
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en



Multi-objective Optimization and

Multicriteria design of PI /PID

controllers.

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR ENGINEER AT
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Preface

Nowadays, the proportional integral and proportional integral derivative are the

most used control algorithm in the industry. Moreover, the fractional controller

have received attention recently for both, the research community and from the

industrial point of view. Owing to this, in this thesis some of the scenarios in-

volves the tuning of these controllers by using the Multi-objective Optimization

Design (MOOD) procedure. This procedure focus on providing reasonable trade-

off among the conflictive objectives and brings the designer the possibility to ap-

preciate the comparison of the design objectives, this characteristic can be useful

for controller tuning.

It is well-known that the controller design is a challenge for the control engineer,

satisfying a set of requirements or constraints such as performance, robustness,

control effort usage, reliability and others is not an easy task. Sometimes, the

improvement of one objective is at the expense of worsening another. This kind

of problems where the designer have to deal with the fulfillment of multiple ob-

jectives are known as Multi-Objective Problems. Such problems can be addressed

using a simultaneous optimization of all targets (multi-objective optimization).

This implies to seek for a Pareto optimal solution in which the objectives have

been improved as possible without giving anything in exchange (select a design

alternative).

Therefore, the first part of this thesis presents the research problem, fundamentals

on control system and background on multi-objective optimization. The second

part presents the contributions on the MOOD procedure, (i) the Nash Solution as

a Multi-criteria decision making technique and (ii) a Multi-stage approach for the

Multi-objective optimization process. Hereafter, in the third part we present the

contributions for controllers tuning: proportional integral, proportional integral

derivative and fractional controller. Finally, some general conclusions and ideas

for further research.
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Chapter 1

Introduction

Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) controller

remains as a reliable and practical control solution for several industrial processes.

Owing to this the scientific community has shown continued interest in new tuning

methods to improve its performance; but also guaranteeing reasonable stability

margins for a wide variety of processes [9, 121]. One of the main advantages of

PI-PID controllers is their ease of implementation as well as their tuning, giving

a good trade-off between simplicity and implementation cost [108].

Since Ziegler and Nichols presented their PID controller tuning rules, a great

number of other procedures have been developed, especially those using a low

order overdamped model representation of the controlled process, see [69]. Some

of them consider only the control system performance of the closed-loop [51, 92].

Hereafter, it was observed that if the designer (control engineer) only considers

the performance this leads to control systems with low robustness, due to this fact

this specification was introduced into the controller design [10, 44].

It is worth stressing to mention, that the control system design procedure is usu-

ally based on use of of low linear models identified at the control system normal

operation point [123]. Considering that most of the industrial process must have

non-linear characteristics, the designer should take into account the capability of

the control system to deal with changes in the controlled process (certain level of

robustness).

Moreover, when the changes in the process operating conditions may appear, the

controlled variable set-point will need to be changed and then a good transitory

1



Introduction 2

response is required, which is known as a servo-control operation mode. On the

other hand, when the set-point remains constant a good load disturbance rejection

is needed [103], this is known as a regulatory operation mode.

As a matter of fact, in general, a good disturbance rejection response is not com-

patible with a good set-point step response and a high performance is often not

compatible with a controller which is robust to process model mismatch. Due to

this, both operation modes should be considered in the control design. Hence,

there are tuning rules devised for regulatory operation mode [51] or for servo op-

eration mode [111, 113]. Moreover, there are some tuning rules that offers both

set of tuning for each operation mode, see [49, 127].

Therefore, the design of a control system must take into account two different

trade-off such as the performance/robustness and also the servo/regulatory control

operation mode. Hereafter, we looked for a PI-PID controller tuning rules that

faces both trade-offs. Nowadays, new tuning techniques have been developed

focused on fulfilling several objectives and requirements, sometimes in conflict

among them [33, 50, 125]. Some tuning procedures are based on optimization

statements [9, 37, 38, 78, 116].

In this context, as there are different conflicting requirements (trade-off) to handle,

it is natural to set up a Multi-Objective Problem (MOP) [57], where the designer

has to deal with several requirements, and searches for a solution with desir-

able trade-off between objectives. Recently, PI-PID controller tuning by means

of Multi-Objective Optimization (MOO) have been proposed [33, 81, 97, 98, 112].

In fact, satisfying a set of specifications is often a challenge, because most of the

times, such specifications are in conflict.

Consequently, the controller design can be therefore be viewed as the search for

the best compromise between all the specifications and thereby in this thesis,

a procedure for the design of a control system is presented based on a Multi-

Objective Optimization Design (MOOD) procedure [88], which is defined by three

main steps: the MOP definition (defining the specifications of the problem) , the

MOO process (optimization procedure that lead the designer to a set of solutions)

and the Multi-Criteria Decision Making (MCDM) stage (consist in select the best

solution according to her/his needs and preferences).
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The MOOD procedure has shown to be a valuable tool for PI-PID controller tuning

for single input, single output (SISO) see [43, 45]. The design methodology is the

same for all the considered process and controllers among this work.

One of the purpose of this thesis was to choose a technique for the MCDM stage,

in order to select a fair solution that represents the best compromise between

the competitive objectives. This stage of the MOOD procedure is an ongoing

research, there is not much information in the literature about it; for this reason

in this work the Nash Solution (belongs to the bargaining solution [48]) is proposed

as a technique to select one point from the Pareto front approximation.

Furthermore, regarding the desirable characteristics related with the optimization

problem such as convergence, diversity and preferences handling; regarding the

multi-objective problem, they will be associated with constrained, multi-modal,

robust, expensive, many-objectives, dynamic or reliability-based optimization in-

stances. Due to this, a Multi-stage approach between a deterministic and evo-

lutionary optimization techniques is formulated for the MOO process, where the

designer will expect solutions with a higher reliability, both in a theoretical and

practical sense.

Finally, the aforementioned methodology based on the MOOD procedure will be

used for addressing control tuning problems. It will be applied on PI, PID and

Fractional-Order-PID (FOPID) controllers; using two different approaches for the

MOO process, the Normalized Normal Constraint (NNC) algorithm (deterministic

algorithm) and a Multi-stage approach in order to find the Pareto front approxi-

mation, that it will leads to devise tuning rules based on the Nash Solution as a

MCDM technique.

1.1 Structure of the thesis

This thesis is divided in four parts and the contents are organized as follows:

Part I: Fundamentals

In this first part, the aim is to introduce the generalities of the control system and

the background of the Multi-objective optimization.
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Chapter 2: presents some important concepts about control system configura-

tion, the different trade-off that the control engineer should take into ac-

count during the design process such as robustness/performance and the

servo/regulatory operation modes.

Chapter 3: in this chapter, a background on MOO is presented and after a gen-

eral framework is described in order to incorporate the MOO into any engi-

neering design process.

Part II: Contributions for the Multi-objective optimization

design procedure

In the second part of this thesis, the idea is to present two contributions for

the MOOD; a Nash Solution as a technique to select a solution from the Pareto

front approximation and a Multi-stage approach for searching and improve the

convergence in order to find the Pareto set approximation.

Chapter 4: this chapter begins with general aspects about the importance of

selecting a point from the Pareto front approximation. Hereafter, intro-

duces the Nash Solution as a MCDM technique to select the most reason-

able/preferable solution according to designer preferences for a particular

situation.

Chapter 5: it is proposed a Multi-stage approach for the MOO process in order

to improve the search capabilities and the convergence properties to find a

Pareto front approximation.

Chapter 6: in this chapter two case of studies are presented, to validate the

Multi-stage approach proposed on Chapter 5.

Part III: Controller tuning applications

In this third part, the MOOD procedure will be used to deal with controller tuning

problems such as PI, PID and FOPID controllers.

Chapter 7: presents the application of MOOD procedure based on the Normal-

ized Normal Constraint (NNC) algorithm for PI controllers in order to devise

a set of tuning rules for load disturbance rejection task.
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Chapter 8: in this chapter a set of tuning rules for one-degree-of-freedom PID

controllers is presented. It addresses two different trade-off: the perfor-

mance/robustness and the servo/regulatory control mode.

Chapter 9: a Multi-stage approach is used to device the balanced tuning for

FOPID controller. The obtained rules take into account at once both the

servo and the regulatory modes in an optimal way. Moreover, the user

can select the desired level of robustness or keep it between given bounds

depending on his/her preferences.

Part IV: Conclusions and perspectives

A final part summarizes the conclusions of the thesis and the proposal for future

work.

Chapter 10: finally, the conclusions and main contributions are pointed out, also

some future work and research to be conducted are presented.

1.2 Contributions of this research

The thesis has generated the following publications:

Journal papers:

• H. S. Sánchez, G. Reynoso-Meza, R. Vilanova and X. Blasco. Multi-stage

Approach for PI Controller tuning based on multi-objective optimization to

improve reliability. Control Engineering Practice (Submitted -Under re-

view).

• H. S. Sánchez, F. Padula, A. Visioli and R. Vilanova. Tuning rules for ro-

bust FOPID controllers based on multi-objective optimization with FOPDT

models. ISA Transactions (Submitted -Under review).

Conference papers

• H. S. Sánchez and R. Vilanova (2013). Multiobjective tuning of PI controller

using the NNC Method: Simplified problem definition and guidelines for deci-

sion making. Proc. of the 18th IEEE Conference on Emerging Technologies

& Factory Automation (ETFA). Cagliary (Italy).
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• H. S. Sánchez and R. Vilanova (2013). Nash-based criteria for selection of

Pareto Optimal PI controller. Proc. of the 17th International Conference of

System Theory, Control and Computing (ICSTCC). Sinaia (Romania).

• H. S. Sánchez, G. Reynoso-Meza, R. Vilanova and X. Blasco (2013). Com-

paración de técnicas de optimización multi-objetivo clásicas y estocásticas

para el ajuste de controladores PI. XXXIV Jornadas de Automática. Terrasa

(España).

• H. S. Sánchez and R. Vilanova (2014). Optimality comparison of 2DoF PID

implementations. Proc. of the 18th International Conference of System

Theory, Control and Computing (ICSTCC). Sinaia (Romania).

• H. S. Sánchez and R. Vilanova (2014). Implementación de controladores

PID: Equivalencia y optimalidad. XXXV Jornadas de Automática. Valencia

(España).

• H. S. Sánchez, A. Visioli and R. Vilanova (2015). Nash Tuning for Optimal

Balance of the Servo/Regulation Operation in Robust PID Control. Proc.

of the 23th Mediterranean Conference on Control & Automation. Málaga

(Spain).

• H. S. Sánchez and R. Vilanova (2015). Multi-objective optimization for con-

trol and process operation. Proc. of the Doctoral Consortium on Informatics

in Control, Automation and Robotics (DICINCO/ICINCO). Colmar, Alsace

(France).

• H. S. Sánchez, G. Reynoso-Meza, R. Vilanova and X. Blasco (2015). Mul-

tistage procedure for PI controller design of the Boiler Benchmark problem.

Proc. of the 20th IEEE Conference on Emerging Technologies & Factory

Automation (ETFA). Luxembourg.

Journal paper in collaboration:

• G. Reynoso-Meza, H. S. Sánchez, L. dos Santos Coelho and R. Zanetti (2016).

Multidisciplinary optimisation in mechatronic systems: a comparative anal-

ysis with multiobjective techniques. IEEE Latin America Transactions. Vol.

14(1). Pp. 364-370.
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Conference paper in collaboration:

• G. Reynoso-Meza, H. S. Sánchez, X. Blasco and R. Vilanova (2014). Reli-

ability based multiobjective optimization design procedure for PI controller

tuning. Proc. of the 19th World Congress The International Federation of

Automatic Control (IFAC). Cape Town (South Africa).
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Chapter 2

Control System

The purpose of a control system is to obtain a desired response for a given process.

We consider the typical feedback control system represented in Figure 2.1, where

P (s) is the process, K(s) is the controller, r(s) is the set-point signal, u(s) is the

control signal, d(s) is the load disturbance signal, y(s) is the process output and

e(s) := r(s)− y(s) is the control error.

K P

Figure 2.1: Feedback control scheme.

It is worth stressing to mention that the control problem consists in finding and

selecting the parameters of the controllers, in order to ensure good levels of robust-

ness and performance of the process P (s). To find these optimal parameters for

the controller some information about the process will be necessary. According to

[123] the First-Order-Plus-Dead-Time (FOPDT) model is frequently used in pro-

cess control because is simple and describes with sufficient accuracy the dynamics

of many industrial process. Therefore, the process dynamics will be described by

consider a stable process represented by a FOPDT model of the form:

P (s) =
K

1 + Ts
e−Ls, (2.1)

11
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where K is the process gain, T is the time constant and L is the dead time. The

process dynamics can be fully characterized in terms of the normalized dead-time

defined in (2.2), which represents a measure of the difficulty in controlling the

process:

τ =
L

T
. (2.2)

Further, the estimation of the parameters of this kind of model can be performed

by means of a very simple step-test experiment (or historical data) to be applied

to the process. This represents a clear advantage in industry with respect to more

advanced identification methods.

The process will be controlled with a one-degree-of-freedom PID controller with a

derivative time filter, whose transfer function is given by:

K(s) = Kp

(
1 +

1

Tis
+

Tds

1 + Td
N
s

)
(2.3)

where Kp is the proportional gain, Ti is the integral time constant and Td is the

derivative time constant. The derivative time noise filter constant N usually takes

values within the range 5-33 [6, 123]. Here, without loss of generality, the value

N = 20 has been selected [127].

2.1 Servo & Regulatory operation modes

The design of the closed-loop control system must consider the trade-off among the

disturbances and set-point changes, referring to the servo and regulatory mode.

Consider the closed loop of the system in Figure 2.1, where the process variable

of the control system is given by

y(s) =
K(s)P (s)

1 +K(s)P (s)
r(s) +

P (s)

1 +K(s)P (s)
d(s) (2.4)

The process output y(s) depends in general on two input signals, the reference

signal r(s) and the disturbance signal d(s). Depending of the input signal, the

system can operate in two different modes:
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• servo operation mode: a good tracking of the signal reference r is the main

control task;

• regulation operation mode: keeping the process variable at the desired value,

in spite of possible disturbances d, is of main concern.

In the first case, that is when disturbances are not taken into account, the output

signal can be represented as

ysp(s) :=
K(s)P (s)

1 +K(s)P (s)
r(s) (2.5)

while in the second case, when the reference signal is not taken into account, we

have that the process variable is

yld(s) :=
P (s)

1 +K(s)P (s)
d(s) (2.6)

From the point of view of output performance, we can identify a design trade-off by

considering the effects of load disturbances and set-point changes on the feedback

control system. On the other side, there is also a trade-off between performance

and robustness. For example, the SIMC method [106], allows the adjustment of the

robustness/performance trade-off by means of a single tuning parameter governing

the closed-loop bandwidth, while at the same time guaranteeing a good balance

between servo and regulatory control. It is worth stressing this point because in

the literature design techniques normally focus on performance in either servo or

regulatory mode, see for example [121] and [69] for a historical review.

However, both servo and regulatory requirements must be addressed, for exam-

ple,in cascade configurations: the inner loop should be tuned based on tracking as

it receives the set-points from the master loop. Nevertheless, the inner lop may

also need acceptable input disturbance suppression capabilities. In addition there

are also cases with both input and output disturbances [106, 110], or when one

simply does not know where the disturbance may occur [101]. However, it is obvi-

ous that the control system is more complex and it does not solve completely the

problem if disturbances occur in the part of the process with the slowest dynamics.

In general, it has to be taken into account that obtaining a fast load disturbance

response usually implies increasing the bandwidth of the control system at the

expense of a more oscillatory set-point step response [7]. Further, a decrement
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of the settling time of the response can usually be obtained at the expense of a

decrement of the robustness of the system (and of an increment of the control

effort) [35]. It appears therefore that the tuning of the controller is critical if

a one-degree-of-freedom PID controller is used. Moreover, there is the situation

when the control loop should operate in both servo and regulatory mode, it may

not be clear which setting the designer should implement.

When both tasks have to considered, the tuning of the PID controller becomes

difficult as the two specifications are conflicting (achieving a high performance in

the load disturbance rejection tasks requires in general a high bandwidth of the

control system which yields poor stability margins and large overshoots in the set

point step responses [123]).

2.2 Performance & Robustness

The control system design is normally based on the use of linear models, obtained

at the system normal operating point, to represent the nonlinear controlled pro-

cess. Since the beginning the controller tuning only take under consideration the

performance [6]. Further, it was noticed that if only the performance was con-

sidered, the resulting closed-loop control system probably will have a very low

robustness. Further, if the system is designed to have a high robustness [41] with-

out evaluating the performance, the designer will not have any indication of the

cost of having such high level of robustness. Owing to this, the robustness and

performance trade-off in control system is a well-know issue.

Some choices to evaluate the performance and robustness, the following standard

measures will be used along this thesis:

• Integral Square Error (ISE ): it will penalize large errors (since the square of

a large error will be much bigger) [6].

ISE :=

∞∫
0

e2(τ)dτ (2.7)

• Integral of the Absolute Error (IAE ): the most natural way to measure

performance is by minimizing the integrated-absolute-error. In general a
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low overshoot and a low settling time at the same time [102] in the set-point

or load disturbance step response.

IAE :=

∫ ∞
0

|e(τ)|dτ (2.8)

• Total Variation of control action (TV ): is a measure of the smoothness of

control action [123]. In order to evaluate the manipulated input usage u(t).

TV :=
∞∑
k=1

|u(k + 1)− u(k)| (2.9)

• Robustness: is the peak of the Maximum sensitivity (Ms), it represents the

inverse of the minimum distance of the Nyquist plot from the critical point (-

1,0). This index is an indication of the system robustness (relative stability)

and typical values range form 1.4 (robust tuning) to 2.0 (aggressive tuning)

[6] or fixed to a specific value or constrained to a given range.

Ms := max
w∈[0,+∞)

∣∣∣∣ 1

1 +K(s)P (s)

∣∣∣∣
s=jw

. (2.10)

2.3 Motivation Example

In order to show how the performance of the system is affected when the con-

troller implemented is not operating according to the tune mode, and example is

presented. Consider the following process, taken from [127]

P (s) =
e−0.5s

(s+ 1)2 (2.11)

Tuning Kp Ti Td
servo 1.66 1.69 0.51

regulatory 2.41 1.0 0.56

Table 2.1: PID controller parameters for P1

The process has been modeled as FOPDT with K = 1, T = 1.65 and L = 0.99.

