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(ABSTRACT)

Energy efficiency is an important challenge in the field of High Performance Com-
puting (HPC). High energy requirements not only limit the potential to realize next-
generation machines but are also an increasing part of the total cost of ownership of
an HPC system. While at large HPC systems are becoming increasingly energy pro-
portional in an effort to reduce energy costs, interconnect links stand out for their
inefficiency. Commodity interconnect links remain “always-on”, consuming full power
even when no data is being transmitted. Although various techniques have been pro-
posed towards energy- proportional interconnects, they are often too conservative or
are not focused toward HPC. Aggressive techniques for interconnect energy savings are
often not applied to HPC, in particular, because they may incur excessive performance
overheads. Any energy-saving technique will only be adopted in HPC if there is no
significant impact on performance, which is still the primary design objective.

This thesis explores interconnect energy proportionality from a performance per-
spective. First a characterization of HPC applications makes a case for the enormous
potential for interconnect energy proportionality with HPC applications. Next, an HPC
interconnect with on/off based links, modeled after the IEEE 802.3az Energy Efficient
Ethernet protocol, is evaluated. This evaluation, while presenting a relationship be-
tween performance impact and energy over HPC applications, also emphasizes the
need for performance focused designs in energy efficient interconnects. Next, an adap-
tive mechanism, PerfBound, is presented that saves link energy subject to a bound on
application performance overheads. Finally this evaluation structure is applied into
an intermediate link power state - Fast-Wake, in addition to the traditional on and off
states. Results of this study, over 15 production HPC applications show that, compared
to current day always-on HPC interconnects, link energy can be reduced by unto 70%
while application performance overhead is bounded to only 1%.
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Chapter 1
Introduction

Theory and experimentation are often known as the pillars of the scientific method.
Advancements pushing the limits of the traditional experimental methods have lead
to computational sciences now constituting a third pillar to scientific inquiry. Many
fields including physics, chemistry, biology, astronomy, climatology, economics, social
science and engineering rely on computational sciences to explore and test uncharted
possibilities where traditional experimentation is either not possible or too expensive
in cost or time. The success of computational sciences is driven by High Performance
Computers (HPC) or Supercomputers. Exponential improvement in processor technol-
ogy has in turn made it possible to exponentially improve the computing throughput
of supercomputers for decades. This improvement translates to simulating ever larger
models and problems to solve large questions in science.

Since the 1990s, HPC performance has increased at an exponential rate, doubling
roughly every 1.2 years. The fastest machine in the November 2015 TOP500 list [3],
Tianhe-2 achieves 33 PF (Peta-FLOPS) on the TOP500’s HPL benchmark, which is 33
quadrillion floating point operations per second. The next milestone for HPC perfor-
mance is 1 EF (Exa-FLOP which is 1000 PF), which is expected to be achieved around
the year 2018 [9, 11, 12]. Several challenges lie ahead in reaching Exa-FLOP perfor-
mances, however, one of the key challenges is energy efficiency and proportionality1.

This thesis makes a case for a performance-aware approach to energy proportion-
ality in HPC interconnects. Research focusing energy proportionality has made sev-
eral strides over the compute components of the HPC system, making interconnect en-
ergy prominent. Interconnects are especially far from energy proportionality because
their links (which constitute a significant proportion of the overall network energy)
are always-on consuming energy regardless of their usage. Although several propos-
als have been made for energy proportionality in interconnects, they have not been
adopted in HPC due to their possible unknown performance overheads. While energy

1Energy proportional systems consume energy proportional to their usage



1.1. GRAND CHALLENGE PROBLEMS AND IMPACT 2

efficiency is a key challenge, performance is still the primary design objective in HPC
and hence proposals are unlikely to be accepted unless the performance overheads are
limited and well understood. This thesis explores HPC applications and interconnect
energy savings from a performance perspective, building and analyzing techniques not
only for energy saving but also for containing limiting performance overheads within
acceptable bounds.

1.1 Grand Challenge Problems and Impact

HPC based research has a profound impact on science and technology advancements.
Grand challenge problems are fundamental problems in science or engineering with
broad applications, with solutions aimed to be obtained by HPC. [21] The following
are few examples of Grand Challenge Problems and their potential Impact. However,
besides the examples below, HPC also has wide applications in engineering fields in
the research of more efficient manufacturing, automobile, aerospace, transportation
management, in energy with nuclear research, efficient wind turbines and oil discovery,
in Astronomy, in material sciences, etc. Considering the above, as discussed in the
following sections and chapters, the benchmarks and applications used in this research
are actual production applications from the fields of biomechanics, quantum chemistry,
weather modeling, molecular dynamics, particle interactions, N-body simulation, etc.

Prediction of weather, climate global change

Research over the decades has provided unequivocal evidence for the warming the
global climate system. Compelling evidence for rapid climate change comes from sev-
eral sources that include, records of sea level rise, global temperature rise, warming
oceans, shrinking ice sheets, etc. [20] From sea level rise threatening coastal regions to
warming oceans and melting ice sheets changing entire ecosystems and food producing
patterns, understanding and accurately predicting climate change is more important
now than ever.

HPC is one of the foremost technologies in use towards the fight against global cli-
mate change. Supercomputers are widely used by multiple research centers around the
world to run climate and weather models that predict global climates many decades



1.1. GRAND CHALLENGE PROBLEMS AND IMPACT 3

into the future to even predicting the odds of rain the next day. [20] These models ex-
trapolate current and past patterns to give insights as to the impact of climate change
in the future. Supercomputers are also widely used in number crunching (Big Data)
and visualization, in obtaining meaning from data gathered by climate sensors and
satellites. Modeling and simulating hurricanes and wind patterns are crucial to prepar-
ing for and averting natural disasters. Climate and weather modeling research while
using the fastest supercomputers in the world, still require even faster machines for
more accurate predictions and results [20]. Similar to the above, the aplication WRF -
Weather Research and Forecasting Model, a numerical weather prediction system de-
signed for both atmospheric research and operational forecasting needs is a part of the
list of applications evaluated in this thesis.

Human Brain Project, Molecular Dynamics and Biomechanics

The Human Brain Project (HBP) [16] is a European Commission Future and Emerging
Technologies flagship project that is primarily aimed at gaining a deep understanding
of the workings of the Human Brain 2. Understanding the Human Brain is critical to
solving neurological disorders and brain diseases. HPB involves many sub-projects and
research divisions, however primary objectives include modeling and simulating the
brain. The project also includes research on HPC since the computing infrastructure
required for simulating a human brain does not currently exist.

Simulating the brain over a computer provides for a non-invasive method of drug
testing and discovery. While drug testing on animals is the norm, extensive drug test-
ing on human brains involve legal and ethical complications. A computational model
of the brain will speed up the process of drug testing and a better understanding of
disease progression. Pattern in the data or biological signatures of diseases such as
Alzheimer’s will led to better classification, more accurate diagnoses and a more per-
sonalized medicine [16].

Several workloads evaluated in this thesis have applications in biology, specifi-
cally ALYA, GROMACS and NAMD. ALYA is a HPC based computational Biomechanics
model for Supercomputers. Its designed to simulate and study the working of the hu-
man heart, Respiratory System, Skeletal Muscles among others. GROMACS stands for
GROningen MAchine for Chemical Simulations and is a molecular dynamics package
designed for simulating proteins, lipids, and nucleic acids. It is used to study protein

2A similar project at the United States is the BRAIN Initiative [19]
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folding, which in itself has applications in understanding and solving diseases. NAMD
is a scalable molecular dynamics program used to study chemical interactions and for
biomolecular modeling.

CERN and HPC in Physics

Research in CERN with its Large Hadron Collider (LHC) run experiments that probe
into the fundamental nature of the universe. the Large Hadron Collider is the largest
and the most powerful particle collider in the world. It is also the largest experimental
facility ever built and is the largest machine in the world. Built by CERN - European
Organization for Nuclear Research, LHC allows physicists to test predictions and theo-
ries from particle and high energy physics. It was instrumental in the discovery of the
Higgs boson particle, which explains the existence of mass in the universe. Along with
experiments into understanding the nature of the Higgs boson, many other particle
predictions and unsolved questions in physics are expected to be solved with the use of
the LHC [17].

The data produced by particle collisions at LHC is enormous and unprecedented
and hence has one of the world’s largest high performance computing facilities in the
world, to store, distribute and analyze points of interest. While CERN by itself does
not have the computing resources to compute the produced data, the data is computed
by Worldwide LHC Computing Grid, a distributed computing infrastructure with super-
computers from around the world.

The above example in relation to CERN and LHC provides for one example in the
role of HPC in the field of Physics. However, several applications and modelled to
simulate and test theories in physics and cosmology. This thesis evaluates applications
GADGET and MILC which both have their applications in Physics. GADGET specifically
is a N-body simulation package used to simulate dark matter and gas interactions.
MILC is used to study Quantum ChromoDynamics (QCD), the theory of the strong
interactions of subatomic physics.

Besides the above, several other applications are used in this work and are discussed
in the following chapters. Reaching exa-flop performances is key to solving several
key challenges and problems. The following is a brief introduction to the evolution of
supercomputers, leading up the the problem of exa-scale and energy as a key challenge.
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1.2 Supercomputers - Past, Present and Future

Grand challenge problems have perpetually inspired faster and higher throughput su-
percomputers. Faster machines usually enable better and more accurate results and a
possibility to simulate larger problem sets.

Although supercomputing dates back to 1960’s, they only used a few processors [15]
until 1990’s which marked the beginning of massively parallel computers with thou-
sands of processors. Performance increased from about 120 GF in 1993 with Fujitsu’s
Numerical Wind Tunnel machine to about 2.3 TF with the Intel ASCI machines from
DoE-Sandia National Labs. The 1990s also marked the shift from vector processors to
the use of commodity microprocessors in supercomputers, due to their better price to
performance ratio of the latter.

Exponential improvement in performance continued through the 2000s. The years
between 2000 and 2010 brought about several advances in technology with 1000x
performance increase reaching Tera-FLOP to Peta-FLOP performances. The previous
generation counterparts and the introduction of several of current day flagship ma-
chines where introduced during this period. The NEC Earth Simulator was the first
supercomputer to reach 35 TFLOPS in throughput. Earth Simulator consisted of 640
nodes with 8 vector processors and 16 gigabytes of memory in each node. It was the
fastest supercomputer in the world from 2002 and was surpassed by the Blue Gene/L
machine in 2004.

The IBM’s Blue Gene/L launched its landmark Blue Gene series of machines towards
the end of 2004. The Blue Gene series introduced machines that had unprecedented
scaling powered by a large number of relatively low performance but highly energy ef-
ficient processors. The Blue Gene/L introduced several unique innovations including,
trading performance per core for lower power, dual processors per node, System-on-a-
chip design, highly scalable machine that scales up to 65 thousand processors enabled
by a 3-D torus interconnect and a light weight operating system. With unprecedented
scaling, Blue Gene/P ranked, first in the Top500 list of the worlds fastest supercomput-
ers, from November 2004 with 70 TFLOPS until November 2007 reaching nearly half
a PFLOPS performance[3].

Following the BlueGene/P, the IBM Roadrunner was released in 2008, the first su-
percomputer to reach the PETA-FLOPS performance milestone. The Roadrunner was
the first machine to use accelerators along with conventional processors, calling it then,
a "hybrid approach". Alongside the Roadrunner, Cray Jaguar in 2009 and the Chinese
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Tianhe-1A from 2010 reached 1.7 PFLOPS and 2.5 PFLOPS respectively.

In 2011, the K-Supercomputer from Japan was the first to reach 10 PFLOPS. Be-
tween 2011 and 2015, three other supercomputers BlueGene/Q, Titan and Tianhe-2
surpassed the K-Supercomputer with performance higher then 10 PFLOPS, with 17.1,
17.5 33.8 PFLOPS respectively (as of November 2015). The years between 2010 to
2015 also saw the emergence of GPU accelerator based supercomputers. From only
nine supercomputers in the Top500 list[3] in 2010, that were built with accelerators,
GPU based accelerator adoption has seen a steady increase with 89 machines as of
November 2015.

Apart from performance improvements, last 10 years have also seen an increased
emphasis on energy and power efficiency. The Green500 [4] list was established in
2006 to list 500 of the most energy and power efficient supercomputers in the world
measured in FLOPS/WATT. From BlueGene/P ranking first with 357 MFLOPS/W in the
first Green500 list in November 2007, energy/power efficiency has come a long way
with the top machines in November 2015 measuring in with up to 7000 MFLOPS/W in
the list. One key factor in driving increases in power/energy efficiency can be attributed
to the use of accelerators. For example all of the top 40 systems in November 2015
Green 500 list use accelerators namely NVIDIA GPUs, AMD FirePro GPUs, Intel Phi or
PEZY-SC. Even following the top 40, the next 40-100 systems are still primarily a mix
of the above mentioned accelerators based systems or the BlueGene/Q.

The increase in emphasis in energy and power efficiency is critical to building future
HPC. Past trends in exponential growth in HPC performance point to a 1 Exa-FLOP
machine by the year 2018. Several challenges lie ahead of building exa-scale machines
as seen in the subsequent sections.

1.3 The Problem of Energy

The Top500 trend-line for the fastest machine in the world, in Figure 1.1 3 predicts
Exa-FLOP HPC performance at about 2018-2020 time period. Several reports includ-
ing DARPA [11] in 2008 and PRACE[18] in 2012 have called for addressing the several
challenges and barriers that require crossing before reaching Exa-scale performance.

3Obtained from the Top500 statistics page [3]
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Architecture, micro-architecture, energy efficiency, power consumption, memory band-
width/capacity, system and interconnect scaling, I/O bandwidth, resilience and relia-
bility, algorithm and application scaling to state a few, require several innovations to
allow for Exa-scale performance [11, 18].

Performance development over time
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Exa-Flop systems projected at 2018-2020 time-frame

Figure 1.1: System share of Interconnects in TOP500 supercomputers.

