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Abstract 

 

During the oil recovery a hole is drilled, the sandstone is left unsupported next to the 

cavity and disloged sand grains can enter the oil recovery system. This process is called 

sand production and several problems may arise due to that process, as clogging up of 

the well or damage to the well equipment. The study of sand production process is of 

paramout importance for safe and economical hydrocarbon production. 

The majority of numerical models to predict sand production that have been used to 

date are continuum-based. However, a continuum approach cannot easily capture 

important features of the sanding problem, such as erosion, and it requires the 

formulation recognized as a difficult task because of the large number of interactions 

and non-lineaities intrinsic to the problem. On the other hand, discrete-element based 

approaches allow a simpler formulation of the problem and a better understanding of 

some of its features. Discrete Element Methods (DEM) describe more naturally the 

disaggregation and erosion of sand particles and the fluid-solid interaction. 

In this research rock behavior has been represented in DEM using the parallel-bond 

model (PBM) because it mimics the effect of cement between particles. The study has 

involved the calibration of the DEM rock model agains real data. Moreover, limitations 

of the DEM model have been explored and sensitivity analyses examining the effects of 

the local damping have been performed.   

The main aim of this research is to improve the understanding of sand production based 

on a Computational Fluid Dynamics (CFD) -DEM coupling model. CFD-DEM is frequently 

used for process and chemical engineering problems (Zhu et al., 2007).  To simulate the 

interaction of the particles with the fluid, the solid DEM model is coupled with a fluid 

model (CFD). A validation of the CFD-DEM model has been carried out in this thesis by 

performing single particle simulations and analyses of permeability tests. Simulations of 

sand production using a homogeneous sandstone analogue and, finally, the simulation 

of sand production under realistic conditions are presented. 
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Chapter 1 – Introduction 

 

1.1. Background 

 

The Thesis presents a study of the phenomenon of sand production by means of coupled 

CFD-DEM analyses. CFD refers to Computational Fluid Dynamics and DEM stands for 

Discrete Element Method. Sand production is the erosion of formation sand during 

drilling and during the process of oil recovery. In order to recover the hydrocarbon, a 

well needs to be drilled to the depth of the reservoir. As the sandstone is left 

unsupported next to the cavity, sand grains can be dislodged and enter the oil recovery 

system. In addition, the rock around the wellbore is weakened due to the stress 

concentrations around the cavity. The weakened and decohesioned sandstone may be 

eroded away by the produced fluid. 

Even though sand production can have a beneficial effect on hydrocarbon production, 

several problems may also arise; these include clogging up of the well, damage to the 

well equipment, well instability due to the loss of material and damage to the formation. 

Consequently, the study of the sand production process and the development of 

methods to control sanding are of paramount importance for safe and economical 

hydrocarbon production. 

Sand production is a coupled fluid-solid process that primarily involves two mechanisms: 

mechanical instabilities that lead to localized plastic behaviour and failure of the rock 

around the cavity, and the subsequent transport of sand particles due to the fluid drag 

forces. The sandstone rock initially fails close to the cavity and the failed material is then 

eroded by the flowing fluid. These two mechanisms are coupled, since stress 

concentrations around the eroded cavity lead to increased damage, which in turn, 

increases the amount of cohesionless material that can be dislodged.  

Methods commonly used to predict sand production can be classified into four 

categories: empirical methods, laboratory methods, theoretical models and numerical 

methods. Different methodologies are commonly used at the same time and they 
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complement each other. While both experimental and analytical models of the sand 

production problem play an important role, the development of numerical models is 

essential for realistic predictions (Rahmati et al., 2013). 

The vast majority of the numerical models that have been used to date are continuum- 

based. However, a continuum approach cannot easily capture important features of the 

sanding problem, such as erosion and localized failure. Moreover, using a continuum 

model requires the formulation of several constitutive relations and it is generally 

recognised that such a formulation is a difficult task, because of the large number of 

interactions and non-linearities intrinsic to the problem. 

These difficulties have encouraged the use of discrete-element based approaches, 

which, by redefining the solid physics at the micro-scale, allow a simpler formulation of 

the problem and a better understanding of some of its features. The disaggregation and 

the erosion of sand particles are more naturally described with DEM methods. However, 

even where DEM is used a number of constitutive choices remain, such as the solid-solid 

contact law and the fluid-solid interaction. 

DEM was proposed originally by Cundall & Strack (1979) and is widely used to model 

soils and rocks, including sandstone (e.g. Potyondy & Cundall, 2004; Cheung et al., 2013). 

DEM involves micromechanical quantities that cannot be easily obtained from 

experimental tests but it is able capture the particle-scale interactions. The variables 

obtained using DEM are discrete variables such as forces, particle displacements, 

stresses on particles or particle velocities. Model boundaries are defined by introducing 

wall elements, to which displacement rates can be imposed. In DEM the parameters to 

be calibrated depends on the contact model adopted.  

The large majority of the DEM sand production studies (e.g. Dorfmann et al., 1997; 

O’Connor et al., 1997; Cook et al., 2004; Marrion & Woods, 2009; Quadros et al., 2010; 

Boutt et al., 2011) have been performed using 2D discrete models; these certainly offer 

qualitative insight, but they produce results which are difficult to relate quantitatively 

to field or experimental observations. Other studies have used 3D particles, but have 

focused on small scale phenomena involving only a few particles (Grof et al., 2009) or 
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have radically simplified some aspect of the problem, such as the flow pattern (Cheung, 

2010) or the boundary conditions (Zhou et al., 2011). 

In general, particles in granular materials are surrounded by fluid, as it is the case of sand 

production process. To simulate this interaction at the soil particle scale, the solid DEM 

model must be coupled with a fluid model; several fluid-coupling techniques are 

available (Zhu et al., 2007). The method used in this thesis uses mesoscopic coupling and 

it is known as CFD-DEM (Zhu et al., 2007). CFD-DEM was pioneered by Tsuji et al. (1993) 

to simulate the formation of bubbles in gas-fluidized granular beds. It is now frequently 

used for process and chemical engineering problems (Zhu et al., 2007).  

 

1.2. Scope and objectives 

 

The main aim of this research is to improve the understanding of sand production based 

on a CFD-DEM coupling model. To represent rock behaviour in DEM the parallel-bond 

model has been used because it mimics the effect of cement between particles. 

However, the calibration of this model is a complicated process because of the number 

of micro parameters involved. Moreover, in the case of this thesis, the mechanical 

model is only a part of a more complex model that also includes solid-fluid interaction, 

leading to some restrictions and limitations. Because for sand production simulation, 

the fluid-solid interaction is a paramount of importance, the resulting coupled modelling 

approach must be carefully verified. 

The objectives of the research reported in this Thesis are: 

 

1. To review the methods that have been used to simulate sand production 

process. 

2. To review the current available fluid-solid coupling techniques used in DEM in 

order to develop an appropriate model to study the sand production process. 



 Chapter 1 - Introduction 

 

30 

 

3. To test the CFD-DEM model and to identify its limitations. 

4. To develop and calibrate a DEM parallel-bond model for rock and sandstone 

suitable for performing sand production simulations. 

5. To develop a 3D CFD-DEM model of for sand production simulation. 

 

1.3. Thesis layout 

 

This thesis has been divided into ten chapters. 

The current chapter, Chapter 1, provides the background and the objectives of this 

research. 

Chapter 2 reviews some basic soil and rock mechanics concepts relevant for the sand 

production problem. Some basic characteristics of the soil as a material are presented 

in Section 2.2. A simple theory of elasticity is described in Section 2.3 whereas Section 

2.4 introduces the poroelasticity theory commonly used in petroleum rock mechanics. 

Failure mechanics are introduced in Section 2.5, necessary to adequately understand 

some of the main mechanisms involved in sand production process. 

The sand production problem is defined in Chapter 3.  Oil wells properties are introduced 

in Section 3.2. In Sections 3.3 and 3.4 the sand production problem and the mechanisms 

of sand production are described whereas the prediction methods for sand production 

are reviewed in Section 3.5. Section 3.6 presents an analytical model for the sand 

production problem. 

In Chapter 4 the DEM method is described. The equations and basic theory of this 

method are presented in Section 4.2. Sections 4.3 and 4.4 describe the inter-particle 

contact models employed, including the parallel-bond model. The damping force is 

introduced in Section 4.5 and the DEM boundary conditions used in this thesis are 

described in Section 4.6. An overview of some applications of DEM to soil mechanics is 
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presented in Section 4.7 and Section 4.8 explains the representations of DEM output 

using ParaView. 

An application of the parallel-bond model to represent rock behaviour using DEM 

together with its calibration is presented in Chapter 5. Section 5.2 contains a review of 

published use of the parallel bond model to represent rock behaviour. An introduction 

of the parallel-bond model to represent sand production problems is described in 

Section 5.3. Finally, Section 5.4 presents the datasets that were selected for calibration, 

the generation of the specimen tested and the calibration of the model. 

The CFD-DEM coupled model is introduced in Chapter 6. First of all, some concepts of 

fluid dynamics and computational fluid dynamics are recalled in Section 6.2. Section 6.3 

explains the basics of particle-fluid interaction and the different numerical approaches 

available for studying this interaction, with particular emphasis in CFD-DEM (Section 

6.3.2). Previous examples of sand production studies and other applications using CFD-

DEM are presented in Sections 6.4 and 6.5. Finally, Section 6.6 describes the 

representations of CFD output. 

In Chapter 7 the modelling approach CFD-DEM is tested in simpler cases to allow a 

clearer understanding of some aspects affecting fluid-particle interaction. In Section 7.2 

simulations involving a single particle are performed to examine the effect of fluid 

forces, the damping force and the fluid viscosity. In Section 7.3 an evaluation of the 

method is performed using a permeameter test as a benchmark. 

Coupled CFD-DEM simulations of sand production for a discrete analogue of ideal 

sandstone are presented in Chapter 8. A first simulation of dry perforation is presented 

and discussed in Section 8.2. In Section 8.3 fluid is introduced in the model under 

hydrostatic initial conditions whereas simulations with an imposed fluid velocity are 

presented in Section 8.4. The effect of numerical damping is explored in Section 8.5. 

Section 8.6 presents some comparisons with available published results (Cheung, 2010). 

Chapter 9 contains the results of analyses using the discrete analogues of sandstone 

calibrated in Chapter 5. In Section 9.2 the data of the different oil fields are introduced. 

Section 9.3 presents preliminary sand production estimates using empirical approaches 
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and an analytical solution.  The geometry, the fluid, the scaling and the adjustments 

required are discussed in Sections 9.4 and 9.5. In Section 9.6 the simulation set-up is 

described and the results of the simulations are presented in Section 9.7. 

Chapter 10 summarises and concludes the main findings of this research and proposes 

some suggestions for future work on these topics. 
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Chapter 2 - Basic soil mechanics concepts for sand 

production problems 

 

2.1. Introduction 

 

Sand production process in oil wells is a geomechanical problem where rocks are 

transformed into soils. Oil reservoirs are composed by sedimentary rocks that 

discompose to sand grains (soils) during the oil recovery process. For this reason, this 

chapter recalls some basic soil and rock mechanics concepts relevant for the sand 

production problem described in Chapter 3. First of all, in Section 2.2, some basic 

characteristics of soil as a material are exposed. After that, in Section 2.3 the theory of 

elasticity as a first and simple way to describe materials is explained in order to introduce 

the poroelasticity theory. This theory is commonly used in petroleum rock mechanics is 

exposed in Section 2.4. Finally, Section 2.5 is an introduction of failure mechanics to 

understand some mechanisms that have to be taken into account in sand production 

process in oil wells. 

 

2.2. Characteristics of soils 

 

Soil is an uncemented or weakly cemented accumulation of mineral particles. Soil 

particles are frequently originated by the weathering of rocks. However, there are soils 

originated by other processes, as limestones which are formed by sedimentation of 

organic material in shallow marine waters. Each particle can be described as a single 

grain being in contact with other grains (Fig. 2.1). The space between grains contains 

fluid (water, other liquids, gas and/or air). When the space between grains is totally filled 

by water or a liquid the soil is said to be saturated; otherwise the soil is unsaturated. The 

structure of the soil may be loose, medium or dense depending on the way in which the 
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particles are packed together. On the other hand, when particles and grains are strongly 

cemented together it is considered to be a rock. 

 

 

Fig. 2.1. Grain assemblage (Craig, 1992) 

 

Fig. 2.2 shows the size ranges for soils proposed in British Standards. Fine or fine-grained 

soils are those composed mainly by clay and silt size particles, and coarse-grained soils 

are those whose properties are influenced mainly by sand and gravel particles. 

 

 

Fig. 2.2. Particle size ranges in British Standards (Craig, 1992) 

 

2.2.1. Particle size distribution 

 

The particle size distribution (PSD) represents the percentage by weight of particles 

smaller (or bigger) than the size given by the abscissa. Therefore, there are two ways to 
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represent the particle distribution. In soil mechanics practice is customary to use the 

one that represents the percentage of smaller particles. On the other hand in petroleum 

engineering (e.g. Nouri et al., 2006; Fattahpour et al., 2012) the other representation is 

commonly employed. Fig. 2.3 exemplifies these two representations using data from a 

material later introduced (Chapter 5): when the percentage of smaller particles is 

represented, the plotted line has an S-shape; otherwise, the plotted line has an inverted 

shape. The size of the particles is represented in a logarithmic scale. 

 

  

(a) (b) 

Fig. 2.3. FIELD1 (Sections 5.4.1 and 5.4.2) PSD. (a) Soil mechanics typical representation: weight 

percentage of particles smaller than the size particle in the abscissa; and (b) petroleum engineering typical 

representation: weight percentage of particles bigger than the size particle in the abscissa. 

 

In this thesis we present all PSD data using the petroleum engineering convention of 

percentage retained by weight. Therefore, the effective size D10 is the size such that 10% 

of the particles are bigger than that size. The coefficient of uniformity (CU), the sorting 

coefficient (Sc) and the coefficient of curvature (CZ), are defined as follows 

 

90
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D

D
CU =   Eq. 2.1 
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The higher the value of the coefficient of uniformity the larger the range of particle sizes 

in the soil. 

 

2.2.2. Permeability 

 

Water and other fluids may flow through the pores between the solid particles. The 

phreatic level is the level at which the pressure is atmospheric, below which the soil is 

assumed to be fully saturated.  

The pore water may be static (the hydrostatic pressure depends on the depth below 

that level) or it may be seeping through the soil under hydraulic gradient. In one 

dimension, water flows through a fully saturated soil following Darcy’s empirical law 

 

hK
A

q
u f Ñ==   Eq. 2.4 

 

where q is the volume of water flowing per unit time, A is the cross-sectional area of soil 

corresponding to the flow q, K is the hydraulic conductivity, hÑ  is the hydraulic gradient, 

and uf is the discharge velocity. The units of the hydraulic conductivity are those of 

velocity (m/s).  
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A more fundamental concept than hydraulic conductivity is permeability. Hydraulic 

conductivity is related to permeability by the equation 

 

k
g

K
f

f

m

r
=   Eq. 2.5 

 

where fr  is the density of the fluid, g is the acceleration of gravity, fm  is the dynamic 

viscosity of the fluid and k (units m2 or Darcy 212 m 10D1 -» ) is the coefficient of 

permeability. The coefficient of permeability depends on the average size of the 

particles, the distribution of particle sizes, particle shape and soil structure. In general, 

the smaller the particles the smaller is the average size of the pores and the lower is the 

coefficient of permeability. The value of k for different types of soil are typically within 

the ranges shown in Fig. 2.4. 

 

 

Fig. 2.4. Expected ranges of permeabilities and hydraulic conductivities of various rock types: a- de Marsily 

(1986); b- Guéguen and Palciauskas (Jaeger et al., 2007) 

 

When permeability is deduced from reported values of hydraulic conductivity, it is 

always implicitly assumed that the fluid is water at C20o , in which case 
3

mkg 998=fr  
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and Pa·s 001.0=fm  (Jaeger et al., 2007). Conductivity of soils to other fluids - for 

instance oils such as those simulated in Chapter 9 - is related to permeability by the 

same equation, but different values of density and dynamic viscosity apply. The values 

of those properties for other fluids relevant in the sand production problem are 

presented in Section 3.2.3. 

 

2.3. Elasticity 

 

Elasticity is the ability of some materials to resist and recover from deformation 

produced by forces. The simplest type of response in rock mechanics is one in which 

there is a linear relation between the external forces and the corresponding 

deformations; this kind of response happens when changes in the forces are sufficiently 

small. The theory of elasticity is based on two concepts: stress and strain. The theory of 

elasticity described in the next sections is extracted from the presentations in Wang 

(2000), Jaeger et al. (2007) and Fjar et al. (2008). 

The elastic theory for solid materials is not able to fully describe the behaviour of 

biphasic materials such as soils or rocks. The extension of elasticity to such materials is 

called poroelasticity and is described in the next section.  

 

2.3.1. Stress and strain 

 

2.3.1.1. Stress 

 

The stress at a point is defined as the ratio of force divided by the area in the limit as the 

area iAD  goes to zero 
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lims    Eq. 2.6 

 

The SI unit for stress is Pa (Pascal, N/m2). In the petroleum industry, ‘oilfield’ units like 

psi (pounds per square inch) are commonly used (1 psi = 6894.76 N/m2). The sign 

convention for the stress in rock mechanics states that compressive stresses are 

positive. 

An area element has magnitude and direction defined by the outward normal to the 

surface. Because both force and area are vector quantities, stress is represented in six 

components of a symmetric second-rank tensor. The tensor components ij
s  of the 

applied stress on an elementary volume are shown in Fig. 2.5. The first subscript (i) 

identifies the axis normal or the actual surface, while the second subscript (j) identifies 

the direction of the force. 

 

 

Fig. 2.5. Stress tensor. The first subscript refers to the direction of the normal to the plane, and the second 

subscript refers to the direction of the force. (Wang, 2000). 

 

The stress components are total stresses. Normal stresses ( xxs , yys  and zzs ) are those 

for which the force is parallel to the normal to the face. The shear stresses ( xys , xzs  and 
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yzs ) are those for which the force is perpendicular to the normal to the face. Rotational 

equilibrium requires the stress tensor to be symmetric ( jiij ss = ). 

The stress tensor that represents the stress state at the point P is 
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   Eq. 2.7 

 

The principal axes of stress are the directions for which the shear stress vanishes. If the 

coordinate system is oriented such that the x-axis parallel to the first, the y-axis parallel 

to the second, and the z-axis parallel to the third principal axis, the stress tensor has a 

particularly simple form 
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   Eq. 2.8 

 

The solutions are conventionally organized such that 321 sss ³³ . 

Stress invariants are properties of the stress tensor that remain unchanged when 

changing to a rotated set of coordinate axes. Any combination of stress invariants will 

be a stress invariant as well. The simplest of these is the mean normal stress 

 

( ) 3zzyyxx ssss ++=    Eq. 2.9 



Chapter 2 – Basic soil mechanics concepts for sand production problems 

41 

 

When the coordinated system is reoriented such that the x-axis is parallel to the first 

principal stress, the y-axis parallel to the second principal stress and the z-axis parallel 

to the third principal stress, the stresses s  and t  can be plotted in a diagram obtaining 

circles called the Mohr’s circles (where s  are the normal stresses iis  and t  the shear 

stresses ij
s , where ji ¹ ). The basic features of the construction are shown in Fig. 2.6. 

In the direction in the yz-plane the stresses s and t are located on the small circle 

spanning from 3s  to 2s . In the direction in the xy-plane s and t  are located on the 

circle spanning from 2s  to 1s ; and, finally, in the direction in the xz-plane s and t  are 

located on the large circle spanning from 3s  to 1s . For all other directions, s and t    

are located within the shaded areas. 

 

.  

Fig. 2.6. Mohr’s circles (Fjar et al., 2008). 

 

2.3.1.2. Strain 

 

After the action of an external force, the position of particles in a sample may change. If 

the new positions cannot be obtained simply by a rigid movement (translation and/or 
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rotation), the sample is said to be strained (the relative position of the particles are 

changed). Fig. 2.7 shows an example of a strained sample.   

 

 

Fig. 2.7. Elongation (on the left) and shear deformation (on the right) (Fjar et al., 2008). 

 

The definition of the strains is 
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where 
xd  is the displacement in the x direction, yd  is the displacement in the y direction, 

and 
zd is the displacement in the z direction. 

Extensional strains are taken as positive. We may organize the strains in a strain tensor 
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   Eq. 2.16 

 

The trace of the strain tensor is called the volumetric strain (the relative decrease on 

volume). 

The longitudinal strains ( xxe  , yye   and zze ) are the relative-length changes parallel to the 

coordinate axes (elongation, Fig. 2.6, left). Extensional strains are taken as positive. The 

shear strains ( ij
e , ji ¹ ) measure the change from a right angle of lines parallel to the 

coordinate axes (Fig. 2.6, right). 

 

zzyyxxvol eeee ++=         Eq. 2.17 

 

A general mathematical notation for strains is defined by 
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The subscripts i and j may be any of the numbers 1, 2, 3, representing the x-, y-, and z-

axis, respectively. 
xdd =1

, ydd =2 and
zdd =3
, while x1 = x, x2 = y, and x3 = z.  

 

2.3.2. Elastic moduli 

 

In situations where there are linear relationships between applied stresses and resulting 

strains, the theory of linear elasticity is used. If the sample behaves linearly, there is a 

linear relationship between the applied stress in that direction (
xxs ) and the 

corresponding elongation (
xxe ). The relationship is known as the Hooke’s law 

 

E

xx

xx

s
e =   Eq. 2.19 

 

The coefficient E is called Young’s modulus or simply the E-modulus. It is a measure of 

the sample’s resistance against being compressed by a uniaxial stress ( 0¹xxs ,

0===== yzxzxyzzyy sssss ). 

The ratio between the lateral elongation ( zzyy ee = ) and elongation in the direction of 

the applied stress is known as Poisson’s ratio 

 

xx

yy

e

e
n -=   Eq. 2.20 

 

It is a measure of lateral expansion relative to the longitudinal contraction. These 

equations, which relate one component of stress or strain to another, are defined by a 
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specific state of stress, namely 0¹xxs , 0===== yzxzxyzzyy sssss  (uniaxial stress 

state). In general, each component of strain is a linear function of all components of 

stress. 

Young’s modulus and Poisson’s ratio belong to a group of coefficients called elastic 

moduli. The elastic moduli are parameters that give the ratio of one of the stress 

components to one of the strain components. 

Isotropic materials are materials whose response is independent of the orientation of 

the applied stress. For such materials the principal axes of stress and the principal axes 

of strain always coincide. For isotropic materials the general relations between stresses 

and strains may be written 

 

( )
zzyyxxxx G leleels +++= 2   Eq. 2.21 

( )
zzyyxxyy G leelles +++= 2   Eq. 2.22 

( )
zzyyxxzz G elleles 2+++=   Eq. 2.23 

yzyz Ges 2=   Eq. 2.24 

xzxz Ges 2=   Eq. 2.25 

xyxy Ges 2=   Eq. 2.26 

 

The coefficients l  and G are elastic moduli, known as Lamé’s parameters. G is also 

known as the modulus of rigidity, or the shear modulus. G is a measure of the sample’s 

resistance against shear deformation; it relates stresses to strains in a state of pure 

shear. 
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The bulk modulus B is another elastic modulus that measures the sample’s resistance 

against hydrostatic compression. It is defined as the ratio of hydrostatic stress ps  

relative to the volumetric strain vole . For a hydrostatic stress state we have 

zzyyxxp ssss ===  while 0=== xzyzxy sss . 
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The inverse B1   is known as the compressibility. 

Then  
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The elastic moduli E, n  , l , G and B are measured in the same units as stress. The stress-

strain relations are the fundamental equations for description of isotropic, linear elastic 

materials.  

The stress strain relations may be written on a more compact form using the notation 

introduced 

 

ijijvolij Gedles 2+=   Eq. 2.30 
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where ij
d  is the Kronecker symbol. 

Energy considerations require that the following relations always hold. If they do not, 

one should suspect experimental errors or that the material is not isotropic (Mavko et 

al., 2003) 

 

0     ;     0
3

2
³³+ m

m
l   Eq. 2.31 

or 

0     ;     211 ³£<- Em   Eq. 2.32 

 

A particular type of idealized isotropic elastic material is the incompressible solid, which 

has 01 =B  or ¥®B . For such materials ¥®l , GE 3® and 21®n  (Jaeger et al., 

2007). A completely rigid material is not only incompressible but also has infinite values 

of E and G. The limiting case of a compressible fluid is that in which the shear modulus 

vanishes, but the bulk modulus remains finite: 0®G , 21®n , 0®E  and B=l . 

 

2.4. Poroelasticity: Biot’s theory and the effective stress concept 

 

Soils are not solid materials, they can be visualized as a skeleton of solid particles 

enclosing voids which contain water, other liquids, gas, air, etc. Due to rearrangement 

of the particles the volume of the solid skeleton can change. The compressibility of the 

soil skeleton will depend on the structural arrangement of the solid particles. 

The way soils behave depends also on the non-solid part of the materials. The 

mechanical and hydrological behaviour of soils is coupled. The void space plays an 

important role in soil mechanical behaviour as described in this section. 
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The general theory that accounts for this coupled hydromechanical behaviour is 

poroelasticity. This theory was put by Biot (1941) and, as cited by Jaeger et al. (2007), it 

was developed further by, among others, Verruijt (1969), Rice & Cleary (1976), and 

Detournay & Cheng (1993). In the next sections this theory is introduced following Wang 

(2000), Mavko et al. (2003), Jaeger et al. (2007) and Fjar et al. (2008). 

 

2.4.1. Suspension of solid particles in a fluid 

 

As a first approximation, a porous medium can be thought as a suspension of solid 

particles. Using this simplification, the solid and fluid parts are deformed independently 

of each other and the volumetric strain due to an external pressure ps  is 
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e =   Eq. 2.33 

 

where Beff is the bulk modulus of the mixture (effective bulk modulus). The total 

deformation must, however, equal the sum of the deformations of each component, 

weighted by the volume portion of each component 
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where subscripts s and f are solid and fluid, respectively, and Vtot is the total volume. The 

porosity n is the volume occupied by the fluid relative to the total volume 

 



Chapter 2 – Basic soil mechanics concepts for sand production problems 

49 

 

tot

f

V

V
n =   Eq. 2.35 

 

And the void ratio 
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The porosity is restricted to the range 10 <£ n , whereas the void ratio can take on any 

positive value. 

The strains 
svol ,e  and fvol ,e are given by the bulk moduli of the solid (Bs) and the fluid (Bf), 

respectively 
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And the effective bulk modulus of the suspension is given by 
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(Fjar et al., 2008). This is called the Reuss bound which describes the effective moduli of 

a suspension of solid grains in a fluid (Mavko et al., 2003). This is a particular case of 

calculating the effective moduli of a mixture of different materials and phases. 

This is an example of a particularly simple porous material. However, rocks consist of a 

solid framework and a pore fluid which cannot be treated independently and a 

generalization is taken into account in the next section. 

 

2.4.2. Introduction to Biot’s poroelastic theory  

 

The medium considered in this section is isotropic, porous and permeable and it is 

divided in two components: a solid part and a fluid part. Displacements are denoted sd  

(of the solid part) and fd  (of the fluid part). For a volume element attached to the solid 

framework, the strains are given as  

 

svol de ·Ñ=   Eq. 2.39 

 

For the fluid part, a strain parameter z  (increment of fluid content) which describes 

the volumetric deformation of the fluid relative to that of the solid is defined 

 

( )
fsn ddz -Ñ= ·   Eq. 2.40 

 

Biot and Willis (1957), cited in Wang (2000). Where sd  and fd  are the average 

displacements of the fluid and solid, respectively. This equation carries the assumption 
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that the porosity is homogeneous (Wang, 2000) and represents continuity in a control 

volume (the volume of fluid entering the control volume is equal to the volume of fluid 

leaving the control volume).The stress tensor s
t

 represents the total external stress on 

a volume element, which balances this stress partly by stresses in the solid framework 

and partly by the pore pressure pf. The pore pressure is the pressure of the fluid 

occupying the pore space. 

The change in the mass of fluid contained into the control volume can be divided into 

two parts: the change of the pore volume (due to change in the external stresses and/or 

the pore pressure), and the compression/decompression of the fluid as the pore 

pressure changes 
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where Vp is the pore volume and Bf is the bulk modulus of the pore fluid. The stress-

strain relations for this two-phase system can be expressed 

 

Ve 21 CCp volf -=   Eq. 2.42 

ijijijvolij CG Vdedles -+= 2   Eq. 2.43 

 

l  and G are the Lamé parameters of the porous material, while C1 and C2 are additional 

elastic moduli required to describe a two-phase medium. 

Letting  0=vole , it is found that 
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ff nCp d·2 Ñ=   Eq. 2.44 

 

which shows that C2n is a measure of how much the pore pressure increases as the 

amount of fluid in a volume element is increased. If the solid was completely rigid, we 

would thus have  fBnC =2 , where fB1 is the fluid compressibility. 

Summing equations gives 

 

zes 1CK vol -=   Eq. 2.45 

 

32GB +=l  is the bulk modulus of the porous rock in undrained condition (in a 

condition where the pore fluid is not allowed to escape, 0=z ). 

Therefore  
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  Eq. 2.46 

 

where Bfr is called the bulk modulus of the framework or the frame modulus and Bs is 

the bulk modulus of the solid grains. Bs can be interpreted also as the unjacketed 

modulus (the modulus calculated under unjacketed conditions). Unjacketed conditions 

are the conditions where the differential pressure is held constant. That is, when a 

change in confining pressure produces an equal change in pore pressure. 
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Constant increment of fluid content means undrained conditions, constant pore 

pressure means drained conditions, constant stress means no external stress change, 

and constant strain means zero external displacement (Wang, 2000). 

 

2.4.3. Effective stress 

 

The effective stress is defined as 

 

fpp pass -=¢   Eq. 2.47 

 

This means that the total external stress ps  is not carried only by the solid framework, 

which carries the part ps ¢ , but also by the fluid, which carries the remaining part fpa . 

The parameter a  is called the Biot coefficient or the effective stress coefficient 

 

s

fr

B

B
-=1a   Eq. 2.48 

 

a  is restricted to the region 1£<an . In unconsolidated or weak rocks, a  is close to 

1, and sandstones have a  values higher than 0.5 (Table 2.1). In general, the effective 

stress is defined by 

 

fijijij padss -=¢   Eq. 2.49 
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where ijd  is the Kronecker symbol. Observe that only the normal effective stress depend 

on the pore pressure because shear stresses do not produce volumetric strains. 

This idea is called the law of effective stress (Wang, 2000), first enunciated by Terzaghi, 

who introduced the same equation with 1=a . 

 

Table 2.1. Poroelastic moduli for different rock types (Wang, 2000). 

Rock G (GPa) ν  K (GPa) α  n k (mD) 

Berea sandstone 6 0.2 8 0.79 0.19 190 

Boise sandstone 4.2 0.15 4.6 0.85 0.26 800 

Ohio sandstone 6.8 0.18 8.4 0.74 0.19 5.6 

Pecos sandstone 5.9 0.16 6.7 0.83 0.2 0.8 

Ruhr sandstone 13 0.12 1 0.65 0.02 0.2 

Weber sandstone 12 0.15 13 0.64 0.06 1 

Tennessee marble 24 0.25 40 0.19 0.02 0.0001 

Charcoal granite 19 0.27 35 0.27 0.02 0.0001 

Westerly granite 15 0.25 25 0.34 0.01 0.0004 

 

2.5. Failure mechanics  

 

When a rock specimen is subjected to large stresses it changes its shape permanently 

and sometimes it also fails apart. Failure is a complex process which is still not fully 

understood.  However, it is useful to predict the conditions a rock is likely to fail, 

especially in petroleum related rock mechanics, as rock failure it is at the origin of severe 

problems such as borehole instability and solids production.  
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2.5.1. Strength 

 

The strength is the stress level at which rock fails. The stress level depends on the type 

of test used to measure the strength, therefore rock strength is not given by a uniquely 

defined parameter, and there are different types of failure criteria that contain one or 

more parameters. 

In general, the stresses at fracture can be expressed as a function between the principal 

stresses ( ( ) 0,, 321 =¢¢¢ sssf ). Different failure criteria have been used, as for example 

 

          · Coulomb failure criteria smt ¢+= 0S  Eq. 2.50 

          · Mohr failure criteria ( )st ¢¢= f   Eq. 2.51 

          · Griffith criterion ( ) ( )31

2

31 8 sssss ¢+¢=¢-¢ T  Eq. 2.52 

 

Mogi (2007); where t  is the shear stress and 
Ts  is the tensile strength. There are other 

criteria as von Mises criteria, that contemplates the effect of 
2s ¢  (Mogi, 2007). 

The most important tests used to measure rock strength are the uniaxial and triaxial 

tests. The specimen in uniaxial and triaxial tests is usually a cylinder with length to 

diameter ratio 2:1 (Fig. 2.8). The stress is applied to the end faces of the cylinder, while 

confining fluid provides a stress to the axial perimeter. If the confining stress is zero, we 

have a uniaxial stress test. When test is performed with a non-zero confining pressure, 

a triaxial test is performed. 

A typical result from a uniaxial test is shown in Fig. 2.9. The applied axial stress zzs  is 

plotted as a function of the axial strain zze  of the sample. Several important concepts 

are defined in Fig. 2.9, as the elastic region and the uniaxial compressive strength. The 
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elastic region is the region where the rock deforms elastically, therefore if the stress is 

released the specimen returns to its original state. The uniaxial compressive strength is 

the peak stress.  The triaxial is carried out keeping the confining pressure constant and 

increasing the axial load until the failure occurs. Results are usually different depending 

on the confining pressure (Fig. 2.10). The stress reaches a maximum, which is called 

uniaxial compressive strength when a uniaxial test is performed. The uniaxial 

compressive strength is a measure of the strength of the material. 

 

 

Fig. 2.8. Typical test specimen for uniaxial and triaxial test (Fjar et al., 2008). 

 

 

 

Fig. 2.9. Uniaxial compressive test result (Fjar et al., 2008). 
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Fig. 2.10. Triaxial test results for different confining pressures (Fjar et al., 2008). 

 

The shear failure, which is caused by excessive shear stress, is the most common failure 

mode observed in uniaxial and triaxial tests. On the other hand, tensile failure is caused 

by excessive tensile stress. 

 

2.5.2. Failure 

 

2.5.2.1. Tensile failure 

 

A tensile failure occurs when the effective stress across a plane in the sample exceeds a 

critical limit (the tensile strength, T0). A sample that suffers tensile failure typically splits 

along fracture planes (Fig. 2.11). The fracture planes often originate from pre-existing 

cracks, oriented more or less normal to the direction of the tensile stress.  

The failure criterion specifies the stress condition for which tensile failure will occur and 

identifies the location of the failure surface in principal stress space 

 

0T-=¢s   Eq. 2.53 
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For isotropic rocks, the conditions for tensile failure will always be fulfilled first for the 

lower principal stress 

 

03 T-=¢s   Eq. 2.54 

 

 

Fig. 2.11. Tensile failure (Fjar et al., 2008). 

 

2.5.2.2. Shear failure 

 

Shear failure occurs when shear stress along some plane in the sample is high enough. 

Sometimes a fault zone develops along the failure plane and the two sides of the plane 

move relative to each other in a frictional process (Fig. 2.12). 

As introduced above, there are different kinds of failure criteria. The most used is the 

Mohr criteria, where the frictional force that acts against the relative movement of two 

bodies in contact depends on the force that presses the bodies together 

 

( )st ¢= fmax   Eq. 2.55 
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where 
maxt  is the critical shear stress and s ¢  is the normal stress across the fracture 

plane. This assumption is called Mohr’s hypothesis. Eq. 2.55 represents the failure 

surface in the st ¢-  plane that separates a ‘safe region’ from a ‘failure region’. The line 

is sometimes referred to as the failure line or the failure envelop. An example is shown 

in Fig. 2.13, in which the three principal stresses and the Mohr’s circles connecting them 

are also indicated. For a given set of principal stresses all possible combinations of t  and 

s ¢  lie within the area in between the three circles. 

The criterion states that shear fracture takes place when the shear stress equals to the 

function of the normal effective stress. As it was introduced in Section 2.3.1, only stress 

states are permitted inside the Mohr’s circle when no plane within the rock has a 

combination of t  and s ¢  that lies above the failure line (Fig. 2.13) it means that the 

stress state represents a safe situation. If 
1s ¢  is increased the circle connecting 

1s ¢  and 

3s ¢  will expand, and eventually touch the failure line and the sample fails. Note that the 

value of the intermediate principal stress (
2s ¢ ) has no influence on this situation. Since 

2s ¢  by definition lies within the range (
3s ¢ , 1s ¢ ), it does not affect the outermost of 

Mohr’s circles, and hence it does not affect the failure. Thus, pure shear failure, as 

defined by Mohr’s hypothesis, depends only on the minimum and maximum stresses 

and not on the intermediate stress. As it is explained above, there are other criteria 

where 
2s ¢   affects the failure (e.g. the von Mises criteria, the Drucker-Prager criterion, 

the extended Griffith criterion, explained by Fjar et al., 2008). 

 

 

Fig. 2.12. Shear failure (Fjar et al., 2008). 
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Fig. 2.13. Failure line and Mohr’s circles (Fjar et al., 2008). 

 

By choosing specific forms of the function ( )s ¢f  various criteria for shear failure are 

obtained. A frequently used criterion is the Mohr-Coulomb criterion, which is based on 

the assumption that ( )s ¢f   is a linear function of s ¢  

 

smt ¢+= int0S   Eq. 2.56 

 

where S0 is the inherent shear strength (also called cohesion or cohesive strength) of the 

material and intm  is the coefficient of internal friction. The latter term is clearly chosen 

by analogy with sliding of a body on a surface and the equation was introduced by 

Cuolomb (1773) as cited in Mogi (2007). As explained above, failure will not occur on 

any plane for which smt ¢+< int0S ; circles that extend above the failure line have no 

meaning in this context, since, if the stresses are assumed to increase slowly starting 

from some ‘safe’ stress state that lies below the line, failure will occur as soon as the 

Mohr’s circle first touches the line.  
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In Fig. 2.14 we have drawn the Mohr-Coulomb criterion, and a Mohr’s circle that touches 

the failure line. The angle j  defined in the figure is called the angle of internal friction 

(or friction angle) and is related to the coefficient of internal friction by 

 

inttan mj =   Eq. 2.57 

 

The angle b2  gives the position of the point where the Mohr’s circle touches the failure 

line. The shear stress at this point of contact is 

 

( ) ( )bsst 2sin
2

1
31
¢-¢=   Eq. 2.58 

 

while the normal stress is 

 

( ) ( ) ( )bsssss 2cos
2

1

2

1
3131
¢-¢+¢+¢=¢   Eq. 2.59 

 

b  and j  are related by 

 

b
p

j 2
2
=+   Eq. 2.60 
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Since b  is the angle for which the failure criterion is fulfilled, b  gives the orientation 

of the failure plane.  

The allowable range for j  is from o0  to o90  (in practice the range will be smaller, and 

centred around approximately o30 ), and b  may vary between o45  and o90 . One 

important point to note is that b  is given solely by j , which is a constant in the Mohr-

Coulomb criterion. Thus the orientation of the failure plane is independent of the 

confining stress. This is a special feature for the Mohr-Coulomb criterion. 

 

 

Fig. 2.14. Critical stress state (Fjar et al., 2008). 

 

Mogi (2007) pointed out that the Coulomb fracture criterion appears to apply to fracture 

of many rocks, except for a low-pressure. Fig. 2.15 shows schematically the strength-

pressure curves of various rocks, where it can be observed that the curves of some rocks 

are concave toward the pressure axis in a low-pressure region. 
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Fig. 2.15. Typical strength versus pressure curves of rocks between regions where Coulomb criterion holds 

and where it does not hold (Mogi, 2007). 

 

2.6. Summary 

 

In sand production process soil and rock are of interest. Oil reservoirs are sedimentary 

rocks that may discompose into soil (sands) during oil recovery. Soil and granular rock 

can be described as a group of grains in contact between them. The void space between 

grains contains liquid (normally water) and/or air. Particle may be of different sizes. 

Depending on the size of particles, the distribution of particle sizes, particle shape and 

soil structure, the ability of the fluid to flow through the particles may be different and 

it is measured with the coefficient of permeability. 

As a first approximation, rocks are considered to behave elastically. The theory of 

elasticity is based on the concepts of stress and strain and considers a linear relation 

between them. The elastic moduli have been introduced, as the Young’s modulus and 

the Poisson’s ratio. 

However, the behaviour of granular rocks and soils depends also on the non-solid part 

of the material, and the void spaced between grains must be considered. Biot’s 

poroelastic theory has been introduced; this theory is an approach to study the 

mechanical properties of the media considering its porosity and permeability. In this 
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theory the concept of the effective stress plays a central and important role. The 

effective stress is the part of the total stress carried only by the solid framework; the 

rest of the total external stress is carried by the fluid. 

The concept of failure has been also introduced. Rock fails when it is subjected to large 

stresses and its shape has permanent changes. The strength is a measure of the stress 

level at which the rock fails. It is usually measured in laboratory tests. The most common 

tests to measure the rock strength are the uniaxial and the triaxial tests. There is not a 

unique value for the strength because its value depends on the test being performed. 

Moreover, there are different kind of failures depending on the direction of the stress 

applied. The most common failure is the shear failure. 

 



 

 65 

Chapter 3 - Sand production 

 

3.1. Introduction 

 

In this chapter, the sand production problem is defined and oil well conditions are 

described. The mechanisms of sand production and a description of the prediction 

methods for sand production are reviewed.  Finally, an analytical model proposed by 

Risnes et al. (1982) is presented. 

 

3.2. Oil wells 

 

3.2.1. Sedimentary rocks 

 

The regions where the hydrocarbons are found are called oil or gas reservoirs. Reservoirs 

are composed by sedimentary rocks within which the hydrocarbon can flow. 

Sedimentary rocks of most interest to the petroleum industry are sandstones, chalk, 

calcarenites and shales; these kinds of rocks are composed by assemblies of bonded 

particles. Even though the gross behaviour of the different reservoir rocks is similar, the 

main difference between these rocks is grain size, which affects petrophysical 

characteristics, such as permeability.  

 

3.2.1.1. Sandstones 

 

There are several processes involved in the formation of a sandstone: weathering, 

erosion and transportation, deposition and diagenesis process whereby sediments 

undergo physical and chemical processes as cementation (Cheung, 2010). Formation 

related properties, such as the PSD and arrangement of the grains as well as 
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cementation, have a significant impact on the porosity and the structure of the 

sandstone and this determines the behaviour of the material. Sandstone composition is 

shown in Fig. 3.1. Sandstones are composed by grains and a finer material (commonly 

consists of clay minerals or fine particles of quartz) between grains called matrix (Berg, 

1986). Grains and matrix are deposited and altered by the physical effects of compaction 

and chemical changes. The most common mineral in sandstone is quartz, ranging from 

65% to practically 100% (Fjar et al., 2008). After deposition and compaction cement 

appears between particles; the term cement refers to any material that is precipitated 

after the grains and the matrix have been deposited (Berg, 1986). Sand grains and 

cementation can be observed in an example of a sandstone in Fig. 3.2. Cementation 

helps to bind the particles together and the current understanding of cementation is 

that it increases the strength of a sandstone (Cheung, 2010). Grains of quartz are the 

major components of many sandstones and intergranular cements are commonly silica 

and carbonate (Berg, 1986).  

Sandstone grain and pore sizes are tipically between 0.01 mm and 1 mm (Fjar et al., 

2008); this gives permeabilities raging from microDarcy to several Darcies (where 

212m10D1 -» ), and makes sandstone more permeable than other sedimentary rocks. 

Porosities are between 0.1 and 0.4 (Berg, 1986). The porosity of a sandstone depends 

on the grain sizes, grain shapes, the packing of grains, the degree of cementation, the 

geological history and the depth at which the sandstone is located. 

 

 

Fig. 3.1. Elements of sandstone: A) grains and matrix after deposition, and B) grains and matrix including 

silica and calcite as intergranular cement (Berg, 1986). Q = quartz, F = feldspar, R = rock fragments 
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Fig. 3.2. SEM micrograph of Saltwash sandstone (Alvarado, 2007). 

 

Sandstone behaviour above certain confining pressure requires a description based on 

plasticity theory. The failure envelope is usually nonlinear with a decreasing friction 

angle at high confining stresses. The friction angle may vary typically between o20  and 

o40  (Fjar et al., 2008). The stress threshold for grain crushing depends on particle size 

distribution and particle shape, and on the degree of cementation. 

 

3.2.1.2. Other sedimentary rocks: chalk and shales 

 

Chalks are composed by particles made of crushed organic marine skeletons. Chalks 

contain calcite, silica and clay minerals (Fjar et al., 2008). Permeabilities of chalk are 

between μD and mD (Fjar et al., 2008). Chalk porosity may vary depending on the 

confining pressure; it may be around 0.1 (in normally pressured areas) or it may be as 

high as 0.4 or 0.7 (Mavko et al., 2003; Fjar et al., 2008). 

Shale is a sedimentary rock with a high clay mineral content. Shale porosity may vary 

the same as chalk porosity (from small porosities of 0.1 to up to 0.7). In addition, the 

clay minerals contain structurally bound water; it makes measuring and defining the 

elastic properties of the solid material difficult. Shale texture is strongly anisotropic (Fjar 
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et al., 2008). Shales have permeabilities between μD 10
3-

 and 10 μD (Reservoir 

Engineering notes, from Institute of Petroleum Engineering, Heriot-Watt University). 