The optimal ISE tuning for servo and regulatory mode proposed by [127] have

been applied, the parameters are shown in Table 2.1. As it can be seen in Figure
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2.2 the control system is operating in both, servo and regulation mode. Showing

that if the controller was tuned for servo mode it will be concern to the set-point

changes and not to disturbances that are affecting the plant input. Moreover,

it can be observed that the load-disturbance response of the set-point tuning is

closer to the response obtained with the regulation tuning. In general, the load-

disturbance response of the set-point tuning is closer to the optimal regulation,

which leads the designer to choose the set-point setting.
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Figure 2.2: Process response for servo and regulatory mode for system P1.

Therefore, the issues mentioned before can be seen as motivating example of the

analysis presented in the next chapters, which means that a balance tuning is

needed, that considers the trade-off between servo/regulation operation modes

and the robustness/performance. Owing to this, the idea of implementing the

MOO can be an alternative to solve this kind of problems, in order to find the

optimal parameters for the controller and considering the different trade-off afore-

mentioned. Bearing in mind the previous reasoning, it appears that the control

problem has a clear multi-objective nature.
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Multi-objective Optmization

3.1 Generalities

It is worth stressing to mention that there are two different approaches to solve an

optimization statement for an Multi-objective problem (MOP) according to [59];

first, the Aggregate Objective Function (AOF ) where the designer needs to de-

scribe all the trade-off at once and from the beginning of the optimization process,

for example, the designer can use a weighting vector to indicate relative impor-

tance among the objective. Secondly, the Generate-First Choose-Later (GFCL)

approach in which the target is to generate a set of Pareto optimal solutions and

then the designer will select, a posteriori, the most preferable solution according

to his/her preferences [56].

In order to generate such set of desirable solutions in the GFCL approach, the

Multi-Objective Optimization (MOO) techniques might be used. Such techniques

generate what is called the Pareto front approximation, where all the solutions

are Pareto optimal. This means that there is no solution that is better in all

objectives, but a set of solutions with different trade-offs among the conflicting

objective.

Therefore, a set of optimal solutions is defined as the Pareto set ΘP and each

solution within this set defines an objective vector. The projection into the ob-

jective space is known as Pareto front JP . All the solutions in the Pareto front

are said to be non-dominated and Pareto-optimal solutions. This means in the

Pareto front, there is not a solution that is better than another one for all the

17
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competitive objectives. To improve one objective will imply to introduce a loss

regarding the other ones. It is important to mention that the true Pareto front is

unknown, for this reason MOO techniques search for a discrete description of the

Pareto set Θ∗
P capable of generating a good approximation of the Pareto front J∗

P ,

see Figure 3.1. In this way, the decision maker can analyze the set and select the

most preferable solution. This set of solutions implies that there is flexibility at

the decision making stage. The role of the designer is to select the most preferable

solution for a particular situation.

Figure 3.1: Pareto front concept for two objectives.

3.2 Multi-objective Optimization Design

In order to incorporate the MOO process into any engineering design, a Multi-

objective Optimization Design (MOOD) procedure should be carried out [24].

The MOOD procedure have shown to be a valuable tool for control engineers, see

[85, 89, 96, 100]. This procedure allows the designer to be more involved with the

design process and to evaluate the performance exchange between the conflicting

objectives, the follow step are needed: i) the MOP definition (objectives, deci-

sion variables and constraints), ii) the MOO process (search) and iii) the MCDM

stage (analysis and selection) and is represented in Figure 3.2. Hence, to obtain

the best trade-off from the Pareto front approximation for the controller tuning,

the aforementioned steps are needed [88]; this would guarantee the possibility of

obtaining a desirable trade-off among the design alternatives or for the trade-off
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analysis of the requirements of the controller tuning. Such procedure has shown

to be a valuable tool for PI-PID controller tuning for single input, single output

(SISO) see [43, 45] where a MOOD have been implemented.

Figure 3.2: A Multi-objective Optimization Design (MOOD) procedure.

3.2.1 MOP definition

In this first step, the designer decides How to solve the problem?, which are the

requirements and constraints. It is important to define the decision space (for the

parameters values) it will generate the objective space.
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As it has mentioned in [62], a MOP can always be expressed as follows:

min
θ∈<n

J(θ) = [J1(θ), . . . , Jm(θ)] ∈ <m (3.1)

subject to:

g(θ) ≤ 0 (3.2)

h(θ) = 0 (3.3)

θli ≤ θi ≤ θui, i = [1, ..., n] (3.4)

where θ = [θ1, ..., θn] is defined as the decision variables vector, J(θ) is the ob-

jective vector, g(θ) and h(θ) are the inequality and equality constraint vectors,

respectively, and θli and θui are the lower and upper bounds in the decision space

of the θi variable.

In this thesis, the formulation of the MOP it will be related with the settings of

PI-PID-FOPID controllers in order to satisfy the set of requirements that it will

offer the best trade-off among the conflicting objectives.

3.2.2 MOO process

The selection of the optimizer is important to achieve the statement goals in the

MOP. The designer should select an optimizer according to the problem at hand

and it would look for some desirable characteristics, like convergence, diversity,

robust, etc. After describing the MOP, the designer faces another difficult task

which is to pass this problem statement to the optimizer because in many cases

the point of view of the designer is not the same as that of the optimizer [32].

MOO process has already been proposed for the tuning of PI-PID controllers

[43, 46, 68, 88, 95, 97–99, 112, 126]. In [56] reviews some classical multi-objective

optimization methods for engineering. However, some experiments conducted in

this thesis, incorporate the the Normalized Normal Constraint (NNC) algorithm

to generate the set of optimal solutions.
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(a) (b)

Figure 3.3: (a) General metrics and the non-normalized design space (b)
Normalized design metrics.

Normalized Normal Constraint Algorithm (NNC)

The NNC is a deterministic algorithm proposed in [61]. This algorithm incorpo-

rates a critical linear mapping of the design objectives. This mapping has the

desirable property that the resulting performance of the method is entirely in-

dependent of the design objectives scales and in the ability to generate a well

distributed set of Pareto points even in numerically demanding situations. Us-

ing this algorithm, the optimization problem is separated into several constrained

single optimization problems. After a series of optimizations, a set of evenly dis-

tributed Pareto solutions results. In order to have an overview of the algorithm,

lets consider the MOP described in (3.1). This algorithm consist in seven step

process:

1. Anchor points : The anchor points are obtained by minimizing the objective

functions J1 and J2, all anchor points are one unit away from the Utopia

point (Ju). Finding the anchor points determine the limits of the Pareto

front, see Figure 3.3.

2. Normalization: is an important part of the method, without this process,

certain important regions of the Pareto frontier would be under-represented

in the Pareto set. In Figure 3.3b it shows the normalized form of J , which

is J̄ .
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Figure 3.4: NNC algorithm for bio-objective problems.

3. Utopia Line Vector : is the difference between the normalized anchor points,

Ū t = J̄2∗ − J̄1∗ (3.5)

4. Normalized Increments : the utopia line vector is segmented at equidistant

points, denoted by , m is the number of solutions we want to obtain.

δ =
1

m1 − 1
(3.6)

5. Generate Utopia Linea Points : a set of evenly distributed points on the

utopia line will be evaluated as,

X̄pj = α1hJ̄
1∗ + α2hJ̄

2∗ (3.7)

where, 0 < α1j < 1.

6. Pareto points generation: a set of well-distributed solutions is generated

in the normalized space. For each X̄pj generated, a corresponding Pareto

solution is obtained.

7. Pareto Filter : is in charge of filtering the set of solution obtained in the last

step, removing all the not globally Pareto solution.

8. Smart Filter : is based on the idea that certain regions of the Pareto frontier

can be considered less useful than others. Although no Pareto solution is

objectively better than another Pareto solution, the designer may consider

some Pareto solutions more desirable than others. This filter essentially gives

a smaller set of Pareto points that adequately represents the properties of
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compensation for the Pareto front [61]. If a point is not globally Pareto it

will be eliminated from the original solution.

Algorithm I: Normalized Normal Constraint 

1 : Generate the anchor points           for each objective.

2 : Calculate the Utopian point and NADIR.

3 : Normalized the objectice space.

4 : Generate the utopian hyperplane.

5 : Definition of the normalized increments.

6 : Generate the utopia lines.

7 : while normalized increments do

8 :  |    Optimize;

9 : end

0 : Algorithm concludes. 

 J|i(x)

1

Figure 3.5: NNC Algorithm outline.

Implementing this algorithm1 the designer ensures to have the significant regions of

the corresponding trade-off among the competitive objectives. The NNC algorithm

is presented here to solve a bi-objectives problem, see Figure 3.5 but it can be

generalized to n-objectives. For more details about this algorithm see [59, 61].

3.2.3 MCDM stage

All points within the Pareto front are equally acceptable solutions. Once the

Pareto front approximation is provided, the designer needs to choose one of those

points as the final solution to the MOP for the implementation phase. Several

tools and methodologies are available, in order to facilitate the decision making

stage [16, 20, 27, 47, 117], a review with different techniques for decision making

analysis can be consulted in [30] and a taxonomy to identify the visualizations is

presented in [83].

Somehow, the decision making can be undertaken by using two different ap-

proaches: i) by including additional criteria such that at the end only one point

from the Pareto front satisfies all of them, and ii) by considering one point that

represents a fair compromise between all used criteria. From a controller design

1The NNC algorithm is available in Matlab Central at
http://www.mathworks.com/matlabcentral/fileexchange/38976

http://www.mathworks.com/matlabcentral/fileexchange/38976
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point of view, the first option can be used to improve the control performance by

introducing additional criteria. In other words, as the MOP establishes the search

among the Pareto front for a compromise among a set of performance indices, and

additional performance (probably of secondary importance) can be introduced. In

this way, a new optimization problem will start with the search domain located in

the Pareto set in order to find the best solution. The second option does not intro-

duce more information for the decision making and a fair point should be selected

in order to represent an appropriate trade-off among the different considered cost

functions. In the context of finding a PID controller tuning rule, this second op-

tion has been preferred because it can be somehow somehow easily automated. It

means that a single proposal for the controller design will be the outcome for the

MOP. Obviously, the ideal setup would be to reach the utopia point. However,

the utopia point is normally unattainable and does not belong to the Pareto front

approximation. This is because it is not possible to optimize all individual objec-

tive functions independently and simultaneously. Thus, it is only possible to find a

solution that is as close as possible to the utopia point. Such solution is called the

compromise solution (CS) and is Pareto optimal. This approach however, starts

from a neither attainable nor feasible solution. Therefore it is not very practical as

it does not take into account what can be achieved for each one of the individual

objectives functions. Another procedure to select a fair point is to use bargaining

games [11]. This solution leads us to a practical procedure for choosing a unique

point from the Pareto front, as it will be seen in the next chapter.
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Chapter 4

Guidelines for decision making

4.1 Multi-objective Problem motivation

In order to show, the importance of constraining a MOP and choosing a point

from the Pareto front, this chapter is devoted to present a representative example.

Consider a closed-loop control system as shown in Figure 2.1, the process is rep-

resented by a FOPDT model given by

P (s) =
1

s+ 1
e−0.5s (4.1)

In this case, we will only deal with disturbance attenuation, therefore we can

assume without loose of generality that β = 1 (as usual with the majority of in-

dustrial PI controllers). Equation (4.2) shows the transfer function of the selected

structure of the PI controller.

K(s) = Kp

(
1 +

1

Tis

)
(4.2)

4.1.1 Problem Statement

The design of the PI controller is performed in two cases:

27
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1. On the basis of the previous chapters, the MOP (4.3) will be formulated

in order to find the parameters of the feedback controller (4.2) required to

obtain the desired regulatory control performance.

2. To the previous MOP we will add an equality constraint, to three usual levels

of robustness as

• Ms = 1.4: high robustness level.

• Ms = 1.6: medium-high robustness level.

• Ms = 1.8: medium-low robustness level.

Therefore, the MOP is stated as

min
θc
J(θc) = [JIAE(θc), JTV (θc)] (4.3)

where

θc = [Kp, Ti]

The minimization is constrained by using the maximum sensitivity, that is:

Ms = max
w∈[0,+∞)

∣∣∣∣ 1

1 +K(s;θc)P (s)

∣∣∣∣
s=jw

(4.4)

As stated in Section 2.2, Ms can be fixed to a specific value as an equality con-

straint,

h(θc) = h, (4.5)

where h(θc) = Ms and h ∈ {1.4, 1.6, 1.8}.

4.1.2 Generation of the Pareto front

In order to generate the set of optimal solutions, the NNC algorithm [61] is im-

plemented, see Figure 3.5.

The results obtained for the first case are shown in Figure 4.1, where a Pareto

front in the (IAE, TV ) space is obtained and the location of the initial guess

corresponding to the Ziegler-Nichols (ZN) tuning [41] are displayed. It is worth
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stressing to mention, that a good initial guess will help the algorithm to find the

optimal area.
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Figure 4.1: Pareto front for Ps, where K = 1 and τ = 0.5

Furthermore, the results in Figure 4.2 correspond to the second case in which

the MOP considered has the value of Ms constrained to each one of the specific

values of the set (4.5); what we are doing is constraining the achievable system

performance. As it can be noticed the new Pareto sets corresponding to each of

the robustness levels are jointly shown with the unconstrained one. Therefore, we

get a new Pareto front, considerable smaller that the previous one, constraining

ourselves to a really small set of possible solutions.
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Ms = 1.8

Ms = 1.4

Ms = 1.6

Figure 4.2: Comparison of Pareto fronts

With the example at hand, a deep analysis has been performed where it seems

that there is a correlation between the value of Ms and the total variation TV .
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Some previous results such as the ones in [31] provide the findings that the Ms

correlates well with the input usage as given by its TV . Such a correlation is

reasonable since a large Ms corresponds to an oscillatory system with large input

variations. This is clearly shown in Figure 4.3, therefore for this statement the

robustness can be directly associated to the TV performance index and think on

that index not just as the input usage but also as a measure of the closed system

robustness and also the approximate relation is established Ms ≈ 0.84TV + 0.68.

1 1.1 1.2 1.3 1.4 1.5 1.6
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

TV

M
s

Figure 4.3: TV and Ms correlation, Ms ≈ 0.84TV + 0.68.

This allows the designer to think, in the selection of the appropriate point from

the Pareto front will need to take into account the level of robustness we need

(lower values for TV ). Effectively, this simplifies the setup for the optimization

problem and subsequent generation of the Pareto front.

Having in mind, that solving a MOP there is no unique global solution, indeed, this

is what is expressed in the Pareto front: there is no way to improve a point without

increasing the value of at least one of the objective functions. All the points within

the Pareto front are equally acceptable solutions. However, there is the need to

choose one of such points as the final solution for the MOP. As it was mentioned

in Section 3.2.3, one alternative could be to introduce a selection criteria in order

to choose one point, probably the more intuitive option would be the solution that

is as close as possible to the utopia point: Compromise Solution (CS). The CS is

computed by choosing the point on the Pareto front that minimizes the 2-norm

from the utopia point. Another option is to use the Nash solution (NS), this

alternative belongs to the bargaining games [11]. This solution provides a quite

simple and direct approach for selecting one point from the Pareto front.
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4.2 Bargaining and trade-off solutions selection

In a transaction, when the seller and the buyer value a product differently, a

surplus is created. A bargaining solution is then a way in which buyers and sellers

agree to divide the surplus. There is an analogous situation regarding a controller

design method that is facing two different cost functions for a system. When the

controller locates the solution on the disagreement point (D), as shown in Figure

4.4, there is a way for the improvement of both cost functions. We can move

within the feasible region towards the Pareto front in order to get lower values

for both cost functions. Let θ∗1 and θ∗2 denote the values for the free parameter

vector θ that achieve the optimal values for each one of the cost functions f1 and

f2, respectively. Let these optimal values be f ∗1 = f1(θ∗1) and f ∗2 = f2(θ∗2). On that

basis, the utopia point will have coordinates f ∗1 and f ∗2 whereas the disagreement

point will be located at (f1(θ∗2), f2(θ∗1)). As the utopia (U) point is not attainable,

we need to analyze the Pareto front in order to obtain a solution. A fair point that

represents an appropriate trade-off among the cost functions f1 and f2 is defined by

the coordinates (fPf1 , fPf2 ) = (f1(θPf1 ), f2(θPf2 )), where the superindex Pf means

Pareto front. On the basis of this formalism, we can identify, in economic terms

the benefit of each one of the cost functions (buyer and seller) as the differences

f1(θ∗2) − fPf1 and f2(θ∗1) − fPf2 . The bargaining solution will provide a choice for

(fPf1 , fPf2 ) therefore a benefit for both f1 and f2 with respect to the disagreement.

It is important to notice that the problem setup is completely opposite to the

one that generates the compromise solution (CS) as the closest one to the utopia

point.

Formally, a bargaining problem is denoted by a pair < S; d > where S ∈ R2,

d ∈ S represents the disagreement point and there exists s = (s1, s2) ∈ S such

that si < di. In our case, S is the shaded area shown in Figure 4.4 delimited by the

Pareto front and its intersection with the axis corresponding to the coordinates

of the disagreement point. In Figure 4.4, different solutions for selecting a point

from the Pareto front can bee seen:

1. The disagreement solution (D): it is the solution associated to the disagree-

ment point. Even, if it is not the preferred solution for none of the players,

it is a well-defined solution.
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f1

  f2
DS1

Figure 4.4: Location of the bargaining solutions into the Pareto front.

2. The dictatorial solution for player 1 (DS1): it is the point that minimize

the cost function for player 1. The same concept can be applied to player 2,

yielding the dictatorial solution for player 2 (DS2).

3. The egalitarian solution (ES): it is the greatest feasible point (fPf1 , fPf2 )

that satisfies f1(θ∗2) − fPf1 = f2(θ∗1) − fPf2 . This point coincides with the

intersection of the 45◦diagonal line that passes through the disagreement

point with the Pareto front.

4. The Kalai-Smorodinsky solution (KS): it is the point (fPf1 , fPf2 ) correspond-

ing to the intersection of the Pareto front with the straight line that connects

the utopia and the disagreement point.

