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Abstract

Current and future galaxy surveys will be able to map the large-scale structure of the
Universe with unprecedented detail and measure cosmological parameters with exquisite
precision. In order to develop the science cases and the analysis pipelines, it is necessary
an accurate modelling of the non-linear gravitational evolution. This thesis presents a
methodology for producing accurate mock catalogues, much faster than conventional
methods (2-3 orders of magnitude) and with a realistic observational geometry.

First, we present the optimization of a quasi N -body method in the compromise be-
tween accuracy and computational cost. We studied how variations in the code param-
eter space have and impact on the accuracy of observables such as the halo abundance
and distribution and matter clustering. We propose optimal parameter configurations
for achieving high accuracy as compared to exact N -body simulations and we explore
different calibration techniques to match even better the latter.

The next step is mimicking the geometry of real astrophysical observations, in which
distant objects are seen in the past light cone. We introduce ICE-COLA, a simulation
code developed for this thesis that implements the production of light cone catalogues
on-the-fly. The user can generate three different kind of data types. The first contains all
the information while the others store high-level data catalogues ready to use to model
galaxy surveys. This enables large compression factors of ∼ 2 orders of magnitude of the
volume of data to be stored. In particular, the code can generate halo catalogues in the
light cone and two-dimensional projected matter density maps in spherical concentric
shells around the observer.

We produce large light cone simulations with the new method developed and we
show the validation of the catalogues. In particular, we model for the first time weak
gravitational lensing with an approximate method and we show that we can resolve most
of the scales probed by current lensing experiments. Finally we extend the results to halo
mock catalogues with weak lensing quantities, which represents the first success in the
ability of modelling galaxy clustering and weak lensing observables consistently in a fast
simulation.
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1

INTRODUCTION

Motivation

Present and planned galaxy surveys like the Dark Energy Survey1 (DES, The Dark En-
ergy Survey Collaboration, 2005), the Kilo Degree Survey (KiDS; de Jong et al., 2013) the
Large Synoptic Survey Telescope2 (LSST, LSST Science Collaboration et al., 2009), Euclid3

(Laureijs et al., 2011) , the Wide-Field Infrared Survey Telescope – Astrophysics Focused
Telescope Asset4 (WFIRST–AFTA; Spergel et al., 2013), the Extended Baryon Oscillation
Spectroscopic Surveye5 (eBOSS, Dawson et al., 2016), the Dark Energy Spectroscopic In-
strument6 (DESI, Levi et al., 2013), will generate a wealth of high-quality data that will
allow to test the nature of dark matter and dark energy and constrain possible devia-
tions from the standard cosmological model based on General Relativity (Weinberg et al.,
2013).

Galaxy clustering encompass a wide class of observational probes that aim at extract-
ing cosmological information from the distribution of galaxies in the sky. Galaxy clusters
are the final result of the amplified primordial fluctuations by the gravitational attraction,
and analysing their correlations it is possible to test the theories of gravity, the expansion
history and the matter content of the Universe. In particular, Baryon Acoustic Oscilla-
tions (BAO) leave an imprint on the matter distribution that can be measured as an ex-
cess of clustering of galaxies at a certain scale (for a review, see Bassett & Hlozek, 2010).
Therefore, it provides a standard ruler that can be measured with two-point statistics.
The first detection of this signature was reported in 2005 by Eisenstein et al., 2005. In the
present, the most precise BAO measurements derive from the Baryonic Oscillation Spec-
troscopic Survey (BOSS) DR12 galaxy sample (Cuesta et al., 2016; Gil-Marin et al., 2016),
which provided a measurement of the BAO scale at the mean redshift z = 0.57 with a
precision almost at the percent level. See the left panel in Fig. 1 for the cosmological
constraints from BOSS.

1http://www.darkenergysurvey.org/
2http://www.lsst.org
3http://www.euclid-ec.org/
4http://wfirst.gsfc.nasa.gov/
5http://www.sdss.org/surveys/eboss/
6http://desi.lbl.gov/
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Another observable of galaxy surveys is weak gravitational lensing. This effect is the
consequence of light rays being bended by massive objects as they travel through the Uni-
verse, as predicted by Albert Einstein’s general theory of relativity. It is a phenomena that
carries information about the matter distribution along the line-of-sight and therefore it
is an invaluable tool for probing cosmological models, such as the theory of gravity, the
properties of dark matter and dark energy or the physics at inter-cluster scales (for good
reviews, see Bartelmann & P. Schneider, 2001; Huterer, 2010; Kilbinger, 2015). There are
many applications of weak gravitational lensing. Cosmic shear is the analysis of tidal de-
formation of images, that make galaxy shapes to have coherent distortions. By averaging
over many galaxies, their intrinsic orientations are expected to be cancelled and the lens-
ing signal can then be measured. The first detections of cosmic shear were done in 2000
by several independent groups (Bacon et al., 2000; Kaiser et al., 2000; Van Waerbeke et al.,
2000; Wittman et al., 2000; Miyazaki et al., 2002), in fields that ranged from 0.5 to 2 deg2.
Next milestones were set by the Canada-France Hawaii Legacy Survey (CFHTLS; Hoek-
stra et al., 2006) and the CFHT Lens Survey (CFHTLenS; Kilbinger et al., 2013), which by
measuring the two-dimensional shear correlation function in an observed area of more
than 100 deg2 were able to constrain cosmological parameters (see right panel in Fig 1).
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FIGURE 1: Left: Constraints on the expansion rate and the matter content
from BOSS in combination with other probes. Right: contours on the σ8 −
Ωm plane from the CFHTLLens survey and other data sets. (From Cuesta
et al., 2016 and Kilbinger et al., 2013 for BOSS and CFHTLenS respectively).

In the same vein as CFHTLenS, ongoing shear surveys rely on observing large sam-
ples of galaxies in multiple photometric bands and estimating radial distances thanks to
photometric redshifts. However, the covered area is now being increased by an order of
magnitude. This is the case of KiDS and DES, which will observe 1500 and 5000 deg2

respectively once they are completed. Nonetheless, next generation projects will cover
most of the extragalaxtic sky, such as the LSST, Euclid and WFIRST–AFTA. Weak lens-
ing is currently entering a golden era in which statistical uncertainties are being reduced
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drastically. In the near future it may become one of the most powerful cosmological
probes if systematic effects are controlled in the modelling and analysis. Likelihood anal-
ysis use theoretical predictions of covariance matrices, which are hard to model for weak
lensing since it is an observable that probes highly non-linear scales at the same time that
samples very large volumes. Ordinary numerical simulations of large-scale structure for-
mation can provide predictions but become prohibitively expensive if lots of realizations
are required to estimate covariances by Monte-Carlo methods.

An optimal extraction of cosmological parameters from those very large and com-
plex datasets will ultimately rely on our ability to model cosmological observables and
their covariances with high accuracy. This entails the development of synthetic obser-
vations based on mock catalogues produced from numerical simulations, that allow to
optimize the pipelines, model and mitigate systematic effects, calibrate algorithms, test
new techniques, etc. The requirement of sampling large cosmological volumes while still
resolving small scales is a big challenge to current N -body simulation codes (Kim et al.,
2011; Angulo et al., 2012; Alimi et al., 2012; Skillman et al., 2014; Heitmann, Lawrence, et
al., 2014; Fosalba, Crocce, et al., 2015; for a review see Kuhlen et al., 2012). Moreover, hun-
dreds or thousands of realizations are needed for robustly estimating covariance matrices
(crucial for cosmological parameter estimation, see A. Taylor et al., 2013; Blot, Corasan-
iti, Alimi, et al., 2015) or for propagating errors in complex and non-linear analysis (e.g.
Baryon Acoustic Oscillations reconstruction, see Takahashi, Yoshida, et al., 2009; Manera,
Scoccimarro, et al., 2013; Kazin et al., 2014; Ross et al., 2015). Yet, producing massive en-
sembles of N -body mocks is computationally prohibitive and alternative routes need to
be devised in order to face the enormous challenge. This is what approximate methods
aim to solve, which overcome the problem of explicitly solving the non-linear evolution
by incorporating a smart modelling of the small-scale physics.

Most of the experiments mentioned before probe both weak lensing and galaxy clus-
tering simultaneously. Combining both in a single analysis is definitely the best way to
tighten cosmological constraints, since degeneracies can be broken and their systematic
effects have different origins. In the roadmap for designing and optimally exploiting next
generation of galaxy surveys it is therefore necessary to model accurately both observ-
ables in a consistent way and produce thousands of mock catalogues to analyse the data.
This thesis presents a methodology to achieve that goal. A fast method is optimized in the
compromise between accuracy and computational cost. Efficient light cone simulations
are developed and they are used to model galaxy clustering and weak lensing consis-
tently. The method is validated and it is shown the accuracy in which it reproduces full
N -body simulations that require between 2 and 3 orders of magnitude more resources.

Contents of this thesis

This thesis is organized as follows. Chapter 1 gives a general introduction to observa-
tional cosmology, with special emphasis on large-scale structure concepts and the for-
malism of weak gravitational lensing. Chapter 2 reviews the methods to produce mock
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catalogues, both from N -body simulations or from approximate methods. It explains
the N -body simulation used in this thesis as a benchmark, the Marenostrum Institut de
Ciències de l’Espai-Grand Challenge (MICE-GC), as well as the fast method extensively
used, tested and expanded in this work: COLA. In the last section is given all the sim-
ulations developed for this thesis. Chapter 3 is where the first results are showed, pre-
senting an optimization of the simulation method employed in the compromise between
accuracy and computational cost. It studies the impact on observable quantities of varia-
tions of the internal code parameters and gives optimal values. From Chapter 4 onwards
the work is based on new light cone simulations developed with ICE-COLA. First is ex-
plained the algorithm for generating such catalogues on-the-fly, able to deliver high-level
data products tailored for modelling galaxy surveys. The performance of the method is
also detailed. After, Chapter 5 gives first an initial validation of such simulations and
later a description of the pipeline developed to model weak lensing quantities, as well as
showing two-point statistics of the maps thus obtained. Finally, in Chapter 6 is shown
how halo catalogues are combined together with weak lensing maps to model consis-
tently from the same simulation both weak lensing and galaxy clustering. Lastly, some
prospects of ongoing and future projects are outlined in Chapter 7 and a summary with
conclusions is given in Chapter 8. In addition, Appendix A explains how transient ef-
fects were considered when comparing COLA simulations with MICE-GC and Appendix
B compares the gain of the COLA method with respect to Particle-Mesh-only runs.
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1
OBSERVATIONAL COSMOLOGY

During the recent history, our conception of the Universe has radically changed by filter-
ing those theories that do not surpass the exam of observational evidences. The Ptolemaic
model placed the Earth in the centre of the cosmos. The Copernican Revolution, starting
in 1543, displaced ourselves for the first time from the centre by using an heliocentric
model. After many important steps made by Tycho Brahe, Johannes Kepler and Galileo
Galilei, the revolution concluded in 1687 when Newton published in his Principia the law
of universal gravitation, which explained the dynamics of the orbits of the planets. The
Copernican Revolution implies the renounce of a privileged position for the Earth and a
greater generalization of it is the so called Cosmological Principle:

The Universe is homogeneous and isotropic at large scales

Or in other words, the same physical laws are valid everywhere. Modern cosmol-
ogy assumes this axiom, which actually has been proved to a high degree of accuracy
(see e.g., Planck Collaboration, Ade, Aghanim, Akrami, et al., 2015 for the isotropy of
the Cosmic Microwave Background, CMB, as measured by Planck). In this framework,
the evolution of the Universe can be decomposed into two pieces: the background evo-
lution, that describes the metric and properties of the homogeneous Universe, and the
structure formation at small scales, that studies the departures from homogeneity. This
Chapter gives an introduction to both aspects in § 1.2 and § 1.3 respectively. The consen-
sus cosmological model is briefly described before in § 1.1. Finally, § 1.4 gives the basic
principles of weak gravitational lensing, which is powerful observational probe.



6 Chapter 1. Observational cosmology

1.1 The ΛCDM model

The ΛCDM model is the current consensus cosmological model that explains most of
the observations, such as the abundances of light elements, the CMB radiation (Planck
Collaboration, Ade, Aghanim, Arnaud, et al., 2015), supernova type Ia data (Suzuki et al.,
2012) and the large-scale structure clustering (Anderson et al., 2012). The model is built
on the cosmological principle and adopts the concept of Big Bang, in which the Universe
has been expanding from an initial singularity. Assumes the General Relativity theory as
a model for gravity but needs to postulate the existence of some unknown fluids: dark
matter and dark energy.

In 1933, Zwicky studied the dynamical state of the Coma cluster and found the first
evidences of a problem of missing matter (Zwicky, 1933). This was later confirmed by
other observational techniques, such as velocity rotational curves of galaxies, gravita-
tional lensing and the large-scale structure formation. The ΛCDM model postulates the
existence of a form of Cold Dark Matter (CDM), that has the properties of being electro-
magnetically inert and cold, that is, non-relativistic.

Dark energy was introduced after 1998, when two different teams (High-Z Supernova
Research Team and Supernova Cosmology Project) were searching for type Ia supernovae
for using them as standard candles. Their findings showed an unexpected accelerated
expansion rate (Riess, Filippenko, et al., 1998; Perlmutter et al., 1999). The standard cos-
mological model includes a dark energy fluid with a constant equation of state parameter
w = P/ρ = −1, corresponding to a cosmological constant.

Our understanding of the Universe has progressed much in the last decades, but there
are still some missing pieces that have to be addressed. This includes topics such as the
mass of neutrinos, other theories of gravity, early massive black hole formation, the mech-
anism responsible of inflation..., as well as the nature of dark matter and dark energy.

1.2 Dynamics of the expansion

The Friedmann-Lemaître-Robertson-Walker (FLRW) metric describes the geometry of an
homogeneous and isotropic Universe:

ds2 = c2dt2 − a(t)
[
dr2 + S2

k(r)(dθ
2 + sin2 θ dφ2)

]
(1.1)

where r is a radial comoving distance, θ and φ are angular coordinates, a is the scale
factor and Sk depends on the curvature k of the Universe and can be

Sk(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
sinh(r) k = −1

r k = 0

sin(r) k = +1

(1.2)
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By introducing the FLRW metric into the General Relativity field equations, the Fried-
mann equations can be derived

H2 ≡
(
ȧ

a

)2

=
8πGρ

3
− kc2

a2
+

Λc2

3
(1.3)

where H is the Hubble parameter, ρ includes the contributions to the density from the
matter and the radiation and Λ is the cosmological constant. This is the first of the Fried-
mann’s equations, that relates the geometry and the density. For instance, the critical
density can be defined as the value that corresponds to a flat Universe (k = 0)

ρc =
3H2

8πG
(1.4)

It is useful to use the density parameters, which re-scale the density contributions
relative to the critical density

Ωi ≡ ρi
ρc

(1.5)

Ωm =
8πGρ0
3H2

0

(1.6)

Ωr =
8πGρr,0
3H2

0

(1.7)

ΩΛ =
Λc2

3H2
0

(1.8)

Ωk =
−kc2

(a0H0)2
(1.9)

where the subscript 0 indicates that a quantity is evaluated at the present. These
parameters have been defined to fulfil the relation 1 = Ωm + ΩΛ + Ωk. Thereby, the
Friedmann equation read

H2(z) = H2
0E

2(z) = H2
0

(
Ωr(1 + z)4 +Ωm(1 + z)3 +Ωk(1 + z)2 +ΩΛ

)
(1.10)

where it was introduced the function E(z) ≡ ȧ/a. Applying the FLRW metric (equa-
tion 1.1) to a photon, ds2 = 0, and integrating over the radial coordinate, the relation
between the comoving distance and the redsfhit can be written as

χ(z) =
c

H0

∫ z

0

dz′

E(z′)
(1.11)

1.3 Large-scale structure formation

The large-scale structure is the gravitationally amplified result of the initial quantum fluc-
tuations that arose in the early and hot Universe. Inhomogeneities grow driven by the
gravitational attraction, resulting in bounded objects, such as stars, galaxies and galaxy
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clusters, that were born the firsts few hundreds millions of years. The underlying physics
of these processes have been extensively explained in many books e.g. Peacock, 1999;
Peebles, 1980; Liddle & Lyth, 2000. This section focuses on the perturbations to the ho-
mogeneous Universe and summarizes some of the common statistical tools used in the
analysis of a field of fluctuations. In what follows, the density refers to the contribution
of both the dark matter and the baryon components.

The dimensionless density contrast is defined as the relative deviation from the mean
matter density ρ̄

δ(x) =
ρ(x)

ρ̄
− ρ̄. (1.12)

The two-point correlation function is the expected value of having two over-densities
separated by a distance r

ξ(r) =< δ(x)δ(x+ r) > (1.13)

which thanks to isotropy it does not depend on the angular part. The power spectrum
is the equivalent correlator in Fourier space

P (k) =

∫
ξ(r)eikx d3x (1.14)

Fourier transforming the density field gives

δ(k) =

∫
δ(x)eikx d3x (1.15)

and for Gaussian fields, different modes are uncorrelated

< δ(ki)δ(kj) >= (2π)2δD(ki − kj)P (ki) (1.16)

where δD is the Dirac delta function.
A Gaussian field is completely characterized by its 2-point statistics: any non-vanishing

higher order moment can be expressed as a function of the former.

1.3.1 Linear growth of structure

Inhomogeneities in the initial density field δ(x) grow due to the gravitational forces. In a
matter-dominated epoch, the Poisson equation can be written as

∇2φ =
3H2

0

2a
Ω0δ (1.17)

In the linear regime, perturbations are small (i.e. δ � 1) and follow second order
partial differential equation

δ̈ + 2Hδ̇ − 3

2a3
Ω0H

2
0δ = 0 (1.18)
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The fact that there are only temporal derivatives implies that the temporal evolution
is the same at all positions, and the solution can be expressed by the linear growth rate
function

D1(z) =
5Ω0E(z)

2

∫ ∞

z

1 + z′

E(z′)
dz′ (1.19)

which in the Einstein-de Sitter case, it is simply D1(a) = a.
Therefore, the evolution of perturbations in the linear regime is given by the lin-

ear growth factor: δ(x, z) = D1(z)δ(x, z0). And the matter power spectrum grows as
P (k, z) = D2

1(z)P (k, z0).
The evolution of differential mass elements (or particles, which are the elements that

sample the phase space in an N -body simulation) can be expressed in terms of the growth
factor as well. The displacement field s(q, a) is defined as the difference between the
Eulerian position x(q, a) and the Lagrangian (initial) position q:

s(q, a) = x(q, a)− q. (1.20)

Then, considering now also the expansion to second order in Lagrangian Perturbation
Theory (LPT, for reviews see Bernardeau et al., 2002; Bouchet et al., 1995), the displace-
ment field is

s(q, a) = D1(a)s1(q, a) +D2(a)s2(q, a) (1.21)

where sub-indices now distinguish between the linear (or Zel’dovich, see Zel’dovich,
1970) and the second-order terms.

1.3.2 Non-linear evolution

At late times, the condition δ � 1 is no longer satisfied, at least for all scales. Small-scale
fluctuations grow beyond the collapse threshold and start a gravitational collapse. As a
result, bounded objects of dark matter are formed and sustained by virialization. These
are called haloes and galaxies are formed inside them.

Initially the density field can be well described as a Gaussian field. Different modes
are uncorrelated (see equation 1.16) and the covariance of the power spectrum is diago-
nal, with the variance given by

σ2(P (k)) =
2P 2(k)

Nmodes
(1.22)

where Nmodes is the number of k-modes contributing to the measurement at the wavenum-
ber k (i.e. Nmodes ≈ k2ΔkV/(2π)2 with V being the volume and Δk the width oft the bin).
The non-linear evolution couples different modes, there is a transfer of power between
different scales and the amplitude of small-scale fluctuations deviates from the linear
growth rate. This is visible in the matter power spectrum as the so-called non-linear
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bump for modes k � 0.1h−1Mpc. Fig. 1.1 displays the non-linear matter power spec-
trum measured in a COLA simulation, where it is visible the deviations from linear theory
at small scales and the non-linear smoothing of the Baryon Acoustic Oscillations (BAO)
feature due to mode coupling (see (Beutler et al., 2015; Ross et al., 2015) for how non-
linear effects in the BAO are modelled by simulations). The non-linear covariance matrix
is shown in Fig. 1.2, where it becomes evident a large correlation between different modes
for scales k > 0.4hMpc−1.

 160
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k(
z)

/D
2 (z

)

k [h/Mpc]

z=0.0, 0.57, 1.0, 2.0
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z=0.0
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z=1.0
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FIGURE 1.1: Matter power spectra at four different redshifts from a COLA
simulation compared to the linear power spectrum. All power spectra
have been scaled by the linear growth factor (see equation 1.19) to redshift
0. The non-linear evolution is clearly visible at scales k > 0.15hMpc−1,
where the power deviates progressively from linear theory with time. Note
as well how Baryon Acoustic Oscillations, that extend to large scales, are

damped.

The non-linear regime becomes much more difficult to determine analytically and for
an accurate modelling it is necessary to use N -body simulations.

1.3.3 Halo and galaxy Bias

Haloes are formed in high density regions of the matter field. Thus their distribution is
correlated with the matter field. However, and according to the peak-background split
theory (Bardeen et al., 1986; Cole & Kaiser, 1989; R. K. Sheth & Tormen, 1999), it is harder
that density peaks in low density environments reach the collapse threshold and less
haloes will be able form in these regions. Therefore, the halo formation is enhanced in rich
environments and suppressed in voids, producing relative variations in the abundance
larger than those of the density. The consequence is that haloes are biased tracers of the
matter field, where biasing means an enhanced clustering. The concept applies as well
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FIGURE 1.2: Correlation matrix of the matter power spectrum measured
from a set of 100 COLA simulations. The prediction for a Gaussian field is a
matrix with zeros for the off-diagonal elements, but departures from that

are evident in this plot for k > 0.4hMpc−1.

to galaxies, since these inhabit in haloes, and are referred as halo or galaxy bias. At first
order, the bias can be expressed as (Fry & Gaztanaga, 1993)

δh(k, z) = bg(k, z)δ(k, z) (1.23)

In this case, the halo power spectrum would be given by

Ph(k, z) = b2h(k, z)P (k, z) (1.24)

Bias might depend on the scale, the epoch and the properties of the tracer object (in
the case of haloes for instance, their mass). The expansion can also be carried to higher
orders, giving therefore many bias parameters.