SEM images of chalk and shale are shown in Fig. 3.3 and Fig. 3.4. 

 

 

Fig. 3.3. SEM image of Liege outcrop chalk (Fjar et al., 2008). 

 

 

Fig. 3.4. SEM image of Kimmeridge shale (Fjar et al., 2008). 
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3.2.2. Oil well construction and oil recovery 

 

The first step in the oil well construction is to drill a well to the depth of the reservoir by 

rotary drilling with the aid of drilling fluid. Fig. 3.5 shows schematic representations of 

the different ways to drill a well: depending on the exploratory environment different 

ways to drill a well can be used (vertical, horizontal, directional or multilateral). Oil well 

holes are usually between 200 and 300 mm in diameter (Cheung, 2010). 

 

 

Fig. 3.5. Types of oil well (Cheung, 2010): (a) vertical well, (b) horizontal well, (c) directional well, and (d) 

multi-lateral well 
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After drilling, completion is performed: the well is prepared for the hydrocarbon 

production. In this process the sandstone around the hole can be left unsupported, as 

in the case of an open-hole completion (Fjar et al., 2008), when the formation is 

relatively strong and stable. The open-hole allows the hydrocarbons to flow freely into 

the well through the wellbore wall. The simplest open-hole technique is the natural (or 

barefoot) completion (Fig. 3.6.a), which do not involve specific equipment to prevent or 

reduce the consequences of solids production (Bellarby, 2009). Barefoot completions 

are common and find application in competent formations (especially naturally 

fractured limestones and dolomites) (Fjar et al., 2008; Bellarby, 2009). Pre-drilled or pre-

slotted liners are also considered open-hole completion techniques (Bellarby, 2009); 

some purposes of these liners are to stop gross hole collapse, zonal isolation and 

deployment of intervention toolstrings. Pre-drilled and pre-slotted liners are not 

normally a form of sand control because slots are not usually small enough to stop sand 

(Bellarby, 2009). On the other hand, active solids control can be used in order to prevent 

solids from being released from the formation, or prevent produced solids from 

following the hydrocarbon flow to the surface. A gravel pack or screens can be placed 

which also may act as a filter for produced solids (Kuncoro et al., 2001; Fjar et al., 2008). 

Other methods for solids control include chemical consolidation, where the formation 

is strengthened by a resin injected into the rock (Kunkoro et al., 2001). Fig. 3.8 shows 

examples of sand control techniques. 

 

 

Fig. 3.6. (a) Open and (b) cased completions for oil wells (Cheung, 2010). 
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In weak formations in order to stabilize the borehole, instead of an open-hole 

completion, the hole can be supported by casing installed and cemented to the 

formation (Fig. 3.6.b). The casing is perforated in the reservoir zones, so that the 

hydrocarbons can flow into the formation (Fjar et al., 2008). A perforation typically 

generates a cylindrical hole (Fig. 3.7), which becomes conical when the maximum 

perforation length wants to be achieved (Bellarby, 2009). Typical perforations are 1-2 

cm in diameter and 20-50 cm long (Papamichos, 2006; Fjar et al., 2008), or with smaller 

diameter (5-12 mm) when holes are penetrated deeper (Cheung, 2010). The size and 

shape of the perforations may vary considerably with the type of charge used, the 

formation properties, and the well pressure relative to the pore pressure in the 

formation at the time the perforation is created. Perforation have several advantages 

over the open hole completion, as the ability to shut-off water, gas or sand through 

relatively simple techniques, better oil productivity, suitability for fracture stimulation, 

etc (Bellarby, 2009).  

 

 

Fig. 3.7. Principle sketch  of perforations through the casing and the cement (Fjar et al., 2008). 
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Fig. 3.8. Sand control methods (Penberthy & Shaughnessy, 1992): (a) Gravel packing, (b) screens, and (c) 

artificial cementation. 

 

A third alternative for well completion is frac packing, where a fracture from the well 

into the formation is generated pumping a fluid at a high enough pressure down the 

wellbore than the rock will be broken in tension (Fjar et al., 2008). The fracture is filled 

with proppants to create a highly permeable slit in the formation, through which the 

hydrocarbons can be produced. 

After completion, oil or gas can be recovered. There are different methods for 

hydrocarbon recovery, which can be classified as ‘natural’ or ‘artificial’ (Fjar et al., 2008; 
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Cheung, 2010). Natural recovery relies on the properties of the natural material and is 

difficult to control manually. The sources of energy come from the fluid pressure, the 

gas dissolved in the oil or under pressure, the mechanical properties of the rock or the 

gravity. On the other hand, ‘artificial’ methods include techniques to enhance oil 

recovery. Some examples of these methods are waterflooding, chemical flooding, 

thermal recovery and miscible recovery. The idea is to change some material properties 

such as the viscosity of the oil, the tension of water-oil interface, the relative 

permeability of the fluid or the pressure which drives oil to the surface. The rate of oil 

or gas recovery is easier to control when artificial method is used and the extraction rate 

of oil or gas can be incorporated as part of mitigation strategy of sanding.  

 

3.2.3. Properties of reservoir fluids 

 

Reservoir oil is a mixture of hydrocarbons which may exist in the solid, liquid or gaseous 

phases, depending on the conditions of temperature and pressure. Reservoir oil can vary 

from a light liquid with a viscosity similar to water (1 Pa·s) to a very viscous material (100 

Pa·s). Even though water has been displaced by the influx of hydrocarbons, it is always 

present in the pore space of a reservoir. 

Gas in the reservoir can be contained in the oil as a solution depending on the pressure 

of the fluid. When the liquid (oil) is saturated it cannot contain more gas into the 

solution, what means that there is gas in the solution and gas that is not contained into 

the oil (hence there are two phases: oil with dissolved gas and the gas that is not into 

the solution). When the reservoir oil is undersaturated it is capable of containing more 

gas and the reservoir is single phase. The bubble point is the pressure above which the 

fluid behavior in the reservoir is single phase and the oil is said to be undersaturated. As 

the reservoir pressure drops below bubble point, gas can be released and two phases 

appear, gas and oil. The bubble point depends on the temperature of the reservoir. The 

oil at surface conditions is termed stock tank oil and the gas produced solution gas. 
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The oil volume factor B0 is the relationship between the volume of the oil and its 

dissolved gas at reservoir condition to the volume at stock tank conditions: volume in 

barrels (reservoir barrel, rb) occupied in the reservoir by one stock tank barrel (one stock 

tank barrel, stb) of oil plus its dissolved gas (dissolved gas contained in the produced oil). 

Values of oil volume factor typical range between 1 rb/stb for crude oil systems 

containing little or no solution gas to nearly 3 rb/stb for highly volatile oils. The total 

formation volume factor Bt or the two-phase volume factor is defined as the volume 

occupied in the reservoir by one stock tank barrel of oil plus the free gas that was 

originally dissolved in it. The volume of one UK barrel is 164 L, and the volume of one US 

barrel is 119 L.  

The specific gravity of a liquid is the ratio of its density to that of water at the same 

temperature and pressure. It is sometimes measured at o60  and 1 atm. The petroleum 

industry uses another term called API
o  gravity where 

 

5.131
141.5

API
0

-=
g

o

  Eq. 3.1 

 

where 
0g  is specific gravity at o60  and 1 atm. Values of the specific gravity of the oil 

range between 10 and 50 API
o , equivalent to 

0g  values between 1 and 0.8. 

 

3.3. Sand production: problem definition 

 

During the oil recovery, the rock around the wellbore is plastified, decohesioned and 

weakened due to the stress changes around the cavity (Papamichos, 2006). The 

weakened and decohesioned material may be eroded away by the produced fluid. Sand 

production is the erosion of the formation sand during this process. It often occurs in 

sandstone reservoirs. The sand production is usually given in petroleum engineering in 
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pounds per thousand barrels (pptb). This is the weight of the sand divided by the volume 

of the oil in one thousand barrels (volume of the sand production divided by 164 m3 for 

UK barrels or divided by 119 m3 for the US barrels). Table 3.1 gives examples of sand 

production values of two different field data. Veeken et al. (1991) reported that typical 

sand production levels (for a manageable regime and not chocking the field) are 2.1-210 

pptb in oil producers.  

Papamichos (2006) described three types of sand production depending on the sand 

production rate: the no sand regime, the manageable sand regime, and the catastrophic 

sand regime (when sand is produced at such a high rate that the well is chocked). It is 

important to predict both the onset of sand production and the moment when the 

catastrophic sand regime is initiated, because sometimes the manageable sand regime 

can be a good choice (as it is explained below). 

On the other hand, Veeken et al. (1991) classified sand production types in three 

different kind of categories, depending on the frequency of the events: the transient 

sand production, the continuous sand production and the catastrophic sand production. 

Transient sand production refers to a sand produced concentration decreasing in time 

under constant well production conditions in these conditions the sand concentration, 

the cumulative sand volume and the decline period vary considerably. The continuous 

sand production occurs when the sand is produced constantly. Catastrophic sand 

production refers to events where a high rate sand influx causes the well suddenly choke 

and/or die. The continuous and catastrophic sand production cases are not so distant 

because catastrophic sand production could also be the result of a large continuous sand 

cut (Veeken et al., 1991).  

Sand production increases the porosity close to the oil well; this can have a beneficial 

effect on the hydrocarbon production (Geilikman & Dusseault, 1997; Vaziri et al., 2002). 

However, several problems may arise due to sand production: clogging up of the well, 

damage of the well equipment (e.g. erosion of the production equipment), well 

instability due to the loss of material and damage of the formation, the necessity to 

handle large amounts of solids at the rig, etc (Fjar et al., 2008). Moreover, sand 

production will lead to a change in the geometry of the producing sand face.  
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Table 3.1. Examples of sand production. 

Reference Well Average sand produced (pptb) Maximum sand produced (pptb) About the well 

Veeken et al. (1991)  0-5 30 Light oil well 

Palmer et al. (2003) A/3 40 120 Unconsolidated sand reservoir 

Bibobra et al. (2015) X17 0.005 0.8 Fields in the Niger Delta oil province 

Bibobra et al. (2015) WX4 0.1083 35.46 Fields in the Niger Delta oil province 

Bibobra et al. (2015) W5 2.89 319.9 Fields in the Niger Delta oil province 

Al-Awad and Al-Ahaidib (2005)  51 10 200 Medium oil from a weak sandstone formation 

Al-Awad and Al-Ahaidib (2005) 48 10 60 Medium oil from a weak sandstone formation 

Al-Awad and Al-Ahaidib (2005) 20 10 30 Medium oil from a weak sandstone formation 

Al-Awad and Al-Ahaidib  (2005) 11 10 20 Medium oil from a weak sandstone formation 

Dickson (2014) A-64-D4 33 40 Unconsolidated sandstone - Niger Delta wells 

Dickson (2014) A-64-D2 3 8 Unconsolidated sandstone - Niger Delta wells 

Dickson (2014) A-65-D8 2 2 Unconsolidated sandstone - Niger Delta wells 
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Consequently, studying the sand production process and developing methods to control 

sanding are of paramount importance for safe and economical hydrocarbon production. 

On the other hand, overestimating the risks of sand production could lead to installation 

of unnecessary sand control equipment with huge cost implications. For some sand 

regimes the sand may be produced at such a low rate that it is still acceptable from an 

operational point of view.  Therefore, it is of interest to be able to predict not only the 

conditions for onset of sand production, but also the rate of sand production. 

There are different parameters influencing sand production. These parameters can be 

grouped into three categories (Table 3.2): the physical properties of the reservoir 

formation and the fluid, the well installation and completion, and the petroleum 

recovery process (Veeken et al., 1991). 

Cement bonding may have a significant impact on sand production. Strong bonding in 

the material ‘delays’ particle breakage and prevents significant particle movements. The 

cemented material may be located along the pore channels, what reduces both porosity 

and permeability. 

There are different kinds of sand control strategies that can be incorporated in the 

design and installation of the perforations along which the oil flows into the well. 

Mechanical retention is a sand control mechanism that retains a certain portion of the 

formation material; horizontal well screens and gravel packs are the mechanical 

retention methods more used (Kuncoro et al., 2001). Plastic consolidation is also a sand 

control mechanism where the formation sand is cemented with some chemical injected 

to reduce the permeability around the wellbore (Kuncoro et al., 2001). Controlling oil 

recovery rate can also be considered part of the sand production control strategy. 

Finally, perforation design may be also an element to take into account in the sand 

control strategy (Bellarby, 2009; Cheung, 2010). Perforations reduce sanding potential 

because perforation diameters are smaller than a wellbore. 
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Table 3.2. Parameters influencing sand production (Veeken et al., 1991). 

FORMATION 

Rock 

- Strength 

- Vertical and horizontal in-situ stresses (change during depletion) 

- Depth (influences strength, stresses and pressures) 

Reservoir 

- Far field pore pressure (changes during depletion) 

- Permeability 

- Fluid composition (gas, oil, water) 

- Drainage radius (maximum radius of fluid production) 

- Reservoir thickness 

- Heterogeneity 

COMPLETION 

- Wellbore orientation, wellbore diameter 

- Completion type (openhole/perforated) 

- Perforation methods (height, size, density, phasing, under/overbalance) 

- Sand control (screen, gravel pack, chemical consolidation) 

- Completion fluids, stimulation (acid volume, acid type) 

- Size of tubulars (casing) 

PRODUCTION 

- Flow rate 

- Drawdown pressure (difference between the average reservoir pressure and the wellbore 

flowing pressure) 

- Flow velocity 

- Damage (skin; variations in permeability in the critical near-wellbore region)  

- Bean-up*/shut-in policy (flow regulation processes that cause pore pressure fluctuations-  

Bean-up is a sequence of choke settings in the start-up of a well to apply stresses in the 

formation with the intention of strengthening the formation) 

- Artificial lift technique 

- Depletion 

- Water/gas coning 

- Cumulative sand volume 
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3.4. Mechanisms of sand production 

 

Sand production process involves two mechanisms: localized plastification and failure of 

the rock around the cavity and the transportation of sand particles (erosion) due to the 

fluid drag (Papamichos, 2006). These two mechanisms are coupled to each other, since 

stress concentrations around the cavity lead to localized damage, which increases the 

amount of cohesionless material, and the decohesioned matrix of sand particles may be 

mobilized by the fluid flow. Moreover, the erosion of sand particles may reduce the 

strength and increase the instability around the cavity. Methods used to recover the 

reservoir oil, described in Section 3.2.2, affect sand production, as for example 

waterflooding; in this method water is pumped into the reservoir to ‘push’ the oil to 

flow, and is regarded as one of the causes of sand production. 

To study experimentally the stress behaviour around the borehole and how it affects 

sand production process, modified thick wall cylinder (TWC) tests have been carried out 

by many researchers (e.g. Papamichos et al., 2001; Papamichos & Vardoulakis, 2005; 

Ispas et al., 2006). According to these tests, when the rock near the cavity reaches the 

peak strength, it yields and plastifies. Increasing external stress, localized failure occurs 

to the weakened material. Continued sand production depends on growth of the 

weakened zone, which requires increase of the external stress level (Tronvoll et al., 

1997). Two different failure patterns are shown in Fig. 3.9, the lateral and the axial 

failure. Lateral failure occurs for high circumferential stress near the cavity, and axial 

failure occurs for high axial stress near the cavity. Lateral failure is in the form of 

breakouts or shear bands that run all along the length of the hole, and axial failure is in 

the form of shear bands toroidally shaped around the perimeter of the hole 

(Papamichos, 2006). 

Erosion is the transport of sand particles through the rock matrix and it has been also 

proposed as another mechanism leading to sand production (Papamichos & 

Vardoulakis, 2005; Papamichos et al., 2001). Erosion occurs either when the drag force 

of the fluid is large enough to overcome the cohesive strength of the material and carry 

the particles away or when the drag force of the fluid is large enough to carry the 
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dislodged and weakened materials away with the flow. Finer particles (original 

depositional or created by particle breakage) can also be transported by the fluid. The 

erosion has the effect of reducing the strength and/or increasing the permeability of the 

rock at these sites. Tronvoll et al. (1997) observed experimentally that once sand 

production is triggered, it appears to depend on the fluid rate. 

 

 

Fig. 3.9. CT (Computer tomography) scan sections normal and parallel to the hole axis showing cavity 

failure due to high (a) circumferential and (b) axial stress on Red Wildmoor sandstone (Papamichos, 2006) 

 

A sequence of X-ray Computer Tomography (CT) scans of a specimen under compression 

and radial fluid flow towards the cavity is shown in Fig. 3.10. The material initially fails 

close to the cavity; with increasing stress more material fails and it is eroded and 

removed by the flowing fluid resulting in a larger cavity. 
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Fig. 3.10. Sequence (left to right) of perforation failure and sand erosion under external compression and 

fluid flow towards the cavity. X-ray CT scan sections along the hole axis of a hollow cylinder specimen 

tested in a laboratory (Papamichos, 2006) 

 

3.5. Sand production prediction methods 

 

Predictions for where and under which conditions sand production occurs, and also the 

sand production rate, are an important part of the study for an optimal well 

development, completion and exploitation strategy. To predict sand production there 

are different methods commonly used. These methods can be classified into four 

different categories: empirical methods, laboratory methods, theoretical modelling and 

numerical methods.  

Field observations, laboratory experiments, theoretical modelling and numerical 

methods are highly complementary and should be combined to ensure a realistic and 

consistent approach to sand production prediction. Laboratory tests and theoretical 

modelling should be calibrated and validated using field data (Rahmati et al., 2013). 

Moreover, the extrapolation of laboratory tests to field conditions requires theoretical 

modelling and, on the other hand, theoretical modelling needs laboratory strength data 

as an input. Finally, theoretical models are calculated for each sand production problem 

using numerical methods. 
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3.5.1. Empirical methods 

 

Empirical methods link several parameters from the field and monitoring data to predict 

sand production onset (Veeken et al., 1991). Correlations of the parameters listed in 

Table 3.2 are often dependent on the location, the well completion method and might 

vary from one oil-field to another. Normally, only a small selection of parameters is used 

due to the practical difficulties of monitoring and recording data of all the wells in a field 

(Veeken et al., 1991). These methods do not offer means to estimate the amount of 

sand production, therefore sand production is usually overestimated and lead to 

unnecessary sand controlling installation.  

One method based on empirical correlations is establishing a critical depth. This criterion 

is based on the assumption that rock strength usually increases with depth. Below the 

critical depth sand control is not needed. The critical depth is established from field 

experience. This method is used in several deltaic environments (Veeken et al., 1991). 

Another example of an empirical criterion depending in only one parameter is to avoid 

porosities higher than 0.3 (Bellarby, 2009). 

Another method based on empirical correlations specifies the maximum allowable 

drawdown for a vertically cased perforated well for sand free oil recovery (Vaziri et al., 

2002). Drawdown is defined as the difference between the pore pressure far from the 

well and the well pressure. It is often convenient to use drawdown rather than well 

pressure to describe the pressure conditions in the well. The critical drawdown is the 

maximum drawdown value for which no sand is produced. The critical drawdown 

depends on the depth of the reservoir (Vaziri et al., 2002), therefore it is usually an 

empirical method depending on two parameters. Drawdown pressure and sonic transit 

time (the time sound travels across the reservoir per unit distance, obtained with 

borehole acoustic and wave propagation methods) can also be correlated (Veeken et 

al., 1991) as it is shown in Fig. 3.11. 
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Fig. 3.11. Total drawdown ( td
ΔP ) versus transit time ( c

tD ) for intervals with and without sand problems 

(Veeken et al., 1991) 

 

Sand production can also be correlated with more than one parameter at the same time 

(e.g. depth, production rate, drawdown pressure, productivity index, shaliness, etc). For 

example, Palmer et al. (2003) developed an empirical model to predict the onset of sand 

production correlating the critical bottom hole flowing pressure (the fluid pressure at 

the bottom of the hole when the sand production starts), the reservoir pressure and the 

total principal major and minor stresses. In this model, the criterion for sanding is (Vaziri 

et al., 2002; Palmer et al., 2003) 
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(where n  is the Poisson’s ratio, defined in   Eq. 2.20, and a is the Biot 

coefficient, defined in Eq. 2.47) and y
s  is the formation strength near the opening 

 

TWCy S·1.3=s   Eq. 3.3 

 

where STWC is the strength as determined in the thick-walled cylinder test. The factor 3.1 

includes the scale transformation from TWC laboratory sample to field.  TWC laboratory 

test is explained in next Section 3.5.2. 

 

3.5.2. Laboratory methods 

 

In-situ testing is a difficult task due to the costs involved in testing at reservoir depth. In 

order to observe and simulate sand production in a controlled environment, laboratory 

sand production experiments using modified TWC tests are carried out by many 

researchers (e.g. Veeken et al., 1991; Papamichos et al., 2001; Wu and Tan, 2002; Nouri 

et al., 2004, 2006; Ispas et al., 2006; Papamichos, 2006; Papamichos et al., 2010; Dresen 

et al., 2010; Fattahpour et al., 2012). This kind of testing gives insights into the sand 

production mechanisms and in the influence of the various field and operational 

parameters on sand production. However, these tests have some limitations, as it is 

easier to sample stronger rock than weak and uncemented rock. Moreover, Holt et al. 

(2000) and Alvarado (2007) highlighted that core samples from deep holes experience 

stress-release during sampling; this makes the experimental results gathered by testing 

these samples not an appropriate representation of the in-situ behaviour of the material 

and might provide a false representation of the likelihood of sand production. 

Schematic examples of modified TWC tests are shown in Fig. 3.12. The outer diameter 

of the samples is usually up to 100 mm (larger than the usual TWC tests) and the size of 

the inner cavity is about 20-25 mm. The inner cavity can be drilled through all the sample 
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from one end to the other (Papamichos et al., 2001); however, to assess the end effects 

of a perforation, some researchers (e.g. Ispas et al., 2006) have carried out tests on 

samples where the inner cavities were drilled only one third to half way into the sample. 

In some tests, fluid flow is introduced into the sample in order to study its impact (e.g. 

Tronvoll, 1997; Papamichos et al., 2001; Papamichos, 2006; Ispas et al., 2006; Nouri et 

al., 2004, 2006; Fattahpour et al., 2012). The axial and confining stress can be controlled 

independently; therefore, samples can have anisotropic stress conditions (e.g. Nouri et 

al., 2004, 2006; Ispas et al., 2006; Papamichos et al., 2010). To provide a 3D view of the 

failure patterns, some researchers have used X ray CT scans (e.g. Ispas et al., 2006; 

Papamichos, 2006; Papamichos et al., 2010), as shown in Fig. 3.13. 

Some examples of results obtained using TWC are summarized in Table 3.3. 

Theoretical models (e.g. Risnes et al., 1982; Chen & Haberfield, 1999) and numerical 

analysis (e.g. Papamichos et al., 2001; Nouri et al., 2004, 2006) sometimes are used to 

better understand the problem and to evaluate the stresses distribution across the 

sample in laboratory tests. Moreover, the predictions of finite element modelling may 

be calibrated with strength data from TWC tests on material from the actual formation. 

On the other hand, theoretical sand prediction models can be validated against the 

laboratory observations and the laboratory sand production experiments can be used 

as a field sand production tool after translation of the test results to the field situation. 

Finally, TWC experimental results can be used to develop an analytical model (e.g. 

Papamichos et al., 2010). 

 

Fig. 3.12. Modified TWC tests for sand production research (Cheung, 2010): (a) Papamichos et al. (2001), 

and (b) Ispas et al. (2006). 

( (
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Fig. 3.13. X-ray CT scans of the testes specimen (Papamichos, 2001): (a) vertical cross section, and (b) 

upper, (c) middle, and (d) lower horizontal cross section. 
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Table 3.3. Laboratory tests results given in the literature. 

 Laboratory results 

Dresen et al. (2010) The borehole breakouts initiated close to the borehole wall and formed a symmetric and planar structure. 

There was a critical isotropic stress required to initiate borehole breakouts. That critical isotropic stress decreases with 

increasing borehole radius and converges towards the uniaxial compressive strength. 

Papamichos et al. (2010) Under unequal lateral stress the hole strains in the major and minor lateral stress directions were different. An axial stress 

anisotropy had a significant effect on the borehole failure mode, with failures occurring in planes normal to the hole axis. 

Papamichos (2006) The cavity failure strength increased with decreasing the hole diameter. 

The size effect was also observed to depend on the sandstone class with the brittle sandstones exhibiting stronger size effect, 

the ductile milder size effect and the compactive practically none existent size effect. 

Papamichos et al. (2001) For low stress levels, it was osbserved that there was not a clear correlation of sand production wih fluid flow rates.  

As the external stress increased, the sand production rate increased with fluid flow rate. 

Above a critical fluid flow rate the sand production rate increased gradually with increasing fluid flow rate. 
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3.5.3. Theoretical modelling - Analytical methods 

 

There are different kind of theoretical sand prediction tools depending on the sand 

failure mechanism considered in the formulation. These mechanisms responsible for 

sand production are: compressive failure, tensile failure and erosion (Veeken et al., 

1991). Failures and erosion occurs near the cavity wall. Shear-compressive failure refers 

to excessive circumferential stress near the cavity which causes shear failure of the 

formation material. Tensile failure refers to a tensile radial stress exceeding the tensile 

failure envelope. Erosion occurs when the drag forces of the fluid flow exceed the 

apparent cohesion of the particles, and it is a special form of tensile failure. 

Compressive failure modelling result is extremely sensitive to the choice of yield 

envelope and failure criterion (Veeken et al., 1991). One may choose between e.g. 

Drucker-Prager and Mohr-Coulomb yield envelopes and between failure criteria based 

on maximum plastic strain, maximum plastic zone size or maximum stress, etc. The 

material model needs to be validated against lab and field sand production data. 

Theoretical modelling of compressive failure is useful in qualitative terms. A reasonable 

consensus exists on how to model a tensile failure (Veeken et al., 1991). Tensile failure 

provides a reasonable description of laboratory sand production tests carried out using 

unconsolidated sand (cohesion corresponding to capillary forces) and weakly 

consolidated material (which experienced dilation). The combined use of compressive 

and tensile failure in the shape of a stability diagram has been introduced by Morita et 

al. (1989a,b). Finally, there is a class of sand production models based on erosional 

mechanisms (e.g. Vardoulakis et al., 1996; Geilikman & Dusseault, 1997). In these 

models fluid velocity becomes an important factor and the erosion mechanism is such 

that grains can pass through interconnected void spaces. Furthermore, matrix defects 

are considered as erosion starter points (Nouri et al., 2006). 

Analytical methods are only suitable to predict the onset of sand production (Rahmati 

et al., 2013). Analytical methods have some limitations, as most of them are only valid 

under simplified geometrical and boundary conditions. Due to this limitation they are 

not valid in complicated field-scale problems (Rahmati et al., 2013).  
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3.5.4. Numerical methods 

 

3.5.4.1. Continuum approaches 

 

Continuum models are commonly used to simulate the behaviour of the soil. The two 

methods that are usually applied are the finite difference method (FDM) or the finite 

element method (FEM). Sand production is usually predicted with continuum fluid-

mechanical coupled models, where the reservoir rock is treated as a continuum. Stress 

and strain can be calculated around the wellbore and the effect of fluid flow can be 

examined. The volume of sand particles produced can be estimated setting a sanding 

criterion. Therefore, using a continuum model the formulation of several constitutive 

relations is necessary: a stress-strain relation for the solid skeleton (constitutive model), 

a description of the fluid flow, a coupling between flow and skeleton variables (e.g. an 

effective stress definition) and a sanding criterion to identify the volume produced. 

Near the wellbore strong deformations of the host formation, leading to complete 

disaggregation are characteristic, and elastic and elastic-plastic formulations that are 

typically used in many rock mechanics applications, cannot be used with confidence. 

Indeed, Rahmati et al. (2013) pointed out that the optimum constitutive models are 

those that are based on the critical state theory and use a combined isotropic and 

kinematic hardening model which allows capturing all kinds of failure (shear, tensile ad 

compressional). 

For the fluid flow description, these models usually assume a Darcian flow (e.g. 

Papamichos & Vardoulakis, 2005). Despite the successes obtained (e.g. Papamichos & 

Vardoulakis, 2005; Nouri et al., 2006) it is recognized that solutions based on Darcy’s 

formulation are not valid for the sand production problem, which requires a numerical 

approach that can handle flow regimes that range from creeping to high Reynolds types 

of flows near the wellbore.  

A sanding criteria must also be used to simulate the mechanisms responsible for sand 

production (Rahmati et al., 2013). A realistic sanding criterion consists of a combination 
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of erosion criterion, tensile criterion and compression criterion, and must consider the 

effect of fluid flow in the eroded material (Rahmati et al., 2013). Finally, changes in 

boundary conditions should be considered because as sand is produced a sanded zone 

is formed around the borehole or the perforations (Rahmati et al., 2013). 

Summarizing, it is fair to say that the formulation and verification of the constitutive 

relations required in a continuum model of the sanding problem remains a difficult task, 

because of the large number of interactions and non-linearities intrinsic to the problem. 

  

3.5.4.2. Discrete element method 

 

The difficulties presented by continuum approaches have encouraged the use of 

discrete-element based approaches, which by redefining the fluid and/or the solid 

physics at the micro-scale allow a simpler formulation of the problem and a better 

understanding of some of its features. For instance, the disaggregation of particles from 

the rock mass and its transport through the pore structure can be most naturally 

described in DEM models. DEM can model the effects of bonding, as well as the relative 

translation, sliding and rotation between the particles.  

DEM can also be used to investigate the sanding problem under the influence of fluid 

flow. The fluid-solid coupling is a two stage modelling process. Firstly the fluid system is 

solved based on the problem geometry in the DEM model and the fluid boundary 

conditions. Subsequently, the forces on the individual particles exerted by the fluid are 

calculated and applied to the DEM particles as external forces. Finally, depending on the 

type of the coupled DEM-fluid approach, different types of fluid flows can be used, 

including flows at high Reynolds numbers. 

Even using DEM a number of constitutive (solid-solid contact law; fluid-solid interaction) 

and numerical choices (e.g. 2D vs 3D) remain and, therefore, a variety of sand 

production models of the problem have been proposed with different focus and 

features (e.g. Dorfmann et al., 1997; Quadros et al., 2010; Boutt et al., 2011). Cheung 

(2010) performed three-dimensional simulations coupling DEM with fluid flow to model 
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sand production. A detailed discussion of this work is postponed until Chapter 6, after 

the fundamentals of DEM and coupled fluid-DEM models have been presented. 

Although DEM-based methods are recognized as useful tools to understand the 

mechanism of sanding, they also suffer from several shortcomings (Rahmati et al., 2013). 

First, they are computationally costly and therefore the size of problems that can be 

practically computed is limited. Furthermore, in most models the micro properties 

cannot be determined by direct measurements but need to be calibrated instead on 

macro responses, by reproducing separate laboratory tests. This is frequently a slow and 

difficult process. 

 

3.6. Stresses around a wellbore – Risnes solution 

 

Despite the limitations indicated before for their application in practical problems, 

analytical methods remain interesting because they offer a benchmark against which 

more advanced numerical methods can be validated. With this purpose in mind we 

expose here one of the better known analytical solutions, that due to a Norwegian team 

lead by the late R. Risnes. 

Risnes et al. (1982) obtained stress distributions around a wellbore or cavity applying 

theories of elasticity and plasticity, assuming the problem to be axi-symmetric and that 

the reservoir material is elastic perfectly plastic with a Mohr-Coulomb failure criterion. 

The fluid flow through the material was assumed Darcyan. Moreover, the flow is 

assumed stationary and constant pore pressure conditions are supposed to apply. The 

geometry is shown in Fig. 3.14. The material adjacent to the cavity, bounded by radius 

Rc behaves plastically and the material outside this zone is assumed to behave elastically. 

Risnes et al. (1982) derived analytical expressions to estimate the radial, circumferential 

and vertical stress in the material as a function of the radial distance from the centre of 

the cavity. The solution assumed the existence of an inner plastic zone, closer to the 

cavity, and an outer elastic zone. The limit between the two zones is the plastic radius 

or the plastic boundary. That is a common assumption in cavity expansion theory (e.g. 
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Yu & Houlsby, 1991; Yu, 1992; Yu & Rowe, 1999). The material is supposed initially 

elastic, and after initial yielding at the cavity wall a plastic zone within the region 

between the inner wall and the plastic radius forms (Yu, 1992). 

 

 

Fig. 3.14. Geometry considered by Risnes et al. (1982) 

 

Expressions for the stresses in both zones were proposed. They are not unique, but 

dependent on the relative magnitudes of radial, circumferential and vertical stresses at 

the plastic boundary. A Poisson’s ratio limit was found: for Poisson’s ratio greater than 

the limit value, the circumferential stress is the greatest at the elastic/plastic boundary, 

while the vertical stress is greatest for smaller values. The Poisson’s ratio limit value is 

given by the following expression: 
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where f  is the passive failure angle of the material ( 245 jf += o

, where j  is the 

internal friction angle), zos  is the vertical stress at the outer boundary, a  is the Biot 

coefficient, Po is the fluid pressure at the outer cylindrical boundary and So is the 

cohesive strength. Fig. 3.15, Fig. 3.16 and Fig. 3.17 show the dependence of the Poisson’s 

ratio limit on the fluid pressure for different parameters. 

It can be observed that the Poisson’s ratio limit increase when the friction angle 

decrease. The Poisson’s ratio limit for friction angles greater than o40  and smaller than 

o30  are unrealistic values for rocks (e.g. Section 5.4.1, Table 5.3). In that cases the 

Poisson’s ratio value increases when the pore pressure increases and these limits are 

greater than the typical values for rocks (e.g. Table 5.3). For friction angles between 
o30  

and 
o40  the Poisson’s ratio limit has a value around the typical range for rocks (between 

0 and 0.3, e.g. Table 5.3) and a special care should be taken because the relative order 

of the principal stresses will depend on the pore pressure value. In Fig. 3.16 and Fig. 3.17 

it is shown that the dependency of the Poisson’s ratio limit always decrease when the 

pore pressure increases. Poisson’s ratio limit value only increases with the pore pressure 

when the friction angle is greater.
 

 

  

Fig. 3.15. Poisson’s ratio limit versus pore pressure at the outer cylindrical boundary (Po) for different 

values of friction angle j , 0.1=a , S0 = 35 MPa and MPa50=
zo

s . 
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Fig. 3.16. Poisson’s ratio limit versus pore pressure at the outer cylindrical boundary (Po) for different 

values of a , 
o

30=j , S0 = 35 MPa and MPa50=
zo

s .

 

 

 

Fig. 3.17. Poisson’s ratio limit versus pore pressure at the outer cylindrical boundary (Po) for different 

values of 
zo

s , 
o

30=j , 0.1=a , S0 = 35 MPa. 

 

When the circumferential stress is the greatest at the elastic/plastic boundary, radial 

and circumferential stresses within the plastic zone can be determined as follows 
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where 
rs  and 

qs  are the radial and circumferential stresses for a given radial distance 

r, fm  is the fluid viscosity, q is the fluid flow rate, kc is the permeability of the material 

in the plastic zone, A1 is an integration constant, and 

 

1tan
2 -= fW   Eq. 3.7 

( )224
1tan1tan +-+= fnfV   Eq. 3.8 

 

Another possibility is that the circumferential and the vertical stresses remain equal. In 

that case, radial and circumferential stresses are determined as follows: 
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Finally, when the vertical stress is greater than the circumferential stress at the 

plastic/elastic boundary, the solution for the radial and circumferential stresses are 
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Where B1 and B2 are integration constants and 

 

1tan2tan
242 +-= fnfg   Eq. 3.13 

 

The material ouside the plastic zone behaves elastically, and the same expression 

applies in all cases 
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where 
ros  is the radial stress at the outer boundary, 

ris  is the radial stress at the inner 

boundary and Po is the fluid pressure at the outer boundary. 
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A MATLAB code was written to evaluate Risnes et al. (1982) solution. The code is 

explained in detail in Appendix A. Fig. 3.18 and Fig. 3.19 show the analytical 

representation for different material strength and radial fluid flow. The elastic/plastic 

boundary coincides with the maximum value (peak) of the circumferential stresses. The 

peak of the circumferential stress increases when the cohesive strength increases. The 

plastic region extent decreases as the cohesive strength increases and the fluid flow 

velocity decreases. 

   

 

Fig. 3.18. Analytical solution: impact of material strength, Risnes et al. (1982). q = 0 cm3/s; Po = Pi (q = 0) = 

32065 kPa; Ri = 0.1 m; Ro = 10.0 m; 
zo

s = 65500 kPa; o

30=j ; a = 1.0; and n = 0.45. 

 

 

Fig. 3.19. Analytical solution: impact of the fluid flow rate, Risnes et al. (1982). Po = Pi = 32065 kPa; Ri = 0.1 

m; Ro = 10.0 m; 
zo

s = 65500 kPa; o

30=j ; So = 101.4 kPa; a = 1.0; and n = 0.45. 
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3.7. Summary 

 

Oil reservoirs are found in sedimentary rocks, which are composed by assemblies of 

bonded particles. Sedimentary rocks where sand production is more common are 

sandstones. Sandstones are more permeable than other sedimentary rocks. 

Oil well construction starts with drilling. After the well is drilled, the next step is 

completion. In this process the sandstone around the hole can be left-unsupported or it 

can be supported by casing installed and cemented to the formation; the casing is 

perforated in the reservoir zones, so that the hydrocarbons can flow into the formation. 

Frac packing is another technique where a fracture is generated and then filled with 

proppants to create a highly permeable slit in the formation through which the 

hydrocarbons can be produced. 

There are different methods for hydrocarbon recovery. Natural recovery relies on the 

fact that fluid flows from high to low pressure and according to the thermodynamic 

properties of the reservoir. On the other hand, ‘artificial’ methods include techniques to 

enhance oil recovery, such as waterflooding, chemical flooding, thermal recovery and 

miscible recovery. 

Sand production is the erosion of formation sand during the drilling and the process of 

oil recovery. During the oil recovery, the rock around the wellbore is plastified, 

decohesioned and weakened due to stress concentrations around the cavity. Fluid flow 

transports the decohesioned material. 

Even though sand production can have a beneficial effect on the hydrocarbon 

production, several problems may arise due to sand production. Studying the sand 

production process and controlling sanding are of paramount importance for safe and 

economical hydrocarbon production. 

Sand production process involves two mechanisms: localized plastification and failure of 

the rock around the cavity and the erosion of sand particles due to the fluid flow. These 

two mechanisms are coupled to each other. Different failure patterns can be generated 

depending on the direction of the external stresses. 
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Methods commonly used to predict sand production can be classified in four categories: 

empirical methods, laboratory methods, theoretical models and numerical methods. 

Different methodologies are commonly used at the same time and they complement 

each other. Balance should be maintained between all sources of information. 

Empirical methods link several parameters from the field and monitoring data to predict 

sand production onset. These correlations depend on the location, the well completion 

method and might vary from one oil-field to another. These methods do not offer means 

to estimate the amount of sand production and are typically over conservative. 

Modified TWC tests are commonly used to simulate sand production in a controlled 

environment. It helps develop insights into the sand production mechanisms that are 

not possible to observe in-situ. Moreover, TWC tests are a useful method to calibrate 

the strength data for theoretical and numerical models. 

Theoretical models use mathematical formulation to predict sand production. There are 

different formulations depending on the kind of failure taken into account: compressive 

failure, tensile failure and erosion. Continuum numerical models use these theoretical 

models to predict sand production. Using a continuum model the formulation of several 

relations is necessary and it is recognised that remains a difficult task, because of the 

large number of interactions and non-linearities intrinsic to the problem. These 

difficulties have encouraged the use of discrete-element based approaches, which by 

redefining the fluid and/or the solid physics at the micro-scale allow a simpler 

formulation of the problem and a better understanding of some of its features. The 

disgreggation and the erosion of sand particles are better described with DEM methods. 

Moreover, high Reynolds number types of fluid can be also represented. 

Finally, an analytical solution for stresses around a wellbore have been presented in this 

chapter (Risnes et al., 1982). The material was assumed to behave elastic perfectly 

plastic and the Mohr-Coulomb failure criterion was applied. The numerical model 

presented later in this thesis will be validated using this analytical solution. 
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Chapter 4 - Discrete Element Method 

 

4.1. Introduction 

 

Models based on the discrete element method explicitly describe the interaction 

between particles. Because they seem well-adapted to its nature, they has been used in 

the recent years to simulate granular materials and soil. It is a useful tool when erosion 

takes an important role in the problem under study and/or when large deformations are 

present. Due to the importance of erosion in sand production process, DEM has been 

chosen as a basis for the simulations presented in this work.  

In this chapter the equations and basic theory underlying DEM are presented in Section 

4.2. The contact models between particles employed in this thesis are explained in 

Sections 4.3 and 4.4. Section 4.5 introduces the damping force and the boundary 

conditions used in this thesis are explained in Section 4.6. A brief overview of some 

applications of DEM to soil mechanics is presented in Section 4.7. Finally, representation 

of DEM output data with ParaView is presented in Section 4.8. 

 

4.2. DEM fundamentals 

 

DEM was proposed originally by Cundall & Strack (1979) to represent the macroscopic 

behaviour of particulate matter through the interactions between discrete individual 

particles that usually have simple geometries such as spheres in 3D or disks in 2D. These 

ideal particles are rigid but small overlaps are allowed at the contact points when a soft 

contact model is applied. Particles are allowed to lose contact if overlap between the 

particles no longer exists. 

DEM provides micromechanical quantities and parameters that cannot be easily 

obtained from experimental tests and it can capture the particle-scale interactions 
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underlying the observed macro-scale behaviour of soils and other geomaterials 

(O’Sullivan, 2011). DEM simulations can provide dynamic information, such as 

trajectories and transient forces acting on individual particles, which are extremely 

difficult, if not impossible, to obtain by physical experimentation.  

In this thesis, the three-dimensional DEM code, PFC3D (Particle-Flow Code 3D), 

developed by Itasca Consulting Group, Inc., is used (Itasca, 2008a).  This code is a 

simplified version of the general DEM, because of the restriction to spherical particles. 

Walls can be also defined to apply boundary conditions such as velocity or stresses, as 

explained in Section 4.6. The particle motion is described by Newton’s second law and 

contact forces are used to model the interaction between particles and between 

particles and walls (Zhu et al., 2007; O’Sullivan, 2011). 

The governing equations for translational and rotational motion of particle of mass m 

are 

 

ge

j

c

j FFF
dt

dv
m ++=å   Eq. 4.1 

å=
j

jM
dt

d
I
w

  Eq. 4.2 

 

where v and w  are the translational and angular velocities of the particle, respectively, 

c

jF and Mj are the contact force and torque acting on the particle by particle j or walls, 

e

jF   is the total external force acting on the particle by non-gravitational sources, and 
g

jF  

is the gravitational force. The contact force between particles is described by the contact 

model used in each case. The contact models employed in this thesis are explained in 

Section 4.3.  
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The DEM calculation algorithm uses the central-difference time integration scheme 

(Itasca, 2008a). This is an explicit time integration method. The solution of the equations 

of motion will remain stable only if the timestep does not exceed a critical value (Itasca, 

2008a). The approximation of the critical value for a particle as calculated by Itasca is  

 

å= ccrit Kmt   Eq. 4.3 

 

where å cK is the stiffness (summing all the contributions of each contact of the 

particle, see Section 4.3.2.1)  and m is the mass of the particle. The critical timestep of a 

system of particles is the minimum of all the critical timesteps calculated for each 

particle in the system. The actual time step used in any cycle is taken as a fraction of this 

estimated critical value. 

Itasca (2008a) provides a detailed description of the distinct element calculation 

algorithm. The DEM calculation cycle in each calculation cycle is represented in Fig. 4.1. 

The flow chart summarises the DEM calculation sequence and each calculation cycle 

represents a computational time step. After the geometry is defined, the calculation is 

performed for a specified number of cycles. At the beginning of each time step the 

contact forces are calculated based on the magnitude of the overlap between the 

contacting particles, or between the contacting particles and walls, and the contact 

constitutive model used. Then the resultant force on each particle is determined by 

summing the contact forces and any externally applied forces on the particle. The 

particle acceleration is then determined by applying Newton’s second law of motion. 

Finally, the incremental velocity and displacement of each particle are calculated by 

integration. Before the next calculation cycle the locations of all the particles are 

updated before the next calculation cycle begins. 
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Fig. 4.1. DEM calculation flowchart in PFC3D 

 

4.3. Contact models 

 

Two types of DEMs related to contact forces have been employed: soft-particle and 

hard-particle approaches (Zhu et al., 2007). In the majority of the models presented in 

the geotechnical literature, as well as in the work presented in this thesis, a soft particle 

approach is adopted.  
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4.3.1. Hard-particle contact models 

 

In hard particle models the interaction forces are assumed to be impulsive and hence 

the particles only exchange momentum by means of collisions (Hoomans et al., 1996; 

Zhu et al., 2007). A characteristic feature of a hard-sphere simulation is that a sequence 

of collisions is processed, one collision at time, assuming instantaneous collisions. 

Typically, hard-particle method is most useful in rapid granular flows. Hoomans et al. 

(1996) used this approach to simulate a two-dimensional gas-fluidised bed. 

 

4.3.2. Soft-particle contact models 

 

The soft-sphere method originally developed by Cundall & Strack (1979) was the first 

granular dynamics simulation technique published in the open literature. In such an 

approach, particles are permitted to suffer minute deformations (represented as 

overlaps between particles), and these deformations are used to calculate elastic, plastic 

and frictional forces between particles. A characteristic feature of the soft-sphere 

models is that they are capable of handling multiple and instantaneous particle contacts 

and the time step should be smaller than the duration of a contact (Zhu et al., 2007). 