5. The Nash Solution (NS): it selects the unique solution to the following max-

imization problem:

max
(fPf1 ,fPf2 )

(f1(θ∗2)− fPf1 )(f2(θ∗1)− fPf2 )

s.t. fPf1 ≤ f1(θ∗2)

fPf2 ≤ f2(θ∗1)

In order to illustrate the location of the different solutions that can be selected

from the Pareto front, consider Ps. The different solutions that the designer can

obtain using the bargaining concept can be seen in Figure 4.5. It is important to

highlight that in some cases the NS matches with KS: this happens when both

negotiators are in a neutral risk (see, for example, [5]).
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Figure 4.5: Pareto front for P (s). Location of the bargaining solutions.

4.3 Nash Solution

In his pioneering work on bargaining games, Nash in [48] established a basic two-

person bargaining framework between two rational players, and proposed an ax-

iomatic solution concept which is characterized by a set of predefined axioms and

does not rely on the detailed bargaining process of players. Nash proposed four

axioms that should be satisfied by a reasonable bargaining solution:

• Pareto efficiency: none of the players can be made better off without making

at least one player worse off.

• Symmetry: if the players are indistinguishable, the solution should not dis-

criminate between them. The solution should be the same if the cost function

axis are swapped.

• Independence of affine transformations: an affine transformation of the cost

functions and of the disagreement point should not alter the outcome of the

bargaining process.

• Independence of irrelevant alternatives: if the solution (fPf1 , fPf2 ) chosen

from a feasible set A is an element of a subset B ∈ A, then (fPf1 , fPf2 ) must

be chosen from B.

Nash proved that, under mild technical conditions, there is a unique bargaining so-

lution called Nash bargaining solution satisfying the four previous axioms. Indeed,
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by considering the different options for selecting a point from the Pareto front, the

NS is the only solution that satisfies these four axioms [48]. In fact, the Nash

solution is simultaneously utilitarian (Pareto efficient) and egalitarian (fair). Also

from a MOO point of view, by maximizing the product (f1(θ∗2)−fPf1 )(f2(θ∗1)−fPf2 ),

we are maximizing the area of the rectangle that represents the set of solutions

dominated by the NS. Actually, the NS provides the Pareto front solution that

dominates the larger number of solutions, therefore being absolutely better (that

is, with respect to both cost functions at the same time) than any one of the

solutions of such rectangle. These are the reasons why the NS represents an ap-

propriate choice for the (semi)-automatic selection of the fair point from the Pareto

front.

4.3.1 Comparison Examples

In this section, the previous ideas will be used to locate well known tuning rules

into the Pareto front and tho show how the NS selection performs compared to

existing tuning rules.

Consider the fourth-order controlled processes proposed as benchmark in [8] and

given by the transfer function:

Pα(s) =
1∏3

n=0(αns+ 1)
, (4.6)

with α ∈ {0.1, 1.0}.

Using the three-point identification procedure 123c [1] FOPDT models were ob-

tained, whose parameters are listed in Table 4.1.

Table 4.1: Example - Pα(s) FOPDT models

α Kp T L τo
0.10 1 1.003 0.112 0.112
1.0 1 2.343 1.860 0.794

For comparison purposes the following PI tuning methods that in some extend

considered the control system robustness into the design procedure were selected:

the Model-Reference Robust Tuning (MoReRT) [2] that uses a model matching
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approach for smooth time responses and, at the same time, ensures a pre-specified,

level of robustness Ms = {1.4, 1.6, 1.8, 2.0}; the Kappa-Tau (K-T) [6] that uses an

empirical closed-loop dominant pole design of 2DoF PI controllers for a batch of

controlled processes and provides tuning relations for robustness levels of Ms =

2.0 and Ms = 1.4; the Simple Internal Model Control (SIMC) [105] that is an

IMC-based tuning for 1DoF PI controllers to obtain a good trade-off between

speed of response, disturbance rejection, robustness (Ms ≈ 1.59), and control

effort requirements; the Approximated MIGO (AMIGO) [41] which is based on

the loop shaping MIGO method [9] that maximizes the controller integral gain

for the minimization of the integrated error to a step load disturbance, subject

to a robustness constraint (Ms = 1.4) for PI controllers, in particular the revised

version of the AMIGO method in [7] will be used.
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Figure 4.6: Pareto front for the process model corresponding to α = 0.1.
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Figure 4.7: Pareto front for the process model corresponding to α = 1.0.
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The Pareto fronts corresponding to the process models corresponding to α = 0.1

and α = 1.0, are shown in Figures 4.6 and 4.7, respectively. These examples

provide a graphical comparison of the performance/robustness trade-off among

the tuning rules aforementioned and the Nash Solution (NS). The achieved time

responses when facing a step load disturbance are shown in Figures 4.8 and 4.9.

It can be stated that the controller tuning suggested by the NS choice improves

the time responses in comparison with the other tuning rules.

Note that the MoReRT, SIMC and K-T (Ms = 2.0) tuning rules are almost located

on the Pareto front, for the process model corresponding to α = 0.1. However, for

the second example α = 1.0, it can be seen that some of the MoReRT and K-T

(Ms = 1.4) tuning rules are located on the Pareto front. Nevertheless, as it can be

observed the NS is located in the Pareto front and very close to MoReRT (Ms =

1.6) tuning rule, which means that the robustness level is Ms ≈ 1.6 (remember we

can assimilate TV to Ms).

4.4 Summary

In this chapter the multi-objective optimization for tuning a PI controller using the

NNC method was implemented in order to give guidelines for decision making. The

first analysis, was conducted to see the trade-off among the performance indexes

as well as the fact of considering the robustness as a constraint in the formulation

of the MOP.

However, it has even seen that control input usage has a high correlation with the

robustness (measured in terms of Ms). Furthermore, the Pareto front approxima-

tion provides a graphical interpretation of the performance/robustness trade-off.

It is seen that some of the existing tuning rules can effectively be improved both

in terms of control input usage and performance (they are dominated solutions).

Therefore, for decision making, we propose the Nash Solution (NS) [11]; which lies

on the Pareto front and is computed as the intersection between the surface and

the diagonal line that passes through two opposite vertexes of the smallest cube

that inscribes the surface. The NS provides an automatic selection and a direct

approach for the choice of one point from the Pareto front approximation, this will

generate a possibility for tuning a controller that it can generates better system

outputs than existing tuning methods.





Chapter 5

Multi-stage Approach

In this chapter, a Multi-stage Approach for MOO process is pre-

sented in order to offer the designer the desired characteristics (as

convergence, constrained, robust optimization, etc.) that could

be related to the Pareto Set (solutions) required by the deci-

sion maker. On the other hand, we propose a MOOD procedure

focused on reliability-based optimization instances, to evaluate

quantitatively the performance degradation of the controller, due

to unexpected or unmodeled dynamics.

5.1 Introduction

The increasing complexity of control systems and processes makes necessary using

different measures to evaluate a controller’s performance in order to be considered

in the design process. One of the fundamental tools to face complexity of today’s

systems and processes is by approximating a model. Such model will be used (for

example) by the control engineer, in order to 1) select the most convenient control

structure and 2) tune such controller selection.

Being plant-model mismatch one of the main responsible for performance degrada-

tion, it becomes important not only to consider a robust design process, but also a

reliability design process, see for example [107]. Reliability consist in evaluate, the

performance degradation quantitatively given the expected model uncertainties.

As the performance is usually stated in terms of the nominal model, the designer

must introduce some measure of performance degradation when the model deviates

41
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from its nominal one. This is the idea of reliability and constitutes and alternative

way of looking at the robust performance specification: minimizing the deviation,

in statistical terms, from the performance achieved for the nominal model when it

is evaluated on a potential alternative plant.

On the basis of the presented scenarios, the main goal of this chapter is to present a

Multi-stage approach for MOO with the purpose of dealing with reliability specifi-

cations. This reliability specification is introduced as a way of minimizing nominal

performance degradation due to model uncertainty in controller design. The main

advantage of the Multi-stage approach proposed here, compared to the single ap-

proaches, is the improvement of the convergence properties.

5.2 Reliability based design optimization

One of the fundamental tools to face complexity of today’s systems and processes

is by approximating a model. It is usual to face in this modeling stage with the

simplicity vs. accuracy dilemma. As a consequence, discrepancies between the

process and the model are expected. Additionally, the designer can face other

uncertainties. According to [15] there are two types of uncertainties:

• Random or Aleatory Uncertainties: are of physical nature, where the vari-

ables within the system do have an inherent change.

• Epistemic Uncertainties: reflects the differences between the model used to

describe the system and the real system.

Recently, ongoing research is being performed to introduce suitable techniques

for reliability based design optimization (RBDO). These methods can be classified

according to three major categories according to [52]: simulation methods, numer-

ical integration and analytical methods. In this work, we will implement the first

method, that are well known in the literature using sampling and estimation, be-

ing the most used the Monte Carlo Simulation (MSC) method [93]. This method

is used quite often because its simplicity and robustness.

RBDO instances concern is to guarantee a given performance, considering the

possibility (in the case of controller tuning) of unmodelled dynamics (epistemic
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uncertainties). In this work we will implement the MCS method to evaluate the

degradation of the performance when uncertainties on the system exist. In this

case, several simulations will be carried out, increasing the computational burden

of the cost function itself. This method computes an index by simulating the model

and the random behavior of the system. Hereafter, comes the fact that running

several simulations could affect the performance and their exploration capabilities

and hence slow down the overall convergence of the algorithm. For this reason,

the idea of using the Multi-stage approach for solving optimization problems in-

cluding reliability will bring confidence, therefore an effective and robust design

alternative for the system. As the generation of the Pareto front approximations

for reliability problems involves an increase of the computational burdens, this

convergence improvement is highly valued.

5.3 MOOD procedure using the Multi-Stage Ap-

proach

In what follows, we present a MOOD procedure, including the Multi-stage ap-

proach on the MOO process, to handle reliability-based optimization statements.

In order to give an example, a PI controller is used.

5.3.1 MOP Definition including Reliability

From the previous concepts in Chapter 4, the most basic MOP statement for

PI controller tuning including performance, robustness and reliability could be

represented as:

min J(θc) = [J1(θc), J2(θc), J3(θc)] (5.1)

J1(θc) = Performance(θc)

∣∣∣∣
P (s)

J2(θc) = Robustness(θc)

∣∣∣∣
P (s)

J3(θc) = σ

(
J1(θc)

∣∣∣∣
P ′(s)

)
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where,

θc = [Kp, Ti] (5.2)

are the parameters of the PI controller, P (s) is the nominal model used as base

case. According to the control loop of Figure 2.1 common choices in controller

tuning for the goals objectives are: the IAE, TV (we associate the robustness

level with the goal of achieving low input usage). Some previous results such as

the ones in [31] provide the findings that the Ms-value correlates well with the

input usage as given by its TV).

Furthermore, a new goal is introduced:

• Reliability based objective

[
J3(θc) := σ

(
J1(θc)

∣∣∣∣
P ′(s)

)]
: the nominal con-

troller design will be stated in terms of a nominal process model P (s). In

order to take into account plant model mismatch because of uncertainty, a

family F , of models can also be considered such that the nominal perfor-

mance is maintained within such family. Stated in other words, what it is

desired is the achieved nominal performance to degrade as less as possible as

we face one of the possible plant family models P ′(s) ∈ F . The goal will be

to minimize the deviation from the achieved nominal performance, given by

the value of J1(θc). Here σ sands for the standard deviation.This deviation

will be estimated by using the Montecarlo sampling approach. It provides

not only the performance values also evaluated. This objectives brings some-

thing meaningful about performance degradation, something practical

Hence, the optimization procedure considers to include the Robust Performance

due to the presence of uncertainties on the parameters or during the design stage.

The purpose of including J3(θc) is to improve the result with respect to the optimal

criteria, the algorithm must find a way to reduce the deviation in order to have a

robust design [91].

The idea of incorporating reliability as a design objective relies on the fact that

it introduces an additional perspective to the controller tuning problem. That is,

besides the information that a robustness measure gives to the control engineer,

the reliability measure gives information about expected performance degradation.

As noticed in [107], a stochastic evaluation of a controller proposal is useful when

discrepancies between process and model are expected. That is, it is possible to
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measure quantitatively the expected degradation on performance. Therefore, this

provides (for example) a measure on “failure risk” in fulfilling control requirements.

5.3.2 Multi-stage Approach

Given the MOP definition (5.1), some desirable characteristics for the optimizer

will be required. Hybridization techniques have been generally accepted as a

strategy promoting diversity throughout the search for the global optimum; such

techniques seek to combine the advantages of different algorithms whilst, at the

same time, trying to minimize any disadvantage they could have if they work

separately [115]. This kind of techniques are quite popular methodologies that

the designer implements in order to improve the convergence rate and accuracy

of optimization algorithms. The hybridization technique is used for an unified

purpose, where all the algorithms are implemented to solve the same problem

and can be grouped in two categories: collaborative and integrative hybrids. In

this work a collaborative hybrids is implemented, which involves the combination

of two or more algorithms. Moreover, according to the way that the algorithms

run they can be classified in three structures: multi-stage, sequential and parallel.

Interested readers may refer to [115] for more details about the taxonomy of the

hybrid algorithms.

In this chapter a Multi-stage approach is presented. This approach involves two

stages; first, one algorithm will perform the local search and the second algorithm

acts as a global searcher. The framework that represents the Multi-stage approach

is illustrated in Figure 5.1.

Figure 5.1: Multi-stage approach structure.

On the basis of these two algorithms the Multi-stage algorithm is to be defined; the

NNC algorithm that will be searching for the convergence area (local search) and
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the sp-MODE algorithm it is in charge of the global search. The NNC algorithm

will find the first Pareto front approximation; the sp-MODE algorithm will use,

as initial population, the locally Pareto-optimal approximation calculated by the

NNC algorithm in the 3-objective optimization instance. This will reduce the

numerical burden associated to the Montecarlo approach and would improve its

exploitation capabilities (local and dominated solution are avoided from the Pareto

front approximation).

Therefore, in order to generate the Pareto front approximation using the Multi-

stage approach, two algorithms1 are merged:

1. Deterministic Optimization Approach: the Normalized Normal Constraint

(NNC) algorithm proposed in [61] and already presented in Chapter 3. The

main advantage of this algorithm rely on their local convergence capabilities

as well as their robustness to provide a good approximation of the Pareto

front. However, they are highly sensitive to the initial conditions required

to run the optimization and some issue regarding computational burden.

Even if the objectives have been stated to guarantee convexity properties

the constraints incorporated to achieve a good spread over the Pareto front

approximation may modify the objective space.

2. Evolutionary Optimization Approach: the Multiobjective Differential Evo-

lution Algorithm with Spherical Pruning (sp-MODE) algorithm is based on

Differential Evolution [25], which uses a spherical grid in order to keep the

diversity in the approximated Pareto front, see Figure 5.2b. The basic idea

of the spherical pruning is to analyze the proposed solutions in the current

Pareto front approximation by using normalized spherical coordinates from

a reference solution. With such approach, it is possible to attain a good

distribution of the Pareto front [87]. The algorithm selects one solution for

each spherical sector, according to a given norm or measure. Such algorithm

has been used with success for controller tuning purposes [84]. Evolutionary

algorithms have shown interesting properties to handle highly constrained

and non-linear objective functions due to their flexibility and adaptability

[88, 114]; however two potential drawbacks are also known: (1) given their

1Both algorithms are available in Matlab Central at
http://www.mathworks.com/matlabcentral/fileexchange/38976 and
http://www.mathworks.com/matlabcentral/fileexchange/39215

http://www.mathworks.com/matlabcentral/fileexchange/38976
http://www.mathworks.com/matlabcentral/fileexchange/39215
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stochastic nature, their convergence can not be guaranteed and (2) the tun-

ing of their own parameters could be a time consuming task and, if selected

inappropriately, their performance could be deteriorated.
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Algorithm II: Multi-stage approach

1 : Determine the initial solution for the NNC algorithm.

2 : Compute the anchor points for objectives            and           .    

3 : Approximate the sub-Pareto front J' (  ) = [          ,           ] with NNC 

     algorithm and the computed anchor points.       

4 : Use the Pareto set approximation     , computed previously as initial

     population for sp-MODE algorithm.

5 : Approximate the Pareto front J (  ) = [          ,           ].     

6 : Perform decision making step for controller selection.

c

'*
p

J1 (  ) c

c

J2 (  ) c

J1 (  ) c J2 (  ) c

J1 (  ) c J2 (  ) c

Figure 5.3: Multi-stage approach outline.

The multi-stage approach (Algorithm II, see Figure 5.3) allows both algorithms

to complement each other in despite of their drawbacks and improve the results

of the overall optimization in terms of convergence and accuracy, when a MOP

described by Equation (5.1) is being solved.

5.3.3 MCDM stage

In order to select a solution from the Pareto front approximated, two design al-

ternative are chosen from the Pareto front approximation:

• (i) Nash Solution - (NS ): provides the Pareto front solution that dominates

the larger number of solutions from the Pareto front (being absolutely better

than any one of the solutions). This option has been introduced in Chapter

4.

• (ii) Level Diagrams - (LD): as a second desing alternative we are using level

diagrams2. They have been used in [17, 86] as they represent a trade-off

as commented on [82] among the properties for visualization stated by [53]:

simplicity, persistence and completeness. LD consists of representing each

objective and design parameter on separate diagrams. This approach is

based on the classification of Pareto front points according to their proxim-

ity to ideal points measured with a specific norm of normalized objectives

2Tool available for Matlab at http://www.mathworks.es/matlabcentral/fileexchange/

24042

http://www.mathworks.es/matlabcentral/fileexchange/24042
http://www.mathworks.es/matlabcentral/fileexchange/24042
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(several norms can be used); in each diagram (objective and design param-

eter), solutions are synchronized in the vertical axis, which represents the

aforementioned norm.

The first option leads to a (semi)-automatic selection, while the latter leads to

an active seeking. Next, to show the applicability of this procedure, two different

instances will be presented in the following Chapters.

5.4 Summary

A Multi-stage approach for controller tuning based on multi-objective optimization

to improve reliability was presented. Such approach has considered the inclusion

of reliability as a design objective into the MOP statement. In order to deal

with Robust Performance by minimizing nominal performance degradation when

a family of potential plant models is considered. This degradation is quantified in

a stochastic way by means of MCS method.