Of the mentioned challenges energy/power efficiency, in particular, is one of the
key design criterion for modern supercomputers. Today’s fastest supercomputer (as of
June 2015, at 33.8 PF/ 17.8 MW [3] gives 1.9 GF/W), if extrapolated to a sustained
ExaFlop performance, would have a total power consumption of about 500 MWatts. In
contrast, US DOE, DARPA and other exa-scale HPC programs target the deployment of
an ExaFlop machine by 2018 with power consumption of 20 MWatts [11, 12]. Building
future supercomputers at such stringent power budgets requires eliminating every in-
efficiency throughout the system. Much effort in bringing about energy efficiency and
energy proportionality to systems, has gone into optimizing the compute elements and
memory, which constitute the majority of the system power consumption. However,
recent trends show an increased emphasis on interconnects.
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Energy Proportionality in HPC Interconnects

With compute nodes being power optimized and energy proportional, the intercon-
nection network power has become increasingly significant. Power consumption of
HPC interconnects can contribute to up to 12% of the overall energy costs of the sys-
tem [34, 48] and even more when the system is not fully utilized. As with supercom-
puters, reducing interconnect power has become a pressing issue for Internet and IT
infrastructure as well as servers and high-end data centers. Studies suggest an annual
power consumption of 6 TWh consumed by networking devices alone in the US, and
this figure is expected to further increase [55]. Since Ethernet is the dominant inter-
connect technology in commercial and IT infrastructure, improvements in its energy
efficiency are estimated to bring about energy savings of over 3 TWh [55].

Interconnection links can be attributed to consuming a substantial portion of the
total interconnect power. Links take up 64% of the power budget of the IBM InfiniBand
8-port 12X switch [32, 71] and 63%, 65% of the Dell PowerConnect 5324 and 6248
respectively [71]. In addition, conventional network links are essentially always on,
thereby dissipating power, regardless of whether or not data is being transmitted. The
average power consumption of the IBM InfiniBand 12X link, for example, is almost
identical to its worst-case power [54, 71]. In the case of Ethernet, its design require
both the transmitters and receivers to operate continuously to keep the link aligned.
In order to mitigate such waste, the IEEE 802.3az Energy Efficient Ethernet (EEE)
task force was setup and an energy efficiency standard for Ethernet was approved in
September 2010. This thesis in specific, discusses interconnect energy proportionality
as modeled based on Energy Efficient Ethernet for reasons discussed below.

1.4 HPC Fabrics - Is Ethernet Relevant?

This research specifically focuses on evaluating the use of Energy Efficient Ethernet for
energy proportionality in HPC interconnects, its challenges and their solutions. Since
Energy Efficient Ethernet is based on Ethernet technology, the question of whether
Ethernet is relevant to HPC is discussed below.

Over the period of this research, between 2011 and 2015, HPC has seen the use of
numerous interconnect technologies, broadly falling into the following categories, Eth-
ernet based, InfiniBand based, proprietary and custom interconnects. Both proprietary
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Figure 1.2: System share of Interconnects in TOP500 supercomputers stacked

and custom interconnects are as their name implies interconnects specifically built for
their respective machines rather than off-the-shelf solutions such as Ethernet and Infini-
Band. The K-Supercomputer from Japan’s Tofu interconnect [38] is one such example
of a custom as well as a proprietary interconnect. The Tofu is a 6-D mesh/torus built
specifically for the K-Supercomputer. Its six dimensions interconnect, racks scaling the
entire system at the lower dimension, boards at the middle and the processors on each
system board at the highest dimensions of the network. Interconnects of the Cray sys-
tems - Aries and Gemini and the interconnects of Blue Gene series machines fall into
this category.

Figures 1.2 and 1.3 lists the system share of interconnects in the Top500 systems
list. The Figure 1.2 is stacked showing the evolution of the above mentioned categories
of interconnects over the years. In June 2011 GigaBit Ethernet, 10G Ethernet, Infini-
Band, custom and proprietary interconnects add up to 490 systems, while the other 10
systems contained networks such as Myrinet [6], NUMAlink [7] and Quadrics [8].

InfiniBand

InfiniBand, over the years has held a large system share in the Top500 systems. Infini-
Band is widely used in HPC for featuring very low latency, very high throughput high
scalability and quality of service. Similar to Ethernet, InfiniBand is operated by a con-
sortium with its standards organization called the InfiniBand Trade Association (IBTA)
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Figure 1.3: System share of Interconnects in TOP500 supercomputers - Ethernet based
machines constitute about 40% every year

publishing its first InfiniBand architecture in the year 2000. Since 2000, InfiniBand
has seen steady increase in bandwidth and decrease in latency. The signaling rate has
increased from 2.5 Gb/s in 2001 to 5, 10, 14 and 25Gb/s with SDR (Single Data Rate),
DDR (Double Data Rate), QDR (Quadruple Data Rate), FDR (Fourteen Data Rate),
and EDR (Enhanced Data Rate) respectively. These signaling rates are the theoretical
throughputs for a single link (1x) and can be paired with 4x or up to 12x links, known
as Link Aggregation, reaching up to 290 Gb/s with 12xEDR. The latencies from SDR
to EDR has decreased over the years from 5µs to 0.5µs respectively. The Top500 system
share of InfiniBand has steadily increased from about 200 in June 2011 to about 250
systems in November 2015.

Ethernet - Gigabit Ethernet and 10G

Ethernet compared to InfiniBand is an older and most widely used interconnect tech-
nology commonly used in local area networks (LANs) and metropolitan area networks
(MANs). Dating back to first introduction as early as 1980s, Ethernet has become
the standard for networking. Ethernet is a part of the IEEE 802 family of standards
maintained by the IEEE 802 LAN/MAN Standards Committee (LMSC). Ethernet was
introduced in HPC and featured in the Top500 machines list in the early 2000s with
10/100Mb/s and soon followed by the Gigabit Ethernet in 2002. Both Infiniband and
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Ethernet saw increasing adoption in HPC markets over the years with the rise of com-
modity components based supercomputers. Ethernet specifically is popular for its wide
spread use in LANs and MANs and its extremely cost- effective solutions, i.e., Ethernet
based networking solutions are cheaper than the above mentioned Infiniband, propri-
etary and custom solutions. Traditionally Ethernet has lagged behind Infiniband and
custom networks in latency and bandwidth, however, the gap between them has re-
duced over the years with the introduction of technologies such as iWarp [23] and
RoCE (RDMA over Converged Ethernet) [24] and the recent standardization efforts
targeting up to 400Gbit Ethernet. The most compelling reason for Ethernet’s large
adoption in HPC is its low cost and high performance.

Figure 1.3 presents system share of interconnects in the Top500 machines and as
shown, Gigabit Ethernet has seen a steady decline over the years in its use. First
featuring in the Top500 systems list in 2002, and by 2011, Gigabit Ethernet was used
by more than 200 systems. As seen in the Figure 1.3, Gigabit Ethernet has seen a
steady decline in its use between 2011 to 2015, however 10G Ethernet as shown has
seen consistent rise in adoption. Combined, both Gigabit and 10G Ethernet (shown in
black) is the most popular interconnect technology along side Infiniband. The share of
Ethernet based machines over the years from 2011 to 2015 is shown in Figure 1.3. It is
clear from the figure that a large proportion (about 40%) of HPC and Top500 machines
are deployed with Ethernet.

1.5 Energy Efficiency in Ethernet (EEE)

As mentioned previously network links are traditionally always-on consuming power
regardless of their usage. The ubiquitous nature of Ethernet with its wide spread use
throughout the computing spectrum meant that optimization of the power consump-
tion of Ethernet links translated directly to global energy savings from network infras-
tructure. The IEEE 802.3az Energy Efficient Ethernet (EEE) task force formed in 2007
aimed to make Ethernet links energy proportional. In considering several proposals,
two approaches where most popular, Adaptive Link Rate (ALR) and Low Power Idle
(LPI). The task force eventually adopted Low Power Idle (LPI) as the standard for En-
ergy Efficient Ethernet (EEE). The Low Power Idle (LPI) converts the always-on link
to an on/off based link where the link saves power at its low power off state. The
standard published in 2010 provided mechanisms for implementing on/off based links
to Ethernet switches.
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The original Energy Efficient Ethernet (EEE) protocol, discussed thus far, provides
specifications for energy savings on 100Mb, 1Gb and 10Gb links (Gigabit and 10G Eth-
ernet). The success of EEE, current and recent efforts for the standardization of 40Gb,
100Gb and 400Gb backplanes and optical Ethernet, have opted to include and have
included energy savings mechanisms from EEE. While incorporating EEE for 40Gb,
100Gb and 400Gb links, the standard further introduced alongside the older on/off
based EEE, an additional intermediate sleep state. The intermediate sleep state is
targeted towards a faster transition to fully active state in order to avoid excessive
performance degradation due to state transitions.

These protocols, specifically IEEE 802.3bj and 802.3bm, providing standards for
40Gb and 100Gb backplanes and optical Ethernet, respectively, were ratified as recently
as March 2015, and IEEE 802.3bs for 400Gb is expected to be ratified in 2017. As with
the original EEE protocol, products based on the recent standards, may be deployed for
HPC within a year, but it is likely that EEE will be disabled by default. With about 40%
of Top500 HPC machines using Ethernet based interconnects every year, that could
potentially have these protocols in their switches; it is imperative to understand the
need for EEE, its performance impact and possible configuration parameters in the
context of HPC applications.

1.5.1 Performance-aware Energy Proportionality

HPC applications require a high-performance interconnect to support their peak com-
munications demand, but the average utilization of the network is low. Considering
this, it is thus especially wasteful in HPC for its network links to remain always-on
when its average the network utilization is low. A number of studies have proposed
mechanisms to save interconnect link energy [13, 31, 48, 49, 63, 68]. These proposals
fall into one of two main categories. Firstly, on/off links are powered down during idle
periods. An important example is the above mentioned IEEE 802.3az Energy Efficient
Ethernet (EEE) [2, 54]. Alternatively, bandwidth tunable links adapt the network band-
width to the communication requirements, reducing the frequency or the number of
channels when demand is low, and therefore also reducing the power consumption.
An important example is InfiniBand, which implements variable bandwidth as well as
a variable number of active 1× links.

In both cases, changing power state incurs a delay; for example, EEE on a 10Gbps
link requires about 4µs to switch states. A similar delay in changing bandwidth has
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been reported for Infiniband [48]. The physical layer specification provides the un-
derlying mechanisms, but the decisions as to when to enter and leave power-saving
states are left to the vendor. In EEE specifically, the protocol does not specifically de-
fine the heuristics behind state transitions. This is an area of active research where
different heuristics targeting different workloads (including data centers) have been
proposed [64]. These state change heuristics are critical, especially in HPC, for which,
although energy- efficiency is increasingly important, the primary design objective is
still performance. Any proposed energy-saving technique will only be adopted if there
is no significant reduction in performance.

1.6 Contributions and Organization of this Thesis

This thesis discusses energy proportionality in HPC networks from a performance per-
spective. There are several challenges as discussed above that this thesis addresses in
this context. The following are the broad novel contributions of this thesis, specific
contributions are further discussed in the following chapters.

1. Evaluation of the Energy Efficient Ethernet protocol on HPC is presented. This
thesis was the first to evaluate the potential of Energy Efficient Ethernet for link
energy savings in the context of HPC. The presented analysis concludes that HPC
applications have high potential for network energy savings however the wake-
up and sleep delay introduced by EEE can cause performance overheads unless
properly controlled.

2. Any technique used for energy savings can only be used if their performance over-
heads are controlled. The second contribution of this thesis proposes the use of
PerfBound - A technique that automatically manages on/off links such that per-
formance overheads are limited, while savings link energy. An extension to Perf-
Bound, PerfBoundRatio is presented that distributes an accepted the application
overhead across all links of the network. This work also discusses a prediction
method for saving link energy by predicting idle periods between messages.

3. Third contribution of this thesis evaluates and extension to the original Energy
Efficient Ethernet protocol, Fast-Wake. Fast-Wake was added to EEE as a faster
wake-up mechanism but that which also saves energy. This work shows that Fast-
Wake on its own does not provide substantial benefits however, used along side
the original on/off states proposed by EEE, can provide better energy savings.
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4. The evaluation of Fast-Wake showed energy savings benefits in using an inter-
mediate energy state. This benefit however cannot be realized unless the on/off
states are properly managed. For this reason, the final contribution of this the-
sis presents DoublePerfBound that extends the previously proposed PerfBound to
work for an intermediate state, alongside the original on/off states. DoublePerf-
Bound automatically manages on/off links to obtain pareto-optimal energy sav-
ings to performance values.

The organization of the rest of this thesis is as follows. The next chapter presents
background and literature, which discusses the necessary background behind Energy
Efficient Ethernet and relevant related work. Chapter 3 presents the methodology used
in the work. Chapters 4, 5, 6 and 7 discuss the four contributions of this thesis as
presented above. Finally Chapter 8 concludes this work.



Chapter 2
Background and Literature

By the year 2010, the Internet and specifically data centers accounted for 1.1%
to 1.5% of global energy consumption, with this percentage having doubled since
2005 [46]. The growing energy cost of Internet infrastructure and data centers have
pushed for energy proportionality 1 across the computing spectrum. Addressing the
above, in 2010, the IEEE 802.3az Energy Efficient Ethernet Task Force published its
standard for Ethernet energy efficiency [2, 54]. The goal of the task force was to
reduce the significant contribution of network devices to the national power budget,
especially since large sections of the Internet and data center infrastructure are built
using Ethernet [54]. While a number of proposals for energy efficiency were consid-
ered, Adaptive Link Rate and Low Power Idle [2, 54] were the most popular choices.
In following sections, we briefly discuss Adaptive Link Rate and Low Power Idle.