In general, the contact between two particles is not at a single point but on a finite area 

due to the overlap of the particles, which is equivalent to the contact of two rigid bodies 

allowed to overlap slightly in the DEM. The contact traction distribution over this area 

can be decomposed into a component in the contact plane (or tangential plane) and one 

normal to the plane, thus a contact force has two components: normal and tangential, 

as it is presented in Fig. 4.2 (Itasca, 2008a). 

The approaches most commonly used in granular flows are the linear frictional model 

and the Hertz-Mindlin model. 
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Fig. 4.2. Soft contact scheme (Itasca, 2008a). 

 

4.3.2.1. Linear frictional contact model 

 

The linear contact model was proposed by Cundall & Strack (1979). In this contact 

model, the load displacement relationship between two contacting bodies is 

represented by linear springs (Fig. 4.3). 

 

 

Fig. 4.3. Linear frictional contact model (Cheung, 2010). 
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The three input parameters are the particle normal and shear stiffnesses, KN and KS, and 

the inter-particle friction coefficient
DEMm  (Cheung, 2010; O’Sullivan, 2011). The 

stiffness is constant for each particle. Normal and shear stiffnesses, Kc, between the 

contacting bodies (PA and PB) can be calculated from the particle normal or shear 

stiffness for each body, KPA and KPB, as follows 

 

PBPA

PBPA

c
KK

KK
K

+
=   Eq. 4.4 

 

The normal, FN, and shear, FS, contact forces are calculated as 

 

NN

c

N
KF D=   Eq. 4.5 

SS

c

S
KF D-=   Eq. 4.6 

 

where ND  is the overlap, SD  is the relative displacement in the tangential direction, and 

N

cK  and 
S

cK  are the contact stiffnesses in the normal and shear directions respectively. 

The limiting value of the magnitude of FS is equal to
N

DEMFm . 

This approach is commonly used in fluidized beds numerical simulations (Tsuji et al., 

1993; Xu & Yu, 1997; Xiong et al., 2005), and in other simulations as pipe or cone 

penetration (Jian et al., 2006; Butlanska et al., 2009; Climent et al., 2011). 
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4.3.2.2. Hertz-Mindlin contact model 

 

The Hertz-Mindlin theory considers the variation of the contact area between two 

contacting particles as the normal contact force changes and the non-uniform 

distribution of the pressure at the contact (Cheung, 2010; O’Sullivan, 2011). The 

equivalent tangential contact stiffnesses, 
N

c
K and 

S

c
K , are calculated from the elastic 

properties of the contacting particle A and B using the equations: 
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where the sphere-sphere contact parameters, R , G  and n , are given by 

 

PBPA

PBPA

RR

RR
R

+
=

2
  Eq. 4.9 

( )
PBPA GGG +=

2

1
  Eq. 4.10 

( )
PBPA nnn +=

2

1
  Eq. 4.11 

 

Theoretically, the more complex nonlinear models as the Hertz-Mindlin approach 

should be more accurate than linear model. It was observed by Ciantia et al. (2015) that 
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for highly crushable materials such as petroleum coke the two contact models give very 

similar but when strong granular materials are considered, the linear contact model is 

not adequate. On the other hand, the numerical investigations conducted by Di Renzo 

& Di Maio (2004) of the collision of a single particle with a flat wall showed that the 

simple linear model sometimes gives better results, and an effort should be done on the 

choice of the correct parameters in the linear model. 

 

4.4. Bonding: parallel-bond model  

 

The Parallel-bond model (PBM), which is available in PFC3D (Itasca, 2008a), is employed 

to numerically represent the mechanical effect of a cementing material deposited 

between particles. Several researchers pointed out that rock behaves like a cemented 

granular material in which cement may break (Potyondy & Cundall, 2004; Wang & 

Tonon, 2009a,b; Schöpfer et al., 2009; Cheung, 2010; O’Sullivan, 2011). The parallel-

bond contact (PBC) transmits both forces and moments between particles which is a 

reasonable assumption of load transfer at contact where there is a finite amount of 

cementing material present; therefore it can mimic the mechanical behaviour 

corresponding with rock and sandstone. The mechanical representation of the 

cementing contact is, however, partial, since it does not include the mass or volume of 

the cemented material. The “parallel” in the name refers to the inclusion of a set of 

springs with constant normal and shear stiffnesses that work in parallel with other 

contact springs, typically the linear contact springs. The parallel-bonds can also sustain 

traction and shear. Both forces and moments can be transferred between the bonded 

particles and the bond restricts the particles from rotating.  

The parameters required to define a parallel-bond are: the parallel-bond normal 

stiffness (
N

pbK , in Pa/m3), the parallel-bond shear stiffness (
S

pbK , in Pa/m3), the parallel-

bond normal strength (
N

pbS , in Pa), the parallel-bond shear strength (
S

pbS , in Pa), and the 

degree of bonding ( bonda ) (Potyondy & Cundall, 2004; Cheung, 2010; O’Sullivan, 2011). 
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When the forces acting on the parallel bond reach either of its strength limits the parallel 

bond is erased and cannot be reformed, even if the same contact appears again. 

The bond can be thought to be a virtual cylinder linking the two spheres with radius Rpb  

which equals
minRbonda , where Rmin is the radius of the smaller of the two contacting 

particles (Fig. 4.4). Therefore, the degree of bonding,
bonda , defines the ‘size’ of the 

parallel-bond (Cheung, 2010; O’Sullivan, 2011). When the volume of cement deposited 

at the contact between two particles varies (varying the ‘size’ of the parallel-bond), the 

effective stiffness and the contact stress distribution will vary, as it is shown by the 

formulation below. 

 

 

Fig. 4.4. Schematic illustration of the parallel-bond contact 

 

The forces carried out by the parallel bond in the normal and shear directions (
N

pbF  and

S

pbF ) are given by 

 

npb

N

pb

N

pb AKF d=   Eq. 4.12 
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åD= spb

S

pb

S

pb AKF d   Eq. 4.13 

 

where 
nd  is the contact normal displacement and åD Sd  is the cumulative shear 

displacement. Apb is the bond area, given by 
2

pbpb RA p= .  

Two types of moment are transmitted by the parallel bond: a spin or twisting moment (

spin

pbM ) and a bending moment (
b

pbM ). The spin moment relates to a moment caused by 

relative rotation about the contact normal. The increments in moment (
spin

pbMD  and 

b

pbMD ) caused by an incremental rotation of the particles are given by 

 

Npb

S

pb

spin

pb IKM qD=D   Eq. 4.14 

Spb

N

pb

b

pb IKM qD=D   Eq. 4.15 

 

Where Ipb is the moment of inertia of the parallel bond and equals to 4

4

1
pbRp . The 

cumulative rotation about the contact normal is given by åD nq , while the cumulative 

rotation orthogonal to the contact normal is given by åD sq . These angles are 

presented in Fig. 4.5. 
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Fig. 4.5. Bond between two particles. 
s

i
M  represents 

spin

pb
M  and 

n

i
M  represents 

b

pb
M . 

Following Eq. 4.12 and   Eq. 4.13 it should be noted that the input 

parameters 
N

pbK  and 
S

pbK  do not actually represent parallel-bond stiffness directly. The 

equivalent parallel-bond stiffness is obtained taking into account the parallel bond 

virtual radius, to obtain a total contact stiffness (Cheung, 2010) given by 

 

pbpbctotal AKKK +=   Eq. 4.16 

 

Where Ktotal is the total normal or shear stiffness and Kc is the particle-particle normal or 

shear contact stiffness. 

A further aspect to be noted is that the PBC incorporates a modulus-stiffness scaling 

relation where the contact stiffness of each particle is made dependent on the particle 

radius (Potyondy & Cundall, 2004) 

 

REK cN 4=   Eq. 4.17 

sratioN KK a=   Eq. 4.18 
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where Ec is an effective particle stiffness, 
ratioa  is the ratio between the normal and the 

shear stiffnesses and R is the particle radius. Following   Eq. 4.4, the stiffness 

of the contact can be expressed as 

 

PBPA

PBPA

c

N

c
RR

RR
EK

+
=2   Eq. 4.19 

S

cratio

N

c KK a=   Eq. 4.20 

 

where RPA and RPB are the radius of the particles in contact. The same kind of formulation 

is applied for parallel-bond stiffnesses is 

 

PBPA

cpbN

pb
RR

E
K

+
= ,

  Eq. 4.21 

S

pbratiopb

N

pb KK ,a=   Eq. 4.22 

 

where Epb,c is an effective PBC stiffness and ratiopb ,a  is the ratio between the normal and 

the shear PBC stiffness. These formulations exhibit a minor size effect for the PFC3D 

(Potyondy & Cundall, 2004) and, as it is further explained in Chapter 5, they contribute 

to make the model scale-independent. 

The relative motion between the bonded particles generates a change in stresses and 

moments within the parallel-bond. Pure tensile or shear motions create a uniform 

distribution of tensile or shear (tangential) stress across the parallel-bond. The 

maximum tensile stress, pbmax,s , and shear stress, pbmax,t  at a parallel-bond are 

calculated using: 
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pb
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-

=s   Eq. 4.23 

pb

pb

N

pb

pb

S

pb

pb R
J

M

A

F
+=max,t   Eq. 4.24 

 

where 
N

pbF  is the computed normal force at the parallel-bond (compression is positive) 

and 
S

pbF  is the computed shear force at the parallel-bond. 
N

pbM  and 
S

pbiM ,  are the 

computed moment components carried by the parallel-bond about the contact normal 

and any axis orthogonal to the contact in normal and shear directions respectively. Apb, 

Ipb  and Jpb are the area, the moment of inertia and the polar moment of inertia of the 

parallel-bond and are related to Rpb. Due to the reduced number of degrees of freedom 

in two-dimensional problems, the stresses developed at the parallel-bond can be 

calculated as follows: 

 

pb

pb

pbi

pb

N

pb

pb R
I

M

A

F ,

max, +
-

=s   Eq. 4.25 

pb

S

pb

pb
A

F
=max,t   Eq. 4.26 

 

The parallel-bond remains intact while the magnitudes of these maximum calculated 

and shear stresses are less than the tensile and shear parallel-bond strengths, 
N

pbS  and 

S

pbS . A parallel-bond will break if pbmax,a  exceeds 
N

pbS  or if pbmax,t  is greater than
S

pbS . Once 
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the parallel-bond is broken, it is irrecoverable. Particles that were in contact through a 

parallel bond can contact again after the bond is broken, but the contact model between 

them is the default one (linear, Hertzian, etc). 

 

4.5. Damping 

 

The aim of the damping in DEM is to account for energy dissipation in real situations 

that are not explicitly modelled via frictional contacts or bond breakages. The local 

damping used in PFC3D is similar to that described in Cundall (1987). The following 

damping-force is added to the equations of motion 

 

( )vFF
totald

signd-=   Eq. 4.27 

 

where v is the particle velocity, and total
F  is the resultant of other forces acting on a 

particle (contact forces, gravitational force and external forces). sign(v) is +1 when v > 0, 

-1 when v < 0, and 0 when v = 0. The damping force is controlled by the damping constant 

(δ ). A commonly employed value of the damping constant to achieve quasi-static 

conditions is 0.7. 

 

4.6. Boundary conditions: walls and servo-control 

 

In DEM simulations, displacement and force boundary conditions are commonly used 

and they can be achieved by fixing or specifying the coordinates of selected particles, by 

applying displacements to selected particles or by applying a specified force to selected 

particles (an external force is added to the contact forces acting on the particle and the 

resultant force is then used to calculate the particle accelerations and incremental 

displacements). However, these force boundary conditions cannot easily be directly 
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used with systems that include thousands of particles as the system deforms. 

Consequently, algorithms to select boundary particles are needed. There are different 

kind of boundary conditions that can be applied in DEM, as periodic walls or membrane 

boundaries. In this thesis rigid walls are systematically used to apply boundary 

conditions. 

The most widely employed boundary type is the rigid wall. These rigid boundaries are 

analytically described surfaces that can be planar or curved. Walls have no inertia and 

the contact force determined at particle-boundary contacts are used to update the 

particles coordinates only. While the force acting on the walls does not influence wall 

motion by default, the user can control the wall movement by explicitly specifying a 

relation between wall velocity and forces on walls. When the walls are moved, 

displacements and forces are applied to the assembly of particles through the walls via 

the wall-particle contacts. If a stress state is required a ‘servo-controlled’ algorithm can 

be developed to control the internal stresses by moving these boundaries. A value can 

be specified based on monitored forces or stresses (forces averaged per unit area or 

volume) within the particulate system or along the boundaries. The boundaries are then 

moved to cause a controlled change in the target stresses until the specified stress state 

is achieved. 

Rigid walls can also be used to simulate inclusions or machinery interacting with the 

granular material. For example, Butlanska et al. (2009) and Climent et al. (2011) used 

rigid wall boundaries to represent cone penetration testing (Fig. 4.6). 

 

 

Fig. 4.6. DEM boundaries in a cone penetration test (Butlanska et al., 2009). 
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4.7. Applications 

 

DEM has been used to study particle-scale interactions, to perform laboratory 

experimental tests and to reproduce field problems. However, computational cost 

makes DEM difficult to apply for real scale problems. This is the reason why the most of 

the simulations are still performed for studying the micro-scale interaction and tests that 

can be reproduced at smaller scales (e.g. problems that can be scaled to reproduce the 

same experimental results). 

As an example of a micro-scale study, sand crushing has been studied by several 

researchers. Lobo-Guerrero & Vallejo (2005) performed two DEM simulations of a pile 

in two dimensions (Fig. 4.7). Crushing was allowed during only one of the simulations 

and the results were compared with experimental data. They observed that particle 

crushing causes the production of particles of different sizes. Breakage and particle 

rearrangement were observed to induce stress relaxation, and caused the broken 

granular material to develop a lower resistance to pile penetration. Thornton & Liu 

(2004) and Golchert et al. (2004) also studied breakage performing 3D DEM simulations 

and they identified the physical processes that lead to breakage in agglomerates (Fig. 

4.8). Ciantia et al. (2015) simulated oedometric compression tests in 3D using breakable 

particles. A multigenerational DEM approach was used with a procedure that 

established the relationship between the disappearing broken particle and the new 

generation of smaller particles. Upscaling was applied to manage the increasing number 

of particles during the simulations and several strategies were considered to alleviate 

the no conservation of mass. 

Thornton & Antony (2000) presented results of 3D DEM simulations of axisymmetric 

compression and axisymmetric extension tests. Simulations were performed with a 

constant mean stress and other simulations with a constant volume. Thornton & Zhang 

(2010) explored general three-dimensional stress space an initially isotropically 

compressed system is subjected to radial deviatoric strain paths. Cui & O’Sullivan (2006) 

performed a series of DEM simulations to analyse the micromechanics of the direct 
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shear test in three dimensions. Cui et al. (2007) presented an insight into the micro-scale 

interactions experienced by particles during a triaxial test using DEM. In their approach 

they used circumferential periodic boundaries and a stress-controlled membrane and 

demonstrated that these periodic boundaries allowed material response to be captured 

accurately compared to circumferential rigid walls that show to be inappropriate. 

 

 

Fig. 4.7. Crushing study of a penetration test (Lobo-Guerrero & Vallejo, 2005). 

 

 

Fig. 4.8. Cuboidal agglomerate (Thornton and Liu, 2004). 
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Cone penetration test (CPT) studies are also performed using DEM. Jian et al. (2006) 

presented a 2D DEM study of CPT with the focus on the effect of soil-penetrometer 

interface friction and the penetration mechanism is continually investigated from 

viewpoints of deformation patterns, displacement paths, velocity fields, stress fields and 

stress paths. Butlanska et al. (2009) and Climent et al. (2011) examined the effect of 

symmetry performing CPT tests in 3D DEM with different sands. 

Calvetti et al. (2004) performed 3D DEM simulations to reproduce experimental tests to 

understand the mechanism of pipe resistance. The model is shown in Fig. 4.9. Jenck et 

al. (2009) used a two-dimensional DEM model to investigate the mechanical behaviour 

of a platform over pile in soft soil. The results presented showed that the DEM is able to 

capture accurately the macro scale response of the platform over piles in soft soil by 

comparison to the experimental data obtained on the laboratory small scale model. 

 

 

Fig. 4.9. Soil-pipe interaction simulation (Calvetti et al., 2004). 

Langston et al. (1995, 1996) used 2D and 3D DEM model to simulate the filling and 

discharging of granular material from hoppers. Hopper discharge was also modelled by 

Cleary & Sawley (2002) using DEM in 2D and 3D for a wide selection of particle shapes 

to understand the effect that shape has on these flows (Fig. 4.10). Their work 

demonstrate that particle shape appears to be extremely important in hopper flows. 

Potapov & Campbell (1996) carried out large scale two-dimensional computer 

simulations of hopper flows. Li et al. (2004) studied the flow behaviour of particles and 

their arching and discharging in the hopper for different hopper openings using 2D and 

3D DEM model. 
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Fig. 4.10. Hopper discharge simulation (Cleary & Sawley, 2002). 

 

4.8. Representing DEM results: simulation outputs  

 

Using DEM the variables obtained are directly derived from the basic modelling units of 

the method (i.e., particles and contacts). The discrete variables obtained are contact 

forces, particle displacements, particle radii, stresses on particles, particle velocities, etc. 

In this thesis to represent these variables two different tools are used: MATLAB and 

ParaView. 

MATLAB is used to map contact forces between particles. Contact forces are 

represented as lines tangential to surface where particles are in contact. The thickness 

of the line is proportional to the magnitude of the contact force (Fig. 4.11). The MATLAB 

script to map contact forces is in Appendix B. 
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Fig. 4.11. Contact forces between particles. 

 

ParaView is used to represent 3D visualizations of contact forces and particles. It is also 

used to represent the values obtained mapped with different colours on each particle 

or tube (a graph commonly used to represent contact forces, Fig. 4.18), as it is explained 

below. ParaView is an open-source application to visualize and analyse data. The data 

exploration can be done interactively in 2D or 3D and it has an intuitive user interface. 

The platforms supported by ParaView range from single-processor workstations to 

multiple-processor distributed-memory supercomputers or workstation clusters (Ahren 

et al., 2005). Techniques such as data streaming and parallelism can be used (Ahren et 

al., 2005), and it permits large datasets. 

The ParaView project started in 2000 as a collaborative effort between Kitware Inc. and 

Los Alamos National Laboratory and its first public release was announced in 2002. To 

continue the development of the project, the project also has had the collaboration of 

Sandia National Laboratory, Advanced Simulation and Computing (ASC) and the Army 

Research Laboratory. Nowadays, the last version is ParaView 3.0. All the information 

about the project is provided in ParaView’s website (http://www.paraview.org/). 

ParaView builds the visualization of the data set on parallel and distributed Visualization 

Toolkit (VTK). VTK provides data representations for a variety of grid types (structured, 

unstructured, polygonal and image data) (Ahrens et al., 2005). The process of 

visualization takes raw data and converts it to a form that is viewable and 
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understandable. It usually takes scalars and vectors, and from them contours, 

isosurfaces, vector fields, streamlines, arrows (as in Fig. 4.17), cones and spheres (as in 

Fig. 4.13, Fig. 4.14, Fig. 4.15, Fig. 4.16and Fig. 4.17) are represented. The results can be 

coloured by any variable as a given scalar (as in Fig. 4.13, Fig. 4.14, Fig. 4.15, Fig. 4.16, 

Fig. 4.17 and Fig. 4.18), a vector magnitude or a vector component. Streamlines can be 

generated and displayed as points, lines, tubes (as in Fig. 4.18) and ribbons and can be 

processed by a magnitude. A sub-region of a dataset can be extracted by cutting or 

clipping specifying a plane (as in Fig. 4.15, Fig. 4.16, Fig. 4.17 and Fig. 4.18).  

An example of a complex data representation is given in Fig. 4.12. Fig. 4.12 shows 

streamlines generated by ParaView using a dataset of airflow around a delta wing. 

 

 

Fig. 4.12. The Delta Wing dataset in ParaView (Moreland, 2014). 

 

Examples of outputs generated with Paraview are presented in Fig. 4.13, Fig. 4.14, Fig. 

4.15, Fig. 4.16, Fig. 4.17 and Fig. 4.18. Fig. 4.13 represents a DEM sample with spheres 

in 3D. Each sphere is sized by the original diameter and coloured by the same magnitude. 

Fig. 4.14 is the same sample projected in the xy plane. Fig. 4.15 is the same 
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representation and orientation as Fig. 4.13 cut in the middle of the sample. Fig. 4.16 

represents a smaller part of the same sample; particles are sized by the diameter and 

coloured by the mean normal stress on the particle. Fig. 4.17 is a zoom of Fig. 4.16 where 

arrows representing the velocity of each particle are represented; arrows are sized by 

the velocity magnitude. Finally, Fig. 4.18 is the same sample part as Fig. 4.16 where tubes 

represent the contact forces between particles; the size and the colour of the tubes are 

scaled by the magnitude of the contact force. 

 

 

Fig. 4.13. 3D representation of spheres representing grains in DEM coloured and sized by the diameter 
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Fig. 4.14. Spheres representing grains in DEM coloured and sized by the diameter (plane xy) 

 

 

Fig. 4.15. Cutting of the 3D representation of spheres representing grains in DEM coloured and sized by 

the diameter 
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Fig. 4.16. 3D representation of spheres representing the grains in DEM coloured by the stress and sized 

by the diameter 

 

 

Fig. 4.17. 3D representation of spheres representing the grains in DEM coloured by the stress and sized 

by the diameter. Arrows in each particle representing the particle velocity, sized by the velocity 

magnitude. 
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Fig. 4.18. Tubes representing the contact forces between particles coloured by the magnitude of the force 

(normalized by the mean contact force value) 

 

ParaView can also be used to create animations by recording a series of keyframes. At 

each keyframe values for the properties of the readers, sources, and filters that make 

up the visualization pipeline are set, as well as the position and orientation of the 

camera. 

The original data files have to be changed to a data file that ParaView can read. There 

are different kinds of ParaView data files depending on the data represented (discrete 

data, continuum fields, etc). Some MATLAB scripts to write these data files are in 

Appendix C. 

The continuum field representation in ParaView is explained in Chapter 6. 

 

4.9. Summary 

 

DEM is a discrete modelling technique proposed originally by Cundall & Strack (1979) 

and commonly used to simulate granular materials. DEM provides micromechical 
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quantities that cannot be easily obtained from experimental tests and it can capture the 

particle-scale interactions. DEM can provide information as trajectories and forces 

acting on particles. The three-dimensional DEM code PFC3D is used to perform all the 

simulations in this thesis. 

In this thesis the linear contact model is used together with the PBM. The linear contact 

model was proposed by Cundall & Strack (1979). This contact model is a soft-sphere 

method used to calculate forces between particles where the particles are permitted to 

suffer minute deformations. The load displacement relationship between two 

contacting bodies is represented by linear springs. The three input parameters are the 

particle normal and shear stiffnesses, KN and KS, and the inter-particle friction coefficient

m . The parallel-bond model is available in PFC3D (Itasca, 2008a). The parallel-bond can 

numerically represent cemented material deposited between particles. The parameters 

required to define a parallel-bond are: the parallel-bond normal stiffness (
N

pbK , in Pa/m), 

the parallel-bond shear stiffness (
S

pbK , in Pa/m), the parallel-bond normal strength (
N

pbS

, in Pa), the parallel-bond shear strength (
S

pbS , in Pa) and the degree of bonding ( bonda ). 

When the forces acting on the parallel bond reach either of its strength limits the parallel 

bond is erased and cannot be reformed, even if the same contact appears again. 

Rigid boundaries are used as boundary conditions. These boundaries are described as 

surfaces that have no inertia and the contact force is used to update particle coordinates 

that are in contact with the walls. The movement of the wall can be explicitly specified, 

and a ‘servo-controlled’ algorithm can be used to control the internal stresses. 

DEM has been used to study particle-scale interactions (e.g. Thornton & Liu, 2004; 

Golchert et al., 2004; Lobo-Guerrero & Vallejo, 2005), to perform laboratory 

experimental tests (e.g. Thornton & Antony, 2000; Cui & O’Sullivan, 2006; Cui et al., 

2007; Thornton & Zhang, 2010) and to reproduce machinery as hoppers (Langston et al., 

1994, 1995; Potapov & Campbell, 1996; Cleary & Sawley, 2002; Li et al., 2004). 

The variables obtained using DEM are discrete variables as forces, particle 

displacements, particle radii, stresses on particles or particle velocities. MATLAB is used 

in this thesis to map contact forces, which are also represented with ParaView. ParaView 
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is a tool to represent 3D visualizations mapping value of interest on contacts 

(represented as a tube network) and particles. ParaView represents contours, 

isosurfaces, vector fields, streamlines, arrows, cones and spheres from scalars and 

vectors from simulated data. 
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Chapter 5 - Applications of the parallel-bond model 

to represent mechanical rock behaviour 

 

5.1. Introduction 

 

As stated in the previous chapter the PBM is frequently used to represent rock behaviour 

in DEM. This model mimics the effect of cement between particles and includes separate 

tensile and shearing failure modes. Despite being very frequently used there seems to 

lack a systematic approach to calibration, a complicated process because of the number 

of micro parameters involved. This is particularly problematic when, as it is the case 

here, the mechanical model is only a part of a more complex model that also includes 

solid-fluid interaction. 

In this chapter we first review previous published usage of the PBM to represent rock 

behaviour is given in Section 5.2. After that, we introduce the parallel-bond model to 

represent sand production problems in Section 5.3. The datasets that were targeted for 

calibration, the specimen generation and the calibration are presented in Section 5.4.  

 

5.2. Previous work on parallel-bond contact model calibration 

 

In this thesis the contact models used are the linear friction model and the PBM 

presented in Chapter 4. As was explained in Section 4.4, rock behaves like a cemented 

granular material and DEM using the PBM can mimic the mechanical behaviour of rock 

in general and sandstone in particular.  

As it was originally conceived (Potyondy & Cundall, 2004) a DEM model using the PBM 

did not aim to represent exactly the micro-structure of rock and the model parameters 

and, in particular, PBM micro-parameters needed calibration based on macro 

responses.  
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As explained in Chapter 4 the micro parameters to be calibrated are the contact 

parameters KN, KS, DEMm , and the cement parameters 
N

pbK , 
S

pbK , 
N

pbS , 
S

pbS , 
bonda and 

l .  In a calibration process, values for these parameters should be chosen to represent 

a specific set of macro material properties of a given rock or sandstone.  

Recall also from Chapter 4 that a radius dependence is inbuilt on the contact stiffness of 

the PBM and therefore 

 

PBPA
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as well as  
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Using this formulation the parameters calibrated are Ec, ratio
a  and

DEMm , and the cement 

parameters, Epb,c, ratiopb ,a , 
N

pbS , 
S

pbS  bonda and l . 

The calibration process is a typical inverse problem and is usually carried out by trial-

and-error using laboratory test results, which are compared with simulation results. The 

most commonly macro properties used to calibrate these micro parameters have been 

the Young’s modulus, the Poisson’s ratio, the uniaxial compressive strength, the tensile 
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strength and the friction angle. Uniaxial compressive and tensile tests and triaxial tests 

are usually performed using DEM to achieve calibration (Potyondy & Cundall, 2004; 

Wang & Tonon, 2009a,b). However, one significant difficulty with this approach is that 

the micro parameters cannot be independently related to a specific macro property.   

There are two types of micro parameters in the parallel bond contact model: 

deformability and strength parameters (Wang & Tonon, 2009a). Deformability 

parameters include normal and shear stiffnesses. These micro deformability parameters 

are sometimes calibrated to match the material macro deformability parameters, as 

Young’s modulus and Poisson ratio (Potyondy & Cundall, 2004; Wang & Tonon, 

2009a,b). Strength parameters include bond strengths, which are calibrated with macro 

parameters as the uniaxial compressive strength (Potyondy & Cundall, 2004; Wang & 

Tonon, 2009a,b).  

However, that approach is somewhat naïve. The mechanical macroscopic properties 

(e.g. elasticity and strength) also depend on ensemble properties such as porosity, PSD 

and proportion of bonded contacts (Schöpfer et al., 2009). Low porosity leads to a 

greater coordination numbers (more particles in contact) increasing the Young’s 

modulus and the strength. Moreover, the number of non-bonded contacts (controlled 

by the parameterl ) affects not only the strength, but also affects to the Young’s 

modulus and the Poisson’s ratio. 

Schöpfer et al. (2009) studied the impact of porosity on Young’s modulus. They found 

out that porosity had a strong impact on Young’s modulus (Fig. 5.1). They also studied 

the impact of the shape of the PSD. Comparing the results between a uniform PSD (a 

PSD with a shape similar than the one presented in Fig. 5.12a) and a power law PSD (a 

PSD with a shape similar than the one presented in Fig. 5.12b), they found out that it 

also had an impact on the Young’s modulus and Poisson’s ratio (Fig. 5.2). 

Ding et al. (2013) also studied the effect of the shape of the PSD on the uniaxial 

compressive strength and the Young’s modulus. They concluded that when the ratio 

between the maximum particle diameter and the minimum particle diameter increases 

the uniaxial compressive strength and the Young’s modulus that results in the 

calibrations decrease (Fig. 5.3). 
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Fig. 5.1. Young’s modulus vs. Confining pressure for different porosities f (Schöpfer et al., 2009). 

 

 

Fig. 5.2. Stress difference and volumetric strain curves obtained from unconfined compression tests on 

models with (a) uniform PSD and (b) power-law PSD (Schöpfer et al., 2009). 
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Fig. 5.3. Uniaxial compressive strength (UCS) and Young’s modulus versus the ratio between the maximum 

and the minimum particle diameters for different cases (l/L is the ratio between the model size and the 

median particle diameter) (Ding et al., 2013). 

 

For given ensemble properties, some sensitivity analyses have identified influences of 

micro-parameters in macro-responses as summarized in Table 5.1: Young’s modulus 

seems to increase by increasing the percentage of bonded contacts (Schöpfer et al., 

2009); it also depends on the particle stiffness (Schöpfer et al., 2009; Wang & Tonon, 

2009a), the ratio between the normal stiffness and the shear stiffness 
NS

KK  (Wang & 

Tonon, 2009a) and the bond strength (Schöpfer et al., 2009). Poisson’s ratio seems to 

decrease when the percentage of bonded contacts increase (Schöpfer et al., 2009). 

Moreover, several researchers pointed out that Poisson’s ratio does not depend on the 

normal stiffness but on the ratio between the normal and shear stiffnesses 
NS

KK   (Cho 

et al., 2007; Wang & Tonon, 2009a,b). The axial compressive strength is increased by 

increasing the particle stiffness, increasing the bond strength and increasing the 

percentage of bonded contacts (Schöpfer et al., 2009). See Fig. 5.4. 
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Table 5.1. Observations on effects of PBM micro parameters on macro-response. + means that the macro-

parameter increase when the micro parameter increase; - means that the macro-parameter decrease 

when the micro parameter increase; = means that there is no dependence. 

 Proportion of 

bonded contacts 
Particle stiffness 

NS
KK  Bond strength 

Young’s 

modulus 

+ 

(Schöpfer et al., 2009) 

+ 

(Wang and Tonon, 2009a;  

Schöpfer et al., 2009) 

+ 

(Wang and Tonon, 2009a) 

+ 

(Schöpfer et al., 2009) 

Poisson’s ratio 

- 

(Schöpfer et al., 2009) 

= 

(Wang and Tonon, 2009a,b; 

Cho et al., 2007) 

- 

(Wang and Tonon, 

2009a,b; Cho et al., 2007) 

 

Axial 

compressive 

strength 

+ 

(Schöpfer et al., 2009) 

+ 

(Schöpfer et al., 2009) 

 + 

(Schöpfer et al., 2009) 

 

 
 

(a) (b) 

Fig. 5.4. (a) Macro elastic properties versus stiffness (Wang & Tonon, 2009a) and (b) Macro properties 

versus 
NS

KK  (Wang & Tonon, 2009a). 

 

The effect of the parallel-bond strength on the macroscopic strength was also studied 

by Cheung (2010) performing triaxial simulations. The macro strength was represented 

by the peak stress during the triaxial simulations. As it can be observed in Fig. 5.5, the 

peak stress increases as the parallel-bond strength increases. 

Cheung (2010) also studied the effect of the friction in the Young’s modulus and the 

macroscopic strength. Cheung concluded that the general behaviour of the DEM 

parallel-bonded specimen becomes less sensitive to the inter-particle friction (
DEMm ) as 
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the degree of bonding ( bonda ) increases. The degree of bonding (introduced in Section 

4.4) defines de ‘size’ of the parallel-bond. 

 

 

Fig. 5.5. Triaxial simulation: effect of pb
S  on the peak mobilised stress ratio ( ( ) ( )

3131
ssss +- ) (Cheung, 

2010). 

 

 

Fig. 5.6. Triaxial simulation: effect of the friction (
DEM

m ) in the Young’s modulus (Emacro) and peak stress 

response ( )
ratioratioratio

sss -  dependence on the degree of bonding ( bond
a ). 

 

While the work just summarized offers some cues about the factors affecting the 

calibration of PBC model micro-parameters, a formal and systematic procedure for 

calibration is still missing. In this respect, it is also useful to consider the final result 

obtained by different researchers using this contact model. Results of calibrations 

performed by different researchers for different rocks are presented in Table 5.2. Some 

macro parameters of the corresponding target materials are presented in the same 

table. 
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Table 5.2. Calibrated PBM parameters and macro parameters obtained by different researchers for different materials. * randomly distributed between given numbers 

Reference PBC micro parameters Macro parameters 

Authors Material Ec  

(GPa) 
ratio

a  

 

Epb,c  

(GPa·m-1) 
ratiopb,

a  

 

m  N

pb
S  

(MPa) 

S

pb
S  

(MPa) 

l  
bond

a  
Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

ucs 

(MPa) 

Cho et al. (2007) Sulfaset 1.4 2.5 1.4 2.5 0.0 200 200 1 1 2.5  11.6 

Potyondy & Cundall (2004) Lac du Bonnet 

granite 
72 2.5 72 2.5 0.5 157 63 1 1 69 0.26 200 

Rahmati et al. (2013) Castlegate 

sandstone 
7 0.2 20 0.2 1.5 400 900 0.3 0-1*  0.2 22 

Park & Min (2015) Assan gneiss 72 0.2 72 0.2 0.8 143 143   73.5  183.8 

Park & Min (2015) Boryeong 

shale 
38 0.3 38 0.3 0.8 75 75   42.1  89.2 

Park & Min (2015) Yeoncheon 

schist 
53 0.8 53 0.8 0.8 80 80   42.1  89.2 

Pierce et al. (2009) Quartzite 

lithology 
52.6 2.5 52.6 2.5 2.5 85 85   52 0.17 86 

Cheung et al. (2013) Castlegate 

sandstone 
20 1 175 1.72 0.5 1250 1500 0.5 0.01-1.0*    

Cheung et al. (2013) Saltwash 

sandstone 
20 1 175 1 1.0 1000 1200 0.4 0.01-1.0*    

van Wyk et al. (2014) Paarl granite 63 2.5 63 2.5 0.5 170.1 170.1  1 58.48 0.32 198.29 

van Wyk et al. (2014) Sandstone-2 30 2.5 30 2.5 0.5 174.3 174.3  1 28 0.29 173.7 
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5.3. Parallel-bond discrete models for the sand production problem 

 

5.3.1. Role of ensemble properties 

 

The sand production problem is, essentially, a problem of soil-fluid interaction. As will 

be illustrated in detail in subsequent chapters, such interaction is highly dependent on 

granular ensemble properties such as porosity and grain size distribution. Moreover, 

absolute grain size does also play a prominent role as fluid-grain interaction forces are 

grain size dependent. 

The need to represent correctly solid-fluid interaction in the model is then a major 

consideration when selecting ensemble properties for the numerical model. Aspects 

such as porosity, grain-size distribution and grain size cannot be freely adjusted to match 

macro-scale mechanical properties. 

Another aspect to be taken into account is that of practical computability. DEM models 

can be very greedy on computer resources and therefore computational constraints 

need to be also considered when designing the model. As will be exposed in the next 

sections this fact may also have consequences for the contact model formulation. 

 

5.3.2. Numerical constraints 

 

As explained in the previous chapter, DEM problems are dynamic and simulation is 

advanced on a stepwise manner. There are two different time-scales of interest. The 

first measures the duration of the physical problem being simulated; we can call it 

simulation time, represented as t. The second measures computation time, T, and is the 

actual time employed in computing the simulation. 

Total computation time, Tcomp required for given total simulation time tsim is mediated 

by the ratio between the actual computation time step Tcstep and the represented 

simulation time-step tstep 
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cstepstepcstep

step

sim

comp TNT
t

t
T ==   Eq. 5.5 

 

As expressed, total computation time can also be obtained as the product of the total 

number of computational steps (Nstep) and the time required to compute a single step, 

Tcstep. 

The value of Tcstep depends on the hardware (e.g. memory of the computer), on the code 

efficiency and the problem complexity. The hardware available for running the 

simulations presented in this thesis was an Intel(R) Core(TM)2 Quad CPU Q8400 (2.67 

GHz) processor, 4 GB of RAM, and Windows 7 Professional Operating System. The code 

used was PFC3D (4.00-182, 64-bit) coupled with CCFD (first version), a fluid add on, as 

described in Chapter 6. PFC3D can be extended and manipulated through added code in 

Fish or C++ but the core routines are not accessible to manipulation and, from the user 

viewpoint code efficiency can be taken as a given. In this thesis Fish was used for code 

extension and/or manipulation. It should be noted, however, that using C++ instead of 

Fish may reduce the computation time in problems with large number of particles or 

contacts (Itasca, 2008a). It also offers the possibility to perform efficient simulations in 

which PFC3D variables must be manipulated and fed back to PFC3Dduring cycling (e.g. 

coupled analysis).  

The complexity of the simulation (Itasca, 2008a) depends on the number of particles and 

contacts in the model, but not only. During the simulation some problem-controlling 

parameters defined by the user may need to be evaluated at each step (i.e. the total 

force on a wall to simulate the servo-control). Also several output parameters chosen 

by the user can be written at a given number of steps (i.e. stresses for each particle). 

Obviously, complexity increases significantly when a parallel program is invoked at some 

given step interval as it happens when the CCFD add-on is used.  
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Therefore, only for given simulation conditions -i.e. hardware and code- and complexity, 

Tcstep can be roughly estimated as being proportional to the number of elements in the 

simulation, Nel. Moreover, such proportionality constant simk  needs to be determined 

empirically. 

 

el

step

sim

simcstep

step

sim

comp N
t

t
T

t

t
T k==   Eq. 5.6 

 

For the coupled CFD-DEM simulations presented in later chapters (Chapter 8 and 

Chapter 9) we have estimated that 
simk  is roughly particleμs 2 . Once a model has been 

defined and 
simk  estimated, certain, desired values of tsim  and Tcomp would impose a 

ratio between Nel and tstep. For instance, assuming a value of particleμs 2=
sim

k , 

requesting a simulation time of 1 s within a computation time of 24 h,  gives a ratio 

stepel tN  of around 45·109 particles/s; if the computation time is extended to one 

month, that ratio would be around 2.5·1012 particles/s. Fig. 5.7 represents, (for 

particleμs 2=
sim

k ) the effect of Tcomp/tsim on the relation between tstep and element 

number. It appears that time steps much below 10-8 s will result in either very small 

particle numbers or very long computational time. 

As it is explained in Section 4.2, the DEM time step used in this model is the default time 

step calculated by PFC3D (Itasca, 2008a). A critical time step is calculated for each particle 

following 

 

å= ccrit Kmt   Eq. 5.7 
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where m is the mass of the particle and å cK  is the stiffness of the local particle contact 

network. The minimum critical time step for the entire system is used as simulation time 

step (tstep). After each DEM cycle, this minimum is recalculated. This value is dependent 

on the coordination number (the number of contacts) since 

 

åå
=

=
CN

i

icc KK
1

,   Eq. 5.8 

 

where CN is the coordination number (the number of contacts of the particle) and Kc,I is 

the stiffness of each one of the contacts. All other things equal, as the coordination 

number increases, Kc increases and the the critical time step decreases. The 

coordination number depends, in a first approximation, on the PSD -broadly decreasing 

with uniformity- and porosity -more porous materials have smaller coordination 

numbers. 

Considering now individual contact stiffness (  Eq. 5.1) we can see that the 

two other factors affecting the time step are effective stiffness Ec -it increases network 

stiffness and decreases time step- and contacting particle sizes.  

All other things equal, the contact stiffness which gives the smallest critical time step is 

the contact between the largest particle and the smallest particle. To illustrate that,  Fig. 

5.8 represents the time step calculated for each one of the possible contacts for a given 

PSD, (assuming particle A  has  10 contacts with particles of a given distribution fractile). 

A factor of 6 appears between the larger and smaller cases. Similar explorations for 

other cases of interest here (Fig. 5.9) reveal an influence on the time step of the same 

order of magnitude for coordination number and effective stiffness.  
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Fig. 5.7. Time step versus number of particles for different computational times and a simulation time of 1 

s. 

 

 

 

Fig. 5.8. Critical time estimates for FIELD3 (Section 5.4.1, Table 5.3). Particle A is the particle which the 

critical time is calculated from. Particle B is the particle that is in contact with particle A. Coordination 

number = 10. 
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Fig. 5.9. Time step versus effective stiffness for different coordination numbers for the biggest particles 

of FIELD3 (Section 5.4.1, Table 5.3) 

 

In summary, the maximum particle size in contact with the smallest particle (Fig. 5.8) 

present in a simulation controls the order of magnitude of the critical time step. 

Variations within that order of magnitude result from PSD, porosity and contact 

property characteristics. If the time step order of magnitude resulting from particle size 

is too small for computational purposes the only feasible alternative is scaling. 

Indeed, one possibility to increase the value of the critical time step is by scaling up 

particle mass, which can be attained either by scaling density or scaling radius. The 

second route has the added advantage of diminishing computational load (via Nel 

reduction) if the external dimensions of the problem analyzed remain constant. This is 

the route that has been pursued here. 

Following Eq. 5.7 and   Eq. 4.4, it can be seen how scaling the particles by 

a factor of N scales the critical time step by the same factor 
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where pr  is the density of the particle, RPA is the radius of the particle, RPB is the radius 

of the particle that is in contact, RPA,sc is the radius of the scaled particle and Kc,sc is the 

stiffness of the contact of the scaled particle. 

It is clear from the equation above that if a particular value of time step (say, 10-8 s) is 

targeted some iteration may be necessary to choose a scale factor N,  since the unscaled 

reference value tcrit depends on factors such as effective stiffness and coordination 

number that are, respectively, calibration and model dependent. This procedure would 

be considered in Chapter 9 where sand production simulations with materials calibrated 

in Section 5.4 are carried out. 

 

5.3.3. A scale-independent reduced PBC model 

 

If the particles are scaled the contact model formulation should be such that the 

mechanical response remains invariant to scaling. 

The formulation for contact stiffnesses presented in Chapter 4 is already scalable 

through the radius dependency inbuilt in the contact stiffness (Potyondy & Cundall, 

2004; Gabrielli et al., 2009). Using these expressions the stiffness parameters calibrated 

are Ec , Epb,c, ratioa  and ratiopb ,a . The contact stiffnesses 
N

cK , 
S

cK , 
N

pbK  and 
S

pbK  are scale 

dependent, but the stiffness parameters calibrated are scale-independent.  
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The strength parameters of the PBC model can be made scale independent if particle 

rotation is prevented. When particle rotation is blocked, the rotation angles of the 

parallel-bond in   Eq. 4.14 and   Eq. 4.15 are 

 

0=D= NN qq   Eq. 5.10 

0=D= SS qq   Eq. 5.11 

 

where these angles are described in Fig. 4.5. Spin and twisting moments of the parallel-

bond ( Eq. 4.14 and Eq. 4.15) become 

 

0==D spin

pb

spin

pb MM   Eq. 5.12 

0==D b

pb

b

pb MM   Eq. 5.13 

 

The tensile and shear strengths of the parallel-bond (Eq. 4.23 and Eq. 4.24) become 

 

pb

N

pb

pb
A

F-
=max,s   Eq. 5.14 

pb

S

pb

pb
A

F
=max,t   Eq. 5.15 
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where 
2

pbpb RA p=  and Rpb is the radius of the cylinder that represents the bond and it is 

proportional to the radii of the particles bonded (Section 4.4).  When particle radii are 

increased by a factor of N, this area is related to the area before the scaling 

 

pbpbscpbscpb ANRNRA
2222

,, === pp   Eq. 5.16 

 

where Apb,sc is the area of the scaled parallel-bond and Rpb,sc is the radius of the scaled 

parallel-bond.  

For the breakage limits, because of the no rotation condition it is enough to scale 

accordingly the strength limits  

 

2
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s =   Eq. 5.17 

2
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t =   Eq. 5.18 

 

The failure criteria is then scale independent. That is for the tensile failure criterion 
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pbpbscpbscpb lim,max,,lim,,max, ssss £Û£   Eq. 5.20 
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And for the shear failure criterion 

 

2
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pbpbscpbscpb lim,max,,lim,,max, tttt £Û£   Eq. 5.22 

 

which means that the bond strength parameters (
N

pbpb S=lim,s  and 
S

pbpb S=lim,t )  are 

scale-independent i.e. they can be calibrated at a small scale and later applied at a larger 

scale. 

