
The Optimum Communication
Spanning Tree Problem

Properties, models and algorithms

Author: Carlos Luna-Mota

Advisor: Elena Fernández

UNIVERSITAT POLITÈCNICA DE CATALUNYA
BARCELONATECH
Departament d’Estadística i Investigació Operativa

The research presented in this PhD dissertation has been partially supported by
the MTM2009-14039-C06-05 research project of the Spanish Ministry of Education
and Science, MTM 2012-36163-C06-05 research project of the Spanish Ministry of
Economy and Competitiveness and the grant BES-2010-034835 from the Spanish
Ministry of Education and Science.

Keywords: Optimum Communication Spanning Tree Problem, Network Design,
Spanning Trees, Combinatorial Optimization.

MSC2010: 68M10, 90-02, 90B10, 90B18, 90C05, 90C10, 90C11, 90C27, 90C35, 90C59.

UNESCO: 120700, 120707, 120709, 120710.

I went to the woods because
I wished to live deliberately,
to front only the essential facts
of life, and see if I could not
learn what it had to teach,
and not, when I came to die,
discover that I had not lived

Henry David Thoreau

Acknowledgements

I am in debt with all persons who made possible this PhD thesis
but I want to specially acknowledge the help that I received from my
advisor, Elena Fernández. I cannot stress enough how grateful I am
for her commitment and for the trust that she placed in me. Elena
has been, and will always be, a mentor and an example for me.

I am also very grateful to Ivan Contreras, who preceded me on the
study of the OCSTP. Ivan has been not only a tireless collaborator,
but also a kind friend without whom this project would never have
been possible.

I wish to acknowledge the warm hospitality that I received during
my research stages at Heidelberg University and at Montréal Univer-
sity. My mentors there, Gerhard Reinelt and Jean-François Cordeau,
gifted me with their vast knowledge and inspired many of the results
of this dissertation.

I am thankful to my colleagues from the Departament d’Estadística
i Investigació Operativa, who provided a great working environment
and were always ready to offer their help and sympathy.

Finally, I wish to acknowledge the support that I received from
my parents, Bartolomé and María Rosa, and the infinite patience,
encouragement and love that my wife, Núria, has devoted to me all
these years. Sense tu, no hauria valgut la pena fer aquest viatge.

Carlos Luna-Mota Barcelona, December 10, 2015

Contents

1 Introduction 1

2 Mathematical preliminaries 5
2.1 Graph Theory . 5

2.1.1 Spanning trees 7
2.1.2 Some Notable trees 11

2.2 Mixed Integer Linear Programming 14
2.2.1 Benders Decomposition 15

3 The OCSTP 21
3.1 Problem definition . 21

3.1.1 Additional assumptions 22
3.1.2 Notable particular cases of the OCSTP 23
3.1.3 State-of-the-Art 24

3.2 Upper and lower bounds 27
3.2.1 Upper bounds 27
3.2.2 Lower bounds 27

3.3 MILP formulations for the OCSTP 32
3.3.1 Variables and objective functions 32
3.3.2 Path-based and flow-based formulations . . . 35
3.3.3 The Rooted tree formulation 37
3.3.4 Computational comparison of linear formulations 41

4 Heuristic algorithms 45
4.1 Constructive heuristics 46

4.1.1 The Ahuja-Murty Constructive Heuristic . . . 47
4.1.2 The Divide & Conquer Heuristic 49

4.2 Improvement heuristics 52
4.2.1 The Ahuja-Murty Local Search 52
4.2.2 The Dandelion PONS 58

4.3 Computational experience 62

5 Benders decomposition for the OCSTP 67
5.1 The Benders reformulation 67
5.2 Algorithmic refinements 70

5.2.1 Separation of optimality cuts 70
5.2.2 Separation of Pareto-optimal optimality cuts . 73
5.2.3 Fractional cuts and filtering strategies 75
5.2.4 Local Cuts . 77
5.2.5 Rounding Heuristic 78

5.3 Computational experience 79

6 Conclusions 85

A The Dandelion Code 87
A.1 A O(n) encoding algorithm 87
A.2 A O(n) decoding algorithm 90

B OCSTP Instances 93

Chapter 1

Introduction

In the last decades, networks have become increasingly important in our lives.
From public transport to the wireless connectivity of our smartphones, we use
many systems closely related to transportation, telecommunication and computer
networks on a daily basis. Network design and network analysis tools are thus
required to manage the increasing complexity of our interconnected world.

The design of efficient networks, in particular, may be of special interest not
only to telecommunication or transportation companies seeking to increase their
benefits but also to all of us, since their efficiency will translate in great savings
of time and energy in our daily activities.

Not all network design problems, however, share the same notion of efficiency.
In some contexts, such as electric power networks, it is fundamental to minimize
the total length of the network edges, since both, the construction cost and the
transportation cost of the network, increase with each additional kilometer of high
tension line. In these contexts, optimal solutions are Minimum Spanning Trees or,
more generally, Minimum Steiner Trees.

In other situations, however, communication requirements between origin/desti-
nation pairs are given, and the objective is to minimize the operational cost of the
network. The communication cost between an origin/destination pair, depends
both on the communication requirement and on the distance on the network
between the vertices of the pair. Hence, if the only criterion is the minimization
of communication costs, the resulting network would be the union of the shortest

1

Chapter 1. Introduction

paths between all pairs. This will likely involve a quadratic number of connections,
which might increase the construction and maintenance cost of the network
unnecessarily.

There are many efficiency criteria that look for a compromise between the
construction and operational costs of a network. The criterion used by the Op-
timum Communication Spanning Tree Problem (hereafter, OCSTP) is to
find a spanning tree of minimum operational cost. Among all possible topologies
for a network that connect n locations, spanning trees minimize the number of
established connections, imposing a tight limit on the construction costs. And
since the network topology is used to control the construction costs, we are free
to choose the spanning tree that provides the smallest communication costs, even
if this means that many long edges must be built (which is rarely the case).

The OCSTP was originally introduced by Hu (1974). Despite its apparent
simplicity, the OCSTP turns out to be a very challenging combinatorial optimiza-
tion problem. Johnson et al. (1978) proved that finding an OCST is NP-hard,
even if all origin/destination pairs have the same communication requirement.
Moreover, unless NP = P, no polynomial time approximation scheme exists
since the problem isMAX SNP-hard (Papadimitriou and Yannakakis, 1988). In
comparison, other spanning tree optimization problems, such as the Minimum
Spanning Tree problem, can be solved in polynomial time and are often left as
exercise in many computer science courses (see, for example, Cormen et al., 2009).

Even though it is very difficult to find OCSTs in general, there are two
particular cases, identified by Hu (1974), which can be solved in polynomial time.
The first one is the Optimum Requirement Spanning Tree Problem where, in
the original graph, the distance between all pairs of vertices is the same. In this
case, an optimal solution is given by a Gomory-Hu Min-Cut tree of an associated
network. In the other particular case, called the Optimum Distance Spanning Tree
Problem, all pairs of vertices have the same communication requirements and,
under some additional assumptions, it has star-shaped trees as optimal solutions.

Apart from being a theoretically challenging problem, the OCSTP can be
applied to several real-world problems regarding the design of communication
networks where it is necessary to impose a tree topology to avoid the routing
decisions or the synchronization issues associated with cycles. The OCSTP is also
relevant when the price of building a given network does not depend on the total

2

length of that network as much as on the amount of connections established, as
it is the case in many virtual networks. Finally, designing infrastructures using
OCST ensures that each of the edges of the network will have a high degree of
use, which is a desirable quality in transportation networks with high building
costs, such as a train network. Even in the cases where we consider no restriction
relative to the network topology, the OCSTP can be used to identify the critical
subnetwork that must be built first to ensure global connectivity and reasonable
communication costs: Since all connected networks contain a spanning tree as a
subgraph, the use of an OCST is justified as an efficient initial inversion when
the allocated budget (in terms of time, workforce or economical resources) is not
enough to build the whole planned network at once.

Besides its specific applications regarding the design of optimum communi-
cation networks, the OCSTP appears as a subproblem in some Hub Location
Problems such as the Tree-of-Hubs Location Problem (Contreras et al., 2010b;
Contreras and Fernández, 2012), that can be polynomially transformed into an
OCSTP when the set of hubs and the allocation pattern of nodes to hubs are
known. Additionally, the particular case of the OCSTP where all communication
requirements are equal is used in computational biology to find optimal alignments
of genetic sequences (Wu et al., 2000c; Fischetti et al., 2002).

Our research on the OCSTP, summarized in this dissertation, provides new
exact and heuristic algorithms for general instances of the OCSTP. In particular,
we describe an efficient Branch & Cut algorithm based on an enhanced Ben-
ders reformulation of the problem. This exact algorithm consistently outperforms
CPLEX with any known formulation of the problem and is able to provide optimal
solution for previously unsolved instances from the literature. In addition, we
have developed several new Mixed Integer Linear Programming formulations with
interesting theoretical properties and improved a previously known formulation
for the problem with new families of valid cuts. Regarding heuristic algorithms,
we have extended the most widely used local search algorithm for the OCSTP.
We also developed a novel Divide & Conquer constructive heuristic and proposed
a new family of spanning tree neighborhoods along with an innovative exploration
strategy that fully exploits the structural relationships between such neighbor-
hoods. Finally, we propose two new combinatorial lower bounds based on the
inherent characteristics of the the OCSTP.

3

Chapter 1. Introduction

These results have given rise to the publication Fernández et al. (2013c) and the
communications Contreras et al. (2015a,b); Fernández and Luna-Mota (2012a,b,
2014) and Fernández et al. (2013a,b).

The remainder of this document is organized as follows: Chapter 2 includes the
mathematical foundations of our research and settles the notation used through
this dissertation. Chapter 3 introduces the OCSTP and reviews the previous
literature on this subject and discusses several linear models. Chapters 4 and 5
describe the heuristic and exact algorithms that we developed to solve general
instances of the OCSTP as well as the computational experiences that we used to
evaluate them. Finally, Chapter 6 includes the conclusions of our research and
what we consider the most promising lines of future research on the subject.

4

Chapter 2

Mathematical preliminaries

2.1 Graph Theory

The following conventions will be used throughout this thesis:
G always denotes a simple, undirected graph, without loops or multi-edges,

with vertex set V = {1, 2, . . . , n} and edge set E ⊆ {{i, j} | i, j ∈ V ; i 6= j}.
The degree of a vertex is the number of edges incidents with that vertex.

For a subset of vertices S ⊆ V we denote the set of edges with both ends on S
as E(S) = {{i, j} ∈ E | i ∈ S and j ∈ S} and the set of edges with one end on S
and the other end on S̄ = V \ S as δ(S) = E \

(
E(S) ∪ E(S̄)

)
. The pair {S, S̄}

is called a cut of G. Indistinctively, the set of edges with one end on S and the
other end on S̄ will also be referred to as a cut.

When we consider directed arcs (instead of undirected edges) the notation will
be: A = {(i, j) | i, j ∈ V ; i 6= j} (with parentheses instead of braces to indicate
that the order of the elements does matter).

We say that G′ is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. When V ′ = V , G′

is called a spanning subgraph of G.
A simple path is a sequence of edges of the form ({i1, j1}, . . . , {im, jm}) with

jk = ik+1 ∀k ∈ {1, 2, . . . ,m− 1} and with any given vertex label appearing in at
most two edges. A closed path (jm = i1) is called a cycle. If arcs are used instead
of edges, we obtain directed paths and directed cycles respectively.

5

Chapter 2. Mathematical preliminaries

(a) (b) (c)

Figure 2.1: A path (a), a cycle (b) and a tree (c).

If we assign lengths to the edges of the graph we can define the distance dij
between two different vertices as the length of the shortest path of G connecting
both vertices. The distances defined thereby satisfy the triangle inequality:

dik ≤ dij + djk (2.1)

If we assign capacities to the edges of the graph we can define the capacity
of a cut {S, S̄} as the sum of the capacities of the edges that traverse the cut.

The Max-Flow-Min-Cut theorem (Ford and Fulkerson, 1956) states that the
maximum amount of flow fij that we can send between two different vertices of
a capacitated graph is equal to the smallest capacity amongst all the cuts of G
that separate both vertices. As a corollary of that theorem we can deduce that
the maximum flows defined thereby satisfy the following inequality for all k ∈ V :

fik ≥ min(fij , fjk) (2.2)

A graph G = (V,E) is connected if there exists a path Pij ⊆ E between
every pair of vertices. A graph G is acyclic if does not contain any cycle. Acyclic
subgraphs are also called forests. A connected forest is called a tree.

Kn denotes the complete graph with E = {{i, j} ∈ V × V | i 6= j}. The
set of all spanning trees of Kn are denoted as Tn and its elements (T ∈ Tn) are
referred simply as trees. When we need to work with smaller (non-spanning) trees
we denote them as subtrees.

6

2.1. Graph Theory

2.1.1 Spanning trees

Spanning trees are rich in mathematical properties. To give an idea of this richness
we present the following equivalent statements (Eisner, 1997; Lawler, 2001):

1. T is a spanning tree of G.

2. T is a connected and acyclic spanning subgraph of G.

3. T is a connected spanning subgraph of G with n− 1 edges.

4. T is an acyclic subgraph of G with n− 1 edges.

5. T is a connected spanning subgraph of G and removing an edge from T will
disconnect it.

6. T is an acyclic subgraph of G and adding any edge to T will create a cycle.

7. There is a unique path over T connecting each pair of vertices of G.

In a tree, vertices of degree 1 are called leaves whereas the rest of the vertices
are denoted interior vertices. All trees have between 2 and n− 1 leaves. Paths
and stars are special cases of trees, characterized by having an extremal number
of leaves. Paths are trees with only 2 leaves whereas stars are characterized by
having n− 1 leaves.

Spanning trees and cuts:

Two cuts of G, {S, S̄} and {Q, Q̄}, are said to cross each other if and only if each
of the four sets S ∩Q, S ∩ Q̄, S̄ ∩Q and S̄ ∩ Q̄ contain at least one vertex. A set
of two or more cuts of G are said to be non-crossing if no two of them cross each
other.

Lemma 2.1.1 (Hu, 1974). Each spanning tree T uniquely determines n − 1

non-crossing cuts and each set of n− 1 non-crossing cuts of a graph G uniquely
determines a spanning tree.

7

Chapter 2. Mathematical preliminaries

Representing Spanning Trees:

The set Tn of spanning trees of Kn grows quickly as n increases. However, each
tree T is linear in size and, hence, it may be desirable to represent it using just
O(n) space.

Several such representations are available in the literature, being the most
commonly used ones the adjacency lists representation, the edge-set representation
and the predecessor list representation (Cormen et al., 2009):

Adjacency lists: A tree T is represented as a dictionary of n lists, with
list[k] containing the indices of all the neighbors of k in T . Since T contains
n− 1 edges, the total amount of space used is 2(n− 1). This representation
can be useful in many heuristic algorithms that need to perform searches
over the set of neighbors of a given vertex frequently.

Edge-set list: A tree T is represented as a set of n− 1 edges sorted by a
given suitable criterion. Since T contains n− 1 edges and each edge can be
represented by a pair of vertex indices, the total amount of space used is
2(n−1). This representation has been used as a genetic code in evolutionary
heuristic algorithms, with each edge being a gene of the tree.

Predecessor list: A vertex of T is chosen and a Depth First Search is
performed from this node, recording the vertex used to reach each vertex
through an edge during the search. Since T is connected, the search will
reach all the vertices; and since T is acyclic, the predecessor of a given
node is uniquely determined by the starting point of the search. Therefore,
we can represent T using a list of n vertex indices, with the kth element
being the predecessor of vertex k in the search (or a NULL marker if k was
the starting point, which is usually chosen as the last element of the list
and omitted from it). The predecessor list representation of a tree can be
thought of as a compact version of the edge-set list representation. Unlike
the previous representations, the predecessor list representation is unable to
represent arbitrary directed graphs or graphs with more than n edges and
therefore may only be used to represent trees, forests and cycles in general.

Checking if a given edge is in T may require a linear search if we use any of
the compact representations described above and, thus, another data structure

8

2.1. Graph Theory

should be used when this operation is required frequently. The adjacency matrix
representation offers a trade-off between the time required to check if a given edge
is in the tree and the amount of space required to store it:

Adjacency matrix: A tree T is represented as a binary matrix where the
cell (i, j) is equal to 1 if and only if there is and edge between i and j in
T . This representation has interesting theoretical properties in the spectral
graph theory field and may be useful to represent the design variables of a
Linear Programming formulation of a network design problem.

Finally, it is worth noting that, none of the above representations is limited to
representing spanning trees, not even the predecessor list representation, which is
highly related to the structural properties of the spanning trees. This means that
other graphs different from spanning trees may be represented with them and
sometimes the process to determine if these graphs effectively belong to Tn may
require as much as O(n) operations. It would be interesting to find a compact
data structure that would be able to represent spanning trees only (preferably
uniquely).

Cayley’s formula (Cayley, 1889) for the number of different labeled spanning
trees of n vertices states that:

|Tn| = nn−2 (2.3)

Therefore, the set Cn of words of length n− 2 on the alphabet {1, 2, . . . , n},
hereafter Cayley strings, may be an obvious candidate as a data structure to
represent trees. Note that the predecessor list data structure uses words of lengths
n− 1. Any bijection between Cn and Tn is called a Cayley code. Most of these
(nn−2)! possible bijections do not have any structural feature that justifies its use.
There are, however, some remarkable Cayley codes with practical applications:

Prüfer code: (Prüfer, 1918) In order to represent a tree T with vertices
labeled by the elements of {1, 2, . . . , n}, repeat n − 2 times the following
procedure: select the leaf of T with smallest label, annotate the label of its
only neighbor and delete the selected leaf from T . The resulting sequence of
n−2 labels uniquely determines T and the process can be reversed efficiently.
The Prüfer code has good structural properties (for example, the degree of

9

Chapter 2. Mathematical preliminaries

each vertex of T is equal to the number of times this vertex appears in the
code plus one) but fails to provide high locality (Gottlieb et al., 2001), i.e.
Cayley strings that differ in a single character can be transformed by the
Prüfer decoding algorithm into trees that have no edges in common. As a
consequence the Prüfer code is mainly used as a proof for Cayley’s formula
nowadays.

Dandelion code: (Picciotto, 1999) This Cayley code, which can be seen as
a refinement of the predecessor list representation, possesses the best known
locality bound among the set of Cayley codes. In particular, the Dandelion
Code guarantees that two Cayley strings differing in just 1 character will be
mapped to spanning trees that differ in at most 5 edges independently of n.
Furthermore, as n→∞, the expected number of edges that will change in
a tree if we change a single character of its corresponding Cayley string is 1.
Both properties make the Dandelion code the best candidate to represent
trees in evolutionary algorithms. In Section 4.2.2 we will present an extension
of the Dandelion Code that allows us to represent neighborhoods of Tn.
Finally, the O(n) encoding and decoding algorithms for the Dandelion code
proposed by Paulden and Smith (2006) can be found in the Appendix A.

The main drawback of using Cayley codes as representations of trees is that
it is difficult to establish a direct relationship between the characters of the
Cayley string and the edge (or edges) that these characters represent. Even with
the exceptional locality bound of the Dandelion code, it is often impossible to
predict how a given tree will change if we slightly modify its Cayley string. This
means that there is no workaround to use the O(n) procedure of encoding the
tree, applying the modifications, and then decoding it into a new Cayley string.
Determining how the Cayley string of a given tree changes if we change a single
edge of that tree is equally difficult. Therefore, Cayley codes should only be used
in contexts where using this O(n) encoding-transforming-decoding procedure does
not constitute a cumbersome overhead.

10

2.1. Graph Theory

2.1.2 Some Notable trees

As we have already seen, a tree can be understood as an acyclic set of n− 1 edges
or as a non-crossing set of n − 1 cuts. Both definitions are equivalent but lead
to very different points of view. The former is commonly associated with edge
lengths whereas the latter is usually preferred when we have to deal with cut
capacities.

In this section we will review two well-known families of trees that appear in
many combinatorial optimization problems. Both families are apparently unrelated
but, in fact, there is a clear parallelism in their properties. This parallelism will
be evident again when we study the OCSTP and, thus, it is justified to study
the properties of Minimum Spanning Trees and Min-Cut Trees using a common
framework.

Minimum Spanning Trees:

Let G be an undirected graph with a cost (length) function c : E → R associated
with its edges. A Minimum Spanning Tree (MST) of G is a spanning tree of G
that minimizes

∑
e∈T ce. It may not be unique if several edges have the same

length. An excellent survey of the many polynomial time algorithms that find
MSTs as well as their structural properties can be found in Eisner (1997).

The main properties of the MSTs are:

Cut Property of MSTs: Let T ∗ be an MST with respect to c. Let e∗ be
one of its edges, c∗ its length and {S, S̄} the cut associated with T ∗ \ {e∗}.
Then for any other edge e traversing {S, S̄}, the length of e is such that
c∗ ≤ ce.

Cycle Property of MSTs: Let T ∗ be the MST with respect to c and
ē ∈ E \ T ∗. Let {e1, e2, . . . , ek} be the unique path over T ∗ that connects
the endpoints of ē and c1, c2, . . . , ck their lengths. Then the length of ē is
such that c̄ ≥ ci ∀ i ∈ {1, 2, . . . , k}.

The Cut Property has been fundamental in the development of many algorithms
that find MSTs, whereas the Cycle Property can be used to easily proof that a
given edge does not belong to an MST. A less known property of MSTs that will
be relevant for our study of the OCSTP is:

11

Chapter 2. Mathematical preliminaries

Length Sequence Property of MST: Let T ∗ be the MST with respect
to c and T be any other tree. Let also c∗1 ≤ c∗2 ≤ . . . ≤ c∗n−1 and
c1 ≤ c2 ≤ . . . ≤ cn−1 be the respective sorted sequences of lengths of their
edges. Then, c∗i ≤ ci ∀ i ∈ {1, 2, . . . , n− 1}.

This latter property can be easily derived from Kruskal’s algorithm for con-
structing MST (Kruskal, 1956).

Min-Cut Trees:

Let G be an undirected graph with a capacity function w : E → R associated with
its edges and fij the matrix of maximum ij−flows associated with w. Gomory
and Hu (1961) proved that it always exists a (non-necessarily unique) weighted
tree, called the Min-Cut Tree (MCT) with the following properties:

Cut Property of MCTs: Let T ∗ be an MCT with respect to w. Let e∗

be one of its edges, f∗ its associated maximum flow and {S, S̄} the cut
associated with T ∗ \ {e∗}. Then f∗ = max

e∈δ(S)
(fe).

Cycle Property of MCTs: Let T ∗ be an MCT with respect to w and
ē ∈ E \ T ∗. Let {e1, e2, . . . , ek} be the unique path over T ∗ that connects
the endpoints of e and f1, f2, . . . , fk their associated maximum flows. Then
the maximum flow associated with ē is such that f̄ = min

i∈1...k
(fi).