1.4 Principles of weak gravitational lensing

One of the predictions of Albert Einstein’s general theory of relativity is that light paths
are bended by the matter inhomogeneities of the Universe via the distortions that are
produced in the metric tensor of space-time. In fact, Newtonian physics can also explain
this phenomenon, but it predicts an effect a factor of two weaker. Images of distant ob-
jects are distorted by the intervening matter distribution , inducing changes in shapes,
apparent positions and fluxes of the background population. In most situations the ef-
fect is small, since relative variations are at the percent level, and then it is referred as
weak gravitational lensing. It is a phenomena that carries information about the matter
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distribution along the line-of-sight and therefore it is an invaluable tool for probing cos-
mological models, such as the theory of gravity, the properties of dark matter and dark
energy or the physics at inter-cluster scales. This section gives an overview of the math-
ematical description of this phenomena in order to present expressions that are used in
other chapters. For extensive reviews see Narayan & Bartelmann, 1996; Bartelmann & P.
Schneider, 2001; Huterer, 2010; Kilbinger, 2015.

Observer

Lens plane

Source plane

θ

β

ξ

α̂

η

FIGURE 1.3: Sketch of the geometry of the gravitational lensing effect (from
Bartelmann & P. Schneider, 2001).

1.4.1 Lens equation

The geometry of the gravitational lensing effect is mainly a three-object system, formed
by a source, a lens and an observer, as sketched in Fig. 1.3. The source object at the
background emits a ray that traverses the surroundings of a massive body, where it is
deflected and is received by the observer at an angle θ, different than the angle β of
the straight line connecting the observer with the source. For small deflection angles, the
phenomenon can be approximated to the problem in optics of a single thin lens, governed
by the lens equation

β = θ − χs − χl

χl
α̂ ≡ θ −α (1.25)

where χs and χl are the comoving distances to the source and the lens respectively
and α̂ is the deflection angle caused by the gravitational potential Φ of the lens

α̂ = − 2

c2

∫
∇⊥Φ(χ′) dχ′ . (1.26)
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The integral is taken along the light path and the gradient perpendicular. In the last
step of eq. 1.25 we defined the scaled deflection angle α. The expression 1.26 is valid not
only for a single point source but for any gravitational potential arising from a matter
distribution at the lens plane.

1.4.2 Effective lensing potential

It is useful to define the effective lensing potential as a projection of the three-dimensional
Newtonian potential of the lenses

Ψ(θ, χ) =
2

c2

∫ χ

0

χ− χ′

χχ′ Φ(θ, χ′) dχ′, (1.27)

since then the scaled deflection reads

α(χ) = ∇θΨ(θ, χ). (1.28)

Equation 1.27 is valid for an extended three-dimensional distribution of matter, that
is, it accounts for the distortions induced by all lenses at any distance between the source
and the observer. However, it assumes the Born approximation, in which integrals over
the line-of-sight are computed along the unperturbed path. This is accurate in most cos-
mological situations, since the deflection angle is typically small and we shall assume it
hereafter.

1.4.3 Surface mass density

Next we define the convergence for a single lens plane as a dimensionless surface mass
density:

κ(θ, χ) =
Σ(θ, χ)

Σcr(χ)
, (1.29)

where

Σ(θ, χ) =

∫ χ

0
ρ(θ, χ′) dχ′ Σcr(χ) =

c2

4πG

χ

χl(χ− χl)
. (1.30)

It is more convenient to convert the density in the last equation to the density contrast
δ ≡ ρ/ρ̄− 1, where ρ̄ = Ωoρc = Ω03H

2
0/8πG. Integrating all the lenses along the line-of-sight

in the Born approximation, the convergence is

κ(θ, χ) =
3H2

0Ωm

2c2

∫ χ

0
δ(θ, χ′)

(χ− χ′)χ′

aχ
dχ′ . (1.31)
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1.4.4 Linearized lensing quantities

At linear order, the mapping from image to source coordinates is given by the Jacobian
matrix of the transformation:

Aij =
∂βi
∂θj

= δij − ∂αi

∂θj
= δij − ∂i∂jΨ =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
(1.32)

where the first substitutions use the lens equation 1.25 and equation 1.28. The last
equality introduces the convergence and shear as second derivatives of the potential:

κ =
1

2
ΔΨ (1.33)

γ1 =
1

2
(∂1∂1 − ∂2∂2)Ψ γ2 = ∂1∂2Ψ (1.34)

Note that the first expression is the Poison equation. Convergence is a scalar that
causes isotropic distortions, while the shear is a spin-2 tensor that deforms circles into
ellipses. The latter can be expressed as a complex number: γ = γ1 + iγ2 = |γ|e2iφ. In
the case of galaxy surveys, the effect of the convergence is a variation of the sizes of
objects, while the shear distorts the intrinsic ellipticity e of a galaxy into a measured one
of e + γ. Furthermore, since surface brightness is conserved in weak lensing, there is a
magnification effect that modifies the observed brightness by a factor μ = [detA]−1 =

((1− κ2)− |γ|2)−1
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2
GALAXY AND HALO MOCK CAT-
ALOGUES

Our conception of the Universe has changed considerably in the last decades thanks to
observational cosmology. The ΛCDM model (see § 1.1) successfully explains most of the
handful of observations available, but there are still unresolved puzzles such as the com-
ponents of the dark sector. Ongoing surveys sample volumes one order of magnitude
larger than what used to be one decade ago, and next generation of experiments will in-
crease one order of magnitude further. It is said that we are entering the era of precision
cosmology, in which new experiments will provide measurements with error-bars within
the percent level.

Such tremendous narrowing of the statistical errors has to go along with an equiva-
lent reduction of the systematic errors, otherwise such enterprise will fail. A good the-
oretical modelling is essential to predict the signal that will be observed. Furthermore,
in order to place constraints on cosmological parameters it is required to have accurate
predictions for covariance matrices. Analytical prescriptions are unable to model the
non-linear evolution (see § 1.3.2) and numerical simulations become an invaluable tool,
which allow to study and understand better the growth of structure formation. Besides,
mock catalogues can be produced from them and used to develop the science cases of
future surveys. Mock catalogues are essential for the analysis of complex and huge as-
tronomical datasets because they allow to optimize the pipelines, model and mitigate
systematic effects, calibrate algorithms, test new techniques, etc.

However, conventional N -body codes are challenged by the requirement of sampling
increasingly larger cosmological volumes while still resolving small scales. This trans-
lates into very large simulations, including billions of particles, what in turn demands
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millions of CPU-hours to develop in current high performance computing platforms. Be-
sides, an accurate estimation of covariance matrices demands the development of mas-
sive ensembles of simulations. For these many reasons, nowadays there is a growing
interest in the so-called approximate methods, that overcome the problem of explicitly
solving the non-linear evolution by incorporating a smart modelling of the small-scale
physics, possible thanks to the implications of the Halo model (Cooray & R. Sheth, 2002).

This chapter begins in § 2.1 with an overview of large-scale structure simulations by
means of the common N -body method. Through the thesis, a particular simulation is
taken as the fiducial value to benchmark results. It is the Marenostrum Institut de Cièn-
cies de l’Espai-Grand Challenge simulation (hereafter MICE-GC) which is presented in
the same section. Next, § 2.2 summarizes the existing approximate methods to produce
mock catalogues. One of these is COLA, in which this thesis has been based and it is ex-
plained in § 2.3. Lastly, § 2.4 summarizes all the simulations that have been developed
for this thesis.

2.1 N -body large-scale structure simulations

Cosmological simulations solve the evolution of a self-gravitating system within an ex-
panding volume (for reviews, see (Binney & Tremaine, 1987; Dehnen & Read, 2011)). The
expansion can be factorized out to the scale factor and becomes irrelevant in the numer-
ics. The problem is how forces are computed and integrated in time. Hydrodynamical
simulations also account for friction forces due to the baryon component, which modifies
the dynamics at cluster scales. But those demand much more computational resources
and are not feasible for large-scale structure studies. Therefore, it is common to assume a
dark-matter only system that is governed just by gravitational interactions.

A gravitational system that is affected by long-range interactions and close encounters
are inefficient for re-distributing kinetic energy is called collissionless. Relaxation is not
important, where the relaxation time can be estimated as

trelax � N

8 lnΛ
tdyn (2.1)

where N is the number of particles, tcross is the crossing time (the time required to
cross the radius of the object at the typical velocity), and ln Λ = ln(bmax/bmin) is called the
Coulomb Logarithm, which depends on the maximum and minimum impact parameter
of the system1. And indeed, the large-scale structure follows a collisionless evolution and
most of the haloes have a low relaxation level.

The evolution of the density field in phase-space, f(x, ẋ, t), is given by the collision-
less Boltzmann equation

df

dt
=

∂f

∂t
+ ẋ · ∂f

∂x
+

(
∂φ

∂x

)
· ∂f
∂ẋ

= 0 (2.2)

1For a system of point particles, the minimum impact parameter is bmin = Gm/ < v2 >, where m is the
mass of a single particle (S. D. M. White, 1976a).
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together with the Poisson equation 1.17. The N -body method consists on sampling
the phase space discretely with point-like particles that move within the simulated vol-
ume. This introduces Poisson noise due to the finite sampling, but is less computational
intensive that solving the system in the six-dimensional phase space (although attempts
have been made in that direction, Hahn & Angulo, 2016). The evolution is solved by com-
puting the force field and integrating the equations of motion for particles in repeated
time steps.

There are many N -body algorithms and differences are found mainly in how forces
are computed. The gravitational potential of a collection of particle has the following
expression

φ(r) = −G
N∑
i=1

mi

[(r − ri)2 + ε2]1/2
(2.3)

where ε is the softening length, that it is necessary to suppress close pair encoun-
ters, where the potential would diverge. A direct summation approach (Peebles, 1970;
S. D. M. White, 1976b; Efstathiou & Eastwood, 1981; Aarseth et al., 1979) means that this
expression is evaluated at each particle position in order to compute their forces, which
results in a problem that scales as O(N2), with N being the number of particles. This
becomes prohibitive to compute as soon as there are few thousands particles in the sim-
ulation. For that reason, many numerical techniques have emerged that scale roughly as
O(N log(N)). There are a collection of algorithms that are based on mesh, such as the
Particle-Mesh (PM see § 2.3.1), the Particle-Particle Particle-Mesh (P3M). . . (Hockney &
Eastwood, 1981; Efstathiou, Davis, et al., 1985; Couchman, 1991). They use Fourier trans-
forms in a cartesian grid to compute long-distances and in some cases are complemented
with a direct summation at short-distances. More sophisticated are multi-grid techniques
such as the Adaptive Mesh Refinment (AMR), that adjust the resolution in at each region
of space depending on its dynamical state (Teyssier, 2002). On the other hand, the Tree
algorithm compute forces by grouping particles that are close (Appel, 1985; Stadel, 2001).
A successful model has been combining both the PM and the tree algorithms in a hy-
brid scheme to compute long- and short-range forces, as is the case of the Gadget code
(Springel, 2005), which was used to develop the MICE-GC simulation (see § 2.1.1).

2.1.1 The MICE-GC simulation

The Marenostrum Institut de Ciències de l’Espai-Grand Challenge (MICE-GC)2 is a state-
of-the-art N -body simulation. This thesis uses it to benchmark results obtained from the
approximate method COLA and next is briefly described.

MICE-GC evolved 40963 particles in a volume of (3072h−1Mpc)3 using the GADGET-2
code (Springel, 2005) assuming a flat ΛCDM cosmology with Ωm = 0.25, ΩΛ = 0.75, Ωb =

0.044, ns = 0.95, σ8 = 0.8 and h = 0.7. This results in a particle mass of 2.93×1010 h−1M�.

2More information is available at http://www.ice.cat/mice.
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The initial conditions were generated at zi = 100 using the Zel’dovich approximation and
a linear power spectrum generated with CAMB3.

This simulation and its products have been extensively validated. The dark-matter
and halo outputs are described in Fosalba, Crocce, et al., 2015 and Crocce, Castander,
et al., 2015. In addition, lensing maps are described in Fosalba, Gaztañaga, Castander, &
Crocce, 2015 while Carretero et al., 2015 and Hoffmann et al., 2015 detail the HOD imple-
mentation used to produce galaxies mocks and the higher-order clustering, respectively.

The work in this thesis uses dark matter and halo catalogues of comoving outputs at
z = 0, 0.5, 1.0 and 1.5. Haloes were identified using a Friends-of-Friends (FoF) algorithm
(Davis et al., 1985) with a linking length of 0.2.

It is known that long-lived transients from the initial conditions affect the abundance
of massive haloes and the clustering towards small scales, even for high starting redshifts
if the Zel’dovich approximation is used (Scoccimarro, 1998). To investigate and correct
such effects, an additional set of dedicated GADGET-2 N -body simulations were run. This
is discussed in Appendix A for comoving catalogues. Results in Chapter 3 take into
account these corrections, which are � 2% for 2-point matter clustering and 2 − 5% for
halo abundance on the regime and redshifts of interest. The results showed that transient
effects are below the 1 per cent level for halo clustering, so the correction was safely
neglected for these measurements.

2.2 Approximate methods for producing mock catalogues

Approximate methods are becoming a key tool in the cosmology community, as outlined
in the introduction of this chapter (for a recent review of the theoretical foundations,
history and a comparison of all the recent methods see Monaco, 2016). They have in
common that small-scale physics are unresolved (which represent the most expensive
computations in an ordinary N -body simulation, thereby the speed-up), but this lack of
information is supplied by introducing a motivated theoretical modelling. This is pos-
sible because non-linearities are restricted basically within haloes and, once these have
collapsed, they display a more or less uniform profile. Their spatial distribution is con-
nected with the large-scale density field (see § 1.3.3), and a good biasing prescription
might be able to predict one distribution from the other.

A convenient approach to reproduce the observed galaxy distribution on large scales
is to populate dark matter haloes with galaxies using either Semi-Analytic Models or
techniques relying on the Halo model, such as the Halo Occupation distribution or the
Sub-halo Abundance Matching (see Knebe et al., 2015, for a comparison of models). Some
of these techniques do not need to fully capture internal halo substructure since they
only use reliable positions and mass estimates for haloes, which can be predicted by ap-
proximate methods. A simplified and cheaper evolution of the density field is enough
to approximately predict the abundance and clustering of collapsed regions to build

3http://camb.info



2.3. The COLA method 19

halo mock catalogues. Available methods that are based on this idea include: PINOC-
CHIO (PINpointing Orbit-Crossing Collapsed HIerarchical Objects, Monaco, Theuns, et
al., 2002; Monaco, Sefusatti, et al., 2013; Munari et al., 2016), PThaloes (Scoccimarro &
R. K. Sheth, 2002; Manera, Samushia, et al., 2015) and recently COLA (COmoving La-
grangian Acceleration, Tassev, Zaldarriaga, et al., 2013; Tassev, Eisenstein, et al., 2015).

An alternative approach is to use prescriptions to assign haloes in a density field pro-
duced by a simple gravity solver. This is the case of the log-normal model (Coles &
Jones, 1991), QPM (Quick Particle Mesh, M. White, Tinker, et al., 2014), PATCHY (Pertur-
bAtion Theory Catalog generator of Halo and galaxY distributions, Kitaura et al., 2015),
EZmocks (effective Zel’dovich approximation mock catalogues, Chuang et al., 2015), and
HALOGEN (Avila et al., 2015). Thus these methods constitute a more direct modelling
for the galaxy distribution. The drawback is that they contain many internal parame-
ters describing properties such as the galaxy clustering and abundance that have to be
fit in order to correctly reproduce observations. COLA (see § 2.3) can be categorized as
a semi-N -body method and therefore has higher computational requirements than other
methodologies. But is more predictive and yields accurate high order clustering statistics.

2.3 The COLA method

COmoving Lagrangian Acceleration (COLA, Tassev, Zaldarriaga, et al., 2013; Tassev, Eisen-
stein, et al., 2015), is a novel method for producing fast and approximate N-body simu-
lations for large-scale structure formation of the Universe. A perturbative approach is
used to obtain a first approximate solution to the dynamics, which serve as the basis for
solving easily a more accurate solution though a simplified numerical integration.

A common feature in most of the fast methods is that they evolve mass particles using
Lagrangian Perturbation Theory (LPT). COLA is unique because on top of the analytical
trajectory it adds a residual displacement computed by an N -body solver. Equations of
motion are solved in a frame comoving with LPT observers which, at a given perturba-
tive order, encodes more non-linear growth information than the corresponding Eulerian
approach. This guarantees an accurate description of the dynamics on large scales where
the evolution is quasi-linear. The numerical evolution is simplified with respect to full
N -body codes, making use of a fine Particle-Mesh (PM) algorithm (see § 2.3.1), and eval-
uating forces for a few (i.e, order of ten) time steps. Haloes can then be identified running
a finder in the evolved dark matter particle distribution, in the same way that it is done
for an N -body.

The method decomposes the displacement field x into two terms: xLPT describes the
LPT trajectory (see equation 1.21) and xres is the residual displacement with respect to
the LPT path

xres(t) ≡ x(t)− xLPT(t) (2.4)
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The equation of motion in a pure gravitational simulation relates the acceleration to
the Newtonian potential Φ: ∂2

t x(t) = −∇Φ(t). Therefore, equation 2.4 can be rewritten
as

∂2
t xres(t) = −∇Φ(t)− ∂2

t xLPT(t), (2.5)

where Φ is evaluated at the Eulerian position x = x + q (see § 1.3.1) by the PM algo-
rithm, that solves the Poisson equation 1.17. COLA discretizes the time derivatives only
on the left-hand side (see § 2.3.2), while uses the LPT expression at the right-hand side
(see § 2.3.1). More recently, Tassev, Eisenstein, et al., 2015 extended this reformulation to
the Eulerian domain, which allow the simulation of a sub-volume embedded in a larger
effective simulation box.

2.3.1 The Particle-Mesh method

In the PM method, the density is estimated in a cartesian grid from the particle positions
with a mass assignment function (see Hockney & Eastwood, 1988). Then, the Poisson
equation 1.17 is solved in Fourier space, where derivatives become multiplications

k2φ(k) = 4πGρ(k). (2.6)

Forces are then computed from the potential at the position of particles by interpola-
tion.

The method uses Fast Fourier Transform (FFT) in two steps: just before and after
solving the Poisson equation. Indeed, this represents the most expensive part of the
method. Another consequence of this is that it results in assuming periodic boundary
conditions. Simulations can take advantage of this and build box replicas in adjacent
positions (see § 4.2.2).

The cell size of the mesh determines the spatial resolution of the simulation. Tassev,
Zaldarriaga, et al. (2013) suggest to use a mesh in COLA that is finer than the mean inter-
particle distance. We shall refer to this as the PMgrid factor, which these authors suggest
to set to 3 in order to adequately resolve small-mass haloes. Hence, in total there are 33

more mesh cells than particles (the total number of cells is number particles× PM3
grid).

2.3.2 Temporal Drift and Kick operators

Once forces have been computed with the PM method (see § 2.3.1), the leapfrog inte-
grator is used to solve the equation of motion of particles. It is a second order method
that alternates the so-called drift (D) and kick (K) operators, that update positions and
velocities respectively. In its standard form, these operators are:

D(ai, ai+1) : s(ai) 	→ s(ai+1) = s(ai) + v(ai+1/2)Δt (2.7)

K(ai+1/2, ai+3/2) : v(ai+1/2) 	→ v(ai+3/2) = v(ai+1/2) +
1

2
(−∇φ(ai+1))Δt (2.8)
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In COLA, the operators are re-written, separating the contribution coming from LPT
and the numerical integration (the residual component). Velocities contain only the resid-
ual component and are updated with the residual acceleration, while positions are found
integrating these velocities and adding the LPT displacement

D(ai, ai+1) : s(ai) 	→ s(ai+1) = s(ai) + v(ai+1/2)Δt (2.9)

+ (D1(ai+1)−D1(ai))s1 + (D2(ai+1)−D2(ai))s2

K(ai+1/2, ai+3/2) : v(ai+1/2) 	→ v(ai+3/2) = v(ai+1/2) + Δt× (2.10)(
−1

2
∇φ(ai+1)− ∂2

t s1(t)− ∂2
t s2(t)

)

Then, the evolution of n time steps can be written as

L+(a)

(
n∏

i=0

K(ai+ 1
2
, ai+ 3

2
)D(ai, ai+1)

)
K(ai, ai+ 1

2
)L−(a). (2.11)

In this notation, the rightmost operator applies first. Note that at the beginning it is
necessary to perform a kick of half time step. Additionally, at the beginning it is necessary
to transform the initial conditions to the rest frame of LPT observers (where the residual
velocity is zero at the start) and add it back at the end of the simulation with the operators

L±(a) : v(a) 	→ v(a) = v(a)± (∂ts1(t) + ∂ts2(t)) . (2.12)

The procedure is fully described in the appendix A of Tassev, Zaldarriaga, et al., 2013,
where it is also explained how COLA uses a modified discretization for integrating the
temporal intervals, which is based on assuming an ansatz for the time dependence of the
residual velocities.