The correctness of the scaling procedure proposed was verified experimentally. As an 

example, the result of an axial compressive test using the original PSD and one where 

particle size is scaled up by 300 (FIELD3 material in Table 5.3) is given in Fig. 5.10. 

  

 

Fig. 5.10. Effect of scaling particle size (scale factor 300) on an axial compressive test of FIELD3. 
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5.4. Calibration 

 

5.4.1. Target data 

 

One of the objectives of this work was to simulate sand production in realistic scenarios. 

For this purpose later models are geared to reproduce the conditions prevailing at three 

different oil fields, whose data was provided by the field services company IESL. The rock 

mechanical data provided from those fields that was used in the calibration the PBM is 

presented in Table 5.3.  The table also includes a reference to the appropriate sections 

and equations where these parameters are introduced within this thesis. The bulk 

density is the density of the solid framework. The dataset also included the PSD 

corresponding for each case, which are presented here in (Fig. 5.11). 

These three cases present some significant differences that are considered of interest 

to explore their influences in sand production. For example, they cover a wide range of 

strengths, with FIELD3 being the strongest and FIELD1 the weakest. Comparing these 

values with the values presented in Section 3.2.1.1, it is observed that they are all inside 

the (admittedly wide) sandstone range (between 1 and 250 MPa). They also have 

significant differences in their PSD parameters, but their mean grain size is also well 

within that of sandstone (between 10 microns and 1000 microns, Section 3.2.1.1). 

 

Table 5.3. Rock mechanical properties of the three different case studies (data provided by IESL). The 

sections and equations where this parameters are described are also shown in the table. 
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Fig. 5.11. PSDs of the three different case studies (data provided by IESL). 

 

5.4.2. Specimen generation 

 

Specimen formation follows a radius expansion method (REM), proposed by Itasca 

(2008a), in which small particles with linear contacts are seeded within frictionless walls 

and expanded to attain the target porosity and stress. Then the parallel bonds are 

installed.  

The in-built particle generation procedure in PFC3D is not able to match a PSD because 

the code only allows to generate particles with a uniform distribution between 

maximum and minimum particles diameters.  

In order to match a PSD the grain size curve is divided in 10 parts (10% increments) and 

particles are generated in the range of those classes uniformly. Fig. 5.12 shows the PSD 

generated for the different materials presented in Section 5.4.1 and compared with the 

original curves. 

It should be noted that the porosities obtained in the discrete analogues did not match 

those of the real materials. Generally speaking, porosities under 0.3 using REM 

generation are not attainable (Itasca, 2008a). The specimens were formed at the closest 

value to the physical porosity value that PFC3D obtained, which varied slightly according 

to the PSD of each specimen. 
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(a) (b) 

 

 

(c) 

 

Fig. 5.12. PSDs (original compared with generated with DEM) of (a) FIELD1, (b) FIELD2, and (c) FIELD3. 

 

Table 5.4 shows the different scale factors N and the porosity for each material. 

 

Table 5.4. Porosities and scale factors of each specimen 

 FIELD1 FIELD2 FIELD3 

Porosity 0.41 0.37 0.38 
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5.4.3. Contact model calibration 

 

The contact model between the particles has been calibrated to fit some macroscopic 

parameters provided beforehand (Table 5.3): the Young’s modulus, the Poisson’s ratio 

and the uniaxial compressive strength. To calibrate these parameters, different triaxial 

and axial compressive tests have been performed. Due to the difference between the 

number of macroscopic parameters (3) and the number of contact model parameters to 

calibrate (9), some extra simplifying hypothesis were required.  

Although as explained in Section 5.2 porosity and PSD also have an effect on the macro 

mechanical behavior, they are taken as given in this problem. This has the advantage of 

simplifying the calibration procedure.  

Particle rotation is prevented to mimic roughly the effect of nonspherical particle 

shapes. This limitation is frequently used in unbonded discrete models (e.g. Arroyo et 

al., 2011). It is key to achieve realistic macroscopic friction angles with spherical 

unbounded particles (Ting et al., 1989; Butlanska, 2014). This is a convenient feature in 

a problem were degraded rock plays a major role. Another reason to block rotation here 

was that it made much simpler the issue of model scalability, as it is explained previously 

in Section 5.3.3. 

Following the same procedure as Potyondy & Cundall (2004), the grain and cement 

moduli and ratios of normal to shear stiffness are set equal to one another (Ec = Ec,pb , 

ratiopbratio ,aa = ) and the moduli are chosen to match the Young’s modulus and the ratios 

of normal to shear stiffness are chosen to match the Poisson’s ratio. The cement 

strengths are set equal to one another 
S

pb

N

pb SS =  to make both tensile and shear 

microfailures possible. The mean value of the cement strength is chosen to match the 

unconfined compressive strength, and 0.1=bonda  to make the choice of the inter-

particle friction less influential in the results (Section 5.2). Finally, the particle-friction 

coefficient is chosen as 5.0=DEMm . 
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After that, the only parameters left to be calibrated were Ec, the ratio 
ratioa ,  

N

pbS  and l  

(the proportion of bonded contacts). The effective stiffness is calibrated comparing the 

Young’s modulus resulted in the axial compressive test with the one given by the field 

data;   the ratio between the normal and the shear stiffness is calibrated comparing the 

Poisson’s ratio calculated from triaxial tests with the one given by the field data; and the 

bond strength and l  comparing the uniaxial compressive strength obtained in the axial 

compressive tests performed and the one given by the field data.  

 

5.4.4. Modelling laboratory tests 

 

5.4.4.1. Triaxial test 

 

A cylindrical wall and two rectangular walls are first generated (Fig. 5.13). Particles are 

generated inside the walls and a confining pressure is first applied to all boundaries to 

reach an equilibrium state.  The height to diameter ratio is 2:1. Then an axial 

displacement is applied incrementally while keeping the confining pressure constant on 

the cylindrical wall using a stress-controlled wall. The wall-particle friction is the same 

as the particle-particle friction.  It is later explained (Chapter 7 and Chapter 8) that 

material damping has important effects on fluid-coupled simulations.  Therefore, even 

for this mechanical-only simulations damping was set to 0 to use the same conditions 

that are prevailing in later fluid-coupling simulations.  

If all grains were considered as in real triaxial tests the number of particles in a typical 

specimen (diameter between 10 mm and 50 mm, height between 20 mm and 100 mm) 

would be large (more than 200000 particles) and the computational cost high. Potyondy 

& Cundall (2004) considered the effects of the number of particles in DEM simulations 

of triaxial and Brazilian tests using the PBM. Their results indicated that the macro-

properties obtained from a triaxial test simulation generally become less sensitive to the 

number of particles when there are more than 20 particles across the specimen width. 

The number of mean-sized particles across the specimen diameter has been always 
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maintained well above 20 in the DEM calibration tests performed in this thesis. Table 

5.5 summarize the dimensions of the triaxial tests for each material and the ratio of the 

specimen diameter and the mean particle diameter (D50 defined and presented in Table 

5.3). 

 

 

Fig. 5.13. DEM representation of a triaxial test 

 

Table 5.5. Dimensions of the triaxial tests 

 Specimen diameter 

(mm) 

Specimen height 

(mm) 

Specimen diameter/ (D50) 

FIELD1 2.4 4.8 20 

FIELD2 4.6 9.2 20.2 

FIELD3 4.7 9.4 20.3 

 

A typical result of a triaxial test is presented in Fig. 5.14. The elastic region is the region 

before the peak stress point. To calculate the Young’s modulus and the Poisson’s ratio, 

the values for the stress, axial strain and radial strain are taken when the stress value is 

the half of the peak stress value. The Poisson’s ratio and the Young’s modulus are 

calculated using the elastic region results as follows: 
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s
=   Eq. 5.23 

z

r

e

e
n =   Eq. 5.24 

 

where E is the Young’s modulus,  n  is the Poisson’s ratio, 
zs  is the axial stress, 

ze  is the 

axial stress and 
re is the radial strain. 

 

  

(a) (b) 

Fig. 5.14. (a) Axial stress versus the axial strain, and (b) radial strain versus axial strain of a triaxial test 

DEM simulation. 

 

5.4.4.2. Uniaxial compressive test 

 

The procedure for the uniaxial compressive test simulation is similar than the one for 

triaxial test except that the lateral boundary is removed before the simulation. The axial 

stress is applied axially until the stress peak is reached. The shape of the stress-strain 

curve is similar than the one obtained for the triaxial test (Fig. 5.14). In this test only the 
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Young’s modulus is calculated using the equation. The uniaxial compressive strength is 

the stress value at the peak (the strength, also indicated in Fig. 5.14). 

The dimensions of the uniaxial compressive tests are the same as presented in Table 5.5 

for triaxial tests. 

Fig. 5.15 shows a generated sample before a test and at the end of the test. 

 

 

Fig. 5.15. Axial compressive test on a FIELD3 discrete analogue material. Before the simulation (left) and 

after the simulation (right). Colours represent the diameters of the particles. 

 

5.4.5. Calibration results 

 

Following the procedures explained, a calibration of the PBM for the 3 different 

materials presented in Section 5.4.1 has been performed.  

The simulations performed to calibrate FIELD2 material are shown in Table 5.6. ‘atc’ 

represents the axial compressive tests and ‘tri’ the triaxial tests. Ec is the effective 

stiffness, knks is 
ratioa , S  is the parallel-bond strength, lambda is l , and ucs is the 

uniaxial compressive strength. Table 5.7 shows the calibrated parameters for all the 

materials. First of all, axial compressive tests are performed changing the effective 

stiffness and the bond strength until the Young’s modulus and the uniaxial compressive 

strength are achieved. After that, the same parameters are used for triaxial tests, where 
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the ratio between the normal and the shear stiffness and the effective stiffness are 

changed until the target Poisson’s ratio is attained and the Young’s modulus is 

maintained. An axial compressive test is again carried out. If the uniaxial compressive 

test does not equal the target one, the bond strength is again changed and uniaxial 

compressive tests are performed. All the procedure is repeated until the Young’s 

modulus, the Poisson’s ratio and the uniaxial compressive strength from the target data 

are achieved.  

FIELD1 and FIELD3 materials calibrations are in Appendix E. For the FIELD1 needed a 

total of 18 axial compressive tests and 25 triaxial tests to adjust the calibration; FIELD2 

needed 8 axial compressive tests and 7 triaxial tests; and FIELD3 is calibrated after a 

total of 31 axial compressive tests and 17 triaxial tests were simulated to adjust the 

calibration. 

 

Table 5.6. Iterations to adjust FIELD2 macroscopic mechanical values. 

 

 

Table 5.7. Calibrated PBM micro parameters. 

 Ec (GPa) 
ratioa  Ec,pb 

(GPa) 

ratiopb ,a  
N

pbS   (MPa) 
S

pbS   (MPa) l  

FIELD1 3.7 0.05 3.7 0.05 25 25 1 

FIELD2 112 0.8 112 0.8 110 110 1 

FIELD3 120 1.2 120 1.2 94 94 1 
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These calibrated parameters (Table 5.7) can be compared to other PBM parameters 

calibrated for other materials by different researchers (Table 5.2)  FIELD1 has a normal 

stiffness below most values previously calibrated by other researchers. It is more similar 

than the Castlegate sandstone calibrated by Rahmati et al. (2013). The strength of that 

material is also very low, by comparison. The reason why of that low strength could be 

that FIELD1 sample has a higher porosity than the original material. As explained in 

Section 5.2 increasing the porosity could increase the uniaxial compressive strength 

having to decrease the strength of the PBM. On the other hand, stiffness of FIELD2 and 

FIELD3 are very high, of one order of magnitude higher than the ones calibrated by all 

the authors. Again, the porosity of the material during the calibration is higher than the 

original one. Due to that, as explained in Section 5.2, the Young’s modulus could 

decrease having to increase the stiffness to increase the Young’s modulus result in the 

simulations. Strengths of FIELD2 and FIELD3 have magnitudes similar than Sandstone-2, 

Paarl granite, Assan gneiss and Sulfaset.  

Fig. 5.16 shows the ratio between the bond strength and the uniaxial compressive 

strength versus the ratio between the effective stiffness and the Young’s modulus (E) 

for the three calibrations and some of the calibrations performed by other researchers 

(Table 5.2). It can be observed in Fig. 5.16 that FIELD 2 and FIELD3 have a ratio Ec/E much 

higher than the previously calibrated by other researchers. The reason of that difference 

could be the effect of the porosity explained above that increase the effective stiffness. 

Moreover, FIELD2 have a ratio SN/ucs much higher than the most of the calibrated by 

other researchers. FIELD2 have a power-law PSD (Fig. 4.12b) and a ratio Dmax/Dmin 

(maximum and minimum particle diameters) very high (14-15) in comparison to FIELD1 

and FIELD3. As it is explained in Section 5.2, as Dmin/Dmax increase the calibrated uniaxial 

compressive strength decreases (Fig. 5.3). FIELD1 calibration results are very similar than 

the ones presented by Cho et al. (2007) and the ratios Ec/E and SN/ucs are also very 

similar. 
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Fig. 5.16. Ratio between the parallel-bon strength (SN) and the uniaxial compressive strength (ucs) versus 

the ratio between the effective stiffness (Ec) and the Young modulus (E). The previous calibrations are 

some of the ones presented in Table 5.2. Logarithmic scale in both axis. 

 

5.5. Summary 

 

It could be said that rock and sandstone behaves like a cemented granular material in 

which cement may break. Parallel-bond in PFC3D can mimic the mechanical behaviour 

corresponding with rock and sandstone. In this thesis the parallel-bond is used together 

with the linear friction model between particles. The calibration of the contact 

parameters (micro parameters) has to be performed using reference macro parameters 

obtained in the laboratory. 

In this thesis rock is represented to perform sand production problems. First of all, the 

interaction between particles and fluid must be represented correctly. When the solid-

fluid interaction is performed, some properties, as the PSD and porosity selection must 

have a major consideration. Moreover, the practical computability has to be taken into 

account. DEM models can be very greedy on computer resources and computational 

constraints need to be also considered when designing the model. Because of that, the 

time step have been limited in the simulations in this thesis. Limiting the time step leads 

to a particle scaling, increasing particle radii, and to the need of using micro-parameters 
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which are scale-independent. Other considerations, as the number of particles has also 

to be into account in next chapters. A study of the influences of all the parameters to 

the computational cost has been presented. 

The rock mechanical properties of three different materials have been presented and 

are being calibrated using the Young’s modulus, the Poisson’s ratio and the uniaxial 

compressive strength. To calibrate these parameters, different triaxial and axial 

compressive tests have been performed. The stiffness is calibrated comparing the Young 

modulus resulted in the axial compressive test with the one given by the field data;   the 

ratio between the normal and the shear stiffness is calibrated comparing the Poisson’s 

ratio calculated in the triaxial tests with the one given by the field data; and the bond 

strength and l  comparing the uniaxial compressive strength obtained in the axial 

compressive tests performed and the one given by the field data. 
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Chapter 6 - Fluid-particle interaction using CFD-

DEM 

 

6.1. Introduction 

 

In Chapter 4 and Chapter 5, DEM tools for simulating the mechanical behaviour of 

geomaterials were introduced. Most geomaterials are permeated by fluids and the 

interaction between those fluids and the geomaterial particles should be taken into 

account, especially when, as it occurs here, particle erosion and transport is important 

for the process under study. 

First of all, some concepts of fluid dynamics and CFD are recalled. After that, the basics 

of particle-fluid interaction are explained and the different numerical approaches for 

studying this interaction are presented, with particular emphasis in the one used here, 

namely CFD-DEM. Finally, previous examples of sand production studies and other 

applications using CFD-DEM and other similar methods are reviewed. 

 

6.2. Fluid dynamics and CFD 

 

Fluid flow is usually described by differential equations, as it is explained below. CFD are 

methods to obtain numerical solutions discretizing and approximating those equations 

by a system of algebraic equations (Ferziger & Peric, 1999).  

Fluid dynamics describes the behaviour of the fluid focusing on the macroscopic level, 

where the fluid is treated as a continuum medium. The fluid particle, the individual 

“element” considered in fluid dynamics, is actually not a single molecule, but consists of 

a large number of molecules in a small region with respect to the scale of the considered 

domain, but still sufficiently large in order to be able to define a meaningful and non-

ambiguous average of the velocities and other properties of the individual molecules 
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and atoms occupying this volume. The approximations and the results are applied and 

given at discrete locations in space and time (Ferziger & Peric, 1999). The equations 

describing fluid flows and mass transfer are versions of the conservation laws of classical 

physics as conservation of momentum (Newton’s second law of motion) and 

conservation of mass. For a Newtonian fluid the conservation of momentum equation 

becomes the Navier-Stokes equation, which can be expressed as Eq. 6.1, and the 

conservation of mass can be expressed as Eq. 6.2 
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( )0· =Ñ ufr   Eq. 6.2 

 

where 
fr  is the fluid density, u is the fluid velocity, p is the fluid pressure and 

fm  is the 

fluid viscosity. 

There are two dimensionless numbers to categorize the behaviour of the fluid: the Mach 

number and the Reynolds number. The Mach number is a dimensionless number that 

quantifies the compressibility of a fluid. The Mach number is defined as 

 

a

u
M =   Eq. 6.3 

 

where a is the speed of sound in the fluid. When 1<M   the flow is subsonic and when  

1>M  the flow is supersonic. A fluid is considered incompressible for flows in which

3.0<M . Navier-Stokes and continuity equations for incompressible flows reduce to 
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0· =Ñu   Eq. 6.5 

 

The Reynolds number quantifies the relative importance of the inertial forces of the fluid 

and the viscous forces for a given flow conditions 

 

f

Df uL

m

r
=   Eq. 6.6 

 

where LD is the characteristic linear dimension of the problem. It characterizes different 

flow regimes, such as laminar or turbulent flow. For Reynolds numbers Re<2000   the 

flow is laminar, when 40002000 ££   the regime is a transition flow, and for 

Re>4000 the flow is turbulent. However, these limits may vary slightly depending on the 

boundary conditions of the problem (Finnemore & Franzini, 2002). When the fluid flows 

through a granular material the characteristic linear dimension of the problem is the 

grain diameter. 

In the analysis of groundwater flows Darcy’s law (Chapter 2, Eq. 2.4) is commonly used. 

However, Darcy’s law is an experimental formula only valid for laminar flows (low 

Reynolds numbers) in relatively homogeneous materials (Finnemore & Franzini, 2002; 

Chareyre et al., 2012). In that case the flow is also called a Darcy’s flow. 

CFD is a computational model for fluid dynamics. This approach follows a basic 

procedure: geometry of the problem is defined with its physical bounds and boundary 

conditions, the initial conditions are created for a transient problem, a mesh containing 

discrete fluid elements (cells) is created, and a postprocessor is used for the analysis and 

the visualization of the results. 
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Coupled CFD (CCFD) add-on is the CFD code used in all the simulations and studies 

performed in this thesis. The CCFD code is a product of ITOCHU Techno-Solution 

Corporation (CTC) of Tokio, Japan. CCFD is a finite volume method code that calculates 

the heat and flow of the fluid. CCFD uses a finite element method nonlinear structural 

analysis system called FINAS which allows the interaction of fluids and structural shapes 

(ITOCHU, 2007). 

CCFD allows the use of structured and unstructured grids. Structured grids are formed 

by hexahedral, tetrahedral and prismal cells, and unstructured grids can have irregular 

patterns designed by the user. CCFD calculates the fluid velocity and the fluid pressure 

at the centre of each cell a discretization strategy known as a collocated grid. The 

boundary conditions are set on cells boundaries and initial conditions are set in the 

centre of each cell. Using these pressure values at the centre of the cells, the pressure 

values are interpolated and calculated at the centre of the cell faces. Pressure gradients 

at the centre of the cell are calculated from the fluid pressure values at the centre of the 

faces using an equation according to the Gauss divergence theorem (Itasca, 2008b). 

The numerical method used by CCFD is Finite Volume Method (FVM) that solves the 

integral form of the differential equations (Itasca, 2008b). When FVM is used, the 

solution domain is subdivided into a finite number of contiguous control volumes (CV), 

and the conservation equations are applied to each CV (Ferziger & Peric, 1999). CCFD 

uses SIMPLE (Semi Implicit Method for Pressure Linked Equations) algorithm to solve 

non transient problems. This algorithm starts using boundary conditions values and 

solves momentum equation for fluid velocity. After that, advects fluid and calculates 

pressure gradient term. Finally, adjust fluid velocity and pressure iteratively until a 

volume conservative solution is found (Itasca, 2008b). Many other methods exist to 

solve Navier-Stokes equation; SMAC (Simplified Marker And Cell) algorithm is also used 

by CCFD for transients calculations. 

A numerical method for turbulent flow can be specified by the user if it is necessary; 

therefore, Reynolds numbers relevant for the problem should be evaluated before the 

simulation. On the other hand, Mach number should also be studied to check the 

condition M < 0.3 because the code uses an incompressible fluid flow approximation. 
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6.3. Particle-fluid interaction 

 

In general, particles in granular materials are surrounded by fluid (gas or liquid). In some 

problems the interaction between particles and fluid is of paramount of importance to 

understand the mechanical problem, especially when the fluid flow affects not only the 

stress of the system, but also its mass through granular transport (erosion). To simulate 

this interaction two models have to be coupled, one for the solid phase and another one 

for the fluid phase. To describe the phenomena involved, the governing equations for 

both phases and relationships between them are needed. 

When the solid phase is represented by discrete elements several fluid-coupling 

techniques are available (Zhu et al., 2007). An important classification criterion is the 

different length and time scales at which they aim to solve the fluid mechanics. Several 

approaches are presented below. 

The particle Reynold’s number is defined as 

 

fpfp vundRe mr -=   Eq. 6.7 

   

where fr  is the fluid density, dp is the particle diameter, n is the porosity, fm  is the fluid 

viscosity, u is the fluid velocity and v is the particle velocity. Comparing this equation to 

the general Reynold’s number equation for a fluid (Eq. 6.6), it can be observed that the 

characteristic linear dimension considered is the diameter of the particle. 
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6.3.1. Numerical approaches to simulate particle-fluid interaction  

 

In a particle-fluid flow system two different models are used and coupled: one for the 

solid phase (where discrete particles follow the solution of Newton’s equations of 

motion) and another one for the fluid phase.  

Different techniques have been developed depending on the different length and time 

scales of each model. Fluid flow can be modelled using discrete approaches (e.g. 

Molecular Dynamic Simulation (MDS), Lattice-Boltzmann (LB), Pore-Scale Finite Volume 

(PFV), Pseudo-Particle Method (PPM) and Smoothed Particle Hydrodynamics (SPH)) or 

continuum approaches (e.g. Direct Numerical Simulation (DNS), Large Eddy Simulation 

(LES) and CFD techniques). All of these approaches can be coupled with DEM and many 

of them have been tried already, for example LB-DEM (Cook et al., 2004), PFV-DEM 

(Catalano, 2013; Chareyre et al., 2012), PPM-DEM (Ge & Li, 2001, 2003a,b), CFD-DEM 

(Tsuji et al., 1993), DNS-DEM (Hu, 1996; Pan et al., 2002), LES-DEM (Zhou et al., 

2004a,b,c) and Smoothed Particle Hydrodynamics (SPH)-DEM (Potapov et al., 2001). 

Although DNS and LB are based on CFD, generally, the term CFD is used for the 

computational fluid dynamic techniques that solve the fluid dynamic equations in a 

computational cell longer than DNS and LB computational cells ones, because DNS and 

LB approaches have a sub-particle length scale, whilst CFD cells contain different 

particles. Therefore, CFD-DEM model is commonly used because of its generally 

perceived superior computational convenience as compared to DNS or LB-DEM (Zhu et 

al., 2007).  It is recognised, however, that PFV-DEM methods may also overcome the 

high computational cost of the microscale models using a sub-particle length scale. 

 

6.3.2. CFD-DEM 

 

The numerical approach usually referred as CFD-DEM coupling (Zhu et al., 2007) is 

derived from classical treatments of fluidized dense suspensions (Anderson & Jackson, 
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1967). In them, a pore-scale locally averaged version of the Navier-Stokes equations is 

used to represent fluid motion, and typically solved numerically using CFD techniques. 

CFD-DEM was pioneered by Tsuji et al. (1993) and Kawaguchi et al. (1998) to simulate 

the formation of bubbles in two and later three-dimensional gas-fluidized beds. It is now 

an increasingly favoured approach for process and chemical engineering problems (Zhu 

et al., 2007). Geomechanical applications of CFD-DEM have been documented by El 

Shamy & Zeghal (2005, 2007) who used the method to study sand boiling in artesian 

conditions and seismic shear-induced liquefaction in water-saturated sands. A CFD-DEM 

formulation, different in detail yet similar in concept to the one presented below, was 

used by Zhou et al. (2011) in a study of sand production. 

In CFD-DEM the particle velocity adds a drag force to the fluid momentum balance 

equations and the porosity affects directly the flow through the fluid governing 

equations. In this approach description of the fluid flow takes place at the computational 

cell level, whilst description of the solid phase is made through particles. Each particle 

in the cell has its own velocity, while the fluid velocity is the same for the entire cell. For 

each particle within a cell, the drag force is different, because it depends on the 

individual particle velocity, but also the buoyancy and pressure forces are different, due 

to their dependence of particle radius. 

 

6.3.2.1. Forces on the particles due to fluid 

 

As presented in the previous chapter, particle motion in DEM is described by Newton’s 

second law. In the presence of a fluid, a force is added due to interaction with fluid. The 

equilibrium equations for a particle are now: 
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j FFF
dt

dv
m ++=å   Eq. 6.8 
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  Eq. 6.9 

 

where v and w  are the translational and angular velocities of the particle, respectively, 

c

jF  and Mj  are the contact force and torque acting on the particle by particle j or walls, 

f
F  is the particle-fluid interaction force on the particle, and g

F  is the gravitational force.  

Several component forces may contribute to fluid-particle interaction. In this thesis we 

only use the drag force (the force due to the difference between the fluid velocity and 

the particle velocity), the buoyancy force and the pressure gradient force. Although 

other component interaction forces may be considered, as for example the virtual mass 

force, Basset force and lift forces (e.g. Li et al., 1999; Xiong et al., 2005; Potic et al., 2005), 

they are neglected. These forces are only important when particles suffer high rotations, 

or in high pressure gradient conditions or very low fluid density. 

When the Reynolds number is very low, in the laminar flow regime, the drag force on a 

single spherical particle is given by Stoke’s law (Finnemore & Franzini, 2002) 

 

( )vudF pfarla -= 2

min 3pm   Eq. 6.10 

 

This is called the Stokes-Einstein equation (Beetstra et al., 2006). This result is valid in 

the limit where both porosity approaches 1 and the Reynolds number approaches 0 (Rep 

< 1) (Finnemore & Franzini, 2002; Beetstra et al., 2006). In more general fluid flow 

regimes, the drag resistance force for an isolated sphere particle in a fluid is described 

by Newton’s equation: 

 

( ) 8
2

vuvudCF pfdd --= pr   Eq. 6.11 
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where Cd is the drag coefficient, fr   is the fluid density, dp is the particle diameter, u is 

the fluid velocity and v is the particle velocity. The particle fluid drag coefficient, Cd, 

expresses the effect of solid shape and surface properties on the interaction between 

the particle and the fluid. Cd is nearly always experimentally obtained (Ferziger & Peric, 

1999) and it has been observed experimentally that it is dependent on the particle 

Reynold’s number, Rep, and liquid properties (Finnemore & Franzini, 2002). As cited by 

DallaValle (1948), Wadell (1934a,b) collated existing data for spheres and found that the 

drag coefficient (also called coefficient of resistance) is a function of Reynolds number 

(Fig. 6.1). 

 

 

Fig. 6.1. Coefficient of resistance (drag coefficient) as a function of Reynolds number (DallaValle, 1948). 

 

Comparing Eq. 6.10 and Eq. 6.11, it can be derived that the drag coefficient for very low 

Reynolds number flows is 
pRe

24
 (Finnemore & Franzini, 2002). 

There are different expressions for the drag coefficient in the literature used by different 

researchers. The most used and best known are 

 

( ) ( )1000     15.0124 687.0 <+= pppd ReReReC   Eq. 6.12 

( )1000     44.0 >= pd ReC   Eq. 6.13 
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Eq. 6.12 was presented in Wen & Yu (1966) and Eq. 6.13 is a result of the observation of 

the turbulent region in Fig. 6.1 (DallaValle, 1948). 

Di Felice (1994) proposed another expression for the drag coefficient of spherical 

particles which provides an adequate representation of the available empirical data over 

the full practical range of particle Reynold numbers (Di Felice, 1994). 
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  Eq. 6.14 

 

When there is more than one particle the drag force cannot be derived analytically. 

Particle configuration and particle and fluid properties affect the general drag force due 

to the reduction of the space of fluid, the sharp velocity gradient generated and the 

increase of the shear stress on particles surfaces. A voidage function ( )nf  is added to 

the drag force expression 

 

( ) ( ) 82
vuvudCnfF pfdd --= pr   Eq. 6.15 

 

In general, two methods have been widely used to determine voidage functions. The 

first one is based on empirical correlations for bed expansion and pressure drop in 

fluidized beds (Ergun, 1952; Wen & Yu, 1966). Wen & Yu (1966) correlated the voidage 

function with the porosity using experimental data. Ergun (1952) correlated directly the 

energy loss (which can be related to a drag force) with a function of the porosity also 

using experimental data. 

The experimental data was obtained using different water flow rates and calculating the 

porosity changes in the beds of granular solids and the pressure drop (Ergun, 1952; Wen 



Chapter 6 – Fluid-particle interaction using CFD-DEM 

169 

 

& Yu, 1966). In this case, the effect of the presence of other particles is considered in 

terms of local porosity and two different expressions are derived depending on the 

porosity value: 
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Eq. 6.17 was proposed by Ergun (1952) for spherical particles. Eq. 6.18 was proposed by 

Wen & Yu (1966). 

However, in some cases the step change in drag forces that Ergun (1952) and Wen & Yu 

(1966) expressions produce at a porosity of 0.8 (Fig. 6.2) can be problematic; in these 

cases, the continuous single-function Di Felice (1994) correlation can be used (Kafui et 

al., 2002). The expression proposed by Di Felice (1994) is related to the flow regimes or 

particle Reynolds number. The value of the exponent varies in a rather large range (from 

-3 to 10) (Zhu et al., 2007). 

 

( ) c-= nnf   Eq. 6.19 

( )[ ]2log5.1exp65.07.3
2

pRe--=c   Eq. 6.20 
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Even though there are differences between both correlations, the results for a porosity 

of 0.4 are the same (Di Felice, 1994), as it can be observed also in Fig. 6.2. However, the 

difference between both correlations increase when the porosity is less than 0.4 (Fig. 

6.3). 

 

 

Fig. 6.2. Drag forces acting on 4 mm diameter particle as predicted using a combination of the Ergun 

(1952) and Wen & Yu (1966) correlations compared with the predictions from Di Felice (1994) correlation 

for a range of porosities at three relative velocities between the fluid and particles (Kafui et al., 2002). 

 

 

 

Fig. 6.3. Drag forces on 4 mm diameter particle as predicted by Ergun (1952) and Di Felice (1994) 

correlations for a range of porosities less than 0.4. u-v = 10 m/s. 
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Other researchers have derived expressions for particle drag forces by means of LBM 

simulations (Hilt et al., 2001; Beestrta et al., 2006; Benyahia et al., 2006). The drag forces 

derived by Hilt et al. (2001) are only valid for low Reynold number fluid flows (Rep < 120). 

On the other hand, Beetstra et al. (2006) derived another drag relation from LBM results, 

which is slightly more accurate than the relation of Hill et al. (2001) and valid over a 

wider range of Reynolds numbers (up to 1000). Finally, Benyahia et al. (2006) blended 

Hilt et al. (2001) and Beetstra et al. (2007) correlations and constructed an extended 

drag correlation (called EHKL) which is applicable to the full range of Reynolds numbers. 

Expressions for dimensionless forces are 
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where the dimensionless forces for higher Reynolds numbers, F0, F1, F2 and F3 are 

defined in Benyahia et al. (2006) and are dependent on the porosity. Fig. 6.4 compares 

the EHKL drag force with the Ergun (1952) and Di Felice (1994) forces for Reynolds 

numbers between 40 and 240 (Reynolds number depends on the porosity). It can be 

observed that when the porosity increases the EHKL tendency is the opposite as the 

other two drag forces. The EHKL drag force has a lower value than Ergun (1952) and Di 

Felice (1994) drag forces when the porosity is less than 0.2; the EHKL drag force 

increases when the porosity increases, and Ergun (1952) and Di Felice (1994) drag forces 

decreases when the porosity increases. Even though the mean value for the three drag 

forces is similar when the porosity has a low value the Di Felice (1994) drag force has a 

higher value than the other two drag forces. When the porosity is around 0.4 EHKL drag 

force differs from the empirical drag forces. 
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Fig. 6.4. Drag forces on 4 mm diameter particle as predicted by Ergun (1952), Di Felice (1994) and EHKL 

(Benyahia et al., 2006) correlations for a range of porosities between 0.1 and 0.6. u-v = 10 m/s. 

 

Indeed, it has been reported (Yin & Sundaresan, 2008, 2009; Holloway & Sundaresan, 

2010) that these equations are valid only within the constraints of the numerical 

simulation from which they were derived (systems composed by two different particle 

diameter sizes and with a maximum value of the solid diameter ratio is 4 and the two 

solid phases are static).  

Rotondi et al. (2015) validated several relationships governing solid-fluid dynamic 

interaction forces against experimental data for a single particle settling in a suspension 

of other smaller particles. It was observed that force relationships based on LBM did not 

perform as well as other interaction types tested. The first major conclusion in their 

study was the poor predictability of the LBM approaches in estimating of the settling 

velocity of a single particle in a solid-fluid suspension. It is to be noted that they were 

used outside their normal range of validity. In comparison, results from the approaches 

based on estimations from empirical data were very similar, overall. An example is given 

in Fig. 6.5. 
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Fig. 6.5. Settling velocity versus the density of the particles simulated with different models (Rotondi et 

al., 2015) and compared to experimental data. GDS is a combination of Ergun (1952) and Wen & Yu (1966) 

equations, VBZ is Beestra et al. (2006) correlation, DFR is Di Felice (1994), and MZL (Mazzei & Lettieri, 

2007), CDD (Cello et al., 2010) and RDY (Rong et al., 2014) are different LBM models. EXP is experimental 

from Martin et al. (1981). 

 

Besides the drag force, the pressure gradient force is also usually considered. The 

pressure gradient force is expressed as 

 

pRFgradp Ñ= 3

3

4
p   Eq. 6.23 

 

where R is the particle radius and p the fluid pressure. The pressure gradient is 

equivalent to the Darcy’s law (Eq. 2.4). When the sample is fully saturated, the porosity 

is low and the Reynolds number is also low, the pressure gradient is quantitatively more 

important than the drag force (Furtney et al., 2013). This is the reason why this equation 

is the only part contemplated in the fluid force in these conditions.  

The buoyancy is another kind of pressure gradient force, due to the gravity 

 

gRF fbuoyancy rp 3

3

4
=   Eq. 6.24 



 Chapter 6 – Fluid-particle interaction using CFD-DEM 

 

174 

 

 

where g is the gravity acceleration. The buoyancy force is the only force acting on the 

particle when particles are simply submerged in a static fluid (Furtney et al., 2013). 

There are other forces that can be also considered, but, as already stated above, they 

are not considered in this thesis. Some examples are the virtual mass force (that related 

to the force required to accelerate the surrounding fluid), the Basset force (that 

describes the force due to the lagging boundary layer development with changing 

relative velocity) and the lift forces, as Saffman lift force (caused by the pressure 

differential on the surface of the particle resulting from the velocity differential due to 

rotation) and the Magnus lift force  (Zhu et al., 2007).The virtual mass force relates to 

the force required to accelerate the surrounding fluid, and is also called the apparent 

mass force because it is equivalent to adding mass to a particle (Zhu et al., 2007). 

 

6.3.2.2. Effects on fluid flow due to particles 

 

Fluid flow is also affected by the particles in a particle-fluid flow system. A body force 

due to particles velocity is added in the Navier-Stokes equation and the porosity is also 

included in different terms of the equation. The body force is a drag force per volume 

acting on the fluid due to particles velocity. The governing equations comply with the 

law of conservation of mass and momentum in terms of local-average variables 

(Anderson & Jackson, 1967). The formulations were proposed by Gidaspow (1994) and 

assume that the pressure drop shares between the fluid and solid phases. The Navier-

Stokes equation and the continuity equation are 
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fb is the body force expressed as 

 

e
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=   Eq. 6.27 

 

where 
j

dF  is the drag force due to the particle j. There is only one body force for the 

entire cell. In each cell the porosity is calculated as follows  

 

e
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=   Eq. 6.28 

 

where Ve is the volume of the cell and Vb is the total volume of all the particles. 

 

6.3.2.3. Numerical implementation in CCFD-PFC3D  

 

The CCFD code presented in Section 6.2 is also an add-on that can be coupled with PFC3D 

to implement a version of the CFD-DEM method. The fluid force added to the particles 

has three terms: drag, buoyancy and pressure gradient 
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  Eq. 6.29 
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where Ff is the force applied by the fluid, Fd is the drag force, R is the radius of the 

particle, p is the fluid pressure, g is the gravity and fr  is the fluid density. 

CCFD add-on uses the empirical proposal by Wen and Yu for the drag force 

 

( ) cpr -÷
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ç
è
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2

2

1
  Eq. 6.30 

 

Where Cd is the drag coefficient, u is the fluid velocity, v is the particle velocity, R is the 

particle radius, n is the porosity and c  is a correction factor (Eq. 6.20). The drag 

coefficient is given by an empirical expression proposed Di Felice (1994), the DallaValle 

Eq. 6.14 
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  Eq. 6.31 

 

where Rep is the particle Reynolds number. The fluid flow, affected by the particles, 

follows the Eq. 6.25 and Eq. 6.26. 

Fig. 6.6 shows a fluid grid containing DEM particles in a cell. CCFD calculates the fluid 

velocity and the fluid pressure at the centre of each cell from which a force is added to 

the particle equilibrium equation. On the other hand, the DEM component of the model 

calculates the particle velocities and the porosity.  
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Fig. 6.6. The figure on the left shows a fluid grid containing different DEM particles in a cell. The figure on 

the right shows a fluid cell containing different DEM particles. The blue arrow represents the fluid velocity 

and black arrows represent the velocity for each particle. 

 

The coupling methodology of CCFD add-on assumes that the local porosity is evenly 

distributed within one cell and describes the average coupling forces occurring within 

one cell. Therefore, a number high enough of PFC3D particles should fit inside a CFD cell 

(Itasca, 2008b). That condition is indirectly expressed through the following inequality: 

 

5
2

>
D

R

xcfd   Eq. 6.32 

 

Where cfdxD  is the length of the cell and R is the particle radius. When particles in the 

sample have different radii the value used is the average. This condition is not enforced 

by the code and is only given as guidance to choose the length of the cells. 

In the case where the particles overlap more than one fluid element, CCFD uses three 

different methods to calculate the volume body force and the porosity: the location of 

the centroid, a polyhedron representation of the particles, and an approximate method. 

The one used in this thesis is the polyhedron method that represents a particle as a cube 

with height, length and width equal to the diameter of the particle. The intersection 

volume of this cube with the cells is apportioned, conserving the total particle volume. 

The fluid-particle drag force is equally apportioned. The porosity is recalculated for each 
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DEM cycle; therefore, changes of porosity are taken into account throughout the 

simulation.  

During simulation the two code exchange data only at given times. The coupling interval 

is the time interval between exchanges of data. During the coupling interval both codes 

run sequentially using their own time step, different for each one. After the coupling 

interval has elapsed data is exchanged again. The coupling interval is set by the user in 

CCFD add-on and is unique for all the simulation. Fig. 6.7 shows the calculation cycle of 

the coupling and Table 6.1 summarize the data each code calculates and passes to the 

other. 

 

Table 6.1. Summary of the data each code calculates, uses, and passes to the other. 

Data Calculated by Given to/Used by 

Fluid velocity CCFD PFC3D 

Pressure gradient CCFD PFC3D 

Porosity PFC3D PFC3D and CCFD 

Fluid force PFC3D PFC3D 

Body force PFC3D CCFD 
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Fig. 6.7. Calculation cycle of PFC3D and CCFD add-on 
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6.4. Previous works on sand production using fluid-particles coupling 

methods  

 

Sand production process have been studied by several researchers developing fluid-

solid coupling methods in DEM (e.g. Dorfmann et al., 1997; O’Connor et al., 1997; Cook 

et al., 2004; Grof et al., 2009; Marrion & Woods, 2009; Quadros et al., 2010; Cheung, 

2010; Boutt et al., 2011). The majority are 2D-DEM-based models and implemented fluid 

flow systems based on Darcy’s law. The most interesting aspects of this previous work 

are reviewed below. 

Dorfmann et al. (1997) performed 2 dimensional DEM simulations to study the 

mechanisms of the cavity growth and the influence of the pressure gradient and 

capillary forces on the formation of a stable arch configuration around the cavity. They 

considered a 2-phase Darcian flow (the wetting fluid and the non-wetting fluid), where 

the drag force was calculated with the fluid pressure on each particle (force that equals 

Eq. 6.23 for a radial fluid flow in 2 dimensions). The capillary is expressed in terms of the 

liquid bridge radius connecting two grains and the capillary pressure (defined as the 

difference in fluid pressure between the non-wetting fluid and the wetting fluid). A 

scheme of the model is shown in Fig. 6.8. The contact model used was a linear frictional 

model: contact properties include friction and normal and tangential stiffness. The 

model had semi-circular shape. The results indicated that pressure gradient had a 

greater influence on cavity growth than capillary force, especially at low gradient and 

capillary force magnitudes; however, as the capillary magnitude increased, it had a 

larger influence on sand cavity growth and stability. 

O’Connor et al. (1997) observed the perforation channel collapse due to the fluid flow 

using a 2D DEM model. They only considered 1 phase flow. The particles were bonded. 

The simulations were carried out in a quarter of a circular shaped domain. A set of 

numerical experiments using different flow rates indicated that sanding was primarily a 

phenomenon reminiscent of a cavitation process (when the material at the hole 

boundary consolidates, material surrounding it moves inwards and circumferential 

zones of material yield radially when tensile strength of the cement is reached) (Fig. 6.9). 
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The authors compared the results with unspecified experimental results and qualitative 

descriptions of sanding mechanisms in the literature and concluded that the predictive 

capabilities of the model were still poor. They gave reasons for this poor performance: 

the model was only 2D, the fluid and solid phases were artificially constrained, the fluid 

flow was approximated to a Darcian flow, and, finally, bonds did not support shear 

stresses (only tensile bonding was supported). 

 

 

Fig. 6.8. Discrete Element Model schematic (Dorfmann et al., 1997). 
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Fig. 6.9. Simulated matrix cavitation under fluid loading (O’Connor et al., 1997). 

 

Failures due to the slurry injection were observed by Cook et al. (2004). They examined 

the angular distribution of broken bonds for different confining stresses. The model used 

was a 2D DEM with a coupling method inspired by the molecular model of a fluid (at the 

molecular level, fluid pressure is generated by the collisions of individual fluid molecules 

with the walls of the fluid’s container). Instead of modelling the fluid, the model imitates 

this molecular collisions using small particles (source particles) at the other side of the 

borehole wall (inside the hole, where there are no ‘solid’ particles). The source particles 

collide with the larger elements that define the borehole wall. At each time step a 

constant force is applied to the source particle. The collisions of these particles on the 

borehole wall simulate the fluid pressure on the borehole, the only interaction 
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considered between the fluid and the particles. The fluid was a 1 phase flow and the 

particles were bonded. The contact between particles was simulated with a linear-

elastic frictional model and the sample was in a rectangular shaped domain. They 

concluded that the simulation results reproduced qualitatively the macroscopic failure 

processes associated with borehole fracturing and breakout. 

Grof et al. (2009) performed 3D CFD-DEM simulations to study particle erosion. A linear-

elastic model was set for the contact behaviour between particles without bonding. A 

2-phase incompressible Navier-Stokes flow was coupled and the forces applied to the 

particles due to the fluid were the drag force, the lift force, the buoyancy force and the 

capillary force. They observed the onset of sanding (when particles detach between 

each other) at the microscopic level and they performed parametric studies in terms of 

dimensionless groups determining the strength of cohesive/capillary forces and the 

magnitude of the drag (or gravitational) force. The dimensionless parameters are 
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where 
sr and 

lr are the solid and fluid densities, R is the sphere radius, g is the 

gravitational acceleration,g   is the surface tension, V is the volume of the liquid bridge, 

h  is the fluid viscosity and u is the superficial velocity. Parametric maps were generated 

as the main output from the study (Fig. 6.10); those maps allowed a priori estimation of 

the critical conditions for the on-set of particle erosion (sanding) regimes. It can be 
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observed in Fig. 6.10 that for some values of the dimensionless parameters particles 

detached, and for other values particles hold. 

 

  

(a) (b) 

Fig. 6.10. a) summary of the effect of parameters Bo and V* on different scenarios (Scenario H: the cluster 

of particles holds; Scenario I: partial detachment of particles (some particles detach and pull down more 

particles); Scenario F: the cluster of particles is detached at once.); b) summary of the effect of parameters 

y  and V*on different scenarios (Scenario H: the entire cluster of particles holds; Scenario M: particles 

detach and move due to flow). 

