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“My dear, here we must run as fast as we can, just to stay in place. And if you

wish to go anywhere you must run twice as fast as that.”

Red Queen

(Through the Looking-Glass, Lewis Carroll)
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A tots els companys de la carrera. Esmentant-ne alguns, a l’Eulàlia, a la Núria,
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Al Kung Fu. Al meu sifu, José Pinto. Al Dr. Rafa i a la resta de germans del

Hung Gar.

A tots els amics de tota la vida. Pel suport, pels ànims i pel vostre afecte.
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Part I

INTRODUCTION
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Chapter 1

Introduction to cellular

decision making

How do cells decide to perform a certain function instead of another? How

a wide range of different cell types arises from a single one in order to form

a multicellular organism? The dynamics of these biological processes involves

networks of interactions and the integration of external stimuli. Nonlinear be-

haviours underlie these processes. Furthermore, these cellular decisions take

place in cellular environments where the discrete nature of biochemical reac-

tions and thermal fluctuations are relevant. Both nonlinearities and stochastic-

ity motivate the study of cellular decision making using approaches from the

field of Physics.

The cell is the unit of life of the living beings. Cells, either as unicellular or-

ganisms or as part of a tissue of a multicellular organism, can perform different

functions thanks to their capability of changing their expression state. The

transport of molecules, vesicle formation, enzyme synthesis are some examples

of these functions (Alberts et al., 2008). These functions are not necessary per-

manently active, and their activation is triggered by intracellular or extracellular

stimuli.

The turning on and off of some of these functions can be univocally determined

by the environment: i.e., in the face of a certain condition, cells perform a certain

specific response. However, cells can also show multiple behaviours under the

3



4 Introduction to cellular decision making

same stimulus or environment. Hence, two types of processes by which cells can

change of state can be distinguished: those where the response is completely

determined by the signals perceived by the cells (induced change) (Alberts et al.,

2008), and those where the different responses under the action of signals have

a probabilistic rule (cellular decision making) (Perkins and Swain, 2009; Balazsi

et al., 2011).

Cellular decision making processes are ruled by stochastic dynamics since, under

the same conditions, cells can choose between different states (defined through

the functions the cell performs or by its expression profile). These decisions can

happen spontaneously due to stochastic effects, or being induced by intra, extra

or intracellular stimuli that interact with the dynamics of the cell.

The main goal of this thesis is to understand general aspects of cellular deci-

sion making processes from a theoretical point of view. To do so, we make use

of Dynamical Systems tools in order to connect the properties of the decision

with the relevant dynamical behaviour of the system while it is being made.

This dynamical behaviour is dependent on signals that modify some parame-

ters that control the interaction between the variables involved in the decision.

We analyse the properties of cellular decisions in two systems: a system with

cell-autonomous dynamics (Chapters 3 and 4), and a system of interacting cells

in which the decision is made jointly by all the tissue (Chapter 5). Despite

the strong difference in spatial coupling, both systems share similarities in the

circuit architecture of the interactions that describe the dynamics. Before fo-

cusing on our results on cellular decisions, in Chapter 2 we review some general

aspects of a genetic circuit that exhibits this type of architecture and on deci-

sion making processes. Finally, we tackle a particular question that arises in a

decision made by the parasite that causes malaria in humans (Chapter 6).

This chapter reviews the biological concepts that underlie cellular decision mak-

ing processes, giving some examples of cellular decisions (Section 1.1). Further-

more, it introduces a theoretical approach to study cellular decision making in

order to understand general aspects of theses processes (Section 1.2).
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1.1 Cell states, signals and stochasticity

A cell state can be defined by certain levels of gene expression that determine

which proteins are being produced and at which rate. Proteins are macro-

molecules that perform many functions within cells. These functions include

catalysis of metabolic reactions, DNA regulation, response to external stimuli,

and transport of molecules (Alberts et al., 2008).

The protein levels of a cell depend on how the genetic information is regulated.

The protein synthesis involves two main steps that are described by the Central

Dogma of Molecular Biology: Transcription and Translation (Alberts et al.,

2008). Several factors can regulate these two processes, e.g., RNA interference,

chromatin modifications or transcription factors. Transcription factors are pro-

teins that, alone or as part of a complex, promote – activate – or block – inhibit

– the reading of specific genes. According to this, the synthesis of a certain pro-

tein can be regulated by the action of other proteins (including itself). These

interactions define a network that is described by the biochemical regulation

between the different proteins encoded in the genetic information of the cell.

For instance, taking into account that the production of transcription factors is

also regulated by transcription factors, a transcriptional network with the genes

as nodes and the interactions between their products as edges can be defined

(Alon, 2007b; Tyson and Novak, 2010). The dynamics resulting from these

regulations are relevant for cell state transitions and cellular decision making

processes.

1.1.1 Cell-autonomous decisions

Several cellular decisions have been studied in very different biological systems,

where cells integrate stimuli to make the decision (Losick and Desplan, 2008;

Balazsi et al., 2011). We denominate cell-autonomous decision the cellular de-

cision that is independent of the choice of the other cells of the population.

Cell-autonomous decisions are recurrently observed in unicellular organisms,

but the development of multicellular organisms also poses some examples of

them (Losick and Desplan, 2008; Balazsi et al., 2011). Given a certain stim-

ulus, the responses each cell performs are determined by probabilities – that

do not depend on the state of the other cells. Consequently, if all the cells are
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under the effect of the same signal, the resultant cell population gives rise to

a stochastic pattern where all the final cell types involved in the decision are

distributed randomly (Losick and Desplan, 2008). Otherwise, if the external

signal is heterogeneous, cells can be distributed cell-autonomously according to

a spatially ordered pattern (Wolpert, 1969), for instance. In this case, although

the cells exhibit different responses, this variety of responses is a readout of the

variety of the signal (induced change). So, these processes can not be classified

as cellular decision making.

Cell-autonomous decision making has been deeply studied in bacteria. Differ-

ent cell states have been characterized in B. subtilis (Kearns and Losick, 2005;

Maamar and Dubnau, 2005; Suel et al., 2006; Maamar et al., 2007; Suel et al.,

2007; Lopez et al., 2009) and E. coli (Balaban et al., 2004; Lewis, 2007) in re-

sponse to different environmental stress conditions. In higher order organisms,

the maturation process of Xenopus laevis oocytes is a paradigmatic example

of a two fate cell-autonomous decision, where an homogeneous population of

immature oocytes gives rise – driven by a progesterone signal – to a hetero-

geneous population where some oocysts have become mature and the others

have not (Ferrell and Machleder, 1998; Xiong and Ferrell, 2003). A similar phe-

nomenon happens in HL60 cells (neutrophil precursor cells in mammals), where

DMSO signal (dimethyl sulfoxide) induces a cell-autonomous decision whereby

some HL60 cells differentiate into neutrophils (Chang et al., 2006). Despite the

fact that cell-autonomous decisions are common in single cell systems, tissue

formation also sets some examples of them. For instance, photoreceptor cells

that compose the complex eye of Drosophila melanogaster larva choose between

either become yellow or pale (Mikeladze-Dvali et al., 2005; Wernet et al., 2006;

Vasiliauskas et al., 2009; Graham et al., 2010). This decision gives rise to a

stochastic pattern where these two cell types are randomly distributed. The

choice of olfactory receptors in the walls of the nasal cavity in mouse form a

stochastic pattern as well (Mombaerts, 2004).

Plasmodium falciparum, one of the parasites that causes malaria in humans, also

poses an example of cell-autonomous decision making. During the bloodstream

stage of this parasite, it presents to states: merozoite and gametocyte. Each

merozoite proliferates in the blood and, at each proliferation cycle, it stochas-

tically chooses between remaining as a merozoite or becoming a gametocyte-

committed cell (Bousema and Drakeley, 2011; Kafsack et al., 2014). In this
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thesis we are going to study this example of cell-autonomous decision.

Although bacteria are unicellular organisms, they have a mechanism of com-

munication between them that can modulate the changes of state of the other

bacteria of the colony. This prokaryotic mechanism of communication is called

quorum sensing and it relies on the production, spreading through diffusion and

sensing of small biomolecules. Bacteria integrate these molecules to know the

size of the colony and use this number – as an external signal – to decide their

fate. Several decisions are controlled by a quorum sensing mechanism: compe-

tence activation, sporulation and virulence among others (Bassler and Losick,

2006; Lopez et al., 2009). Because of this mechanism of communication, these

decisions may not be classified as entirely cell-autonomous.

1.1.2 Pattern formation

In multicellular organisms, cells are usually arranged according to certain spatial

distributions to form tissues. The functions and the shapes of these tissues

depend on the spatial arrangement of different cell types. In this thesis, we name

patterns these spatial distributions of cell types. We have already reported in

the previous section that stochastic patterns can arise from autonomous cellular

decisions (Losick and Desplan, 2008). However, pattern formation typically

requires some spatial information or cell-to-cell communication.

Several strategies are recurrently used for pattern formation in development

(Salazar-Ciudad et al., 2003; Morelli et al., 2012; Rue and Garcia-Ojalvo, 2013).

One early question that arised in pattern formation is which mechanism can let

the cells know their spatial position. Lewis Wolpert in 1969 proposed a mech-

anism by which cells could know their spatial position according to gradients

of certain diffusive molecules (morphogens) (Wolpert, 1969, 1971). Morphogen

gradients are present during several development processes and they are usually

generated through diffusion from a source of cells in the boundaries of the tissue

(Gilbert, SF, 2006). Cells change of fate according to the concentration of mor-

phogen they detect, with a threshold-like mechanism, for instance. Therefore,

the fate reached by a cell is completely determined by the signal it receives (e.g.

the morphogen concentration). In other words, for a given signal value, a cell

does not choose among distinct cell fates (it is an induced change).
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Despite the fact that diffusion can typically homogenize heterogeneities, Alan

Turing, in 1952, pointed that it can also drive pattern formation (Turing, 1952;

Murray, 2002). According to Turing’s study, reaction-diffusion systems of inter-

acting chemical species that have different diffusion coefficients can destabilize

the homogeneous starting state and give rise to a pattern. Two decades later

(1971), Meinhardt and Gierer extended the mechanism (also so-called as Gierer-

Meinhardt patterns) by identifying two key ingredients: a short range activator

and a long range inhibitor (Gierer and Meinhardt, 1972; Meinhardt, H, 1982).

Another mechanism that drives pattern formation is by direct cell-to-cell com-

munication. Patterns that arise from this mechanism are fine-grained and are

produced by the interaction between membrane molecules in neighbouring cells.

Lateral inhibition is a paradigmatic example of this interaction where a cell pre-

vents its adjacent cells to choose its own fate. Notch signalling pathway has been

identified as a recurrent lateral inhibition mechanism that gives rise to pattern

formation during animal development (Collier et al., 1996; Eddison et al., 2000;

Oates et al., 2012; Neves et al., 2012; Formosa-Jordan et al., 2013; Petrovic

et al., 2014; Hamada et al., 2014). This lateral inhibition mechanism amplifies

the stochastic differences between statistically identical cells in order to give

rise to two distinct cell types.

Some patterning processes take place in a more complex manner, with dif-

ferent mechanisms – like those mentioned above – working together (see, for

instance,(Salazar-Ciudad et al., 2003; Formosa-Jordan et al., 2012; Marcon and

Sharpe, 2012; Green and Sharpe, 2015)).

1.1.3 Signals, multistability and network motifs

The probability of each choice of a cellular decision is often controlled by a

signal that induces this decision. These inductive signals can have different

origins. For instance, changing environments drive unicellular organisms to

make decisions about their current state (McClean et al., 2007; Acar et al.,

2008; Kuchina et al., 2011). For these unicellular organisms, the response in

front of this external information may be crucial in order to optimize their

survival or to improve the competence of each individual. Furthermore, cells

within multicellular organisms also receive inductive signals that make them

decide too about changing their current state (Chang et al., 2006, 2008; Kalmar
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et al., 2009). This occurs during differentiation of developing organisms. In this

section we describe how a signal can affect the system in order to drive a change

of state.

In the 40’s, Conrad H. Waddington proposed the epigenetic landscape metaphor

to illustrate cell differentiation processes during development (Waddington,

1957). The Waddington landscape idea describes a developing cell as a ball

rolling down a landscape, from the top of the hill down into the valley. During

this process, several bifurcations take place, representing cellular decisions dur-

ing development. The bottom of each valley would corresponds to a cell state,

while the valley describes the basin of attraction of this cell state. According to

Waddington landscape metaphor, the number of available cell states increases

during development (from monostability to multistability).

Stuart Kauffman showed that interactions between genes produce attractors of

the dynamics (Kauffman, 1969a,b). He showed that even a very large network

only exhibits a few number of stable dynamics. These results suggest that the

network of interactions that regulates gene expression within cells converges to

few different attractors, defining several but not infinite number of different cell

states.

According to the interpretations of Kauffman and Waddington on cell states,

cellular decision making can be described as a transition that modifies the num-

ber of valleys of the landscape – in the metaphor of Waddington – or the number

of stable behaviours of a network – in the Kauffman interpretation.

The multistability present in the above interpretations and required for cellular

decision making arises from the circuitry or wiring of interactions and from the

nonlinearity of these interactions, when viewed in terms of multiple attractors

of the dynamics of interacting elements. These nonlinearities arise from the

type of biochemical reactions taking place.

Topological analysis of the transcriptional networks of E. coli and yeast has

shown that there are some molecular circuits with recurrent architectures (Alon,

2007b). These sub-grafs are called network motifs and their isolation and their

study can be important in order to understand the behaviour of a transcription

network as a whole. Since the study of transcriptional networks started, sev-

eral network motifs have been characterized (Tyson et al., 2003; Alon, 2007a;

Davidson, 2010).
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One of the simplest and most abundant network motif is negative auto-regulation

(negative feedback loop) in which a transcription factor represses its own pro-

duction. It has been shown – both theoretically and experimentally – that this

motif can perform two important regulatory functions: to reduce fluctuations

and to accelerate the response to a signal(Alon, 2007a). Another very frequent

network motif is positive auto-regulation (positive feedback loop), where a gene

product promotes its own expression. The dynamical features exhibited by this

second motif are somehow opposite to those of negative auto-regulation, i.e, it

increases response times and fluctuations (Alon, 2007a). Another important

property of the positive auto-regulation architecture is the capability to per-

form a bistable response when nonlinearities in the dynamics are strong enough

(Alon, 2007a).

Crosslinked interactions, in which two transcription factors are involved, each

one promoting or inhibiting the production of the second one, have been also

characterized and found in transcriptomes (Gardiner, 2005; Mikeladze-Dvali

et al., 2005; Kalmar et al., 2009). Negative cross-regulation – also known as

mutual inhibition – is an example of these architectures. In this circuit, each

gene product inhibits the expression of the other gene. So, each species pro-

motes its own production by inhibiting its inhibitor. The mutual inhibition

motif corresponds to a positive feedback loop architecture, like positive auto-

regulation, and so, it can elicit bistable responses as well (Ackers et al., 1982;

Tian and Burrage, 2006).

Crossed inhibition circuits have been also characterized in tissues where each

cell interacts with its neighbours. Lateral inhibition is an example whereby a

cell of the tissue prevents expression of a certain protein in the adjacent cells

(Artavanis-Tsakonas et al., 1999; Schwanbeck et al., 2011; Andersson et al.,

2011). These interactions are driven in several differentiation processes in ani-

mals by Notch pathway. When all cells interact with each other through lateral

inhibition, spontaneous symmetry breaking driving periodic patterning, arising

from small variability between cells, can occur (Collier et al., 1996; Wearing

and Sherratt, 2001; O’Dea, R. D. and King, J. R., 2011, 2012). Spontaneous

pattern formation arises from the linear destabilization of the homogeneous so-

lution, where all the cells of the tissue are in the same state (Murray, 2002;

Cross and Greenside, 2009). Additionally to this crossed inhibition (trans in-

teraction), it has been also studied theoretically the different solutions of the
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system when a kind of auto-activation (cis interaction) is present (Sprinzak

et al., 2010, 2011; Formosa-Jordan and Ibañes, 2014).

1.1.4 Stochasticity in cellular decisions

Molecular reactions that rule cellular decisions, as many cellular processes, take

place in a stochastic environment due to thermal fluctuations. Because of this

noise, cells, even under the same exact conditions, can behave differently. This

noise has been classified in two types according to its source: intrinsic and ex-

trinsic noise. Intrinsic noise is the dynamical noise produced by the randomness

associated to the reactants meeting in the molecular reactions. Low copy num-

bers of the species involved in the reactions increases this noise. The extrinsic

noise comes from differences between cells in concentration and localization of

the substances involved in gene regulation (Elowitz et al., 2002). Heterogeneous

populations can be originated by an identical signal because of these sources of

stochasticity (Ishimatsu et al., 2013).

While some cellular processes are performed by mechanisms that reduce the

effects of noise (Becskei and Serrano, 2000; Koseska et al., 2009; Sokolik et al.,

2015), others make use of it and take advantage of this stochasticity to drive

the cellular decision (Mombaerts, 2004; Balaban et al., 2004; Acar et al., 2005;

Wernet et al., 2006; Maamar et al., 2007; Suel et al., 2007; Acar et al., 2008;

Losick and Desplan, 2008; Beaumont et al., 2009; Balazsi et al., 2011; Weber

and Buceta, 2011, 2013; Kafsack et al., 2014). For instance, noise can increase

the sensibility of some decisions as a kind of stochastic resonance (Wiesenfeld

and Moss, 1995; Maamar et al., 2007; Suel et al., 2007). In pattern formation

processes that arise from destabilization of a homogeneous state of the tissue,

noise is essential to drive the small differences required to trigger patterning.

These small differences are then amplified by the specific pattern formation

mechanism (Meyer and Roeder, 2014). This coexistence of different cell types

in an organized pattern within a tissue gives rise to complex structures, such

as organs, that perform emergent behaviours. Also from the perspective of the

individual cells, stochasticity contributes favourably to cellular decision mak-

ing by allowing for multiple responses under the same conditions. It has been

studied that stochastic differentiation takes place when cells are unable to fully

adapt to their environment. This happens when they have to decide between
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two mutually exclusive functions that, nevertheless, are both crucial for sur-

vival. Parasites that cause malaria, for instance, have to choose between the

proliferating state or the transmissible differentiated state in the bloodstream

stage. This decision is driven by a purely stochastic epigenetic mechanism (Kaf-

sack et al., 2014) whereby the parasite population is heterogeneously distributed

between these two states. A similar case is found in Cyanobacterias. It requires

both photosynthesis and nitrogen fixation and both functions are exclusive.

They solve this dilemma by dedicating a cell subpopulation entirely to nitrogen

fixation while the rest performs the photosynthesis (Wolk, 1996). It remains un-

clear if this decision is purely cell-autonomous. Galactose switch in yeast offers

an example where the probabilistic behaviour of the decision is observed along

time by a stochastic switching (Acar et al., 2008; Frigola et al., 2012). In this

example, cells are exposed to a mixture of low glucose and high galactose and so

they choose between either utilizing the limited amount of glucose or growing

on galactose (Acar et al., 2005). Another stochastic-driven phenomenon is bet

hedging (Balaban et al., 2004; Losick and Desplan, 2008; Beaumont et al., 2009).

This strategy consists in hedging the range of responses in order to ensure that

a certain subpopulation could survive if the environment conditions suddenly

change. This mechanisms have been studied in deep in bacteria (Balaban et al.,

2004; Beaumont et al., 2009).

1.2 Methodological approach of cellular decision

making

In the last decade, the new techniques of visualization that have provided quan-

titative data in several biological processes, in combination with new genetic

tools, have both strongly promoted a cross-communication with theoretical ap-

proaches coming from disciplines such as Physics. This new approach, char-

acterized by mathematical and computational modelling of biological systems

together with quantitative data, to unravel the complexities of living organisms

has been defined as Systems Biology (Alon, 2007b). Systems Biology addresses

the study of complex biological systems using a holistic approach which focuses

on the emergent properties of the system. Multidisciplinariety is also a common,

even defining, feature of Systems Biology, using tools that were traditionally as-

sociated to other disciplines such as Mathematics or Physics.
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As many other processes approached by Systems Biology, using the tools of

Dynamical Systems (Strogatz, 1994), cell-autonomous decision making driven

by signals have been studied from the theoretical point of view (Guantes and

Poyatos, 2008; Huang et al., 2007; Huang, 2009; Verd et al., 2014; Hong et al.,

2011, 2012; Pfeuty, 2012; Pfeuty and Kaneko, 2009; Machens et al., 2005). Ac-

cording to it, cellular decisions may be described as transitions between different

attractors of the dynamics. The number of attractors available to a system is

determined by its set of parameter values as well as by its interactions (network

or circuit architecture). Changes in the value of some of these parameters (con-

trol parameters), can result in changes in the attractors of the system: some

attractors can disappear, some new attractors can appear and/or the attractors

can change their state variable values. In this context, cell state transitions

can be driven by signals which change a control parameter and, hence, the

number of attractors of the system (Huang et al., 2007; Guantes and Poyatos,

2008; Pfeuty and Kaneko, 2009; Hong et al., 2011; Ferrell, 2012; Hong et al.,

2012). These changes of the number of attractors driven by inductive signals

have been also experimentally observed in systems where both monostable or

bistable regimes are found (Ishimatsu et al., 2013; Bhalla et al., 2002). In de-

cision making processes driven by signals, the temporal profile of these stimuli

is also relevant to determine the final response of the system (Werner et al.,

2005; Wong and Wang, 2006; Nene and Zaikin, 2012; Nené et al., 2012; Nené

and Zaikin, 2013; Palau-Ortin et al., 2015).

Deterministic differential equations describe the dynamics of a system and the

stable states in a regime where the noise contributions are negligible. However,

cellular decision making processes take place in a noisy environment, where fluc-

tuations are inherently associated to their dynamics. Hence, cellular decision

making processes, where noise is relevant, have to be modelled using stochas-

tic methods to describe the dynamics. There are different methods to model

stochastic systems (Gardiner, 2005; Van Kampen, 2007). In this section we

are going to briefly review three stochastic methods: Markov chains, Master

equations and Stochastic differential equations.

A Markov chain is a random process that describes the probability of discrete

variables (e.g. number of cells, number of molecules) over discrete time variable

(i.e. step, cycle, etc). Any Markov chain verifies the so-called Markov prop-

erty that claims that the next state depends on the current state and not on
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the sequence of events that preceeded it (Van Kampen, 2007; Wilkinson et al.,

2006). This stochastic description is typically used for purely stochastic pro-

cesses whose temporal variable is discrete (see Chapter 6 of this thesis). Systems

with continuous-time evolution can be described by the continuous-time version

of the Markov chain model (Wilkinson et al., 2006).

Master equations are used to describe stochastic processes continuous in time

of discrete (or continuous)-state variables (e.g. number of molecules) that can

be modelled by the probabilistic switching between states (Van Kampen, 2007).

The equations are the variation over time of the conditional probability that

the system occupies one state at a given time provided it was in a given state

in a previous time. The dynamics are markovian. Daniel Gillespie presented

in 1976 an algorithm to implement biochemical reactions in terms of how the

number of molecules changes over time according to the probability per unit

of time each reaction has to occur (Gillespie, 1977). This method is a kind of

kinetic Monte Carlo method for simulating the dynamics of discrete numbers

of reactants.

Langevin equation are stochastic differential equations – proposed by Paul

Langevin in 1908 – that describe the time-evolution of a system by adding

a perturbational term (noise term) to the deterministic version of the equation.

Langevin equations model processes where both the variable that defines the

system state and the temporal variable are continuous (Van Kampen, 2007).

The dynamics of the noise term is faster than the dynamics of the system vari-

ables and it is responsible of the stochastic nature of the Langevin equations.

Gaussian noises with no auto-correlation between any two time interval describe

also markovian processes.

In this Thesis all these methods have been used and hence it constitutes an ex-

ample of how these different stochastic procedures can describe cellular decision

making processes.



Chapter 2

An exploration of the

mutual inhibition with

auto-activation motif

2.1 Introduction

In this Chapter we present an exploration of a simple network motif that involves

two molecular species, X and Y. These species are regulated by mutual inhibition

with auto-activation. Consequently, from the point of view of each gene of the

motif, they are in a double positive feedback loop architecture (Fig. 2.1). The

main feature of this motif is the richness of the different stability regimes it

exhibits (Guantes and Poyatos, 2008). In addition, this motif underlies several

cell state transitions in different organisms and systems (Huang et al., 2007;

Guantes and Poyatos, 2008; Kalmar et al., 2009; Strasser et al., 2012; Hong

et al., 2012; Ishimatsu et al., 2013; Lu et al., 2013; Verd et al., 2014).

The motivation of this Chapter is to review the dynamics of a transcriptional

mutual-inhibition with auto-activation motif in order to introduce the cellular

decision making studies included in Chapters 3 and 4. The focus is on multi-

stability, since it is a key ingredient to characterize decisions driven by signals

that change a parameter value. Furthermore, this Chapter reviews previous

15
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Figure 2.1 Mutual inhibition with auto-activation motif. Schematic rep-
resentation of the interactions between two molecular species, X and Y. They
interact through mutual-inhibition (blunt black arrows) and have a positive auto-
regulation (grey arrows). The network motif without auto-activation is also called
toggle switch. Hence, the mutual inhibition with auto-activation motif can be
named: toggle switch with auto-activation.

studies of cellular decision making that have been done in the framework of

this motif (Huang et al., 2007; Guantes and Poyatos, 2008; Nene and Zaikin,

2012; Nené et al., 2012). To this end we make use of a stochastic model for this

circuit motif. An adiabatic approximation of a set of biochemical reactions that

can account for the deterministic dynamics of this model is presented, compar-

ing two different derivations. Then, we computationally explore results known

about cellular decision making to contextualize our studies in Chapters 3, 4 and

5.

2.2 From reactions to equations

Different biochemical reactions can drive the same network motif. For instance,

there are several ways a reactant (X) can inhibit another one (Y). To name a

few:

• by binding the promoter sites of the inhibited reactant (Y) and reducing its

expression. Since this mechanism blocks the transcription of the sequence

that encodes the gene (Y), it is so-called transcriptional inhibition.

• by activating a pathway which drives degradation of the inhibited reac-

tant protein (Y). This mechanism is a post-translational inhibition, since

neither the transcription nor the translation of the gene is affected but its

product.

• by sequestering and by forming a non-functional heterodimer (X-Y). This

inhibition also takes place after translation (post-translational).
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We focus our study in genetic interactions through gene products (proteins) and

promoter binding sites (i.e. second example of the list). So, the products of the

genes (X and Y) act as transcription factors.

In the toggle switch with positive auto-regulation (Fig. 2.1), in addition to

the cross-inhibition between both reactants, each reactant strengthens its own

expression attaching to their promoter binding sites. In this scenario, different

mechanisms of integrating the inhibitory and auto-activatory regulations have

been characterized by different authors. Specifically, the activator and the in-

hibitor can share the same promoter binding sites (Guantes and Poyatos, 2008;

Nené et al., 2012), or they can have specific independent binding sites (Huang

et al., 2007). We implemented the motif with the first interpretation: The ac-

tivator and the inhibitor bind the same promoter sites. Yet, the results are not

expected to depend strongly on the chosen interpretation.

The model implemented describes the motif of mutual inhibition with positive

auto-regulation as described by Guantes and Poyatos (2008). In this model,

there are two proteins (X and Y ) that dimerize (cooperativity of second order)

interacting with the free binding sites of the promoter of the genes encoding

these proteins (Px and Py). Different complexes arise as a result of these bind-

ings: PxX2, PyY2, PxY2 and PyX2. The interaction of these proteins with the

promoter regions changes the production rate of the mRNAs encoding proteins

X and Y (Mx and My) with respect to the basal mRNA transcription rate.

Specifically, the following reactions have been taken into account, as described

by Guantes and Poyatos (2008):

• Promoter–TF binding/unbinding:

Px + 2X
K+−−−−⇀↽−−−−
K−

PxX2

Py + 2Y
K+−−−−⇀↽−−−−
K−

Py Y2

Py + 2X
K+−−−−⇀↽−−−−
K−/σ

PyX2

Px + 2Y
K+−−−−⇀↽−−−−
K−/σ

Px Y2

(2.1)
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• mRNA dynamics:

Px
βx−−−→ Px + Mx Py

βy−−−→ Py + My

PxX2
ρ βx−−−−→ PxX2 + Mx Py Y2

ρ βy−−−−→ Py Y2 + My

Mx
δm−−−→ ∅ My

δm−−−→ ∅
(2.2)

• Protein dynamics:

Mx
γ−−→ Mx + X My

γ−−→ My + Y

X
δ−−→ ∅ Y

δ−−→ ∅,
(2.3)

where for the sake of simplicity, the same values for the rates (K+, K−, σ, ρ,

δm, γ, δ) for both X and Y proteins have been considered. All bindings of the

transcription factors to promoters are considered, for simplicity, to occur at the

same rate. σ measures the ratio between the dissociation rates of a binding

mediating auto-activation over the one mediating cross-inhibition. Notice that

dimerizations are not taken into account as independent reactions (e.g. X+X →
X2) and, instead, they are included in the promoter binding reactions (reactions

(2.1)). The auto-activation strength is controlled by ρ parameter (ρ > 1).