Both properties are derived from the fact that MCTs are maximum spanning
trees with respect to the matrix fij . However, these properties are often presented
in a slightly different and more useful form:

Equivalent Flow Property of MCTs: For every pair of vertices {i, j} of
a capacitated graph G with capacity function w, the maximum amount of
flow that can be sent between i and j over G and over an MCT of G is the
same.

Equivalent Cut Property of MCTs: For every pair of vertices {i, j} of
a capacitated graph G with capacity function w, and for every T ∗, MCT of
G, there is an edge e∗ in the unique path of T ∗ that connects both vertices
such that the cut associated with T ∗ \ {e∗} is a cut of minimum capacity
separating i and j.

12

2.1. Graph Theory

The Equivalent Flow Property characterizes MCTs as the subgraphs of G with
minimum total capacity that allow the same functionality as G itself. It should
be noted that, in particular, this means that at most n− 1 different values can
be present in the fij matrix and suggests that n − 1 max-flows queries should
suffice to compute the whole matrix (instead of the

(
n
2

)
required by a brute force

approach). This intuition is confirmed by the algorithms presented by Gomory
and Hu (1961) and Gusfield (1990).

The Equivalent Cut Property is stronger than the Equivalent Flow Property
in the sense that there are Equivalent Flow trees that are not Equivalent Cut
trees. This is also the most useful property of MCTs, since it allows us to store all
the minimum cuts G in a compact data structure.

13

Chapter 2. Mathematical preliminaries

2.2 Mixed Integer Linear Programming

Linear Programming is a technique for the optimization of minimization (or
maximization) problems that can be expressed in terms of a linear objective
function and a set of linear inequality constraints.

Generic Linear Programming formulation:

[P] Min cx (2.4a)

s.t. Ax ≥ b (2.4b)

x ≥ 0 (2.4c)

where x is a vector of decision variables and the coefficients matrix A as well
as the independent terms vector b contain real values and have the appropriate
dimensions.

Several algorithms can be used to obtain optimal solutions for such problems,
being the Simplex family one of the most popular and efficient ways to find them
in practice. Geometrically, the feasible region defined by the sets of inequalities
Ax ≥ b and x ≥ 0 can be interpreted as a convex polytope in Rn (with n = |x|).
Any point of this polytope is considered a feasible solution and optimizing a
Linear Programming problem is to find the feasible solution that minimizes the
objective function. If the polytope is non-empty and bounded, the problem of
finding and optimal solutions can be reduced to the problem of finding a vertex
of the polytope that minimizes the objective function and the Primal Simplex
algorithm exploits this fact by finding an arbitrary initial vertex and iteratively
pivoting to better vertices traversing edges of the polytope in a greedy fashion
until a local optimum is reached (which will also be a global optimum since both,
the polytope and the objective function, are linear.
When some or all the variables are required to be integer-valued, we talk about
Mixed Integer Linear Programming (MILP) formulations. MILP problems are
NP-hard in general and more sophisticated algorithms are required to find optimal
solutions. The Branch & Bound algorithm is one of the simplest approaches
and serves as a base for many other MILP algorithms. To solve a MILP problem,
the Branch & Bound algorithms finds first the optimal solution, x∗, of its linear

14

2.2. Mixed Integer Linear Programming

relaxation (i.e. the same problem without the integrality constraints). If all the
variables that must be integer-valued in the original problem are integer-valued
in x∗ the algorithm stops and return x∗. Otherwise, a fractional-valued variable
xi is selected and two new problems are defined by adding, respectively, the
constraints: xi ≥ dx∗i e and xi ≤ bx∗i c. These two problems are solved recursively
and their optimal solutions are compared to obtain the global optimal solution of
the original problem. It must be noted that this enumerative procedure terminates
in a finite (although potentially exponential) number of steps. In order to speed-up
the Branch & Bound algorithm, each time that an integer solution is found, the
value of the best integer solution found so far (the incumbent) is updated. The
incumbent is an upper bound on the value of the global optimal solution and can
be used to prune problems whose linear relaxation value is equal or worse than the
incumbent, avoiding the explicit exploration of large areas of the feasible region.

In our research, we make use of several well-known results related to MILP
formulations, including the capacity of modern software suites to solve continuous
linear models efficiently and to apply a general purpose Branch & Bound algorithm
to solve moderate size instances of integer models. Other advanced implementation
features, such as the dynamic addition of valid inequalities in a Branch & Cut
framework or the possibility to define sophisticated branching rules, are also
fundamental to develop a competitive exact algorithm for the OCSTP. All of these
techniques are considered standard and a comprehensive exposition of them can be
found in advanced textbooks on the subject (such as the excellent Wolsey, 1998).
Below we describe, however, a well-known technique, called Benders decomposition,
given the relevance that it has in the research that we have developed.

2.2.1 Benders Decomposition

Decomposition methods are techniques that allow to break huge linear models
into simpler subproblems that can be solved independently and then linked via
some additional conditions. As such, they often establish a trade-off between the
size and complexity of the problems to be solved and the number of them. The
most usual case consists of transforming a single MILP formulation into a series of
smaller and simpler subproblems that will be solved iteratively until they converge
to an optimal solution to the initial problem.

15

Chapter 2. Mathematical preliminaries

Benders decomposition (Benders, 1962) is one of the most popular of such
decomposition methods and can be summarized as follows:

Let us consider the following generic MILP formulation of a minimization
problem, where x and y are vectors of integer and continuous decision variables,
respectively, and the matrices A, Q and R, as well as the vectors b, c, d, and s,
contain real values and have the appropriate dimensions:

[P] Min cx+ dy (2.5a)

s.t. Qx+Ry ≥ s (2.5b)

Ax ≥ b (2.5c)

x ≥ 0 and integer (2.5d)

y ≥ 0 (2.5e)

Now, we observe that for any given feasible value of the integer variables, x̄,
the restricted subproblem is just a continuous linear program in the y variables
and can be solved efficiently in general.

Primal Subproblem:

[PS(x̄)] Min dy (2.6a)

s.t. Ry ≥ (s−Qx̄) (2.6b)

y ≥ 0 (2.6c)

Furthermore, since PS(x̄) is a continuous linear program, for the values of x̄
which make PS(x̄) feasible, its dual counterpart DS(x̄) exists and the optimum
value for both is the same.

Dual Subproblem:

[DS(x̄)] Max π(s−Qx̄) (2.7a)

s.t. πR ≤ d (2.7b)

π ≥ 0 (2.7c)

16

2.2. Mixed Integer Linear Programming

More specifically, if y∗ is an optimal solution to PS(x̄), then DS(x̄) has an
optimal solution π∗ and dy∗ = π∗(s−Qx̄). In contrast, if PS(x̄) is infeasible, then
DS(x̄) is unbounded and there exists an extreme ray π̃ such that π̃(s−Qx) ≥ 0.

Now we must note that the feasible region of DS(x̄) does not depend upon
the value of x̄. This is a key observation that allows to express P as two nested
optimization problems.

min
x∈

{
Ax≥b
x≥0

}
cx+ max

π∈
{
πR≤d
π≥0

} {π(s−Qx)}

 (2.8)

Let DP = {π ≥ 0 | πR ≤ d} be the polyhedron that all dual subproblems
DS(x̄) have in common, V its set of vertices and R its set of extreme rays. Now
we can use an auxiliary continuous variable z to obtain the Benders reformulation
of P.

Benders reformulation:

[M∞] Min cx+ z (2.9a)

s.t. Ax ≥ b (2.9b)

z ≥ π∗(s−Qx) ∀ π∗ ∈ V (2.9c)

0 ≥ π̃(s−Qx) ∀ π̃ ∈ R (2.9d)

x ≥ 0 and integer (2.9e)

z ≥ 0 (2.9f)

Constraints (2.9c) and (2.9d) are called Benders optimality cuts (BOC)
and Benders feasibility cuts (BFC), respectively. This latter family, however,
can be omitted if the primal subproblem can be proven to be always feasible.

The reader may wonder whether or not it is convenient to project out the set
of continous variables y at expenses of exchanging a polynomial set of constraints
(2.5b) by two potentially exponential sets of constraints such as (2.9c) and (2.9d).
However, it is fundamental to observe that for many formulations only a few
constraints of these families will be needed to find an optimal (x∗, z∗) pair, and
that we can relax them to get a simplified Master Problem that may be easy to
solve despite having integrality constraints.

17

Chapter 2. Mathematical preliminaries

Initial Master Problem:

[M0] Min cx+ z (2.10a)

s.t. Ax ≥ b (2.10b)

x ≥ 0 and integer (2.10c)

z ≥ 0 (2.10d)

Once we obtain an initial solution (x̄0, z̄0) we can evaluate the feasibility of x̄0

to obtain either a Benders optimality cut (if the primal subproblem is feasible),
or a Benders feasibility cut (if the primal subproblem turns out to be infeasible).
In either case we obtain a new constraint, which can be added to M0 to obtain
M1 and a new optimal solution (x̄1, z̄1). This iterative process continues until a
solution appears twice, indicating that the algorithm has converged to the global
optimum solution: (x̄k−1, z̄k−1) = (x̄k, z̄k) = (x∗, z∗).

Master Problem after t iterations:

[Mt] Min cx+ z (2.11a)

s.t. Ax ≥ b (2.11b)

z ≥ π∗(s−Qx) ∀ π∗1 , . . . , π∗k ∈ Vt (2.11c)

0 ≥ π̃(s−Qx) ∀ π̃k+1, . . . , π̃t ∈ Rt (2.11d)

x ≥ 0 and integer (2.11e)

z ≥ 0 (2.11f)

It is important to note that, in each iteration, the value of the objective function
of the Master Problem provides a valid lower bound on the optimum value whereas
evaluating any feasible solution through the primal or dual Subproblems provides
a valid upper bound. This means that a tight optimality gap can be computed in
each iteration and the algorithm may be stopped prematurely if the best solution
found is within an acceptable range of the optimum solution.

It is also use fundamental to note that for many formulations the huge number
of continuous variables y makes impractical to solve the original formulation
directly, which justifies the use of Benders decomposition to project them out.

18

2.2. Mixed Integer Linear Programming

In fact, even the continuos Subproblem may be difficult to solve due to their
size. Fortunately, in many formulations associated with network design problems,
the subproblem decomposes in a set of smaller problems that can be solved
independently (Magnanti and Wong, 1981). This is useful, since the amount
of time and memory required to solve them at once may be several orders of
magnitude bigger.

Another technique that speeds up the process consists in solving just a single
Master Problem, considering (2.9c) and (2.9d) as cutting planes and separating
them dynamically each time an integer solution is found. In fact, if the subproblem
can be solved for fractional values of x, cuts can be generated at each node of the
Branch & Bound tree. This variant, which is just an alternative way to manage the
high number of constraints of the Benders reformulation, is often called Branch &
Cut Benders Decomposition to differentiate it from the standard Iterative Benders
Decomposition.

Finally, when the subproblem shows degeneracy (as it is usual in network
design problems), many different optimality cuts may be generated from the
same Master Problem solution. In those cases, the number of iterations needed to
converge greatly depends on the criterion used to select the cut that will be added
to the Master Problem in each iteration. Several methods have been proposed
in the literature, being Magnanti and Wong (1981) (with the improvements
proposed by Papadakos, 2008) one of the most successful ones. The Magnanti-
Wong method (and the Papadakos variant) consists in solving an alternative
Subproblem that requires the use of core points (points in the relative interior
of the domain defined by the constraints Ax ≥ b). This method ensures that
the family of cuts generated is Pareto-optimal (no cut of the family is dominated
by another one, where z ≥ π∗1(s − Qx) is said to dominate z ≥ π∗2(s − Qx) if
π∗1(s−Qx) ≥ π∗2(s−Qx) with strict inequality for at least one point of the Master
Problem domain) and usually converges to the optimal solution in fewer iterations
than the naïve Benders approach.

19

Chapter 2. Mathematical preliminaries

20

Chapter 3

The OCSTP

3.1 Problem definition

The Optimum Communication Spanning Tree Problem (OCSTP), originally
introduced by Hu (1974), is formally defined as follows. Let G = (V,E) be a
connected undirected graph with n = |V | vertices and c : E → R+ a cost function
over the edges of G. Let R ⊂ V × V be a set of communication requirements
and w : R→ R+ its corresponding weighting function. The solution space of the
OCSTP is the set of all spanning trees of G. For a given spanning tree T of G,

The communication cost over T of a pair of vertices {o, d} is defined as
the cost (length) with respect to c of the (unique) path in T that connects o and
d, multiplied by the communication requirement between the pair: distT (o, d)wod

and the total communication cost of T is the sum of the communication costs
over T of all pairs of vertices:

∑
{o,d}∈R

wod · distT (o, d)

The OCSTP is to find a spanning tree of G of minimum total com-
munication cost. Equivalently, the OCSTP can be defined as the problem of
finding the spanning tree of G that minimizes the weighted average of path lengths
between pairs of vertices (using wod as weights) or the weighted average of flows
traversing its edges (using cij as weights).

21

Chapter 3. The OCSTP

3.1.1 Additional assumptions

In our study of the OCSTP we assume that G = Kn, with V = {1, 2, . . . , n} and
E = {{i, j} | i ∈ V, j ∈ V and i 6= j}. This is an assumption commonly used in
many network design problems because it is natural to evaluate the desirability of
any possible connection in the design phase, even if this connection is not directly
available in the real world (in which case G is completed with additional edges
whose lengths are determined by the shortest path connecting both endpoints).

Regarding the lengths of the edges of G we have already stated that they are
symmetrical (cij = cji), and non-negative (cij ≥ 0) with cij = 0⇔ i = j (if i 6= j

and cij = 0 we can assume that {i, j} will be part of an optimal solution and
transform the instance into an equivalent smaller instance where vertices i and j
are substituted by vertex (ij) with c(ij)k = min{cik, cjk} and w(ij)k = wik + wjk

for all k ∈ V \ {i, j}).

Finally, with respect to the communication requirements we assume that they
are non-negative (wod ≥ 0) and that they induce a connected subgraph of G (i.e.
the graph {V,E′} with E′ = {{o, d} | wod > 0} is connected). Any instance that
does not satisfy this latter assumption can be decomposed in as many independent
(smaller) subproblems as connected components the graph induced by R has.

Although it is not necessary for the theoretical part of our study, it is convenient
to mention that all the values that define a given instance (the number n, the
lengths cij and the weights wod) must be representable in the memory of a
computer. Hence, the assumption that lengths and weights may belong to the
realm of the non-negative real numbers R+ should be strengthened a little bit by
admitting only rational lengths and weights. But once we define this finite set of
values as rational numbers there is no theoretical impediment to multiply them
by the minimum common multiple of their denominators, obtaining an equivalent
instance defined by integer values. However, as the efficiency of some algorithms
may be affected by the magnitude of the values that define a given instance,
this change of units should not be applied blindly and the quantitative results
presented in this dissertation should be interpreted taking into account the range
of values allowed for the instances described here.

22

3.1. Problem definition

3.1.2 Notable particular cases of the OCSTP

There are two well-known particular cases of the OCSTP which have been identified
as polynomially solvable by Hu (1974) and deserve our attention.

Optimum Requirement Spanning Tree Problem (ORSTP): It is the
particular case of the OCSTP where all

(
n
2

)
possible pairs of vertices of G are

connected with an edge of the same length (we can assume without lost of
generality that cij = 1 ∀ i 6= j). If we express the objective function of the
OCSTP as a function of the flow fe traversing the edges of T :

∑
e∈T

cefe,

it is clear that, for the ORSTP, we can factor out the edge lengths ce and ignore
them altogether since they are all equal. But the objective function

∑
e∈T fe is

precisely what MCTs minimize and, thus, all MCTs are optimal solutions to the
ORSTP.

Optimum Distance Spanning Tree Problem (ODSTP): It is the partic-
ular case of the OCSTP where all

(
n
2

)
possible pairs of vertices of G have the

same communication requirements (we can assume without lost of generality that
wod = 1 ∀ o 6= d). For this particular case, Hu (1974) shows that there is an
optimal solution among the n possible star-shaped trees of G, provided that the
following technical condition over the cost function ce is satisfied:

• There exists 0 ≤ λ ≤ n−2
2n−2 such that for all possible triplets {i, j, k} of

different vertices of G the following inequality holds: cij + λcjk ≥ cki.

Note that allowing λ = 1 in the previous condition is equivalent to the triangle
inequality. But, in fact, the above condition implies that λ→ 1/2 from below as
n→∞, which is more restrictive and can be understood intuitively as imposing
that all edges of G are of similar length. On the other hand, if all edge lengths are
equal, the previous condition can be satisfied for all values of n by selecting λ = 0.

23

Chapter 3. The OCSTP

3.1.3 State-of-the-Art

As mentioned, the OCSTP was formally introduced by Hu (1974). In this seminal
paper, Hu identifies the two particular cases described above and proposes polino-
mial time algorithms for them. The OCSTP was soon classified as NP-hard by
Johnson et al. (1978). Moreover, Papadimitriou and Yannakakis (1988) showed
that the problem is MAX SNP-hard, which implies that unless NP = P no
polynomial time approximation scheme exists for the OCSTP. More recently,
Rothlauf (2009b) and also Steitz and Rothlauf (2008, 2009, 2012a) studied the
properties of optimal solutions to the OCSTP and determined that they tend to
include short edges (as MSTs do) and tend to have few vertices of high degree near
the graph center and a large percentage of leaves (as stars do). Other properties,
such as the relative orientation of the edges with respect to the geometric barycen-
ter of the vertices, are equally interesting but can not be applied to instances
whose vertex coordinates are not available.

The OCSTP appears naturally in Network Design Problems where the com-
munication requirements of the network are known in advance and the network
topology must not include cycles for economic reasons (such as minimizing the
construction costs) or for practical reasons (such as avoiding routing decisions).
The OCSTP appears also as a subproblem in the Tree-of-Hubs Location Problem
(Contreras et al., 2010b; Contreras and Fernández, 2012) when the set of hubs
and the node-to-hub allocation pattern are fixed. Another practical application
of the OCSTP is reported in (Wu et al., 2000c; Fischetti et al., 2002) where the
authors use a particular case of the OCSTP to find optimal alignments of genetic
sequences by defining a complete graph whose vertices are genetic sequences and
whose edges are weighted by the value of edit distance between their endpoints
and then finding the spanning tree that minimizes the unweighed sum of path
lengths between pairs of vertices (which is known as the sum-of-pairs objective in
the field of computational biology).

Due to the challenging nature of the OCSTP, even for moderate size instances,
few exact methods have been proposed in the literature. The first one, from Ahuja
and Murty (1987), consists in a Branch & Bound enumerative procedure where
lower bounds are obtained using lower planes. The authors reported competitive
solution times for sparse instances with up to 40 vertices (here sparse means that
the underlying graph G has about 10% of the edges of the complete graph Kn).

24

3.1. Problem definition

Regarding mathematical programming formulations, Fischetti et al. (2002)
proposed a MILP formulation for a particular case of the OCSTP where all
communication requirements are equal. Rothlauf (2007) presented a MILP for-
mulation for the general case of the OCSTP that is able to solve instances with
up to 12 vertices. Two years later, Contreras (2009) presented another integer
programming formulation which, enforced with additional valid inequalities, was
able to produce optimal solutions for instances with up to 25 vertices in reasonable
computational times. Contreras et al. (2010a) proposed a Lagrangian relaxation
which produced good lower and upper bounds for instances with up to 50 vertices.
Fernández et al. (2013c) developed the improved flow-based formulation that we
describe in Section 3.3. Finally, Tilk and Irnich (2015) presented a combined
column-and-row generation algorithm for the OCSTP that produces good results
for sparse instances with up to 30 vertices.

Ahuja and Murty (1987) also proposed a two phase heuristic for the OCSTP,
which first builds a spanning tree and then tries to improve it examining its
1-edge-exchange neighborhood until a local optimum spanning tree is found. The
local search used for the tree-improvement phase remains as one of the most
flexible and practical algorithms to deal with arbitrarily large instances and has
greatly influenced the research on heuristic algorithms for the OCSTP.

Fischer (2007) proposes a variant of the Ahuja-Murty local search that, at each
step, only considers the most promising subset candidate edges to be included in
the tree in order to increase the overall speed of the search when dealing with
bigger instances. Later, Fischer and Merz (2007) use this enhanced local search in
combination with an evolutionary algorithm, to obtain a memetic algorithm that
outperforms other evolutionary approaches (such as Palmer and Kershenbaum,
1994; Li and Bouchebaba, 2000; Soak, 2006) for large escale instances. Wolf
and Merz (2010) describe an alternative exploration strategy for the 1-edge-
exchange neighborhood which, applied to the special case where all communication
requirements are equal, has the same worst case O(n3) cost than the Ahuja-Murty
local search, but which improves its expected case complexity to just O(n2 log n).

Other heuristic approaches to the OCSTP include approximation algorithms
for different restricted cases of the OCSTP. Peleg (1997); Reshef and Peleg (1998);
Wu et al. (2000a,b,c, 2002) propose a O(n5), 1.577-approximation algorithm
for the Product-Requirement Communication Spanning Tree Problem (where

25

Chapter 3. The OCSTP

wij = q(i) · q(j) for a fixed function q : V → R), a O(n3) 2-approximation
algorithm for the Sum-Requirement Communication Spanning Tree Problem
(where wij = q(i) + q(j)) and a O(n3) 1.577-approximation algorithm for the
Minimum Routing Cost Spanning Tree Problem (where all wij = 1). Wu (2002);
Ravelo and Ferreira (2015) treated the p-source particular case, where only
a small subset of vertices sends information through the network. It is often
difficult or impractical to apply algorithms based on particular cases to general
instances of the OCSTP, Sharma (2006), however, proposed two pseudo-polynomial
algorithms based on particular cases that can be applied to the general instances
to obtain solutions that are locally optimal with respect to the 1-edge-exchange
neighborhood.

Finally, several evolutionary algorithms have been proposed in Rothlauf (2006,
2009a,b); Steitz and Rothlauf (2008, 2009, 2012a,b) but they were designed to
study and test the characteristics of optimal solutions to the OCSTP and none of
them outperforms the other heuristic algorithms cited above.

26

3.2. Upper and lower bounds

3.2 Upper and lower bounds

3.2.1 Upper bounds

Being the OCSTP a minimization problem, the evaluation of any feasible so-
lution (i.e. any spanning tree) provides a valid upper bound. Therefore, high
quality heuristic solutions can be very useful algorithmically in enumeration-based
methods, as they can be used to prune many nodes of the search tree.

As mentioned in Section 3.1.2, the OCSTP has two particular cases whose
optimal solution can be found in polynomial time. Since the computational burden
required to find those solutions is negligible, it is always advisable to build them as
a pre-process step and use the best of their communication costs as an initial upper
bound. In particular, we can build the MCT with respect to the communication
requirements matrix w and compute the n star-shaped trees to quickly find a
good heuristic solution that covers both polynomially solvable particular cases
of the OCSTP. The MST with respect to the cost matrix c, which minimizes
the construction cost of the network instead of its operational cost, may also
be of interest and can be built in O(|E|α(|E|, |V |)) steps (where α(m,n) is the
functional inverse of Ackermann’s function).