 

On the other hand, a qualitative study about the wormholes created when the fluid 

flows through the material was presented by Marrion & Woods (2009) using a 2D DEM 

model in a circular shaped domain. A 2-phase Darcian flow and no inter-particle contact 

forces were considered. The forces applied to the particles due to the fluid flow were 

pressure forces, viscous forces and capillary forces. A stochastic erosion criterion was 

used to simulate the particle erosion (removal). The model predicted and concluded that 

the non-uniform distributions of permeability significantly modify the characteristics of 

the erosion. 2D DEM model coupled with a darcian fluid was also presented by Jensen 

& Preece (2011). Their simulations showed that as the cohesion decreases, the number 

of particles breaking from matrix increases. 

LBM was also used to study sand production. Quadros et al. (2010) coupled a 2D DEM 

particle model with the LBM. Linear-elastic frictional contacts and bonding were 

present. A Newtonian flow was considered and the drag force was applied on the 

particles. The sample was represented in a rectangular shaped domain. The main 

objective of their study was observing the qualitative relationship between some 
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parameters (material strength, boundary stresses, pressure gradients and grain size) 

and the sand production rate and also between the inter-grain friction and the strength 

with the creation of a stable arch at the end. In their study they indicated some 

limitations of this modelling approach: only relatively low pressure differentials can be 

imposed in the simulations and the LBM has a high computational cost. 

Boutt et al. (2011) also coupled DEM with LBM for modelling sand production. The main 

objectives of their work were the observation of formation and destruction of stable 

arches and the qualitative study of the influence of shape and inter-particle friction on 

the sand production. They modelled two dimensional unbounded particles with normal 

and tangential stiffness and intergranular friction. The fluid flow was an incompressible 

Newtonian flow which applied a drag force on the particles. They observed that particle 

shape and friction were shown to both significantly increase production rates. 

Zhou et al. (2011) developed a 3D CFD-DEM model to simulate the sand erosion by fluid 

flow. Spherical particles were bonded and contact forces between particles followed a 

linear-elastic law. The fluid-particle forces considered were the pressure gradient force, 

the drag force and the gravitational force. The sample was represented in a portion of a 

cylindrical domain. They concluded that sand erosion is significantly affected by fluid 

flow rate and bonding properties; erosion rate increased with the decrease of sand 

strength and the increase of fluid rate (Fig. 6.11). 

In her PhD thesis, Cheung (2010) performed simplified CFD-DEM simulations for sand 

production. Particle contacts were modelled with a linear-elastic law and they a parallel-

bond model was also used. The three-dimensional sample was represented in a 

cylindrical shaped domain. The 1-phase fluid was modelled calculating solely the 

continuity equation (Eq. 6.5). The Navier-Stokes equation was not considered. 

Moreover, the drag force was only applied in one direction, on the particles. The effect 

of the particles on the fluid was not considered. The drag force was calculated using 

Ergun (1952) and Wen & Yu (1966) equations (Eq. 6.17 and Eq. 6.18). The fluid flow was 

constant during time. She performed some simulations on dry material to validate the 

model comparing the results with an analytical solution presented by Risnes et al. 

(1982). After the validation, she studied the different stresses for different fluid flow 
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velocities and bond strengths, the patterns of the particle stresses, contact forces, bonds 

and particle rotations, the sensitivity of different parameters on the results and tested 

different materials. However, by assuming radial flow, it is not suitable for investigating 

the impact of the flow at the tip of the perforation where the fluid flow is in all directions 

(Rahmati et al., 2013). 

 

  

(a) (b) 

Fig. 6.11. a) Number of produced sand grains with time for different fluid superficial velocities; b) number 

of produced grains with time for different particle-wall bonding coefficient (Zhou et al., 2011). 

 

Rahmati et al. (2013) reviewed in their paper some of the models that have been used 

for sand production. It was reported that DEM is promising to simulate the detachment 

of individual particles because it captures the motion and interaction of individual sand 

grains. However, it was also concluded that it is computationally expensive and 

therefore it is not applicable to large-scale problems. 

 

6.5. Other applications using CFD-DEM 

 

Different researches have been carried out using CFD-DEM in problems other than sand 

production. Some of these works are presented below. Table 6.2 at the end of the 

section summarize these works. 
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Tsuji et al. (1993) and Kawaguchi et al. (1998) pioneered the use of coupled DEM particle 

idealization and homogenized fluid model to simulate the formation of bubbles in two-

dimensional gas-fluidized beds. The drag force used in that model was derived from the 

Ergun (1952) and Wen & Yu (1966) equations.  

Two-dimensional fluidized beds were also simulated by Kafui et al. (2002). In this case, 

a virtual or added mass force accounting for the resistance of the fluid mass that is 

moving at the same acceleration as the particle was considered a part of the drag force. 

The drag force used in this case was the one proposed by Di Felice (1994). Hoomans et 

al. (1996) also simulated two-dimensional fluidized beds. The drag force considered was 

the one obtained with the Ergun equation and the correlation presented by Wen & Yu 

(1966).On the other hand, Xu & Yu (1997) simulated three-dimensional fluidized beds. 

The drag force was based on Di Felice (1994) proposed equation. 

Xiong et al. (2005) used CFD-DEM to simulate a three-dimensional gas-solid injector. The 

gas is considered turbulent using a two-equation k-epsilon closure. The fluid-particle 

interaction forces considered are: the drag force, the Magnus lift force, the Saffman lift 

force, the history force and the other force. 

Langston et al. (1995) used CFD-DEM to simulate three-dimensional granular flows in 

hoppers. The model was three-dimensional and particles passed through a radial flow 

of air. The air/particle interaction (drag) force is modelled using the Ergun equation. The 

results obtained for discharge rates were reasonable and the particle velocity and the 

void structures provided information on the transient and oscillatory nature of the flow 

fields which are not accessed by the steady-state continuum models. 

El Shamy & Zeghal (2005) used a coupled three-dimensional hydromechanical model 

using CFD-DEM to analyse the mesoscale pore fluid flow and microscale solid phase 

deformation of saturated granular soils. In this case the fluid medium used for modelling 

was water. The force exerted on the particles contents the drag force by the fluid and 

the buoyancy. Averaged fluid-particle interaction was quantified using semiempirical 

relationships Ergun (1952) and Wen & Yu (1966) proposed. 
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Zhao & Shan (2013) coupled DEM and CFD to simulate the behaviour of fluid-particle 

interaction and to investigate the characteristics of sand heap formed in water through 

hopper flow. It was concluded that the influence of fluid-particle interaction on the 

behaviour of granular media was well captured in all the simulated problems. The 

interaction forces being considered included the drag force and buoyancy force, and the 

drag force used was the one proposed by Di Felice (1994). 

Jiang et al. (2015) coupled DEM with CFD in 2 dimensions to simulate methane hydrate 

bearing sediments that induce submarine landslides. A thermo-hydro-mechanical bond 

contact law was employed. In the interaction between the particles and the fluid the 

pressure gradient force and the drag force were considered. The drag force used was 

the combination of the Ergun (1952) equation and the on proposed by Wen & Yu (1966) 

(Eq. 6.17 and  Eq. 6.18). The performed simulations of submarine landslide induced by 

methane hydrate dissociation proved that the CFD-DEM worked successfully and could 

capture various observed behaviours. 

 

Table 6.2. Summary of the CFD-DEM works 

Authors Study Dim. Drag force Other fluid forces 

Tsuji et al. (1993) 
Formation of bubbles 

in gas-fluidized beds 
2D Ergun (1952) and Wen & Yu (1966)  

Kawaguchi et al. (1998) 
Formation of bubbles 

in gas-fluidized beds 
2D Ergun (1952) and Wen & Yu (1966)  

Kafui et al. (2002) Fluidized beds 2D Di Felice (1994) Virtual mass force 

Hoomans et al. (1996) Fluidized beds 2D Ergun (1952) and Wen & Yu (1966)  

Xu and Yu (1997) Fluidized beds 3D Di Felice (1994)  

Xiong et al. (2005) Gas-solid injector 3D  
Magnus lift, Saffman 

lift, and history force 

Langston et al. (1995) Hoopers 3D Ergun (1952)  

El Shamy & Zeghal (2005) 

Pore fluid flow and 

solid deformations of 

saturated soils 

3D Ergun (1952) and Wen & Yu (1966) Buoyancy 

Zhao and Shan (2013) Hoppers  Di Felice (1994) Buoyancy 

Jiang et al. (2015) 
Methane hydrate 

bearing sediments 
2D Ergun (1952) and Wen & Yu (1966) 

Pressure gradient 

force 
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6.6. Representing CFD results 

 

ParaView (Section 4.8) is also used here to represent CFD results. For continuum fields, 

as it is the fluid model in CFD, VTK (introduced in Section 4.8) provides data 

representations for a variety of grid types (structured, unstructured, polygonal and 

image data) (Ahrens et al., 2005). Fig. 6.12 shows the structured grids that can be 

represented in ParaView. Moreover, grids with any pattern can also be constructed 

defining the coordinates of each point of the cell. 

 

 

Fig. 6.12. Different structured cells for continuum data represented in ParaView 

 

In each cell, ParaView represents a magnitude using a colour scale (using a given 

variable, as a scalar, a vector component or a vector magnitude). Arrows can be also 
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represented in each cell, to give information as vectors, as it was presented also in 

Section 4.8 for particles). 

Examples of a scalar represented in different cells are shown in the next figures. Fig. 6.13 

is a x-y plane representation where each colour represents different values of the void 

ratio. Each value is presented in each cell and cells are hexahedral. Fig. 6.14 represents 

the porosity also in a cylindrical shape with a hole inside. Finally, Fig. 6.15 represents a 

cut of the same cylinder. 

 

 

Fig. 6.13. Void ratio represented in ParaView in different cells. The grid is hexahedral (structured). Plane 

x-y 

 

 

Fig. 6.14. 3D representation of a cylinder with a hole inside. Cells are hexahedral and cell color is used to 

represent the different porosity values. 
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Fig. 6.15. Cut of the 3D representation of a cylinder with a hole inside. 

 

The output CCFD data files have to be adapted to a data file format that ParaView could 

read. A MATLAB script to do that is included in Appendix D. 

 

6.7. Summary 

 

Granular materials are usually permeated by fluid. The interaction between soil particles 

and fluid becomes important when the fluid flow affects, not only the total stress of the 

system, but also mass transport of the solid matrix. To simulate this interaction two 

models have to be coupled, one for the solid phase and another one for the fluid phase. 

Several fluid-coupling techniques are available when the solid phase is represented by 

discrete elements: LB-DEM, PPM-DEM, CFD-DEM, DNS-DEM, LES-DEM and SPH-DEM. 

CFD-DEM model is one of the most used because of its relatively small computational 

burden. One of the reasons is that CFD cells contain different particles. CFD is a 

computational model for fluid dynamics, where the fluid is treated as a continuum 

medium. The code used in this thesis is the CCFD add-on that couples with PFC3D. This 

code calculates the fluid pressure and the fluid velocity in each cell, which contains a 

different number of DEM particles. PFC3D calculates the particle velocities and the 

porosity. A force due to the fluid is added on the Newton’s second law for each particle, 

and a body force is added in the Navier-Stokes equation for the fluid flow due to the 

presence of the fluid; a porosity term is also affecting the fluid flow equations. 
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Different researches have been carried out using CFD-DEM (e.g., Tsuji et al., 1993; 

Kawaguchi et al., 1998; Kafui et al., 2002; Hoomans et al., 1996; Xu & Yu, 1997, Xiong et 

al., 2005, Langston et al., 1995; El Shamy & Zeghal, 2005). Fluidized beds in two 

dimensions have been studied by most of them (Tsuji et al., 1993; Kawaguchi et al., 

1998; Kafui et al., 2002; Hoomans et al., 1996). Xu &Yu (1997) performed simulations of 

3D fluidized beds. Other applications as gas-solid injectors (Xiong et al., 2005), hoopers 

(Langston et al., 1995; Zhao & Shan, 2013) have been also of interest for using CFD-DEM 

models. Finally, El Shamy & Zeghal (2005) used CFD-DEM to study deformations of 

saturated granular soils in three dimensions, and Jiang et al. (2015) performed 2 

dimensional CFD-DEM simulations to study methane hydrate bearing sediments. 

Sand production process has been studied by several researchers using different 

particle-fluid coupling methods with DEM (e.g., Dorfmann et al., 1997; O’Connor et al., 

1997; Cook et al., 2004; Grof et al., 2009; Marrion & Woods, 2009; Quadros et al., 2010; 

Cheung, 2010; Boutt et al., 2011). Most of them are 2D-DEM-based models and the fluid 

flow assumed Darcy’s law, therefore implicitly disregarding fluid flows with a high 

Reynolds number. 
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Chapter 7 - Validation of the CFD-DEM 

 

7.1. Introduction 

 

In Chapter 8 and Chapter 9 sand production simulations coupling DEM and CFD are 

performed and presented. In this chapter the modelling approach is tested in simpler -

but still relevant- cases, to allow clearer understanding of some aspects affecting the 

fluid-particle interaction 

First of all, (Section 7.2) simulations with a single particle are performed to understand 

the effect of the drag force, and the sensitivity of the damping force and the viscosity, 

on the interaction between the fluid and the particle. As the CFD-DEM is a powerful tool 

to simulate the erosion and the particle movement in the fluid, this is a common test 

some researchers have performed to validate a fluid-particle coupled model (e.g. Jiang 

et al., 2015; Zhao et al., 2014).  

CFD-DEM is also a good tool to simulate flow through dense soils. The classical 

benchmark test for this kind of analysis has been the oedometer test, which has been 

already explored by different researchers (e.g. Jiang et al., 2015; Élias, 2013; Catalano, 

2013); to evaluate the method the similarly important but less explored case of the 

permeameter test has been used as a benchmark in this chapter (Section 7.3).   

 

7.2. Simple tests: single particle in a tube 

 

Validation and sensitivity tests are performed to understand the behaviour of the DEM-

CFD coupling with a single particle. Three different cases are explored: a particle falling 

inside a vertical tube where the fluid is not flowing, a particle dragged by the fluid inside 

a horizontal tube and a particle decelerated by fluid with no flow inside a horizontal 

tube.  
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All simulations with a single particle lasted between 1 and 3 minutes. However, the 

equilibrium in most of them was achieved in less than one minute. The efficiency 

increases or decreases with the variation of the damping and the viscosity depending on 

the difference between the particle velocity and the fluid velocity. 

 

7.2.1. Particle falling inside a tube: sedimentation velocity 

 

A simulation of a particle falling inside a vertical tube is performed. An analytical solution 

for the limit velocity of a sphere falling in a fluid is given by Stoke’s Law (Eq. 6.10), which, 

as explained in Section 6.3.2.1, is only valid for low Reynolds numbers (Rep < 1). The 

analytical solution for the terminal velocity is 
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Where vlim  is the limit velocity, pr  and fr  are the particle and fluid densities, fm  is the 

fluid viscosity, g is the acceleration gravity and R is the particle radius. The limit velocity 

is the velocity when the buoyancy force and the drag force equals to the weight; in that 

moment the total force and the acceleration are 0. 

The height of the tube is 0.08 m and the radius 5 mm (Fig. 7.1). The fluid is water, with 

a density of 1000 kg/m3 and a viscosity of 1 mPa·s.  This values result in a Reynolds 

number (Eq. 6.7) of 0.6.  

To construct the CFD mesh, 40 vertical divisions and 20 circumferential divisions are 

made (Fig. 7.2). The boundary conditions are no flux at the bottom and at the lateral 

boundaries and null pressure at the top boundary. 
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Fig. 7.1. Vertical tube 

 

    

Fig. 7.2. Mesh of the vertical tube: xy plane (left) and xz plane (right). 

 

A particle is created at the top of the tube and at the centre of the top boundary. The 

particle has a radius of 0. 03 mm and a density of 2500 kg/m3. The local damping is set 

to 0 and the simulation is run until 0.1 seconds using a coupling time of 0.5 ms. Stoke’s 

terminal velocity (Eq. 7.1) for this problem is 0.0029 m/s. 

Fig. 7.3 shows the results of the simulation. The position of the particle is the distance 

measured from the top of the tube. The fluid force is the sum of the drag force, the 

buoyancy and the force due to the pressure gradient. The particle velocity is normalized 
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by the limit velocity, the fluid force is normalized by the buoyancy force and the position 

is normalized by the particle diameter.  

 

   

(a) (b) 

  

(c) 

Fig. 7.3. Results of the dropping simulation. (a) Normalized drag force versus time, (b) normalized particle 
velocity versus time, and (d) normalized position versus time. The position is calculated from the top of 
the tube, and positive downwards. The particle velocity is normalized by the limit velocity, the fluid force 
is normalized by the buoyancy force and the position is normalized by the particle diameter. All figures 
are represented in a logarithmic scale. 

 

The drag force increases until a steady state is reached, after which the drag force 

remains constant during the simulation. At the beginning the only fluid force acting on 

the particle is that of buoyancy (1.1·10-6 mN). The drag force is 0 because motion has 
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not yet started. The gravity on the particle is 2.8·10-6 mN. Due to the difference between 

the fluid force and the weight (vertical forces with opposite direction) the particle starts 

moving downwards increasing its velocity. As the particle velocity increases the drag 

force increases (due to the difference between the particle and the fluid velocities) 

increasing the fluid force upwards until it reaches the same value as the gravity force. 

During this process the particle decelerates until it reaches terminal velocity.  

The run time for this simulation is 40 min for a simulation time of 0.1 s. 

 

7.2.2. Pure drag: effect of viscosity and damping 

 

Simulations of a weightless particle dragged by the fluid flow inside a horizontal tube 

are now performed. Buoyancy is also excluded from these simulations, so that the only 

force between particle and fluid is the drag force. 

For low Reynolds number fluid drag can be again expressed by Stoke’s expression (Eq. 

6.10). The governing equations for a single particle are 

 

dt

dv
mF arla =min

  Eq. 7.2 

( )
dt

dv
RvuR pf rppm 3

3
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6 =-   Eq. 7.3 

 

where Flaminar is the Stoke’s expression (Eq. 6.10), m is the particle mass, v is the particle 

velocity, 
fm  is the fluid viscosity, u is the fluid velocity, R is the particle radius, and pr   

is the particle density. The analytical solution calculated from Eq. 7.3 for the velocity and 

the position of the particle are 
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where x is the particle position,  and x0 is the initial position. 

The length of the tube is L = 0.08 m and the radius R = 5 mm (Fig. 7.4). The fluid is water, 

with a density of 1000 kg/m3 and a viscosity of 1 mPa·s.  

To construct the mesh, 40 horizontal divisions and 20 circumferential divisions are made 

(Fig. 7.5). The boundary conditions are U = 1 mm/s velocity at the entrance of the tube 

(left) and P = 0 pressure at the opposite boundary. 

 

 

Fig. 7.4. Horizontal tube 

 

 

  

Fig. 7.5. Mesh of the horizontal tube: yz plane (left) and xz plane (right) 
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A particle is created at the entrance of the tube (at x0 = 2 mm of the entrance of the 

tube) and at the centre of the section. The particle has a radius of 0.03 mm and a density 

of 2500 kg/m3.Local damping is set to 0 and the simulation is run until a total simulation 

time of 0.01 seconds using a coupling time of 0. 5 ms. The particle Reynolds number in 

this scenario is 0.06, it means that the Stoke’s law (Eq. 6.10) is also valid. Following the 

analytical solution (Eq. 7.4) we can define a transient time (ttrans), as the 99% of the fluid 

velocity. In this problem ttrans = 0.99 mm/s. The analytical transient time is 0.0023 s. 

The results of the simulation are presented in Fig. 7.6. Position is distance from the 

beginning of the tube. Only the drag component of the fluid force is represented 

because it is the only fluid force considered. The drag force is normalized by the initial 

drag force, the particle velocity is normalized by the fluid velocity and the position is 

normalized by the particle diameter. The fluid force decreases and the particle velocity 

increases. At the beginning the fluid velocity is 1 mm/s and the particle velocity is 0; due 

to this difference, the drag force drags the particle increasing its velocity. As the particle 

velocity increases it gets closer to the fluid velocity, thus decreasing the drag force. 

When the particle velocity reaches the same value as the fluid velocity the drag force 

becomes 0 and the particle velocity stabilizes reaching a steady state with a velocity of 

1 mm/s. The numerical transient time in this simulation is 0.0023 s, the same as the 

analytical transient time. 

Fig. 7.7 shows the body force on the fluid and the fluid velocity. Both are calculated in 

the cell where the particle is (following the particle movement). The body force is the 

same as the drag force on the particle but in the opposite direction. The fluid flow 

velocity is always the same and 0. Due to the low Reynolds number the fluid is not 

affected by the movement of the particle. 

The results in Fig. 7.7 can be compared with an analytical solution. Fig. 7.8 shows the 

analytical results and compares them to the numerical ones.  The numerical result is the 

same as the analytical one. 
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(a) (b) 

 

(c) 

Fig. 7.6. Results of the dragged particle simulation. (a) Normalized drag force versus time, (b) normalized 
particle velocity versus time, and (c) normalized position versus time. All figures are represented in a 
logarithmic scale. The position is calculated from the centre of the tube. Drag forces are normalized by 
the initial drag force in the direction of the fluid flow and particle velocities are normalized by the fluid 
velocity. All figures are represented in a logarithmic scale. 
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(a) (b) 

Fig. 7.7. Results of the fluid flow in the cell where the particle is. (a) normalized body force versus time, 
and (b) normalized fluid velocity versus time. All figures are represented in a logarithmic scale. Body force 
is normalized by the initial drag force in the direction of the fluid flow and fluid velocity is normalized by 
the imposed boundary fluid velocity. All figures are represented in a logarithmic scale. 

 

  

(a) (b) 

Fig. 7.8. (a) Numerical and analytical solutions for particle velocity versus time and (b) position versus 
time. 

 

Even though there are no buoyancy and gravity forces, some displacement on the 

vertical direction is computed. Moreover, there is also displacement on the horizontal 

position (perpendicular to the direction of the flow). In Fig. 7.9 it is shown the 

displacements, the drag forces and the particle velocity in the horizontal (perpendicular 
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to the direction of the fluid flow) and vertical directions. It can be observed that values 

are very low compared with the ones presented in the direction of the flow (Fig. 7.6).  

The reason why there is horizontal and vertical particle velocity is that there is some 

drag force in both directions. The horizontal and vertical drag forces are due to the 

horizontal and vertical fluid velocities (Fig. 7.10). These fluid velocities are supposed to 

be 0 but they are not because of the round-off error of the numerical fluid simulation. 

The same simulation without a particle has been also performed (Fig. 7.11) and the 

results confirmed that the fluid flow has some horizontal and vertical velocities, what 

means that they are not caused by the presence of the particle. When the coupling is 

done these velocities transfer moment to the particle. In Fig. 7.9a and Fig. 7.9b there 

are some ‘jumps’ in the graphs. These jumps are in each time coupling (0.005 s). Every 

time the CCFD and PFC3D couple the fluid transfers horizontal and vertical velocities to 

the particle and the drag forces in these directions increase. 

Simulations with different local damping values ( δ  in Eq. 4.27) were performed to 

understand the effect of the damping on the drag force and the particle velocity. The 

damping values tested are 0.4 and 0.8. Fig. 7.12 compares the results of these 

simulations and the reference case presented above (with a damping value of 0).  The 

limit behaviour in terms of particle velocity and drag force is equal in all simulations, but 

as damping increases the drag force decrease is slower, and the limit velocity is attained 

later and further from the entrance.  Increasing the damping value the overshoot in 

velocity over the analytical solution disappears and the position lag with respect that 

solution increases. 

The effect of different fluid viscosities was also explored. Results for viscosity 0.01 and 

100 mPa·s, are compared with those from the reference viscosity of 1 mPa·s presented 

in Fig. 7.13. It can be observed how a more viscous fluid results in a shorter transient 

and an increased velocity overshoot. For the less viscous fluid the simulation ends before 

the velocity transient is finished. 

From these parametric analyses it can be concluded that in the study of transient 

situations induced by fluid-particle interaction the effect of increased local damping is 

similar to that of reducing fluid viscosity. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 7.9. Results of the dragged particle simulation on the horizontal and vertical directions. (a) Normalized 
horizontal drag force versus time, (b) normalized vertical drag force versus time, (c) normalized horizontal 
particle velocity versus time, (d) normalized vertical particle velocity versus time, (e) normalized 
horizontal position versus time, and (f) normalized vertical position versus time. The position is calculated 
from the centre of the tube. Drag forces are normalized by the initial drag force in the direction of the 
fluid flow, positions are normalized by the particle diameter and particle velocities are normalized by the 
fluid velocity. All figures are represented in a logarithmic scale. 
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(a) (b) 

Fig. 7.10. Results of the fluid flow in the cell where the particle is on the horizontal and vertical directions. 
(a) Normalized horizontal fluid velocity versus time, and (b) normalized vertical fluid velocity versus time. 
All figures are represented in a logarithmic scale. Fluid velocities are normalized by the boundary velocity 
condition on the direction of the flow. All figures are represented in a logarithmic scale. 

 

  

(a) (b) 

Fig. 7.11. Results of the fluid flow without the particle on the horizontal and vertical directions. (a) 
Normalized horizontal fluid velocity versus time, and (b) normalized vertical fluid velocity versus time. All 
figures are represented in a logarithmic scale. Fluid velocities are normalized by the boundary velocity 
condition on the direction of the flow. All figures are represented in a logarithmic scale. 
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(a) (b) 

 

(c) 

Fig. 7.12. Results of the dragged particle simulation with different damping values. (a) normalized drag 
force on the direction of the fluid flow versus time, (b) normalized particle velocity on the direction of the 
fluid force versus time, and (c) normalized position on the direction of the fluid flow versus time The 
position on the direction of the fluid flow is calculated from the beginning of the tube, and positive going 
to the opposite side of the tube, and horizontal and vertical positions are calculated from the centre of 
the tube. Only the drag force of the fluid force is represented. Drag forces are normalized by the initial 
drag force in the direction of the fluid flow, positions are normalized by the particle diameter and particle 
velocities are normalized by the fluid velocity. 
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(a) (b) 

 

(c) 

Fig. 7.13. Results of the dragged particle simulation with different damping values. (a) Normalized drag 
force on the direction of the fluid flow versus time, (b) normalized particle velocity on the direction of the 
fluid force versus time, and (c) normalized position on the direction of the fluid flow versus time. The 
position on the direction of the fluid flow is calculated from the beginning of the tube, and positive going 
to the opposite side of the tube, and horizontal and vertical positions are calculated from the center of 
the tube. Only the drag force of the fluid force is represented. Drag forces are normalized by the initial 
drag force in the direction of the fluid flow and the reference viscosity, positions are normalized by the 
particle diameter and particle velocities are normalized by the fluid velocity. 
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7.2.3. Particle decelerated by fluid with no flow in a horizontal tube  

 

Simulations of particle deceleration by static fluid inside a horizontal tube are 

performed. Again, buoyancy and gravity are not taken into account and the only force 

between the particle and the fluid is the drag force. 

In this problem the drag force exerted on the particle is passive: the fluid initial velocity 

is 0 and its presence decelerates the particle. As in the previous section, drag force can 

be again expressed by Stoke’s expression, and the governing equations for a single 

particle are the same (Eq. 7.2 and Eq. 7.3). The difference is that the initial fluid velocity 

is u = 0 and the initial particle velocity is v0. The analytical solutions calculated for the 

velocity and the position of the particle are 
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The length of the tube is L = 0.08 m and the radius R = 5 mm (Fig. 7.4). The fluid is water, 

with a density of 1000 kg/m3 and a viscosity of 1 mPa·s.  

To construct the mesh, 40 horizontal divisions and 20 circumferential divisions are made 

(Fig. 7.5). The boundary conditions are U = 0 m/s velocity at the entrance of the tube 

(left) and  P = 0 pressure at the opposite boundary. A particle is created at the entrance 

of the tube (at x0 = 2 mm of the entrance of the tube) and at the centre of the boundary. 

The particle has a radius of 0.03 mm, a density of 2500 kg/m3 and an initial horizontal 

velocity of 1 mm/s. The local damping is set to 0 and the simulation is run until 2 seconds 

using a coupling time of 0.01 s. The Reynolds number in this problem is 0.6, it means 
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that the Stoke’s law (Eq. 6.10) is also valid. Following the analytical solution (Eq. 7.6) we 

can define a transient time (ttrans), as the 0.01 % of the initial particle velocity. In this 

problem ttrans = 0.01 mm/s. The analytical transient time is 0.0023 s.  

The results are shown in Fig. 7.14. The drag force on the particle is negative because the 

particle velocity is higher than the fluid velocity; therefore, the fluid decelerates the 

particle until the same velocity as the fluid (0) is reached.  

 

  

(a) (b) 

  

(c) 

Fig. 7.14. Results of the decelerated particle simulation. (a) Normalized drag force versus time, (b) 
normalized particle velocity versus time, and (c) normalized position versus time. The position is 
calculated from the beginning of the tube, and positive going to the opposite side of the tube. Only the 
drag component of the fluid force is represented. The particle velocity is normalized by the limit velocity, 
the drag force is normalized by the initial force in the initial particle velocity direction and the position is 
normalized by the particle diameter. All figures are represented in a logarithmic scale. 
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Fig. 7.15 shows the body force on the fluid and the fluid velocity. Both are calculated in 

the cell where the particle is (following the particle movement).  The body force is the 

same as the drag force on the particle but in the opposite direction. The fluid flow 

velocity is 0 until 0.0005 s, when the first coupling occurs. At that point, the particle 

transfers moment to the fluid and its velocity increases. The numerical transient time in 

this simulation is 0.0023 s, the same as the analytical transient time. The numerical 

results in Fig. 7.14 can be compared with an analytical solution. Fig. 7.16 shows the 

analytical results and compares them to the numerical ones. 

 

  

(a) (b) 

Fig. 7.15. Results of the fluid flow in the cell where the particle is. (a) normalized body force versus time, 
and (b) normalized fluid velocity versus time. All figures are represented in a logarithmic scale. Body force 
is normalized by the initial drag force in the direction of the fluid flow and fluid velocity is normalized by 
the imposed boundary fluid velocity. All figures are represented in a logarithmic scale. 
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(a) (b) 

Fig. 7.16. (a) Numerical and analytical solutions for normalized particle velocity versus time and (b) 
normalized position versus time. Particle velocity is normalized by the initial particle velocity and position 
is normalized by the particle diameter. 

 

There is also some displacement on the vertical and horizontal (perpendicular to the 

initial particle velocity direction) directions. In Fig. 7.17 illustrates the displacements, 

fluid forces and particle velocity in these directions. It can be observed that values are 

very low comparing them with the ones presented in the direction of the flow (Fig. 7.14).   

The reason why there is horizontal and vertical particle velocities and also drag forces in 

these directions are the same as exposed in Section 7.2.2. The horizontal and vertical 

fluid velocities during the simulation are those presented in Fig. 7.18. In Fig. 7.19 it can 

be seen that there is horizontal and vertical fluid velocities also when the simulation is 

performed without particle due to a round-off error. 

Simulations with different local damping values ( δ  in Eq. 4.27) were performed to 

understand the effect of the damping on the drag force and the particle velocity. The 

damping values tested are 0.4 and 0.8. The results are presented in Fig. 7.20. At the end 

of all the simulations the velocity of the particle is 0. The effect of the damping in the 

simulation makes the particle decelerate faster. The result is that when the damping 

value is increased, the particle stops at a point closer to the entrance of the tube.  

The effect of the viscosity is also presented (Fig. 7.21). Again, an increase in viscosity 

results in shorter transients and the particle stops at a point closer to the entrance of 

the tube. 
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(a) (b) 

       
(c) (d) 

     
(e) (f) 

Fig. 7.17. Results of the decelerated particle simulation on the horizontal and vertical directions. (a) 
Normalized horizontal drag force versus time, (b) normalized vertical drag force versus time, (c) 
normalized horizontal particle velocity versus time, (d) normalized vertical particle velocity versus time, 
(e) normalized horizontal position versus time, and (f) normalized vertical position versus time. The 
position is calculated from the center of the tube. The particle velocity is normalized by the limit velocity, 
the drag force is normalized by the initial force in the initial particle velocity direction and the position is 
normalized by the particle diameter. All figures are represented in a logarithmic scale. 
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(a) (b) 

Fig. 7.18. Results of the fluid flow in the cell where the particle is on the horizontal and vertical directions. 
(a) normalized horizontal fluid velocity versus time, and (b) normalized vertical fluid velocity versus time. 
All figures are represented in a logarithmic scale. Fluid velocities are normalized by the boundary velocity 
condition on the direction of the flow. All figures are represented in a logarithmic scale. 

 

  

(a) (b) 

Fig. 7.19. Results of the fluid flow without the particle on the horizontal and vertical directions. (a) 
normalized horizontal fluid velocity versus time, and (b) normalized vertical fluid velocity versus time. All 
figures are represented in a logarithmic scale. Fluid velocities are normalized by the boundary velocity 
condition on the direction of the flow. All figures are represented in a logarithmic scale. 
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(a) (b) 

 

(c) 

Fig. 7.20. Results of the decelerated particle simulation for different damping values. (a) normalized drag 
force on the direction of the initial particle velocity versus time, (b) normalized particle velocity on the 
direction of the initial particle velocity versus time, and  and (c) normalized position on the direction of 
the initial particle velocity versus time. The position on the direction of the initial particle velocity is 
calculated from the beginning of the tube, and positive going to the opposite side of the tube, and the 
horizontal and the vertical directions from the center of the tube. The particle velocity is normalized by 
the limit velocity, the drag force is normalized by the initial force in the initial particle velocity direction 
and the position is normalized by the particle diameter. 
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(a) (b) 

 

(c) 

Fig. 7.21. Results of the decelerated particle simulation for different viscosity values. (a) normalized drag 
force on the direction of the initial particle velocity versus time (b) normalized particle velocity on the 
direction of the initial particle velocity versus time, and (c) normalized position on the direction of the 
initial particle velocity versus time The position on the direction of the initial particle velocity is calculated 
from the beginning of the tube, and positive going to the opposite side of the tube, and the horizontal 
and the vertical directions from the center of the tube. The particle velocity is normalized by the limit 
velocity, the drag force is normalized by the initial force in the initial particle velocity direction and the 
position is normalized by the particle diameter. 

 

7.2.4. Conclusions of single particle tests and sensibility studies 

 

In Sections 7.2.2 and 7.2.3 some simulations with a single particle have been performed 

with a low Reynolds number and the results compared to the Stokes analytical solution. 

The numerical results are consistent with the analytical solutions in the direction of the 
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fluid flow or the particle velocity. In the perpendicular directions, where the particle and 

the fluid are not supposed to move, some numerical discrepancies are found due to the 

numerical round-off error. 

The running time of all the simulations in Section 7.2.2 and 7.2.3 is 1 min for a simulation 

time of 0.01 s. 

The sensibility analysis has given some interesting results about the influence of the local 

damping and the viscosity in the solution. In Fig. 7.22 a parametric study of the previous 

simulations is presented. First of all, it should be noted that the effect of fluid viscosity 

in the transient time is the same for the simulation with an accelerated particle and the 

one with and a decelerated particle. When the viscosity is increased the transient time 

decreases. Moreover, the transient time is the same for both simulations at a given value 

of the viscosity. 

On the other hand, the effect of the local damping is quite different. Increasing the local 

damping increase the transient time when the particle is accelerated by the fluid, but 

decreases the transient time when the particle is decelerated by the fluid. The local 

damping is a force added to decelerate the particle. For that reason, when the particle 

is being decelerated by the fluid the local damping increases its deceleration. But, on 

the other hand, when the particle is being accelerated by the fluid, the local damping 

adds an opposite force to the fluid force and increases the time to reach limit velocity. 

The effect of the damping is an important fact that must be considered in coupled 

simulations.  In most DEM simulations local damping is used because it is practical to 

speed the simulation and the macro results appear to improve (i.e. are smoothed) when 

damping is added. However, it has been presented in this section that the local damping 

can affect the result of a single particle position what makes the selection of the local 

damping value an important fact to be considered. This effect is again presented in 

Section 8.5 comparing results with different local damping values in sand production 

simulation, and was also discussed in Climent et al. (2013). 

 

 



 Chapter 7 – Validation of the CFD-DEM 
 

216 
 

  

(a) (b) 

Fig. 7.22. (a) Transient time versus local damping, and (b) transient time versus viscosity in a logarithmic 
scale when the particle is accelerated by the fluid and when the particle is decelerated by the fluid. 

 

7.3. Permeability in particle-flow methods: particle Reynolds number 

 

A model permeameter was built to validate the CFD-DEM coupling in a more complex 

setting.  

The Kozeny-Carman equation is a relationship proposed by Kozeny (1927) and later 

modified by Carman (1937), both cited in Bear (1972), Carrier (2003) and Chapuis & 

Aubertin (2003). The equation is a relationship between the permeability (introduced in 

Section 2.2.2) and the porosity of a porous medium and it was developed after 

considering a porous material as an assembly of capillary tubes for which Navier-Sokes 

equation in a laminar flow regime can be used. Therefore, the equation is obtained 

assuming Darcian conditions (Bear, 1972; Carrier, 2003). The Kozeny-Carman equation 

can be expressed as 
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where k is the permeability, C is a numerical constant called Kozeny’s constant, Sa is the 

specific surface, and n is the porosity. 

C depends on the geometrical form of the individual channels in the model and the 

tortuosity (the ratio between the length of the curved fluid velocity and the distance 

between the extremes of the curve). As cited by Bear (1972) and Chapuis & Aubertin 

(2003), Carman (1937) obtained the best fit in his experimental results with 
5

1
=C  .  

The specific surface of a porous material (Sa) is defined as the total interstitial surface 

area of the pores per unit bulk volume of the porous medium (Bear, 1972). The main 

difficulty of calculating the hydraulic conductivity using the Kozeny-Carman equation lies 

in the determination of the soil specific surface. It is frequently measured experimentally 

or estimated (Chapuis & Aubertin, 2003). The specific surface of a spherical solid particle 

is equal to the ratio between its surface area and its volume. The specific surface can be 

written in terms of diameter of a spherical solid particle (Trani & Indraratna, 2010) 
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where dp is the particle diameter. Then, the Kozeny-Carman equation becomes (Bear, 

1972) 
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Calculating dp becomes a difficulty when the material contains different particle 

diameters. dp is commonly calculated and estimated using the grain size curves (Chapuis 

& Aubertin, 2003; Carrier, 2003; Trani & Indraratna, 2010). A PSD (presented in Section 

2.2.1) of a soil material can be discretized in different diameters di. Each of this 

diameters have its corresponding mass per cent finer given by pi. dp can be calculated as 

follows (Trani & Indraratna, 2010; Chapuis & Aubertin, 2003) 
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where dav,i is the geometric average of two adjacent diameters. This equation has been 

tested successfully with materials with an average coefficient of uniformity (Eq. 2.1) of 

about 3 (Chapuis & Aubertin, 2003). Further increases in the Cu shows limitations of the 

PSD in modelling void sizes of well-graded soils because large particles with high 

individual mass but low in number are over-represented in the model and produce a 

high number of large pores (Trani & Indraratna, 2010). As Cu increases the number of 

small particles filling the void between the larger particles would increase, leading to 

smaller void sizes. As cited by Trani & Indraratna (2010), Humes (1996) suggested an 

improvement by adopting the particle size distribution by surface area (PSDsa) method. 

If the soil material is composed of discretised diameters di and their mass probabilities 

of accurrence pmi, respectively, then their probabilities by surface area can be obtained 

following generalised equation 
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  Eq. 7.12 

 

and then the psai can be used substituying pi in Eq. 7.11. 
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However, Kozeny-Carman equation is not appropriate if the particle size distribution has 

a long, flat tail in the fine fraction (Carrier, 2003). The prediction of the permeability 

using Kozeny-Carman assumes that the specimen is homogenous, and it cannot predict 

the permeability of a heterogeneous specimen (Chapuis & Aubertin, 2003). In the model 

presented in this section, sample is homogeneous, which simplifies the calculation of 

this diameter. 

As it is explained in Sections 2.2.2 and 6.2, Darcy’s law is only valid for low particles 

Reynolds number (Eq. 6.7). There are different studies about the Reynolds number limit 

of the Darcy’s law (e.g. El Shamy & Zeghal, 2005; Wahyudi et al., 2002). Wahyudi et al. 

(2002) found experimentally that the critical Reynolds number is 4.3 for five sands 

geographically different. El Shamy & Zeghal (2005) simulations revealed that water 

seepage through granular soils followed Darcy’s law when the particle Reynolds number 

was less than about 1. 

The permeability is determined in the laboratory with an instrument called 

permeameter. In a permeameter, the fluid flows through a small cylindrical porous 

sample of a length L and a cross-sectional area A (Fig. 7.23). The flow is one dimensional 

(through the length of the sample) and steady. The sample is placed between two 

porous plates that provide almost no resistance to the flow through them. A constant 

pressure difference is applied across the tested sample (between points a and b in Fig. 

7.23), producing a steady flow at a rate Q. 

 

 

Fig. 7.23. Scheme of a permeameter 
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Using Darcy’s law (Eq. 2.4 and Eq. 2.5), the discharge Q can be calculated 
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  Eq. 7.13 

 

where k is the permeability, A is the section of the cylinder where the sample is 

contained, 
fm  is the viscosity of the fluid, Pa-Pb is the fluid pressure drop when it flows 

through the sample, where a and b are the extremes of the cylinder where the sample 

is created and the fluid flows through it, and L is the length of the sample. The 

permeability can be isolated 
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A numerical model of a permeameter was built as shown in Fig. 7.24. The discrete 

analogue is contained in a cylinder of 20 mm radius and 60 mm length. This container 

for the DEM model is overlapped by a larger CFD mesh (Fig. 7.25) which is extended at 

both ends of the solid container by two coaxial cylinders of smaller radius (5 mm). These 

fluid-only extensions of the model are practical to enforce appropriate boundary 

conditions: a longitudinal flow velocity (vi) is imposed at the entrance (Fig. 7.24), and 

atmospheric pressure (0) is imposed at the outlet. All the remaining external surfaces of 

the model are designated as impermeable (no flow).  
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Fig. 7.24. Geometry of the permeameter model. The discrete analogue whose permeability is computed 
is contained in the internal cylinder (from point a to point b). The sample has a cylindrical shape and the 
fluid flows through it. 

 

 

Fig. 7.25. CFD mesh for the permeameter study (left) and DEM model (right) 

 

A discrete analogue of a bonded granular material was generated to fill the 

permeameter. The porosity of the sample is 0.4 and particles are generated randomly 

with radii between 0.4 and 0.6 mm. The DEM parameters represent an ideal sandstone, 

described in Section 8.3.2. All contacts are bonded with bond strength set high enough 

so that no particle moves during the simulation. 
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Permeability is computed measuring fluid pressure at the extremes of the DEM 

container (points a and b of the scheme in Fig. 7.24). 

The parameters needed to calculate the permeability (Eq. 7.10) are the porosity and the 

particle diameter. The porosity is 0.4, as it is explained above, and the particle diameter 

is 1 mm, calculated as the medium value between 0.8 and 1.2 mm.The permeability 

calculated by the Kozeny-Carman equation (Eq. 7.10) is then 2.5·10-9 m2.. 

Some simulations with different particle Reynolds numbers (from 0.001 to 320) were 

run and the permeability is calculated in each of the simulations (Table 7.1). 

Fig. 7.26 and Fig. 7.27 shows the distribution of the velocity, fluid pressure and drag 

force in a colour maps of the simulation 1. It can be observed that for Reynolds numbers 

less than 1, the permeability is 1.3·10-9. Chapuis & Aubertin (2003) pointed out that 

Kozeny-Carman equation usually predicts permeability values between 1/3 and 3 times 

the measured value. The measured permeability is 0.52 times the permeability 

predicted with Kozeny-Carman equation, which is within that margin. When the 

Reynolds number is increased, the permeability decreases, reaching a value of one order 

of magnitude inferior for a Reynolds number of 320. El Shamy & Zeghal (2005) pointed 

out that to assure that the Darcy’s law is valid, the particle Reynolds number should be 

less than 1. The results in this work are consistent with that limit. The permeability 

decreases a lot for high particle Reynolds numbers. In Table 7.1 the measured 

permeability when the particle Reynolds number is 320 is two orders of magnitude 

smaller than the expected permeability. This is consistent also with experimental results. 

Wahyudi et al. (2002) calculated the friction factor for different sands and different 

particle Reynolds numbers (Fig. 7.28). As it is shown in Fig. 7.28 the friction factor 

increase and deviates of what it is expected when the particle Reynolds number is 

between 100 and 1000. The friction factor is a theoretical friction that gives an idea of 

the frictional energy loss based on the velocity of the fluid and the resistance due to 

friction. The friction factor increases the difficulty of the fluid to flow between the grains 

and decreases the permeability. 
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Table 7.1. Results for the permeability of the sample for different fluid velocities. Measured permeability 
is normalized by the permeability calculated with Kozeny-Carman equation 

vi (m/s) 
Measured 

Permeability (m2) 

Normalized 

measured 

permeability 

Particle Reynolds 

number 

1.6 1.5·10-11 0.006 320 

1.6·10-1 8·10-10 0.32 32 

1.6·10-2 8·10-10 0.32 3.2 

1.6·10-3 1.3·10-9 0.52 0.32 

5·10-4 1.3·10-9 0.52 0.1 

1·10-4 1.3·10-9 0.52 0.02 

5·10-5 1.3·10-9 0.52 0.01 

1·10-5 1.3·10-9 0.52 0.002 

5·10-6 1.3·10-9 0.52 0.001 

 

 

Fig. 7.26. Fluid velocity at the end of the simulation using the permeameter. On the left the coloured map 
of the 3D sample, in the middle a yz plane of the permeameter and on the right the scale of the colours 
representing the fluid velocity in m/s. 