2.3.3 The Parallel COLA code

Koda et al., 2015 developed a parallel version of COLA, suitable for the massive produc-
tion of mock catalogues, which was used for constricting the BAO signal in the WiggleZ
survey (Kazin et al., 2014). The code is named Parallel COLA and it is publicly avail-
able4. FFT’s are computed by the Fastest Fourier Transform in the West (FFTW) package5

in its Message Passing Interface (MPI)6 version for distributed memory parallelization.
Interpolations in the PM algorithm (see § 2.3.1) use the Cloud-in-Cell linear interpolation.
It includes both the generation of random Gaussian initial conditions using 2LPT (Crocce,
Pueblas, et al., 2006) and the Friends-of-Friends (FoF, see also § 4.3.3) halo finder (Davis
et al., 1985) running on the fly (for comoving outputs).

4https://github.com/junkoda/cola_halo
5http://www.fftw.org/
6https://www.mpi-forum.org/
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ICE-COLA is based on Parallel COLA. They differ in the new features that have
been added to the former such as using different time stepping distributions, the gener-
ation of matter power spectra on-the-fly, the storage of halo catalogues in binary format
and the parallel storage of the comoving matter density field interpolated onto large mesh
grids using the Cloud-in-Cell assignment (it has been used with grids up to 10243 cells).
But the main novelty is the implementation of the algorithm to generate many flavours of
light cone catalogues on-the-fly, as it is described in Chapter 4 and validated in Chapters
5 and 6. These includes two compressed data formats: the two-dimensional projected
matter field in several concentric shells (see § 4.3.2) and halo catalogues (see § 4.3.3).

Recently, other groups have produced other parallel implementations. L-PICOLA7

(see Howlett, Manera, et al., 2015) is similar to Parallel COLA in its technical details
and has been used to generate mock galaxy catalogues for the SDSS-II Main Galaxy Sam-
ple (Ross et al., 2015; Howlett, Ross, et al., 2015). This group advocate for low values
for PM3

grid. It is also capable of producing light cone data, but as far as we know the
outputs are the massive dark-matter particle catalogues, that demand huge disk stor-
age and an intensive post-processing. FAST-PM8 (see Feng et al., 2016) is a parallel PM
code that includes the COLA method. It uses a distinct library for performing FFT’s: the
Parallel FFT (PFFT)9, that has the advantage of using a two-dimensional domain decom-
position. This allows a good scalability of the code to thousands of cores. Finally, there
is a multi-threaded code written in Python/Cython10 dubbed pyCOLA written by the
original authors of the COLA method that implements both the temporal and spatial do-
main decoupling of the dynamics (as explained in Tassev, Zaldarriaga, et al., 2013; Tassev,
Eisenstein, et al., 2015 respectively).

2.4 Simulation developed for this thesis

Many ICE-COLA simulations have been produced for this thesis. Although the method
is fast in terms of wall-clock time when compared to a full resolution N -body simula-
tion, it still requires large dedicated memory. The first tests where run at Hidra, a local
cluster at the Institut de Ciències de l’Espai (ICE) that has 8 nodes with 4 hexa-processors
(192 cores and 384 GB in total). None of those simulations are part of this thesis, since
we quickly sought for a larger machine in order to reach few billion particle simula-
tions. With that aim, the author of this thesis was co-investigator in several proposals
to the Spanish Supercomputing Network that were awarded with access in 4 periods to
the supercomputer MareNostrum III at the Barcelona Supercomputing Center11 (BSC, 16
months and 1.2 Mhours in total).

Subsections below describe the simulation sets that were used in different chapters
of this thesis. Most of them have some common characteristics that are explained next

7https://cullanhowlett.github.io/l-picola/
8https://github.com/rainwoodman/fastpm
9https://github.com/mpip/pfft

10http://cython.org/
11http://www.bsc.es
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and are assumed, unless stated differently. As already said, they were run with the code
ICE-COLA. The cosmological model, the input linear power spectrum and the particle
mass are identical as MICE-GC (see § 2.1.1, with some exceptions in the latter for explor-
ing mass resolution effects). Most of the runs contain 20483 particles in a box size of
1536h−1Mpc, that is, a factor 8 smaller volume than MICE-GC. It provides nonetheless
a very large cosmological volume. The default configuration assumes PMgrid = 3, 40
time steps and a distribution of these linear in the scale factor starting at redshift zi = 19.
A typical run without light cone outputs (the performance of these is discussed in § 4.4)
uses 1024 cores, with maximum memory consumptions of 2.6Tb for PMgrid = 3 and takes
around 40 minutes wall-clock time for 40 time steps. This means that the CPU-time con-
sumed is less than 1 khour, to be compared with the 3 Mhours that needed MICE-GC
having 8 times more particles, which gives a speed-up factor between two and three or-
ders of magnitude with respect to a full N -body simulation with the same number of
particles.

2.4.1 Simulations for Chapter 3

The results presented in Chapter 3 were derived from comoving outputs of a set of
ICE-COLA simulations whose code parameters are listed in Table 2.1. Parameters that
were varied are: the PMgrid factor, the number of time steps, the time sampling and the
initial redshift. Additionally, it was explored the effect of decreasing the mass resolution
by reducing the number of particles while keeping the box size constant. Or in the op-
posite direction, the box size was reduced while keeping constant the particle load for a
better mass resolution. For some particular runs of interest additional realizations were
produced in order to reduce sampling variance.

All runs use the same seed number for the generation of the initial conditions (except
for those which add more realizations to the same parameter configuration), what can-
cels out cosmic variance between different simulations (but not with respect to MICE-GC,
which uses a different box size). The data products from those simulations are the fol-
lowing comoving ouputs: FoF halo catalogue, matter field interpolated in a 10243 mesh,
and for some runs the matter power spectrum. The redshifts outputted were 0, 0.5, 1 and
in some cases also 1.5. This results in a typical data volume of 16 GiB per run.

2.4.2 Light cone simulations

All the results from light cone simulations presented in this thesis (see Chapters 4, 5
and 6) derive from a single run using that new feature of ICE-COLA. This has already
been augmented to 68 realizations in total, that are being analysed for ongoing projects
on weak lensing covariance matrices estimation (as outlined in § 7.2), and it is foreseen
that more realizations will be produced in a future. The code parameters used are the
following: 20483 particles in a box size of 1536h−1Mpc, PMgrid = 3, 40 time steps and a
distribution of these linear in the scale factor starting at redshifts zi = 19. It is assumed
the MICE cosmology (see § 2.1.1). An all-sky light cone was built starting at redshift
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Nrealizations
Particle
number

Lbox PMgrid Nsteps zi

Time
steps
distribution

1 10243 1536 3 10 9 ∝ a
1 15363 1536 3 10 9 ∝ a
1 20483 1536 2 10 9 ∝ a
2 20483 1536 3 10 9 ∝ a
1 20483 1536 3 20 9 ∝ a
1 20483 1536 3 40 9 ∝ a
1 20483 1536 2 40 19 ∝ a
48 20483 1536 3 40 19 ∝ a
1 20483 768 3 40 19 ∝ a
8 20483 1536 3 40 39 ∝ a
1 20483 1536 3 40 39 ∝ log a

1 20483 1536 3 40 39 ∝ a0.8

1 20483 1536 3 40 100 ∝ a

TABLE 2.1: ICE-COLA code parameters used in the simulations for Chap-
ter 3. The box sizes are in units of h−1 Mpc. Underlined are parameter
values that are distinctive for a run and the highlighted row corresponds
to the optimal set-up, which provides the best accuracy. For the latter, each
realization needed 1024 cores during 40 minutes and 2.6Tb of memory.
How to extrapolate those computational requirements to other parameter

configurations is explained in § 3.1.
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zLC = 1.4, which corresponds to a comoving distance two times larger than the box size
(see equation 4.6). This generates 64 box replicas (see equation 4.7). The outputs that were
generated consist on FoF halo catalogues in the light cone (for haloes with 20 or more
particles, see § 4.3.3), two-dimensional projected matter density fields (see § 4.3.2) and
the matter power spectrum at some selected redshifts (0,0.5, 1, 1.5 and 2). For technical
details on the numerical performance of these simulations with light cones, see § 4.4.

Besides, ten additional realizations were generated with only particle light cone cat-
alogues, with the same parameters as described before except that the volume was re-
stricted to one octant of the sky instead of all of them. These are being used to generate
projected matter maps at post-processing with different angular resolutions in order to
asses its impact on weak lensing observables.

We also developed a suite of simulations exploring the code parameter space, similar
as in § 2.4.1 (although less complete), but unfortunately the runs had a bug that turned
the data useless.

2.4.3 Other simulations

As described on § 7.1, an on-going project consists on comparing covariance matrices
estimated from the approximate methods COLA and PINOCCHIO with respect to a set of
100 N -body simulations, dubbed Minerva. The runs have already been produced and
here are described. They consist on 1000 realisations on a box of 1500h−1Mpc with a
ΛCDM cosmology that matches the best-fitting analysis of WMAP9 and the correlation
function from BOSS DR9 (Sánchez et al., 2013). The outputs produced include FoF halo
catalogues at redshifts 0, 0.57, 1, 2, and the matter power spectrum at same redshifts.
The total CPU-time that was needed is 250khrs. In addition, the set is completed with
100 extra realizations that use the same number of particles (10243) and initial conditions
than the Minerva simulations. These are useful to cancel out cosmic variance. The latter
requested ten more khrs in total. These simulations require 388MiB (92MiB) per run for
the ensembles of 1000 (100) realizations.

Besides, Appendix A and B use additional simulations to estimate transient effects
and the performance of PM-only simulations respectively. The Appendices give a com-
plete description of these, here is only worth to mention that they were performed with
Gadget-2 and Fast-PM respectively.
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3
OPTIMIZATION OF A QUASI N -
BODY METHOD FOR CLUSTER-
ING

COLA is able to accurately determine the evolution of the matter field on scales of roughly
one Megaparsec or above. However, reproducing the birth and growth of haloes is more
challenging because they display high density contrasts and non-linear dynamics sus-
tained by virialisation. Halo formation is very sensitive to the degree of approximation
in the dynamics at small scales and a minimum accuracy is indispensable to generate
reliable halo mock catalogues. Therefore, it is essential to assess the performance of the
method under different values for the internal code parameters that describe the spatial
and temporal discretization of the gravitational evolution.

This chapter uses a suite of large COLA simulations, described in § 2.4.1, and the N -
body simulation MICE-GC as a reference (see § 2.1.1), which has been extensively vali-
dated (Fosalba, Crocce, et al., 2015; Crocce, Castander, et al., 2015; Fosalba, Gaztañaga,
Castander, & Crocce, 2015). After summarizing the scaling of computational require-
ments of Parallel COLA in § 3.1, it starts in § 3.3 discussing the capabilities and limita-
tions of COLA when run with as few as 10 time steps. § 3.4 explore the impact of varying
internal code parameters on basic observables such as the matter real-space power spec-
trum and the halo mass function. In particular the parameters explored are: the size
of the force evaluation mesh, the number and distribution of time steps, and the initial
redshift, in combination with mass resolution. § 3.4.5 gives the configuration within this
parameter space that yields the best accuracy in power spectrum and mass function (for
a wide range of halo masses, comoving scales and redshifts) without a large increase in
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computational cost. For the optimal parameters, § 3.5 characterizes the recovered accu-
racy for halo clustering in real and redshift space. The procedure yields what can be
regarded as the optimal accuracy of the code on its own. To improve it further one needs
to rely on simple corrections to halo masses using an external simulation, as it is shown
in § 3.5.1 by matching the halo abundance and in § 3.5.2 by matching the halo clustering
amplitude on large scales. In that way, deviations in halo clustering can be reduced to
within the percent level in most situations.

In addition, § 3.6 gives a comparison of the performance of COLA against many other
approximate methods.

The work of this chapter resulted to the following publication (Izard et al., 2016):
Towards fast and accurate synthetic galaxy catalogues optimizing a quasi N -body

method, Izard A., Crocce M., and Fosalba P., 2016, MNRAS, 459, 2327–2341, arXiv: 1509.04685.

3.1 Computational requirements and their scaling

This section explains how the run-time and memory consumption of a single COLA real-
ization scale with code parameters, so that combined with the information provided in
§ 2.4.1 one can extrapolate the numbers to other configurations.

The initial redshift and the time sampling distribution have no effects at all on the
computational requirements. The run-time is largely dominated by the computations
of FFTs during force evaluation at each step. For the default configuration and 40 time
steps, the code spends only 10 per cent of the time in computations not related to the
PM algorithm, such as the initial set up and I/O. For this reason, the run-time increases
roughly linearly with the size of the FFT and the number of time steps. Such transforms
scale as ∝ O(n log n), where n is the number of grid points, and since this is proportional
to PM3

grid, the run-time scales roughly as ∝ PM3
grid (for large numbers the log n factor can

be neglected).
Given a constant number of particles, the memory consumption depends only on the

size of the force mesh. The allocation of memory from the PM part represents around 60
per cent for PMgrid = 3 and it scales as PM3

grid.

3.2 Power spectrum and mass function measurements

The matter and halo power spectra are determined interpolating the particles into a cubic
grid of 10243 cells via a Cloud-in-Cell (CiC) assignment. We then obtain the density in
k-space by doing a FFT and estimate the band power by averaging the square over the
range of modes corresponding to a k-bin: P (k) = 〈|δk|2〉. The mass assignment into
a finite size grid introduces a filtering artifact that we compensate by deconvolving the
CiC window function, which in Fourier space is simply a division. We correct for aliasing
effects due to the finite sampling as in Jing (2005). Lastly, monopole measurements of
halo power spectrum are corrected for shot-noise assuming a Poisson noise.
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Sample Mass range [log(M/h−1M�)]
M1 12.5− 13.0
M2 13.0− 13.5
M3 ≥ 13.5

TABLE 3.1: Halo mass samples used throughout this chapter, defined by
halo mass, at z = 0, 0.5 and 1.

For haloes, we restrict the analysis to those having more than 100 particles, corre-
sponding to M ≥ 1012.5 h−1M� for most of the runs. Halo masses are defined using the
Warren correction (Warren et al., 2006): M = mpN(1 − N−0.6), where mp is the particle
mass and N the number of particles. This is irrelevant for most of the runs that use the
same mass resolution as MICE-GC, but provides better agreement for lower mass reso-
lution runs. We build three halo samples according to the mass cuts listed in Table 3.1.
Mass function measurements contain error bars estimated by Jack-knife re-sampling us-
ing 64 different cubic sub-volumes and only mass-bins whose relative error is less than
5% are shown (see e.g. Fig. 3.1).

3.3 Limitations of 10 time steps

The COLA method is designed to use very few time-steps, so that a high speed-up of
more than two orders of magnitude with respect to a full N -body is achieved (Tassev,
Eisenstein, et al., 2015). In this section we explicitly test the accuracy, as a function of
scale and redshifts, of the original COLA configuration of 10 time steps with scale factor
linearly distributed between redshift 9 and 0 and a PMgrid factor of 3.

With only 10 time steps, the matter power spectrum is accurate at the 5% level to
k ∼ 0.5hMpc−1 (see § 3.4.1). This allows the exploration of non-linear scales, but only to
some limited extent. At the halo level, however, the situation is more complex. Figure
3.1 shows that the mass function is severely underestimated at z = 1, especially at large
masses. The problem is not so visible at z = 0.5, where the disagreement is at most at
the 15% level and at z = 0 it is within the 5% for all masses. Likewise, we have checked
that the halo bias is overestimated by as much as 20% at z = 1 and agrees within few
percent level at lower redshifts. Both effects (underestimation of the mass function and
overestimation of the halo bias) can be explained by a halo mass underestimation at high
redshift, when the evolution has been computed with very few time steps.

We suggest that these problems could come from a higher difficulty of achieving re-
laxation inside haloes when the time discretization is too coarse. Particles evolve accord-
ing to the mean gravitational potential that arises from the smooth distribution, but are
also affected by individual encounters. The relaxation time is related to the moment when
the latter start to significantly contribute to the dynamics, boosting the re-distribution of
kinetic energy and achieving a dynamical equilibrium in the system (Dehnen & Read,
2011).
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FIGURE 3.1: Mass function when using COLA with 10 time steps starting
at zi = 9. Solid, dashed and dotted lines correspond to z = 0, 0.5 and 1
respectively. At high redshift there is a large discrepancy that is partially

solved at z = 0.5.

Each time step is a chance for particles to interact with each other, but if we reduce
them drastically the re-distribution of energy is unphysical suppressed. This is critical
for those haloes that have not relaxed yet. Since the relaxation time is proportional to the
number of particles of a halo (Binney & Tremaine, 1987), the effect is larger for high mass
haloes. The halo formation time increases and merging processes are poorly captured,
producing halo masses largely underestimated for z > 0, before 10 time steps have been
completed. Note that full N -body codes with adaptive time steps schemes trigger finer
time samplings at high density regions and halo formation is properly tracked.

To visually confirm this idea, we show in Fig. 3.2 the halo distribution of two runs
with 10 and 40 time steps in red open and blue filled circles, respectively. The initial
conditions and the rest of parameters are kept the same, so that differences are due only to
the number of time steps. In the left panel, we confirm that at z = 1.0 massive haloes are
in general not properly tracked with 10 time steps and they seem to appear fragmented
as smaller mass haloes. And not all of the low mass haloes are identified. Nevertheless, in
the right panel at z = 0, when 10 time steps have been completed, the agreement is much
better on halo masses, positions and abundance at all masses. This visual inspection
suggests that one needs � 10 time steps before halo properties converge at the redshift of
interest.

We find that relaxation effects when only 10 time steps are used can be reduced using
a higher particle mass (e.g. above 1011 h−1M�). The number of particles of the haloes
decreases and, therefore, their relaxation time as well. We checked that disagreements in
the mass function and halo clustering are indeed lower, but this apparent improvement
is however lost for other statistics where mass resolution is important.

Evolving particles with just ten time steps before the redshift of interest, therefore,
provides accurate results only at large scales (k ≤ 0.3hMpc−1) and low redshifts. We
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FIGURE 3.2: Spatial distribution of haloes in two different COLA runs that
differ only in the number of time steps: 10 are represented by open circles
and 40 by filled ones. Different panels show redshifts 1.0, 0.5 and 0 from
left to right. The slices have a width of 50h−1 Mpc and are 25h−1 Mpc
thick. The radii of circles are proportional to M1/3 and match the r200
values, so that they reflect the physical size of haloes. Only those with
more than 200 particles are shown (which corresponds to 6×1012 h−1 M�).
The largest halo at z = 0 has a mass of 1.87×1015 h−1 M� for a run with 40
time steps and a 4.5% less for 10 time steps. At z = 1 the matching between
the runs is poor, with the abundance under-estimated by 50% or more with

10 time-steps. The agreement improves as one approaches z = 0.

might have stronger requirements that clearly push to go beyond 10 time steps to surpass
those limitations.

3.4 Optimization

A gravity solver algorithm discretizes both temporal and spatial dimensions (and the
mass as well) in order to numerically solve for the dynamical evolution. The idea behind
COLA is to reduce numerical computations as much as possible while still capturing the
growth of structure on large scales (see § 2.3). This can be controlled with few internal
code parameters: the number of time steps, the time sampling distribution, the initial
redshift and the size of the force mesh grid, in combination with the mass resolution
and/or the box size. Note however that COLA is not fundamentally different from a
full N -body in the sense that as one increases the requirements on such parameters the
numerical integration of particle trajectories becomes more accurate and COLA would
eventually converge to a full N -body.

In this section we explore the code parameter space in order to understand their im-
pact on observables and determine regions that provide optimal results in terms of accu-
racy versus running time (or memory usage). We assess the performance by comparing
the COLA dark matter power spectra up to k ∼ 1hMpc−1, and halo mass functions for
M � 1012.5 h−1M�, against those in the reference N -body run. A key difference from
previous works (Kazin et al., 2014; Howlett, Ross, et al., 2015; Leclercq et al., 2015) is that
we aim at reproducing those observables simultaneously across a large redshift range
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FIGURE 3.3: Matter power spectrum in real space at z = 0 (left panel) and
mass function at z = 1.0 (right panel) for three different choices for the
number of time steps: 10, 20 and 40 in dotted, dashed and solid lines, re-
spectively. The initial redshift is fixed at zi = 9. An increase in the number
of time steps directly translates into a better accuracy at small scales. As
for haloes, a high number of time steps is necessary to correctly predict the

mass function at high redshift.

(0 ≤ z ≤ 1). As we will see next, the requirements in this case are more stringent that
those needed for a single redshift output or halo mass bin.

3.4.1 Number of time steps

The first parameter we vary is the number of time steps, with the initial redshift fixed
to 9. The upper panel of Fig. 3.3 displays the z = 0 matter power spectrum for COLA
runs with increasing number of time steps divided by the one measured in MICE-GC.
The characteristic scale at which the ratio deviates from unity is progressively shifted
towards higher wave-numbers as more time steps are included: there is a 2 per cent
agreement up to scales of k ∼ 0.4, 0.6 and 0.8hMpc−1 for 10, 20 and 40 time steps respec-
tively. This can still be improved adjusting the initial redshift according to the number
of time steps (see § 3.4.3). In particular, we check that doubling the number of time steps
almost doubles the characteristic wavenumber where the power spectrum is significantly
underestimated. This in turn means that there is room for higher accuracies with more
than 40 time steps, although presumably the force mesh resolution would then soon be-
come a limiting factor. We also find that these results for the matter power spectrum are
to a good extent independent of the redshift analyzed.

However, for the mass function there is a higher sensitivity to the number of time
steps at high redshift. As shown in the lower panel of Fig. 3.3, the large underestimation
of the mass function at z = 1 is solved by doubling the total number of time steps. With
20 time steps, 10 of them are computed before the redshift of interest. The abundance at
high masses further increases by ∼ 5 per cent when moving from 20 to 40 time steps and
the mass function is consistent with the one from MICE-GC.
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At redshift 0 and 0.5 the mass function also increases with the number of time steps
at masses above ∼ 1013.5 h−1M�, although more moderately. Moving from 10 to 20 time
steps, the mass function augments by 5 − 10% at the high mass range and from 20 to 40
by � 5%. At low masses, differences remain within 1 per cent for 20 and 40 time steps.
We conclude, therefore, that the low mass regime of the mass function converges for 20
time steps but that 40 are necessary for the most massive haloes. In Appendix B we show
that, even with as many steps as 20 or 40, the 2LPT contribution in the COLA method is
still key to achieve accurate results, as compared to PM only simulations.