2.1 Adaptive Link Rate

From data centers to HPC to Internet communications, Interconnects in general are
sparsely used. However, the power consumption of links (which takes up the major-
ity of the interconnect power) remains the same regardless of whether or not there
is data transmission [2, 54]. This led to studies focusing on building energy propor-
tional links whose energy consumption roughly proportional to link usage. Many initial
proposals in energy proportional interconnects were concepts similar to Adaptive Link
Rate (ALR) [40, 41, 42, 43]. The idea behind ALR comes from the fact that a link’s
power increases with bandwidth. Example, a 100 Mb/s transceiver consumes about
0.25W, whereas 1 Gb/s and 10 Gb/s transceivers consume about 0.7W and 6W respec-
tively [35]. Furthermore, since these links typically consume the same power whether
active and idle, it is beneficial to reduce the Ethernet link rate from 10 Gb/s link to
100 Mb/s link (say) during periods of inactivity.

1Energy proportionality signifies energy consumption proportional to usage.
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Although ALR promised large energy savings by making links energy proportional,
its process of changing link rate required time in the range of milliseconds to a few sec-
onds, which is far too large for many applications. This is in agreement with results pre-
sented in Chapter 4 which evaluates HPC applications for their sensitivity to increases
in latency. While other alternatives to accelerate rate change were proposed [44], ALR
still contained two major disadvantages. Firstly, despite the proposals to accelerate
rate change, the time taken for rate change was still higher than acceptable ranges.
The second disadvantage is that, although lesser power, Adaptive Link Rate still con-
sumes power during idle periods of the interconnect. To illustrate, if a 10Gb/s link is
rate adjusted to 1Gb/s during periods of inactivity, the inactive 1Gb/s link consumes
power, even though no data is being transmitted.

2.2 Energy Efficient Ethernet: Low Power Idle/ Deep-
Sleep

To solve the above conundrum, an alternative known as Low Power Idle [2, 54] was
proposed. Low Power Idle (LPI) essentially switches off the links during periods of
inactivity and turns them back on when needed. The key point is that switching on and
off links with LPI is relatively much faster (order of microseconds) and the link speed
is not changed. This scheme was chosen to be the standard accepted to be a part of
IEEE 802.3az Energy Efficient Ethernet standard.

The Low Power Idle (LPI) mode of EEE proposes the use of “Sleep” and “Wake”
modes to conserve power during periods of inactivity. Unlike complex mechanisms re-
quired to change the link speed in the case of ALR, Low Power Idle freezes the states
of the transceiver when it enters the low power mode and restores it when links are
powered back up. This operation can be performed in a few microseconds compared to
milliseconds required for ALR [2]. Figure 2.1 shows a state transition example of a link
that uses Low Power Idle. Here, the Ts, Tw and Tr are the time taken to put the link to
sleep, wake the link and refresh the link respectively. The periodic refresh in Figure 2.1
is to ensure the receiver elements are aligned with the channel during low power mode.

With regard to energy efficiency, link’s power consumption during Ts, Tw and Tr

consumes the same power as when a link is in its on state and Tq consumes about 10%
of the total power consumption of the link (here, Tr << Tq) [2, 55]. Table 2.1 shows
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Figure 2.1: State transitions between active and low-power modes in Energy Efficient
Ethernet (EEE): Low Power Idle (LPI)

Protocol Tw Ts TFrame (1500B) Frame eff.
100Base-Tx (100 Mb/s) 30 µs 100 µs 120 µs 48 %
1000Base-T (1 Gb/s) 16 µs 182 µs 12 µs 5.7%
10GBase-T (10 Gb/s) 4 48 µs 2 88 µs 1 2 µs 14.6 %

Table 2.1: Link parameters (wake, sleep, frame transmission time)

the values for Ts, Tw and frame transmission efficiencies based on IEEE 802.3az draft
[1]. It is to be noted from Table 2.1 that the sleep and wake times are relatively large
for small frames. This is to show that, EEE would typically work best for large bursts
of communication activity followed by large periods of inactivity.

P. Reviriego et al., published an evaluation of Energy Efficient Ethernet [55]. Their
results, as shown in figure 2.2, suggested that power savings with EEE links decrease
quickly with an increase in link utilization above zero. According to their results, when
the link utilization is at 20%, the corresponding link power consumption is greater than
70%. The results obtained were for 1000-bit frames arriving into the link following a
Poisson process. The poor performance is shown to be a result of large wake-up and
sleep overheads compared to actual frame transmission. Essentially, a majority of the
time is being spent switching on and off the links leading to decreased performance. To
solve the above problem, frame buffering was proposed which holds frames (without
waking up the link) up to a certain number of frames or a time-out period. With an
increase in time-out periods and/or by increasing the number of frames held in buffers,
the results can be made more energy proportional. However this method comes with
the cost of increased packet delay leading to performance degradation of latency sensi-
tive applications. Results show that a time-out period of 120 µs [54, 55] is required for
the link to be energy proportional with increased link utilization. In the later chapters,
we analyze the impact of such delays on HPC application performance.
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2.3 Moving forward - EEE on 40, 100, 400Gb Ethernet

Energy Efficient Ethernet (EEE) with Fast-Wake: the 1Gb and 10Gb variant of Energy
Efficient Ethernet (EEE) ratified in 2010, subsequent standardization efforts, which fo-
cused on building specifications for 40Gb, 100Gb and 400Gb backplane and optical
Ethernet, adopted the energy savings mechanisms from EEE. In the process of inte-
grating the aforementioned Low Power Idle or Deep-Sleep (as it is currently known
and renamed), an additional sleep state, Fast-Wake, was first introduced by the IEEE
802.3bj task force in charge of the 100Gb Backplane and copper cable standardization
effort.
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Figure 2.2: Energy consumption vs load for 10Gb/s Link on data center-like workload
(figure reproduced from literature (23)); Figure shows how energy consumption of
Energy Efficient Ethernet links quickly increases with increase in load.

The motivation for a Fast-Wake mode came from the relatively high wake-up time of
the Deep-Sleep mode, whose effect on performance is more pronounced at higher link
speeds. The possible increase in latency due to Deep-Sleep is considered to be too high,
so it is expected to be disabled for 100Gb links. The long wake-up delay in the origi-
nal EEE standard comes from signaling components, specifically the Physical Medium
Attachment (PMA) and Physical Medium Dependent (PMD) components in the PHY,
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Figure 2.3: Example timeline illustrating various low power states of an EEE link

that are required to synchronize the transmitting and receiving links before data trans-
mission. In the case of Fast-Wake, while some components are powered down, the
PMA and PMD remain active, continually transmitting signals between transceiver and
receiver, hence maintaining synchronization. This allows for a link wake-up in a few
hundred nanoseconds, rather than microseconds. Specifically, studies show that the
link could wake up from Fast-Wake mode in 250ns to 500ns, with power savings of
20–40%, compared to an active link [58]. Recent specifications show that Deep-Sleep
may not be currently compatible with Optical Transport Network (OTN) based optical
networks, however, the standards expect to incorporate Deep-Sleep in these devices in
the future.

Figure 2.3 illustrates the working of the above described mechanisms using an EEE-
based on/off link. In Figure 2.3(a), the link remains active during frame transfer,
which is followed by a state change that turns off the link, reducing power consump-
tion to 10%. The later frame arrival during Deep-Sleep requires a Full-Wake (4.48 µs)
to power up the link to 100% before transmission. Figure 2.3(b) is similar to that of
the Figure 2.3(a) except that the link powers down to Shallow-Sleep, which reduces
power consumption to 60%. The link powers back to 100% faster with Fast-Wake, since
it only requires a few hundred nanoseconds to do so.

Products supporting Fast-Wake may be deployed in HPC systems within a year. The
standards supporting Fast-Wake are IEEE 802.3bj and 802.3bm, for 40Gb/100Gb back-
planes and optical Ethernet, respectively, ratified as recently as March 2015, and IEEE
802.3bs for 400Gb, which is expected to be ratified in 2017. Switches that support
EEE, targeting data centers, were commercially available within a year from the date
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of standardization. Without investigation and understanding of Deep-Sleep and Fast-
Wake on HPC applications with especially emphasis on their performance impact, HPC
vendors are likely to disable these mechanisms by default. In the following chapters,
this thesis discusses the performance and energy impact and benefits of these mecha-
nisms respectively.

2.4 Energy Saving in Infiniband

Infiniband, as in the case of Ethernet is widely used in HPC. While the system share
of Infiniband is about the same as Ethernet, its performance share is usually higher.
Typically Infiniband supports two mechanisms that can be used for energy savings and
they both focus on changing its operating bandwidth to save energy. First example
is similar to the above mentioned Adaptive Link Rate (ALR) with link operating at
different data rates, example Quad Data Rate at 10Gbit/s per serial lane and Single
Data Rate (SDR) at 2.5 Gbit/s per lane. Lower data rates as in ALR require lower
energy. Secondly, it is common for Infiniband to aggregate several serial lanes to form a
single link as a means to increase effective bandwidth [56, 61]. In both the above cases,
when the traffic is low, the idea behind saving link energy is to lower the operating
frequency or number of lanes to their respective minimum since lower bandwidth and
fewer operating lines consume lower power. This thesis specifically focuses on the
Energy Efficient Ethernet for the following two reasons, 1. the results obtained are
directly applicable to Ethernet vendors building EEE for HPC and 2. at the lowest
energy state, Low Power Idle (LPI) and/or Deep-Sleep of Energy Efficient Ethernet
consumes 10% power while even at lowest bandwidth Infiniband links consume 40%
energy [48, 56, 61]. However, the results presented and approaches in turning links
from active state to sleep state with EEE may directly be applicable to Infiniband in
changing between fewer active links and a fully active link.

2.5 Other Related Work

In this section, we discuss other proposals related to Energy Efficient Ethernet (EEE)
and energy-proportional interconnects. Jian Li et al.,[49] proposed a similar on/off
based interconnect, which makes use of system events to overlap link on transaction
delay. Their approach requires a control network which sends messages that switch
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on the links prior to sending the message and thereby overlaps the link on transaction
delay with the pre-processing of messages. The control network in their approach is re-
quired to be always powered on, in order to receive and transmit control signals. They
evaluate their methodology over three power on modes, each with 1µs, 2µs and 1ms
as their wake-up delays over a simulated PowerPC-like 32 node machine. In our ap-
proach, we evaluate four different machines, over corresponding EEE standard defined
wake-up and sleep delays, their effect on power and performance. Our model uses
power estimates and energy efficiency schemes as proposed by EEE which does not
assume the need for extra control networks. Alonso et al.,[66] in their work propose
the use of traffic information to switch on or off networks to save power. Similar to the
above, their approach requires an always-on control link to maintain connectivity.

Dannis et al.,[48] proposed energy proportional interconnects based on a similar
method of reducing link power consumption. In their work on energy proportional
interconnects, they evaluate the idea of reducing power consumption during periods
of inactivity. However, their approach towards energy efficiency involves reducing the
link rates of aggregated links. Aggregated links are typically networks built using mul-
tiple links of lower rate, aggregated to a single logical high bandwidth link. In their
approach, during periods of inactivity, link rates are reduced to a lower link bandwidth
to save power. This work is similar to Adaptive Link Rate proposals for EEE, men-
tioned in the section. We do not analyze Adaptive Link Rate due to the scheme’s above
mentioned technology disadvantages.

In the work by Vassos et al.,[65], they provide a design space analysis for On/Off
based links. They evaluate two different machines for the power saving capability of
On/Off interconnects. For their first machine, they use a fast interconnect similar to
an on-chip interconnect, using corresponding on-chip benchmarks. In their second ma-
chine, they evaluate a slow network, similar to cluster networks using synthetic bench-
marks, with messages arrival following a Poisson process. Similar Ethernet evaluation
reports [54, 55] also use synthetic benchmarks to evaluate on/off networks.

Work by Kim, et al., [68] evaluate energy proportional networks and compare links
based on dynamic voltage scaling and on/off links. They show that dynamic voltage
scaling in links causes significant increase in latency and show that on/off based tech-
niques perform comparatively better

S Miwa et al., [62]propose an evaluation method for EEE supported HPC systems.
They show that their model can be used to anticipate performance of future systems
that use EEE. Taylor et al., [59] explore dynamic energy saving features in Infiniband
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networks and show potential for power savings.

Gupta, et al., in their work [67], show opportunistic sleeping of links is possible,
their technique however increases mean latency. Totoni, et al., [72] show that not
all links of a network executing an HPC application are utilized hence propose runtime
techniques to find links in networks that are never utilized and turn them off. However,
their work does not adaptively turn on/off links.

R. Bertran et al., [13], evaluate the power and performance trade- offs on the Blue
Gene/Q. Among other results, their work shows that the links of Blue Gene/Q are also
’always-on’ similar to that of Ethernet and Infiniband. Their work clearly makes a case
of how the work presented in this thesis can also be applicable to non-Ethernet but
on/off based networks.

J.A. Maestro et al., in their work [35] evaluate EEE for its potential over industrial
Ethernet based systems using analytical models. Similarly, Sergio et al., in their work,
analytically model and analyze the potential of EEE for energy savings[36]. They pro-
vide models for Ethernet standards with frame buffering. Their results suggest that
frame buffering offers increased energy savings, however, with the cost of increased
packet delays.

Relevant work on Energy Efficient Ethernet [2, 40, 41, 42, 43, 44, 54, 55, 57, 71]
provide detailed evaluations on EEE for its potential for desktop and IT based systems;
however, they do not give a sense of its performance over HPC.

Yoshi, et al., [70], propose ATPT - a prediction mechanism to find message sizes
with src-dest pairs. The show that src-dest pairs could be used to improve prediction
accuracy. When the size of the next message size is known, they tune the network
frequency to the requirements of the next message size. Their work however does not
predict idle link periods which are required for on/off based networks.



Chapter 3
Methodology

This chapter presents the experimental methodology used in this work. Briefly, the
simulation infrastructure used in this work, Dimemas Cluster simulator is discussed,
followed by the model and configuration of the network and simulation parameters.
HPC application traces were used to evaluate ideas presented in this thesis and its
instrumentation and collection methods are discussed.

