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Department of Computer Architecture

Universitat Politècnica de Catalunya

Supervisor: Jesùs Labarta
Co-supervisor: Josè Gracia

Doctor of Philosophy in Computer Architecture

11th of November, 2015

mailto:vladimir.marjanovi@bsc.es
http://docencia.ac.upc.edu/
http://www.upc.edu


This page is intentionally left empty.

i



Abstract

Even today supercomputing systems have already reached millions of cores
for a single machine, which are connected by using a complex network in-
terconnection. Reducing communication time across processes becomes
the most important issue in order to achieve the highest possible perfor-
mance. The Message Passing Interface (MPI), which is the most widely
used programming model for large distributed memory, supports asyn-
chronous communication primitives for overlapping communication and
computation. However, these primitives are difficult to use and increase
code complexity. which then requiring more development effort and mak-
ing less readable programs.

This thesis presents a new programming model, which allows the pro-
grammer to easily introduce the asynchrony necessary to overlap commu-
nication and computation. The proposed programming model is based on
MPI and tasked based shared memory framework, namely OmpSs.

The thesis further describes implementation details which in order to al-
low efficient inter-operation of the OmpSs runtime and MPI. The thesis
demonstrates the hybrid use of MPI/OmpSs with several applications of
which the HPL benchmark is the most important case study. The hybrid
MPI/OmpSs versions significantly improve the performance of the appli-
cations compared with their pure MPI counterparts. For the HPL we get
close to the asymptotic performance at relatively small problem sizes and
still get significant benefits at large problem sizes. In addition, the hybrid
MPI/OmpSs approach substantially reduces code complexity and is less
sensitive to network bandwidth and operating system noise than the pure
MPI versions.

In addition, the thesis analyzes and compares current techniques for over-
lapping computation and collective communication, including approaches
using point-to-point communications and additional communication threads,
respectively. The thesis stresses the importance of understanding the char-
acteristic of a computational kernel that runs concurrently with communi-
cation. Experimental evaluations is done using the Communication Com-
putation Concurrent (CCUBE) synthetic benchmark, developed in this the-
sis, as well as the HPL.
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1
Introduction

Scientists and engineers recognize that computers can help solving problems that would
be too complex and expensive with other methods. Computational modeling and sim-
ulation of these problems became a new methodology and standard tool in academia
and industry. Dealing with these applications requires powerful systems in terms of
raw cpu speed, main memory and data store. A single workstation as a desktop ma-
chine would never fulfill these requirements due to size of problem. Demand for high
performance parallel machines is a logical step in order to address these issues. High-
Performance Computing (HPC) systems delivers much higher performance than one
could get out of a typical desktop computer or workstation in order to solve large prob-
lems in science, engineering, or business. The HPC systems with a very high-level
computational capacity, also called supercomputer, could efficiently deal with a large
non-embarrassingly parallel problems of earth and life since.

In contrast to large data center, an HPC machine contains thousands of processors
and complex interconnection networks between these processors. Raw computational
power of large data centers, e.g. Amazon data center [23] cannot processes large non-
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embarrassingly problems within reasonable time-frame, due to low performance of
interconnection network. This lack of high bandwidth and low latency interconnection
network is the main difference between computational data centers and HPC systems.
Efficient hardware and software approaches of communication between processors are
the biggest challenges for computer scientist in HPC world.

Hardware of HPC system is very robust, expensive and complex and requires a
software stack for users with specialized expertise to use. Regarding interconnection
network, hardware designers try to minimize latency and maximize bandwidth, while
software designers try to exploit hardware properties as efficiently as possible and min-
imize communication and synchronization cost between processors. Complexity of
HPC systems grows constantly and programming effort become expensive in terms
of time to solution, pushing users to understand hardware and software of machines.
Software layer should provide easy to use interface for programmers and keep high
efficiency of HPC systems.

To tackle productivity, in this thesis we explore software techniques for efficient
communication between processors and propose a hybrid programming model based
task based programming model OmpSs and the distributed programming model MPI.
The programming model offers high performance and high productivity at the same
time. Finding well balanced ratio between programability/performance, porting time
for already existing codes, and portability drive the work of the thesis to the MPI/OmpSs
programming approach as a future tool for scientist.

1.1 Goals

HPC aims a high performance, thus the main goal of this thesis is to propose a program-
ming model that achieves high efficiency. While a singe thread performance execution
leans on compiler optimization and a single thread optimization techniques, parallel
programming focuses on efficiency of parallel execution. The following challenges
are addressed by this work:

• Increase Parallelism - making all available computing resources busy is the first
step to high performance. Parallel programming models should offer a flexible
execution model, where idle states of computing units are minimize. Introducing
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a term ’degree of resource utilization’ as the ratio between the number of inde-
pendent task and a number of computing units. A degree of resource utilization
greater than 1 leads to the perfect parallelism. The goal is to keep the degree as
high as possible in every moment of execution.

• Scalability - The goal of programming models is customization and a scalable
execution model, that matches complex node architecture and schedules task in
a fashion that N, cores speed up N times sequential execution

• Hiding communication overhead - Tasks need communication operations, ac-
celerating and hiding communication operation is the key. The communication
overhead is the biggest challenge for parallel programming paradigm and capa-
bility of programming model to minimize communication costs determines its
efficiency. The main goal of the thesis is to reduce communication cost during
execution.

• Tolerance to network contention - HPC systems contain powerful interconnec-
tion network, in order to move data across distributed nodes and fulfill task
dependencies. Nevertheless, nonuniform utilization of network stresses inter-
connection throughput and slows down execution. The programming model
should distribute communication over time, relax the interconnection network
while overall performance does not suffer.

• Tolerance to OS jitters - driving applications across large number of cores in-
crease possibility that unpredictable performance drops might appear on any
core caused by system noise. The performance drop of one thread propagates
to overall performance and lowers efficiency. The goal of parallel execution
modeling is to filter non-deterministic noise and smoothly muffle performance
degradation.

• Code Complexity - once the parallel programming model shows a successful im-
provement in term of performance, programming effort stays a big challenge.
There is no clear metric that evaluates programming productivity and ranks par-
allel programming approaches. Programmers usually focus on expressing an
algorithm, once the code gives correct results tuning optimization phase take
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place. Improving performance increases code complexity while new radical pro-
gramming approaches discharge programmers to learn them.The goal of the pro-
gramming model is a friendly, easy-to-use interface, where codes stays as close
as possible to an initial version where the algorithm has been described. The
syntax of a programming model should be as natural as possible.

The overall goal of the thesis aims at a future way of thinking regarding parallel
programming on HPC systems,both for, programmers and programming model devel-
opers.

1.2 Methodolgy

Proposing a future programming model requires review of state-of-the art program-
ming model. De facto, Message Passing Interface (MPI), is the most accepted pro-
gramming model for distributed memory systems. Almost all applications have been
written using the MPI paradigm. MPI is a library that can be used with C/C++ or
FORTRAN. MPI forms a basis for the thesis and can be considered as a one of the low
level programming layer for the proposed programming model.

On shared memory, level the most used parallel programming approach is OpenMP
annotations of C/C++ or FORTRAN. The OmpSs interface extends OpenMP features
and introduces flexibility and task based view. Nevertheless, OmpSs is not as widely
accepted as OpenMP. It presents the state of the art and a new way of approaching par-
allelism on shared memory level. OmpSs together with MPI are future of programming
in HPC world and are the starting point of the thesis research.

Selecting MPI and OmpSs programming models, would help programmer produc-
tivity and smooth transition of existing codes. Improving performance and exploring
capabilities of combined MPI and OmpSs approach present a real challenge. In order to
understand optimization technique of MPI and reducing communication overhead by
using MPI. The thesis does detailed analysis of already existing overlapping technique
of communication and computation. Understating both computation and communica-
tion lead to an optimal time to solution execution.

Once performance techniques of the chosen programming model has been under-
stood, the thesis defines easy to use interface that combines MPI and OmpSs. A clear
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metric for friendly use interface does not exist, and feedback of potential users and
already experience developers play the key role.

In order to address performance goals, the thesis shows a novel idea that merges
features of MPI and OmpSs and software optimization techniques.

Portability across different HPC systems, requires customization of the run-time.
Understanding hardware architecture, OS system implementation and implementation
of MPI libraries show potential capabilities of MPI/OmpSs programming approach
where the run-time implementation proves ideas.

Experiments and proof of concept of programming model, require well written
highly optimized and widely known HPC applications. In order to compare results the
thesis uses several HPC applications on different platforms and focuses on the High
Performance Linpack (HPL) benchmark [15]. The fact that the HPL is used to order
TOP500 [48] supercomputer places it to the most important HPC benchmark.

1.3 Contributions

This work makes the following contributions:

1. Investigation of techniques to overlap communication and computations in MPI
applications.

2. Analysis and demonstration of the impact of a computational kernel on overlap-
ping techniques and time to solution.

3. Demonstration that granularity of computational routines effects overlapping ef-
ficiency and thus needs to be tuned.

4. Proposing a hybrid MPI and OmpSs programming model, define user interface
for MPI/OmpSs.

5. Propose overlapping techniques and their implementation by using MPI/OmpSs
programming model.

6. Address implementation challenges of overlapping techniques on various HPC
architectures.
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7. Propose OmpSs_MPI library, a message passing library for MPI/OmpSs pro-
gramming model.

8. Demonstration of porting by using MPI/OmpSs programming model on different
HPC applications.

9. Evaluate of MPI/OmpSs on different HPC applications and their basic compari-
son with original MPI versions.

10. Comment a high efficiency of MPI/OmpSs for small problem sizes.

11. Investigate a tolerance to low bandwidth and OS jitters by using MPI/OmpSs.

This work makes the three main contributions:

1. Investigation of techniques to overlap communication and computations in MPI
applications. Analysis and demonstration of the impact of a computational ker-
nel on overlapping techniques and time to solution.Demonstration that granular-
ity of computational routines effects overlapping efficiency and thus needs to be
tuned.

2. Proposing a hybrid MPI and OmpSs programming model, define user interface
for MPI/OmpSs. Propose overlapping techniques and their implementation by
using MPI/OmpSs programming model. Address implementation challenges of
overlapping techniques on various HPC architectures. Propose OmpSs_MPI li-
brary, a message passing library for MPI/OmpSs programming model.

3. Demonstration of porting by using MPI/OmpSs programming model on different
HPC applications. Evaluate of MPI/OmpSs on different HPC applications and
their basic comparison with original MPI versions. Comment a high efficiency
of MPI/OmpSs for small problem sizes. Investigate a tolerance to low bandwidth
and OS jitters by using MPI/OmpSs.

1.4 Document structure

The document is organized as follows:
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• Chapter 2 presents the state-of-the-art technology related to the topic of this the-
sis. It provides a survey on the hardware architecture and parallel programming
models. First, it introduces parallel computers and their benefits over single
thread computing approaches. Then it reviews the software stack which is used
on parallel computers.

• Chapter 3 illustrates the performance issues in current parallel programming en-
vironment and criticizes inefficient approaches that solves the performance is-
sues. The Chapter 3 criticizes a poor programming productivity of proposed
software optimization.

• In Chapter 4, the thesis analyses and compares overlapping technique of collec-
tive communication and computation based nonbloking interface, point-to-point
approach and additional thread approach. It also emphasizes characteristics of
computational kernels which overlap communication. The Chapter 4 outputs
results that give clear guidelines for the MPI/OmpSs programming model.

• Chapter 5 is the kernel of the thesis. It proposes the MPI/OmpSs programming
model, defines an user interface of the model, adds overlapping techniques to
the OmpSs run-time, and explains implementation of the OmpSs run-time on
different architectures.

• Furthermore Chapter 6 evaluates the proposed programming model in terms of
performance. It introduces applications used for experiments and their charac-
teristics. The Chapter presents and discusses results of ported HPC applications
on different platforms and shows performance advantages of MPI/OmpSs pro-
gramming model.

• In addition Chapter 7 proofs and demonstrates the high tolerance to low band-
width networks and OS jitters of the MPI/OmpSs programming model. It de-
scribes a method to mimic low bandwidth network and simulates OS noise. It
comments performance results of the MPI/OmpSs application affected by men-
tioned phenomenon.

• Chapter 8 presents previous work related to the research covered in this thesis,
while Chapter 9 draws conclusion of this thesis and presents the direction of the
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future research in this field.

• Finally, Chapter 10 lists the papers published as the results of this thesis.
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2
Background

This Chapter presents the state-of-the-art technology related to the topic of this thesis.
Section 2.1 gives background on the architecture of parallel machines in HPC. It ex-
plains parallel machines on shared-memory and distributed-memory level, the section
also reviews architectures specially build for HPC systems. Section 2.2 describes the
parallel programming approaches for HPC systems. It focuses on the Message Passing
Interfaace(MPI) library as the most widely accepted approach for distributed-memory
parallel machines and briefly reviews the OpenMP programming model for shared-
memory parallel machines. The section introduces task based programming model
called the OmpSs that extends OpenMP.

2.1 Parallel machines

Modern science stimulates the rapid growth of high performance computing. When
experimental and theoretical science join to computational science, large and powerful
machines became a basic tool for them. The constant need for higher performance
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caused the appearance of machines with parallel architecture. Single core machines
have not been able to fulfill scientific requirements. Multiplying single compute units,
efficiently solved embarrassingly parallel problems but more likely real problems re-
quires interconnection network between compute nodes due to dependent work across
parallel machines. Building parallel machines brought challenges in hardware and
software design. In the rest of this section, we present concepts related to HPC parallel
computing for hardware and software.

2.1.1 Processor architecture trends

In the early 1960 there ware sever factors where experimental science evolved into
computation science, and required large computer resources to solve their problems.
The price of the advantage single-processor computer increases faster than its com-
putational power. So, the price/performance ratio points to the direction of parallel
computers. During the ’80 PC (personal computers) has increased the performance
and price of single-processor computers has fallen. Also the price of interconnection
network have fallen , thus a PC workstation has provided a significant computer power
on a small budget.

Manufacturing more powerful PC computers was building processors with higher
operational frequency. The straight-forward approach for making faster computers is
making a computer that operates at a higher clock frequency. During the ’90 the ven-
dors increased frequency, which makes all software running faster. The HPC systems
followed the same trend by building the system out of commercial processors made for
servers. However, increased frequency dramatically increases chip’s power consump-
tion. Therefore, computing platforms have hit the “power wall”, so frequency scaling
stopped at around 3 GHz.

From then on, improving single core performance introduces more computational
unit additional functional units, additional registers, wider path, cache size etc. Explor-
ing new resources required new chip design and lead to instruction level parallelism
(ILP).

The following hardware approches appeared:

1. Instruction pipelining (ILP) where the execution of multiple instructions can
be partially overlapped.
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2. Superscalar execution, and the closely related explicitly parallel instruction
computing concepts, in which multiple execution units are used to execute mul-
tiple instructions in parallel.

3. Out-of-order execution where instructions execute in any order that does not
violate data dependencies. Note that this technique is independent of both pipe-
lining and super-scalar. Current implementations of out-of-order execution dy-
namically (i.e., while the program is executing and without any help from the
compiler) extract ILP from ordinary programs. An alternative is to extract this
parallelism at compile time and somehow convey this information to the hard-
ware. Due to the complexity of scaling the out-of-order execution technique,
the industry has re-examined instruction sets which explicitly encode multiple
independent operations per instruction.

4. Register renaming which refers to a technique used to avoid unnecessary seri-
alization of program operations imposed by the reuse of registers by those oper-
ations, used to enable out-of-order execution.

5. Speculative execution which allow the execution of complete instructions or
parts of instructions before being certain whether this execution should take
place. A commonly used form of speculative execution is control flow spec-
ulation where instructions past a control flow instruction (e.g., a branch) are
executed before the target of the control flow instruction is determined. Several
other forms of speculative execution have been proposed and are in use including
speculative execution driven by value prediction, memory dependence prediction
and cache latency prediction.

6. Branch prediction which is used to avoid stalling for control dependencies to
be resolved. Branch prediction is used with speculative execution.

However, since the techniques of implicit parallelism showed only limited poten-
tial, new computer architectures targeted higher performance by allowing the program-
mer to explicitly expose parallelism. The presented techniques exposed parallelism
without any involvement of the programmer – the user programmed a sequential con-
trol flow but the underlying system automatically exposed parallelism. However, the
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implicit parallelism turned on to be insufficient. An alternative approach puts multiple
independent cores in one chip and allows the programmer to have a different control
flow in each of the cores. These parallel architectures provided more flexibility in using
the computation resources, but also increased the complexity of programming.

2.1.2 Memory Types in HPC Systems

HPC systems tend to be multi-core systems that access memory in two different ways:
first shared-memory systems where cores are sharing physical memory and a single
instance of operating systems control threads and processes, second distributed mem-
ory systems where several instances of operating system control local threads and
processes while communication protocol allows communication between distributed
memory system. Machines can also contain both approach where locally shared mem-
ory system are connected between each other as a big distributed memory system.

Shared-Memory Systems

Shared memory system appears as a solution for parallel computing where a single
operation system and its adress space work on top of multicore hardware. The shared
memory hardware connects all processing units and main memory, each processing
unit can access the whole memory directly. Processors read and write to shared vari-
ables and communication throught them. Programming model and operation system
provide a framework and programmer uses the shared variables in order to enforce
correct exectution.

Parallel machines through shared variables is the easiest way to build parallel pro-
gram because inter-process communication is implicit. Programmer should not be
concerned with data locality. Shared variables create easy perspective on the global
memory space. These machines is very difficult to build in terms of fast access to all
addresses of memory from all processes. Reaching low latency in shared memory ma-
chines is the biggest challenge for hardware designers. Programmer does not need to
provide any hints about data locality and thus a hardware cannot predict and overlap
communication between memory and processing unit.

The Multi-threading execution model is widely used for shared memory machines.
A single process launches several threads within the same address space. Threaded
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programming approach introduces a shared variable concept. Threads read and write to
shared variable and a system preforms implicit communication. Valid shared variable
is stored in the single address location within memory.

Accessing time from processing units to memory can be uniform or nonuniform,
so there are two type of memory architecture: uniform memory access (UMA) archi-
tecture and nonuniform memory access (NUMA) architecture.

• UMA access time to a memory location is independent of which processor makes
the request or which memory chip contains the shared variable. Thus, UMA
platforms are often called symmetric multiprocessors (SMP). The main disad-
vantage of UMA architecture is scalability. Bandwidth of a single memory bank
becomes the bottleneck for large number of processors.

• NUMA: Noways, shared memory systems are based on NUMA memory archi-
tecture. Instead of a single memory bank, NUMA contains several memory
banks where the memory access time depends on the memory location relative
to the processor. Accessing to its local memory is faster than non-local mem-
ory. NUMA attempts to address UMA single memory bank issue by providing
separate memory for each processor, a voiding the performance penalty when
several processors attempt to address the same memory. NUMA improves scal-
ability compared with UMA architecture.

Distributed Memory Systems

Distributed memory machines (DMM) are computers with physically distributed mem-
ory. Each node is an independent unit that consists of a processor and a local memory.
An interconnection network connects all the nodes and allows communication among
them. Each node can only access its local memory. If a node needs data that is not in
its local memory, the data needs to be transferred using message-passing.

Distributed memory machines evolve by improving the interconnection network
and decoupling the network from the nodes. The nodes are usually connected by point-
to-point interconnection links. Each node connects to a finite number of neighboring
nodes. The network topology is regular, often a hypercube or a tree. Since each node
can send the message only to its neighboring nodes, limited connectivity significantly
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restricts programming. Initially, communication between nodes that have no direct
connection had to be controlled by software of the intermediate nodes. However, new
intelligent network adapters enabled data transfers to or from the local memory with-
out participation of the host processor. This allowed that the host processor can be
efficiently computing while, in background, there is a transfer to/from it. Furthermore,
the state-of-the-art networks optimize communications by dedicating special links for
executing multicast transfers.

