (Hung and

Schwarzschild, 2014). In fact, istradefylline is currently approved in Japan for use in

treating Parkinson’s disease. Caffeine’s actions on A1 and A2A adenosine receptors

(Ferré, 2008), has promoted its study as an alternative preventive or therapeutic tool for

Parkinsonian symptoms (Prediger, 2010). Moreover, within the last few years, the

motivational significance of DA-adenosine receptor interactions has become apparent

with regard to processes such as behavioral activation and effort-related decision-

making, which could have significance for the treatment of depression and other

pathologies (Salamone et al., 2006; 2009; 2010). The next two sections will review the
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literature related to DA-adenosine interactions in pathological symptoms related to

effort-based decision-making.

Effort-related decision-making in depression: Clinical significance and animal

models.

Activational aspects of motivation (i.e., vigor, persistence, work output) are highly

adaptive because they enable organisms to overcome obstacles or work-related response

costs that separate them from significant stimuli (Salamone and Correa, 2002, 2012; van

den Bos et al., 2006). An important feature of adaptive behavior, in the face of work-

related challenges, is effort-related decision making. Frequently, organisms must make

cost/benefit analyses in which they weigh the value of a stimulus relative to the cost of

obtaining it, and such decisions involve effort-relateed costs (Salamone and Correa,

2002, 2012; Salamone et al., 2007). These processes are important for both normal and

pathological aspects of motivation.  For example, people with MDD show a reduced

likelihood of selecting high effort activities in human tasks of effort-related decision

making (Treadway et al. 2012; Yang et al., 2014).

Extensive animal research has demonstrated that Acb DA is a key mediator of effort-

based decision-making processes (for a review see Salamone and Correa, 2012). In

preclinical studies, animals are given a choice between a more valued reinforcer that can

only be obtained by engaging in a more demanding-higher effort activity vs. a low

effort/low value option. Interference with DA transmission produces a shift in effort-

related choice behavior, biasing animals towards instrumental behaviors that involve

less effort or lower activity. One such procedure is a T-maze task that provides an

effort-related challenge by having a vertical barrier in the arm with the higher reward

density (HD) vs. an arm that contains a lower density of reward (LD) and has no barrier

(Salamone et al. 1994; Cousins et al. 1996; Mott et al., 2009; Pardo et al., 2012). With

this procedure, rodents choose to climb the barrier to get more reward in 90% of the

trials, once they have been trained (Cousins et al. 1996; Pardo et al., 2012). In operant

tasks animals are given a choice between lever pressing for the more preferred reward

(in FR5, FR7, or PR schedules) vs. approaching and consuming a less preferred

reinforcer that is concurrently freely available in the chamber (Salamone et al. 1991;

Randall et al. 2012; Pardo et al., 2015). When tested on the concurrent FR5/free reward

choice task, untreated rats typically spend most time pressing the lever for the preferred

reward and eat little of the freely available food or fluids (Salamone et al., 1991, 2002;
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Pardo et al., 2015). In contrast, rats tested on the PR/chow free feeding choice task show

more individual variability, and tend to disengage more readily from the PR lever

pressing component because of the increasing work requirement (Randall et al., 2012,

2014). Research with these concurrent choice tasks has shown that interference with DA

transmission via DA depletions or DA receptor antagonism typically biases rodents

towards the low effort-low reward option (Salamone et al., 1991; 2009; Worden et al.,

2009; Pardo et al., 2012; Randall et al., 2012, 2014; Yohn et al., 2015a,b,2016a,b).

Using these effort-related choice procedures it has been demonstrated that the

catecholamine depleting agent and vesicular transport inhibitor (VMAT-2) tetrabenazine

(TBZ) can shift effort-based decision making across multiple behavioral tasks (Nunes et

al., 2013; Randall et al., 2014; Yohn et al., 2015a,b, 2016a,b; Pardo et al., 2015). TBZ has

been shown to deplete monoamines, with its greatest impact being upon striatal DA

(Pettibone et al., 1984; Tanra et al., 1995; Nunes et al., 2013). TBZ is used as a

therapeutic drug to treat Huntington’s disease patients, but it also induces side effects

that include symptoms of depression, including fatigue, in humans (Frank 2010; Guay

2010).  Because of its neurochemical and behavioral effects, TBZ is a useful tool for

animal models of depression, and TBZ has previously been employed in studies that use

the FST and TST rodent models of depression (Preskhorn et al. 1984; Kent et al. 1986;

Wang et al. 2010). Recent studies have demonstrated that the effort-related effects of

TBZ are attenuated by the catecholamine uptake blocker bupropion, which is a

commonly used antidepressant, and also by the selective DA uptake blocker GBR12909

(Nunes et al., 2013; Randall et al., 2014; Yohn et al., 2016a). In contrast, other classical

drugs for the treatment of depression, such as the 5-HT uptake inhibitors fluoxetine and

citalopram and the NE uptake inhibitor desipramine, failed to reverse the effects of

TBZ, and higher doses even led to further behavioral impairments (Yohn et al.,

2016a,b).

In addition to DA, adenosine also is involved in effort related decision-making

processes (Farrar et al., 2007, 2010; Hauber and Sommer, 2009; Nunes et al., 2010;

Salamone et al., 2007, 2009). Microinjections of the adenosine A2A agonist CGS 21680

into the Acb produced effects on instrumental behavior and effort-related choice that

resembled those produced by Acb DA antagonism or depletion (Font et al., 2008;

Mingote et al., 2008). In addition, considerable evidence indicates that DA D2 and

adenosine A2A receptors interact to regulate effort-related functions (Salamone and

Correa, 2009, 2012). Thus, adenosine A2A antagonists such as MSX-3, MSX-4, and
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istradefylline were able to reverse the shift in effort-based choice that was induced by

administration of the D2 antagonists haloperidol and eticlopride (Farrar et al., 2007,

2010; Salamone et al., 2009; Mott et al., 2009; Worden et al., 2009; Nunes et al., 2010;

Pardo et al., 2012; Santerre et al., 2012). Moreover, A2A KO mice were resistant to the

effects of haloperidol on performance of the T-maze barrier task (Pardo et al., 2012). In

contrast, adenosine A1 antagonists DPCPX and CPT were ineffective at reversing the

effort-related effects of either the D1 antagonist ecopipam or the D2 antagonist

eticlopride (Salamone et al., 2009; Nunes et al, 2010; Pardo et al., 2012, 2015).

The effects of caffeine and theophylline on effort-related choice behavior after the

administration of D2 antagonists have also been reported in rats tested on the concurrent

FR5/chow feeding choice task. Caffeine (5.0, 10.0 and 20.0 mg/kg, IP) partially

attenuated the effects of haloperidol, increasing the lever pressing and decreasing chow

intake in haloperidol-treated rats (Salamone et al., 2009). Similarly, theophylline (10.0

and 15.0 mg/kg) reversed the effects induced by D2 antagonism in mice tested on the T-

maze barrier task (Pardo et al., 2012). Furthermore, using the T-maze task, our

laboratory recently conducted an experiment in CD1 male mice assessing the impact of

caffeine (0.0, 2.5, 5.0 or 10.0 mg/kg, IP 30 min before test) on arm selection before and

after DA depletion via TBZ (0 or 4.0 mg/kg, IP 120 min before test). Although a single

dose of caffeine (10.0 mg/kg) significantly reduced latency to get access to the food in

the first 10 trials in the phase in which there was no barrier (t-test for dependent

samples; (t=2.2, p<0.05), it did not increase HD arm selection or food consumption (see

figure 3).

Figure 3. Impact of caffeine (10.0 mg/kg, IP 30 minutes before test) on performance in a T

maze in which the high density (HD) and the low density (LD) arms had no barrier. Data for the

10 first trials. A) Average latency to reach the food (seconds) *p<0.05 different from saline. B)

Number of HD arm selection. C) Number of total pellets consumed.
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Caffeine was effective at reversing the reduction in HD arm selection (repeated

measures ANOVA for HD arm selection; F(3,28)=8.32, p<0.01) and the concurrent

increase in LD arm selection (F(3,28)=7.53, p<0.01) when there was a 14 cm barrier in

the HD arm and animals had received a dose of TBZ that shifted behavior towards the

low effort option. Thus, a dose of 5.0 mg/kg of caffeine reversed the impairing effect of

the DA depleting agent TBZ on selection of the high effort choice (see figure 4).

Figure 4. Impact of TBZ (4 mg/kg, IP administered 120 minutes before test) on HD arm (A)

and LD arm (B) selection and reversal with different doses of caffeine in a T maze with a 14 cm

barrier in the HD arm. Mean + SEM of number of trials in which animals choose HD or LD arm

(**p<0.01 different from VEH/VEH. ##p<0.01 different from TBZ/VEH.)

Furthermore, several recent papers have reported that the adenosine A2A antagonist

MSX-3 can reverse the effort-related effects of TBZ across multiple tasks (Nunes et al.,

2013; Randall et al., 2014; Yohn et al., 2015a). Taken together with the results of

studies showing that A2A but not A1 receptor antagonists can reverse the effort-related

effects of D2 antagonism, these results suggest that the ability of caffeine to reverse the

effects of DA antagonism and depletion may depend largely upon blockade of A2A

receptors.

Mental fatigue associated with high attentional demands can also be overcome by the

use of psychostimulants such as amphetamine or caffeine (Peeling and Dawson, 2007;
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Silber et al., 2006). In cost/benefit decision-making tasks involving the evaluation of the

cost involved in high attention-demanding tasks, rats can choose between engaging in

hard trials (difficult visuospatial discrimination) leading to more reward versus easy

trials leading to less reward (Cocker et al., 2012). Under basal conditions, animals chose

high effort/high reward trials more than low-effort/low reward trials. However, there are

substantial individual differences in baseline performance. Amphetamine increases the

selection of high effort/high reward trials in animals that usually do not choose this

option under baseline conditions, but it decreases the selection of the high cognitive

demand trials in animals that usually choose them. A high dose of caffeine (20.0 mg/kg)

decreased choice of high effort/high reward trials in animals that usually choose them as

did amphetamine, but caffeine did not increase the selection in the ones that usually did

not choose them (Cocker et al., 2012). Thus, it appears that cognitive arousal and

attention are components of this task that are not improved by caffeine, which, on the

other hand, seems to benefit selection of responses that require high levels of physical

effort.

Translational studies in humans have employed tasks that evaluate effort-based decision

making processes in normal humans as well as psychiatric patients. The effort

expenditure for rewards task (EEfRT; Treadway et al., 2009), is based on the operant

lever pressing and T-maze choice tasks described above (Salamone et al., 1991, 1994,

2002). In the human version of this task, subjects choose on each trial between a high

cost/high reward option (HC/HR) and low cost/low reward option (LC/LR) to obtain

different monetary rewards. The HC/HR trials required 100 button presses with the non-

dominant little finger within 21 seconds, and subjects were eligible to win higher

amounts that varied per trial between $1.24-4.30. In contrast, the LC/LR option only

required 30 button presses with the dominant index finger during 7 seconds, and

subjects could win $1.00 for each successfully completed trial. The rewards were not

guaranteed if they completed the task, thus some trials were “win” trials while others

were “no win” trials. Participants were provided with probability cues during the choice

session, leading to three levels of probability of a win trial: high (88%), medium (50%),

and low (12%). Based on these percentages, participants could choose between the

HC/HR trial and the LC/LR trial. Patients with MDD were significantly less likely to

make HC/HR choices relative to controls, and this result was not related with

depression-related differences in psychomotor speed (Treadway et al., 2012). The

probability of reward was an important factor, as the impairment in MDD patients was
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greater when reward probability, and thus baseline selection of the high effort option,

was highest (Treadway et al., 2012). The effects of caffeine on this task in depressed

patients has not been explored, but it was assessed in nonpathological human subjects

(Wardle et al., 2014).  A single dose of caffeine (200 mg) significantly increased the

speed of responses compared to placebo, but did not have an effect on percentage of

HC/HR choices (Wardle et al., 2014). In fact, caffeine decreased effortful choices in

high cardiovascular responders (subjects with high arterial pressure in response to

caffeine) (Wardle et al., 2014). These results are different from previous human studies

reporting that a major psychomotor stimulant, amphetamine, was able to increase

HC/HR choice (Wardle et al., 2011), and also with studies showing that, during

exercise, caffeine decreases the perception of effort in humans (Doherty and Smith,

2005) and improves performance particularly during endurance testing (Doherty and

Smith, 2004).

Conclusions and further directions

Although many available treatments for MDD provide relief for some individuals with

depressed mood, no single therapeutic option provides a full and permanent recovery

for all the symptoms of MDD in the majority of patients (McClintock et al., 2011).

Clinicians have come to emphasize the importance of effort-related motivational

symptoms in depression (Tylee et al., 1999; Stahl 2002; Demyttenaere et al,. 2005;

Salamone et al., 2006), because even among patients in remission, anergia and

psychomotor retardation are pervasive symptoms (Gorwood et al., 2014). Thus, novel

pharmacological targets are being investigated in clinical and preclinical studies. There

are promising results shown in human epidemiological studies, as well as research with

animal models, characterizing the potential effect that caffeine and selective adenosine

receptor antagonists could have on these symptoms. It is worth noting that the

epidemiological studies have reported mixed outcomes in humans depending on the

amount of caffeine consumed. Thus, whereas some studies reveal a relation between

caffeine consumption and decreased risk for developing depression (Lucas et al., 2011),

and different reports demonstrate the use of caffeine as a self-medication among

depressed patients (Leibenlugt et al., 2003), other studies show a relation between high

levels of caffeine consumption and increased risk of suicide (Tanskanen et al., 2004).

Thus, it seems clear that more controlled studies are needed to explore the effect of

caffeine on the wide variety of symptoms observed in patients with MDD.
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Systematic studies on the effects of caffeine in animal models of depression and anergia

have shown the efficacy of this methylxanthine at improving parameters related to

initiation and maintenance of behavior in order to escape an aversive situation, but also

in order to pursue valued reinforcers and achieve goals (Pechilivanova et al., 2012;

Hunter et al., 2003; Minor et al., 2008; Woodson et al., 1998; Kulkarni and Metha et al.,

1985; Salamone et al., 2006; Randall et al., 2011). As with the human data, these

actions are dependent on the dose, since high doses not only fail to improve depression-

like symptoms, but can in fact promote anxiety (Correa and Font 2008; López-Cruz et

al., 2014). Both in humans and in animal studies, the therapeutic actions of caffeine also

seem to be dependent on the basal state; for example it seems to be effective when

subjects are under a state or fatigue, tiredness or sleepiness (Bonnet et al., 1995;

Johnson et al., 1990; Smith 1992), or when the DAergic system is compromised

(Salamone et al., 2009; present data), and such effects are less evident when humans

and rodents are assessed under “normal” conditions. Other methylxantines such as

theophylline, and several A2A selective antagonists, have also been shown to reverse

motivational impairments induced by DA antagonism or depletion in animal models of

anergia (Salamone et al., 2009; Farrar et al., 2009; Mott et al., 2009; Pardo et al., 2012).