In addition to these known spanning trees, borrowed from other computational
problems, there are some constructive heuristics specifically developed for the
OCSTP that produce high quality solutions at the expenses of a bigger computa-
tional effort. Such constructive heuristics (along with the previously mentioned
ones) can be further enhanced by means of a local search algorithm. Several of
such heuristics are reviewed in Chapter 4.

3.2.2 Lower bounds

Being the OCSTP a minimization problem, the linear relaxation of any integer
formulation provides a valid lower bound. In an enumerative framework, the
smallest value of all unexplored nodes provides such lower bound at any moment.

Global lower bounds are used to estimate the optimality gap during the
execution and at the end of any exact algorithm, but may also be useful in a
preprocessing step to evaluate the a priori difficulty of a given instance. The
following combinatorial lower bounds can be computed for this purpose.

27

Chapter 3. The OCSTP

The Second-shortest-path lower bounds

It is obvious that the objective function value, z, is lower bounded by the corre-
sponding weighted sum of shortest path lengths:

z ≥
∑
r∈R

wrDG(or, dr) (3.1)

where DG(i, j) is the length of the shortest path of G connecting i and j.
For a euclidean instance, whose cost matrix c satisifies the triangle inequality

cik ≤ cij + cjk∀i, j, k ∈ V , this shortest-path lower bound is equivalent to
assume that all communication requirements are satisfied using a direct connection
but, since the optimal solution only contains n− 1 edges, at least |R| − (n− 1)

communication requirements must be served trough a route that is, at least,
as long as D2

G(ordr), the length of the second-shortest-path. From this fact the
following global second-shortest-path lower bound (Reinelt, 2013) can be
derived:

z ≥ min
T∈Tn

 ∑
{i,j}∈T

wijDG(i, j) +
∑
{i,j}/∈T

wijD2
G(i, j)

 (3.2)

Which can be restated as:

z ≥
∑
{i,j}∈E

wijD2
G(i, j) +MST (c∗) (3.3)

where the MST (c∗) is the cost of a Minimum Spanning Tree with respect to the
cost matrix c∗ with c∗ij = wij(DG(i, j)−D2

G(i, j)).
Note that, since wr ≥ 0 ∀ r ∈ R and D2

G(i, j) ≥ DG(i, j) ∀ {i, j} ∈ E,
c∗ only contains non-positive values and, therefore, MST (c∗) accounts for the
n− 1 edges with the biggest difference between DG(i, j) and D2

G(i, j) that form a
spanning tree (i.e. the ones that provide the biggest savings, and thus the smallest
lower bound, under the condition of defining a spanning tree).

28

3.2. Upper and lower bounds

This lower bound can be particularized to smaller subsets of vertices S ⊂ V :

∑
{i,j}⊂S

zij =
∑
{i,j}⊂S

wijdij ≥ min
T∈T (S)

 ∑
{i,j}∈T

wijDG(i, j) +
∑
{i,j}/∈T

wijD2
G(i, j)

(3.4)

where T (S) is the set of all subtrees spanning the vertices of S.
For small subsets S, (3.4) inequalities can be separated by inspection and

can be included in any linear formulation that uses the zr or the dr variables
to compute communication costs or distances (respectively). As the size of S
increases, however, these cuts become weaker so it is rarely useful to consider
subsets of 5 or more vertices.

The MST-MCT global lower bound

Let TMCT be an MCT with respect to the communication request matrix w,
TMST an MST with respect to the cost matrix c and T ∗ an OCST with respect
to w and c.

Let f1 ≤ f2 ≤ · · · ≤ fn−1 be the equivalent flows that traverse the edges of
TMCT and f∗1 ≤ f∗2 ≤ · · · ≤ f∗n−1 the equivalent flows that traverse the edges of
T ∗, sorted in increasing order.

Let c1 ≤ c2 ≤ · · · ≤ cn−1 be the lengths of the edges of TMST and c∗1 ≤ c∗2 ≤
· · · ≤ c∗n−1 the lengths of the edges of T ∗, sorted in increasing order.

As stated in Section 2.1.2, the lengths sequence of TMST is the lexicographically
smallest length sequence among all spanning trees of G, so, in particular:

ci ≤ c∗i ∀i = 1..n− 1 (3.5)

Equivalently, an MCT minimizes the sum of edge-flows among all equivalent-
flow subgraphs of G that satisfy the communication requirements of w. Moreover,
all edge-flows of TMCT are associated with a minimum cut of G with respect
to w. Thus, we can use the greedy algorithm from Matroid theory (see Lawler,
2001) to find TMCT , which implies that its sorted equivalent flow sequence is also
lexicographically minimal among all equivalent flow sequences of spanning trees
of G.

29

Chapter 3. The OCSTP

Again, in particular:

fi ≤ f∗i ∀i = 1..n− 1 (3.6)

Thus, if Sn−1 denotes the set of all permutations of the indices {1, 2, . . . , n−1},
the following expression provides a valid lower bound for the OCSTP:

z ≥ min
σ∈Sn−1

{
n−1∑
i=1

cifσ(i)

}
(3.7)

In fact, the rearrangement inequality (see Bulajich Manfrino et al., 2009)
shows that the permutation that minimizes such sum of products is, precisely,
σ(i) = n− i. Therefore:

z ≥
n−1∑
i=1

cifn−i (3.8)

is a valid global lower bound for the OCSTP.

Computational experience

In Table 3.1 we report the average optimality gap obtained by the lower bounds
described above. Columns LB1, LB2 and LB3 contain, respectively, the average
gaps obtained with the Shortest-path lower bound (3.1), the Second-shortest-path
lower bound (3.3) and the MST-MCT lower bound (3.8).

We observe that the Shortest-path lower bound and the Second-shortest-path
lower bound obtain similar results. This is due to the fact that the length of
the shortest-paths and the length of the second-shortest-paths are often similar
for these sets of instances. We also observe that the Second-shortest-path lower
bound is consistently tighter than the MST-MCT lower bound in general but
we have found instances where the MST-MCT algorithm provides a better lower
bound. All of these combinatorial lower bounds have been computed in less than
0.1 seconds per instance.

30

3.2. Upper and lower bounds

Set |V| LB1 LB2 LB3
Con 10 11.37% 9.41% 46.91%
Con 20 16.52% 16.18% 58.56%
Con 30 17.68% 17.42% 59.11%
Con 40 19.92% 19.43% 62.6%
Con 50 21.57% 21.35% 67.17%
RE 15 12.5% 11.34% 42.22%
RE 20 16.41% 16.14% 53.77%
RE 25 15.74% 15.33% 53.18%
RE 30 17.74% 17.54% 58.3%
RE 35 18.98% 18.68% 58.61%
RE 40 22.43% 22.2% 61.42%
RE 50 20.34% 20.11% 60.66%
RE 60 21.43% 21.16% 62.51%
RE 70 22.23% 21.93% 62.82%
RE 80 25.59% 25.34% 65.24%
RE 90 25.27% 24.99% 66.02%
RE 100 27.14% 26.83% 66.74%

Table 3.1: Comparison of global lower bounds.

31

Chapter 3. The OCSTP

3.3 MILP formulations for the OCSTP

By using linear models of the OCSTP we can take advantage of the rich the-
ory developed to solve such models (cutting plane methods, lifting procedures,
decomposition methods, etc.) and the wide variety of solvers available nowadays.

To the best of our knowledge, only two Linear integer programming formu-
lations have been used in the literature to solve medium size instances of the
OCSTP. We started our research studying the path-based and flow-based formula-
tions described in Contreras (2009). The path-based formulation for the OCSTP
provides better linear relaxation bounds but uses a large number of variables
and constraints, which limits the size of the instances that we are able to load in
memory using standard hardware. The flow-based formulation can be obtained
by aggregating some subsets of variables of the path based formulation and, as a
consequence, it provides weaker linear relaxation bounds. Although we proposed
several new families of valid cuts that reinforce the flow-based formulation, the
computational results obtained applying them to medium size instances did not
produce noticeable improvements.

After our initial exploration of these formulations, we developed a new linear
formulation based on rooted trees. To the best of our knowledge this is the most
compact formulation for the OCSTP, requiring just O(n2) variables (which is
optimal) and O(n3) constraints. Even after the addition of several families of
valid cuts, the rooted tree formulation remains too weak to solve medium size
instances too and, even if it remains theoretically interesting, we focused again on
the path-based formulation, exploiting techniques that allow us to deal with its
large number of variables and constraints (see Chapter 5).

3.3.1 Variables and objective functions

Modeling Spanning Trees: Since our final objective is to find OCSTs and
not only their communication cost, it is necessary for any given formulation of
the OCSTP to include some binary design variables, xij , which are equal to 1 if
the edge {i, j} is in the solution and 0 otherwise.

Spanning trees appear often in combinatorial optimization problems and can
be modeled in many ways using the xij design variables (see Magnanti and Wolsey,
1995 for an excellent reference on the subject). The most popular spanning tree

32

3.3. MILP formulations for the OCSTP

linear integer programming models are based on these alternative definitions:

1. T is a connected spanning subgraph of G with n− 1 edges.

2. T is an acyclic subgraph of G with n− 1 edges.

The first one leads to:∑
{i,j}∈E

xij = |V | − 1 (3.9a)

∑
{i,j}∈δ(S)

xij ≥ 1 ∀ S (V (3.9b)

xij ∈ {0, 1} ∀ {i, j} ∈ E (3.9c)

whereas the second one is usually translated as:∑
{i,j}∈E

xij = |V | − 1 (3.10a)

∑
{i,j}∈E(S)

xij ≤ |S| − 1 ∀ S (V (3.10b)

xij ∈ {0, 1} ∀ {i, j} ∈ E (3.10c)

Both formulations include a cardinality constraint, ensuring that exactly n− 1

edges are selected. On the other hand, the Cut-Set Inequalities (CSI)(3.9b) require
that all possible cuts are crossed by at least 1 edge whereas the Subtour Elimination
Constraints (SEC) (3.10b) prevent any cycle to be formed (since a cycle through k
vertices requires k edges). Both families of constraints are equivalent if we impose
integrality, but the linear relaxation of the second one is stronger than the linear
relaxation of the first one (as shown in Magnanti and Wolsey, 1995) and SEC are
thus preferred.

Note that SEC is a family of constraints of exponential size on the number of
vertices and, therefore, they should be separated dynamically instead of including
them at once in the initial formulation. Fortunately, there is a well-known O(n4)

time procedure for separating SEC based on the MCT with respect to the capacity
vector xij (see, for example, Korte and Vygen, 2007). If all xij are integer,
there is an even faster O(n2) SEC-separation procedure based on the connected
components induced by xij .

33

Chapter 3. The OCSTP

Objective functions: Since the objective function of the OCSTP cannot be
expressed as a linear function of the design variables xij , it is necessary to include
some additional variables (and constraints) in any formulation in order to be able
to compute the communication cost of the resulting network.

The original definition of the OCSTP provided by Hu (1974) defines the
objective to minimize (z) as a sum of the communication costs (zr) and then
states that each of them can be computed as the product of some (known)
communication requirements (wr) and distances (dr):

z =
∑
r∈R

zr =
∑
r∈R

wrdr (3.11)

Although not impossible (we will see examples for all of them below), it is often
complicated to model the continuous variables z, zr or dr in terms of the design
variables xij . A common approach in network design is to model the directed
paths that will be used to satisfy each communication requirements with the
directed binary variables yrij :∑

r∈R
wrdr =

∑
r∈R

wr
∑
{i,j}∈E

cijy
r
ij (3.12)

The above approach is often unpractical since it makes use of a large amount of
variables (up to O(n4)). A traditional workaround to this problem is to aggregate
the path variables that share a common origin using variables foij that model
flows over the edges of T :

∑
{i,j}∈E

cij
∑
r∈R

wryrij =
∑
{i,j}∈E

cij
∑

o:(o,d)∈R

foij (3.13)

If we further aggregate the foij variables associated with a given edge:

∑
{i,j}∈E

cij
∑

o:(o,d)∈R

foij =
∑
{i,j}∈E

cijfij (3.14)

we obtain an expression of the objective function where the fij variables can be
interpreted as the minimum edge capacity needed to satisfy all communication
requirements and the cij represent the cost of adding a unit of capacity to the
edge {i, j}.

34

3.3. MILP formulations for the OCSTP

Under this latter interpretation the OCSTP becomes a special case of the
Multiterminal Network Synthesis Problem (Gomory and Hu, 1961).

3.3.2 Path-based and flow-based formulations

In addition to the binary design variables xij , the path-based formulation for
the OCSTP uses the continuous variables yrij to determine if arc (i, j) is in the
path used to satisfy the communication requirement r. These paths are modeled
using the design variables as capacities (3.15f) and then imposing the classical
flow conservation constraints ((3.15c)–(3.15e)), as if one unit of flow must be sent
between each origin-destination pair.

Path-based formulation:

Min
∑
r∈R

∑
(i,j)∈A

wrcijy
r
ij (3.15a)

s.t.
∑
{i,j}∈E

xij = |V | − 1 (3.15b)

∑
i:(i,dr)∈A

yridr = 1 ∀ r ∈ R (3.15c)

∑
i:(i,j)∈A

yrij −
∑

k:(j,k)∈A

yrjk = 0 ∀ r ∈ R ∀ j ∈ V \ {or, dr} (3.15d)

−
∑

k:(or,k)∈A

yrork = −1 ∀ r ∈ R (3.15e)

yrij + yrji ≤ xij ∀ r ∈ R ∀ {i, j} ∈ E (3.15f)

xij ∈ {0, 1} ∀ {i, j} ∈ E (3.15g)

yrij ≥ 0 ∀ r ∈ R ∀ (i, j) ∈ A (3.15h)

Note that, as long as the communication requirements induce a connected
subgraph, it is not necessary to include CSI or SEC, since the connectivity
requirements are imposed through the constraints that require that the underlying
network is able to send a unit of flow between such pairs of vertices. Note also
that it is not necessary to impose the integrality on the yrij variables since the
design variables xij necessarily form a spanning tree and in such kind of network
there is a unique path connecting each pair of vertices.

35

Chapter 3. The OCSTP

Among the previously known linear formulations for the OCSTP, the path-
based formulation (3.15) provides the tightest linear relaxation bounds. However,
the large number of variables and constraints used by this formulation (up to
O(n4)) precludes its direct application even for moderate size instances when used
with a commercial solver. A straightforward solution to this problem consists in
aggregating the yodij that share a common origin, which leads to the flow-based
formulation.

Indeed, flows associated with different communication requirements should not
cancel each other out and, thus, it is necessary to represent them with different
variables. Nevertheless, it is not necessary to define a set of flow variables for
each communication requirement, since flows with the same origin circulating on
a spanning tree cannot traverse a given edge in opposite directions, given that
such networks are acyclic. The flow-based formulation presented above makes
use of this property to reduce the number of variables from O(n4) to O(n3) by
aggregating them by origins.

Flow-based Formulation:

Min
∑
o∈V

∑
(i,j)∈A

cijf
o
ij (3.16a)

s.t.
∑
{i,j}∈E

xij = |V | − 1 (3.16b)

∑
i:(i,o)∈A

foio = 0 ∀ o ∈ V (3.16c)

∑
i:(i,j)∈A

foij −
∑

k:(j,k)∈A

fojk = woj ∀ o ∈ V ∀ j ∈ V \ {o} (3.16d)

∑
k:(o,k)∈A

fook =
∑

d:(o,d)∈R

wod ∀ o ∈ V (3.16e)

foij + foji ≤

 ∑
d:(o,d)∈R

wod

xij ∀ o ∈ V ∀ {i, j} ∈ E (3.16f)

xij ∈ {0, 1} ∀ {i, j} ∈ E (3.16g)

foij ≥ 0 ∀ o ∈ V ∀ (i, j) ∈ A (3.16h)

36

3.3. MILP formulations for the OCSTP

Now, in addition to the design variables xij , we use the foij(=
∑
d y

od
ij) variables

that represent the sum of flows, with origin at o that traverse the arc (i, j).
We should expect, however, weaker linear relaxation bounds from such aggre-

gated formulation, which translates into bigger search trees when an enumeration-
based method is applied to this formulation (thus limiting its effective use to
solving medium size instances).

3.3.3 The Rooted tree formulation

Traditional linear integer programming formulations for the OCSTP are based on
the yrij path variables or the foij flow variables and, thus, require a large amount of
working memory. In contrast, the new linear formulation presented below makes
use of O(n2) variables and O(n3) constraints. To the best of our knowledge, this
is the most compact linear formulation for the OCSTP.

Rooted tree formulation:

Min
∑
r∈R

wrdr (3.17a)

s.t.
∑

i:(i,j)∈A

xij = 1− δoj ∀ j ∈ V (3.17b)

xij ≤ pij ∀ (i, j) ∈ A (3.17c)

pij + pji ≤ 1 ∀ (i, j) ∈ A (3.17d)

pij + xjk ≤ 1 + pik ∀ {i, j, k} ∈
(V
3

)
(3.17e)

pik + xjk ≤ 1 + pij ∀ {i, j, k} ∈
(V
3

)
(3.17f)

dij ≥ dik + ckj −M(2−xkj−pik) ∀ {i, j, k} ∈
(V
3

)
(3.17g)

dij ≥ dik + ckj −M(1−xkj+pij+pji) ∀ {i, j, k} ∈
(V
3

)
(3.17h)

xij ∈ {0, 1} ∀ (i, j) ∈ A (3.17i)

pij ∈ {0, 1} ∀ (i, j) ∈ A (3.17j)

dij ≥ cij(xij + xji) ∀ {i, j} ∈ E (3.17k)

where M is an upper bound on the length of the longest path of G, δoj = 1 if
j = o (and 0 otherwise) and {i, j, k} ∈

(
V
3

)
⇔ i, j, k ∈ V and i 6= j 6= k 6= i.

37

Chapter 3. The OCSTP

In addition to the binary design variables xij , this formulation uses the
precedence auxiliary variables pij , that indicate whether or not there is a directed
path from i to j and can be interpreted as a partial order on the vertices of V .
The correctness of this formulation, however, is not obvious, so below we explain
how the (3.17b)-(3.17f) constraints work coordinately to model directed spanning
trees.

Constraints (3.17b) control the indegree of every vertex in the final solution
and imply that only n − 1 x variables can be active simultaneously. Thus, if
we are able to prevent directed or undirected cycles in the x variables, the only
compatible topology will be a directed tree rooted at vertex o. Indeed, constraints
(3.17b) imply that no undirected cycle is possible, since every undirected cycle
has, at least, one vertex with indegree strictly greater than 1.

To avoid directed cycles, we need the auxiliary variables p, which determine if
there is a directed path between every pair of vertices. They are related to x by
(3.17c) as well as by the directed path constraints (3.17e), ensuring that, when
there is a directed path of active variables x connecting i and j, the variable pij
is also activated. Now, we can prevent all directed cycles on the x variables using
the (3.17d) constraints (by the contrapositive of the previous argument).

i

j

k

i

j

k

i

j

k

Figure 3.1: Graphic representation of (3.17e) and (3.17f) (left), (3.17g) (center)
and (3.17h) (right).

Finally, to avoid false activation of the p variables (i.e. having pij = 1 when
there is no directed path from i to j) we introduce the set of constraints (3.17f).
They prevent the incorrect activation of a pij variable because we can always find
a common ancestor k of both, i and j, by following the corresponding directed
paths backwards, and then find a violated constraint of type (3.17d). Note that
it is not necessary to avoid the false activation of the x variables because only a
fixed number of them, n− 1, can be active simultaneously.

38

3.3. MILP formulations for the OCSTP

Once the rooted tree topology is correctly modeled by the xij and pij variables,
and taking into account that the objective (3.17a) is to minimize a non-negative
sum of dij variables, we only need to lower bound the distances dij between all
pairs of vertices so they take their correct values.

With (3.17g) we follow directed paths of xij variables forward (as in (3.17e))
to increase the distance between a pair of comparable vertices (when there is a
directed path between them) and with (3.17h) we follow directed paths of xij
variables backwards (as in (3.17f)) in order to increase the distance between a
pair of incomparable vertices (when there is not a directed path between them).

Several improvements can be applied to the above formulation. First, we
can relax the integrality constraints (3.17j) since (3.17b)–(3.17f) and (3.17i) are
enough to guarantee the integrality of the pij variables. Indeed, when there is a
directed path from i to j, the combination of (3.17c), (3.17e) and (3.17i) raises
the value of pij to 1. Conversely, if the xij do not form a directed path from i to
j, the combination of (3.17d), (3.17f) and (3.17i) imposes that pij = 0.

Going further, we can substitute families (3.17e) and (3.17f) by a single new
family of constraints of the form:

pij + pjk + xkj ≤ 1 + pik (3.18)

Indeed, constraints (3.17e) ensure that if pij = 1 and xjk = 1, then pik = 1.
With (3.18) we ensure that if pij = 1 and pjk = 1 then pik = 1, which is stronger,
and can be particularized using (3.17c). Likewise, constraints (3.17f) ensure that
if pij = 1 and xkj = 1, then pik = 1. Again, with (3.18) we ensure the same
condition, this time without the help of (3.17c).

i

j

k

i

j

k

Figure 3.2: Graphic representation of (3.18) (left) and (3.19) (right).

39

Chapter 3. The OCSTP

Families (3.17g) and (3.17h) can also be replaced by a new family of tighter
constraints of the form:

dij ≥ dik + ckj −M(1−xkj−pji) (3.19)

In this case, (3.17g) ensure that if pik = 1 and xkj = 1, then dij ≥ dik + ckj .
With (3.19) we ensure that if xkj = 1 and pji = 0 then dij ≥ dik + ckj , which
is more general, and can be particularized using that if pik = 1 and xkj = 1,
then pji = 0. Similarly, (3.17h) ensure that if pij = pji = 0 and xkj = 1, then
dij ≥ dik+ckj whereas (3.19) disregards the value uf pij , providing a more general
and stronger cut.

Finally, we can substitute (3.17k) by the stronger:

dij ≥ cij(xij + xji) + c2ij(1− xij − xji) (3.20)

where c2ij is the length of the second-shortest-path of G connecting i and j.
Applying all these improvements to (3.21), we obtain the following linear

formulation for the OCSTP:

Rooted tree formulation 2:

Min
∑
r∈R

wrdr (3.21a)

s.t.
∑

i:(i,j)∈A

xij = 1− δ1
j ∀ j ∈ V (3.21b)

xij ≤ pij ∀ (i, j) ∈ A (3.21c)

pij + pji ≤ 1 ∀ (i, j) ∈ A (3.21d)

pij + pjk + xkj ≤ 1 + pik ∀ {i, j, k} ∈
(V
3

)
(3.21e)

dij ≥ dik + ckj −M(1−xkj−pji) ∀ {i, j, k} ∈
(V
3

)
(3.21f)

xij ∈ {0, 1} ∀ (i, j) ∈ A (3.21g)

pij ≥ 0 ∀ (i, j) ∈ A (3.21h)

dij ≥ cij(xij+xji) + c2ij(1−xij−xji) ∀ {i, j} ∈ E (3.21i)

The most obvious drawback of formulation (3.21) is the use of big values of
M , so weak lower bounds are obtained by its linear relaxation. This latter fact

40

3.3. MILP formulations for the OCSTP

makes (3.21) impractical for solving general instances of the OCSTP. However,
the formulation remains interesting from a theoretical point of view, because it is
closely related to a well-known formulation of the Linear Ordering Problem (if
we substitute pij + pji ≤ 1 by pij + pji = 1 above we obtain a valid formulation
for the LOP (Martí and Reinelt, 2011)), thus, advances in the study of the LOP
polytope may lead to the discovery of valid inequalities for (3.21).