This approach will improve its exploitation capabilities of the algorithms and it

will reduce the numerical burden associated with the generation of the Pareto front

approximations for reliability problems. It is worth stressing, that if a solution

gives the desirable trade-off, then it is possible to optimize such solution, looking

for a locally Pareto optimal solution which dominated the preferable solution. In

this way, the preferability (from the point of view of the trade-off among conflicting

objectives) and convergence are fulfilled.



Chapter 6

Two case studies

Chapter 5 presented the Multi-stage approach involving reliability

based optimization for controller tuning. This chapter presents

two case studies to validate such approach: the first one is the

benchmark described in [67], which proposes a Boiler control prob-

lem for controller tuning and as second case, the approach will be

evaluated on a laboratory experiment build up on a non-linear

Peltier Cell. The obtained results validate the usefulness of the

Multi-stage approach as a tool for solving multi-objective opti-

mization problems with reliability constraints for controller tuning

applications.

6.1 The Boiler Control Benchmark (IFAC-2012)

The first process under consideration is the Control Benchmark 2012 presented

in [67]. It proposes a Boiler control problem [29, 66] based on the work of [79].

This work improves the model provided in [13] by adding a non-linear combustion

equation with a first order lag to model the oxygen excess in the stack and the

stoichiometries air-to-fuel ratio for complete combustion. The aim of this first case

study is twofold. First, to show how the designed PI controller faces the control

problem with plant-model mismatches. Secondly, to validate the hypothesis that

the proposed multi-stage approach leads to better convergence properties for the

MOP describe in Equation (5.1) than each one of the single approaches alone.

51
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6.1.1 Process description

The control of boilers has been an important problem for a long time. It is well

known that the correct control of this plant can improve the performance with

its corresponding economical savings and safety improvement. But it is not a

simple task since non-minimum phase characteristics as well as not self-regulating

behaviour is commonly found.

Figure 6.1: Boiler plant layout.

In the boiler area, many models exist ranging from complex knowledge based

models to experimental models derived from special plant tests. A boiler bench-

mark was proposed in [67] on the basis of the control oriented model proposed

by [79]. This model predicts the process response in terms of measurable outputs

(drum pressure, drum water level, and excess oxygen in fuel gas) to the major ma-

nipulated inputs (air/fuel flow rates, feedwater flow rate) as well as the effect of

disturbances (changed steam demand, sensor noise), model uncertainty (e.g., fuel

calorific value variations, heat transfer coefficient variations, distributed dynamics

of the steam generation), and constraints (actuator constraints, unidirectional flow

rates, drum flooding). A diagram can be found in Figure 6.1. The heat from the

combustion in the chamber is transferred to the water, producing the water vapor.

The residual gases from the combustion are vented to the atmosphere.

Therefore, as a case study, the boiler benchmark is considered to be the plant

to control. This benchmark is used to evaluate and compare different kinds of

tuning/control techniques [36, 58, 90, 104, 124]. This benchmark 1 considers two

versions of the problem. In this work, the reduced SISO version is implemented to

evaluate our proposal. The SISO version, see Figure 6.2 is well suited for PI/PID

1The MATLAB file can be obtained at http://www.dia.uned.es/ fmorilla/benchmark09 10/
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controller design, where the fuel flow is manipulated to control the steam pressure,

is considered.

The identified nominal model2 P (s) to be used is:

G(s) =
0.4

1 + 45.7s
e−3.42s (6.1)

Figure 6.2: SISO loop for Boiler benchmark (taken from [67]).

6.1.2 Design problem statement

The designer is interested in measuring the performance on the nominal model,

but also measuring the performance degradation due to the expected differences

in lags and time constant. Therefore, the MOP with reliability statements as it

has been stated in the previous chapter is considered.

For the reliability objective, the behavior of the controller for a potential plant

P ′(s) that belongs to the model family is considered on the following way. The

controller is evaluated in a random uniformly sampled model P ′(s) in the intervals

L = 3.42 ± 20% and T = 45.7 ± 20%. For this example, 20 models were used.

This benchmark also stated a performance index (Ib) based on a reference case

controller, Cref (s), see [67]. In this test, it will be stated that the Cref (s) will define

the pertinency of the Pareto front, i.e. the region of interest for the designer. This

is done to avoid sluggish controllers in the Pareto front approximation, since for a

2This model was obtained with a step response experiment using the standard identification
toolbox from Matlab c©with an standard step response
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controller, the best way to achieve the minimal J2(θc) is assigning Kp = 0. This

is the trivial way of achieving the minimal input usage TV = 0 (no response of

the controller to the measured error).

6.1.3 Results and discussions

The first step in the application of the multi-stage approach is the solution of

the MOP but without considering the reliability statement (therefore solving a

2-objective problem). This way, a first approximation to the Pareto set will be

generated. This first approximation is faster to be obtained and is based on the

application of the NNC algorithm. In this case, we will use as Initial Solution (IS),

the Cref (s) already provided in the Benchmark definition, therefore, to obtain the

Pareto front approximation by the NNC algorithm we will use as IS = [2.5, 50].

Once we have the first approximation of the Pareto set generated, the second

approach (sp-MODE) for 3-objective MOP will be implemented, using the results

from the NNC solution (2-objective problem) as the initial population.

In order to test the usefulness of the Multi-stage approach in the optimization

process, the normalized hypervolume indicator proposed by [129] will be used.

This measure allows to compare the performance of the Muti-stage approach ver-

sus the Single approach (sp-MODE) by computing and tracking the hypervolume

through the algorithm execution. With this information it is possible to deploy

the convergence plot of the optimization process, in the same way that for single

objective optimization the minimum value achieved is tracked. In order to calcu-

late the hypervolume for the first approach (NNC) with 3-objective, 2842 function

evaluation were employed and achieved an hypervolume of 0.1856.
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Figure 6.3: Hypervolume indicator implemented on the Boiler Control Bench-
mark. Comparison among the Multi-stage and Single approach (sp-MODE). For
such purpose, a total of 20, 60 and 130 generations and 51 independent runs

are carried out.
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Hereafter, to evaluate the hypervolume for the Single approach (sp-MODE) and

the multi-stage approach it will be used the number of the functions evaluations

as budget, implemented for the first approach to accomplish the optimization. For

such purpose, 51 independent runs are carried out.

Numerical results are shown in Table 1, where the corresponding values of the

minimum, median, maximum, mean and variance of the attained hypervolumes

are provided. The Statistical significance was validated with the Wilcoxon test

at 95% [28]. As it can be noticed, the Multi-stage approach achieved higher

values of the median which means that it provides larger dominated regions (better

performance).

Table 6.1: Hypervolume indicator achieved for the Multi-stage and Single
approach (sp-MODE). A total of 20, 60 and 130 generations (20 function eval-

uations per generation).

20 generations 60 generations 130 generations
Multi-stage Single Multi-stage Single Multi-stage Single

minimum 0.1942 0.1801 0.2085 0.2030 0.2103 0.2091
median 0.2055 0.1988 0.2103 0.2092 0.2111 0.2107

maximum 0.2089 0.2077 0.2113 0.2111 0.2116 0.2116
mean 0.2055 0.1975 0.2112 0.2088 0.2111 0.2106

variance 0.09e-4 0.47e-4 0.04e-5 0.20e-5 0.043-6 0.25e-6

Additionally, in Figure 6.3a the distribution plots of hypervolumes achieved (Table

1) are represented graphically using the box-plots and violin-plots, where a total

of 20, 60 and 130 generations (20 function evaluations per generation). The upper

and lower ends of the box, represents the upper and lower quartiles; while, the

thick line between second and third quartile is the median. The dashed lines

summarize the spread and shape of the distribution. Further, the converge path

of hypervolume is despicted in Figure 6.3b.

The resulting Pareto front and Pareto set approximations generated by the Multi-

stage approach are shown in Figures 6.4a,b. Figure 6.4a shows the projection of

the Pareto front along each one of the three objective functions. The values for

the overall objective function ‖J(θc)‖ with

J(θc) = [J1(θc), J2(θc), J3(θc)] (6.2)
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are shown along the x-axis values for each one of the J(θc). Two solutions were

selected from the Pareto front: Nash-Solution θc = [2.31, 22.16] and a solution

selected by analyzing the Pareto front using Level Diagrams: θc = [2.54, 21.25]

(NS and LD respectively). These solutions are also displayed in the Pareto set

approximation of Figure 6.4b. Here the values of ‖J(θc)‖ are projected with

respect each one of the parameters to be optimized (Kp and Ti).

Therefore, it is seen that the Multi-stage approach can effectively generate the

three-dimensional Pareto front approximation with better convergence properties

than the evolutionary algorithm applied as a Single approach (sp-MODE) and the

NNC algorithm by itself.
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Figure 6.4: Pareto front and Pareto set approximation for the Boiler Control
Benchmark. The controllers selected with the Nash Solution (blue star) and

Level Diagrams (blue square) arerepresented.

6.1.4 Experimental setup

In order to implement both design alternatives (NS and LD) in the Boiler bench-

mark (that is, the original non-linear model proposed in the benchmark), the

performance index defined by the benchmark (Ib) is calculated to evaluate the

performance for a controller Cs. It is an aggregate objective function which com-

bines the mean value of five individual indexes (IAE, ITAE3 and TV4) using a

3ITAE: Integral of the time-weighted absolute error value.
4TV: Total variation of the control action. Also known as IADU.
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weighting factor (w = 0.25). This indexes are referred to a Cref . More details can

be consulted in [67].

In order to compare with the original benchmark two different tests are proposed:

• Test type 1: performance when the system had to attend a time variant load

level.

• Test type 2: performance when the system had to attend a sudden change

in the steam pressure set-point.

It is worth noting that the experiments carried out, as they are described in the

benchmark, include noise in the signal input, this data is used for the numerical

analysis.

In this work, both NS and LD are presented as criteria for generating the solution

to a MOP. The differences between the two alternative design come from the way

the solution is selected from the Pareto front approximation. Both criteria are

optimal (choosing one, depend on the preferences of the designer).

• NS: this criteria gives the same importance to the conflicting objectives and

it is automatically calculated from the Pareto Front, .

• LD: if the designer wants to do an analysis of the Pareto front or have

preferences of one or other objective, the LD allows he/her this possibility.

Figure 6.5 shows a comparative of the controllers selected through the NS and LD

for the Test type 1. The time responses of both design alternatives are better than

the response offered by the reference controller according to the index stated for the

benchmark competition. Furthermore, it can be noticed that the steam pressure

shows minor deviations from its set-point as a consequence of having increased

activity in the fuel flow. However the water level shows similar deviations and the

oxygen level remains controlled by the fuel/ air ratio, affected only by the noise.

For the Test type 2 see Figure 6.6 where it can be noticed the variations in the

steam pressure response has almost disappeared.

As it can be noticed both design alternatives bring an effective controller that ful-

fills all the requirements, with a better performance than the reference controller.

For the Test type 1 and 2, the reference controller achieves a Ib = 1.00 and for
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Figure 6.5: Test type 1: Performance of the PI controller selected with the
NS [Kp, Ti]=[2.31, 22.16] (Ib = 0.86), LD [Kp, Ti]=[2.54, 21.25] (Ib = 0.85)
and its comparison with the reference case [Kp, Ti]=[2.5, 50] (Ib = 1.00) in the

benchmark setup.

Table 6.2: Performance indexes for the benchmark setup of the selected design
alternatives.

Controller Ib (Test 1) Ib (Test 2)
Cref 1.00 1.00
NS 0.86 0.83
LD 0.85 0.82

the two Pareto Optimal selected controllers these values are slightly above 0.8 (see

Table 6.2). Furthermore, the simulation response of the design alternatives are

despited in Figures 6.5 and 6.6.

Therefore, the proposed Multi-stage Approach brings a suitable framework that

includes the reliability based on MOOD procedure. The approach is effective not

only regarding the obtained PI controllers that do have a better performance than

the Cref (is less than the unit) but also achieves better values of the hypervolume

than the Single approach (sp-MODE) and offers a better convergence properties

for this kind of instances.
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Figure 6.6: Test type 2: Performance of the PI controller selected with the
NS [Kp, Ti]=[2.31, 22.16] (Ib = 0.83), LD [Kp, Ti]=[2.54, 21.25] (Ib = 0.82)
and its comparison with the reference case [Kp, Ti]=[2.5, 50] (Ib = 1.00) in the

benchmark setup.

6.2 Application to a Peltier Cell temperature

control

The second case of study, is a Peltier Cell (thermoelectric process). The aim of

this test is to validate in a real process the Multi-stage approach. The laboratory

setup is shown in Figure 6.7.

6.2.1 Process description

The device under consideration is based on the Peltier effect, it is a heat pump

where the manipulated variable is the current [%] whilst the controlled variable is

the temperature [◦C] of the cold-face [55]. This kind of processes has non-linear

dynamics as it will be shown. This effect was discovered by the physicist Jean

Charles Athanase Peltier, in 1834.
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Figure 6.7: SISO loop for Boiler benchmark (taken from [67]).

6.2.2 Design problem statement

The designer is interesting in tuning a controller to mainly work around Te =

−5◦C, but capable of achieving a good behavior in the range Te = [−7.5◦C, 7.5◦C].

Therefore, successive step reference changes have been made in the Te range in

order to identify FOPDT models. The nominal model is described by,

P (s) =
0.64

2.74s+ 1
e−0.2s (6.3)

In this test, the MOOD procedure for PI controller design described before is

implemented. The reliability objective the controller will be evaluated in a random

uniformly sampled model P ′(s) in the intervals K = 0.64 ± 50% and T = 2.74 ±
30%. For this example, 51 models were used.

6.2.3 Results and discussions

As commented before, the NNC algorithm is focused on objectives J1(θc) and

J2(θc). The preliminary bi-objective Pareto front corresponding to these two ob-

jectives (therefore without taking into account the reliability objective) is approxi-

mated with the NNC algorithm (11,000 function evaluations approximately). The

initial solution IS = [0.19, 2.74] employed in the optimization process was calcu-

lated with the S-IMC tuning rule proposed by [106].

In the second step, the sp-MODE algorithm will use the Pareto front approxima-

tion provided by the NNC algorithm as an initial population. In order to avoid
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controllers with high degradation on the third objective, the maximum value J3

for J3(θc) has been bounded to J3 = J3(0.19, 2.74). As with the previous example,

and as commented when describing the MCDM stage, two final solutions are con-

sidered, the one that corresponds to the Nash solution (NS) and to the selection

by using Level diagrams (LD).
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Ĵ
(θ
)‖

∞

(a) Pareto Front approximations.

0.5 1 1.5 2 2.5 3 3.5 4
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Kp

‖
Ĵ
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Figure 6.8: Pareto front and Pareto set approximation for the Peltier Cell.
The controllers selected with the Nash Solution (blue star) and Level Diagrams

(blue square) arerepresented.
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The obtained approximation as well as the final selected solutions are depicted

in Figures 6.8a,b. Here we can see the Pareto set approximation on the param-

eter space (see Figure 6.8a). As the parameter space is bidimensional two plots

are shown here corresponding to the projection of the overall objective function

‖J(θc)‖ with

J(θc) = [J1(θc), J2(θc), J3(θc)] (6.4)

with respect to each one of the parameters (Kc and Ti). Same considerations

apply to Figure 6.8b, where the projections of the three-dimensional Pareto front

approximation with respect to each one of the objective functions that compose

‖J(θc)‖ is shown. In both figures,the location of the selected solutions is shown:

Nash-Solution θc = [0.51, 0.41] and the solution selected by analyzing the Pareto

front using Level Diagrams: θc = [2.37, 3.26] (NS and LD respectively). Perfor-

mance for both solutions in the time domain with respect to a sample of the plant

family models is depicted in Figure 6.9. We can see how in both cases the selected

controllers face the stochastic set of plants.

Table 6.3: Controller parameters for the Peltier Cell process.

Controller Kp Ti IAE TV
IS 0.19 2.74 992.4 86.0
NS 0.51 0.41 154.6 263.9
LD 2.37 3.26 120.7 657.4

Both solutions have also been implemented and evaluated in the laboratory setup.

The time responses are shown in Figure 6.10 and in Table 6.3 shows the parameters

of each alternative. Differences on the performance are due to the additional

information used in the MOP statement minding degradation on IAE performance.

6.3 Summary

Overall, we have presented a MOOD procedure using a Multi-stage approach for

the MOO process and including reliability-based optimization design for controller
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Figure 6.10: Performance achieved of the selected design alternatives for the
Peltier cell process.

tuning. The procedure implemented here shown to be a useful tool to analyze the

trade-off among the design objectives. To validate the approach two different case

studies has been considered, the Boiler control problem for controller tuning and

as second case, a non-linear Peltier Cell. Both of them based on process models

described in terms of FOPDT processes, the formulation of the methodology is

completely general. As it can be see it for the result this approach improve the

convergence properties and reliable solutions for the Pareto Set approximation.

The obtained results validate the proposal for controller tuning.
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Chapter 7

Tuning rules for PI controllers

This chapter addresses PI controller tuning based on multi-

objective optimization design procedure in order to obtain an ap-

propriate trade-off selection from the Pareto front. Therefore, the

NNC algorithm is used to generate the pareto-optimal solutions

and the Nash Solution (NS) technique is implemented to select

an unique solution that provides a fair compromise among all the

solutions. On the basis of this selection, controller tuning rules

are provided for PI controllers and FOPDT models with normal-

ized dead times from [0.1, 2]. Simulation examples are given to

evaluate the proposed settings.

7.1 Introduction

The PI controllers are easier to understand than other advanced controllers because

they have a simple structure. This simplicity is very important to the scientific

community that shows continued interest in new tuning methods for finding the

optimum parameters [7]. The design of a PI control system starts from a model

of the process to be controlled and a set of requirements to be satisfied. These

requirements often enter into conflict making the task of finding the appropriate

controller parameters not an easy task.

It is on that basis that constrained optimization can enter into play by helping to

delimit the trade-off between possible conflicting requirements. Such requirements

use to be the conflicting performance and robustness specifications (in the different

69
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forms that they can be established). However, it is well known that design of PI

controllers has been based on the derivation of simple tuning rules instead of

solving such optimization problems.