Reactions (2.1)-(2.3) are translated into ordinary differential equations (ODE)

according to the mass action-kinetics,
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d[X]

dt
= γ [Mx]− δ [X] + 2K−([PxX2] +

[PyX2]

σ
)−

−2K+ V
2 [X]2 ([PTx ] + [PTy ]− [PxX2]− [PxY2]−

−[PyY2]− [PyX2])

d[Y ]

dt
= γ [My]− δ [Y ] + 2K−([PyY2] +

[PxY2]

σ
)−

−2K+ V
2 [Y ]2 ([PTx ] + [PTy ]− [PxX2]− [PxY2]−

−[PyY2]− [PyX2])

d[Mx]

dt
= βx([PTx ] + (ρ− 1) [PxX2]− [PxY2])− δm [Mx]

d[My]

dt
= βy([PTy ] + (ρ− 1) [PyY2]− [PyX2])− δm [My]

d[PxX2]

dt
= K+ V

2 [X]2 ([PTx ]− [PxX2]− [PxY2])−K− [PxX2]

d[PyY2]

dt
= K+ V

2 [Y ]2 ([PTy ]− [PyY2]− [PyX2])−K− [PyY2]

d[PxY2]

dt
= K+ V

2 [Y ]2 ([PTx ]− [PxX2]− [PxY2])−K−
[PxY2]

σ

d[PyX2]

dt
= K+ V

2 [X]2 ([PTy ]− [PyY2]− [PyX2])−K−
[PyX2]

σ
,

(2.4)

with all the variables in concentrations by dividing the number of molecules

by the cell volume (V ) re-scaled through Avogadro’s number and where we

considered that there is a fixed number of binding sites for each promoter (PTx

and PTy ),





PTx = Px + PxX2 + PxY2

PTy = Py + PyY2 + PyX2 .
(2.5)

Protein dynamics in cells are commonly slower than those of mRNA (Garcia-

Ojalvo, 2011). In addition, the dynamics of binding and unbinding are faster

than translation processes. We assume a clear time scale separation between

these processes in order to perform an adiabatic approximation. To do so,
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we first define the dynamics of total proteins X and Y . This is because the

dynamics of free proteins (see Eqs. (2.4)) involve both fast and slow processes,

whereas those of the total protein amounts are only slow. These new variables

are:





[Xtotal] = [X] + 2
(

[PxX2] + [PyX2]
)

[Ytotal] = [Y ] + 2
(

[PyY2] + [PxY2]
) (2.6)

The model of Eqs. (2.4) is re-written according to these two new variables as:





d[Xtotal]

dt
= γ [Mx]− δ

(
[X]total − 2 [PxX2]− 2 [PyX2]

)

d[Ytotal]

dt
= γ [My]− δ

(
[Y ]total − 2 [PyY2]− 2 [PxY2]

)

d[Mx]

dt
= βx([PTx ] + (ρ− 1) [PxX2]− [PxY2])− δm [Mx]

d[My]

dt
= βy([PTy ] + (ρ− 1) [PyY2]− [PyX2])− δm [My]

d[PxX2]

dt
= K+ V

2
(

[Xtotal]− 2 [PxX2]− 2 [PyX2]
)2

([PTx ]−

−[PxX2]− [PxY2])−K− [PxX2]

d[PyY2]

dt
= K+ V

2
(

[Ytotal]− 2 [PyY2]− 2 [PxY2]
)2

([PTy ]−

−[PyY2]− [PyX2])−K− [PyY2]

d[PxY2]

dt
= K+ V

2
(

[Ytotal]− 2 [PyY2]− 2 [PxY2]
)2

([PTx ]−

−[PxX2]− [PxY2])−K−
[PxY2]

σ

d[PyX2]

dt
= K+ V

2
(

[Xtotal]− 2 [PxX2]− 2 [PyX2]
)2

([PTy ]−

−[PyY2]− [PyX2])−K−
[PyX2]

σ
,

(2.7)
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We choose 1/δ as a characteristic slow time scale (δ � K−, K+, βx, βy, δm,

and γ ∼ δ). A dimensionless time t′ is defined as t′ = t δ. We also define the

quotient ε ≡ δ
K−

.

We rewrite Eqs. (2.7) by introducing ε and t′,





d[Xtotal]

dt′
=

γ

δ
[Mx]− [Xtotal] + 2 [PxX2] + 2 [PyX2]

d[Ytotal]

dt′
=

γ

δ
[My]− [Ytotal] + 2 [PyY2] + 2 [PxY2]

ε
d[Mx]

dt′
=

βx
K−

([PTx ] + (ρ− 1) [PxX2]− [PxY2])− δm
K−

[Mx]

ε
d[My]

dt′
=

βy
K−

([PTy ] + (ρ− 1) [PyY2]− [PyX2])− δm
K−

[My]

ε
d[PxX2]

dt′
= K V 2

(
[Xtotal]− 2 [PxX2]− 2 [PyX2]

)2

([PTx ]−

−[PxX2]− [PxY2])− [PxX2]

ε
d[PyY2]

dt′
= K V 2

(
[Ytotal]− 2 [PyY2]− 2 [PxY2]

)2

([PTy ]−

−[PyY2]− [PyX2])− [PyY2]

ε
d[PxY2]

dt′
= K V 2

(
[Ytotal]− 2 [PyY2]− 2 [PxY2]

)2

([PTx ]−

−[PxX2]− [PxY2])− [PxY2]

σ

ε
d[PyX2]

dt′
= K V 2

(
[Xtotal]− 2 [PxX2]− 2 [PyX2]

)2

([PTy ]−

−[PyY2]− [PyX2])− [PyX2]

σ
,

(2.8)

where K ≡ K+

K−
is the equilibrium constant. In the adiabatic limit we have

ε → 0. By imposing this limit in Eqs. (2.8), the right-hand side of the last six

equations becomes zero, and the two first equations for the total amounts are

well-behaved. The adiabatic approximation on the last six equations set the

equilibrium values of [PxX2], [PxY2], [PyY2], [PyX2], [Mx] and [Mx],
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[Mx] =
βx
δm

(
[PTx ] +

(
ρ− 1

)
[PxX2]− [PxY2]

)

[My] =
βy
δm

(
[PTy ] +

(
ρ− 1

)
[PyY2]− [PyX2]

)

[PxX2] =
[PTx ]K V 2 [X]2

1 +K V 2 [X]2 + σK V 2 [Y ]2

[PyY2] =
[PTy ]K V 2 [Y ]2

1 +K V 2 [Y ]2 + σK V 2 [X]2

[PxY2] =
[PTx ]K V 2 σ [Y ]2

1 +K V 2 [X]2 + σK V 2 [Y ]2

[PyX2] =
[PTy ]K V 2 σ [X]2

1 +K V 2 [Y ]2 + σK V 2 [X]2
,

(2.9)

expressed in terms of X and Y as in Eqs. (2.4).

We now want to extract d[X]
dt′ and d[Y ]

dt′ . To this end, we take into account that

(using the definition in Eq. (2.6)),





d[X]

dt′
=

d[Xtotal]

dt′
− 2

d[PxX2]

dt′
− 2

d[PyX2]

dt′

d[Y ]

dt′
=

d[Ytotal]

dt′
− 2

d[PyY2]

dt′
− 2

d[PxY2]

dt′
.

(2.10)

d[Xtotal]
dt′ and d[Ytotal]

dt′ are obtained from the two first equations in (2.8) by replac-

ing the equilibrium expressions of [PxX2], [PxY2], [PyY2], [PyX2], [Mx] and [Mx]

(Eqs. 2.9) into them. The time derivatives of the complexes with the bound

promoters are obtained by derivating the equilibrium expressions (2.9) through

application of the chain rule (e.g. d[PxX2]
dt′ = ∂[PxX2]

∂X
dX]
dt′ + ∂[PxY2]

∂Y
dY ]
dt′ ). After

some algebra, the following version of the model in the adiabatic approximation

is obtained:
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dx

dt′
=

M1(x, y)

P2(x, y)M1(x, y)− P1(x, y)M2(x, y)

( d̃x
dt′

)

+
−M2(x, y)

P2(x, y)M1(x, y)− P1(x, y)M2(x, y)

( d̃y
dt′

)

dy

dt′
=

−P1(x, y)

P2(x, y)M1(x, y)− P1(x, y)M2(x, y)

( d̃x
dt′

)

+
P2(x, y)

P2(x, y)M1(x, y)− P1(x, y)M2(x, y)

( d̃y
dt′

)
,

(2.11)

where x = V
√
K [X], y = V

√
K [Y ] are the protein concentrations in dimen-

sionless units, M1,2(x, y) and P1,2(x, y) are defined as,





M1(x, y) = 1 +
4
√
K

V
y

(
[PTy ]

(
1 + σ x2

)
(
1 + y2 + σ x2

)2 +
[PTx ]σ

(
1 + x2

)
(
1 + x2 + σ y2

)2

)

M2(x, y) = −4 σ
√
K

V
x2 y

(
[PTx ]

(
1 + x2 + σ y2

)2 +
[PTy ]

(
1 + y2 + σ x2

)2

)

P1(x, y) = −4 σ
√
K

V
y2 x

(
[PTy ]

(
1 + y2 + σ x2

)2 +
[PTx ]

(
1 + x2 + σ y2

)2

)

P2(x, y) = 1 +
4
√
K

V
x

(
[PTx ]

(
1 + σ y2

)
(
1 + x2 + σ y2

)2 +
[PTy ]σ

(
1 + y2

)
(
1 + y2 + σ x2

)2

)

(2.12)

and the expressions of
( d̃x
dt′

)
and

( d̃y
dt′

)
read





( d̃x
dt′

)
= ax

1 + ρ x2

1 + x2 + σ y2
− x

( d̃y
dt′

)
= ay

1 + ρ y2

1 + y2 + σ x2
− y,

(2.13)

where ax and ay are defined as,
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ai =
βi γ V [PTi ]

√
K

δ δm
, (2.14)

with i ∈ {x, y}.

Expression of Eqs. (2.13) corresponds to what we would have found if d[PxX2]
dt =

d[PxY2]
dt =

d[PyY2]
dt =

d[PyX2]
dt = d[Mx]

dt =
d[My ]
dt = 0 had been considered in Eqs.

(2.4). Notice that the version of the model of Eqs. (2.11) tends to the reduced

version (Eqs. (2.13)) when M1(x, y) → 1, M2(x, y) → 0, P1(x, y) → 0 and

P2(x, y)→ 1.

In the following section we explore the agreement between the model of Eqs.

(2.11) and the reduced version of the model described by the Eqs. (2.13).

2.3 The reduced version of the adiabatic ap-

proximation

We compare the two versions of the model: The version derived by the whole

procedure, Eqs. (2.11), and its reduced version, Eqs. (2.13) (reduced version).

We explored differences between both versions of the model for three parameter

values that drive different number of stable solutions: three (tristability, Fig.

2.2A-B), two (bistability, Fig. 2.2C-D) and one (monostability, Fig. 2.2E-F).

Results of Figure 2.2 reveal that there are no relevant differences between both

versions of the model. These differences are reduced for low values of promoters

(PTx and PTy ).

Differences between both model versions are only significant along curves that

can be identified as the nullclines (see the nullclines in Fig. 2.3A-C). These large

differences come from the singularity where the derivative of either x or y tends

to zero. These differences, however, do not affect the temporal evolutions of both

model versions simulated through a Runge-Kutta of fourth order (dt = 0.001).

Taking into account that both versions of the model behave without any evident

difference for a reasonable range of promoter values, we are going to approach

the deterministic dynamics of the system through the reduced version of Eqs.

(2.13). Unless specified, the results of the other sections of this chapter are

generated using this model, already presented in (Guantes and Poyatos, 2008).
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A

C

E

B

D

F

Figure 2.2 Comparison between two adiabatic reductions. (A-F, Left)

Quotients (top) dx
dt′ /(

d̃x
dt′ ) and (bottom) dy

dt′ /(
d̃y
dt′ ) across the space of x and y values

in greyscale (colour bar; black colour corresponds to values ≥ 0.2). dx
dt′ and dy

dt′

are defined as in Eq. (2.11), and ( d̃x
dt′ ) and ( d̃y

dt′ ) as in Eq. (2.13). (A-F, Right)
Dynamics over time of each dimensionless variable, x(t′) and y(t′), comparing
the two adiabatic reductions (lines for Eq. (2.11) and crosses for Eq. (2.13)) for
three different initial conditions. (A,B) Tristable regime for ax = ay = 1. (C,D)
Bistable regime for ax = ay = 0.2. (E,F) Monostable regime for ax = ay = 0.14.
(A,C,E) for PTx = 1. (B,D,F) for PTx = 1. Other parameters of the simulations:
σ = 0.2, ρ = 10, δ = 1, γ = 10 , K = 10−5, V = 10. Grid size of the heat maps,
100× 100.
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2.4 Multistability

Taking into account that cellular decision making involves more than one avail-

able choice, multistability is a common feature of the mechanisms which control

cellular decision making. Multistability is a property usually exhibited by non-

linear systems. It is known that Eqs. (2.13) exhibit multiple stable states for

the same parameter values (Guantes and Poyatos, 2008). In these equations,

the nonlinearities required for multistability come from the dimerization and

from promoter saturation. Figure 2.3A-C shows the stationary behaviour of

the reduced model (Eqs. (2.13)) for the three different values of ax and ay

explored in Fig. 2.2: ax = ay = 1 (Fig. 2.3A), ax = ay = 0.2 (Fig. 2.3B) and

ax = ay = 0.14 (Fig. 2.3C). x and y nullclines (Strogatz, 1994) (dx/dt = 0,

dy/dt = 0) are shown. Stability of the stationary states of the system has

been evaluated by computing the temporal evolution of the perturbed station-

ary solutions through a deterministic algorithm that numerically integrates the

dynamics (4th order Runge-Kutta with time step dt = 0.001). The basins of

attraction denote the initial condition values of the phase portrait that evolve

to a certain steady solution. The manifolds dividing the basins of attraction

of Fig. 2.3A-C have been calculated by time reversal integrations started at

the unstable points. The temporal evolutions simulated in Fig. 2.2 confirm

that the final solution is determined by the initial condition as corresponding

to the basins of attraction in Fig. 2.3. Notice also that unstable solutions can

be reached due to the deterministic nature of the algorithm (Fig. 2.2C-D).

The number of attractors – and their values – of the dynamics is controlled by

the parameter values. We explore ax,ay parameter values, which in Eqs. (2.13)

are the dimensionless maximal production rates (Fig. 2.3D-E). The bifurcation

diagram (Fig. 2.3D) shows the value of x at both the stable and unstable

stationary solutions as parameter a = ax = ay varies. The stability of the

stationary solutions has been numerically checked as described above. Fig.

2.3E shows the number of stable stationary solutions across the ax,ay parameter

space. Both Figs. 2.3D-E show different stability regimes of the model, where

one, two or three solutions are stable. This parameter space is dynamically

explored in Chapters 3 and 4.
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Figure 2.3 Exploring the multistability exhibited by the deterministic
dynamics of the motif. (A) Tristable regime (ax = ay = 1.0), with three
stable states: LHA, HLA, HHA. (B) Bistable regime (ax = ay = 0.2), with two
stable states: LHB , HLB . (C) Monostable regime (ax = ay = 0.14), with a single
stable state: LLC . (A-C,top) x-nullcline (dx/dt = 0, solid lines) and y-nullcline
(dy/dt = 0, dashed lines). Stable (filled squares) and unstable (empty squares)
states are depicted. (A-C,bottom) The basin of attraction (different colours) of
each stable state (filled squares). Manifolds, separating the basins of attraction,
are depicted when more than one basin is present (solid line). (D) Bifurcation
diagram of X protein steady states with a = ax = ay as a control parameter. Solid
and dashed lines are the stable and unstable branches respectively. (E) Regions
in the ax–ay parameter space with three (III, black), two (II, dark grey) or one
(I, light grey) stationary stable solutions. This panel was generated by evaluating
the number of stationary stable solutions for 150× 150 ax,ay values ranging from
0.001 to 1.2 distributed in a square grid. Other parameters of the model in all
panels are σ = 0.2 and ρ = 10.
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2.5 A stochastic dynamics for the toggle switch

with auto-activation

Cellular decision making involves different responses under the same conditions.

This is because the reactions that rule cellular processes have a stochastic na-

ture. The stochasticity arises from the discrete nature of matter, and involves

the randomness of the meeting of the reactants for reactions to occur, low copy

numbers of the species that participate in these reactions and binding/unbinding

energies of reactions of the order of thermal energies of the cellular environment.

Despite the fact that the deterministic model informs on the average behaviour

of the system, a stochastic model adds details about the heterogeneous responses

of a population of cells which evolve under the same conditions. Moreover, for

low copy number of the reactants, transition probabilities of each reaction per

unit of time can give a more accurate description of the system than reaction

rates.

We considered a phenomenological stochastic model for the toggle switch with

auto-activation, described by the following probabilities in terms of Gillespie

algorithm (Gillespie, 1977):





P1(X → X + 1) =

ax V√
k

V 2 + kρX2

V 2 + kX2 + kσY 2

W (X,Y )

P2(X → X − 1) =
X

W (X,Y )

P3(Y → Y + 1) =

ay V√
k

V 2 + kρY 2

V 2 + kY 2 + kσX2

W (X,Y )

P4(Y → Y − 1) =
Y

W (X,Y )
,

(2.15)

where X and Y are the molecule number of each specie (X = x V√
k

and Y =

y V√
k

) and k is the equilibrium constant (k = K V 2). The molecule number mod-

ification of each reaction is denoted between parentheses. W (X,Y ) is the nor-

malization function that guarantees that

4∑

i=1

Pi = 1. According to the Gillespie

algorithm, which reaction occurs next is decided stochastically from the above
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probabilities. The time at which this reaction happens is determined stochasti-

cally too from an exponential distribution with characteristic time 1/W (X,Y ).

This model sets a phenomenological stochastic description of the mutual in-

hibition between X and Y and their auto-activation. Additionally, it can be

understood as the stochastic version of the adiabatic limit of reactions (2.1)

and (2.3), given by Eqs. (2.13) (Rao and Arkin, 2003). This stochastic model

is also used in Chapters 3 and 4. In the following, this stochastic model is used

to review some properties of cellular decision making processes. Despite the

stochastic simulations are performed with the molecule number of the proteins,

X and Y , results of this chapter and of Chapters 3 and 4 are expressed with

dimensionless units, x and y.

2.6 The motif as a model for cellular decision

making studies

Due to not only the recurrence of the toggle switch with auto-activation motif

in cellular decision making processes, but also the to richness of the different

stability regimes exhibited by it, it has been theoretically studied by several

authors in order to understand general aspects of these decisions (Guantes and

Poyatos, 2008; Huang et al., 2007; Nené et al., 2012). In all these studies, the

induction of the decision is driven by a signal that controls some parameters of

the dynamics.

Huang et al. (2007) described the decision that takes place during blood cell

differentiation through a mutual inhibition and auto-activation motif. The

(myeloid) precursor cells decide between two fates: erythroid/megakaryocyte

and myelomonocytic lineages. These two cell fates exhibit a low value of one

protein and a high value of another one (PU.1 and GATA1), while the precur-

sor cell has similar levels of both proteins. The authors explain the decision by

means of two stability regimes. Initially, the precursor cells are in a steady state

characterized by similar levels of both proteins (symmetric state). The decision

inductor changes permanently the initial stability regime to a new bistable one

where this symmetric steady state is destabilized and two new asymmetric sta-

ble states (each with only one of the two proteins in high amounts) are created.
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Figure 2.4 Permanent signals that drive two-fate cellular decision
making. (A,B; Top) Initial (left) and final (right) phase portrait (top). (A,B;
Bottom) Initial (left) and final (right) protein distribution (in dimensionless units)
of the cellular population. (A) The signal drives a bifurcation from a monostable
regime (ax = ay = 0.14) to a bistable one (ax = ay = 0.2). The initial cell
population is at the monostable stationary state LL1. The final cell population is
distributed between the two new cell states: LH2 (black line); HL2 (grey shade).
(B) The signal drives a bifurcation from a tristable regime (ax = ay = 1) to a
bistable one (ax = ay = 0.2). The initial cell population is at the HH3 steady
state value of the tristable regime. The final cell population is distributed between
the two new cell states: LH2 (black line); HL2 (grey shade). In A and B, the sig-
nal is applied at t = 20 and it abruptly (step-function) changes the value of the
parameters from the initial (ax = ay = 0.14 or ax = ay = 1) to the final values
(ax = ay = 0.2). Other parameters: tfinal = 70, σ = 0.2, ρ = 10, K = 10−5,
V = 10.

This permanent change of the stability regime – driven by a permanent param-

eter change – makes cells decide between these two new asymmetric states. We

reproduce the main idea of their work – adapted to the model of Eqs. (2.15)

– in the results of Fig. 2.4. Figure 2.4 shows that a two-state population can

arise from a rather homogeneous one if the initial state is destabilized by a pa-

rameter change. This occurs either if the initial stability regime is monostable

(Fig. 2.4A) or if it is tristable (Fig. 2.4B).

The cellular decision not only depends on the initial and final stability regimes,

but also on the intermediate regimes explored by the system. Guantes and

Poyatos (2008) explored in their work how different decisions can be driven by

different transient signals. They defined two transient signal types: (i) differen-

tial duration signals, which modify identically two parameters but with different



Chapter 2. Mutual inhibition with auto-activation motif 31

duration and (ii) differential strength signals, which modify asymmetrically two

parameters during the same time. Their results introduce two cellular decisions

controlled by the two type of signals described: decision of changing of state or

remaining at the initial one; decision of choosing between two new states (while

the initial state is finally unpopulated). They explored the dependency of the

final selection on the asymmetry of the signal (either duration or strength). We

have reproduced some of their main results in Fig. 2.5A.

The research of Nené et al. (2012) sheds light on how the path on the param-

eter space favours a certain cell fate selection. They built a parameter change

profile whose speed controls the path described by the system until reaching the

final stability regime. The speed difference between the two control parameters

determines, not only the asymmetry of stability regime transiently explored,

but also the time spent by the system there. Nené et al. implemented contin-

uous functions to describe the parameter changes. Herein, we reproduce the

basic elements of their conclusion by implementing the stochastic model of Eqs.

(2.15) with two discontinuous changes of the parameters such that the asym-

metry these changes drive and their duration are decoupled (Fig. 2.5A). We

set the system to start at the steady symmetric value of a monostable regime,

to transiently explore another monostable regime where the stable state is not

perfectly symmetric, and to finally reach a bistable regime. The results of Fig.

2.5A confirm – as the work of Nené et al. showed – that both the asymmetry

of the transient state and the transient duration of the intermediate stability

regime favour one cell fate over the other. Nené et al. (2012) revealed that

the final decision is determined not only by the initial and the final parameter

values, but also by the way that the parameters evolve from the initial values

to the final ones.

2.7 Discussion

In this Chapter we explored a common network motif underlying cell state

changes that involves two auto-activating genes interacting with mutual-inhibition.

We used a phenomenological simple stochastic description of these interactions,

which can also be understood as an adiabatic limit of a set of potential biochem-

ical reactions. We offered two descriptions of the adiabatic limit and showed

they are rather equivalent.
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A B

Figure 2.5 The path on the parameter space can favour a certain
cell fate selection. (A) Selection rate of the LH state (RLH) after a tran-
sient signal that modifies ax and ay parameters. The transient signal modifies
both parameters with a temporal delay (∆τ = τy − τx, τx = 140) (top) or with
a differential strength (∆a = ay − ax, ax = 0.2) (bottom). Differential duration
signals (top) generate a tristable regime when the signal modifies both param-
eters (ax = ay = 0.8), and a monostable regime (ax = 1,ay = 0.8) when the
signal only affects one parameter. Differential strength signals (bottom) gener-
ate transiently (τ = 140) a bistable regime. (B) The signal drives first a change
from a symmetric (ax = ay = 0.14) to an asymmetric monostable regime and
afterwards to a bistable regime (ax = ay = 0.2). (Top) Phase portrait at initial
(left), intermediate (middle) and final (right) times. The asymmetric monostable
regime lasts a time τ . Two asymmetric monostable regimes: ax = 0.14, ay = 0.17
(top central phase portrait) and ax = 0.14, ay = 0.185 (bottom central phase
portrait) are shown. Notice how the difference between ax and ay controls the
asymmetry of the LL1 state (x = y line is depicted in white). (Bottom) Initial
(left) and final (right) distributions for three transient conditions: ax = 0.14,
ax = 0.17, τ = 5 (light grey shade); ax = 0.14, ax = 0.17, τ = 0.1 (black line);
ax = 0.14, ax = 0.185, τ = 5 (dark grey line). Other parameters: tfinal = 50,
σ = 0.2, ρ = 10, K = 10−5, V = 10. Simulations of panel A have been computed
with 1000 temporal evolutions started at the HH state of the tristable regime
(ax = ay = 1). Simulations of panel B have been performed with 10000 temporal
evolutions.
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The rich range of stability regimes that this system is able to produce make it a

good candidate to study cellular decision making processes. We have reported

three cellular decision making studies developed with this network motif (but

with different mathematical formulations) in which cellular decision making is

induced by a dynamical signal. The features of the signal determine the stability

regime during its effect. The main conclusions of relevance for the work in this

Thesis are: (1) Cellular decision making requires a multistable regime to drive

different responses (Huang et al., 2007; Guantes and Poyatos, 2008; Nené et al.,

2012); (2) Not only the initial and the final stability regime determine the final

selection, but also the intermediate stability regimes (Guantes and Poyatos,

2008; Nené et al., 2012); (3) The asymmetry of a transient stability regime and

the time spent by the system there can favour a certain final cell fate (Guantes

and Poyatos, 2008; Nené et al., 2012); (4) A transient change of the stability

regime can drive a permanent cell change (Guantes and Poyatos, 2008).
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Chapter 3

Cellular decision making

involving two cell types

3.1 Introduction

As reviewed in the previous chapter, cellular decisions can be classified according

to the cell states involved before and after the decision, and depend on the

action of the inductive signal. In other words, not only the initial and the final

attractors of the dynamics are important, but also the attractors – and the

phase space – which are transiently available to the system while the signal

is taking place. Our study in this Chapter shows which different properties

are conferred by each signal, suggesting different scenarios in which each signal

may act. Conversely, our study reveals some of the properties to look for in a

cellular decision making process in order to unveil which phase space changes

is the signal driving and hence learn more about the system dynamics.

Since the dynamics of the biochemical motif toggle switch with auto-activation

(3.1A, reviewed in the previous Chapter) underlie many cellular decision making

processes, we selected it for the study presented herein. This dynamics drives

a variety of stable stationary states (Section 2.4 of Chapter 2, Fig. 2.3). As in

the previous Chapter, these states have been termed according to the value of

both proteins (X and Y), denoting with “L” a low value and with “H” a high

37
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A

B

C

Figure 3.1 Description of the 2-state cellular decision making. (A)
Toggle switch with auto-activation motif. The two proteins, X and Y, are being
auto-activated (black arrows) and cross-inhibited (blunt black arrows). The signal
(S) transiently represses (blunt red arrows) both proteins. (B) The cell is initially
at the symmetric cell state HH (grey) and, after a transient signal application
(red arrow), decides between two cell states: The former HH state (grey), or the
new LH state (yellow). (C) The initial population of cells is homogeneous, with
all the cells in the same state (grey). After the signal application (red arrow),
the population becomes heterogeneous, with two cell states involved (grey and
yellow).

value: LL, LH, HL and HH. Notice that hereafter we use the term “cell” to

refer to the system made only of the toggle switch with auto-activation.

We focused on decisions in which a cell decides to either remain as it is or to

change of state upon a transient signal (Fig. 3.1B,C). We name it 2-state deci-

sion. As reviewed in the previous Chapter, transient changes in the parameter

values of the dynamics driven by transient signals can drive cells to change from
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one state to another one when cells are in a multistable scenario. This is so be-

cause the transient signal enables them to partially explore the space of possible

states. This exploration is partial since it is constrained by the transient signal

itself, which enables some explorations but not others. This aspect is constantly

present in this Chapter. Specifically, we consider that the parameter values of

the cell dynamics in the absence of signal enable three stable states (HH, LH

and HL). Yet, one of these states (HL) is never observed during the decision.

We implemented two distinct dynamical mechanisms that drive the 2-state de-

cision. At the biochemical level, both mechanisms can be thought of being

identical, the only difference being their actual quantitative value. Moreover,

the probability of the decision to change of state depends on the strength of

the signal in a similar manner in both mechanisms. Hence, if this probability

is the only measure being done (in terms of ratios of cell populations) both

mechanisms may seem identical. However, from the dynamical point of view,

the two mechanisms are very distinct since each of them drives very different

phase space changes. We analyse which properties confers each process and how

these depend on its dynamical characteristics.

3.2 The model and the signals

We studied the cell-autonomous decision in which a cell can either remain in the

same state or change to a new state as a result of a transient signal (Fig. 3.1B-

C). It was assumed that cell states can be characterized by the stable attractors

of the dynamics of two molecules, X and Y. The two proteins were chosen to

interact through the well-known toggle switch with auto-activation (Fig. 3.1A)

and intrinsic noise in their dynamics was taken into account. Specifically, the

stochastic dynamics were modelled according to Eqs. (2.15) in Chapter 2. To

unravel how transient (versus non permanent) signals drive cellular decision

making, we chose a regime of parameter values in the absence of signal that

sustains three stable states (HH, HL, LH) and corresponds to ax = ay = 1,

σ = 0.2 and ρ = 10 for the deterministic dynamics (Fig. 3.2A, Eqs. 2.13).

We checked that for the stochastic dynamics with K = 10−5 and V = 10, no

stochastic switching between these states occurs for the long time periods being

explored (t = 10000).
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HH was chosen as the initial cellular state (hereafter precursor state) (Fig.

3.2A). This choice can be justified in some contexts like in stem cell differen-

tiation (Huang et al., 2007; Guantes and Poyatos, 2008). We focused on the

decision to remain in this HH state or to change to the LH state (Fig. 3.1A).
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Figure 3.2 Monostable and multistable signals. (A) Phase portrait of x
and y variables in the absence of signal (ax = ay = 1). Three stable states: LH,
HH, HL (purple squares), and their basins of attraction (yellow, white and green,
respectively) are depicted. (B) The transient signal reduces ax (dashed line) and
ay (solid line) and places the system either in a transient monostable regime (IS) or
in a new multistable regime (IIIS). τ is the signal duration and ∆a = ay−ax is the
signal strength. (C, E) Phase portrait driven by the (C) monostable (ax = 0.14)
or (E) multistable (ax = 0.4) signal showing the stable stationary states (squares)
and their basins of attractions (colours). The manifolds of the tristable regime
in the absence of signal are depicted by dashed lines. (C, left) for ∆a = 0.0305
and (C, right) for ∆a = 0.04. The signal strength ∆a controls the asymmetry of
the LL stable state, such that it is located outside (left) or inside (right) the LH
basin of attraction of the tristable regime without signal. (E) The signal strength
∆a controls the stability and number of states (left for ∆a = 0.043, and right
for ∆a = 0.061). (D, F) Bifurcation diagrams of the steady solutions of x versus
the ay parameter for (D) ax = 0.14 and (F) ax = 0.4. In D, the inset (red)
corresponds to an amplification of ax ∈ [0.16, 0.19] range, where a bistable regime
is found. Despite of this bistable regime, the system behaves as monostable due to
the similarities between the two stable states. In F, the shadow denotes a bistable
regime, where the missed stable branch acts as a ghost state. In D and F, stable
solutions are represented with solid lines, and unstable ones with dashed lines.
All these panels correspond to the deterministic dynamics of Eqs. (2.13).