3.3.4 Computational comparison of linear formulations

We can obtain optimal solutions to small OCSTP instances using modern MILP
software, such as CPLEX or Xpress, as a black-box. However, in order to solve
larger instances it is necessary to develop more sophisticated algorithms and
stronger formulations. In Chapter 5 we propose a Benders reformulation of the
path-based formulation described above, as well as a Branch & Cut algorithm
which is able to solve medium size instances. Following the advice of Magnanti
and Wong (1981), we choose the path-based formulation as a base for our Benders
reformulation because it has a suitable structure for decomposition methods and
provides the best linear relaxation bounds. In this section we compare the linear
relaxation bounds of the linear formulations described above.

We used 20 OCSTP instances from Contreras et al. (2010a), ranging from
10 to 50 vertices each, as a test bed for our computational experiments (see
Appendix B for a detailed description). The linear relaxation of the path-based
formulation (3.15), the flow-based formulation (3.16), and the two rooted-tree
formulations (3.17) and (3.21), have been implemented and CPLEX has been
used as a black-box solver. Then the optimal solution has been compared with the
best known solutions for these instances (see Section 5.3) to obtain the optimality
gaps (gap =

zupp−zlwr

zupp
) summarized in Table 3.2.

From the table we can clearly see that the path-based formulation provides
better linear relaxation bounds whereas the other formulations are roughly equiva-
lent. We have developed, however, several families of valid inequalities that might
improve the flow-based formulation.

Let mij be the matrix of minimum cuts separating i and j in G with respect to
the capacity vector wij . The mij matrix can be computed from the corresponding
MCT in polynomial time as a pre-processing step. By definition, if the design
variable xij appears in the optimal solution T ∗, it is evident that T ∗ \ {{i, j}}

41

Chapter 3. The OCSTP

|V| P-LP F-LP R1-LP R2-LP
10 0.25% 11.29% 11.37% 9.44%
20 2.16% 16.50% 16.52% 9.68%
30 2.41% 17.66% 17.68% 13.45%
40 4.89% 19.92% 19.92% 16.41%
50 6.84% 21.57% 21.57% 19.26%

Table 3.2: Average optimality gaps for the linear relaxation of (3.15), (3.16), (3.17)
and (3.21) applied to instances from Contreras et al. (2010a).

has two connected components that must use the edge {i, j} to satisfy their
communication requirements. Therefore, the amount of flow that traverses {i, j}
must be at least mij , since this is a lower bound on all the cuts that separate i
and j.

mijxij ≤
∑

o∈V \{j}

foij +
∑

o∈V \{i}

foji {i, j} ∈ E. (3.22)

We also introduce a new set of yoij auxiliary design variables representing the
discrete version of the foij flow variables (where yoij = 1 if foij > 0). Thus, for a
given vertex o, the set of yoij variables represent a directed subtree rooted at that
vertex. We go, however, a little bit further and impose that these directed trees
should span the whole graph (even if some communication requirements are 0 for
a given (o, d) pair).

We need the following constraints to correctly model the directed spanning
trees represented by yoij :

yoij + yoji = xij ∀ {i, j} ∈ E, ∀ o ∈ V , (3.23a)

foij ≤

 ∑
d:(o,d)∈R

wod

 yoij ∀ (i, j) ∈ A, ∀ o ∈ V , (3.23b)

yoij ∈ {0, 1} ∀ (i, j) ∈ A, ∀ o ∈ V , (3.23c)

42

3.3. MILP formulations for the OCSTP

but we can also add these other simple families to further constraint the range of
values that the yoij variables can adopt:

∑
i:(i,j)∈A

yoij = 1 ∀ o, j ∈ V, o 6= j, (3.24a)

∑
i:(i,o)∈A

yoio = 0 ∀ o ∈ V , (3.24b)

∑
j:(o,j)∈A

yooj ≥ 1 ∀ o ∈ V . (3.24c)

Now, we can use these directed trees to restate constraints (3.22) as:

λoijy
o
ij + λojiy

o
ji ≤

∑
u∈V \{j}

fuij +
∑

u∈V \{i}

fuji {i, j} ∈ E, ∀o ∈ V, (3.25)

where λoij = max{moj ,mij} and λoji = max{moi,mji}.
We can also lower-bound the flow that must traverse each arc:

wojyoij ≤ foij ∀{i, j} ∈ E, ∀o ∈ V. (3.26)

and take into account nearby arcs to improve further these lower bounds:

(wok+wol)yokl ≤
∑

i∈V \{k}

foik −
∑

j∈V \{k,l}

fokj ∀ o, k, l ∈
(V
3

)
, (3.27a)

(wok+wol+woh)(yokl + yolh−1) ≤
∑

i∈V \{k}

foik −
∑

j∈V \{k,l,h}

fokj ∀ o, k, l, h ∈
(V
4

)
, (3.27b)

(wok+wol+wog)(yokl + yokg−1) ≤
∑

i∈V \{k}

foik −
∑

j∈V \{k,l,g}

fokj ∀ o, k, l, g ∈
(V
4

)
, (3.27c)

where
(
V
κ

)
is the set of all permutations of κ different elements of V .

Note, however, that (3.27b) and (3.27c) are O(n4) families of constraints, and,
therefore, they must be separated dynamically if this formulation is used on
medium-to-large size instances.

43

Chapter 3. The OCSTP

i

j

k l

g

h

Figure 3.3: Graphic representation of (3.27a), (3.27b) and (3.27c).

All of these families of valid inequalities improve the flow-based formulation
by taking into account the sense of the flow and not only its volume. However,
the linear relaxation of the flow-based formulation still provides weaker lower
bounds than the linear relaxation of the path-based formulation. These results
are summarized in Table 3.3, where the F2-LP column contains the results
obtained by the flow-based formulation (3.16) extended with the (3.22)-(3.27a)
valid inequalities, whereas F3-LP also includes the (3.27b) and (3.27c) O(n4)

families.

|V| P-LP F1-LP F2-LP F3-LP R1-LP R2-LP
10 0.25% 11.29% 1.13% 0.79% 11.37% 9.44%
20 2.16% 16.50% 7.82% 6.27% 16.52% 9.68%
30 2.41% 17.66% 8.07% 6.30% 17.68% 13.45%
40 4.89% 19.92% 11.01% 9.63% 19.92% 16.41%
50 6.84% 21.57% 13.01% 10.93% 21.57% 19.26%

Table 3.3: Average optimality gaps for the linear relaxation of (3.15), (3.16), (3.16)
& (3.22)-(3.27a), (3.16) & (3.22)-(3.27c), (3.17) and (3.21) applied to instances
from Contreras et al. (2010a).

44

Chapter 4

Heuristic algorithms for the
OCSTP

The NP-Hard nature of the OCSTP and, more remarkably, the actual difficulty
of finding optimal solutions to OCSTP instances in practice, justify the need of
developing good heuristic algorithms that are able to provide high quality solutions
when the size of the instances exceeds the capacity of the exact algorithms. In
addition, near-to-optimum solutions can provide useful information to exact
algorithms, such as tight lower bounds that allow pruning significant parts of the
solution space in an enumerative framework, reducing the computational effort
needed to make the algorithm converge to the optimum solution.

In Section 4.1 we propose a novel Divide & Conquer constructive heuristic
specially designed for the OCSTP.

Section 4.2 is devoted to improvement heuristic algorithms. We start with
a review of the 1-edge-exchange neighborhood and the associated Ahuja-Murty
Local Search. Next we show that the efficient technique proposed by Ahuja and
Murty can be extended to a significant subset of the 2-edge-exchange neighborhood
without altering the asymptotical cost of the algorithm. Finally, we introduce
a new family of spanning tree neighborhoods associated with the Dandelion
Code and a suitable exploration strategy for the Partially Ordered Neighborhood
Structure defined by the Dandelion Neighborhoods.

45

Chapter 4. Heuristic algorithms

4.1 Constructive heuristics

Since all spanning trees are feasible solutions of the OCSTP, any algorithm
returning an element of Tn may be considered a constructive heuristic for the
OCSTP. In fact, finding spanning trees with a low communication cost is not
difficult for most instances of the OCSTP and striving for trees that minimize
length (Minimum Spanning Trees) or capacity (Min-Cut Trees) may be enough for
many applications. It is, however, fundamental to understand that most of these
simple heuristics may fail to find an optimal solution for a wide range of instances
and therefore it is important to design constructive heuristics specifically tailored
for the OCSTP.

The following instance:

dist 1 2 3 4 5

1 0 1 2 2 2

2 1 0 1 2 2

3 2 1 0 1 2

4 2 2 1 0 1

5 2 2 2 1 0

reqs 1 2 3 4 5

1 0 1 20 20 1

2 0 0 1 1 20

3 0 0 0 1 20

4 0 0 0 0 1

5 0 0 0 0 0

illustrates how different optimal solutions to the MST and the OCSTP can be for
a given distance matrix. As can be seen in Figure 4.1, the optimal MST and the
OCSTP do not share any edge, which does not mean that their communication
cost differ greatly. For this particular instance the communication cost of the MST
is 210 whereas the communication cost of the OCST is 192.

1

2

3

4

5

Figure 4.1: OCST (dashed lines) versus MST (bold lines).

46

4.1. Constructive heuristics

In this section we propose a new constructive heuristic specially designed
for the OCSTP. Before describing our Divide & Conquer heuristic, however, we
are going to review the well-known Ahuja-Murty constructive heuristic, which
introduces some basic notions that will clarify our approach.

Both heuristics exploit the same properties of spanning trees but each one
does it in a different way. While the Ahuja-Murty constructive heuristic builds
a tree iteratively as a single connected component by fixing one edge at a time,
our Divide & Conquer heuristic splits the vertex set into n single-vertex subsets
and then merges two of them at a time until a single connected component is
obtained.

4.1.1 The Ahuja-Murty Constructive Heuristic

The constructive heuristic presented in Ahuja and Murty (1987) builds a tree
one edge at a time, always maintaining a single connected component. At each
iteration, the heuristic chooses a vertex not yet in the tree and connects it to the
current subtree using the locally optimal edge for this connection.

The algorithm starts by selecting an arbitrary vertex i, marking it as visited
(S = {i}), and by defining the initial partial solution as T = {∅}. Once initialized,
the algorithm performs n− 1 iterations, selecting a new edge {i, j}, with i ∈ S
and j /∈ S, and updating both, the set of visited vertices (S = S ∪ {j}) and the
current partial solution (T = T ∪ {i, j}).

S

i j

a

b

k

l

dTia

dTib

dGjk

dGjl

cij

Figure 4.2: T grows as a single connected component, one edge at each iteration.

47

Chapter 4. Heuristic algorithms

The criterion suggested by Ahuja-Murty is to select the edge {i, j} that
minimizes:

ξi + cijΩ + ξ̃j (4.1)

where Ω is the total amount of communication that must traverse the cut {S, V \S},
ξi is the cost of moving Ω communication to the exiting vertex i and ξ̃j is an
heuristic estimation of the same value for vertex j (since ξj can not be computed
exactly until the rest of the tree has been built). These quantities can be computed
efficiently in terms of ωi’s and ωj ’s.

Ω =
∑
i∈S

ωi (4.2)

with

ωi =
∑
j /∈S

wij ∀ i ∈ S

ωj =
∑
i∈S

wij ∀ j /∈ S,
(4.3)

and

ξi =
∑
k∈S

ωkd
T
ik ∀ i ∈ S

ξ̃j =
∑
k/∈S

ωkd
G
kj ∀ j /∈ S,

(4.4)

where we can compute the exact value of ξi since we already know dTik, the length
of the unique path of T connecting vertices of S, but we can only compute the
approximate value of ξ̃j using dGkj , the length of the shortest path of G connecting
vertices of V \ S.

Note that when vertex j enters S, we are making the assumption that ξ̃j is a
good approximation of the communication cost of moving Ω to j before crossing
the edge {i, j} and spend an additional ξi communication cost to arrive to its
destination. When the set S contains few vertices, this approximation may be
misleading, since many vertices are on V \ S and the final distances over T will
greatly differ from the shortest path distances used to compute ξ̃j .

However, Ahuja-Murty constructive heuristic still remains useful for the wide

48

4.1. Constructive heuristics

family of instances where the lengths of shortest paths of G constitute a good indi-
cator of the lengths of the (unique) paths connecting the vertices of T . Moreover,
the computational effort required to build this feasible solution (O(n3) operations)
is acceptable, specially for those cases where no improvement heuristic will be
applied a posteriori.

4.1.2 The Divide & Conquer Heuristic

Below we present a new constructive heuristic for the OCST. It is based on the
Divide & Conquer paradigm and can be defined recursively as follows: break the
vertex set V into two subsets (V1, V2), apply the Divide & Conquer heuristic to
both subsets to obtain two subtrees (T1, T2) spanning them and finally select a
locally optimal edge {i, j}, with i ∈ T1 and j ∈ T2, and return T = T1∪{i, j}∪T2.

V11 V12 V21 V22

V1 V2 T1 T2

V T

Figure 4.3: Recursive Divide & Conquer heuristic.

Both, the criterion used to split V and the criterion used to merge T1 and
T2, influence the behavior of this heuristic. In particular, we must note that the
splitting criterion does not fully determine the shape of the final T , since splitting
Vk determines a cut on the vertices of Vk but not how Tk will be connected to
the rest of the graph.

49

Chapter 4. Heuristic algorithms

There is an alternative bottom up version of this Divide & Conquer heuristic,
where we initialize the algorithm with n nodes, each one containing a single vertex
of G, and then apply n− 1 merging operations to obtain T . In this alternative
version of the algorithm, the role of the splitting criterion is played by the criterion
used to select the nodes that are going to be merged in each iteration. Otherwise,
both alternatives can be considered equivalent. Through this new interpretation,
we can clearly see that the Divide & Conquer heuristic is analogue to the Kruskal’s
MST algorithm while the Ahuja-Murty constructive heuristic is analogue to Prim’s
MST algorithm.

Since the internal structure of T1 and T2 is already known at the moment of
selecting {i, j}, we can compute the exact communication cost of routing, through
{i, j}, the communications between vertices of T1 and vertices of T2:

ξi + cijΩ + ξj (4.5)

Note, however, that the values of ξi do not take into account the communication
cost of vertices outside V1 ∪ V2, since they are now defined as:

ξi =
∑
k∈V1

ωkd
T1

ik ∀ i ∈ V1

ξj =
∑
k∈V2

ωkd
T2

kj ∀ j ∈ V2,
(4.6)

with

ωi =
∑
j∈V2

wij ∀ i ∈ V1

ωj =
∑
i∈V1

wij ∀ j /∈ V2,
(4.7)

and

Ω =
∑
i∈V1

ωi. (4.8)

In contrast to the Ahuja-Murty algorithm, the Divide & Conquer heuristic
does not try to approximate the communication cost for sending information to
vertices outside V1 ∪ V2. It rather disregards these quantities, finding a (locally)
optimum merge of T1 and T2 and relying on the capacity of future merges to

50

4.1. Constructive heuristics

efficiently connect T1 ∪ T2 with the rest of the graph. Therefore, it is fundamental
to ensure that these communication costs can be safely ignored through the use
of a suitable splitting criterion. One natural way to do so is to split V into V1

and V2 using a minimum cut of V with respect to the capacity vector defined by
the communication requirements wr. Alternatively, if we are using the bottom-up
version of the algorithm, we can select to merge Ti and Tj if, among all possible
{i, j} pairs, they maximize their information exchange:

∑
o∈Ti

∑
d∈Tj

wod. (4.9)

This latter version of the algorithm can be implemented easily using a simple
union-find data structure that is updated in time O(n) after each merge operation.
On the other hand, each of the n− 1 merge operations can be performed in time
O(|V1| · |V2|) but it is well known that(

n

2

)
=

(
k

2

)
+ k(n− k) +

(
n− k

2

)
∀0 ≤ k ≤ n, (4.10)

which means that, as long as the quadratic merging time dominates the time
required to select the subtrees to be merged, the total time required to perform
the whole bottom-up Divide & Conquer constructive heuristic is O(n2). Note that
this is faster than the Ahuja-Murty constructive heuristic.

Finally, after each merge operation, a local search procedure (such as the
Ahuja-Murty Local Search described in Section 4.2.1) can be applied to the
resulting subtree to correct previous mistakes before they can influence future
merges. The objective of these intermediate self-correcting steps is to increase
the chances of escaping from local optimum trees that will otherwise be obtained
if the improving heuristic is applied only at the end of the Divide & Conquer
heuristic.

51

Chapter 4. Heuristic algorithms

4.2 Improvement heuristics

The large size of the OCSTP solution space represents a real challenge for any
improvement heuristic. Even the relatively small 1-edge-exchange neighborhood of
a single tree has O(n3) elements, consequently, most deterministic improvement
heuristics for the OCSTP require at least O(n3) operations per improvement.
In this section we present an extension of the well-known Ahuja-Murty Local
Search that meets this O(n3) limit while exploring part of the 2-edge-exchange
neighborhood. We will also propose a completely new family of spanning tree
neighborhoods (each of them containing between O(n2) and O(nn−2) elements)
along with a suitable exploration strategy that exploits their structural features.

4.2.1 The Ahuja-Murty Local Search

Evaluating the communication cost of a single tree T requires time O(n2), in
general, since it is necessary to compute |R| distances over T , and R induces a
connected subgraph on G (i.e. |R| ≥ n− 1 and each distance may require up to n
operations to be computed).

The number of trees that differ in just 1 edge from a given tree T (the
1-edge-exchange neighborhood of T) depends on the structure of T . A star
has a 1-exchange-neighborhood of size O(n2) whereas a path has a 1-exchange-
neighborhood of size O(n3). Both are extreme cases but the expected size of such
neighborhoods is O(n3) in general.

Taking these two facts into account, it is evident that a naïve algorithm may
require O(n5) operations (in the worst case) to evaluate the elements of the
1-edge-exchange neighborhood of an arbitrary tree. However, Ahuja and Murty
(1987) presented a really clever algorithm that exploits the natural structure of
the problem to explore such neighborhoods in just O(n3) operations, evaluating
each tree in constant amortized time.

The Ahuja-Murty local search starts by pre-computing dij , the distance matrix
of T and z =

∑
r w

rdordr , the communication cost of T , in O(n2) total time.
After this global pre-processing step, the algorithm iterates over the n− 1 edges
of T and for each of them it applies the following process: Let e be the selected
edge of T and (S, S̄) the cut associated with T \ {e}. For every i ∈ V , the amount
of communication that vertex i needs to send to the vertices of the other side of

52

4.2. Improvement heuristics

the cut is computed:

ωei =

∑
j∈S̄

wij if i ∈ S∑
j∈S

wij if i ∈ S̄.
(4.11)

Then the total amount of communication that must traverse the cut is:

Ωe =
∑
i∈S

ωei , (4.12)

and the total cost of moving ωej to vertex i for all j in the i’s side of the cut:

ξei =

∑
j∈S

ωejdij if i ∈ S∑
j∈S̄

ωejdij if i ∈ S̄.
(4.13)

Determining the elements of S and S̄ and computing all these associated
values requires O(n2) operations and must be considered a pre-processing step
associated with edge e = {e1, e2}. Now for every i ∈ S and for every j ∈ S̄ we can
evaluate the communication cost of (T \ {e}) ∪ {{i, j}} in constant time as:

z −
(
ξee1 + Ωe · de + ξee2

)
+
(
ξei + Ωe · dij + ξej

)
. (4.14)

Since the global pre-processing phase requires O(n2) operations, each of the
n − 1 edge-pre-processing phases requires O(n2) steps, and evaluating each of
the O(n3) neighbors of T requires O(1) operations, we can explore the whole
1-edge-exchange neighborhood of T in O(n3) time.

The above exploration strategy can be used to implement a simple best-
improvement local search that examines the whole 1-edge-exchange neighborhood
of T and selects the best neighbor iteratively until a local minimum is reached.
Alternatively, the exploration of each neighborhood can be stopped as soon as it
finds a tree with smaller communication cost. For such first-improvement local
search, suitable strategies (such as selecting the edges by decreasing order of
length or using a FIFO queue to ensure that the most recently added edge is
examined in last term) may reduce the amount of time needed to find a tree with
smaller communication cost. Nevertheless, in order to verify that a given tree is,

53

Chapter 4. Heuristic algorithms

in fact, a local optimum, it may be necessary to perform a final O(n3) search.
The Ahuja-Murty local search (AMLS) remains as one of the most effective

local search algorithms for the OCSTP, combining simplicity, flexibility and good
performance in practice. As a consequence, many heuristic algorithms are based
on the AMLS and several improvements to the basic scheme had been proposed
in the literature.

Wolf and Merz (2010) describe an efficient exploration of the 1-edge-exchange
neighborhood, for the special case where all communication requirements are equal,
with the same worst case cost as the AMLS, but which improves its expected
case cost to O(n2 log n). In Fischer and Merz (2007) the AMLS is used to boost
a memetic algorithm for the OCSTP. Fischer (2007) proposes a variant of the
AMLS that only computes the ξei values for a subset of the vertices of S and
S̄, reducing the amount candidate edges to be included in the tree in order to
increase the overall speed of the search.

Extending the AMLS to the 2-edge-exchange neighborhood

The AMLS 1-edge-exchange can be extended to a restricted (but nonetheless huge)
section of the 2-edge-exchange neighborhood at the expenses of pre-computing
and storing some additional auxiliary data.

We start as before by pre-computing dij , the distances over T between each
pair of vertices, and z, the communication cost z of T . Then, for each edge e of T ,
we pre-compute and store the cut {Se, S̄e} associated with T \{e}. This operation
requires time O(n2) and O(n2) memory. Finally, we pre-compute and store ωei ,
Ωe and ξei as defined before. This operation uses time O(n3) and O(n2) memory.

Now, if e and f are two edges of T , with {A,B ∪ C} being the cut associated
with T \ {e} and {A ∪ B,C} the cut associated with T \ {f}, we can define
Ωef = Ωfe as the amount of communication between A and C:

Ωef =
∑
a∈A

∑
c∈C

wac. (4.15)

Note that Ωef accounts for the amount of communication that traverses both,
the edge e and the edge f . In fact, this definition is perfectly compatible with
Ωee = Ωe.

54

4.2. Improvement heuristics

A B C

a b c

e f

i j

k l

Figure 4.4: Removing 2 edges breaks T into A, B & C.