3.1 Experimental Infrastructure

An extension of Dimemas [26, 27] cluster simulator is used for this work. Dimemas
has been found to be accurate to within 10% and validated against production super-
computers, including Blue Gene/L, P, Q, and three generations of the MareNostrum
supercomputer [27, 28, 29]. The simulation infrastructure supports the execution of
Paraver [26] traces that for this work were obtained from a production supercom-
puter - MareNostrum II [53] built with PowerPC970MC blades. The simulator recon-
structs the behavior of the actual application from traces that contain CPU intervals
and MPI/communication event information (message size, identifiers, type, source-
destination etc) from the original execution.

The simulator models simple node modules that contain CPUs, memory and on-
board interconnect. Simulated CPUs based on their performance parameters operate
relative to the actual application CPU (PowerPC970) intervals recorded in the traces.
The default cluster network is modeled as a point-to-point bus based network with
duplex independently operating ports, simulating a fully- connected mesh. The com-
munication is based on a linear performance model, however non-linear effects are
also considered [27]. More specifically, network conflicts are modeled, with messages
queued before transmission when resources are unavailable. Any network conflict in-
tern affects subsequent execution of compute events over CPUs delaying overall exe-
cution. Essentially, traces replayed in Dimemas contain inherent communication and
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execution dependencies that are used to maintain coherency and correctness in sim-
ulations. Dimemas supports the execution of both point- to-point and collective MPI
events however our simulations are based on traces while collective communication
were mapped to represent their individual point-to- point messages. When represen-
tative network resources are allocated, messages transmission time is calculated using
the latency, message size and bandwidth. Similar parameters are used in projecting the
performance of CPU, Node and Memory.

The first work on Energy Efficient Ethernet, presented in Chapter 4 uses the above
mentioned point-to-point network modified support on/off links modeled for after En-
ergy Efficient Ethernet. Carrying this work forward, work on all subsequent chapters 5,
6 and 7 uses a hierarchical network as discribed below. The simulator is configured to
model a cluster with a three- level hierarchical network. Applications are executed on
64, 128 or 256 nodes, grouped into 8, 16, or 32 nodes per rack, respectively, forming
eight racks in total. Nodes are connected to the top-of-rack switch, which is in-turn
connected to a two-level fat tree (4-ary 2-tree) [30]. The architecture of the network
used is shown in Figure 3.1.

The network was modified to support static routing with cut-through flow- control
and full-duplex links. Each switch in the network routes incoming messages to corre-
sponding outgoing links and requires a switching latency to be configured for the same.
Routing decision is statically determined to be the shortest path between source and
destination and when multiple paths of equal distance are available the route chosen is
simply the modulo of destination times the number of available paths. The system and
network parameters were chosen to emulate a high-end HPC system based on analysis
of systems in the TOP500 list. Each node is a two-socket high-end CPU with 225GF
(based on June 2012 TOP500 list machines with two Intel Xeon sockets). The switch
latency is configured at 320ns for the first hop and 80ns for subsequent hops to emu-
late about 1 µss in end-to-end worst-case network latency. Edge links are configured at
20 Gb/s, and the higher two levels are 40 Gb/s and 100 Gb/s respectively. Wake-up
and sleep timers for low power states were obtained from Energy Efficient Ethernet
specifications and were set to 4.48 µs and 3.88 µs for Deep- Sleep [2, 54] and 250ns for
Fast- Wake [58] respectively.

Each link module is independently implemented low power modes discussed in the
rest of this thesis. Each duplex link contains its corresponding states for low power
modes. EEE is implemented such that either send or receive can trigger its own low
power states within the link. Both sending and receiving links are independently woken
up or put into sleep state. The network presented in Figure 3.1 makes for six-hops in the
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worst case between source to destination. With EEE each hop along the way requires
the links to wake-up before transmission and are otherwise queued until wake-up.

  

Switches

Duplex links

Level 0

Level 1

Level 2

Nodes

Figure 3.1: Network organization used in the discussion and analysis of PerfBound,
Fast-Wake and Double PerfBound discussed in Chapters 5, 6 & 7 respectively.

3.2 HPC Applications and Benchmarks

Table 3.1 provides a description of the HPC applications and workloads used in this
study. Fifteen workloads in total were used of which, BT, CG, MG, SP and LU are from
the NAS Parallel Benchmarks, the rest of the applications are production HPC appli-
cations. This thesis uses traces of these applications and the tools and methodology
behind obtaining them are discussed below.

3.2.1 Trace collection

To obtain traces, the Extrae Instrumentation Tool [14] from Barcelona Supercomput-
ing Center (BSC) was used. Extrae produces trace files for application post-execution
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Table 3.1: HPC WORKLOADS USED IN SIMULATIONS

Name Nodes Executed Class Description
ALYA [73] 256 Biology Biomechanics
BT, CG, MG [74] 256 Fluid Dynamics NAS Parallel Benchmarks
SP, LU [74] 64 Fluid Dynamics NAS Parallel Benchmarks
CPMD [75] 128 Chemistry Molecular Dynamics
GADGET [76] 128 Astro-Physics Dark-matter simulation
GROMACS [77] 128 Biology Biomolecular dynamics
LINPACK [78] 256 Benchmark Linear algebra solver
MILC [79] 128 Physics Sub-Atomic Interactions
NAMD [80] 64 Biology Biomolecular simulations
PEPC [81] 64 Mathematical Parallel Coulomb Solver
QUANTUM [82] 128 Chemistry Nanomaterials modeling
WRF [83] 128 Meteorology Weather Forecasting Model

analysis, compatible with the Dimemas Cluster Simulator. Extrae can be used to obtain
traces of programming languages and models such as MPI, OpenMP, CUDA, OpenCL,
pthreads, OmpSs, Java and Python. Extrae can be configured to instrument various
types of information from a program running on a system. The most popular informa-
tion gathered are, Timestamps, Performance and other counter metrics and references
to the source code.

Timestamps are collected in up to nanosecond granularity to provide context to
information instrumented. Extrae provides a set of clock functions that accurately
gather timestamps with low cost. For performance metrics, Extrae uses PAPI and PMAPI
interfaces to collect information regarding the microprocessor. With PAPI, the Extrae
tool can be configured to collect information from not only the microprocessor but also
the disk, network, OS, among others. Furthermore, entry and exit points of routines
can also be instrumented. References to source code imply that Extrae can be used
to collect information such as function name and line number at specific points in the
program.

Traces obtained for this thesis were from HPC production applications with Extrae
tool configured to trace high-level CPU events, synchronization events and detailed MPI
communication events. The produced traces are time-stamped and annotated commu-
nication events such as MPI_SEND, MPI_Wait, etc. These traces are also annotated
with hardware performance counters and memory usage information associated with
each CPU event. The target platform used for obtaining the traces is the MareNostrum
Supercomputer [53], which contains a cluster of JS21 blades (nodes), each with four
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IBM PowerPC 970MP processors at 2.3 GHz. The network connecting the system is
a high-speed Myrinet type M3S-PCIXD 2-I port as well as two GigaBit Ethernet ports.
Tracing with Extrae produces CPU timing information that are extrapolated within the
Dimemas simulator, however, the communication is not annotated with timestamps.
The network events produced are entirely reproduced within the Dimemas simulator
to reconstruct communication behavior and delays.

3.2.2 Trace processing

Traces obtained from Extrae are processed using an in-house tool, Paraver, from the
Barcelona Supercomputing Center (BSC). The Paraver [26] visualization tool is gener-
ally used for trace analysis. The traces produced by Extrae are compatible with Paraver
and are used to visualize application execution in-order to identify performance bottle-
necks or potential improvements to the parallel code or MPI communication structures.
A sample Extrae generated trace of application FT [74] running with 256 processes is
shown in Figure 3.2. In Figure 3.2, the yellow lines represent MPI communication, red
representing communication waits and blue representing compute or CPU events.

Figure 3.2: Visualization of application FT, a sample Extrae generated trace on Paraver.

The communication behavior of HPC applications, as seen in these traces, are dis-
cussed in detail, the following sections. However, in this specific case, the trace shown
is an execution between time-periods 11.81 s to 31.65 s. Typical HPC application
execution times last many hours and even at small problem sizes can typically take
minutes in real world execution. Hence the traces produced generally tend to be tens
to hundreds of gigabytes in size, making them hard to simulate or work with.

To solve the above problem, Paraver offers as a feature, trace filtering and cropping.
Traces can be cut and filtered to reduce it’s size and consequently simulation time. In
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this thesis Paraver was used to select events that are relevant, such as MPI communica-
tion, filtering out others that are less relevant (example, detailed main memory access).
Furthermore, traces are cut in specific sections to produce a smaller or a subsection of a
given trace. The tool can be used to visualize and obtain various statistics from a given
trace and application run. The Dimemas simulator is also capable of producing Par-
aver traces, hence the simulated trace can be compared with the trace of the original
execution on the actual machine.

Trace shown in Figure 3.2 would make for a typical cut containing many iterations
application’s outer loop execution. This iterative execution pattern seen in Figure 3.2
typically continues and is only different during the application initialization and finish.
However, since those application start and end phases are generally small and since
most of the application consists of iterations as observed in Figure 3.2, this cut makes
for a good representation of the application characteristics as a whole.

All applications used in this study have diverse network requirements; their network
latency and bandwidth sensitivity are discussed in the Chapter 4. The analysis for
Energy Efficient Ethernet - Low Power Idle, timing information used is provided by the
IEEE 802.3az EEE[1] draft (Table 2.1).



Chapter 4
Energy Efficient Ethernet on HPC

This chapter presents an analysis of Energy Efficient Ethernet over HPC. A summary
of the chapter and a recap of the problem statement as discussed in the introduction
and background chapters is presented below followed by actual analysis and findings.

4.1 Summary

Interconnect links can be attributed to consuming a substantial portion of the total
interconnect power. Links take up to 60% of the power budget of the network in-
frastructure [71]. Conventional network links are essentially always on, thereby dis-
sipating power, regardless of whether or not data is being transmitted. The average
power consumption of the IBM InfiniBand 12X link, for example, is almost identical
to its worst-case power [54, 71]. In the case of Ethernet, its design require both the
transmitters and receivers to operate continuously to keep the link aligned. In order
to mitigate such waste, the IEEE 802.3az Energy Efficient Ethernet (EEE) standard
(approved in Sept 2010) brought about energy saving schemes that make the energy
consumption of the link proportional to its utilization.

While numerous interconnects for HPC exist, Ethernet is a popular choice due to its
high performance to cost. About 40% of all supercomputers in the Top500 list use the
Ethernet family as their interconnection network. Although the IEEE’s Energy Efficient
Ethernet standard is being incorporated into the network infrastructure in the areas of
commercial IT, desktop, servers and high end data centers, the question of how EEE
would perform under HPC workloads requires answering.

Although EEE as a standard promises energy proportionality by design, previous
literature do not discuss its behavior from the perspective of HPC workloads. The
biggest justification for the deployment of the EEE standard came from desktop and
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IT infrastructure, which remain idle for the majority of the time. EEE saves power
by turning off links when they are not in use - a feature known as Low Power Idle
(LPI). However, the time involved in the turning off and on links, adds additional
latency to the messages transmitted. This added latency is known to be destructive to
performance and power of data center workloads (whose communication is modeled
as a Poisson process) and hence, frame buffering as a solution was suggested to tackle
this conundrum. However, it is uncertain as to whether these solutions would also be
beneficial to HPC.

The specific contributions in this chapter are as follows:

1. The first evaluation of Energy Efficient Ethernet under HPC workloads to deter-
mine the potential of EEE for energy proportional supercomputer interconnects.

2. Latency sensitivity analysis on HPC workloads to project performance estimates
for plausible interconnect latencies determined by EEE’s energy savings schemes.

3. A proposal for the use of textitPower-Down Threshold as a technique to re-
duce overhead involved with EEE’s additional latencies. This work experimen-
tally compares and demonstrates how the proposed textitPower-Down Threshold
scheme significantly reduces the on/off transition overheads, compared to out-of-
the-box Energy Efficient Ethernet. Finally, based on this analysis design recom-
mendations are proposed for vendors intending to deploy EEE for HPC systems.

4.2 Methodology

Simulation Infrastructure specifics

The simulation infrastructure is discussed in the methodology chapter 3, however, here
certain specifics are summarized below. The work uses the Dimemas cluster simulator
modified to support energy savings schemes from EEE. A notable difference (as previ-
ously mentioned in Chapter 3) is that this chapter evaluates EEE over a modeled as a
point-to-point mesh with duplex links as opposed to a hierarchical network evaluated
in the following sections.
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Test Machine Node Perf. Interconnect
Machine-Low 62 GFlops 2x10Gbps links with 1µs latency
Machine-Mid 112 GFlops 40Gbps links with 1µs latency
Machine-High 224 GFlops 100Gbps links with 1µs latency
Machine-Acc 348 GFlops 100Gbps links with 1µs latency

Table 4.1: Network and node parameters for EEE evaluation

Experimental Setup and HPC applications specifics

The evaluation models four different machines, each with varying network bandwidth
and node performance as mentioned in the methodology section and as shown in Ta-
ble 4.1. The choice of node performance for Machine-Low, Machine-Mid, Machine-High
and Machine-Acc comes from the top four machines of TOP500 (June’12) that use Eth-
ernet. The second fastest Ethernet based machine, Amazon EC2 Cluster, contains Xeon
8-core processor. The sustained node performance of the above machine is estimated to
be 112 GFlops/node with one socket/node and 225 GFlops/node with 2 sockets/node
(Calculated based on system information provided at June’12 TOP500 list). The fastest
Ethernet based system contains Xeon processors with NVIDIA 2090 GPUs; whose node
performance is estimated based on a similar machine Tianhe-1A (TOP500 Rank 4) at
349 GFlops/node, for the accelerator based machine. Similarly, for Machine-Low per-
formance is estimated based on a machine ranking 4th among the fastest Ethernet
based TOP500 machines at 62GFlops. Node-to-node latency is assumed to be of 1µs
across test machines based on relevant literature and specification sheets of products.