We set the signal to decrease the effective production of the two molecular

species, by reducing the value of ax and ay (Fig. 3.2B), as previously done

(Guantes and Poyatos, 2008). Since we are working with a non dimensional

model, this change could arise in several different ways, by increasing the degra-

dation rates of the molecules or by decreasing the transcription or translation

rates, for instance (see the definition of ax,y in terms of dimensional parame-

ters given in the previous chapter, below Eqs. (2.15). We simplified the signal

dynamics, assuming it is much faster than the dynamics of the system, and

modeled it as step-like changes (Fig. 3.2B). The transient signal was then

characterized by three parameters: the change the signal drives in ax, the dif-

ference in change it drives between ax and ay, what we termed signal strength

(∆a = ay − ax) following the nomenclature by Guantes and Poyatos (2008),

and the signal duration (τ) (Fig. 3.2B). All situations we considered have ∆a

small compared to the change of value the signal drives on ax. Also, in order

to induce the transition to the LH state and not to the HL state, we considered

only ∆a ≥ 0.

As Figure 2.3 shows, the number of stable fixed point attractors depends on ax

and ay. Specifically, for ax = ay, the number of stable fixed points decreases to
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two and one when ax decreases (Figure 2.3D). According to this, we designed

two types of transient signals which should drive the same decision of whether

to remain as an HH cell or to change to a LH cell. The first type of signal

designed drives a bifurcation to a monostable regime (ax = 0.14, ay ≥ 0.14,

Fig. 3.2C-D). We named this signal as monostable signal. The second type of

signal designed maintains the tristable regime (ax = 0.4, ay > 0.4) but changes

the relative stability of the states, stabilizing the LH-like state with respect to

an HH-like one (Fig. 3.2E-F). The signal that drives this mechanism is called

multistable signal.

3.3 Results

3.3.1 Two mechanisms to drive the same decision

We applied the two types of signals on a population of N statistically identical

cells each. First, to ensure that initially all cells were statistically identical,

albeit they were heterogenenous because of their stochastic dynamics, we let the

N initial values of both molecular species X and Y to stochastically evolve (each

with a different seed of the random number generation algorithm) until t = 20,

reaching the stationary initial distribution corresponding to the HH state. The

signal was then applied at time t = 20 and lasted τ . Once the signal was removed

from the system, the cells evolved during 50 units of time with the parameter

values of the initial (and final) conditions (ax = ay = 1). The states of cells

at time t = 20 + τ + 50 were evaluated to characterize with which frequency

cells permanently change of state by the induction of the signal. Since for

stochastic dynamics the stationary states correspond to distributions, whereas

for deterministic dynamics they correspond to fixed points of well defined values,

in order to automatically identify in which state each cell was at time t =

20+τ+50, we evolved deterministically their dynamics for an additional period

of time 100. We identified the state of the cell at time t = 20 + τ + 50 as the

corresponding to the fixed point reached through this additional deterministic

evolution. The number of cells of the whole population that change of state

after the signal has disappeared was named RLH . This ratio is an estimation of

the probability each cell has to change of state when the transient signal acts.
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Figure 3.3 Monostable and multistable transient signals drive the
same cellular decision making. (A,C) For monostable (ax = 0.14) and (B,D)
multistable (ax = 0.4) signals. (A,B) Stochastic trajectories of two cells (red,
blue) that initially are in the HH state and end up in different states upon the
action of a transient signal (τ = 70, ∆a = 0.03 in A and ∆a = 0.04 in B). Insets:
amplification of the trajectories around the states driven by the signal. (C,D)
Ratio of cells (in %) that change to the LH state after a signal is applied, for
different signal strengths and two volumes (legend). Parameter values are τ = 70
and N = 600. Other parameter values as in previous figures.

Figure 3.3A-B shows how, effectively, both signal types (monostable and mul-

tistable) can drive the decision to choose (with a certain probability) between

remaining at the initial HH attractor or change to the new LH cell state. The

probability of choosing a new one cell fate in each mechanism depends on the

signal strength (∆a) in a threshold-like manner (Fig. 3.3C-D). Therefore, both

signals, from this point of view, seem to drive the same decision making process

and thereby seem identical mechanistically. As expected, however, analysis of

the dynamics of the system clearly shows that both types of signals drive the

decision using different mechanisms. During the monostable signal (Fig. 3.2C),

the system relaxes to the unique attractor (Fig. 3.3A). By contrast, when the

multistable signal acts (Fig. 3.2E), the dynamics of cells is to evolve first to
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the accessible attractor (i.e. the HH-like state). Once there, the dynamics can

stochastically switch to the LH-like sate (Fig. 3.3B). Specifically, the change

in stability enables stochastic switching from a HH-like to a LH-like and not

vice versa for the time periods being studied (Table 3.1). Notice we termed

HH-like and LH-like the stable states that exist in the presence of the signal

to distinguish them from those in the absence of signal. The HH-like state has

only small asymmetries and lies within the basin of attraction of the HH state

(Fig. 3.2E). The LH-like state has strong asymmetries as the HL state and

lies within its basin of attraction (Fig. 3.2E). Hence, after signal removal, and

since the LH-like and HH-like states are respectively each within the basin of

attraction of the LH and HH states, cells in the LH-like state will relax towards

the LH state, whereas cells in the HH-like state will relax to the HH state (Fig.

3.3B).

V = 100 V = 10

∆a = 0.042 263± 83 37± 50
∆a = 0.043 83± 64 21± 39

Table 3.1 Switching time beteen HH-like and LH-like states in mul-
tistable signals. Mean first passage time (MFPT) values between HH-like and
LH-like state during the effect of a tristable signal (ax = 0.4). Two values of signal
strength (∆a) and two values of volume (V ) have been explored. MFPT in the
opposite direction (from LH-like to HH-like), and between the other attractors is
> 10000. It has been simulated 500 repetitions to average them up. MFPTs for
other parameter values, such as ax = ay = 1 and ax = ay = 0.4, are > 10000
between all the attractors involved.

The threshold-like dependence of the probability to change to the LH state as

a function of the signal strength can then be understood as follows. For long

enough monostable signals, cells reach the transient attractor and will ultimately

change to the LH state upon signal removal if this transient attractor lies within

the basin of attraction of the LH state. For this to happen, a large enough

difference in the degradation rates of X and Y induced by the signal must occur

since this difference (∆a) controls the value of the LL state (Fig. 3.2C). For

multistable signals, the decision arises from the stochastic switching between

the HH-like state and the LH-like state. Accordingly, the more destabilized is

the HH-like state and hence the faster is the stochastic switching, the larger the

probability for a cell to reach the LH state upon the action of such signal. This

larger destabilization occurs for larger values of the signal strength (Fig. 3.3D).
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Figure 3.4 The ghost state acts as a steady state in multistable scenar-
ios. (A,B) Phase portrait (left) and different stochastic temporal evolutions of x
(right) for a multistable signal with ax = 0.4 and ∆a = 0.043 (A) and ∆a = 0.061
(B). The velocity field (arrows), the linearly stable states (squares), their basins
of attraction (colours) and the manifolds in the absence of signal (dashed lines)
are depicted in the phase portrait (obtained from the deterministic dynamics). In
A, cells are trapped for a while in the HH-like state. In B, the effect of a ghost
state around the disappeared HH-like state in phase space B is shown. Other
parameter values as in previous figures.

Notice that Figure 3.3D explores signal strength values for which the stability

regime generated by the multistable signal does not have three attractors but

two (Fig. 3.2E-F). The missed attractor is called a ghost state (Strogatz, 1994)

and it slows down the dynamics around it, acting similarly to a metastable

HH-like state (Fig. 3.4).
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Figure 3.5 The cellular decision driven by monostable signals occurs
right after the end of the signal while the decisions driven by mul-
tistable signals take place while the signal is acting. (A) Deterministic
phase portrait with the stochastic initial cell density on top (coluor map) before
any signal application (ax = ay = 1). The three attractors (purple squares) and
their basins (dashed lines) are depicted. (B,D) For monostable signals (ax = 0.14,
ay = 0.1705). (C,E) For multistable signals (ax = 0.4, ay = 0.461). (B-C, top)
Histograms of stochastic x cell values for two different times τ ′ since the signal
started: τ ′ = 19 (dark grey) and τ ′ = 20 (grey). (B-C, bottom) Deterministic
phase portrait with the stochastic cell density (colour map) at the time of signal
removal (for a signal duration τ = 20). The three attractors (purple squares) and
their basins (dashed lines) for the deterministic dynamics in the absence of signal
are depicted. N = 10000 in panels A-C. Other parameter values as in previous
figures. (D) Cartoon depicting when the decision takes place (arrow).

Relaxation dynamics, the ones taking place when monostable signals act, are

mainly deterministic processes in which fluctuations play a small role. In con-

trast, for multistable signals, the dynamics of cellular decision making involve

stochastic switching, which is an inherently stochastic process that is favoured

when fluctuations are larger. Therefore, how the probability of changing of state

RLH depends on the amount of fluctuations, controlled by the cell volume, is

expected to be different for each of these two mechanisms of cellular decision

making (Fig. 3.3C-D). Increasing the amplitude of fluctuations does not change

the threshold of signal strength that drives a 50% probability to change to the

LH state when the transition is induced by the monostable signal (Fig. 3.3C).

In contrast, when the transition is induced by the multistable signal and fluc-

tuations increase through a reduced cell volume, smaller signal strengths are

required to achieve a 50% chance of changing of state (Fig. 3.3D).

3.3.2 Different timings for cellular decision making

As indicated above, the dynamics of single cells during the action of the signal is

very different for the two types of signals being studied. Indeed, the distribution

of the cell population also is. When a monostable signal acts, all cells are in

a similar state right after the signal disappears (Fig. 3.5B). The small random

differences between cells arising from the stochastic dynamics enable that when

the signal disappears, cells may evolve very differently and ultimately reach two

distinct fates, either the LH or the HH. Hence, small differences between cells

can become strongly amplified. This occurs if right after signal removal some



48 Chapter 3. Cellular decision making involving two cell types

of the cells lie within the basin of attraction of the HH states whether others,

very similar to the first ones, lie within the basin of attraction of the LH state

(Fig. 3.5B, bottom).

For the multistable signal, individual cells can show very distinct time-evolutions

long before the signal is removed (Figs. 3.5C). Hence, two cell types, which

do not change over time, can already be distinguished during the action of the

signal. The proportion of cells of each cell type becomes modified over time (Fig.

3.5C). These results hold even for signal strength values that drive bistability

instead of tristability, provided a ghost state exists (Fig. 3.5C).

Based on the different behaviour of cells and of the cell population during the

action of each type of signal, it can be proposed that the time at which the deci-

sion takes place is different between the monostable and multistable scenarios.

In the monostable scenario, cells make their decision when the signal is removed

(Fig. 3.5D). Oppositely, in the multistable scenario, cells make the decision at

stochastically distributed times while the signal is acting (Fig. 3.5E).

3.3.3 Optimal signal duration for cellular decision making

We also expect a dependency between the probability to change of state and

the signal duration τ . Since the cell decision to change of cell state is induced

by a signal, it is expected that the more time the signal lasts, the more probable

it would be to change of state. This is what happens when the signal is the

multistable one being proposed. In this case, longer signals let more time for

performing stochastic transitions from the HH-like to the LH-like state and

hence increase the probability of the decision to change to the LH state (Fig.

3.6A).

However, for monostable signals, we found an optimal duration of the signal

for which the probability to change to the LH state becomes maximal (Fig.

3.6B). If the signal lasts longer, the probability to change decreases. This occurs

because relaxation towards the unique attractor that exists when the signal acts

is not monotonically equivalent for X and Y. Firstly, cells strongly decrease their

amount of X and afterwards their amount of Y, as the velocity field shows (Fig.

3.7). This transient asymmetry in the dynamics sets cells in a state similar to

the LH state at short times (when just X amount has decreased), and not at
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Figure 3.6 The transition to a new cell state exhibits an optimal be-
haviour with signal duration for the monostable signal, while increases
for longer multistable signals. Ratio (in %) of cells that changed to the LH
state after the action of a signal as a function of its duration τ , for different signal
strength values (see legend). (A) Multistable signal (ax = 0.4). (B) Monostable
signal ((ax = 0.14). Other parameter values as in previous figures and N = 900.

Figure 3.7 The velocity field generated during a monostable signal
explains the optimal behaviour as a function of τ . Phase portrait during
a monostable signal (ax = 0.14, ∆a = 0.0305). The velocity field (arrows), the
unique LL attractor (square), its basin of attraction (light grey), the manifolds
separating the basins of attraction of the initial regime without signal (dashed
lines) and a deterministic trajectory during the action of the signal (line with ar-
rows) are depicted. The trajectory (in agreement with the velocity field) explores
the region of the LH basin of attraction before ending up in the LL state. Other
parameter values as in previous figures.
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longer times (when both X and Y amounts have decreased). As a result, short

signals favour cells to change to the LH state in comparison to longer signals.

These non-trivial dynamics would not occur if the cell state is only governed by

the dynamics of X, being, for instance, self-activating dynamics.

A

B C
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Figure 3.8 The last transient monostable signal determines the final
cell fate selection. (A) Evolution of a cell population (N = 300) on the deter-
ministic phase portrait when two identical monostable signals act (top cartoon).
Cells (dots) initially equivalent (grey), become coloured according to the choice
they make after the first signal (red for HH and blue for LH). Phase portraits de-
pict the deterministic attractors (circles) and their basins of attraction (colours).
When the signal is acting, the manifolds separating the basins of attraction in
the absence of signal are also plotted (dashed lines). Each transient regime is
labelled by a roman number. In V (after the two signals), the inset in the middle
magnifies the cell population in the HH state, showing it is constituted both by
cells that previously decided HH or LH. Parameter values in the absence and in
presence of the signal are ax = ay = 1, and ax = 0.14 with ∆a = 0.035, respec-
tively. Each signal lasts τ = 70. (B, C) Ratio (in %) of cells that changed to
the LH state after the action of several monostable signals as a function of their
duration τ . (B) For one, two and four identical signals. (C) For two signals of
different duration. Two cases are explored: (purple triangles) the first signal lasts
τ1 = 20 and the second signal lasts τ ; (cyan triangles) The first signal lasts τ and
the second signal τ2 = 20. Different values of τ are explored (x-axis). The signal
duration τ = 20 where the two cases should coincide is denoted by a dashed grey
line. Other parameters for the signals in B and C: ax = 0.1400, ∆a = 0.0305 and
N = 900. Other parameter values as in previous figures.

The results also show that monostable signals enable shorter signals to drive

cellular decision making compared to multistable signals. This is because re-

laxation dynamics are usually faster than the characteristic times for stochastic

transitions between attractors of the dynamics.

Another aspect is whether by modulating the duration of the signal a 100%

of probability to change to the LH state can be achieved independently of the

signal strength value. This happens only for multistable signals, which ensure

the choice of the LH state through long enough multistable signals (Fig. 3.6).

3.3.4 Monostable signals erase and restore missing cell

types

We evaluated what happens when the signal acts repeatedly over time. We

consider the case in which consecutive signals are long enough spaced over time

(∆t = 300 a.u.) such that after each signal removal the dynamics relax to the

attractors. From the theoretical point of view, the action of the second and any

other subsequent signals differs from the first one in one relevant aspect: the
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cell population after the first signal is no longer distributed in a single cell state,

but it is distributed among the HH and the HL states.

When several monostable signals act consecutively, all cells, independently of

whether they are LH or HH cell types after the first signal, relax to the same

monostable attractor (Fig. 3.8A). Hence, all cells tend to become transiently

equivalent during the action of each signal. Two consequences arise from this

transient behaviour.
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Figure 3.9 A monostable transient signal restores missing cell types. A
population of statistically equivalent cells becomes distributed between two states
(the initial HH (white), and the new LH state (yellow)) after a monostable signal
acts (ax = 0.14, ay = 0.175, τ = 70). If all cells of one of these two cell types are
removed (red cross; HH on the right; LH on the left), a second identical transient
signal restores the missed cell type and recovers the distribution (normalized).
Notice that the normalized distributions are expressed in log scale. N = 1000 and
other parameter values as in previous figures.

The first consequence is that each signal erases the decisions taken previously

by the action of other signals (Fig. 3.8B-C). Cells behave as memoryless: each

cell decides de novo, independently of which other choices it has done before.

Decisions are reversible and cells can switch between states upon the action
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of each signal (Fig. 3.8A). Therefore, at any given time, the fraction of cells

in the LH state is set only by the last signal and is independent of previous

signals (Fig. 3.8C). This occurs when signals are long enough such that all cells,

independently of whether they were LH or HH, can reach the attractor (Fig.

3.8A-C). Hence, differences in the characteristic time scale of the relaxation

dynamics to the attractor from the HL and the HH states become irrelevant

(Fig. 3.8A-C). When signals are too short, these differences provide cells with

such a small memory: the probability to choose the LH fate depends slightly

on whether it is or not a LH cell (Fig. 3.8B-C).

The second consequence of the transient behaviour of the cells under a second

signal is that monostable signals can restore any of the two cell types (LH or

HH) if it is lost (Fig. 3.9). Hence, monostable signals provide a mechanism to

robustly ensure the existence of two cell types since both cell types can act as

the precursor state of the other cell type.

3.3.5 Multistable signals integrate and lock cellular deci-

sion making

When a multistable signal acts on a population of two cell types (HH and

LH), the HH cells have a probability to change to the LH state by stochastic

switching (Fig. 3.10A). However, during the signal effect, LH-like cells can not

switch of fate (Fig. 3.10A, Table 3.1). Therefore, the proportion of LH cells

in the final population is gradually increased as additional multistable signals

act (Fig. 3.10B). Figure 3.10C reveals that the final LH population generated

by two consecutive multistable signals does not depend on the order in which

these signals are applied. If two signals of different signal duration are applied,

the final LH selection is the same, regardless if the first signal is the shorter or

the longer one.
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Figure 3.10 Multiple multistable transient signals integrate the effect
of each signal. (A) Evolution of a cell population (N = 300) on the deterministic
phase portrait when two identical multistable signals act (top cartoon). Cells
(dots) initially equivalent (grey), become coloured according to the choice they
make after the first signal (red for HH and blue for LH). Phase portraits depict the
deterministic attractors (circles) and their basins of attraction (colours). When
the signal is acting, the manifolds separating the basins of attraction in the absence
of signal are also plotted (dashed lines). Each transient regime is labelled by a
roman number. In V (after the two signals), the inset in the middle magnifies the
cell population in the LH state, showing it is constituted by cells that previously
decided HH or LH. The population in the HH state is only constituted by cells
that previously were HH. Parameter values in the absence and in presence of the
signal are ax = ay = 1, and ax = 0.40 with ∆a = 0.04, respectively. Each signal
lasts τ = 70. (B, C) Ratio (in %) of cells that changed to the LH state after the
action of several monostable signals as a function of their duration τ . (B) For one,
two and four identical signals. (C) For two signals of different duration. Two cases
are explored: (purple triangles) the first signal lasts τ1 = 20 and the second signal
lasts τ ; (cyan triangles) The first signal lasts τ and the second signal τ2 = 20.
Different values of τ are explored (x-axis). The signal duration τ = 20 where the
two cases should coincide is denoted by a dashed grey line. Other parameters of
the signals in B and C: ax = 0.400, ∆a = 0.061 and N = 900. Other parameter
values as in previous figures.

The integration effect of multistable signals can be analytically calculated by

knowing the LH selection ratio (RLH) after the first signal. If s identical mul-

tistable signals with parameters ∆ai = ∆a and τi = τ ∀i ∈ {1, 2, . . . , s} are

applied to a population of N cells, the HH population after a i-th signal is,

NHH(i) = (1−RLH) ·NHH(i− 1) = N ·
(
1−RLH

)i
(3.1)

This expression considered that there is no state transition from the LH state to

the HH state (as Fig. 3.10A confirms). The signal only drives state transitions

between the HH state to the LH state. According to that, the HH population

that changes of state by the i-th signal is,

NLH(i) = RLH ·NHH(i− 1) = N ·RLH ·
(
1−RLH

)i−1
(3.2)

Hence, the total cell population in the LH state after the last signal (s-th signal)

is,
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NLH( ∆a, τ ; ∆a, τ ; . . . ; ∆a, τ︸ ︷︷ ︸
s

) =

s∑

i=1

NLH(i) = N
(

1−
(
1−RLH

)s)
, (3.3)

and the ratio over the whole population corresponds to:

RLH( ∆a, τ ; ∆a, τ ; . . . ; ∆a, τ︸ ︷︷ ︸
s

) = 1−
(
1−RLH

)s
(3.4)

Through this expression, the total selection ratio after s signals can be calculated

by knowing the RLH generated by one single signal (empty symbols of Fig.

3.10B).

The results of Fig. 3.10C, which show that the final fraction of LH selection

after two signals of different duration does not depend on which of the two

signals is the first one, is explained by the integrating behaviour that gives rise

to Eq. (3.4) as follows. The selection ratio driven by two signals (s = 2) of

different duration (τ1 and τ2) is,

NLH(∆a, τ1; ∆a, τ2) = N R1
LH +N R2

LH

(
1−R1

LH

)
, (3.5)

where R1
LH and R2

LH are the LH selection ratios driven by signal of τ = τ1 and

τ = τ2, respectively. Notice that,

RLH(∆a, τ1; ∆a, τ2) = RLH(∆a, τ2; ∆a, τ1) = R1
LH +R2

LH −R1
LH R

2
LH (3.6)

Consequently, the selection rate after two signals of different duration – but

identical signal strength – does not depend on which signal acts first.

A multistable signal forces the existence of the LH differentiated state, yet at

the expense of the precursor state. If all precursor cells are lost, multistable

signals can not recover a new pool of precursor cells (Fig. 3.11). So, due to the

asymmetric switching between the LH-like and the HH-like state of the stability

regime generated by the multistable signals, the differentiated state (LH state)
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is not able to act as a precursor state for future decisions driven by these kind

of signals.
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Figure 3.11 A multistable transient signal locks the population in the
new cell state. A population of statistically equivalent cells becomes distributed
between two states (the initial HH (white), and the new LH state (yellow)) after
a multistable signal acts (ax = 0.40, ∆a = 0.04, τ = 70). If all cells of one of
these two cell types are removed (red cross; HH on the right; LH on the left),
a second identical transient signal restores the missed cell type and recovers the
distribution (normalized). Notice that the normalized distributions are expressed
in log scale. N = 1000 and other parameter values as in previous figures.

3.4 Discussion

We focused our work on a very elemental and simple decision, by which cells

decide to change of state or to remain at the initial one. We proposed a transient

signal as the inductor that drives the decision with step-like function profiles

over time. Smoother signal profiles are not expected to drive differences as long
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as the signal is activated and de-activated fast enough such that the stability

regimes arising during the turning on/off of the signal play no relevant role.

We described two dynamical mechanisms that are able to drive the same cellular

decision. These two mechanisms differ in the stability behaviour that they

generate during the signal effect. Despite the fact that both mechanisms are

able to drive the same decision, with similar dependency of the probability

to change with the signal strength, the decision exhibits different properties

according to the signal type that induces it. The work presented in this chapter

pretended to connect the decision properties with the dynamical behaviour of

the system and suggest which features of the decision are subjected to the

dynamical mechanism.

We studied a mechanism that involves a bifurcation to a single stable state

(monostable signal). Taking into account that there is only a single basin of

attraction during the monostable signal effect, the barrier between the different

states involved in the decision disappears and transitions between states can

take place.

The other mechanism is based on stochastic switching (multistable signal). The

number of states does not change during this signal effect, but the precursor

state is stochastically destabilized. Consequently, cells can leave it and reach a

new cell state. However, transitions from the differentiated state to the precur-

sor state do not take place during these multistable signals. This asymmetry in

the transitions is the main difference, from a dynamical point of view, of this

mechanism with the mechanism of the monostable signals.

The mechanism of multistable signals to drive cellular decision making is purely

stochastic. So, noise is required to drive the decision under this type of sig-

nals. Furthermore, if noise increases, the ratio of differentiated cells in the final

population is also increased. Despite its difficulty, noise has been modulated

experimentally in some systems by changing the cell volume (Suel et al., 2007).

If the cell volumes are reduced, we expect that the probability of changing of

state always increases if the decision is induced by a stochastic switching (multi-

stable signals), while if it is a bifurcation mechanism (monostable signals), this

probability may increase or decrease depending on which is the signal strength.

For monostable signals, there is only one basin of attraction and so, all the

cells behave similarly during the transient signal. As a consequence of this,



Chapter 3. Cellular decision making involving two cell types 59

the decision takes place once the signal disappears, when the three basins of

attractions are restored. By contrast, two differentiated populations of cells

are identified during a multistable signal effect. If abundance of cell types are

tracked in an experiment (e.g. flow cytometry, microfluidics), we can identify

the mechanism that induces the decision according to whether the distribution

is unimodal (monostable signals) or bimodal (multistable signals) during the

signal effect.

Another experiment to elucidate which mechanism is taking place in the decision

is to change the signal duration. According to our results, we expect that a

stochastic switching mechanism would increase the differentiation if the signal

duration also increases. For long enough multistable signals, we expect that the

whole population will choose the new cell state. By contrast, the differentiation

ratio driven by a monostable signal can depend on the signal duration in a non

trivial way and it may not be able to reach the 100 % of differentiated population

even for the longest monostable signal. This non-monotonic behaviour depends

strongly on the velocity field and may no arise in other different model dynamics.

Both mechanisms can be also distinguished if the number of signals that induce

the decision can be controlled in a experiment. The amount of differentiated

cells increases with the number of multistable signals, integrating the effect of

each signal. In decisions controlled by monostable signals, the resultant ratio

of cells in the new state only depends, mainly, on the last signal. In other

words, the amount of change to the new state is not increased by subsequent

monostable identical signals.

If an experiment tracks the cell state between two consecutive signals, we would

notice that new monostable signals have the capacity of erasing the cell state

reached by previous decisions, while multistable signals lock the cells of the

differentiated state. Consequently, any attractor of the dynamics can act as a

precursor state for decisions driven by monostable signals.

According to the properties of each mechanism, multistable signals fit better in

the paradigm of stem–differentiated cell, since differentiated cells are not able

to re-program its fate through these signals. Besides, if the precursor cells are

removed from the system, this type of signals can not generate new differentiated

cells. Monostable signals may have other functions in cellular decision making

such as the restoring of any missed cell type.
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More sophisticated decisions, where more cell fates are involved, could be also

studied with the same approach. In Chapter 4 we are going to characterize a

decision where three different cell fates can be reached.

The mechanisms studied in this chapter describe a cell-autonomous decision,

where each cell of the initial population makes its decision regardless the choice

of the other cells. Non-trivial decision properties can arise if the decision in-

cludes some kind of cell-to-cell interaction. In Chapter 5 we are going to explore

a system where the system interactions include a cell-to-cell inhibition between

first neighbouring cells.



Chapter 4

Cellular decision making

involving three cell types

4.1 Introduction

In Chapter 3), we have already introduced an example of cell-autonomous deci-

sion making whereby each cell of an homogeneous population chooses between

two different responses: remaining unchanged or changing to a new cell state.

This change was induced by a transient signal. To this end, we characterized

cells by their amounts of two molecules, X and Y . Cells of the same state can

differ in these molecular amounts due to the stochastic fluctuations, but not on

their statistical properties. This change was induced by a transient signal.

This chapter collects our study of a cellular decision making process which

involves the transition to a heterogeneous population of at most three distinct

cell types: the initial one and two new ones. Hence, cells are forced to choose

between three cell fates. Due to the three cell states required to describe this

cellular process, we named this decision as 3-state decision (Fig. 4.1).

For the sake of simplicity we have studied this 3-state decision using the network

motif of two proteins interacting as a toggle switch with positive auto-regulation

reviewed in Chapter 2 and used also in Chapter 3 for the 2-state decision (Fig.

2.1). As in the previous Chapter, the decision is induced by a transient signal.

61
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HH

HH

LH

HL
{A

B

Figure 4.1 Cartoon description of the 3-state cellular decision making.
(A) The initial population of cells is all the cells in the same state in statistical
terms (grey). After the action of the transient signal (red arrow), the population
becomes heterogeneous, with three cell states involved (grey, yellow and green).
(B) Decision at the single cell level and nomenclature of states in terms of low (L)
or high (H) amounts of molecules X and Y . The cell is initially at the symmetric
cell state HH (grey) and, due to the action of a transient signal (red arrow),
decides between three cell states: to remain as it was in the former HH state
(grey), to change to a new, LH, state (yellow) or to change to another new HL
state (green).

In this Chapter we evaluate the properties of this 3-state decision and how they

depend on the parameters of the transient signal applied. Furthermore, we also

studied the resultant decision if more than one transient signal is applied and

its biological consequences.

4.2 The model, the signal and the phase space

transition the signal drives

We implemented the 3-state decision using the same stochastic model dynamics

than in previous Chapters (Chapters 2 and 3). The algorithms and theoretical

tools which have been applied to generate the results of this Chapter have been

already described in the Sections 2.4, 2.5 and 3.2 of Chapter 2 and Chapter 3

respectively.
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Due to the transient nature of the inductive signal, the values of the parameters

are the same before and after the signal acts. Hence, to have a 3-state decision

induced by a transient signal, three stable attractors (one for each cell state

involved in the decision) have to be present at least when the signal is not acting.