3.4.2 Time sampling distribution

The scale factor a is the variable used to discretize the temporal axis in regular time steps.
For that, we can choose a time sampling function f(a) and distribute n steps in intervals
of constant width Δf(a),

Δf(a) =
f(af )− f(ai)

n− 1
, (3.1)

where ai is the initial scale factor and af ≡ 1 the final. If the resulting Δa << 1 then
Δa ≈ [f ′(a)]−1Δf(a). For the linear case, we simply have f(a) = a and the step width
Δa is constant. We can define the step density as the inverse of the step width: ρ ≡ 1/Δa.
Since Δf(a) is constant, then ρ ∝ f ′(a).

In § 3.4.1 we showed for the linear case how increasing the step density (which in that
case is only set by the number of time-steps) improves the accuracy of the simulation, but
at the expense of a higher computational cost. In this section we explore which function f ,
and the corresponding step density ρ ∝ f ′(a), produce a step distribution that is balanced
in terms of accumulated errors over time. In Fig. 3.4 we show the step density for four
different choices of the time sampling function. We distribute 40 time steps between
zi = 39 and z = 0 using a linear (circles), logarithmic (squares) or power law function
f(a) = ap (diamonds and triangles for p = 0.5 and p = 0.8 respectively).

A logarithmic time sampling is useful in full N -body codes for global time steps that
affect all particles. But these algorithms in general implement adaptive time stepping
schemes for individual particles that sample more accurately the time evolution when
non-linearities start to grow. In the implementation of COLA we are using there is no such
refinement at late times and we see in Fig. 3.4 that the logarithmic choice oversample the
early evolution of the particle distribution at the price of a low step density at later times.
On the other hand, the linear case has large relative variations on the scale factor during
the first steps, which might presumably lead to larger inaccuracies. For that reason we
have considered the power law function to sample intermediate situations if 0 < p < 1.

In Fig. 3.5 we compare the matter power spectrum for three time sampling functions:
linear, a0.8 and logarithmic in solid, dashed and dotted lines respectively. Upper and
lower panels correspond to redshifts 0 and 1 respectively. We see that any gain we might
have at high redshift by concentrating there more time steps is lost as soon as the step
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FIGURE 3.4: Step density (or the inverse of the step width) as a function
of the scale factor for different schemes of time sampling: linear (circles),
logarithmic (squares) and using a power of the scale factor, where for the
latter we show two cases with exponents 0.5 (diamonds) and 0.8 (trian-
gles). In all cases we distribute 40 steps between zi = 39 and z = 0 and the

markers are located at the position of each step.

FIGURE 3.5: Matter power spectrum for the following time sampling func-
tions: linear (solid line), a0.8 (dashed) and logarithmic (dotted). All runs
contain 40 time steps starting at zi = 39. The upper and lower panels show
redshifts 0 and 1, respectively. The case that performs better at all redshifts

is the linear one.
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density decreases later. This is evident for the logarithmic case, which has the lowest
step density for z < 2. In particular, at z = 0 the power spectrum is close to that for
the case of 10 time steps linearly distributed (see dotted line in the upper panel of Fig.
3.3) and indeed they have a similar step density. The distribution of time steps using the
function a0.8 provides better results at high redshift, but falls below the linear distribution
for lower redshifts where it has a lower step density.

Therefore, an optimal distribution should have a step density without strong varia-
tions and we conclude from the measurements that the linear case offers the best global
performance at all redshifts. Although large relative variations on the scale factor during
the first steps could lead to inaccuracies, this is balanced by the fact that at early times the
dynamics is close to linear and can be well approximated by the 2LPT evolution. Hence
a better time sampling at the beginning is not as critical as for low-z. Since all these argu-
ments are built based on relative variations of the step density across time, the conclusions
are independent of the absolute number of time steps and the initial redshift. Therefore in the rest
of this chapter (and the thesis as well) we shall adopt a linear time-stepping distribution.

Lastly, we can use the concept of step density to frame the results from § 3.4.1 for the
abundance of haloes. We find that whenever the step density is low (ρ � 20), the mass
function suffers an underestimation for masses above 1013.5 h−1M�.

3.4.3 Initial redshift

The optimal selection of the initial redshift is coupled with the number of time steps (but
it is independent of the time sampling distribution, as we have already shown).

A first guess we can do is to set the initial scale factor equal to the step width, which
for 10 time steps gives zi = 9 (Tassev, Zaldarriaga, et al., 2013). Starting later would
introduce more transient effects whereas doing it earlier would produce large relative
variations in the scale factor in the first time step, which seems not optimal. So there
is not much room for optimization using few time steps. Instead we now focus on the
situation in which we have 40 time steps.

Using the same rule as before we can estimate a good guess as zi = 39. In Fig. 3.6
we show the resulting matter power spectrum at z = 0 when the initial redshift is varied
from 9 to 100. A low value of zi = 9 yields transient effects at all wave-numbers with
an amplitude up to one per cent. The rest of cases are almost indistinguishable, only for
zi = 100 there is slightly less power at k ∼ 1hMpc−1. On the other hand, we detect
that the mass function is underestimated at low masses if the initial redshift is too high.
One possible explanation is that for high starting redshift the density contrast in the initial
conditions are too smooth and then, due to the coarse time sampling in COLA, the smallest
density peaks that seed small mass haloes are blurred. This pushes towards using an
initial redshift not as high so fluctuations are larger, even if they are given by 2nd order
in LPT.

Nonetheless the dependence we observe on this parameter once zi ∼ 20− 40 is weak,
since in practice only affects the position of the first(s) time step. But given the slightly
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FIGURE 3.6: Matter power spectrum at z = 0 as a function of the initial
redshift. All runs distribute 40 time steps linearly along the scale factor.
A too low starting redshift produces transients at non-linear scales. The
cases with zi � 19 are almost indistinguishable from each other, except for

a slightly less power for zi = 100 at k ∼ 1hMpc−1 (see text for details).

better performance on the mass function of zi = 19 when using 40 time steps, we adopt
this value as our fiducial choice in what follows.

3.4.4 Force mesh grid size

Previous subsections were devoted to parameters that define the temporal discretization
of the simulation. We use now the most accurate configuration (that is, 40 time steps lin-
early distributed from zi = 19) to study the effects of the spatial discretization in the force
computations. In particular, we compare runs with PMgrid factors of 2 and 3. We note
that this parameter is of particular relevance as it has a large impact in the computational
cost of the runs. For example, PMgrid = 2 allows a saving of 70% of the computing time
and 30% of the memory consumption with respect to PMgrid = 3.

We find that changing from PMgrid = 3 to 2 only changes the matter power spectrum
by ∼ 1% for k � 1hMpc−1. However there is a more important effect on the halo mass
function. For PMgrid = 3, what corresponds to a comoving cell size of 0.25h−1Mpc given
our box-size and particle load, we recover a mass function within 5% of the one measured
in MICE-GC down to 1012.5 h−1M�. This is shown in Fig. 3.7 with a solid blue line.
According to the halo model this mass scale corresponds to a halo size of ∼ 2h−1Mpc

(e.g. Scoccimarro, R. K. Sheth, et al., 2001). This means that in order to resolve a given
halo mass scale at such accuracy we need a minimum of roughly 8 cells to sample its
typical halo size. Otherwise the haloes are puffy and might not collapse and be resolved.
For PMgrid = 2 the force evaluation cell size is ∼ 0.375hMpc−1, given the above scaling
it means that we should only resolve the mass function at ∼ 5% for haloes more massive
than ∼ 1013 h−1M�. This is in fact in good agreement with our findings in Fig. 3.7.
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FIGURE 3.7: Mass function at z = 0.5 using a PMgrid = 2 and 3 (dotted and
solid lines, respectively). Both runs contain 40 time steps and have zi = 19.
Decreasing the size of the PM grid produces a larger overestimation of
masses for large haloes and increases the incompleteness for small haloes.

A discrepancy in the mass function might have two sources: a genuine difference on
the abundance or that halo mass estimates are systematically biased. The first case, and
assuming that the difference is spatially homogeneous, does not produce differences in
clustering for samples selected by mass cuts (see Table 3.1), while the second does. Since
we do not detect any significant difference in halo clustering at the low mass range for
different PMgrid factors, we infer that there is a completeness problem at those masses
due to the size of the force mesh. Not all haloes that should form are detected in the
simulation, and in a mass-dependent way.

At high masses, on the contrary, we observe a lower clustering amplitude (∼ 1 per
cent at linear scales) for the run that produces a higher overestimation on the mass func-
tion. Both facts can be explained by a halo mass overestimation. One possible interpre-
tation is that the puffier the haloes due to the force resolution, more easily the FoF algo-
rithm bridges neighboring particles or small groups to a halo that really do not belong to
it, hence systematically biasing high the mass estimate, as we observe.

3.4.5 Optimal setup

So far, we have given an exploration of the main code parameters in COLA and their
impact on the dark matter clustering and on halo abundance. To achieve percent accuracy
on both quantities, at very least 10 time steps have to be done before the redshift of
interest1, which means that in total we might need 20 or more until z = 0. The more
we do, the higher is the wavenumber where the dark matter power spectrum starts to
miss power. This is true to at least ∼ 40 time steps, above that one should probably set
PMgrid > 3 (for the reference mass resolution we use, 2.9 × 1010 h−1M�), so that the

1Using a particle mass of 2.9× 1010 h−1 M�.
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FIGURE 3.8: Comparison of the matter power spectrum in real space for
the run using optimal parameters (40 time steps and zi = 19, solid lines)
and the default configuration (10 time steps and zi = 9, dotted lines). We
show redshifts 0, 0.5 and 1. This optimal setup delivers a ∼ 1 per cent

accuracy at scales k ∼ 1hMpc−1.

force resolution does not limit the accurate sampling of power up to k ∼ 1hMpc−1. In
Appendix B we show that still with these configurations, the COLA method yields better
results than a PM only evolution. After we find that the linear time sampling distribution
is the optimal one, regardless of the rest of parameters, and that for a large number of
time steps best results are already achieved with an initial redshift of 19. A high PMgrid

factor is required for percent accuracy in halo abundance and matter clustering and thus
we set PMgrid = 3 despite its relatively higher computational cost. The prize of further
increasing it is not well justified in terms of additional accuracy.

A good choice of code parameters depends on which accuracy requirements need
to be accomplished by the final mock catalogues. In this work, our target is to achieve
per cent level accuracy on the matter power spectrum and halo abundance, in the wide
ranges of 1012.5 − 1015.0 h−1M� in mass, scales up to k ∼ 1hMpc−1 and redshifts com-
prised between 0 and 1.5.

Given these requirements we find that the best setup is set by 40 time steps linearly
distributed along the scale factor, starting at zi = 19 and with a PMgrid factor of 3. Fig.
3.8 shows the matter power spectrum using this configuration (solid lines) compared
with the case of 10 time steps starting at zi = 9 (dotted lines) at redshifts 0, 0.5 and 1.
At z = 0 (1), there is a 1 per cent accuracy up to k = 0.8 (1.3)hMpc−1. Regarding the
mass function, the solid line in Fig. 3.7 depicts results at z = 0.5 for the optimal setup.
For other redshifts the conclusions are quite robust, i.e., a 5 per cent underestimation at
M = 1012.5 h−1M� and a ∼ 5 per cent excess for M � 1013.5 h−1M�.
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FIGURE 3.9: Halo-matter cross power spectrum. Rows correspond to dif-
ferent halo mass corrections: original mass, after abundance matching
(see § 3.5.1) and after bias re-calibration (see § 3.5.2) from top to bottom.
Columns separate halo samples M1, M2 and M3 from left to right. The
original catalogue has a bias underestimation of ∼ 2 per cent in all cases.
The abundance matching performs well at high masses while the bias re-
calibration is able to achieve a 1 % agreement on large scales (i.e, k <
0.3− 0.4hMpc−1) and 2 % at intermediate scales (0.4 < k < 0.7hMpc−1).

3.5 Halo clustering

In § 3.4 we found an optimal configuration set-up for COLA by benchmarking the matter
clustering and the halo abundance as a function of redshift against those measured in
MICE-GC. We now study what that configuration implies for the clustering of haloes.
The first row in Fig. 3.9 shows the halo-matter cross power spectrum in real space and
without applying any correction to the catalogues. Different columns separate mass sam-
ples M1, M2 and M3 (see Table 3.1) from left to right. Solid, dashed, dot-dashed and
dotted lines display redshifts 0, 0.5, 1 and 1.5 respectively. The other two rows are ex-
plained in the following subsections § 3.5.1 and § 3.5.2. We notice that there is a general
∼ 2 per cent under-estimation of the clustering amplitude at all mass bins and redshifts.
This constitutes a remarkable result: it is possible to predict the halo linear bias with an
accuracy of ∼ 2 per cent without doing any correction nor the necessity of calibrating
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against a reference full N -body simulation.
Note, however, that we have also found evidence that halo masses are biased. Hence,

we now explore two different corrections on the mass with the aim of reducing further the
deviations in the halo bias to the � 1% level. One is based on fitting abundances (abun-
dance matching, § 3.5.1) and the other on fitting clustering (bias re-calibration, § 3.5.2
§ 3.5.2).

3.5.1 Abundance matching

The cumulative halo mass function gives a monotonic relationship between the mass and
the abundance of haloes. Biased halo mass estimates makes this function in COLA to have
deviations with respect to a reference N -body simulation. If we have an external fiducial
mass function (coming from a full N -body simulation for instance), we can re-assign the
halo masses in the catalogue so that the reference abundance is fitted. When the incom-
pleteness is negligible, we expect this calibration to greatly reduce disagreements among
both catalogues if the ranking of halo masses has the correct ordering. If the incomplete-
ness is present, there are missing entries in the catalogue and trying to match abundances
will not produce the desired effect but a mixing of haloes with different clustering prop-
erties.

The second row in Fig. 3.9 shows the halo bias after correcting halo masses by abun-
dance matching, using the measured mass function in MICE-GC as reference. The small
disagreements in the top panels are greatly corrected in mass samples M2 at z > 0 and
M3 at all redshifts, but not in M1. This is consistent with the impact of incompleteness in
the mass sample described above: abundance matching works well as long as the incom-
pleteness is not present, i.e. M � 1013 h−1M� (see the solid line in Fig. 3.7).

We have tested as well the capabilities of the abundance matching for runs using
only 10 time steps, in which the “uncorrected” mass function is highly under-estimated
at z = 1 and the halo bias deviates by ∼ 20 per cent (see Fig. 3.1). After abundance
matching, the bias is recovered at the 3 per cent level for all mass bins and redshifts, but
only for k < 0.5hMpc−1, what illustrates that mass calibration performs worse when
non-optimal parameters are used in COLA.

3.5.2 Halo bias re-calibration

We now explore an alternative mass re-calibration that is targeted to fit the halo bias. Note
in the first row of Fig. 3.9 the COLA run (with optimal set-up) yields always a residual
bias mismatch of 2 per cent, regardless of the mass sample and redshift. We can use this
fact to build an alternative correction independent of any parent simulation (assuming
the 2% factor is roughly independent of cosmology). In the framework of the halo model
(Cooray & R. Sheth, 2002) halo bias and halo mass are related through a function that
only depends on cosmology b = b(M). Thus, to first order, a fractional reduction in the
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bias of δ ln b can be recovered with a shift in halo mass lnM → lnM − δ lnM given by,

δ lnM =

(
∂b

∂ lnM

)−1

b δ ln b. (3.2)

In what follows we set δ ln b = 0.02 (the bias calibration value we found) and evaluate
the derivative in Eq. 3.2 at the corresponding mass and redshift using the bias predic-
tion from R. K. Sheth & Tormen (1999) but we have checked that other fitting functions
provide similar results.

The recovered halo bias values after doing such mass re-calibration are shown in the
third row in Fig. 3.9. Now the agreement with MICE-GC is within 1% up to scales
k � 0.5hMpc−1 for all redshifts and masses. However, the correction is not working
perfectly for the mass sample M3, where it is sub-percent up to k � 0.3hMpc−1 but
yields an over-estimate of ∼ 2% beyond. We believe this could be due to the limited
accuracy of the bias predictions coming from the theory of the peak background split
(Manera, R. K. Sheth, et al., 2010), used to evaluate Eq. (3.2). Provided with a better
bias prescription (or maybe the bias-mass relation measured from a reference N -body
itself) one would expect the bias re-calibration to give very good results by construction.
Nonetheless the accuracy remains within 1% for most cases and deviations from that are
small.

As was the case for the abundance, this correction solves disagreements due to bi-
ased halo masses but not due to incompleteness. The over-abundance at high masses
is removed but the underestimation at low masses persists and even increases. Despite
that, haloes have the right clustering amplitude.

3.5.3 Redshift space

We now turn into discussing the performance of COLA for reproducing observables in
redshift space, as this is what is actually observed in large scale structure galaxy surveys.
Redshift space positions s are obtained by,

s = r +
vr

aH(a)
(3.3)

where r is the position in real space, vr is the peculiar velocity along the line of sight
direction, a is the scale factor and H = a−1da/dt the Hubble expansion rate. For con-
creteness we will focus in halo power spectrum multipoles and assume the plane-parallel
approximation, that is, fixing the line of sight to one of the three Cartesian axes.

In order to reduce the statistical errors in higher order multipoles we have produced
48 COLA runs using the optimal setup described in § 3.4.5. We split the halo catalogue in
the 3 mass bins as in Table 3.1, with halo masses re-calibrated using the bias method with
δ ln b = 0.02 (see § 3.5.2).

Figure 3.10 shows the mean of the monopole (l=0) and the quadrupole (l=2) over the
suite of COLA runs divided by the corresponding quantities measured in MICE-GC. Rows
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FIGURE 3.10: Monopole (l = 0) and quadrupole (l = 2) of the halo power
spectrum in redshift space (solid and dashed lines respectively) in COLA
vs. the MICE-GC N -body simulation. Different rows correspond to red-
shifts 0, 0.5 and 1 from top to bottom and columns separate mass samples
from left to right (halo masses have been corrected by the bias calibration
method). Monopoles have been corrected for shot-noise. Measurements
in COLA correspond to the mean over 48 runs using the optimal setup. At
large scales (k < 0.3hMpc−1) the agreement is within 1 per cent for the
monopole and 2%−3% for the quadrupole. Dotted and short-dashed lines
are the monopole and quadrupole after reducing halo velocities by 2 per
cent, what brings the latter to better agreement while leaving the former

unchanged.
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FIGURE 3.11: Mean halo power spectrum hexadecapole in COLA (after
the correction in the halo masses by the bias re-calibration method with
δb/b = 0.02) compared to the one in MICE-GC. Different rows correspond
to redshifts 0, 0.5 and 1 from top to bottom and columns separate mass
samples M1, M2 and M3 from left to right. For k > 0.2hMpc−1 the agree-
ment with the N -body is at the � 20% level across redshifts and mass bins.
The dotted line includes as well a reduction in halo velocities of 2 per cent

(see text for details).
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separate redshifts 0, 0.5 and 1 from top to bottom and columns mass bins M1, M2 and M3
from left to right.

For reference we recall the large-scale limit expressions for these quantities (Kaiser,
1987) assuming a simple linear bias model,

P s
l=0,hh(k) =

(
b2 + 2

3bf + 1
5f

2
)
P r
mm(k),

P s
l=2,hh(k) =

(
4
3bf + 4

7f
2
)
P r
mm(k), (3.4)

where b is the bias and f ≡ d lnD
d ln a the linear growth rate.

At large scales (k < 0.3hMpc−1), the agreement with MICE-GC is within 1 per cent
for the monopole. Recall that we are using bias-recalibrated masses what ensures that
the halo clustering is well reproduced in real space. And this contribution is the leading
order for the monopole in redshift space, on large scales (i.e. the b2P r

mm term in Eq. 3.4).
Had we used the actual COLA halo masses instead we would have obtained biases off by
2 per cent and the monopole underestimated by at least ∼ 4%. In turn, the quadrupole in
Fig. 3.10 is systematically overestimated by ∼ 2 per cent across all mass bins and redshifts
(k < 0.3hMpc−1). On large scales, the leading order contribution to the quadrupole is
the cross-correlation between halo densities and halo velocities, i.e. the term bfP r

mm in
Eq. 3.4. This means that any inaccuracies in reproducing the velocity field by COLA will
have a direct impact in the quadrupole. For instance we have checked that the differences
on large-scales can be corrected by reducing by 2 per cent each halo velocity (what would
amount to reduce the overall bulk flow). We over plot (without error bars) the monopole
and the quadrupole with dotted and short dashed lines respectively after applying such
velocity correction. As expected, the quadrupole is now perfectly in agreement at large
scales and the monopole remains almost unaltered.

At smaller scales (k > 0.3hMpc−1) we observe larger discrepancies. The monopole
is underestimated, specially at high masses, and the quadrupole is overestimated. We
believe this is due to the details of the full velocity PDF2 but we do not attempt to tune
the results further to those of MICE-GC as i) the results on these scales will eventually
depend on the galaxy sample under consideration and ii) these are scales that start to
be smaller than those used in standard large-scale structure probes such as BAO. For
instance, small-scale corrections can be postponed to a later stage when haloes are pop-
ulated with galaxies using an HOD prescription, in which the velocity dispersion can be
fitted to have agreement with observations. For reference, we have checked that adding
a dispersion component to the halo velocities drawn from a Gaussian distribution with a
width of ∼ 35 km s−1 and zero mean reduces the quadrupole for k > 0.3hMpc−1 and is
then in agreement within 2 per cent for most scales, mass samples and redshifts, whereas
the monopole is not substantially affected.