Adenosine A2A receptors appear to be involved in these processes, probably through

their interaction with DA D2 receptors in the Acb, a striatal region that is highly

involved in the activational component of motivation (for a review see Salamone and

Correa, 2012).

Consistently, it has been demonstrated in human studies that the rank order of clinical

effectiveness in depressed patients with psychomotor retardation paralleled the

specificity of antidepressants as DA-mimetic agents (Rampello et al., 1991).

Antidepressants such as bupropion have been demonstrated to have therapeutic effects

on motivational symptoms in humans (Pae et al., 2005) and to stimulate effort-related

behavioral output in animals (Randall et al., 2014). In animal studies, caffeine has been

shown to improve the effects of antidepressants such as bupropion, duloxetine and

desipramine (Kale et al., 2014; Robles-Molina et al., 2012; Szopa et al., 2016). These

studies have helped to identify caffeine as a potential enhancer of antidepressant

pharmacotherapy (for a review, Kale et al., 2010). This suggestion is consistent with the

clinical trials for antiparkinsonian effects showing that A2A antagonists can be a useful

adjuvant in the treatment of motor symptoms (Hung and Schwarzschild, 2014).

However, determination of the predominant symptomatology in individual patients may
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be an important key to therapeutic success. In patients affected by anxious depression,

preferential inhibition of 5-HT reuptake may be a more effective selective inhibition of

DA reuptake (Rampello et al., 1995), and caffeine in those types of depressed patients

may actually worsened the anxiety symptoms.

Table 1. Effect of caffeine in classical animal tests of depression.

Caffeine dose Animal
model

Species/strain Behavioral effects Reference

15-20 mg/kg,
IP. Acute

FST Sprague-
Dawley rats

Decreased immobility Porsolt et al.,l.,
1978
Kitada et al., 1981

1 mg/kg,
IP. Repeated
3 times

FST Wistar Rats Decreased immobility Enríquez-
Castillo, et al.,
2008

10 mg/kg,
5 mg/kg
IP. Acute

FST, TST Swiss mice Decreased immobility.
Potentiated antidepressant effect
of bupropion and duloxetine

Kale et al., 2014

10-50 mg/kg,
5 mg/kg
IP. Acute

FST Albino Swiss
mice

Decreased immobility.
Potentiated antidepressant effect
of imipramine, desipramine,
fluoxetine, paroxetine,
escitalopram and reboxetine.

Spoza et al.,
2016

3.1-30 mg/kg,
0.31-1 mg/kg,
IP. Acute

FST Balb-c mice Decreased immobility.
Potentiated antidepressant effect
of desipramine

Robles-Molina
et al., 2012

3 mg/kg,
IP. Acute

FST, TST Swiss mice Reversed: immobility induced
by adenosine

Kaster et al.,
2004

8 mg/kg,
IP. Acute

FST Wistar mice No effect on its own.
Reversed: immobility induced
by adenosine and 2-
chloroadenosine.

Kulkarni and
Mehta et al.,
1985

7 mg/kg,
IP. Acute

FST Sprague
Dawley Rats

Reversed: immobility induced
by reserpine

Minor et al.,
2015

8 mg/kg,
Oral. 4 weeks

CUS
induction

Wistar Rats Reversed: immobility in FST,
weight loss, hypolocomotion,
anxiety, decreased sucrose
consumption, and core
temperature

Pechlivanova et
al., 2012

7 mg/kg,
IP. Acute

CUS
induction

Sprague
Dawley Rats

No effect on its own
Reversed: escape deficits
induced by glutamate injection
in prefrontal cortex.

Hunter et al,
2003

7 mg/kg,
IP. Acute

CUS
induction

Sprague
Dawley Rats

Reversed: escape deficits
induced by ENT blocker

Minor et al.,
2008.

10 mg/kg,
IP. Acute

CUS
induction

Sprague
Dawley Rats

Reversed: escape deficits
induced by ICV administration
of EHNA

Woodson et al.,
1998
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1 g /L ,
Orally.
6 weeks
(before and
after CUS)

CUS
induction

C57BL/6 mice Prevented: immobility in FST
and TST, weight loss, increased
levels of corticosterone,
reduction in sucrose preference,
and decreased spatial reference
memory

Kaster et al., 2015

Table 2. Effect of caffeine in behavioral activation and effort-based decision making tests.

Caffeine dose Animals model Species/

strain

Behavioral effects Reference

5-20 mg/kg,
10-40 mg/kg,
IP. Acute

FI-240
FR20

Sprague
Dawley
Rats

Increased lever pressing
Decreased lever pressing

Randall et
al., 2011

6.25-25.0 mg/kg,
IP Acute.

FR2
PR

Sprague
Dawley
Rats

Increased lever pressing for
visual stimuly and sucrose

Sheppard et
al., 2012

5 mg/kg,
IP. Chronic
10 days

FR4 Sprague
Dawley
Rats

Increased lever pressing for
sucrose.

Retzbach et
al., 2014

10 mg/kg,
IV. Acute

PR Rhesus
Monkey

Decreased breakpoint for
palatable food.

Buffalo et
al., 1993

5-20 mg/k,
IP. Acute

FR5/Free chow
concurrent choice

Sprague
Dawley
Rats

Increase lever pressings and
decrease free chow intake in
haloperidol-treated rats

Salamone et
al., 2009

20 mg/kg,
IP. Acute

Cognitive effort
task (rCET)

Long
Evans
Rats

Decreased choice of high
effort/high reward trials in
“workers”. No increase in
“slackers”.

Cocker et al.,
2012
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CHAPTER 6:

Caffeine reverses the shift in preference from high to low

effort reinforcing activities induced by dopamine depletion:

relation to DARPP32 phosphorylation patterns.
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Abstract

The mesolimbic dopamine (DA) system plays a critical role in behavioral activation and

effort-based decision-making. DA depletion produces anergia (shifts to low effort

options) in effort-based tasks. Caffeine, the most consumed stimulant in the world, acts

as an adenosine A1/A2A receptor antagonist, and DA D1 and D2 receptors are co-

localized with adenosine A1 and A2A receptors. In the present work, we evaluated the

effect of caffeine on anergia induced by the VMAT-2 inhibitor tetrabenazine (TBZ),

which produces DA depletions. Anergia was evaluated in a three-chamber T-maze task

in which animals can chose between running on a wheel (RW) vs. sedentary activities

such as consuming sucrose or sniffing a neutral odor. Independent groups of animals

were evaluated for voluntary motor activity in the RW and sucrose consumption. DA

tissue levels after TBZ were evaluated with HPLC. TBZ-caffeine interactions were

evaluated on DARPP-32 phosphorylation patterns as an intracellular marker of DA

receptor activity in striatum. In the T-maze, control mice spent more time running and

much less consuming sucrose, and also did very little sniffing. TBZ (4.0 mg/kg)

reduced DA tissue levels and also shifted preferences, reducing selection of the

reinforcer that involved vigorous activity (RW), but increasing consumption of a

reinforcer that required little effort (sucrose), at doses that had no effect on independent

measures of appetite or locomotion in the RW. This suggests that DA depletion

produced anergia, but did not affect the primary motivating effects of sucrose. Caffeine

at doses that had no effect on their own reversed TBZ effects on the T-maze and the

RW. Caffeine also suppressed TBZ-induced pDARPP-32(Thr34) expression, suggesting

a role for D2-A2A interaction.

Key words: Decision-making, motivation, behavioral activation, dopamine, adenosine,

sucrose, running wheel

Running title: Caffeine reversal of dopamine depletion-induced anergia
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1. Introduction

Motivated behavior is directed towards or away from particular stimuli, but it also is

characterized by a high degree of activity, effort, vigor, and persistence (Salamone and

Correa, 2002; 2012). These activational aspects of motivation are highly adaptive, because

they enable organisms to overcome the work-related obstacles that separate them from

significant stimuli (Salamone and Correa, 2002, 2012). Activation-related dysfunctions,

such as anergia, and fatigue, are an important and debilitating set of symptoms seen in

major depression, Parkinson disease (PD), schizophrenia and other pathologies (Caligiuri

and Ellwanger, 2000; Salamone and Correa, 2012; Friedman et al. 2007; Tellez et al. 2005;

Tylee et al. 1999; Demyttenaere et al. 2005). Thus, it has been demonstrated that early

Parkinsonian patients have subjective reports of lack of energy (Friedman et al. 2007;

Nomoto et al. 2014), and reduced selection of high-effort activities (Elbers et al. 2009), and

people with depression show a decrease -n selection of high effort/high reward options

when compared with healthy controls (Treadway et al. 2012).

Several lines of evidence have identified dopamine (DA), particularly in nucleus

accumbens (Nacb), as a critical component of the brain circuitry regulating behavioral

activation and effort-related processes (Salamone and Correa, 2002, 2012; Mai et al.

2012). Interference with DA transmission can affect allocation of effort on tasks that

assess effort-based choice behavior, biasing individuals towards lower effort

alternatives (Salamone et al. 2007; Floresco et al. 2008; Hauber and Sommer, 2009). In

these tasks animals have the option of vigorously working (lever pressing or climbing a

barrier) to get access to preferred reinforcers versus approaching and consuming a less

preferred food or sucrose solution that requires less effort to obtain (Salamone et al.

1991, 1994, 2002; Randall et al. 2012; Pardo et al. 2012, 2015; Mott et al. 2009; Yohn

et al., 2015). The catecholamine depleting agent and vesicular transport inhibitor (VMAT-

2) tetrabenazine (TBZ) used to treat Huntington’s disease patients, has demonstrated to

deplete monoamines, with its greatest impact being upon striatal DA (Pettibone et al.

1984; Tanra et al. 1995; Nunes et al. 2013). TBZ’s main side effects include fatigue,

Parkinsonism, and depression (Frank, 2009, 2010; Guay, 2010). TBZ also has been

demonstrated to induce shifts in behavior towards low effort/low reward options in

effort-based decision-making tasks in rodents (Pardo et al. 2015; Yohn et al. 2015;

Nunes et al. 2013).
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In addition to DA, the neuromodulator adenosine appears to be involved in the

regulation of the activational component of motivated behaviors (Salamone and Correa

2009; Pereira et al. 2011). DA and adenosine receptors are co-localized (D2-A2A and D1-

A1), and they converge onto the same signal transduction pathways, having opposite

effects on the adenylyl cyclase-related signal transduction cascade (Ferré et al. 2004).

Striatal areas such as neostriatum and Nacb are very rich in these types of adenosine

receptors (Demet et al. 2002; Ferré et al. 2008, 2004). Thus, adenosine antagonists are

been proposed as therapeutic agents to counteract symptoms induced by DA

dysfunctions (Jenner 2014). In human patients with PD, istradefylline (a A2A antagonist)

has been demonstrated to reduce feelings of fatigue, depression and listlessness

(Nomoto et al. 2014). Thus far, istradefylline is the only adenosine A2A antagonist that

is approved for clinical use, and it is available in Japan. Caffeine is a natural

methylxantine that acts mainly as a non-selective adenosine A1 and A2A receptor

antagonist (Fredholm et al. 1999). In humans, caffeine has been shown to increase

subjectively reported energy, and motivation to work, and to reduce fatigue and improve

psychomotor performance (Lieberman et al. 2001; Yu et al. 1991; Johnson et al., 1990;

Smith et al. 1992; 1997; Fredholm et al. 1999; Rees et al. 1999). It has been argued that

the most powerful therapeutic effects of caffeine would be expected in situations of high

fatigue (Liberman et al. 1987; Weiss and Laties, 1962).

The present studies investigated the impact of TBZ, caffeine and their combination on a

novel T-maze task developed to assess preferences between active versus sedentary

sources of reinforcement (adapted from Correa et al. 2016). This T-maze task does not

involve work in order to get access to a reinforcer, as previous tasks developed in our

laboratory (Pardo et al. 2012; Yohn et al. 2015), but instead offers the choice to freely

engage in wheel running, or to consume palatable pellets containing 50% sucrose or, as

a third alternative, to sniff into a hole with a neutral non-social odor. In addition, we

evaluated the impact of TBZ and caffeine even at higher doses in independent groups of

animals that were not in a choice situation and only had access to pellets or to a RW.

Striatal levels of DA after TBZ administration were evaluated, and markers of D1 or D2

receptor activity (phosphorylated forms of DARPP-32; pDARPP-32(Thr34) and

(Thr75) were quantified by western blot after these manipulations.
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2. Methods

2.1. Subjects.

CD1 adult male mice (N=119) purchased from Janvier, France S.A. were 15-17 weeks

old (30-45 g) at the beginning of the study. Mice were housed in groups of three or four

per cage, with standard laboratory rodent chow and tap water available ad libitum. The

colony was kept at a temperature of 22 2 ºC with lights on from 08:00 to 20:00 h. All

animals were under a protocol approved by the Institutional Animal Care and Use

Committee of Universitat Jaume I, and all experimental procedures complied with

European Community Council directive (86/609/ECC). All efforts were made to

minimize animal suffering, and to reduce the number of animals used.

2.2. Drugs.

Tetrabenazine (TBZ) [(R,R)-3-Isobutyl-9,10-dimethoxy-1,3,4,6,7,11b-hexahydro-

pyrido[2,1-a]isoquinolin-2-one] (CIMYT Quimica SL, Spain), was dissolved in a 20%

dimethylsulfoxide (DMSO) solution mixed with saline and pH adjusted with 1 N HCl to

bring the final solution to pH 5.5. DMSO (20%v/v) was used as its control. TBZ was

administered 120 min before testing. Caffeine (Sigma-Aldrich, Spain) was dissolved in

0.9% w/v saline. Saline solution was used as its vehicle control. Caffeine was

administrated 30 min before test. All solutions were administered intraperitoneally (IP).

2.3. Behavioral and biochemical procedures

Three-choice running wheel T-maze task. The T-maze apparatus consisted of a

central corridor with two opposed arms. Each arm provided a different type of stimuli

(for details, see Fig 1). In one of them sweet pellets (TestDietTM, 50% sucrose, 45 mg

each) were available, in another arm there was a RW, and in the third arm there was a

hole with a cotton ball soked with a neutral non-social odor. Training as well as test

sessions lasted 15 minutes. Mice were trained 5 days a week. Training phase 1: to avoid

neophobia to the sweet tasting pellets, animals were enclosed in that arm with the food

during 5 sessions. Training phase 2: during 2 more weeks animals were exposed, one 15

min session a day to the T-maze with free access to the three stimuli. Test phase: This

phase lasted during 4 more weeks. For each week there were 4 baseline sessions plus a

testing session in which animals either received drug injections. Sessions were

videotaped and a trained observer unaware of the drug condition register manually
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accumulated time spent in the RW, consuming the sucrose pellets, or sniffing the hole,

and crosses into the arms or time spent in the arms of the T-maze. These measures were

taken based on previous studies (Correa et al., 2016). Time was selected as the main

dependent measure because it allowed us to evaluate the three conditions with the same

units. Time allocation is a useful measure of preference, relative reinforcement value,

and response choice (Baum and Rachlin, 1969). Testing sessions started two hours after

light period onset. The behavioral test room was illuminated with a soft light, and

external noise was attenuated.