To this end, we chose the same value of parameters for the initial condition as

in Chapter 3: ax = ay = 1, σ = 0.2, ρ = 10, K = 10−5 and V = 10. As shown

in Chapter 2, this set of parameter values generates a multistable regime with

three stable fixed points, named HH, LH and HL (Figs. 2.3A, 3.2A and 4.1A).

Before the signal action, all the cells of the initial population are in the HH

state.

As in Chapter 3, the decision is induced by a signal which transiently changes

two control parameters of the dynamics to new constant values. These control

parameters are the maximal production rates of the molecules X and Y , ax

and ay (Figs. 2.3D-E). The signal modifies the control parameters (ax, ay) as

a step-like function profile (Fig. 3.2B).

The signals we studied for this chapter take values of ax = 0.2 and ay = ax+∆a,

being ∆a << ax and hence ay ≈ ax (Fig. 4.2A-C). These values drive a phase

space with only two stable fixed points, which correspond to LH-like and HL-like

states (Figs. 2.3B and 4.2A-B). The signal can then be characterized by only

two parameters: the signal duration, τ , and the signal strength, ∆a = ay − ax
(Fig. 3.2B).

4.3 Results

4.3.1 The duration of the signal only controls how many

cells acquire a new fate, but not which one

We first evaluated the bifurcation driven by the transient signal. During the

signal effect, two antisymmetric branches are stable while the HH branch is

destabilized according to the bifurcation diagram (Fig. 2.3D). If ax = ay = 0.2,

the two attractors are perfectly antisymmetric and the manifold that divides

the phase space in two basins of attraction is the bisecting line (Fig. 4.2A). For

∆a = ay − ax 6= 0 with ax = 0.2 there are strong differences between the basins

of attraction of the two states, while the states themselves are slightly modified
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Figure 4.2 The transient signal drives a 3-state decision through a
bifurcation from a tristable regime to a bistable one and backwards.
(A, B) Phase portrait for ax = 0.2 and ay = ax + ∆a with (A) ∆a = 0 and
(B) ∆a = 0.004. The two stable fixed points (squares), named LH-like and HL-
like, and their basins of attraction (yellow and green, respectively) are depicted.
Black dashed lines show the manifolds for ax = ay = 1, which correspond to the
absence of signal. (C) Bifurcation diagram of X steady states with ay as a control
parameter for ax=0.2. Solid and dashed lines are the stable and unstable branches
respectively. (D) Phase portrait for ax = ay = 1 (squares for stable fixed points;
white, yellow and green for their basins of attraction) and stochastic trajectories
(continuous lines) pursued by three initially equivalent cells (orange, blue, red) in
the HH state when a transient signal with ax = 0.2 and ∆a = ay − ax = 0.004
and duration τ = 20 is applied. One cell ended at the same initial state (orange),
another one ended in the new LH state (blue) and a third one in the other new
HL state (red). The manifold transiently generated during the signal effect that
separates the two transient basins of attraction is shown with a black dashed line.
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from the ∆a = 0 case (Fig. 4.2B compared to A). Notice also that the two

transient fixed points, HL-like and LH-like, lie within the basins of attraction

of the HL and LH states, respectively (Fig. 4.2A-B). We then applied this

type of signal on a population of N cells. Specifically, at t = 0 we started

with the concentrations of X,Y for each cell in a gaussian distribution centred

in the HH state whose width corresponds to the standard deviation (sd) of the

equilibrium distribution – that depends on V ( st = 0.235 for V = 10). These N

initial concentrations evolve with a different seed of the algorithm until t = 20

without the signal effect, in order to reach the equilibrium distribution. Once

the signal is removed from the system, cells evolve during 50 units of time with

ax = ay = 1 (as in Chapter 3).

Trajectories on the phase diagram reveal that three different states can be se-

lected under the same conditions and after an identical bistable signal has acted

(Fig. 4.2D).

Despite the stochasticity of the decision, we can describe it according to the

ratio of each cell state in the final population. We define the 3-state decision by

two different choices that can be characterized according to two main descriptors

of the final population of cells:

• The Differentiation choice is the cellular choice of changing of state and

is quantified by Rdiff . Rdiff is the ratio of the cells which change of state

(hereafter named differentiated cells, in analogy to processes taking place

in development).

• The Asymmetric choice is the cellular choice of selecting the LH state

instead of the HL state and is quantified by Rasym. Rasym is the ratio of

the number of cells in the LH state over the total number of cells in the

LH and HL states.

Following the same nomenclature than in Section 3.2 (Chapter 3), RHH , RLH

and RHL are the selection ratio for each cell state (HH, LH and HL state,

respectively). Therefore, Rdiff = RLH + RHL = NLH+NHL

N , where N is the

total number of simulated cells and NLH and NHL is the number of cells in the

LH and HL state respectively at the end of the simulation, long after the signal

has been applied. Rasym = RLH

RLH+RHL
= NLH

NLH+NHL
is the ratio of cells which

select the LH cell state among all the cells which select a new cell state.
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In the figures of this chapter, we characterize the dependence of the two choices

(Rdiff and Rasym) on the two signal parameters: τ (signal duration) and ∆a

(signal strength). These response curves are named according to the choice and

to the signal parameter that is explored.
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Figure 4.3 Each signal parameter controls only one choice. Response
curves when a single signal is applied and all N cells are initially statistically
equivalent, being in the HH state. (A) ∆a-Rasym-response curves for different
values of signal duration (τ). N = 1000. (B) τ -Rdiff -response curves for different
values of signal strength (∆a). N = 5000. Rasym and Rdiff are expressed in
percentage (%).

Strong dependence of Rasym on ∆a was already known from previous studies

(Guantes and Poyatos, 2008). Other previous studies explored the dependency

of Rasym on the signal parameters in a framework of permanent signals where

both signal strength and signal duration are controlled by a single signal param-

eter (Nené et al., 2012). Response curves in Fig. 4.3A reveal that the Asymmet-

ric choice of LH over HL (Rasym) depends strongly on the signal strength (∆a)

while very weakly on the signal duration (τ). Rasym describes nearly the same

threshold-like function with the 50% (RLH = RHL) at ∆a = 0 for different

durations of the signal.

Signal duration (τ) has a strong impact in the Differentiation choice (Rdiff ),

describing a threshold-like function of τ whose threshold position and shape do

not significantly depend on the signal strength ∆a (Fig. 4.3B). Therefore, our

results revealed that each of the two different choices that define the 3-state

decision (Differentiation choice and Asymmetric choice) are mainly controlled

by a single and different parameter (τ and ∆a, respectively).
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4.3.2 Each choice is made at a different time

According to the results of the previous section (Fig. 4.3), each choice of the

decision is mainly controlled by a different signal parameter. The Asymmetric

choice is determined by the shape of the transient manifold generated by the

signal (Fig. 4.2B-C) and the distribution of the initial cell population. So,

this choice is made once the signal is applied and this interaction occurs. The

Differentiation choice also arises from the interaction between manifolds and

distributions of cells. In this choice, however, the manifold are those of the

tristable regime once the signal is removed (3.2A). These manifolds interact

with the distributions at the end of the signal effect and they determine the

final attractor reached by each cell of the distribution.

The relationships between each choice and the main parameter that controls

each one describe a sigma-like function in both cases (Fig. 4.3). This arises

from the equivalent mechanism that drives the choices: manifold-distribution

interaction. In the Asymmetric choice, ∆a value defines the manifold, while

the initial distribution does not depend on this parameter. In contrast, the

∆a controls the position of the final concentration distributions of cells, but

not the manifold shape (determined by the parameter values once the signal

is removed) for the Asymmetric choice. Consequently, since in both choices

the parameter determines the relative position between the manifold and the

variable distributions, both relationships behave as a sigma-like function (which

is the cumulative probability of a gaussian).

Despite the fact that we can clearly identify which signal parameter, τ or ∆a,

controls each choice, both choices depend slightly on the other signal parameter

(Fig. 4.4A-B). These dependencies are explained by the time at which each

choice of the decision takes place.

From the Differentiation choice (Rdiff ) dependence on the signal duration, we

can define a threshold time at which half of the cells have chosen a new state

(Fig. 4.3A). This threshold-time does not depend significantly on ∆a, since the

values of the LH-like and HL-like attractors generated by the signal effect remain

roughly constant with ∆a (Fig. 4.2C). Despite of this, notice how the different

τ -Rdiff response curves of Fig. 4.3A exhibit different values of Rdiff for τ

values around the threshold time. This weak dependency of the threshold value

on ∆a is shown in the ∆a-Rdiff response curves of Fig. 4.4A. Although the
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LH-like and HL-like attractors generated by the bistable signal do not depend

significantly on ∆a, this signal parameter changes the velocity field and thereby

the dynamics to reach the new states. Figure 4.4C shows that ∆a reduces the

time required to reach the favoured attractor (LH-like for ∆a > 0), which is the

differentiated state that contributes more to Rdiff .
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Figure 4.4 The signal strength (∆a) affects the value of both decision
descriptors (Rdiff and Rasym) by changing the velocity of the dynam-
ics. Response curves when a single signal is applied and all N cells are initially
statistically equivalent, being in the HH state. (A) ∆a-Rdiff -response curves for
different values of signal duration (τ). N = 1000. (B) τ -Rasym-response curves
for different values of signal strength (∆a). N = 5000. Rasym and Rdiff are
expressed in percentage (%). (C) Average time evolution (y − x) for N = 10000
cells. All cells started at the HH state. (y − x) values of the LH-like and HL-
like attractors are depicted in dashed coloured lines. The trajectories have been
divided according to the final attractor reached.

Signal strength (∆a) controls the Asymmetric choice by changing the transient

the manifold shape (Fig. 4.2B-C). Although the manifold shape does not depend
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on the signal duration, Rasym exhibits slightly higher values for very low values

of τ (Fig. 4.4B). This behaviour comes from the asymmetry in the time required

to reach each attractor: LH-like or HL-like. Figure 4.4C reveals that cells require

less time to reach the favoured attractor (LH-like for ∆a > 0).

4.3.3 Stochastic effects on the choices involved in the de-

cision

The effective volume of the system (V ) is a parameter that controls the fluc-

tuation amplitude of the dynamics. Noise intensity increases as the volume

decreases. Figure 4.5 shows how the response curves change if the volume is

modified.
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Figure 4.5 Effect of fluctuations on the choices (Rdiff and Rasym). (A)
∆a-Rasym-response curves for three different values of the volume (V ). τ = 35,
N = 1000. (B) τ -Rdiff -response curves for three different values of volume (V ).
∆a = 0.004, N = 5000. Rasym and Rdiff are expressed in percentage (%).

The noise tends to make the choice between the two differentiated states (LH

and HL) more symmetric (Fig. 4.5A). This result is reflected in the smoothening

of the sigma-like shape of ∆a-Rasym-response curves of Fig. 4.5A. The thresh-

old position of these curves does not vary with the volume. The key ingredients

to understand the noise effect on this Asymmetric choice lie in the stochastic

basins of attraction and in the cell population distribution amplitude (Fig. 4.6).

According to Fig. 4.6, the volume has two main effects on the dynamics dur-

ing the signal effect: the noise reduces the barrier between the two basins of
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Figure 4.6 Stochastic basins of attraction during the signal effect.
Phase portraits for different volume values. The color map expresses the proba-
bility of reaching the LH-like state at long times, when ax = 0.2 and ax = 0.204.
In the phase portrait, attractors (purple squares) and the deterministic mani-
fold (black dashed line) have been also depicted. Volume values explored: (A)
V = 100, (B) V = 10 and (C) V = 5. Stochastic basins of attraction have been
computed simulating 100 stochastic trajectories from each point of a 100 × 100
grid. Black points (10000) are the steady distribution around the HH state, cor-
responding to ax = ay = 1.

attraction; and it increases the size of the phase space occupied by the initial

population of cells.

The Differentiation choice, mainly controlled by τ , exhibits a non trivial de-

pendence on the noise intensity (i.e. volume) (Fig. 4.5B). Despite the fact that

noise increases the Rdiff value for low values of τ , this tendency is inverted as

τ increases. This behaviour is not found in symmetric signals (∆a = 0), where

Rdiff is clearly promoted by fluctuations (Fig. 4.7A). Figure 4.7B reveals that

this differentiation increase for symmetric signals (∆a = 0) is caused by the

destabilization of the unstable state of the bistable signal (see the trajectories

of Fig. 4.2 D). Under a symmetric bistable signal, cells first evolve to the un-

stable state following the manifold (bisecting line). As this unstable state is a

saddle node, cells eventually leave it and reach the transient attractors of the

dynamics. Fluctuations favour the escape from the unstable state and thereby

promote differentiation. The situation is slightly different when the signal is

not symmetric. Figure 4.7C shows the dynamics of cell contrations over time

for asymmetric signals (∆a 6= 0). Notice how, although the noise-promoted

escape of the unstable state also takes place here, noise reduces the velocity of

the dynamics once the cells escape from it. The trade off between these two

noise effects drives the non trivial behaviour observed in Fig. 4.5B.
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Figure 4.7 Dependence of the cell dynamics on the system volume. (A)
τ -Rdiff -response curves for three different values of volume (V ) for a symmetric
signal ∆a = 0. N = 5000. Rdiff is expressed in percentage (%). (B,C) Average
of (y − x) over N = 10000 cells that evolve along time under the effect of (B)
a symmetric (∆a = 0) or (C) an asymmetric (∆a = 0.004) bistable signal, for
three different volumes V (legend). All cells started at the HH state. (y − x)
values of the LH-like and HL-like deterministic attractors are depicted in dashed
coloured lines. Notice that the trajectories have been divided according to the final
attractor reached. For this reason, the curve that reaches the HL-like state for
V = 100 in panel C averages over few number of cell trajectories (12 trajectories).
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The noise intensity, controlled by the system volume, affects both choices of

the decision. However, its effect is more significant in the Asymmetric choice,

where it reduces the capability of discrimination between the two new states.

4.3.4 The initial cell type can not be restored by the dif-

ferentiated population

The LH-like and the HL-like attractors generated by the bistable signals lie in

the LH and HL basins of attraction of the inistial and final tristable regime

respectively. Hence, during the bistable effect, the HH state disappears (and

so does its basin of attraction) while the other LH, HL states remain although

their values slightly change. Because of this, the only cell transitions that can

be driven by a bistable signal is from the HH state to the other two (HL and

HL).

Figure 4.8 shows the effect of a bistable signal over a cell population generated

by a previous bistable signal. Before this second signal application, the cell

population of one of the three cell types (HH, LH or HL state) is removed from

the initial population. Results of Fig. 4.8 reveal that, if the cell population of

either HL or LH state is removed, a second signal can restore it. By contrast,

the HH population can not be generated by the cell population in the HL or

LH state. Consequently, we can identify the HH state as the precursor state,

able to produce the other states.

This conclusion is relevant from the biological point of view to restore a dam-

aged tissue or population, where a cell type is removed from the population.

Once a signal is applied on a population of HH cells, a resultant heterogeneous

population with three cell types would be generated: HH, LH and HL cell types.

If all cells of one of these cell types are removed from the final population, a

second signal can restore the missed cell type unless the removed cell type is

the HH state (Fig. 4.8).
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Figure 4.8 Population restoring after a second signal. The final popula-
tion after a multistable signal applied (ax = 0.2, ay = 0.204, τ = 20) to an initial
population on the HH state is distributed between three states: the initial HH one
(white), and the differentiated LH state (yellow) and the differentiated HL state
(green) (top). (left) A second identical signal can not restore the HH population
if it is missed. (right) However, if cells of these differentiated cell types, LH or HL,
are removed, a second identical transient signal restores the missed cell type and
recovers the initial distribution (normalized). A population of 1000 cells has been
simulated to generate the histograms. Notice that the probability is expressed in
log scale.

4.3.5 Multiple identical signals drive more differentiated

cells with fixed proportions of new fates

From the results of the previous section we can infer the behaviour of a cell

population under several bistable signals. The Differentiation choice, since it

increases with the signal duration, integrates the effect of each bistable signal

when several signals are applied. In contrast, the Asymmetric choice is mainly
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controlled by the basins of attractions generated by the bistable signals. Consid-

ering that the shape of these basins of attraction depends mostly on the signal

strength (and not on the signal duration), we expect that multiple identical

signals would not significantly affect this choice.

In the Section 3.3.5 of the Chapter 3 we calculated the probability of selecting

a new state driven by s multiple identical multistable signals (Eq. (3.4)). This

probability of selection of a new state studied in Chapter 3 is given by RLH ,

which is the only new state that is populated in that decision (since the HL

state remains unpopulated). The assumption that gave rise to the expression

(3.4) is that the transition from the new LH state to the initial HH state is

not driven by subsequent signals. Figure 4.8 revealed this same behaviour for

bistable signals, with two differentiated states, LH and HL states, instead of a

single one. Accordingly, we can analytically calculate the differentiation choice

after a number s of identical signals (Rdiff (τ1, τ2, ,̇τS) for ∆ai = ∆a and τi = τ

∀i ∈ {1, 2, . . . , s}) as it was done in Chapter 3 according to Eq. (3.4):

Rdiff ( ∆a, τ ; ∆a, τ ; . . . ; ∆a, τ︸ ︷︷ ︸
s

) = 1−
(
1−Rdiff

)s
, (4.1)

where s is the number of signals, and Rdiff is the differentiation ratio generated

by one single signal.

Figure 4.9 shows the response curves long after multiple identical signals are

applied. Time interval ∆t between each signal is long enough to enable cells

to reach the fixed points of the dynamics and corresponds to ∆t = 300 a.u.

The results are evaluated a time interval of 50 a.u. after the last signal ended.

These results reveal that the resultant Differentiation choice (Rdiff ) driven by

multiple signals include the effect that each signal would individually have in

this choice- until it saturates at 100% (Fig. 4.9A,C) according to expression

(4.1).

The final effect on the differentiation choice of multiple (s) signals of identical

duration τ can be understood as the effect of a single longer signal of duration

τeff . The effective duration τeff that a single signal requires to last to drive

the same differentiation as multiple s signals of duration τ (i.e. τeff such

that Rdiff (∆a1, τ1; ∆a2, τ2; . . . ; ∆as, τs) = Rdiff (∆a, τeff ) for ∆ai = ∆a and

τi = τ ∀i ∈ {1, 2, . . . , s}) is shorter than the addition of all signal durations,
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Figure 4.9 Response curves after multiple identical signals. (A) τ -
Rdiff -response curves (∆a = 0.004) for different identical signals. (B) ∆a-Rasym-
response curves (τ = 140) for different identical signals. (C) ∆a-Rdiff -response
curves (τ = 140) for different identical signals. (D) τ -Rasym-response curves
(∆a = 0.004) for different identical signals. Simulation details: N = 1000 (A,B)
and N = 5000 (C,D). The empty symbols of panels A and C are the theoretical
prediction calculated through the Rdiff of the first signal (Eq. (4.1)).

τeff < s · τ . In other words, the differentiation after a single signal of τeff = 70

is higher than the differentiation generated by four identical signals of τ = 17.5

(Rdiff (∆a, τ = 70) > Rdiff (∆a, 17.5; ∆a, 17.5; ∆a, 17.5; ∆a, 17.5), Fig. 4.9A).

This is because Rdiff depends non-linearly with the duration of the signal,

increasing according to a sigmoidal function.

We can also calculate the behaviour of the Asymmetric choice when s identical

signals are applied:
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Rasym( ∆a, τ ; ∆a, τ ; . . . ; ∆a, τ︸ ︷︷ ︸
s

) =

RLH( ∆a, τ ; ∆a, τ ; . . . ; ∆a, τ︸ ︷︷ ︸
s

)

Rdiff ( ∆a, τ ; ∆a, τ ; . . . ; ∆a, τ︸ ︷︷ ︸
s

)
(4.2)

Since we already know the expression of Rdiff (∆a, τ ; ∆a, τ ; . . . ; ∆a, τ) (Eq.

(4.1)), we have to evaluate RLH(∆a, τ ; ∆a, τ ; . . . ; ∆a, τ) (see Section 3.3.5 for

further details),

RLH( ∆a, τ ; ∆a, τ ; . . . ; ∆a, τ︸ ︷︷ ︸
s

) =

s∑

i=1

RLH · (1−Rdiff )
i−1

, (4.3)

where RLH and Rdiff are the ratio of LH-selection and the ratio of differentia-

tion after a single signal respectively. Evaluating the summation,

RLH( ∆a, τ ; ∆a, τ ; . . . ; ∆a, τ︸ ︷︷ ︸
s

) = RLH
1−

(
1−Rdiff

)s

Rdiff
(4.4)

Substituting Eqs. (4.1) and (4.4) in expression (4.2) results into,

Rasym( ∆a, τ ; ∆a, τ ; . . . ; ∆a, τ︸ ︷︷ ︸
s

) =
RLH
Rdiff

= Rasym (4.5)

According to this expression (4.5), the ratio between the cells in LH and HL

state (Rasym) does not depend on the number of signals and this is confirmed

by the stochastic simulations (Fig. 4.9B,D).

4.3.6 Decision after two different signals

In the previous section we saw how that choices depend on the number of

signals when s identical signals are applied. Herein, we focus on the action of

two signals with different parameter values.

The differentiation ratio driven by two signals (s = 2) of different strength (∆a1

and ∆a2) and duration (τ1 and τ2) is,
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Rdiff (∆a1, τ1; ∆a2, τ2) = R1
diff +R2

diff

(
1−R1

diff

)
, (4.6)

where R1
diff and R2

diff are the differentiation ratios driven by a signal charac-

terized by (∆a1, τ1) and (∆a2, τ2), respectively. This expression is independent

on the signal order.

The Asymmetric choices depends on the signal order. Notice that this choice is

mainly controlled by the signal strength and it is not relevantly affected by the

signal duration (Fig. 4.3A). So, the asymmetric ratio driven by multiple signals

of different duration but identical signal strength would be the same, regardless

the signal order. The asymmetric ratio that results from the application of two

bistable signals (s = 2) of different strength (∆a1 and ∆a2) is,

Rasym(∆a1; ∆a2) =
RLH(∆a1; ∆a2)

Rdiff (∆a1; ∆a2)
(4.7)

Notice that signal duration has not been explicitly introduced in the expression

for simplicity. Besides, Rdiff (∆a1; ∆a2) = Rdiff (∆a2; ∆a1). This identity is

not satisfied by the LH selection ratio:

RLH(∆a1; ∆a2) = R1
LH +R2

HL (1−R1
diff ) = R1

LH +R2
LH −R2

LH R
1
diff (4.8)

And so,

Rasym(∆a1; ∆a2) =
R1
LH +R2

LH −R2
LH R

1
diff

R1
diff +R2

diff −R1
diff R

2
diff

(4.9)

According to the expression (4.9), Rasym(∆a1; ∆a2) 6= Rasym(∆a2; ∆a1) unless

the asymmetric ratios generated by both signals are identical (R1
asym = R2

asym).

Herein, we show the results after two signals of identical signal strength (∆a1 =

∆a2 = ∆a) but different duration (τ1 6= τ2).

We evaluated the τ -Rdiff -response curves under two conditions: A first signal

of a fixed signal duration value (τ) followed by a second transient signal which
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Figure 4.10 Two signals of different signal duration. (A) Schematic rep-
resentation of the two cases explored. One signal of duration τ = 20 is followed
(1st fixed, top) or preceded (2nd fixed, bottom) by a signal which explores values
of signal of duration τ ranged between 0 and 100. Both signals have the same
signal strength (∆a = 0.004). (B) τ -Rdiff -response curves for a single signal
(∆a = 0.004) and for two different signals as described in panel A. The empty
symbols correspond to the theoretical prediction calculated through Rdiff (Eq.
(4.6)). (C) τ -Rasym-response curves for a single signal (∆a = 0.004) and for
two different signals as described in panel A. Simulation details: N = 5000, time
between signals is 300.
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explores different values of τ (1st fixed); a first signal which explores different

values of signal duration (τ) followed by a second fixed signal duration value

(2nd fixed) (Fig. 4.10A). We compare the decision after these two pairs of signals

with the τ -Rdiff -response curves generated by a single signal. These results are

collected in Fig. 4.10B-C and they agree with those calculated by Eqs. (4.9)

and (4.6).

Figure 4.10B shows that the Differentiation choice does not depend on which

signal (the first or the second) has the fixed duration value. The resulting

Differentiation choice integrates both signals. Furthermore, the Asymmetric

choice is not affected by the number of signals applied (what has been already

seen in Fig. 4.9D), but by the signal strength of these signals.

We also studied the behaviour of the decision when the two signals that take

place differ in their signal strengths (∆a1 6= ∆a2) while their duration is identi-

cal (τ1 = τ2 = τ). We evaluated the Differentiation choice for different strength

values of the first signal (with ∆a2 = 0.004), and for different strength values of

the second signal (with ∆a1 = 0.004) (Fig. 4.11A). We compared these results

with the ∆a-Rdiff -response curve generated by a single signal of strength ∆a.

These results are collected in Fig. 4.11B-C and they agree with those predicted

by Eqs. (4.9) and (4.6).

Because one of the signals has ∆a = 0.004 > 0, the ∆a-Rasym-response curve

after the two signals have acted shows a bias to select the LH state for ∆a

values below 0.004 (Fig. 4.11C). The bias is stronger when the first signal is

more asymmetric than the second one. This is because before the first signal,

there are more cells undifferentiated than after the first one.

According to these results of two signals of different strength shown in Fig. 4.11,

the two main conclusions are: (1) there is an integration behaviour of the two

signals involved in the Differentiation choice; and (2) the first signal has more

effect on the final Asymmetric choice (Rasym).

4.4 Discussion

In this chapter we characterized a cellular decision making which involves three

cell states and is driven by a transient signal: a cell chooses between remaining
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Figure 4.11 Two signals of different signal strength but identical time
duration. (A) Schematic representation of the two cases explored. (1st fixed, top)
One signal of strength ∆a1 = 0.04 is followed by a signal of strength ∆a2 = ∆a.
(2nd fixed, bottom) One signal of strength ∆a2 = 0.004 is preceded by a signal
of strength ∆a1 = ∆a. Values of ∆a ranged between −0.01 and 0.01 have been
explored. Both signals have the same duration (τ = 20). (B) ∆a-Rdiff -response
curves for a single signal (τ = 20) and for two different signals as described in
panel A. The empty symbols correspond to the theoretical prediction calculated
through Rdiff (Eq. (4.6)). (C) ∆a-Rasym-response curves for a single signal
(τ = 20) and for two different signals as described in panel A. The empty symbols
correspond to the theoretical prediction calculated through Rasym (Eq. (4.9)).
Simulation details: N = 5000, time between signals is 300.
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as it was or to change to either one of two new states. The decision is induced by

a transient signal that transiently destabilizes the initial state, driving a change

in the phase space from a tristable regime to a bistable one and back, when the

signal disappears, to a tristable regime.

For the sake of clarity, we divided the comprehension of this decision in two

elemental choices: the choice of leaving the initial state (Differentiation choice)

and the choice of selecting one new state over the other new one (Asymmetric

choice). According to our results, the Asymmetric choice is made first, mostly

when the signal starts to act, by the interaction between the initial concentra-

tions of cells and the basins of attractions generated by the signal. In contrast,

the Differentiation choice is made when the signal is removed, when the basins

of attraction of the tristable regime are restored. These two choices are con-

trolled by distinct parameter values of the signal: the Differentiation choice

depends mostly on the duration of the signal, while the Asymmetric choice

depends on the signal strength.

The Differentiation choice has an integrative behaviour. Both longer and mul-

tiple signals favour the differentiation, being better to drive differentiation a

long signal than multiple identical short signals that overall last the same as

the long signal. In contrast, the Asymmetric choice depends strongly on the

first signal when multiple signals of different strength are applied. This arises

from the fact that the pool of cells that remain undifferentiated is reduced after

each signal application. If these cells were able to proliferate – e.g. by divisions

– the contribution of each signal on the final Asymmetric choice could be more

similar.

Comparing the mechanism of the bistable signals of this Chapter with the mech-

anisms already studied in the previous Chapter, we see some similarities between

the bistable signals and the multistable ones. The integrative behaviour is the

main one. Furthermore, while in the multistable signals the precursor state

is destabilized by stochastic effects, in bistable signals this is produced by a

bifurcation (deterministic effect).

If the initial conditions of all the cells of the initial population were identical,

deterministic dynamics could not explain how the cells reach different cell states

after the signal. Besides, the noise – characterized by the effective volume of

the system – has the effect to make the decision become more symmetric: less
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differences between the number of cells that choose one new cell state or the

other new one.

The dynamical properties of the decision reported by all these results has bi-

ological implications. While a population of three cell types can be generated

through this kind of signal, the initial symmetric state – which is destabilized

during the signal effect – is key to this decision. If there are no cells in this

cell state, this state can not be recovered by subsequent signals. Hence, we can

interpret the cells of the initial state as a precursor cell type of the other two

states involved.



Chapter 5

Pattern selection by

dynamical biochemical

signals

5.1 Introduction

This Chapter extends the study of the previous Chapters (Chapter 3 and 4) on

cellular decision making in single cells to a system of interacting cells. Most of

it has been published in Biophysical Journal (Palau-Ortin et al., 2015). Due to

the spatial pattern solutions that arise from cell-to-cell communication, instead

of cell states, the decisions characterized in this chapter are defined by different

patterns selected by a tissue of cells, i.e., we are interested in the decision of the

whole tissue.

There is experimental evidence pointing out at multistability and selection of

patterns in developing embryos, for instance for patterning processes driven by

Notch signalling (Artavanis-Tsakonas et al., 1999). Since Notch signalling was

already introduced in Chapter 1, herein we describe only those selection pro-

cesses of patterning. These processes do not show the characteristic stochastic

behaviour of cellular decision making. In the Drosophila’s eye, photoreceptor

83
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neuron precursors adopt distinct cell fates (R1/R6 or R7) in a cell–to–cell coor-

dinated manner upon the spatially sequential activation of the protein ligand.