2For example, we have measured the halo 1-dimensional velocity distribution and found that the fraction
of haloes with center of mass velocities larger than 500 km/s is slightly underestimated by few percent in
COLA (the exact number varies for mass samples and redshift), although the halo velocity rms agrees within
1 per cent with MICE-GC.
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FIGURE 3.12: Comparison of the mass function for some of the method-
ologies. Only COLA and PINOCCHIO have predictive power on that ob-

servable, although the second one has been tuned to reproduce it.

Figure 3.11 shows the equivalent of Fig. 3.10 but for the hexadecapole (l = 4). We
find that our optimal configuration for COLA yields an excess of ∼ 50 per cent at large
scales, while for k > 0.2hMpc−1 the agreement is significantly improved, down to ∼ 20

per cent. These differences are not significantly changed when the velocity correction of
2 per cent is applied. If we further add an ad-hoc velocity dispersion term, as discussed
above for lower multipoles, we achieve an agreement within 10 per cent at small scales.

3.6 Fast methods comparison project

This last section is devoted to a comparison project among most of the existing approxi-
mate methods, that is: COLA, EZmocks, HALOgen, PATCHY, PINNOCHIO and PTHalos
(see § 2.2 for references). Comparing COLA against the rest of techniques, it is clear that
COLA is the one that has higher computational requirements, specially on the memory
and the CPU-time. However, it is still 2-3 orders of magnitude faster than a conventional
N -body simulation and it is by far the most accurate method. Furthermore, it is a stand-
alone technique that does not rely on any assumption nor calibration with an external
simulation.

All the methodologies were run using the same cosmology and box size as the ref-
erence N -body simulation BigMultiDark (Klypin et al., 2016). Then a halo sample with
the threshold M � 1013 h−1M� was drawn and the clustering measured. Some results
are shown in Fig. 3.12, which compares the mass function, and Fig. 3.13, that shows the
cuadrupole of the power spectrum. These confirm that COLA provides the most accurate
results, even that for this particular project the standard 10 time steps configuration was
used.



46 Chapter 3. Optimization of a quasi N -body method for clustering

FIGURE 3.13: Comparison of the quadrupole of the power spectrum. Only
COLA gives predictions within 5% at all scales.
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4
SIMULATIONS IN THE LIGHT CONE

Real observations come in the format of a light cone, in which distant objects are seen as
they were in the past. Hence, simulations that produce catalogues in this format enable
a more realistic modelling of experiments. This chapter is devoted to how ICE-COLA

implements this feature and produces catalogues on-the-fly. After an introduction re-
viewing how light cones are generated in N -body simulations in § 4.1, the algorithm
implemented in ICE-COLA is explained in § 4.2. The code can produced different kind of
catalogues, as is described in § 4.3. Finally, § 4.4 analyses the performance of the method
in various computational aspects.

4.1 Mimicking real observations

Astrophysics is a scientific discipline in which distances are tremendously large and,
in particular, cosmology stands at the highest limit of the distance ladder (see Rowan-
Robinson, 1985 for an historical review or e.g. Freedman et al., 2012; Efstathiou, 2014;
Riess, L. Macri, et al., 2011; Beaton et al., 2016; Riess, L. M. Macri, et al., 2016 for the state-
of-the-art in direct measurements of the Hubble constant). Astronomical observations are
one of the main sources of knowledge and consist in collecting photons emitted by celes-
tial objects. The light we receive in the present was emitted in the past and therefore the
properties we can measure are relative to that time. In terms of the special relativity, we
observe our past light cone, where more distant objects are seen at an earlier time. Within
the context of an expanding universe, the lookback time tL to an object is the increment of
the age of the Universe between the emission time of the photons and now (Hogg, 1999)

tL(z) = tH

∫ z

0

dz′

(1 + z′)E(z′)
(4.1)
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where tH ≡ 1/H0 is the Hubble time nowadays. Observational data consists thus in
a mixture of properties of objects at different evolutionary stages according to their red-
shift. Therefore, mock catalogues oriented towards understanding cosmological surveys
will be more realistic if they are built in the form of a past light cone, where the relative
distance of an object from an hypothetical observer determines the time of gathering its
properties. There are many galaxy surveys planned for the next years that will sample
the cosmic evolution up to redshift 2 or beyond, such as Euclid1, the Wide-Field Infrared
Survey Telescope (WFIRST)2, the Large Synoptic Survey Telescope (LSST)3, Dark Energy
Spectroscopic Instrument (DESI)4 and the Panoramic Survey Telescope and Rapid Re-
sponse System (Pan-STARRS)5. They will probe large variations in the cosmic growth
and this evolution needs to be modelled in mock catalogues.

Numerical N -body simulations evolve the matter distribution inside a box by com-
puting its gravitational interactions (and hydrodynamical as well if fluid properties of
gas particles are considered). The simplest way to store the data is creating snapshots
at certain steps of the simulation, in which all the outputted information correspond to
the same epoch. Then, having multiple snapshots allows to sample discretely the cosmic
evolution and can be stitched together to build a light cone (Blaizot et al., 2005; Kiessling,
Heavens, et al., 2011; Merson et al., 2013). If snapshots are spaced in the temporal axis
by Δz, each one covers the interval (zi − Δz/2, zi + Δz/2), which corresponds to a co-
moving distance interval (χi−, χi+). Then, an observer is placed inside the box and the
sub-volume delimited by the distance interval is copied from snapshot i to the light cone.
This can be done either in the plane-parallel approximation (in which distances with re-
spect to the observer are large and line-of-sight vectors are assumed to be parallel), or in
a spherical geometry (where sub-volumes form multiple concentric shells). The former
is suited for small patches of the sky but the latter is necessary for large area mock cata-
logues that will be needed by upcoming surveys that will observe large fractions of the
sky.

Another limitation of appending sub-volumes from different snapshots is that discon-
tinuities are generated at the boundaries. These are minimized if a finer time sampling
is used by producing a large number of snapshots, what leads to huge data volumes.
Instead, generating a light cone on-the-fly, that is, at running time of the simulation,
overcomes these difficulties because it skips the production of snapshots and the post-
processing work for stitching them together. This enables a reduction of the data to be
stored and the generation of all-sky light cones with a smooth evolution across all the vol-
ume. However, it requires a more elaborate code to identify during the simulation those
particles that are entering into the light cone and compute their coordinates at crossing
time.

1http://www.euclid-ec.org/
2http://wfirst.gsfc.nasa.gov/
3http://www.lsst.org
4http://desi.lbl.gov/
5http://pan-starrs.ifa.hawaii.edu/public/
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Fast methods aim at reducing computational requirements, and these includes as well
data storage. Even more, since they are fast, they lead to the production of massive
ensembles of simulations. Therefore, it becomes essential to incorporate techniques to
minimize catalogue sizes and producing directly useful data in the form of light cones
becomes very valuable. This chapter is devoted to the modifications that have been im-
plemented in ICE-COLA in order to produce light cone catalogues on-the-fly. First, § 4.2
describes the algorithm for determining the particles that enter into the light cone in mul-
tiple box replicas. Then in § 4.3 it is explained how different kind of catalogues can be
produced. Lastly, § 4.4 assesses the numerical performance of the ICE-COLA in three dif-
ferent aspects: the overhead in the running time, the memory usage and the data volume
of the catalogues produced.

4.2 Light cone construction

4.2.1 Crossing time

The core part of the algorithm is to determine for each particle the exact time when it en-
ters into the light cone, which is called the crossing time tc, or ac if it is expressed as a scale
factor. Typically, collissionless N -body simulations evolve particle coordinates by the
drift and kick temporal operators (see § 2.3.2, and (Dehnen & Read, 2011) for a review),
which update particle positions and velocities respectively. When the simulation has
reached redshift z, the concentric shell around an observer defined by (z−Δz/2, z+Δz/2)

can be constructed, where Δz defines the width and separation of shells. Conventional
N -body simulations have high temporal resolution and calling the routines for the light
cone construction at each time-step would not be efficient. For this reason it should be
assigned a value to Δz considerably larger than the interval between consecutive time-
steps. In COLA, however, time-steps are much broader and it is more adequate to build
the part of the light cone that corresponds to the redshift interval between consecutive
time-steps. Therefore, after each temporal operator the light cone routine is called.

At any moment of the simulation, particle positions and velocities are given by the
last drift and kick operators respectively, computed at scale factors aD and aK . Coordi-
nates at intermediate time values can be interpolated using an extra pair of drift and kick
operators to move the particle to a desired scale factor a (while it obeys min(aD, aK) <

a < max(aD, aK)). By converting aD and aK to comoving distances we find the radii that
define a shell in the light cone, as it is shown in Fig. 4.1. Particles inside that volume are
going to be included in the light cone in the current call, but before we have to compute
their coordinates at crossing time.

A particle will move from position r(aD) at drift time to r(ac) at an unknown crossing
time tc, having a variation on the comoving distance along the line-of-sight of

Δχ1 =
vrad(tc − tD)

a
, (4.2)
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buffer

aK aDap ac

r(aD)

r(ac)

vrad

Δχ1 Δχ2

Δχ

FIGURE 4.1: Diagram of a particle at its crossing time. Initially, at drift
time, the light cone is at position aD and the particle at r(aD). Knowing
these two quantities, together with the radial velocity, is enough to evalu-
ate equation 4.5 that gives the crossing time ac. Then, coordinates for the
particles can be interpolated at that time. Note that the velocity buffer is

only necessary around aK .

where vrad = v · r̂ is the physical radial velocity and we assume that variations on the
scale factor are negligible. During the same time, the light cone progresses a comoving
distance

Δχ2 =
c(tc − tD)

a
. (4.3)

Similarly, the expression for the total distance is

Δχ =
c(tp − tD)

a
. (4.4)

where tp denotes the time when the light cone is at the comoving distance |r(aD)|.
Then, by simply equating Δχ = Δχ1 +Δχ2 the crossing time can be expressed as

tc =
c

c+ vrad
(tp − tD) + tD. (4.5)

To evaluate it one needs the velocity of the particle, the time of the last drift operator
and the initial position of the particle, that fixes tp. For slowly moving particles, vrad � c

and tc ≈ tp: the crossing time is nearly equal to the moment when the light cone reaches
the original position of the particle, as expected.

After determining the crossing time, particles are displaced to that time by computing
D(aD → ac) and K(aK → ac). Note that particles might enter inside the volume of the
shell when this displacement is applied and therefore an extra buffer zone is needed, as
shown in Fig. 4.1. The crossing time is computed as well for particles in that region but
only those which are inside the shell after the displacement are selected. Note that the
buffer is only necessary around the boundary associated with the kick operator, since
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close to the other boundary we have that tp → tD, and therefore D(aD → ac) → D(aD →
aD) = 0.

Equation 4.5 has to be evaluated for every particle that is a candidate to be inside the
current shell of the light cone. This involves conversions between the scale factor, the age
of the Universe and comoving distances. For a fast performance of the algorithm, values
for those functions are computed once, at the beginning, and later they are just interpo-
lated at the desired value. Since they are smoothly-varying quantities, with as few as 10
interpolating points sampling the range of values needed at a given call to the light cone
routine is typically enough to ensure sufficient accuracy. The temporal operators that
displace particles to the crossing time need to evaluate as well time-dependent variables
and are also pre-computed and interpolated later on.

The accuracy on the crossing time determined by this method, that is, evaluating the
approximate eq. 4.5 with interpolated quantities, can be tested calculating the difference
between the radial distance to the particle at crossing time, |r(ac)|, and the light cone
position at the same time, χ(ac). We have checked that deviations are only ∼ 1h−1Kpc

on average and ∼ 50h−1Kpc the largest value of all particles6. This is orders of magni-
tude below the typical force resolution length employed in COLA so we can hence safely
neglect this error.

A pseudo-code that sketches how the light cone algorithm works is shown in Fig. 4.2.
It also includes the generation of box replicas, explained next in Sec. § 4.2.2.

4.2.2 Box replicas

The position of the hypothetical observer, that determines the centre of the light cone, is
arbitrary for a simulation with periodic boundary conditions. For simplicity, it is usually
chosen to be at coordinates (0, 0, 0), at one corner of the box, so that the full simulated
volume extends up to (Lbox, Lbox, Lbox). If the outputs of the simulation are snapshots (or
data derived from them), in which all the information correspond to a single epoch, the
volume (0 − Lbox, 0 − Lbox, 0 − Lbox, ) contains all the possible information that can be
extracted. Nonetheless, in the production of light cones this is no longer the case since
the time of writing information in a region of space depends on the relative geometry
between the box and the observer. This fact, together with the periodic boundary condi-
tions, allows to replicate the box at adjacent positions and fill in a larger volume around
the observer. The great advantages are that the total volume of the catalogues will extend
to higher redshifts and a higher area on the sky (for instance, full sky). As a disadvan-
tage, modes are sampled multiple times and repeated structures will appear in the light
cone, although separated by the large distance of the box size and quite likely they will
be at different times, so their evolutionary stage will differ.

The algorithm produces box replicas by simply shifting positions by the vector n ≡
(nx, ny, nz) Lbox, where n is expressed in units of the box size and therefore its compo-
nents have integer values. ICE-COLA builds the necessary number of replicas according
to the values of two parameters specified in the parameter file:

6These numbers are taken from a simulation with 20483 particles.
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χ1 = χ(max(aD, aK));
χ2 = χ(min(aD, aK));
χ1,buffer, χ2,buffer = f(χ1, χ2,velocity_buffer_size);
Compute quantities evaluated at aD or aK ;
Setup spline interpolation for (aD, aK);
for (i = 0 → n_replicas - 1) do

Compute origin of the replica i: r0,i;
if (not inside replica i) then

Skip replica ;
end
for (j = 0 → n_particles - 1) do

if (χ1,buffer < |rj(aD) + r0,i| < χ2,buffer) then
Compute crossing time ac;
Compute Drift(aD → ac);
if (χ1 < |rj(ac) + r0,i| < χ2) then

Compute Kick(aK → ac);
Save particle j coordinates;

end
end

end
end

FIGURE 4.2: Algorithm of the light cone construction. Quantities such as
the crossing time or the temporal operators are computed just for those
particles which is needed. Here it is shown a simplified version, the full
code has additional features and some of them are given in Fig. 4.7 for the

case of running a halo finder in the light cone.

Starting redshift, zLC : converting it to a comoving distance and dividing by Lbox gives
the necessary number of replicas in one direction:

nrep,1D = ceiling
(
χ(zLC)

Lbox

)
(4.6)

Number of dimensions replicated, ndim: It determines in which axis i it is allowed to
have replicas along the negative semi-axis: ni < 0. If set to 0, the light cone is built
only in the octant where x, y, z > 0. If set to 1, nx iterates over positive and negative
values; with 2 also ny; and with 3 nz as well, which produces an all-sky light cone.

Then, the total number of box replicas obeys the formula

nrep,total = n3
rep,1D × 2ndim . (4.7)

It scales with the third power of the number of replicas in one direction, so a high
value for the starting redshift may produce a very large number of box replicas, mak-
ing the light cone computations to become a dominant fraction of the simulation time.
The configuration that has been used for the simulations presented in Chapter 5 uses
nrep,1D = 2 and ndim = 3, which results in 64 box replicas.
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When the code iterates over replicas, it is very simple to check if the the sub-volume
is intersected by the current shell being constructed. The replicas where this condition is
true are skipped, reducing the number of computations, as it is sketched in Fig. 4.2.

4.3 Catalogues on-the-fly

Section § 4.2 (see also Fig. 4.2) gives an overview of the core of the algorithm to build
the light cone on-the-fly in ICE-COLA. Now we turn in how this information can be
used in several ways to generate catalogues with scientific interest. Some of them are
complementary or represent different levels of compression of the data.

After running the algorithm that builds the light cone, the program has at its dispo-
sition a sub-sample of particles with their coordinates (computed at the crossing time).
The simplest catalogue that can be produced is just a dark-matter particle distribution,
as described in § 4.3.1. It represents a low-level output that contains all the information.
Therefore this turns out in massive data volumes, that are not suited for producing mas-
sive ensembles of realizations. For instance, an all sky light cone starting at redshift 1.4
in a simulation with a particle mass of 3 × 1010 h−1M� generates 6TiB of data, which is
hard to write, store, transfer and analyse. For these reasons it is essential to produce de-
rived and compressed data catalogues that, although will not contain all the information,
allow to model observables for galaxy surveys. With that motivation, ICE-COLA imple-
ments two higher level catalogues: § 4.3.2 describes the projected matter density field in
concentric spherical shells (that enable modelling weak lensing observables) and § 4.3.3
is devoted to the implementation of the Friends-of-Friends algorithm (Davis et al., 1985)
in the light cone (that produce halo catalogues). Thanks to that, large reductions in the
data volumes is possible.

4.3.1 Dark matter particle distribution

After running the algorithm that builds the light cone, the program has at its disposition
a sub-sample of particles with their coordinates (computed at the crossing time). The
simplest product that can derived from that is just storing a catalogue of dark-matter
particle light cone. It represents a low-level output that contains all the information. The
drawback is that the data volume may become extremely large and require massive I/O7

operations, since the volume sampled by the light cone may cover many box replicas.
Using binary (unformatted) files is mandatory for such outputs, to reduce their size

and for a better performance of the I/O. A quite standard format in cosmological simu-
lations is the Gadget one, very popular due to the well known code with the same name
(Springel, 2005)8. ICE-COLA also adopts this format, in which data is plit into several
files that contain a header of 256 bytes. The number of particles contained in a file has
to be known in advance at the moment of starting to write it, since it is contained in the

7Input/Output.
8The user guide of the Gadget-2, where also the Gadget format is explained, is available at http://

wwwmpa.mpa-garching.mpg.de/~volker/gadget/users-guide.pdf
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header. But during the light cone construction, only the number of particles in the current
shell is known, and therefore the Gadget file can only include those particles. Therefore,
the code would have to produce a distinct file for every shell, process and replica, which
for large runs might turn into several thousands. This is often regarded as a bad practise,
since most file systems may be inefficient managing those numbers.

One simple solution would be to re-write files to append new data after each call
to the light cone algorithm, which would keep the header updated. This might still be
acceptable for conventional N -body simulations, but not for ICE-COLA since it is neces-
sary to have optimized I/O operations that do not spoil the speed-up of the method. The
solution adopted is to write distinct files for each replica and shell, but gather processes
in groups that write in parallel into the same file. The number of files is controlled by
the parameter n_files and the number of processes that are grouped for each file is
determined by trying to have a similar number of particles among the files:

np_target =
np_remaining

n_files_remaining
(4.8)

where np_remaining is the sum of the number of particles of processes still not
assigned to any file and n_files_remaining is the number of files remaining to have
processes assigned. Initially, processes are added to the group that will write to the first
file until their joint number of particles is similar to np_target. Then the values for
np_remaining and n_files_remaining are updated and the new target number of
particles is used for determining the second group of processes that will write to the
second file. The process is repeated until all processes have been assigned a file, as it is
depicted in more detail in Fig. 4.3.

However, the algorithm described in Fig. 4.3 is a simplified version and there are
some exceptions that the code also takes into account. The reason for most of them is that
some processes may not have particles inside the shell of the light cone. We refer to these
as inactive processes. If the number of active processes is lower than n_files, then the
number of files is set to the number of active processes. In the situation that all processes
are inactive, the code still writes a file, that contains just the header and zero particles.
The reason is to avoid gaps in the file nomenclature, that would complicate the input
routine in a posterior analysis of the data. Finally, the code also checks at each iteration
of the algorithm whether the number of active processes pending to be assigned to a file
is equal to n_files_remaining. In such case, these active processes are only grouped
with inactive ones.

Once finished the grouping of processes, a new MPI communicator is built for each
file. The header and the two 4-byte integers that give the length of each data block are
written by the process with rank 0 in the file communicator, and the actual data is written
in parallel by collective MPI-I/O writing routines9. This is done by setting the correct file
displacement for each process, that is, the absolute byte position relative to the beginning
of the file. It is computed by communicating how many particles will be written by the

9For a complete description of the MPI-I/O routines see chapter 13 of the MPI-3.1 standard, available at
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
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rank_new = 0;
rank_old = 0;
np_remaining = sum(np[:]);
n_files_remaining = n_files;
for ( ifile = 0 → n_files - 1) do

n_target = np_remaining / n_files_remaining;
while True do

if ( sum(np[rank_old:rank_new+1]) ≥ np_target) then
dif1 = np_target - sum(np[rank_old:rank_new]);
dif2 = sum(np[rank_old:rank_new+1]) - np_target;
if (dif2<dif1) then

rank_new++;
end
break;

end
rank_new++;

end
rank_files[ifile] = rank_new;
np_remaining -= sum(np[rank_old:rank_new]);
rank_new++;
rank_old = rank_new;
n_files_remaining--;

end

FIGURE 4.3: Algorithm of the dark matter particle light cone for aggreging
processes into n_files groups that will write files in parallel. The vari-
able npmust be an array containing the number of particles dumped to the
light cone by each process. rank_files will contain the maximum rank
that will write to each file. The actual code is bit more elaborated than this

pseudo-code, see the text for more details.

processes in the left. Then, each section of the file is written in parallel by the processes
that belong to its communicator.

4.3.2 Two-dimensional projected matter density fields

A way to compress the data volume of a simulation is to build a grid and store for each
cell the occupation number of particles. The product is a density field with the resolution
of the cell size. And the compression factor comes from the fact that the number of cells
will be typically much smaller than the number of particles. This technique is employed
frequently in simulations by choosing a regular grid on a Cartesian axes and enables
studies at non-linear regimes if a good resolution is used.

However, for the catalogues described in this section, ICE-COLA uses a different ap-
proach by using spherical coordinates, which are the natural choice for the light cone.
Thus, the matter field is projected onto several thin concentric shells around the observer,
which can be later used to model weak lensing observables (see § 5.2). This idea was
originally proposed and implemented in N -body simulations by Fosalba, Gaztañaga,
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Castander, & Manera, 2008, using the Healpix discretization of the sky area into pixels
(Górski et al., 2005). For this thesis, the idea has been adapted to the ICE-COLA algorithm
and peculiarities.