A distributed memory machine consists of loosely coupled processing units, mak-
ing it easy to assemble but difficult to program. DMMs can be assembled using off-
the-shelf desktop computers. However, to achieve high performance, the nodes must
be interconnected using a fast network. On the other hand, DMMs are very difficult
to program. The programmer must explicitly specify the data decomposition of the
problem across processing units with separate address spaces. Also, the programmer
must explicitly organize inter-processor communication, making both the sender and
the receiver aware of the transfer. Moreover, the programmer must take special care
about data partitioning among the nodes, because delivering some data from one node
to another may be very expensive. Thus, the data layout must be selected carefully to
minimize the amount of the exchanged data.

2.2 Parallel programming models

There is no efficient and highly applicable automatic parallelization. The biggest idea
of parallel computation was to find techniques that would automatically expose paral-
lelism in the applications. However, despite decades of work, automatic paralleliza-
tion showed very limited potential. Today, the only viable solution is to rely on the
programmer to expose parallelism.

For distributed memory machines, the mainstream programming models are mes-
sage passing (MP) and partitioned global address space (PGAS). The most popular
implementation of MP model is message passing interface (MPI) [44]. In MPI, the pro-
grammer must partition the workload among processes with separate address spaces.
Also, the programmer must explicitly define how the processes communicate and syn-
chronize in order to solve the problem. Conversely, PGAS model is implemented in
languages such as UPC [10], X10 [12] and Chapel [11]. PGAS model provides a
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global view for expressing both data structures and the control flow. Thus, as opposed
to message passing, the programmer writes the code as if a single process is running
across many processors.

On the other hand, OpenMP [14] is a de-facto starndard for programming shared
memory machines. OpenMP extends the sequential programming model with a set of
directives to express shared-memory parallelism. These directive allow exposing fork-
join parallelism, often targeting independent loop iterations. Nevertheless, OmpSs
programming model [17] extends OpenMP offering semantics to express dataflow par-
allelism. Compared to fork-join parallelism exposed by OpenMP, the parallelism of
OmpSs can be much more irregular and distant. Throughout this thesis, we focus
mainly on OmpSs as a programming model for shared memory machines.

2.2.1 MPI

Message Passing Interface (MPI) [44] is the most widely used programming model
for programming distributed parallel machines. To facilitate writing message-passing
programs, MPI standard defines the syntax and semantics of useful library routines.
Today, MPI is the dominant programming model in high-performance computing.

In the MPI programming model, multiple MPI processes compute in parallel and
communicate by calling MPI library routines. At the initialization of the program,
a fixed set of processes is created. Typically, the optimal performance is achieved
when each MPI process is mapped on a separate core. For easier coordination among
processes, MPI interface provides functionality for communication, synchronization
and virtual topology.

The most essential functionality of MPI is point-to-point communication. The
most popular library calls are: MPI_Send to send a message to some specified pro-
cess; and MPI_Recv to receive a message from some specified process. Point-to-
point operations are especially useful for implementing irregular communication pat-
terns. A point-to-point operation can be in synchronous, asynchronous, buffered, and
ready form, providing stronger and weaker synchronization among communicating
processes. The ability to probe for messages allows MPI to support asynchronous
communication. In asynchronous mode, the programmer can issue many outstanding
MPI operations.
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Collective operations allow communication of all processes in a process group. The
process group may consist of the entire process pool, or it may be user defined subset of
the entire pool. A typical operation is MPI_Bcast (broadcast), in which the specified
root process sends the same message to all the processes in the specified group. A
reverse operation is MPI_Reduce, in which the specified root process receives one
message from all the processes in the specified group. Additionally, the root performs
an operation on all the received messages. MPI_Alltoall is the most expensive routine
where all processes send and receive message from all processes. Other collective
operations implement more sophisticated communication patterns.

Throughout its evolution, MPI standard introduces new features to facilitate easier
and more efficient parallel programming. The initial MPI-1 specification focused on
message passing within a static runtime environment. Additionally, MPI-2 includes
new features such as parallel I/O, dynamic process management, one-sided communi-
cation, etc. While MPI-3 introduces non-blocking collective operations [24].

A simple program

In this section, we present a simple program and explain the runtime properties of MPI
execution. The example shows a simple code with only two sections of useful work
(function compute) and one section that exchanges data (function MPI_S endrecv).
Each MPI process executes function compute on local buffer bu f f 1, then sends the
calculated buffer bu f f 1 to its neighbor. At the same time, each process receives
buffer bu f f 2 from other neighbor, and again executes function compute on the re-
ceived buffer. The processes communicate in one-sided ring pattern – each process
receives the buffer from the process with rank for 1 lower, and sends the calculated
buffer to the process with rank for 1 higher.

All the processes start independently, learning more about the parallel environ-
ment by calling MPI_Init. MPI execution starts by calling MPI agent (mpirun −

nx./binary.exe) that spawns the specified number (x) of MPI processes. In the studied
case (Figure 2.2), the MPI execution starts with 2 independent MPI processes. By call-
ing MPI_Init, each process learns about the MPI parallel environment. All the MPI
processes are grouped into the universal communicator (MPI_COMM_WORLD). Us-
ing the universal communicator, each process identifies the total number of MPI pro-
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1 #include <mpi.h>
2 #include <stdio.h>
3 #include <string.h>
4
5 int main(int argc, char *argv[])
6 {
7    float buff1[BUFSIZE], buff2[BUFSIZE];
8    int numprocs;
9    int myid;
10    int tag = 1;
11    
12    MPI_Status stat;
13    MPI_Init(&argc,&argv);
14    
15    /* find out how big the SPMD world is */
16    MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
17    
18    /* and this processes' rank is */
19    MPI_Comm_rank(MPI_COMM_WORLD,&myid);
20    
21    /* At this point, all programs are running equivalently,
22    the rank distinguishes the roles of the programs in the SPMD model */
23    
24    /* compute on the local data (buff1) */
25    compute(buff1);
26    
27    /* exchange data (send buff1 and receive buff2 )*/
28    my_dest = (myid + 1) % numprocs;
29    my_src = (myid + numprocs - 1) % numprocs;
30    MPI_Sendrecv(  /* sending buffer */ buff1, BUFSIZE, MPI_FLOAT,
31                   /* destination MPI process */ my_dest, tag,
32                   /* receiving buffer */ buff2, BUFSIZE, MPI_FLOAT,
33                   /* source MPI process */ my_src, tag,
34    MPI_COMM_WORLD, &stat);
35    
36    /* compute on the received data (buff2) */
37    compute(buff2);
38    
39    /* MPI programs end with MPI Finalize; this is a weak synchronization point */
40    MPI_Finalize();
41    
42    return 0;
43 }
44

Figure 2.1: Example MPI code

cesses in the system (MPI_comm_size) and gets the unique rank of the process (MPI_comm_rank).
Each MPI process, knowing its rank and the size of the universal communicator,

identifies its role in the execution of the parallel program. Each process identifies
the part of the total workload that is assigned to it. Also, each process identifies the
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Creating

communicatornumprocs = 2; 

myid = 0;

numprocs = 2; 

myid = 1;

compute(buff1) compute(buff1)

send buff1, recv buff2send buff1, recv buff2

waiting arrival of buff2waiting arrival of buff2

compute(buff2) compute(buff2)

MPI_Finalize

MPI process 0 MPI process 1

Figure 2.2: Execution of the example MPI code

ranks of the neighboring processes with which it should communicate in order to make
the job done. In the presented example, based on myid and numprocs, each process
calculates ranks of its neighboring processes (my_dest and my_src) to generate the
one-sided ring communication pattern.

When the computation on the local data finishes, the processes communicate to
exchange the data and start the next phase of computing on the local data. Each process
calculates the buffer bu f f 1 in the function compute. Then, the process sends the
processed bu f f 1 to the neighboring process. At the same time, the process receives a
message from some other neighboring process and stores the content of that message
into local buffer bu f f 2. Then, the process locally computes on bu f f 2 in another
instantiation of function compute. Thus, MPI process 0 calculated on its local bu f f 1,
and then after the MPI_S endrecv call, it calculated on its local bu f f 2 (that was bu f f 1
local to MPI process 1).

When the useful work finishes, all the processes call MPI_Finalize to announce
the end of the parallel section. MPI_Finalize implicitly calls a barrier, waiting for
all the MPI processes from MPI_COMM_WORLD to come to this point. When all
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the processes reach the barrier, the joint work is guaranteed to be finished, and all the
processes can exit the parallel execution independently. The parallel execution finishes.

This simple example also illustrates one of the main topics of this thesis – com-
munication delays caused by MPI execution. When both processes finish executing
compute(bu f f 1), they initiate their transfers in the same moment. While the messages
are in transit, both processes are stalled without doing any useful work. Chapter 3
further illustrates this problem and presents some of the possible solutions.

Relevant features of MPI implementation

MPI standard defines a high-level user interface, while low-level protocols may vary
significantly depending of the implementation. MPI provides a simple-to-use portable
interface for a basic user, setting a standard for hardware vendors what they need to
provide. This opens space for various MPI implementations that have different features
and performances.

First, depending on the implementation, MPI messaging may use different messag-
ing protocols. An MPI message passing protocol describes the internal methods and
policies employed to accomplish message delivery. Two common protocols are

• eager – an asynchronous protocol in which a send operation can complete with-
out an acknowledgement from the matching receive; and

• rendezvous – a synchronous protocol in which a send operation can complete
only upon the acknowledgement from the matching receive.

Eager protocol is faster, as it requires no “handshaking” synchronization. However,
this relaxation of synchronization compensates with the increased memory usage for
message buffering. Thus, a common implementation uses eager protocol only for mes-
sages that are shorter than the specified threshold value. On the other hand, messages
larger than the threshold are transferred using rendezvous protocol. Also, it is common
that a very long message is partitioned into chunks, with each chunk being transferred
using outstanding rendezvous protocol.

Also, MPI implementations provide different interpretation of independent progress
of transfers. Independent progress defines whether the network interface is responsi-
ble for assuring progress on communications, independent of making MPI library calls.
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This feature is especially important for the messages that use rendezvous protocol. For
example, rank 0 sends a non-blocking transfer to rank 1 using rendezvous protocol. If
rank 0 comes to its MPI_Isend before rank 1 comes to the matching receive, rank 0
issues handshaking request and leaves the non-blocking send routine. Later, when rank
1 enters its corresponding MPI_Recv, it acknowledges the handshake, allowing rank
0 to send the message. The strict interpretation of the independent progress mandates
that rank 0 sends the actual message as soon as it receives the acknowledgement from
rank 1. Conversely, the weak interpretation mandates that rank 0 must enter some MPI
routine in order to process the acknowledgement and prepare for the actual message
transfer. Here, the weak interpretation of independent progress will be very perfor-
mance degrading if after the non-blocking send, rank 0 enters a very long computation
with no MPI routine calls. Most of the state-of-the-art networks provide the strict im-
plementation of progress by introducing interrupt-driven functionality in the network
interface.

Depending on the computation power of the network interface, an MPI imple-
mentation can provide different ability for communication/computation overlap. MPI
standard specifies semantic for asynchronous communication that offers significant
performance opportunities. However, in some machines, the processors are entirely
responsible for assuring that the message reaches its destination. Still, most of the
state-of-the-art networks provide intelligent network adapters that take care of deliver-
ing the message, allowing the processor to dedicate to useful computation. This way
it is possible to achieve overlap of communication and computation – a feature that is
considered of a major importance for high parallel performance.

2.2.2 OpenMP

OpenMP (Open Multi-Processing) [14] is the mainstream programming model for pro-
gramming shared memory parallel systems. OpenMP is an application programming
interface (API) that supports multi-platform shared memory programming in C, C++,
and Fortran. It uses a portable model that provides to programmers a simple and flex-
ible interface for developing parallel applications for platforms ranging from the stan-
dard desktop computer to the supercomputer. OpenMP allows integration with MPI,
providing a hybrid MPI/OpenMP model for parallel programming at large scale.
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p = listhead;
while (p) {
   process (p)
   p=next (p);
}

(a) sequential code.

p = listhead;
num_elements = 0;
while(p) {
   listitem[num_elements++] = p;
   p = next(p);
}
#pragma omp parallel for
for (int i=0; i<num_elements; i++)
   process( listitem[i] );

(b) OpenMP without tasks.

#pragma omp parallel
{
   #pragma omp single
   {
      p = listhead;
      while (p) {
         #pragma omp task
            process(p);
         p = next(p);
      }
   }
}

(c) OpenMP with tasks.

Figure 2.3: Pointer chasing application parallelized with OpenMP

OpenMP is a programming model based on fork-join parallelism. On reaching a
parallel section, a master thread forks a specified number of slave threads. All the
threads run concurrently, with the runtime environment mapping threads to different
processors. When the parallel section finishes, the slave threads join back into the
master. Finally, the master continues through the sequential section of the program.

It remains a question whether OpenMP loop parallelization could be widely appli-
cable. OpenMP is tailored for applications with array-based computation. These ap-
plication have very regular parallelism and regular control structures. Thus, OpenMP
can identify all work units in the compile time and statically assign them to multi-
ple threads. However, irregular parallelism is inherent in many applications such as
tree data structure traversal, adaptive mesh refinement and dense linear algebra. These
applications would be very hard to parallelize using only basic OpenMP syntax.

Let us consider possible OpenMP parallelization of the sequential code from Figure
2.3a. The program consists of a while loop that updates each element of the list. The
code cannot be parallelized just by adding parallel loop construct, because the list
traversal would be incorrect. Thus, in order to use parallel loop construct, the list first
has to be translated into an array (Figure 2.3b). However, this translation causes the
inadmissible overhead.

In order to tackle this issue, OpenMP introduces support for tasks. Tasks are code
segments that may be deferred to a later time. Compared to the already introduced
work units, tasks are much more independent from the execution threads. First, a
task is not bound to a specific thread – it can be dynamically scheduled on any of
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the active threads. Also, a task has its own data environment, instead of inheriting
the data environment from the thread. Moreover, tasks may be synchronized among
themselves, rather than synchronizing only separate threads. This implementation of
OpenMP tasks allows much higher expressibility of irregular parallelism.

Figure 2.3c illustrates the possible parallelization of the studied code using OpenMP
tasks. The master thread runs and dynamically gives a raise to each instantiation of the
task process. On each instantiation, the content of pointer p is copied into the sepa-
rate data environment of the task. Since the inputs to the task are saved, the task can
execute later in time. Thus, the master thread sequentially traverses the list and dynam-
ically spawns tasks. The spawned tasks are executed by the pool of worker threads.
When the main thread finishes spawning all tasks, it joins the workers pool. Therefore,
despite of irregular control structures, OpenMP tasks allow elegant parallelization.

2.2.3 OmpSs

Omp Superscalar (OmpSs) [17] is a parallel programming model based on dataflow ex-
ecution. OmpSs is an effort to extend OpenMP with new directives to support dataflow
parallelism. Compared to fork-join parallelism exposed by OpenMP, the parallelism
of OmpSs can be much more irregular and distant.

The OmpSs programming model extends the standard C, C++ and Fortran pro-
gramming languages with a set of pragmas/directives to declare functions that are po-
tential tasks and the intended use of the arguments of these functions.

There are two essential annotations needed to port a sequential application to OmpSs
function-header | function-definition

With the following possible clauses:

• in(data-reference-list)

• out(data-reference-list)

• inout(data-reference-list)

The name, Superscalar, came from the same idea as a superscalar CPU where
out-of-order execution of instructions mapping out-of-order execution of annotated
functions. Superscalar programming family uses concepts mentioned in the section
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2.1 which explains the ILP techniques. What is an instruction for ILP, it is an an-
notated function for OmpSs. Hardware implementation allows instruction level par-
allelism while OmpSs runtime as a software implementation provides function level
parallelism.

Based on the in/out specifications and the actual arguments in function invocations,
the runtime system is able to determine the actual data dependencies between tasks and
schedule their parallel execution such that these dependencies are satisfied. The depen-
dencies derived at runtime replace the use of barriers in most of the cases, allowing the
exploitation of higher degrees of distant parallelism. Given the OmpSs annotations,
the runtime can schedule all tasks out-of-order, as long as the data dependencies are
satisfied.

The OmpSs environment consists of a source-to-source compiler that substitutes
the original invocations of the annotated functions with calls to an add_task runtime
call, specifying the function to be executed and its arguments. The resulting source
code is compiled using the platform native compiler and linked to the OmpSs runtime
library. The add_task runtime call uses the memory address, size and directionlity of
each parameter at each function invocation to build a dependence task graph. A node in
the task graph is added to represent the newly created task and it is linked to previous
task on whose output it depends. Once a task is finished, the runtime looks in the
graph for tasks that depend on this one and if they have no other pending dependencies
they are interted into the ready queue. Concurrently with this main thread, a set of
worker threads, started at initialization time, traverse this list looking for tasks ready
for execution. In the case that the main thread encounters a synchronization (barrier,
wait on specific data or end of the program) it cooperates with the worker threads to
execute pending tasks.

In order to eliminate false dependencies (i.e. dependencies caused by data reuse),
the OmpSs runtime is capable of dynamically renaming data objects, leaving only true
dependencies. This is the same technique used in current superscalar processors and
optimizing compilers to remove false dependencies due to the reuse of registers. In
SMPSs the renaming may apply to whole regions of memory passed as arguments to
a task. Such renaming is implemented by the runtime, allocating new data regions and
passing the appropriate pointers to the tasks, which themselves do not care about the
actual storage positions passed as arguments. The runtime is responsible for properly
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handling the actual object instance passed to successive tasks. Also if necessary, it
copies back the data to its original position.

This renaming mechanism has the potential to use available memory to increase
the actual amount of parallelism in the node. An excessive use of renaming may result
in swapping and introduce a high performance penalty. A parameter in a configuration
file limits the size of memory that can be used for renaming.

The priority clause gives a hint to the runtime system about the “urgency” when
scheduling the task. The runtime has two ready queues and tasks from the high priority
queue are selected before tasks in the low priority queue. This mechanism allows a
programmer with global understanding of the critical computations to influence the
actual scheduling.

One of the main goals of scheduling in OmpSs is to exploit data locality. In that
regard the scheduler takes advantage of the graph information in order to schedule
dependent tasks to the same core so that output data is reused immediately.

The programmer can add the priority clause to some task, indicating that the task
has higher scheduling priority. These tasks are scheduled as soon as possible.

The OmpSs runtime is also aware about NUMA memory architecture and sched-
ules a task according to NUMA locality of task arguments. The OmpSs scheduler
contains a queue for NUMA domain and work stealing is supported. Applications
do not have the same behavior, so the scheduling options are configurable from the
configuration file where a user could tune scheduler for targeted application.

OmpSs programming model supports also programming heterogeneous architec-
tures. By adding target clause to the pragma construct, OmpSs can declare that in-
stances of some task are to be executed on hardware accelerators. Reading these an-
notations, the runtime schedules the execution of the specified task on the dedicated
hardware and automatically moves all the needed data for that task. This feature sig-
nificantly facilitates the easy programming of heterogeneous architectures, as it was
proven for programming Cell B./E. [6] and Nvidia GPUs[9].

OmpSs is a most promising programming approach in HPC world. It makes porting
of sequential applications natural and straight-forward approach. A programmer could
focus on expressing an algorithm, while the OmpSs runtime cares about performance
and parallel execution. This thesis is based on the OmpSs approach and merge MPI
and OmpSs.
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The OpenMP 4.0 standard introduced OpenMP Task Dependency Support, thus it
could be used as an implementation platform for the work of this thesis.

Example of irregular parallelism – Cholesky

Figure 2.4 shows OmpSs parallelization of a Cholesky code. In order to parallelize
Cholesky code with OmpSs, only four code lines need to be added. All four functions
called from compute are encapsulated into tasks using #pragma omp task directives.
For each of these functions, pragma directives also specify the directionality of func-
tion parameters. This type of coordinating tasks on the shared variables is much easier
for the programmer than determining what variables should be shared or private among
the threads. After adding the annotations, the resulting code has the same logical struc-
ture as the original sequential code. Also, note that compiling this OmpSs code with
non-OmpSs compiler simply ignores OmpSs pragmas and creates a binary for the cor-
responding sequential execution.

In parallel execution of this code, the annotated tasks can execute out-of-order, as
long as data-dependencies are satisfied. The program initiates with only one active
thread – the master thread. When the master thread reaches a taskified function, it
instantiates that function into a task and wires in the new task instance into the tasks
dependency graph,see 2.5. Considering the dependency graph, the runtime schedules
out-of-order execution of tasks.