On that basis, one possible approach it can be the development of tuning method,

by using a multi-objective optimization to obtain evenly distributed Pareto Front

approximation that allows the decision maker to decide/choose the must suitable

controller for the particular control system. This work presents the tuning rules

for PI controller based on the NS as a multi-criteria decision making technique to

deal with the performance/robustness trade-off.

7.2 MOOD procedure for PI controller tuning

One goal of this work, is the application of a MOOD framework to obtain the best

parameters for the controller tuning, the procedure is described below:

7.2.1 The multi-objective problem definition

Consider the feedback control system represented in Figure 2.1, where the con-

trolled process P (s) and the controller K(s) is described in Equation (2.1) and

(4.2), respectively. According to the control loop of Figure 2.1, the design ob-

jectives for the controller tuning are: the performance of the closed-loop control

system, that it will be evaluated using the IAE given by Equation (2.8), the TV

evaluated by Equation (2.9) and the closed-loop control system robustness will be

computed using the Ms described in Equation (2.10).

After all, the MOP can be stated as

min
θc
J(θc) = [JIAE(θc), JTV (θc)] (7.1)

subject to:

1.4 ≤Ms(θc) ≤ 2.0 (7.2)

where θc = [Kp, Ti] and Ms is the maximum sensitivity of the control system,

which is constrained in the interval of [1.4, 2.0], the high and low robustness level,

respectively, as it is usually done in process control [6]. It is worth to mention that
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the set-point response changes are not likely to occur, due to this, in this chapter

we will consider the load disturbance response performance.

7.2.2 Multi-objective Optimization process

Therefore, to generate a set of optimal solutions a NNC algorithm is applied to find

a Pareto set approximation where each solution within this set defines an objective

vector. The projection into the objective space is known as Pareto front approxi-

mation and all the solutions in the Pareto front are said to be non-dominated and

Pareto-optimal solutions. The obtained Pareto fronts for the different normalized

dead time values are shown in Figure 7.1
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Figure 7.1: Pareto Fronts for different normalized dead times and the corre-
sponding Nash Solutions

All the points of the Pareto front are equally acceptable solutions. They just

express different trade-off among the competitive objectives.

7.2.3 MCDM stage

After the MOO process, a set of solutions is obtained. Then, the final step is

to obtain the tuning parameters for the controller, for this we compute the NS

for each Pareto front. After the MCDM stage is carried out, a set of NSs is
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obtained. Each of them is the optimal solution for a different normalized dead

time τ . A set of optimal tuning parameters [Kp, Ti], therefore a specific optimal

controller tuning, corresponds to each NS. The whole set of tuning parameters has

been calculated by using the least squares fitting technique, as a function of the

normalized dead time τ , leading to the results shown in Figure 7.2.
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Figure 7.2: Tuning parameters for the PI controller. Plus sign: optimal values
of the parameter. Solid line: fitting function.

Eventually, the following structure for the controller parameters has been devised:

Kp =
1

K

(
aτ b + bτ c

)
, (7.3)
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Ti = T
(
aτ 2 + bτ + c

)
, (7.4)

where the values of the coefficients are show in Table 7.1.

Table 7.1: Tuning rules coefficients of the PI controllers.

a b c d

Kp 0.001088 -3.156 0.5391 -0.6733

Ti -0.05514 0.4295 0.7315

7.3 Simulation Examples

Consider the fourth-order controlled processes proposed as benchmark in [8] and

given by the transfer function:

Pα(s) =
1∏3

n=0(αns+ 1)
, (7.5)

with α ∈ {0.1, 0.5, 1.0}.

Using the three-point identification procedure 123c [1] FOPDT models were ob-

tained, whose parameters are listed in Table 7.2.

Table 7.2: Example - Pα(s) FOPDT models

α Kp T L τ
0.10 1 1.003 0.112 0.112
0.50 1 1.247 0.691 0.554
1.0 1 2.343 1.860 0.794

For comparison purposes the following PI tuning methods that include a design

parameter to deal with the performance/robustness trade-off were selected: MoR-

eRT, Kappa-Tau, S-IMC and AMIGO. This tuning methods were already de-

scribed in Chapter 4. All of these methods use a FOPDT model approximation

for the controlled process.

The tuning rules have been applied to the processes (7.5) and the resulting values

of the controller parameters, of the integrated absolute errors, the total variations
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and the maximum sensitivity for the different cases are shown in Tables 7.3, 7.4

and 7.5. The processes responses and the control variables for the different cases

are plotted in Figure 7.3, 7.4 and 7.5.

Tuning rule Kp Ti β IAE TV Ms

NS 3.46 0.78 1 0.23 1.12 1.44

MoReRT (Ms = 1.4) 3.14 0.68 0.60 0.22 1.17 1.40

MoReRT (Ms = 1.6) 4.15 0.56 0.54 0.14 1.31 1.60

MoReRT (Ms = 1.8) 4.93 0.50 0.52 0.10 1.42 1.80

MoReRT (Ms = 2.0) 5.58 0.46 0.51 0.08 1.51 2.0

KT (Ms = 1.4) 2.06 0.71 0.89 0.34 1.11 1.24

KT (Ms = 2.0) 4.90 0.71 0.47 0.14 1.25 1.71

S-IMC (Ms ≈ 1.59) 4.46 0.90 1 0.20 1.12 1.60

AMIGO (Ms = 1.4) 2.48 0.64 0 0.26 1.17 1.31

Table 7.3: Results related to α = 0.1 process.
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Tuning rule Kp Ti β IAE TV Ms

NS 0.81 1.19 1 1.47 1.14 1.53

MoReRT (Ms = 1.4) 0.72 1.44 0.94 2.0 1.00 1.40

MoReRT (Ms = 1.6) 0.98 1.46 0.77 1.49 1.12 1.60

MoReRT (Ms = 1.8) 1.18 1.44 0.68 1.22 1.30 1.80

MoReRT (Ms = 2.0) 1.34 1.41 0.63 1.06 1.46 2.01

KT (Ms = 1.4) 0.32 0.81 1 2.60 1.03 1.30

KT (Ms = 2.0) 0.67 0.81 0.55 1.56 1.44 1.66

S-IMC (Ms ≈ 1.59) 0.90 1.25 1 1.38 1.17 1.59

AMIGO (Ms = 1.4) 0.37 1.16 0 3.15 1.00 1.21

Table 7.4: Results related to α = 0.5 process.
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Figure 7.4: Temporal Responses for α = 0.5 process.
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Tuning rule Kp Ti β IAE TV Ms

NS 0.63 2.43 1 3.87 1.16 1.57

MoReRT (Ms = 1.4) 0.53 2.83 1.10 5.32 1.00 1.40

MoReRT (Ms = 1.6) 0.73 3.01 0.87 4.10 1.11 1.60

MoReRT (Ms = 1.8) 0.89 3.05 0.76 3.43 1.34 1.80

MoReRT (Ms = 2.0) 1.01 3.05 0.69 3.11 1.54 2.01

KT (Ms = 1.4) 0.23 1.60 1 7.00 1.00 1.29

KT (Ms = 2.0) 0.49 1.59 0.57 4.38 1.47 1.71

S-IMC (Ms ≈ 1.59) 0.63 2.34 1 3.82 1.20 1.59

AMIGO (Ms = 1.4) 0.28 2.27 0 8.11 1.00 1.23

Table 7.5: Results related to α = 1.0 process.
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Figure 7.5: Temporal Responses for α = 1.0 process.

As it can be observed for the processes described before, the tuning method pro-

posed here offers a good balance between the performance and robustness, for the

α = 0.1 process, the NS offers a better control total variation than the MoReRT

method, for the α = 0.5 and α = 1.0 processes the NS brings a suitable solution

which means a good trade-off between the goal functions. In the case of the KT
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method neither of them accomplish the robustness level for which they were de-

signed. For example, for the three processes, in the case of KT (Ms = 1.4) the

robustness average was Ms ≈ 1.29 and for KT (Ms = 2.0), the robustness aver-

age was Ms ≈ 1.69. Otherwise, the S-IMC achieve the desired robustness level

Ms ≈ 1.59, give slightly better performance but the NS offers a better control total

variation and a fair robustness level. Finally, the AMIGO method accomplished

a bit high performance than the NS but the robustness level is not the one it was

designed for it (is very far) which give a very slow responses.

7.4 Summary

A Nash based tuning rule for PI controllers have been formulae for a FOPDT

models that consider the performance and cost in terms of input usage. The pro-

posed method offer a good balance between the competitive objectives including

the robustness level, without constraining to a specific value and avoiding lose

much performance. This work has provided an analysis of performance/robust-

ness trade-off by several PI tuning rules. The performance was optimized by using

the IAE for disturbance rejection changes. Even some of the analyzed methods

do not provide the designed robustness level. The proposed tuning method for PI

controllers guarantees a range extending from the low to the high robustness level.

The proposed tuning rules, allows the designer to offers a good trade-off between

the competitive requirements of the control system. It is worth while to mention,

that in this chapter we only consider the regulation mode but in the next chapter

both operation modes will be considered.





Chapter 8

Tuning rules for PID controllers

Owing to the fact, that sometimes a one-degree-of-freedom

(1DOF) PID has to deal with both set-point changes and load

disturbances, it would be desirable to have a tuning method to

achieve a good trade-off for this situation. In order to find the

best parameters for the controller tuning a multi-objective opti-

mization design procedure is used, to help the designer with the

analysis of the competitive objectives. For the MOO process the

NNC algorithm is implemented to search for the optimal area and

the Nash solution technique is computed as a MCDM technique

for a suitably devised optimization problem. Illustrative simula-

tion examples show the effectiveness of the method.

8.1 Introduction

PID controllers have been employed for one hundred years and a lot of experience

in their use has been gained, researchers are continuously investigating new design

methodologies in order to improve their overall performance, thanks also to the

advancement of the computing technology that makes the application of optimiza-

tion techniques easier.

The research in PID controllers has always been especially focused on the tuning

issue, that is, the selection of the PID parameters that are most suitable for a

given application. In particular, the development of tuning rules that allow the

user to determine the controller gains starting from a simple process model is a

topic that has received great attention since the first proposal made by Ziegler
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and Nichols [128]. Indeed, many tuning rules have been devised [69]. They are

related to different controller structures (the PID can be, for example, in inter-

acting or non interacting form), different process models (for example, a first- or

second-order plus dead time transfer function), different control tasks they are re-

quired to address (for example, set-point following or load disturbance rejection)

and different approaches they are based on (for example, empirical, analytical, or

optimal).

In fact, it has to be recognized that the tuning of the controller has often to be

performed by taking into account conflicting requirements. From the point of view

of output performance, we can identify a design trade-off by considering the effects

of load disturbances and set-point changes on the feedback control system. On

the other side, there is also a trade-off between performance and robustness.

However, it is clear that having a tuning rule is much more desirable in order to

keep the simplicity of the use of PID controllers, which is one of their most ap-

preciated features. For this reason, tuning rules that achieve the minimization of

integral performance criteria have been proposed in the past, by assuming a first-

order-plus-dead-time (FOPDT) process model [127], which is known to capture

well the dynamics of many self-regulating processes. In these works, the set-point

following and the load disturbance rejection performance have been considered

separately, which makes the choice of the tuning difficult if both tasks have to

be addressed in a given application, especially if a one-degree-of-freedom control

structure is considered. Tuning rules for weighted servo/regulation control opera-

tions, namely, tuning rules that balance the optimal tuning in the two modes, have

been presented in [4]. Nevertheless, in these cases the robustness of the control

system has not been considered and this might imply a significant performance

decrease if the dynamics of the process changes and/or the control effort is too

high.

Taking this into account, the purpose of this chapter is to provide a new solution

to the tuning problem. First, a MOOD procedure based on the NNC algorithm is

applied to different FOPDT processes, yielding a set of Pareto fronts. Secondly,

the NS [48] is calculated for each case and tuning rules are determined by fitting

the results obtained for the different PID parameters. A comparison with the

tuning rules proposed in [4] is also performed.
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8.2 MOOD procedure for PID controller

Figure 8.1: A Multi-objective Optimization Design (MOOD) procedure.

In Chapter 2 the control problem was formulated. The MOOD procedure imple-

mented in this work is represented in Figure 8.1. First, the MOP definition is de-

scribed where θc represents the parameters of the PID controller, Jld(θc) = ISE ld

is the integrated square error when a load disturbance step response is considered,

and Jsp(θc) = ISE sp is the integrated square error when a set-point step response

is considered. Moreover, the Ms, is constrained in the interval [1.4, 2.0]. Secondly,

the NNC algorithm is implemented as a MOO techniques to search for a discrete
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approximation of the Pareto set capable of generating a good approximation of

the Pareto front. Finally, the MCDM stage is carried out in order to select the

most preferable solution for the designer, the NS in computed to devise the tuning

rules for PID controller.

8.3 Optimal tuning and comparison

Returning to the optimization problem described in Section 8.2, it has been solved

in two different ways:

1. Case 1: by unconstraining the Ms in order to compare the proposed method

with the intermediate tuning rules presented in [4] where the robustness of

the system was not taken into account explicitly.

2. Case 2: by constraining the Ms in a range such as 1.4 ≤ Ms(θc) ≤ 2.0.,

therefore guaranteeing that the resulting control system has an acceptable

degree of robustness

The MOO process has been applied, for both cases, to a set of FOPDT processes

with different normalized dead time (τ) from 0.1 to 2.0.

For the first case, the optimal parameters proposed in [4] have been used as initial

guess for the NNC algorithm. With this tuning rule, the user can select a weighting

factor α that determines the importance of the regulation task with respect to the

servo task. Therefore, depending on the operation for the control system, we can

identify the following cases: α = 0 means that only the servo mode is relevant,

α = 0.25 means that the servo mode is more important than the regulatory mode,

α = 0.50 means that the two modes are equally important, α = 0.75 means that

the regulatory mode is more relevant than the servo mode and, finally, α = 1

means that only the regulatory mode is relevant. The tuning rules developed in

this work have been devised starting from the tuning rules already proposed in [4]

for the minimization of the integral square error for the extreme cases, that is, for

α = 0 and α = 1.
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Figure 8.2: Pareto fronts for the unconstrained case and performance compar-
ison with the tuning rules proposed in [4] for different normalized dead times.
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Figure 8.3: Pareto fronts for the robust case for different normalized dead
times and the corresponding Nash solutions (red square).

The obtained Pareto fronts for the different normalized dead time values are shown

in Figure 8.2, where the performance obtained with the intermediate tuning rules

proposed in [4] are also shown. As expected, the performance deteriorates when

the normalized dead time increases, but it is worth noting that:
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• for τ < 0.3, the three weighting factors1 are located in the Pareto front

approximation;

• for τ > 0.3, the three weighting factors are located outside of the Pareto

front approximation.

This indicates that these cases are (slightly) suboptimal from the Pareto front

point of view (note that, as already mentioned, the intermediate tuning have been

developed for the extreme cases and they are the results of fitting strategies). The

second case is then developed by applying the MOO process with the robustness

constraint 1.4 ≤ Ms(θc) ≤ 2.0. The corresponding results are shown in Figure

8.3. A comparison of the two cases can be performed more simply by considering,

Figure 8.4 where the results related to τ = 1.0 and τ = 1.5 are highlighted. It

appears that achieving a higher robustness is paid in terms of performance or,

in other words, just optimizing the performance generally yields a control system

with a high maximum sensitivity. The necessity of considering the robustness in

the optimal selection of the PID parameters appears clearly in Table 8.1, where

it can be noticed that the selection obtained through the constrained Pareto front

(NS) proposed in this paper achieves better robustness values and the performance

values are not so high in comparison with the intermediate tuning rules from

[4] that achieve better performance without taking into account the robustness.

Moreover, it is evident that the value of the maximum sensitivity can be critical

for those applications where robustness is important.

1weighting factors: solutions proposed in [4] for the three weighting factors (α = 0.25, α =
0.50 and α = 0.75).
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Figure 8.4: Comparison between the unconstrained and the constrained (ro-
bust case) Pareto fronts.

Table 8.1: Results of the comparison between the intermediate tuning rules
proposed in [4] and the NS (constrained case).

Tuning rules τ ISEld ISEsp Ms

NS
1.0 0.51 1.13 1.84
1.5 0.96 1.66 1.86

α = 0.25
1.0 0.46 1.12 2.86
1.5 0.86 1.66 2.76

α = 0.50
1.0 0.40 1.16 3.02
1.5 0.82 1.67 2.90

α = 0.75
1.0 0.39 1.19 3.34
1.5 0.82 1.68 2.99

8.4 Tuning rules

After the MCDM stage, a set of NSs is obtained as it is shown in Figure 8.3. Then,

the tuning rules have been obtained by a curve fitting procedure that minimizes

the least squares errors with respect to the various optimal values. The curve

fitting is shown Figure 8.5. As a result, the following tuning rules have been

determined:
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Table 8.2: Parameters for the proposed tuning rules.

a b c d
Kp 0.233 0.4582 0.7349 -0.9348
Ti -0.01197 0.5683 0.4343
Td -0.1206 0.5743 -0.01306

Kp =
1

K

(
aτ b + cτ d

)
, (8.1)

Ti = T
(
aτ 2 + bτ + c

)
, (8.2)

Td = T
(
aτ 2 + bτ + c

)
, (8.3)

where the values of the parameters are shown in Table 8.2.
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Figure 8.5: Tuning parameters for PID controller. Plus sign: optimal values
of the parameter. Solid line: fitting function.
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A more thorough comparison of the proposed tuning rules with the results obtained

by using the intermediate tuning proposed in [4] for the case of α = 0.5 is shown

in Figure 8.6. It appears that the robustness is increased significantly at the

expense of only a slight decrement of the performance in both the set-point and

load disturbance step response.
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Figure 8.6: Comparison between Nash tuning (solid red lines) and interme-
diate tuning with α = 0.5 [4] (dashed black lines) for different normalized dead

times.

8.5 Simulation Examples

In this section the tuning rules presented in the previous section are evaluated

by considering simulation examples with processes with a different dynamics. A

comparison with the tuning rules proposed in [4] is also performed. For each

process, the ISE in both the servo and the regulatory tasks, the Ms and the TV
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Figure 8.7: Set-point (left) and load disturbance (right) step responses for
P1(s). Solid red line: proposed tuning rules (NS) for PID controllers. Dash-dot

line: tuning rules for PID controllers (α = 0.5) proposed in [4].

of the control variable for each task are computed in order to provide a more global

comparison framework.