Figure 1. Schematic representation of the 3-choice RW T-maze task settings and experiments

timeline.

Sweet pellets intake. Mice were individually placed in testing chambers (32 x 15 x 13

cm) identical to their home cages, during a 30 min session per day, 5 days/week. The

testing chambers contained a glass plate with 30 pellets (45 mg each, with a 50%

sucrose composition). At the end of the session, mice were immediately removed from

the chamber, returned to their respective home cages, and number of pellets consumed

was determined. Each animal was exposed to this procedure for 4 weeks before testing

started.
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Running Wheel (RW) locomotion. The automated RW (Ugo Basile) consisted of a

cage (32 x 15 x 13 cm) with a wheel (11 cm in diameter) inserted on top. Locomotor

activity was registered by an electrical counter connected to the wheel. A completed

turn of the wheel was registered as 4 counts. Animals placed in the cage had free access

to the wheel. Animals were trained during 3 weeks to achieve a stable baseline of

locomotion (30 min sessions per day).

High Performance Liquid Chromatography (HPLC) for DA level determination.

Brain samples were extracted after TBZ administration. Mice were anesthetized with

carbon dioxide for 30 s and decapitated. Brains were quickly removed and frozen on a

Leitz Wetzlar microtome. Coronal sections 750 μm thick were cut through the striatum.

A 16-gauge stainless-steel tube was used to dissect bilateral cylindrical samples from

the ventral striatum. These tissue samples were then placed in 200 μl of 0.1 N perchloric

acid, and then homogenized, centrifuged, and frozen. The supernatant was subsequently

analyzed for DA content using HPLC with electrochemical detection (ESA Coulochem

II system). The electrochemical parameters were as follows: channel 1= − 100 mV,

channel 2 = +200 mV, and guard cell = +350 mV. Each liter of mobile phase contained

27.6 g sodium phosphate monobasic, 8.0% of methanol 750 μl of 0.1M EDTA, and

2875 μl of 0.4M sodium octyl sulfate dissolved in deionized ultrapure H2O with a final

pH of 4.5. The flow rate was 1.0 ml/min.

Western blotting. Striatal tissue samples were homogenized in ice cold lysis buffer

[137mM NaCl, 20mM Tris-HCl (pH 8.8), 1% NP40, 10μg/ml of aprotinin, leupetin,

0.5mM orto sodium vanadate and 0.1mM PMSF, protease inhibitors]. Homogenates

were centrifuged at 13.000 rpm for 15 minutes at 4°C. Aliquots of supernatants were

collected and used for Bradford quantification of total protein and others stored at -80ºC

until analyses. Every sample was boiled for 5 minutes. Equal amounts (30μg) of

striatum protein samples were separated by 12.5% SDS-PAGE and transferred to

nitrocellulose membrane for 90 minutes at 30 volts. Membranes were block with 5%

Bovine Serum Albumin (BSA) in TBS-Tween 0.1% for one hour and later incubated

with polyclonal rabbit anti- DARPP32 (1:1000, Cell Signalling), DARPP32-Thr75

(1:500, Cell Signalling and DARPP32-Thr34 (1:500, Cell Signalling) overnight at 4°C.

After rinses with TBST 0.1%, membranes reacted with goat anti-rabbit peroxidase

conjugated secondary antibody and developed by enhanced chemiluminescence (1:40

ThermoScientific). Filters were probed with anti-Actin monoclonal antibody (1:500;
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Abcam) as an internal standard for protein quantification. The film signals were scanned

and levels of the band density were blind processed and quantified by densitometry with

ImageJ software. Every sample was replicated at least twice to ensure the

reproducibility of the method.

2.4. Experiments

Behavioral experiments used a within-groups design, in which each mouse received all

treatments once per week over consecutive weeks. No dose sequence was repeated

across different animals in any of the experiments.

Experiment 1. Impact of TBZ, caffeine and their combination on preference

between concurrently available reinforcers in the T-maze

Experiment 1.1. Effect of TBZ on T-maze preferences. Mice (N=9) received vehicle

or TBZ (1.0, 2.0 and 4.0 mg/kg) 120 minutes before the test.

Experiment 1.2. Effect of caffeine on T-maze preferences. A different group of mice

(N=9) was injected with caffeine (1.25, 2.5 and 5.0 mg/kg) or saline 30 minutes before

test started.

Experiment 1.3. Reversal of TBZ induced effects in the T-maze by different doses

of caffeine. After being trained as described above, mice (N=8) received two injections:

DMSO plus saline, TBZ (4.0 mg/kg) plus saline, and TBZ (4.0 mg/kg) plus caffeine

(1.25, 2.5 and 5.0 mg/kg). TBZ was injected 120 min before test started, while caffeine

was injected 30 min before test.

Experiment 2. Impact of TBZ, caffeine and their combination on independent tests

of sucrose consumption or locomotion in the RW.

Experiment 2.1. Effect of caffeine and TBZ on sucrose consumption. Mice (N=8)

were exposed to sucrose pellets daily during 6 weeks (30 minutes session). When the

animals reached a stable level of intake, they were injected with TBZ at doses of 2.0,

4.0 and 8.0 mg/kg or DMSO 120 minutes before test. Another group of mice (N=9) was

injected with caffeine at doses of 1.25, 2.5, 5.0 and 10.0 or saline 30 minutes before the

intake test.

Experiment 2.2. Effect of caffeine and TBZ on locomotion in the RW. After RW

training, mice (N=9) received TBZ (1.0, 2.0, and 4.0 mg/kg) or DMSO 120 minutes
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before the locomotion test. A second group of mice (N=10) received injections of

caffeine (2.5, 5.0 and 10.0 mg/kg) or saline 30 minutes before testing. A third group of

mice (N=9) received a combination of treatments: DMSO plus saline or TBZ (8.0

mg/kg) plus saline or TBZ (8.0 mg/kg) plus caffeine (2.5, 5.0 and 10.0 mg/kg). Caffeine

or saline vehicle was injected 30 min before the RW test while TBZ or DMSO vehicle

were administered 120 min before the test began.

Experiment 3. Effect of TBZ on DA tissue levels in striatum. Mice (N=8 per

condition) were injected with DMSO or TBZ (4 or 8 mg/kg). The striatum was

extracted 120 min after drug administration. Samples were processed and analyzed with

HPLC in order to quantify DA tissue levels.

Experiment 4. Effect of TBZ and caffeine co-administration on DARPP-32,

pDARPP-32(Thr75) and pDARPP-32(Thr34) levels in striatum. Mice (N=6-8 per

condition) were injected with DMSO plus saline or TBZ (8 mg/kg) plus saline or with

TBZ (8 mg/kg) plus caffeine (10.0 mg/kg) before brain extraction. Striatum samples

were analyzed by western blotting for DARPP-32, pDARPP-32(Thr75) and pDARPP-

32(Thr34).

2.5. Statistical Analyses.

All the behavioral experiments followed a within-subjects design, and were analyzed

with repeated measures analysis of variance (ANOVA). Behavioral data on the

interaction between TBZ and caffeine were analyzed using a two way-factorial

ANOVA. When the overall ANOVA was significant, non-orthogonal planned

comparisons using the overall error term were used to compare each treatment with the

vehicle control group (Keppel, 1991). For these comparisons,  level was kept at 0.05

because the number of comparisons was restricted to the number of treatments minus

one. Biochemical studies were analyzed with one-way ANOVA. All data were

expressed as mean ± SEM, and significance was set at p<0.05. STATISTICA 7 software

was used for statistical analyses of the data.
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3. Results

Experiment 1. Impact of TBZ, caffeine and their combination on preference

between concurrently available reinforcing activities in the T-maze

Experiment 1.1. Effect of TBZ on T-maze preference. Repeated measures ANOVA

revealed an overall effect of TBZ dose on time spent running in the RW (F(3,24)=6.83,

p<0.01), and time spent eating (F(3,24)=2.94, p<0.05), but no significant effect on time

sniffing the neutral odor (F(3,24)=1.43, n.s.) (Fig 2A-C). Planned comparisons showed

a significant decrement in time running in the RW after TBZ injection at doses of 2.0

and 4.0 mg/kg compared with the vehicle group (p<0.01). There was also a significant

increase in the time eating after the highest dose of TBZ (4.0 mg/kg) compared with the

vehicle condition (p<0.01) (Fig 2A and B). The repeated measures ANOVA did not

yield a significant effect of TBZ on total crosses as a measure of locomotion

(F(3,24)=0.52, n.s.) (Fig 2D). Thus none of these doses of TBZ produced an impairment

on locomotion.

Figure 2. Effect of TBZ in the 3-choice RW T-maze task. Data are expressed as mean (±SEM)

of time (seconds) spent interacting with each stimuli (A, B and C) or number of crosses between
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the compartments where the stimuli were located (D), during a 15 minutes session. A) Time

with RW, B) time eating C) time sniffing the non-social odor, and D) number of crosses

between the 3 compartments. **p<0.01 significantly different from vehicle.

Experiment 1.2. Effect of caffeine on T-maze preference. Repeated measures

ANOVA for caffeine treatment showed no significant effects in any of the 3 variables:

time running in the RW (F(3,24)=0.18, n.s.), time spent eating (F(3,24)=0.92, n.s.) and

time sniffing the neutral odor (F(3,24)=0.81, n.s.) (Fig 3A-C). There was not an effect

of caffeine on total crosses (F(3,24)=0.10, n.s.) either (Fig 3D).

Figure 3. Effect of caffeine in the 3-choice RW T-maze task. Data are expressed as mean

(±SEM) of time (seconds) spent interacting with each stimuli (A, B and C) or number of crosses

between the compartments where the stimuli were located (D), during a 15 minutes session. A)

Time with RW, B) time eating C) time sniffing the non-social odor, and D) number of crosses

between the 3 compartments.
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Experiment 1.3. Reversal of TBZ-induced effects in the T-maze by caffeine.

Repeated measures ANOVA showed an overall effect of treatment on time running in

the RW (F(4,28)=4.57, p<0.01) and on time eating (F4,28)=3,63, p<0.05), but not on

time sniffing (F(4,28)=0.71, n.s.) (Fig 4A-C). Planned comparisons revealed a

significant decrease in time running in the RW after administration of TBZ/VEH

compared with control condition (VEH/VEH) (p<0.01), and this decrement was

reversed by the two highest doses of caffeine that were co-administered with TBZ (2.5

mg/kg, p<0.05, and 5.0 mg/kg, different from TBZ/VEH, p<0.01) (Fig 4A). Planned

comparisons revealed that TBZ/VEH administration increased the time spent eating

compared with control group (VEH/VEH) (p<0.05). This increase was reversed by the

co-administration of caffeine at all doses (1.25, 5.0 mg/kg p<0.01 and 2.5 mg/kg,

p<0.05) (Fig 4B). Repeated measures ANOVA did not reveal an effect of treatment on

total crosses between compartments (F(4,28)=0.51, n.s.) (Fig 4D).

Figure 4. Effect of TBZ plus caffeine in the 3-choice RW T-maze task. Data are expressed as

mean (±SEM) of time (seconds) spent interacting with each stimuli (A, B and C) or number of

crosses between the compartments where the stimuli were located (D), during a 15 minutes
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session. A) Time with RW, B) time eating C) time sniffing the non-social odor, and D) number

of crosses between the 3 compartments. **p<0.01, *p<0.05 significantly different from VEH-

VEH. ##p<0.01, #p<0.05 significantly different from TBZ-VEH.

Experiment 2. Impact of TBZ, caffeine and their combination on independent tests

of sucrose consumption and locomotion in the RW.

Experiment 2.1. Effect of TBZ and caffeine on sucrose consumption. Repeated

measures ANOVAs did not show significant overall effects of treatment with TBZ (0,

1.0, 2.0 and 4.0 mg/kg) or caffeine (0.0, 1.25, 2.5 and 5.0 mg/kg) on total intake of

sweet pellets. Thus the ANOVA for TBZ (F(3,24)=2.38, n.s.), and for caffeine

(F(3,21)=1.33, n.s.) did not yield significant effects, indicating that they had no effect

on pellet consumption when there was no alternative reinforcer (see Fig 5A and B).

Figure 5. Effect of TBZ (A) and caffeine (B) on sucrose pellets consumption. Data are

expressed as mean (±SEM) of number of pellets consummed during 30 minutes.

Experiment 2.2. Effect of TBZ and caffeine on locomotion in the RW. Repeated

measures ANOVA indicated a significant effect of TBZ treatment (F(3,24)=7.44,

p<0.01) on locomotion (Fig 6A). Planned comparisons revealed that TBZ at the highest

dose used in the present experiment (8.0 mg/kg) significantly decreased locomotion

compared with the vehicle group (p<0.01). However, the repeated measures ANOVA

did not reveal a significant effect of caffeine treatment (F(3,27)=1.44; n.s) on

locomotion in the RW, even at higher doses (Fig 6B). In the third experiment the

highest dose of TBZ that had suppressed locomotion (8.o mg/kg) was used to study the
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potential of caffeine to reverse TBZ-induced locomotor suppression. Repeated measures

ANOVA across conditions (VEH/VEH, TBZ/VEH, TBZ-Caffeine 2.5, 5.0 or 10.0

mg/kg) yielded a significant effect on RW locomotion (F(4,32)=3.44, p<0.01). Planned

comparisons indicated that TBZ (8.0 mg/kg) suppressed locomotion compared to

control group (VEH/VEH) (p<0.01). All doses of caffeine (2.5, 5.0 and 10.0 mg/kg)

reversed the locomotor suppression induced by 8.0 mg/kg TBZ. Thus, TBZ/VEH was

significantly different from all the TBZ plus caffeine conditions (2.5, 5.0 mg/kg,

p<0.05, and 10.0 mg/kg, p<0.01) (Fig 6C).

Figure 6. Effect of TBZ (A), caffeine (B) and their combination (C) on locomotion in the RW.

The dose of TBZ used in C was 8 mg/kg.  Data are expressed as mean (±SEM) of counts in the

RW during 30 minutes. **p<0.01 significantly different from vehicle. ##p<0.01, #p<0.05

significantly different from TBZ-VEH.

Experiment 3. Effect of TBZ on DA tissue levels in striatum. The one way between-

groups ANOVA revealed an overall significant effect of treatment on DA tissue levels
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in the striatum (F(2,28)=5.16, p<0.05). Planned comparisons revealed a significant

reduction in DA tissue levels after administration of TBZ at doses of 4.0 and 8.0 mg/kg

compared with control group (p<0.05 and p<0.01, respectively) (Fig 7).