The workloads uses in this work are CPMD, GADGET, GROMACS, LINPACK, MILC,
NAMD, PEPC, QUANTUM and WRF. The specifics of the number of nodes executed and
trace information is the same as discussed in the methodology chapter.

Analysis of Low Power Idle mode of Energy Efficient Ethernet is setup with timing
information provided by the IEEE 802.3az EEE[1] draft (Table 2.1). EEE standard does
not provide timing information on the wake and sleep modes for Ethernet links with
bandwidth upwards of 10Gbps. Since the network links considered for this study are
10Gbps and upwards, timing information of 10Gbps links is assumed for for 40 and
100 Gbps links.

Energy consumption is modelled based on data available in the industry and rele-
vant literature [32, 33, 34, 49]. Energy consumption of links is assumed to be 10% of
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the full link power in idle mode based on the IEEE 802.3az EEE [1] draft. To calculate
system power consumption, it is assumed that links consume 65% of the network power
and consider total network power to be about 12-20% of the system power[34, 48, 49].
Consequently energy consumption of each of the machines (Low, Med, High and Acc)
is calculated based on the above model and network utilization. Similar to previous lit-
erature [33, 48] other network elements are assumed to consume power proportional
to utilization.

4.3 Interconnect sensitivity analysis

The following sections presents evaluation of the IEEE Energy Efficient Ethernet stan-
dard on actual HPC workloads. First evaluation of HPC workloads for their bandwidth
and latency sensitivity is presented to draw conclusions for EEE based on the same.
Following which, link activity is examined for their potential for power savings with
EEE and finally performance and power evaluation of Energy Efficient Ethernet is dis-
cussed. To evaluate Energy Efficient Ethernet, its links on various test machines are
simulated and results are obtained for various workloads. Further, EEE is compared
with the proposed Power-Down Threshold and power estimates for the same are drawn
based on the results obtained. Although this study focuses on Energy Efficient Ethernet,
the evaluation and discussions can apply to design decisions of other On/Off networks
for HPC.

HPC workloads are typically characterized by alternating compute and communi-
cation phases (as shown in Figure 4.1). These applications most often contain very
large compute phases followed by relatively smaller communication phases, usually
bursts of MPI messages. Further, these compute and communication phases usually
have dependency patterns characteristic of the HPC applications. These dependencies
may cause design decisions such as Frame buffering in EEE [37, 54, 55] to be destruc-
tive to both application performance and power (more discussed in later sections).
Further, since HPC workloads in general do not overlap communication and compute
periods, the time involved in communication is destructive to performance. This re-
sults in HPC applications being heavily optimized to keep communication time at its
minimum, translating to low interconnect usage. However, HPC systems running these
applications with conventional always-on links, do not benefit from this inherent power
saving opportunity. Figure 4.1 shows alternating compute and communication phases
of application WRF[83] along with its corresponding interconnect usage. The figure
clearly shows that the interconnect links are predominantly idle. Since these links are
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Time 3,353,565,891 ns1,794,652,041 ns
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Figure 4.1: Execution and Link activity pattern of WRF application. Sub-figure a)
A cut of the actual application run showing execution patterns. Sub-figure b) Link
activity corresponding to execution - peaks represent data transmission. Note that
communication occurs in phases and are correlated.

typically always-on, continually consuming power, they would benefit greatly if built
to be energy proportional.

As shown in Figure 4.2, the requirements of the presented workloads vary widely
in terms of their sensitivity to network latency and bandwidth. Figure 4.2 presents
normalized execution time as a function of latency (Figure 4.2(a,b)) and bandwidth
(Figure 4.2(c,d)). Figure 4.2(a,c) shows the execution time for each application, on
a fixed machine, Machine-Low and Figure 4.2(b,d) shows the execution time for each
machine (Low, Med, High and Acc), with Max, Min and Avg corresponding to the most
sensitive and least sensitive application and the average across applications. The pre-
sented graphs point out the diversity of HPC applications with their bandwidth and
latency requirements. Furthermore, this work shows how the choice of interconnect
bandwidth and latency for the corresponding systems fall within a 10% drop in perfor-
mance in comparison to infinite bandwidth and zero latency, to which the graphs are
normalized. A 10% drop in application performance is generally not ideal for state-of-
the- art HPC designers. However, the diversity of applications and large interconnect
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capital costs play a factor, often making it difficult to build the perfect interconnection
network for all applications. However, when faster interconnects are used, since EEE is
intended to be energy proportional, higher performance will translate to lower average
power consumption.
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(b) aMean, Min, Max values for 4 machines(Low,Med,High,Acc)
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Figure 4.2: Bandwidth and Latency sensitivity of the applications executed on the four
test machines (Low, Med, High and Acc)

4.4 Idle link event time analysis

Energy Efficient Ethernet uses Low Power Idle (LPI) as a proposed mechanism for bring-
ing about energy proportionality. LPI works on the basis that links are turned off during
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periods of inactivity. While this proposal seems inherently energy efficient, its power
saving potential is heavily dependent on the frequency at which the link becomes in-
active. Due to a non-negligible increase in latency imposed by LPI every time a link
needs to wake-up from low power mode, the frequency at which these links are turned
on and off is crucial to power savings. In this regard, the time required for powering
the link back to operational mode determines power savings as well as performance
overheads. Conventional wisdom suggests that deeper power saving modes require
correspondingly large wake times. Note that a large wake time introduces large la-
tencies, which in turn results in large performance overheads. To keep performance
overheads at a minimum, networks that require large wake-up times would rarely be
put into low power modes. To understand and evaluate power saving benefits offered
by On/Off based interconnects with specified wake times applications are analyzed for
their link idle time distribution.

Figure 4.3 presents histograms to illustrate and describe intervals during which
links remained idle, running application GADGET over Machine-Mid. Histogram 1,
shows idle link events1 of various time intervals. The x-axis of Histogram 1 shows the
time distribution and correspondingly for each point in the x-axis the number of events
along the y-axis. The time distribution corresponds to the time interval during which
the link remained idle. To illustrate, there exists a peak at 100µs with approximately
3,750 events. The 3,750 events in this peak correspond to 3,750 separate intervals
during which the link was idle, each of whose duration is close to 100µs. The peaks
between 1µs to 4µs and 100µs to 400µs in Histogram 1 of Figure 4.3 are a result of
self- similarity or repetitive patterns with these applications. This essentially shows
that the distribution that holds true for one or more iterations of a cut of the GADGET
application, will remain similar throughout all iterations of the application execution.

Histogram 2 of Figure 4.3, shows the above Link Idle Event distribution in actual
time periods. Here the bars of the histogram represent the total idle time throughout
the application’s execution, from all idle intervals of length close to the value on the
x-axis. To illustrate, consider the bar at 100 ns which contains an y-axis equivalent of
approximately 1µs. This shows that the total time in all idle link events that lasted close
to 100ns, accumulated over the whole trace execution is 1µs. Although a majority of
the idle link events come from the range of 1µs to 4µs, as shown in histogram 2, their
accumulated link idle time does not exceed a few milliseconds. Histogram 3, converts
Histogram 2 into its cumulative distribution graph to determine the cumulative time in
all idle periods of length less than the value on the x-axis. For example, the total time

1An idle link event is assumed to be any interval during which no data is being transmitted on the link
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in all intervals of length 100µs or less is above 1 second. Histogram 3, calculates the
interval length for which 90%, 99% or 99.9% of the total idle link time is in idle inter-
vals that are longer than that value. In this case, for application GADGET on Machine-
Med, 99.9% of the total application execution time that links remained idle, comes
from events when a link remained idle for 52µs or longer. The corresponding values
for the other applications and machines are listed in table 4.2. With the exception of
GROMACS, all applications on Machine-Mid have 90% of their idle link times in the
ranges of milliseconds or above.
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Figure 4.3: Histograms show Idle Link Event distribution for application GADGET run-
ning on Machine-Mid. Histogram 1 (top) shows the number of idle link events as a
function of time. Histogram 2 shows a product of total idle link events by idle link time
for the corresponding events. Histogram 3 shows the cumulative distribution graph of
Histogram 2



4.5. PERFORMANCE AND POWER ANALYSIS 37

From the design perspective of power savings modes for On/Off based interconnects
such as Energy Efficient Ethernet, these numbers are relevant in designing wake timings
and to gauge potential power savings using the above. For 10Gb Ethernet, the link
wake-up and sleep times proposed by the IEEE 802.3az EEE [1] draft are 4.48µs and
2.88µs respectively. This is to show that an EEE link requires approximately 7µs in total
to switch off and back on. For applications such as GADGET, which contains 99% of its
link’s total idle time coming from events where the link remains idle for beyond 100µs,
7µs potentially offers enough time to go into and back from low power mode without
significant loss in performance.

Large gaps in the ranges of 70ms to 800ms shown Histogram 2 of Figure 4.3 rep-
resent lengths of idle intervals that never occur. Essentially, if we consider a gap near
100ms (assume the gap is between 70-80ms), this is to show that no link that has gone
idle, has had an idle time that has lasted between 70 and 80ms. Note that these gaps
occur in the range of 70ms to 800ms, which contribute to a large portion of the total
link idle time (82% in the case of the histogram 2 in Figure 4.3). The reason behind
these gaps may be that the majority of the execution time contains distinctively large
computation periods unhindered by communication events (during which all links re-
main idle). The analysis on experiments over various machines suggests the existence
of these patterns in all applications except GROMACS, NAMD and Quantum Espresso.
In the case of the Histogram 2 in Figure 4.3, the gap between 70 to 80ms suggests
that, when a link has been idle beyond 70ms, it is certain that it would remain idle for
another 10ms (until 80ms) in time. These results suggest that even a simple history
based prediction algorithms, that dynamically records this information to switch On or
Off links would greatly benefit from deeper sleep states of the network, however, this
work is beyond the scope of this work.

4.5 Performance and power analysis

This section evaluates Energy Efficient Ethernet, its power and performance with and
without the proposed Power-Down Threshold. As mentioned in the previous sections,
wake-up latency of 4.48µs and a sleep latency of 2.88µs is assumed for the simulations.
This latency is the standard proposed wake-up and sleep latency of 10Gbps which we
use for all test machines.

Power-Down Threshold: From the analysis of HPC workloads, it is clear how ex-
tremely latency intensive HPC workloads can be. The previous proposals suggest the



4.5. PERFORMANCE AND POWER ANALYSIS 38

A
pp

lic
at

io
ns

M
ac

hi
ne

-L
ow

M
ac

hi
ne

-M
id

M
ac

hi
ne

-H
ig

h
M

ac
hi

ne
-A

cc
Id

le
Li

nk
Ti

m
e

90
%

99
%

99
.9

%
90

%
99

%
99

.9
%

90
%

99
%

99
.9

%
90

%
99

%
99

.9
%

C
PM

D
10

s
0.

4s
50

m
s

5.
7s

0.
22

s
22

m
s

2.
8s

0.
11

s
0.

2m
s

1.
8s

72
m

s
10
µ

s
G

A
D

G
ET

10
m

s
0.

2m
s

91
µ

s
6.

3m
s

0.
1m

s
52
µ

s
3.

3m
s

72
µ

s
19
µ

s
1.

9m
s

52
µ

s
13
µ

s
G

R
O

M
A

C
S

3.
9µ

s
1µ

s
0.

3µ
s

2µ
s

0.
7µ

s
0.

2µ
s

1.
6µ

s
0.

5µ
s

0.
18
µ

s1
.3
µ

s
0.

4µ
s

0.
1µ

s
LI

N
PA

C
K

22
m

s
0.

3m
s

2.
75
µ

s1
1m

s
0.

1m
s

1.
8µ

s
6.

6m
s

31
µ

s
1µ

s
9.

1m
s

3.
6µ

s
72
µ

s
M

IL
C

1.
3m

s
0.

1m
s

25
µ

s
0.

7m
s

79
µ

s
13
µ

s
0.

3m
s

34
µ

s
6.

3µ
s

0.
2m

s
30
µ

s
4.

7µ
s

N
A

M
D

0.
1m

s
26
µ

s
1.

4µ
s

0.
1m

s
12
µ

s
91
µ

s
45
µ

s
4.

1µ
s

1µ
s

28
µ

s
1.

9µ
s

75
µ

s
PE

PC
0.

6m
s

45
µ

s
4.

1µ
s

0.
3m

s
21
µ

s
2.

0µ
s

0.
1m

s
9.

1µ
s

1.
1µ

s
0.

1m
s

5.
2µ

s
1.

1µ
s

Q
U

A
N

T.
ES

P
1.

8m
s

0.
9m

s
0.

1m
s

1m
s

0.
5m

s
87
µ

s
0.

4m
s

0.
3m

s
41
µ

s
0.

3m
s

0.
1m

s
28
µ

s
W

R
F

0.
2m

s
27
µ

s
7.

2µ
s

0.
1m

s
15
µ

s
3.

9µ
s

79
µ

s
7.

5µ
s

1.
3µ

s
52
µ

s
5.