8.5.1 FOPDT system

As a first example consider the FOPDT system with τ = 0.4

P1(s) =
1

10s+ 1
e−4s (8.4)

where, evidently, K = 1, T = 10, and L = 4. The parameters resulting from

the application of the tuning rules are shown in Table 8.3. The simulation results

related to the both set-point and load disturbance unit step signals are plotted

in Figure 8.7. The resulting values of the integrated square error, total variation

of the control variable (in order to evaluate the control effort) and maximum

sensitivity are shown in Table 8.3.
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Figure 8.8: Set-point (left) and load disturbance (right) step responses for
P1(s). Solid red line: proposed tuning rules (NS) for PID controllers. Dashed
line: tuning rules for servo/regulation PID controllers proposed in [4] applied to
the case they have been devised. Dotted line: tuning rules for PID controllers

proposed in [4] used for the other control task they have been devised.

Tuning rule Kp Ti Td ISEsp ISEld TVsp TVld Ms

NS 1.88 6.60 1.97 4.75 1.00 54.85 1.57 1.77

α = 0 (SP) 2.38 9.54 2.17 4.52 0.86 43.97 2.40 2.66

α = 0.5 2.74 5.83 2.23 5.13 0.57 61.31 3.43 3.35

α = 1 (LD) 3.58 4.50 2.31 11.34 0.53 151.52 10.57 10.98

Table 8.3: Results related to P1(s) (τ = 0.4).

The step responses obtained with the tuning rules proposed in this paper have been

compared with those obtained by applying the tuning rules specifically devised in

[4] for α = 0.5 (see Figure 8.7) which means that the load disturbance and the

set-point responses are considered to be equally important (intermediate tuning

rules). Further, a comparison with the case α = 0 and α = 1, which means that

only the set-point or load disturbance response, respectively, is relevant, has been

also performed. Results are shown in Figure 8.8 (dash-dot line) where, in order

to shown that it is worth developing an intermediate tuning rule, it has also been

plotted the results obtained by inverting the use of the tuning rules proposed in

[4] that is, the tuning rule devised for the set-point following task is applied to the

load disturbance task and vice versa (dotted line).

From the obtained results, it can be seen that the proposed robust intermediate

tuning rules generate smoother responses with less control effort. This can be also

observed in Table 8.3, where the values of TV are generally lower in comparison
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with the other tuning rules. Indeed, the performance obtained with the NS tuning

is balanced and with a satisfactory robustness. In fact, even if achieving a good

level of robustness is paid a little bit in terms of ISE performance, results show

the need of considering the maximum sensitivity in a balanced tuning framework

also because of the obtained reduced control effort.

8.5.2 High-order process

As a second example, a process with high-order dynamics have been considered:

P2(s) =
1

(s+ 1)4
(8.5)

In order to apply the proposed tuning rule, the process has been modelled as a

FOPDT with K = 1, T = 2.9, L = 1.42 (thus, the normalized dead time can

be determined as τ = 0.49). The results related to both the set-point and load

disturbance unit step signals are plotted in Figures 8.9 and 8.10 and the resulting

PID parameters as well as performance indexes are summarized in Table 8.4. From

the obtained results it can be appreciated that the proposed approach provides

also in this case a balanced performance and the sensitivity value is significantly

reduced with respect to the other cases where robustness has not been taken into

account explicitly.

Tuning rule Kp Ti Td ISEsp ISEld TVsp TVld Ms

NS 1.60 2.06 0.69 1.93 0.53 33.87 2.03 1.78

α = 0 (SP) 1.99 2.86 0.75 1.60 0.41 22.22 1.75 2.59

α = 0.5 2.31 1.91 0.77 1.96 0.33 27.62 2.86 3.31

α = 1 (LD) 2.94 1.52 0.81 3.04 0.32 43.88 5.78 9.27

Table 8.4: Results related to P2(s) (τ = 0.49).
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Figure 8.9: Set-point (left) and load disturbance (right) step responses for
P2(s). Solid red line: proposed tuning rules (NS) for PID controllers. Dash-dot

line: tuning rules for PID controllers (α = 0.5) proposed in [4].
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Figure 8.10: Set-point (left) and load disturbance (right) step responses for
P2(s). Solid red line: proposed tuning rules (NS) for PID controllers. Dashed
line: tuning rules for servo/regulation PID controllers proposed in [4] applied to
the case they have been devised. Dotted line: tuning rules for PID controllers

proposed in [4] used for the other control task they have been devised.

As a third example, a process with a much higher number of coincident poles has

been considered:

P3(s) =
1

(s+ 1)20
(8.6)

In order to apply the proposed tuning rules, the process has been modelled as a

FOPDT system with K = 1, T = 7.76, L = 12.72 (thus, the normalized dead

time can be determined as τ = 1.64). The results are shown in Table 8.5, the

responses are plotted in Figure 8.11 and the resulting PID parameters as well as

the performance indexes are summarized in Table 8.5. As it can be observed,
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Figure 8.11: Set-point (left) and load disturbance (right) step responses for
P3(s). Solid red line: proposed tuning rules (NS) for PID controllers. Dash-dot

line: tuning rules for PID controllers (α = 0.5) proposed in [4].

the proposed tuning rule, generally, provides the minimum ISE for the servo and

regulatory task. In the responses shown in Figure 8.11, it can be seen that the

tuning rule proposed in this work offers an optimal balance in comparison with

the extreme cases (α = 0 and α = 1).

Tuning rule Kp Ti Td ISEsp ISEld TVsp TVld Ms

NS 0.76 10.35 4.69 15.85 11.46 16.64 1.95 1.89

α = 0 (SP) 0.87 11.31 5.40 17.38 11.62 12.01 3.64 2.59

α = 0.5 0.91 10.63 5.63 18.98 12.25 13.45 4.45 2.97

α = 1 (LD) 1.06 9.43 6.52 49.11 24.78 26.73 11.97 7.66

Table 8.5: Results related to P3(s) (τ = 1.64).
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Figure 8.12: Set-point (left) and load disturbance (right) step responses for
P3(s). Solid red line: proposed tuning rules (NS) for PID controllers. Dashed
line: tuning rules for servo/regulation PID controllers proposed in [4] applied to
the case they have been devised. Dotted line: tuning rules for PID controllers

proposed in [4] used for the other control task they have been devised.

8.6 Summary

A set of tuning rules for one-degree-of-freedom PID controllers based on a multi-

objective optimization strategy has been presented and quantitatively analyzed.

In particular, the tuning allows the minimization of the integrated square error for

the set-point following and load disturbance rejection task subject to a constraint

on the maximum sensitivity.

This methodology addresses two different trade-off: the performance/robustness

and the servo/regulatory control mode. It has been shown that, in this context,

the robustness of the system can be a critical issue and therefore it has to be

included explicitly in the optimization procedure. The tuning rules developed in

this Chapter are based on the Nash solution and it can be easily implemented in

standard industrial controllers.





Chapter 9

Tuning rules for FOPID

controllers

Chapter 5 presented a Multi-stage approach for controller tuning.

It was shown that, this approach look for a set of solutions with

some desirable characteristics as exploitation capabilities. This

Chapter implement such approach to devise a set of balanced

tuning rules for fractional-order proportional-integral-derivative

controllers. The control problem is stated as a multi-objective

optimization problem where a first-order-plus-dead-time process

model has been considered. A set of Pareto optimal solutions is

obtained for different normalized dead times and then the optimal

balance between the competing objectives is obtained by choosing

the Nash solution among the pareto-optimal ones. A curve fitting

procedure has then eventually been applied in order to generate

suitable tuning rules. Several simulation results show the effec-

tiveness of the proposed approach.

9.1 Introduction

A considerable number of tuning rules for PID controllers has been developed in

the last decades. In recent years, fractional control has received a great interest

from the control community due to the fact that it provides more flexibility in the

design phase than the classical integer order one. This leads to controllers that are

95
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capable to accomplish more demanding control requirements [21, 23, 40, 63, 65, 70–

73, 94, 120]. Owing to this, it seems natural to generalize the derivative and the

integral orders of the PID controller to any real number leading to the fractional-

order PID (FOPID) controller [80, 122].

The use of a FOPID controller implies that a better performance can be achieved,

but on the other hand it means that design can be more difficult. However, in or-

der to foster the application of FOPID controllers in industry, the same ease of use

as classical PID controllers must be ensured. For this purpose, the stability issue

of this kind of controllers has been investigated in [18, 19]. Then, a large number

of strategies to tune a FOPID controller has been proposed in the literature to

facilitate their implementation [119]. In particular, optimization techniques have

been proposed, mainly with the aim of achieving the so-called iso-damping prop-

erty [12, 64, 118], that is, achieving a flat phase at the gain crossover frequency

so that the same overshoot is obtained in the set-point step response despite pro-

cess gain variations [14]. It has however to be recognized that, as for standard

PID controllers, the presence of tuning rules can represent a key factor for the

success of FOPID controllers. Taking this into account, rules that consider the

optimization of the load disturbance response with a robustness constraint have

been proposed [22, 39]. Similarly, the minimization of the integrated absolute er-

ror with a constraints on the maximum sensitivity has been pursued in [74], where

both the set-point following and the load disturbance rejection tasks have been

considered separately.

It turns out that a FOPID controller tuning rule that addresses both the set-point

following task (servo mode) and the load disturbance task (regulatory mode) at the

same time is still missing. Indeed, for the design of a control system, it is important

to take into account the trade-off between these specifications. Moreover, the other

important trade-off between performance and robustness has to be considered.

Nevertheless, it is well known that these are in general competing objectives that

have been already investigated for standard, integer order, PID controllers (see

[4], where however the robustness issue is disregarded).

In this context, as there are different conflicting requirements to handle, it is

natural to set up a MOP [57]. In fact, in general, a good disturbance rejection

response is not compatible with a good set-point step response and a high perfor-

mance is often not compatible with a controller which is robust to process model

mismatch. Eventually, tuning techniques can be obtained based on the so called
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Pareto front approximation, where all the solutions are Pareto-optimal and offer

different trade-offs between the objectives, see for example [34, 42, 60, 77].

In order to find a controller with an optimal balance between the posed objectives

a MOOD procedure is implemented. For this purpose a new approach for the

MOO has been implemented in order to improve the convergence capabilities. We

consider a servo/regulatory optimally balanced tuning, where the MOO proce-

dure is performed by optimizing the set-point following and the load disturbance

rejection performance, measured in terms of the IAE and considering FOPDT

processes with different normalized dead times. In order to achieve a reasonable

performance/robustness trade-off, the Ms has been used as a measure of the sys-

tem robustness. Regarding the robustness constraint, a double approach has been

pursued: in the first case the value of Ms has been constrained in a reasonable

range while in the second case the value of Ms has been constrained to a specific

value that the user can selected depending on the application. Then, in order

to select the best compromise between the different objectives, the NS has been

determined [48] as a MCDM technique for each normalized dead time. Finally,

tuning rules have been determined by using a least squares fitting technique with

the obtained optimal results with respect to the normalized dead time. It is worth

to highlight that the obtained tuning rules follow the same structure for all the

situations considered. Simulations results show the effectiveness and the robust-

ness of the proposed tuning rules and the advantage of a unique tuning strategy

capable to address both the servo and the regulatory tasks.

9.2 FOPID controller structure

We consider the typical feedback control system represented in Figure 2.1, where

the process dynamics can be fully characterized in terms of the normalized dead-

time defined in (9.1), which represents a measure of the difficulty in controlling

the process:

τ =
L

T
, τε [0.1, 4]. (9.1)

In this work, the process will be controlled with a fractional-order PID controller,

which is defined as a generalization of the standard ISA form for the PID controller,
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whose transfer function is given by [76]:

K(s) = Kp

(
1 +

1

Tisλ
+

Tds
µ

Td
Nµ sµ + 1

)
, (9.2)

where Kp is the proportional gain, Ti is the integral time constant, Td is the

derivative time constant, N is the derivative filter parameter, λ and µ are the

non-integer order of the integral and of the derivative actions, respectively (i.e.,

the tuning parameters).

Remark 9.1. It is worth mentioning that the derivative filter time constant Td
Nµ

is selected in such a way that the phase transition of the filter occurs in log(N)

decades after the derivative term Tds
µ crosses the 0 dB axis, regardless of the

derivative order µ. Indeed, selecting the filter time constant as Td
Nµ prevents the

fractional poles migration [54] when the derivative order changes. Here, N = 10

has been selected as it is usual in industrial controllers [3, 123].

Finally, it must be pointed out that, in order to implement the fractional-order

controller, the Oustaloup continuous integer-order approximation [71] has been

used; it consists in using the following approximation based on a recursive distri-

bution of zeros and poles:

sν ∼= k
N̄∏
n=1

1 + s
ωz,n

1 + s
ωp,n

, ν > 0, (9.3)

where ωz,n and ωp,n are, respectively, the frequencies at which the zeros and the

poles occurs, ν ∈ R is the fractional order, N̄ is the number of poles an zeros

used for the approximation and k is the gain. The approximation is only valid in

a frequency interval [ωl, ωh], where ωl and ωh are, respectively, the lower and the

higher limit. Finally, the gain is adjusted so that both sides of (9.3) have the same

gain in the logarithmic mid point of the interval.

In this work the values of ωl and ωh have been selected as 0.001ωc and 1000ωc,

respectively, where ωc is the gain crossover frequency of the loop transfer function.

Furthermore, N̄ has been chosen equal to 8. It is worth stressing that the use of

these criteria to select the approximation parameters leads to a mismatch between

the responses that would be obtained with the ideal fractional controller and the

approximated controller that is negligible. Indeed, within the approximation fre-

quency range, the selected number of poles and zeros makes the two controllers

virtually undistinguishable. Below the lower approximation limit, because of the
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large approximation range centered at ωc, the presence of a (possibly fractional)

integrator flats the closed-loop frequency response, both in the ideal and in the

approximated cases, along the 0 dB axis. Finally, above the upper limit, the

high frequency roll-off makes again the ideal-approximated closed-loop mismatch

negligible.

9.3 MOOD procedure for FOPID controller

As stated in the introduction, we aim at finding an optimal tuning for the proposed

FOPID controller taking in to account both the servo and the regulatory modes.

Therefore, the MOOD procedure for FOPID controllers is described as follow:

MOP definition for FOPID controller

In the previous sections the control system has been described. Therefore, the

MOP statement for FOPID controller tuning could be formulated as:

min
θc

J(θc) = [Jsp(θc),Jld(θc)] (9.4)

such that

gls ≤ g(θc) ≤ gus, (9.5)

where

θc = [Kp, Ti, Td, µ, λ]

are the parameters of the FOPID controller (decision space). The IAE (2.8) is

used in order to measure the performance of a given set of tuning parameters.

Nevertheless, since we must take into account both the servo and the regulatory

mode, we must consider two different IAEs, the one obtained in the set-point

step response (Jsp(θc) = IAE sp) and the other obtained in the load-disturbance

step response (Jld(θc) = IAE ld). Moreover, aiming just at obtaining the minimal

IAE may lead to a poor control performance because the robustness issue is not

taken into account. For this reason, in this work we also consider the maximum

sensitivity Ms, defined in Equation (2.10).
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The minimization is constrained by using the maximum sensitivity Ms, that is:

g(θc) = Ms (9.6)

gls ≤ g(θc) ≤ gus, (9.7)

where gls, gus, are the lower (Ms = 1.4) and upper (Ms = 2.0) constraint limits.

As it was mentioned before, the Ms can be constrained to be into a range or to

be fixed to a specific value. Therefore, the alternative to the inequality constraint

(9.7), is to use an equality constraint

h(θc) = h, (9.8)

where h(θc) = Ms and h ∈ {1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0}.

MOO process

In this work, a multi-stage approach is proposed, where two algorithms are merged

in a sequential manner for controller tuning, when a MOP is being solved:

• The Normalized Normal Constraint (NCC) algorithm: it is a deterministic

algorithm defined in Chapter 3.

• The Multi-objective Differential Evolution Algorithm with Spherical Prun-

ing (sp-MODE): it is an evolutionary optimization approach described in

Chapter 5.

For more details about this approach, interested readers can refer to Chapter 5.

MCDM stage

Therefore, for decision making, we used the Nash Solution (NS) described in Chap-

ter 4. The NS lies on the Pareto front surface and is computed as the intersection

between the surface and the diagonal line that passes through two opposite ver-

texes of the smallest cube that inscribes the surface.
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9.4 Optimal tuning

In order to find a set of optimal tuning rules for the FOPID controller, the MOOD

procedure stated in the previous section has been applied to a set of FOPDT pro-

cess models with different values of the normalized dead time τ ranging from 0.1

to 4.0. Note that the considered range of normalized dead times spans from lag

dominant processes to truly delay dominant ones, being the upper limit τ = 4.0

whereas most of the existing tuning rules cover just till τ = 2.0.

The gain of each process has been set equal to one and the time constant has been

normalized to one without loss of generality since the gain is a pure scale factor

and the process dynamics is completely parameterized by using the normalized

dead time τ .

Unit step signals have been employed for the set-point following and load distur-

bance rejection tasks in order to compute the corresponding IAEs.

The optimization problem (9.4) has been solved by using two different types of

constraints:

1. the maximum sensitivity Ms has to be in a range (hereafter addressed as

Ms-range case):

1.4 ≤Ms ≤ 2.0; (9.9)

2. the maximum sensitivity Ms has to be equal to a given value (hereafter

addressed as Ms-value case):

Ms = {1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0} . (9.10)

The following framework has been used in order to solve the MOO problem:

• the servo and the regulation operation modes have been considered in the

same optimization problem;

• as initial guess for the NNC algorithm, the optimal parameters proposed in

[74] were used;

• the sp-MODE algorithm is used with:

– the scaling factor (F), which is a real and constant factor that controls

the amplification of the differential variations that allows the mutant

vector. In this context, F=0.5 is usually a good initial choice (see [109]);
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– for each target vector and its mutant vector, a trial child vector is

calculated. In order to increase the diversity of the disturbed parameter

vector the Crossover rate (Cr) is introduced. A good choice for it is

Cr=0.9, according to the guidelines proposed in [26, 88, 109].