Compared to OpenMP, OmpSs potentially exposes more distant and irregular par-
allelism. For example, some of the instances of task sgemm_tile are mutually inde-
pendent, while some are data-dependent (Figure 2.5). This type of irregular concur-
rency would be very hard to express with OpenMP. However, OmpSs runtime dynami-
cally exposes the potential parallelism, keeping the programmer unaware of the actual
dependencies among tasks. Also, in parallelizing instances of sgemm_tile, OpenMP
would introduce implicit barrier at the end of the loop. On the other hand, OmpSs omits
this barrier, allowing instances of sgemm_time to execute concurrently with some in-
stances of tasks ssyrk_tile (Figure 2.5). Again, the programmer alone could hardly
identify and expose this potential concurrency.
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1 #pragma omp task input(NB) inout(A) 
2 void spotrf_tile(float *A,unsigned long NB);
3
4 #pragma omp task input(A, B, NB) inout(C)
5 void sgemm_tile(float *A, float *B, float *C, unsigned long NB);
6
7 #pragma omp task input(T, NB) inout(B)
8 void strsm_tile(float *T, float *B, unsigned long NB)
9
10 #pragma omp task input(A, NB) inout(C)
11 void ssyrk_tile( float *A, float *C, long NB)
12
13 void compute(struct timeval *start, struct timeval *stop,
14              long NB, long DIM, float *A[DIM][DIM]) {
15    
16    for (long j = 0; j < DIM; j++) {
17       
18       for (long k= 0; k< j; k++) {
19          for (long i = j+1; i < DIM; i++) {
20             sgemm_tile( &A[i][k][0], &A[j][k][0], &A[i][j][0], NB);
21          }
22       }
23    
24       for (long i = 0; i < j; i++) {
25          ssyrk_tile( A[j][i], A[j][j], NB);
26       }
27    
28       spotrf_tile( A[j][j], NB);
29    
30       for (long i = j+1; i < DIM; i++) {
31          strsm_tile( A[j][j], A[i][j], NB);
32       }
33    }
34    
35 }

Figure 2.4: OmpSs implementation of Cholesky
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3
Motivation

Delivering effective and portable parallel code to the complex HPC system is a big
challenge. On the one side, we have scientific algorithms that model and simulate
natural phenomena, and on the other side we have huge parallel machines. There are
several layers between users and hardware. Compilers and operating systems give
access to machines, while programming models give a view of machines to users.
Nevertheless, in order to use machines efficiently, users require knowledge of all layers.
Complexity of these layers is a nightmare for users. Very often, we see result with
unsatisfactory performance.

High level programming models offer a nice environment and a good productivity,
but codes often run poorly in terms of scalability, balancing and single thread perfor-
mance.

Programmers start optimizing their codes by using lower level programming paradigms
and tuning techniques. Productivity decreases, while the cost of development becomes
very high. Finding balance between productivity and performance is a main goal.

In the following section, we further explain the challenges of parallel programming
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on HPC systems. We point to the tuning techniques used in MPI and MPI/OpenMP
programming model and how these tuning techniques affect productivity.

3.1 Development Cost

There is no clear metric to assess programming models, thus evaluating the program-
ming environment is difficult. Endless discussion usually finish with statements "it
depends on a problem and machine", which is true for all programming environment
across different platforms and algorithms.

The cost of running applications depends on total execution time, power consump-
tion and frequency of execution. On the other hand, programmers try to deliver code
before a deadline or within a reasonable time. In order to evaluate programming model,
two properties are important: first, defining development time as the time necessary to
deliver a code that would fulfill the requirements and solve the problem, and second
a time of single execution. Finally, we can draw a curve that models a programming
environment. The Figure 3.1 shows these curves.

Looking at Figure 3.1, on the x-axis is the development time, while y-axis presents
the execution time of a single run. Longer developing time increases performance
and makes the execution time shorter, and opposite, quick time to solution shows sub-
optimal performance. Mathematically speaking, the development time and the execu-
tion time are inversely proportional. Different curves present different programming
environment where analytic function of programming environments contain different
constants.

• Programming environment A: executionT ime = ConstA ∗ f (developingTime)

• Programming environment B: executionT ime = ConstB ∗ f (developingTime)

The Figure 3.1 shows that a programming environment A is better than a program-
ming environment B because ConstA < ConstB. Minimal Const means maximizing
success with a minimal effort. The thesis tries to propose the programming model
where Const is minimal.

This thesis offers the HPC programming model that increases performance with-
out degradation of productivity. The thesis claims that a very first version of parallel
program could be easily converted to the efficient productive version.
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Figure 3.1: Modeling programming enviroments. A curve presents the properties of the programming
enviroment.

3.2 MPI Tuning and Its Challanges

MPI programming paradigm is ubiquitous in scientific computing. Nowadays, we
cannot find a production code that runs on thousands of cores without using the MPI
paradigm. Explicit communication, low level mechanism and static distribution give
full control to programmers. In the very first phase of the code design, a programmer
cares about explicitly partitioning the workload among processes with separate address
spaces. Data distribution and number of instruction per process should be equally dis-
tributed, while invoking communication calls should be as synchronized in order to
balance execution of processes. This requires optimization on the MPI level, where
the programmer introduces tuning techniques by hand. Optimization of MPI codes
may be very complex and requires a restructure of codes which decreases readability.
In this section, we address the synchronization between processes and an overhead of
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transferring data, named transfer issue. Finnally, the Section 3.2 discusses the scala-
bility issue and how MPI/OpenMP addresses the scalability.

3.2.1 Synchronization Issue

In order to reach perfect synchronization between a group of MPI processes, MPI
processes should arrive at the same time to a blocking MPI call that performs com-
munication between them. Fulfilling these requirement, depends on various hardware
and software properties. MPI needs hardware with identical nodes and interconnection
network that makes access to all nodes identical. Placing MPI processes across identi-
cal cores and binding processes helps to the symmetric execution. From the software
point of view, an algorithm should distribute load and instruction equally across the
nodes. Perfect distribution of algorithm and symmetric hardware still cannot guaran-
tee a perfect synchronization because of the unpredictable behavior of OS noise, cache
locality, CPU temperature could disturb runs and introduce load imbalance.

Non-synchronized processes cause communication delays and idle states of CPUs,
a local slowdown of a single core propagates across all processes and can significantly
harm the overall performance, especially at the large-scale.

Programming practice suggests code restructuring in order to avoid synchroniza-
tion delays. Understanding hardware and computational routines, programmers es-
timate execution time of certain parts of code and predicts synchronization point of
communication calls. This is not straight-forward programming practice and it is very
difficult to predict a synchronization point of MPI calls in the development phase.

The Figure 3.2 shows tuning steps from an original MPI code where processes are
not synchronized to the code where different order of computational chucks makes the
execution balanced. The process P0 arrives earlier at the communication point then
P1, as has to wait, which leads to the synchronization issue.

Arrows present a communication direction between process while a red burst shows
an idle state of core during the communication. We can see that the synchronization
issue and the transfer issue cause the idle state of one processes. Restructuring com-
putational chucks improves synchronization and minimizes the idle time on P0.

Therefore, there is a need for a new approach to solve problems of synchronization
where programmer should not care about order of computational chucks. The goal of

31



original structure

execution time synchronization 
i

transfer
i

ng
  t
im

e 

issue issue

restructured code

de
ve
lo
pi
n

execution time transfer
issue

restructured code and

execution time 

non‐blocking calls

Figure 3.2: Tuning challenges: Synchronization Issue and Transfer Issue and how to address them. X
axis is the exuction time, Y axis is the development time. Red chunks are idle state. Blue chunks are
running state.

a new approach is automatic, out-of-order, scheduling of computational chucks that
leads to a good synchronization across MPI processes.

3.2.2 Transfer Issue

The Figure 3.2 shows, that solving synchronization problem does not reduce the trans-
fer time. The red bursts are still present. Two processes start communication at the
same time, they hold cores busy while interconnection network perform communi-
cation operation, named the transfer issue. The overhead of communication transfer
depends on hardware properties of interconnection network (bandwidth and latency),
routing, size of messages and implementation of MPI libraries.

On the other hand, application developers have no control over these factors and
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they use optimization techniques on the application level in order to reduce the transfer
time. Overlapping communication and computation is the most promising technique
to reduce communication delays. By using overlapping techniques, processors start
communication operation and switches to computation that does not require completed
communication operation. This approach speeds up execution and increases overall
efficiency.

Nevertheless, this tuning technique requires again code restructuring and the use
of non-blocking MPI call. Programmers place non-blocking call and request a com-
munication operations. The core instantly executes non-blocking call and continue
further with computation, while the communication hardware transfers data in the
background. Programmers also need to place probing calls which would frequently
check for the end of communication operation and release a communication buffer for
new writes.

The Figure 3.2 shows the final step in the development phase where code restruc-
turing and non-blocking communication calls tune executions. Small red bursts present
probing calls that intercept computation. Sometimes probing calls have to split an ex-
ternal single library call, this also increases code complexity because programmers
should divide the library call in several calls of the same routine.

Our approach also targets the transfer issue and aims automatic overlap of commu-
nication and computation without code restructuring or explicit use of non-blocking
and probing calls.

3.2.3 Scalability Issue and Fork/Join Issue

Overlap and code restructuring show solution for synchronization and transfer issues
of MPI. Nevertheless, writing scalable program for huge number of processes might
introduce the scalability issue due to nature of algorithm. Some algorithms limit a
maximum number of MPI processes and do not scale beyond this maximum number.
Static data distribution across MPI makes load balancing difficult and increases number
of MPI communication calls.

In order to address the scalability issue, programmers mix MPI and OpenMP pro-
gramming models, e.g. a single MPI process contains N OpenMP threads. Thus total
number of MPI processes decreases by N which implies N times less communication
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Figure 3.3: Scalability Issue: MPI/OpenMP improves the scalability issue but introduces fork/join issue.
First four lines present a process 0 with for 4 threads, second four lines present the process 1 with 4
threads. Red chunks are idle state. Blue chunks are running state. White chunks are idle states due to
fork/join issue.

between nodes and better scalability. Dynamic load balancing of OpenMP approach
improves overall performance.

Programming practice places communication calls in a main thread, while N-1
threads wait for the end of communication operations. The Figure 3.3 shows the sce-
nario where the main threads of processes 0 and 1 exchange data while other threads
are idle. The cost of the performance drop due to the fork/join issue depends on num-
ber of OpenMP threads. Larger N leads to better load balancing but an expensive
fork/join. This is the reason why MPI often outperforms MPI/OpenMP implementa-
tion of a given algorithm.

Our programming model would contain benefits of a good dynamic load balancing
within node as OpenMP but it avoids the fork/join issue by allowing communication
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concurrently with computation in any thread. We also propose a hybrid programming
approach as MPI/ OpenMP that automatically addresses the communication overhead
issue based on OmpSs data flow programming model.

3.3 Automatic overlap

The thesis proposes the hybrid programming model MPI/OmpSs. The approach is
based on data-flow programming, where programmers divide computations in tasks
and define data dependencies between them. Instead of code restructuring in traditional
optimization technique, programmers keep the same structure of the code and only give
hints to the system. The system does out-of-order execution of computational tasks,
and makes decisions during runs. OpenMP also addresses dynamic load balancing,
but OpenMP can deal only with an embarrassingly parallel workload where little or
no effort is required to separate the problem into parallel tasks. OmpSs automatically
creates a data dependency graph and deals with any kind of workload.

The approach goes one step further and encapsulates MPI calls within OmpSs
tasks. Thus the system could call them in out-of-order fashion,furthermore named
a communication task. Out-of-order execution of computation tasks and communi-
cation tasks minimize the synchronization issue because the OmpSs task scheduler
dynamically schedules tasks and accelerate a critical path of execution. MPI blocking
calls still hold CPUs that execute them. This makes blocked cpus unusable for OmpSs
threads.

The approach introduces various techniques for treating communication tasks and
does not allow communication tasks to block CPUs. As soon as a synchronization
issue has been detected, a thread that blocks a core yields the core which makes the
core available. Immediately, another thread takes the core and starts execution of a
ready-to-run task.

The MPI/OmpSs execution model aims at the execution model of the Figure 3.4.
Processes with several threads improve scalability, the system automatically reorders
chunks and overlaps communication where all threads can execute communication in
parallel with computation.
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Figure 3.4: The execution with automatic overlapping and reordering. Blue chunks are running states.

Our contribution in exploring automatic overlap

• Propose HPC programming model that keeps the same structure as a pure non-
optimized MPI code and introduces automatically all tuning techniques to reduce
communication overhead.

• Build a programming model that is more tolerant to low bandwidth network and
non deterministic perturbations.

• Analyze different tuning techniques for overlapping computation and communi-
cation on various machines.

• Explain porting strategy and compare results of well know kernels and applica-
tions.
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4
Analysis and Evaluation of Existing

Overlapping Techniques

The Chapter 4 reviews existing overlapping techniques and analyzes a correlation be-
tween the characteristics of computational kernel and overlapping techniques. Con-
clusions of the Chapter 4 provides a basis and an essential knowledge required for the
MPI/Ompss programming model.

4.1 Introduction and Motivation

The main issues to achieve good, performance is reducing the communication over-
head between MPI processes. MPI contains asynchronous communication routines
that offer the possibility for overlapping communication and computation. Program-
mers use the MPI’s asynchronous (non-blocking) communication calls to: (i) issue
communication requests as soon as the data is ready, (ii) perform another computation
independent on this data, and (iii) then wait for the end of the communication. The
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MPI-1 and MPI-2 standards support asynchronous communication calls for the most
essential point-to-point operations (MPI_Isend(), MPI_Irecv(), ...). However, a regular
communication pattern easily can be expressed by calling collective routines, where
MPI-1 and MPI-2 provide only synchronous interface.

An exascale machine executes a huge number of MPI processes, which uses ex-
pensive collective operations for communication between MPI processes. The two
standard approaches for achieving better communication performance are (i) improv-
ing network infrastructure, and (ii) improving software communication patterns. Im-
proving the network infrastructure, provides a better interconnect network with higher
bandwidth and lower latency. Increasing bandwidth is technically relatively simple,
but latency is already close to the physical limit an cannot be increased. At the same
time improving the network infrastructure causes high network hardware cost. On
the other hand, the software improvements provide a cheaper approach for achieving
better performance. The improvement of software communication patterns forces the
programmers to overlap collective communication with computation. The program-
mer have two standard approaches to overlap computation and communication: (i) by
implementing collectives with asynchronous point-to-point routines or (ii) by imple-
menting a multithreading approach e.i. placing a blocking collective to an additional
thread. These approaches have not been popular in MPI programming community due
to increase of the code complexity. The code complexity arises from the interaction
of the MPI communication patterns with the routing protocols and underlying inter-
connection networks. In the case of multithreading approach, the code has to take into
account the presence of operating system scheduler which increases the complexity on
the MPI applications.

The both software approaches (asynchronous point-to-point and multithreading

approaches) interrupt the computational kernel. Point-to-point collectives explicitly
probe for a message while the OS controls sleeping and running phases for the ad-
ditional thread. The interruption of computation introduces an overhead in overall
performance.

The overhead depends on the characteristics of the kernel. This work evaluates
overall performance degradation introduced by overlapping techniques on the compu-
tational kernel and analyzes performance of collective communications.

For the evaluation, the thesis uses synthetic benchmarks and the High Performance
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LINPACK (HPL). We implement the synthetic benchmark, Concurrent Communica-
tion Computational (C-CUBE) synthetic benchmark, which uses three overlapping
techniques (point-to-point, mutithreading with communication thread, and MPI-3’s
Ibcast) and we perform broadcasting in parallel with three different type of kernels
(compute-bound, memory-bound and compute/memory bound (hybrid) kernels). We
also evaluate overlapping techniques on the High Performance Linapck as a case study
for real application.

The Chapter 4 makes the following contributions:

• We show that in order to reduce the application’s communication overhead the
programmer has to understand the characteristics of the computational kernel
and the implementation of overlapping techniques. The lack of understanding
can reduce the performance and make the overlap useless.

• We show that the MPI-3 standard introduces easy-to-use concept with non-
blocking collectives which increases programming productivity. At the same
time, the optimized MPI non-blocking collectives with a asynchronous commu-
nication thread achieve the desired computation/communication overlap without
additional overhead.

• Finally, it is shown that a hand-tuned collective operation shows better progress
behavior than the MPI broadcast collective.

The rest of the the chapter is organized as follows. Section 4.2 explains the over-
lapping technique for collective operations and defines three types of computational
kernels. Sections 4.3 gives implementation details of the C-CUBE benchmark and ex-
plains a modified look-ahead technique for the HPL. Section 4.4 evaluates the overhead
of overlapping techniques. Finally, Section 4.5 concludes the chapter.

4.2 Overlapping Techniques and The Nature of Com-
putational Kernels

In this section, we review known overlapping techniques and classify computation
kernels depending on their memory/CPU usage.
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Figure 4.1: Overlapping communication and computation by using nonblocking point-to-point calls.

4.2.1 Overlapping Collectives

From the very beginning, the MPI-1 standard offers an interface for overlapping com-
munication and computation, e.g.of nonblocking sends (MPI_Isend) and nonblocking
receives (MPI_Irecv) to improve performance. The nonblocking calls initiate opera-
tions, place requests and immediately return the execution flow to the main thread that
executes the computation, while the communication operation progresses in the back-
ground. The overlap of computation and communication finishes with a waiting call,
where the main thread verifies that the data has been copied out, see Figure 4.1.

The MPI-1 and MPI-2 standard contain nonblocking point-to-point operations,
however collective operations can only be expressed with a blocking interface. Col-
lective operations have high demands on IC in terms of high bandwidth and lower
latency. Some system, for instance IBM Blue Gene dedicate a special network just for
a collective communication.
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Programmers use two software approaches to try to reduce communication cost:
(i) the first approach requires implementation of collective communication by using
non-blocking point-to-point calls [49] and (ii) the second approach tends to overlap
computation with an additional communication thread[29] and thus exploits a multi-
core and hyper-threading architecture of modern nodes.

Algorithms - with potential overlap of collectives - motivate programmers to avoid
easy-to-use concept of collective routines and implement their own collective operation
that hides the communication overhead. This was the first approach that addresses the
communication overhead of collectives.

The manual implementation of collective operation (by using nonblocking collec-
tives) significantly increases code complexity This technique requires code restructur-
ing and the placing of probing calls in the code. The performance of collective op-
erations also depends on a routing of interconnection network and makes the manual
implementation less portable from performance point of view. The programmers are
forced to understand several layers of software stack (algorithms, MPI implementa-
tions, mapping of MPI processes and interconnection networks). A complex software
stack reduces programmer’s productivity and as a consequence the programmers rarely
use nonblocking hand-tuned collectives.

The second approach exploits SMP nodes and multi-threading. The programmers
overlap the communication and computation by changing the applications to run col-
lective operations in the communication thread (a.k.a. communication thread) while
the application’s main thread executes the computation. This approach requires forking
and joining of the communication thread for the synchronization, see Figure 5.4.

The communication thread approach is easier to use than point-to-point implemen-
tation. However, the thread-safety of the MPI library and the interference of the OS
scheduler limit the usage of this approach.

The MPI-3 standard supports non-blocking collectives[26] and introduces easy-to-
use concept for overlapping collectives. At the same time, the MPI library developers
can improve the performance of MPI collectives by targeting specific architectures and
specific HPC systems.
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4.2.2 Computational Kernels

In general, MPI nodes execute same application code with different data sets and use
MPI’s synchronization/communication primitives to coordinate their execution. The
programmers’ main focus is:

(i) to identify the computational kernels of the applications, and
(ii) to write synchronization/communication code to coordinate the communication

between the nodes.
In other words, programmers have to understand the computational kernels and

communication patterns present in applications, in order to efficiently map the HPC
applications to MPI programming model.

In HPC applications, there are 3 types of kernels:
(i) memory intensive kernels,
(ii) computationally intensive kernels, and
(iii) memory and computationally intensive kernels.