Changes only in the spatio–temporal sequence of this signal (i.e. ligand acti-

vation) alters the pattern that is formed (Miller et al., 2009), suggesting that

under the same final conditions, different patterns can exist (i.e. those of the

wild-type conditions and those driven by the manipulated temporal sequence of

the biochemical signal). Another example arises from ommatidial photoreceptor

patterning in the fly. It has been shown that different patterns of R8 photore-

ceptors (salt-and-pepper and stripes patterns) can arise in genetically identical

tissues through Notch signalling pathway (Lubensky et al., 2011). In addition

to this experimental evidence, computational studies of pattern formation by

Notch signaling have shown that different patterns can be stable solutions for

the same set of parameter values (Formosa-Jordan et al., 2012; Lubensky et al.,

2011; Formosa-Jordan and Ibañes, 2014). Therefore, in this Chapter we explain

how a pattern is chosen and not another one when the choice is induced by a

dynamical signal. In other words, we look for features of the signal that can

bias the selection to one pattern and not another one.

It is known that initial conditions can determine the selection of a pattern

(Wearing and Sherratt, 2001; Shoji et al., 2003; Lubensky et al., 2011; Corson

and Siggia, 2012). However, little is known on how selection of different patterns

occurs from the same initial pattern and conditions, upon the action of a signal

that changes the parameter values since current studies on pattern formation

and selection usually deal with parameters that are constant both in time and

space.

We perform a computational study to provide key elements for pattern selec-

tion upon the action of a signal. In contrast with previous Chapters, we make

use of continuous time-varying parameters (i.e. non-autonomous) in stochastic

dynamical systems with spatial interactions. As in previous Chapters, we con-

sider stochastic dynamics. Herein specifically, we deal with stochastic ordinary

differential equations.
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5.2 The model and signal dynamics

5.2.1 A model for cis inhibition mediated by notch sig-

nalling

Because of the theoretical knowledge on multiple pattern solutions for Notch sig-

nalling dynamics (Lubensky et al., 2011; Formosa-Jordan et al., 2012; Formosa-

Jordan and Ibañes, 2014), we focused on them. We used a stochastic version

of the deterministic model presented in (Formosa-Jordan and Ibañes, 2014) as

detailed as follows. The model establishes a minimal description of the dynam-

ics of the activities of the Notch pathway (si) and of the ligand (li) in each cell

i, as first described in (Collier et al., 1996). It phenomenologically includes the

process of Notch signal activation, according to which a fragment of the Notch

receptor translocates into the nucleus of a cell upon binding to a ligand at the

membrane of an adjacent cell (Artavanis-Tsakonas et al., 1999). This signal in

turn represses the transcription of the gene encoding the protein ligand. Thus, a

ligand expressing cell drives lateral inhibition to its neighbours, i.e., it inhibits

the expression of the ligand in its adjacent cells. The model also takes into

account that the protein ligand can impede Notch signaling by binding to the

Notch receptor within the same cell, what is known as cis-inhibition (Heitzler

and Simpson, 1993; Jacobsen et al., 1998; Sakamoto et al., 2002; Álamo and

Schweisguth, 2009; Miller et al., 2009; Fiuza et al., 2010; Sprinzak et al., 2010;

Fleming et al., 2013). We recall that, as explained in Chapter 1, lateral inhibi-

tion mediated by Notch signalling has been shown to drive spontaneous pattern

formation from linear unstabilization of the homogeneous state (Collier et al.,

1996).

We extended the dimensionless model proposed in (Formosa-Jordan and Ibañes,

2014) for cis-inhibition to phenomenologically include stochastic dynamics aris-

ing from intrinsic noise, such that the stochastic differential equation for each

species in the Itô interpretation (Gillespie, 2000; Adalsteinsson et al., 2004) is

as follows:





dsi
dt

= Ps(〈li〉, li, t)− si +
√
Ps(〈li〉, li, t) + si ξi(t)

dli
dt

= v
(
Pl(si)− li +

√
Pl(si) + li χi(t)

)
.

(5.1)
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The deterministic part is formed by the production terms, Ps(〈li〉, li, t) and

Pl(si), minus the degradation terms. v accounts for the ratio between the time

scale of the dynamics of the ligand and the signal activities and is set to v = 1.

The stochastic multiplicative terms are proportional to the square root of the

corresponding production plus the degradation terms. 〈li 〉 ≡
∑

j∈nn(i)

lj/z is the

average ligand activity of the z nearest neighbour (nn(i)) cells of cell i. ξi and

χi are independent Gaussian random numbers of zero mean and uncorrelated in

space and time: 〈ξi(t) · ξj(t′) 〉 =
1

V
δij δ(t−t′) and 〈χi(t) · χj(t′) 〉 =

1

V
δij δ(t−

t′), with V being a characteristic volume. We used a white noise according

the standard procedures from Master to Langevin equations (Gillespie, 2000;

Adalsteinsson et al., 2004).

The productions of Notch and ligand activities are:

Ps(〈li〉, li, t) =
rit(t) 〈li 〉

1 + rit(t) 〈li 〉+ ric(t) li

Pl(si) =
1

1 + b sni
,

(5.2)

where n is an exponent representing the degree of nonlinearity of ligand in-

hibition by the signal and b indicates the strength of such ligand inhibition.

rit(t) ≡ ritrans(t) and ric(t) ≡ ricis(t) are the strengths of trans-interactions and

cis-interactions of cell i, respectively (See the of trans and cis interaction in

Chapter 1, Section 1.1.3) and they are proportional to the rate of maximal lig-

and production, which is not explicitly seen in the equations due to the nondi-

mensionalization of variables being used. Herein we considered that rit(t) and

ric(t) can change over time and be different between cells, as described in the

Path definition and characterization subsection.

Note that the dynamical model is an example of a regulatory circuit involving

mutual inhibition and self-activation seen in Chapter 4 (Fig. 5.1). In this case,

the toggle switch is between adjacent cells. rit favours mutual inhibition while ric,

promotes self-activation. In the absence of cis–inhibition and fluctuations, Eqs.

(5.1-5.2) recover the model proposed by Collier et al. (1996). As expected from

the multistability exhibited by the toggle switch dynamics with auto-activation

(Fig. 2.1) (Guantes and Poyatos, 2008), this model exhibits multiple stable

spatially extended solutions (Formosa-Jordan and Ibañes, 2014).
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A B

Figure 5.1 Scheme of the model interactions between two adjacent
cells. (A) Ligand activity in cell i (li) induces (sold arrow) Notch activity in
the adjacent cell j (sj) and inhibits (solid blunt arrow) Notch activity in cell i
(si). In turn, si inhibits (dashed blunt arrow) li which is called cis-inhibition.
The reciprocal interactions in cell j are also depicted. (B) Simplified model where
the there are only depicted the interactions from the ligand point of view (li
and lj). This simplified version illustrates the toggle switch (solid arrows) with
self-activation (dashed blunt arrows) architecture which underlies the model.

5.2.2 The scenarios and their dynamical paths

We aimed at evaluating how a pattern and not another one is selected when there

are multiple patterns that are stable. We focused on three different patterns,

defined only by their symmetries: the homogeneous one (H), the fine-grained

lateral inhibition pattern (P) and the stripe pattern (S) (Fig. 5.2). We consid-

ered selections of these patterns induced by biochemical signals (Fig. 5.2).

We considered three scenarios: (1) the signals act on all the tissue at the same

time, (2) they act on a group of cells and (3) they act sequentially over all cells

of the tissue (Fig. 5.3). In the three scenarios, all cells had equivalent dynamics

(i.e. all cells had the same parameter values) before the signals act (initial time)

and at the final time. To study selection processes, parameter values at the final

time were such that multiple patterns were stable. In scenario 1, we analysed

whether and how the selection of a pattern depends on the path, and it extends

cell-autonomous decision making to spatially interacting systems. Therefore, we

focused only on the selection of those patterns that do not require any spatial

cue to be formed. These correspond to patterns that either do not involve a

periodicity (H) or are periodic but have the spatial symmetries that grow the

fastest from linear instabilities (P). In scenario 2, we propose an intrinsically

spatially based mechanism for the selection of patterns that can spontaneously
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Figure 5.2 Cartoon exemplifying the problem of pattern selection.
Initially, the system is in a stable homogeneous (H ) pattern determined by the
initial value of the control parameters (rt0, rc0). These parameters evolve over
time (t) to final values (rtf , rcf ) due to the action of biochemical signals. At these
new values of the parameters, there are multiple patterns which are all stable:
the homogeneous (H ), a periodic salt-and-pepper (P) and a stripped (S) pattern,
among others. The problem tackled here is how to select one of these patterns.
We considered three different scenarios according to how the parameters change
over time and across the tissue. The figure exemplifies the selection from an
initial monostable H pattern. Other initial conditions involving multistability are
explored too.

invade another pattern. Finally, in scenario 3 we propose another spatially-

based mechanism that enables the selection of a pattern with a more singular

symmetry given the isotropy of the dynamics like the stripes pattern (S).

5.2.3 The signal defines the path

We modelled the action of biochemical signals as spatio–temporal changes of

the trans rit and cis ric interaction strengths. We chose these interactions to be

modulated over time and space (among cells) since there are context-dependent

proteins that can modulate them, like the glycosyltransferase Fringe (Panin

et al., 1997; Sakamoto et al., 2002; Lebon et al., 2014) or the ubiquitin ligase

Neuralized (Barad et al., 2011). Moreover, changes in the activation of the lig-

and, which are known to drive transitions from one pattern to another one (e.g.

in vertebrate inner ear development and in the differentiation of photoreceptors

in the Drosophila’s eye) impinge also on these parameters. The spatio–temporal
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A B C

Figure 5.3 Schematic representation of the signal effect in the three
scenarios. (A) Scenario 1. The signal (paramer change) affects the whole tissue
at the same time. (B) Scenario 2. The signal (parameter change) only affects
a group of cells of the tissue. (C) Scenario 3. The signal (parameter change)
propagates along the tissue (starting at the first cell row). The size of the tissue
and the relative size of the domain in grey in B depicted here are not representative
of the sizes of the tissue and the domain of the simulations.

sequence of the changes in the values of rit and ric defines what herein we named

dynamical paths. The temporal changes of the parameters of a cell can be de-

picted as a trajectory across the rt − rc parameter space. For simplicity, we

devised trajectories which, for each cell, involved changing either rit or ric, or

one after the other. Accordingly, these trajectories were constituted by vertical

and/or horizontal lines along the rt–rc parameter space. In this chapter, we

focused on two regions of the parameter space: n = 2 (Fig. 5.4A) and n = 4

(Fig. 5.4B). In Figure 5.4, there are depicted the points of the parameter space

that describes the different paths explored in the Results.

We analysed several paths driven by signals and numbered them according to

the scenario (1, 2 or 3) they belong to.

Changes of rit and ric over time from value ra0 to value raf and from cell to cell

were phenomenologically modelled by time-dependent continuous hyperbolic

tangent functions as:

ria(t) ≡ r(j,k)
a (t) =

1

2

(
(raf − ra0) tanh

(
t− ta − tprop k

α

)
+ ra0 + raf

)
δj,k∈D ,

(5.3)

where a stands for t (trans) or c (cis) and two indexes, j, k, were used to

label the cell i (denoting the row, j, and the column, k) (see Eqs. (5.1-5.2)).

Parameter α sets the time scale of the parameter change, ta is the time at

which the parameter has reached the value (ra0 + raf )/2 and tprop sets the

spatio–temporal scale of propagation of the parameter change across the tissue.
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A B

Figure 5.4 Parameter space (rt − rc). Parameter space of trans rt and
cis rc interaction strengths. There are different domains defined by the pattern
solutions which are stable there: the homogeneous (H), the salt-and-pepper (P)
or the stripes (S). These regions are coloured according to which of these patterns
are stable: H (blue), P (yellow), H and P (grey), S and P (orange), or H, P
and S (red). There are depicted four values of the parameters (solid points). The
stable solutions stable at these points are indicated within parentheses. Parameter
values: (A) n = 2, (B) n = 4. These figures have been created from data in
(Formosa-Jordan and Ibañes, 2014).

For tprop = 0 (scenarios 1 and 2), all cells within the spatial domain D change

simultaneously the value of the parameter, and D stands either for all the tissue

(scenario 1, Fig. 5.3A) or for a small fraction of it (scenario 2, Fig. 5.3B). For

tprop > 0 (scenario 3, Fig. 5.3C), the change of parameter value occurs as a

propagating planar front across the tissue (i.e., simultaneously in all cells of

row j and propagating along rows). To ensure that initially the parameter is

at value ra(t = 0) ≈ ra0, we set ta = −α tanh(−0.995). For sequential changes

of parameters rit and ric or vice versa, we defined td ≡ |tc − tt| as the delay

between these changes. To ensure that changes of rit followed changes of ric (or

vice versa) and did not overlap, we set td >> α.

We also considered transient changes of rit and ric from ra0 to raf and back to

ra0. These were modelled through Eq. 5.3 for each change, from ra0 to raf and

backwards, with ta = ta1 for the first change from ra0 to raf and ta = ta1+tup+φ

for the change from raf to ra0, where φ measured the time period during which

the parameter is at value raf . The same value of α was used for both changes.

We defined the following time scales to characterize the path across the rt − rc
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parameter space: tup ≡ ta+α arctanh(2P−1) for P = 0.9933 measured the time

spent from the departure from a vertex point to the arrival at the subsequent

vertex point of the path in the parameter space; τ measured the time spent

on an intermediate (not the initial nor the final) vertex. When the path is

constituted by a single intermediate vertex point, τ is computed as τ = td− tup.
When there are several intermediate vertex points, we used a subindex with the

name of the vertex to denote the time spent at each vertex point. Herein we

exemplify the case of three vertex points and denote each of them by a number

which is the order with which they are visited: τ1 = td − tup, τ2 = φ1 − td and

τ3 = td − tup + φ2 − φ1. For paths involving tprop > 0 (scenario 3), we defined

Nrows = τ/tprop as the number of cell rows with the parameter values of an

intermediate vertex point.

5.2.4 Stability of multiple solutions and numerical inte-

gration of the dynamics

The model of Eqs. (5.1-5.2), in the absence of fluctuations (deterministic dy-

namics) and for homogeneous and constant parameter values (rit(t) = rt and

ric(t) = rc for ∀i, t) in perfect hexagonal lattices with toroidal periodic bound-

ary conditions, has been analysed in (Formosa-Jordan and Ibañes, 2014). It

has been shown to exhibit different stationary stable patterns for the same set

of parameter values. Some of these patterns are: homogeneous (H), periodic

salt-and-pepper (P) and stripe (S) patterns (Fig. 5.2). We defined different

patterns by their spatial symmetries and not by the exact values of the vari-

ables s and l (Fig. 5.2). This implies that the solutions classified as P and I in

(Formosa-Jordan and Ibañes, 2014) are herein considered as being the same, P

(Fig. 5.2).

Linear stability analysis indicates that the fastest growing mode that destabi-

lizes the H solution corresponds to the periodicity of the P pattern (Formosa-

Jordan and Ibañes, 2014). Therefore, the P pattern is expected to arise spon-

taneously from the H pattern through small random variability between the

values of the signal and/or ligand for this model dynamics. Accordingly, for-

mation and thereby selection of the S or other patterns is expected to require
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mechanisms that impose properly the specific spatial symmetries of these pat-

terns, in contrast with selection of the P or H patterns. We only focused on the

selection of the S pattern, besides selection of the P and H patterns.
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Figure 5.5 Numerical stability analysis of the H and P patterns at
point C in the parameter space of Fig. 5.4A. (A,B) Percentage of sim-
ulations that reach a steady pattern at t = 200 that is distinct from the initial
pattern in the absence of any biochemical signal for (A) deterministic dynamics
and (B) stochastic dynamics. (A) Both the H (orange circles) and P (blue squares)
patterns are deterministically stable for a large range of amplitudes δ of random
initial perturbations. Initial conditions are si(t = 0) = s0i (1 + δ (2 r − 1)) and
li(t = 0) = l0i (1 + δ (2 r − 1)), where r is a uniformly distributed random num-
ber within [0, 1], and s0i and l0i are the theoretical predicted values of si and li,
respectively of the pattern being analysed. (B) Both the H (orange circles) and
P (blue squares) patterns are stochastically stable. Initial conditions as in panel
A with δ = 0. The initial pattern remains at the end of the simulation for a
wide range of V values (except for the H pattern for very large fluctuations with
V = 500). The percentages in panels A and B (Rchange = (100 − Rinitial)) have
been obtained with 1000 simulations for each δ and V value. (C) Relative spatial
stability of the H and P patterns. (Left) Initial condition with the top half of
the tissue in the P pattern (with the theoretical predicted values) and the other
bottom half in the H pattern (with the theoretical predicted values). (Right)
Steady state reached after numerical integration of the stochastic dynamics for
V = 1000 with the initial condition shown in left panel. The P solution invades
all the tissue.



Chapter 5. Pattern selection by dynamical biochemical signals 93

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

R
c
h

a
n

g
e
 (

%
)

δ (%)

initial pattern: P
 

initial pattern: S

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100
R

c
h

a
n

g
e
 (

%
)

δ (%)

initial pattern: H
 

initial pattern: P
 

initial pattern: S

 0

 20

 40

 60

 80

 100

 0  2000  4000  6000  8000  10000

R
c
h

a
n

g
e
 (

%
)

V

initial pattern: P
 

initial pattern: S

 0

 20

 40

 60

 80

 100

 0  2000  4000  6000  8000  10000

R
c
h

a
n

g
e
 (

%
)

V

initial pattern: H
 

initial pattern: P
 

initial pattern: S

A B

C D

E

Figure 5.6 Numerical stability analysis of the H, P and S patterns at
points B and C in the parameter space of Fig. 5.4B. (A-D) Percentage of
simulations that reach a steady pattern at t = 200 that is distinct from the initial
pattern in the absence of any biochemical signal for (A,B) deterministic dynamics
and (B,C) stochastic dynamics for the parameter values of point (A,C) B and
(B,D) C of the parameter space of Fig. 5.4B. (A,B) Stability for deterministic
dynamics for different amplitudes of initial random perturbations of the theoreti-
cal predicted patterns. The initial conditions are si(t = 0) = s0i (1 + δ (2 r − 1))
and li(t = 0) = l0i (1 + δ (2 r − 1)), where r is a uniformly distributed random
number within [0, 1], and s0i and l0i are the theoretical predicted values of si
and li, respectively of the pattern being analysed. (C,D) Stability for stochastic
dynamics with different V values for initial conditions being the theoretical pre-
dicted patterns (δ = 0). Notice that for the value of V used in the simulations
of scenario 3 (V = 10000) all the pattern solutions are stochastically stable. The
percentages shown in panels A-D (Rchange = (100−Rinitial)) have been obtained
with 1000 simulations for each δ and V value. (E) Relative spatial stability of
the H, P and S patterns at point C in the parameter space of Fig. 5.4B. (Left)
Initial tissue with: (top) half of the cells in the P pattern and the other half in
the H pattern; (middle) half of the cells in the stripped S pattern and the other
half in the P pattern; (bottom) half of the cells in the P pattern and the other
half in the S pattern (bottom). Theoretical predicted values for the H, P and S
solutions were used. (Right) Steady state reached after numerical integration of
the stochastic dynamics for V = 10000 with the initial condition shown in left
panel. If the initial condition is the P and S patterns in contact through a black
stripe, this stripe is invaded by the P pattern (data not shown). These simulations
have been performed considering fixed boundary conditions at bottom and top
rows (s = 0 and l = 0 for neighbours on top of the first row and below the last
row) and periodic conditions between left and right sides.
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The domains where the H, P or S patterns are deterministically stable are de-

picted in Fig. 5.4 according to the information in (Formosa-Jordan and Ibañes,

2014) for two set of parameter values: b = 1000, n = 2 (Fig. 5.4A); and

b = 1000, n = 4 (Fig. 5.4B). Other pattern solutions can be stable too in

these domains (Formosa-Jordan and Ibañes, 2014). Stability of the H, P and S

patterns for the stochastic dynamics of the model and its comparison with the

deterministic dynamics was verified at these specific sets of parameter values

(Figs. 5.5 and 5.6). This was done numerically by simulating the dynamics

The dynamics of Eqs. (5.1-5.2) were numerically integrated on a two-dimensional

array of 12 × 12 regular hexagonal cells with toroidal periodic boundary con-

ditions, unless otherwise stated. The algorithm presented in (Carrillo et al.,

2003) extended to time-dependent parameter values was used for integration

with time step dt = 0.1 (robustness of the results was checked for dt = 0.01,

Fig. 5.7). Equations (5.1-5.2) can drive negative values because of the stochas-

tic fluctuations. To avoid them, a not crossing boundary to negative values was

used, such that negative values are converted to zero (Fig. 5.7). To confirm

the correctness of our results, we checked that the states reached by cells corre-

spond to distributions of values centred on the exact deterministic solutions of

the Eqs. (5.1-5.2) (Fig. 5.7), which can be theoretically computed as described

in (Formosa-Jordan and Ibañes, 2014).

Deterministic stability of each pattern solution to increasing amplitudes of

random-perturbations was also evaluated. The deterministic dynamics was im-

plemented through the fourth order Runge-Kutta algorithm.

Snapshots of the tissue state depicted in all figures of this chapter correspond

to a linear greyscale of ligand activity values with white for l = 0 and black for

l = 1.

In addition, we evaluated whether a stable pattern can spontaneously invade

and propagate over another stable one. To this end, we set as initial condition

for one half of the tissue a pattern solution that is stable and for the other

half another stable pattern solution. We numerically integrated the stochastic

dynamics until a stationary situation was reached (until a final time, t = 500).

For the parameter values being evaluated, the P pattern was able to invade the
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Figure 5.7 The stochastic implemented algorithm is consistent with
the theoretical deterministic predicted values. Histograms of the ligand
activity values (li) in a lattice of N = 48 × 48 cells with periodic boundary
conditions at the steady state (t = 10000). Initially (t = 0) the lattice starts with
the perfect pattern solution theoretically predicted for the deterministic dynamics
(values denoted by dashed vertical lines) for rt = 1.0 and rc = 0.1, b = 1000 and
n = 2. (A) Histograms for different values of V and time integration step dt. In
the model, the intensity of fluctuations depends on 1/V . The mean values are in
agreement with the theoretical predictions. (B) Due to the multiplicative noise,
the variables might reach negative values. The algorithm implemented in the
simulations presented in all figures corrects it by fixing the variable to zero when
it is going to become negative (algorithm 1, in open red boxes). We compared the
results obtained by this algorithm with those arising from two different algorithms:
with a reflective barrier in zero (i.e., the negative values are converted into their
positive counterpart; algorithm 2, in cyan boxes) or without any correction (i.e.
negative values exist; algorithm 3, in magenta boxes). The three distributions are
very similar. The solid line is depicted to denote the zero value. The simulations
of the three algorithms have been generated with V = 1000.

H solution and not vice versa. Accordingly, we termed the P pattern to be

spatially more stable than the H pattern.

5.2.5 Criterion for pattern selection

Due to the stochasticity of the dynamics, we measured the normalized frequen-

cies RH , RP and RS of cases that selected the H, P and S patterns for a given

path. To measure RH,P,S we discriminated systematically which pattern was

selected for each stochastic temporal evolution (i.e. numerical integration of the

dynamics) of the path. To this end, we defined the following three-component

order parameters (for x = s, l) which take distinct values for each pattern:
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ηθx =
1

N

N∑

i=1

|xi − 〈xi〉θ| , (5.4)

where N is the total number of cells in the tissue and brackets stand for aver-

ages over the two nearest neighbouring cells along each spatial direction with

θ = 0,−,+ which denote the directions that form an angle 0◦, −60◦ and +60◦

respectively with the horizontal. The characteristic values of these order param-

eters for each pattern for deterministic dynamics and perfect periodicity are:

ηθx = 0 ∀θ for the H pattern; ηθx = η̄x > 0 ∀θ with η̄x =
η0x+η−x +η+x

3 for the P

pattern; For the perfectly aligned S pattern, the order parameter has only one

null component, which corresponds to the component in the direction parallel

to the stripes.

Points rt rc Patt sst (∆sst) lst (∆lst) η̄th
s η̄th

l

A 0.1 2.0 H 0.027 (±0.007) 0.6 (±0.1) 0.00 0.00
A1 0.1 0.1 H 0.038 (±0.007) 0.41 (±0.07) 0.00 0.00
B 1.0 2.0 P 0.32 (±0.02), 0.003 (±0.002) 0.009 (±0.003), 0.99 (±0.03) 0.22 0.65
C 1.0 0.1 H 0.09 (±0.01) 0.10 (±0.02) 0.00 0.00

P 0.32 (±0.02), 0.009 (±0.003) 0.010 (±0.003), 0.93 (±0.05) 0.21 0.61

Table 5.1 Order parameter values for different points of the parameter
space shown in Fig. 5.4A, with n = 2. The fourth column (Patt) shows the
pattern solutions which are stable for the parameter values (Points, first column)
of rt, rc (second and third columns; see them depicted in the parameter space
in Fig. 1, 5.4A). sst and lst are the theoretical stationary deterministic values
of each cell type for each pattern. ∆sst and ∆lst are the fluctuation amplitude.
These amplitudes have been obtained by computing the standard deviation of
the final states of the cells in a tissue of 48 × 48 cells, when the stochastic dy-

namics of Equations 1-2 are considered with V = 1000. η̄ths =
η0s+η

−
s +η+s
3

and

η̄thl =
η0l +η

−
l

+η+
l

3
are the theoretical deterministic values of the order parameters

as defined in Section 5.2.5 for the different stable solutions. Other parameters:
b = 1000 and n = 2; and final time t = 100 for the numerical simulations.

For each stochastic temporal evolution of the dynamics, we computed numer-

ically the order parameters ηθx at the final time tmax = 10000. We decided

whether the system exhibited at tmax the H, P or S pattern according to the

following criteria: (i) The system exhibited the H pattern if η̄x < 0.2 for x = s, l.

The values of the order parameters extracted for the steady H pattern of the

stochastic dynamics were not null, yet very small, because of the stochasticity.

The threshold value 0.2 was chosen by taking into account this stochasticity and

the specific values of the order parameters for the P and S patterns at the rele-

vant parameter values; (ii) The system exhibited the P pattern if |η̄x−η̄thx | < 0.2

and η̄x > 0.2 for x = s, l being η̄thx the theoretical expected value of η̄x for the
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perfect P pattern of deterministic dynamics (see its values in Tables 5.1 and

5.2), which can be evaluated theoretically without numerical integration of the

dynamics (Formosa-Jordan and Ibañes, 2009, 2014). The 20% difference be-

tween η̄x and η̄thx was chosen to take into account that the final pattern may

not be perfectly periodic; (iii) The system exhibited the S pattern if η̄x > 0.2

and σx > 0.8 being σx = 1 − ηminx /ηmaxx , where ηminx and ηmaxx are the max-

imum and the minimum components of
(
η0
x , η

−
x , η

+
x

)
respectively. Parameter

σx described the degree of stripes formation.

Path points rt rc Patterns η̄th
s η̄th

l

(
η0
s , η

−
s , η

+
s

)th (
η0
l , η

−
l , η

+
l

)th

A 0.5 3.4 H 0.00 0.00 (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)
B 1.3 3.4 P 0.23 0.63 (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)

S 0.22 0.60 (0.00, 0.33, 0.33) (0.00, 0.90, 0.90)
H 0.00 0.00 (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)

C 1.3 8.6 P 0.32 0.65 (0.32, 0.32, 0.32) (0.65, 0.65, 0.65)
S 0.23 0.64 (0.00, 0.35, 0.35) (0.00, 0.96, 0.96)

Table 5.2 Order parameter values for different points of the parameter
space shown in Fig. 5.4B, with n = 4. The ”Patterns” column shows the
pattern solutions which are stable for the parameter values rt, rc (see them in

the parameter space in Fig. 5.4B). η̄ths =
η0s+η

−
s +η+s
3

and η̄thl =
η0l +η

−
l

+η+
l

3
are the

theoretical deterministic values of the order parameters for the different stable
solutions.

(
η0s , η

−
s , η

+
s

)
and

(
η0l , η

−
l , η

+
l

)
are the theoretical three-component order

parameters for the different solutions (see Section 5.2.5). Notice that we have
shown a certain direction (among three possible directions in the cell lattice) for
the stripes.

5.3 Results

5.3.1 Scenario 1: Patterns are selected by specific global

paths

In this first scenario, we evaluated how selection between the H and P patterns

can occur when a biochemical signal acts in all the tissue at the same time.

To test the relevance of the path for the selection process, we constructed two

different paths that connect in different manners the initial and the final con-

ditions. In the initial condition, only the H pattern is stable (point A in the

rt − rc parameter space of Fig. 5.8A). In the final condition, both the H and

the P patterns are stable (point C in Fig. 5.8A). Thus, the two paths could

be visualized as two different trajectories across the rt − rc parameter space
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that connect the initial and final points. For simplicity, these two paths were

constructed as sequential changes in rit = rt and ric = rc parameters, and the

two paths differ in the order of these changes (Fig. 5.8A). According to which

parameter changes first (rt or rc), the path transiently explores a domain where

the P pattern is stable and the H pattern is not (path 1a) or it only traverses

domains where the H pattern is stable (path 1b) (Fig. 5.8A).

Figure 5.9A shows some frames of the tissue state along time for each path. At

the end of the paths, selection of a different pattern becomes evident: through

path 1a the P pattern is selected, while path 1b selects the H pattern. The

results show that selection of a new pattern that is distinct form the initial one

(P from H) occurs through a path that drives the transient destabilization of

the initial pattern.

We then envisaged two paths that drive the destabilization of all the initially

stable patterns. These paths start and end at the same point of the parameter

space, where both the H and P patterns are stable (Fig. 5.8B). In addition, the

two paths trace exactly the same cyclic trajectory over the parameter space, but

evolve in opposite sequential order (clockwise, and counter-clockwise): path 1a’

and path 1b’ (Fig. 5.8B). Our results show that selection of a pattern that is

distinct from the initial one becomes possible for the two paths (Figs. 5.9B),

since both paths transiently destabilize the initial pattern. In addition, the

results show that each path selects a different pattern independently of the

initial one (Figs. 5.9B). The pattern that is selected corresponds to the one that

is stable at the last intermediate point of the path: the P pattern is selected

through path 1a’, while the H pattern is selected through path 1b’ (Figs. 5.9B).