Figure 7. Effect of TBZ (4 or 8 mg/kg) on DA levels in striatum. Data are expressed as mean

(±SEM) of ng per mg of DA in tissue. **p<0.01, *p<0.05 significantly different from vehicle.

Experiment 4. Effect of TBZ and caffeine coadministration on DARPP-32,

pDARPP-32(Thr75) and pDARPP-32(Thr34) levels in striatum. One way ANOVA

showed an overall effect of treatment on DARPP-32 levels (F(2,19)=3.70, p<0.05). The

post hoc analysis showed a significant increase of DARPP-32 in the TBZ plus saline

treated group compared with control group (p<0.05) and with the TBZ plus caffeine

group (p<0.05) (Fig 8A). A one way ANOVA for pDAPPP-32(Thr75) levels did not

show an overall effect of treatment on this marker (F(2,12)=1.86, p=1.19) although a

non significant increment was observed after TBZ treatment (Fig 8B). Finally, the one

way ANOVA revealed a significant effect of treatment on pDARPP-32(Tr34)

(F(2,10)=43.9, p<0.01). The post hoc analysis showed a significant increase of this

marker after TBZ treatment (p<0.05) compared to control, and compared to the group

that also received caffeine (p<0.05), indicating a reversal of TBZ effects by caffeine

(Fig 8C).
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Figure 8. (A) Diagram showing effect of DA depletion on DARPP-32 phosphorylation patterns.

Effect of TBZ-caffeine interaction on DA-related markers of signal transduction. The doses

used were: TBZ 8.0 mg/kg and caffeine 10 mg/kg. Data are expressed as mean (±SEM) of

density units of DARPP-32 (B), pDARPP-32(Thr75) (C) and pDARPP-32(Thr34) (D).

**p<0.01, *p<0.05 significant differences from VEH-VEH. ##p<0.01, #p<0.05 significant

differences from TBZ-VEH group.

4. Discussion

The present study assessed the impact of the VMAT-2 inhibitor TBZ on the choice

between voluntary engagement in vigorous and highly preferred physical activity vs.

other sources of reinforcement that could be obtained with little effort, such as sucrose

consumption. TBZ was administered at doses that were shown to reduce tissue levels of

DA in ventral striatum. In the first experiment, mice were evaluated in a T-maze in

which they could freely distribute their time between running on a RW or consuming or

exploring other reinforcers that require minimal behavioral activation (sucrose pellets or

non-social odor). Under basal conditions, mice spent most of the time running (60%),

and much less time eating (2%) or sniffing the neutral odor (0.1%). Consistent with this

finding, previous studies have demonstrated that running has a high motivational value,

since animals work to unlock a wheel (Collier et al. 1990; Iversen, 1993; Belke and
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Heyman, 1994), to turn on a motorized wheel (Kavanau, 1967) or to gain access to areas

containing a wheel (Sherwin, 1996; Sherwin and Nicol, 1996). In addition, wheel

running, as well as the after effect or running, can be used as the motivational stimulus

for the establishment of conditioned place preference (CPP) (Lett et al. 2000; Torst and

Hauber, 2014).

After TBZ administration choice behavior was altered; time spent running was reduced,

but time consuming sucrose was actually increased, which demonstrates a shift to a low

effort option. No changes were observed in time sniffing the neutral odor. This set of

results is consistent with previous studies in a similar two-options T-maze, in which the

D2 antagonist haloperidol shifted relative preference from RW to sucrose pellets in mice

(Correa et al., 2016). Haloperidol has previously been demonstrated to shift behavior in

mice towards low effort alternatives in a T-maze barrier task in which animals have to

climb a barrier in order to get a higher quantity of food in every trial (Pardo et al. 2012).

TBZ was previously shown to reduce selection of high effort/high reward options in

rats, using effort-based decision-making paradigms such as the T-maze barrier task

(Yohn et al. 2012), operant tasks with concurrent lever pressing for preferr5ed highly

palatable food versus free feeding standard chow (Salamone et al. 2012; Nunes et al.

2013), or lever pressing for high concentrations of sucrose versus free access to low

sucrose concentrations (Pardo et al. 2015). Furthermore, TBZ also has been shown to

have these effects when injected into Nacb core, reducing lever pressing for the

palatable food and increasing chow intake (Nunes et al. 2013). However, free

consumption of foods or sweet solutions, preferences between different types or

amounts of foods, or facial expressions that reflect hedonic reactivity after sucrose

intake, were not affected in rats after TBZ administration (Nunes et al. 2013; Pardo et

al. 2015; Yohn et al. 2015), demonstrating that DA depletion does not simply affect

primary food motivation. Similarly, in the present results from experiment 3, even

higher doses of TBZ than the ones used in the T-maze did not change sucrose

consumption when animals had no alternative option present during the testing session.

Thus, as previously demonstrated, DA depletion with TBZ does not affect primary

motivation for food or sucrose when little work is involved (Nunes et al. 2013; Pardo et

al. 2015). Furthermore, although the after effect of running can contribute to the

establishment of emotional Pavlovian memories, as seen by the development of CPP,

this after effect is not DA-dependent (Trost and Hauber, 2014), and it does not seem to
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be playing a role in the present results, since mice did not change the amount of time

that they spent in the RW compartment (data not shown) even after the administration

of doses of TBZ that reduced time spent running on the wheel. It is also important to

emphasize that the present results are not merely due to motor incapacity, because the

higher dose of TBZ used in the T-maze (4.0 mg/kg) did not impair voluntary

locomotion in a RW when there was no other reinforcer available (experiment 2.2).

The non-selective adenosine antagonist caffeine when administered alone did not

change the relative preference of mice in this T-maze test, even when given at high

doses (up to 10.0 mg/kg). However, caffeine (2.5 and 5.0 mg/kg) was able to reverse the

change in relative preference induced by TBZ (4.0 mg/kg), shifting preferences by

increasing time in the RW and decreasing time spent eating sucrose in TBZ-treated

animals. Furthermore, caffeine (1.25-10 mg/kg) reversed the suppression of RW

locomotion induced by a high dose of TBZ (8.0 mg/kg) that also significantly reduced

DA tissue levels. Consistent with the present results, previous studies showed a similar

interaction between DA antagonists or depletions and adenosine receptor antagonism or

deletion (Farrar et al. 2007; Mott et al. 2009; Worden et al. 2009; Correa et al. 2016;

Yohn et al. 2013; 2015). Thus, A2A KO mice were resistant to the effects of the D2

antagonist haloperidol in the two-option T-maze paradigm (Correa et al., 2016). A2A KO

mice did not shift time allocation from RW towards sucrose after haloperidol

administration, as did the wild type mice (Correa et al. 2016). These KO mice were also

resistant to the effect of haloperidol in a simple RW (Pardo et al., 2013), and in the T-

maze barrier choice task (Pardo et al., 2012). Theophylline, which is another

methylxantine, was able to palliate the anergia-like effect induced by haloperidol in the

T-maze barrier task in mice (Pardo et al., 2012). In rats, the selective adenosine A2A

antagonist MSX-3 was shown to reverse the effects of the D2 antagonist haloperidol and

TBZ in several different types of effort-based decision making paradigms (Farrar et al.,

2007; Nunes et al., 2013; Yohn et al., 2015; Pereira et al., 2011).

TBZ significantly increased postsynaptic intracellular DA markers, including DARPP-

32 and one of its phosphorylated forms, pDARPP-32(Thr34). These TBZ-induced

increases in markers of DA-related signal transduction were significantly reversed by

caffeine. In contrast, the induction of pDARPP-32(Thr75) expression by TBZ did not

reach significance. These results suggest that there is a substantial action of TBZ on

neurons containing D2 receptors (Nunes et al. 2013). DA D2 and adenosine A2A
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receptors are co-localized on enkephalin-containing medium spiny neurons (MSNs),

while D1 and A1 receptors are co-localized on substance P-containing MSNs (Nunes et

al. 2013; Ferré, 2008; Ferré et al. 2004). D2 and A2A receptors are capable of forming

heteromers, and also converge onto the same signal transduction mechanisms, having

opposite effects on intracellular signaling cascades (Fuxe et al. 2003; Ferré, 2008).

Reductions in D2 receptor transmission have been shown to increase expression of

pDARPP-32(Thr34) (Svenningsson et al. 2004; Bateup et al. 2008; Yger and Girault,

2011; Bonito-Oliva et al. 2011; Santerre et al. 2012; Nunes et al., 2013; see Fig 8).

Previous studies in rats using immunohistochemical techniques have demonstrated that

TBZ increased both phosphorylated forms of DARPP-32 (-Thr75 and -Thr34) in Nacb

shell and core, but in different populations of neurons (Nunes et al., 2013). Adenosine

antagonists acting on A1 or A2A receptors generally produce opposite effects to TBZ on

these markers. Thus, it has been demonstrated that the selective A2A receptor antagonist

MSX3 reduced the increase of pDARPP-32(Thr34) induced by TBZ in enkephalin-

positive neurons that also contain D2 receptors (Nunes et al., 2013). However, this A2A

antagonist did not reverse the induction of pDARPP-32(Thr75) in D1 containing

neurons, which probably reflects the fact that D1 receptors are not extensively co-

localized with A2A receptors (Nunes et al., 2013). In the present results, caffeine was

able to reverse the induction of pDARPP-32(Thr34) expression produced by TBZ,

pointing to a predominant effect of both drugs on D2-A2A receptors situated in striatal

enkephalin-containing MSN.

In summary, the present results are consistent with the hypothesis that DA is involved in

effort-related processes, and support the concept that adenosine receptors interact with

DA in modulation these functions (Salamone et al., 2009; Santerre et al., 2012; Pardo et

al., 2012; Nunes et al., 2013; Randall et al., 2014; Yohn et al., 2015). This study

illustrates the ability of the 3-choice T-maze task with active vs. passive reinforcing

activities to demonstrate the involvement of DA in the activational component of

motivation, which is consistent with previous studies showing that DA antagonism was

able to specifically shift preferences away from effortful sources of reinforcement

(Correa et al., 2016). The 3-choice T-maze task offers the chance to study preferences

between qualitatively different reinforcers in addition to food, which is in contrast to

previous tasks that involved choices between different quantities of food (Pardo et al.,

2012; Yohn et al., 2014) or foods with different palatability (Salamone et al., 2006;
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Farrar et al., 2010; Pardo et al., 2015). The present results indicate that DA depletion

with TBZ reduces the relative intrinsic reinforcing characteristics of wheel running in an

empirical sense, in a manner similar to DA antagonism (Correa et al., 2016). The

intrinsic reinforcing value of voluntary physical activities such as lever pressing, barrier

climbing, or wheel running is of critical importance for understanding several aspects of

motivation and decision-making (Salamone et al., 1997, 2016; Salamone and Correa

2002, 2012; Hosking et al. 2014).

The present work has potential clinical relevance, because DA has been implicated in

aspects of depression such as anergia, psychomotor slowing, decreased energy levels

and fatigue (Stahl, 2002; Salamone et al., 2006; Treadway and Zald, 2011). In addition,

a lack of physical activity can contribute to the development of depression (Lambert

2006). Moreover, effort-related motivational symptoms such as anergia, fatigue, and

psychomotor slowing seen in depressed humans are very resistant to classical

antidepressant treatments such as 5-HT uptake inhibitors (Stahl, 2002; Fava et al.,

2014). Caffeine has been demonstrated to improve motor symptoms in PD patients and

in animal models (Postuma et al., 2012; Qi and Li 2014), and it can enhance the

antidepressant-like activity of common antidepressant drugs in traditional tests of

depression such as the forced swim test (Szopa et al., 2016). The present results suggest

that studies with caffeine and more selective adenosine antagonists may offer useful

clues for developing novel treatments for this set of symptoms.
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GENERAL CONCLUSIONS

The present thesis reviews the literature and describes studies investigating the effect2

of caffeine and other selective adenosine antagonists (A1/A2A), either alone or in

combination with ethanol, on different mood, memory and motivated behaviors

(Chapters 1-4). It also reviews and evaluates the effect of caffeine on depressive

symptoms, focusing on potential therapeutic effects on motivational impairments or

anergia-like symptoms induced by reduced DA transmission (Chapers 5-6).

Chapter 1 summarized previous literature about the effects of caffeine in combination

with ethanol, focusing on animal studies and behaviors related to the abuse potential of

both drugs. Caffeine is consumed in combination with ethanol under the popular belief

that caffeine can ameliorate the debilitating effects of ethanol. From the animal studies

it can be concluded that although caffeine at low doses can in fact counteract some

effects induced by ethanol, such as anxiety, sedation, narcosis, locomotion and

incoordination, higher doses of caffeine can have opposite effects, impairing those

behaviors even further. However, it is also evident that many important aspects of

motivated behaviors regulated by ethanol are still not explored. Moreover, apparently

contradictory results could be resolved if a broader range of doses of both drugs were

evaluated systematically.

Caffeine can have beneficial effects on arousal, attention or mood when consumed at

low to moderate doses. However, the consumption of high concentrations of caffeine is

becoming popular with the introduction to the market of the so-called “energy drinks”.

The results from Chapter 2 show that caffeine at high doses can produce impairing

effects on locomotion and coordination, increase anxiety, and also increase plasma

corticosterone levels. Theophylline is an active metabolite of caffeine that is also

present in some “energy drinks”. This methylxantine is as efficacious as caffeine at

producing anxiety and locomotor suppression, and at inducing hormonal markers of

stress, though caffeine seems to be more potent in this regard. Thus, both

methylxantines can have undesired effects at high doses, but it is necessary the use

higher doses of theophylline in order to produce those effects.

Because the highest dose of caffeine used in the previous studies produced very robust

impairing effects, for subsequent studies in this thesis the highest dose used in chapter 2

was eliminated, but a broad range of caffeine doses from low to high (7.5-60 mg/kg)
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was used in the following chapter. Chapter 3 presents the effects of caffeine

administered alone or in combination with ethanol on social motivation and long-term

social memory. Caffeine dose-dependently decreased social interaction and impaired

social preference at a range of doses that has anxiogenic effects (30-60 mg/kg).

However, although the highest doses of ethanol also reduced social interaction, they did

not affect preference for the conspecific. Moreover, ethanol improves social exploration

at low doses. Thus, ethanol at a range of doses that has anxiolytic effects keeps social

exploration mostly intact, and was able to reverse the decrease in social interaction

induced by a moderate dose of caffeine. However, the results with tasks involving long-

term social memory indicate that ethanol has a potent amnesic effect, even at low doses,

and caffeine cannot rescue that effect. Moreover, caffeine itself also has amnesic effects

at high doses.