• Memory intensive kernels spend most of their execution time reading and writ-
ing memory. One typical example of memory intensive kernel is a kernel that
copies the data from one memory area to a different memory area using the
memcpy() function.

• Computationally intensive kernels spend most of their execution time doing
computation. One example of computationally intensive kernel is a kernel that
calculates prime factors of a large positive integer number. The prime number
calculation is trivially parallelizable algorithm that does not require communica-
tion between MPI nodes.

• Memory and computationally intensive kernels spend their execution time
accessing memory and doing computing equally. One example of memory and
computationally intensive kernel is a kernel that executes the matrix multipli-
cation algorithm. The matrix multiplication algorithm stresses the memory by
reading large matrices and stresses the CPU’s ALUs by executing several multi-
ply and add instructions every cycle.
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4.3 A Case Studies: Synthetic benchmark and HPL

In this section, we describe applications used in the evaluation phase. First, we ex-
plain the implementation of the Concurant Communication Computation (C-CUBE)
synthetic benchmark and later, we review a look-ahead communication optimization
used in HPL.

4.3.1 The C-CUBE benchmark

In order to evaluate the influence of the computational kernels to the overlapping tech-
niques, we developed the C-CUBE synthetic benchmark. The C-CUBE contains three
different overlapping techniques and three different computational kernels. The syn-
thetic benchmark isolates the MPI overlap approaches from the side effects (data distri-
bution, load balancing, MPI synchronization, an algorithm specific execution) present
in MPI applications.

The C-CUBE uses a broadcast as a collective communication operation. The
broadcast is the one of the most used collective operation in scientific applications.
A broadcast strategy is a basic operation in distributed linear algebra algorithms[20]
and is the most demanding communication pattern that used a special network in-
terconnection. On the other hand, the all-to-all communication is the most expensive
communication that uses 2D and 3D tours on the machines with a special interconnect.

We apply three overlap techniques to a broadcast operation:

• Asynchronous Hyper-cube Broadcast - For the point-to-point version of broad-
cast, we use a hypercube communication pattern. The hypercube algorithm pre-
forms broadcast among N processes in log(N) steps. The algorithm broadcasts
information in the lowest number of necessary steps and show the highest effi-
ciency in regular network topology[18].

Each process calls MPI_Recv once, while the number of sends depends on the
rank of a process. We add a probing call before MPI_Recv to make the broadcast
asynchronous. Pseudo code is written below:

for(i=0; i<log(N); i++){
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update(mask, mask2)

if ((rank & mask2) == 0){

partner = rank ^ mask;

partner = MModAdd(partner,root,size);

if (rank & mask){

MPI_Iprobe(..., &flag ,...);

if ( !flag ) return 1;

MPI_Recv(...);

}else

MPI_Send(...);

}

}

• Communication Thread - In order to overlap communication and computation
using multi-threaded model, we choose the Pthreads programming model. The
Pthreads implementation is a low-level and light programming approach for im-
plementing a communication thread. It is the standard library for implementation
of shared memory programming models due to high performance. Pthreads of-
fers full control over creating, joining and destroying the communication thread.

In the communication thread technique, we place the blocking MPI_Bcast in
the communication thread. The main thread creates the communication thread,
starts a computation, and sets a synchronization point after the computation.

• Asynchronous Broadcast Operation - The MPI-3 interface contains the MPI_Ibcast
function as a non-blocking broadcast operations. The MPI_Ibcast starts a asyn-
chronous broadcast operation, while probing for a message preforms interruption
of a computation kernel. The MPI_Test first checks whether data has already ar-
rived or not. If so,the MPI_Wait can be done and data is available. In the case
data has not arrived, the computation kernel runs again.

We introduce probing for messages in order to measure the progress of commu-
nication. Programming practice with a pair MPI_Ibcast and MPI_Wait is enough
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to preform an overlap.

The synthetic benchmark contains three computational kernels: check prime num-
ber as a compute-bound, memory copy as a memory-bound kernel, and matrix multi-
plication as the hybrid kernel.

• Check Prime Number - We use primality test function as a compute-bound
kernel. The primailty test function uses the trial division algorithm to determine
if a number is prime. The algorithm tests if the number is divisible by 2 or any
odd integer greater or equal than 3 and less then the square root of the number.
Essentially, the algorithm is brute force test that does not access memory and
only stresses the ALU. It is important to mention that primality test function
does computation accessing only the CPU registers because compiler is able to
put all the variables (that are used in the main loop of the kernel) in registers and
as a consequence the main loop does not access memory.

• Memory Copy - We use the memcpy() function from the C standard library as
a memory-bound kernel. The memcpy() function is a good proxy for memory-
bound applications because it stresses the memory subsystem by executing mem-
ory move instructions in a tight loop. We can assume that memcpy() function
will be implemented as rep mov instruction on x86 processors because on the
current Intel Nehalem and Sandy Bridge processors, this is the fastest method
for moving large blocks of data, even if the data are unaligned[19].

• Matrix Multiplication - We use the matrix multiplication kernel DGEMM as a
hybrid kernel. DGEMM is the most widely used routine to compute matrix mul-
tiplication using double precision floating point numbers. The performance of
DGEMM is expressed in FLOPS (floating point operations per second) and is of-
ten used as used metric for HPC systems. There are several very well optimized
implementations [22].

In this chapter, we use Cray DGEMM implementation for our benchmark. In
our evaluation environment, DGEMM reaches the efficiency of 103% of peak
performance due to Intel "Turbo Boost" technology that enables the CPUs to run
at higher frequencies than specified. The high efficiency is a clear sign message
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of the high optimization levels of DGEMM, and any interference with this kernel
could easily lead to a performance drop.

4.4 Results

In this section, we describe the platform used for the experiments and evalute the over-
lapping techniques in term of performance for the C-CUBE benchmark and the HPL
benchmark respectively.

4.4.1 Platform

We give a brief overview of the cluster describing computing nodes and interconnec-
tion network [4].

64 nodes with 2 chips of the Intel SandyBridge 2,6 GHz E5-2670 per node and 64
GB of shared memory per node. Each chip has 8 cores (16 hardware threads) with 20
MB of shared cache memory per chip. The cores use "Turbo Boost" technology that
enables the cores to run up to 3.3 GHz when the thermal budget is not exceeded. All
of the core can execute 8 floating point operations per cycle.

We use Cray Programming Environment: C Cray Compiler, MPICH-6.0.1 Cray
MPI library that uses the MPICH2 distribution from Argonne, the MPI library provides
a full support for the MPI-3 standard. The Cray Scientific Libraries package, and Lib-
Sci BLAS (Basic Linear Algebra Subroutines, including routines from the University
of Texas 64-bit libGoto library).

The Cray MPI implementation uses an asynchronous progress engine to improve
overlapping of communication and computation. Each MPI process launches a com-
munication thread during the initialization phase. These threads help progress the MPI
engine. Cray modifies the OS Linux kernel to treat communication threads differently
from application threads. Enabling and disabling the asynchronous progress engine
options has a huge impact on the overall performance. The usage of asynchronous
communication thread can be disabled with environment variable.

All experiments are done on 1024 cores. The number of MPI processes per node
is equal to the number of real cores per node and we bind MPI processes to the cores.
Communication thread approach requires two threads per process, so we used hyper-
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threading over the logic cores. This process mapping isolates NUMA effect and maxi-
mizes utilization of the nodes.

4.4.2 C-CUBE Evaluation

We run the C-CUBE benchmark with small (1KB) and large (128KB) message sizes.
The small messages use MPI with eager protocol, and the large messages use MPI with
reandezvous protocol. We run the benchmark with and without asynchronous progress
thread by setting MPICH_NEMESIS_ASYNC_PROGRESS environment variable.

We set different problem sizes for different computation kernels. Thus kernels
execution take roughly the same amount of time. For matrix multiplication, matrix
dimensions are A = 16384x128, B = 128x16384 and C = 16384x16384. Size of matrix
bigger than 64 and power of two gives the best performance of the Cray DGEMM. We
split matrix multiplication in 128 iterations in oder to interleave matrix multiplication
with communication. Similarly, we split mem-copy kernel and compute-bound kernel
in 128 iterations. For mem-bound kernel, we copy 80KB per iteration and compute-
bound kernel we test primality of the number 10963707205259 [43].

First, we measure the execution time of computational kernels and broadcast im-
plementation without overlapping and then we combine a broadcast and a kernel in
round robin manner. Table 4.1 shows the execution time of all combination of com-
putation kernel and communication implementation for different problems sizes and
mode of progress engine.

Figure 4.3 presents the second column of the results from Table 4.1. We enable
the progress thread engine and set the broadcast message size to 128KB. The execu-
tion times are clustered in three groups (compute-bound, memory-bound, and hybrid-
kernel). OrgComputation and OrgCommunication bars represent the execution time
without overlapping and hatched stack-bar on top of the bars represent an overhead
introduced by overlapping techniques: (point-to-point hypercube)P2P, communication
thread, and non-blocking collectives respectively. The blocking broadcast with com-
munication thread and P2P hypercube implementation have the same execution time,
while non blocking broadcast has 4.57x higher execution time. The non-optimal im-
plementation of the MPICH-6.0.1 could limit a purpose of asynchronous collective for
short computations.
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Comp
Broadcast

Comm./ Progres thread ON Progres thread OFF
kernels Comp Small Large Small Large

P2P
Comm. 0.25388 0.40533 0.25295 4.88044
Comp. 4.69775 5.00175 4.72262 5.00169

Comp Comm. Comm. 0.00151 1.03605 0.00071 1.03033
bound thread Comp. 4.68298 4.84199 4.70082 4.84628

Ibcast
Comm. 0.29041 1.10040 0.21946 5.52053
Comp. 4.69291 4.85831 4.70131 4.72761

P2P
Comm. 0.25340 0.50630 0.25427 4.82266
Comp. 4.68523 4.84253 4.68656 4.85381

Memory Comm. Comm. 0.00148 1.85891 0.00086 1.88939
bound thread Comp. 4.68345 4.68526 4.68557 4.68546

Ibcast
Comm. 0.21856 1.59165 0.25449 5.47348
Comp. 4.68550 4.71227 4.68673 4.63563

Hybrid

P2P
Comm. 0.23620 0.45799 0.23565 4.25181
Comp. 4.34192 4.34291 4.26505 4.31262

Comm. Comm. 0.00120 1.33824 0.00078 1.33916
thread Comp. 4.11927 4.44465 4.17536 4.46042

Ibcast
Comm. 0.23602 1.24101 0.23654 4.84270
Comp. 4.13161 4.27067 4.19874 4.12929

Table 4.1: The exection time of computation and communication for various overlapping techniques,
computational kernels, mode of the progress thread and message size.
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Figure 4.3: The execution time of communication and computation for various computation kernel and
overlapping techniques when the progress thread is disabled and the message size is 128KB.
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Broadcasting performance of P2P approach shows the best results. For the P2P, the
execution time depends on probing granularity, while the communication thread and
asynchronous collective approaches depend on core utilization due to hyperthreading.
Broadcasting overhead is the most significant for overlapping memory-bound kernel,
due to concurrently memory copy operation of both threads.

Send calls of the P2P case dominates the computation overhead. Communication
thread and non-blocking collectives overlapping techniques introduce an overhead to
optimized compute-bound kernel and almost no overhead to memory bound kernel due
to a good OS scheduling.

The performance of hybrid-kernel (optimized DGEMM) is very sensitive to an in-
terrupt. For the hybrid-kernel combined with the P2P and the communication thread
approaches, the computation overheads are bigger than the broadcasting without over-
lap, which makes overall performance lower. Only non-blocking broadcast gains per-
formance improvement against non-overlap execution because the progress thread per-
forms the forwarding message with the lowest overhead.

Figure 4.4 presents the second column of the results from Table 4.1. We disable the
progress thread engine and set the broadcast message size to 128KB (this implies that
we use randezvous protocol). Asynchronous calls of P2P approach and nonblocking
collectives use the progress thread.

Asynchronous routines from the P2P and non-blocking broadcasts get benfit from
the progress thread. In Figure 4.4, communication bars of the P2P and non-blocking
broadcasts are higher than computation bars. Initial ratio of OrgComputation and
OrgCommunication without overlap is 19.84 and after overlapping computation/communication
is to less than 1. The probing for message do not help progress MPI engine stage.
Broadcasting starts at the end of computation phase while asynchronous calls start
before computations.

In the P2P and non-blocking broadcasts, probing calls, MPI_Test or MPI_Iprobe,
intercept computations. The number of probing calls necessary to complete commu-
nication operation, we also call the polling frequency. Table 4.2 compares the polling
frequency of the P2P and non-blocking broadcasts for massage size and thread progress
mode.

Table 4.2 also shows the same conclusion, where MPI_Ibcast needs up to 3 times
more probing messages than the hypercube implementation in order to complete com-
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Figure 4.4: The execution time of communication and computation for various computation kernel and
overlapping techniques when the progress thread is disabled and the message size is 128KB.
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Comp Kernels Broadcast
Progres thread ON Progres thread OFF
Small Large Small Large

Comp - bound
P2P 7 10 7 128

Ibcast 8 27 6 128

Memory - bound
P2P 7 14 7 128

Ibcast 6 42 7 128

Hybrid
P2P 7 13 7 128

Ibcast 7 36 7 128

Table 4.2: Frequency polling of asynchronous broadcasts for dirrent problem sizes and the thread
progress mode.

munications.
For the small messages, P2P approach performs the communication in 7 probing

points. This is expected result because hypercube needs n = log21024 = 1= hops to
finish broadcast operation. There are runs where nonblocking collectives completes
the operation in 6 steps and outperform hypercube for a small messages. Nonblock-
ing operation should always outperform hand-tuned version because it does not need
explicit probing point to speedup a progress.

4.4.3 HPL Evaluation

For the HPL described in Section 6.1, we evaluate the performance using 1024 cores.
We compare the performance of these four versions of HPL for different problem
sizes (Figure 4.5): (i) no overlapping, (ii) with lookahead depth 1 and P2P broad-
casting(2modified ring), (iii) with lookahead depth and 1 Communication thread, and
(iv) with lookahead depth and 1 non blocking broadcast.

HPL uses (P,Q)=(16, 64) 2D decomposition. Note that decomposition (16, 64)
may not be optimal for these number of cores and (32, 32) decomposition make better
overall performance. Our work is focused on overlapping evaluation and Q = 64 means
broadcasting needs 64 processes. We could use 1D decomposition (1, 1024) where a
broadcasting is done across 1024 process but load imbalance of the HPL would be
dominant factor. So we decide to make a trade-off between a good load balancing and
expensive broadcast.

Figure 4.5 shows the performance rate (Gflop/s) of overlapping versions with asyn-
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Figure 4.5: Performance comparison of look-ahead techniques for different problem sizes.
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chronous progress thread. Complexity of the HPL computation O(N3) vs. communi-
cation O(N2). So, we differentiate two regions:

1. For small problem size, the ratio communication computation is significant and
overlapping improves overall performance. The P2P broadcasting shows that the
best performance improvement is due to non optimized broadcast operation in
MPI library.

2. For large problem size, the P2P and communication thread approaches perform
worse than non overlap version, because explicit polling and implicit OS inter-
rupt interrupt large DGEMM kernel. DGEMM’s update phase results in lower
IPC and lookahead is useless. Ibcast successfully overlaps the update phase and
improves results for up to 1.2%.

4.5 Conclusion

The chapter compares different techniques for overlapping collective communication
and computation using MPI-3 programming model. The C-CUBE synthetic bench-
mark contains three different overlapping techniques of broadcast operation (hand
tuned point-to-point, communication thread, and non-blocking collective) for small
and large messages. C-CUBE defines three types of kernels: compute-bound, memory-
bound, and hybrid-kernel. The chapter analyzes the use of the asynchronous progress
thread on Cray MPICH2 and shows benefits of using it. We show that presence of
the progress thread improves the progress of asynchronous broadcast without perfor-
mance degradation of computation, while the absence of the progress thread degrades
the performance and the communication operation starts when the MPI_Wait starts.

The new non-blocking collectives in MPI-3 standard simplify development of MPI
applications and enable higher programming productivity, and at the same time provide
better performance than manual overlapping approaches. We show that asynchronous
broadcast collective combined with hybrid-kernel outperforms P2P and communica-
tion thread overlapping techniques.

In the case of HPL benchmark, the use of MPI_Ibcast simplifies the look-ahead
code because the update phase of the benchmark is not interleaved with message prob-
ing and improves overall performance up to 13%.
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The execution time of MPI_Ibcast indicates non-optimal implementation of the
Cray library for a large message because the hybercube broadcast implementation and
MPI_Bcast runs 4.57 times faster than MPI_Ibcast.

The Chapter 4 presents overlapping techniques and their pitfalls. MPI/OmpSs pro-
gramming model should allow to use all overlapping techniques and try to merge them
with the OmpSs runtime where programmers would not explicitly deal with issues
presented in this Chapter.

56



5
Design and Implementation of the
MPI/OmpSs Programming Model

This Chapter describes the design and implementation of the MPI/OmpSs program-
ming model. The Chapter 5 is the kernel of the thesis and presents a new parallelism
approach by combining MPI and OmpSs programming paradigm. The MPI/OmpSs
programming model introduces an extension of existing programming interface and
the OmpSs run-time. Portability of the new MPI/OmpSs programming models is an
important feature, thus the Chapter also discusses implementations details/issues of the
OmpSs run-time that supports overlapping techniques on various hardware platforms.

5.1 Taskified MPI calls

The dataflow execution model in OmpSs can be effectively used to exploit the distant
parallelism that may exist between tasks in different regions separated by MPI calls.
In order to achieve this, MPI calls need to be encapsulated in OmpSs tasks.
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In order to allow a pure dataflow execution model, the first step consists on con-
sidering MPI calls as OmpSs tasks that consume data (MPI_Send) or produce data
(MPI_Recv) in the task graph. We can encapsulate these communication requests as
OmpSs tasks by specifying their inputs (for sends) and outputs (for receives). By doing
so, we may rely on the general OmpSs scheduling mechanism to reorder the execution
of such tasks relative to the computational tasks just guaranteeing that the dependen-
cies are fulfilled. Assuming a sufficient number of processors for each MPI process this
would have the effect of propagating the asynchronous dataflow execution supported
by OmpSs within each node to the whole MPI program.

For example, Figure 5.3 shows a possible implementation of the broadcast opera-
tion, in which the original sends and receives are replaced by tasks with the appropriate
input and output clauses.

With this encapsulation, the OmpSs scheduler is able to reorder the execution of
communication tasks relative to the computational tasks, just guaranteeing that the de-
pendencies are fulfilled. In this way, the programmer is relieved from the responsibility
to schedule the communication requests. At the global application level, MPI will im-
pose synchronization between matching communication tasks. The fact that each of
these tasks can be reordered with respect to the computation tasks enables the prop-
agation of the asynchronous dataflow execution within each node to the whole MPI
program.

5.2 Overlapping Approaches

5.2.1 Restart mechanism

As opposed to standard computation tasks, communications tasks have an undeter-
mined execution time, depending on when (or whether) the communication partner
invokes the matching call. In addition, blocking communication calls could lead to
deadlock situations [24] in an architecture where the number of threads per node is
limited.

Usually to appropriately handle blocking communication calls, the programmer
needs to split a blocking call into a non-blocking call to issue the communication re-
quest and a wait call to wait for the data. This separation just moved the deadlock risk
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Figure 5.1: Execution stages of the restart mechanism.

mentioned above from the blocking communication call to the wait call. To solve the
problem we added a new pragma in the OmpSs programming model:

#pragma css restart

See Figure 5.1,the effect of this pragma is to abort the execution of the current task
and put it again in the ready queue. With this new pragma, the wait can be implemented
with 1) a MPI_Test to check whether data has already arrived or not; 2) if so, the
MPI_Wait can be done and data is available for OmpSs task depending on it; 3) if not,
the restart pragma is executed, aborting the wait task and queuing it again in the ready
queue for later consideration. The code fragments in Figure 5.2 and 5.3 show the code
transformation done for a blocking receive call and for a broadcast operation.