2µ
s

95
µ

s
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time for their respective machines
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Figure 4.4: State transactions of Power-Down Threshold (PDT) for Low Power Idle
in Energy Efficient Ethernet - Link remains in ‘on’ state after frame transmission for
specific PDT time. Frame arrival within PDT time does not incur additional latencies
for the turning off and on the link.

use of Frame Buffering, where frames are held back up to 100µs before transmission to
improve energy savings. However, with regard to HPC, as shown in Figure 4.2, a 10µs
added latency (due to frame buffering) reduces performance on average by about 7%
to 40%. This reduction in performance would essentially negate any power benefits
obtained by the use of Energy Efficient Ethernet. Hence, as a solution to maintaining
performance, as well as saving power, Power-Down Threshold as a scheme for EEE for
HPC is proposed. While in the case of Frame Buffering, frames are buffered and the
link does not switch on for transmission until time-out or a specific number of frames
are obtained. In the proposed Power-Down Threshold, as shown in figure 4.4, after the
transmission of a frame, EEE remains in on state until a threshold time before shifting
back to low power mode. During this duration, frames arriving at the link is trans-
mitted without the need for powering the link back up. This added threshold time
would result in increased power consumption, since the link remains on, longer than
required in the case when no messages arrive before the threshold. However, this work
argues that this increased power consumption (in an already energy proportional in-
terconnect) is rather small in comparison to power savings achieved by negating any
performance overheads due to the use of EEE.
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(b) aMean, Min, Max values for 4 machines(Low,Med,High,Acc)
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(d) aMean, Min, Max values for 4 machines(Low,Med,High,Acc)
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Figure 4.5: Performance and power graphs of Energy Efficient Ethernet over proposed
Power-Down Threshold

Experimental Results: Figure 4.5 shows the experimental results on the evaluation
of EEE and Power-Down Threshold. In Figure 4.5, sub-figures (a) and (b) corresponds to
performance graphs and sub-figures (c) and (d) correspond to the average energy con-
sumption of all links. Further, sub-figures (a) and (c) refer to results for all applications
over a single machine and sub-figure (b) and (d) shows results for all 4 machines, with
the averages, minimum and maximum values of the applications. In Figure 4.5(a,b),
at Power-Down Threshold value zero corresponds to Energy Efficient Ethernet where
for every message, links are required to be powered on and off introducing wake-up
and sleep transition delays. As seen, from the figure, EEE introduces an average of
approximately 25% reduction in performance for Machine-High, 35% for Machine-Acc
and 10% and lower for Machine-Mid and Machine-Low. Correspondingly, on an aver-
age, there is 60% reduction in the link energy consumption. However, with increase in
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Power-Down Threshold values, at about 50µs, the performance overhead of EEE drops
down to less than 2% with savings in link energy consumption at 70%.

Total System Power Estimates: The above savings in power correspond to link
power; here the overall system power consumption is calculated based on the method-
ology specified in Chapter 3. On considering two cases, where Power-Down Threshold
is zero (Energy Efficient Ethernet) and 50µs threshold values (Energy Efficient Ether-
net + Power-Down Threshold) the overall power consumption is calculated across the
system. As mentioned above, power estimates are projected assuming that node and
network elements operate at full power during the entire application execution. How-
ever, during real execution this is not necessarily the case, many components including
CPUs can enter sleep mode, so the increase in energy may be lower than estimates
presented in this work. For Machine-High, shown in Figure 4.5 (a), there is a 25%
reduction in performance, with power savings in the interconnect of about 60%. This
translates to an overall system power consumption at 115%, suggesting that deploy-
ing Energy Efficient Ethernet on Machine-High would lead to a 15% increase in power
and 25% decrease in performance. However, with a Power-Down Threshold of about
50µs, the performance overhead drops down to less than 2% with interconnect power
savings of 70%, translating to overall system power savings of 7.3%.

4.6 Conclusions

This chapter presented the first analysis of Energy Efficient Ethernet for HPC work-
loads. The Power- Down Threshold as a technique was proposed to further increase
power savings of HPC systems where the links remained on but idle until a threshold
is reached. Based on this analysis of HPC workloads on EEE, various recommendations
were proposed to further increase power savings. Based on results obtained, this work
concludes that out-of-the-box Energy Efficient Ethernet for HPC does not provide suf-
ficient power savings to justify its use. However, with further EEE enhancements such
as the proposed Power-Down Threshold makes using Energy Efficient Ethernet for HPC
a very promising solution for energy proportionality. This work suggests that existing
complimentary proposals such as frame buffering that increase the latency of messages
are harmful to performance, negating any power benefits obtained by such schemes.
The Power-Down Threshold however is application dependent and must be dynamically
chosen, hence in the next chapter, a dynamic and application independent mechanism
is discussed.



This page has been intentionally left blank.

42



Chapter 5
PerfBound: Bounding Performance

Overheads

The previous chapter introduced Power-Down Threshold (PDT) as a timer to reduce
performance overhead while still achieving high link energy savings. It also showed
how optimal PDT is application dependent and that a trade-off exists between energy
savings and power consumption. This introduces an interesting problem with regard
to building a energy savings mechanisms into the link. Any energy savings mecha-
nism introduced for HPC should ensure minimal performance overhead (as discussed
in Chapter 1) while obtaining energy savings. In this regard, this chapter introduces
PerfBound, that automatically manages the PDT of a link for energy savings but with a
bound of possible performance overheads.

5.1 Summary

This chapter introduces PerfBound, a link energy saving technique for on/off links that
reacts to performance overheads. The only parameter is a limit on the performance
degradation, which was set to 1% in the evaluation. PerfBound is self-contained, in
that the application is not modified and decisions are taken using local state, without
any additional communication between nodes and/or switches.

In a multi-hop network, each link in the route may implement power-saving tech-
niques, each of which may incur latency, multiplying the performance overheads. There-
fore PerfBoundRatio is proposed, which maintains the same application performance
target, across the whole hierarchical on/off network, by automatically adjusting to the
application’s communication locality. As for PerfBound, the application is not modi-
fied, decisions are taken using local state only, and there are no application-dependent
parameters.
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Finally, this chapter introduces PerfBoundPredict, which adds an idle time prediction
mechanism, based on techniques used in CPU branch predictors. PerfBoundPredict ex-
ploits the fact that HPC application communication patterns are typically repetitive,
and, when the idle period is predicted to be long, it enables the link to enter sleep
mode without first waiting for the timer to elapse, which would otherwise incur un-
necessary energy consumption. It also allows the link to be turned back on in time
for the next message, avoiding the wake overhead. The interaction with PerfBound
or PerfBoundRatio ensures that, even though prediction may be incorrect, the total
performance degradation is still controlled.

In summary, in order for HPC systems to provide energy proportional interconnects,
it is crucial that the incurred performance overheads caused by the same are controlled.
In this regard, the key novelty behind this work the approach to on/off link manage-
ment mechanisms from a performance overheads perspective. To be specific, the novel
contributions of this chapter are as follows:

1. A detailed analysis of the communication behavior in HPC applications provides
insights on the correct management of on/off links. This work shows that, for
the application to remain within a given performance overhead bound, a certain
number of messages, per unit time, can be allowed to incur wakeup delays. A
case is made for how the energy savings depend on making the right choice of
messages to delay.

2. The above insights are used to propose PerfBound, a technique that saves energy,
subject to a bound on the performance degradation. PerfBound monitors the
number of wake-up delays and it adjusts the internal parameters to become more
or less aggressive, optimizing energy savings subject to the performance overhead
bound. PerfBoundRatio is proposed, which respects the same bound on the total
overhead in a hierarchical network.

3. Finally, a prediction mechanism is discussed for predicting link idle period dura-
tions. Knowing the duration of the next idle period allows the link to be turned
off immediately, when doing so is appropriate, and it allows the link to be turned
back on in time for the next message, avoiding overheads. Prediction is disabled
when idle periods are unpredictable. In addition, prediction is always controlled
by PerfBound, and disabled when mis-prediction could breach the performance
bound.

The rest of this chapter is organized as follows. The following section discusses the
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specifics in methodology used in the work presented in this chapter. Following which,
an investigation the causes of performance degradation is discussed. Based on insights
gathered a case for performance bounding in interconnects is presented. Finally the
final sections, discuss the evaluation of the proposed techniques and conclude.

5.2 Methodology

This chapter uses the methodology outlined in chapter 3, a brief specifics of the same
is outlined below. An extension to Dimemas cluster simulator modified to support a
hierarchical network is used in this work. The network models EEE based on/off links
controlled by the techniques discussed in this chapter. The simulation infrastructure is
driven by traces, as discussed in chapter 3, from a real execution on MareNostrum. The
CPU intervals are scaled by relative CPU performance. MPI events imply dependencies,
which ensure correctness. Link energy consumption is modeled as 100% when “on” or
during transition between on/off states, and 10% when “off”. All energy figures are
normalized to percentage of original energy- to-solution.

The simulator is configured to model a cluster with a three- level hierarchical net-
work. Applications are executed on 64, 128 or 256 nodes, grouped into 8, 16, or
32 nodes per rack, respectively, forming eight racks in total. Nodes are connected to
the top-of-rack switch, which is in-turn connected to a two-level fat tree (4-ary 2-tree).
The network is statically routed, cut- through flow-control with fully duplex links. Each
node is a two- socket high- end CPU with 225GFlops (to represent a High-End system).
The switch latency is configured at 320ns for the first hop and 80ns for subsequent
hops. Edge links are configured at 20Gb/s, while the higher two levels are 40Gb/s
and 100Gb/s respectively. The two directions of the full-duplex links can be turned on
and off separately. The wake-up and sleep times of 4 µs and 3 µs for Energy Efficient
Ethernet [2, 54] is used.

This work uses fifteen HPC applications. The original traces were large, on the
order of hundreds of gigabytes, so simulation was done for a few iterations of the outer
loop. The applications used are as follows, ALYA[73], LINPACK[78], BT [74], CG[74],
FT[74], MG[74], QUANTUM[82], WRF[83] MILC[79], GROMACS[77], GADGET[76],
NAMD[80], PEPC[81], SP and LU[74].
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5.3 Motivation

The motivation behind this work comes from the evaluation presented the previous
chapter where a application dependent PowerDown Threshold (PDT) ( which is called
the LinkOFF threshold in the context of this work) was required for optimal energy and
performance. This chapter expands this motivation and presents application analysis
to support ideas presented in the following sections.

The chapter 4 discussed how HPC applications require a high-performance inter-
connect, to support their peak communications demand, but the average utilization of
the network is low. Much of the interconnect’s idle time is contributed by relatively long
idle periods [50, 69]. Figure 5.1 shows the communication behavior of LINPACK [78],
BT [74], and NAMD [80]. Fourteen of the fifteen applications as further disccussed in
this chapter exhibit regular patterns similar to Figures 5.1(a) and 5.1(b). These ap-
plications have short intensive communication bursts, separated by long computation
phases, during which the interconnect is idle. The final application, NAMD, shown in
Figure 5.1(c), appears irregular, but it still exhibits low network utilization and con-
siderable interconnect energy savings. Considering this, switching from current-day
always-on interconnects in HPC to energy proportional networks presents an opportu-
nity for large savings in energy costs.

Energy Efficient Ethernet uses on/off links, and switching between states require
about 4 µs. While the physical layer specification provides the underlying mechanisms,
the decisions as to when to enter and leave power-saving states are left to the vendor.
The previous chapter makes a clear case to show how these decisions are critical, es-
pecially in HPC, for which, although energy- efficiency is increasingly important, the
primary design objective is still performance. Any proposed energy-saving technique
will only be adopted if there is no significant reduction in performance. A naive, and
aggressive, technique is to always turn the link off as soon as it becomes idle and to
turn it back on only on demand. There is, however, a fundamental trade-off between
energy savings and performance overhead: aggressive techniques, such as the above
save more energy but may introduce too much network latency, whereas conservative
techniques incur a low performance overhead but they achieve little energy savings.

One difficulty in HPC is that different applications react differently to increases in
latency. Figure 5.2 shows a sensitivity analysis of application performance to wake-
up latency, assuming the naive management technique. The x-axis is the wake-up
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Figure 5.1: Communication behavior in HPC applications - LINPACK[78], BT[74] and
NAMD[80]

latency (which for EEE is about 4µs/link). Applications that are least sensitive, includ-
ing Quantum[82] and BT[74], can potentially tolerate an aggressive energy saving
technique, since the naive approach incurs only about 2% performance overhead. In
contrast, GROMACS[77] and NAMD[80] have unacceptable performance degradation,
with their execution time roughly doubled, so they require a rather conservative energy
saving scheme.

There are two questions related to the management of on/off links: when to turn
the link off, and when to turn it back on. An ideal solution attempts to obtain maximum
energy savings, is to turn the link off immediately after each message and to turn it back
on at the correct time in anticipation of the next message (if the idle period is shorter
than the sum of the sleep and wake times, then the link is, of course, not switched off).
This scheme, however, requires an accurate and precise prediction of the arrival time
of the next message. If the prediction is wrong, then, either the link is woken up too
late, incurring a performance overhead, or too soon, wasting potential energy savings.

A simple mechanism as presented in the previous chapter, that can work well, is
to turn the link off only after a specific duration of idle time (LinkOFF threshold),
and to turn it back on when the next message arrives. The naive approach described
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Figure 5.2: Application performance overhead as a function of wake-up delay.

above corresponds to LinkOFF=0. The previous chapter clearly showed that this mech-
anism can work well in HPC. Since different applications have different sensitivities to
increases in latencies, the optimal value of LinkOFF threshold depends on the applica-
tion. This chapter therefore proposes PerfBound, which determines the correct LinkOFF
threshold to obtain maximum energy savings subject to a performance bound. It also
proposes PerfBoundRatio, which extends the scheme to cover hierarchical on/off net-
works.

Using the LinkOFF timer works well for both short idle periods, for which the link
correctly remains on throughout, and long idle periods, for which its disadvantages are
negligible: the energy consumption before the timer elapses is small, and so is the per-
formance overhead of waking on demand. It works less well if there are a large number
of idle periods of intermediate duration. This work therefore proposes PerfBoundPre-
dict, which adds an idle time predictor. Since HPC application communication patterns
are often repetitive, the idle time predictor is often able to provide an accurate predic-
tion of the length of the idle period. If the idle period is predicted to be large enough,
the link is switched off immediately and switched back on in time to avoid the wake
overhead on the following message. This method avoids the energy consumption oth-
erwise incurred before the LinkOFF threshold has elapsed, and it allows the link to be
switched off inside much shorter idle periods, since the associated wake up latency is
usually avoided. An important disadvantage of prediction is the potential performance
impact of mis-prediction. Interaction with the performance bounding mechanism of
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PerfBound ensures that even when the prediction is not possible or is incorrect, the
total performance degradation is still controlled.