From the studies about the role of A1 or A2A receptor involvement on social behaviors,

the general conclusion is that they do not seem to mediate the effect of high doses of

caffeine. It is possible that A1 receptor antagonism could be mediating the effects of low

doses, since CPT produced the same pattern of effects as the low doses of caffeine in

social interaction and preference. However, MSX-3 (the selective A2A receptor

antagonist) potentiated social interaction keeping preference intact, thus leading us to

suggest that A2A receptors are not involved in the effects of caffeine on this behavior.

Moreover, neither CPT nor MSX-3 produced an effect on memory, thus separating the

impairing effects of high doses of caffeine on memory from its actions on A1 and A2A

receptors. Only the A2A antagonist had a positive effect, reducing memory impairments

induced by ethanol.

Consistently in Chapter 4, A2A receptor KO mice showed high levels of social

interaction despite their anxiogenic profile, and these animals were not affected by an

impairing dose of ethanol (1.0 g/kg) on social interaction. Suggesting a possible

predominant role of A2A receptors on attenuating ethanol-induced decreases on social

interaction. And also suggesting that A2A receptors could be therapeutic targets to study

social impairments induced by different genetic or pharmacological manipulations.

However, although MSX-3 did not impair long term social memory, KO mice spent the

same amount of time exploring the familiar and novel conspecifics. This memory

impairment could be due to neuroadaptations that may occur in this KO animals, or

perhaps to differences in sensitivity to novelty in these animals.
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In terms of the potential therapeutic effect of caffeine on activational/motivational

symptoms of depression, as summarized in Chapter 5, caffeine has been shown to be

effective in animal models of depression, reversing the effects of adenosine agonism or

improving even further the effects of antidepressants on animal models such as the FST

or TST. However, there are not systematic studies performed in humans, and the studies

focusing on motivational symptoms (anergia or lack of motivation) in humans and in

animals are scarce. The results from the T-maze barrier test demonstrate that caffeine

does not improve learning in this test but it is very effective at reversing the impairing

effects of TBZ on the selection of the high effort option (HD arm). In addition, caffeine

reversed the anergia-like effects induced by TBZ in the T-maze that evaluates

preferences for reinforcers based on effort and behavioral activation. TBZ decreased

time spent interacting with the RW, but animals compensated increasing time spent in a

more sedentary option (i.e. drinking sucrose). However, DA depletion did not affect

sucrose intake or locomotion in the RW when evaluated in a non-choice situation,

suggesting an anergia-like effect and not a non-specific effect on appetite or

locomotion. Caffeine reversed the effect of TBZ suggesting a therapeutic effect on the

anergia-like symptoms induced by DA depletions. At these low doses, and based on the

results about DARPP-32 phosphorylation patterns, is seems reasonable to suggest that

caffeine acts via adenosine receptors. Thus, TBZ increased phosphorylation of

DARPP32 at Thr34 and produced an increase on pDARPP32-Thr75, logically as a

consequence of the decrease in DA levels instigated by this DA depleting agent, and as

demonstrated by the HPLC measurements of DA levels in ventral striatum. Caffeine

decreased pDARPP-32(Thr34) expression induced by TBZ, but did not change the

levels of pDARPP-32(Thr75) induced by TBZ, suggesting a predominant role of D2-

A2A receptors on caffeine-TBZ interactions. These results support the idea that A2A

receptors play a predominant role in mediating the therapeutic actions of caffeine.



244



245

APPENDICES



246



247

APPENDIX 1:

Impact of high doses of caffeine on acute and sensitized motor

activity induced by ethanol in mice.
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1. Abstract

Energy drinks are highly consumed beverages rich in caffeine. In humans, energy drinks

are very frequently consumed with alcohol in order to reduce sedation and ataxia

induced by high doses of this drug of abuse. Caffeine stimulates locomotion but can

also produce motor impairments at high doses. To determine if caffeine can actually

reverse the motor stimulating and ataxic effects of ethanol, we used an open field test to

evaluate the impact of caffeine (7.5, 15 and 30 mg/kg, IP) on several motor parameters

affected by acute or repeated administration of ethanol (1.5 and 2.5 g/kg, IP) in adult

male CD1 mice. Acutely, both caffeine and ethanol increased locomotion in a dose

dependent manner. Moreover, when ethanol was administered to animals pretreated

with caffeine there was an additive effect of both substances at the low dose of ethanol,

and a potentiation of the stimulating effects of the high dose of ethanol in horizontal

locomotion. Caffeine reversed the suppressive effect of ethanol on rearing that was

supported by the wall, but was not able to reverse the ethanol-induced impairment in

rearing that was not supported, which is an index of postural stability. Ethanol (1.5

g/kg) administered repeatedly in the open field produced sensitization of horizontal

locomotion and rearing supported by the wall. However, acute administration of

caffeine to mice previously preexposed to ethanol produced a dose dependent reduction

in locomotion compared to mice preexposed to saline. On the other hand, repeated

administration of caffeine (15 mg/kg) did not induced sensitization but it made animals

more sensible to the stimulant effects of ethanol (1.5 g/kg). Thus, caffeine potentiated

the stimulating effects of an acute dose of ethanol. The neural substrate underlying this

effect could be the dopamine-adenosine functional interaction in the nucleus

accumbens, a brain structure important for the regulation of locomotion, behavioral

activation, and processes such as incentive salience and vigor involved in goal directed

responses.



APPENDIX 1

250

2. Methods

2.1. Subjects

Adult Swiss CD1 mice (30-45 g) were purchased from Janvier (France). Mice were housed

in groups of three per cage, with standard laboratory rodent chow and tap water available

ad libitum. They were maintained in the colony at 22 ± 1ºC with lights on from 8:00 to

20:00 hours. All experimental procedures complied with the European Community

Council directive (86/609/ECC) for the use of laboratory animal subjects and with the

“Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research”

(National Research Council 2003).

2.2. Drugs

Ethanol (Panreac Quimica S.A., Spain) was diluted to 20% (v/v) in physiological saline

(0.9 % w/v) and administered intraperitoneally (IP) 10 minutes before testing. Caffeine

(Sigma-Aldrich, Spain) was dissolved in 0.9% w/v saline and administered IP 30 minutes

before testing. Saline solution was used as vehicle.

2.3. Apparatus and testing procedures.

Open Field (OF). The OF apparatus consists of a clear glass cylinder 25 cm in diameter

and 30 cm high. The floor of the cylinder was divided into four equal quadrants by two

intersecting lines drawn on the floor. Animals were placed in the center of the cylinder and

immediately observed for 15 minutes. The behavioral test room was illuminated with a soft

light, and external noise was attenuated. Horizontal and vertical locomotion in the OF were

simultaneously recorded and registered manually. For horizontal locomotion an activity

count was registered each time the animal crossed from one quadrant to another with all

four legs. A count of vertical locomotion was registered each time the animal raised its

forepaws in the air higher than its back (unsoported rear), or rested them on the wall

(suported rear).

Western Blotting. Mice were deeply anaesthetized with CO2, and when the absence of

reflexes was observed the animals were dislocated. The vermis was immediately removed

and dissected. Cerebellar tissue samples were homogenized in icecold lysis buffer [137mM
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NaCl, 20 mM Tris-HCl (pH 8.8), 1% NP40, 10 μg/ml of aprotinin, leupetin, 0.5 mM orto

sodium vanadate and 0.1 mM PMSF, protease inhibitors]. Homogenates were centrifuged

at 14,000 rpm for 15 minutes at 4°C. Aliquotes o supernatants were collected and used for

Bradford quantification of total protein and others stored at -80ºC until analyses. Before

subjected, every sample was boiled for 5 minutes. Equal amounts (50 μg) of vermis protein

samples were separated by 15% SDS-PAGE and transferred to nitrocellulose membrane

for 80 minutes at 30 volts. Membranes were block with 5% non-fat dry milk in TBS-

Tween 0.1% for one hour and later incubated with polyclonal rabbit anti- (1:100, Santa

Cruz Biotechnology) overnight at 4°C. After rinses with TBS 1% triton X-100, filters

reacted with goat anti-rabbit peroxidaseconjugated secondary antibody and developed by

enhanced chemiluminescence (1:20,000; Bio-Rad). Filters were probed with anti-αtubulin

monoclonal antibody (1:400; Chemicon, Millipore) as an internal standard for protein

quantification. The film signals were scanned and levels of the band density were blind

processed and quantified by densitometry with ImageJ software. Every sample was

replicated at least twice to ensure the reproducibility of the method.

Blood ethanol determinations. Additional mice (n=6 per group) were used to determine

whether caffeine influenced blood ethanol levels at the same doses and times used in the

behavioral studies. For that purpose animals were injected with caffeine (0 or 30 mg/kg)

and with ethanol (2.5 g/kg). Trunk blood samples (20 μl) were collected 10 and 20 min

after ethanol and caffeine administration respectively. Following Boehm et al. (2000), each

blood sample was immediately placed in a microcentrifuge tube containing 50 μl of ice-

cold 5% ZnSO4 solution. A 50-μl aliquot of 0.3 N Ba(OH)2 and 300 μl of deionized water

was added. After centrifugation at 4°C (5 min, 12,000 rpm), the supernatant was removed

and blood ethanol concentrations were determined by headspace gas chromatography with

a flame-ionized detector (CE Instruments GC 8000, HS 850).
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3. Experiments

Experiment 1: Acute administration of caffeine, ethanol or their interaction on

locomotion.

Locomotor activity was evaluated in the OF. Horizontal and vertical locomotion

(supported and unsupported rear) was registered manually during 10 minutes. Caffeine

(0.0, 7.5, 15.0 and 30.0 mg/kg) was administered 30 minutes before testing and ethanol

(0.0, 1.5, 2.5 and 3.5 g/kg) was administered 10 minutes before test. The interval time

between drug administration and beginning of testing was the same for all subsequent

experiments.

Experiment 2:  Effect of repeated administration of ethanol on locomotion.

During 5 sessions in alternating days, animals were tested in the OF after ethanol (1.5 or

2.5 g/kg, IP) or saline administration.

Experiment 3: Effect of acute administration of caffeine (0, 15, 30 mg/kg) on ethanol

(1.5 g/kg)-induced locomotor sensitization.

Two days after the last drug administration, animals in experiment 2 received an acute

administration of caffeine (0, 15 or 30 mg/kg) in order to observe if there was a cross-

sensitization effect.

Experiment 4:  Effect of repeated administration of caffeine (0 or 15 mg/kg) on

locomotion and acute chalenge with ethanol (0.0 or 1.5 g/kg).

During 5 sessions in alternating days, two new groups of animals received saline or

caffeine (15 mg/kg), IP) and were tested in the OF after drug administration. Two days

after the last administration, animals received an acute administration of ethanol (0.0 or 1.5

g/kg) and were tested again in the OF.

Experiment 6. Western blotting for DARPP-32.

After completion of experiments 1 and 5, animals were anesthesized and brains were

col.lected. Striatum samples were analyzed by western blotting for DARPP-32, pDARPP-

32(Thr75), and pDARPP-32(Thr34).
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Experiment 7. Blood ethanol concentration.

Additional mice were used to determine whether caffeine influenced the blood levels of

ethanol at the same doses and times as those used in the behavioral studies. For that

purpose animals received caffeine (0 or 30 mg/kg) and 30 min later ethanol (2.5 g/kg) was

administered.

4. Preliminary results

Experiment 1: Acute administration of caffeine, ethanol or their interaction on

locomotion in the open field (OF).

One way-ANOVA showed an overall

effect of caffeine on horizontal crosses

(F(3,30)=4.06, p<0.05), as well as on

supported rear (F(3,30)=3.48, p<0.05).

Planned comparisons showed that

caffeine at low and moderate doses (7.5

and 15 mg/kg) significantly increased

horizontal locomotion (p<0.05 and

p<0.01, respectively) (Fig 1A). These

doses of caffeine also produced

significant increments in the number of

unsupported rears (p<0.05) (Fig 1C). No

significant effect of caffeine treatment on

unsupported rear was observed

(F(3,30)=0.45, n.s).

Figure 1. Horizontal locomotion (A), supported

rear (B) and unsupported rear (C) in the OF after

an acute administration of caffeine. Data are

expressed as mean (±SEM) number of counts

during 10 minutes. **p<0.01, *p<0.05

significantly different from vehicle
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The effect of ethanol was also analyzed

by a one-way ANOVA revealed an

overall effect of ethanol treatment on

horizontal crosses (F(3,39)=3.75,

p<0.05), supported rear (F(3,39)=24.11,

p<0.01), and unsupported rear

(F(3,39)=19.13, p<0.01). Planned

comparisons showed that ethanol

significantly increased horizontal crosses

at the dose of 2.5 g/kg (p<0.05) (Fig 2A).

Supported rear was decreased by the

highests doses of ethanol (2.5 and 3.5

g/kg, p<0.01), (Fig 2B). All ethanol

doses significantly decreased

unsupported rear (p<0.01) (Fig 2C).

Figure 2. Horizontal locomotion (A),

supported rear (B) and unsupported rear

(C) in the OF after acute administraton of

ethanol. Data are expressed as mean

(±SEM) number of counts during 10

minutes. **p<0.01, *p<0.05

significantly different from vehicle.
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Figure 3. Horizontal locomotion (A),

supported rear (B), and unsupported

rear (C) in the OF after acute

coadministration of caffeine and

ethanol.  Mean (±SEM) number of

counts during 10 minutes.  **p<0.01,

*p<0.05 significantly different from 0

mg/kg caffeine in the same ethanol

dose.

Factorial ANOVA (Caffeine x

Ethanol) showed an overall effect

of caffeine (F(2, 112)=11.18,

p<0.01), ethanol (F(3, 112)=59.35,

p<0.01), and caffeine-ethanol

interaction (F(6, 112)=6.64,

p<0.01), on horizontal crosses in

the OF. Planned comparisons

revealed that caffeine 30 mg/kg

coadministered with ethanol 1.5

g/kg, produced a significant

increase in locomotion compared

with saline plus ethanol 1.5 g/kg

(p<0.05). Caffeine 15 mg/kg plus

ethanol 2.5 g/kg, increased

stimulation induced by saline plus

ethanol 2.5 g/kg (p<0.01). The

same pattern of results was observed for caffeine 30 mg/kg plus ethanol 2.5 g/kg (p<0.01),

suggesting an additive effect of caffeine on locomotion induced by low doses of ethanol,

and a potentiation of the stimulation induced by ethanol at stimulant doses (2.5 g/kg).

There was not a significant effect of caffeine (15 or 30 mg/kg) administered with a

locomotor suppressant dose of ethanol (3.5 g/kg) or in the saline treated groups (Fig 3A).