This approach requires the explicit separation of blocking MPI calls into the appro-
priate sequence of their corresponding non-blocking calls. Both tasks are invoked in
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1 #pragma css task output(buf, req)
2 void recv (<type> buf[count], MPI_Request *req){
3   MPI_Irecv(buf,…,req);
4 }
5
6 #pragma css task input(req)
7 void wait (MPI_Request *req){
8   int go;
9   MPI_Test (req, &go, ...);

10   if (go==0) #pragma css restart;
11     MPI_Wait (req_recv, …);
12 }
13 void application_receive(){
14   recv ();
15   wait ();
16 }

Figure 5.2: Receive operation imple-
mented by using the restart mechanism.

1 #pragma css task input(buf) output(req)
2 void send (<type> buf[N*nb], MPI_Request *req);
3
4 #pragma css task input(req)
5 void wait (MPI_Request *req);
6
7 #pragma css task output(buf, req)
8 void recv (<type> buf[size], MPI_Request *req);
9

10 void broadcast (int root, <type> buf){
11   if (root){
12     send (buf, req_send);
13     wait (req_send);
14   } else {
15     recv (buf, req_recv);
16     wait (req_recv);
17   if (necessary) {
18     send (buf, req_forward);
19     wait (req_forward);
20   }
21 }

Figure 5.3: Broadcast operation imple-
mented by using the restart mechanismm.

sequence in the source code although if data take some time to arrive, the scheduler will
launch the execution of another computational tasks. With the proposed approach, the
programmer does not need to think about the relative placement of both asynchronous
calls, which would force a specific schedule which may or may not be the most appro-
priate. Notice that the transformation described above could be even hidden inside the
implementation of the MPI library or in stubs calling it, making the use of the hybrid
MPI/OmpSs even more simpler and productive.

The possibility to abort and resubmit a task has several implications. First, the
task must be free of any side effect on the state of the program or environment, as
the whole task could be repeated a number of times that is outside the control of the
programmer. Second, the runtime should not immediately selected the aborted task
for execution if there are other tasks in the ready queue, as this may result in the same
resource starvation and associated deadlock we tried to avoid. And third, the runtime
should give these aborted tasks an opportunity to execute relatively frequently as this
will result in better application responsiveness to incoming messages and may result
in faster propagation of data along the critical path.

In the current implementation a task that invokes a restart primitive is inserted back
in the to ready queue behind the first ready task, leaving at least a normal ready task
between two restarted tasks in the list. This is done to avoid a potential deadlock in the
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case of two concurrent wait tasks. If the task that is restarted is marked as highpriority,
it looses this condition and goes into the low priority list. Because this mechanism re-
injects restarted tasks towards the head or the low priority ready queue, the net effect is
that the restarted task still goes before the many possibly ready tasks in the low priority
queue.

5.2.2 Communication thread

Tasks that encapsulate blocking MPI calls have an unpredictable execution time (de-
pending on the MPI synchronization with the matching call in the remote process).
This may cause deadlock if we actually devote processors to these tasks and not to ad-
vance computational tasks. In order to solve this problem, we need to ensure that every
process can always devote resources to the computational task such that local progress
is guaranteed. A second effect of communication tasks is that they do not make an
efficient use of processor time, wasting resources while they are blocked. The aim is to
maximize the amount of actual computation performed while the data transfer activi-
ties are overlapped with it. Our approach instantiates as many threads as cores in the
node to execute computational tasks plus one additional thread that only executes tasks
that encapsulate MPI calls. When the MPI call blocks, the thread releases the CPU and
thus as many computation threads as cores can be active during most of the time (if
the applications has sufficient parallelism at the node level). When the blocking MPI
call completes, the blocked thread will wake up and thus contend for a core with the
other threads. We aim to minimize such contention and accelerate the execution of
the communication thread as this would free local dependencies, progress to the next
communication task and block again. The sooner these activities are done, the faster
the application will be able to progress globally.

We overload the cpu resources, where number of threads is larger than number of
cores for 1, see the Figures 5.4. A simple way to achieve this is to reduce the priority
of the computing threads (through a setpriority call at initialization time) and leave
the communication thread at a higher priority. In this way, when the communication
thread blocks, all computation threads can proceed. When the communication thread
unblocks it gets to execute rapidly. Note that task priorities (as specified in the task
pragma) apply to individual tasks and are used by threads when selecting tasks from
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Figure 5.4: Distribution of the OmpSs threads across cores.

the user level ready queues while thread priorities determine the scheduling policy by
the OS kernel. The Figure 5.5 shows a code example of the broadcast operation by
using commucanition thread. A programmer just needs to mark communication task
with “target” clause.

With this approach a computation thread is certainly preempted for a while but it
gets its core back very soon, see Figure 5.6. Although this may be seen as a problem it
is actually beneficial. The main argument is that being based on preemptions, we avoid
the need to periodically poll for the completion of communication requests, decoupling
the granularity of tasks from the need to ensure progress in the communication activity.
This results in two benefits: first the progress of the communication activity takes place
immediately, initiating the next transfer right after a message arrives or leaves a node;
second, the granularity of the computation tasks can be tuned considering only its
algorithmic needs thus allowing to use coarser grain tasks (e.g. invoke BLAS routines
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1 #pragma css task input(buf, count) target(comm_thread)
2 void send (double buf[count], int count){
3   MPI_Send(buf, count, MPI_DOUBLE, next_proc,...);
4 }
5
6 #pragma css task input(count) output(buf) target(comm_thread)
7 void recv (double buf[count], int count){
8   MPI_Recv (buf, count, MPI_DOUBLE, prev_proc,....)
9 }

10
11 void broadcast (int root, double buf, int count){
12   if (root)
13     send (buf, count);
14   else{
15     recv (buf, count);
16   if (necessary)
17     send (buf, count);
18   }
19 }

Figure 5.5: Broadcast operation implemented by using commucanition thread.

on larger matrices) potentially achieving higher computation performance (i.e. IPC).
Up to this point our proposal consisted in encapsulating individual MPI calls as

tasks, assuming that the MPI calls would use a blocking mode (i.e. the MPI thread
releases the CPU in the case of a blocking call). Applications may have phases where
sequences of small communication requests may be intermixed with some small com-
putations. Generating one task for each such communication and computation would
produce a very large overhead. It is also quite possible that at the algorithmic concep-
tual level it might be more appropriate to encapsulate such series of communications
and computations as a single task. Programming these tasks in our proposed model is
perfectly possible as the MPI thread is a general thread and can perform also the com-
putations intermixed within the communications. The main problem, if the granularity
of communication and computation is very fine, would be the overhead of blocking,
unblocking and preemptions. Waking up a sleeping thread causes OS latency and leads
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Figure 5.6: Usage of cpu cycles by using commucanition thread.

to a performance drop. Our approach is to dynamically change between blocking and
polling waiting mode during the execution. We have implemented in MPI a call that
allows the programmer to switch the default blocking mode to polling mode within
one task:

MPI_set_waiting_mode(<polling/blocking>);
This call should not be used in communication tasks that just perform a single MPI

call potentially blocking for a long time; however, it can be used in tasks where a whole
bunch of MPI calls are invoked in sequence.

In fact, this raises a new issue as the switch to polling mode (and back to block-
ing) can be done at any time within the task. Ideally, the polling mode should be used
when there is a certain guarantee that the duration of the successive MPI calls will be
short. When two tasks in two different processes exchange such sequences of mes-
sages, the first message in the sequence plays a synchronizing role between the tasks
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in the two processes. The recommended practice is then that the programmer switches
from blocking to polling mode after the first blocking call. If a task actually interacts
with several other tasks in different processes, the best point to switch to polling mode
would be after having completed a blocking call to each other process.

5.3 MPI Serialization and Its Challanges

The restart mechanism offers automatic overlap of communication and computation
and there is no need for restructuring the code. A programmer keeps focus on the
algorithm while the runtime cares about performance. Still, the restart mechanism
shows some performance weaknesses, because a task granularity determines message
progress and delays communication operation. The approach that involves commu-
nication thread successfully avoids influence of a task granularity and increases time
response of message progress. Both techniques encapsulate MPI calls inside OmpSs
task and hide data dependency information from the main thread. The programmer
extracts data dependencies thought direction clause of data flow programming model
while a run-time does serialization of task that contain MPI calls because MPI guaran-
tees that messages will not overtake each other.

All MPI routines are encapsulated inside the task that allow acceleration on the crit-
ical path and avoid fork/join approach by using MPI/OpenMP programming model. To
avoid deadlocks and ensure correctness of the result, all task that contain MPI calls are
serialized in the runtime. The OmpSs runtime recognizes task that has been marked
as communication task and serialized them in order of their concurrent execution. A
programmer is responsible to place communication calls in correct order assuming
in order execution of the function(task) and guarantees matching, while the runtime
serializes them. In the current implementation, a compiler/runtime introduces auto-
matically serialization to the execution of communication tasks.

Serialization of communication task creates artificial dependencies in data depen-
dency graph, while dependency between task in data flow programming model should
be only real data dependency. These artificial dependencies potentially reduces paral-
lelism and slows down an execution of the critical path.

In particular, porting codes to the MPI/OmpSs framework shows that linear algebra
algorithms contain several independent execution paths, each with its own communi-
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cation operations.
The following example discusses the widely used HPL is a numerical linear algebra

algorithm for solving LU factorization. The data dependency graph version of the HPL
is shown in the Figure 5.7. Here we are going to discuss data flow graph of one MPI
process, where nodes present tasks inside the process.

Figure 5.7 shows the data dependencies graph of the HPL benchmark. Nodes are
instances of OmpSs task created at the very beginning of execution by a master thread.
Numbers inside the nodes are unique task IDs of the OmpSs runtime.

Nodes filled with black color are OmpSs tasks that preform a computation oper-
ation, while red nodes contain MPI routines and execute communication operations.
Solid filled arrow represent data dependencies between task inside a shared address
space and thus define an execution order. While solid arrow show real data depen-
dencies, dashed arrows represent execution order of communication tasks. Artificial
dependencies between communication tasks are not visible in the source code by look-
ing at the arguments of function, the runtime automatically introduces them. If we
look at the graph, clearly we can recognize the critical path in the current example. In
order to progress as deep as possible to the graph and free more task which implies
more parallelism, the execution order should be 1, 2, 5, 8, 9 , 12 etc. Serialization of
commutation task does not allow natural execution order of the critical path and forces
the following order : 1, 2, 5, 8, 3, 4 etc. It means that the serialization delays the
critical path for the execution time of non-urgent communication tasks. Thus, a lack of
parallelism does not allow an effect overlapping of communication and computation.

The serialization shows bottelnecks and introduces new challanges. The thesis sets
goals that a new approach has to satisfied in order to deal with the bottlenecks of the
serialization:

1. First, it has to deal with out-of-order execution of data independent commu-
nication tasks. Dependency between commucanition task should only be due
to natural data dependencies expressed thought arguments of functions in the
source code.

2. Second, programming productivity has to stay high. This avoids code restruc-
turing on the top level that is outside of task, introducing extra logic inside a
communication task are not acceptable as well. Programmer still needs to be
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Figure 5.7: Data Flow Graph of the HPL; MPI task serialized

only focus on expressing the algorithm where the runtime cares about schedul-
ing of these tasks, execution order and overlapping communication and compu-
tation. A new approach should be implemented below application level and hide
complexity from the programmer.

3. Third, high performance stays as a main goal of high performance programming
model, the benefits from out-of-order execution of communication task and in-
crease of parallelism has to be bigger than the implementation overhead of the
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1 int OmpSs_MPI_Recv(void *buf,int cnt,MPI_Datatype type,int src,int tag,MPI_Comm comm,MPI_Status *s)
2 {
3
4   int ierr;
5   int done = 0;
6
7   ierr = MPI_Irecv(buf, cnt, type, src, tag, comm, &request);
8   ierr = MPI_Test(&request, &done, status);
9

10   while(!done){
11
12     nanos_yield();
13     ierr = MPI_Test(&request, &done, status);
14                             
15   }
16   return ierr;
17 }

Figure 5.8: Implementation of OmpSs_MPI_Recv.

new approach.

5.4 OmpSsMPI Library

The thesis proposes the OmpSsMPI library which build on top of the MPI library.
OmpSsMPI keeps the MPI interface e.i. names and arguments of OmpSsMPI calls
are identical to the corresponding MPI calls. Programmer just needs to add a prefix
of encapsulated MPI calls within OmpSs tasks to OmpSs_MPI. This is the only effort
done by programmers which makes this approach easy-to-use. Tagging a task with the
special clause is not necessary. The OmpSs library informs the OmpSs runtime about
the presence of MPI call and the runtime internally marks the task as a communication
task.

The Figure 5.8 shows the pseudo code of OmpSs_MPI_Recv. The implementations
of all blocking calls follow the same structure. The OmpSs_MPI_Recv routine calls
the ompss_communication_task routine that detects the parent task of the OmpSs_MPI
and marks as the communication task. Therefore appropriate non-blocking call issues
communication test and the loop with MPI_Test and nanos_yield() follow the non-
blocking call. The loop structure is very similar to the structure used in the restart
mechanism. Instead of the restart clause, the OmpSs library call nanos_yield().

Once nanos_yield() is called, the OmpSs scheduler plays the key role. The OmpSs
scheduler contains a special ready-to-run queue for communication tasks. The com-
munication task which calls nanos_yield() imminently releases the core and goes to
the end of the queue and another communication task takes computing resource. The
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OmpSs scheduler considers priorities of task and round-robin policy in order to select
a next task.

From the execution point of view, this approach has two advantages: first, commu-
nication tasks can be executed out-of-other because there is no internal blocking call
that would lead to a deadlock. Thus, the OmpSs scheduler selects the natural critical
path of application and accelerates the execution. Second, the wrong ordering od MPI
calls does not lead to a deadlock. The programming model becomes deadlock free.
Instances of the OmpSs runtime across different MPI changes the order of MPI calls
and match them.

5.5 Implementation Issues on Various HPC platforms

In order to prove the potential of the MPI/OmpSs programming model, the deployment
of MPI/OmpSs to various plaforms is crucial. The MPI/OmpSs has also been a basic
programming platform of the EU project,called TEXT, where a main goal is evaulat-
ing real application on various clusters. Conceptly proposed overlapping techniques
should increase performance, in reality system a single implentation of the overlapping
technique do not fit to all machines. This section describes implementation challanges
across different platforms and explains implementation modification.

5.5.1 Single threaded SMP nodes

AA node with four physical cores was the first platform where the OmpSs environment
has been developed. The node uses a standard Linux system and MPI library that is
not the thread-safe. Hardware and software environment pushes to the implementation
of the restart mechanism as the overlapping technique. The OmpSs runtime loads
four threads per load and bind to the cores. The restart mechanism works fine for
a small messages but large messages did not perform as suppose to do due to MPI
implementation of the system. MPI implementations sending the large messages as a
sequence of the small messages, chunk-by-chuck technique, and a single call of MPI
progress engine triggers a single chuck. All MPI calls internally call once the MPI
progress engine. It means a large message that contains 10 chucks need 10 MPI_Test
calls to locally finalize the send operation.
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The MPI implantation issue forces the usage of the communication thread and over-
load the node with one thread more than the number of cores. Dedicating a single core
for the communication thread is very expensive and reduces the maximum theoretical
efficiency to 75% because only 3 out of 4 cores do useful computation.

Placing the communication thread and one of computational thread to the single
core introduces new challenges as a time sharing policy between threads. Default
setting of the OS thread scheduler treat all threads equally and does not prioritize com-
mutation operation that lies on the critical path. Thus the OmpSs runtimes increases
the priority of the communication thread among computational threads. High priority
of the communication thread threaten in over-usage of the core and cycle wasting. Set-
ting the MPI waiting mode to the blocking mode avoids starvation in the scheduling
and the communication yields the core when it waits for the message.

HPC system usually uses a standard Linux scheduler with a complex scheduling
policies. The OmpSs runtime implementation gives hints to the OS thread scheduler
regarding OmpSs threads and the OS scheduler can make optimal decisions and in-
crease efficiency of the cycle usage.

5.5.2 Hyper-Threading SMP nodes

Nowadays it also is very rare to find HPC machines without Hyper-Threading(HT)
support for each logical core. The core usually contains two or more HT with its own
general-purpose, control, and machine state registers. Two threads that require differ-
ent architectural states could share the single logical core, where the core enables the
HT support, without performance degradation. Nevertheless, enabling HT for HPC
applications and launching number of threads equal with number of hardware threads
lead to performance degradation because logical threads compute for access of shared
resources, as caches. HT utilization depends on characteristics of the application. Run-
times and OS schedulers are not aware about characteristics of the application and a
lack of information stops them to make a smart decision and to benefit of HT.

The MPI/OmpSs runtime cannot characterize computational tasks and stick to the
strategy where the number of computational threads are equal to the number of logical
threads. On the other hand, the OmpSs communication thread benefits of HT technol-
ogy. Most of the time the communication thread stays in sleeping stage and when it
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wakes up it always performs memory intensive operation. Asynchronous data transfer
from memory to NIC would not disturb compute intensive task and does not intercept
execution of computational thread. As we saw the single threaded SMP nodes requires
the control of the OS thread scheduler, while HT-SMP nodes keep the same priority
of all threads. Computation threads are bound to logical core and the communication
threads flies between logical cores. The OS thread scheduler never blocks the commu-
nication thread which avoids the waking-up overhead faced in the single thread SMP
nodes.

Described rutime configuration for HT-SMP nodes is used in the evaluation sec-
tion of the paper [TODO cite TEXT paper] and showed the best results among tested
configurations.

5.5.3 Blue Gene nodes

The more challenging issues have been found on the Blue Gene/P platform, due to the
fact that the compute nodes do not have a regular full Linux system, but a lighter one,
known as the Compute Node Kernel (CNK). The main issues were related to memory
management, kernel thread scheduling and to specifics of the MPI library.

This platform presented major difficulties given that the compute nodes do not have
standard Linux kernel. In particular, the topics that we had to address were:

Memory management: the mmap functionality that was used for general purpose
Linux could not be used. In order to optimize the usage of memory, we had to modify
the memory manager of the OmpSs runtime.

• Kernel thread scheduling: The kernel in the compute nodes does not support
general-purpose multiprogramming within the node, although it does support
several kernel threads per processor. In this case, the context switch has to be an
explicit request from the user code.

• On Blue Gene, the MPI library does not support blocking mode for receiving
a message. We implemented our MPI blocking calls that mimic two different
modes (polling and blocking). Switching between these modes, a programmer
could increase efficiency of MPI/OmpSs applications.

The Blue Gene implementation requires following three modification:
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1. Blue Gene/P system has 2GB or 4GB of physical memory per node and there is
no virtual paging. A memory management that increases the memory usage in
standard Linux machines could quickly consume the memory available for ap-
plications. In order to increase efficiency of the use of memory, the MPI/OmpSs
runtime implements a memory manager that renames parameters trying to reuse
memory already allocated while its amount is below the mmap threshold. In this
environment, a Linux machine does not use the physical memory requested by
mmap if there is not a real need, while the CNK1 Blue Gene allocates physical
memory requested by mmap, whether it is used or not.

In the MPI/OmpSs runtime for Blue Gene the memory manager was disabled and
a pair of calls to malloc/free take care of allocating and deallocating memory.

2. CNK can be configured to allow multiple application threads per core. There
are limitations regarding CNK support for multiple application threads per core
that do not apply when running on a regular Linux kernel. A user configures
the number of application threads per core using the environment variable which
can be between one and three. The CNK pins the thread to the core that has less
threads running on it. Once the thread is bound, it can not switch between cores.
The system does not automatically switch threads between cores, but the user
code may control thread scheduling through a sched_yield() system call, signal
delivery, or futex wakeup.

MPI/OmpSs applications use as many computation threads as the node has cores,
plus one extra thread for communication tasks. Therefore, MPI/OmpSs runtime
requires support for time sharing between the communication thread and one
of the computation threads. Linux provides support through the standard Linux
scheduler. Besides, the runtime contributes to improve the thread scheduling
by using system calls for setting thread priorities, and POSIX semaphores for
switching threads between blocking and ready-to-run queues. For a Blue Gene
system, the MPI/OmpSs runtime is only responsible for the thread scheduling
control. The CNK reacts on sched_yield calls from the threads. Each thread
checks the ready-to-run queues for tasks, if there is no runable task, the thread in-
vokes sched_yield(). In order to mimic thread priorities, the computation threads
call sched_yield() after the execution of each task while the communication
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thread only calls the sched_yield() when the ready-to-run queue for commu-
nication tasks is empty. This gives higher priority to the communication threads
and accelerates execution of communication tasks that usually lie on the critical
path.