The outcome of the MOO procedure is a set of Pareto fronts, for different normal-

ized dead times and, in the Ms-value case, for different maximum sensitivities. It

is worth stressing that the Pareto fronts obtained for the Ms-value case are two

dimensional curves where the x and y axes are, respectively, IAEld and IAEsp .

Conversely, for the Ms-range case, the obtained Pareto fronts are three dimen-

sional surfaces where the x and y axes remain the same, while the z axis is Ms.

Once a suitable set of Pareto fronts has been obtained, the NS for each of them

is computed. An optimal tuning for the FOPID controller, i.e., a set of optimal

parameter Kp, Ti, Td, λ and µ , corresponds to each NS.

It is worth noting that, when considering the IAE minimization as the objective

function, the obtained optimal integrator is always of integer order (that is λ = 1),

as pointed out in [74–76]. In fact, the optimizer always tries to decrease the in-

tegrator order λ. However, for λ < 1 the IAE is unbounded. Indeed, by using

the final value theorem it is immediate to check that the integral error for the set

point unit step response is

lim
s→0

s

s2

1

1 + P (s)K(s)
=

1

s

sλ
(
1 + Td

Nµ s
µ
)

(Ts+ 1)(
1 + Td

Nµ sµ
)

(Ts+ 1) + (Tisλ + 1)(Tdsµ + 1)e−Ls
,

(9.11)

while the integral error for the unit load disturbance step response is

lim
s→0

s

s2

P (s)

1 + P (s)K(s)
=

1

s

sλ
(
1 + Td

Nµ s
µ
)(

1 + Td
Nµ sµ

)
(Ts+ 1) + (Tisλ + 1)(Tdsµ + 1)e−Ls

.

(9.12)

Evidently, both of them are unbounded when λ < 1, but a bounded integral error

is a necessary condition for a bounded IAE. Hence, the solution λ = 1 is chosen.

This allows the selection of the optimal integrator order analytically. Moreover,

another advantage of these results is that the dimensionality of the optimization

problem is reduced since λ is fixed in advance.

Eventually, all the optimal parameters are computed as functions of the normalized

dead time and, for the Ms-value case, also as functions of the desired maximum
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Figure 9.1: (a) Pareto fronts for the Ms-range case for different normalized
dead times and the corresponding NSs and (b) the Pareto front for τ = 0.7 and

the corresponding NS.

sensitivity. The fitting function, suitably scaled with respect to the process dc-gain

and with respect to process time constant will constitute the set of tuning rules.

9.4.1 Ms-range case

As a first case we consider the Ms-range case introduced above. We consider the

MOP where the Ms is constrained in a range between 1.4 and 2.0. The results

obtained for the different normalized dead times are shown in Figure 9.1, where a

set of Pareto fronts in the (IAEsp, IAEld,Ms) space is obtained and the NSs are

displayed. It is worth stressing that Pareto fronts are actually surfaces even if this

can be hardly appreciated from the figure. Moreover, in order to clarify this issue,

the Pareto front for the case τ = 0.7 is shown as an illustrative example.

Tuning rules

After the MCDM stage is carried out, a set of NSs is obtained. Each one of them

is the optimal solution for a different normalized dead time τ . A set of optimal

tuning parameters [Kp, Ti, Td, λ, µ], therefore a specific optimal controller tuning,

corresponds to each NS.

The whole set of tuning parameters has been calculated by using the least squares

fitting technique, as a function of the normalized dead time τ , leading to the

results shown in Figure 9.2. Eventually, the following structure for the controller
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Figure 9.2: Tuning parameters for the FOPID controller for the Ms-range
case. Plus sign: optimal values of the parameter. Solid line: fitting function.

parameters has been devised:

Kp =
1

K

(
aτ b + cτ d

)
, (9.13)

Ti = T λ
(
aτ 2 + bτ + c

)
, (9.14)

Td = T µ
(
aτ 2 + bτ + c

)
, (9.15)

µ = aτ + c, (9.16)

λ = 1, (9.17)

where the values of the coefficients are show in Table 9.1. It is worth noting that

the fitting functions have been scaled with respect to the process dc-gain K and

with respect to the process time constant T . In this way the obtained tuning

rules have the nice property of being both time scale and gain invariant. In order
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Table 9.1: Tuning rules coefficients of the FOPID controllers for the Ms-range
case.

a b c d
Kp 0.5951 -1.0417 0.4161 -0.2331
Ti -0.0558 0.6356 0.7086
Td -0.0246 0.3127 -0.0091
µ -0.0342 1.1456

to achieve this result, the scaling factor of Ti and Td depends, respectively, on λ

and µ. This prevents, again, the fractional pole/zero migration when the orders

change.

9.4.2 Ms-value case

As a second case we consider the Ms-value approach, in which the MOP considered

has the value of Ms constrained to each one of the specific values of the set (9.10).

Following the same approach used in the previous section, the MOOD procedure

has been repeated for different normalized dead times and for different value of

Ms. For each Pareto front obtained, the NS is eventually computed.

Tuning rules

Once again, in order to obtain a set of tuning rules for each considered Ms value,

each tuning parameter has been calculated by using the least squares fitting tech-

nique, as a function of the normalized dead time τ . Hence, the number of fitting

is equal to the number of considered levels of Ms, i.e., seven fitting have been

performed for each parameter. The structure of the obtained tuning rules for the

controller parameters is reported in (9.13)-(9.17), where the values of the coeffi-

cients are in Tables 9.2-9.8, depending on the desired level of robustness. It is

worth noting that the formulas are the same as the Ms-range case due to the fact

that the parameters have the same trend. The plots of the fitting curves are not

shown for the sake of brevity.
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Table 9.2: Tuning rules coefficients for the FOPID controllers for the Ms-value
case with Ms = 1.4.

a b c d
Kp 0.4937 -1.0286 0.2082 -0.1928
Ti -0.0190 0.3847 0.7913
Td -0.0137 0.3188 -0.0117
µ -0.0691 1.1682

Table 9.3: Tuning rules coefficients for the FOPID controllers for the Ms-value
case with Ms = 1.5.

a b c d
Kp 0.2321 -0.0826 0.5987 -1.0242
Ti -0.0448 0.5446 0.6857
Td -0.0165 0.3128 -0.0102
µ -0.0467 1.1556

Table 9.4: Tuning rules coefficients for the FOPID controllers for the Ms-value
case with Ms = 1.6.

a b c d
Kp 0.3812 -0.2357 0.5658 -1.0813
Ti -0.1105 0.8771 0.5574
Td -0.0177 0.3043 -0.0085
µ -0.0449 1.1555

Table 9.5: Tuning rules coefficients for the FOPID controllers for the Ms-value
case with Ms = 1.7.

a b c d
Kp 0.7256 -1.0221 0.3064 -0.0624
Ti -0.0900 0.8472 0.5113
Td -0.0273 0.3198 -0.0075
µ -0.0343 1.1403

Table 9.6: Tuning rules coefficients for the FOPID controllers for the Ms-value
case with Ms = 1.8.

a b c d
Kp 0.6788 -1.0718 0.4356 -0.1779
Ti -0.0625 0.7417 0.5621
Td -0.0249 0.3187 -0.0087
µ -0.0343 1.1378
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Table 9.7: Tuning rules coefficients for the FOPID controllers for the Ms-value
case with Ms = 1.9.

a b c d
Kp 0.6818 -0.3413 0.4936 -1.1998
Ti -0.0767 0.8260 0.4788
Td -0.0272 0.3320 -0.0111
µ -0.0464 1.1544

Table 9.8: Tuning rules coefficients for the FOPID controllers for the Ms-value
case with Ms = 2.0

a b c d
Kp 0.4646 -0.1509 0.7615 -1.0902
Ti -0.0571 0.7219 0.5585
Td -0.0301 0.3464 -0.0133
µ -0.0440 1.1430
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Figure 9.3: Performance and robustness assessment index function for the
range case. Solid line: fitting function (9.18), (9.19) and (9.20). Plus sign:

optimal value of IAEld , IAEsp and Ms for the Ms-range case.
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9.5 Performance assessment

The performance assessment of the proposed rules is addressed in this section in

order to provide, in a single and direct way, the expected outcome for the selected

controller. The main purpose of the performance assessment is to allow the user to

know in advance the values of the IAE cost function that will be obtained (both for

set-point following and the load disturbance rejection) when applying the proposed

tuning rules. Thus, the user can evaluate the effectiveness of the proposed rules

against other ones and decide if they are suitable for a given application without

the need of a simulation. Further, the user can calculate the IAE obtained with

an existing controller and he/she can decide if it is worth substituting it, as the

performance (and the robustness) that can be achieved with the proposed tuning

rules can be determined a priori by knowing the FOPDT process model.

When using Ms-range rules, the obtained maximum sensitivity is not constrained

to a specific value, but in a range from 1.4 to 2.0. Hence, in addition, for the

Ms-range case, the robustness assessment for the Ms is also presented so that the

user can calculate in advance the maximum sensitivity that will be obtained.

In order to obtain the performance assessment rules, the IAE has been calculated

for all the considered normalized dead times and maximum sensitivities. The

obtained IAE values in the Ms-range and in the Ms-value case has been calculated

by using a fitting technique with suitable functions. Also, the obtained Ms in the

case of Ms-range has been fitting as a function of the normalized dead time. The

obtained results can be expressed as

IAE ld = KT (a1τ + a2) , (9.18)

IAE sp = KT (b1τ + b2) , (9.19)

Ms = c1τ
3 + c2τ

2 + c3τ + c4, (9.20)

where the values of the coefficients to be employed are shown in Tables 9.9 and

9.10.

The optimal values of IAEld , IAEsp for the Ms-range case, along with the Ms values

and the corresponding fitting functions are reported, for the different values of τ , in

Figure 9.3. Finally, in Figure 9.4 the same results are illustrated for the Ms-value

case where, for the sake of comparison, also the Ms-range results are plotted. By

looking at the results in Figure 9.4, it can be noticed that, after a certain limit that

is outlined by the results for the Ms − range case, there is no point in increasing
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Table 9.9: Performance assessment function parameters for IAE in load dis-
turbance rejection and set-point following task.

a1 a2 b1 b2

Ms-range 1.4184 -0.1046 1.3731 0.0687
Ms = 1.4 1.8603 -0.0537 1.8413 -0.0153
Ms = 1.5 1.6148 -0.0508 1.5808 0.0742
Ms = 1.6 1.5670 -0.0902 1.5169 0.0613
Ms = 1.7 1.4290 -0.0740 1.3793 0.0888
Ms = 1.8 1.3217 -0.0521 1.2900 0.1286
Ms = 1.9 1.2872 -0.0673 1.2675 0.1541
Ms = 2.0 1.2644 -0.0978 1.2734 0.1433

Table 9.10: Robustness assessment function parameters for Ms-range in load
disturbance rejection and set-point following task.

c1 c2 c3 c4

Ms-range 0.0096 -0.0705 0.1543 1.5797
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Figure 9.4: Performance assessment index function for the Ms-value case. Red
line: Performance assessment index for Ms-range case.

the Ms, because the performance improvement is not significant compared to the

loss of robustness. This behavior is even more evident for low time delays and, for

the set-point tracking task, a performance loss is eventually obtained by increasing

too much the Ms. Finally, another effect of this behavior can be appreciated in

Figure 9.3, where the optimal Ms indeed exhibits a decrement for low dead times.
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9.6 Simulation results

In order to verify the effectiveness of the proposed tuning rules, different illus-

trative simulation results are presented in this section. Moreover, for the sake of

comparison, other methods proposed in the literature will be also considered. In

particular:

• the optimal tuning rules for FOPID controllers proposed in [74]. These tun-

ing rules are denoted as SP or LD (which means that the set-point following

or the load disturbance rejection task are optimized, respectively) followed

by the target maximum sensitivity (which can be 1.4 or 2.0) and the letter

F (which means that the controller is of fractional order). These rules have

been obtained by minimizing the IAE with a constraint on the maximum

sensitivity, but the set-point following and the load disturbance rejection

tasks have been considered separately. Hence, these rules represent the an-

chor points of the Pareto fronts. Thus, it is worth considering them in order

to underlying the benefits of a balanced tuning that considers both tasks at

once;

• the intermediate tuning rules for integer order PID controller design proposed

in [4], denoted by α = 0.50, which means that the load disturbance and the

set-point responses are considered to be equally important. These rules, in

general, lead to high values of Ms. Indeed, the pure IAE optimization is

not sufficient to achieve good level of robustness. Hence, they have been

considered in the comparison in order to show the need of constraining the

value of Ms also in a balanced tuning framework.

Optimal tuning from [74] are considered because they provide the extremum opti-

mal cases but just considering one operational task for the control system. There-

fore the balanced tuning benefits should be faced against the eventual poor per-

formance when the loop operates on the task it was not designed for and, also

with the optimal one to evaluate the level of optimality achieved by the balanced

tuning. On the other hand, the tuning proposed in [4] has been choosen because it

follows similar spirit as the ones proposed here but without the MOO framework

and without considering robustness. Therefore some advantages of the current

proposal are to be advised. In order to thoroughly test the proposed method,
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three kinds of processes will be considered: a FOPDT process (with different nor-

malized dead times), a high-order process and a non-minimum-phase process. In

all cases, the processes are represented by FOPTD models with different instances

for the value of the normalized dead-time and also representing different kind

of plant-model mismatch (higher order and non-minimum phase dynamics). For

each process and for each tuning, with the exception of the rules proposed in[4], a

global performance index (GPI) has been computed by considering the obtained

IAE in both the servo and the regulatory tasks, the Ms and the TV of the control

variable for each task. Indeed, although it is clear that reducing the Ms (when

considering time delay processes) means also reducing the bandwidth, hence the

control effort, a direct evaluation of the control effort in terms of TV is interesting.

The proposed global performance index is computed by normalizing each perfor-

mance index (IAEsp , IAEld , TVsp , TVld and Ms) against its highest value, obtained

by ranging over the considered set of tuning rules. Then, the normalized indexes

are summed up and the result is eventually divided by the number of considered

performance indexes (5 in this case). In this way, the global performance index is

always between 0 and 1, where 1 is the worst possible tuning and 0 is the utopia

point.

Roughly speaking, the GPI is a compact index that synthesizes the radar plot

information. Hence, exactly as for the radar plot, it does not have an absolute

meaning; rather, it can be used to evaluate a given approach against a selected

benchmark tuning rules. In this context, the GPI and the radar plot are only

provided for the proposed rules and the ones of [74], aiming at evaluating the NS

against the Pareto front anchor points. On the contrary, the rules proposed in [4]

have such a different behavior that it can be appreciated directly from the tables

with results and from plot of the responses. Moreover, they would flat down all

the differences between the proposed balance tuning and the anchor points (recall

that the GPI is relative index) and for this reason they have not been included.

9.6.1 FOPDT processes

The following FOPDT processes are considered, where K = 1 and T = 1:

P4(s) =
1

s+ 1
e−0.67s, τ = 0.67, (9.21)
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P5(s) =
1

s+ 1
e−2.5s, τ = 2.5. (9.22)

First, the tuning rules for the Ms-range and Ms-value have been applied to the

process (9.21) and the resulting values of the controller parameters, of the inte-

grated absolute errors, the total variations and the maximum sensitivity for the

different cases are shown in Table 9.11. The process responses and the control

variables for the different cases and for both the set-point following and load dis-

turbance rejection tasks are plotted in Figure 9.5. In particular, the Ms-range case

is considered with the Ms-value cases for Ms = 1.4 and Ms = 2.0. In these latter

two cases the step responses obtained with the tuning rules proposed in this paper

(solid line) are compared with those obtained by applying correctly the tuning

rules specifically devised in [74] for a single task (dashed line) and with those that

are obtained by inverting the use of them, that is, the tuning rule devised for the

load disturbance is applied to the set-point following task and vice versa (dot-

ted line). In this way, the balancing of the tuning between the two tasks can be

clearly seen. Moreover, the performance obtained with the considered tuning rules

is compared in a synthetic way by means of the radar diagram in Figure 9.6 and

the corresponding global performance indices are shown in Table 9.12. Finally, a

deeper analysis has been carried out in order to show the effect of the selected Ms

on the process response; the results are shown in Figure 9.7, where the physical

meaning of the Ms choice appears.

Tuning rule Kp Ti Td µ λ IAEsp IAEld TVsp TVld Ms

Ms-range 1.36 1.11 0.19 1.12 1 1.02 0.82 30.26 1.40 1.66

Ms=1.4 0.97 1.04 0.20 1.12 1 1.26 1.11 18.94 1.17 1.40

Ms=2.0 1.67 1.02 0.21 1.11 1 1.04 0.65 43.31 2.03 2.00

SP 1.4 F 0.83 0.98 0.22 1.2 1 1.26 1.20 41.20 1.14 1.42

SP 2.0 F 1.26 1.03 0.27 1.2 1 0.92 0.83 78.80 2.06 2.15

LD 1.4 F 0.61 0.54 0.33 1.2 1 1.38 1.12 29.71 1.38 1.44

LD 2.0 F 0.91 0.52 0.38 1.1 1 1.15 0.70 24.50 1.65 1.95

α = 0.50 1.78 0.80 0.35 1 1 1.24 0.58 41.07 3.43 3.26

Table 9.11: Results related to P4(s) (τ = 0.67).
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Figure 9.5: Set-point and load disturbance step responses for P4(s). Solid line:
proposed tuning rules for FOPID controllers. Dash-dot line: tuning rules for
PID controllers proposed in [4]. Dashed line: tuning rules for FOPID controllers
proposed in [74]. Dotted line: tuning rules for FOPID controllers proposed in

[74] used for the other control task they have been devised.
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Figure 9.6: Radar diagram for P4(s)

Tuning rule GPI

Ms-range 0.65

SP 1.4 F 0.73

SP 2.0 F 0.87

LD 1.4 F 0.73

LD 2.0 F 0.69

Table 9.12: Global performance index for each tuning of P4(s)

Results related to the other FOPDT process (9.22) are shown in Table 9.13. The

process responses and the control variables for both the set-point following and

load disturbance rejection tasks are plotted in Figure 9.8. Further, the perfor-

mance obtained with the considered tuning rules is compared by means of the

radar diagram in Figure 9.9 and the corresponding global performance indices are

shown in Table 9.14.