The factorial ANOVA (Caffeine x Ethanol) for the variable supported rear, as a measure of

vertical locomotion, also showed an overall effect of caffeine [F(2,112)=3.81, p<0.05],
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ethanol (F(3,112)=62.26, p<0.01), and their interaction (F(6,112)=2.29, p<0.05). Planned

comparisons showed a significant increase of supported rear after caffeine at dose of 15

mg/kg (p<0.01). Caffeine 15 and 30 mg/kg increased supported rearing when administered

with ethanol 1.5 g/kg, compared with saline in the ethanol 1.5 g/kg treated group (p<0.01)

(Fig 3B). Finally, the factorial ANOVA (Caffeine x Ethanol) for unsupported rear (Fig

3C) showed a significant effect of ethanol treatment (F(3,112)=66.89, p<0.01). However,

there was no significant effect of caffeine (F(2,112)=0.94, n.s.), and no significant

interaction (F(6,112)=0.83, n.s.).

Experiment 2:  Effect of repeated administration of ethanol on locomotion.

Repeated measures ANOVA showed a significant effect of treatment (saline or 1.5 g/kg

ethanol) (F(1,64)=30.87, p<0.01), a significant effect of session (1 and 5) (F(1,64)=18.15,

p<0.01) and treatment x session interaction (F(1,64)=8.24, p<0.01). Planned comparisons

showed a locomotor stimulant effect of ethanol (1.5 g/kg) in the first session compared

with saline treatment (p<0.01). The fifth administration (session 5) of ethanol, increased

locomotion compared with its first administration (session 1) (p<0.01). This increase in

locomotion over sessions was not observed in the saline treated group, suggesting a

sensitization of locomotion induced by ethanol (Fig 4A). The repeated measures ANOVA

showed a significant effect of treatment on supported rear (F(1,64)=6.42, p<0.01), no

significant effect of session (F(1,64)=3.32, n.s.), but a significant effect of treatment x

session interaction (F(1,64)=4.61, p<0.05) (Fig 4B). Planned comparisons showed that

ethanol (1.5 g/kg) increased the number of supported rears when administered in session 5

compared with saline (p<0.01), and also compared with its administration in the session 1

(p<0.05). A third repeated measures ANOVA showed a significant effect of treatment on

unsupported rear (F(1,64)=127.4, p<0.01), a significant effect of session (F(1,64)=21.62,

p<0.01), but did not show a significant effect of treatment x session interaction

(F(1,64)=2.60, n.s.) (Fig 4C).



APPENDIX 1

257

Figure 4. Effect of repeated administration of ethanol (0.0, 1.5 or 2.5 g/kg) on horizontal

locomotion (A and D), supported rear (B and E) and unsupported rear (C and F) in the OF

during sessions 1 and 5. Data are expressed as mean (±SEM) number of counts during 10

minutes. **p<0.01 significantly different from session 1. ##p<0.01 significantly different from

vehicle in the same session.

For the experiment in which the dose of ethanol was 2.5 g/kg, repeated measures ANOVA

(Session x Treatment) for horizontal locomotion showed a significant effect of treatment

(F(1,49)=18.41, p<0.01), but no significant effect of session (F(1,49)=0.26, n.s.), and no

significant interaction (F(1,49)=0.04, n.s.). Thus, ethanol at this dose (2.5 g/kg) did not

produced locomotor sensitization after repeated administration (Fig 4D). Repeated
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measures ANOVA (Session x Treatment) for the variable supported rear, showed a

significant effect of treatment (F(1,49)=126.93, p<0.01), but no significant effect of session

(F(1,49)=1.42, n.s.), and no significant interaction (F(1,49)=1.52, n.s.) (Fig 4E). Finally,

repeated measures ANOVA for unsupported rear, showed a significant effect of treatment

(F(1,49)=138.91, p<0.01), but no significant effect of session (F(1,49)=1.09, n.s.) and no

significant interaction (F(1,49)=0.57, n.s.) (Fig 4F). Thus, ethanol at this dose (2.5 g/kg)

did not change rearing after repeated administration.

Experiment 3:  Effect of acute administration of caffeine (0, 15, 30 mg/kg) on ethanol

(1.5 g/kg)-induced locomotor sensitization.

Figure 5. Effect of caffeine on

horizontal locomotion (A), supported

rear (B) and unsupported rear (C) in the

OF in mice treated with ethanol (1.5

g/kg) in previous days. Data are

expressed as mean (±SEM) number of

counts during 10 minutes. **p<0.01,

*p<0.05 significantly different from

vehicle in the same pretreatment group.

##p<0.01, #p<0.05 significantly

different from the same dose of caffeine

in animals that had received saline in

previous sessions.

The factorial ANOVA; previous

ethanol treatment (0.0 or 1.5 g/kg) x

caffeine dose (0, 15 or 30 mg/kg)

showed an overall effect of previous

ethanol dose (F1,65)=11.48, p<0.01),

caffeine dose (F2,65)=25.45,

p<0.01), and also a significant effect

of their interaction (F1,65)=3.82,
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p<0.05) on horizontal locomotion (Fig 5A). The same patter of results were observed on

supported rear (Fig 5B) ((F1,65)=9.66, p<0.01; (F2,65)=29.28, p<0.01; F1,65)=3.25,

p<0.05, respectively) and unsupported rear (Fig 5C) ((F1,65)=4.87, p<0.05;

(F2,65)=10.90, p<0.01; F1,65)=5.36, p<0.01 respectively). Planned comparison showed a

stimulant effect of caffeine at both doses (15 and 30 mg/kg) in the saline pretreated group

(p<0.01). Only the dose of 15 mg/kg of caffeine induced locomotion in the ethanol (1.5

g/kg) pretreated group (p<0.05). Interestingly, caffeine at the highest dose (30 mg/kg)

significantly decreased locomotion in animals pretreated with ethanol (1.5 g/kg) when

compared with the effect of this dose of caffeine in the vehicle pretreated group (p<0.01).

The effect of caffeine on supported rear showed a similar pattern of effects. Caffeine

increased supported rear at both doses (15 and 30 mg/kg, p<0.01 and p<0.05 respectively)

in the vehicle pretreated group. However, only caffeine 15 mg/kg significantly increase

this variable in the ethanol pretreated group (p<0.01). Caffeine 30 mg/kg decreased

supported rear in the ethanol preteated group compared with its effect in the vehicle

pretreated group (p<0.01). Finally, caffeine 15 mg/kg increased unsupported rear in the

ethanol preteated group, but at the highest dose (30 mg/kg), it significantly decreased this

variable (p<0.05). Moreover, the effect of this dose of caffeine in the ethanol pretreated

group was significantly different to the effect observed in the saline pretreated group

(p<0.05).

Experiment 4:  Effect of repeated administration of caffeine (0 or 15 mg/kg) on

locomotion, and acute chalenge with ethanol (0.0 or 1.5 g/kg).

The factorial ANOVA (treatment; caffeine 15 mg/kg or saline x session; 1 and 5) for

horizontal locomotion, showed an overall effect of repeated treatment (F(1,45)=7.55,

p<0.01), and also of session (F(1,45)=13.64, p<0.01). However, there was no significant

treatment x session interaction (F(1,45)=0.09, n.s), suggesting no sensitization effect of

repeated caffeine administration at a stimulating dose of 15 mg/kg. The same pattern of

effects was observed for supported rear. The factorial ANOVA showed a significant effect

of treatment (F(1,45)=6.82, p<0.05), as well as session (F(1,45)=10.59, p<0.01). But there

was no significant interaction (F(1,45)=3.12. n.s). On the other hand, the ANOVA for the

variable unsupported rear showed an overall effect of treatment (F(1,45)=17.19, p<0.01),

session (F(1,45)=10.59, p<0.01), and also treatment x session interaction (F(1,45)=39.12,

p<0.01). However, planned comparison on this last variable showed a significant increase
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of unsupported rear in session 5 compared with session 1 only in saline treated animals

(p<0.01) (Table 1).

Session 1 Session 5

Caffeine dose (mg/kg) 0 15 0 15

Horizontal crosses 55.2 ±4.1 80.5±7.2 71.7±6.2 100.0±11.2

Supporter rear 27.4±2.3 36.3±4.3 31.8±3.8 51.1±6.0

Unsupported rear 28.9±2.3 33.0±3.1 71.1±6.2** 31.5±3.3

Table 1. Effect of repeated administration of caffeine (0 or 15 mg/kg, IP) on horizontal

locomotion, supported rear and unsupported rear in the OF during sessions 1 and 5. Data are

expressed as mean (±SEM) number of counts during 10 minutes. **p<0.01 significantly different

from session 1.

All these animals, after two days of no treatment or test, received a dose of 1.5 g/kg

ethanol or saline. The factorial ANOVA yield no significant effect of previous treatment

(F(1,39)=0.41, n.s), no significant effect of ethanol dose (F(1,39)=0.11, n.s), and no

pretreatment x ethanol interaction (F(1,39)=2.11, n.s) (Fig 6A). The factorial ANOVA for

variable supporter rear yield a significant effect of ethanol (F(1,39)=6.36, p<0.01), but no

effect of previous treatment (F(1,39=0.14, n.s), and no significant interaction (1,39)=0.37,

n.s) (Fig 6B). For unsupported rear (Fig 6C), caffeine pretreatment did not yield a

significant effect (F(1,39)=3.15, n.s). However, the factor ethanol dose (F(1,39)=108.12,

p<0.01), as well as the interaction (F(1,39)=4.97, p<0.05) were significant. Planned

comparisons revealed significant differences between saline and ethanol (1.5 g/kg) treated

animals in unsupported rear in animals previously treated with saline, and also in the

groups previously treated with caffeine (15 mg/kg) (p<0.01). In addition, animals

previously treated with caffeine (15 mg/kg), showed less number of unsupported rearings

than animals treated with saline (p<0.01).



APPENDIX 1

261

Figure 6. Effect of ethanol (1.5 g/kg) on

horizontal locomotion (A), supported

rear (B) and unsupported rear (C) in the

OF in mice pretreated with caffeine (15

mg/kg) in previous days. Data are

expressed as mean (±SEM) number of

counts during 10 minutes. **p<0.01

significantly different from vehicle in

the same pretreatment group. ##p<0.01

significantly different from the same

dose of ethanol in animals that had

received saline in previous sessions.

Further analyses, were performed for the variable locomotion. We divided animals in high

and low ethanol induced locomotion using the median split among the groups that received

an acute administration of ethanol 1.5 g/kg. Preliminary results demonstrate that among the

low activity subgroups, there is no difference between caffeine preexposed and saline

preexposed groups. However, there seems to be a clear tendency between the two high

activity subgroups. Thus, a factorial ANOVA (previous treatment; caffeine vs saline x

level of activity; high vs low ethanol induced activity) yielded results close to significance:

Previous treatment (F(1,20)=3.30, p=0.08), level of activity (F(1,21)=30.9, p<0.01), and

interaction (F(1,31)=3.33 p=0.08). The low ethanol responders subgroup preexposed to

saline or caffeine (15 mg/kg) showed a horizontal locomotion average of 26.0±7.9 and
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25.8±5.0 respectively, while saline or caffeine preexposed animals that showed high

locomotor stimulation after ethanol administration had an average of 94.4±9.4 and

161.0±33.6 respectively.

Experiment 5. Western blotting for DARPP-32 (In progress).

Diaram showing the effect of an acute administration of caffeine at doses of 15 and 30 mg/kg in

animals previously exposed to saline or ethanol (1.5 g/kg) on DARPP-32, pDARPP-32(Thr75),

pDARPP-32(Thr34).

Experiment 6: Blood ethanol levels.

A two-way factorial ANOVA (ethanol x caffeine) showed a significant effect of ethanol

(F(1, 25)= 326.82, p<0.01) but, no significant effect of caffeine (F(1, 25)=0.31, n.s.), or of

the interaction (F(1, 25)=3.39, n.s.). These data suggest that the observed behavioral effects

of ethanol coadministered with caffeine are not due to changes in blood ethanol

concentration.

ETOH

(g/kg)

Caffeine (mg/kg)

0 30

1.5 0.89 ± 0.04 1.00 ± 0.07

2.5 2.12 ± 0.07 2.03 ± 0.05

Table 1. Effect of caffeine on blood ethanol levels. Mean ± SEM (n=7-8 per group) of blood

ethanol levels (in milligrams per deciliter) after acute IP administration of ethanol and caffeine at

the highest doses used.
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Conclusions

-Caffeine showed a bell-shaped dose response curve inducing stimulant effects on

horizontal locomotion and supported rear in the OF at low doses but not at the highest dose

used. Ethanol showed stimulant effects on locomotion at moderate-high (2.5 g/kg) doses

but suppressed vertical locomotion; an index of motor incoordination.

- Stimulant and non-stimulant doses of caffeine (15 and 30 mg/kg) potentiated locomotion

in animals treated with low and moderate doses of ethanol acutely. However, at the highest

dose of ethanol (3.5 g/kg) caffeine did not reversed ethanol’s suppressing effect in any of

the locomotion parameters.

- Repeated administration of ethanol (1.5 g/kg) induced motor sesitization. However, there

was no cross-sensitization with caffeine. Instead, a non-stimulant dose of caffeine (30

mg/kg) produced suppression in horizontal and vertical locomotion in ethanol sensitizated

mice. Repeated administration of ethanol (2.5 g/kg) did not induce motor sesitization.

-Thus, caffeine potentiates locomotion at stimulant doses of ethanol but at higher doses or

after suppresion of locomotion, caffeine at medium to high doses potentiates the

incoordinating effects of ethanol.

- Caffeine at a stimulant dose (15 mg/kg) did not induce sesitization after 5

administrations. However, animals pretreated with caffeine showed a tendency to have a

potentiated response to ethanol (1.5 g/kg) compared with saline treated animals, that was

more evident in those animals that showed stimulation of locomotion.
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APPENDIX 2:

Behavioral manipulations for the validation of the 3-choice
running wheel T-maze
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1. Abstract

One of the behavioral tests used in present dissertation for the evaluation of anergia-like

effects induced by the VMAT2 inhibitor TBZ, is the 3-choice t-maze task (adapted from

Correa et al., 2016). In this test animals can chose between running on a wheel (RW) vs.

sedentary activities such as consuming sucrose or sniffing a neutral odor. Animals can

allocate their time in reinforcing activities with different activational requirements: RW,

which requires high levels of behavioral activation and effort, or with more sedentary

activities shuch as eating freely available sweet pellets or as a third option sniffing

through a hole where there is a cotton ball with a neutral odor. Under normal conditions,

animals spent most of their time running in the RW (65%), less time eating (4%) and a

few seconds sniffing the neutral odor (0.5%).

Administration of TBZ shifts behavior; decreasing time in the RW and increasing time

eating, with no change interacting with the neutral odor (as observed in chapter 6).

Thus, the 3-choice t-maze task, is sensitive to DA manipulations as observed in

previous studies (Correa et al., 2016). This type of task is used for the evaluation of

motivated behavior, thus it should be sensitive to factors that can change cost-benefit

analyses when choosing between reinforcers such as the effort required or the value of

the reinforcer (Cheeta et al., 1995; Pardo et al., 2015; Randall et al., 2011; Fisher and

Mazur, 1992).