3. On Blue Gene, the MPI implementation does not support blocking mode. In or-
der to mimic blocking mode, we used a pair of non-blocking MPI call/MPI_Test
call and a call to sched_yield between them. The non-blocking MPI call is-
sues the communication request, while the MPI_Test checks whether the data
has arrived or not: 1) if so, the MPI_Wait can be called and the data is avail-
able for OmpSs tasks waiting for them; 2) if not, the sched_yield call yields the
CPU to a computation thread and the communication thread sleeps while the
computation is done. The experience shows that often calling sched_yield after
each MPI_Test check is not good for small messages. We decided to repeat the
MPI_Test call several times before calling the sched_yield. MPI/OmpSs run-
time uses a self-tuning technique to define the number of MPI_Test repetitions
and this number depends on the application.
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6
Evaluation of automatic overlaping and

reordering through MPI/OmpSs

The Chapter 6 describes HPC applications used for experiments, evaluates and com-
pares the MPI/OmpSs programming model withing a node and a large-scale machine
with MPI and OpenMP.

6.1 High Performance Linpack

The HPL [16] is the most widely used benchmark to measure the floating-point execu-
tion rate of a computer and the basis to rank the fastest supercomputers in the TOP500
list [48]. Although the kernel simply solves a system of linear equations, it can be
considered a good representative of a significant set of applications. The parameters
used to configure its execution lead to changes in terms of: global computation and
communication ratio, load balance, amount of fine grain (small frequent messages)
communications, performance of inner sequential computation, etc. This section de-
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scribes the techniques used in the parallelization of the HPL benchmark and shows
their impact in the code structure and readability, as a motivation for the proposed
hybrid MPI/OmpSs approach.
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Figure 6.1: P by Q partitioning of the matrix in 6 processes (2x3 decomposition) (a) and one step in the
LU factorization (panel, U and trailing matrix) (b).

6.1.1 HPL Parallelization

The HPL benchmark implements a LU decomposition with partial pivoting. The el-
ements of the coefficient matrix are double precision floats initialized with a random
distribution. The matrix to be factored has NxN elements and it is decomposed into
blocks of size NBxNB, which are distributed onto a grid of PxQ processes. Due to
the triangular nature of the algorithm the blocks are distributed among processes in a
cyclic way, as shown in Figure 6.1, to achieve load balance. In a typical PxQ parti-
tion, every process will have a set of blocks regularly spaced over the original matrix.
These blocks are stored contiguously in a local matrix, which can then be operated
on with standard BLAS routines. Of course, highly optimized versions are used in
order to achieve a high percentage of processor peak performance. An iteration of the
main loop of the overall algorithm consists of three main steps: panel factorization,
broadcast, and the update of the trailing submatrix.

When the computation of the panel factorization is finished, the panel needs to
be broadcast to the other processes along the Q dimension so that they can perform
the update of the trailing submatrix. This broadcast can be implemented using the
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1 #define NPANELS N/NB*Q)
2 #define root (j%Q==my_rank)
3
4 double A[N/P][NPANELS*NB];
5 double tmp_panel[N/P][NB];
6 int k=0;
7
8 for( j = 0; j < N; j += nb ){
9   if (root){

10     factorization (&A[k*NB][k*NB], tmp_panel, k);
11     k++;
12   }
13   broadcast (root, tmp_panel);
14   for(i = k; i < NPANELS; i++ )
15     update (tmp_panel, &A[k*NB][i*NB],k);
16 }

Figure 6.2: Simplified version of the main loop in HPL.

MPI_Bcast call if the machine provides an efficient implementation of this primitive
(as for instance in Blue Gene [3]). Alternatively, several methods are provided in the
HPL distribution to perform the broadcast by circulating the data in one or several
rings of point-to-point communications. The LU factorization is done by iteratively
applying these two steps on the trailing submatrix. Figure 6.2 shows the pseudo-code
for a simplified version of the main loop in HPL.

The main objective of the look-ahead technique is to accelerate the execution of
the critical path in the computation and to overlap communication with computation.
The panel factorization process lies in the critical path of the application. When the
panel in iteration j has been factored by processes in column q=j%Q and broadcasted,
the globally next urgent job to perform is the factorization and communication of the
panel in iteration j+1 by processes in column (q+1)%Q. The HPL code includes a
lookahead option that performs this optimization. As soon as a column of processes q
receives a panel factored by its previous column, they update, factor and send the next
panel before updating the rest of panels also owned by this column of processes. In
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1 double tmp_panel[2][N/P][NB];
2 double *p[2];
3
4 p[0] = tmp_panel[0][0][0];
5 p[1] = tmp_panel[1][0][0];
6 k = 0; j = 0;
7
8 if (root){
9   factorization(&A[k*NB][k*NB], p[0], k);

10   k++;
11 }
12 broadcast_start(root, p[0]);
13
14 for (j = nb; j < N; j += nb){
15   broadcast_wait(p[0]);
16   if (root){
17     update (p[0], &A[k*NB][k*NB], k);
18     factorization (&A[k*NB][k*NB,], &p[1], k);
19     k++;
20   }
21
22   broadcast_start(root, p[1]);
23   for (i = k; i < NPANELS; i++)
24     update_and_broadcast_progress (p[0], &A[k*NB][i*NB], k, root, p[1]);
25   p[0] = p[1];
26 }
27
28 broadcast_wait(p[0]);
29 for (i = k; i < NPANELS; i++)
30   update (p[0], &A[k*NB][i*NB], k);

Figure 6.3: Version of the HPL pseudocode with look-ahead equals to one.
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this way, the transmission of the data can be advanced and the global critical path is
accelerated. Figure 6.3 shows the pseudo-code for a simplified version of the main
loop using a look-ahead degree of 1 iteration. Notice that introducing this optimiza-
tion requires significant changes in the source code, not only in the main iterative loop,
but also in the different routines called inside this loop (not shown in the figure). For
example, functions such as update_and_broadcast_progress should include periodical
probing calls and message retransmission if needed, increasing internal code complex-
ity. In addition to that, the programmer has to explicitly allocate several data structures
to temporarily hold the broadcasted factorized panels. Higher degrees of look-ahead
require further modifications in the code and allocation of data structures.

If look-ahead is turned off the whole update loop can be executed as a single BLAS
invocation that would result in a better execution performance (i.e. IPC, instructions
per cycle) and might partially compensate for the lack of overlap. It would be very
important to improve the overlap without penalizing the IPC of the sequential parts of
the code.

The rationale for a two-dimensional data distribution originates from the actual
amount of data to be transmitted at every step and the potential concurrency of such
transmissions. A value of P larger than 1 implies that different blocks of the panel can
be sent concurrently as each of the P processes has one part of the panel. However,
this also introduces additional communication in the factorization step. These commu-
nications are of much finer grain than those in the panel broadcast phase. The value of
P introduces a clear trade-off between communication and synchronization overhead
in this phase and the parallelism to execute this phase which lies in the critical path.
The case of P=1 is a special situation: it avoids all communications in the factorization
phase as well as the need to broadcast the U submatrix (see Figure 6.2) in the update
phase, but has to pay for a long sequential time of the factorization phase and long
communication chain for the panel broadcast.

6.1.2 HPL Performance Analysis

Performance of a system depends on a large variety of factors. Achieving the best per-
formance requires well done analysis of these factors. HPL offers the list of 31 tuning
parameters that defines how the problem is to be solved. Varying these parameters HPL
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stresses some parts of the system more than others and also gives a good representation
of some MPI scientific and technical applications. We did analysis on 128 processors
assigning the most important tuning parameters: problem size (N), block size (NB),
data decomposition (P and Q), overlapping communication and computation by using
look-ahead technique.

The largest problem size (N) that fits in memory gives the best performance of the
system. In effect, matrix dimension (N) defines the ratio between communication and
computation. For small problem size, HPL is very sensitive to network performance,
increasing the problem size communication and computation increases as well, but
computation increases much faster and the communication overhead decreases. For
very large matrix, the influence of network performance drops significantly. Figure
6.4 (a) shows performance results for various problem sizes using look-ahead tech-
nique and HPL version without using look-ahead technique. The HPL version with
look-ahead decreases the communication overhead by overlapping communication and
computations and gives better performance results for small problem sizes, while both
versions give almost the same performance for large problem size.

Proper block size (NB) determines to data distribution, computation granularity
(probing granularity for look-ahead techniques) and performance of BLAS routines.
Large block sizes tend to cause load imbalance and limits probing for message, while
small block sizes increase internal blocking factor of BLAS routines and thus de-
creases efficiency of matrix multiplication. Figure 6.4 (b) presents sensitivity to vari-
ous NB. For this experiment we used N=65536 and P=8 and Q=16, as such NB=128
gives optimal interaction between data distribution and computation granularity. Vari-
ables P and Q determine the data distribution. For 128 processors, possible grids are
(P,Q)=(1,128), (2,64), (4,32), (8,16), (16,8), (32,4), (128,1) , these respond for load
balance and scalability of the algorithm. In order to analyze load balance, we measure
the total execution time of the BLAS GEMM routine for matrix multiplication in the
update phase, as the most expensive computations in the application, Figure 6.4 (b)
shows that a good load balance prefers square grids. A factor for load imbalance is ra-
tio between the longest and the shortest execution time of computation obtained from
MPI processes.

Processes do the panel broadcast operation over Q-processes, so large value Q may
limits scalability of the algorithm. Look-ahead technique addresses this issue and tries
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to hide the cost of the broadcast operation. We have already seen how increasing the
size of problem reduces communication overhead. Larger P value increases number of
fine grain communications and communication latency causes performance degrada-
tion.

In order to test our approach, we analyzed two interesting cases: first (1,128) de-
composition where coarse grain communications do not appear and the communication
overhead only comes from the broadcast operation; second (8,16) decomposition that
gives the best performance and contains a good ratio between large messages for coarse
grain communication(broadcast operation) and small messages for fine grain commu-
nication (panel factorization). These cases represent behavior of some MPI scientific
and technical applications offering challenge to our approach.

6.1.3 HPL Single Node Performance Evaluation

In this section, the thesis compares the performance of pure MPI, OpenMP and OmpSs
versions on a single node. The programming model comparison uses the HPL as the
case study.

Parallelization of the HPL by using MPI has been already explained. According to
the performance references of the HPL, an evaluation run loads the same number of
threads as the number of physical cores, choose an optimal block size for the BLAS
library and make 2D data decomposition where P is less than or equal to Q.

On the other hand, the OpenMP HPL version keeps the structure of the serial code
without any explicit communication calls. The OpenMP version of BLAS routines
performs embarrassing parallel operatio. The serial HPL becomes the OpenMP HPL
version, the dynamic load balancing shows advantages against MPI static distribution
but the MPI HPL performs better than OpenMP HPL. The reason lies in the fact that the
fork-and-join execution model of OpenMP is not well suited to express the algorithm
of the HPL and causes lack of parallelism. Some parts of the algorithm cannot be
parallelized, in that moment the main thread is busy while others are idle.

6.1.4 OmpSs HPL

In oder to introduce the OmpSs HPL, we comment the sequential HPL and then de-
scribe how the HPL code can be easily restructured in the data flow manner using the
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OmpSs programming paradigm.
Instead of deleting MPI calls from the source code, we use the original HPL for

(P,Q)=(1,1), which makes the HPL is a single MPI process application. By setting
input parameters to (1,1), the main loop only contains the factorization phase and the
update phase, see the Figure 6.7 . THe internal complexity of these phases is much
lower than the MPI HPL. The update phase is made of two steps: the first step pivots
the upper panel of NB rows and updates these NB rows. The second step needs to
calculate the trailing submatrix based on the matrix product of the factorized panel,as
well as the upper panel and the old value of the trailing submatrix.

1 #pragma css task input(A) output(tmp_panel)highpriority
2 void factorization (double A[N/P][NB],double tmp_panel[N/P][NB]);
3
4 #pragma css task input(tmp_panel) inout(A)
5 void update (double tmp_panel[N/P][NB], double A[N/(P*NUM_OF_SMP_CPUS)][NB]);

Figure 6.6: Taskifying the factorization and the update.

Programmer only needs to inserts the pragma specification for factorization and
the update phases as shown in Figure 6.6. The factorization is performed by a single
task whose input is the updated panel of a previous iteration and whose output is the
factorized panel for the current iteration.

Figure 6.7 shows task-dependency graph of the OmpSs HPL. The update phase
is partitioned in a set of tasks, each of them taking as input the factored panel (either
produced locally or received) and a subset of the panels to update. Thus each update
task contains the pivoting and the update of trailing submatrix of one panel. Since
the factorization lies on the critical path of the overall algorithm, we use the priority
qualifier as a hint for the runtime. The update of the first panel also lies on the critical
path and we renamed this update call to the urgent_update with highpriority flag. This
accelerates the critical path of the overall algorithm. A simple sequential kernel of the
HPL with mentioned pragma specification supported by the OmpSs runtime becomes
the OmpSs HPL. Nodes correspond to the different function invocations and arrows
to dependence relationships between them. The update tasks are independent with
one iteration of the main loop. So, the update phase is easy to parallelize using any
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Figure 6.7: Data dependency graph of the OmpSs HPL.

shared memory programming model, like OpenMP. While OpenMP is based on fork-
and-join concept and has to pay long sequential execution of the factorization phase.
The OmpSs programming paradigm supports out-of-order execution of tasks which
results overlapping the factorization task within update tasks. The urgent_update and
factorization tasks are executed as soon as possible. In the OmpSs HPL, only the
execution of the first factorization task can not be overlapped with non-urgent update
tasks, while OpenMP will pay this penalty in every iteration.

6.1.5 Results

We compare the programming paradigms on three different SMP nodes: Intel Nehalem
and AMD Istambul based on UMA architecture and ALTIX machine are based on
NUMA architecture.

• Intel Nehalem - a node contains two 4-core Nehalem Xeon E5540 core 64-bit
processors with 8 MB shared cache per socket and a frequency of 2.53 GHz. The
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node contains 24 GBytes of main memory. Four FLOP per cycle. Theoretical
peak performance is 80.96 Gflop/s. SUSE Linux the kernel 2.6.16 and page size
4Kbytes. As a native compiler OmpSs uses Intel C compiler version 11.1 as
well as a native compiler for the MPI version. MPI applications uses the SGI
Message Passing Toolkit (MPT) as an MPI implementation. As a BLAS library
we used Intel MKL version 10.1.

• AMD Istanbul - A node contains two 6-core Opteron 2435 Istanbul 64-bit pro-
cessors with 12 MB shared cache per socket and a frequency of 2.6 GHz. The
node contains 48 GBytes of main memory. Four FLOP per cycle. Theoretical
peak performance is 124.8 Gflop/s. SUSE Linux the kernel 2.6.16 and page size
4Kbytes. As a native compiler OmpSs uses GCC complier version 4.3 as well
as a native complier for the MPI version. MPI applications uses the OpenMPI
as an MPI implementation. As a BLAS library we used GotoBLAS 1.24.

• ALTIX 4700 - SMP cluster contains 16 blades each blade contains two Itanium2
9030 Montecito 64-bit dual-core processors with 8MB shared cache 1.6 GHz.
Four FLOP per cycle. The blade contains 24 GBytes of main memory. Theoret-
ical peak performance is 409.6 Gflop/s. SUSE Linux the kernel 2.6.16 and page
size 16Kbytes. As a native compiler OmpSs uses Intel C complier version 11.1
as well as a native compiler for the MPI version. MPI applications uses the SGI
Message Passing Toolkit (MPT) 1.23 as an MPI implementation. As a BLAS
library, we used GotoBLAS 1.24.

The work compares the performance results of OmpSs and MPI HPL in terms of
Gflops for different problem sizes and comments the scalability of different program-
ming models.

In order to discuss the results, we introduced the following two concepts :

• theoretical peak performance - theoretical peak performance of one core is the
product of CPU speed and number of floating point operation that can be execute
in one cycle; for N cores theoretical peak performance is N times theoretical peak
performance of the single core.

• ideal programming model - theoretical peak performance is unreachable for
the HPL due to the nature of the algorithm; the ideal programming model is the
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programming model where the performance of parallel version is the product of
number of cores and the performance of the serial implementation obtained from
the single core. It means that the ideal programming model makes a serial code
parallel and perfectly balanced.

OpenMP HPL shows lower performance than MPI HPL because of its fork/join
concept. In order to prove it, we checked the performance of sequential HPL with
multithread BLAS library, where the number of threads is equal with number of cores.
Thus the HPL behaves as a well written OpenMP program where all parallel section
are parallelized in optimal way. The plot in the Figure 6.8 shows how the performance
of OpenMP HPL falls behind the MPI HPL. The plot illustates why MPI HPL has been
used for evaluation the SMP clusters. Furthermore, the thesis only focuses on the basic
comparison between MPI HPL (the best known performance version of HPL) and the
OmpSs HPL.

Regarding efficiency of parallel programming model, studies take the theoretical
peak as a reference. This approach is not fair due to the sub-optimal efficiency of the
serial version. A fair evaluation of a programming model considers ideal programming
model as the reference. Ideal programming model makes an assumption that all algo-
rithms could be 100% paralleized which is a optimistic assumption. Unfortunately,it
is impossible to compute the potential of parallelism for all algorithms.

Figures 6.8 show the performance rate (Gflop/s) for the MPI HPL and OmpSs HPL
running on two different UMA machines (Nehalem and Istanbul). Y-axis presents dif-
ferent problem sizes. Considering (P,Q) decomposition, the MPI HPL uses (2,4) for
Nehalem and (3,4) for Istanbul. Experiments use the optimal parameters for NB and
N depend on BLAS library. The GotoBLAS library shows the best performance for
NB=242, while Intel MKL shows the best performance for NB=256. Ripples appear
in the curves when the problem size is not a multiple of NB and performance drops
slightly. OmpSs performs better than MPI for all problem sizes and shows the same
efficiency on both machines. On the other hand, MPI version shows better efficiency
on Nehalem than on Istanbul node, this is not limitation of the hardware as it was sug-
gested [1]. Insted, the decomposition (2,4) suits better than (3,4) and a programming
model limitation make the performance difference.

Figures 6.9 shows scalabilty of programming models on Nehalem and Instabul in
terms of GFlop/s for different number of cores. The OmpSs curve almost overlaps the
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Figure 6.8: Istanbul 12 cores and Nehalem 8 cores. Performance results of the HPL for different problem
size NB=242. Theoretical peak performance, "Ideal" programming model, MPI, OmpSs and OpenMP.
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Figure 6.9: Istanbul and Nehalem Evaluation. Scalability N=16384 and NB=242. Theoretical peak
performance, "Ideal" programming model, MPI, OmpSs and OpenMP.
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Figure 6.10: Altix 32 cores. Performance results of the HPL for different problem size NB=242. Theo-
retical peak performance, "Ideal" programming model, MPI and OmpSs.

curve of the ideal programming model. It is interesting to notice the performance drop
of the MPI version for 11 cores in the Figure 6.9. 11 as a prime number only allows
(1,11) decomposition of MPI and shows the limitation of the static distribution of the
MPI programming model.

Figures 6.10 presents results obtained on the NUMA machine (Altix). Consid-
ering (P,Q) decomposition, the MPI HPL uses (4,8) for Altix. The OmpSs version is
aware of the NUMA architecture and implicitly exchange messages between NUMA
nodes. For small problem sizes communication is very costly for both version. When
problem size grows the OmpSs version accelerates the critical path and creates paral-
lelization. This allows the runtime to hide implicit data transfer for tasks. For N=45000
the OmpSs reaches asymptotic behavior while the MPI version reaches the same per-
formance for N=62000. For very large problem sizes data transfer is not important and
both version perform the same. Figure 6.11 show the scalability up to 64 cores on the
Altix machines, and the MPI version again suffers from unsuitable data decomposition
(1,61)(2,31).
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Theoretical peak performance, "Ideal" programming model, MPI and OmpSs.