Note also that we can compute each of the O(n2) values Ωef in linear time
using the following equivalent expressions:

Ωef =
∑
c∈C

ωec . (4.16)

Therefore, all the auxiliary data can be pre-computed in time O(n3) and
stored using O(n2) memory.

Now, if we want to explore the 2-edge-exchange neighborhood of T we must
examine all possible trees formed by removing two edges from T and then recon-
necting again the corresponding A, B and C subtrees. There are two general cases
to consider: whether the subtree B remains between subtrees A and C or not.
For the first case (where B is used to connect A and C), we can derive a closed
expression that allows us to compute the communication cost of a tree of that
restricted 2-edge-exchange neighborhood in constant time from the auxiliary data
described above. Thus, we can extend the AMLS technique to a huge subset of
the 2-edge-exchange neighborhood with little additional effort. Note that such
restricted neighborhoods are potentially enormous, containing between O(n4) and
O(n5) elements, but any subset of them of size O(n3) can be explored for free
(from an asymptotical perspective) when we perform a classic AMLS.

Let T̃ = (T \ {{i, j}, {k, l}})∪ {{u, v}{x, y}} be the new tree, (with e = {i, j}
and f = {k, l}) and let a, b and c be generic vertices of their respective subtrees.

55

Chapter 4. Heuristic algorithms

A B C

a b c

u v

x y

Figure 4.5: General case of the restricted 2-exchange neighborhood.

Then we can derive a closed-form expression for ∆ = z̃ − z, the difference
between the communication cost of T and the communication cost of T̃ :

∆ =
∑
a∈A

∑
b∈B

wab(d̃ab − dab) +
∑
a∈A

∑
c∈C

wac(d̃ac − dac) +
∑
b∈B

∑
c∈C

wbc(d̃bc − dbc).

Writing d̃ in terms of d and c and rearranging terms::

=
∑
a∈A

∑
b∈B

wab(dau + cuv + dvb − dai − cij − djb)

+
∑
a∈A

∑
c∈C

wac(dau+cuv+dvx+cxy+dyc−dai−cij−djk−ckl−dlc)

+
∑
b∈B

∑
c∈C

wbc(dbx + cxy + dyc − dbk − ckl − dlc).

=
∑
a∈A

∑
b∈B

wab(cuv − cij) +
∑
a∈A

∑
c∈C

wac(cuv − cij) +
∑
b∈B

∑
c∈C

wbc(cxy − ckl)

+
∑
a∈A

∑
c∈C

wac(cxy − ckl) +
∑
a∈A

∑
c∈C

wac(dvx − djk) +
∑
a∈A

∑
b∈B

wab(dau − dai)

+
∑
a∈A

∑
c∈C

wac(dau − dai) +
∑
b∈B

∑
c∈C

wbc(dyc − dlc) +
∑
a∈A

∑
c∈C

wac(dyc − dlc)

+
∑
a∈A

∑
b∈B

wab(dvb − djb) +
∑
b∈B

∑
c∈C

wbc(dbx − dbk).

56

4.2. Improvement heuristics

Grouping into pre-computed terms:

= Ωe(cuv − cij)
+Ωf (cxy − ckl)
+Ωef (dvx − djk)

+ξeu − ξei
+ξfy − ξ

f
l

+
∑
a∈A

∑
b∈B

wab(dvb − djb) +
∑
b∈B

∑
c∈C

wbc(dbx − dbk).

In order to translate the last term into a pre-computed expression we must note
that:

ξev − ξej =
∑
a∈A

∑
b∈B

wab(dvb − djb) +
∑
a∈A

∑
c∈C

wac(dkv − dkj)

and:

ξfx − ξ
f
k =

∑
a∈A

∑
c∈C

wac(djx − djk) +
∑
b∈B

∑
c∈C

wbc(dbx − dbk).

since the expressions (dkv − dkj) and (djx − djk) do not depend on a or c we can
factor them out to obtain:

∆ = Ωe(cuv − cij) + Ωf (cxy − ckl) + Ωef (dvx − djk)

+ξeu − ξei + ξfy − ξ
f
l

+ξev − ξej + ξfx − ξ
f
k − Ωef (dkv − dkj + djx − djk),

which is a closed-form expression of ∆ that can be computed in constant time
using only pre-computed terms.

57

Chapter 4. Heuristic algorithms

4.2.2 The Dandelion Partially Ordered Neighborhood
Structure

In this section we present an extension of the Dandelion code that is able to
represent not only spanning trees but also neighborhoods of Tn of different sizes.
These neighborhoods form a Partially Ordered Neighborhood Structure (PONS)
that has many interesting structural features. We exploit some of these features
by proposing an ad hoc exploration strategy guided by a series of Monte-Carlo
trials.

The Dandelion code (see Section 2.1.1, the Appendix A and references therein)
provides a compact and unbiased representation of spanning trees of Tn in the
form of words of length n− 2 in the alphabet {1, 2, . . . , n} (called Cayley Strings
and denoted Cn). Amongst all known Cayley codes (bijections between Tn and
Cn), the Dandelion code is characterized for having the smallest locality bound:
Two Cayley strings differing in at most one character are translated into trees
that differ in, at most, five edges (independently of the value of n). Moreover, as
n→∞, the expected number of edges that will change in a tree if we change a
single character of its corresponding Cayley string is 1 (see Paulden and Smith,
2006).

In addition to being compact, unbiased and having high locality, the Dandelion
code has a number of features that are of high interest.

• The encoding and decoding algorithms are efficient (O(n) time) and easy to
code.

• If a vertex label l appears k times in a given Cayley string s, then the degree
of vertex l in the tree represented by s is k+ 1. This makes trivial enforcing
degree constrains or forcing a fixed set of leaves on a given Cayley string,
without explicitly decoding it.

All these desirable features make the Dandelion code the best candidate to
represent spanning trees in population based heuristics. Furthermore, the bounded
locality of the Dandelion code allows us going one step forward and define a
new family of neighborhoods, which constitute a practical alternative to the
k-edge-exchange family of neighborhoods traditionally used in Network Design
and Routing problems.

58

4.2. Improvement heuristics

For this we propose an extension of the Dandelion code, in which neighborhoods
are represented by strings, which also have length n− 2 but which are allowed
to contain one further symbol that we denote by “_", in addition to the usual
node labels 1, 2, . . . , n. The additional symbol has to be understood as a wildcard
which can be assigned any possible value in {1, . . . , n}. For example, when n = 7,
the extended string (3, 4,_, 6, 7) should be interpreted as the neighborhood of
the solution space defined by the set of elements: {(3, 4,1, 6, 7), (3, 4,2, 6, 7),
(3, 4,3, 6, 7), (3, 4,4, 6, 7), (3, 4,5, 6, 7), (3, 4,6, 6, 7), (3, 4,7, 6, 7)}. Similarly, for
n = 5, the extended string (_, 3,_) corresponds to the set of solutions: {(1, 3,1),
(1, 3,2), (1, 3,3), . . . , (5, 3,3), (5, 3,4), (5, 3,5)}. Note that the length of an
extended string determines uniquely the available labels. In particular, an extended
string of length l can use the symbols _, 1, 2, . . . , l − 1, l, l + 1, and l + 2.

(_,_,_)

(3,_,_) (_,_, 5) (_, 3,_) (2,_,_) (_,_, 1) (_, 4,_)

(3,_, 5) (3, 3,_) (_, 3, 5) (2, 3,_) (_, 3, 1) (2,_, 1) (2, 4,_) (_, 4, 1)

(3, 3, 5) (2, 3, 1) (2, 4, 1).

.

.

Figure 4.6: PONS of length l = 3

The set of neighborhoods defined by the extended strings of a given (fixed)
length with the inclusion relation, spans a PONS, which can be represented by
a directed acyclic graph in which the only node at the top represents the whole
solution space, and the nodes at lower levels represent neighborhoods contained in
the neighborhoods represented by the nodes just above of them (see Figure 4.6). In
particular, the nn−2 nodes at the lowest level represent neighborhoods containing
a single solution.

As n grows, the probability of obtaining a perfect mutation (changing a single
character in the string changes a single edge of the tree) tends to 1 and the
Dandelion neighborhoods become increasingly similar to the k-edge-exchange

59

Chapter 4. Heuristic algorithms

neighborhoods but, nonetheless, they retain a number of features that make them
interesting:

• A neighborhood with k > 0 wildcards contains nk trees.

• The union of all neighborhoods differing in just k wildcard symbols from
a given Cayley string contains O(n2k) trees and is called the k-character-
exchange neighborhood of the string.

• It is trivially easy to obtain an uniform sample of a Dandelion neighborhoods
by simply replacing all wildcards with vertex labels selected uniformly at
random. It is equally easy to obtain an uniform sample from the k-character-
exchange neighborhood of a Cayley string.

• The PONS allows us to alternate between exploration and exploitation by
simply moving to a bigger or smaller neighborhoods along the inclusion
relationships.

In relation to the last two features we propose a new improvement heuristic
for the OCSTP called the Monte Carlo PONS Search (MCPS) inspired by the
Monte Carlo Tree Search, which is a successful technique in the field of Board
Game Artificial Intelligence (a comprehensive bibliography about it can be found
in Browne et al. (2011)).

The Monte Carlo PONS Search

The Monte Carlo Pons Search (MCPS) can be seen as a Variable Neighborhood
Search guided by a series of Monte Carlo trials. The algorithm performs a fixed
number of iterations and each iterations can be summarized as follows:

1. Select the PONS node representing the best solution T ∗ obtained so far.
Then, recursively select the most promising parent node of the PONS until
an unexplored node N is reached.

2. For each of the parent nodes of N , evaluate an uniformly random sample of
the solutions contained in the neighborhood.

3. Remember the best solution obtained in each parent node of N and update
both, the best value found so far and the number of visits, for all nodes in

60

4.2. Improvement heuristics

the path from T ∗ to N . Update T ∗ if a tree with better communication cost
has been found in this iteration.

It is not necessary (neither practical) to store the whole PONS in memory
from scratch. However each visited node should be stored in memory together
with the two pieces of information that allow us to select the most promising
nodes each iteration: an estimated value based on simulation results (V al) and the
number of times it has been visited (V is). In particular, we recursively select the
parent node that minimizes the score V al+λ

√
V is

V is0+1 where λ is a normalization
factor and V is0 is the number of times the current node has been visited.

Although the algorithm may seem to rely heavily on the size of the sample
used to evaluate each node of the PONS, most of the time it works like a local
search algorithm exploring the 1-character-exchange neighborhood of T ∗’s Cayley
string. Only when it finds a local optimum of such neighborhood, the MCPS
starts looking at bigger neighborhoods, where a sensible selection of the sample
size may play a relevant role.

The main drawback of this algorithm in comparison to the AMLS is that
there is no simple way to evaluate all the solutions of the 1-character-exchange
neighborhood of a given Cayley string without evaluating individually each of them.
Therefore, exploring the O(n2) elements of a 1-character-exchange neighborhood
may require O(n4) time whereas Ahuja-Murty’s technique is able to explore a
roughly equivalent neighborhoods in just O(n3) time. In exchange, the MCPS
provides a more flexible framework, being able to scape from local optima using
the information gathered in previous iterations to guide the search. Unfortunately,
our computational experiments reveal that the trade-off between both factors
favors the efficiency and further developments are required in order to obtain a
competitive PONS exploration strategy.

61

Chapter 4. Heuristic algorithms

4.3 Computational experience

In order to test empirically the heuristics described in this chapter, we have run
a series of computational experiments with two sets of instances. Contreras set
appeared Contreras et al. (2010a) and comprises 20 instances, whereas Random
Euclidean is a set of 120 instances that we created (see Appendix B for a detailed
description).

We implemented all the heuristics using the C programming language with
no third-party libraries. All experiments ran in a single thread on a Windows 7
environment. The hardware used was a Dell mobile workstation with an Intel
Core i7 2.50GHz processor and 16GB of RAM.

Table 4.1 summarizes the results of our first computational experiment, whose
objective was to test the relative performance of several constructive heuristics.
Each row contains the average optimality gap and the number of optimal (or
best-known) solutions obtained with instances of the same size (Contreras set
contains 4 instances of each size whereas the RE set contains 10 instances of each
size). The optimality gaps of each instance were computed as |HEUR−OPT |OPT , where
OPT is the optimal value if available and the value of the best solution known
otherwise. Al results were obtained in less than 0.5 seconds per instance.

Columns Stars, MST and MCT contain, respectively, the average gaps of
the best star-shaped tree, the MST obtained with the Prim’s algorithm and the
MCT obtained with Gusfield algorithm. Star-shaped trees and MCTs are optimal
solutions to the particular cases of the OCSTP described in Section 3.1.2, whereas
MSTs have been reported as good starting solutions for evolutionary algorithms
(Rothlauf, 2009b). We observe that star-shaped trees provide the most robust
results with respect to the instance size, which suggest that, for larger instances,
the internal structure of a spanning tree might be more important than the length
of its edges.

Finally, columns AMT and D&C contain, respectively, the average gaps of
the standard two-phase heuristic described in Ahuja and Murty (1987) and our
Divide & Conquer heuristic described in Section 4.1. Specifically, we implemented
the Bottom-up version of the Divide & Conquer heuristic that, after each merge
operation, applies the AMLS to the resulting subtree. Here, we observe that both
algorithms are comparable and systematically find near-optimal solutions, and

62

4.3. Computational experience

S
et

|V
|

S
ta
rs

M
S
T

M
C
T

A
M
T

D
&
C

ga
p

b
es
t

ga
p

b
es
t

ga
p

b
es
t

ga
p

b
es
t

ga
p

b
es
t

C
on

10
12
.1
8%

0/
4

17
.5
%

1/
4

20
.3
3%

0/
4

0.
22
%

3/
4

0.
19
%

3/
4

C
on

20
13
.1
4%

0/
4

6.
57
%

0/
4

33
.8
6%

0/
4

0.
32
%

3/
4

0.
85
%

1/
4

C
on

30
13
.4
5%

0/
4

18
.2
6%

0/
4

35
.0
6%

0/
4

0.
0%

4/
4

0.
28
%

2/
4

C
on

40
12
.2
5%

0/
4

21
.2
2%

0/
4

75
.4
5%

0/
4

0.
64
%

2/
4

0.
25
%

1/
4

C
on

50
10
.2
9%

0/
4

22
.1
3%

0/
4

36
.8
5%

0/
4

0.
03
%

3/
4

0.
27
%

3/
4

R
E

15
11
.1
4%

0/
10

8.
88
%

2/
10

53
.8
4%

0/
10

0.
27
%

9/
10

0.
27
%

9/
10

R
E

20
13
.5
4%

0/
10

12
.6
8%

0/
10

74
.6
8%

0/
10

0.
17
%

9/
10

1.
19
%

5/
10

R
E

25
12
.2
9%

0/
10

13
.3
1%

0/
10

70
.6
1%

0/
10

0.
51
%

8/
10

0.
46
%

5/
10

R
E

30
13
.6
9%

0/
10

14
.1
3%

0/
10

72
.5
8%

0/
10

0.
01
%

9/
10

1.
19
%

7/
10

R
E

35
12
.6
5%

0/
10

17
.2
%

0/
10

80
.2
3%

0/
10

0.
27
%

7/
10

0.
51
%

6/
10

R
E

40
11
.5
6%

0/
10

22
.1
9%

0/
10

48
.9
5%

0/
10

0.
23
%

5/
10

0.
59
%

4/
10

R
E

50
11
.1
2%

0/
10

21
.2
1%

0/
10

54
.0
5%

0/
10

0.
03
%

8/
10

0.
16
%

4/
10

R
E

60
9.
08
%

0/
10

26
.9
6%

0/
10

49
.0
6%

0/
10

0.
56
%

6/
10

0.
95
%

2/
10

R
E

70
9.
5%

0/
10

26
.4
9%

0/
10

39
.2
8%

0/
10

0.
48
%

5/
10

0.
32
%

4/
10

R
E

80
8.
76
%

0/
10

30
.9
7%

0/
10

41
.7
8%

0/
10

0.
64
%

5/
10

0.
27
%

5/
10

R
E

90
8.
5%

0/
10

42
.4
2%

0/
10

54
.0
3%

0/
10

0.
49
%

6/
10

0.
31
%

5/
10

R
E

10
0

7.
48
%

0/
10

34
.7
4%

0/
10

47
.2
5%

0/
10

0.
64
%

3/
10

1.
51
%

2/
10

T
ab

le
4.
1:

C
om

pu
ta
ti
on

al
re
su
lt
s
of

co
ns
tr
uc
ti
ve

he
ur
is
ti
cs
.

63

Chapter 4. Heuristic algorithms

we conclude that both constructive heuristics can be used to obtain high quality
solutions with small computational burden.

In order to test the improvement heuristics described in Section 4.2 we con-
ducted another computational experiment whose results are summarized in Ta-
ble 4.2.

In this second experiment we compare the computational results obtained by
the AMLS and the MCPS described in Section 4.2. Specifically, we implemented
the MCPS that performs 1000 Monte Carlo trials each iteration and stops after
200 iterations without improving the current best solution (with a time limit
of 3600 seconds). In the experiment, both local searches were feeded with the
best star-shaped tree because we wanted to measure their capacity of improving
medium quality solutions and star-shaped trees provided them consistently. We
also feeded these local searches with the best solution found by the constructive
heuristics.

Table 4.2 contains the averaged optimality gaps, the number of optimal (or
best known) solutions found and the averaged CPU times obtained with these
improvement heuristics. Regarding the capacity of improving star-shaped solutions,
we observe that the MCPS is able to obtain better solutions than the AMLS for
medium sized instances at expenses of a higher computational cost. This capacity,
however, degrades quickly as the number of vertices increases. We interpret this
fact as a signal that the parameters that define the behavior of the MCPS (the
stopping criterion and the number of Monte Carlo trials per iteration) must be
selected according to the instance size and complexity. When both local searches
are feeded with the best solution found by the constructive heuristics the MCPS
performs slightly better than the AMLS. This is provably due to the fact that the
best solution found by the constructive heuristics usually is a local optimum with
respect to the 1-edge-exchange neighborhood and the MCPS is able to escape
such local optima whereas the AMLS is not.

64

4.3. Computational experience

S
et

|V
|

S
ta

r+
A

M
L
S

S
ta

r+
M

C
P

S
B

es
t

C
on

s+
A

M
L
S

B
es

t
C

on
s+

M
C

P
S

ga
p

b
es

t
ti

m
e

ga
p

b
es

t
ti

m
e

ga
p

b
es

t
ti

m
e

ga
p

b
es

t
ti

m
e

C
on

10
0.

47
%

3/
4

0.
00

0.
00

%
4/

4
0.

01
0.

00
%

4/
4

0.
00

0.
00

%
4/

4
0.

01
C

on
20

0.
77

%
1/

4
0.

00
0.

23
%

3/
4

0.
91

0.
00

%
4/

4
0.

00
0.

00
%

4/
4

0.
59

C
on

30
0.

02
%

3/
4

0.
00

0.
09

%
3/

4
7.

35
0.

00
%

4/
4

0.
00

0.
00

%
4/

4
5.

91
C

on
40

0.
56

%
1/

4
0.

01
0.

52
%

1/
4

63
.0

6
0.

04
%

3/
4

0.
00

0.
00

%
4/

4
38

.1
0

C
on

50
0.

09
%

3/
4

0.
02

0.
09

%
3/

4
16

6.
99

0.
00

%
4/

4
0.

00
0.

00
%

4/
4

13
2.

94
R

E
15

0.
00

%
10

/1
0

0.
00

0.
39

%
6/

10
0.

14
0.

00
%

10
/1

0
0.

00
0.

00
%

10
/1

0
0.

11
R

E
20

0.
85

%
6/

10
0.

00
0.

17
%

8/
10

1.
03

0.
14

%
9/

10
0.

00
0.

14
%

9/
10

0.
53

R
E

25
0.

19
%

6/
10

0.
00

0.
18

%
7/

10
2.

79
0.

00
%

10
/1

0
0.

00
0.

00
%

10
/1

0
2.

16
R

E
30

0.
03

%
8/

10
0.

00
0.

16
%

8/
10

11
.1

6
0.

00
%

10
/1

0
0.

00
0.

00
%

10
/1

0
6.

11
R

E
35

0.
07

%
5/

10
0.

01
0.

08
%

7/
10

19
.4

6
0.

03
%

8/
10

0.
00

0.
03

%
8/

10
15

.3
9

R
E

40
0.

04
%

6/
10

0.
01

0.
29

%
5/

10
40

.5
0

0.
00

%
9/

10
0.

00
0.

03
%

9/
10

32
.8

6
R

E
50

0.
21

%
3/

10
0.

01
0.

03
%

8/
10

25
3.

59
0.

00
%

10
/1

0
0.

00
0.

00
%

10
/1

0
12

9.
41

R
E

60
0.

24
%

1/
10

0.
03

0.
25

%
4/

10
74

7.
88

0.
00

%
9/

10
0.

00
0.

02
%

9/
10

40
0.

50
R

E
70

0.
10

%
3/

10
0.

07
0.

09
%

6/
10

13
12

.2
2

0.
01

%
9/

10
0.

00
0.

00
%

10
/1

0
99

7.
26

R
E

80
0.

14
%

4/
10

0.
16

0.
12

%
5/

10
33

85
.4

9
0.

01
%

9/
10

0.
00

0.
01

%
8/

10
33

12
.8

5
R

E
90

0.
35

%
3/

10
0.

25
0.

51
%

2/
10

36
00

.0
0

0.
00

%
9/

10
0.

00
0.

00
%

10
/1

0
36

00
.0

0
R

E
10

0
0.

13
%

4/
10

0.
39

0.
28

%
3/

10
36

00
.0

0
0.

03
%

7/
10

0.
00

0.
03

%
8/

10
36

00
.0

0

T
ab

le
4.
2:

C
om

pu
ta
ti
on

al
re
su
lt
s
of

im
pr
ov
em

en
t
he
ur
is
ti
cs
.

65

Chapter 4. Heuristic algorithms

66

Chapter 5

Benders decomposition for the
OCSTP

In this chapter we propose an exact algorithm for general instances of the OCSTP.
Our approach is based on the Benders reformulation of the path-based formulation
described in Section 3.3.2. We begin this chapter reviewing such reformulation
(Section 5.1) and then propose an efficient Branch & Cut algorithm that exploits
several properties of this new OCSTP formulation (Section 5.2).

5.1 Benders reformulation of the
path-based formulation

Since our previous attempts to find a compact linear formulation able to deal
with medium size instances of the OCSTP turned out unsuccessful, we decided to
focus again on the path-based formulation, which naturally provides good linear
relaxation bounds. We need, however, to find an alternative solution technique for
this formulation able to deal with bigger instances and Benders Decomposition
turned out to be well suited to exploit the particular structure of this formulation.

As usual in network design problems, Benders Decomposition starts by fixing
the design variables to some particular feasible value x̄ij . By doing so, we obtain
the following primal subproblem.