The present work explores the sensitivity of the 3-choice T-maze task to manipulations

that change the value of the most preferred reinforcers used in this T-maze (RW and

sweel pellets). Common manipulations of the reinforcer’s value when it is palatable

food or solution is the devaluation of the reinforcer changing its taste (Pickens et al.,

2003; Pardo et al., 2015; Cheeta et al., 1995), prefeeding the animals with the same type

of food (Pardo et al., 2012; 2015), or using drugs that induce anorexic-like effects

(Randall et al., 2012). In the present experiments we devalued the food by changing the

taste of the sweet pellets making them bitter and by pre-feeding the animals ad libitum

with the sweet pellets. In another condition animals were deprived of standard food in

order to increase food value. On the other hand, because normal mice spent most of

their time running and much less time consuming sucrose we also assessed the impact

of increasing wheel resistance (an effort-related challenge) on these preferences.
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2. Methods

2.1. Subjects

CD1 adult male mice (N=7) purchased from Janvier, France S.A. were 15-17 weeks old

(30-45 g) at the beginning of the study. Mice were housed in groups of three or four per

cage, with standard laboratory rodent chow and tap water available ad libitum. The

colony was kept at a temperature of 22 2 ºC with lights on from 08:00 to 20:00 h. All

animals were under a protocol approved by the Institutional Animal Care and Use

Committee of Universitat Jaume I, and all experimental procedures complied with

European Community Council directive (86/609/ECC). All efforts were made to

minimize animal suffering, and to reduce the number of animals used.

2.2. Testing procedures

Three-choice running wheel T-maze task. The T-maze apparatus consisted of a

central corridor with two opposed arms. Each arm provided a different type of stimuli

(for details, see Fig. 1). In one of them sweet pellets (TestDietTM, 50% sucrose, 45 mg

each) were available, in another arm there was a RW, and in the third arm there was a

hole with a cotton ball socked with a neutral non-social odor. Training as well as test

sessions lasted 15 minutes. Mice were trained 5 days a week. Training phase 1: to avoid

neophobia to the sweet tasting pellets, animals were enclosed in that arm with the food

during 5 sessions. Training phase 2: during 4 more weeks animals were exposed, one 15

min session a day to the T-maze with free access to the three stimuli. Mice were

exposed to all the conditions during consecutive weeks, day before the manipulation

was considered as a baseline (BL) or normal performance.
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Experiment 1. Effect of sweet food devaluation on preference in the 3-choice T-

maze task.

Experiment 1.1. Change in taste: bitter pellets

Experiment 1.2. Change in appetite: Pre-feeding.

Experiment 2. Effect of food deprivation on preference in the 3-choice T-maze

task.

Experiment 3.  Effect of increasing RW resistance on on preference in the 3-choice

T-maze task.

Figure 1. Schematic representation of 3 choice T-maze task.
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4. Results

Experiment 1. Effect of sweet food devaluation on preference in the 3-choice T-

maze task.

Experiment 1.1. Change in taste: bitter pellets

Animals were trained as described before, and after reaching stable levels of time

interacting with the three different reinforcers, a drop of caffeine (1g/L) was added to

the sweet pellets in order to make them bitter. BL was assessed the day before.

Fig 2. Effect of devaluation of pellets (bitter pellets) in the 3-choice T-maze preference task.
Data are expressed as mean (±SEM) of time (seconds) spent interacting with RW (A), food (B),
neutral odor (C) and time in different compartments (D) during a 15 minutes session. **p<0.01,
*p<0.05 significantly different from BL.

A Student`s t-test for dependent samples showed a significant increase on time running

in the RW in food devaluation condition (bitter pellets) (t=4.56, p<0.01), and a

significant decreased on time spent eating compared with its BL (t=-2.53, p<0.01).

However there were not differences on time sniffing the neutral odor between both

conditions (t=2.0, n.s.) (Fig 2 A-C). The t-tests for dependent samples comparing time

in compartments between both conditions (BL vs. food devaluation) did not showed
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differences on time spent in RW compartment (t=1.13, ns), food compartment (t=-1.39,

ns) and neutral odor compartment (t=1.81, ns) (Fig 2 D).

Experiment 1.2. Change in appetite: Pre-feeding.

After reaching stable baseline levels, animals were preexposed to sweet pellets

overnight before the beginning of the experiment. The previous day was used as BL.

Fig 3. Effect of pre-feeding in the 3-choice T-maze preference task. Data are expressed as mean
(±SEM) of time (seconds) spent interacting with RW (A), food (B), neutral odor (C) and time in
different compartments (D) during a 15 minutes session. *p<0.05 significantly different from
BL.

The Student’s t-test for dependent samples showed no significant effect of prefeeding

on time spent RW although there was a tendency to increase (t=0.38, ns), and no

significant differences between conditions on time spent sniffing the neutral odor (t=10,

ns). However, there was a significant decrease on time eating in the pre-feed condition

compared with BL (t=2.6, p<0.05) (Fig 3 A-C). Student’s t-tests for dependent samples

for the variable time in compartments did not show significant differences between
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conditions on time spent in RW compartment (t=0.60, ns), food compartment (t=1.48,

ns) or neutral odor compartment (t=1.03, ns) (Fig 3. D).

Experiment 2. Effect of food deprivation on preference in the 3-choice T-maze

task.

Animals were retrained and, after reaching stable levels, they were food deprived the

night before the test in order to increase their appetite. The BL data correspond to the

day before test.

Fig 4. Effect of food deprivation in the 3-choice T-maze preference task. Data are expressed as
mean (±SEM) of time (seconds) spent interacting with RW (A), food (B), neutral odor (C) and
time in different compartments (D) during a 15 minutes session. **p<0.01, *p<0.05
significantly different from BL.

The food deprivation condition significantly decreased time in RW, and significantly

increased time eating compared with BL condition as showed by the Student’s t-test for

dependent samples (t=-3.47, p<0.05; t=4.04, p<0.01 respectively). However, there was

no significant difference between conditions on time spent sniffing the neutral odor
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(t=0.54, ns) (Fig 4. A-C). Student’s t-tests for time in compartments, did not show

significant differences between both conditions on time spent in food compartment

(t=2.49, ns), RW compartment (t=-2.28, ns), or odor compartment (t=-1.20, ns) (Fig 4.

D).

Experiment 3.  Effect of increasing RW resistance on preference in the 3-choice T-

maze task.

Mice were trained as in the previous experiments and after reaching stable levels of BL

level of performance, the RW resistance was increased during two consecutive days.

Test was performed during 3 consecutive days: in the first day animals had a wheel with

the standard resistance (0%). For the second day weights were attached to the wheel so

that the resistance increased 75%, and for the third day additional weights increased

resistance to 95%.

Fig 5. Effect of increasing RW resistance in the 3-choice T-maze preference task. Data are
expressed as mean (±SEM) of time (seconds) spent interacting with RW (A), food (B), neutral
odor (C) and time in different compartments (D) during a 15 minutes session., *p<0.05
significant different from 0% (normal RW).
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Repeated measures ANOVA showed an overall effect of RW resistance on time running

in the RW (F(2,12)=3.75, p<0.05). Planned comparison analysis showed a significant

decrease in time running when RW resistance was increased to 95% (p<0.01) (Fig 5.A).

There was not an overall effect of RW resistance on the variables time eating

(F(2,12)=1.12, ns.), or time sniffing (F(2,12)=0.07, ns) (Fig 5. B and C).

Repeated measures ANOVA did not show an overall effect of RW resistance on time in

food compartment (F(2,12)=3.28, ns), RW compartment (F(2,12)=3.04, ns), or odor

compartment (F(2,12)=0.34 ns) (Fig 5. D).

5. Discussion

In single trial situations, when several reinforcers are presented concurrently, animals

distribute their time taking into account different levels of preference. However, a low

preferred option can act as a good reinforcer and elicit high levels or response when it is

presented alone (Franciso et al., 2008), or can be selected when the value of a more

preferred reinforcer is modified.

In experiment 1 food devaluation was been tested, and animals showed a decrease on

time eating but compensated increasing even more the time in the most preferred

reinforcer; the RW, specially in the bitter pellets condition. Conversely in experiment 2,

increasing the value of food after food deprivation, there was a significant increase on

time spent eating and a compensatory decrease on time running in the RW compared to

BL. This condition increased 800% the time spent eating in relation to BL, but only

decreased 50% time in RW indicating that the animals were still engaged in the RW.

In experiment 3, attaching weights to the RW and thus increasing the effort required to

run, reduced time in the RW, but there was no compensatory increase in sucrose

preference. Time spent in the RW compartment is not reduced, suggesting that although

the total time running is lower, maybe the resting times were longer than under BL

conditions. Devaluation of RW motivational value by RW pre-exposure, has been tried

on a previous study (Correa et al., 2016). However, the parameters used (duration of

preexposure) were not enough to induce “satiation”, possibly because running in the

wheel becames habitual and therefore relatively insensitive to devaluation. The neutral

option was not affected by changing conditions in one of the other two reinforcers,
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under any of the present set of manipulations, confirming that this is a neutral stimuly.

Further studies should use manipulations of this stimuly to increase its value.

Thus, the shifts in preference induced by DA D2 antagonism (Correa et al., 2016) and

by TBZ in Chapter 6 did not follow the same pattern of results as observed when

running became more difficult after attaching weights to the RW (experiment 3). Thus,

the effects of DA antagonism or depletion on redirecting preferences away from RW

activity do not seem to mimic the effects of moderate increases in muscle exertion in the

same paradigm, and do not seem to be due to an inability to run in the RW. However, we

cannot rule out the possibility that those pharmacological manipulations increase

appetite, thus increasing food consumption and reducing time in the RW, although the

magnitude of the effect observed in the food deprivation experiment is much higher than

the one observed after DA antagonism or depletion.

In summary, we confirm that changes on preference are related with changes of the

reinforcer’s value, showing that the 3-choice T-maze task is sensitive to motivational

manipulations and mice allocate their behavior from one stimulus to another depending

on their motivational relevance. Thus, this paradigm could be also sensitive to

motivational impairments induced by drugs.
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1. Abstract.

Organisms frequently make cost/benefit analyses in which they weigh the value of

rewards vs. the costs involved in procuring them. These decision-making processes

include assessments of effort-related costs and other factors, and can involve cognitive

as well as physical effort. The mesolimbic dopamine (DA) system plays a critical role in

behavioral activation, exertion of effort, and effort-based decision-making, and DA

antagonism and depletion in this system has been shown to induce anergia in effort-

based decision tasks. Exercise has been demonstrated to have protective effects in

animal models of pathologies characterized by motor disturbances such as Parkinson’s

disease, which involves DA loss in the nigrostriatal system. However, the beneficial

effects of physical activity on symptoms such as mental fatigue or anergia, present in

many psychiatric and neurological pathologies, also need to be explored. To assess

DAergic involvement in the activational component of motivation, and in effort based

decision-making when multiple reinforcers are available, mice received injections of

tetrabenazine (TBZ), a VMAT-2 inhibitor that produces a reversible DA depletion.

Mice were tested in a 3-choice-T-maze task developed for the assessment of preference

between physical activity (wheel running) in one arm vs. sedentary reinforcers such as a

freely available sucrose pellets in another arm, as well as a non-social (neutral) odor in

the third arm. Additionally, to study the protective effects of physical exercise, different

groups of animals were exposed to a daily session of forced exercise during 9 weeks (5

days a week). Under standard conditions, mice spent more time running and less

consuming sucrose or sniffing. TBZ produced a shift in the relative preference; it

reduced the choice of the reinforcer that involved vigorous activity, but increased

consumption of a reinforcer that required little effort (sucrose). On the contrary, mice

that were extensively exposed to exercise did not show TBZ-induced shifts in

preference towards low-effort reinforcers such as sucrose or olfactory stimuli. These

results suggest that exercise could act as a preventive therapy for the anergia-inducing

effects of DA depletion. Thus, DA depletion produced effects indicative of anergia (lack of

energy), but did not impair the primary rewarding effects of sucrose.
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2. Methods.

Subjects.

CD1 male mice weighed 24-28 g at the beginning of the study (Janvier). All mice were

housed in groups of 3 or 4 animals per cage with tap water available ad libitum, and

were food-restricted to reach 85% freefeeding body weight throughout the study. The

colony was kept at a temperature of 22± 2 ºC with lights on from 08:00 to 20:00 h. All

animals were under a protocol approved by the Institutional Animal Care and Use

Committee of Universitat Jaume I, and all experimental procedures complied with

European Community Council directive (86/609/ECC). All efforts were made to

minimise animal suffering, and toreduce the number of animals used.

Drugs

Tetrabenazine (TBZ) [(R,R)-3-Isobutyl-9,10-dimethoxy-1,3,4,6,7,11b-hexahydro-

pyrido[2,1-a]isoquinolin-2-one] (CIMYT Quimica SL, Spain), was dissolved in a 20%

dimethylsulfoxide (DMSO) solution mixed with saline and pH adjusted with 1 N HCl to

bring the final solution to pH 5.5. DMSO (20%v/v) was used as its control. TBZ was

administered 120 min before testing.

Testing procedures and apparatus

Forced running wheels (RW). Mice (4 weeks old at the beginning of the

training) were trained in the Mouse Forced Exercise Talking Wheel System (Model

80800ª, Lafayette Intrument ©). Animals were divided in two groups. One group of

mice were exercised daily, 5 days per week, for 9 weeks, beginning at the start of the

dark cycle (10.00 h). Training consisted in 2 cycles of 15 min at 5 rpm, and 2 cicles of

15 min at 7 rpm with one minute of rest between cycles. The total distance travelled was

360 meters in 1 hour. The second group of mice was used as control group and they

were enclosed in the Forced RW but blocked in order to be exposed to the same

conditions but with non exercise. These two groups of mice constituted the “Forced”

and “Blocked” conditions.

Locomotion in the open field arena (OF). The OF apparatus consisted of a clear

glass cylinder 25 cm in diameter and 30 cm high. The floor of the cylinder was divided
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into four equal quadrants by two intersecting lines drawn on the floor. The behavioral

test room was illuminated with a soft light, and external noise was attenuated.

Horizontal and vertical locomotion was registered manually during 60 min. For

horizontal locomotion an activity count was registered each time the animal crossed

from one quadrant to another with all four legs. A count of vertical locomotion was

registered each time the animal raised its forepaws in the air higher than its back, or

rested them on the wall. Animals were testes in OF the last week of training (Figure 1)

Anxiety in the elevated plus maze (EPM). The 8th week of forced training

animals from Forced condition and Blocked condition were evaluated in an EPM

(Figure 1). This paradigm consists of two open and two enclosed arms arranged in a

plus configuration. This anxiety paradigm measures the avoidance that rodents show to

elevated open spaces. Animals were placed in the central platform and assessed during 5

minutes. A trained observer registered time spent in the open arms, ratio of entries in the

open arms to total arm entries, latency to enter the open arms and total entries in the 4

arms as an index of locomotion. An entry into an arm was recorded when the animal

crossed the line that connected that arm with the central platform with all four legs.