These results show that identical trajectories across the phase diagram but

evolved in opposite sequential order can drive distinct pattern selections, which

are independent of the initial pattern.

We next evaluated whether these selection processes are robust and reasoned

that the time scales of the path could be relevant. To this end, we looked at

the selection process as a function of the time τX spent at the intermediate X

parameter space point (being X the point A1, B or A, depending on the path,

as shown in Fig. 5.8, Eq. 5.3). When the initial state is never destabilized,

this time is irrelevant, as expected (Fig. 5.10). In contrast, a minimal time at

the parameter space region driving the selection is required for robust selection

of a new pattern to happen (Figs. 5.10A-B). To ensure that the final distinct



Chapter 5. Pattern selection by dynamical biochemical signals 99

A B

C D

Figure 5.8 Global paths of scenario 1. (A,B) Paths (arrows) across the
parameter space of trans (rt) and cis (rc) interaction strengths. Solid circles stand
for the initial and final points of the paths, while the intermediate vertex points
are represented by open circles. It is indicated within parentheses at relevant
points of the path (denoted by letters A, B, A1 and C) whether the homogeneous
(H) and/or the salt-and-pepper (P) patterns are stable. The paths cross different
domains (colours) each defined by which of these patterns are stable: H (blue), P
(yellow), or H and P (grey). (A) Paths 1a (continuos line) and 1b (dashed line)
start at point A and end at point C. (B) Paths 1a’ and 1b’ start and finish at the
same point C. Path 1a’ (continuous line) is clockwise whereas path 1b’ (dashed
line) is counter clockwise. (C) Temporal profile of parameter change that defines
the paths 1a (top) and 1b (bottom). Paths 1a and 1b share the same initial and
final parameter space points, but they differ in the parameter space points visited
along time. In path 1a, rt changes first and then rc. The opposite order happens
in path 1b. (D) Temporal profile of parameter change that defines the paths 1a’
(top) and 1b’ (bottom). Paths 1a’ and 1b’ are cyclic (the end coincides with the
start) and share the same parameter space points visited. Paths 1a’ and 1b’ only
differ in the temporal sequence. In path 1a’, rt changes first and then rc changes.
The reverse order happens in path 1b’. The time period spent by the system in
each of these points is shadowed in grey (e.g., τB for B). Parameters defining the
time scale dynamics (tup, τ , td and φ) of the parameter changes are also depicted.
Notice that the examples shown correspond to changes which involve the same
values of φ and tup for rc and rt.
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A

B

Figure 5.9 Pattern selection achieved through a specific global path.
Snapshots of the tissue state over time (t) when the same signal acts in all cells of
the tissue at the same time (scenario 1) and changes the values of the parameters
(A) permanently according to paths 1a or 1b, or (B) transiently according to
paths 1a’ and 1b’. The parameter space points and whether the H or P patterns
are stable for these parameter values are indicated at each depicted time. (A)
The tissue that evolves according to the paths 1a or 1b starts (t = 0) at an
homogeneous state (H). (B) The tissue that evolves according to the paths1a’ and
1b’ starts (t = 0) at either an homogeneous state (H, top) or P pattern solution (P,
bottom). Additional parameter values are τ = 10, tup = 11, tprop = 0, b = 1000,
n = 2, V = 1000 and those detailed in Table 5.1.
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Figure 5.10 Pattern selection through a specific global path is robust
and requires a minimal yet short time. Frequency of selection of the P
pattern (RP in percentage) versus a characteristic time of the signal. The same
signal acts in all cells of the tissue at the same time (scenario 1) and changes the
values of their parameters (A) permanently or (B) transiently, according to the
paths in Fig. 5.8, A and B, respectively. (A) Results for path 1a are shown by
circles for stochastic dynamics and by stars in the absence of fluctuations (Det),
while squares denote the results for path 1b. Blue stars correspond to a low-
dimensional system of three-cells interacting in pairs (3C ). (B) Circles for path
1a’ (solid for τA1 = τA = τB and open for τA1 = τA = 0) and squares for path
1b’ started at the homogeneous H solution. Stars for both paths (1a’ and 2a’)
started at the pattern P solution. φ = 191 for all curves. Other parameter values
as in Fig. 5.9, with tup = 11 and 12×12 cells unless otherwise specified. The
deterministic curves (Det in the legend) use a 10% uniform random variability in
the initial condition. In all cases, each point corresponds to 1000 repetitions of
the selection process.

domain visited during the path is the one that sets the selection, we analysed

path 1a’ (Fig. 5.8B) for different time intervals τB spent at the final intermediate

point B with unchanged time intervals spent at the previous vertex points

(τA = τA1 = 0, Fig. 5.10B,D). The similarity of this selection curve with

the one with all τ variable (τB = τA1 = τA) indicates that the last intermediate

distinct domain is the relevant one to decide which pattern is selected.

The frequency of selection follows a sharp threshold-like response curve as a

function of the time during which destabilization occurs (Figs. 5.10). For

instance, in the case of path 1a (Fig. 5.9A), the characteristic time spent at

the region where the H pattern is not stable is approximately tup + τ , as shown

by analysing different τ and tup values (Fig. 5.10A). tup is the time spent since

the departure from the A or B parameter space point until the arrival to the

subsequent one along the path whereas τ is the time spent at the intermediate
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V Size T

100 12× 12 38± 6

1000 6× 6 58± 18
1000 12× 12 54± 5
1000 24× 24 54± 2

10000 12× 12 73± 7

Size T

12× 12 103± 16
3 cells 73± 14

A B

Table 5.3 Characteristic time, T , for pattern formation in point B of
Fig. 5.4A. Tables showing the average characteristic time T of pattern formation
and its standard deviation for (A) stochastic dynamics and (B) deterministic
dynamics for the parameter values of point B of Table 5.1 (Fig. 5.4A.). The
initial condition is the H pattern solution at parameter space point A. T is
defined as the time at which the order parameters η̄s and η̄l reach 90% of their
stationary values each. The stationary values of the order parameters (for x = s, l)
were computed as the time-averaged values of η̄x(t) over a period ∆t = 10 during
which the standard deviation of η̄x(t) is less than 0.01 times the time-average
value. In table B, the initial condition is the H pattern of parameter space point
A of Fig. 5.4, with a random perturbation of amplitude δ = 10%

vertex point B. For small tup+τ values, selection of the P pattern is not robust

but probabilistic and the process is more evidently a tissue decision making. Our

results show that stochasticity in the dynamics enables robust selections at times

shorter than in the absence of fluctuations (Fig. 5.10A). In contrast, the high-

dimensionality of many interacting cells increases the threshold characteristic

time for robust pattern selection (Fig. 5.10A).

To have a sense of whether the time required for robust selection in all these

cases is long or short, we compared it with the corresponding characteristic time

scale T of the full formation of the P pattern from an unstable homogeneous

pattern (Fig. 5.11, Table 5.3). This time T is shortened by fluctuations and in

low-dimensional systems (Table 5.3). In all cases being shown, T is longer than

the time tup + τ required for robust selection (Fig. 5.10A, Table 5.3).

It is worth mentioning that the P pattern is not always perfectly formed for the

B values of the parameter space of Fig. 5.4A (Fig. 5.11). Despite of this, once

the system arrives at the parameter space point C, the P pattern is perfectly

formed (Fig. 5.9). This is because in point B, there is another pattern (not

shown in the Fig. 5.4A) whose symmetry causes these deffects in the tissue
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Figure 5.11 Stochastic time evolution of order parameters during pat-
tern P formation. (A, B) Eight different stochastic time evolutions of order
parameters η̄s (A) and η̄l (B), for the parameter values of parameter space point
B of Fig. 5.4A (rt = 1.0, rc = 0.1). The initial condition is the H pattern with the
theoretical predicted values of s and l of the homogeneous stable state of point A
in the parameter space (rt = 0.1,rc = 2.0). The dashed line stands for the pre-
dicted theoretical value of the order parameter for a perfect periodic deterministic
stationary pattern (see the value in Table 5.1). (C) Pattern at time t = 100 for
those trajectories of panes A and B that are shown with an arrow (left) and an
arrowhead (right). These patterns are stationary. According to panels A and B,
the characteristic time to form the P pattern in point B of parameter space is
T ∼ 40 − 50 (see Table 5.3 for the average values of T , with more volumes and
tissue sizes explored). Moreover, the final stationary states are different because
the final pattern is not perfectly periodic in all the tissue. Other parameters of
the simulation are: V = 1000, b = 1000, n = 2.

(Formosa-Jordan and Ibañes, 2014). By contrast, this pattern solution is not

stable in point C (data not shown).

Taken together, the results show that the dynamical path defined by the bio-

chemical signal or signals, and not only the initial and final conditions, is a

critical element for pattern selection. Selection of a new pattern involves the

transient destabilization of the initial state and the subsequent exploration of a

new pattern that will finally end in the desired selection. This is accomplished

through a proper path which has to evolve dynamically slow enough to enable

first destabilization and afterwards emergence of a new state. The pattern se-

lected corresponds to the latest different pattern explored during the path. If



104 Chapter 5. Pattern selection by dynamical biochemical signals

the path evolves too fast, selection might not be robust and become proba-

bilistic. However, our results show that robust selection can involve short time

scales compared to those required for full pattern formation. Accordingly, this

robust selection can become visible at late times (i.e. at the end of the path)

and not when the selection is actually taking place or when the signal is acting

(Fig. 5.9C).

5.3.2 Scenario 2: Pattern selection by local paths

In scenario 1, the selection is driven by the transient destabilization of the

initial stable solution. The destabilization depends on two factors: the path –

and the domains of the parameter space explored by it –, and the time spent

by the system in the intermediate vertex points of the path. We explored two

types of path: those generated by two concatenated permanent changes on two

parameter values (Fig. 5.8A,C), and those generated by transient concatenated

changes of two parameter values (Fig. 5.8B,D). However, a change of a single

parameter value can be enough to destabilize the initial solution in order to

select a new one.

In this new scenario we explored the pattern selection driven by local paths that

act only in a few cells. These paths implement trajectories on the parameter

space that involve only one parameter modification, rt or rc (Fig. 5.12). If these

parameter changes are applied to the whole tissue (global path) the conclusions

are the same than in scenario 1 (Fig. 5.13). However, if the signal does not

affect to all the cells of the lattice, non trivial behaviours arise in the selection.

We wondered whether selection of the P pattern in all the tissue could occur

from biochemical signals that act locally only in a small subset of cells. We

reasoned that such selection can occur if the P pattern is spatially more stable

than the H pattern and thus can spontaneously propagate over the H solution.

This spontaneous propagation occurs for the parameter values of point C of

the parameter space of Fig. 5.4A where both the H and P patterns are stable.

We then envisaged a path that acts only and transiently in a cluster of cells

(path 2a in Fig. 5.12A). Hence, all cells have the same equivalent dynamics

(i.e. those characterized by the parameter values of point C) at initial and

final times. The path drives the cells within the cluster to evolve from the

parameter space point C to a point where the H pattern is unstable (B) and
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Figure 5.12 Local paths of scenario 2. (A,B) Paths (arrows) 2a (A) and 2b
(B) in the parameter space of Fig. 5.4A. These paths involve transient temporal
changes of a single parameter value acting in a cluster of cells. Solid circles stand
for the initial and final points of the paths, while the intermediate vertex points
are represented by open circles. (B,C) Changes of rt (orange) and rc (blue) along
time for the different paths in scenario 2: (B) path 2a, (C) path 2b. The parameter
space points that characterize each path are depicted. The time period spent by
the system in each of these points is shadowed in grey (e.g., τB for B). Parameters
defining the time scale dynamics (tup and φ = τ) of the parameter changes are
also depicted. Paths 2a and 2b differ in the parameter that is changed along the
path (rc in path 2a, and rt in path 2b) while the other one remains constant.
Hence, these paths differ in the parameter space point transiently visited (B in
path 2a, and A1 in path 2b).
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Figure 5.13 Pattern selection through transient global path. Pattern
selection through the 2a path (A-B) and 2b path (C-D) acting as a global path
(Fig. 5.12A-B). (A,C) Snapshots of the state of the system over time for each path
and for initial condition being the (A) H or (C) P pattern, for τ = 90. The initial,
intermediate path vertex and final points of each path and the time t of each
snapshot are indicated. The results show that the selection of a pattern different
from the initial one only occurs when the path involves a transient destabilization
of the initial pattern. (B,D) Percentage of selection of P pattern (RP ) versus
τ when the initial state is H (B) and when the initial state is P (C). Different
colours and symbols are used to distinguish selections from each path (global path
2a in orange circles, and global path 2b in blue stars), as indicated. Notice that
selection of a new pattern requires a minimal time (τ). Other parameter values
as in Fig. 5.9 and in Table 5.1.

backwards (Fig. 5.12A). When this path acts, the P pattern is selected (Fig.

5.14A). The P pattern forms within the cluster and propagates all through the

tissue. Therefore, selection of a more spatially stable pattern can be driven

by transient signals acting locally within the tissue. The transient local signal

drives the selection of the new pattern within the cluster. Then, because the

new pattern is spatially more stable, it spontaneously (without the action of

any signal) invades the remaining tissue. Notice that path 2a is such that if the

signal acted in all cells and not only within a cluster, the P pattern would be

selected as well, as expected from the global paths of Fig. 5.13.
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t = 0 t = 11 t = 61 t = 80 t = 240
2a
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t = 0 t = 11 t = 61 t = 120 t = 240
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C (H,P) C (H,P) C (H,P)A1 (H) A1 (H)

A

B

Figure 5.14 Pattern selection achieved through a spatially localized
signal. Snapshots of the tissue state over time (t) when the system initially
(t = 0) exhibits the H pattern and the signal acts only in three cells (green cell
borders) which change their control parameter values transiently according to
paths 2a (A) and 2b (B), while the remaining cells of the tissue have constant
parameter values corresponding to those of parameter space point C. Parameter
values are τ = 50 and tup = 11 and those in Fig. 5.9.

In scenario 1 we found that selection of a new pattern involved the transient

destabilization of the initial pattern. Specifically if the path described the tra-

jectory from point C to A1, where only the H pattern is stable, and backwards

(Fig. 5.12B), the P pattern was not selected from the H one (Fig. 5.13). We

devised this same change to occur only within a subset of clustered cells (path

2b in Fig. 5.12B). Our results show that in this case the P pattern can be

selected in the whole tissue (Fig. 5.14B). Snapshots of the dynamical evolution

of the state of cells reveals that the P pattern starts to emerge at the boundary

outside the clustered cells, i.e. where the signal is not acting (Fig. 5.14D). This

initial nucleation of the pattern then spreads to all the tissue. Thus, this signal

drives selection of the P pattern only if it acts on a subset of cells and not in

all the tissue. In this case, the destabilization of the H pattern arises from the

spatial inhomogeneities the signal drives on the tissue through the large differ-

ences between the average values of the ligand and receptor activities of the H

pattern at points A1 and C (Table 5.1). Thus, the P pattern can only arise at
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the boundary where the signal acts.
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Figure 5.15 The robustness of the selection process depends on the
amount of cells that sense the signal (Cluster size). requency of selection
of the P pattern (RP in percentage) for 100 repetitions versus the time τ spent
at the intermediate parameter space vertex point of the path. The signal drives
the change of the control parameters only in the number of cells detailed in the
legend, located at the centre of the tissue, according to (A) path 2a and (B) path
2b of Fig. 5.14, respectively. All parameter values as in Fig. 5.14.

We explored the robustness of these selection processes as a function of the time

τ spent at the intermediate point (B for path 2a and A1 for path 2b) and of the

number of cells on which the signal acts. In all cases, the selection process shows

a threshold-like response requiring a minimal time to be robust (Fig. 5.15). For

path 2a (Fig. 5.14A), this minimal time is larger than when the signal acts in

all the tissue (Fig. 5.15A). The minimal time decreases as the number of cells

responding to the signal is larger (Fig. 5.15A). For path 2b (Fig. 5.14B), the

selection process required much more longer time scales (Fig. 5.15B). This is to

be expected since the pattern does not form from a linear, small, instability, but

from a nonlinear one. In addition, the minimal time increases with the size of

the cluster of cells (Fig. 5.15B). It is also worth to be stressed that the selection

becomes less robust, becoming less sharp.

The distinct behaviour paths 2a and 2b show for the time required for robust

selection as a function of the size of the cluster of cells indicates that we may

expect non-monotonic functionalities on the size of the cluster for more complex

paths. Figure 5.16 shows the system behaviour for a local path such as the 1a

path’ but only affecting to a subset of cells (cluster size).
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Figure 5.16 Selection by a local path such as the path 1a’ that acts
only on a cluster of cells (cluster size). The cyclic path used herein involves
transient changes of the parameter values as those depicted for path 1a’ in Fig.
5.8A,C. The path starts and ends at point C of the parameter space. The changes
of the parameter values only occur on a subset of cells, while the rest of the cells
of the tissue remain at all time with the parameter values of point C. This is in
contrast with path 1a’ which acts upon all cells of the tissue. (A) Frequency of
selection of the P pattern (RP in percentage) for 1000 repetitions versus the time
spent at each intermediate parameter space vertex point of the path τ (τ = τB =
τA1 = τA). The signal drives the change of the control parameters only in the
number of cells detailed in the legend, located at the centre of the tissue. (B) The
same results as in panel A but depicted as a function the number of cells that
change their parameter values. Different curves correspond to different τ values
(see the legend). Notice the non monotonous dependency of the pattern selection
with the cluster size for this path. Other parameter values as in Fig. 5.10B. The
total size of the tissue is 12×12.

Together, these results show that selection of a pattern that is more stable

than another stable one and can spatially invade it can be triggered by a signal

acting locally in a cluster of cells and propagate across the tissue spontaneously,

without requiring the signal anymore. The signal can destabilize the initial

pattern either dynamically inside the cluster of cells or in a spatial manner by

setting borders. Therefore, the instability can arise either within the region

where the signal acts or outside this domain, at its border.
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5.3.3 Scenario 3: Spatio–temporal paths can select the

stripe pattern

It is quite common to have patterns that although they are stable, they can not

arise spontaneously from an H pattern unless specific spatial symmetries are

broken. In our model, the stripe S pattern is such a case whereas the dynamics

are completely isotropic, the S pattern is not. To ensure stochastic stability of

this pattern, we focused on the phase diagram for n = 4 (Fig. 5.4B and 5.17A).

We evaluated whether selection of the S pattern can arise when the system

is initially at the H pattern. According to the phase diagram (Fig. 5.17A),

transient destabilization of the initial H pattern can occur but it does not drive

an univocal selection. Although H becomes now unstable, both the S and P

patterns are stable and able to be selected (e.g., at point B).

To drive the selection from the H pattern to the S one, we envisaged that sig-

nals could act in domains of the tissue, which could break the spatial symmetry

appropriately. It is worth to mention that for deterministic dynamics, the S pat-

tern does invade the H pattern and it can be induced by local non-propagating

signals (data not shown). However, evaluation of the relative stability of the S

pattern for stochastic dynamics indicated that the S pattern can not propagate

over the H pattern (Fig. 5.6), discarding a mechanism like scenario 2. There-

fore, if the S pattern was to arise in a small spatial domain of the tissue, it

would not propagate spontaneously over the whole tissue. This prompted us to

consider spatio–temporal signals and paths that sweep rows of cells along time

(Fig. 5.17B, Eq. 5.3). These kind of spatio–temporal paths could be driven,

for instance, by diffusing morphogens.

We designed that changes of parameter values within a cell over time trace the

trajectory shown in Fig. 5.17A, which traverses a region where the H pattern

becomes unstable. These changes evolved progressively from row to row (path

3) (Fig. 5.17B). Figure 5.18 shows that the S pattern can be selected through

this path.

We evaluated how the selection of the S pattern depends on the time tprop the

path takes to evolve from row to row and on how many rows (Nrows) are at

point B of the path where the H pattern is unstable (Fig. 5.17A-B). For short

tprop (i.e. fast propagation of the signal over the tissue) the S pattern is not

selected but the P pattern is (Figs. 5.19). Specifically, tprop = 0 corresponds
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Figure 5.17 Spatio–temporal path of scenario 3. (A) Path depicted as
arrows across the parameter space of trans (rt) and cis (rc) interaction strengths.
Solid circles stand for the initial and final points of the path, while the intermediate
vertex points are represented by open circles. It is indicated within parentheses
at relevant points of the path (denoted by letters A, B, A1 and C) whether
the homogeneous (H), the salt-and-pepper (P) and/or stripes (S) patterns are
stable. The path crosses different domains (colours) each defined by which of
these patterns are stable: H (blue), P (yellow), H and P (grey), S and P (orange),
or H, P and S (red). Stability of these patterns for stochastic dynamics and
fixed boundary conditions at bottom and top rows is found in Fig. 5.6. (B)
Representation of path 3 across the tissue (denoted by the black border) at the
initial (left), an intermediate (middle), and the final (right) times. Small arrows
within the tissue denote the spatial direction of change of the parameter values:
from top to bottom rows. Colours and letters, as in panel A, denote the parameter
values of cells. (C) Temporal evolution of the rt (orange) and rc (blue) parameters
for different rows of the tissue, as indicated. τ stands for the time period during
which a row is at the intermediate vertex point, B, of the path. tprop is the
time required for the parameter to change from one row to the adjacent one. (D)
Spatial distribution of the rt (orange) and rc (blue) parameters at different times,
as indicated. Nrows is the number of rows that are at the same intermediate
vertex point of the path 3.
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Figure 5.18 Stripes selection achieved through a propagating signal.
Snapshots of the tissue state over time (t) when the system starts (t = 0) with
the homogeneous H pattern and parameters change over time according to path
3 (i.e. propagating from top to bottom cell rows). The column of coloured cells
at the right of each panel shows the point of the parameter space at which each
cell row is (blue for point A, white for B and red for C). Parameter values are
tprop = 7, Nrows = 2, b = 1000, n = 4, V = 10000, and rc and rt values can be
found in Table 5.2. A lattice of N = 18× 31 cells with fixed boundary conditions
at bottom and top rows (s = 0 and l = 0 for neighbours on top of the first row
and below the last row) and periodic conditions between left and right sides were
used. These results are also found if toroidal periodic boundary conditions are
considered (data not shown).

to the signal acting in all cells at the same time, and not propagating (scenario

1). Therefore, non-propagating signals can not select the S pattern as expected

(Fig. 5.20). For higher values of tprop (i.e. slower propagation of the signal), the

S pattern is robustly selected, with the stripes arising sequentially as the signal

propagates, and finally all the tissue exhibits the S pattern (Figs. 5.19). If the

signal propagates too slowly (large tprop), the stripes become destabilized and

the P pattern is selected again (Figs. 5.19). These two limits give an optimal

selection of the S pattern within a range of tprop. Increasing the value of Nrows,

enlarged the maximal tprop for optimal selection of the S pattern, albeit up to

a maximal range (Figs. 5.19). The range of tprop values for which the selection

of the S pattern occurs is of the same order as the time for the formation

of stripes in few rows surrounded by the H pattern (data not shown). We

also found that short tprop values, below the optimal range, drove stripes to be

formed consistently only partially within the tissue (Figs. 5.19B-C). In contrast,

for tprop values above the optimal range, in some stochastic circumstances all

the tissue could form the S pattern, while only partially in other cases (Figs.

5.19B-C).

We checked that the selection of stripes can also occur through spatio–temporal
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Figure 5.19 Robust selection of stripes occurs for an optimal signal
propagation time along the tissue. (A) Frequency of selection of the S pattern
(Rs in percentage) for path 3 (Fig.5.17A) versus tprop (propagating time) for 100
repetitions. Results for different number of cell rows being simultaneously at point
B of the path (Nrows, see legend) are shown. (B) Snapshots of the stationary
state reached through path 3 (Fig.5.17A), for different spatio–temporal dynamics
of the path, i.e., different values of tprop and Nrows. (C) Values of σl (average of
100 repetitions) for path 3 versus tprop (propagating time). Results for different
number of cell rows being simultaneously at point B of the path (Nrows, see
legend) are shown. The dashed line points out the value of 0.8, which has been
considered as a threshold for stripes selection (RS). See the definition of σl in
Section 5.2.5. All other parameter values and boundary conditions as in Fig. 5.18.

paths that start and end up at the same multistable point of the phase diagram,

exhibiting similar features as those described above (Fig. 5.21).

These results show that selection of the S pattern, which can not arise through

random variability from the H pattern, requires a spatio–temporal path that

favours its spatial symmetry. Yet, and in contrast with the other selection

processes being analysed, there is an optimal time scale for the signals to select

the S pattern.
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Figure 5.20 Pattern selection achieved through path 3 with tprop = 0.
Snapshots of the tissue state over time (t) when the system starts (t = 0) with
the homogeneous H pattern and parameters change over time according to path 3
in Fig. 5.18 but with tprop = 0. Therefore, all cells change their parameter values
at the same time. In these cases, path 3 (with tprop = 0) is of the scenario 1-like
type. The column of coloured cells at the right of each panel shows the point
of the parameter space (Fig. 5.17A) at which each cell row is (blue for point A,
white for B and red for C). Three values of τ have been explored. (A) The tissue
spends no time in B parameter space point, so τ = 0. (B) Each cell of tissue
spends as much time in B as a cell does in the path studied in Fig. 5.18. It uses
τ = 14. (C) The whole tissue spends as much time in B (τ = 231) as the tissue
in Fig. 5.18 remains with at least one row of cells in B. Other parameter values
and boundary conditions as in Fig. 5.18.
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Figure 5.21 Selection of the S pattern through a transient spatio–
temporal change of a parameter value. (A) Path 3’ depicted as arrows in
the parameter space of Fig. 5.4B. The path starts at point C and transiently visits
the point B. (B) Snapshots of the tissue state over time (t) when the system starts
(t = 0) with the homogeneous H pattern (of C point) and parameters change over
time according to this path 3’. The column of colored cells at the right of each
panel shows the point of the parameter space at which each cell row is (white for
B and red for C). Parameter values are tprop = 6, Nrows = 4. (C) Frequency of
selection of the S pattern (RS in percentage) for the path described in panel A
versus tprop for 100 repetitions. Results for different number of cell rows being
simultaneously at point B of the path (Nrows, see legend) are shown. Parameter
values and boundary conditions as in Fig. 5.18.
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5.4 Discussion

Previous works have addressed the question of how different cellular patterns

can be established in a tissue, e.g., how a system can select between spots

and stripes (Ermentrout, 1991; Shoji et al., 2003; Lin et al., 2009; Lubensky

et al., 2011; Simakov and Pismen, 2013). These works focused on the univocal

correspondence between the parameter and initial conditions values with the

selected pattern. Our work sheds light to new mechanisms for the selection

among multiple stable patterns based on time-dependent parameter variation.

Our results showed that the selection of a specific pattern does not depend

only on the initial and the final values of the control parameters. The main

factor in our approach was the specific path followed by parameter changes

and the spatio–temporal characteristics of these changes such that the path

drives the selection. Herein, changes of the parameter values are understood

as the result of biochemical signals. We expect these mechanisms to help to

understand some of the pattern formation processes occurring in the context

of development. Despite the fact that the signals that induce the decision in

this chapter follows a continuous profile, this study could be also performed by

implementing step-like functions, as in previous chapters.

We presented different dynamical paths that select patterns which are all stable

for the same value of the parameters. To this end, we made use of a model

of tissue differentiation based on cell–to–cell communication through the Notch

signalling pathway. We showed that patterns that can spontaneously break the

spatial symmetry can be robustly selected through paths which only involve

temporal, and not spatial, dynamics. The time scales of the path (i.e., of the

parameter changes) can be shorter than the time required for the full pattern to

emerge. Therefore, the selection can become evident after the path has finished,

i.e., at the final set of parameter values. In this sense, the tissue has a memory

of the conditions (the path) into which it has been. Even for fast paths, the

selection can be robust. Indeed, the selection exhibits a threshold-like behaviour

as a function of the characteristic time scale of the path. This conclusion on the

relevance of the sepeed of the parameter change for selecting a certain system

state connects with general ideas of cellular decision making: the decision does

not only depend on the bifurcation involved, but also on how fast the system

changes this bifurcation parameter (Nené et al., 2012; Ashwin and Zaikin, 2015).
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We showed that when several patterns are stable and one is able to spatially

invade another one, the invading pattern can be selected through signals acting

in a small subset or cluster of cells. Such selection spontaneously propagates

through all the tissue, without requiring further the action of the signal. More-

over, our results showned that selection can arise among cells that are not within

the cluster of cells where the biochemical signal acts. In this case, the initial

pattern becomes destabilized by the spatial inhomogeneities the signal drives at

the boundary of its acting domain. In all these cases, selection exhibits as well

a sharp threshold response with time. The robustness of the selection process

depends as well on the size of the cluster of cells, and this dependence can be

antagonistic for different paths.

Finally, our results showed that patterns which can not arise spontaneously

because of their symmetries, they require spatio–temporal signals that set ap-

propriate symmetries. This is the case of the S pattern. A propagating front

can drive its selection, yet robust selection only occurs for a range of optimal

propagation times.

Summarizing, the most relevant aspects involved in the selection of a pattern

among multiple stable ones through dynamical paths are: (i) The destabiliza-

tion of the initial pattern either by dynamical (scenario 1) or spatial (scenario

2) mechanisms. (ii) The different stable patterns that the path visits during its

evolution, being the last explored pattern the most relevant one for the final

selection when all are explored for long enough times. Therefore, the order that

signals acting sequentially have is relevant. (iii) The interplay between two rel-

evant time scales: the characteristic time of the parameter changes, which sets

the time spent in the exploration of a pattern, and the characteristic time to

form the pattern. (iv) Selection can be triggered at localized clustered regions

and spontaneously extend to all the tissue, when the selected pattern can propa-

gate over the initial one. (v) For more singular pattern selections, time–specific

symmetries of the spatio–temporal parameter changes.