67

Chapter 5. Benders decomposition for the OCSTP

Primal Subproblem: [PS(x̄)]

Min
∑
r∈R

wr
∑

(i,j)∈A

cijy
r
ij (5.1a)

s.t.
∑

i:(i,dr)∈A

yridr = 1 ∀ r ∈ R (5.1b)

∑
i:(i,j)∈A

yrij −
∑

k:(j,k)∈A

yrjk = 0 ∀ r ∈ R ∀ j ∈ V \ {or, dr} (5.1c)

−
∑

k:(or,k)∈A

yrork = −1 ∀ r ∈ R (5.1d)

yrij + yrji ≤ x̄ij ∀ r ∈ R ∀ {i, j} ∈ E (5.1e)

yrij ≥ 0 ∀ r ∈ R ∀ (i, j) ∈ A (5.1f)

The previous subproblem can be decomposed into a series of |R| independent
subproblems indexed by the communication requirements r ∈ R. We can do so
because the objective function is the sum of the communication costs of each
problem and there is not any constraint that links variables associated with
different communication requirements.

Primal Subproblem r: [PSr(x̄)]

Min
∑

(i,j)∈A

cijy
r
ij (5.2a)

s.t.
∑

i:(i,dr)∈A

yridr = 1 (5.2b)

∑
i:(i,j)∈A

yrij −
∑

k:(j,k)∈A

yrjk = 0 ∀ j ∈ V \ {or, dr} (5.2c)

−
∑

k:(or,k)∈A

yrork = −1 (5.2d)

yrij + yrji ≤ x̄ij ∀ {i, j} ∈ E (5.2e)

yrij ≥ 0 ∀ (i, j) ∈ A (5.2f)

Note that we have eliminated the wr factor from the objective function (it
will reappear in the objective function of the Master Problem). The reasons will
be clear once we look at the dual form of the subproblems:

68

5.1. The Benders reformulation

Dual Subproblem r: [DSr(x̄)]

Max βrdr − βror −
∑

(i,j)∈E

x̄ijγ
r
ij (5.3a)

s.t. βrj − βri − γrij ≤ cij ∀ (i, j) ∈ E (5.3b)

βri − βrj − γrij ≤ cij ∀ (i, j) ∈ E (5.3c)

γrij ≥ 0 ∀ (i, j) ∈ E (5.3d)

Now it is evident that if we handle the communication requirements in the
Master Problem, all subproblems share a common feasible region:

DP =

{
β ∈ R|V |

γ ∈ R|E|

∣∣∣∣∣ |βi − βj | − γij ≤ cij ∀ (i, j) ∈ E
γij ≥ 0 ∀ (i, j) ∈ E

}
(5.4)

Indeed, DP does not depend on r and its extreme points set, V, are shared
by all the subproblems. Note that, as long as we impose the SEC in the Master
Problem, all [PSr(x̄)] will be feasible (even for fractional values of the x̄ij variables)
and therefore the [DSr(x̄)] will be bounded and no extreme rays will be found
(R = ∅). These latter observations left us with the following Master Problem:

Master Problem: [M∞]

Min
∑
r∈R

∑
(i,j)∈A

wrdr (5.5a)

s.t.
∑
{i,j}∈E

xij = |V | − 1 (5.5b)

∑
{i,j}∈E(S)

xij ≤ |S| − 1 ∀ S ⊂ V (5.5c)

dr ≥ β̄rdr − β̄ror −
∑

(i,j)∈E

γ̄rijxij ∀ r ∈ R ∀ (β̄r
j , γ̄

r
ij) ∈ V (5.5d)

xij ∈ {0, 1} ∀ {i, j} ∈ E (5.5e)

dr ≥ 0 ∀ r ∈ R ∀ (i, j) ∈ A (5.5f)

69

Chapter 5. Benders decomposition for the OCSTP

5.2 Algorithmic refinements

The Benders Reformulation [M∞] described above has two exponential families
of constraints (SEC and BOC) that cannot be included in the formulation in
polynomial time. Fortunately, it is not necessary to include them all to converge to
the optimal solution. The classical Benders Decomposition algorithm iterates over
a series of relaxed Master Problems (starting with M0) that does not include any
SEC or BOC) to get a tentative master solution (x̄ij , d̄

r) that is used to separate
up to |V | SECs or up to |R| new BOCs. These new constraints are then added to
the Master Problem and the process continues until no violated SEC or BOC can
be separated from a master solution (x̄∗, d̄∗), which will be the optimal solution
of the problem.

In order to use the [M∞] formulation, we must clearly define the separation
procedure used to separate both, the SECs and the BOCs. The first family of
constraints is well known and several separation procedures have been proposed
in the literature. For integer values of the design variables, we can compute the
connected components (S1, S2, . . . , Sk) induced by {{i, j} ∈ E | x̄ij = 1}. If there
are more than a single connected component, at least one of such subsets generates
a violated SEC, otherwise all SEC are satisfied.

SECs can also be separated for fractional values of the design variables by
computing the MCT with respect to the edge capacities x̄ij . If any of the weights
associated with the edges of this MCT is smaller than 1, we can derive a violated
SEC from at least one of the subsets of vertices that results from removing that
edge from the MCT. If the equivalent flow that traverses all the edges of the MCT
is at least 1 all SECs are satisfied.

5.2.1 Separation of optimality cuts

The BOCs of [M∞] can be separated by solving the dual subproblems [DSr(x̄)]

for both, integer or fractional values of x̄. It is fundamental to note that being able
to solve these |R| subproblems independently speeds up their solution since it is
often faster to solve O(n2) linear programs of O(n2) size than a single O(n4) sized
problem. Furthermore, since their primal counter parts [PSr(x̄)] are particular
cases of the Min-Cost-Flow Problem, several highly specialized algorithms can
be used to solve them efficiently (including the Network Simplex algorithm that

70

5.2. Algorithmic refinements

we use in out computational experiments). To obtain a BOC, however, we need
to compute the value of the dual variables (βri , γ

r
ij) and not all Min-Cost-Flow

algorithms provide them explicitly.
In fact, any integer x̄ij that satisfies all SECs must be a tree T , so [PSr(x̄)]

can be solved by finding the unique path, over T , that connects or and dr. Thus, a
simple Breath First Search over T lets us recover the primal subproblem solution
yrij from which we can derive a corresponding dual solution of the form:

βri = αTor,i ∀ i ∈ V ∀ r ∈ R (5.6a)

γrij = max{0, αTij − cij} ∀ (i, j) ∈ E ∀ r ∈ R (5.6b)

Where the αTij are the distance between i and j over T and all of them can
be computed in just O(n2) total time using the adjacency list representation of
T . Now if we substitute the previous equations into the [M∞] and aggregate the
BOCs we obtain an aggregated reformulation of the problem:

Aggregated Master Problem:

Min z (5.7a)

s.t.
∑
{i,j}∈E

xij = |V | − 1 (5.7b)

∑
{i,j}∈E(S)

xij ≤ |S| − 1 ∀ S ⊂ V (5.7c)

z ≥
∑
r∈R

wrαTordr −
∑

(i,j)∈E

(∑
r∈R

wr max{0, αTij − cij}

)
xij∀ T ∈ Tn (5.7d)

xij ∈ {0, 1} ∀ {i, j} ∈ E (5.7e)

z ≥ 0 (5.7f)

Since each SEC and each aggregated BOC are defined by O(n2) coefficients
(and the RHS term) and all these values can be computed in just O(n2) time from
a integer master solution, this aggregated reformulation of the OCSTP is optimal
with respect to the separation of these constraints. Moreover, the aggregated
BOCs are expressed in terms that are closely related to the geometric nature

71

Chapter 5. Benders decomposition for the OCSTP

of the problem: the value z of the objective function is lower bounded by the
communication cost of a given tree

∑
r∈R w

rαTordr minus the potential savings of
adding another edge

∑
(i,j)∈E

(∑
r∈R w

r max{0, αTij − cij}
)
xij . These savings are

systematically overestimated for any particular tree, since the number of edges is
fixed and adding one edge implies removing another one (thus increasing some
other communication cost). However, when considered as a whole, this set of
linear lower bounds correctly model the objective function, since each aggregated
BOC evaluates correctly its associated tree.

Regardless of the interesting theoretical properties mentioned above, the
aggregated reformulation of the OCSTP it is ill-suited for practical applications
because it requires many iterations to converge to an optimal solution and the
complexity of the aggregated Master Problem quickly escalates, requiring each
iteration larger amounts of time as more BOCs are added. To solve such issues
we must realize that there are many ways to derive an optimal dual solution from
the (unique) primal solution of each subproblem. Each of these different dual
solutions of the subproblems produces BOCs of different quality, which affects
the overall efficiency of the algorithm.

Although the dual solutions proposed above are natural and can be computed
efficiently, the resulting BOCs are weak and, thus, we must find a better procedure
to generate dual solutions. If we are willing to sacrifice the natural interpretation
of the γrij coefficients as savings, we may slightly improve the previous BOC with
this alternative definition:

γrij = max{0, |βri − βrj | − cij} ∀ (i, j) ∈ E ∀ r ∈ R (5.8)

which provides the smallest possible value for these coefficients for a given value
of the β’s. Note that, since the γrij appear with negative coefficients in the master
problem, minimizing its value provides stronger BOCs.

Unfortunately, if we solve the [PSr(x̄)] using an efficient Min-Cost-Flow
algorithm (such as the Network Simplex), then recover the value of βri as the dual
value associated with the network balance constraints (5.2b)–(5.2d) and finally
compute the value of γrij as defined in (5.8), the resulting BOCs are still too weak
to solve efficiently instances of just 20 vertices.

72

5.2. Algorithmic refinements

5.2.2 Separation of Pareto-optimal optimality cuts

Magnanti and Wong (1981) proposed a generic separation methodology aimed at
generating strong BOC. Their variant of the standard Benders algorithm requires
the use of core points (points in the relative interior of the linear relaxation
polyhedron of the Master Problem). Core points are difficult to find in general but
in the OCSTP case there is a distinguished core point that is easy to compute:

x̊ij =
2

n
∀ {i, j} ∈ E (5.9)

Indeed, assuming that our underlying network is the complete graph of n
vertices, G = Kn, we can deduce by an argument of symmetry that each edge is
equally represented in the set Tn of all spanning trees of G. Thus, if we average
all the feasible solutions of the problems the resulting central core point will have
the same value in all the edges and since there are

(
n
2

)
= n(n+1)

2 edges and their
coefficients must sum n− 1, each of them must be equal to 2

n .
The method proposed by Magnanti and Wong allows us to select, among all

possible dual solutions corresponding to a given primal solution, the ones that
form a Pareto-optimal family of cuts (i.e. no cut of the family is dominated by
any other cut of the family). To achieve this, we must solve an alternative Dual
Subproblem:

Magnanti-Wong Dual Subproblem: [MWDS(x̄)]

Max
∑
r∈R

βrdr − βror −
∑

(i,j)∈E

x̊ijγ
r
ij (5.10a)

s.t.
∑
r∈R

βrdr − βror −
∑

(i,j)∈E

x̄ijγ
r
ij =

∑
r∈R

wrαTordr (5.10b)

βrj − βri − γrij ≤ cij ∀ r ∈ R ∀ (i, j) ∈ E (5.10c)

βri − βrj − γrij ≤ cij ∀ r ∈ R ∀ (i, j) ∈ E (5.10d)

γrij ≥ 0 ∀ r ∈ R ∀ (i, j) ∈ E (5.10e)

Note that the constraint (5.10b), which ensures that the optimal solution of
[MWDS(x̄)] is also an optimal solution of [DS(x̄)], links all commodities and
does not allow us to decompose the [MWDS(x̄)] into a set of |R| independent

73

Chapter 5. Benders decomposition for the OCSTP

subproblems (although one may be tempted to naturally split this equation into
|R| equations of the form βrdr − βror −

∑
(i,j)∈E x̄ijγ

r
ij = wrαTordr and then solve

each subproblem independently and, in fact, this heuristic works well in practice).
In addition, it is necessary to know in advance the optimal value of the

problem
∑
r∈R w

rαTordr , which is easy to compute for integer values of the design
variables but require the solution of another subproblem for fractional values
of x̄ij . Furthermore, the Min-Cost-Flow structure is now lost and less efficient
algorithms should be used to obtain optimal solutions of this problem.

All three issues can be solved if we use the variation of the Magnanti-Wong
methodology proposed in Papadakos (2008). In its paper, Papadakos proposed to
drop the additional equation but to keep the alternative objective function.

Papadakos Dual Subproblem r: [PDSr(x̄)]

Max βrdr − βror −
∑

(i,j)∈E

x̊ijγ
r
ij (5.11a)

s.t. βrj − βri − γrij ≤ cij ∀ (i, j) ∈ E (5.11b)

βri − βrj − γrij ≤ cij ∀ (i, j) ∈ E (5.11c)

γrij ≥ 0 ∀ (i, j) ∈ E (5.11d)

Now, the problem decomposes again into a set of |R| subproblems, each of
them can be solved using a specialized Min-Cost-Flow solver (rather than a
general purpose Linear Programming solver) and it is not necessary to compute
the optimal value of the regular subproblem in advance. However, the Papadakos
subproblem no longer depends on the master solution x̄, and a new core point
must be used each iteration to avoid generating the same BOC each iteration. To
solve this issue (and taking into account that core points are difficult to find in
general) Papadakos proposed a simple methodology to build a new core point
from a previous core point and a feasible solution:

x̊u+1
ij =

x̊uij + x̄u+1
ij

2
∀ {i, j} ∈ E (5.12)

Thus, averaging the previous core point with the current Master Problem
solution provides the required new core point.

Several additional observations must be done about Papadakos methodology.

74

5.2. Algorithmic refinements

The SEC no longer guarantee the feasibility of the subproblem and, even if the
subproblem is feasible, we cannot guarantee that a violated BOC is generated
each iteration. However, the algorithm does converge and the explanation is
simple: if no violated cut is produced in a given iteration, the next master solution
will be equal to the previous one and the new core point will move closer and
closer to that master solution. In the limit, it will reach that solution and a
standard BOC will be produced, ensuring thus the convergence of the algorithm.
In practice, however, it is advisable to directly generate a regular BOC each time
the Papadakos subproblem fails to deliver a violated cut.

Regarding the infeasibility of the Papadakos subproblems some authors pro-
posed alternative updating schemes for the core point that ensures feasible solutions
each iteration (Martins de Sá et al., 2013). However, this procedure still does
not ensure the production of a violated cut and we have found more practical to
reset the core point to its initial central core point value each time an infeasible
subproblem is found. Note that a core point x̊ij leads to an infeasible Papadakos
subproblem if and only if the network with capacities x̊ij has a minimum cut of
value less than 1. The smallest cut of the network corresponding to the central
core point has a value of 2(n−1)

n and, thus, satisfies the feasibility requirements
comfortably. However, after few iterations, this value may drop under the thresh-
old of the infeasibility for some communication requirements (specially if many
similar master solutions are used to update the core point) and a new core point
reset must be performed.

5.2.3 Fractional cuts and filtering strategies

Once the technical issues associated with Papadakos methodology are solved, the
separation of both, SECs and BOCs, can be done efficiently. However, since each
subproblem generates up to O(n2) new constraints, the Master Problem may
grow faster than it is desirable and become unbearable after few iterations. To
reduce the computational burden required to solve the Master Problem we only
add cuts that are violated by the current master solution. Furthermore, instead
of using the Iterative Benders algorithm, where many integer Master Problems
must be solved to optimality before the algorithm converges, it is advisable to use
the Branch & Cut Benders algorithm, where a single master problem is solved
and both, the SECs and the BOCs, are separated dynamically.

75

Chapter 5. Benders decomposition for the OCSTP

Since we can separate SECs and BOCs in polynomial time even for fractional
values of the design variables, we can perform a Fractional Warm-Start Phase
before adding the integrality constraints:

1. Base formulation: To the relaxed Master Problem {(5.5a), (5.5b), (5.5f)}.

(a) Add the relaxed design variable bounds: 0 ≤ xij ≤ 1

(b) Add the enhanced distance lower bounds: dij ≥ cijxij + c2ij(1− xij)

(c) Add SEC for all subsets of V containing a single vertex.

(d) Add BOC from high quality heuristic solutions.

2. Fractional Warm-Start Phase: Use the Iterative Benders algorithm to
solve the linear relaxation of the master problem.

3. Clean-up: Erase all non-binding BOC generated in the previous steps.

4. Integer Phase:

(a) Add the integrality constraints (5.5e).

(b) Use the Branch & Cut Benders algorithm to solve the integer problem.

The fractional cuts generated in the Fractional Warm-Start Phase help us
to ensure that the optimality gap is small enough (usually below 10%) when
the Branch & Cut Benders algorithm starts branching. However, once we start
solving the integer master problem, we can still separate SECs and BOCs at some
fractional nodes of the Branch & Bound tree, adding only those that are largely
violated by the master solution of the current node to avoid including too many
constraints in the Master Poblem. We separate fractional BOCs at all fractional
nodes whose depth is multiple of 5. It is tempting to filter slightly violated cuts
also in integer nodes, but this will result in the algorithm incorrectly evaluating
many integer solutions and returning a suboptimal tree. Notwithstanding, we can
still use this technique as a Integer Warm-Start Phase:

1. Base formulation: To the relaxed Master Problem {(5.5a), (5.5b), (5.5f)}.

(a) Add the relaxed design variable bounds: 0 ≤ xij ≤ 1

(b) Add the enhanced distance lower bounds: dij ≥ cijxij + c2ij(1− xij)

76

5.2. Algorithmic refinements

(c) Add SEC for all subsets of V containing a single vertex.

(d) Add BOC from high quality heuristic solutions.

2. Fractional Warm-Start Phase: Use the Iterative Benders algorithm to
solve the linear relaxation of the master problem.

3. Clean-up: Erase all non-binding BOC generated in the previous steps.

4. Integer Warm-Start Phase:

(a) Add the integrality constraints (5.5e).

(b) Use the Branch & Cut Benders algorithm to solve the integer problem,
adding only largely violated cuts.

5. Integer Phase: Use the Branch & Cut Benders algorithm to solve the
integer problem, adding all violated cuts.

The objective of the Integer Warm-Start Phase is to provide an approximate
description of the Benders reformulation polytope without clogging the Master
problem with hundreds of almost-redundant constraints. For some instances, the
aggressive (heuristic) filtering strategy of the Integer Warm-Start Phase might
provide the optimal solution of the problem which makes the posterior Integer
Phase converge immediately. For other instances, the solution provided by the
Integer Phase might be incorrectly evaluated (and possibly suboptimal) due to
the exclusion of a necessary BOC but, even if this is the case, all SEC and BOC
generated during the Integer Warm-Start Phase are valid and constitute a tight
description of the solution space, which will help the posterior Integer Phase to
converge faster.

5.2.4 Local Cuts

If we are able to define local cuts that only apply to the Branch & Cut subtree
rooted at a given node, it is advisable to check whether or not we can fix the
value of some dij and xij variables using the following procedure:

• Let (x̄ij , d̄
ij) the value of the master solution at the current node and let

T1, . . . , Tk the subtrees induced by {{i, j} ∈ E | x̄ij = 1}. Note that not all
vertices of G must be included in T1 ∪ · · · ∪ Tk.

77

Chapter 5. Benders decomposition for the OCSTP

1. For all i, j such that i ∈ Tl, j ∈ Tl and {i, j} /∈ Tl we can fix the value
of the xij variable to 0 with a local cut that is valid for all descending
nodes of the Branch & Cut tree.

2. For all i, j such that i ∈ Tl, j ∈ Tl we can compute the distance
between i and j over the edges of Tl and fix the value of the dij variable
with a local cut that is valid for all descending nodes of the Branch &
Cut tree.

Both families of local cuts might help to obtain integer solutions faster since
the fixation of a single xij variable to its upper bound value (1) might trigger the
generation of many of such local cuts, reducing the effective size of the problem not
only in the current node but also in all the descending nodes of the Branch & Cut
tree. These local cuts can be separated by inspection in just O(

∑
|Tl|2) = O(n2)

time once the connected components T1, . . . , Tk and their associated distance
matrices, have been computed (which also requires O(n2) operations).

5.2.5 Rounding Heuristic

Another useful technique that might boost the Integer Phase consists of imple-
menting a rounding callback that provides integer feasible solutions closely related
to the fractional optimal solution of a given Branch & Cut node. For the OCSTP,
we can simply build the Maximum Spanning Tree with respect to the edge costs
x̄ij , which will be feasible and will include all of the edges whose design variables
have been already fixed to 1 and none of the edges whose design variables have
been already fixed to 0. Indeed, the rounding callback can be improved further
using a simple variant of the AMLS that takes into account such fixed variables
to avoid removing an edge whose design variable has been fixed to 1 or adding
and edge whose design variable has been already fixed to 0. This rounding proce-
dure ensures that feasible integer solutions are found quickly and speeds up the
convergence of the Integer Phase.

78

5.3. Computational experience

5.3 Computational experience

In order to test empirically our Branch & Bound algorithm, we have run a series
of computational experiments.

We implemented our algorithms using the C programming language and the
CPLEX 12.62 callable library. All experiments ran in a single thread on a Windows
7 environment. The hardware used was a Dell mobile workstation with an Intel
Core i7 2.50GHz processor and 16GB of RAM.

We used several sets of Benchmark instances from the OCSTP literature
(see Appendix B for a detailed description). Tables 5.1 and 5.2 summarize the
computational results obtained with our Branch & Cut algorithm. We compare the
optimality gap (computed as UB−LB

LB) and the CPU times (in seconds) obtained
by our algorithm (column Benders) with the optimality gap and CPU times
obtained by CPLEX using the path-based formulation (column CPLEX) and the
corresponding values reported in Contreras et al. (2010a) (column Lagrangian)
for a sophisticated Lagrangian Relaxation algorithm able to produce both, tight
bounds and high quality solutions. This latter algorithm produces, to the best of
our knowledge, the tightest upper and lower bounds for general OCSTP instances
reported to the date. Moreover, the solutions obtained with this algorithm often
reach (or even improve) the previously best-known value for these benchmark
instances.

The first two columns of both tables determines the type and the size of each
instance (we differentiate between same sized instances with a lower case letter).
The third column contains the communication request density. Instances with high
communication request density tend to be harder to solve in general as reported
in Contreras et al. (2010a). The next two columns contain, respectively, the best
lower bound and the best upper bound known so far. Upper bound values in
boldface signal instances for which our algorithm produced a new best upper
bound (i.e. the current best-known-solution). Finally, the optimality gap obtained
with the path-based formulation, the Lagrangian Relaxation algorithm and our
Branch & Cut algorithm are compared, as well as the CPU times required to
obtain such values. Note that CPLEX with the path-based formulation was unable
to provide a finite optimality gap for instances of 40 vertices and above within
the given limits of memory (16GB) and time (2 hours).