Three-choice running wheel T-maze task. The T-maze apparatus consisted of a

central corridor with two opposed arms. Each arm provided a different type of stimuli

(for details, see Fig. 1). In one of them sweet pellets (TestDietTM, 50% sucrose, 45 mg

each) were available, in another arm there was a RW, and in the third arm there was a

hole with a cotton ball soaked with a neutral non-social odor. Training as well as test

sessions lasted 15 minutes. Mice were trained 5 days a week. Training phase 1: to avoid

neophobia to the sweet tasting pellets, animals were enclosed in that arm with the food

during 5 sessions. Training phase 2: during 2 more weeks animals were exposed, one 15

min session a day to the T-maze with free access to the three stimuli. Test phase: This

phase lasted during 3 weeks more (one week per TBZ dose). Animals started the t-maze

procedure after being trained 9 weeks in the forced RW.
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Figure 1. Schematic representation of the 3-choice RW T-maze task settings and

experiments timeline.

High Performance Liquid Chromatography (HPLC) for DA level

determination. Brain samples were extracted after 120 minutes of TBZ (0 and 2

mg/kg) administration. Mice were anesthetized with carbon dioxide for 30 s and

decapitated. Brains were quickly removed and frozen on a Leitz Wetzlar microtome.

Coronal sections 750 μm thick were cut through the striatum. A 16-gauge stainless-steel

tube was used to dissect bilateral cylindrical samples from the ventral striatum and

anterior cingulated (Acg). These tissue samples were then placed in 200 μl of 0.1 N

perchloric acid, and then homogenized, centrifuged, and frozen. The supernatant was

subsequently analyzed for DA content using HPLC with electrochemical detection

(ESA Coulochem II system). The electrochemical parameters were as follows: channel

1= − 100 mV, channel 2 = +200 mV, and guard cell = +350 mV. Each liter of mobile

phase contained 27.6 g sodium phosphate monobasic, 8.0% of methanol 750 μl of 0.1M

EDTA, and 2875 μl of 0.4M sodium octyl sulfate dissolved in deionized ultrapure H2O

with a final pH of 4.5. The flow rate was 1.0 ml/min.

Plasma corticosterone determination. 60 minutes after being trained in Forced

RW animals were sacrificed by decapitation under deep anesthesia. Animals were

anesthetized with a 1.0 ml/kg IP injection of a cocktail solution containing 10.0 ml of
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100 mg/ml ketamine plus 0.75 ml of 20.0 mg/ml xylazine (both from Phoenix

Scientific, Inc., St. Joseph, MO, USA), 30 minutes before decapitation. Blood samples

were collected in heparinized (15 units/ml of blood) Eppendorf tubes and centrifuged at

4000 rpm for 10 min. Supernatant was taken and stored at -20°C until corticosterone

determination. Plasma corticosterone levels were measured spectrophotometrically

using a commercially available enzymatic immunoassay kit (Rodents Corticosterone

Enzyme Immunoassay System, OCTEIA Corticosterone; Immunodiagnostic Systems

LTD, Boldon, England). Blood corticosterone concentration (ng/ml) was determined

using a logarithmic adjustment of the standard curve.

DARPP-32 immunohistochemistry. After 120 min of TBZ (0 or 2 mg/kg)

administration animals trained in Forced RW (Forced and Blocked) were anesthetized

with CO2 and transcardially perfused with 0.9% physiological saline with heparine

(0.06%) for 5 min, followed by perfusion with 3.7% formaldehyde for 5 min. Brains

were fixed for 24 h by immersion in 3.7% formaldehyde and then transferred into a

30% sucrose solution and stored at 4°C before brain sectioning. Free floating coronal

sections of brains (40 µm) were serially cut using a Cryostat 9 (Thermo Fisher) and

rinsed in 0.01 M phosphate buffer (PBS). To measure the immunoreactivity to

phosphorylated DA and c-AMP-regulated phosphoprotein 32 kDa (pDARPP-32),

nonspecific binding sites were blocked, and cells were permeabilized in a solution

containing 0.1% Triton X-100 (T.X), 1% Bovine Albumin serum (BSA) in PBS for 30

min at room temperature on a rotating platform before primary antibody incubation.

pDARPP-32 immunoreactivity was visualized with a polyclonal rabbit antibody for

pDARPP-32 phosphorylated at the threonine 34 residue (pDARPP32-Thr34, 1:1000;

Santa Cruz Biotechnology), or polyclonal rabbit antibody for pDARPP-32

phosphorylated at the threonine 75 residue (pDARPP32-Thr75, 1:500; Santa Cruz

Biotechnology). These antibodies were dissolved in solutions that also contained 1%

BSA and 0.1% T.X in PBS for 24 h (pDARPP32-Thr34) or 48 hours (pDARPP32-

Thr75) incubation at 4°C. After the primary antibody treatment, the sections were rinsed

in PBS (3 times for 5 min) and incubated in the secondary antibody, anti-rabbit HRP

conjugate envision plus (DAKO) for 1.5 h on a rotating shaker at room temperature.

Finally, sections were washed and rinsed for 1-3 min in 3,3diaminobenzidine

chromagen (DAKO) Processed sections were then mounted to microscope slides

(Menzel-Gläser, Superfrost ® Plus, Thermo scientific), air dried, and cover-slipped using
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Eukitt® (Sigma Aldrich) as a mounting medium. The sections were examined and

photographed using a Nikon Eclipse E600 (Melville, NY, USA) upright microscope

equipped with an Insight Spot digital camera (Diagnostic Instruments, Inc). Images of

the regions of interest were magnified at 20X and captured digitally using Stereo

Investigator software.

Statistical analysis

All the behavioral experiments followed a within-subjects design, and were analyzed

with repeated measures analysis of variance (ANOVA). . When the overall ANOVA

was significant, non-orthogonal planned comparisons using the overall error term were

used to compare each treatment with the vehicle control group (Keppel, 1991). For

these comparisons,  level was kept at 0.05 because the number of comparisons was

restricted to the number of treatments minus one. Biochemical studies were analyzed

with one-way ANOVA or with a non-parametric Mann Whitney-U test in the HPLC

experiment . All data were expressed as mean ± SEM, and significance was set at

p<0.05. STATISTICA 7 software was used for statistical analyses of the data.

3. Experiments

Experiment 1. Effect of Forced RW and Blocked RW training on body weight,

food intake, and stress-related parameters.

During the 9 weeks of exercise training different variables that can be sensitive to stress

were registered:

- Total amount of lab chow comsumption in home cage was registered twice a

week.

- Mice were weighted twice a week before during RW training.

- Defecation has been used as a measure of emotionality in rats (Hall, 1934;

Sanberg, 1989), the number of fecal pellets deposited by mice in each group

(forced vs. blocked RW) was recorded after their daily training session.

- Plasma corticosterone levels were quantified after the last session of training.
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Experiment 2: Effect of previous RW training on EPM performance.

Experiment 3: Exploratory locomotion in a novel OF.

Experiment 4: Effect of TBZ on 3-choice T-maze performance

Experiment 5: Experiment 3. Effect of TBZ on DA tissue levels in striatum and

Anterior Cingulate.

Experiment 6: Effect of TBZ on pDARPP-32(Thr34) and pDARPP-32(Thr75) in

mice after completion of RW training.
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4. Results

Experiment 1. Effect of Forced RW and Blocked RW training on body weight,

food intake, and stress-related parameters.

Figure 2. Body weight, food consumption, fecal bolus, and corticosterone levels after training. Mean

(±SEM) body weight in grams (A), standard food consumed in home cage in grams (B), number of fecal

bolus excreted during training session (C), and plasmatic corticosterone levels after the training session in

nanograms per mililiter of blood (D).

Factorial ANOVA for the variable food consumption (chow consumed in their home

cages during 8 weeks of training), did not showed an overall effect of condition

(Control or Forced) (F(1,72)=0.01, n.s.), week of training (F(7,42)=1.92, n.s.) or

interaction (F(7,42)=0.56, n.s) (Fig 2A). The factorial ANOVA for body weight showed

a significant effect of training (F(1,22)=7.71, p<0.05), and a significant effect of week

of training (F(8,176)=27.02, p<0.01), but no significant interaction (F(8,176)=0.71, n.s.)

(Fig 2B). The ANOVA on the impact of training condition and week of training on
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number of fecal bolus during training session showed no effect of training

(F(1,22)=0.10, n.s.), week of training (F(8,176)=1.66, n.s.), or condition x week

interaction (F(8,176)=1.10, n.s.) (Fig 2C). All these results indicate that this schedule of

force training has no signifficant impact on amount of food consumed or excretion and

body mass. In addition, forced training condition did not increased plasma

corticosterone levels as showed by a t-test for independent samples (t=-0.10, n.s). Thus,

there were no significant differences between control and forced animals after training

on this neuroendocrine parameter of stress (Fig 2D).

Experiment 2: Effect of previous RW training on EPM performance.

Figure 3. Anxiety measures in the elevated plus maze. Mean (±SEM) latency in seconds to enter an open

arm for the first time (A), time spent in open arms in seconds (B), ratio entries into open arms compared

to total entries in all arms  (C), and total number of entries in the four arms as a measure of locomotion

(D).

Training condition did not affect any of the parameters recorded in the EMP. Student’s

t-test for independent samples did not show significant differences between both

training conditions in latency to enter into the open arm for the first time (t=-1.78, n.s.),
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time in open arms (t=-0.10, n.s.), and ratio of entries in open arms (t=0.13, n.s.).

Suggesting that animals trained in forced RW did not have an anxiogenic-like pattern of

behavior in comparison with control group. There were not differences between both

conditions on total crosses either (t=-1.21, n.s.).

Experiment 3: Exploratory locomotion in a novel OF.

Figure 4. Exploration in novel open field. Mean (±SEM) of number of crosses between quadrants (A)

and number of rearings (B).

Factorial ANOVA showed a significant effect of time in the OF on both groups of

animals (F(3,42)=29.0, p<0.01). However, there was not a significant effect of training

condition on horizontal locomotion F(1,14)=0.07, n.s.), and no significant interaction

(F(3,42)=1.00, n.s) (Fig 4A). The same pattern of results was observed for vertical

locomotion. Factorial ANOVA did not show a significant effect of training condition

(F(1,15)=0.44, n.s.), there was a significant effect of time in the OF (F3,42)=35.47,

p<0.01), but no significant effect of time x condition interaction (F(3,42)=1.64, n.s.).
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Experiment 4: Effect of TBZ on 3-choice T-maze performance

Factorial ANOVA (condition x treatment) did not showed an effect of condition

(F(1,22)=0.20, n.s) or dose (F(2,44)=2.39, n.s) on time spent running in the RW.

However there was a significant effect of condition x treatment interaction

(F(2,44)=6.76, p<0.01). Planned comparisons showed a significant decrease on time in

the RW after TBZ administration at a dose of 2 mg/kg in the control group (p<0.01), but

not in animals trained in the forced RW. On the other hand, the ANOVA for the sucrose

consumption did not show a significant effect of condition (F(1,22)=0.11, n.s),

treatment (F(2,44)=2.76, n.s), or interaction (F(2,44)=2.88, n.s) on time spent eating.

However a tendency to increase time eating was observed in the control group. There

was no significant effect of condition (F(1,22)=1.49, n.s), treatment (F(2,44)=2.24, n.s),

and condition x treatment interaction  F(2,44)=0.64, n.s) on the variable time sniffing

the neutral odor.

Figure 5. Effect of TBZ on mice from the control
group (blocked RW) and the group forced to
exercise, in time spent with the 3 stimuli in the T
maze. Mean  (±SEM) of time running in the RW
A), time eating the sucrose pellets B), and time
sniffing the hole C). **p<0.01  *p<0.05
significantly different from TBZ 0 mg/kg in the
same group. #p<0.05 significantly different from
control group at the same dose of TBZ.
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Experiment 5: Effect of TBZ on DA tissue levels in Striatum and Anterior

Cingulate.

Figure 6. DA tissue levels in ventral striatum and in anterior cingulate cortex as measured by HPLC.

Mean  (±SEM) nanograms of DA per milligram of brain tissue.

Factorial ANOVA (brain region x treatment) showed an overall effect of brain region

(F(12,36)=1.18, p<0.05), and treatment (F(1,18)=4.38, p<0.05) on DA levels, but no

significant effect of brain region x treatment interaction (F(1,18)=1.32, n.s.).

Experiment 6: Effect of TBZ on pDARPP-32(Thr34) and pDARPP-32(Thr75) in

mice after completion of RW training.
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Figure 7. Upper part: Diagram of coronal sections with bregma coordinates (0.97 and 1.18) taken

from Franklin and Paxinos (2007), showing location of the brain areas for pDARPP-32(Thr34) and

pDARPP-32(Thr75) counting. Lower part: Photomicrographs of pDARPP-32(Thr34) and pDARPP-

32(Thr75) immunoreactivity staining in nucleus Accumbens Core from representative animals. Images at

20x, scale bar = 100 μm.

Factorial ANOVA (treatment x condition) revealed a significant effect of treatment

(F(1,15)=4.25, p<0.05), condition (F(1,15)=11.35, p<0.01) and treatment x condition

interaction (F(1,15)=4.61, p<0.05) on DARPP32-thr34 levels in nAcb core. Planned

comparisons analysis showed a significant increase on DARPP32-Thr34 after TBZ (2

mg/kg) administration in control group (p<0.05) but not in forced group.
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Figure 8. Effects of TBZ on pDARPP-32(Thr34) levels on nucleus Accumbens Core core in control and

forced exercised animals. Mean (±SEM) of number of pDARPP-32(Thr34) staining in 300 µm2 ROI.

*p<0.05 significant differences from vehicle treatment in the same condition.

5. Discussion

TBZ produced a shift in the relative preference; it reduced the choice of the reinforcer

that involved vigorous activity, but increased consumption of a reinforcer that required

little effort (sucrose). In previous studies we have demonstrated in mice and rats (Nunes

et al., 2013; López-Cruz et al., 2014), that none of these doses of TBZ (1 or 2 mg/kg)

significantly reduced RW performance or free sucrose consumption when they were not

presented concurrently. Thus, the possibility of choosing changed the impact of the

drug. However, mice that were extensively exposed to exercise did not show TBZ-

induced shifts in preference towards low-effort reinforcers such as sucrose or olfactory

stimuli.

TBZ did not significantly decrease DA levels in striatum although a tendency was

observed. However, it increased levels of the phosphorilated form of DARPP-32(Thr34)

in control animals but not in animals previously trained in the forced RW.

These results suggest that exercise could act as a preventive therapy for the anergia-

inducing effects of DA depletion. Thus, DA depletion produced effects indicative of

anergia (lack of energy), but did not impair the primary effect of sucrose.
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