 

  
  

(a) (b) 

Fig. 7.27. (a) Fluid pressure at the end of the simulation and (b) drag force at the end of the simulation. 
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Fig. 7.28. Friction factor versus particle Reynolds number. Two analytical correlations and experimental 
results for different sand beds (Wahyudi et al., 2002). 

 

7.4. Summary 

 

In this chapter the CFD-DEM coupled model is tested. Simulations using a single particle 

and a permeameter using a sample are performed. 

When a single particle is dropped inside a vertical tube filled with static fluid, the particle 

moves with an acceleration until the fluid force upwards equals the gravity downwards. 

At the end a limit velocity is reached. The CFD-DEM model reproduced correctly the 

Stokes solution. 

When a weightless particle is dragged by fluid in a horizontal tube, the limit velocity is 

the imposed fluid velocity. When the damping is increased the process to the 

equilibrium is decelerated and the particle reaches the limit velocity later and further. 

On the other hand, even though the particle increases its velocity when the fluid 

viscosity is increased, its trajectory does not change a lot. 

When a weightless particle is shot inside a quiescent fluid, the particle is decelerated by 

the fluid until it stops. The effect of increasing the damping value is that the particle 
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decelerates faster and reaching the equilibrium before.  The position of the particle at 

the end of the simulation is different for different damping values. On the other hand, 

the effect of the viscosity is the same as in the simulation where the particle is dragged 

by the fluid, an increase in viscosity results in shorter transients. 

In simulations with a single particle a parametric study has been presented to 

understand the influence of the local damping and the viscosity. The fluid viscosity 

affects in the same way the transient time in simulation where the particle is dragged 

by the fluid and the simulation where the particle is decelerated. When the viscosity is 

increased the transient time decreases and the transient time is the same for both 

simulations at a given value of the viscosity. 

However, the local damping increase the transient time when the particle is dragged by 

the fluid, but decreases the transient time when the particle is decelerated b the fluid. 

The local damping is a force added to decelerate the particle, which means that it 

accelerates the process when the particle is decelerated by the fluid, but decelerates 

the process to the equilibrium when the particle is accelerated by the fluid. In has been 

concluded that the choice of the local damping in DEM can have an important effect in 

DEM simulations and this effect must be considered in coupled simulations. 

Finally, a study of the permeability of a sample is performed. Different simulations with 

different fluid velocities are carried out and the permeability calculated. As long as the 

particle Reynolds number remains below 1. The result is within the margin predicted by 

the Kozeny-Carman equation.  
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Chapter 8 - Simulations of sand production on 

idealized sandstone 

 

8.1. Introduction 

 

In this chapter coupled CFD-DEM simulations of sand production are presented for a 

discrete analogue of ideal sandstone which was proposed by Cheung (2010). The focus 

here is on the basic performance of the CFD-DEM fluid-solid coupling approach when 

applied to the sand production problem. By using Cheung’s sandstone analogue the 

complications associated with mechanical calibration (as explained in Chapter 5) are left 

aside for the moment. It also has the added advantage of allowing some comparisons 

with the results obtained using her simplified fluid-solid coupling scheme. 

First of all, a simulation of dry perforation is presented and discussed by reference to 

Risnes analytical solution in Section 8.2. In Section 8.3 fluid is introduced in the model 

in a simplified setting, using hydrostatic initial conditions. Simulations with an imposed 

fluid velocity are later presented in Section 8.4. The effect of numerical damping is 

explored in Section 8.5. The chapter ends with some comparisons with Cheung results. 

 

8.2. Dry perforation 

 

An initial simulation was performed without coupling fluid using only the DEM module. 

Effective and total stresses coincide in this case.  
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8.2.1. Description of the model 

 

The model geometry considered in the coupled CFD-DEM simulations is shown in Fig. 

8.1a. The geometry of this model is one particular case of the Risnes et al. (1982) 

idealization. Therefore the model can be considered to represent a horizontal slice of a 

confined vertical cylinder of sandstone with a cylindrical hole in the middle.  

For given grain size the computational cost of DEM increases with the cube of model 

volume. Acceptable computing times were obtained with the dimensions shown in the 

Fig. 8.1a; outer radius Ro of 50 mm, height h of 5 mm and a central cavity with radius Ri 

of 5 mm. The central cavity radius of the model is far smaller than those typical of 

producing wells, bit is within of the typical range of entrance holes of field perforations 

in sandstone (Bellarby, 2009). Similar sized holes are also common in laboratory tests 

designed to study the mechanics of sand production (e.g. Tronvoll et al., 1998; Ispas et 

al., 2006; Younessi et al., 2013). The ratio between inner and outer radius in the model 

was selected by considering typical dimensions of experimental set-ups. 

 

 

 

 

Fig. 8.1. (a) Model geometry, and (b) annulus rings created to calculate the continuum stress. 

 

The DEM analogue was proposed by Cheung (2010) to represent ideal sandstone. For 

computational ease the discrete material has radii evenly distributed between 0.4 mm 
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and 0.6 mm, which is near the upper end of sandstone grain sizes, and porosity of 0.4, 

which is larger than that of most reservoir sandstones. The Biot parameter was fixed to 

a common value in sandstones (1).  

The DEM input parameters are given in Table 8.1 and Table 8.2. The contact model used 

is the linear frictional contact model (Section 4.3.2.1), and the parallel-bond model is 

also used to simulate the cement between particles (Section 4.4). Damping, introduced 

in Section 4.5, is set to 0.7. 

 

Table 8.1. Contact model parameters 

Contact  (parallel-bond model) parameters 

NK , kN·m-1 
5

101´  
N
pbK , kPa·s-1 

12
101´  

SK , kN·m-1 5
101´  S

pbK , kPa·s-1 
12

101´  

m  0.25 N
pbS , kPa 

6
104.4 ´  

bonda  0.25 S
pbS , kPa 

6
104.4 ´  

 

Table 8.2. Other DEM parameters 

Number of particles 46035 Damping constant 0.7 

RDEM,particle, mm 0.4 to 0.6 310´pr , kg·m-3 2.65 

 

 

However, the analytical parameters that fitted the numerical results are similar than 

parameters obtained experimentally for sandstones (Section 8.2.2). Specimen 

formation follows a radius expansion procedure within frictionless walls to attain the 

target initial isotropic stress after which bond installation proceeds. All the contacts are 
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bonded, and all bonds are identical. After specimen formation the wall friction 

coefficients of the two horizontal platens are changed to 0.1. More details are given by 

Cheung (2010). 

In contrast with the calibration in Chapter 5, where parameters were chosen to match 

laboratory tests results (uniaxial compressive tests and triaxial tests), Cheung (2010) 

adjusted some micromechanical model parameters to match some aspects of the Risnes 

et al. (1982) analytical solution (see Section 3.6). Thus, the parallel-bond strength was 

chosen to match the peak stress value in the circumferential stress distribution, which 

is controlled by the cohesive strength in the analytical solution. Also, the friction 

coefficient is chosen to match the size of the plastic zone, which is controlled by the 

failure angle in the analytical solution. Stiffness values were chosen to match the effect 

of the Poisson’s ratio, which controls the circumferential and the radial stresses values 

in the elastic region. This matched calibration is also explained in Section 8.2.2. 

The external radial DEM wall was servocontrolled to maintain the radial effective stress 

at 300 MPa, which is the confining stress of the sample. This value is higher than the 

usual stresses in laboratory sand production tests or in the field; it was chosen to ensure 

that large breakouts appeared under most scenarios and thus be able to fully explore 

the behaviour of the model.  The internal radial wall was erased at the beginning of the 

simulation.  The simulation was run until a steady state was reached, as observed when 

the average stress for each ring became constant in time. Particles that moved inside 

the hole (the entire particle was within the inner radius) during the simulation were 

automatically removed and considered produced. 

Calculation of the stresses from the DEM data was based on a well-established 

procedure (Potyondy & Cundall, 2004; O’Sullivan, 2011) in which representative or 

notional average grain stresses are first computed and then these are averaged in the 

reference volume to obtain the representative volume stress. Stresses in PFC3D are thus 

calculated using only particle contact forces and are therefore effective stresses. 

Due to the axial symmetry of the model geometry, stresses are assumed to be only 

dependent on the radial distance. The stress averaging volumes chosen were 15 annulus 

rings, shown in Fig. 8.1b. The number of annulus rings was chosen to fit a minimum 
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number of particles per ring to average the continuum stress (if there are too few 

particles the average has no sense as a continuum stress). It was observed that the 

results, and especially the peak stress value, depend on the number of rings; when the 

number of annulus rings decreased the stress value of the peak decreased too and it 

was not very clear where this peak was located in the sample (Fig. 8.2). Due to this 

sensitivity, the maximum number of ring compatible with the grain discretization was 

chosen. 

 

 

Fig. 8.2. Numerical normalized radial stress distribution using different number of rings 

 

8.2.2. Validation with the analytical solution 

 

The stress distributions resulting from the simulation can be directly compared with the 

stress distribution predicted by the Risnes et al. (1982) solution (see Section 3.6) for the 

same stress conditions, adjusting the material parameters entering the analytical 

solution to obtain a good fit.  

First of all, the sensitivity of the stress distribution to each analytical parameter was 

established, so they could be adjusted to fit the numerical result easier. The parameters 

that were found best to fit the numerical result were then compared with parameters 

known from sandstones. Alvarado (2007) studied two sandstones in the laboratory 

(Castlegate and Saltwash). The friction angle of both sandstones was around 10-30 MPa, 
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and the friction angle was around 
o30 . The parameter alpha was taken as the usual for 

a sandstone (1). 

The normalized averaged radial and circumferential effective stresses for different radial 

distances from the borehole are presented in Fig. 8.3. The effective stresses are 

normalized by the effective stress at the outer boundary, and the radial distance is 

normalized by the inner radius. The peak of the circumferential effective stress defines 

the limit between the created plastic zone and the elastic zone. The limit in this case lies 

between 8 and 11 mm. 

Also shown in Fig. 8.3, radial and circumferential effective stresses are obtained with the 

analytical solution (Risnes et al., 1982). These are obtained with the following set of 

parameters: So = 20 MPa, 
o30=j  (

o
60=f ), 44.0=n . A value of permeability is not 

necessary here because there is no fluid flow in the analytical solution. 

 

 

Fig. 8.3. (a) Normalized radial effective stress, and (b) normalized circumferential effective stress at the 

end of SimDry simulation. The results are compared with the analytical solution (Risnes et al., 1982). 

kPa 300000=
zo

s . 

 

In Fig. 8.3 there is a decrease in the effective stress near the outer boundary. This is due 

to the effect of the rigid cylindrical boundary on the discrete packing that decreases the 

porosity and the contacts between particles (Marketos & Bolton, 2010). This effect also 

appears in later figures. 
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There is an overall good match between the numerical and the analytical solutions for 

the radial and circumferential effective stresses distributions.   However, peak values of 

the circumferential effective stress differ, with the numerical one being far smaller.  

Several reasons might explain this difference. First, even though the analytical solution 

is a quasi-static process, the numerical solution is a dynamic process where stress 

equilibrium is only reached at the end. This could lead to some differences in the results 

between the analytical and the numerical solutions. Moreover, particles in the 

numerical model can be produced: this is not a feature of the analytical model and is 

accompanied by stress relaxation. Another reason for this difference lies in the 

smoothing effect that the averaging procedure imposes on the numerical stress. The 

averaging smoothing effect is compounded with the asymmetric response of the DEM 

specimen. To illustrate that effect the specimen geometry is divided in 4 regions (Fig. 

8.4) in order to understand how the asymmetry is affecting the equivalent continuum 

effective stresses result. 

 

 

Fig. 8.4. xy plane. The geometry is divided in 4 regions: region 1 (x>0 and y>0), region 2 (x<0 and y>0), 

region 3 (x<0 and y<0) and region 4 (x>0 and y>0). 

 

In Fig. 8.5 it is shown that the average stress distribution is very different depending on 

the region of the sample that is considered. In particular there is one region (Fig. 8.5a) 

where the stress peak at the plastic limit is almost erased. This, as will be shown below, 

corresponds to the region in which more sand is produced. 
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Fig. 8.5. Analytical solution and normalized circumferential effective stresses at the end of SimDry in (a) 

region 1, (b) region 2, (c) region 3, and (d) region 4. 

 

8.2.3. Sand production 

 

The sand production evolution during the simulation without fluid flow is presented in 

Fig. 8.6. The sand production starts at the beginning of the simulation and it has a very 

high sand production rate. After 0.01 s it stabilizes. Production is continuous and not in 

sudden steps or burst. In typical cases where production is driven by a radial flow, sand 

is produced in cluster or blocks of grains (Zhou et al., 2011); on the other hand, when no 

flow is applied, the sand is produced grain by grain and produced continuously. The 

observation of smooth sand production curve in this case is in agreement with Zhou et 

al. (2011) for their simulations of “pressure sanding” i.e. cases were sanding was induced 

with no-flow initial conditions. 
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Fig. 8.6. Sand production evolution for SimDry. 

 

8.2.4. Micro-scale results 

 

As shown in Section 8.2.2, there is an asymmetry in the pattern of effective stress 

relaxation. To understand the reason for this asymmetry, the normal parallel-bond 

forces present at the initial state are illustrated in Fig. 8.7. Fig. 8.7 shows an important 

asymmetry for the normal parallel-bonds forces at initial state; there is a region where 

forces are mostly compressive (positive) and another region where forces are tensile 

(negative). Where bond forces are initially tensile bonds are easier to break than bonds 

which are in regions where forces are compressive.  

The reason behind this microscopic asymmetry at the beginning of the simulation is not 

clear. One of the reasons may be that the height of the sample is not big enough (5 

particles) to create a real homogeneous sample. Moreover, even though the mean 

stress on the walls is equal to each other, the stress between particles inside the sample 

in different regions is not considered and calculated before the simulations to 

compensate differences between regions. 
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Fig. 8.7. xy plane. Normal bond forces at the initial state. The outer radius represented is 30 mm. 

 

A micro-level illustration of the heterogeneity is shown in a plot of contact density. The 

density of contacts at the initial and the final states are presented in Fig. 8.8. Here and 

in several subsequent plots the evaluation zones are made to coincide (in plain view) 

with the CFD zones (used for the fluid in Section 8.3). Sand production near the hole 

results in a reduction of contact density. This reduction is more marked in the upper left 

quarter. 

 

 

Fig. 8.8. xy plane. Contact density (number of contact forces per cell volume) (a) at the initial state and (b) 

at the end of SimDry. The outer radius represented is 30 mm. 
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A complementary view of the same aspect is given by the density of broken bonds at 

the end of simulation, presented in Fig. 8.9. The bond failure modes (normal or shear 

bond failure) are also presented. The region where most bonds are broken, next to the 

hole, is the same as the region where most contacts are lost. Moreover, the majority of 

the broken bonds failed in the normal direction (tension). 

 

 

Fig. 8.9. xy plane. (a) Broken bonds density (number of broken bonds per cell volume) (b) normal bond 

failures density (number of normal bond failures per cell volume) and (c) shear bond failures density 

(number of shear bond failures per cell volume) at the end of SimDry. The outer radius represented is 30 

mm. 

 

Radial and circumferential particle effective stresses at the initial and end states are 

shown in Fig. 8.10. The circumferential effective stresses decrease in the region where 

contacts break. The same asymmetric distribution of the breakage is apparent from the 

variation of stresses.  
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Fig. 8.10. xy plane. Particle radial effective stresses (a) at the initial state and (b) at the end of SimDry; 

particle circumferential effective stresses (c) at the initial state, and (d) at the end of SimDry. The outer 

radius represented is 30 mm. 

 

8.3. Perforation under hydrostatic conditions 

 

8.3.1. Fluid model 

 

The CFD mesh is hexahedral (Fig. 8.11). The CCFD add-on assumes that the local porosity 

is evenly distributed within one cell. The chosen number of divisions was: 10 radial 

divisions, 16 circumferential divisions and 1 vertical division. The mesh was chosen also 

so that the computed flow was not strongly affected by mesh properties. It was 

observed that the number of vertical divisions did not affect fluid flow. On the other 

hand, a minimum number of 16 circumferential divisions was necessary to reproduce 

accurately analytical solutions of radial flow towards a cylindrical cavity. 
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Fig. 8.11. CFD mesh of the model 

 

The boundary conditions for the fluid on the bottom and top boundaries of the cylinder 

are the natural boundary conditions (slip condition), with no vertical fluid velocity. If 

flow was imposed in the model the velocity would be set at the outer cylindrical surface 

(from outside to inside the cylinder) and the pressure on the inner surface is set to 0 

(natural outflow condition). For the hydrostatic simulations here presented the same 

pressure value is imposed at every boundary. 

The coupling interval should be small enough to resolve the desired coupling behavior. 

Coupling information should be exchanged several times as a particle moves across a 

fluid element. This condition is satisfied when the following inequality is met: 

 

3>
D

c

cfd

tv

x
  Eq. 8.1 

 

where tc is the coupling interval and v the particles velocity. (Itasca, 2008b). In practice, 

the DEM time step is often smaller than the CFD time step. Therefore, several cycles of 

DEM are needed to meet one CFD step. The coupling interval tc chosen in this model is 

10-5 s. 



 Chapter 8 – Simulations of sand production on idealized sandstone 

 

240 

 

8.3.2. DEM and fluid parameters: simulation program 

 

The DEM sample is the same as the one generated in Section 8.2.1 (Table 8.1 and Table 

8.2). The fluid parameters used are shown in Table 8.3. 

 

Table 8.3. Fluid parameters 

Fluid system parameters 

3
10´fr , kg·m-3 1.00 

fm , kPa·s 
6

101
-´  

Fluid cells 10 radial, 16 circumferential and 1 vertical 

 

The simulation program is presented in Table 8.4. All the simulations had no fluid flow 

initial conditions. SimDry is the simulation performed in Section 8.2 with no fluid. Two 

simulations (Sim50 and Sim150) are performed at varying levels of pore pressure (50 

and 150 MPa) and, since initial total stress is maintained at the same level, varying 

effective initial stress. An additional simulation (Sim300-50) was performed with an 

effective radial stress of 300 MPa and a pore pressure of 50 MPa. This simulation was 

carried out to understand if the results are due to the change of the effective stress or 

to the presence of the fluid. 

It should be noticed that the DEM walls apply effective (intergranular) stresses and not 

total stresses. Fluid pressures, on the other hand, are applied as separate boundary 

conditions on the CFD grid, but they are not directly entered into the DEM computation. 

Therefore, the comparison with the predictions of the analytical solution requires an 

indirect procedure. Using the mechanical parameters adjusted in the dry case, and 

changing the fluid parameters (i.e. fluid flow and pore pressures), the Risnes et al. (1982) 

solution is evaluated at the higher pore pressures (50 and 150 MPa). The higher pore 

pressures were applied as boundary conditions of the internal and external radial 
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boundaries of the CFD grid. Relevant radial effective stress values, 
ro's  at the external 

radial wall for the DEM simulation are elastic values, obtained from the adjusted Poisson 

ratio, the vertical total stress and the relevant value of pore pressure through  

 

oozoro PP aa
n

n
s

n

n
s -

-

-
+

-
=

1

21

1
'   Eq. 8.2 

 

These values were applied in the DEM simulation as targets for the servo control of the 

external radial wall. At the internal radial wall the effective stress was zero in all cases 

and, therefore the internal radial wall was erased at the beginning of the simulation. 

 

Table 8.4. Simulation program for hydrostatic initial conditions 

 Fluid ro's  (MPa) Po (MPa) 

SimDry No 300 0 

Sim50 Yes 200 50 

Sim150 Yes 120 150 

Sim300-50 Yes 300 50 

 

All the simulations were run until a steady state was reached, as observed when the 

average stress for each ring became constant in time. Particles that moved inside the 

hole (the entire particle was within the inner radius) during the simulation were 

automatically removed and considered produced. Note that even though the fluid has 

no flow as initial condition, it may flow later depending on the dynamic interaction 

between the fluid and the particles. 
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8.3.3. Simulation results 

 

Fig. 8.12 compares the circumferential effective stresses obtained in the different 

numerical simulations with those predicted by the Risnes et al. (1982) solution. 

Introducing fluid in the numerical solution has an effect similar to that which was 

observed in the analytical solution: the plastic zone radius is reduced in size and larger 

effective stresses are sustained.  However, in the numerical results the stress peaks are 

always less sharp. A likely reason for that difference is the averaging of inhomogeneity 

on the numerical solution that was discussed before. 

 

 

Fig. 8.12. Normalized circumferential effective stresses (a) at the end of SimDry, Sim50 and Sim150 and 

(b) the analytical solutions for pore pressures of 0 MPa (P = 0), 50 MPa (P = 50) and 150 MPa (P = 150). 
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It is also clear that the slight difference between the two levels of fluid pressure that 

appears in the analytical solution is not visible in the numerical results. This is 

unsurprising, since the fluid force acting on the DEM particles is not sensitive to the 

absolute level of fluid pressure, but only to pressure gradients and velocity differences 

(Eq. 6.29 and Eq. 6.30). In the analytical solution, when the Biot parameter a  is 1, the 

effective stresses result is also not affected by the fluid pressure value. The differences 

that can be observed in the analytical solution are due to the different effective stresses 

at the initial state. These differences are not reflected in the numerical solution because 

in the numerical simulations the fluid acts as a damping force that slows the particles 

and make them reach the equilibrium before the effective stress values that they are 

supposed to achieve without the fluid drag force. This effect is further clarified later. 

The stabilizing presence of fluid is explored in detail by comparing results for Sim50 

(results for Sim150 are the same) with results from the dry simulation. The contact 

densities are shown in Fig. 8.13, showing a larger reduction next to the cavity for the dry 

case. There are also less broken contacts in the simulation with fluid. Particle radial and 

circumferential effective stresses are presented in Fig. 8.14 for the simulations with fluid 

showing a much reduced relaxation zone. Finally, the void ratio next to the hole at the 

end of SimDry is larger than the one of Sim50 (Fig. 8.15). 

The reason why the plastic region in the dry case is bigger than the plastic region in the 

simulation with water follows from the drag force (Eq. 6.30). For simulations with fluid, 

when the fluid flow velocity is higher than the particle velocity, the drag force is positive 

and increases the particle velocity. However, when the fluid velocity is lower than the 

particle velocity (as is the case here, where it is initially 0), the drag force becomes 

negative, and the fluid flow decreases the initial particle velocity. The drag force acts 

thus as a stabilizing force, slowing (decelerating) the particles and accelerating the 

equilibrium process. This effect does not appear in the analytical solution because in the 

analytical solution this local transients in the fluid flow are not contemplated. 

The damping effect of fluid presence in particle motion has a counterpart in the fluid 

motion itself. Hydrostatic initial conditions imply no fluid flow. However, at the end of 

the simulation the fluid flow velocity is not 0. As explained previously, the drag force 
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acts in both directions (the fluid acts on the particles and the particles act on the fluid). 

When contacts are broken particles move to the hole and they apply a body force to the 

fluid. This body force is a volumetric average of all the drag forces (Eq. 6.30) of each 

particle. 

 

 

Fig. 8.13. xy plane. Contact density (number of contacts per cell volume) for (a) Sim50 and (b) SimDry. 

Broken bonds density (number of contacts per cell volume) for (c) Sim50 and (d) SimDry. The outer radius 

represented is 30 mm. 
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Fig. 8.14. xy plane. (a) Particle radial effective stresses, (b) circumferential effective stresses for Sim50. 

The outer radius represented is 30 mm. 

 

 

 

Fig. 8.15. xy plane. (a) Void ratio for Sim50, and (b) void ratio for SimDry. The outer radius represented is 

30 mm. 

 

Fig. 8.16 presents the body force due to particle motion in each cell, the fluid flow 

velocity in each fluid cell and the particle velocity magnitude in each cell at two different 

times: at the beginning of the simulation –when the inner wall has just being retired- 

and almost at the end of the simulation. As shown, fluid flow velocity, body force and 

particles speed have their largest values in the same region where stresses are lower 

and contacts are broken. At the beginning, particles start moving and transfer body force 

to the fluid. At the end, particles move slower and the body force reduces, reaching an 

equilibrium. 
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Fig. 8.16. xy plane. Body force (a) at the beginning of Sim50, and (b) at the end of Sim50; fluid velocity (c) 

at the beginning of Sim50 and (d) at the end of Sim50; and particle velocities (e) at the beginning of Sim50, 

and (f) at the end of Sim50. The outer radius represented is 30 mm. 

 

In principle, the results presented above (namely the smaller size of the plastic region) 

may not be due to the presence of the fluid, but rather to an effect of the decrease of 

the boundary radial effective stress when compared with the dry simulation. In order to 

understand whether the results are due to the presence of the fluid or to the change in 

the effective stress, a simulation with an effective radial stress of 300 MPa and a pore 

pressure of 50 MPa was performed and compared with the ones with an effective stress 

of 300 MPa and no fluid applied. If the reason why of the decrease of the plastic region 

in the simulations with an effective stress of 200 MPa and 120 MPa and fluid applied 
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was only the decrease of the effective stress and not the presence of the fluid, the 

results of the new simulation would not be the same The results are compared with the 

analytical solution (Fig. 8.17).  It can be observed that the same decrease of the plastic 

region when the fluid flow is applied is also presented in this simulation, therefore the 

decrease of the plastic region is not because of the lower effective stress, but because 

of the presence of the fluid. In this simulation no sand was produced, as it was not 

produced in the previous ones.  

 

 

Fig. 8.17. Normalized circumferential effective stress for SimDry and Sim300-50 simulations. (a) Analytical 

and (b) numerical solutions. 

 

8.4. Perforation under radial flow 

 

Two simulations with fluid flow imposed at the outer boundary (Fig. 8.18) are now 

presented (Table 8.5). At the inner boundary the fluid pressure is set to 0. The fluid 

boundary conditions are imposed simultaneously to the inner removal after the DEM 

specimen is formed. The DEM parameters are those presented in Table 8.1 and Table 

8.2 and the fluid parameters those in Table 8.3. The fluid velocity at the inner boundary 

is calculated during the simulation and is presented in Table 8.5.  Note that this velocity 

at the inner boundary is not constant during the simulation because porosity around the 

hole changes when particles move into the hole. Only when erosion stops fluid velocity 

at the inner boundary becomes constant. 
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Fig. 8.18. Fluid boundary condition at the outer boundary 

 

Table 8.5. Simulation program for fluid flow initial conditions 

Simulation name 
Velocity at the inner 

boundary (m/s) 
ro's  (MPa) Po (MPa) 

SimV1 1.7 200 50 

SimV2 7.1 200 50 

 

Broken contacts around the hole are represented in Fig. 8.19. It can be observed that 

when the fluid velocity increases the plastic region (the region where the contacts are 

broken) increases. Moreover, when the fluid velocity is high all the sample plastifies (the 

plastic region reaches the outer boundary). The asymmetry is also observed for the 

simulation SimV1, but not for SimV2. The reason why the asymmetry does not appear 

in the simulation with higher fluid velocity could be that the fluid drag force is high 

enough to break easily all bonds. 

Fig. 8.21 shows the circumferential stress during time for simulation SimV1. It is shown 

that the steady state is reached and the stresses around the hole do not change during 

time. 

Three types of behaviors can be interpreted from the results. First of all, the type A 

response is the one presented for hydrostatic initial conditions (Sim50 and Sim150); in 

this case sand is not produced and the plastic region is smaller than the one in the 

simulation with no fluid (SimDry). Type B response is the result of a simulation with fluid 

flow conditions but that reaches a steady state at the end (SimV1), as it is observed in 

Fig. 8.21; in this simulations, the plastic region is bigger than the one in the simulation 

with no fluid and, even though a steady state is reached (Fig. 8.21), the sand production 
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did not decrease and it stabilizes giving a sand production rate constant during time (Fig. 

8.21). Finally, a type C (SimV2) response is the result of a high velocity, where the steady 

state is never reached and all the sample plastifies at the end of the simulation. Sand 

production for all simulations is presented in Fig. 8.22. In type B and type C simulations 

the production starts later than in the no flow simulation but the rate is higher than the 

no flow simulation. 

 

  

(a) (b) 

Fig. 8.19. xy plane. Contact forces between particles for (a) SimV1 final state and (b) SimV2 intermediate 

state. Both are represented at the same time since the removal of the inner wall. The outer radius 

represented is 20 mm.Circumferential stress distribution for these simulations is presented in Fig. 8.20. 

The peak in SimV1 is not observed; the reason could be the great asymmetry presented in that case. A 

steady state is not represented for SimV2 because such state is never reached. 

 

 

Fig. 8.20. Normalized circumferential effective stress at the end of SimDry and SimV1 simulations and at 

an intermediate state of SimV2. 
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Fig. 8.21. Circumferential stress evolution for different radial distances from the removed inner boundary 

of SimV1 

 

 

Fig. 8.22. Sand production rates for simulations SimDry (no flow), Sim50 and Sim150 (type A), SimV1 (type 

B) and SimV2 (type C). 
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8.5. Effect of local damping 

 

To understand the effect of the local damping a series of simulations with different 

damping values are performed (Table 8.6). Simulations are carried out without fluid and 

with an imposed fluid flow velocity. 

 

Table 8.6. Simulation program to study the sensibility to damping 

Simulation name Fluid flow Inner velocity (m/s) Local damping (d ) 

Noflow0 No - 0.0 

Noflow3 No - 0.3 

Noflow5 No - 0.5 

Noflow9 No - 0.9 

Fluid0 Yes 0.35 0.0 

Fluid3 Yes 0.35 0.3 

Fluid9 Yes 0.35 0.9 

 

The normalised averaged circumferential stresses for the simulations with no flow are 

presented in Fig. 8.23. The stresses are normalized by the stress on the outer boundary. 

The plastic region increases and the circumferential stress value in the peak decreases 

when the local damping decreases. When the local damping is set to 0, the steady state 

is never reached and the stresses decrease to zero. 

Contact forces between particles for simulations with no flow conditions are also 

represented in Fig. 8.24. It can be observed that around the wellbore contacts break and 

that the effect of local damping is to reduce the number of broken contacts. 

Fig. 8.25 and Fig. 8.26 show the stresses and the contact forces with different local 

damping values when the fluid velocity at the inner boundary is set to 0.35 m/s. Damping 

has much less effect than in the dry case. A likely cause is that motion of broken particles 

towards the hole is already dampened by the fluid presence. 

 



 Chapter 8 – Simulations of sand production on idealized sandstone 

 

252 

 

 

Fig. 8.23. Normalized circumferential stresses at the end of the simulations with no fluid flow for different 

damping values. 

 

  

(a) (b) 

  

(c) (d) 

Fig. 8.24. xy plane at the medium height (2.5 mm). Contact forces for no fluid flow simulations with 

different damping values: (a) 0, (b) 0.3, (c) 0.5, and (d) 0.9. The outer radius represented is 20 mm. 
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Fig. 8.25. Normalized circumferential stresses at the end with ui = 0.35 m/s for different local damping 

values. 

 

  

(a) (b) 

 

(c) 

Fig. 8.26. xy plane. Medium height (2.5 mm). Contact forces for ui = 0.35 m/s with different local damping 

values: (a) 0, (b) 0.3, (c) 0.9. The outer radius represented is 20 mm. 
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The results indicate that local damping has an important effect in the results, especially 

when no fluid flow is applied. When a fluid flow is applied, local damping has much less 

effect; a likely cause is that particle motion is already damped by the fluid (see Section 

8.3.3). Local damping decreases the number of broken contacts around the wellbore 

and decreases the plastic region.  

The observations made in this analysis have two significant corollaries 

 

1. Since local damping effects are redundant when fluid coupling is already present, 

all sand production simulations performed from now onwards (Chapter 9) are 

carried out without damping. 

2. The observed mechanical equivalence between the effect of local damping and 

particle – fluid interaction may be exploited in other DEM-based simulations. 

Local damping may be used as a computationally advantageous substitute for 

the direct inclusion of a hydrostatic fluid effect via CFD coupling. This may offer 

a novel approach to calibrate local damping for a given problem, as the value 

that produces the same effect as direct inclusion of a CFD coupling. 

 

8.6. Comparison with Cheung results 

 

Cheung (2010) performed simulations using a simplification of the fluid-particle 

interaction. Only the effect of the fluid flow in particles was considered but not the 

opposite, (i.e. the effect of the particles on the fluid flow). 

In her work the drag force used and the drag coefficient followed Eq. 6.16, Eq. 6.17, Eq. 

6.18, Eq. 6.12, and Eq. 6.13. The fluid flow was steady, not variable, and only radial (from 

the outer boundary to the inner boundary) and the circumferential direction was not 

permitted (it means that the possible effect of the circumferential flow near the cavity 

was not taken into account). The fluid scheme of Cheung’s model is represented in Fig. 

8.27.  
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Fig. 8.27. Simplified fluid modelling method assuming radial flow only (Cheung, 2010) 

 

The effect of the fluid in Cheung’s results (Fig. 8.28) is similar than the Risnes solution 

(Fig. 3.19), when the fluid flow is applied, the plastic region increases and the stress at 

the boundary between the plastic and the elastic region decreases.  

Cheung (2010) also studied the effect of the local damping value in the DEM simulations 

(Fig. 8.29) and the result was similar as the one obtained in Section 8.5. As the damping 

increased, the plastic region decreased. However, Cheung did not compare the effect of 

the damping with and without fluid.  

 

 

Fig. 8.28. DEM results with different velocities at the inner boundary (Cheung, 2010) 
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Fig. 8.29. DEM results with fluid flow and different damping values (Cheung, 2010). 

 

In both works the vertical initial stress is of the same order of magnitude. However in 

Cheung’s work the minimum fluid flow velocity is 20 m/s while in this thesis the fluid 

velocities are less than 2 m/s. High fluid velocities are likely to result in very diminished 

fluid damping effects on produced particle motion, such as those presented here  in 

Section 8.3.3 (observed in Fig. 8.12). As explained there, when the fluid velocity is lower 

than the particle ejection velocity the drag force becomes negative. As a consequence 

the plastic region becomes smaller in simulations with relatively slow flow than in those 

without fluid.  In Chapter 8 we present real oil field data (Table 9.1). Fluid velocities 

calculated from that data are not much higher than 0.01 m/s. Fluid velocities of 20 m/s 

seem to be unrealistic. 

Another significant difference between the work performed here and that of Cheung 

relates to the attainment of steady state. In Cheung’s work only 103 DEM steps were 

performed in the simulations. In this thesis more than 105 DEM steps were needed to 

achieve the steady state. This suggests that in Cheung’s work the steady state may not 

have been reached. Our experience is that sometimes the simulation needs more time 

to run to be sure that this state has been reached because discontinuous  ‘jumps’ after 

apparent equilibration frequently appear (as explained in Section 9.6 in the next 

chapter). Due to that reason, we performed exactly the same simulation without fluid 

as the one presented by Cheung. After 1000 DEM steps the plastified zone was still 

increasing and the steady state had not been reached (Fig. 8.30). That lead us to think 

that Cheung’s simulations were not stabilized and the fluid rate was increased before a 
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steady state was reached at the previous rate. That explains the apparent difference of 

results, by which Cheung was able to apply greater fluid velocities without breaking all 

the sample, as it happened with SimV2 in Section 8.4. 

 

 

Fig. 8.30. Repeating of the DEM simulation without fluid using exactly the same parameters as Cheung 

(2010) after 1000, 5000 and 10000 DEM time steps. 

 

8.7. Summary 

 

A discrete analogue of an ideal sandstone idealization near a wellbore has been 

presented and simulations without fluid and with fluid have been performed. The model 

has a cylindrical shape with an inner hole that represents the wellbore. The DEM 

parameters were previously calibrated to match macroscopic sandstone behaviour. 

A first simulation without fluid was performed and the results were used to calibrate the 

analytical parameters of the Risnes et al. (1982) solution. There was an overall good 

match between the numerical and the analytical solutions. However, peak values of the 

circumferential effective stress differ. Some of the reasons of that difference could be: 

(1) the numerical solution is a dynamic process where stress equilibrium is only reached 

at the end but the analytical solution is a quasi-static process; (2) particles in the 

numerical model can be produced leading a stress relaxation; (3) there is an asymmetry 

in the pattern of effective stress relaxation that produces a smoothed effect when the 

average is calculated. The plastic region around the hole was also asymmetric. The 
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micro-scale results were presented, showing where the contacts and bonds boke during 

the simulation. The majority of the broken bonds failed in tension. The same region 

where contacts and bonds broke reduced the circumferential particle stress. 

Simulations with fluid in hydrostatic initial conditions were also carried out. The fluid 

used in those simulations was water. In the numerical solution the fluid presence 

introduces a damping force that slows particle motion. In these simulations there are 

less contacts and bonds that broke, and the void ratio around the hole is smaller than 

the one presented in the simulation without fluid. 

Sand is not produced when the hydrostatic initial conditions were used with the fluid. 

However, for the simulation without fluid sand production starts at the beginning of the 

simulation, it has very high production rate and it stabilizes after 0.01s. 

Two simulations with fluid flow boundary conditions were also tested. When a fluid flow 

is imposed the plastic region increases. When the fluid velocity increases the plastic 

region becomes bigger. The fluid flow increases also the sand production rate. After 

some threshold fluid velocity the simulation never reaches equilibrium and all the 

sample plastified.  

Local damping decreases the number of broken contacts around the wellbore and 

decreases the plastic region. Local damping has an important effect in the results, 

especially when no fluid flow is applied. When a fluid flow is applied, local damping has 

much less effect because particles are already damped by the fluid.  

Results were also compared to previous work by Cheung (2010).  In her work the flow 

was steady, not variable, and assumed radial. Moreover, the effect of the particles on 

the fluid was not considered. In Cheung’s work fluid hydrostatic conditions were not 

applied, and the minimum fluid flow velocity was very high. For that reason, the 

damping effect of the fluid was not observed in Cheung’s thesis. Cheung simulations 

were performed using high fluid velocities that seemed above the total production 

threshold in our model. Repeating her simulation in dry conditions we concluded that it 

was likely that the steady state apparently observed in her simulations was not actually 

achieved, because of the discontinuous nature of the sand production phenomenon. 
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Chapter 9 - Numerical analysis of sand production 

near producing wells with fluid flow condition. Real 

cases 

 

9.1. Introduction 

 

In Chapter 8 simulations of sand production in an ideal sandstone analogue were 

performed. In this chapter the discrete analogues calibrated on real field sandstone data 

in Chapter 5 are tested for sand production. The computational cost increases very 

significantly and as explained, a specific procedure had to be developed to scale, adjust 

and represent the material, the fluid and the coupling. 

Section 9.2 presents the data of the three different target oil fields. A preliminary 

assessment of the conditions of those fields with respect to sand production is described 

in Section 9.3. Sections 9.4 to 9.6 describe in detail the construction of the models 

employed in the simulations; finally in Section 9.7 the results are presented. 

 

9.2. Field data 

 

Field data of three different oil fields was provided by IESL (Table 9.1). The rock 

mechanical properties of the sandstones present in those fields were presented in 

Chapter 5. Other quantities related to the geometry of the well, the fluid or the 

production are shown in Table 9.1. The overburden is the vertical stress supported by 

the reservoir. The pore pressure is the pressure of the fluid in the reservoir. The 

thickness is the height of the producing reservoir. The oil gravity is the oil density 

calculated at a temperature of 60 o  and a pressure of 1 atm, (see Section 3.2.3). The hole 

size is the diameter of the well. The minimum, average and maximum flow rates are the 

minimum, average and maximum flow rates measured at the top of the well. The sand 
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rate is the observed field sand production rate, as defined in Section 3.3. There is no 

sand rate data for FIELD2 and FIELD3 because significant sand production had not been 

recorded for them. 

 

Table 9.1. Field data 

 

 

9.3. Preliminary sand production estimates 

 

9.3.1. Empirical prediction 

 

In Section 3.5.1 an empirical model developed by Palmer et al. (2003) was presented.  

This is a model representative of current industrial approaches to predict sand 

production (IESL, 2016). That model predicts the onset of sand production correlating 

the critical bottom hole flowing pressure, the reservoir pressure and the total principal 

major and minor stresses. The criterion for sanding is  
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where CBHFP is the critical bottomhole flowing pressure (the fluid pressure at the 

bottom of the hole), Pr is the current average reservoir pressure, 1s  and 3s  are the total 

principal major and minor stresses, Ap is a poroelastic constant a
n
n

-
-

=
1

21
pA  (where n   

is the Poisson ratio, defined in Eq. 2.20, and a is the Biot coefficient, defined in Eq. 2.48) 

and ys  is the formation strength near the opening 

 

TWCy S·1.3=s   Eq. 9.2 

 

where STWC is the strength as determined in the thick-walled cylinder test. When the 

fluid pressure at the hole is smaller than CBHFP the sand is produced. 

CBHFP can be calculated for each one of the materials presented in Chapter 5 and this 

chapter (Table 5.3 and Table 9.1). The parameters used and calculated are summarized 

in Table 9.2. 1s  is the ‘overbuden’ (Table 9.1) and 2s  is the ‘minimum horizontal stress’ 

(Table 9.1). 

 

Table 9.2. Input parameters for the empirical relation 

 FIELD1 FIELD2 FIELD3 

Poisson ratio ( ) 0.1126 0.1067 0.1717 

Biot coefficient ( ) 0.9267 0.8689 0.7648 

Ap 0.8091 0.7651 0.6063 

STWC (MPa) 12.2 30.13 103.4 

 (MPa) 37.82 93.4 320.54 

 (MPa) 45.1 57 50.3 

 (MPa) 38.4 51.1 44.4 

CBHFP (MPa) 35.21 4.6 -164.3 
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The oil field is expected to produce sand when the fluid pressure at the hole (at the 

cavity of the well) is smaller than the CBHFP calculated. The meaning of a negative 

CBHFP is that the field is safe and no sand is expected to be produced. FIELD1 will 

produce when the fluid pressure at the cavity is smaller than 35.21 MPa, FIELD2 will 

produce when the fluid pressure at the cavity is smaller than 4.6 MPa and, because of 

the negative value obtained for CBHFP FIELD3 is expected to not produce sand at all.  

The drawdown necessary to produce sand in FIELD2 is around 23 MPa. On the other 

hand, FIELD1 has already a reservoir pore pressure smaller than the CBHFP. Therefore, 

the Palmer et al. (2003) criterion indicates that FIELD1 will produce sand under any 

exploitation condition.  

 

9.3.2. Analytical solution 

 

To obtain a first approximation to the three cases, the analytical solution described in 

Section 3.6 (Risnes et al., 1982) was evaluated using their data. The solution requires as 

input a number of material parameters: Poisson’s ratio (n ), internal friction angle of the 

material (j ), Biot parameter a , cohesive strength (S0), permeability (kc) and fluid 

viscosity ( fm ). The analytical solution also depends on boundary conditions: radial total 

stress at the inner boundary ( ris ), vertical total stress at the outer boundary ( zos ), (from 

which the radial total stress at the outer boundary ( ros ) is deduced assuming elastic 

behaviour), and, either the fluid pressure at the outer and inner boundaries (Po, Pi) or 

the fluid flow rate (q). 

Table 9.3 presents the parameters used to calculate the analytical solution. The friction 

angle,  Biot parameter and Poisson’s ratio are taken from Table 5.6. Cohesive strength 

is calculated as (Jaeger et al., 2007) 

 

ftan2
0

UCS
S =   Eq. 9.3 
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2
45

jf += o   Eq. 9.4 

 

where UCS is the uniaxial compressive strength, j  is the internal friction angle (both 

given in Table 5.6). 

 The permeability and pore pressure are taken from Table 9.1; except for FIELD1 where 

permeability data was lacking and a value of 200 mD was assumed. The inner radius is 

the half of the hole size (Table 9.1). The total vertical stress at the outer boundary is the 

overburden (Table 9.1). The flow rate is the maximum flow rate (Table 9.1). 

 

Table 9.3. Input parameters for the Risnes analytical solution 

Parameter FIELD1 FIELD2 FIELD3 

Cohesive strength (MPa) 0.97 3.07 13.7 

Friction angle (o) 27.4 34.6 47.45 

Biot coefficient 0.9267 0.8689 0.7648 

Poisson’s ratio 0.1126 0.1067 0.1717 

Permeability (mD) 200 200 181 

Inner radius (cm) 10.795 10.795 10.795 

Total vertical stress at the outer boundary (MPa) 45.1 57 50.3 

Flow rate (m3/s) 0.0294 0.0263 0.1044 

Pore pressure (MPa) 21.2 27.2 24.7 

 

Fig. 9.1 show the predictions of the analytical solution field data for maximum flow rate 

conditions. The analytical solution predicts that all materials plastify around the hole. 

However, the plastic radius is very small (this is the reason why it is not appreciated in 

Fig. 9.1). The ratio between the plastic radius and the inner radius is 1.04 for FIELD1, 

1.09 for FIELD2, and 1.01 for FIELD3. Therefore, the Risnes analytical solution, suggests 

that the situation is more unfavourable for FIELD 2 than for FIELD 1, opposite of what 

was suggested by the empirical criterion presented in the previous section. Both the 
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empirical criterion and the analytical solution suggest that FIELD 3 conditions are the 

most favourable. 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 9.1. Analytical solutions. a) Radial and b) circumferential stresses of FIELD1, c) radial and d) 

circumferential stresses of FIELD2, and e) radial and f) circumferential stresses of FIELD 3. 
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9.4. Discrete model 

 

9.4.1. Geometrical constraints 

 

The geometry of these models, like those in Chapter 8, represents a horizontal slice of a 

confined vertical cylinder of sandstone with a cylindrical hole in the middle (Fig. 9.2). 