A deeper analysis has been then carried out again in order to show the effect of the

selected Ms on the process response; the results are shown in Figure 9.10, where

the physical meaning of the Ms choice appears.
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Figure 9.7: Step responses for P4(s). Comparison between the tuning rules
for Ms-range and Ms-value case and the tuning rules proposed in [74]. (a)
Set-point following task. (b) Load disturbance rejection task. Solid red line:
Ms-range tuning. Solid blue lines: boundaries of the Ms-value tuning. Dashed
line: optimal tuning rules proposed in [74]. Dotted line: response obtained
using the tuning proposed in [74] for opposite operation mode. Dash-dot line:

intermediate tuning rules proposed in [4].
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Tuning rule Kp Ti Td µ λ IAEsp IAEld TVsp TVld Ms

Ms-range 0.57 1.95 0.62 1.06 1 3.46 3.44 11.17 1.42 1.68

Ms=1.4 0.37 1.63 0.70 1 1 4.51 4.50 5.21 1.07 1.41

Ms=2.0 0.69 2.01 0.66 1.03 1 3.32 2.99 14.03 1.94 2.00

SP 1.4 F 0.21 0.96 1.07 1.2 1 4.81 4.80 9.71 1.09 1.38

SP 2.0 F 0.35 1.03 1.31 1.2 1 3.40 3.27 19.33 1.94 2.08

LD 1.4 F 0.26 1.08 0.93 1.2 1 4.44 4.42 12.26 1.13 1.44

LD 2.0 F 0.53 1.40 0.90 1.2 1 3.40 2.96 32.59 2.57 2.34

α = 0.50 not applicable

Table 9.13: Results related to P5(s) (τ = 2.5).



Tuning rules for FOPID controllers 117

0 5 10 15 20
−1

−0.5

0

0.5

1

Ms − range

time

p
ro
ce
ss

v
a
ri
a
b
le

0 5 10 15 20
0

1

2

3

time

co
n
tr
o
l
v
a
ri
a
b
le

0 5 10 15 20

0

0.5

1
Ms − range

time

p
ro
ce
ss

v
a
ri
a
b
le

0 5 10 15 20

−1

−0.5

0

time

co
n
tr
o
l
v
a
ri
a
b
le

0 5 10 15 20
0

0.5

1

Ms = 1.4

time

p
ro
ce
ss

v
a
ri
a
b
le

0 5 10 15 20
0

1

2

3

time

co
n
tr
o
l
v
a
ri
a
b
le

0 5 10 15 20

0

0.5

1
Ms = 1.4

time

p
ro
ce
ss

v
a
ri
a
b
le

0 5 10 15 20

−1

−0.5

0

time

co
n
tr
o
l
v
a
ri
a
b
le

0 5 10 15 20
0

0.5

1

Ms = 20

time

p
ro
ce
ss

v
a
ri
a
b
le

0 5 10 15 20
−1

0

1

2

3

time

co
n
tr
o
l
v
a
ri
a
b
le

0 5 10 15 20

0

0.5

1
Ms = 2.0

time

p
ro
ce
ss

v
a
ri
a
b
le

0 5 10 15 20

−1

−0.5

0

time

co
n
tr
o
l
v
a
ri
a
b
le

Figure 9.8: Set-point and load disturbance step responses for P5(s). Solid line:
proposed tuning rules for FOPID controllers. Dash-dot line: tuning rules for
PID controllers proposed in [4]. Dashed line: tuning rules for FOPID controllers
proposed in [74]. Dotted line: tuning rules for FOPID controllers proposed in

[74] used for the other control task they have been devised.
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Tuning rule GPI
Ms-range 0.61
SP 1.4 F 0.66
SP 2.0 F 0.72
LD 1.4 F 0.66
LD 2.0 F 0.86

Table 9.14: Performance index for each tuning of P5(s)

Figure 9.9: Radar diagram for P5(s)
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Figure 9.10: Step responses for P5(s). Comparison between the tuning rules
for Ms-range and Ms-value case and the tuning rules proposed in [74]. (a)
Set-point following task. (b) Load disturbance rejection task. Solid red line:
Ms-range tuning. Solid blue lines: boundaries of the Ms-value tuning. Dashed
line: optimal tuning rules proposed in [74]. Dotted line: response obtained

using the tuning proposed in [74] for opposite operation mode.

From the obtained results it can be appreciated that the proposed approach is

effective and that the obtained results are very close and sometimes better in both

the objectives compared to the optimal ones achieved in [74]. Nevertheless, from

the comparison with the tuning rules specifically devised in [74] for a single task

(dashed line) and with those that are obtained by inverting the use of them, the
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Tuning rules Kp Ti Td µ λ IAEsp IAEld TVsp TVld Ms
Ms-range 0.73 4.87 1.46 1.09 1 7.42 6.98 9.81 1.16 1.68
Ms=1.4 0.49 4.17 1.53 1.06 1 8.91 8.79 6.18 1.04 1.42
Ms=2.0 0.88 4.83 1.55 1.07 1 7.29 6.36 11.31 1.38 1.98
SP 1.4 F 0.34 2.96 2.43 1.2 1 9.25 9.20 17.10 1.02 1.40
SP 2.0 F 0.54 3.15 2.97 1.2 1 6.88 6.48 26.78 1.14 2.00
LD 1.4 F 0.33 2.63 2.53 1.2 1 8.95 8.81 16.56 1.06 1.44
LD 2.0 F 0.59 3.07 2.62 1.2 1 7.28 6.40 29.50 1.35 2.00
α = 0.50 0.91 4.16 2.20 1 1 6.91 5.90 9.80 1.49 2.92

Table 9.15: Results related to the high-order process P6(s).

balancing of the tuning between the two tasks can be clearly seen.

9.6.2 High-order process

As another example, in order to verify the robustness of the proposed rules, the

following high-order process has been considered:

P6(s) =
1

(s+ 1)8
. (9.23)

In order to apply the tuning rules originally devised for FOPID controller, the

process has been modelled as a FOPDT process with K = 1, T = 3.06, L = 4.95

and τ = 1.62 (note that the process is therefore dead time dominant). Then,

the optimal tuning rules have been applied. The results obtained are shown in

Table 9.15 and in Figure 9.11. As for the previous process, the radar diagram

and the global performance index for the different considered tuning rules have

been determined. They are shown in Figure 9.12 and in Table 9.16, respectively.

From the obtained results it can be appreciated that the proposed approach gives

satisfactory performance and the sensitivity values are acceptable

9.6.3 Non-minimum-phase process

Finally, a non-minimum-phase process is considered:

P7(s) =
1− s

(s+ 1)3
. (9.24)
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Figure 9.11: Set-point and load disturbance step responses for P6(s). Solid
line: proposed tuning rules for FOPID controllers. Dash-dot line: tuning rules
for PID controllers proposed in [4]. Dashed line: tuning rules for FOPID con-
trollers proposed in [74]. Dotted line: tuning rules for FOPID controllers pro-

posed in [74] used for the other control task they have been devised.
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Figure 9.12: Radar diagram for the high-order process P6(s)

Tuning rule GPI
Ms-range 0.72
SP 1.4 F 0.81
SP 2.0 F 0.84
LD 1.4 F 0.80
LD 2.0 F 0.89

Table 9.16: Performance index for each tuning for process P6(s).

Tuning rules Kp Ti Td µ λ IAEsp IAEld TVsp TVld Ms
Ms-range 0.78 2.47 0.68 1.10 1 3.34 3.45 9.91 1.39 1.68
Ms=1.4 0.52 2.13 0.72 1.07 1 4.29 4.46 6.42 1.26 1.41
Ms=2.0 0.93 2.43 0.73 1.08 1 3.04 3.00 11.13 1.55 1.97
SP 1.4 F 0.37 1.57 1.01 1.2 1 4.46 4.66 16.11 1.24 1.39
SP 2.0 F 0.59 1.67 1.24 1.2 1 3.15 3.32 25.01 1.47 2.05
LD 1.4 F 0.35 1.33 1.10 1.2 1 4.32 4.45 15.16 1.30 1.43
LD 2.0 F 0.61 1.51 1.10 1.1 1 3.09 2.91 11.86 1.61 2.16
α = 0.50 0.97 2.09 1.09 1 1 2.78 2.87 10.60 1.85 2.90

Table 9.17: Results related to the non-minimum-phase process P7(s).

Again, the process has been modeled as a FOPDT process with K = 1, T = 1.62,

L = 2.39 and τ = 1.48. Then, the optimal tuning rules have been applied. Results

are shown in Table 9.17, the responses are plotted in Figure 9.13, the radar diagram

is in Figure 9.14 and the global performance indices are in Table 9.18.
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Figure 9.13: Set-point and load disturbance step responses for P7(s). Solid
line: proposed tuning rules for FOPID controllers. Dash-dot line: tuning rules
for PID controllers proposed in [4]. Dashed line: tuning rules for FOPID con-
trollers proposed in [74]. Dotted line: tuning rules for FOPID controllers pro-

posed in [74] used for the other control task they have been devised.
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Figure 9.14: Radar diagram for the non-minimum-phase process P7(s)

Tuning rule GPI
Ms-range 0.71
SP 1.4 F 0.81
SP 2.0 F 0.86
LD 1.4 F 0.80
LD 2.0 F 0.76

Table 9.18: Performance index for each tuning for process P7(s)

9.6.4 Discussion

According to the simulation results, it can be seen that the intermediate tuning

rules for PID controllers proposed in [4] achieve the best IAE performance for

all the simulated processes for the load disturbance rejection and also the best

IAE performance for set-point step response for P7(s). However, this comes at the

expense of a higher value of the maximum sensitivity and therefore of a higher con-

trol action (indeed, as already mentioned, the maximum sensitivity has not been

taken into account in the development of the intermediate tuning rules proposed

in [4]), as it can be observed by looking at the step responses. On the contrary,

the proposed tuning rules for the Ms-range case ensure a medium-high robustness

level (Ms ≈ 1.7) and also a smoother response for both operation modes (less

oscillations in the output response and a smoother control variable) in all the ex-

amples.

For the cases of Ms = 1.4 and Ms = 2.0, it can be noticed that using the tuning

rules for the Ms-value case, in all the processes the set-point step response shows

an overshoot, but not significantly higher than the one obtained with the rules

for FOPID controllers proposed in [74]. However, in the load disturbance step
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Figure 9.15: The Pareto front for the Ms-valued case, Ms = 1.7.

response, the rules for the Ms-value cases provide less oscillations in comparison

with the rules proposed in [74]. Furthermore, it can be observed that, for P6(s)

and P7(s), the optimal values of each operation mode with the rules in [74] are

similar to those obtained with the Ms-value rules.

In general, it appears that the proposed rules are effective, especially consider-

ing their simplicity: indeed, the user is not forced to decide which task (servo or

regulatory) is more important. Indeed, both operation modes are balanced in an

optimal way by choosing the Nash solution.

It is also interesting to note that the value of Ms obtained by using the Ms-range

tuning is quite close to 1.7, especially for processes with τ > 1 (see Figure 9.3). In-

deed, the NS in the Ms-range case is optimally balanced between three objectives,

namely the set-point following, the load disturbance rejection and the robustness.

By considering the results in Figure 9.4, as well as the simulation results, it turns

out that there is no point in further increasing the value of Ms after 1.7 since

the performance improvements are minimal in spite of the loss of robustness. As

a final consideration, it is interesting to note that, for the normalized dead time

greater than 2 (τ = 2) the Pareto front curve (surface, in the Ms-range case)

approximation tends to collapse into a single point (curve, in the Ms-range case)

as it can be observed in Figure 9.15, where only the case Ms=1.7 is considered

for the sake of readability (but the other cases lead to similar results). Hence,

the trade-off between load disturbance rejection and set-point following task is no

longer appreciable for high delays and the optimal tuning for pure load disturbance

rejection tends to coincide with the one for pure set-point following.
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9.7 Summary

A set of optimally balanced tuning rules for FOPID controllers has been presented

in this paper. Based on a MOOD procedure, the problem of tuning the FOPID

controller with several requirements is addressed. Such procedure implemented

a multi-stage approach into a MOO process in order to improve the convergence

properties for the Pareto front approximation. The primary goal of this work has

been to minimize the IAE for either the load disturbance rejection task and the

set-point following task with a constraint on the maximum sensitivity.

The obtained rules have the valuable features to be able to take into account at

once both the servo and the regulatory modes in an optimal way. Moreover, the

user can select the desired level of robustness or keep it between given bounds

depending on his/her preferences.

The performance assessment for both cases has been presented. This allows the

designer to know in advance the performance index he/she will obtain and evaluate

if the performance obtained with an existing controller can be improved.
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Chapter 10

Conclusions and perspectives

It is worth stressing to mention that the controller design is not a

simple task. The designer should consider the controlled process

dynamic characteristics, the stability of the system, the opera-

tion modes, the performance requirements and others. The main

objective of this thesis is to provide a methodology to addresses

controller tuning, involving different trade-off in order to improve

the performance of the control system. The contributions of this

thesis were commented in Chapter 1, and a brief summary have

been provide in each chapter. This chapter summarizes the main

conclusions and some perspective for the future work.

10.1 Conclusions

This thesis deals with controller tuning problems by implementing the Multi-

objective Optimization Design (MOOD) procedure [88]. As it was mentioned

before, this procedure consist in three steps:

• Multi-objective Problem (MOP): definition of the problem (decision space,

variables and constraints).

• Multi-objective Optimization (MOO) process: optimizer to execute (the de-

signer looks for desirable characteristic)

• Multi-criteria decision making (MCDM) stage: selection of one point from

the Pareto front approximation according to the designer preferences.

129
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This procedure have been implemented along all the development of this work,

first because offers a good balance between the competitive objectives and helps

the designer to analyze in a better way different trade-off that the controller faces.

The thesis has been divided in three parts. The first part, presented the fun-

damentals of the control system showing and discussing the different trade-offs

between performance/robustness and servo/regulation operation modes. On the

other hand a background on MOO has been provided. It has been pointed out,

that the controller design have a muti-objective nature. Hereafter, an optimizer

capable of searching for the optimal space in order to obtain a reliable Pareto set

approximated was selected a deterministic algorithm, the Normalized Normal Con-

straint (NNC) algorithm for the MOO process, which generate a well distributed

set of solutions even in numerically demanding situations.

In the second part, Chapter 4 introduces the Nash solution as a MCDM technique,

to select a point from the Pareto front that represent the best compromise among

the design objective. This solution provides a semi-automatic selection from the

Pareto front approximation and offers a good trade-off between the goal objectives.

Hereafter, in Chapter 5 a Multi-stage approach for the MOO process is presented.

This approach involves two algorithms: the NNC and the a Multi-objective Dif-

ferential Evolution algorithm with Spherical Pruning (sp-MODE). The first one

in charge of searching for the convergence area (local search) and the other it is in

charge of the global search. This approach allows both algorithms to complement

each other in despite of their drawbacks and improve the results of the overall

optimization in terms of convergence and accuracy. Further, the introduction of

reliability based objective into the MOP is carried out, to measure the perfor-

mance degradation. It is worth while to mention that, due to the existence of

uncertainties in real-world designing and manufacturing having this design objec-

tive will give another perspective to the designer. The idea of using this objective

is to minimize the deviation from the achieved nominal performance, by using

the Montecarlo sampling approach. Nevertheless, the Multi-stage approach will

reduce the numerical burden associated with the generation of the Pareto front

approximations for reliability problems. In order to validate the approach, in

Chapter 6 two different case studies has been considered, the Boiler control prob-

lem for controller tuning and as second case, a non-linear Peltier Cell. In both

cases a MOOD procedure using a Multi-stage approach for the MOO process and

a reliability-based optimization design for controller tuning have been applied, as
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it can be see it for the result this approach improve the convergence properties

and reliable solutions for the Pareto Set approximation.

In the third part of this thesis, the application to the controller tuning have been

presented. First, a set of tuning rules based on the NS for a 2DoF proportional-

integral (PI) controller have been devised, where the robustness/performance

trade-off have been considered. For this case, NNC algorithm for the MOO process

was implemented. Moreover, as a second case it is presented a tuning for 1DOF

proportional-integral-derivative (PID) controller where the trade-off of the per-

formance/robustness and servo/regulation operation mode have been considered.

The tuning rules proposed for PI and PID controllers offers a range of maximum

sensitivity Ms from [1.4, 2.0].

Finally in Chapter 9, in order to find the best parameters for the fractional-order-

PID (FOPID) controller, the MOOD procedura have been applied by using the

Multi-stage approach for the MOO process. The obtained rules have the valuable

features to be able to take into account at once both the servo and the regulatory

modes in an optimal way. Moreover, the user can select the desired level of robust-

ness or keep it between given bounds depending on his/her preferences. Further,

the performance assessment for both cases has been presented. This allows the de-

signer to know in advance the performance index he/she will obtain and evaluate

if the performance obtained with an existing controller can be improved.

An important aspect of this devised tuning rules for PI, PID and FOPID controllers

is that all of them were parameterized using the same form for the equations of

the controllers parameters, this allows to keep simple expressions that can be easy

to implemented for the users.

10.2 Perspective

There are always improvements or extensions which can be addressed to continue

working. Some ideas are detailed below:

• Applying the Multi-stage approach on MIMO system as has been seen, this

work has concentrated on SISO systems and the design for the multivariable

case it will be an interesting challenging.
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• The devised tuning rules for PI and PID controllers are constrained to an

interval of robustness level [1.4, 2.0]. It will be interesting to obtain tuning

rules for each value of this interval, meaning that the designer can choose

which level of robustness he/she requires.

• In Chapter 7, the designing of the PI controller tuning rules concentrates

on the load-disturbance performance; another extension work that it can be

done is to consider the set-point performance.

• Extension to FOPID controller for integrator-plus-dead-time (IPDT) pro-

cesses. Generation of tuning rules based on IPDT processes.

• Implementation of the MOOD procedure, in order to improve the perfor-

mance of the control loops in mechatronic systems considering the multidis-

ciplinary nature of them.

• Extension to feedforward feedback scheme. Development simultaneous tun-

ing rules for both controllers, feedback and feedforward, but a sequential

one.
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visualization and dimension reduction in many-objective optimization. In-

formation Sciences, 298:288–314, 2015.
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