In the first place, the discretization of the volume is done using spherical coordinates
centred at the observer. Placing several hundreds bins along the radial direction suffices
to recover accurately the redshift evolution. In particular, there are 265 shells until red-
shift z = 1.4, having a width of ∼ 7(18)h−1Mpc at low (high) redshift. The binning was
chosen to be the same than the used for MICE-GC for an ease comparison to that refer-
ence simulation. It is left for future work the study of how many radial bins are enough
to recover accurately the matter field within the accuracy of COLA.

Then, each shell is discretized into equal-area pixels using the Healpix format. The
simulations developed for this thesis use Nside = 2048, that produces 12N2

side ≈ 50 mil-
lion pixels with a size of θ � 1.7 arcmin . Maps consists on number counts of dark matter
particles, represented by 4-bytes integers. A single map has 192MiB of data, so all the
maps need 50GiB of disk space. This represents a compression factor of two orders of
magnitude with respect to the size of the dark matter particle light cone (see § 4.3.1).

Note that the light cone routine is called twice at each time step: after the drift and the
kick operators. So a simulation with 40 time steps will generate less than 80 calls (since
at the beginning the light cone has still not started) but will output 265 Healpix maps.
Which means that many of them have to be constructed simultaneously. The procedure
is the following. Before the algorithm starts the loop over replicas (see Fig. 4.2), all maps
are initialized to zero. At the point where particle coordinates can be saved, the code
instead adds a count to the pixel of the map that correspond to the angular and radial
positions. The maps are finished after iterating over all the replicas and the particles
inside them.

However, the radial binning of the maps and the positions in the light cone defined by
the time of each time step do not coincide. What this means is that, for some maps, their
associated volume belongs to different shells of the light cone constructed at different
calls to the routine. For these, the second call writes a separate file and both partial maps
have to be joined at post-processing by simply adding them.

We can see in Fig. 4.4 the matter distribution at full sky and two zoomed regions of a
stack of various shells at redshift 0.5. The homogeneity of the Universe is evident at large
scales, while filaments and voids display large fluctuations at more moderate scales.

The maps thus obtained serve to model weak lensing observables on the full-sky light
cone, incorporating naturally the spherical geometry. Furthermore, the Healpix software
is specially designed to efficiently transform maps in the spherical harmonic decompo-
sition, which allows measuring angular power spectra or solving the equations of weak
lensing. § 5.2 explains the procedure used to compute weak lensing maps. The accuracy
of the whole method with ICE-COLA is given in the same section as well as in Chapter 6.
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FIGURE 4.4: Visual representation of the two-dimensional projected matter
field. The upper graphic shows all the sky, while the lower left and right
zoom in patches of 30×30deg2 and 8×8deg2 respectively. 20 Healpix maps
with an angular resolution of 1.7′ were summed in the redshift interval

z = 0.45− 0.55.

4.3.3 Halo catalogues

Halo catalogues are one of the main outcomes of large-scale structure simulations. Parallel
COLA includes a parallel Friends-of-Friends (FoF) algorithm (Davis et al., 1985) based on
the publicly available serial code from the N -body shop of the University of Washing-
ton10 that runs on-the-fly on particle snapshots. This thesis explains how in ICE-COLA it
has been adapted to produce FoF catalogues in the light cone. Although the modification
of the algorithm may seem rather simple from a theoretical point of view, there are many
technical underlying complications that are briefly explained in this section.

To start with, it is necessary to understand how this halo finder works. The FoF algo-
rithm links together particles that are separated by a distance smaller than the so called
linking length, b. Groups are formed by adding the neighbours that are within the link-
ing length of particles already members of the group. The linking length is expressed

10http://www-hpcc.astro.washington.edu/tools/fof.html
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in units of the mean inter-particle distance and for this work we use the quite standard
value b = 0.2, which corresponds approximately to an overdensity of Δ = 180 in the con-
text of the spherical collapse model (Cole & Lacey, 1996). Once groups have been found,
the halo coordinates are simply given by the centre of mass of the member particles and
their mean velocity.

The FoF does basically local operations, that consist first in searching for neighbour-
ing particles. To do so, the serial code version from the N -body shop uses a k-dimensional
tree (or k-d tree for short), in which the space is recursively divided into halves until each
leaf nodes contains few particles. In ICE-COLA, when the FoF is called from the light
cone, some processes may not have particles in the current shell. This is something that
the code does not expect and triggers a bug while building the k-d tree. It can be avoided
by simply adding an isolated fake particle to these processes, that will not form any
group.

Buffer zones and ghost particles

In Parallel COLA, groups are built within the sub-volume of each process. After-
wards, a communication step is required to merge the structure that lies near the edges
of each slab. The code assumes periodic boundary conditions and edges corresponding
to the box limits are mapped to the opposite side of the box. This has no confusion when
the particle distribution comes from a snapshot. In the light cone, however, it needs a
special care since the crossing time varies with the position. The environment of a parti-
cle close to the box edge has to be completed with the distribution corresponding to the
neighbouring replica. But since only one replica is computed at a time, it is necessary to
add buffer zones around box edges and provide in that way the required environment to
the algorithm. For the same reason, buffer zones are also needed around the shell limits
and are added to the velocity buffer (for the latter, see Sec. § 4.2.1). The particles inside
either the shell or the boundary regions are passed to the FoF code, but at the end only
those halos whose centre of mass position is inside the volume of the current shell and
the local replica are written to the catalogue.

A visual representation of this geometry is depicted in Fig. 4.5, that shows a box
replica intersected by a shell of the light cone, coloured in blue. The two red strips are
buffer zones belonging to the local replica, while the orange ones correspond to neigh-
bouring ones. We refer to the particles within the latter as ghost particles, since their phys-
ical information really belongs to the white regions outside the box. For these, their
crossing time is computed as if they were placed in the neighbouring replica, but they
coordinates are trimmed to the range 0− Lbox, as shown in the figure. The reason is that
the FoF algorithm expects values inside this range, and thanks to periodic boundary con-
ditions the final result will be the same. However, an additional step will be necessary at
the end to shift by ±Lbox the position of some of the halos, as we explain next.

The width of buffer zones has to be larger than the maximum separation between any
particle and its halo center of mass position. Due to the approximated dynamics in COLA,
halos are puffier and more extended (Tassev, Zaldarriaga, et al., 2013) and therefore it
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FIGURE 4.5: Sketch of the buffer zones needed for running the FoF al-
gorithm in the light cone. The blue band is the shell under construction,
which is surrounded by a buffer zone. Buffer zones within the local replica
are coloured in red, while those that correspond to neighbouring replicas
are in orange. Particles belonging to the latter are called ghost. Vertical
lines depict the volume decomposition of the parallelization (in that case

it would correspond to 16 processes).

is difficult to predict theoretically a correct size for the buffer zones. The pragmatic ap-
proach used is computing few statistics during a real run for the simulations presented
in Chapter 5. For simplicity of its technical implementation, it is registered the distance
between the first particle that starts forming a group and the centre of mass of the final ob-
ject. We shall assume that this particle has the same properties as if any random member
of the group was picked up. The rms of the distance thus defined is ∼ 0.3(0.4)h−1Mpc

for all FoF with more than 20 (50) particles. This separation is only representative for
haloes close to the minimum mass, since they are the more abundant.

To encompass all possible haloes it is necessary to look at the maximum separations,
as displays Fig. 4.6. This scatter plot has one thousand events, corresponding to all the
calls to the FoF routine in the whole simulation. Represented in a two-dimensional plane
is the maximum separation of all groups found in a single call and the number of particles
of that object. The distribution is projected into a histogram in the lower part, showing
that it peaks at 5h−1Mpc and declines quickly thereafter.

With Fig. 4.6 in hand, the most conservative choice would be to set the buffer zone to
∼ 10h−1Mpc, which encompasses almost the whole range of values. However, for the
sake of performace, values as low as possible are desired, in order to reduce the volume
where computations are duplicated. In particular, it was set to 7h−1Mpc. Maximum
separations higher than that were only found in 50 calls to the light cone. For these, there
may be the risk of providing a too small environment to the FoF algorithm for haloes
for which: i) They are very massive and have particles further than 7h−1Mpc, ii) their
center of mass position is very close to the shell edges, and iii) their more distant particles
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FIGURE 4.6: Distribution of the maximum distance between a particle and
its halo center of mass. Each event is a call to the FoF routine. The y-axis
of the two dimensional plane is the number of particles of the halo: mass
is correlated with the maximum separation. The distribution is projected
into a histogram below, peaking at 5h−1 Mpc. The vertical line displays
the width of buffer zones, see the text why this value is an optimal choice.

happen to be in the direction of the buffer zone. The probability of ii can be estimated to
be ∼ 10% by considering the relative width of the region with incomplete environment
(12 − 7 = 5h−1Mpc at most) with respect to the width of the shell of the light cone
(40h−1Mpc or 100h−1Mpc at low and high redshift respectively)11. Therefore, out of the
50 calls to the FoF that have maximum separations larger than 7h−1Mpc, very few of
them may cut out some particles of the largest haloes. Taking into account that the total
volume of the light cone is 108h−3Gpc3, these very few events represent a ridiculously
small fraction of the haloes. In fact, this is confirmed in § 5.1.3, where it is demonstrated
that the abundance of haloes found in the light cone is compatible with measurements
from snapshots.

Tracking shifts of particles

Parallel COLA assumes periodic boundary conditions and that all the particles as-
signed to a process have positions that are inside the sub-volume corresponding to that
process, according to the slab volume decomposition. Since particles are drifted during
the light cone construction, it is necessary to transfer to another process those that have
moved to the sub-volume of another process before running the FoF. Positions are hence
trimmed to the range 0 − Lbox. Particles that suffer a shift of ±Lbox in one axis for that
reason have to be tracked in advance by the light cone code, so that the displacement is
undone before writing halos to the catalogue and the physical position is recovered.

11The volume of boundary regions around the box edges has been neglected in this estimation, since it is
much smaller.
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At this point, there are two reasons for which some particles may need to be shifted
after the FoF algorithm: because their positions were trimmed or because they are ghosts
(and belong to a neighbouring replica). That can be foreseen during the light cone con-
struction and by saving this information, positions can be finally restored to the correct
physical location. To do so, a flag variable is used to encode the information. Two bites
are used for each spatial coordinate, with the meaning:

00 No displacement for this coordinate

01 A shift of −Lbox will be necessary

10 A shift of +Lbox will be necessary

So six bits store the information of the shift in the three coordinates: zzyyxx. For
instance, a value 001000 encodes a shift of (0,+Lbox, 0).

To avoid the allocation of additional memory, the field of the particles ID’s, that is
not needed any more, is used to store the flags. The FoF code, however, adds particles
to groups and discards individual particle information (including the ID). It stores the
coordinates of the first member, that serves as a reference frame, and averages relative
vectors to that. Then, to keep track of the displacements, the 6-bit flag of the first particle12

is encoded into the 32-bit integer that saves the number of particle members of the halo.
This is possible because haloes will always have less than 224 = 16777216 particles: 24
bites suffice to store that integer and the remaining byte is unused. The 6-bit flag is
stored there. Using the bitwise operations n & 0x00ffffff and n >> 24 the number
of particles or the 6-bit flag respectively can be extracted from the integer n.

Note, however, that a ghost particle might correspond simultaneously to multiple
neighbouring replicas. This is the case of the four corners in Fig. 4.5. Then, instead of
adding 6 extra bits for each occurrence, a flag is stored in the 7th bit. For those particles,
the code will check at the end all the possible 33 = 27 replicas and select only those for
which the position falls inside the shell.

Fig. 4.7 shows the extended algorithm to build FoF in the light cone. The parameter
fof_buffer controls the width of the buffer. Note that each replica is built indepen-
dently and once its particle distribution has been computed it calls the FoF code. First
to find the haloes and right after to write them in disk. In the latter routine is where the
necessary shifts are performed to the halo positions, just before writing.

That algorithm to apply the necessary shifts to the halos before being written to the
catalogues is given in Fig. 4.8. First, a shift is applied if the 6-bite flag is different than
zero. Haloes not inside the local replica nor inside the shell are discarded. If the reference
particle of the halo is present in multiple replicas, there is an additional loop that iterates
over all the neighbours. When the correct replica is found, the loop is exited (because the
halo can belong only to a single replica).

12Only the displacement of the first particle of the group is relevant, since the halo center of mass will use
that as a reference frame. If the first particle has a shift associated, it will be applied to the whole halo at
the end of the FoF algorithm. The shifts of other particles of a halo do not affect the FoF algorithm since it
assumes periodic boundary conditions and opposite box edges are linked.
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Add buffer zones to χ1 and χ2;
for (ireplica = 0 → n_replicas - 1) do

for ( i = 0 → n_particles - 1) do
if (distance to any box edge {x,y,z} < fof_buffer) then

Ghost particle candidate: start a loop over neighbouring replicas
including the local;
if (particle within the shell including vel.&fof buffer) then

Compute crossing time;
Drift particle;
if (particle within the shell including fof buffer) then

if (Not a ghost particle in multiple replicas) then
Save particle position wrt. the origin of the local replica;
Compute 6-bit flag and store it in the ID;

else
Set 7th bit flag to 1 and save it in the ID;
Skip other neighbouring replicas and jump to next particle;

end
end

end
Exit loop over neighbouring replicas;

end
end
Find FoF halos;
Write FoF halos;

end

FIGURE 4.7: Algorithm for producing catalogues of FoF in the light cone.
Only the variations with respect to the basic algorithm (see Fig. 4.2) are
shown here, depicting how buffer zones are constructed before calling the

FoF routines.

4.4 Numerical performance

When producing numerical simulations, there are usually three main limitations coming
from the hardware resources that difficult the scalability to larger problem sizes. First is
the availability of computing time in the hosting machine or, in other words, the num-
ber of dedicated CPU-computing hours. Another constraint is the memory available per
node. In a parallel code relying on MPI communications that is run on a distributed
memory machine, each process can access a memory size given by the memory per node
divided by the number of active cores in it. That limit sets the maximum allocatable
memory per process, which means that the larger the problem size, the higher the divi-
sion into smaller pieces. Of course, this requires implementing efficient parallelization
strategies that scale to the desired configuration. And lastly, the volume of the data prod-
ucts generated is another limiting factor, specially once the simulation has finished. To
begin with, data has to be transferred from the supercomputer to local hard drives or a
data centre. For illustration, to copy 1 TiB per day implies at least a sustained bandwidth
of 10 MiB/s. And also, because any further post-processing or the posterior analysis are



4.4. Numerical performance 63

for ( i = 0 → n_haloes - 1) do
if (First particle of the halo is not a ghost in multiple replicas) then

if (shift flag �= 0) then
Add ±Lbox

end
if (not inside box) then

Skip halo;
end
Add displacement of the position of the origin of the replica;
if (not inside shell) then

Skip halo;
end
Copy halo coordinates;

else
if (shift flag �= 0) then

±Lbox

end
for ( j = 0 → n_neigh_replicas - 1) do

if (not inside box) then
Skip halo;

end
Add displacement of the position of the origin of the replica;
if (not inside shell) then

Skip halo;
end
Copy halo coordinates;
Exit loop over neighbouring replicas;

end
end
Write this halo;

end

FIGURE 4.8: Algorithm to apply the necessary shifts to the halos before are
added to the catalogue. The code checks wether haloes have to be shifted
by ±Lbox in any of the dimensions according to flag variables and saves

those which are inside the volume being built.
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data-intensive operations that can even be comparable to producing the simulation itself
in some circumstances.

This section reviews how ICE-COLA performs in the three aspects aforementioned
and which strategies were implemented in order to use resources efficiently.

4.4.1 Running time

During the build up of the light cone there are large particle load imbalances between
processes. The volume intersected by a shell and the slab of each process varies much,
as can be seen in Fig. 4.5, where slabs in the right have 2-3 times more particles than the
leftmost. The situation would even worsen with volume decompositions that produce
more compact regions. For that reason, some processes may be idle while others are still
working on the current box replica.

In the simulations presented in Chapter 5, the process with rank 0 was idle during
50% of the total time spent in the light cone. There is no evident solution for that problem
and optimizing that imbalance is left for future versions of the code. The effort so far has
been focused in trying to minimize the number of operations carried out for each particle.
With that spirit, § 4.2.1 explained how time varying quantities are computed only once
and are interpolated later one. Distance checks have to be done for all the particles at each
time step, except for replicas that do not intersect the shell and are skipped. The crossing
time and the drift operator are computed just for those particles which is needed (see
Fig. 4.2). But due to the buffer zones, this will happen multiple times at the end of the
simulation for a fraction of particles.

The code can build as many replicas as desired, since they are independent. But for
large numbers the light cone construction will dominate the time budget of the simula-
tion. The exact numbers depend on the particular code parameters. For instance, simula-
tions presented in Chapter 5, that generated two-dimensional maps and halo catalogues
in 64 replicas, dedicated 44% of the time for building the light cone. Inside that routine,
the time was spent in the following way: 13% to find haloes, 12% to write catalogues, 5%
to communications between processes inside the FoF routines (that could be added to the
previous 13%) and only 1.6% to the actual algorithm of the light cone, that is, the selec-
tion of particles, computation of crossing times and evaluation of the temporal operators.
The remaining fraction was spent in smaller parts or was just idle time.

Regarding the particle light cone catalogues, the time consumption is mainly driven
by the I/O performance, which may vary considerably in different architectures and file
systems. The results presented next correspond to a simulation that used 1024 cores on
MarenostrumIII, which uses the IBM General Parallel File System. The parameter of the
code n_files was set to 24 and the code was compiled with gcc13 using the OpenMPI14

libraries. The support of the machine recommended the usage of the following MPI-I/O
hints, that supply extra information to the MPI implementation for a better performance:
striping_unit= 4194304 and romio_cb_write=enable. There were 129 calls to

13https://gcc.gnu.org/
14https://www.open-mpi.org/
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the light cone routine that produced data, which consisted in one octant and 8 box repli-
cas in total. Each call generated a volume of data in the range between 1−15GiB in most
of the cases. The I/O bandwidth achieved varied considerably for each call but typically
it was in the range between 5 − 10GiB/s when the total data size was � 10GiB. For
smaller data volumes the bandwidth was lower, but in all the 129 calls the wall-clock
time dedicated purely to I/O was always less than 3 seconds, to be compared to the 40
minutes that took to complete the simulation.

4.4.2 Memory usage

The peak of memory consumption in COLA happens during the evaluation of forces in the
PM algorithm. This is specially true if the mesh is finer than the mean particle distance.
Other parts of the code can take advantage of that and use memory that has been freed. In
particular, Parallel COLA allocates two large shared memory blocks that are re-used
by different routines separated in time:

• mem1: used by the initial conditions, the density grid of the PM, the k-d tree of the
FoF and the particle buffer for moving particles between processes.

• mem2: used by the density grid in Fourier space of the PM and the snapshot.

The size of each block is set to the maximum memory required for the routines of each
group. Shared memories are allocated at the beginning of the code, are used elsewhere
and are freed at the end. The light cone routine in ICE-COLA does not allocate more
memory, all the data is stored in the shared memory blocks. Depending on the kind of
catalogues that are requested, the memory needs vary:

• Dark matter particle distribution. The snapshot stores particle positions interpo-
lated at the crossing time.

• Projected density maps. It is necessary to store multiple Healpix maps. Particle
positions are not kept, i.e., the snapshot is not necessary.

• Halo catalogues. A snapshot is build similarly as for the dark matter particle out-
puts, which now includes buffer regions as well. In addition, space is needed for
the k-d tree of the FoF.

The memory set-up in Parallel COLA is already suitable to construct the snap-
shot and the FoF with particles in the light cone, which use mem2 and mem1 respectively.
However, new room is needed for the Healpix maps. If only projected density maps are
produced, then they can be saved in the shared memory blocks. However, this is not
possible if multiple outputs are requested since mem1 and mem2 are already used. Some
memory is still left at the end of the shared memory blocks, but are non-contiguous.

To avoid that, the memory layout has been slightly changed in ICE-COLA. A single
shared memory block mem is allocated at the beginning, and it is explicitly broken into
the two pieces mem1 and mem2 for compatibility with the rest of the code. The light
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cone routine uses mem, inside which memory blocks are located one after the other in a
compact configuration. For example, the simulations of Chapter 5 requested 1728 and
864 MiB/process for mem1 and mem2 respectively and hence mem had 2592 MiB. From
that, the FoF used 708 MiB, the snapshot 320 MiB and the Healpix maps15 1346 MiB,
leaving just 218 MiB unused. In this way, all the three kind of outputs can be generated
simultaneously without increasing the memory usage and running the light cone routine
just a single time at each COLA time step.

4.4.3 Disk storage requirements

Catalogues of dark matter particles in the light cone turn out to be extremely massive, as
has been already pointed out. Given the volume inside the light cone, the mean particle
density and that 24 bytes are written per particle, the data volume can be computed as

MEMDM =
4π

3
(χ(zmax))

3 2
ndim

8
× Npart

L3
box

× 24 bytes

� 5.9×
(

χ(zmax)

3000h−1Mpc

)3

× 2ndim

8
×

(
mpart

2.9× 1010 h−1M�

)−3

TiB

(4.9)

So an all-sky simulation having the reference scaling values (corresponding to a max-
imum redshift of 1.4), ∼ 6TiB of data are generated. This might be affordable only for a
single realization, or a few as maximum, in which detailed information of the matter field
is necessary at full resolution. But since COLA is an approximate method, very accurate
results are out of the scope and presumably one will run ensembles of many realizations.
Then, it is necessary to generate only the two derived and compressed data formats.