79

Chapter 5. Benders decomposition for the OCSTP

The tables below show that our algorithm converged to the optimal solution
for all benchmark instances with less than 40 vertices. For all other benchmark
instances, our algorithm found the previous best-known-solution and tightened
the optimality gap obtained with the path-based formulation and the Lagrangian
Relaxation algorithm. Moreover, for five of the instances whose optimal solution is
still unknown (Raidl100 and Contreras 40b, 50a, 50b & 50d), our algorithm found
solutions that improve the previous best-known-solution, including the instance
Raidl100 which has been erroneously reported as solved in previous publications.
These new upper bounds have been highlighted in boldface in Tables 5.1 and 5.2.

Although the different nature of these algorithms makes difficult to compare
computation times, we can se that, for the instances where all algorithms are
able to find the optimal solution, the CPU times of our algorithm are consistently
better than those required by the other algorithms. For those instance where
our algorithm does not converge to the optimal solution we reported the results
obtained when the limit of 7200 seconds (2 hours) is reached.

In order to expand our computational experience, we created a new set of
Random Euclidean instances (see Appendix B for a detailed description). The
results obtained with these instances are summarized in Table 5.3. There, we
compare the effectiveness of our Branch & Cut algorithm with a standard CPLEX
implementation of the path-based formulation.

We observe that the Branch & Cut algorithm is able to find optimal solution
for 38 instances under the time limit of 2 hours. Moreover, the Branch & Cut
algorithm provided tight optimality bounds for all instances where the optimal
solution remains unknown. In contrast, CPLEX, with the path-based formulation
solved 33 instances but was unable to provide a finite optimality gap for instances
of 40 vertices within the given limits of memory (16GB) and time (2 hours). Again,
the computational times of our algorithm are consistently better than those of
CPLEX with the path-based formulation.

80

5.3. Computational experience

S
et

|V
|

|R
|

|E
|

B
es
t
K
n
ow

n
C
P
L
E
X

L
ag
ra
n
gi
an

B
en

d
er
s

L
B

U
B

ga
p

ti
m
e

ga
p

ti
m
e

ga
p

ti
m
e

B
er
ry

6
10
0.
00
%

53
4.
00

53
4

0.
00
%

0.
02

1.
14
%

0.
30

0.
00
%

0.
01

B
er
ry

35
9.
81
%

16
91
5.
00

16
91
5

0.
00
%

0.
58

0.
00
%

0.
94

0.
00
%

0.
03

B
er
ry

35
u

9.
81
%

16
16
7.
00

16
16
7

0.
00
%

13
.3
9%

10
.2
3

0.
00
%

0.
03

P
al
m
er

6
10
0.
00
%

66
93
18
0.
00

66
93
18
0

0.
00
%

0.
01

0.
00
%

0.
30

0.
00
%

0.
00

P
al
m
er

12
10
0.
00
%

34
28
50
9.
00

34
28
50
9

0.
00
%

3.
36

3.
82
%

0.
94

0.
00
%

0.
40

P
al
m
er

24
8.
33
%

10
86
65
6.
00

10
86
65
6

0.
00
%

0.
10

0.
00
%

10
.2
3

0.
00
%

0.
01

R
ai
dl

10
97
.7
8%

53
67
4.
00

53
67
4

0.
00
%

0.
12

0.
06
%

0.
38

0.
00
%

0.
02

R
ai
dl

20
97
.3
7%

15
75
70
.0
0

15
75
70

0.
00
%

49
.1
8

1.
67
%

9.
54

0.
00
%

1.
55

R
ai
dl

50
10
0.
00
%

80
68
64
.0
0

80
68
64

—
—

8.
44
%

33
8.
17

6.
63
%

72
00
.0
0

R
ai
dl

75
10
0.
00
%

14
81
53
3.
04

17
23
71
5

—
—

14
.0
5%

16
87
.5
7

13
.3
3%

72
00
.0
0

R
ai
dl

10
0

10
0.
00
%

22
40
59
7.
69

25
51

48
9

—
—

14
.5
1%

52
04
.7
6

12
.1
8%

72
00
.0
0

T
ab

le
5.
1:

C
om

pu
ta
ti
on

al
re
su
lt
s
w
it
h
be

nc
hm

ar
k
in
st
an

ce
s.

81

Chapter 5. Benders decomposition for the OCSTP

S
et

|V
|

|R
|

|E
|

B
es
t
K
n
ow

n
C
P
L
E
X

L
ag
ra
n
gi
an

B
en

d
er
s

L
B

U
B

ga
p

ti
m
e

ga
p

ti
m
e

ga
p

ti
m
e

C
on

tr
er
as

10
a

53
.3
3%

71
15
6.
00

71
15
6

0.
00
%

0.
07

0.
33
%

0.
25

0.
00
%

0.
00

C
on

tr
er
as

10
b

57
.7
8%

38
05
9.
00

38
05
9

0.
00
%

0.
02

0.
00
%

0.
20

0.
00
%

0.
00

C
on

tr
er
as

10
c

51
.1
1%

29
11
3.
00

29
11
3

0.
00
%

0.
01

0.
00
%

0.
06

0.
00
%

0.
00

C
on

tr
er
as

10
d

48
.8
9%

39
19
7.
00

39
19
7

0.
00
%

0.
25

0.
82
%

0.
59

0.
00
%

0.
06

C
on

tr
er
as

20
a

36
.8
4%

89
47
4.
00

89
47
4

0.
00
%

12
0.
29

4.
75
%

3.
48

0.
00
%

16
.6
0

C
on

tr
er
as

20
b

35
.7
9%

96
33
3.
00

96
33
3

0.
00
%

47
.7
2

1.
63
%

3.
92

0.
00
%

9.
94

C
on

tr
er
as

20
c

54
.7
4%

10
25
05
.0
0

10
25
05

0.
00
%

53
.8
8

3.
94
%

5.
75

0.
00
%

5.
71

C
on

tr
er
as

20
d

53
.6
8%

87
45
2.
00

87
45
2

0.
00
%

3.
17

0.
49
%

2.
94

0.
00
%

0.
30

C
on

tr
er
as

30
a

57
.4
7%

22
82
47
.0
0

22
82
47

0.
78
%

72
00
.0
0

2.
68
%

27
.0
7

0.
00
%

11
84
.2
8

C
on

tr
er
as

30
b

57
.9
3%

24
96
07
.0
0

24
96
07

1.
41
%

72
00
.0
0

2.
54
%

28
.7
0

0.
00
%

17
05
.1
2

C
on

tr
er
as

30
c

53
.7
9%

20
90
62
.0
0

20
90
62

1.
52
%

72
00
.0
0

3.
72
%

31
.8
5

0.
00
%

26
7.
31

C
on

tr
er
as

30
d

53
.7
9%

21
91
70
.0
0

21
91
70

0.
00
%

60
09
.3
6

3.
23
%

31
.4
8

0.
00
%

25
3.
64

C
on

tr
er
as

40
a

53
.8
5%

35
05
42
.0
0

35
05
42

—
—

1.
56
%

93
.2
0

0.
00
%

26
2.
47

C
on

tr
er
as

40
b

52
.3
1%

28
65
09
.4
5

29
14

63
—

—
4.
82
%

66
.1
2

1.
70
%

72
00
.0
0

C
on

tr
er
as

40
c

42
.8
2%

28
28
63
.7
9

28
71
98

—
—

5.
30
%

56
.4
3

1.
51
%

72
00
.0
0

C
on

tr
er
as

40
d

53
.5
9%

32
14
83
.4
6

34
77
15

—
—

10
.2
1%

46
.8
6

7.
54
%

72
00
.0
0

C
on

tr
er
as

50
a

51
.8
4%

44
17
79
.3
9

45
83

67
—

—
5.
00
%

20
8.
07

3.
62
%

72
00
.0
0

C
on

tr
er
as

50
b

51
.5
9%

47
23
77
.4
9

50
62

30
—

—
8.
66
%

20
1.
44

6.
69
%

72
00
.0
0

C
on

tr
er
as

50
c

51
.6
7%

36
97
15
.9
8

39
69
66

—
—

9.
40
%

17
0.
09

6.
86
%

72
00
.0
0

C
on

tr
er
as

50
d

50
.9
4%

46
67
02
.0
4

49
77

08
—

—
8.
44
%

18
0.
83

6.
23
%

72
00
.0
0

T
ab

le
5.
2:

C
om

pu
ta
ti
on

al
re
su
lt
s
w
it
h
be

nc
hm

ar
k
in
st
an

ce
s
(c
on

t)
.

82

5.3. Computational experience

Set |V| |R|
|E|

Best Known CPLEX Benders
LB UB gap time gap time

RE 15a 100% 1972939.00 1972939.00 0.00% 0.65 0.00% 0.08
RE 15b 100% 989881.00 989881.00 0.00% 0.86 0.00% 0.08
RE 15c 100% 1277105.00 1277105.00 0.00% 0.24 0.00% 0.05
RE 15d 100% 1359398.00 1359398.00 0.00% 0.33 0.00% 0.06
RE 15e 100% 1351673.00 1351673.00 0.00% 0.46 0.00% 0.07
RE 15f 100% 1467683.00 1467683.00 0.00% 3.81 0.00% 0.31
RE 15g 100% 1945563.00 1945563.00 0.00% 7.32 0.00% 0.76
RE 15h 100% 1378088.00 1378088.00 0.00% 10.62 0.00% 1.50
RE 15i 100% 1281752.00 1281752.00 0.00% 1.90 0.00% 0.20
RE 15j 100% 1304410.00 1304410.00 0.00% 2.85 0.00% 0.25
RE 20a 59% 1330571.00 1330571.00 0.00% 0.97 0.00% 0.10
RE 20b 52% 1013432.00 1013432.00 0.00% 41.77 0.00% 5.64
RE 20c 59% 1466450.00 1466450.00 0.00% 10.32 0.00% 0.67
RE 20d 57% 1164643.00 1164643.00 0.00% 0.56 0.00% 0.09
RE 20e 53% 1125497.00 1125497.00 0.00% 111.90 0.00% 19.64
RE 20f 49% 1315767.00 1315767.00 0.00% 58.17 0.00% 25.92
RE 20g 56% 747806.00 747806.00 0.00% 30.52 0.00% 2.99
RE 20h 59% 1825902.00 1825902.00 0.00% 137.81 0.00% 52.39
RE 20i 58% 1227597.00 1227597.00 0.00% 5002.02 0.00% 2404.59
RE 20j 57% 1122726.00 1122726.00 0.00% 147.86 0.00% 30.70
RE 25a 54% 1174871.00 1174871.00 1.90% 7200.00 0.00% 1688.99
RE 25b 49% 1098474.00 1098474.00 0.00% 215.44 0.00% 34.82
RE 25c 59% 1402633.77 1438161.00 5.88% 7200.00 2.47% 7200.00
RE 25d 62% 1474686.00 1474686.00 0.00% 24.16 0.00% 1.92
RE 25e 55% 2048460.00 2048460.00 0.00% 596.59 0.00% 129.25
RE 25f 56% 1589238.00 1589238.00 0.00% 199.70 0.00% 14.11
RE 25g 55% 1404961.00 1404961.00 0.00% 28.08 0.00% 0.95
RE 25h 56% 1213844.00 1213844.00 0.00% 351.22 0.00% 36.81
RE 25i 61% 2363499.00 2363499.00 0.00% 300.75 0.00% 13.56
RE 25j 58% 1441073.00 1441073.00 0.00% 158.23 0.00% 11.49
RE 30a 51% 1940439.00 1940439.00 0.00% 588.22 0.00% 34.47
RE 30b 57% 2097143.95 2176098.00 7.87% 7200.00 3.63% 7200.00
RE 30c 53% 1810865.00 1810865.00 0.00% 1701.90 0.00% 93.86
RE 30d 58% 2289389.00 2289389.00 0.00% 59.34 0.00% 2.08
RE 30e 60% 1639782.69 1644400.00 2.14% 7200.00 0.28% 7200.00
RE 30f 57% 2378356.00 2378356.00 2.57% 7200.00 0.00% 1409.94
RE 30g 51% 2103005.07 2159059.00 7.69% 7200.00 2.60% 7200.00
RE 30h 60% 1883947.00 1883947.00 0.00% 375.77 0.00% 3.87
RE 30i 57% 2152307.00 2152307.00 0.00% 6273.49 0.00% 522.48
RE 30j 55% 2125764.91 2193545.00 7.61% 7200.00 3.09% 7200.00
RE 35a 55% 3621617.03 3655932.00 3.06% 7200.00 0.94% 7200.00
RE 35b 55% 2451645.00 2451645.00 1.32% 7200.00 0.00% 1357.56
RE 35c 57% 2378461.54 2425059.00 4.83% 7200.00 1.92% 7200.00
RE 35d 57% 2477704.00 2477704.00 2.86% 7200.00 0.00% 6428.12
RE 35e 57% 2743061.22 2785410.00 4.20% 7200.00 1.52% 7200.00
RE 35f 59% 2418924.00 2418924.00 2.11% 7200.00 0.00% 5467.11
RE 35g 55% 3331612.38 3635655.00 27.41% 7200.00 8.36% 7200.00
RE 35h 55% 1879525.63 1934364.00 6.23% 7200.00 2.83% 7200.00
RE 35i 60% 2353854.80 2384533.00 8.43% 7200.00 1.29% 7200.00
RE 35j 56% 2569231.04 2600285.00 6.38% 7200.00 1.19% 7200.00
RE 40a 57% 3148329.27 3468868.00 — — 9.24% 7200.00s
RE 40b 59% 3353637.37 3634574.00 — — 7.73% 7200.00s
RE 40c 54% 3447319.08 3643423.00 — — 5.38% 7200.00s
RE 40d 54% 3587306.31 3887359.00 — — 7.72% 7200.00s
RE 40e 53% 2962071.66 2973328.00 — — 0.38% 7200.00s
RE 40f 55% 3023801.41 3218471.00 — — 6.05% 7200.00s
RE 40g 55% 2742135.75 3055173.00 — — 10.25% 7200.00s
RE 40h 53% 3074328.50 3243307.00 — — 5.21% 7200.00s
RE 40i 57% 2845897.39 2906273.00 — — 2.08% 7200.00s
RE 40j 54% 2512591.91 2593930.00 — — 3.14% 7200.00s

Table 5.3: Computational results with new benchmark instances.
83

Chapter 5. Benders decomposition for the OCSTP

84

Chapter 6
Conclusions

The OCSTP is a challenging combinatorial optimization problem with application
in the design of telecommunication and transportation networks. In spite of
its apparent simplicity, it is very difficult to find optimal solutions to OCSTP
instances, even if these instances are of moderate size.

In this dissertation, we studied several linear integer programming formulations
for the OCSTP and a Branch & Cut algorithm based on the Benders reformulation
of one of such formulations has been proposed. This Branch & Cut algorithm is
able to obtain, in reasonable computation times, solutions that match or improve
the best solutions known for several sets of instances from the OCSTP literature.

We also proposed two new combinatorial lower bounds, developed several
families of valid inequalities for a previously known formulation and considered a
new compact linear integer programming formulation for the OCSTP.

Regarding heuristic algorithms, we extended the AMLS to a restricted subset
of the 2-edge-exchange neighborhood and proposed a new family of spanning tree
neighborhoods based on the Dandelion code, which is a compact representation of
spanning trees with a remarkable locality bound. We also developed a new Divide
& Conquer constructive heuristic for the OCSTP and a improvement heuristic
that exploits the structural properties of the Dandelion Neighborhoods. Both
algorithms are comparable with the widely used Ahuja-Murty tree-building and
tree-improvement heuristics.

All these results have given rise to the publication Fernández et al. (2013c)
and the communications Contreras et al. (2015a,b); Fernández and Luna-Mota
(2012a,b, 2014); Fernández et al. (2013a,b).

85

Chapter 6. Conclusions

Finally, there are several topics related with the OCSTP that may be further
investigated but have been left out of the scope of this dissertation. A very
promising line of research consists of exploring how much the branching rule
proposed in the enumerative procedure of Ahuja and Murty (1987) will improve
our Benders reformulation of the OCSTP. Preliminary experiments show that it
is worth to use a more sophisticated branching rule for instances of 25 vertices
and above.

In a more speculative way, we consider interesting the study of the dual nature
of spanning trees (that can be interpreted as a set of n − 1 acyclic edges or as
a set of n − 1 non-crossing cuts) in relation with the OCSTP, whose objective
function may benefit from both, the use of shorter edges and cuts of minimum
capacity. It is possible that an hybrid linear integer programming formulation
that uses flow and distance variables, can exploit the redundancies derived from
the combined use of these variables to obtain better results than the flow-based
and the rooted-tree formulations that we have studied.

86

Appendix A

The Dandelion Code

In this Appendix we introduce the details of the Dandelion Code. In particular,
we present linear time algorithms for encoding and decoding Cayley strings with
the Dandelion Code. Both algorithms have been taken from Paulden and Smith
(2006) and are reproduced with minor variations. We encourage the reader to read
the original reference in order to fully grasp the nature of the Dandelion Code
and its properties.

A.1 A O(n) encoding algorithm

The input of Algorithm A.1 is an spanning tree with n vertices labeled as 1, 2, . . . , n,
and its output is the corresponding Dandelion Code (c2, c3, . . . , cn−1).

Algorithm A.1

1. Assume that the spanning tree is rooted in the vertex labeled as n and
perform a breadth-first search in order to obtain the successor of every
vertex.

2. Using the information obtained in the previous step, find the unique path π
in the tree between the vertices 1 and n as (1, succ(1), succ(succ(1)), . . . , n).

87

Appendix A. The Dandelion Code

3. Break π in cycles as follows:

(a) Traverse the path π from right to left and place a vertical separation
mark to the immediate right of each right-to-left minimum.

(b) Now, π can be split in several disjoint cycles {Z1, . . . , Zt} using the
separation marks.

4. Recover the Dandelion Code ci = φD(i) ∀i ∈ (2 . . . n− 1), which is charac-
terized by this 2 properties:

(a) If a label l belongs to one of the cycles created in the previous step,
Zi, then φD(l) is the label that follows l in Zi.

(b) If a label l does not belong to any cycle then φD(l) = succ(l).

Provided that we use the adjacency list representation for the spanning tree,
all the steps of the algorithm can be performed in O(n) time and, hence, the
whole algorithm is also O(n).

Example: We use the spanning tree represented below to illustrate the encoding
process:

1 → 2 5

2 → 1

3 → 6 8 11

4 → 8 9

5 → 1 8

6 → 3

7 → 9 12

8 → 3 4 5

9 → 4 7

10 → 12

11 → 3

12 → 7 10

1 2 6

5 8 3

9 4 11

7 12 10

88

A.1. A O(n) encoding algorithm

1. Given the adjacency list representation of the spanning tree, we perform a
breadth-first search starting at vertex 12 and obtain the successor of each
other vertex:

vertex 1 2 3 4 5 6 7 8 9 10 11 12

succesor 5 1 8 9 8 3 12 4 7 12 3 −

2. Now we can easily find the unique path π in the tree between the vertices 1

and 12:

(1, succ(1), succ(succ(1)), . . . , 12) = (1, 5, 8, 4, 9, 7, 12)

3. Break π in cycles:

(a) Traverse the path π from right to left and place a vertical separation
mark to the immediate right of each right-to-left minimum.

(1 | 5, 8, 4 | 9, 7 | 12)

(b) Split π in several disjoint cycles {Z1, . . . , Zt} using the separation
marks.

(1) (5, 8, 4) (9, 7) (12)

4. Finally, recover the Dandelion Code ci = φD(i) ∀i ∈ (2 . . . n− 1), which is
characterized by these two properties:

(a) If a label l belongs to one of the cycles created in the previous step Zi
then φD(l) is the label that follows l in Zi.

(_,_, 5, 8,_, 9, 4, 7,_,_)

(b) If a label l does not belong to any cycle then φD(l) = succ(l).

(1, 8, 5, 8, 3, 9, 4, 7, 12, 3)

89

Appendix A. The Dandelion Code

A.2 A O(n) decoding algorithm

The input of Algorithm A.2 is a Dandelion Code string (c2, c3, . . . , cn−1) and its
output is the corresponding spanning tree with n vertices labeled as 1, 2, . . . , n.

Algorithm A.2

1. Define a function φD : [1, n]→ [1, n] such that:

(a) φD(1) = 1

(b) φD(n) = n

(c) φD(i) = ci ∀i ∈ (2 . . . n− 1).

2. Let {Z1, . . . , Zt} the cycles of the function φD.

3. Rearrange the cycles in the only possible way such that:

(a) The smallest element of every cycle, si, is in the rightmost place of the
cycle.

(b) The smallest elements of every cycle are in increasing order, i.e. si < sj

when i < j.

4. Form a single list π with the rearranged cycles from the first element of Z1

through the last element of Zt.

5. Recover the spanning tree T with these final steps:

(a) Start with n isolated vertices labeled 1, 2, . . . , n.

(b) Build a path from 1 to n adding the edges: (π1, π2), (π2, π3) . . . ,
(πk−2, πk−1), (πk−1, πk).

(c) For every label l not present in the path of the previous step, add the
edge: (l, cl).

Again, since all the steps of the algorithm can be performed in O(n) time, the
whole algorithm is also O(n).

90

A.2. A O(n) decoding algorithm

Example: Following with the previous example we are going to decode
(1, 8, 5, 8, 3, 9, 4, 7, 12, 3) into the spanning tree of Figure A.1:

1. Define a function φD : [1, n]→ [1, n] such that:

(a) φD(1) = 1

(b) φD(n) = n

i 1 2 3 4 5 6 7 8 9 10 11 12

φD(i) 1 _ _ _ _ _ _ _ _ _ _ 12

(c) φD(i) = ci ∀i ∈ (2 . . . n− 1).

i 1 2 3 4 5 6 7 8 9 10 11 12

φD(i) 1 1 8 5 8 3 9 4 7 12 3 12

2. Let {Z1, . . . , Zt} the cycles of the function φD.

{(12), (9, 7), (8, 4, 5), (1)}

3. Rearrange the cycles in the only way such that:

(a) The smallest element of every cycle si is in the rightmost place of the
cycle.

{(12), (9, 7), (5, 8, 4), (1)}

(b) The smallest elements of every cycle are in increasing order, i.e. si < sj

when i < j.

{(1), (5, 8, 4), (9, 7), (12)}

4. Form a single list π with the rearranged cycles from the first element of Z1

through the last element of Zt.

(1, 5, 8, 4, 9, 7, 12)

91

Appendix A. The Dandelion Code

5. Recover the spanning tree T applying the following final steps:

(a) Start with n isolated vertices labeled 1, 2, . . . , n.

vertex 1 2 3 4 5 6 7 8 9 10 11 12

neighbors

(b) Build a path from 1 to n adding the edges: (π1, π2), (π2, π3) . . . ,
(πk−2, πk−1), (πk−1, πk).

vertex 1 2 3 4 5 6 7 8 9 10 11 12

neighbors 5 8 1 9 5 4 7

9 8 12 4 7

(c) For every label l not present in the path of the previous step, add the
edge: (l, cl).

vertex 1 2 3 4 5 6 7 8 9 10 11 12

neighbors 5 1 6 8 1 3 9 5 4 12 3 7

2 8 9 8 12 4 7 10

11 3

1 2 6

5 8 3

9 4 11

7 12 10

Figure A.1: Directed Spanning Tree rooted at vertex 12.