Recently, it has been shown that dynamic filopodia in Drosophila enables the

creation of sparser salt-and-pepper patterns mediated by Notch signalling (Co-

hen et al., 2010, 2011). This is an example of a stochastic spatial and time-

dependent trans-interactions strength (rt) extended to longer range interac-

tions. A more recent study suggests that growing cell projections in certain
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cells in zebrafish embryos would drive stripes formation through Notch sig-

nalling (Hamada et al., 2014), what could probably be understood as a pattern

selection phenomenon through a dynamical path. Hence, an extension of our

framework to more complicated dynamical paths in the parameter space might

be helpful for studying these and other phenomena that exhibit more compli-

cated spatio–temporal patterning.

Notch signalling is just an example of a pathway that is orchestrated and mod-

ulated by different agents along time and space. Therefore, the patterning

selection mechanism characterized here can also be applied to other signalling

pathways acting during development. In addition, in this work we explored

what happens if trans and cis interaction strengths in Notch pathway are mod-

ulated in time, but other parameters could also be explored, like the signalling

intensity elicited by a ligand when interacting with the receptor. Indeed, re-

cently it has been shown that there is spatio-mechanical regulation for signal

activation, what could probably drive time-dependent signalling efficiency for

the Notch receptor (Narui and Salaita, 2013).



Chapter 6

Stochastic decision making

in the malaria parasite

6.1 Introduction

In this chapter we deal with a decision making process taking place in a real

system: the decision to become sexual in malaria parasite. This study has been

done in collaboration with Prof. Alfred Cortés from the Barcelona Institute

of Global Health. Instead of focusing on the mechanism inducing the decision,

we evaluate the consequences of the probability of each choice on the parasite

functionality. In this section, an introduction to the biological context of this

decision and previous works on this topic are presented.

Malaria is an infectious disease that affects humans, among other vertebrates,

and it is caused by parasitic protozoans (unicellular eukaryotic organisms) be-

longing to the genus Plasmodium (Bousema and Drakeley, 2011). The disease

is transmitted between humans through bites of mosquitoes (of the Anophe-

les genus). It is endemic in tropical and subtropical regions, where it is still

a relevant cause of disease and death. In these warm regions, mosquitos have

longer lifes enabling and facilitating the transmission. There were 219 million

documented cases of malaria in humans in 2010, according to the World Health

Organization (WHO).

119
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Several species of Plasmodium cause malaria infections in humans. Because of

the specificities each specie drive on the infection, a single common strategy for

malaria eradication is not envisaged. According to the number of people at risk

of their transmission, the most relevant Plasmodium species are P. falciparum

and P. vivax (Bousema and Drakeley, 2011; Guerra et al., 2010; Mueller et al.,

2009). But, P. falciparum is responsible for the vast majority of mortality cases

(Bousema and Drakeley, 2011; Guerra et al., 2010; Mueller et al., 2009).

We focus our study on malaria caused by P. falciparum. Typically, malaria

becomes symptomatic 8 to 25 days after infection. The infected human experi-

ences then cyclic episodes of fever every 36-48 hours. These fever episodes are

caused by the high proliferation of asexual parasites. The density of these para-

sites in blood is known as the level of parasitemia. Yet, the asexual form of the

parasite is not transmitted to the mosquito when it bites a human. Instead, the

transmissible form of the parasite, which becomes allocated in the peripherial

blood that is accessible to the mosquito, is the sexual one (i.e. gametocytes).

These gametocytes arise from asexual precursors within the human (Fig. 6.1).

Our study focuses on the decision that parasites take inside a human to either

remain asexual or to become gametocytes. It is well accepted that, despite its

variability, the sexual conversion rates are typically very small, below 5% (Eich-

ner et al., 2001). In addition, results of our collaborator Prof. Alfred Cortés

and colloeagues show that this decision is stochastic and relies on an epigenetic

mechanism (Kafsack et al., 2014).

The transmission process from human to human through mosquitos’ bites in-

volves several stages that are related to the parasite life cycle. P. falciparum

life cycle includes many phases that take place inside the mosquito and in-

side the human host and are summarized in Fig. 6.1 (Bousema and Drakeley,

2011). The mosquito, when taking blood from an infected human through a

bite, takes gametocytes too. Once in the mosquito midgut, gametocytes give

rise to male and female gametocytes that can fuse and form a zygote. This zy-

gote develops until forming an oocyst that will give rise to thousands of sporo-

zoites. These sporozoites are the parasite forms transmitted to humans when

the mosquito bites again. Once in the human, the majority of sporozoites mi-

grate to the liver, where they invade liver cells in order to proliferate and form

schizonts. These schizonts give rise to merozoites that migrate to the blood-

stream, where they proliferate by invading red blood cells (RBC). This drives
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the fever episodes characteristics of malaria. In addition, these merozoites con-

vert into sexual forms (i.e.gametocytes) at a very low proportion. Therefore, the

parasite survival depends on a good transmission between the human host and

a new mosquito, in order to abandon the human host before the parasite exter-

mination by either the immune system or the host death due to the virulence

of the disease.

Figure 6.1 Plasmodium falciparum life cycle involves two organisms:
a mosquito and a human host. Different parasite forms in the mosquito (left)
and in the human host (right). Different localizations of the mosquito or in the
human body are depicted with white boxes. Solid arrows (either black or grey)
represent a development processes that result to a new parasite forms, while the
dashed arrows represents process of migration, from one organ to another, or the
process of transmission between the two hosts. Grey arrows denote the decision
of the merozoites that takes place in the bloodstream. Adapted from (Bousema
and Drakeley, 2011).

The main real data of gametocytes dynamics in human hosts is those collected

by the US Public Health Service in the National Institute of Health Laboratories

in Columbia, South Carolina and Milledgeville, Georgia, between 1940 and 1963,

when malaria infection was used to treat neurosyphilis (Collins and Jeffery,

1999). Because of the difficulties in characterizing the parasite behaviour in

vivo in the human host, the complex interaction between the parasite and the

host immune system, and microscopy shortcommings to detect gametocytes,

theoretical approaches are relevant too to understand the parasite decision of
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becoming sexual. This sexual conversion decision has been indeed theoretically

studied previously, pointing to competition between different parasite strains as

the main factor that explains the low conversion rate (McKenzie and Bossert,

1998, 2005; Mideo and Day, 2008; Crooks, 2008). Crooks reviewed the main

continuous-time models studied and concluded that a discrete-time approach

is more accurate to describe the parasite dynamics (Crooks, 2008). Our study

is focused on presenting a time-discrete model, which shares similarities with

the one presented by Crooks, in order to evaluate the conversion probability

that maximizes the gametocyte population and the probability of transmission

according to new experimental data (Churcher et al., 2013).

6.2 The decision to become sexual and the mat-

uration of gametocytes

The asexual cycle of parasite proliferation within the human lasts around 48

hours. During the cycle, inside a RBC, the parasite proliferates and gives rise

to new identical asexual parasites that, once released, will be able to infect new

RBC (Fig. 6.1). However, there is a decision that takes place during the asexual

proliferation. The parasites inside the RBC can remain in the asexual form or

can become sexually-committed. Regardless of the choice, the new parasites will

be released by the RBC burst into the bloodstream and they will infect new

RBCs. However, the sexually-committed parasites will not proliferate inside

the new RBC and, instead of that, the RBC infected by the sexual committed

parasite gives rise to a gametocyte (Bousema and Drakeley, 2011). Figure 6.2

illustrates this decision.

Each new gametocyte is temporarily sequestered away from the circulation in

order to complete its maturation. This development results in a mature game-

tocyte that is re-released into the circulation and thereby it is susceptible to

be transmitted to a mosquito. Hence, it takes some days (≈ 10) between the

formation of an immature gametocyte and its development to become infectious

to mosquitoes. Mature gametocytes eventually die, after some days (≈ 20) since

their maturation. Cartoon of Fig. 6.3 shows both the decision and all these

stages.
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Figure 6.2 Malaria parasite decision in the bloodstream stage. Par-
asites remain at the asexual cycle (left rectangle), or start (with a conversion
probability) a process that results in the gametocyte formation (right rectangle).
The decision is depicted with black arrows. Grey arrows represent other steps
such as the asexual cycle or the gametocyte formation.

Figure 6.3 Some stages of the asexual and the sexual forms of the
parasite. Different stages of the parasite in both cycles, the asexual proliferation
cycle and the formation of the infectious (transmissible) parasite.

6.3 Model of the stochastic decision

Taking into account that the decision takes place in each asexual proliferation

cycle, we choose each asexual cycle as the time unit of our model (discrete time

model). We define as p the probability of remaining as an asexual parasite and

q the probability of becoming a sexually-committed parasite (p + q = 1) (Fig.

6.2). Parasite population is described by three variables: the asexual parasites

(A), the immature sexual parasites (S), and the mature sexual parasites (S∗)

(Fig. 6.4).

The proliferation rate of the asexual parasites is given by R (Fig. 6.4). This

is an effective proliferation rate that takes into account the asexual division

rate inside the RBC and the death rate of asexual parasites. This death is

produced by two main factors: immune system action on the infected RBC and
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the death of the asexual parasite once it is released in the bloodstream. In this

computational model, to take into account potential dispersion of R values, we

define different values of R, each occurring with a certain probability associated.

The proliferation value of each asexual parasite changes every cycle, according

to the probability distribution of R values.

A B

Figure 6.4 Asexual and sexual parasite model. The variables that describe
the three parasite population are depicted: asexual (A), immature sexual (S,),
and mature sexual (S∗) parasites. p and q probabilities describe the conversion
decision. R is the proliferation rate, the number of asexual parasites generated
by a single asexual parasite per cycle. m is the maturation time required for an
immature sexual parasite to become mature. l is the life span of a mature sexual
parasite. See the meaning of the cartoons of panel A in Fig. 6.3

A new immature sexual parasite is formed from an asexual precursor with a

probability per cycle of q. In the stochastic simulations of the model, the con-

version decision of each parasite is controlled by a random number generator.

After some cycles (m), the gametocyte becomes mature and infectious. After

l cycles in the bloodstream the mature sexual parasite dies. We call these two

times, m and l, as maturation time and life span (Fig. 6.4). The stochastic

numerical interpretation of the model also takes into account dispersion in the

maturation time, m, and in the lifespan of each parasite l. The model con-

fers to each new sexual parasite a value of m and l according to the following

probability distribution

P (〈X〉+ k) =
1

∆X + 1

(
1− |k|

∆X + 1

)
, (6.1)

where 〈X〉 is the mean value of parameter m or l, ∆X the dispersion of the

parameter (∆m or ∆l), k = {k ∈ Z| −∆X ≥ k ≤ ∆X}. Notice that,
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+∆X∑

−∆X

P (〈X〉+ k) = 1 . (6.2)

According to the expression (6.1), m and l take integer values between−∆m and

+∆m and −∆l and +∆l respectively. The probability reaches the maximum

value in m = 〈m〉 and l = 〈l〉, respectively, and it decreases linearly for higher

or lower values.

6.4 Transmission model

Churcher et al. (2013) have recently studied the relationship between gameto-

cyte density (P. falciparum) in the human blood and the percentage of mosquitoes

(Anopheles gambiae) that develop oocysts (see in Fig. 6.1 a reminder of oocysts).

Their experimental work shows the relation between the density of gametocytes

in blood and the probability of infecting a mosquito (transmission probabil-

ity). According to their study, although the transmission probability increases

with the density of gametocytes, the function that describes this dependency

saturates at certain density.

Despite the fact that the experiments of Churcher et al. (2013) (see Fig. 1 of

(Churcher et al., 2013)) reveal a high variability in the cases studied, we have

qualitatively reproduced, according to their fitting, a function that describes

the relationship between the gametocyte density and the probability of parasite

transmission from the human bloodstream to the mosquito. The function that

expresses this transmission probability (T ) is,

T (S∗) =





0.02

(
tanh

(
S∗

VT
− 0.8

)
+ 1

)
, if

S∗

VT
< 10

0.08 tanh

(
S∗

VT
− 250

100

)
+ 0.12, if

S∗

VT
≥ 10,

(6.3)

where Vt (5 · 106 µl) is the human blood volume. Figure 6.5 shows the trans-

mission probability (T (S∗)) according to Eq. (6.3).
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Figure 6.5 Transmission probability. Probability of transmission – of in-
fecting a mosquito – (T ) versus the mature gametocyte density (S∗/VT ) in the
bloodstream of an infected human host. There are two saturation values (grey
dashed lines). This function has been reproduced according to the Fig. 1 of
(Churcher et al., 2013)).

6.5 Results

6.5.1 Dynamical regimes of the temporal evolution of the

parasites

Taking into account the high number of parasites involved in a typical malaria

infection (Bousema et al., 2006), we first evaluated the stochastic model of Sec-

tion 6.3 analytically. Notice that the populations of parasites calculated by this

analytical interpretation of the model can take non discrete values. However,

we expect that the differences between both approaches are not relevant for

large enough number of parasites.

A(c) is the amount of asexual parasite at the cth cycle. Initially, there are

n asexual parasites (A(0) = n), which come from the liver stage. g(c) is the

number of immature sexual cells generated in the cth cycle. The temporal

evolution of these two variables, A(c) and g(c), is depicted in Table 6.1.
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In this analytical approach of the stochastic model, we consider single, constant

values of the maturation time (m), the life span (l) and the proliferation rate

(R) without any dispersion.

c = 0 c = 1 c = 2 c = 3 · · · c = cT

A(c) n n · R (1− q) n · R2 (1− q)2 n · R3 (1− q)3 · · · n · RcT (1− q)cT

↘ ↗ ↘ ↗ ↘ ↗ · · ·
n · R n · R2 (1− q) n · R3 (1− q)2 · · ·

↘ ↘ ↘ · · ·
g(c) n · R · q n · R2 (1− q) · q n · R3 (1− q)2 q · · · n · RcT (1− q)cT−1 q

Table 6.1 Asexual parasites and immature sexual parasites generated
per cycle. The table shows the number asexual parasites (A(c)) after each cycle
(c). Furthermore, the number of immature sexual parasites (g(c)) produced in
each cycle is also depicted.

According to Table 6.1, the number of asexual parasites in the cth cycle is,

A(c) = n [R (1− q)]c (6.4)

The number of immature sexual parasites can be calculated with the following

summation,

S∗(c) =





c−m∑

i=1

g(i) if c < l

c−m∑

i=c−l

g(i) if c ≥ l,
(6.5)

which, according to the expression of g(i) in Table 6.1, results into:

S∗(c) =





n q R
1− [R (1− q)](c−m)

1−R (1− q) if c < l

n q R
[R (1− q)](c−l−1)

{
1− [R (1− q)](1+l−m)

}

1−R (1− q) if c ≥ l

(6.6)

Equations 6.4 and 6.6 reveal that the dynamics of both the asexual and the

sexual parasite population follows two regimes according to the values of R

(proliferation rate) and q (conversion probability). Notice in Eqs. (6.4) and
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(6.6) that A(c) remains constant for q = (1 − R−1) (i.e. R(1 − q) = 1). Fur-

thermore, there is an exponential growth regime of A(c) for q < (1 − R−1),

and an exponential decay regime for q > (1 − R−1) (see Fig. 6.6). These two

regimes (growth and decay) are also observed in the dynamics of the mature

sexual cells, S∗(c) (Fig. 6.6).

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

10
50

 0  5  10  15  20  25  30  35  40  45  50
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

10
50

10
55

S
*

A

c

S*(c)
 

A(c)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0  5  10  15  20  25  30  35  40  45  50
10

0

10
1

10
2

10
3

10
4

S
*

A

c

S*(c)
 

A(c)

A B

Figure 6.6 Two dynamical regimes for A(c) and S∗(c): growth and
decay. (A) Dynamical evolution of asexual parasites (A) and mature sexual
parasites (S∗) in an exponential growth regime: q = 0.05 > (1 − R−1). (B)
Dynamical evolution of asexual parasites (A) and mature sexual parasites (S∗)
in an exponential decay regime: q = 0.95 < (1 − R−1). Other parameter values:
n = 104, m = 5, l = 10 and R = 10.

We can distinguish two phases in a typical infection of malaria: i) First, there

is an exponential growth of the parasitemia (number of parasites in the blood-

stream). ii) Due to the immune system response, the disease can reach a chronic

phase where the parasitemia remains roughly constant and the symptoms are

significantly reduced (Stone et al., 2015). While the first phase lasts a few days,

the chronic phase can last some months, resulting in the host recovery. Despite

we have distinguished these two phases for simplicity, the infection evolves in a

continuous way from growth up to a kind of steady regime.

6.5.2 Optimal conversion probability to maximize the ma-

ture sexual parasites

The malaria parasites (e.g. Plasmodium falciparum) have evolved to guarantee

their own survival. In this context, there is a crucial step in the parasite life

cycle: the transmission from the human host to the mosquito. By this mecha-

nism, the parasite avoids two catastrophic scenarios: its extermination by the
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host immune system, and its ending with the host death. Taking into account

that only the sexual parasites are able to infect a mosquito, this parasite form

determines the viability of the parasite transmission from the human host to

the mosquito. So, we consider that the strategy of the parasite for its survival

and propagation lies in maximizing the amount of the parasites in its sexual

form.
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Figure 6.7 Optimal conversion probability value (q̃) decreases with
the cycle number (c). (A) Mature sexual parasites (S∗) for different conversion
probability values (q). Three curves are depicted, for three values of cycles (c).
S∗ has been normalized with its maximum (S∗max) in order to plot all the curves
in the same axis. The conversion probability that maximizes each curve (q̃) is:
q̃ = 0.2059 (c = 10), q̃ = 0.0402 (c = 30), q̃ = 0.0223 (c = 50). (B) Optimal
conversion probability, q̃, versus the final cycle, c. Other parameter values: n =
104, m = 5, l = 10 and R = 10.

We explore the number of mature sexual parasites after a certain number of cy-

cles for the different values of conversion probability, according to the Eq. (6.6)

(Fig. 6.7). Figure 6.7A reveals that the amount of mature sexual parasites, S∗,

exhibits an optimal behaviour with the conversion probability, q. Furthermore,

the conversion probability that optimizes the number of mature sexual cells gets

smaller as the number of cycles increases (Fig. 6.7B).

This result can be understood as follows: the optimal behaviour of the ma-

ture sexual parasites lies in the trade-off between the two extreme conversion

probability values. For very low values of conversion probability, only a small

proportion of asexual parasites becomes sexual and therefore there is small num-

ber of sexual parasites. But, in contrast, if the probability of conversion is high,

we reduce the population of the asexual parasites that are, in fact, the respon-

sible of the proliferation. This second consideration becomes more relevant for
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long-term situations (i.e. large number of cycles) and so, these situations are

optimized by lower probability values.

Notice from Fig. 6.7B that low values of conversion probability optimize the

sexual parasite production for a very wide range of cycles. This values of q

coincides with the low conversion probabilities found experimentally (Eichner

et al., 2001).

S
∗

S
∗ m
a
x

Figure 6.8 Optimal conversion probability value (q̃) does not signif-
icantly depend on the proliferation, R. Mature sexual parasites (S∗) for
different conversion probability (q). Six curves are depicted, for six values of pro-
liferation (R). S∗ has been normalized with its maximum (S∗max) in order to plot
all the curves in the same axis. The conversion probabilities that maximize each
curve (q̃) are: q̃ = 0.0513 (R = 1), q̃ = 0.0503 (R = 1.042), q̃ = 0.0404 (R = 5),
q̃ = 0.0402 (R = 10), q̃ = 0.0401 (R = 15), q̃ = 0.0401 (R = 20). Other parameter
values: n = 104, m = 5, l = 10 and c = 30.

Figure 6.8 shows how the optimal conversion probability does not significantly

depend on the value of the proliferation, R. For all the values of proliferation

explored, the optimal probability is between 0.051 and 0.04. Figure 6.8 displays

the curves for two very low values of proliferation, R = 1 and R = 1.042, whose

curves are slightly different to those of other proliferation values analysed. For

R = 1, the parasite dynamics is in a decay regime for q > 0 (Fig. 6.6B). R =

1.042 has been chosen as an example in which the asexual parasite number, A,

remains constant for q = 0.04 (compatible with the range of optimal conversion

probabilities found). These low values of R are typically found in chronic stages
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of the disease, where the parasitemia remains roughly constant. In contrast,

values such as R = 10 drive the exponential growth of the initial phase of

malaria.

6.5.3 Dispersion in parameters of the dynamics

Previous results have been generated through an analytical interpretation of the

model (Eqs. (6.4) and (6.6)). In this interpretation, decision probabilities are

implemented as ratios of population. Nevertheless, the probabilistic decision

can also be simulated by a random number generator as Section 6.3 describes.

Numerical simulations can give rise to phenomena with low frequency such

as parasite catastrophe. Taking into account that the production of asexual

and sexual parasites depends on the population of asexual parasites, if parasite

population goes to zero, it can not be restored. We call this as the catastrophe

situation, and its probability is described by the following expression,

Pc(n, q,R) =

∞∑

i=1

qA(i−1) =

∞∑

i=1

qn(R(1−q))i−1

, (6.7)

where i is the cycle. The probability of catastrophe at each cycle tends to zero

for a realistic set of parameter values, (e.g. q = 0.05, R = 10, n = 104).

This numerical description also allows us to implement parasite-parasite vari-

ability in some parameters: R, m and l.

We have simulated the final mature sexual cells after 30 cycles for three different

proliferation distributions that average the same value in Fig. 6.9. Every cycle,

each asexual parasite proliferates with one value according to the distribution

of probabilities (Fig. 6.9). For these three proliferation distributions, there are

no significant differences neither between them nor with the curve calculated

by Eq. (6.6).

Dispersion in maturation time and lifespan values follows a distribution accord-

ing to the expression (6.1) (Fig. 6.10). Figure 6.10 reveals that dispersion in

maturation time and lifespan values does not affect the number of the mature

sexual cells.
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Figure 6.9 Numerical simulations with proliferation dispersion. (left)
Mature sexual parasites (S∗) for different conversion probability values (q) (left).
Three curves, each for a different proliferation distribution (R1, R2, R3, right
panel) are depicted. All the proliferation distributions average the same value,
〈R〉 = 1.042. The points correspond to averages over 100 repetitions, while lines
are guides to the eye. Black line corresponds to the analytical curve calculated
with Eq. (6.6). Other parameter values: n = 104, m = 5, l = 10 and c = 30.
(right) Proliferation distributions as bar diagrams.
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Figure 6.10 Numerical simulations with maturation time and lifespan
dispersion. (left) Mature sexual parasites (S∗) for different conversion probabil-
ity values (q). Four curves, each for a different combination of maturation time
and life span distributions (right panel). The points correspond to averages over
100 repetitions, while lines are guides to the eye. Black line corresponds to the
analytical curve calculated with Eq. (6.6). Other parameter values: n = 104,
〈m〉 = 5, 〈l〉 = 10, R1 = 1.042 and c = 30. (right) Distribution of maturation
times (top) and lifespan distribution (bottom). These distributions are calculated
through expression (6.1).
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Results generated by this numerical interpretation of the model (see Figs. 6.9-

6.10) are coherent with those produced by the analytical interpretation. The

amount of parasites involved in the simulations is enough to describe the system

with the Eqs. (6.4) and (6.6).

6.5.4 Malaria transmission for constant proliferation rates

We saw that, according to the two interpretations (numerical and analytical) of

the model, low values of conversion probability (q) optimize the production of

mature sexual parasite. In other words, the transmissible form of the parasite

is favoured by high probability values of remaining asexual.

Despite the fact that mature sexual parasites (gametocytes) are required to in-

fect a mosquito, the relationship between the gametocytes density in the blood-

stream and the probability of infect a new mosquito is not linear (Churcher

et al., 2013; Bousema et al., 2006; Schneider et al., 2007; Ouedraogo et al.,

2009). According to recent experiments, the probability of infecting a mosquito

saturates for a certain density of gametocytes in blood (Churcher et al., 2013).

Taking into account the hypotheses that the malaria parasite that is found

nowadays is the one that has evolved to optimizes its host-to-host transmission

(natural selection), we focus on this transmission variable instead of the ga-

metocyte density in the bloodstream. These two variables – transmission and

gametocyte density in blood – are related by a function such as those of the

expression (6.3).

Figure 6.11 and 6.12 show both the transmission probability (T ) and the mature

sexual parasites (S∗) at each cycle for a constant value of proliferation.

Transmission diagram with a high proliferation that represents a malaria infec-

tion in the exponential growth phase (R = 10) reveals that there is a wide range

of conversion probabilities that drive an equivalent parasite transmission (Fig.

6.11A). Significant differences between the amount of mature sexual parasites

(6.11B) are screened by the saturation behaviour of the transmission probability

function (Eq. (6.3)).

Malaria disease in a chronic phase is characterized by low proliferation values

of merozoites. Figure 6.12 shows that the probability of transmission of all the
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A B

Figure 6.11 Malaria transmission by a constant proliferation rate of
the exponential growth phase. (A) Average of the transmission probability
(T ) along 50 cycles (〈T 〉) (top). Transmission probability, T , at each cycle, c,
for every conversion probability value, q (heatmap, middle). Dashed line corre-
sponds to q = (1 − R−1), which is the threshold of the conversion probability
that determinates if the parasite population grows or decays. Number of cycles
(c∗), of a total of 50, that exhibit a transmission probability of T > 0.1 (bottom).
(B) Number of mature sexual parasites, S∗, at each cycle, c, for every conversion
probability value, q (heatmap). Other parameter values: n = 104, m = 5, l = 10,
R = 10.

cycles explored is negligible for a low proliferation rate (R = 1.042). Such low

values of proliferation keeps the parasite population roughly constant (for low

conversion probability values). So, the parasite requires a previous phase of

exponential growth to reach a transmissible values of gametocyte density that

will be kept during the chronic phase.

Consequently, constant proliferation rates do not select an optimal conversion

probability, neither for low nor high proliferation values.

6.5.5 Malaria transmission for a proliferation that decays

over time

In a normal malaria infection, once the parasites are released to the bloodstream

from the liver, they grow exponentially due to a high proliferation. Each free
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A B

Figure 6.12 Malaria transmission by a constant proliferation rate of
the chronic phase. (A) Average of the transmission probability (T ) along 50 cy-
cles (〈T 〉) (top). Transmission probability, T , at each cycle, c, for every conversion
probability value, q (heatmap, middle). Dashed line corresponds to q = 1−R−1,
which is the threshold of the conversion probability that determinates if the par-
asite population grows and the decays (see Section 6.5.1). Number of cycles (c∗),
of a total of 50, that exhibit a transmission probability of T > 0.1 (bottom).
(B) Number of mature sexual parasites, S∗, at each cycle, c, for every conversion
probability value, q (heatmap). Other parameter values: n = 104, m = 5, l = 10,
R = 1.042.

asexual parasite can give rise up around 20 parasites inside a RBC and, once

these are released, around 10 of these parasites will infect a new RBC (Eichner

et al., 2001).

The fast parasitemia growth during the first malaria infection stage can provoke

the death of the host if his immune system does not respond fast enough. How-

ever, the effective proliferation rate decays after some cycles due to both the

resources reduction – available RBC – and the immune system response. This

proliferation reduction gives way to the host recovery or the chronic stage of the

disease. This chronic stage – that can last up to some months – is characterized

by a long period where the parasitemia remains roughly constant (Stone et al.,

2015).

We have modelled these different stages of the malaria through a proliferation

rate that evolves as an exponential decay function (Expression (6.8) and Fig.
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6.13). The system spends the first cycles (cm) with R0 proliferation rate and

then, it decays exponentially – with λ exponential decay parameter – until Rf

proliferation rate (Rf < R0).

R(c) =

{
R0 if c < cm

(R0 −Rf )e−λ(c−cm) +Rf if c ≥ cm
(6.8)

Results of Fig. 6.13 show that, for a decreasing proliferation, the transmission is

favoured for low conversion probability values such as those observed in nature

(Eichner et al., 2001). Furthermore, the number of infectious cycles decreases

as the decay constant increases. Hence, a faster response of the immune system

of the host shortens the infection of the host, as it is expected.

Summarizing, the low conversion probability values observed in malaria infec-

tions increase the number of cycles at which the parasite can be transmitted to

a mosquito. So, malaria parasite would have been selected by the pressure of

the evolution in order to exhibit these low conversion probabilities to increase

the chance of completing its life cycle and avoiding its death due to either the

host death or the host recovery.

6.6 Discussion

The decision of remaining in the asexual cycles or becoming sexually-committed

in malaria blood stage is a good example of cell autonomous decision making.

Each parasite chooses its fate regardless of the other parasites choice. This

decision is driven by a stochastic mechanism (Kafsack et al., 2014). The ratio

between the parasites in the asexual form and in the sexual form is rather

fixed and controlled by this stochastic mechanism. This population ratio –

determined by the decision probability – has pressumably evolved to optimize

the adaptation and survival of the parasite.

We implemented a stochastic model for parasite dynamics with two interpreta-

tions: a numerical interpretation, and an analytical one. The results revealed

that the sexual parasite population is maximum for low conversion probability

values, such as those observed in nature (Eichner et al., 2001). However, due to

the saturation profile of the transmission function, transmission rates are similar
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A

B C

Figure 6.13 Malaria transmission by a proliferation rate that decays
over time. (A) Proliferation rate evolving as an exponential decay. There are
depicted two values of exponential decay constant: λ = 0.1 (dashed line) and
λ = 0.08 (solid line). Other parameters: cm = 4, R0 = 10 and Rf = 1.042. (B)
Average of the transmission probability (T ) along 50 cycles with a proliferation
rate that decays with λ = 0.1 (〈T 〉) (top). Transmission probability, T , at each
cycle, c, for every conversion probability value, q (heatmap, middle). Number of
cycles (c∗), of a total of 50, that exhibit a transmission probability of T > 0.1
(bottom). (C) Average of the transmission probability (T ) along 50 cycles with a
proliferation rate that decays with λ = 0.08 (〈T 〉) (top). Transmission probability,
T , at each cycle, c, for every conversion probability value, q (heatmap, middle).
Number of cycles (c∗), of a total of 50, that exhibit a transmission probability of
T > 0.1 (bottom). Other parameter values: n = 104, m = 5, l = 10, cm = 4,
R0 = 10 and Rf = 1.042.
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for a very wide range of conversion probabilities. This range becomes strongly

reduced, involving low conversion probabilities only, when the proliferation rate

decays over time. This exponential decay can be explained by the action of the

immune system, that brings the infection to a chronic phase that gives place,

eventually, to the host recovery.