The disk space used by the projected matter maps depends on the number of 4-byte
pixels and the radial bins:

MEMHP = 12n2
side × nz,bins × 4bytes

� 50×
(nside

2048

)2 × nz,bins

265
GiB

(4.10)

That means that would be possible to have projected matter density fields for 1000
realizations in a disk space of 50 TiB. Furthermore, it will be studied in the future if a
broader binning in redshift does not have an impact on the accuracy and a reduction of a
factor of 2 or even more in the storage is possible.

Finally, let’s turn into the halo catalogues. Their size depends strongly on the min-
imum number of particles to write a halo. Haloes with few tens of particles are not
well resolved, but if the simulation is populated by galaxies in a later stage using for
instance a Halo Occupation Distribution method, discrepancies might be corrected and
therefore make sense to push the catalogue towards low mass haloes (Howlett, Manera,

15Using the value nside = 2048, a single map has ∼ 50 million 4-byte pixels, or 192 MiB. Up to 7 shells in
the light cone might be placed between consecutive COLA time steps, which adds up to 1346 MiB in total.
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et al., 2015). In the current code version, halo catalogues are written in ascii format con-
taining the following fields: number of particles, centre of mass position, halo velocity.
ICE-COLA is already able to produce halo catalogues in binary format for comoving out-
puts, that allows a compression factor of 3 of the file sizes. In the light cone, however,
there is the additional complication that data is appended to existing files. This has still
not been resolved and will be implemented in a future version. Following with the same
reference scaling values of this subsection, cutting at haloes with 20 or more particles
translates into 460 million halos and 37 GiB for an all sky light cone, which is comparable
or somewhat smaller than the data of the projected matter maps. In order to extrapolate
to other mass cuts, the size scales roughly inversely proportional to the minimum num-
ber of particles16. Therefore, the rule-of-thumb for the data volume for a halo catalogue
that starts at redshift 1.4 is

MEMFoF = 37×N3
part ×

(
Nmin

20

)−1

× 2ndim

8
GiB (4.11)

which assumes that there is no dependence with the particle mass. This will be re-
duced by a factor of three when halo catalogues are written in binary.

16Scaling that holds for masses below 1013 h−1 M�, where the abundance of haloes decreases mostly as
the inverse of the mass.
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5
ANALYSIS OF LIGHT CONE CAT-
ALOGUES

In this chapter, light cone catalogues are analysed and tested in order to provide a proof
of validation of the new code features of ICE-COLA. First, § 5.1 summarizes some pri-
mary tests on the three kind of light cone catalogues produced by the method in order
to provide an initial validation. A more elaborated analysis is presented later in § 5.2,
where it is described a full pipeline developed to model weak lensing and it is shown
the accuracy by which observables are reproduced. Chapter 6 is a continuation of this
analysis but combined with halo catalogues as well.

5.1 Basic validation of the light cone catalogues

5.1.1 Particle light cone

The particle light cone (see § 4.3.1) was the first type of output catalogue in the light cone
implemented in ICE-COLA. Given the great advantages of using the higher-level data
formats developed later (see § 4.3.2 and § 4.3.3), the particle light cone has been used
little. However, some tests are presented next that demonstrate that this feature of the
code is validated.

Ten runs were developed with particle light cone. All the parameters used are the
same as for the simulations used in § 5.2, except that the sky area covered was one octant
instead of the full sky. Fig. 5.1 shows a slice of 1500h−1Mpc wide and a thickness of
25h−1Mpc , proving that the catalogues contain cosmological structure. Particles were
interpolated onto a grid of 30002 cells and convolved with a 3 × 3 pixel gaussian kernel
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FIGURE 5.1: A slice of 1500 × 700 × 25h−1 Mpc of the particle light
cone, displaying the cosmic web. See the text for more details.
A very high resolution of the image (of 37MB size) can be down-
loaded from https://github.com/albertizard/thesis_public_

material/blob/master/dm_particle_lc_slice.pdf

with a beam of the pixel size. The number count at each pixel is then transformed into a
colour value using the transfer function

counts → min(counts0.6 + 3, 110) (5.1)

which enhances colour variations at low density regions and samples evenly the wide
dynamic range. Also, a saturation value is set in order to limit colour variations at very
high density regions.

Aside from this visual inspection, projected matter maps were also built from these
catalogs at post-processing and compared to the ones obtained on-the-fly from simu-
lations with identical parameters and initial conditions. The results matched perfectly,
only with small differences arising from accumulated errors due to numerical precision.
In particular, number counts were identical in 99.87% of the pixels, while in the remain-
ing differences were at most 2 counts (take into account that the mean number of counts
was 50 and the maximum 3000). Figure 5.2 shows a map of the residuals in an area of
9 × 9deg2. This test can be considered as successful once projected density maps are
validated as well (see § 5.1.2 and § 5.2).

5.1.2 Projected density maps

The main scientific motivation for constructing projected density maps is to model weak
lensing, as is done in § 5.2. Before that, this sub-section shows two-point clustering statis-
tics measured from the maps directly obtained from the simulation. In particular, several
maps are stacked into a slice centred at redshift 0.5 and having a width of 0.1. Fig. 5.3
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FIGURE 5.2: Map of the differences on the number counts of a projected
density built from a particle light cone on post-processing or from the map
built at run time. The area is 9 × 9deg2. The vast majority of pixels are

green, meaning that maps are (almost) identical.

shows the matter angular power spectrum measured on that shell. Circles and squares
represent COLA and MICE-GC respectively. The agreement is exquisitely good up to
l = 2000, as can be seen better in the lower panel displaying the relative differences, that
are within 10% up to l = 4000.

The shot noise contribution has been subtracted according to the formula:

σsn = fsky
4π

N
(5.2)

where N is the number of objects in the sample.

5.1.3 Halo catalogues in the light cone

Catalogues in the light cone can be compared to catalogues coming from snapshots in the
small range of spatial and temporal coordinates where they almost coincide. For instance,
the part of the light cone around redshift 0.5 should match with comoving outputs taken
at the same redshift for objects at a radial distance χ(z = 0.5) ∼ 1350h−1Mpc. Fig. 5.4
compares the distribution of haloes in the light cone (red open circles) with haloes from
a comoving catalogue at z = 0.5 (blue filled circles). At one-by-one the agreement is
excellent in both the identification of haloes, their position and mass (which is shown
by the radius). There are very few cases of haloes without correspondence in the other
catalogue, or groups that appear as two distinct objects in one case but merged into a
single halo in the other. Actually, some of these differences may be real, since the time
difference between both catalogues is as much as � 200Myears: the position where the
time coincides is given by the line at z = 0.5. Also, buffer zones around shell and box



72 Chapter 5. Analysis of light cone catalogues

FIGURE 5.3: Matter angular power spectrum for a shell at mean redshift
of z = 0.5 and a width of Δz = 0.1. The lower panel shows the relative
differences between COLA and MICE-GC, that are within the error bars up

to l ∼ 2000 and within 10% up to l = 4000.

edges (see 4.5) are indicated as grey shaded areas, and by visual inspection there are no
signs of errors in there.

A more quantitatively test is to compare the abundance of haloes between a comoving
catalogue and a shell of the light cone that has the same mean redshift as the former. Fig.
5.5 displays the ratio of these mass functions, at redshifts 0.5 and 1.01. The width of the
shell in the light cone is chosen so that the volume is the same as the comoving box. The
agreement is excellent again, with differences within the 1% for most of the mass range
and within the error bars where measurements are more noisy.

To see the angular power spectrum of haloes, see Fig. 6.1 in Chapter 6, where there
are shown more measurements of the clustering and cross-correlation of halo samples
with weak lensing.

1Redshift 0 is impossible because the light cone would have no volume.
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FIGURE 5.4: Slice 100h−1 Mpc wide and 40h−1 Mpc thick comparing FoF
haloes from a catalogues in the light cone (red open circles) and a comov-
ing output at redshift 0.5 (blue filled circles). The volume is centred at a
radius of 1350h−1 Mpc from the origin, where the time of both catalogues
is nearly equal. Grey areas denote buffer zones, wither around shell or box

edges.

5.2 Modelling weak lensing in cosmological simulations

The shear and the convergence fields constitute the basic weak lensing quantities from
which others can be derived. In fact, they are also both related to the effective lensing po-
tential as is shown in § 1.4. Therefore, cosmological simulations aim at producing shear
and convergence maps, which can serve to model the multiples existing observational
tools that probe weak lensing (e.g., shear mapping, magnification, mass mapping, aper-
ture mass, peak statistics, cosmic microwave background lensing... either by two/three-
dimensional analysis or in a tomographic analysis).

Weak lensing can be implemented in simulations via ray-tracing techniques, which
follow the ray propagation from the source to the observer along the perturbed path (see
e.g. Blandford & Narayan, 1986; Jain et al., 2000; Das & Bode, 2008; Teyssier et al., 2009;
Li et al., 2011 for simulations which modelled lensing by these methods). This involves
intensive computations because the deflection angle needs to be constantly updated as
the ray travels in order to determine the geometry at each encounter of the multiple-lens
system.

However, if the Born approximation is assumed (see § 1.4.2), integrations along the
straight line-of-sight are much faster and have been successfully implemented in simu-
lations (in which different mass assignments can be used, see e.g. M. White & Hu, 2000;
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FIGURE 5.5: Comparison of the mass function measured from light cone
or comoving catalogues. Error bars display Jack-Knife estimates from the
measurements of the comoving catalogue. Differences are very small or
within the error bars, what validates the algorithm for generating FoF in

the light cone.

Fosalba, Gaztañaga, Castander, & Manera, 2008; Kiessling, Heavens, et al., 2011). This re-
moves high-order contributions and the coupling of lenses at different distances (Krause
& Hirata, 2010), but these represent sub-percent corrections for most of the relevant scales
and can be neglected, specially in the case considered here in which an approximate sim-
ulation method is being used. In that case, convergence can be estimated by employing
a discretized version of equation 1.31, that is, the projected matter density field weighted
by the lensing kernel. Other weak lensing quantities, such as the shear, can be derived
from the convergence. Next it is explained the methodology employed in this thesis to
convert projected density maps generated with ICE-COLA to lensing quantities, that is
basically the same as Fosalba, Gaztañaga, Castander, & Manera, 2008 but adapted to the
peculiarities of COLA.

5.2.1 Production of convergence maps

The density field outputted by the simulation has been discretized into multiple angular
pixels and radial bins. Therefore, the integral in equation 1.31 is converted into a sum
running over the shells

κ(θi, χ) =
3H2

0Ωm

2c2

χj<χ∑
j

δ(θi, χj)
(χ− χj)χj

ajχ
Δχj . (5.3)

where Δχj is the width of the radial bins and the convergence map obtained inherits
the same angular pixelization as the density maps. Fig. 5.6 shows a patch of 4× 4 deg2 of
the maps thus obtained, which features the structure of the cosmic net. Note that typical
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FIGURE 5.6: Color map of the convergence field for sources at redshift 1 in
a patch of 4×4 deg2. The distribution features large voids with slightly neg-
ative values and concentrated peaks due to massive haloes or the superpo-
sition of several of them at intermediate distances . White ticks indicate the
orientation and amplitude of the shear field (see § 5.2.2), and as expected
for a field without B-modes they are preferentially oriented perpendicular

with respect to the orientation of the closest convergence peak.

convergence values are at the percent level. Besides, white ticks show the shear field,
which will be explained in § 5.2.2.

Auto-power spectrum

The convergence angular power spectrum can be measured by transforming the map to
harmonic space via spherical harmonics

κ̂lm =
4π

Npix

Npix∑
i=1

κ(θi)Y
∗
lm(θi) (5.4)
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and averaging the square of the coefficients over the m-modes:

Cκ
l =

1

2l + 1

l∑
m=−l

|κ̂lm|2. (5.5)

The actual measurements from data can be compared to a theoretical prediction for
the convergence power spectrum that can be derived starting from eq. 1.31 and using the
Limber approximation (Limber, 1953) to compute the two-point statistics, which results
in the expression (Kaiser, 1992; Kaiser, 1998)

Cκ
l (χ) =

9H4
0Ω

2
m

4c4

∫
P (k = l/χ′, z)

χ− χ′

χ2a2
dχ′ (5.6)

where P (k, z) is the three-dimensional matter power spectrum. The latter is measured
on-the-fly at each time step of the simulation thanks to a modification of the PM routines
that sums in radial k-bins the density field already transformed to Fourier space (the
three-dimensional equivalent of equation 5.5).

The shot noise contribution to the convergence power spectrum, that is corrected for,
is given by substituting the power spectrum in equation 5.6 by the inverse of the mean
number density of particles: P (k, z) = 1/n̄.

Also, the errors in the measurements can be computed for the case of a gaussian
density field by considering the number of modes sampled at each l-bin

σ(Cl) = Cl

√
2

fskyΔl(2l + 1)
(5.7)

where fsky is the fractional area of the sky of the catalogue (1 if it is all-sky) and Δl is
the bin width.

Fig. 5.7 compares the convergence power spectrum for a source redshift of 1 that
is obtained both from the prediction 5.6 (dottet curve) and from actual measurements
(circles), including as well the fiducial values from MICE-GC (squares). First, note that
real measurements have more power than the prediction at small scales. This can be
explained because the integral at equation 5.6, in the limit of low distances and high mul-
tipoles, needs to evaluate the matter power spectrum at larger wavenumbers than those
for which it has been measured. Therefore it does not account some of the contributions
at small scales and the power of the convergence is hence suppressed at high wavenum-
ber. Another deviation of the theoretical prediction is present at linear scales, where it
has a slight excess of power with respect to the the linear prediction. This comes from the
sample variance in the measurements of the three-dimensional matter power spectrum
at large scales.

Even with these deviations, the agreement between the measurements from conver-
gence maps and the prediction from equation 5.6 is quite remarkable, which constitutes a
first successful validation test of the convergence maps. Comparing now with MICE-GC,
measurements are compatible up to l ∼ 103, beyond which COLA recovers less power.
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FIGURE 5.7: Angular power spectrum for the convergence map at a red-
shift of 1. Different symbols represent: real measurements (circles), MICE-
GC measurements (squares), theoretical prediction from equation 5.6 (dot-
ted line), two non-linear predictions from Halofit (Smith et al., 2003 solid
line) and revised Halofit (Takahashi, Sato, et al., 2012 dashed line) and the
linear case (dot-dashed). Shot noise error is denoted by the solid line in
the lower right corner. COLA is in perfect agreement with MICE-GC up to
l ∼ 1000 and deviates thereafter to 10% (20%) at l = 2× 103 (4× 103). The
theoretical prediction for COLA reproduces reasonably well the measure-

ments (see the text why at small scales there is a small deviation).

The difference is ∼ 10(20)% at l = 2 × 103(4 × 103). Note that theses are highly non-
linear scales, slightly more than one order of magnitude above the point where the linear
prediction breaks down.

Convergence-matter cross-power spectrum

The convergence field is correlated with the intervining mass distribution due precisely
to the lensing effect. This is shown in Fig. 5.8 for the cross-correlation between the con-
vergence at zs = 1 and a lens sample at zl = 0.5 (having a width of Δz = 0.1). The matter
catalogues reproduce well the signal up to l ∼ 2000 and there is a lack of power at smaller
scales, although deviations are within 10% at all scales. The agreement with MICE-GC is
better in the cross-correlation than the auto-power spectrum of the convergence (see Fig.
5.7). In the cross power, only the contribution to the convergence field coming from the
distribution at the lens redshift is relevant. Therefore, the accuracy in that case depends
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FIGURE 5.8: Cross-power spectrum between the convergence at zs = 1
and the density field at zl = 0.5 (with a width for the latter of Δz = 0.1).
Deviations are found only at scales above l = 2000, as in the case of the

matter power spectrum (see Fig. 5.3).
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on how well can be resolved scales at this distance. However, the convergence has con-
tributions as well from the low-redshift structure, which span larger angular sizes: mul-
tipoles are associated with larger wavenumbers, hence more non-linear, hard to model
in COLA. For that reason, the convergence auto-power spectrum shows larger deviations
than the cross component at the same scale.

5.2.2 Production of shear maps

In the Born approximation, the shear and convergence fields are originated by a single
scalar potential (see § 1.4.4) and cannot have a curl component. In analogy with elec-
tromagnetism, the scalar and vectorial modes are called E-modes and B-modes respec-
tively. In the full-sky formalism, the decomposition is given using the spin-2 spherical
harmonics ±2Ylm

εlm ± iβlm =
∑
lm

γ(θ)±2Y
∗
lm(θ) (5.8)

where the B-mode shear is zero: βlm = 0.
In angular space, the shear and convergence are expressed as derivatives of the lens-

ing potential (see equations 1.33 and 1.34). By transforming to harmonic space, these be-
come multiplications by multipoles and one can numerically transform from one weak
lensing quantity to another. For instance, the shear and convergence coefficients are re-
lated as

εlm = −
√

(l + 2)(l − 1)

l(l + 1)
κlm, (5.9)

where we assume that B-modes are null. Note that in the small angle limit the coeffi-
cient is just -1.

The inverse of the transformation 5.8 in the convention adopted by Healpix (and in
the absence of B-modes) expresses the components of the shear as the polarization Q and
U Stokes parameters as (see Zaldarriaga & Seljak, 1997)

γ1 = −
∑
lm

εlmX1,lm (5.10)

γ2 =
∑
lm

iεlmX2,lm (5.11)

with X 1
2
,lm defined as the combination: X 1

2
,lm = (2Ylm±−2Ylm)/2.

In summary, the steps that are taken in order to produce a shear map given a conver-
gence map are the following. First, the convergence is transformed to harmonic space ac-
cording to equation 5.4. Then the E-mode shear is obtained using 5.9 and finally the two
components in angular space are given by 5.10 and 5.11. The transforms are done using
Healpix (in particular Healpy2, its Python version) and the full post-processing pipeline

2https://healpy.readthedocs.io/en/latest/
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can be run on a modest personal computer, since the memory and processing require-
ments are moderate. Using the value nside = 2048 for the Healpix maps, that produces
∼ 50 million pixels, a map of float values needs 192 MiB (or twice if it is stores complex
numbers), which is an order of magnitude less than the memory that a nowadays per-
sonal computer has. An harmonic transform takes 9 minutes in a laptop equipped with
a 2.8 GHz Intel Core i7 single processor. Considering that there are 265 maps in total and
that two transforms are needed to produce a shear map, the total time ascends to 3 days.
This is proportionally reduced if many maps and read simultaneously and processed
each one by a different core, enabling doing the complete post-processing in a single day.
A visual impression of the final shear maps is displayed in Fig. 5.6 by the white ticks.
They are oriented perpendicular to the convergence peaks, as it is expected for a field
without B-mode, which would generate instead swirl patterns. At empty regions, the
field is radially oriented around under-densities.

The power spectrum of the shear is identical to that of the convergence, except for
the coefficient of equation 5.9 relevant only at very low angular modes. Instead, Fig. 6.4
shows directly the measurements of the configuration space equivalent, the shear 2-point
correlation functions, on the halo catalogues.
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6
HALO CATALOGUES FOR WEAK
LENSING AND CLUSTERING

We have described the capabilities of ICE-COLA to generate halo catalogues in the light
cone (see § 4.3.3) and two-dimensional projected matter maps (see § 4.3.2), both at run
time. The latter are converted to weak lensing quantities following the method described
in § 5.2. The last step of the pipeline is to combine both in a catalogue of haloes with weak
lensing properties. To do so, each halo is assigned the convergence and shear values of
the pixel that corresponds to its position. It is left for the future using a better scheme by
interpolating the pixelized maps to the particular position of each halo. Also, if the simu-
lations are ever populated with galaxies using for instance HOD recipes, the assignment
of weak lensing properties to the catalogue of tracer objects is identical and thus the same
pipeline could be used as well.

In this chapter, two-point statistics of the halo catalogues are presented in order to val-
idate the full simulation method producing light cone catalogues and the post-processing
pipeline, as well as to test the accuracy of the whole method. For that purpose, two halo
samples are built: the source sample at redshift 1 and the lens sample at 0.5. Both have a
radial width of Δz = 0.1 and select those objects with 100 or more particles (i.e., a mass
of 3× 1012 h−1M�). The same criteria are used to obtain the samples from MICE-GC.

6.1 Halo angular power spectrum

The halo angular power spectrum of the lens sample is shown in Fig. 6.1. The lower
panel displays the halo bias as the ratio

√
<δhδh>/<δmδm>, where the labels h and m refer

to haloes and matter repectively. At large scales it is recovered a value for the linear halo
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FIGURE 6.1: Angular power spectra for the lens halo sample. The lower
panel shows the halo bias as measured with

√
<δhδh>/<δmδm>, which is

close to 1.5. Deviations at large multipoles are due to the bad correction of
the shot-noise term, that dominates beyond l > 400.

bias of ∼ 1.5, indicated by a dotted horizontal line. However, it is slightly lower for COLA,
in concordance with results at § 3.5.

The shot noise term has been corrected as equation 5.2. In fact, it dominates the mea-
surements for l > 400 and since the correction is not accurate for a halo sample1, results
are not reliable beyond this point.

6.2 Halo-convergence cross-power spectrum

Fig. 6.2 shows the halo-convergence cross-power spectrum. The halo bias, estimated as
the ratio <κhδh>/<κmδm>, coincides to 1.5 in both samples and with the value from the
halo power spectrum (see Fig. 6.1). At small scales, non-linear bias and exclusion effects
cause the measurements to deviate from the constant value. For instance, l = 2000 is
associated with a scale of 2h−1Mpc at z = 0.5, only a factor ∼ 4 larger than the typical
size of the halos in the sample.

1Hales are non-overlapping objects by definition and this produces exclusion effects, provoking a depar-
ture of the finite sampling of the field from the Poisson case.
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FIGURE 6.2: Halo-convergence cross-power spectrum for the lens and
source samples. The halo bias, displayed in the lower panel, coincides to
1.5 in both samples and with the value from the halo power spectrum (see
Fig. 6.1). Non-linear bias and halo exclusion effects are the cause of devia-

tions at l ∼ 2000, which in any case are similar for COLA and MICE-GC.
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FIGURE 6.3: Convergence correlation function the source sample. COLA
recovers accurately the signal down to 3 arcmin. The lower panel displays
the ratio of COLA with respect to MICE-GC. Error bars with solid lines are
estimated with Jack-Knife, while dashed error bars are sample variance.