92

Appendix B

OCSTP Instances

In the computational experiments reported in Section 3.2.2, Section 3.3.4, Sec-
tion 4.3 and Section 5.3, we used several sets of Benchmark instances from the
OCSTP literature. In particular we obtained from Contreras a set of eleven
well-known instances already used in Rothlauf (2006) and another set of twenty
instances used in Contreras et al. (2010a) for the first time:

1. Palmer instances: (Palmer, 1994) Three instances of 6, 12 and 24 vertices
representing cities in the United States of America. The distances are
obtained from a database whereas the communication requests are inversely
proportional to the distances.

2. Raidl instances: Five instances attributed to Raidl with 10, 20, 50, 75
and 100 vertices. Distances and communication requirements are uniformly
distributed in the range [0, 100].

3. Berry instances: (Berry et al., 1995) Three instances of 6, 35 and 35
vertices. The bigger instances have the same communication requirements
but one of them (Berry35u) has been modified to made all distances equal.

4. Contreras instances: (Contreras, 2009) Twenty instances of 10, 20, 30,
40 and 50 vertices (four of each size) derived from Raidl100 instance by
randomly selecting subsets of vertices and imposing that about 50% of the
communication requirements must be 0.

93

Appendix B. OCSTP Instances

Additionally, we created a new set of 120 Random Euclidean instances which
are available from the author upon request:

5. Random Euclidean: 120 instances divided in 12 groups of 10 instances
with 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90 and 100 vertices respectively.
For all these instances the distances are the metric closure of a cost matrix
whose entries are uniformly distributed in the range [1,100] whereas the
communication requirements are uniformly distributed in the range [1,1000].
Additionally, for instances with 20 or more vertices, a 44% of the commu-
nication requests, randomly chosen, have been set to 0 to obtain instances
that are comparable with the Contreras set.

Finally, we used the information obtained by our Branch & Cut algorithm
to learn more about the structure of the optimal solutions. In Table B.1 we
report the average path length (i.e. the average number of edges in the path
connecting two vertices), the diameter (i.e. the maximum number of edges in the
path connecting two vertices) and the degree distribution of the optimal solutions
(or best known solutions if optimal solutions were unavailable) of several sets of
Random Euclidean instances (we report the average values for 10 instances of
each size). We also report the corresponding values of the MST associated to the
cost matrix c of these instances as well as corresponding values of stars, binary
trees and paths of the same size.

We observe that OCST and stars tend to have small average path lengths, as
expected. OCST, however, differ from stars when we compare their diameter or
their degree distribution. In the first aspect, OCST are similar to binary trees,
whose diameter is proportional to log2(|V |). Regarding de degree distribution,
however, OCST are more similar to MST but tend to have more vertices of high
degree. These observations are consistent with the findings of other authors (see
Rothlauf, 2009b; Steitz and Rothlauf, 2008, 2009, 2012a) and with the nature of
the OCSTP.

94

|V
|

P
at

h
D

ia
m

.
D

eg
re

e
D

is
tr

ib
u
ti

on
L
en

gt
h

1
2

3
4

5
6

7
8

9
10

..
.
|V
−

1
|

Stars

15
1.

87
2.

0
93

.3
%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

6.
7%

20
1.

90
2.

0
95

.0
%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

5.
0%

25
1.

92
2.

0
96

.0
%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

4.
0%

30
1.

93
2.

0
96

.7
%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

3.
3%

35
1.

94
2.

0
97

.1
%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

2.
9%

40
1.

95
2.

0
97

.5
%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

2.
5%

OCST

15
1.

63
6.

7
52

.0
%

23
.3

%
14

.7
%

7.
3%

1.
3%

1.
3%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

0.
0%

20
1.

78
7.

0
56

.0
%

18
.0

%
13

.5
%

8.
5%

1.
5%

1.
5%

1.
0%

0.
0%

0.
0%

0.
0%

..
.

0.
0%

25
1.

93
7.

8
58

.4
%

18
.8

%
9.

6%
5.

2%
4.

0%
2.

4%
1.

2%
0.

0%
0.

4%
0.

0%
..

.
0.

0%
30

2.
16

8.
6

52
.0

%
23

.3
%

11
.3

%
7.

3%
4.

7%
1.

3%
0.

0%
0.

0%
0.

0%
0.

0%
..

.
0.

0%
35

2.
23

9.
5

56
.0

%
19

.1
%

10
.9

%
7.

1%
3.

7%
2.

0%
0.

9%
0.

3%
0.

0%
0.

0%
..

.
0.

0%
40

2.
34

10
.0

56
.3

%
18

.8
%

12
.5

%
5.

8%
2.

5%
2.

5%
0.

8%
0.

4%
0.

4%
0.

0%
..

.
0.

0%

MST

15
3.

55
7.

5
44

.0
%

32
.0

%
18

.7
%

4.
0%

1.
3%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

0.
0%

20
4.

34
9.

4
43

.0
%

33
.5

%
15

.5
%

7.
0%

0.
5%

0.
5%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

0.
0%

25
4.

76
10

.8
44

.4
%

32
.4

%
14

.0
%

6.
0%

2.
4%

0.
8%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

0.
0%

30
5.

32
12

.5
44

.0
%

30
.3

%
16

.3
%

7.
3%

1.
7%

0.
3%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

0.
0%

35
5.

85
13

.8
39

.4
%

35
.7

%
18

.3
%

4.
6%

1.
7%

0.
3%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

0.
0%

40
6.

50
15

.0
42

.8
%

31
.8

%
16

.3
%

7.
0%

1.
8%

0.
3%

0.
3%

0.
0%

0.
0%

0.
0%

..
.

0.
0%

BinaryTrees

15
3.

5
6.

0
53

.3
%

6.
7%

40
.0

%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
..

.
0.

0%
20

4.
06

8.
0

50
.0

%
10

.0
%

40
.0

%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
..

.
0.

0%
25

4.
51

8.
0

52
.0

%
4.

0%
44

.0
%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

0.
0%

30
4.

91
8.

0
50

.0
%

6.
7%

43
.3

%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
..

.
0.

0%
35

5.
26

10
.0

51
.4

%
2.

9%
45

.7
%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

0.
0%

40
5.

53
10

.0
50

.0
%

5.
0%

45
.0

%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
..

.
0.

0%

Paths

15
5.

33
14

.0
13

.3
%

0.
0%

13
.3

%
73

.3
%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

0.
0%

20
7.

00
19

.0
10

.0
%

0.
0%

10
.0

%
80

.0
%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

0.
0%

25
8.

67
24

.0
8.

0%
0.

0%
8.

0%
84

.0
%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

0.
0%

30
10

.3
3

29
.0

6.
7%

0.
0%

6.
7%

86
.7

%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
..

.
0.

0%
35

12
.0

0
34

.0
5.

7%
0.

0%
5.

7%
88

.6
%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

..
.

0.
0%

40
13

.6
7

39
.0

5.
0%

0.
0%

5.
0%

90
.0

%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
..

.
0.

0%

T
ab

le
B
.1
:S

tr
uc
tu
ra
la

na
ly
si
s
of

th
e
op

ti
m
al

or
be

st
kn

ow
n
so
lu
ti
on

s
of

R
an

do
m

E
uc
lid

ea
n
in
st
an

ce
s.

95

Appendix B. OCSTP Instances

96

Index

Ahuja-Murty constructive heuristic, 47
Ahuja-Murty Local Search (AMLS), 52

extended AMLS, 54

Benders decomposition, 16
Benders feasibility cuts (BFC), 17
Benders optimality cuts (BOC), 17
Branch & Bound, 14

Communication cost, 21
Cut, 5

capacity, 6
non-crossing, 7

Cut-Set Inequalities (CSI), 33

Dandelion code, 10
decoding algorithm, 90
encoding algorithm, 87
Partially Ordered Neighborhood Structure (PONS), 58

Decision variables, 14
Divide & Conquer constructive heuristic, 49

bottom up version, 50

Feasible Region, 14
Feasible Solution, 14
Flow-based formulation, 36

97

Index

Linear Ordering Problem (LOP), 41
Linear Programming, 14
linear relaxation, 15

Min-Cut Tree (MCT), 12
Minimum Spanning Tree (MST), 11
Mixed Integer Linear Programming (MILP), 14
Monte Carlo Pons Search (MCPS), 60
MST-MCT lower bound, 29

Objective Function, 14
Optimum Communication Spanning Tree Problem (OCSTP), 21
Optimum Distance Spanning Tree Problem (ODSTP), 23
Optimum Requirement Spanning Tree Problem (ORSTP), 23

Path-based formulation, 35

Rooted tree formulation, 37, 40

Second-shortest-path lower bound, 28
Shortest-path lower bound, 28
Spanning tree, 7
Subtour Elimination Constraints (SEC), 33

98

Bibliography

Ahuja, R. K. and V. V. S. Murty (1987). Exact and heuristic algorithms for the
optimum communication spanning tree problem. Transportation Science 21 (3),
163–170. [Cited on pages 24, 25, 47, 52, 62, and 86].

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische Mathematik 4, 238–252. [Cited on page 16].

Berry, L. T. M., B. A. Murtagh, and G. McMahon (1995). Applications of a
genetic-based algorithm for optimal design of tree-structured communication
networks. In Proceedings of the Regional Teletraffic Engineering Conference of
the International Teletrafficc Congress, pp. 361–370. [Cited on page 93].

Browne, C., P. Rohlfshagen, and E. Powley (2011). Monte-carlo tree search.
http://www.mcts.ai/. [Cited on page 60].

Bulajich Manfrino, R., J. A. Gómez Ortega, and R. Valdez Delgado (2009).
Inequalities - A Mathematical Olympiad Approach. Birkhäuser Basel. [Cited on
page 30].

Cayley, A. (1889). A theorem on trees. Quarterly Journal of Mathematics 23,
376–378. [Cited on page 9].

Contreras, I. (2009). Network Hub Location: Models, Algorithms, and Related
Problems. Ph. D. thesis, Universitat Politècnica de Catalunya. [Cited on pages
25, 32, and 93].

Contreras, I. and E. Fernández (2012). General network design: A unified view
of combined location and network design problems. European Journal of
Operational Research 219 (3), 680–697. [Cited on pages 3 and 24].

99

http://www.mcts.ai/

Bibliography

Contreras, I., E. Fernández, and C. Luna-Mota (2015a, June). Benders decom-
position for the OCSTP. In CORS/INFORMS Conference, Montréal, Canada.
[Cited on pages 4 and 85].

Contreras, I., E. Fernández, and C. Luna-Mota (2015b, October). Benders
decomposition for the OCSTP. In Workshop on Combinatorial Optimization,
Routing and Location, Salamanca, Spain. [Cited on pages 4 and 85].

Contreras, I., E. Fernández, and A. Marín (2010a). Lagrangean bounds for the
optimum communication spanning tree problem. TOP 18 (1), 140–157. [Cited
on pages 25, 41, 42, 44, 62, 79, and 93].

Contreras, I., E. Fernández, and A. Marín (2010b). The tree-of-hubs location
problem: A comparison of formulations. European Journal of Operational
Research 202, 390–400. [Cited on pages 3 and 24].

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2009). Introduction
to Algorithms (3rd ed.). MIT Press. [Cited on pages 2 and 8].

Eisner, J. (1997). State-of-the-art algorithms for minimum spanning trees: A
tutorial discussion. Manuscript available online (78 pages), University of Penn-
sylvania. [Cited on pages 7 and 11].

Fernández, E. and C. Luna-Mota (2012a, August). A compact formulation for the
OCSTP. In International Symposium on Mathematical Programming, Belin,
Germany. [Cited on pages 4 and 85].

Fernández, E. and C. Luna-Mota (2012b, May). A compact formulation for the
OCSTP. In Workshop on Combinatorial Optimization, Routing and Location,
Benicassim, Spain. [Cited on pages 4 and 85].

Fernández, E. and C. Luna-Mota (2014, July). A dandelion code extension: using
codes beyond genetic algorithms. In 20th IFORS Conference, Barcelona, Spain.
[Cited on pages 4 and 85].

Fernández, E., C. Luna-Mota, A. Hildenbrandt, G. Reinelt, and S. Wiesberg
(2013a, January). A 3-index formulation for the OCSTP. In 17th Combinatorial
Optimization Workshop, Aussois, France. [Cited on pages 4 and 85].

100

Bibliography

Fernández, E., C. Luna-Mota, A. Hildenbrandt, G. Reinelt, and S. Wiesberg
(2013b, May). A flow formulation for the OCSTP. In International Network
Optimization Conference, Tenerife, Spain. [Cited on pages 4 and 85].

Fernández, E., C. Luna-Mota, A. Hildenbrandt, G. Reinelt, and S. Wiesberg
(2013c). A flow formulation for the optimum communication spanning tree.
Electronic Notes in Discrete Mathematics 41, 85–92. [Cited on pages 4, 25,
and 85].

Fischer, T. (2007). Improved local search for large optimum communication
spanning tree problems, pp. 2–4. 7th Metaheuristics International Conference.
[Cited on pages 25 and 54].

Fischer, T. and P. Merz (2007). A memetic algorithm for the optimum communi-
cation spanning tree problem. In Hybrid Metaheuristics, Volume 4771 of Lecture
Notes in Computer Science, pp. 170–184. Springer. [Cited on pages 25 and 54].

Fischetti, M., G. Lancia, and P. Serafini (2002). Exact algorithms for minimum
routing cost trees. Networks 39 (3), 161–173. [Cited on pages 3, 24, and 25].

Ford, L. R. and D. R. Fulkerson (1956). Maximal flow through a network. Canadian
Journal of Mathematics 8, 399–404. [Cited on page 6].

Gomory, R. E. and T. C. Hu (1961). Multi-terminal network flows. Journal of
the Society for Industrial and Applied Mathematics 9 (4), 551–570. [Cited on
pages 12, 13, and 35].

Gottlieb, J., B. A. Julstrom, F. Rothlauf, and G. R. Raidl (2001). Prüfer numbers:
A poor representation of spanning trees for evolutionary search. In Proceedings
of the 2001 Genetic and Evolutionary Computation Conference, pp. 343–350.
[Cited on page 10].

Gusfield, D. (1990). Very simple methods for all pairs network flow analysis.
SIAM Journal on Computing 19 (1), 143–155. [Cited on page 13].

Hu, T. C. (1974). Optimum communication spanning trees. SIAM Journal on
Computing 3 (3), 188–195. [Cited on pages 2, 7, 21, 23, 24, and 34].

101

Bibliography

Johnson, D. S., J. K. Lenstra, and A. H. G. Rinnooy Kan (1978). The complexity
of the network design problem. Networks 8 (4), 279–285. [Cited on pages 2
and 24].

Korte, B. and J. Vygen (2007). Combinatorial Optimization: Theory and Algo-
rithms (4th ed.). Springer. [Cited on page 33].

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society 7 (1),
48–50. [Cited on page 12].

Lawler, E. L. (2001). Combinatorial Optimization: Networks and Matroids. Dover
Publications. [Cited on pages 7 and 29].

Li, Y. and Y. Bouchebaba (2000). A new genetic algorithm for the optimal
communication spanning tree problem. In Artificial Evolution, Volume 1829 of
Lecture Notes in Computer Science, pp. 162–173. Springer. [Cited on page 25].

Magnanti, T. L. and L. A. Wolsey (1995). Optimal trees. In Handbooks in
Operations Research and Management Science, Volume 7, pp. 503–615. Elsevier.
[Cited on pages 32 and 33].

Magnanti, T. L. and R. T. Wong (1981). Accelerating benders decomposition: Al-
gorithmic enhancement and model selection criteria. Operations Research 29 (3),
464–484. [Cited on pages 19, 41, and 73].

Martí, R. and G. Reinelt (2011). The Linear Ordering Problem: Exact and
Heuristic Methods in Combinatorial Optimization. Springer. [Cited on page 41].

Martins de Sá, E., R. Saraiva de Camargo, and G. de Miranda (2013). An improved
benders decomposition algorithm for the tree of hubs location problem. European
Journal of Operational Research 226 (2), 185–202. [Cited on page 75].

Palmer, C. (1994). An approach to a problem in network design using genetic
algorithms. Ph. D. thesis, Polytechnic University, Troy, NY. [Cited on page 93].

Palmer, C. and A. Kershenbaum (1994). Two algorithms for finding optimal
communication spanning trees. Technical report, IBM T. J. Watson Research
Center. [Cited on page 25].

102

Bibliography

Papadakos, N. (2008). Practical enhancements to the magnanti-wong method.
Operations Research Letters 36 (4), 444–449. [Cited on pages 19 and 74].

Papadimitriou, C. and M. Yannakakis (1988). Optimization, approximation, and
complexity classes. In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, pp. 229–234. [Cited on pages 2 and 24].

Paulden, T. and D. K. Smith (2006). From the dandelion code to the rainbow
code: a class of bijective spanning tree representations with linear complexity
and bounded locality. IEEE Transactions on Evolutionary Computation 10 (2),
108–123. [Cited on pages 10, 58, and 87].

Peleg, D. (1997). Approximating minimum communication cost spanning trees and
related problems. pp. 1–11. International Colloquium on Structural Information
and Communication Complexity. [Cited on page 25].

Picciotto, S. (1999). How to encode a tree. Ph. D. thesis, University of California,
San Diego. [Cited on page 10].

Prüfer, H. (1918). Neuer beweis eines satzes über permutationen. Archiv für
Mathematik und Physik 27, 142–144. [Cited on page 9].

Ravelo, S. V. and C. E. Ferreira (2015). Ptas for some metric p-source communi-
cation spanning tree problems. In WALCOM: Algorithms and Computation,
Volume 8973 of Lecture Notes in Computer Science, pp. 137–148. Springer.
[Cited on page 26].

Reinelt, G. (2013). Lower bounds for the optimum communication spaning tree
problem. Personal communication. [Cited on page 28].

Reshef, E. and D. Peleg (1998). Deterministic polylog approximation for minimum
communication spanning trees. pp. 670–681. International Colloquium on
Automata, Languages and Programming. [Cited on page 25].

Rothlauf, F. (2006). Representations for Genetic and Evolutionary Algorithms
(2nd ed.). Springer. [Cited on pages 26 and 93].

Rothlauf, F. (2007). Design and applications of metaheuristics. Technical report,
Universität Mannheim. [Cited on page 25].

103

Bibliography

Rothlauf, F. (2009a). An encoding in metaheuristics for the minimum communica-
tion spanning tree problem. INFORMS Journal on Computing 21 (4), 575–584.
[Cited on page 26].

Rothlauf, F. (2009b). On optimal solutions for the optimal communication
spanning tree problem. Operation Research 57 (2), 413–425. [Cited on pages 24,
26, 62, and 94].

Sharma, P. (2006). Algorithms for the optimum communication spanning tree
problem. Annals of Operations Research 143, 203–209. [Cited on page 26].

Soak, S. M. (2006). A new evolutionary approach for the optimal communication
spanning tree problem. IEICE Transactions on Fundamentals of Electronics
Communications and Computer Sciences E89-A(10), 2882–2893. [Cited on
page 25].

Steitz, W. and F. Rothlauf (2008). Orientation matters: How to efficiently solve
ocst problems with problem-specific eas. In Proceedings of the 10th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’08, pp. 563–570.
ACM. [Cited on pages 24, 26, and 94].

Steitz, W. and F. Rothlauf (2009). New insights into the ocst problem: Integrating
node degrees and their location in the graph. In Proceedings of the 11th
Annual Conference on Genetic and Evolutionary Computation, GECCO ’09,
pp. 357–364. ACM. [Cited on pages 24, 26, and 94].

Steitz, W. and F. Rothlauf (2012a). Edge orientation and the design of problem-
specific crossover operators for the ocst problem. IEEE Transactions on Evolu-
tionary Computation 16 (1), 108–116. [Cited on pages 24, 26, and 94].

Steitz, W. and F. Rothlauf (2012b). Using penalties instead of rewards: Solving
OCST problems with guided local search. Swarm and Evolutionary Computa-
tion 3, 46–53. [Cited on page 26].

Tilk, C. and S. Irnich (2015, June). Combined column-and-row generation for the
optimal communication spanning tree problem. In 6th International Workshop
on Freight Transportation and Logistics , Ajaccio, France. [Cited on page 25].

104

Bibliography

Wolf, S. and P. Merz (2010). Efficient cycle search for the minimum routing
cost spanning tree problem. In Evolutionary Computation in Combinatorial
Optimization, Volume 6022 of Lecture Notes in Computer Science, pp. 276–287.
Springer. [Cited on pages 25 and 54].

Wolsey, L. A. (1998). Integer programming. Wiley-Interscience series in discrete
mathematics and optimization. J. Wiley & sons. [Cited on page 15].

Wu, B. (2002). A polynomial time approximation scheme for the two-source
minimum routing cost spanning trees. Journal of Algorithms 44, 359–378.
[Cited on page 26].

Wu, B., K.-M. Chao, and C. Tang (2000a). Approximation algorithms for some
optimum communication spanning tree problems. Discrete Applied Mathemat-
ics 102, 245–266. [Cited on page 25].

Wu, B. Y., K. Chao, and C. Tang (2002). Light graphs with small routing cost.
Networks 39 (3), 130–138. [Cited on page 25].

Wu, B. Y., K.-M. Chao, and C. Y. Tang (2000b). A polynomial time approximation
scheme for optimal product-requirement communication spanning trees. Journal
of Algorithms 102, 245–266. [Cited on page 25].

Wu, B. Y., G. Lancia, V. Bafna, K.-M. Chao, R. Ravi, and C. Tang (2000c). A
polynomial time approximation scheme for minimum routing cost spanning
trees. SIAM Journal on Computing 29, 761–778. [Cited on pages 3, 24, and 25].

105

	Introduction
	Mathematical preliminaries
	Graph Theory
	Spanning trees
	Some Notable trees

	Mixed Integer Linear Programming
	Benders Decomposition

	The OCSTP
	Problem definition
	Additional assumptions
	Notable particular cases of the OCSTP
	State-of-the-Art

	Upper and lower bounds
	Upper bounds
	Lower bounds

	MILP formulations for the OCSTP
	Variables and objective functions
	Path-based and flow-based formulations
	The Rooted tree formulation
	Computational comparison of linear formulations

	Heuristic algorithms
	Constructive heuristics
	The Ahuja-Murty Constructive Heuristic
	The Divide & Conquer Heuristic

	Improvement heuristics
	The Ahuja-Murty Local Search
	The Dandelion PONS

	Computational experience

	Benders decomposition for the OCSTP
	The Benders reformulation
	Algorithmic refinements
	Separation of optimality cuts
	Separation of Pareto-optimal optimality cuts
	Fractional cuts and filtering strategies
	Local Cuts
	Rounding Heuristic

	Computational experience

	Conclusions
	The Dandelion Code
	A O(n) encoding algorithm
	A O(n) decoding algorithm

	OCSTP Instances