Summarizing all experiments, the comparison of the MPI and OmpSs HPL shows
the limits of MPI HPL benchmark for evaluation of SMP clusters. Evaluation proves
that the low efficiency for small problem size of the HPL does not only come from
nature of its algorithm, bit the MPI implementation introduces additional limitations.
In the case of the MPI HPL, increasing the problem size does not solve issues for
the low efficiency, actually the large problem size just hides issues of programming
model. Prime numbers of MPI processes limit two-dimensional data decomposition of
MPI HPL to keep P and Q values approximately equal, which leads to low scalability.
While the OmpSs HPL performs well for numbers of cores that are critical for the
MPI version. The OmpSs HPL shows the simple usage of the OmpSs programming
paradigm and minimal programming effort to move from sequential to parallel code.
We believe that the efficiency, the performance results and the simplicity make the
OmpSs HPL a version of the HPL, which will be used for evaluation of a new SMP
cluster.
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6.2 MPI/OmpSs LINPACK

In this section, we will describe how the HPL code can be restructured to use the
proposed hybrid MPI/OmpSs model. First we describe the transformation assuming
P=1 (one-dimensional data decomposition) and later describe the differences for a two-
dimensional decomposition.

6.2.1 1D Decomposition

Figure 6.6 and Figure 5.5 show the pragma specifications required to convert the pure
MPI code in Figure 6.2 to a hybrid MPI/OmpSs. The factorization is performed by a
single task whose input is the updated panel of a previous iteration and whose output
is the factorized panel for the current iteration. The update of the trailing submatrix
is partitioned in a set of tasks, each of them taking as input the factored panel (either
produced locally or received) and a subset of the local panels to update. Since the
factorization lies on the critical path of the overall algorithm, we use the highpriority
qualifier as a hint for the runtime.

Figure 6.12 shows a partial task graph generated during the execution of this hybrid
version. In the original HPL with no look-ahead one process executes all tasks in one
iteration j before proceeding to the execution of the next iteration j+NB, precluding the
overlapping of communication and computation. The original HPL with look-ahead
tries to follow the critical path executing tasks that are a certain number of iterations
in advance (degree of look-ahead). The control flow in the HPL code achieves this
execution. In contrast the hybrid MPI/OmpSs naturally follows the critical path of the
execution by executing the task graph in a dataflow way. So for example, process p
in Figure 6.12 would execute recv(j), send(j), first instance of update(j), fact(j+NB),
send(j+NB), . . . With no look-ahead or dataflow execution, fact(j+NB) would not start
until all instances of update(j) were finished, delaying the critical path of the applica-
tion. This global critical path proceeds along the panel factorization, communication
to the next process, update of the first uncompleted panel in this process, factorization
of this panel and so on. In order to speedup the computation along this path, the send
and receive tasks are labeled as highpriority.

Notice that the renaming mechanism in the OmpSs runtime is dynamically doing
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Figure 6.12: Partial dataflow graph in the execution of HPL: MPI process execution in vertical and
iteration j of main loop in horizontal. Nodes correspond to the different tasks: fact (panel factorization),
send (panel send), recv (panel receive) and update (panel update).

the replication of panels that is necessary to execute the tasks in a dataflow way and
whose explicit management added part of the complexity to exploit the look-ahead
code which is necessary for other programming models.

6.2.2 2D Decomposition

In order to achieve good load balance and scalability of the algorithm, the HPL dis-
tributes data onto two dimensions. As noted in Section 6.1.1, this data distribution adds
new communications in the factorization and update phases. In the factorization phase
very fine grain communications are needed to exchange rows of size NB doubles for
each matrix column when computing the pivot values. At the beginning of the update
phase the pivoting has to be applied to the trailing submatrix, requiring the exchange
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of messages of size NB doubles between the groups of processes among which each
panel has been partitioned.

We explored the two possibilities described in Chapter 5 to parallelize with our
hybrid approach. The first one consists on taskifying all fine-grain communication
operations in panel factorization and pivoting. The overhead introduced to dynamically
create and manage these tasks is too large to compensate any benefit. The second
alternative consists on defining the pivoting function as a new task. As explained in the
Section 5.2.2, we use the polling mode for receiving the first few fine-grain messages
while we continue using blocking for the rest. This second alternative results in the
best performance results for the hybrid MPI/OmpSs HPL code.

6.2.3 Results

The experimental evaluation in this section is done on a cluster made of IBM JS21
blades (4-way SMP nodes) and Myrinet- 2000 interconnection network . Compari-
son is done for pure MPI and hybrid MPI/OmpSs versions. We used the space of
parameters explored in the Section 6.1.2 and choose the ones that optimized HPL. We
performed all the experiments in a normal production environment. As a BLAS kernel
we used the Goto library version 1.24. In all experiments we use NB=128, Q larger
than P, and look-ahead enabled.

For the HPL, we evaluate the performance using 128, 512 and 1000 cores.First we
analyze pure MPI and hybrid MPI/OpenMP versions with look-ahead in the production
environment of our machine. We compare the performance achieved by the hybrid
MPI/OmpSs with the pure MPI version. We then compare the performance of these
two versions of HPL with the hybrid MPI/OmpSs version for different problem sizes
and core counts.

Note that using the largest problem sizes that fit into the memory, a machine
achieves more than 65% of the theoretical peak (computation O(N3) vs. communi-
cation O(N2)). Our work is focused on the smaller problem size, where HPL equally
stresses different parts of a machine (CPU, memory and network) as many applications
do.

MPI/OpenMP version should have better load balancing and smaller communica-
tion overhead. However, OpenMP parallelizes computations between communications
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but all OpenMP threads synchronize before the next communication is issued. MPI
calls are executed by the main thread while other threads are in the idle state, this
limits MPI/OpenMP approach and shows lower performance results than pure MPI.
The plot in Figure 6.14 for 128 processors shows how the performance of the hybrid
MPI/OpenMP version falls behind pure MPI. Tasking in the new OpenMP 3.0 would
not make any difference over parallel loops in HPL, because as it is in the current lan-
guage specification does not allow the anachronism and dataflow execution of OmpSs.
From now on we only focus on the basic comparison between the pure MPI and hybrid
MPI/OmpSs versions for HPL.

We also compare different overlapping techniques proposed in the Chapter 5: the
restart mechanism and the communication thread. The Figures 6.13 show the per-
formance results of the HPL running on 128 processors by using MPI/OmpSs version
with restart mechanism, communication thread and the original HPL with look-ahead
enabled. All three techniques successfully hide the communication overhead but ef-
ficiency of the overlap is not the same. Conceptually, the look-ahead technique and
the restart mechanism overlap communication and computation by inserting MPI_Test
calls within the update phase. Thus they decrease granularity of the BLAS calls which
leads to lower IPC of the DGEMM call. The communication thread does not need to
intercept the DGEMM in the update phase, so the IPC stay high and makes the com-
munication thread technique the most efficient. The restart mechanism wins against the
look-ahead due to lower number of MPI processes (4,8) compared with (8,16) and the
MPI/OmpSs version with restart mechanism uses 4 threads per process that supports
the progress of MPI operations. All OmpSs threads call MPI_Test and MPI process
can progress quickly when a message arrives. For further experiments, the work con-
siders only the MPI/OmpSs version with communication thread because it delivers the
best performance of the proposed techniques on the JS21 platform.

The plots in Figure 6.14 show the performance rate (Gflop/s) for the original MPI
version with look-ahead and for the hybrid MPI/OmpSs. The pure MPI version uses a
single CPU per MPI process. The hybrid MPI/OmpSs uses one node with 4 CPUs per
MPI process, running 4 computation threads and 1 communication thread per node.
The pure MPI version uses (8,16),(16,32) and (20,50) decomposition for 128, 512 and
1000 processors, respectively. The hybrid MPI/OmpSs uses (4,8), (8,16) and (10,25)
for 128, 512 and 1000 processors, respectively.
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Besides a more aggressive overlap of communication and computation, the hy-
brid MPI/OmpSs uses less MPI processes, which reduces the number of messages
and gives better load balancing. A further potential performance improvement in the
MPI/OmpSs version comes from the possibility of merging the updates of several pan-
els into a single task. This would result in higher IPC for the DGEMM routines, while
the communication/computation overlap is still in progress using the communication
thread.

We differentiate three regions in the performance plots in Figure 6.14:

• For very small matrices, the computation part of the application is small and
there is not much possibilities to overlap communication and computation, which
makes the network parameters (bandwidth and latency) the dominant factors.
For example, for 512 processors the hybrid MPI/OmpSs gets 5% better perfor-
mance than the original HPL version. The efficiency of the HPL is 17% while
the efficiency of the MPI/OmpSs version is 21,6%.

• By increasing the problem size the hybrid MPI/OmpSs version exhibits its full
strength against the original MPI version with look-ahead. For example, for
512 the hybrid version increases performance by 40% when N=131072. The
efficiency of the HPL is 43% while the efficiency of the MPI/OmpSs version is
61%.

• For the largest problem sizes we tried, the communication overhead is less dom-
inant and as a consequence the gain of the hybrid MPI/OmpSs version goes
down to 30% for 512 processors at N=212992. The efficiency of the HPL is
48,8% while the efficiency of the MPI/OmpSs version is 63,7%.

It is important to note that the execution of the hybrid MPI/OmpSs achieves the
same performance as the pure MPI version with much smaller problem sizes. Thus
our approach can significantly reduce the time and energy required to report a given
HPL performance number.

A different way of presenting the benefits of the hybrid version is to present the
Gflops per core as a function of the memory size per core, as shown in Figure 6.15.
Notice that the hybrid MPI/OmpSs gets a much better performance at small memory
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footprints and that the performance per core does not decrease when the number of
cores increases.

6.3 Matrix Multiplication

1 for (i=0; i < N; i++)
2   for (j=0; i < N; j++)
3     for (k=0; i < N; k++)
4       c[i][j] += a[k][j]+b[i,k];

Figure 6.16: Serial implementation of the matrix multiplation.

The matrix multiplication is de facto one of the most explored kernels in the HPC
area. A basic serial implementation of matrix multiplication contains triply nested
loop. The matrix multiplication operation is C(N,M) = A(K,M) x B(N,K), where the
matrix multiplication of matrices A and B updates the matrix C. The Figure 6.16
shows a pseudocode that performs the matrix multinational on a single thread.

The Figure 6.17 shows a distributed matrix multiplication kernel (C=AxB) used
in this thesis. In this kernel, matrices C and B are distributed by columns and matrix
A by rows. Therefore, each process needs to exchange with his neighbors the set of
rows of A in order to complete the computation of the set of columns of C assigned
to it. For this purpose a temporary buffer rbuff is used together with the exchange
communication SendRecv.

Programmers could use non-blocking communication primitives and more com-
plex buffering schemes to obtain a more effective computation/communication overlap.
Although this is a simple academic exercise, it would exemplify the reduced program-
ming productivity that incurs. Figure 6.18 shows the result of the taskification process
using the proposed OmpSs extensions. Figure 6.19 shows the task graph that would
be generated assuming the data distribution in Figure 6.20.

Figure 6.21 shows the speedup with respect to execution with 1 MPI process
of two different versions of the matrix multiplication kernel: pure MPI and hybrid
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1 double A[BS][N], B[N][BS], C[N][BS];
2
3 void mxm (double A[BS][N], double B[N][BS], double C[BS][BS]);
4
5 void SendRecv (double src[BS][N], double dest[BS][N]);
6 ...
7 indx=me*BS;
8 ...
9 for (i=0; i<P; i++)

10 {
11 ...
12   if(i%2==0) {
13     mxm (A, B, &C[indx][0]);
14     SendRecv (A, rbuff);
15   } else {
16     mxm (rbuf, B, &C[indx][0]);
17     SendRecv (rbuf, A);
18   }
19   indx=(indx+BS)%N;
20 ...
21 }

Figure 6.17: MPI implementation of the matrix multiplation.

1 #pragma css task input(A, B) inout(C)
2 void mxm (double A[BS][N], double B[N][BS], double C[BS][BS]);
3
4 #pragma css task input(src) output(dest) target(comm_thread)
5 void SendRecv (double src[BS][N], double dest[BS][N]);

Figure 6.18: Data distribution for matrix multiplation acrooss 4 MPI process. Each process contains a
part of matrix A and matrix B.
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Figure 6.19: Task Dependence Graph of matrix multiplation. White nodes correspond to mxm instances,
blue nodes correspond to SendRecv instances, solid edges correspond to true data dependences and
dashed edges correspond to antidependences (due to the reuse of data storage for communication).
The data renaming done at runtime eliminates these antidependences and the execution of successive
SendRecv invocations without waiting for the termination of previous mxm invocations.
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MPI/OmpSs, using matrices of size 8192x8192. In order to isolate the benefits of node
sharing, for the pure MPI version we also show results when running 1, 2 or 4 MPI
processes in the same node. The better overlap in the hybrid MPI/OmpSs approach re-
sults improvements in the 14-17% range. Larger improvements from the hybrid code
over the pure MPI are observed for smaller matrix sizes (4096x4096), the reason being
that the smaller the problem size the more important the communication is compared
to the computation.

6.4 CG

In this section, we describe the conjugate gradient solver used in [25] as a case study
to show the applicability and usage of nonblocking collective operations to overlap
computation and communication. The code uses domain decomposition to distribute
a 3D space among the processes and makes use of collectives to communicate border
elements with neighbors instead of point-to-point calls.

Figure 6.22 shows the kernel of the main loop using blocking and non-blocking
collectives. The kernel contains three steps: send boundaries, compute a volume, and
compute boundaries. Sending boundaries is implemented using an all-to-all operation,
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Figure 6.21: Matrix multiply: performance comparison of pure MPI (running different number of MPI
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are for a matrix size of 8192x8192.
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where each process communicates with its neighbors. The result of this communica-
tion is used to compute the boundaries. The collective operation can either be blocking
(MPI_Alltoall) or nonblocking (MPI_Ialltoall). The non-blocking collective reduces
the communication overhead provided by MPI_Alltoall, but also increases internal
complexity of the mult_volume, where the programmer needs to insert MPI_Test calls
in order to progress non-blocking operation. Figure 6.23 shows the MPI/OmpSs ver-
sion of the code, where the programmer just needs to define tasks and the direction of
the arguments.

1 for (...){
2   fill_buffers(q,send_buffer);
3   if(non_blocking_collectives)
4     MPI_Ialltoall(send_buffer,recv_buffer,&req);
5   else
6     MPI_Alltoall(send_buffer,recv_buffer);
7   mult_volume(v,q);
8   if(non_blocking_collectives) MPI_Wait(&req);
9   mult_boundaries(v,q,recv_buffer);

10 }

Figure 6.22: Main loop in conjugate gradient using blocking and non-blocking collectives.

1 #pragma css task input(q[q_size]) output(send_buffer[buf_size])
2 void fill_buffers(double *q, double *send_buffer);
3
4 #pragma css input(send_buffer[buf_size]) output(recv_buffer[buf_size]) target(comm_thread)
5 void all_to_all (double *send_buffer, double *recv_buffer);
6
7 #pragma css task input(q[q_size]) output(v[q_size])
8 void mult_volume(double *v, double *q);
9 #pragma css task input(q[q_size],recv_buffer[buf_size])) output(v[q_size])

10 void mult_boundaries(double *v, double *q, double *recv_buffer);
11
12
13 for (...){
14   fill_buffers(q,send_buffer);
15   all_to_all(send_buffer,recv_buffer);
16   mult_volume(v,q);
17   mult_boundaries(v,q,recv_buffer);
18 }

Figure 6.23: Hybrid MPI/OmpSs version of the CG.

The hybrid MPI/OmpSs version performs up to 15% better than the original MPI
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version that is not optimized for communication/computation overlap. Figure 6.24
shows results for up to 512 cores, showing how the performance improvement con-
stantly grows with the number of cores. The performance results obtained by the hy-
brid MPI/OmpSs version are consistent with those shown in [25] using non-blocking
collectives.
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Figure 6.24: Conjugate gradient: performance comparison of pure MPI and hybrid MPI/OmpSs.
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7
Evaluation of Tolerance to Low

Bandwidth and OS noise by Using the
MPI/OmpSs approach

Recent research [27] has shown that operating system (OS) noise and a demand for
high bandwidth network [33] limit the application performance in HPC system. While
increasing the bandwidth of high capacity interconnection network tries to minimize
a communication overhead. The OS interference propagates across the distributed
memory nodes due to synchronization between application instances.

The programming model is not specially designed to mitigate these issue, we rather
want to analyze how it affects them. The programming model could offer cheap and
elegant solution. Compering MPI and MPI/OmpSs approaches, we analyze tolerance
to mentioned limiters and show importance of programming model in order to address
them.

The rest of the Chapter is organized as follows. In Section 7.1, presents the com-
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mon platform, software and hardware stack, used for evaluation of the tolerance to
OS noise and low bandwidth network. Section 7.2 introduces importance and types of
OS noise, describes an implementation of an artificial OS noise used in experiments.
Section 7.2 shows how the MPI/OmpSs approach reduces the OS noise and suppresses
spreading of the OS noise across distributed nodes. The Section 7.3 analyzes the cost
of supercomputer interconnection network, emphasizing a demand for high bandwidth
and its cost. The Section 7.3 explains a method for mimicking the low bandwidth net-
work on the real machine. Finally the chapter demonstrates that MPI/OmpSs tolerates
the system with low bandwidth interconnects better than pure MPI approach.

7.1 Platform

In this section, we describe the platform used for experiments od the sections 7.2 and
7.3.

32 and 128 nodes with two PowerPC 970MP dual-core processors at 2.3 GHz per
node and 8 GB of shared memory per node. Each chip has 2 cores with 1 MB of
shared cache memory per chip. All of the core can execute 4 floating point operations
per cycle and use uniform memory access (UMA). Myrinet interconnection network
links nodes, where bandwidth reaches 256MB/s.

We performed all the experiments in a normal production environment. As a BLAS
kernel we used the Goto library version 1.24. The experiments use a standard MPICH
implementation of the Myrinet. In order to compare MPI and MPI/OmpSs tolerance to
the OS noise and low bandwidth, the thesis uses already described HPL and BT from
the Chapter 6

7.2 Tolerance to OS noise

OS noise is any asynchronous interruption of a running program by the operating sys-
tem. Operating system noise in general and process preemption on massively pro-
cessing systems in particular have been identified and studied as one of the impor-
tant potential causes of significant performance degradation. Interference of operation
system services and associated daemons slow down an application instance thus local
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perturbations easily propagate and accumulate through the whole program dependence
chains and specially at global synchronization points. Writing to the file-system and a
slowdown of a core due to overheating provide an unpredictable behavior of a run and
could be simulate as a standard OS noise as well.

Attempts to limit OS noise are focused on operation system scheduling level like
timer interrupts and system daemons or by dedicating cores to OS tasks, special lightweight
kernel (Blue Gene) where OS cannot do a preemption of the running task and only the
running task could explicitly preform the context switch by calling a system call. While
a work that addresses a OS noise issue keep focus to understanding the trade-offs and
the ratio between OS services for large scale system.

We used the production environment settings on supercomputers for all our experi-
ments and building a kernel-level noise injection into operation system requires special
permission and superuser access to the machine. We decided to implement the noise
injection on application level.

In order to evaluate the impact of noise on HPC applications, we have modified
the source code of the application by generating an additional thread per process that
runs periodically during application execution. With parameters for noise generation
we control the average duration of each individual noise event and the frequency of
the noise. Sleeping and computing phase of the noise are random non-deterministic
number. By controlling the average duration of both phases it is possible to simulate
different levels of OS noise. This experiment corresponds to a coarse granularity of
preemptions where the computation phases take up to the 500ms and the sleeping
phases are in the order of seconds.

7.2.1 Results

For experiments, we use the HPL benchmark, explained in the Section 6.1. The HPL
algorithm solves different problem size in each iteration. Thus a synchronization point,
where a OS noise could potentially harm execution, does not appear at regular inter-
vals of time. At the very beginning of execution, the synchronization point is rare,
while after each iteration it becomes more and more frequent. This behavior, various
synchronization points, covers all cases where OS noise could reduce performance and
makes a good case study for evaluation of programming models regarding OS noise.
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We obtain results for different duration of the sleeping phase on 128 and 512 pro-
cessors. Runs use an average problem size N=65536 and N=131072 for 128 where
NB=256. Input parameters aim an efficient execution of HPL in terms of Gflop/s, on
the other hand communication cost stay relevant.