6.3 Convergence auto-correlation

The convergence correlation function for the source sample is shown in Fig. 6.3. COLA
reproduces the signal at large scales and down to separations of only 3 arcmin. Despite
the fact that the pixel size employed is 1.7 arcmin (4 times smaller for MICE-GC), the
power is still within 25% at 1 arcmin. Hence, it is not clear whether deviation are due only
to the limited capability of COLA to resolve small scales or to the angular resolution of the
Healpix maps. It is also remarkable that the signal is well reproduced to separations
that are ∼ 5 times smaller than the scale where non-linearities arise. These results are in
agreement with Heitmann, M. White, et al., 2010 (see their Fig. 1), where it is investigated
how a systematic effect in the matter power spectrum translates into a suppression of the
shear correlation function at small scales. In this work, COLA recovers 50% of the power
in the matter power spectrum at k ∼ 5hMpc−1, which corresponds to an intermediate
case of their red and green lines, that deviate at 4 and 2 arcmin respectively.

Another conclusion that can be drawn is that the convergence two-point statistics is
better reproduced in configuration space than in harmonic space. The scale of 3 arcmin
is associated with the multipole of 3600, where the convergence power spectrum has
large deviations (see Fig. 5.7). For reference, this scale corresponds to roughly 1h−1Mpc

at z = 0.5. A plausible explanation is that COLA introduces errors in the positions of the
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FIGURE 6.4: Shear correlation functions for the source sample. The plus
component is accurately modelled down to 2 arcmin, while the minus
down to ∼ 15 arcmin. In both cases, it corresponds to an order magnitude

beyond the non-linear scale.

particles with a certain characteristic scale. Correlations in configuration space are correct
at those scales that are larger. But when transforming to harmonic space, small and large
scales are mixed and errors are propagated to a wider range of scales (Monaco, Sefusatti,
et al., 2013).

6.4 Shear correlations

The two components of the shear can be decomposed into a tangential γt and a cross γ×
components. The polar angle φ of the separation vector between two points is used to
project the real and imaginary part:

γt = −�(γe−2iφ) (6.1)

γ× = −�(γe−2iφ) (6.2)

where the minus sign is by convention in order to have positive values in correlation
functions, since an over-density at the lens plane generates a tangential alignment at the
background sources. The mixed correlation function < γtγ× > vanishes due to the parity
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FIGURE 6.5: Tangential shear

symmetry of these components. The non-zero shear correlation functions are usually
expressed in the two following combinations of the tangential and cross components

ξ±(θ) =< γtγt > (θ)± < γ×γ× > (θ) (6.3)

Fig. 6.4 shows the shear correlation functions for the sources. The signal is well
reproduced down to 2 and ∼ 15 arcmin for the plus and minus components respectively.
Such different values come from the fact that the minus component is much more non-
linear, but in both cases COLA is able to resolve scales an order of magnitude smaller than
the linear prediction.

6.5 Tangential shear

Finally, the last observable studied is the correlator of the tangential shear < γtγt > be-
tween the source and lens samples. It is just the configuration space counterpart of the
cross-power spectrum Cκδh

l between the convergence of sources and the density of lenses
(see Fig. 6.2)

γt(θ) =
1

2π

∫
J2(lθ)C

κδh
l l dl (6.4)

where J2 is a Bessel function of the first kind. Fig. 6.5 shows the measurements of the
tangential shear correlation function, in close agreement with MICE-GC for scales larger
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than 5 arcmin. The theoretical curves have been multiplied by a bias factor of 1.5 in order
to match the amplitude of the matter and halo clustering. Non-linear bias affects small
scales and produces deviations for angles below 5 arcmin. This scale is associated with
a multipole of l = π/θ = 2000, and indeed it is perfectly consistent with the deviations
found in harmonic space (see Fig. 6.2).
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7
ONGOING PROJECTS AND FU-
TURE WORK

This thesis presents the accuracy of the ICE-COLA method in modelling observables in
comoving and light cone catalogues (in Chapters 3 and 5, and 6 respectively). This work
is focused on the mean value of observables, but since the final purpose of such method is
estimating covariance matrices it is necessary to assess the accuracy on that aspect as well.
Two on-going projects focus precisely on covariances in the two aforementioned kind of
catalogues. In the last section of this chapter there are given future directions which
can be taken, many of them covering possible new features that can be implemented in
ICE-COLA.

7.1 Covariance estimates comparison project

The Euclid mission1 (Laureijs et al., 2011), with a planned launch date on December 2020,
will pose the most stringent requirements on ensembles of cosmological simulations,
needed both for estimating covariance matrices or to develop analysis pipelines. To be
representative of the volume surveyed by the mission, they should have large volumes
(many cubic Giga-parsecs) while retaining sufficient resolving power at small-scales. If
the requirements demand a 1% accuracy on the covariance matrices, this translates into
∼ O(104) realizations using just brute-force (A. Taylor et al., 2013; Blot, Corasaniti, Amen-
dola, et al., 2016). This big challenge seems unattainable by current approximate meth-
ods, unless they are combined with smart techniques that allow to reduce the number of
realizations, such as a theoretical modelling (Grieb et al., 2016), the tapering method (Paz

1http://www.euclid-ec.org
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& Sánchez, 2015), the shrinkage technique (Pope & Szapudi, 2008), data compression
(Tegmark et al., 1997) or re-sampling techniques (Escoffier et al., 2016).

It is therefore essential to answer the question of how many mock catalogues are
necessary for the Euclid project to define the future roadmap. This is the motivation of a
project for comparing covariance estimates produced by different approximate methods.
One thousand realizations have been produced with COLA and PINOCCHIO that are being
compared with a set of 100 full N -body simulations (for more details go to § 2.4.3). Other
methodologies may join in a future. Preliminary results are encouraging and indicate
that both methods reproduce accurately the signal of the covariance (see Fig. 7.1).

FIGURE 7.1: Variance of the halo auto-power spectrum in redshift space
for the monopole, quadrupole and hexadecapole from left to right. All
methods use the same initial conditions and indeed, the results show that
the noise is reproduced by the approximate methods. The sample is for

haloes with M > 1013 h−1 M� at redshift 1.

7.2 Covariances for weak lensing observables

Modelling covariance matrices of weak lensing observables is one of the main unresolved
problems in computational cosmology. The ICE-COLA code presented in thesis repre-
sents a step forward in such challenge. The next step is to analyse the ensemble of 68
realizations (which hopefully will be enlarged in the future) to have accurate estimates
of covariances for this particular probe. Furthermore, the simulations implement halo
catalogues as well and this enables a joint analysis of galaxy clustering and weak lens-
ing consistently, which has never done before with approximate methods. This in turns
enables many other future projects, that are outlined below.

This project will optimize the optimal binning in redshift for weak lensing observ-
ables in ICE-COLA, that currently matches the same values used for MICE-GC. Another
aspect being studied is the impact of the resolution of the Healpix maps on small scales,
as well as the relevance of using or not interpolation to assign weak lensing properties at
halo positions.
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7.3 Future work

On-going projects are expected to lead to results in a short time scale. Below are described
new ideas or projects that still need a more concrete definition or work before achieving
substantial progress.

Mid term

The light cone routine stores all the pixels of each Healpix maps in the current version of
ICE-COLA. However, a single process in general only modifies values of a sub-sample of
pixels that are in a compact region of the sky. This fact can be used to generate partial
Healpix maps that cover the need area, which translates into an efficient usage of memory
and probably a slightly faster code (due to the reduction of cache misses).

Regarding weak lensing covariances, the final interest of generating those is mod-
elling the impact of their accuracy on cosmological parameters estimation. The depar-
tures from non-gaussianities and non-linear mode coupling are hard to model and have
a strong impact on parameter inference, as has been shown in (Kiessling, A. N. Taylor,
et al., 2011). With the set of 68 light cone simulations this topic can be reviewed. Note
that the simulations are all-sky: in a study modelling a survey with less than 1000 deg2

each simulation would contain 40 or more of such footprints, multiplying the number of
realizations proportionally.

Another interesting project is populating the halo catalogues of the existing sim-
ulations with galaxies using a hybrid Halo Occupation Distribution and Halo Abun-
dance Matching technique, as has been done for MICE-GC (Carretero et al., 2015; Crocce,
Castander, et al., 2015). This is the last necessary step to model galaxy clustering in
the current pipeline and realistic observational effects could be implemented, such as
photometric-redshifts errors, masking effects, survey varying conditions (Leistedt et al.,
2015). . . In turn, the galaxy mocks thus produced could be used by the collaborations of
surveys such as DES or Euclid, distributing the catalogues to the community through a
dedicated web portal, CosmoHUB2.

Long term

There are many directions in which ICE-COLA can be further developed. For instance,
a first idea would be implementing the spatial-COLA idea presented in Tassev, Eisen-
stein, et al., 2015 to simulate a sub-volume embedded within a larger environment. This
could enable evolve independently sub-volumes of a very large simulation that fit in the
computational resources available. In that way, larger simulations could be produced.
Alternatively, a different approach would be implementing a two-dimensional volume
decomposition as is the case of FastPM, although it would involve a deep modification

2http://cosmohub.pic.es/
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of the code. Other ideas is implementing the COLA method in a more sophisticated N -
body solver such as an adaptive mesh refinement algorithm. In that case, a study would
be necessary to gauge that the LPT contribution is not becoming superfluous.

Aside from modifications to the code, other future lines could be implementing in-
trinsic alignments into the analysis pipeline (Joachimi et al., 2015; Kiessling, Cacciato, et
al., 2015; Kirk et al., 2015). This effect is known to introduce systematic errors in cosmo-
logical analysis of weak lensing observations and a better modelling is needed in order
to understand them and mitigate their effects. Using prescriptions of the phenomena,
galaxy mock catalogues could include a value for the orientations consistent with the
expected physical pattern.
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8
CONCLUSIONS

Next generation galaxy surveys will produce a wealth of data that will allow to test the
nature of the dark sector among other cosmological constraints and narrow down error-
bars within the percent level. However, these achievements are only possible if system-
atic errors are controlled and reduced accordingly to that precision. Mock catalogues are
essential in that aspect, but producing many of them using N -body simulations becomes
very inefficient due to their huge computational cost. Instead, approximate methods
provide the adequate tools to tackle the challenge, offering an optimal balance between
accuracy and speed.

This thesis provides some tools that represent a step forward in numerical cosmol-
ogy, having many applications such as the optimal exploitation of future observational
experiments. We used a semi-N -body method and determined for the first time optimal
internal code parameters that provide the highest accuracy in reproducing observables
while maintaining low computational requirements. We discuss its advantages and limi-
tations. Furthermore, we implemented and validated the production of light cone simu-
lations in a new version of the code, named ICE-COLA, that brings the method closer to
the analysis of real data. This allowed us to model accurately weak gravitational lensing
observables.

Optimization of a quasi N -body method for clustering

We developed a suite of 20483 particles COLA simulations that sampled the internal code
parameter space and we compared observables to a reference state-of-the-art N -body
simulation, the MICE-GC. We determined the optimal configuration using as observ-
ables the two-point clustering of matter and the abundance of haloes across a wide range
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in halo mass and cosmic time. We showed that too few time steps produce largely under-
estimated halo masses, but that a good temporal resolution reproduces the mass function
within 5% and yields a matter power spectrum with one percent accuracy up to highly
non-linear scales, ∼ 1hMpc−1. Therefore, for an accurate prediction of matter clustering
and halo abundance, one needs to increase the default 10 time-steps by a factor of a few.
Above 40, however, further gains might be limited by the force resolution. We show that,
at least up to 40 time steps, the COLA method is still preferred over a PM-only simula-
tion. We also explored the time sampling distribution and found that a linear distribution
along the scale factor gives the best performance regardless of the number of time steps
and the initial redshift. In addition, transients effects from the initial redshift were found
negligible once zi � 19 within COLA accuracy. Starting earlier had no clear benefits. Fi-
nally, We explicitly showed that a good force resolution is indispensable to mitigate a
systematic effect that generates an incompleteness in the abundance of low-mass haloes.

For the optimal set-up we then studied the halo clustering in real and redshift space.
Without applying any re-calibration against an external N -body, we found the halo clus-
tering to be accurate within 2%. Incorporating the distortions in the radial direction that
the peculiar velocities add in redshift space, we found that the signal of the monopole
and the quadrupole was reproduced within 4%. These conclusions hold for wide ranges
of redshifts and halo masses. Note that other approximate methods depend to a certain
degree on full N -body simulations for calibrations. We further improved the accuracy of
COLA by investigating two particular recalibration schemes: matching the abundance or
the clustering of haloes. In this manner, we were able to achieve percent level agreement
in halo bias at all mass bins and redshifts and a better agreement in redshift space.

In summary, we have shown how an optimal choice of COLA code parameters, plus a
minimal halo mass recalibration, can yield clustering results to per cent agreement with
respect to full N -body for all mass bins, scales and redshifts of interest for the new gener-
ation of galaxy surveys. These results have been published in the following paper (Izard
et al., 2016):

Towards fast and accurate synthetic galaxy catalogues optimizing a quasi N -body
method, Izard A., Crocce M., and Fosalba P., 2016, MNRAS, 459, 2327–2341, arXiv: 1509.04685.

Light cone simulations

Real observations come in the format of a light cone, in which distant objects are seen
as they were in the past. Hence, simulations that produce catalogues in this format en-
able a more realistic modelling of surveys. We implemented light cone simulations in
ICE-COLA, producing catalogues on-the-fly. Moreover, it is possible to generate directly
two-dimensional projected matter density maps and halo catalogues, skipping the mas-
sive production and post-processing of particle data. Thanks to that, compression factors
of two orders of magnitude in the data volume is possible. The light cone is constructed
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in many box replicas, allowing for instance all-sky catalogues, and has been carefully de-
signed to consume the minimum computational resources. The data products obtained
with the new code are validated, showing that the outputs are reliable.

Modelling of weak gravitational lensing

We explain the pipeline that we developed to model weak gravitational lensing observ-
ables from light cone catalogues. This probe may produce some of the most stringent
cosmological constraints in the near future if systematic effects are kept under control.
But its theoretical modelling is challenging because it probes highly non-linear scales at
the same time that samples very large volumes, which is an unsolved problem in numer-
ical cosmology. The methodology of this thesis is suited for such commitment. In par-
ticular, we produced all-sky convergence and shear maps. The pipeline uses efficiently
the compressed data catalogues and can be run on a personal laptop. The maps were
compared against MICE-GC, finding that the angular auto-power spectrum is accurately
reproduced up to multipoles of 2000 within 10% of accuracy. More interestingly, we find
that the convergence-matter cross-power spectrum resolves scales of l ∼ 4000 with the
same accuracy, since in this case non-linear contributions at low redshifts (that are seen
at larger angles) do not contribute to the signal.

Finally, we show how to combine halo catalogues and weak lensing maps to study in
a consistent way galaxy clustering and weak lensing from a single simulation. Compar-
ing also to MICE-GC, we found the promising results that we can reproduce two-point
statistics to angular separations of few arc-minutes. The particular scale depends on each
observable, but in general we find that the method predicts correctly the signal on scales
an order of magnitude beyond the linear regime. Note that other approximate methods
are not able to directly predict such regimes, since they explicitly avoid resolving small-
scale structure.

These results constitute a further and thorough validation of the light cone simula-
tions presented before.

All the findings related to the light cone simulations and the modelling of weak lens-
ing observable are included in a forthcoming publication: Izard A., Fosalba P., Crocce M.,
2016 in prep.
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A
TRANSIENT EFFECTS CORREC-
TION

The MICE-GC simulation used first order LPT initial conditions (Zeldovich approxima-
tion) at zi = 100. This approximation is known to yield transient effects in the distribu-
tion of matter and haloes mainly depending on the actual initial redshift used (Scocci-
marro, 1998; Crocce, Pueblas, et al., 2006). In this appendix we quantify these effect on
the matter power spectrum and the halo mass function by using first or second order
LPT for the concrete configuration of MICE-GC. These differences are then corrected in
MICE-GC whenever in Chapter 3 we compare any measurement against those in COLA,
because otherwise it would be a source of a systematic error. We estimate them using
additional GADGET-2 simulations using the same cosmology and starting redshift as in
MICE-GC (see § 2.1.1), and evolving 10243 particles using either first or second order LPT.
The box size is 768h−1Mpc in order to keep the same mass resolution as in the reference
MICE-GC N -body simulation. For the mass function we use as well a larger box size of
3072h−1Mpc in order to have good statistics at the high mass end.

The left panel of Fig. A.1 shows the transient effects in the matter power spectrum
in real space for redshifts 0, 0.5 and 1 in solid, dashed and dotted lines respectively. The
correction is always below 2 per cent in the scales studied and remarkably similar to the
results that found by (A. Schneider et al., 2015) using another simulation code (see their
fig. 2). The right panel displays the mass function and uses the same line styles. The
vertical line at M = 1013.5 h−1M� marks the matching mass-scale for the two runs used
(the smaller one for smaller masses and the other way around). Remind that halo masses
are defined using the Warren correction and this enables a good overlapping of measure-
ments at that matching mass-scale (in agreement with other tests for such correction, e.g.



108 Appendix A. Transient effects correction

FIGURE A.1: Transient effects on the matter power spectrum (left panel)
and the mass function (right panel). Solid, dashed and dotted lines cor-
respond to redshifts 0, 0.5 and 1 respectively. We show the ratio of the
observables measured on a pair of identical full N -body runs differing
only in the set up of the initial conditions: first order versus second order
LPT. The simulations used the same particle mass as MICE-GC in a box of
768h−1 Mpc, except for the mass function plot that for M > 1013.5 h−1 M�

(marked by a vertical dashed line) used a larger box of 3072h−1 Mpc.

Crocce, Fosalba, et al., 2010). In the mass function, differences are more important at high
masses and redshifts, going up to 5 per cent at z = 1 for the mass range of interest and
they are within 3% at z = 0. We measured as well the correction for the halo-matter cross
power spectrum, but we found it to be always within the 1 per cent so that the effect is
negligible. Thus, whenever we show in Chapter 3 a ratio of either mass functions or mat-
ter power spectra with respect to MICE-GC, we have multiplied it by the corresponding
ratio shown in Fig. A.1. In the case of halo clustering observables we find that transient
effects are below the 1 per cent level, so we consider that we can neglect the correction
for those measurements.
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B
PERFORMANCE OF COLA WITH
RESPECT TO PARTICLE-MESH ONLY
RUNS

Tassev, Zaldarriaga, et al. (2013) showed that COLA simulations with as few as ten time
steps recover the matter density field much better than just doing either a particle-mesh
(PM) only simulation with the same number of time steps or a 2LPT evolution. In this
thesis we advocate the use of more time steps in order to produce mock catalogues that
are accurate in a large span of redshifts. After increasing the number of time-steps one
might think that the 2LPT part of the COLA method has a very little contribution to the
dynamics and much of the information comes from the PM integration. In this appendix
we show the relative impact of the 2LPT information when many time steps are used.

For this exercise we use the FastPM1 parallel implementation of COLA (Feng et al.,
2016). We run several PM only and COLA runs with 7683particles in a box of 576h−1Mpc

by side, and we vary the number of time steps for the PM only runs (the initial redshift
is fixed at zi = 19). The green line in the left panel in Fig. B.1 shows that the PM only
method recovers less power in the matter power spectrum than COLA for the same num-
ber of time steps. The deficit is larger at small scales and at high redshift (dashed and
dotted lines correspond to redshifts 0.0 and 1.5). The plausible explanation is that the
PM only has more difficulties to accurately integrate the equations of motions at high
redshifts, when few time steps sample each e-fold of the growth of structures2, and dif-
ferences persist until z = 0. The PM method slowly converges to COLA at large scales by

1https://github.com/rainwoodman/fastPM.
2Note that in those runs, time steps are linearly distributed with the scale factor.
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FIGURE B.1: Left panel: matter power spectra for three PM only simulations
with 20, 40 and 80 time steps from bottom to top. The reference simulation
is a COLA run with 40 time steps. Dotted and dashed lines correspond to
redshifts 1.5 and 0 respectively. right panel: mass function of a PM only run
with respect to a COLA one, both with 40 time steps. Plain PM simulations
introduce additional systematic effects, even with as much as 40 time steps.

increasing the number of time steps. In turn, we recall that COLA reproduces the linear
growth rate accurately regardless of the number of time steps (see Fig. 3.3 in § 3.4.1).
The right panel in Fig. B.1 displays the ratio of mass functions between the PM only and
COLA runs with 40 time steps, for various redshifts.

There is a clear underestimation that reaches 5− 10% for both high redshifts and high
masses. We have also studied the halo linear bias and found a corresponding excess
exhibiting the same trends. Both differences can be explained by a systematic underesti-
mation of the halo masses for plain PM simulations that is mass and redshift dependent.
Both panels of Fig. B.1 show that, for a similar number of time-steps, differences between
PM only and COLA decrease towards lower redshifts. As shown by the matter power
spectrum, discrepancies originate at high redshift, and late non-linear evolution masks
them (in a similar fashion than transient effects showed in Appendix A). We do not show
in Fig. B.1 full N -body values since we want to focus only on the relative effect of both
methods. Also, it is clear that plain PM simulations converge to COLA in the limit of a
large number of time steps.

One might argue that this effect on the mass function could apparently solve the over-
estimation studied in § 3.4.4. But this seems just a cancellation of errors that might intro-
duce even more undesired systematic effects. We conclude that it is worth using the
COLA method even with as many as 40 time steps. Less time-steps (e.g., 20 or fewer)
still produce accurate results for COLA, while plain PM simulations show non-negligible
biases.
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