 

 

Fig. 9.2. Geometry model (left) and the sample generated (right) colored by the particle diameter size 

 

It is useful to have some means to estimate the number of elements required to fill the 

model. The specimen for computation is a hollow cylinder of height h, external radius R0 

and internal radius Ri. Given porosity n, the specimen solid volume, Vs, is then 

 

( )( )nRRhV ios --= 1
22p   Eq. 9.5 

 

The volume of a particle having the mean diameter d50 is 
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3

5050
6

dV
p

=   Eq. 9.6 

 

The ratio of the precedent gives the number of mean particles that can be fitted within 

the specimen, N50 
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  Eq. 9.7 

 

This is best expressed using non-dimensional ratios 
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Clearly, the PSD is far from uniform and therefore the number of particles NDEM will be 

different. This is expressed multiplying the above expression by a correction factor, fG 

 

( )( )nnnnfNfN RihGGDEM --== 116
22

50  Eq. 9.9 

 

The outer radius should be large enough to allow for the development of a produced 

plasticized region without interference from the outer boundary. From experience with 

simulations in Chapter 8 this requires an outer radius about 8-10 times the inner radius, 

or, according to the formula above, nR = 8-10. 
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Moreover, to maintain a good representative sample of grain-scale interactions the 

perimeter of the internal hole should contain at least 20 particles, this implies 

p10»in  . 

The factor fG is very dependent on the shape of the PSD curve. It may also depend 

significantly on the geometry of the model, but a first estimate may be obtained from 

the cylindrical specimens that were used in Chapter 5 to perform triaxial and axial 

compressive tests. Table 9.4 presents the values that result. 

 

Table 9.4. Values of the number of particles in the triaxial and axial compressive tests (Section 5.4.5), N50 

and fG. 

 FIELD1 FIELD2 FIELD3 

NDEM 38960 47890 46810 

N50 14160 15650 25260 

fG 2.8 3.1 1.9 

 

At this stage we may obtain a relation for each case to be studies between the ratio nh 

and the total number of particles in the discrete model, NDEM. These relations are 

plotted in Fig. 9.3. 

There are no definite criteria on which to establish a minimum number of mean particles 

per slice height. It is clear that low numbers (say 3) would increase the risk of artificial 

arching; it is also clear that the number of particles in the model increases quickly with 

nh. Trying to balance these criteria, we chose the height of the model to be big enough 

to contain at least 4-5 d50 particles (which gives  5»vn ). 
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Fig. 9.3. Number of particles versus nh (nR = 8 and ni = p10 ) 

 

9.4.2. Computational constraints 

 

As explained in Chapter 5, total computation time, Tcomp may be roughly estimated as 

 

el

step

sim

simcomp N
t

t
T k=   Eq. 9.10 

 

The experience with the sand production simulations runs in Chapter 8 indicated that 

the complexity constant simk  was about particleμs 2 . It did also indicate that, when 

sand production is significant, the simulation time tsim should not be much below 0.2 s 

to identify  a stress steady state  at given flow conditions. Of course, if sand is not 

produced, equilibrium time is much shorter. As explained below up to three successive 

flow conditions were to be applied at each model, suggesting that counting on a total of 

0.5 s may be enough. These values lead to the relations between tstep and element 

number illustrated in Fig. 9.4. 
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Fig. 9.4. Time step versus number of particles for different computational times and a simulation time of 

0.5 s. 

 

Examining the previous figure it would appear that to obtain results in a reasonable 

amount of time (less than a month, say) for models of around 50000 particles the 

simulation time step, tstep, cannot be much smaller of 10-8 s. 

 

9.4.3. Scaling 

 

To attain a desired time step of around 10-8 s we need to examine what is the critical 

step of the discrete analogues used for each material and, if this turns out to be smaller 

than 10-8 s, establish what is the factor N by which particle radius should be scaled up. 

Radius scaling, as explained in Section 5.3.2, has as a direct consequence the scaling up 

of critical time step  

 

critsccrit Ntt =,   Eq. 9.11 
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where tcrit is the time step using the original particle size and tcrit, sc is the time step when 

the particles are scaled up.  

As explained in Section 5.3.2, the simulation time step is the minimum of all the critical 

times calculated for all the particles 

 

å= ccrit Kmt /8.0   Eq. 9.12 

 

where m is the mass of the particle and å cK is the stiffness (summing all the 

contributions of each contact of the particle). As it is also explained in Section 5.3.2, such 

minimum value is controlled mostly by the size of the smallest particles in the 

simulation. Other influential factors are the size ratio between largest and smallest 

particles, coordination number and contact stiffness. Therefore, tcrit depends on the 

particle size, the effective stiffness calibrated (Table 5.7) and the coordination number. 

To estimate the minimum critical step we should consider the smallest particle in 

contact with CN number of the biggest particles 
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where pr  is the density of the particles, RPA is the radius of the smallest particle, RPB is 

the radius of the biggest particle, Ec is the calibrated effective stiffness and CN is the 

coordination number. 

Fig. 9.5 represents the time step thus calculated for the three fields versus the 

coordination number. The smallest of the time steps represented for each one of the 
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fields is used to estimate the critical time step. The time step extract of this figure is 

represented in Table 9.5, and the scale factor N necessary to attain a time step around 

10-8 s using the Eq. 9.11 is also given. 

 

 

Fig. 9.5. Time step versus coordination number for each field 

 

Table 9.5. Scaling factor for each reservoir 

 FIELD1 FIELD2 FIELD3 

tcrit (s) 2·10-10 5·10-11 3·10-11 

Scaling factor N 50 170 300 

 

Geometrical scaling of particle sizes needs to be taken into account when interpreting 

simulation results, by applying appropriate down-scaling factors at post-processing. 

Thus, particles produced during the simulation are scaled down to compute the mass of 

sand produced (msand)  

 

33
N

m

N

V
Vm DEMDEM

psandpsand === rr   Eq. 9.14 
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where pr  is the density of the particles, Vsand is the volume of the particles, N is the scale 

factor, VDEM is the volume of the DEM scaled up particles and mDEM is the mass of the 

DEM scaled up particles. 

 

9.4.4. Final model dimensions 

 

Balancing all the constraints presented above required a significant number of trials, due 

to the approximations involved in the simplified expressions presented above. The final 

model geometry parameters for each field are presented in Table 9.6, were Ro is the 

outer radius, Ri is the inner and h is the height. 

 

Table 9.6. Geometry parameters 

 FIELD1 FIELD2 FIELD3 

Ro(m) 0.27 1.44 2.4 

Ri (m) 0.03 0.18 0.3 

h (m) 0.024 0.2 0.3 

nR 9 8 8 

ni p7.15  p7.14  p6.13  

nh 4 5.2 4.3 

NDEM 42408 48174 48667 

  

9.5. Fluid flow and fluid-solid interaction model 

 

9.5.1. Fluid mesh 

 

The fluid model has the same overall geometry as the mechanical model. The CFD cells 

are hexahedral (Fig. 9.7). Cells are created dividing the geometry in three directions: 

radial, vertical and circumferential. To size the CFD mesh the general criterion is to be 
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able to accommodate a statistically significant number of particles within a single fluid 

cell, so that the effect of particles on fluid flow changes smoothly. To achieve that, as 

explained in Chapter 6 (Section 6.3.2.3) the following criterion may be used as a 

guideline   

 

5
2

>
D

R

xcfd
  Eq. 9.15 

 

where cfdxD the length of the cell and R is the particle radius.  Given the DEM model 

geometry on the vertical direction a single cell was enough. On the radial direction this 

condition imposes an upper bound on the number of radial subdivisions on the fluid 

mesh, Z, since 
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or, using the non-dimensional geometrical ratios introduced above, 
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which lead to the upper bound condition 
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For the values of ni and nR relevant here (Table 9.6 are p13  - p16 and 8-9) that would 

lead to a desirable upper limit to m of 6-8.  

On the other hand, circumferential direction divisions have another restriction. Due to 

the difference between the shape of the inner hole and the surface of the cells, if the 

number of circumferential divisions is too small, a void space between the surface of the 

cell and the cylindrical wall appears (Fig. 9.6a). This could lead to an error in the 

calculation of the porosity in the cells next to the cavity, with significant implications for 

the evaluation of fluid-solid interaction forces. To minimize that error the number of 

circumferential divisions must be increased (Fig. 9.6b). 

 

  

(a) (b) 

Fig. 9.6. Particles (yellow) next to the cavity at the beginning of the simulation and fluid CCFD cell surfaces 

(black lines) with (a) 8 circumferential divisions, and (b) 16 circumferential divisions. 

 

The porosity in each one of the cells next to the cavity can be expressed as 

 

total
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where 'n  is the calculated porosity in those cells, n is the target porosity (the overall 

model porosity), Vpor is the total void volume in the whole cell, Vcell is the total volume 

of the cell and Vvoid is the volume of the void between the particles (the wall of the cavity) 

and the cell surface. To minimize the difference between 'n  and n, the ratio 
total

void

V

V
 

should not be much greater than 0.1. Both volumes can be calculated as 
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where 
R

io

R
n

RR
l

-
= , Ro is the outer radius of the whole cylinder, Ri is the inner radius of 

the cylinder, nR is the number of radial divisions, h is the height of the sample, nc is the 

number of circumferential divisions and nv is the number of vertical divisions. Moreover, 

limitations in the volume-building capabilities of CCFD require that the number of 

circumferential divisions must be a multiple of 4 to obtain a hollow cylinder. Using nv = 

1, nR = 6-8, and the geometry parameters in Table 9.6, the ratio 
total

void

V

V
 is calculated for 

each one of the models (Table 9.7). A minimum number of 16 circumferential divisions 

were necessary to avoid porosity calculation errors around the cavity. 
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Table 9.7. Ratios 

total

void

V

V
 

 FIELD1 FIELD2 FIELD3 

total

void

V

V
 for nc = 12 0.18 0.14 0.15 

total

void

V

V
 for nc = 16 0.13 0.07 0.11 

 

As is clear the number of circumferential divisions required to limit the conformity error 

in the inner cells results in smaller dimensions that those in principle desirable to contain 

a statistically large number of particles. In fact, the number of particles for the smallest 

cells may be approximated as 
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p

  Eq. 9.22 

   

where fG is the correction factor introduced in Section 9.4.1 (Eq. 9.8), Vtotal is the volume 

of the cell (Eq. 9.19), N is the scaling factor introduced in Section 9.4.3 (Table 9.5) and n  

is the porosity.  

The characteristics of the fluid mesh finally adopted are presented in Table 9.8. The error 

in porosity due to conformity at the well face is small and, although some cell 

dimensions are somewhat small, the number of particles evaluated for the smaller cells 

of the models appears large enough to obtain meaningful averages. 
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Table 9.8. CFD mesh divisions and the number of particles for the smaller cells 

Direction FIELD1 FIELD2 FIELD3 

Radial 8 6 6 

Circumferential 16 16 16 

Vertical 1 1 1 

Number of particles for 

the smaller cells 
180 300 130 

 

 

Fig. 9.7. CFD mesh 

 

9.5.2. Boundary conditions 

 

The boundary fluid conditions are shown in Fig. 9.8 and they are given fluid flow 

extraction rate at the inner boundary (an imposed fluid velocity which goes inside the 

hole) and imposed fluid pressure at the outer boundary. Fluid pressures are the field 

fluid pore pressures given in Table 9.1. On the other hand, the flow rates given in Table 

9.1 correspond to total well outflow and need to be transformed into unit flow rates. To 

do that it is assumed that the flow is uniform all along the well surface and therefore 
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where qreal is the total well outflow,  H is the thickness of the reservoir and Rreal is the 

well radius. qreal, H and Rreal are all reported in Table 9.1. 

 

 

Fig. 9.8. Boundary conditions of the fluid model 

 

9.5.3. Scaling particle-fluid interaction 

 

As explained in the previous section the discrete model needs geometric grain scaling to 

attain feasible computational times. The mechanical response of the mechanical 

discrete model is scale invariant, and the same is required from the fluid-solid 

interaction 

The fluid force has three components: drag (Eq. 6.30), the force due to the pressure 

gradient (Eq. 6.23) and buoyancy (Eq. 6.24). Because of particle scaling (Section 9.4.3), 

the particle radii are multiplied by a factor N. The scaled radius for each particle is 

expressed as 

 

NRRsc =   (Eq. 9.24) 

 

where R is the original radius and Rsc is the radius of the scaled particles. 
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Fluid forces exerted on the particles are dependent on the particle radii. Due to the 

scaling, interaction forces between particles and fluid will be different from those acting 

in the field. This may be avoided by scaling-back the fluid forces at the DEM/CCFD 

interface. To do this, it should be noted that changing the value of the radii during the 

calculation of the fluid force is not possible in CCFD, but it is possible to change the forces 

value, the density and the viscosity. 

The best way to scale the drag force is changing the density and the viscosity 

 

2
N

f

fsc

r
r =   Eq. 9.25 

N

f

fsc

m
m =   Eq. 9.26 

 

where fscr  and fr are the scaled density and the real density, and fscm  and fm  are the 

scaled and the real viscosities. Using these scaled fluid parameters, the drag force and 

the particle Reynolds number are the same as the one without scaling the particles 
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where all the parameters are defined in Section 6.3.2. Then, the pressure gradient force 

should be changed directly 
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and the buoyancy should be also changed directly 
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In summary, the fluid-particle interaction takes place as if the particles had not been 

scaled up in the DEM model. 

 

9.5.4. Adjusting porosity 

 

Practical DEM models idealize materials as collections of spheres (using other shapes 

increases the computational expense by orders of magnitude). Current algorithms for 

model generation (as REM, described in Section 5.4.2) make it difficult to attain using 

spherical particles porosities that are much below 0.3. As explained in Section 5.4.2, the 

porosities of the DEM models used in this chapter are higher than the porosities of 

reference sandstones.  As illustrated in Chapter 6 using permeameter computations, the 

effect of model porosity on model permeability is well described by the Kozeny-Carman 

relation at low particle Reynolds number. Hence, a mismatch in model and field porosity 

would imply a consequent mismatch in model and field permeability. This mismatch 

needs then to be corrected. The porosity of the three materials is transformed and 

adjusted before transferring information between DEM and CFD. 

The porosity computed in DEM can be accessed and manipulated before being passed 

to the CFD model to compute pore flow. A quadratic transformation that scales the 
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computed DEM porosity nDEM into a different value nCFD is introduced into the interaction 

between the particles and the fluid (Fig. 9.9).  The transformation is fitted so that the 

initial state of each material (points 1, 2 and 3 in the Fig. 9.9) is exactly represented and 

that the two limit states of perfect compaction (point 4) and total erosion (point 5) are 

also included. 

The adjusted porosity nCFD is the one used during the simulation to calculate the drag 

force and the body force. 

 

 

Fig. 9.9. Example porosity transformation between the discrete solid model and the fluid model. 

 

9.5.5. Recovering perforation dimensions 

 

The area where fluid and sand are produced is not the same as the original field because 

the radius of the hole and also the thickness are different. The total volume of fluid 

produced and sand production are divided per area of the model cavity (producing area) 

 

i

sand

hR

m
SF

p2
=   Eq. 9.31 



 Chapter 9 – Numerical analysis of sand production near producing wells with fluid flow condition 

 

282 

 

i

sim

hR

tq
FP

p2

D
=   Eq. 9.32 

 

where SF is the sand flow, FP is the fluid produced, h is the height of the sample, Ri is the 

radius of the inner cavity, q is the fluid discharge and sim
tD  is the increment of time during 

the discharge. 

 

9.6. Simulation set-up 

 

Specimen formation followed the same procedure as Section 5.4.2: a radius expansion 

method in which small particles with linear contacts, seeded within frictionless walls 

(two horizontal walls and two radial walls, as in Section 8.2.1), were expanded to attain 

the target initial values of porosity and stress. Then the parallel bonds were installed. 

After specimen formation the wall friction coefficients for the two horizontal platens 

were changed to 0.1. No assumption of axial symmetry was enforced during specimen 

formation. 

The simulation starts when the inner radial wall is removed and the inner boundary is 

transformed into a mass sink, to represent the effect of longitudinal mass transport 

within the cavity. Particles that completely cross this boundary are deleted and 

considered produced. 

During the simulations the horizontal upper and lower walls of the DEM model are fixed, 

the external radial wall is used to apply the desired effective stress level and the internal 

radial wall is removed. Removing the internal radial wall is equivalent to applying zero 

effective stress at the cavity boundary. Following the analysis presented in Chapter 8, 

no numerical damping was used in the simulations.  

The initial stress conditions are taken from Table 9.1. The total vertical stress is the 

overburden given in Table 9.1 and the total radial stress at the outer boundary is taken 
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as the average between the maximum and the minimum tabulated total horizontal 

stresses. The walls apply  the effective vertical and the radial stresses (Table 9.9) that 

are obtained considering those total stress values and the reservoir pore pressure. 

 

Table 9.9. Initial stress state 

 Pore pressure 

 (MPa) 

Total vertical 

 stress (MPa) 

Effective vertical  

stress (MPa) 

Total radial  

stress (MPa) 

Effective radial 

 stress (MPa) 

FIELD1 21.2 45.1 25.5 39.5 19.9 

FIELD2 27.2 57 33.4 52.8 29.1 

FIELD3 24.7 50.3 31.4 46.4 27.5 

 

Using the field data on flow rates and following Eq. 9.22, 3 different fluid velocities at 

the inner boundary are calculated for each material: a minimum velocity (vmin), an 

average fluid velocity (vav) and a maximum fluid velocity (vmax). 

The simulations start applying the minimum fluid velocity and then increase the 

extraction rate. Table 9.10 shows the different velocities applied for each material and 

the fluid pressure at the outer boundary. 

 

Table 9.10. Boundary conditions for each oil reservoir 

 FIELD1 FIELD2 FIELD3 

vmin(mm/s) 0.7 0.49 - 

vav (mm/s) 8.7 0.51 6.0 

vmax(mm/s) 23.3 0.52 15.0 

Po (MPa) 21.2 27.2 24.7 

 

Before increasing the flow rate it was considered necessary to achieve steady state at 

the lower flow rate. However, the definition of steady state is not unproblematic. In 

principle, “steady state” refers here to a situation in which the effective stress variation 

with radial distance is stationary in time. This should be complemented with an 
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examination of the contact forces distribution and the sand production rate. A problem 

arises because the observed sand production sometimes happens in steps, after a period 

of apparent stability. An example, of this phenomenon from SimV1 (Section 8.4) 

simulation study is shown in Fig. 9.10. Therefore even an apparently stationary stress 

state might not be enough. 

 

 

Stress evolution at different radial distances 

  

Situation before “jump” Situation after “jump” 

Fig. 9.10. Example of “jump” in sand production 

 

Therefore some complementary practical rules were devised to stop the simulations. 

After a certain  run period  ( tsim = 0.1 s of simulation time) 
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a) If the stress evolution has been stable for more than a quarter of the precedent 

simulation time, and sand is not being produced, the problem is deemed stable 

and the conditions under study should not be conducive to runaway sand 

production. 

b) If after that period the stress evolution has not stabilized and/or the model is 

still producing sand at a significant rate, the conditions under study indicate a 

significant risk of permanent sand production. In that case the simulations were 

continued until other limitations of the system took over (e.g. plastizization of 

the whole sample) 

 

9.7. Results 

 

Following Butlanska et al. (2013), three different kind of results are given for each 

simulation. Mesoscale results are those expressed using continuum variables like flow 

rate or stress. Stress is here obtained from particle interaction forces using averaging 

procedures described in Section 8.2.2. Microscale results are those at the particle scale 

and expressed and represented for each particle. Finally, the macroscale or main 

engineering result of interest of each simulation are sand production rates. This is 

sometimes expressed as sand flow rates (i.e. mass flow rate per unit exposed surface) 

and sometimes as sand production (mass flow per fluid flow) to compare with field 

values.  

 

9.7.1. FIELD1 

 

The fluid velocity at the inner boundary was set to 0.7 mm/s, and the simulation was 

carried out during intervals of tsim = 0.1 s to check the radial and the circumferential 

stresses and the sand production rate. In this case, the stress was stable during those 

periods, but the sand rate was still increasing. For that reason, it was needed 11 run 

periods of tsim = 0.1 s and it was run for a total of 1.1 s with the minimum velocity. After 
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that, when the steady state was reached, the sand rate was stable and the velocity was 

increased to the average value at the inner boundary, 8.7 mm/s. The simulation was 

again run during tsim = 0.1 s, and again the stress was stable but the sand rate was still 

increasing. The total run periods of tsim = 0.1 s was 5 and the simulation was carried out 

for a total of 0.5 s. Finally, the fluid velocity was increased at the inner boundary to 23.3 

mm/s and the simulation, and  a total of 4 run periods of tsim = 0.1 were needed until the 

sand rate stabilized.  The computational time required was between 3 and 4 months. 

 

9.7.1.1. Mesoscale results 

 

Fig. 9.11 shows the stress evolution for 3 different radial distances. From these results 

it is concluded that a steady state was reached because stresses appeared quite stable. 

It is also visible how the stress transient dynamics that follow the increases in fluid flow 

rate are far smaller than the initial one in which well perforation is also simulated by 

means of inner wall disparition. 

 

  

Fig. 9.11. FIELD1. Radial and circumferential stresses evolution at different radial distances from the inner 

boundary at the end of the simulation with the maximum fluid velocity. 
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The stress distribution around the sample at the end of each step was exactly the same 

and it is presented in Fig. 9.12. The circumferential stress shows a large peak at some 

distance from the inner radius and it does not diminish towards the borehole wall. These 

are signs indicative of a larger plastified zone than what was predicted by the analytical 

Risnes solution represented in Section 9.3.2 (Fig. 9.1a and Fig. 9.1b). 

 

 

Fig. 9.12. FIELD1. Average total stresses as a function of normalized radial distance at the end of the 

simulation 

 

The fluid velocity fields at the end of the three extraction steps are presented in Fig. 

9.13. The porosity field is shown in Fig. 9.14. The observed flow velocity is coherent with 

the porosity field at the end of the simulation. The regions of increased flow have a 

higher porosity value than the rest of the sample. The likely reason of that is the sand 

produced in this region. It is noticeable how the porosity in that producing region 

increases slightly as the flow rate is stepped up. 
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(a) (b) 

 

(c) 

Fig. 9.13. FIELD1. Fluid velocity (xy plane) (a) at the end of the minimum flow-rate step, (b) at the end of 

the average flow-rate step, and (c) at the end of the maximum flow-rate step. 

 

  

(a) (b) 

 

(c) 

Fig. 9.14. FIELD1. Porosity in each fluid cell (xy plane) (a) at the end of the minimum flow-rate step, (b) at 

the end of the average flow-rate step, and (c) at the end of the maximum flow-rate step. 
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9.7.1.2. Microscale results 

 

The contact forces between the particles are represented in Fig. 9.15. Fig. 9.16 shows 

the single particle nominal stress around the hole (the radial and the circumferential 

stresses) at the end of each simulation. Most of the particles that moved into the hole 

were at the same region as the contact break observed in Fig. 9.15. It is also the same 

region where fluid velocity was increased and the porosity decreased (Fig. 9.13 and Fig. 

9.14). 

The density of broken bonds at the end of the simulation is presented in Fig. 9.17. 

Although not presented here, it has been noticed that this maps are almost exactly the 

same at the end of the initial flow-rate step. That means that the majority of the bonds 

failed during that initial flow-rate step and that what caused breakage was the 

perforation. The bond shear failure mode is also presented. The majority of the broken 

bonds failed in shearing mode. In this case, bonds have broken in an extend region that 

is not exactly the same as the region where particles are produced. 

 

 

Fig. 9.15. FIELD1. Contact forces around the hole (mid-section horizontal projection; line thickness is 

proportional to force modulus) at the end of the simulation. 
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Particle radial stress Particle circumferential stress 

 

 

 

 

(a) (b) 

 

 

 

 

(c) (d) 

  

(e) (f) 

Fig. 9.16. FIELD1. Detail of particle stress in the inner zone  (the outer radius represented is 150 mm, 

8.1
o

R ) a) Particle radial effective stress at the end of the minimum flow-rate step, and (b) particle 

circumferential effective stress at the end of the minimum flow-rate step, c) Particle radial effective stress 

at the end of the average flow-rate step, and (d) particle circumferential effective stress at the end of the 

average flow-rate step, e) Particle radial effective stress at the end of the maximum flow-rate step, and f) 

particle circumferential effective stress at the end of the maximum flow-rate step, (xy plane at specimen 

mid-height). 
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(a) (b) 

 

(c) 

Fig. 9.17. FIELD1. (a) Number of shear failure per volume unit (m-3) at the end of the simulation, (b) number 

of tensile failures per volume unit (m-3)   and (c) number of broken bonds per volume unit (m-3) at the end 

of all the flow-rate steps (xy plane). 

 

9.7.1.3. Sand production rates 

 

The cumulative sand production rate (the mass of sand produced accumulated during 

time) and instantaneous sand production rate (the mass of sand produced evolution) 

are shown in Fig. 9.17. The results indicate a stable situation at the end of each fluid flow 

velocity step. Sand is mostly produced at the perforation stage under conditions of 

minimum flow rate. When the system reaches the steady state and it stops producing 

sand, the velocity is increased to the average velocity, creating another jump on 

absolute production until it reaches the steady state again. The later flow rate increase 

has less repercussion on the production of sand. 
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(a) cumulative sand production (b) instantaneous sand production 

  

Fig. 9.18. FIELD1. Sand production during the simulation. 

 

The sand production rate is 31 mg during the 1.1 s at the minimum velocity, this is 

equivalent to an average sand rate of approximately 3200 pptb. During the second 

phase of the simulation, with flow at the average velocity, the sand production rate is 9 

mg during 0.5 s, an average of 180 pptb. Finally, in the third stage at the maximum flow 

rate, the sand production rate is 1 mg during 0.4 s, an average of 9 pptb. The sand rate 

given by IESL is 10 pptb (Table 9.1), which is the usual sand rate in oil reservoirs (Bellarby, 

2009; Palmer et al., 2003). 

 

9.7.2. FIELD2 

 

The fluid velocity at the inner boundary was set to 0.49 mm/s, and the simulation was 

carried out during intervals of tsim = 0.1 s to check the radial and the circumferential 

stresses and the sand production rate. In this case, the stresses were still decreasing and 

the sand rate was increasing. For that reason, it was needed 3 run periods of tsim = 0.1 s 

and it was run for a total of 0.3 s. It was observed that the stress evolution had not 

stabilized but maintained a decreasing trend to although the sand rate was stabilized. 



Chapter 9 – Numerical analysis of sand production near producing wells with fluid flow condition 

293 

 

After that, the fluid velocity at the inner boundary was set to 0.51 mm/s, and the 

simulation was carried out again during tsim = 0.1 s, observing that the stresses were still 

decreasing and the sand rate was increasing. One more period of tsim = 0.1 s was needed 

to reach a stable sand rate. The average flow-rate step was carried out for a total of 0.2 

s. Finally, the fluid velocity was increased at the inner boundary to 0.52 mm/s, and again 

two periods of tsim = 0.1 s were needed to reach a stable sand production rate. The 

computational time required was between 1 and 2 months. 

 

9.7.2.1. Mesoscale results 

 

Fig. 9.19 shows the stress evolution for 3 different radial distances. It can be observed 

that the steady state is never reached. In this case, the sample is not stable and stresses 

tend to decrease. For this reason, it was decided to not wait until a steady state was 

reached and to increase the fluid velocity before all the sample plastified. 

The stress distribution around the sample at the end of each flow-rate step is presented 

in Fig. 9.20. Observing these figures it seems that the limit between the plastic region 

and the elastic region is close to the outer radius. In this case, all the sample is plastifying. 

This result is different from the one predicted by the analytical solution (Fig. 9.1) where 

the sample remained elastic.  

 

  

Fig. 9.19. FIELD2. Radial and circumferential stresses evolution at different radial distances from the inner 

boundary at the end of the simulation with the maximum fluid velocity 
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(a) (b) 

 

(c) 

Fig. 9.20. FIELD2. Average total stresses as a function of normalized radial distance at the end of (a) the 

minimum flow-rate step, (b) the average flow-rate step, and (c) the maximum flow-rate step. 

 

The fluid velocity filed at the end of the three different flow-rate steps is presented in 

Fig. 9.21. The porosity field is shown in Fig. 9.22. The regions of increased flow have a 

higher porosity value than the rest of the sample.  
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(a) (b) 

 

(c) 

Fig. 9.21. FIELD2. Fluid velocity (xy plane) (a) at the end of the minimum flow-rate step, (b) at the end of 

the average flow-rate step, and (c) at the end of the maximum flow-rate step. 

 

  

(a) (b) 

 

(c) 

Fig. 9.22. FIELD2. Porosity in each fluid cell (xy plane) (a) at the end of the minimum flow-rate step, (b) at 

the end of the average flow-rate step, and (c) at the end of the maximum flow-rate step. 
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9.7.2.2. Microscale results 

 

The contact forces between the particles are represented in Fig. 9.23. Fig. 9.24 shows 

the single particle nominal stress around the hole. In these figures a plastified zone with 

clear contacts broken and low circumferential stresses is not observed. The reason is 

that the all the sample is decreasing the stress and plastifying. 

The density of broken bonds at the end of the simulation is presented in Fig. 9.25. The 

bond shear and tensile failures mode are also presented. The majority of the broken 

bonds failed in shearing mode. It can be observed that the broken bonds are distributed 

around all the sample, and not only close to the hole. 

 

 

 

Fig. 9.23. FIELD2. Contact forces around the hole (mid-section horizontal projection; line thickness is 

proportional to force modulus) at the end of the simulation.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 9.24. FIELD2. Detail of particle stress in the inner zone  (all the sample is represented) a) Particle radial 

effective stress at the end of the minimum flow-rate step, and (b) particle circumferential effective stress 

at the end of the minimum flow-rate step, c) Particle radial effective stress at the end of the average flow-

rate step, and (d) particle circumferential effective stress at the end of the average flow-rate step, e) 

Particle radial effective stress at the end of the maximum flow-rate step, and f) particle circumferential 

effective stress at the end of the maximum flow-rate step, (xy plane at specimen mid-height). 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

 

(g) 

Fig. 9.25. FIELD2. (a) Number of shear failure per volume unit (m-3) at the end of the minimum flow-rate 

step, (b) number of normal failure per volume unit (m-3)  at the end of the minimum flow-rate step,  , (c) 

number of shear failure per volume unit (m-3) at the end of the average flow-rate step, (d) number of 

normal failure per volume unit (m-3)  at the end of the average flow-rate step, (e) number of shear failure 

per volume unit (m-3) at the end of the maximum flow-rate step, (f) number of normal failure per volume 

unit (m-3)  at the end of the maximum flow-rate step, and (g) number of normal failure per volume unit 

(m-3)  at the end of the maximum flow-rate step  (xy plane). 
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9.7.2.3. Sand production rates 

 

The cumulative sand production rate (the mass of sand produced accumulated during 

time) and instantaneous sand production rate (the mass of sand produced evolution) 

are shown in Fig. 9.26. Even though the stresses do not reach a steady state (Fig. 9.19), 

the sand production seems to indicate a more stable situation at the end of each flow 

velocity simulation.  

 

  

(a) cumulative sand production (b) instantaneous sand production 

Fig. 9.26. FIELD2. Sand production during the simulation 

 

The sand produced amounts to 0.0029 g during 0.3 s at the minimum velocity stage. This 

is equivalent to a sand production rate of some 30 pptb. During the second phase of the 

simulation, with the average velocity, the sand produced was 0.0009 g during 0.2 s, 

averaging to a production rate of 13 pptb. During the third phase of the simulation, at 

maximum velocity, the sand produced was 0.0003 g during 0.2 s, equivalent to a 

production rate of 5 pptb. This values are similar than usual sand rates in producing oil 

fields (10 pptb). 
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9.7.3. FIELD3 

 

First of all, the fluid velocity at the inner boundary was set to 6.0 mm/s, and the 

simulation was carried out during intervals of tsim = 0.1 s to check the radial and 

circumferential stresses and the sand production rate. After 0.1 s it was observed that 

the stresses have not changed and only one particle was produced. To assure that it was 

a stable state another interval of 0.1 s was carried out and it was observed the same 

steady state. The first flow-rate step was run for a total of 0.2 s. After that, the fluid 

velocity at the inner boundary was set to 15.0 mm/s, and the simulation was carried out 

again periods of tsim = 0.1 s. Stresses were again observed to be stable, but some amount 

of sand was produced. In case this meant the beginning of a greater amount of sand 

production rate, 8 periods of tsim = 0.1 s were carried out, and the maximum flow-rate 

step was simulated a total of 0.8 s. The computational time required was around 2 

months. 

 

9.7.3.1. Mesoscale results 

 

Fig. 9.27 shows the stress evolution for 3 different radial distances. From these results 

it is concluded that the steady state was reached because stresses were stable. 

Moreover, it can be observed that stresses do not change during the simulation. 

The stress distribution around the sample at the end of each fluid-flow step was exactly 

the same and it is presented in Fig. 9.28. In this case it seems that the sample does not 

plastify, and all the sample remains elastic. The stress at the inner boundary is much 

higher than the predicted by the analytical solution (Fig. 9.1). 

The fluid velocity field at the end of each flow-rate step is presented in Fig. 9.29. The 

porosity field is shown in Fig. 9.30. The observed flow velocity is coherent with the 

porosity field at the end of the simulation. The regions of increased flow have a higher 

value than the rest of the sample.  
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Fig. 9.27. FIELD3. Radial and circumferential stresses evolution at different radial distances from the inner 

boundary at the end of the simulation with the maximum fluid velocity. 

 

 

Fig. 9.28. FIELD3. Average total stresses as a function of normalized radial distance at the end of the 

simulation 

 

  

(a) (b) 

Fig. 9.29. FIELD3. Fluid velocity (xy plane) (a) at the end of the average flow-rate step, and (b) at the end 

of the maximum flow-rate step. 
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(a) (b) 

Fig. 9.30. FIELD3. Porosity in each fluid cell (xy plane) (a) at the end of the average flow-rate step, and (b) 

at the end of the maximum flow-rate step. 

 

9.7.3.2. Microscale results 

 

Fig. 9.31 shows the single particle nominal stress around the hole. The contact forces 

between the particles are represented in Fig. 9.32. The region around the hole has not 

broken contacts and the stress values seem that do not decrease. 

 

  

(a) (b) 

Fig. 9.31. FIELD3. Detail of particle stress in the inner zone (all the sample is represented) a) Particle radial 

effective stress at the end of the simulation, and (b) particle circumferential effective stress at the end of 

the simulation (xy plane at specimen mid-height). 
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Fig. 9.32. FIELD3. Contact forces around the hole (mid-section horizontal projection; line thickness is 

proportional to force modulus) at the end of the simulation (the outer radius represented is 1.5 m, 

6.1
o

R ). 

 

9.7.3.3. Sand production rates 

 

The cumulative sand production rate (the mass of sand produced accumulated during 

time) and instantaneous sand production rate (the mass of sand produced evolution) 

are shown in Fig. 9.33. In this case the sand production was virtually non-existent. 

 

  

(a) cumulative (b) instantaneous 

Fig. 9.33. FIELD3. Sand production during the simulation. 
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9.7.4. Discussion 

 

Comparing the results of the three different materials, it can be concluded that three 

different responses are presented: a) the stresses do not change during the simulation 

(all the sample remains elastic and does not plastify around the hole) and no sand is 

produced (FIELD3), b) a steady state is reached at the end of the simulations (reaching 

a state with two regions, a plastic region and an elastic region) and sand is produced 

(also reaching a steady state) (FIELD1), and c) low sand is produced and the steady state 

is never reached (the whole sample plastifies) (FIELD2). 

In the simulations where the sand is produced, the sand production rate increases at the 

beginning until it decreases. When the fluid velocity is increased, the sand production 

rate increases again. Sand rates have higher values when the minimum flow rate is 

applied. When the sand production stops, it starts again when the flow rate is increased. 

After that, the sand production has a lower value than the previous one because it has 

been reached an equilibrium before. If we compare the sand produced in FIELD1 and 

FIELD2 simulations with the field data (Table 9.1) we can conclude that this model 

overpredicts the amount of sand produced.  

 

9.7.4.1. Comparison with preliminary sand production estimates: empirical prediction 

and analytical solution 

 

As the empirical criterion introduced in Section 9.3.1 indicated, FIELD1 has produced 

sand. For FIELD2 the prediction for sand onset was that this field needed a very high 

drawdown to produce sand. The drawdown in our simulations was very low (around 

400-500 Pa) and sand was produced. However, the sand produced in FIELD2 simulations 

was much lower than in FIELD1. The prediction for FIELD3 is consistent with the 

empirical criterion because it did not produce sand.  

Comparing the stress distribution around the cavities with the ones predicted by the 

analytical solution in Section 9.3.2 it is observed that in all the fields the stress peak 
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prediction is lower than the one simulated. This result is the opposite as the one 

presented in Chapter 8 (Section 8.2.2, Fig. 8.3), where the peak stress is much higher in 

the analytical solution. This could be the reason why in the simulations in this chapter 

the majority of the broken bonds failed in the shear direction (because there is a higher 

circumferential stress). Simulations in Chapter 8 have the same bond strength and the 

same bond stiffness in the normal and the shear directions. On the other hand, in this 

chapter, the shear bond stiffness is higher than the normal bond stiffness for FIELD1 and 

FIELD2 (
1<ratioa

 Table 5.7). Following Eq. 4.12 and Eq. 4.13, the shear force carried out 

by the bond is higher than the normal force and accordingly, the shear stress at the 

parallel-bond is also higher than the normal stress. The only sample that has a normal 

bond stiffness higher than the shear bond stiffness is FIELD3. However, FIELD3 has a very 

low number of bonds broken (80 of 151295 parallel-bond) and they are not statistically 

sufficient for a reliable conclusion. 

FIELD1 simulation plastic radius (Fig. 9.12) is bigger than the analytical solution (Fig. 

9.1b). FIELD3 plastic radius does not exist because it has not plastified and all the sample 

behaves elastically.  FIELD2 simulation is the one that presents the most important 

difference between the analytical solution (Fig. 9.1d) and the simulation result (Fig. 

9.20). In FIELD2 simulation all the sample plastified, while in the analytical solution the 

region that plastifies is a very small one around the cavity. 

 

9.7.4.2. Drag force  

 

Sometimes in petroleum engineering (e.g. Asgian et al., 1995) the fluid force considered 

is only the pressure gradient force (Eq. 6.23). To understand the difference between the 

drag force (Eq. 6.30) and the pressure gradient force in this kind of simulation, both are 

represented for FIELD2 after 0.2 s of the simulation in Fig. 9.34. Body force is the average 

of the drag forces on the particles in each cell. It can be observed that the minimum 

value of the drag force is 0.403 N and the maximum value of the pressure gradient force 

is 0.00008 N. It can be concluded that considering only the pressure gradient force in 
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the calculation of the fluid force, and not considering the drag force, significantly 

underestimates the fluid force. 

 

  

(a) (b) 

Fig. 9.34. Average of the drag force (a) and the pressure gradient force (b) of FIELD2 simulation after 0.2s. 

 

9.7.4.3. Drag force and bond breakage 

 

As explained in Chapter 3 (Section 3.4), sand production is a process that involves two 

mechanisms: failure of the rock around the cavity and transportation of sand particles 

due to fluid drag. The failure of the rock is usually due to the distribution of the stresses 

when the perforation is initiated. In Section 3.4 it has also been commented that erosion 

can occur when the drag force of the fluid is large enough to overcome the cohesive 

strength of the material and carry the particles away. 

We can calculate the minimum drag force needed to break a bond as a simple first 

approximation. To break a bond a force has to be applied in the normal direction of the 

bond (tensile failure) (Fig. 9.35). To break a bond the tensile stress due to that force has 

to be higher than the strength of the bond. The tensile stress is expressed as following 

Eq. 5.14 (because the rotation in this thesis is prevented, Section 5.3.3) 

 

pb

N

pb

pb
A

F
=max,s   Eq. 9.33 
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where 
N

pbF  is the computed normal force at the parallel-bond and Apb is the bond area, 

given by 
2

pbpb RA p=  (Section 4.4). Supposing that the normal force is the fluid frag force, 

the tensile stress in the bond is expressed as 

 

pb

d

drag
A

F
=s          Eq 8.33 

 

when this tensile stress becomes greater than the bond strength, the bond breaks. Fig. 

9.36 shows the tensile stress for pure drag force normalized by the strength of each 

bond versus the diameter of the particles for each one of the materials presented in this 

chapter and each one of the velocities. It can be concluded that the bonds that are easier 

to break due to the drag force are those of the smallest particles.  

 

 

 

Fig. 9.35. Drag force applied on a parallel-bond. 
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(a) (b) 

 

(c) 

Fig. 9.36. Drag force divided by the bond area normalized by the bond strength for (a) FIELD1, (b) FIELD2, 

and (c) FIELD3. 

 

PSD of the produced particles and the particles which bonds were broken during the 

simulations (FIELD1 and FIELD2) are presented in Fig. 9.37 and Fig. 9.38. It can be 

observed that for FIELD2 the particles that are produced and also the ones which bonds 

broke are the biggest particles. It seems that that the drag force is not the principal force 

that breaks the parallel-bonds. Moreover, as it is also appreciated in Fig. 9.17 and Fig. 

9.25, the majority of the bonds break at the beginning of the simulation. This is 

consistent with the idea that the bonds break at the beginning of the simulations (when 

the inner wall is removed) due to the stress distribution around the cavity. 
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(a) (b) 

Fig. 9.37. PSD of the produced particles at the end of the simulation for (a) FIELD1, and (b) FIELD2. 

 

  

(a) (b) 

Fig. 9.38. PSD of the particles of FIELD2 which bonds broke in (a) shear failure, and (b) tensile failure 

 

9.8. Summary 

 

Field data from three different oil fields (FIELD1, FIELD2 and FIELD3) was provided by 

IESL: stresses, pore pressure, geometry, oil properties, flow rates and sand production. 

The mechanical properties of the sandstones of these fields were previously calibrated 

in Chapter 5. As first approximations, an empirical model representative of current 

industrial approaches to predict the onset of sand production predicts that FIELD1 will 
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produce, FIELD2 will produce when the fluid pressure at the cavity is smaller than 4.6 

MPa and, FIELD3 will not produce sand at all. On the other hand, the Risnes analytical 

solution suggests that the situation is more unfavourable for FIELD2 than for FIELD1, 

opposite of what was suggested by the empirical criterion. Both the empirical criterion 

and the analytical solution suggest that FIELD 3 conditions are the most favourable. 

The geometry of the models represent a horizontal slice of a confined vertical cylinder 

of sandstone with a cylindrical hole in the middle. The outer radius has to be about 8-10 

times the inner radius and the perimeter of the internal hole should contain at least 20 

particles, and the height of the model should be big enough to contain at least 4 or 5 

particles to decrease the risk of artificial arching. To obtain results in a reasonable 

amount of time models must have around 50000 particles and the simulation time step 

cannot be much smaller of 10-8 s. To attain a desired time step of around 10-8 s particles 

in each one of the materials has been scaled up a factor N. This factor depends on the 

effective stiffness calibrated in Chapter 5 and the coordination number. Finally, due to 

all these constrains, the final model geometry parameters, as the inner radius and the 

height, cannot be the same as the original field. This difference should be taken into 

account when the boundary conditions are calculated and applied in order to be able to 

compare results. 

The CFD cells are hexahedral and are created dividing the geometry in three directions: 

radial, vertical and circumferential. To size the CFD mesh the general criterion is to be 

able to accommodate a statistically significant number of particles within a single fluid 

cell, so that the effect of particles on fluid flow changes smoothly. The boundary 

conditions are given fluid flow extraction rate at the inner boundary (an imposed fluid 

velocity which goes inside the hole) and imposed fluid pressure at the outer boundary. 

Due to the scaling of the particles, the particle-fluid interaction must be also scaled. Fluid 

forces exerted on the particles are dependent on the particle radii. The drag force is 

scaled changing the density and the viscosity, and the pressure gradient force and the 

buoyancy force are changed directly during the interaction. The porosities of the DEM 

models used in this chapter are higher than the porosities of the reference sandstones. 

This mismatch is corrected transforming and adjusting before transferring information 

between DEM and CFD. 
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Three different responses are presented in the results: a) the stresses do not change 

during the simulation (all the sample remains elastic and does not plastify around the 

hole) and no sand is produced (FIELD3), b) a steady state is reached at the end of the 

simulations (reaching a state with two regions, a plastic region and an elastic region) and 

sand is produced (also reaching a steady state) (FIELD1), and c) low sand is produced 

and the steady state is never reached (the whole sample plastifies) (FIELD2). Comparing 

the sand produced in FIELD1 and FIELD2 simulations with the field data we can conclude 

that this model overpredicts the amount of sand produced.  

The results for FIELD1 and FIELD3 are consistent with the empirical model used in the 

petroleum industry. On the other hand, the empirical model predicted that FIELD2 

would have not produced sand in the field conditions given by data. In our model FIELD2 

has produced sand. However, the amount of sand produced is very low compared to 

FIELD1 sand production. 

The peak stresses of the numerical stress distribution around the cavity are higher than 

the predicted by the analytical solution. The reason of that difference could be that the 

shear bond stiffness is higher than the normal bond stiffness, leading to a shear force 

higher than the normal force carried out by the bond. Due to that difference the 

circumferential stresses of the particles become higher, and also bonds become easier 

to break in the shear direction. 