The first key insight, in the development of PerfBound, is that, since every time
the link is switched off, one message will later be delayed by the wake-up time, the
performance overhead is approximately proportional to the number of times the link
is switched off. This is an approximation, since the method cannot track chains of de-
pendencies among nodes. Tracking dependency chains requires either that the user or
compiler annotates the application, or that additional messages are sent by the run-
time system and monitored by the switches. Either approach adds complexity, with
the result that such a proposal would be unlikely to be adopted in practice. On bal-
ance, the PerfBound approach gives the right compromise, especially since the results,
as presented below, show that this approximation is generally sound. In summary, the
performance overhead bound translates to a fixed number of messages, per unit time,
that can be delayed. The following heuristics ensure that this number of delayed mes-
sages is not exceeded, and that the right choice of messages to delay is made, to get
the maximum energy savings.

5.3.1 Understanding the overhead behind link wake-up

In order to make performance overhead-aware decisions for link energy savings, it
is important to first understand how wakeup latencies translate to performance over-
heads. Figure 5.2, showed that different applications have different sensitivities to
wake-up latencies. To look at this in more detail, this section examines application
overheads by applying the wake-up delays selectively. From this point in this chapter,
“message inter-arrival periods” are referred to as idle link events.1

Figure 5.3 shows a sensitivity analysis plot relating the LinkOFF threshold, on the
x-axis, to application performance. As mentioned previously, the LinkOFF threshold
controls the time for which the link must be idle, but kept on, before it is turned off. At
low values of the LinkOFF threshold, the links turn off after many short idle periods,
which translates to high performance overheads, due to the latency of frequently turn-
ing back on when required. As the LinkOFF threshold is increased, the performance
overhead drops, eventually approaching zero. This is because, as the threshold is in-
creased, the number of idle link events that exceed the threshold decreases towards

1This chapter defines any duration during which no data is transmitted over a link as an idle link
event
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Figure 5.3: Application performance overhead as LinkOFF threshold is varied - nor-
malised to execution over an always-on network.

zero. If an acceptable level of performance overhead for the application is 5%, for ex-
ample, then Figure 5.3 can be used to determine an application-dependent static value
for the LinkOFF threshold. For application LU, for instance, it is clear that an appropri-
ate value of the LinkOFF threshold would be 80µs. In this case, the link remains on for
the first 80µs in each idle period, saving power on all idle link events that are longer
than this, but maintaining performance overhead inside the specified bound of 5%.

The application behavior can be understood in greater detail, from the perspective
of idle link events, by looking at the heatmaps in Figure 5.4. All sub-figures show
the length of the current idle link event on the x-axis and the length of the next idle
link event on the y-axis, for LINPACK[78], BT[74] and NAMD[80] according to the
title. Figures 5.4(a), 5.4(c) and 5.4(e) are colored according to the number of events,
whereas Figures 5.4(b), 5.4(d) and 5.4(f) are colored according to the total idle time
contributed by those events. That is, if in Figure 5.4(a) there are 100 events in position
(2ms, 2ms), then their total idle time would be 200ms. The idle link event heatmap
gives a sense of the most common idle durations, which is helpful for prediction, and
the total idle time helps understand how the idle time translates to energy savings. The
results in these figures are averages across all edge links in the network.

Both applications LINPACK and BT are typical examples of HPC applications and
shown, the difference between Figures 5.4(a) and 5.4(c) is in the clustering of idle link
events. In the case of LINPACK, in Figure 5.4(a), the events are clustered at around
10µs, while the events in BT are clustered at around 1ms. Another key difference
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Figure 5.4: Idle Link Event distributions of LINPACK(a,b), BT(c,d), NAMD(e,f) -
(a),(c),(e) Heat map of the idle link event duration; (b),(d),(f) Heat map of total idle
time (Number events × duration)



5.3. MOTIVATION 52

between these applications is clearly seen in Figures 5.4(b) and 5.4(d): the majority
of the idle link events of LINPACK are of 10µs, but most of its total idle time comes
from events that are longer than 10ms, even though there are few of them. A similar
behavior can be seen in BT, where a small number of events longer than 10ms also
contribute to a significant amount of total idle time. The main difference for BT is
that its most common idle link event duration also contributes significantly to the total
idle time. Further, as mentioned in the introduction, NAMD is an outlier in the set of
applications. In Figures 5.4(e) and 5.4(f), it is clear that the application is irregular. In
the context of predictability, for any current idle link event of 5.4(e) there are no event
clusters that have an especially high probability. In other words, in the case of NAMD,
given knowledge of the current event’s length, the next event could have any length.
As shown in Figures 5.4(a) and 5.4(c), in contrast, LINPACK and BT show reasonable
predictability. In the case of LINPACK, for any event of size between 10µs and 100µs,
there exists a high probability that the next event is the same size; similarly in the case
of BT, for events of between 1ms and 10ms.

Comparing Figures 5.3 and 5.4, explains the observed performance overheads.
Firstly, Figure 5.3 shows the performance overhead of LINPACK remains at about 60%
until the LinkOFF threshold is increased to 10µs, where it drops to about 2% between
10µs and 100µs. Comparing that to Figure 5.4(a), the performance overhead has
clearly dropped as the LinkOFF threshold crossed the cluster between 10µs and 100µs.
In other words, if the link remains on for about 100µs, none of the events in the clus-
ter in Figure 5.4(a) would incur performance overheads. Similarly, in the case of BT,
comparing Figures 5.3 and 5.4(c), it is clear that the performance overhead of BT,
starting from 2%, drops to near zero at about 1ms; this correlates to the clustering
found at 1ms in Figure 5.4(c). Finally, in the case of NAMD, since there are no clusters
and the distribution of events is uniform, a gradual decrease in performance overhead
can be observed as LinkOFF is increased, falling below 1% above a threshold of 2ms,
which correlates with Figure 5.4(e). Note that the clustering observed in Figures 5.4(a)
and 5.4(c) are due to repetitive patterns in these applications (as seen in Figure 5.1),
which are not seen in irregular application NAMD. Furthermore, BT has low perfor-
mance overhead, even at low values of the LinkOFF threshold, because, first, at low
threshold values in Figure 5.4(c), no events exist to incur performance delays. Since,
for BT, the number of events that exist between 1µs and 1ms is low, the reduction in
the performance overhead is gradual. Secondly, for large events, the ratio of event size
to delay incurred is very low. To illustrate, when a delay of 1µs is applied to an event
of 1ms, the added delay corresponds to 0.1%. For LINPACK, most events are clustered
at 10µs, so if a 1µs delay is added to them, each delay adds 10% of the idle time,
translating to large performance overheads.
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5.4 PerfBound: Bounding performance overheads in on/off
HPC links

The application analysis in Section 5.3.1 provides several key insights. First, the appli-
cation overhead is roughly proportional to the number of delayed idle link events. Sec-
ondly, the application overhead can be adjusted using the LinkOFF threshold. Thirdly,
the best LinkOFF threshold depends on the application, so the LinkOFF threshold must
be controlled by an algorithm that is dynamic, adaptive and application independent.
Finally, from an energy standpoint, it is best to delay the events of longest duration.
Based on the above, this section presents PerfBound and PerfBoundRatio. The only
parameter to the algorithms is a limit on the performance degradation, which is set to
1% in the evaluation. For the purpose of the exposition, it is assumed that this limit is
1%, but it should be clear how to make the bound into a parameter. The approach is
to first determine how many idle link events can be delayed per unit time before the
overhead reaches 1%, and then to ensure that the right number of events are delayed
and that they are the longest ones. The latter is done by dynamically adjusting the
LinkOFF threshold.

Calculating the the number of events that can be delayed:

First, for simplicity, a network with only a single hop between two nodes is assumed,
i.e., two nodes connected to each other by a single link. Since the overhead is assumed
to come only from delayed wakeup events, the maximum number of them that can be
tolerated, within a 1% bound, in a period of duration X is simply 0.01X / Tw, where Tw
is the wakeup delay and 0.01 corresponds to the 1% bound. As X increases, the total
number of events that can be delayed also increases, in proportion. This is the value
used by PerfBound, when configured with a local performance bound of 1%. The next
section will describe how the LinkOFF threshold is adjusted to delay the correct number
of events.

In a multi-hop or hierarchical networks, each link in the route may implement Perf-
Bound, multiplying the resulting performance overhead. A three-level network has a
maximum hop count of six, so a single message may incur cumulative wakeup delays
on three upward links and three downward links. Using the above equation directly
leads to a total overhead of up to 6%. The simplest solution is to divide the global 1%
performance bound equally among the links, so that each link uses PerfBound with a
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Figure 5.5: Example network topology

Link
Total
messages

Messages/level Proportion to level
L0 L1 L2 L0 L1 L2

T to L00 1000 500 400 100 0.5 0.4 0.1
L00 to S0 500 500 0 0 1.0 0 0

L00 to L10 500 0 400 100 0 0.8 0.2
L10 to L01 400 0 400 0 0 1.0 0
L01 to S1 400 0 400 0 0 1.0 0

L10 to L2 100 0 0 100 0 0 1.0
L2 to L11 100 0 0 100 0 0 1.0
L11 to L02 100 0 0 100 0 0 1.0
L02 to S2 100 0 0 100 0 0 1.0

Table 5.1: PerfBoundRatio: Example calculation of local state, when 50%, 40% and
10% of messages reach levels 0, 1 and 2, respectively.

local performance bound of 0.166%.

This is, however, unnecessarily conservative. An application that mainly communi-
cates at Level 0 of the network(say), would rarely incur overheads at the upper levels,
meaning that the overhead is actually being constrained to 0.33%. Although a lower
overhead is better, all else being equal, the configured 1% performance bound would
probably have led to greater energy savings.

The solution for hierarchical networks or multi-hop networks is PerfBoundRatio,
which is configured with a global performance bound. It adapts dynamically to the
locality of the application’s communication pattern, using only the information that is
available locally at the switch. In order to use PerfBound, each switch must be given
enough information about the network topology to be able to calculate the level of the
highest switch in the route between any pair of source and destination IP addresses.
This may require specific configuration, but for an HPC system, such configuration is
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tolerable.

Here PerfBoundRatio is explained using the example three-level network in Fig-
ure 5.5. The switches are labeled with the level and a unique number; e.g. L11 is one
of the switches in level 1 and nodes are labeled T and S0 to S2. Let us assume, node T
transmits 1000 messages in total, to S0, S1 and S2, in proportion 50%, 40% and 10%,
respectively. In a real application, all nodes will transmit, with different distributions
to various nodes, but the total counts are simply the sums of the various contributions,
and the algorithm still works. It can be best understood by looking at a simple case.

Each link has four counters, one that counts the total number of messages over the
link, and three messages/level counters, each corresponding to a level in the network.
The messages/level counter for level n counts the number of messages seen whose
highest level in the network is exactly n. This information is summarized, for all links,
in Table 5.1. This table also shows the proportion of messages that go to each level,
found by dividing by the total number of messages. For example, the link between
L00 and L10 sees all messages from T that go to either S1 or S2. There are 500 such
messages, of which 400 go to S1, reaching level 1, and 100 go to S2, reaching level 2.
The ratios of messages that reach levels 0, 1 and 2, respectively, are 0, 0.8 and 0.2.

The key idea is to divide the global performance bound according to the behavior
of the communication traffic. Of the 500 messages that are seen over the link between
L00 and L10, 80% of the messages that reach network level 1, have four hops on their
route, whereas the 20% of messages that reach network level 2, have six hops. The
local performance bound is therefore given by 0.8 × 0.01

4
+ 0.2 × 0.01

6
. In this equation,

the weighing factors of 0.8 and 0.2 are given by the message statistics, 0.01 is the global
performance bound, and the denominators are the numbers of hops on the routes.

In general, for a particular link, let LC0 be the total number of messages that reach
maximum level 0, LC1 be the total number that reach maximum level 1, and LC2 the
total number that reach level 2. Let LC = LC0+LC1+LC2 be the local total message
counter. Then the local performance bound (as shown in Table 5.1) for that link is
given by

l =
LC0

LC
.
0.01

2
+
LC1

LC
.
0.01

4
+
LC2

LC
.
0.01

6
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Figure 5.6: Snapshot of an Idle Link Event Histogram

Calculating the LinkOFF threshold:

After calculating the total number of events that can be delayed, per unit time, the final
step is to determine the LinkOFF threshold. As described in Section 3.2, the LinkOFF
threshold is the duration of time that the link must remain idle before it is switched off.

The LinkOFF threshold is determined from a histogram of idle link events. In detail,
at the end of every idle link event, one new data point is available. This data point is the
length of the previous idle link event. As shown in Figure 5.6, the bin corresponding
to this length is determined and its histogram value is incremented. The histogram
therefore keeps track of the distribution of link idle interval lengths, and its total mass
increases over time.

The LinkOFF threshold is found by searching from the right-hand side of the his-
togram; i.e. from the longest idle intervals, until the correct total number of messages
has been found. That is, if the histogram has been collected for total time X, then the
previous section gives the number of messages to delay as N = lX / Tw, where l is the
local performance bound. The threshold is given by the midpoint of the smallest bin
that has a total of at most N messages in all bins to its right.

The amount of work per message is constant and rather small, since it is only nec-
essary to update the histogram and search for the correct value of LinkOFF. In the
experiments presented, the LinkOFF threshold value is updated after every idle link
event, but clearly it can be updated less frequently if desired. Alternatively, the algo-
rithm can easily be optimized to take advantage of the fact that the correct value of
LinkOFF seldom moves by more than one bin at a time.