Figure 7.1 shows the sensitivity of the two versions of HPL to process preemp-
tions. This experiment corresponds to a coarse granularity of preemptions where the
sleeping phases are in the order of seconds, as shown in the horizontal axis. As can
be seen in the figure, the hybrid MPI/OmpSs version tolerates preemptions much bet-
ter. For 128 processors and the period of preemption bursts of 3 seconds, performance
of our version does not suffer, while execution time of the HPL is increased by 7 At
very high preemption frequencies, both versions suffer the impact of the perturbations.
When the duration of the sleeping phase is smaller than 3, the MPI/OmpSs version
can not hide the OS noise because the noise becomes very expensive and the OmpSs
scheduler is not able to place the noise burst without performance degradation. Figure
7.2 shows the same phenomena for the period of preemtion busts of 30 seconds. Ex-
periments for 512 processors have approximately two times longer execution due to 2
times bigger problem size and 4 time bigger number of processors. For the duration
of sleeping phase of 30 seconds, the MPI versions suffers 3% of the performance drop
while MPI/OmpSs keeps the same performance. Both figures, 7.1 and 7.2, show a
small ripple for the MPI/OmpSs version with the period higher than 3 and 30 seconds
respectively, because the OS noise can appear at the end of execution, where synchro-
nization point appear frequently, and the OmpSs scheduler cannot reshuffle bursts.

7.2.2 Conclusion

The high levels of asynchronous introduced by the hybrid MPI/OmpSs model make
the applications more tolerant to such perturbations. Out of order execution of commu-
nication tasks by using MPI/OmpSs programming model dynamically tolerates CPU
frequency variation at the runtime. Slower task of one process cannot disturb other
MPI processes and slowdown them. The OmpSs runtime scheduler cares about task
selection, accelerates critical path and muffles unwanted OS noise effects. The goal of
our programming model is the facing the OS noise issue without introducing any extra
work to applications developers.
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Figure 7.1: HPL: sensitivity to process preemptions. Results are for 128 processors. Problem size
N=65536, NB=256. Decomposition 8x16.

We introduce OS noise at user level,using the common abstraction of OS noise
with frequency and period. Data flow execution of tasks reschedules a OS noise burst
and processes the communication from on the critical path. This scenario makes the
MPI/OmpSs more tolerant to OS noise than a pure MPI. Porting an application from
MPI to MPI/OmpSs initially may not bring the performance improvement but a real
execution suffers from non-deterministic behavior due to OS noise. A programming
model that handles unpredictable runs saves a cost of long execution and a rerun of
execution.
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Figure 7.2: HPL: sensitivity to process preemptions. Results are for 512 processors. Problem size
N=131072, NB=256. Decomposition 16x32.

7.3 Tolerance to low bandwidth

In order to explore the impact of lower bandwidth we used a dilation technique by
modifying the source code such that for each message of size S an additional message
of size f*S is transferred between two dummy buffers at sender and receiver. For
example, a value of f=1 would mimic the availability of half the original bandwidth.

7.3.1 Results

The section introduces two applications that have been ported to MPI/OmpSs program-
ming model: Jacobi Solver and BT NAS. The communication operations are not costly
for these two applications but their algorithms show potential to overlap communica-
tion and computation. We found these applications a good case study for tolerance to
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low bandwidth experiments. The evaluation also uses the HPL with the settings used
in the section 7.2.

We describe a Jacobi solution used for solving Poisson equations in a rectangular
domain. The original MPI code partitions the data domain among the MPI processes
along the xaxis. Each MPI process has a slice of size nx by ny grid points to work on
stored in two matrices a[nx+2][ny] and b[nx+2][ny] (which include the boundaries to
perform communication).

Figure 7.3 shows the body of the iterative loop in the program performing the
usual Jacobi computation: b[i,j] = f(a[i-1,j], a[i,j], a[i,j+1], a[i+1,j]) Each iteration
contains two steps: 1) computation of matrix a from matrix b and 2) exchange of
the boundaries. Processes exchange the boundaries with their neighbors, which are
necessary for computing the first and the last row of the matrix, while the other rows
do not have dependencies with this communication operation. The programmer could
use nonblocking MPI_Isend and MPI_Irecv calls to achieve an overlap between the
exchange phase and computation phase (with the appropriate communication probe
calls), at the expenses of increased code complexity. Figure 7.3 also shows the OmpSs
annotations that allow the OmpSs runtime system to effectively overlap the two phases
in the loop body using blocking MPI calls and without changing the structure of the
code.

The core of the NAS BT benchmark [2] is a block tridiagonal solver representing
computational patterns found in fluid dynamics codes at NASA. The problem domain
is a cube of grid points on which four major steps per iteration are done: the compu-
tation of a right hand side matrix (compute_rhs) followed by three sweeps in the x, y
and z directions. Each of these sweeps consists of two successive dependence carrying
passes: a solve pass in the forward direction and a back-substitute pass in the backward
direction.

The MPI implementation requires the number of processors to be a perfect squared
number. The cube of grid points is partitioned in P blocks (called cells) in each direc-
tion, distributing P cells to each process. The distribution is such that every process
has one cell in each plane in each of the three directions. Also for all cells in a given
processor, all neighbor cells in a given direction are in the same target processor. The
property of such distribution is that on every sweep direction there is always one cell
on each processor that can be computed and that the communication pattern is regular.
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1 #pragma css task input(send_up, send_down) output(recv_up, recv_down) target(comm_thread)
2 void exch_boundaries(double send_up[ny],
3   double *recv_up[ny],
4   double *send_down[ny],
5   double *recv_down[ny])
6 {
7   MPI_Sendrecv(send_up, recv_up);
8   MPI_Sendrecv(send_down ,recv_up);
9 }

10
11 #pragma css task input(a) output(b)
12 void compute_row(double a[3][ny], double b[ny]);
13
14 #pragma css task input(a) output(b)
15 void compute_block(double a[nx][ny], double b[nx-2][ny]);
16
17 for (...) {
18   compute_row(&a[0][0],&b[1][0]);
19   compute_row(&a[nx-1][0],&b[nx][0]);
20   compute_block(&a[1][0],&b[2][0]);
21   exch_boundaries(&b[1][0],&b[0][0],
22   &b[nx][0],&b[nx+1][0]);
23   tmp=a; a=b; b=tmp;
24 }

Figure 7.3: Loop body for the iterative jacobi in the Poisson equation solver. Annotated functions using
OmpSs.

A copy_faces step where boundary data is exchanged for all neighboring cells is also
required before the compute_rhs routine updates all the cells within each processor.
Although the source code is implemented with non-blocking MPI calls, the wait calls
are invoked immediately after issuing the requests for communication. The behavior is
thus as if blocking calls had been used and there is no overlap between communication
and computation.

With such data distribution, potential sources of overlap of computation and com-
munication appear in two points: first it is possible to perform the compute_rhs and
x_solve on the cell free of dependences in the x direction one after the other such that
the communication in that direction can be overlapped with the compute_rhs on the
other cells in the process; second when performing the first backsubstitute in a given
direction, the solve in the next direction can be immediately executed so that a pipeline
in the new direction can be started. The actual amount of overlap depends on the ratio
of duration of the different computations involved (compute_rhs, solve and backsubsti-
tute) and on the propagation of the complicated dependence chains through the whole
computation space.

The main issue in this example is to exploit such potential overlap without dras-

113



tically restructuring the code and in a way that dynamically adapts to potentially dif-
ferent ratios of computation duration. By taskifying the computations (compute_rhs,
solve and backsubstitute) as well as the communication (pack, communicate, unpack)
the code keeps the same structure as the original one but the run time has the potential
to reschedule computation and communication. Through high priority hints in the dec-
laration of the task (i.e. solve and backsubstitute) can help the runtime to dynamically
exploit the above-described potential.

Figure 7.4 shows the execution time of NAS BT, class B on 64 processors, for
different values of effective network bandwidth. The rightmost point in the plot cor-
responds to the actual bandwidth of the target platform; points to the left correspond
to runs where the actual bandwidth has been multiplied by the factor indicated in the
horizontal axis.

A full overlap of communication and computation within the NAS BT benchmark
is not possible due to nature of algorithm and data dependency between computation
memory area and communication buffer. Thus, low bandwidth affects both implemen-
tation, MPI and MPI/OmpSs version. While MPI/OmpSs approach partially overlaps
communications, improves the performance of MPI version shows two interesting re-
gions: for the original bandwidth of machine, the MPI implementation. The Figure 7.4
the bandwidth decreases from right to left and , the MPI/OmpSs tolerates lower band-
width better than MPI implementation up to the 10 times smaller bandwidth than the
initial bandwidth. At very low bandwidth, more than 10 times smaller than initial one,
computations are not long enough for overlapping expensive communication burst and
both implementations suffer from the low bandwidth.

Figure 7.5 show the execution time of Jacobi on 32 processors for different values
of effective network bandwidth. The rightmost point in the plot corresponds to the
actual bandwidth of the target platform; points to the left correspond to runs where
the actual bandwidth has been multiplied by the factor indicated in the horizontal axis.
Notice that the execution time for the hybrid MPI/OmpSs version has more flat increase
that the pure MPI version. The tolerance to bandwidth shown by Jacobi is better (flat
plot) due to the higher computation/communication overlap achieved.

Figures 7.6 shows the execution time of a HPL run for different effective bandwidth
of the network on 128 processors. The plot shows that even if starting at a smaller
execution time, the hybrid MPI/OmpSs version is not affected by a reduction to 60%
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Figure 7.4: NAS BT: sensitivity to low network bandwidth. Results are for class B and 64 processors.

of the actual bandwidth. The HPL version is much more sensitive to such reduction,
resulting in an increase of 23,4% in the execution time. Results for 512 processors,
see Figure 7.7 show that the hybrid MPI/OmpSs version is slightly affected (increases
by 22,8%) by having five times less bandwidth. In the case of HPL,the execution time
increases by 91,8% for the same reduction of bandwidth.

7.3.2 Conclusion

The interconnection network is the most expensive part of the modern supercomput-
ers. Applications requires high bandwidth and thus the cost of network rises. The
MPI/OmpSs programming model overlaps communication and computation and exe-
cutes tasks in out-of-order manner, which makes runs more tolerant to low bandwidth
networks than traditional MPI approach. Results show that a smart data flow oriented
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Figure 7.5: Jacobi Solver: sensitivity to low network bandwidth. Results are for 64 processors.

runtime and low bandwidth interconnection network offer the same results as costly
high bandwidth interconnects and pure message passing approach. Nowadays, a non-
optimized pure MPI codes drive a demand for high bandwidth interconetion networks,
which is wrong. The software runtime approach should prefetch and overlap all visible
communication and then profiling of these executions define high bandwidth require-
ments and cost of interconnects.
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Figure 7.6: HPL: sensitivity to low network bandwidth. Results are for: 128 processors. Problem size
N=65536, NB=256. Decomposition 8x16.
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Figure 7.7: HPL: sensitivity to low network bandwidth. Results are for: 512 processors. Problem size
N=131072, NB=256. Decomposition 16x32.
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8
Related Work

The communication overhead of the MPI has been a hot topic since 1995 [45]. First
MPI applications reduce the communication overhead by using asynchronous point-
to-point routines. There are several works [3] [37] [31] where an implementation of
optimized collective operations uses point-to-point calls.

With SMP nodes, a hybrid MPI and shared memory programming model has be-
come popular [47]. While thread base model as OpenMP have not brought new
approaches due to explicit fork/join model [40]. Communication thread based ap-
proaches strangle with time sharing on OS scheduling level. Optimization of the com-
munication thread becomes research target, several approaches address this issue and
try to improve communication progress [7] [41].

HT cores seems to be a perfect solution for helper thread approach, but HT has not
found its place in the HPC system due to unpredictable behavior. On the most HPC
environment, this feature is disabled. Lack of non blocking collective force hand-
tuned implementation of collective communication. Broadcasting especially has been
interested as common collective operation in liner algebra algorithms with potential
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for overlap. There are plenty broadcast solutions [16] [18]. Finally MPI-3 standard
introduced non-blocking collectives, where easy-to-use concept has been presented.
Non-blocking collectives already shows application usage[25].

While all works have focused on communication part, there are not any work that
classify and analyse overlapped computation kernel and its impact on overall perfor-
mance, while the Chapter 4 covers this impact. Computation part has been study for
GPU executions [54] , but an analysis of interleaving computational kernels with prob-
ing messages and interrupt strategy depend on kernel type has not been a topic.

Clusters comprised of a distributed collection of SMP nodes are becoming common
for parallel computing. The hybrid use of MPI with shared-memory paradigms, such
as OpenMP, has been subject of research and performance evaluation [39] [38] [30].
The explicit fork/join paradigm in these shared-memory programming models and the
restrictive barrier synchronization precludes more advance or aggressive overlapping
of communication and computation (i.e. across iterations of an outer sequential time
step loop).

In order to address the programmer productivity wall in distributed memory ar-
chitectures, some languages that are based on the partitioned global address-space
abstraction (PGAS), such as UPC or CAF, rely on the compiler to perform the ap-
propriate optimizations to overlap communication and computation. The use of pure
shared-memory approaches to program these architectures, relying on the compiler to
translate from OpenMP to MPI [5] or on the use of a distributed-shared memory (DSM)
layer also need to worry about this optimizations at the appropriate level (language ex-
tensions to express data distributions and communication [13], compiler optimization
[34] or runtime library [36] [35]).

Recognizing the popularity and influence in the research area of the HPL as a
benchmark, a lot of previous research has focused on improving its behavior. For
example, using hybrid MPI/OpenMP for SMP clusters [51], using optimized BLAS
routines [28], or using an asynchronous MPI programming model [50] to explicitly
code the overlap of communication and computation. In order to address the program-
mer productivity issue, some implementations of the HPL benchmark using PGAS
languages have appeared [42] [52], focusing on programming productivity and not in
achieving big performance improvements.

The hybrid MPI/OmpSs approach presented in this thesis exploits the use of asyn-
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chronous MPI calls without increasing complexity of code, which leads to better per-
formance. Overlapping computation and communication is automatically done by the
runtime system by appropriately schedule communication and computation tasks in a
dataflow way.
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9
Conclusion

This thesis studies the programmability aspects of HPC systems, where performance
and productivity of the programming model are the main goals, and balances these
goals by proposing a novel programming environment. In the HPC area, widely used
parallel programming paradigm are the MPI model across distributed nodes and the
OpenMP model within a node. Most scientific and industrial applications have been
written by using MPI or hybrid MPI/OpenMP. In order to improve performance, pro-
grammers need to reduce communication overhead which requires code restructuring
and overlapping communication with computation. Thus codes become complex and
programming productivity decreases. The goal in this thesis was to introduce program-
ming model that shows the best performance without increasing the complexity of the
code.

In the first part of this thesis, Chapter 4, we analysed already known overlapping
techniques on kernels that are compute, memory or computememory bound. The the-
sis demonstrated that the nature of computational kernels is important when choos-
ing overlapping techniques. Full overlap of communication could still lead to perfor-
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mance degradation because the overlapping techniques decrease efficiency of compu-
tation and overall performance drops down. The most sensitive kernels are those that
are highly optimized and compute/memory bound in the same time as for instance
the DGEMM implementation of the BLAS library. The experiments showed that the
specialized light-wait thread for MPI communication of OS system minimizes perfor-
mance degradation of computation.

Furthermore, the thesis presented the hybrid use of MPI and OmpSs (OMP super-
scalar, a task-based shared-memory programming model), allowing the programmer to
easily introduce the asynchrony necessary to overlap communication and computation.
The Chapter 5 described implementation issues in the OmpSs runtime that support its
efficient inter-operation with MPI. It presented a design of the OmpSs programming
environment by defining programming interface and introducing support for overlap-
ping techniques on different platforms.

In order to evaluate the MPI/OmpSs programming model, we ported well known
kernels and compared performance within node as well as across large number of
nodes. The experimental evaluation on a real supercomputer reveals promising perfor-
mance improvements. For example, the hybrid approach improves HPL performance
up to 40% when compared to the original pure MPI version with look-ahead turned on
for the same input data. An important advantage of our approach is, that we can achieve
the same performance of the regular HPL benchmark with smaller problem sizes, thus
requiring much shorter execution times. Also, the resulting program is less sensitive
to network bandwidth and to operating system noise, such as process preemptions.

The proposed programming model has been used in many research projects by
users and showed potential to replace already accepted programming approaches. The
work of thesis became a motivation for tool developers to provide better support for
porting [46] and debugging [8] hybrid MPI/OmpSs programming model.

9.1 Future Work

Since 2008/2009 when we have proposed the first time MPI+SMPSs, later called
MPI/OmpSs, standard number of cores per node was 4. Using a single core for com-
munication thread took 1/4 of resources, thus was very costly. Nowadays, we face
nodes with more than 32 cores and dedicating one core for MPI services is going to
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be less and less expensive. Thus the MPI/OmpSs will be more relevant in the future.
Today there are special purpose chips designed for HPC and supercomputer are based
on commercial chips build for servers. In the near future, we can expect chips build
on HPC demand like SPARC64 XIfx 32 cores [53] and two assistant cores, where an
assistant core is responsible for MPI communication and OS jitters. MPI/OmpSs fits
perfectly to co-designed HPC chips and present already software technology for new
hardware.

The MPI/OmpSs has already found its place at the HPC programming environment
Further development of MPI/OmpSs programming model should support the latest
hardware and software technology, particularly a new MPI Standard. MPI Standard 3.0
is already part of many MPI implementation and it offers new asynchronous interface
for non-blocking collective communication, one-side communication and I/O opera-
tions. These new MPI routines increase overall MPI interface and give the flexibility
of MPI but also introduces an additional level of complexity. The OmpSs runtime
could consider a usage of new asynchronous interfaces and make them easy-to-use.
One sided communication has not been explored in this work and it will be considered
in the future as well.

The MPI standard offers a new MPI_T interface that gives a control over behav-
ior of MPI implementation by using control and environment variables of the MPI
implementation. For example, the OmpSs runtime could control the MPI protocol
(eager/rendezvous) or the waiting mode (polling/blocking) through MPI_T interface.
Exploring usage of MPI_T will be the topic of the future, where dynamic modification
of MPI behavior will self-tune runs. The OmpSs would provide an optimal configura-
tion of the MPI library during runs.

The working experience of the thesis stresses the importance of the OmpSs task
scheduler. Analyzing ready to run tasks and schedule them in an optimal way is the
key point. The scheduler already offers several scheduling policies but exploring data
dependency graph and path analysis inside the graph is not considered. Smart prefetch-
ing of the OmpSs task will reduce latency of data transfer, which provides delay across
nodes. In the future, machines become large and distances between nodes are signifi-
cant, while applications become more and more memory bound thus latency and data
locality will be the main issue.

There were several external users that have been porting their application to MPI/OmpSs
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programming model. While we were giving support to them, we realized that most ap-
plications suffered from the load imbalance across MPI nodes. The work [21] has
partially solved the problem of load imbalance but the global load imbalance on MPI
level due to static distribution and non deterministic algorithm used within MPI pro-
cesses stays the dominant factor of low efficient application. Addressing this issue
considers task stealing mechanism between MPI processes, remote execution of local
task and the scheduler that is aware about whole MPI distribution. This would make
the MPI/OmpSs close to the GAS programming model but the smart scheduling policy
will avoid scalability issue of the GAS approach.

The productivity of the HPC programming model has to be higher we face today.
Nevertheless, the MPI/OmpSs improves the productivity of current technology, it has
been considered as a low level programming model. However, computational scientist
prefers a high level weakly typed programming language as example[32]. Building
software packages that will allow a single call of a solver and execute the solver across
nodes will drastically increase the productivity. In the future, MPI/OmpSs would be
seen as the standard part of scientific libraries. Building another abstraction on top of
MPI/OmpSs is a part of further investigation.
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