The drag force has been compared to the pressure gradient force (usually considered as 

the only fluid force in petroleum engineering). The drag force in one of the models 

(FIELD2) is 4 orders of magnitude higher than the pressure gradient force. Considering 

only the pressure gradient force the fluid force is significantly underestimate. 

The PSDs of the particles that have been produced and the particles which bonds have 

broken have been represented. In FIELD2 the particles which bonds have broken are the 

biggest particles of the model. An estimation study of the drag force as a possible cause 

of the breakage of a bond has led us to conclude that it would be the bonds of the 

smallest particles the ones that would break if the drag force was the main cause (or an 

important cause) of the bonds breakage. It seems that the main reason of the breakage 

of the parallel-bonds is the stress distribution around the cavity due to the perforation. 
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Chapter 10 – Conclusion 

 

This thesis has presented a study of the sand production process using a coupled CFD-

DEM model. The study has involved the calibration of the DEM rock model against real 

data, a validation of the CFD-DEM model by performing single particle simulations and 

analyses of permeability tests, simulations of sand production using a homogeneous 

sandstone analogue and, finally, the simulation of sand production under realistic 

conditions. Limitations of the DEM model have been explored and sensitivity analyses 

examining the effects of the local damping have been performed.  In addition, micro-

mechanical analyses have been carried out to get a better understanding of the CFD-

DEM model and the mechanisms involved in sand production. This chapter summarises 

the key points that can be concluded from this research. 

 

10.1. DEM rock model and calibration 

 

In this thesis, the parallel-bond in PFC3D with the linear friction model has been used to 

mimic the mechanical behaviour of rock and sandstone. The calibration of the contact 

parameters had to be performed using reference macro parameters obtained in the 

laboratory. Since the objective is to use this rock model in simulations of sand 

production problems, a number of points required especial consideration: 

 

- Due to practical computational constraints, the time step and the number of 

particles had to be limited in order to attain reasonable computation times. 

- Scale-independent micro-parameters have been used so that mechanical 

response remains invariant to scaling. 

- The proper representation of the interaction between particles influence the 

selection of some properties such as the PSD and the porosity. 
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The rock mechanical properties of three different materials used for calibration have 

been presented. The following properties have been used to calibrate the contact model 

parameters: the Young modulus, the Poisson ratio and the uniaxial compressive strength 

given. The calibration has involved simulating a significant number of triaxial and axial 

compression tests. The stiffness  is calibrated based on the computed and observed  

Young’s modulus,  the ratio between the normal and the shear stiffness is calibrated 

from the  Poisson’s ratio computed in simulated the triaxial tests and the bond strength 

and parameter l  are obtained from the comparison between the computed and 

observed uniaxial compression strength. 

The fact that the calibration was performed with a higher value of porosity compared to 

that of the field data explains the differences observed when comparing the calibrated 

parameters with those obtained by other researchers. 

 

10.2. Validation of the CFD-DEM model 

 

Simulations using a single particle have been performed to test the CFD-DEM coupled 

model. Single particle simulations give the opportunity to compare the results with an 

analytical solution such as the Stokes equation for small particle Reynolds numbers. 

Some conclusions from those simulations are 

 

- CFD-DEM model reproduced correctly the Stokes solution in all the cases. 

- Increasing the fluid viscosity always increase the time to achieve the equilibrium. 

- Local damping increases the time to equilibrium when the particle is dragged by 

the fluid, but decreases it when the particle is decelerated by the fluid. 

- The choice of the local damping in DEM can have an important effect in DEM 

simulations. This effect must be considered and explored in coupled simulations. 
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A study of the permeability of a specimen has been also performed. The result is within 

the margin predicted by the Kozeny-Carman equation as long as the particle Reynolds 

number remains below 1 (a limit consistent with that obtained in experimental studies). 

 

10.3. Sand production simulations on idealized sandstone 

  

A first simulation without fluid of an ideal sandstone idealization has been carried out 

and the results compared with an analytical solution (Risnes et al., 1982). Subsequently, 

sand production has been simulated using different fluid flow conditions. Conclusions 

from those simulations can be summarized as: 

 

- There was an overall good match between the numerical and the analytical 

solutions but differences are observed concerning the peak values of the 

circumferential effective stress.  

- DEM can reproduce the dynamic process where stress equilibrium is only 

reached at the end of the process and the fact that particles are produced. This 

is more realistic than analytical solutions where the process is considered quasi-

static. 

- Asymmetries in the rock can lead to an asymmetry in the pattern of stress and 

plastic region around the hole. DEM is capable to reproduce those asymmetries.  

- When hydrostatic conditions are applied, the fluid acts as a damping force 

decelerating the particles because the fluid velocity is lower than the particles’ 

velocity. Consequently, the sand production starts later than in the simulation 

without fluid and the plastic region is smaller at the end of the simulation. 

- When the fluid flow velocity is increased the plastic region increases, as 

predicted in the analytical solutions. The fluid flow velocity also increases the 

sand production rate. 
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- Local damping decreases the number of broken contacts around the wellbore 

and reduces the plastic region. Local damping has a more important effect on 

the results when no fluid flow is applied. 

 

10.4. Sand production analysis with fluid flow near producing wells using 

field data 

 

Sand production analysis of three different field data have been performed. Significant 

features of the analyses were: 

 

- Particles were scaled up to reduce the DEM time step. Due to the scaling of the 

particles, the fluid had also to be scaled in order to have the required interaction 

between particles and fluid. 

- The dimensional proportions have to be modified to reduce the number of 

particles and to attain acceptable computing times. 

- The porosity had to be adjusted for the coupling between DEM and CFD because 

the DEM porosity was not the same as the one corresponding to the real field 

data. 

 

The simulations for each oil well were performed using different fluid velocities. 

Different patterns of results have been obtained: 

 

- No plastification occurs in the domain and no sand is produced. 

- Plastification around the hole occurs but elastic behavior remains in some 

regions of the domain. Sand is produced. 

- All the domain becomes elastic and sand is produced. 
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Finally, comparing the drag force with the gradient pressure force and the strength of 

the parallel-bonds, we have observed that 

 

- Not considering the drag force in the calculation leads to a severe 

underestimation of the fluid force. 

- The drag force increases the probability of a bond breakage for smaller particles. 

- It appears that the drag force is not the principal force that breaks the parallel-

bonds. Instead the main cause of breakage is the stress distribution around the 

cavity when the perforation is performed. 

 

10.5. Future work 

 

Based on the development and the results of the research reported in the Thesis, further 

study of the PBM calibration, of the coupled fluid-particle model and of the sand 

production simulations is proposed. 

 

10.5.1. Improvement of the PBM calibration 

 

The PBM calibration is still somewhat simplistic. The difference between the number of 

macro properties and micro properties to be calibrated is high and some simplifying 

hypotheses have been assumed. A better calibration of PBM parameters should be 

developed; using more macro parameters in the procedure is suggested. In sand 

production problems, creating a sample that can represent the porosity and PSD of the 

original data would improve the calibration parameters and also the coupling between 

the fluid and the particles (removing the need to change the porosity in the coupling 

definition). 
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The PBM calibration has been performed using a scale-independent formulation. 

However, the effect of the scaling up should be studied further, especially the scaling of 

the interaction between particles and fluid. 

 

10.5.2. Improving the coupling fluid-particle model 

 

The fluid-particle model used in this work has the advantage of considering also the 

effect of the particles on the fluid. Moreover, the fluid velocity is affected by the porosity 

change and the movement of the particles, which gives a better understanding of the 

effect of the fluid around the wellbore, where porosity and fluid velocity direction 

changes are larger. However, the fluid-particle model cannot simulate the actual 

pressure of the fluid on each particle, as only the effect of pressure gradients on the 

particles is considered. A coupling model which could incorporate the effect of the 

pressure on the particles could improve the simulations of san production under 

hydrostatic conditions. 

 

10.5.3. Effect of the perforation relative dimensions in sand production simulations 

 

In this work, the perforation dimensions had to be changed because of the restriction in 

the number of particles necessary to achieve a reasonable computation time. Even 

though a scaling on the results have been done, the ratio between the wellbore radii 

and the particle radii is different than the real data field. The effect of changing this ratio 

should be examined. 
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This thesis has presented a study of the sand production process using a coupled CFD-

DEM model. The study has involved the calibration of the DEM rock model against real 

data, a validation of the CFD-DEM model by performing single particle simulations and 

analyses of permeability tests, simulations of sand production using a homogeneous 

sandstone analogue and, finally, the simulation of sand production under realistic 

conditions. Limitations of the DEM model have been explored and sensitivity analyses 

examining the effects of the local damping have been performed.  In addition, micro-

mechanical analyses have been carried out to get a better understanding of the CFD-

DEM model and the mechanisms involved in sand production. This chapter summarises 

the key points that can be concluded from this research. 

 

10.1. DEM rock model and calibration 

 

In this thesis, the parallel-bond in PFC3D with the linear friction model has been used to 

mimic the mechanical behaviour of rock and sandstone. The calibration of the contact 

parameters had to be performed using reference macro parameters obtained in the 

laboratory. Since the objective is to use this rock model in simulations of sand 

production problems, a number of points required especial consideration: 

 

- Due to practical computational constraints, the time step and the number of 

particles had to be limited in order to attain reasonable computation times. 

- Scale-independent micro-parameters have been used so that mechanical 

response remains invariant to scaling. 

- The proper representation of the interaction between particles influence the 

selection of some properties such as the PSD and the porosity. 
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The rock mechanical properties of three different materials used for calibration have 

been presented. The following properties have been used to calibrate the contact model 

parameters: the Young modulus, the Poisson ratio and the uniaxial compressive strength 

given. The calibration has involved simulating a significant number of triaxial and axial 

compression tests. The stiffness  is calibrated based on the computed and observed  

Young’s modulus,  the ratio between the normal and the shear stiffness is calibrated 

from the  Poisson’s ratio computed in simulated the triaxial tests and the bond strength 

and parameter l  are obtained from the comparison between the computed and 

observed uniaxial compression strength. 

The fact that the calibration was performed with a higher value of porosity compared to 

that of the field data explains the differences observed when comparing the calibrated 

parameters with those obtained by other researchers. 

 

10.2. Validation of the CFD-DEM model 

 

Simulations using a single particle have been performed to test the CFD-DEM coupled 

model. Single particle simulations give the opportunity to compare the results with an 

analytical solution such as the Stokes equation for small particle Reynolds numbers. 

Some conclusions from those simulations are 

 

- CFD-DEM model reproduced correctly the Stokes solution in all the cases. 

- Increasing the fluid viscosity always increase the time to achieve the equilibrium. 

- Local damping increases the time to equilibrium when the particle is dragged by 

the fluid, but decreases it when the particle is decelerated by the fluid. 

- The choice of the local damping in DEM can have an important effect in DEM 

simulations. This effect must be considered and explored in coupled simulations. 
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A study of the permeability of a specimen has been also performed. The result is within 

the margin predicted by the Kozeny-Carman equation as long as the particle Reynolds 

number remains below 1 (a limit consistent with that obtained in experimental studies). 

 

10.3. Sand production simulations on idealized sandstone 

  

A first simulation without fluid of an ideal sandstone idealization has been carried out 

and the results compared with an analytical solution (Risnes et al., 1982). Subsequently, 

sand production has been simulated using different fluid flow conditions. Conclusions 

from those simulations can be summarized as: 

 

- There was an overall good match between the numerical and the analytical 

solutions but differences are observed concerning the peak values of the 

circumferential effective stress.  

- DEM can reproduce the dynamic process where stress equilibrium is only 

reached at the end of the process and the fact that particles are produced. This 

is more realistic than analytical solutions where the process is considered quasi-

static. 

- Asymmetries in the rock can lead to an asymmetry in the pattern of stress and 

plastic region around the hole. DEM is capable to reproduce those asymmetries.  

- When hydrostatic conditions are applied, the fluid acts as a damping force 

decelerating the particles because the fluid velocity is lower than the particles’ 

velocity. Consequently, the sand production starts later than in the simulation 

without fluid and the plastic region is smaller at the end of the simulation. 

- When the fluid flow velocity is increased the plastic region increases, as 

predicted in the analytical solutions. The fluid flow velocity also increases the 

sand production rate. 
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- Local damping decreases the number of broken contacts around the wellbore 

and reduces the plastic region. Local damping has a more important effect on 

the results when no fluid flow is applied. 

 

10.4. Sand production analysis with fluid flow near producing wells using 

field data 

 

Sand production analysis of three different field data have been performed. Significant 

features of the analyses were: 

 

- Particles were scaled up to reduce the DEM time step. Due to the scaling of the 

particles, the fluid had also to be scaled in order to have the required interaction 

between particles and fluid. 

- The dimensional proportions have to be modified to reduce the number of 

particles and to attain acceptable computing times. 

- The porosity had to be adjusted for the coupling between DEM and CFD because 

the DEM porosity was not the same as the one corresponding to the real field 

data. 

 

The simulations for each oil well were performed using different fluid velocities. 

Different patterns of results have been obtained: 

 

- No plastification occurs in the domain and no sand is produced. 

- Plastification around the hole occurs but elastic behavior remains in some 

regions of the domain. Sand is produced. 

- All the domain becomes elastic and sand is produced. 
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Finally, comparing the drag force with the gradient pressure force and the strength of 

the parallel-bonds, we have observed that 

 

- Not considering the drag force in the calculation leads to a severe 

underestimation of the fluid force. 

- The drag force increases the probability of a bond breakage for smaller particles. 

- It appears that the drag force is not the principal force that breaks the parallel-

bonds. Instead the main cause of breakage is the stress distribution around the 

cavity when the perforation is performed. 

 

10.5. Future work 

 

Based on the development and the results of the research reported in the Thesis, further 

study of the PBM calibration, of the coupled fluid-particle model and of the sand 

production simulations is proposed. 

 

10.5.1. Improvement of the PBM calibration 

 

The PBM calibration is still somewhat simplistic. The difference between the number of 

macro properties and micro properties to be calibrated is high and some simplifying 

hypotheses have been assumed. A better calibration of PBM parameters should be 

developed; using more macro parameters in the procedure is suggested. In sand 

production problems, creating a sample that can represent the porosity and PSD of the 

original data would improve the calibration parameters and also the coupling between 

the fluid and the particles (removing the need to change the porosity in the coupling 

definition). 
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The PBM calibration has been performed using a scale-independent formulation. 

However, the effect of the scaling up should be studied further, especially the scaling of 

the interaction between particles and fluid. 

 

10.5.2. Improving the coupling fluid-particle model 

 

The fluid-particle model used in this work has the advantage of considering also the 

effect of the particles on the fluid. Moreover, the fluid velocity is affected by the porosity 

change and the movement of the particles, which gives a better understanding of the 

effect of the fluid around the wellbore, where porosity and fluid velocity direction 

changes are larger. However, the fluid-particle model cannot simulate the actual 

pressure of the fluid on each particle, as only the effect of pressure gradients on the 

particles is considered. A coupling model which could incorporate the effect of the 

pressure on the particles could improve the simulations of san production under 

hydrostatic conditions. 

 

10.5.3. Effect of the perforation relative dimensions in sand production simulations 

 

In this work, the perforation dimensions had to be changed because of the restriction in 

the number of particles necessary to achieve a reasonable computation time. Even 

though a scaling on the results have been done, the ratio between the wellbore radii 

and the particle radii is different than the real data field. The effect of changing this ratio 

should be examined. 
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Appendix A – MATLAB code for Risnes et al. (1982) 

analytical solution 

 

A code for representing Risnes et al. (1982) analytical solution has been developed.  The 

code is composed by different scripts; each script calculates one of the parameters 

needed for the calculation of the stress. At the end the stress at the elastic region and 

the stress at the plastic region are calculated separately and plotted together. 

 

 

Risnes_Driver_test.m 

 

% Script to calculate and plot the analytical solution of Risnes et al. 
% (1982) for different values of a parameter 

  
clear all; 

  
% Define how many different parameters and which parameter to plot 

  
totaltest = 2; 
variable = [0.0 10.0]; 
variablename = 'analytical P = '; 
units = ' MPa'; 

  
% Call different scripts to calculate and plot the analytical solution for 
% each parameter 
% The parameter that is being test with different values should be changed 
% at the beginning of the loop 

  

  
% For the Elastic Region 

  
for ntest = 1:totaltest 
    ntest 

     
    P_o  = variable(ntest)*1000000; 
    P_i  = variable(ntest)*1000000; 
    P_c  = variable(ntest)*1000000; 

          
    Risnes_Inputs; 
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    Risnes_Rc; 
    Risnes_A1; 
    Risnes_Elastic_Stress; 

          
    if ntest==1 
            auxi = cellstr(strcat(variablename,num2str(variable(ntest)),units)); 
            leshenda = [auxi]; 
     else 
            auxi = cellstr(strcat(variablename,num2str(variable(ntest)),units)); 
            leshenda = [leshenda,auxi]; 
    end 

     
    Risnes_Plot_Elastic; 

     
end 

  
% For the Plastic Region 

  
for ntest = 1:totaltest 
    ntest 

     
    P_o  = variable (ntest)*1000000; 
    P_i  = variable (ntest)*1000000; 
    P_c  = variable (ntest)*1000000; 

     

     
    Risnes_Inputs; 
    Risnes_Rc; 
    Risnes_A1; 
    Risnes_Plastic_Stress; 

           
    if ntest==1 
            auxi = cellstr(strcat(variablename,num2str(variable(ntest)),units)); 
            leshenda = [auxi]; 
    else 
            auxi = cellstr(strcat(variablename,num2str(variable(ntest)),units)); 
            leshenda = [leshenda,auxi]; 
    end 

       
    Risnes_Plot_Plastic; 

     
end 

  
 

 

 

Risnes_Inputs.m 

 

% Input parameters for Risnes et al. (1982) analytical solution 
% Make sure the parameter you want to test (and that you are giving 
% different values in the Risnes_Driver_Tests.m script) is not "on" in this 
% script 
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% Material parameters 

  
So = 101400;  % Cohesive strength (Pa) 
alfa = 60.0;      % Failure angle of material (º) (45º+(frictionangle/2)) 
beta = 1.0;     % Parameter which defines the rock compressibility (adimensional) 
Pois = 0.45;    % Poisson's ratio (adimensional) 
k = 2.0e-13;    % Permeability (m^2) 

  
% Geometry parameters 

  
Ri = 0.1;     % Inner boundary radius (m) 
Ro = 10.0;      % Outer boundary radius (m) 
h = 1.0;      % Height (m) 

  
% Fluid parameters 

  
visc = 0.00293;   % Viscosity (Pa·s) 

  
% Boundary conditions 

  
sigmazo = 65500000;    % Vertical total stress at the outer boundary (Pa) 

  
q = 0.0;                % Flow rate (m^3/s) 
P_o = 32000000;        % Pore pressure at the outer boundary (Pa)  
P_i = 32000000;        % Pore pressure at the inner boundary (Pa) 
P_c = 32000000;        % Pore pressure at the elastic-plastic boundary(Pa) 

 

 

 

 

Risnes_Rc.m 

 
% Calculation of Rc (radius of the elastic-plastic boundary) 

  
% Parameter t 

  
t = tan(alfa*pi()/180.0)^2-1; 

  
% Calculation of the coefficients of the equation to solve Rc 

  
c1 = (2*So*tan(alfa*pi/180)-visc*q/(2*pi*h*k))*Ri^(-t); 
c2 = -((t+2)/t)*c1*Ro^2; 
c3 = -((1-2*Pois)/(2*(1-Pois)))*beta*(P_o-P_i); 
c4 = ((1-2*Pois)/(2*(1-Pois)))*beta*visc*q/(2*pi*h*k); 
c5 = visc*q/(2*pi*h*k); 
c6 = -(2-(1-2*Pois)*beta/(1-Pois))*c5*Ro^2; 
c7 = -c4*Ro^2; 
c8 = (2*Pois*sigmazo/(1-Pois)+(1-2*Pois)*beta*(P_o+P_i)/(1-Pois)-2*P_i+2*So*tan(alfa*pi/180)/t-

((t+2)/t)*visc*q/(2*pi*h*k))*Ro^2; 
c9 = -c3*Ro^2; 

  
% Equation to solve Rc (func=0) 
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syms x 
func = 

c1*(x^(t+2))*log(Ro/x)+c2*(x^t)*log(Ro/x)+c3*(x^2)+c4*(x^2)*log(x/Ri)+c5*(x^2)*log(Ro/x)+c6*log(Ro/

x)*log(x/Ri)+c7*log(x/Ri)+c8*log(Ro/x)+c9; 

  
% Solve equation, find Rc. (make sure the limits for x are 0 and Ro, or Ri 
% and Ro) 

  
Rc = feval(symengine, 'numeric::solve',func,'x=0..1.08'); 

 

 

 

Risnes_A1.m 

 
% Calculation of A1 

  
sigmaro = Pois*sigmazo/(1-Pois)+(1-2*Pois)*beta*P_o/(1-Pois); 

  
V = tan(alfa*pi/180)^4+1-Pois*(tan(alfa*pi/180)^2+1)^2; 

  
aa = (2*Ro.^2/(Ro.^2-Rc.^2))*((1/t)*2*So*tan(alfa*pi/180)+sigmaro-P_i-

(visc*q/(2*pi*h*k))*log(Rc./Ri))-(1/t)*tan(alfa*pi/180)^2*visc*q/(2*pi*h*k)-

(1/t)*(visc*q/(2*pi*h*k))*(Ro.^2+Rc.^2)/(Ro.^2-Rc.^2)-(P_o-P_c)*((1-2*Pois)*beta/(2*(1-

Pois)))*((Ro.^2+Rc.^2)/(Ro.^2-Rc.^2)+(log(Ro./Rc)-1)/log(Ro./Rc)); 

  
bb = 2*tan(alfa*pi/180)^2*Rc.^t*(tan(alfa*pi/180)^2+(Ro.^2+Rc.^2)/(Ro.^2-Rc.^2))/V; 

  
A1 = aa/bb; 

  
sigmarc = P_i+(visc*q/(2*pi*h*k))*log(Rc/Ri)-(1/t)*(2*So*tan(alfa*pi/180)-

visc*q/(2*pi*h*k))+2*tan(alfa*pi/180)^2*A1*Rc.^t/V; 

 

 

 

Risnes_Elastic_Stress.m 

 
% Calculation of the radial and tangential stresses in the Elastic Region 

  
% Radial distances where stresses are calculated (elastic region) 

  
rel=Rc:0.1:Ro; 

  
% Radial and tangential stresses in the elastic region 

  
sigmar_el = (sigmaro+(sigmaro-sigmarc)*(Rc^2/(Ro^2-Rc^2))*(1-(Ro./rel).^2)-(P_o-P_c)*((1-

2*Pois)*beta/(2*(1-Pois)))*((Rc^2/(Ro^2-Rc^2))*(1-(Ro./rel).^2)+log(Ro./rel)./log(Ro/Rc))); 

  
sigmatheta_el = (sigmaro+(sigmaro-sigmarc)*(Rc^2/(Ro^2-Ri^2)).*(1+(Ro./rel).^2)-(P_o-P_c)*(1-

2*Pois)*beta/(2*(1-Pois))*((Rc^2/(Ro^2-Rc^2))*(1+(Ro./rel).^2)+(log(Ro./rel)-1)./log(Ro/Rc))); 
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% Radial and tangential effective stresses in the elastic region 

  
sigmar_el_eff = sigmar_el - beta*P_o; 

  
sigmatheta_el_eff = sigmatheta_el - beta*P_o; 

  
% Radial and tangential stresses normalized by the stress at the outer 
% boundary 

  
sigmar_Ro = sigmaro+((sigmaro-sigmarc)*(Rc.^2/(Ro.^2-Rc.^2)).*(1-(Ro./Ro).^2)-(P_o-P_c)*((1-

2*Pois)*beta/(2*(1-Pois)))*((Rc.^2/(Ro.^2-Rc.^2))*(1-(Ro./Ro).^2)+log(Ro./Ro)./log(Ro/Rc))); 

  
sigmatheta_Ro = sigmaro+((sigmaro-sigmarc)*(Rc.^2/(Ro.^2-Ri.^2)).*(1+(Ro./Ro).^2)-(P_o-P_c)*(1-

2*Pois)*beta/(2*(1-Pois))*((Rc.^2/(Ro.^2-Rc.^2)).*(1+(Ro./Ro).^2)+(log(Ro./Ro)-1)./log(Ro/Rc))); 

  
sigmar_el_norm = sigmar_el/sigmar_Ro; 
sigmatheta_el_norm = sigmatheta_el/sigmatheta_Ro; 
sigmar_el_eff_norm = sigmar_el_eff/(sigmar_Ro-beta*P_o); 
 sigmatheta_el_eff_norm = sigmatheta_el_eff/(sigmatheta_Ro-beta*P_o); 

 

 

Risnes_Plastic_Stress.m 

 
% Calculation of the radial and tangential stresses in the Plastic Region 

  
% Radial distances where stresses are calculated (plastic region) 

  
rpl=Ri:0.01:Rc; 

  
% Radial and tangential stresses in the plastic region 

  
sigmar_pl = (P_i+(visc*q/(2*pi*h*k))*log(rpl./Ri)-(1/t)*(2*So*tan(alfa*pi/180)-

visc*q/(2*pi*h*k))+2*tan(alfa*pi/180)^2*A1*rpl.^t/V); 

  
sigmatheta_pl = (P_i+(visc*q/(2*pi*h*k))*log(rpl./Ri)-(1/t)*(2*So*tan(alfa*pi/180)-

tan(alfa*pi/180)^2*visc*q/(2*pi*h*k))+2*tan(alfa*pi/180)^4*A1*rpl.^t/V); 

  
% Radial and tangential effective stresses in the plastic region 

  
sigmar_pl_eff = sigmar_pl - beta*P_i; 
sigmatheta_pl_eff = sigmatheta_pl - beta*P_i; 

  
% Radial and tangential stresses normalized by the stress at the outer 
% boundary 

  
sigmar_Ro = sigmaro+((sigmaro-sigmarc)*(Rc^2/(Ro^2-Rc^2)).*(1-(Ro./Ro).^2)-(P_o-P_c)*((1-

2*Pois)*beta/(2*(1-Pois)))*((Rc^2/(Ro^2-Rc^2))*(1-(Ro./Ro).^2)+log(Ro./Ro)./log(Ro/Rc))); 

  
sigmatheta_Ro = sigmaro+((sigmaro-sigmarc)*(Rc^2/(Ro^2-Ri^2)).*(1+(Ro./Ro).^2)-(P_o-P_c)*(1-

2*Pois)*beta/(2*(1-Pois))*((Rc^2/(Ro^2-Rc^2)).*(1+(Ro./Ro).^2)+(log(Ro./Ro)-1)./log(Ro/Rc))); 
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sigmar_pl_norm = sigmar_pl/sigmar_Ro; 
sigmatheta_pl_norm = sigmatheta_pl/sigmatheta_Ro; 
sigmar_pl_eff_norm = sigmar_pl_eff/(sigmar_Ro-beta*P_i); 
sigmatheta_pl_eff_norm = sigmatheta_pl_eff/(sigmatheta_Ro-beta*P_i); 

 

 

 

Risnes_Plot_Elastic.m 

 
% Plot all Risnes solutions for different parameters in the Elastic Region 

  
% Array with all the successive line specifications 

  
lc=cellstr(['k-o';'k-+';'k-<';'k-x';'k->']); 

  
% Firgure 1: Plot Radial Stress in the Elastic Region 

  
figure(1) 
hold on; 
plot(rel/Ri,sigmar_el_norm,char(lc(ntest)),'linewidth',1); 

  
if ntest==totaltest 
    grid on; 
    xlabel('r/Ri','fontsize',20); 
    ylabel('\sigma_{r}/\sigma_{ro}','fontsize',20); 
    AX=legend(leshenda,1); 
    LEG = findobj(AX,'type','text'); 
    set(LEG,'FontSize',15) 

     
end 

   
% Figure 2: Plot Tangential Stress in the Elastic Region 

  
figure(2) 
hold on; 

  
plot(rel/Ri,sigmatheta_el_norm,char(lc(ntest)),'linewidth',1); 

  
if ntest==totaltest 
    grid on; 
    xlabel('r/Ri','fontsize',20); 
    ylabel('\sigma_{\theta}/\sigma_{\thetao}','fontsize',20); 
    AX=legend(leshenda,1); 
    LEG = findobj(AX,'type','text'); 
    set(LEG,'FontSize',15) 

        
end 
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Risnes_Plot_Plastic.m 

 
% Plot all Risnes solutions for different parameters in the Plastic Region 

  
% Array with all the sucessive line specifications 

  
lc=cellstr(['k-o';'k-+';'k-<';'k-x';'k->']); 

  
% Firgure 1: Plot Radial Stress in the Plastic Region 

  
figure(1) 
hold on; 

  
plot(rpl/Ri,sigmar_pl_norm,char(lc(ntest)),'linewidth',1); 

  

  

  

  
% Figure 2: Plot Tangential Stress in the Plastic Region 

  
figure(2) 
hold on; 

  
plot(rpl/Ri,sigmatheta_pl_norm,char(lc(ntest)),'linewidth',1); 
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Appendix B - MATLAB script to map contact forces 

 

MATLAB scripts to map contact forces. 

 

 

cforces_matlab.m 

 

% Matlab file to plot contact forces 

 
clear; 

  
% load data 

 
cforces=dlmread('cforces.dat',',',0,0); 
balls=dlmread('ballvelsandstress.dat',',',0,0); 

  
ballcoords=sortrows(balls,1); 

  
%=========================================== 

  
% determine the average normal force 

  
numcontacts=size(cforces,1); 
numballs=size(ballcoords,1); 

  
% Make a new figure 

 
figure;  

  
axis('equal'); % Make the axes equal 
axis('off'); %Turn the axes off 
hold on; 

  
zbottom=0.00175;   
ztop=0.00325; 
rmin=0.0; 
rmax=0.03; 
linescale=1;  % multiplier for line thickness    
ttt=0; 

  
for i =1:numcontacts 
    

distance(i)=sqrt(cforces(i,3)*cforces(i,3)+cforces(i,4)*cforces(i,4)); 
 

if  cforces(i,5)>=zbottom && cforces(i,5)<=ztop && distance(i)>=rmin 

&& distance(i)<=rmax 
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ttt=ttt+1; 
     m=cforces(i,1); % disk 1 id 
     n=cforces(i,2); % disk 2 id 
     

for kk=1:numballs 
         

if ballcoords(kk,1)==m 
          x1(1)=ballcoords(kk,2); 
          y1(1)=ballcoords(kk,3); 
          z1(1)=ballcoords(kk,4); 
         

elseif n<500000 && ballcoords(kk,1)==n % disk-disk contact 

(500000 is a wall) 

  
          x1(2)=ballcoords(kk,2); 
          y1(2)=ballcoords(kk,3); 
          z1(2)=ballcoords(kk,4);  
        

    elseif n>=500000 % wall-disk contact (500000 is a wall) 

 
          x1(2)=cforces(i,3); 
          y1(2)=cforces(i,4); 
          z1(2)=cforces(i,5);  

        
       end 

 
        end 

  
% plot according to  magnitude of contact normal force 
% determine line width - proportional to force      

     
    mywidth=cforces(i,12)*linescale;  

     
    if mywidth ~=0  

  
        plot(x1,y1,'LineWidth',mywidth,'Color','r');  

 
    end 

 
    end 

 
end 
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Appendix C – MATLAB scripts to make DEM data 

files for Paraview visualization 

 

MATLAB scripts to generate ParaView data files for DEM. 

 

 

ballsdiamstress_matlab.m 

 

clear; 
  
%% Vtp File creation 
  
%%Create vtp file for particle positions 
fname=['balldiamandstress.vtp']; 
 
%%Read original data files 
dname=['ballvelsandstress2.dat']; 
diskdata=dlmread(dname); 
 
  
fid=fopen(fname,'w'); 
 
%%Paraview data file content 
 
fprintf(fid,'<?xml version="1.0"?>\n'); 
fprintf(fid,'<VTKFile type="PolyData" version="0.1" 
format="ascii">\n'); 
fprintf(fid,'\t <PolyData>\n'); 
npoints1=length(diskdata); 
fprintf(fid,'\t \t<Piece NumberOfPoints="%i">\n',npoints1); 
fprintf(fid,'\t \t \t<Points>\n'); 
fprintf(fid,'\t \t \t \t<DataArray type="Float32" NumberOfComponents="3" 
format="ascii">\n'); 
 
%%Particles positions (3 components) 
  
for i=1:length(diskdata) 
     
   fprintf(fid,'\t \t \t \t %e %e 
%e\n',diskdata(i,2),diskdata(i,3),diskdata(i,4)); 
  
end 
fprintf(fid,'\t \t \t \t</DataArray>\n'); 
fprintf(fid,'\t \t \t</Points>\n'); 
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fprintf(fid,'\t \t \t<PointData Scalars="Diameter" 
Vectors="Velocity">\n'); 
fprintf(fid,'\t \t \t \t<DataArray type="Float32" Name="Diameter" 
format="ascii">\n'); 
  
%%Particles diameter  
 
for i=1:length(diskdata) 
   diam=diskdata(i,5)*2; 
   fprintf(fid,'\t \t \t \t %e\n',diam); 
end 
  
fprintf(fid,'\t \t \t \t</DataArray>\n'); 
fprintf(fid,'\t \t \t \t<DataArray type="Float32" Name="Stress" 
format="ascii">\n'); 
 
%%Particles stress  
 
  
for i=1:length(diskdata) 
    
       stress=diskdata(i,18); 
   
   fprintf(fid,'\t \t \t \t %e \n',stress); 
  
end     
  
  
fprintf(fid,'\t \t \t \t </DataArray>\n'); 
  
  
for i=1:length(diskdata) 
    x=diskdata(i,2); %x coordinate 
    y=diskdata(i,3); %y coordinate 
    z=diskdata(i,4); %z coordinate 
    sigxx=diskdata(i,9); % read sigma xx 
    sigxy=diskdata(i,10); % read sigma xy 
    sigyy=diskdata(i,13); % read sigma yy 
  
    theta=atan((y-0)/(x-0)); 
    sintheta=sin(theta); 
    costheta=cos(theta); 
  
        pos(i)=sqrt(x^2+y^2); 
    sigrr(i)=-1*(sigxx*costheta*costheta + sigyy*sintheta*sintheta 
+2*sigxy*sintheta*costheta); 
    sighoop(i)=-1*(sigxx*sintheta*sintheta + sigyy*costheta*costheta -
2*sigxy*sintheta*costheta); 
    sigshear(i)=abs(((sigyy-sigxx)*sintheta*costheta + 
sigxy*(costheta*costheta - sintheta*sintheta))); 
     
     
end 
  
fprintf(fid,'\t \t \t \t<DataArray type="Float32" Name="RadialStress" 
format="ascii">\n'); 
 
%%Particles radial stress  
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for i=1:length(diskdata) 
    
   fprintf(fid,'\t \t \t \t %e \n',sigrr(i)); 
  
end     
  
  
fprintf(fid,'\t \t \t \t </DataArray>\n'); 
  
fprintf(fid,'\t \t \t \t<DataArray type="Float32" 
Name="TangentialStress" format="ascii">\n'); 
 
%%Particles circumferential stress  
 
  
for i=1:length(diskdata) 
    
     
   
   fprintf(fid,'\t \t \t \t %e \n',sighoop(i)); 
  
end     
  
  
fprintf(fid,'\t \t \t \t </DataArray>\n'); 
  
 
fprintf(fid,'\t \t \t \t <DataArray type="Float32" Name="Velocity" 
NumberOfComponents="3" format="ascii">\n'); 
  
  
%%Particles velocities (3 components)  
 
for i=1:length(diskdata) 
      
    fprintf(fid,'\t \t \t \t %e %e 
%e\n',diskdata(i,6),diskdata(i,7),diskdata(i,8)); 
  
end 
  
fprintf(fid,'\t \t \t \t </DataArray>\n'); 
  
 
  
fprintf(fid,'\t \t \t</PointData>\n'); 
fprintf(fid,'\t \t</Piece>\n'); 
fprintf(fid,'\t</PolyData>\n'); 
fprintf(fid,'</VTKFile>\n'); 
                 
fclose('all'); 
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cforces0_matlab.m 

 
clear; 
  
 
%% Vtp File creation 
 
cname=['cforces0.vtp']; 
 
%%Read original data files 
 
dname=['ballvelsandstress2.dat']; 
diskdata=dlmread(dname); 
  
dname=['cforces_clean.dat']; 
mydata=dlmread(dname); 
  
kname=['cbforces_clean.dat']; 
kdata=dlmread(kname); 
     
 
  
fid=fopen(cname,'w'); 
  
fprintf(fid,'<?xml version="1.0"?>\n'); 
fprintf(fid,'<VTKFile type="PolyData" version="0.1" 
byte_order="LittleEndian">\n'); 
fprintf(fid,'\t <PolyData>\n'); 
npoints2=length(mydata); 
fprintf(fid,'\t \t<Piece NumberOfPoints="%i" 
NumberOfLines="%i">\n',npoints2*2, npoints2); 
fprintf(fid,'\t \t \t<Points>\n'); 
fprintf(fid,'\t \t \t \t<DataArray type="Float32" NumberOfComponents="3" 
format="ascii">\n'); 
 

 
%%Read original data files: position of the two particles of each contact 
 
  
for i = 1:length(mydata); 
    
        
    id1 = mydata(i,1); 
    id2 = mydata(i,2); 
     
    for j=1:length(diskdata); 
         
        if diskdata(j,1)==id1 
             
            num1=j; 
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        end 
         
        if diskdata(j,1)==id2 
             
            num2=j; 
             
        end 
         
    end 
             
    fprintf(fid,'\t \t \t \t %e %e %e\n\t \t \t \t %e %e 
%e\n',diskdata(num1,2),diskdata(num1,3),diskdata(num1,4),diskdata(num2
,2),diskdata(num2,3),diskdata(num2,4)); 
     
end 
  
fprintf(fid,'\t \t \t \t</DataArray>\n'); 
fprintf(fid,'\t \t \t</Points>\n'); 
  
fprintf(fid,'\t \t \t<PointData Scalars="NormalisedContactForce">\n'); 
fprintf(fid,'\t \t \t \t<DataArray type="Float32" 
Name="NormalisedContactForce" format="ascii">\n'); 
  
% normalised contact forces 
  
meanCF = mean(mydata(:,12));  
  
for i = 1:length(mydata); 
    
    fprintf(fid,'\t \t \t \t %e \n\t \t \t \t %e 
\n',mydata(i,12)/meanCF,mydata(i,12)/meanCF); 
end 
  
fprintf(fid,'\t \t \t \t</DataArray>\n'); 
fprintf(fid,'\t \t \t</PointData>\n'); 
  
fprintf(fid,'\t \t \t<Lines>\n'); 
fprintf(fid,'\t \t \t \t<DataArray type="Int32" Name="connectivity" 
format="ascii">\n');  
% connectivity here is not the number of contacts for a particle. It is 
a number that paraview call connectivity 
  
k = 0 ; 
  
for i = 1:length(mydata); 
   
   fprintf(fid,'\t \t \t \t %i  %i \n',k,k+1); 
 k = k+2  ;  
end 
  
fprintf(fid,'\t \t \t \t</DataArray>\n'); 
fprintf(fid,'\t \t \t \t<DataArray type="Int32" Name="offsets" 
format="ascii">\n'); 
  
l=2; 
  
for i = 1:length(mydata); 
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    fprintf(fid,'\t \t \t \t %i \n',l); 
     
    l=l+2; 
end 
  
fprintf(fid,'\t \t \t \t </DataArray>\n'); 
fprintf(fid,'\t \t \t</Lines>\n'); 
fprintf(fid,'\t \t</Piece>\n'); 
fprintf(fid,'\t</PolyData>\n'); 
fprintf(fid,'</VTKFile>\n'); 
  
                 
fclose('all'); 
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Appendix D – MATLAB script to make CFD data files 

for Paraview visualization 

 

MATLAB script to generate ParaView data files for CFD. 

 

 

Fluidproperties_matlab.m 

 
clear; 
 
%%Read original data files 
 
  
nname=['Node.dat']; 
node=dlmread(nname); 
  
nnode=node(1,1); 
  
ename=['Elem.dat']; 
element=dlmread(ename); 
  
nelem=element(1,1); 
  
rname=['Result1.out']; 
data=dlmread(rname); 
  
bname=['pfcres1.out']; 
pfc=dlmread(bname); 
 
%% Vtu File creation 
  
%%Create vtu file for particle positions 
 
  
fname=['fluid.vtu']; 
  
fid=fopen(fname,'w'); 
 
%%Paraview data file content 
  
fprintf(fid,'<?xml version="1.0"?>\n'); 
fprintf(fid,'<VTKFile type="UnstructuredGrid" version="0.1" 
byte_order="LittleEndian">\n'); 
fprintf(fid,'\t <UnstructuredGrid>\n'); 
fprintf(fid,'\t \t <Piece 
NumberOfPoints="%i"NumberOfCells="%i">\n',nnode,nelem); 
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fprintf(fid,'\t \t \t <Points>\n'); 
fprintf(fid,'\t \t \t \t <DataArray type="Float32" Name="Position" 
NumberOfComponents="3" format="ascii">\n'); 
 
%%Nodes positions (3 components) 
 
for i=1:nnode 
    
j=i+1; 
fprintf(fid,'\t \t \t \t %E %E E\n',node(j,2),node(j,3),node(j,4)); 
  
end 
  
fprintf(fid,'\t \t \t \t </DataArray>\n'); 
fprintf(fid,'\t \t \t </Points>\n'); 
  
fprintf(fid,'\t \t \t <Cells>\n'); 
fprintf(fid,'\t \t \t \t <DataArray type="Int32" Name="connectivity" 
NumberOfComponents="1" format="ascii">\n'); 
 
%%Element nodes (8 components) 
 
for i=1:nelem 
     
k=3*i; 
fprintf(fid,'\t \t \t \t %i %i %i %i %i %i %i %i \n',element(k,2)-
1,element(k,3)-1,element(k,4)-1,element(k,5)-1,element(k,6)-
1,element(k,7)-1,element(k,8)-1,element(k,9)-1); 
     
end 
  
fprintf(fid,'\t \t \t \t </DataArray>\n'); 
  
fprintf(fid,'\t \t \t \t <DataArray type="Int32" Name="offsets" 
NumberOfComponents="1" format="ascii">\n'); 
 
%%Number of nodes of each element (8) 
 
for i=1:nelem 
     
k=i*8; 
fprintf(fid,'\t \t \t \t %i \n',k); 
     
end 
  
fprintf(fid,'\t \t \t \t </DataArray>\n'); 
  
fprintf(fid,'\t \t \t \t <DataArray type="UInt8"  Name="types" 
NumberOfComponents="1" format="ascii">\n'); 
 
%%Elements type (12=hexahedral) 
  
for i=1:nelem 
     
fprintf(fid,'\t \t \t \t %i \n',12); 
     
end 
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fprintf(fid,'\t \t \t \t </DataArray>\n'); 
fprintf(fid,'\t \t \t </Cells>\n'); 
  
  
fprintf(fid,'\t \t \t <CellData Vectors="Velocity" 
Scalars="RVelocity">\n'); 
fprintf(fid,'\t \t \t \t <DataArray type="Float32" Name="Velocity" 
NumberOfComponents="3" format="ascii">\n'); 
 
%%Fluid velocity 
  
for i=1:nelem 
     
p=i*3+1; 
fprintf(fid,'\t \t \t \t %E %E %E\n',data(p,3),data(p,4),data(p,5)); 
  
end 
  
fprintf(fid,'\t \t \t \t </DataArray>\n'); 
fprintf(fid,'\t \t \t \t <DataArray type="Float32" Name="Pressure" 
NumberOfComponents="1" format="ascii">\n'); 
 
%%Fluid pressure 
 
for i=1:nelem 
     
p=i*3+1; 
fprintf(fid,'\t \t \t \t %E \n',data(p,2)); 
     
end 
 
fprintf(fid,'\t \t \t \t </DataArray>\n'); 
 
%%Porosity 
 
fprintf(fid,'\t \t \t \t <DataArray type="Float32" Name="porosity" 
NumberOfComponents="1" format="ascii">\n'); 
     
for i=1:nelem 
     
fprintf(fid,'\t \t \t \t %E\n',pfc(i+1,1)); 
  
end 
  
fprintf(fid,'\t \t \t \t </DataArray>\n'); 
  
  
fprintf(fid,'\t \t \t \t <DataArray type="Float32" Name="bforce" 
NumberOfComponents="3" format="ascii">\n'); 
 
%%Body force 
     
for i=1:nelem 
     
fprintf(fid,'\t \t \t \t %E %E %E\n',pfc(i+1,2),pfc(i+1,3),pfc(i+1,4)); 
     
end 
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fprintf(fid,'\t \t \t \t </DataArray>\n'); 
  
  
fprintf(fid,'\t \t \t </CellData>\n'); 
fprintf(fid,'\t \t </Piece>\n'); 
fprintf(fid,'\t </UnstructuredGrid>\n'); 
fprintf(fid,'</VTKFile>\n'); 
  
fclose('all'); 
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Appendix E – Simulations to calibrate FIELD1 and 

FIELD3 

 

The simulations performed to calibrate all the FIELD1 (Table E.1) and FIELD3 (Table E.2). 

‘atc’ represents the axial compressive tests and ‘tri’ the triaxial tests.  

 

Table E.1. Iterations to adjust FIELD1 macroscopic mechanical values 
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Table E.2. Iterations to adjust FIELD3 macroscopic mechanical values. 

 

 

 