The model, despite its simplicity, explains a benefit of low conversion rates, and

suggests a scenario of evolution of malaria parasite, that has developed an ac-

curate strategy of adaptation during thousands of years of evolution. However,

several factors of the parasite dynamics can be taken into account in order to

check and refine the model.

The decay in proliferation is mainly caused by the effect of the immune system.

This decay could be modelled by a parasite-population-dependent function, that

decreases with the amount of asexual parasites (A) – instead of with the cycle

number (c). This relationship between the proliferation rate and the number of

asexual parasites could be described by a function that decreases and saturates

for a certain population value. The immune system could respond more aggres-

sively as the number of parasites gets higher. Also a delay between the presence

of the parasite in the bloodstream and the response of the immune system can

be included in the model. These considerations a priori do not favour the low

conversion rates of the decision, because these rate values give rise to higher val-

ues of asexual parasites. However, the dynamics of the immune system is very

complex. For instance, the strategy of the parasite consists in expressing one

of up to 60 antigenic molecules on the infected RBC membrane. Each parasite

can stochastically change of antigenic variation in order to evade the specific

immune response (Recker et al., 2011; Coleman et al., 2014).

Other theoretical studies point to the competence between different parasite

varieties in a multiple infection scenario as the explanation to the low conver-

sion rate values (McKenzie and Bossert, 1998, 2005; Mideo and Day, 2008).

De Moraes et al. (2014) found a reason by which multiple infections are so

frequent. The study reveals that the parasite modifies the host odours in or-

der to attract the mosquitoes. This mechanism not only enhances the parasite

transmission, but also favours multiple infections, as a side effect. However,

regardless of this hypothesis, our study revealed for first time that multiple in-

fections are not required to explain the advantages of low values of conversion
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rates. Only a proliferation decay over time - which is reasonable due to immune

system effect - is sufficient to explain these low values.

Some aspects of the parasite dynamics are still unknown and a further study

is required. Besides the difficulty of this system, that interacts with such a

complex system as the immune system, we also have problems in collecting

experimental data from infected humans. Despite the fact that some variants

of the parasite infect other organisms, such as rodents, the differences between

these variants and P. falciparum are relevant enough to not extrapolate their

results to the human variety.
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Chapter 7

Conclusions

In this chapter we summarize the main conclusions of the results presented

in the previous chapters and the perspectives these results open. The specific

discussion of these results can be found in the last section of each chapter.

In this thesis we addressed the study of the dynamics of decision making from

different points of view. On the one hand, we evaluated different theoretical

scenarios of decision making processes. These studies focused on well-known

types of interactions (or circuit architectures) taking place in cells but not on a

specific biological process. We evaluated both cell-autonomous decisions, where

each cell decides its fate regardless of the choice of other cells, and non-cell-

autonomous decisions in which cells of a tissue that interact collectively choose

between different spatial patterns. In this last case, we focused on the dynamics

of cell-interactions mediated by Notch signaling pathway. For these theoretical

scenarios, we have characterized cellular decision processes not only by the

different responses that the system is able to perform, but also by the probability

of selecting each choice. Our analysis focused on how the final selection depends

on the dynamical mechanism that induces the decision. In the last chapter of

this thesis, we focused on a specific biological context and decision: the decision

to become sexual that takes place during the life cycle of the parasite that

causes malaria in humans. In this case, we have not studied the mechanism

that controls the probabilities involved in the decision, but the impact that the

probability values have on the functionality of the system.

143
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There are four common ingredients in our studies on theoretical scenarios for

decision making. The first one is multistability. Considering that a decision

making is a process in which a system responds differently to the same stimuli

and under the same conditions, more than one stable solution available to the

system is required. These solutions can be either cell states or tissue patterns.

The second common ingredient is that this multistability is generated by non-

linear interactions between two elements that conform the network motif known

as toggle switch with auto-activation. These interactions determine which and

how many solutions are available to the system. The third ingredient is that

we interpreted the inducers of the cellular decisions as signals that change some

parameters of the system dynamics. By changing these parameters, the phase

space and attractors of the system also change. We showed that the dynamical

description of the system during the signal effect helps to understand the final

selection of the system. We analysed the phase spaces, the parameter spaces

and the time scales involved in the selection of the different system fates. Fi-

nally, the fourth ingredient in common is the presence of intrinsic stochasticity

in the dynamics. Since a cellular decision selects different cell/tissue states

under the same signal, stochasticity is a very relevant ingredient. This stochas-

ticity is considered to arise from low copy numbers of the species involved in

cellular reactions and thermal fluctuations. Cells make their decisions in such

a fluctuating environment.

Finally, as indicated, we studied a particular example of cell-autonomous de-

cision making that is involved in the transmission of malaria disease. Malaria

host-to-host propagation depends on a stochastic parasite decision that takes

place in the bloodstream of the infected human. We proposed an explanation to

the strategy that the parasite performs in order to optimize its transmission. De-

spite the importance of its propagation, the probability that the parasite adopts

its transmissible form is very low. We showed that, counter-intuitively, low prob-

ability values of becoming transmissible maximize the time during which the

host remains infectious when the proliferation rate of the parasite decays over

time (e.g. due to the immune response of the host).
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7.1 Cell-autonomous decision making

We studied cellular decision making of cell populations where each cell decides

regardless the choices of the other cells. Results revealed that the dynamical

behaviour generated by the signal that induces the decision determines its prop-

erties. Some examples of these features are: the time at which the decision takes

place, the role of stochasticity on the decision, the existence of one or several

precursor states, the memory conferred to previous decisions and the capability

to integrate over time or show optimal behaviours. We studied two elemental

decisions in order to characterize the interplay between the dynamics of the in-

ductor mechanisms and the properties of these decisions. These features can be

understood from the phase space changes directed by the signal and by taking

into account that dynamics are stochastic.

The cell-autonomous decisions we studied are driven by transient step-like func-

tion signals that are described by three components: (1) the type of phase

change the signal drives, (2) the signal strength which controls the asymmetry

of phase space generated by the signal, and the (3) signal duration which deter-

mines the time during which the signal generates this new (and constant during

the action of the signal) dynamical scenario. This type of signal characteriza-

tion was previously used by other authors (Guantes and Poyatos, 2008). Other

authors have also addressed more complex signals in which a single parameter

controls both the asymmetry and duration (Nené et al., 2012).

We defined the state of cells in terms of the state of two variables interacting

through the network motif toggle switch with auto-activation. A phenomeno-

logical stochastic model, based on the deterministic dynamics by (Guantes and

Poyatos, 2008), was used, and a potential scenario of it in terms of molecular

reactions was discussed at the light of the adiabatic approximation.

We started the study of cell-autonomous decision making with a simple decision

where each cell of an homogeneous population, upon the action of a transient

signal, has the chance to change of state. We showed that this decision can be

driven by two types of signals that differ in the stability regime generated during

their effect. We called these signals monostable and multistable, and we keep

this nomenclature in this section. Monostable signals reduce all the attractors

of the initial stability regime (three stable states, in our study) to a single one.

So, the transition between states and thereby the decision involves a bifurcation
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(pitchfork). The second signal type (multistable signals) does not modify the

number of attractors, but reduces the stochastic stability of the precursor state

enabling stochastic transitions from it to a new state.

Our study focused on how the probability of the decision, measured in terms of

frequencies of transition to the new state, depends on the dynamical mechanism

that induces it, and hence on these two types of signals. We showed that for both

types of signals this probability can behave rather similarly, with threshold-like

behaviours, to changes in the signal strength. Hence, by measuring ratios of cell

populations and by applying modifications of the signal strength we would be

unable to unravel which dynamical mechanism is taking place in the decision.

The dynamical mechanism is revealed and becomes relevant when populations

of cells in one state are removed. The dynamical mechanism also settles down

when the decision takes place: right after the signal disappears and at the same

time for all the population (monostable signals) or at different times for each

cell while the signal acts (multistable signals).

We also showed that the probability of the decision can show a non monotonic

behaviour with the duration of the signal, such that the maximal probability

can occur for intermediate time signal durations. This can happen only for

monostable signals. In addition, this maximal probability can be ≤ 1. This

provides a mechanism for ensuring two cell states in the population, whatever

the duration of the signal. This mechanism can be an interesting strategy to

be used by cells for which it is advantageous to live within heterogeneous cell

populations.

As expected, fluctuations – determined by the effective volume of the system

– affect differently the probability threshold for these two types of transient

signals. Noise enables and facilitates changes of state in multistable signals

by reducing the stability of the initial state against fluctuations. In contrast,

fluctuations smooth the relationship between the probability of changing of state

and the signal strength of monostable signals, while the threshold at which there

is a 50% chance to change does not vary.

The decision that results from several signals also exhibits different properties

according to the dynamical mechanism of these signals. Due to the asymmetry

of the stochastic switching of the multistable signals, the resultant decision

integrates the differentiation induced by each of these signals. By contrast,
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the total final population that has changed of state only depends on the last

monostable signal when several of these signals are applied. This result arises

from the fact that monostable signals erase the cell state induced by previous

decisions, enabling any cell state to be precursor of the other one. In contrast,

multistable signals lock the state of one cell population, which could be viewed

as a committed or differentiated state. The number of attractors and their

basins of attraction during the signal effect explain this different behaviour in

front of multiple signals.

Based on these results, we may propose that monostable signals fit better our

understanding of cellular decision making in bacteria, were cell state changes

are reversible and where ensuring heterogeneous populations of cells in different

states are relevant strategies for survival. In contrast, multistable signals could

be more associated to developmental processes in which irreversibility is present.

We have also studied a decision type that involves three different cell states.

In this decision, each cell of an homogeneous population chooses between three

cell fates: the precursor state, and two new differentiated states. This decision

is produced by a signal that generates a bistable regime: the attractor of the

precursor state disappears and each attractor of the stability regime generated

by the signal corresponds to one differentiated state. The value of the attractors

and their basins is controlled by the strength of the signal. The signal duration

determines the transient time during which the signal is acting.

We described the decision by two choices: the Differentiation choice, that ex-

presses the final population of cells that has chosen one of the two differentiated

states; and the Asymmetric choice, that describes the ratio of cells that has

selected a certain differentiated state over all the differentiated population. We

use the term differentiated population since if the cells of the precursor state are

removed from an heterogeneous population generated by a first bistable signal,

a second bistable signal can not restore the missed cell type. Hence, only one

cell state acts as a precursor cell type.

We showed that these choices are controlled very differently and as a result are

made at different times, being first made the asymmetric choice. The differenti-

ation ratio is determined, mainly, by the signal duration, while the asymmetric

ratio is controlled by the signal strength. In both cases, the relationship be-

tween the ratio and the associated signal parameter exhibits a threshold-like
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behaviour. In addition, the asymmetric choice is significantly more dependent

on fluctuations. Noise affects this ratio by increasing the heterogeneity of the

final differentiated population. In other words, noise tends to equalise the pop-

ulation of both differentiated states.

If multiple signals of identical signal strength are applied to an homogeneous

population, the total differentiated population integrates the effect of each in-

dividual signal but keeps fixed the proportions, within it, of subpopulations

in each differentiated state. If the signals that take place differ in the signal

strength, the first signal is the one that determines the final asymmetric ratio

in a higher degree.

Together, these results show that the two choices involved in this cellular deci-

sion making process can be well decoupled, both in time and in their regulation.

This may provide potential ways to flexibly modulate each of them.

7.2 Pattern selection

We have studied a decision where a cell tissue chooses between different spatial

patterns. These patterns are described by the spatial distribution of different

cell types. We defined this problem as pattern selection. The inducer of the

decision are signals that are defined as parameter changes. According to how

parameters change over time and space, the probability of selecting each pattern

after the decision varies (Palau-Ortin et al., 2015).

We focused the study on the type of cell communication mediated by Notch

signaling pathway. The communication occurs between adjacent cells. Each cell

inhibits the production of the state variable of the neighbouring cells in a so-

called lateral inhibition system. Besides, each cell self-activates the production

of its own state variable, describing a toggle switch motif with positive auto-

regulation. Herein, the two variables involved in this motif are the concentration

of the cell and the concentration of the neighbour.

It has been proved in previous studies that these interactions give rise to mul-

tiple pattern solutions when the dynamics are deterministic (Formosa-Jordan

and Ibañes, 2014). Three of them are: the homogeneous (where all the cells
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are identical), the salt-and-pepper (where cells of one type are completely sur-

rounded by cells of a second type), and the stripes solution (where rows of two

different cell types are alternated). Which of these three patterns is stable de-

pends on the values of the parameters that define the interactions of the system

(Formosa-Jordan and Ibañes, 2014). We evaluated the stability of these solu-

tions to large perturbations of the state. We also analysed the stability of these

different patterns in front of different levels of intrinsic noise.

We tackled the problem of which signals enable to select one pattern solution

and not another one and with what probability (Palau-Ortin et al., 2015). These

signals change the value of two parameters related with the interaction inside

the cell (cis interaction) and the lateral inhibition between neighbouring cells

(trans interaction). Three main scenarios were built: A first scenario where

the parameter change affects all the cells of the tissue at the same time (global

path); a second scenario where only a subset of cells change their parameters

over time (local path); and a third scenario where the parameters do not only

change over the time, but also across the space (spatio-temporal path).

The first scenario sets a mechanism by which a certain pattern solution arises in

all the tissue at the same time. Results of this scenario confirmed that to select

a pattern distinct from the initial one, it is required a destabilization of the

initial solution. This can be achieved by the transient exploration of regions in

the parameter space where the initial solution is not stable and the final pattern

solution is stable. These results are in agreement with what we know from cell-

autonomous decision making (Huang et al., 2007; Guantes and Poyatos, 2008;

Nené et al., 2012). As for these decisions, the probability of selecting a new

pattern solution depends on the time during which the initial solution is being

destabilized as a threshold-like function.

In the second scenario we studied the selection driven by signals that only act

in a small cluster of cells. This signals are able to select a new pattern if it is

stable and able to invade the initial one. The selection of the new pattern takes

place in a small region and spontaneously propagate to cover the whole tissue.

If the cluster of cells visits the new pattern solution during the signal effect,

the new solution is able to nucleate there and propagate. Our results revealed

that, a tissue initially at an homogeneous solution can select another solution if

the cluster of cells transiently takes the value of another homogeneous solution

(with different concentration value). In this case, the new pattern arises in the
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cells of the tissue that are in contact with the cells of the cluster by a boundary

effect that drives a large perturbation of the initial state. The selection studied

in this scenario depends on the cluster size and it depends on this size differently

in both cases exposed.

The third scenario exemplifies how a certain pattern solution can be induced

progressively over time and space by a signal (induced propagation). This

spatio-temporal signals are able to select pattern solutions that can not be

spontaneously selected. We showed that the stripe pattern can be selected by

parameter changes that evolve according to a propagating front. Furthermore,

the velocity of this front affects the probability of selecting this less spontaneous

pattern. Our results revealed that there is an optimal range of velocity of

propagation that optimizes the probability of selection of the stripe pattern.

7.3 Malaria parasite strategy for host-to-host

transmission

Finally, we have characterized a particular example of cellular decision making

that takes place in the life cycle of the parasite that causes the malaria disease.

Malaria is a disease that affects humans and requires mosquitoes to act as a

vector to propagate the infection from an infected human to another. Hence,

the transmission from a human host to a mosquito is a crucial step in the parasite

survival. In this step, the transmissible form of the parasite is called gametocyte

and corresponds to a sexual form of the parasite arising stochastically from an

asexual form (merozoite) in the bloodstream of the human (Kafsack et al.,

2014). The parasite, in the asexual form, highly proliferates. The probability of

becoming a gametocyte (conversion rate) takes very low values that are counter-

intuitive considering the high importance of the parasite transmission for its own

survival.

We have made a discrete-time stochastic model that describes the dynamics of

the merozoite and gametocyte populations. The unit of time has been chosen

one proliferation cycle. The model confirmed that low conversion rates maxi-

mize the number of gametocytes after many number of cycles. We have shown

that this result does not depend on the dispersion of some parameters involved
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in the dynamics (proliferation rate, maturation time, lifespan), nor strongly on

the proliferation rate.

Despite the fact that the transmission probability (from human host to mosquito)

depends on the amount of gametocytes in human blood, this relationship sat-

urates at certain gametocytes density value (Churcher et al., 2013). We also

evaluated the number of cycles at which the human host is infectious. Our

model revealed that, if the proliferation rate decays over time (as a consequence

of the immune system response), low conversion rates maximize the number of

cycles at which the human host remains infectious.

Previous theoretical works pointed as the competence in multiple infections as

the justification of low conversion rates. However, our study does not require

this ingredient to explain why the parasite has evolutionary selected this con-

version values. According to our model, this values maximizes the infectivity of

the human host in a proliferation rate decay scenario.

7.4 Future perspectives

In this thesis we have presented two mechanisms that, although both drive the

same cell-autonomous decision, this decision behaves differently according to

the mechanism that induces it. Our results suggest observables and experi-

ments that could be performed in biological decisions to unveil the dynamical

mechanism that induces them. They also reveal how different properties of the

cell population can be controlled by signals. This cross-communication between

the theory and the experimental data could help us to built a complete idea

about the correlation between the general mechanism that induces a decision

and the features of this decision.

We focused our work of cell-autonomous decisions in signals that affect the cells

transiently. We can extend this study to other signals such as permanent signals

with a continuous profile or fluctuating signals that may model a fluctuating en-

vironment. Also other genetic circuits can be analysed to explore if the features

of these mechanisms do not depend on the genetic circuit. Finally, since many

cellular decision making processes take place in proliferating cells, the dynamics

of cell growth and cell division could be taken into account.
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We have described a cell-autonomous decision that involves three cell types.

Our work sets how the different signal parameters control the different choices

involved in this decision. We may also study different mechanisms that induce

the same decision such as a stochastic switching mechanism. Also decisions with

more cell types involved could be characterized from the same point of view.

We extended the problem of cellular decision making to non-autonomous deci-

sions. Taking into account that our work poses general mechanisms, we could

connect this theoretical results to what can be found experimentally. Our model

takes into account interactions between first neighbouring cells. However, we

could also consider longer cell-to-cell communication (e.g., due to filopodia). In

this scenario, the number of pattern solutions may increase and, consequently,

the problem of selecting a certain solution by a signal could be more challenging.

In the last chapter of the thesis, we have showed that the strategy of the par-

asite that causes malaria can be explained by considering a proliferation rate

that decays over time. We could extend our model in different directions. We

can include a dependency between the proliferation rate and the number of

parasites. This consideration would include the response of the immune system

as a function that increases with the amount parasites in the bloodstream. On

the other hand, it is well known that the parasite evades the immune system by

changing the antigenic varieties that expresses while it is inside a red blood cell.

The switching between the different antigenic varieties can be included in the

model as it is a relevant strategy of its survival. Finally, since previous stud-

ies have pointed the competition in a multiple infection scenario as the main

reason for the strategy of the parasite transmission, this scenario may be also

considered in our model.



Appendix A

Thesis summary (in

Catalan)

A.1 Introducció

En aquesta tesi abordem el concepte de presa de decisions cel·lulars des d’una

perspectiva teòrica. Dins del marc de la Biologia de Sistemes (Alon, 2007b),

pretenem dilucidar quins mecanismes generals estan implicats en la presa de-

cisions cel·lulars i com les propietats són afectades per la dinàmica d’aquests

mecanismes.

Les cèl·lules, ja sigui com a organismes unicel·lulars, o bé formant part de

d’organismes multicel·lulars, han de realitzar diverses funcions (v.g. sintetitzar

cert enzim, dividir-se o diferenciar-se en cert tipus de cèl·lula) que, tot sovint,

venen determinades pels est́ımuls o les condicions de l’entorn que perceben

(Alberts et al., 2008). En aquest marc, podem definir com a “presa de deci-

sions cel·lulars” aquells processos mitjançant el quals les cèl·lules escullen una

resposta en un escenari en el que diverses d’aquestes en són potencialment ac-

cessibles (Losick and Desplan, 2008; Balazsi et al., 2011). D’aquesta manera,

l’opció escollida per la cèl·lula es governada per un mecanisme probabiĺıstic.

Cal diferenciar aquests processos d’aquelles que, produint també una canvi de

comportament en la cèl·lula, ho fan de manera uńıvoca davant d’una condició

de l’entorn o d’un est́ımul concret. Considerant que aquests canvis cel·lulars no
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generen una varietat de respostes, no podem parlar estrictament d’ells com el

producte d’una decisió cel·lular.

Aquests règims de funcions desenvolupades per una cèl·lula, i que canvien

d’acord amb el seu entorn, podem ser definits com a estats cel·lulars. D’aquesta

manera, una decisió cel·lular descriu el canvi d’estat d’una cèl·lula cap a un altre

entre diversos de possibles. Tenint en compte que les protëınes són les encar-

regades de desenvolupar la majoria de funcions de les cèl·lules, i que la śıntesis

d’aquestes ve determinada per l’expressió genètica (Alberts et al., 2008), els

estats cel·lulars poden ser alternativament identificats pels perfils d’expressió

d’una cèl·lula.

En tota cèl·lula, la śıntesi de cada protëına ve determinat per la regulació del

gen que codifica aquesta protëına. Entre diversos elements que poden estar im-

plicats en aquesta regulació, hi trobem els factors de transcripció. Els factors

de transcripció són protëınes que, individualment o en forma de complex, inter-

actuen amb la lectura de la informació genètica i en regulen la seva expressió, ja

sigui promovent-la (activant) o bloquejant-la (inhibint). D’aquesta manera, el

perfil d’expressió d’una cèl·lula ve controlat per complexes xarxes d’interaccions.

Anàlisis topològics d’aquestes xarxes genètiques han revelat l’existència de cir-

cuits genètics amb arquitectures recurrents. Cadascuna d’aquestes arquitectures

s’anomenen motius de xarxa, i el seu äıllament i estudi pot ser fonamental per a

entendre el comportament d’alguns processos biològics (Alon, 2007b). En aque-

sta tesi hem aprofundit en la modelització d’un exemple de motius de xarxa

(Caṕıtol 2). Aquest circuit genètic descriu dos gens que interactuen inhibint-

se mútuament (inhibició mútua) i que en promouen la seva pròpia expressió

(auto-activació).

Una de les propietats emergents que ha estat caracteritzades en diversos motius

de xarxa n’és la multiestabilitat. El principal origen d’aquesta rau en la no-

linealitat de interaccions que s’esdevenen entre els diferents elements del circuit

genètic. Donat que en una decisió cel·lular es plantegen més d’una resposta, la

multiestabilitat és un dels principals ingredients per a entendre aquests proces-

sos.

A més de la multiestabiltat, les decisions cel·lulars requereixen d’un mecan-

isme probabiĺıstic que les doti de la capacitat d’escollir entre aquestes diverses

respostes davant d’un mateix escenari. La font d’aquesta estocasticitat és la
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naturalesa discreta de les reaccions moleculars i les fluctuacions tèrmiques de

l’entorn en el que aquestes tenen lloc (Elowitz et al., 2002).

La metodologia utilitzada per a l’elaboració d’aquesta Tesi s’ubica dins del marc

de la Dinàmica de Sistemes (Strogatz, 1994), recorrent a conceptes com ara el

d’atractor, d’espai de fases o de conca d’atracció, entre d’altres. En el nos-

tre estudi associem els diferents estats cel·lulars implicats en la decisió amb

els atractors estables de la dinàmica del sistema. D’acord amb aquesta inter-

pretació, una decisió cel·lular dóna lloc a una transició entre atractors. Un

dels mecanismes capaç impulsa-ne aquestes transicions és el d’un canvi transi-

tori o permanent del règim d’estabilitat del sistema (nombre d’atractors i les

seves conques d’atracció). Definim com a “senyal” aquell component del sis-

tema que controla de manera dinàmica algun dels paràmetres de la interaccions

entre els components d’una cèl·lula. Aquests senyals poden modificar el règim

d’estabilitat del sistema i, aix́ı, impulsar-ne una decisió (Guantes and Poyatos,

2008; Nené et al., 2012).

Els algoritmes utilitzats per a descriure les dinàmiques temporals dels esdeveni-

ments biològics analitzats en aquesta Tesi responen a descripcions deterministes

(Ruge-Kutta de quart ordre) o estocàstiques (Equacions de Langevin, algorisme

de Gillespie i cadenes de Markov) (Wilkinson et al., 2006).

En els Caṕıtols 3 i 4 hem estudiat decisions en les que cada cèl·lula escull una

estat cel·lular independentment de la tria de la resta de cèl·lules de la població

(decisions cel·lulars autònomes). També hem estudiat l’escenari en el que la

decisió es presa de forma col·lectiva per tota la població o teixit (Caṕıtol 5).

Aquestes decisions (decisions cel·lulars no autònomes) requereixen de mecan-

ismes de comunicació entre les cèl·lules i estan t́ıpicament orientades a la for-

mació de patrons espaial de respostes. Finalment, en el Caṕıtol 6 hem estudiat

la repercussió que el caràcter probabiĺıstic d’una decisió concreta pot tenir en

la viabilitat d’un organisme. El sistema d’estudi triat ha estat el del paràsit

responsable de la malaria en humans.

A.2 Resum dels resultats

En els Caṕıtols 3 i 4 de la Tesi s’ha abordat l’estudi de dues decisions autònomes.

Wl Caṕıtol 3 se centra en la caracterització de la decisió simple mitjançant
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la qual cada cèl·lula escull entre canviar d’estat o romandre en l’estat inicial

(decisió de dos estats). En el Caṕıtol 4 s’estén l’estudi a una decisió en la que

hi ha un tercer estat implicat (decisió de tres estats). D’aquesta manera, cada

cèl·lula tria entre romandre en l’estat inicial, o canviar d’estat cap a un dels dos

de nous.

Hem estudiat aquestes dues decisions autònomes en l’escenari de dos gens que

s’auto-activen i que interactuen entre śı d’acord a una inhibició mútua. El

mecanisme inductor de la decisió és un senyal transitòria amb un perfil d’esgraó

que modifica, transitòriament, el règim d’estabilitat del sistema. Aquest senyal

ve descrita per tres components: (1) El nombre d’atractors generats (estabilitat

del senyal); (2) la asimetŕıa d’aquests atractors (força del senyal); i (3) el temps

durant el qual es produeix aquest canvi d’atractors (duració del senyal). També

hem explorat l’efecte de l’aplicació seqüencial de varis senyals.

Els resultats del Caṕıtol 3 ens han mostrat que una decisió cel·lular pot estar

estar generada per mecanismes dinàmics diferents, que generin diferents règims

d’estabilitat. D’acord amb el mecanisme dinàmic implicat, la dependència de la

decisió amb els paràmetres de la senyal pot exhibir comportaments notablement

diferents. D’aquesta manera, podem establir una relació entre les propietats de

la decisió i la dinàmica que subjuga al mecanisme inductor.

En el Caṕıtol 4 ens hem centrat en una decisió amb tres estats cel·lulars in-

volucrats. Hem dividit la decisió en dues tries: la tria de canviar d’estat en

front de mantenir-lo (tria de diferenciar-se); i l’elecció de, un cop una cèl·lula

ha decidit abandonar l’estat inicial, escollir un dels nous estats en front l’altre

(tria asimètrica). Aquesta caracterització de la senyal ens ha permès observar

comportaments clarament diferenciats entre aquestes dues tries que, en conjunt,

defineixen la decisió total.

Quan les cèl·lules implicades en una decisió estan dotades de comunicació entre

elles, les decisions poden estar lligades a les decisions de les altres cèl·lules de

la població (o teixit). En Caṕıtol 5 hem estudiat un sistema on les interaccions

entre cèl·lules tenen lloc a primeres vëınes. Cada cèl·lula inhibeix la producció

d’una protéına de les seves vëınes (inhibició lateral) al mateix temps que n’auto-

activa la producció pròpia (auto-activació). Aquest tipus d’interaccions poden

donar lloc a diverses distribucions espaials (patrons). En aquesta tesi hem
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abordat la qüestió de com una senyal duu al sistema a seleccionar un d’aquests

patrons enlloc d’un altre, i amb quina probabilitat.

En aquest context de selecció de patrons, hem estudiat tres tipus de senyals que

ens defineixen tres escenaris diferents: un en el que totes les cèl·lules del teixit

varien el valor dels seus paràmetres alhora (canvi global); un en el que només

un subconjunt de cèl·lules del teixit es veu afectat per la senyal (canvi local);

i un tercer escenari en el que el valor dels paràmetres del teixit canvien, no

només amb al llarg del temps, sinó que també al llarg del teixit (canvi espaial

i temporal). Els tres escenaris ens han revelat com la selecció final del teixit

depèn de les caracteŕıstiques de cada senyal en cadascun dels tres escenaris.

Finalment, en el Caṕıtol 6 hem estudiat el cas d’una decisió estocàstica en la

que es té coneixement de la seva probabilitat associada (Kafsack et al., 2014).

Es tracta d’una decisió que té lloc durant el cicle vital del paràsit responsable

de causar la malària en humans. Aquest paràsit utilitza els mosquits com a

vector de transmissió entre humans. Precisament durant la fase en la que el

paràsit es troba en el torrent sanguini de l’hoste humà, aquest es pot presentar

en dues formes: una forma asexual amb la capacitat de proliferar, i una forma

sexual (gametòcit) que no prolifera però que és capaç de transmetre’s a un nou

mosquit (que piqui a l’humà infectat). Cada paràsit en la forma asexual pot

decidir diferenciar-se en gametòcit. Tot i que la transmissió de la infecció és un

pas crucial per a la propagació i supervivència del paràsit, la probabilitat de

convertir-se en gametòcits és molt baixa. El nostre estudi ha mostrat que, en

un escenari en el que el ritme de proliferació dels paràsits asexuals decau amb

el temps (degut, per exemple, al sistema immunitari), aquests valors baixos de

probabilitat de conversió maximitzen el nombre de cicles durant els quals l’hoste

humà roman infecciós.
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