Figure 5.7 shows three important characteristics of the algorithm. The x-axis is time,
or more accurately a sequence number for the idle link event, and the y-axis is the value
of the LinkOFF threshold, measured for a particular, but arbitrary, edge link (other
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Figure 5.7: LinkOFF threshold convergence over time

edge links had similar behavior). Firstly, the correct value of the LinkOFF threshold
differs dramatically between benchmarks—notice the logarithmic scale on the y-axis.
Secondly, most applications rapidly converge to a stable value of the LinkOFF threshold,
within just 200 events. This stable value can be compared with the point in Figure 5.3
where the overhead drops below 1%. Thirdly, for some benchmarks, most clearly LU,
LinkOFF threshold is seen to adapt to varying application phases.

Although this section discusses the presented mechanisms per unit-time, structures
are refreshed in idle link events, e.g. every 20,000 idle link events, irrespective of the
elapsed time or application. Figure 5.7 shows that for all applications the algorithm
converges within 200 events, which is only 1% of 20,000, hence a negligible fraction.
When a new application begins, only the first refresh cycle has events from the old
application. In the worst case, at 4µs and 6 hops/message incurred on all 20,000
events in the first refresh cycle, the overhead is ≤480ms, which is negligible compared
with typical application execution times.

5.5 PerfBoundPredict: Prediction over PerfBound for
On/Off networks

It is clear, both from the above analysis and from the traces in Figure 5.1, that HPC
applications exhibit repetitive behavior. This repetitive behavior translates to periodic
and predictable idle link events. This insight is used to propose an idle period predictor
that detects repetitive idle link events in order to turn off the link immediately as
opposed to waiting for the LinkOFF threshold to expire.
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Figure 5.8: Idle link events sequence of occurrence

This section describes PerfBoundPredict, an idle period predictor, whose perfor-
mance overhead is controlled by PerfBound. Whenever the length of the upcoming
idle period cannot be predicted with high confidence, the algorithm defaults to Perf-
Bound. In addition, whenever the predictor mis- predicts, the performance overhead
of one additional wakeup delay is compensated for: either by throttling prediction or
by adjusting the LinkOFF threshold.

PerfBoundPredict borrows from ATPT [70], in predicting based on source-destination
pairs. ATPT predicts the total amount of data transferred, whereas PerfBoundPredict
is concerned with idle link durations. One challenge in predicting the lengths of idle
periods is that there is always some noise; i.e., no two idle link events have exactly the
same duration. This is handled by effectively quantizing the idle link events; that is,
more accurately, by considering two idle link events to be the same if they differ by
less than ±20%. This tolerance is proposed based on experiments that showed a steep
reduction in the number of unique idle link events up to ±20%. This means that the
wakeup time must be up to 20% before the predicted event, since that prediction could
correspond to a value as small as that. Finally, PerfBoundPredict ignores all events
that are smaller than twice the time required for link wake-up and sleep, since there
are many such events but they do not provide significant benefits for energy savings.
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Figure 5.9: Block diagram of PerfBoundPredict

Figure 5.8 shows how classifying idle link events by the src- dest pair for the preced-
ing message helps to identify repetitive behavior. Figure 5.8(a) plots the event duration
on the y-axis for all idle link events, arranged along the x-axis. The data is for a fixed
but arbitrary edge link, for application BT; other edge links have similar behavior. Two
things are apparent in Figure 5.8(a). First, large events occur periodically, but smaller
events are more sporadic. Figure 5.8(b) shows only those idle link events that follow a
message on a specific src-dest pair. Note that not all src-dest pairs attach to large idle
events. Most of the other src-dest pairs examined had no large idle events at all. In
fact, the src-dest pair is specifically choses to contain all of the large events visible in
Figure 5.8(a). In Figure 5.8(b), all large events are separated from the preceding one
by exactly the same number of idle link events. In Figure 5.8(c) accounts for variation
in the idle event durations by applying ± 20% variation tolerance. above, the proposed
idle period predictor
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Figure 5.9, shows a block diagram of the proposed prediction mechanism. The
predictor has two functions, update state and predict state. As shown in the figure,
update state is invoked whenever a link is woken up. During update state, all fields in
the predict table are updated with the previous idle link event. Predict state is invoked
whenever the link becomes idle. The predict table is accessed, based on the recent
src-dest, to make an idle time prediction. When prediction is not possible, algorithm
defaults to remain on until LinkOFF threshold.

The predict table contains many entries, each of which contains the following: src-
dest, the previous idle link Event Duration, a 2-bit counter for prediction confidence and
a Least Recently Used (LRU) value. It also contains the Event Difference and Last Updated
values. An Event Counter tracks the total number of idle link events that has progressed.
The Last Updated value is updated, as described below, to contain a previous value of
the Event Counter. The Event Difference is the period between successive similar idle
link events.

The update stage, after the link is woken up, updates predict table with the duration
of the previous idle link event and the src-dest addresses of the previous message. The
predict table is indexed using the src-dest and idle link event duration, to find any
already existing entries. If such a src-dest exists, and its event duration falls within
± 20% of the original entry, then an Event Difference is calculated as the difference
between the current Event Counter value and the Last Updated value in the entry. If
this Event Difference matches the entry in the predict table, then a repetitive pattern
is found, and the 2-bit counter is incremented. If it does not match, then the 2-bit
counter is decremented. In either case, the Last Updated field is updated to equal the
current Event Counter. If, on decrementing, the 2-bit counter reaches zero, then the
new Event Difference replaces the old one. In any case, the LRU is refreshed, moving
the entry to the top of the table. Finally, if there is no matching event, a new one is
added, overwriting the entry with the oldest LRU value.

Prediction is done, whenever the link becomes idle based on the src-dest pair of
the recent message. First, the src-dest pair is used to obtain a list of all matching
entries in the predict table. Each entry in the predict table is checked in turn, starting
from the most recent, by first calculating the Current Event Difference as the difference
between Event counter+1, which corresponds to the event counter after this idle period,
and the Last Updated Value in the entry. If the Current Event Difference matches the
Event Difference in the table, then the entry is a tentative match. In this case, the 2-bit
counter is checked for confidence. If it indicates a reliable prediction, then the link is
immediately turned off, and scheduled to turn back on after a time given by the Event
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Figure 5.10: Application incurred performance overheads over techniques proposed
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Duration minus 20%. If no tentative match is found whose 2-bit counter indicates a
reliable prediction, then the algorithm defaults to PerfBound or PerfBoundRatio, by
remaining on for a time given by LinkOFF threshold.

5.6 Results

Figure 5.10 (A) shows the normalized application execution time, for each application
referenced in the previous section, relative to the same system with an always-on inter-
connect. Figure 5.10 (B) is similar, but for link energy savings, separately for each level
of the network, where level 0 is connected to the nodes and level 2 is the highest. The
energy saving mechanisms are identified as follows: Toff turns off each link as soon
as it becomes idle. T50us is an arbitrary static LinkOFF threshold which has the link
on for 50us before turning off. Since worst- case static LinkOFF threshold and Perf-
Bound are described only for a single hop, results for the 3-level hierarchical network
are given for three variants - allocating the 1% performance overhead equally among
two, four or six hops. For example Ton4hop is static LinkOFF threshold tolerating a
0.25% overhead per hop; since the wake-up latency is Tw = 4µs, this bound is enforced
whenever the LinkOFF threshold is at least Tw/0.0025. In consequence, Ton2hop has
greater energy savings, but, since it allocates 0.5% potential overhead to each hop,
total overhead may reach 3%, while Ton6hop is conservative. PerfBound(2,4,6)hop
are similar, but they use PerfBound instead of static LinkOFF threshold. Finally, Perf-
BoundRatio and PerfBoundPredict are the proposed algorithms. Since they naturally
support hierarchical networks, the typical number of hops does not need estimating.
The results include the full execution time, including warm-up periods for training the
predictor and PerfBound mechanisms.

On average, as shown in Figure 5.10 (A), proposed mechanisms PerfBoundRa-
tio and PerfBoundPredict both remain within the assigned performance degradation
bound of 1%. In comparison to Toff, the mechanisms presented (on average) reduce
possible performance degradation from about 40% to assigned 1%. PerfBound2hop,
expectedly exceeds assigned PerfBound to about 2.5% while PerfBound6hop is well
within 1% at about 0.5%. As mentioned above it is clear from the results that Perf-
Bound2hop and PerfBound4hop are too optimistic while PerfBound6hop is too con-
servative and PerfBoundRatio performs better at maintaining the assigned PerfBound.
Static LinkOFF threshold values Ton(2,4,6)hop and T50us have performance degrada-
tion of 0.5% and 4% respectively.
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With respect to energy, as shown in Figure 5.10 (B), on average, Toff and T50us
gives the highest link energy savings, followed by PerfBoundPredict and PerfBoundRa-
tio. Note that the difference in energy savings between the proposed PerfBoundRatio or
PerfBoundPredict and the naive Toff technique is less than 20%, while on average Perf-
Bound reduces performance degradation by about 40%. On average, PerfBoundPredict
produces 8.5% higher energy savings compared to PerfBoundRatio and overall, Perf-
BoundPredict saves link energy by 68.5% compared to an always-on network followed
by PerfBoundRatio which saves 60% in network Level-1. Similarly, at higher levels 2
and 3, PerfBoundPredict saves 55% and 49% and PerfBoundRatio saves 51% and 48%
respectively. Note that higher levels of the network tend to have higher traffic, reducing
possible opportunity for energy savings. Prediction technique works best in the lower
levels (which contain the highest proportion of links in the network) and less well at
the higher levels which are subject to more noise. Note that the lower prediction ac-
curacy has not contributed to higher performance degradation. PerfBound(2,4,6)hop
have lower/higher energy savings respective their performance degradation.

Four of the bars in the figures are for static values of the LinkOFF threshold. The
50us static LinkOFF threshold (T50us) achieves good link energy savings, but the
worst-case performance degradation of 30% is unacceptable. In comparison, the worst-
case overhead for PerfBoundRatio is 4% and for PerfBoundPredict 3.5%. On the other
hand, Ton(2,4,6)hop have overheads greater than 1%, but their energy consumption
is more than twice that of PerfBoundRatio and PerfBoundPredict, at 77% rather than
37%. A sweep is also presented to find the best static LinkOFF threshold. The analysis
showed that a value of 500us or larger is needed to reduce the worst-case overhead,
for benchmarks considered, to 4%. At this point the average energy consumption in-
creases to 49% of the original, compared with 40% for PerfBoundRatio and 35% for
PerfBoundPredict. Moreover, to be confident that the worst case overhead in produc-
tion is reasonable, a prudent system designer should choose an even larger LinkOFF
threshold, similar to the values used by Ton(2,4,6)hop. As previously described, this
would lead to link energy consumption roughly double that of PerfBoundRatio/Predict.

In Figures 5.10 (A) and (B) it is clear that some applications, more than others,
benefit from predictability. Application LINPACK, for example, has no benefit from
prediction. This lack of benefit is because PerfBoundRatio works very well for LIN-
PACK leaving little scope for improvement. PerfBoundPredict saves energy by switch-
ing off the link immediately without having to wait for LinkOFF threshold timer to
expire. Hence consequently if LinkOFF timer is small, relative benefit from PerfBound-
Predict mechanism is low. LINPACK, as explained in Section 3.3 and as seen in Fig-
ures 5.4(a) and 5.4(b), contains few events that contribute to majority of the idle time
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while most events are small and fit into a rather small LinkOFF Threshold value.

Contrary to the above, BT appears to benefit by about 60% from prediction. Unlike
LINPACK, BT contains a large number of events that are large and contribute signifi-
cantly to idle time of the application (Figure 5.4). Since LinkOFF threshold for BT is
large, turning off the link immediately results in larger power savings. Interestingly, in
Figure 5.10 (B) shows that PerfBound2hop performs better than PerfBoundPredict. The
reason for this can be seen in Figure 5.10 (A), since, unlike other mechanisms, Perf-
Bound2hop exceeds the PerfBound value of 1% by a small amount. This small amount
is essentially the difference between a LinkOFF threshold larger than or smaller than
that of the large cluster of events observed in Figure 5.4(c). When LinkOFF threshold
is larger, as in PerfBoundRatio, 1% PerfBound is maintained, however lesser energy is
saved, when smaller, 1% PerfBound is not maintained, as in PerfBound2hop, however
higher link energy is saved. Similar behavior can be observed at a smaller scale in
applications CG and MILC.

The two outliers whose overhead are not bounded are NAMD and LU, due to depen-
dencies in their messages i.e., messages in these applications are not transmitted until
the reception of dependent messages. Further, as shown in Figure 5.1(c), NAMD does
not have patterns to exploit for energy savings. Note that in both cases, performance
overhead is still less than 4% with link energy savings up to 70%.

5.7 Conclusions

Interconnect inefficiency is a growing problem in HPC. While HPC applications have
potential for link energy savings, techniques can only be employed if performance
degradation is controlled. This chapter presents three techniques towards the above
in the context of on/off links - PerfBound, PerfBoundRatio and PerfBoundPredict. This
work showed that significant energy savings can be obtained while performance over-
head is bounded. Proposed techniques do not require modifications to the applica-
tion/compilers nor does it introduce extra traffic into the network. The key novelty
of this work is the analysis of link energy from a performance perspective - linking ap-
plication performance degradation with link energy savings. Furthermore, a detailed
analysis and insights on HPC application behavior with respect to link idle periods was
presented. With performance bounded to acceptable levels this work could enable EEE
and thereby link energy proportionality in HPC where performance is crucial.



Chapter 6
FastWake: Intermediate Power State

The two previous chapters primarily presented two key ideas. First, HPC application
present opportunity for link energy savings but performance can suffer if links are
not properly managed. A mechanism, PowerDown Threshold (or LinkOFF Threshold),
was proposed that leaves the link on but idle, reduced performance overheads with
significant link energy savings. Secondly, the previous chapter presented PerfBound.
The motivation for PerfBound comes from the need for a dynamic and application
independent PowerDown Threshold mechanism. PerfBound works by automatically
managing the links to provide energy savings, but within a bound on performance
overheads. This chapter presents an analysis of Fast-Wake, an intermediate power
state of EEE in the context of HPC. A summary of this work is presented below.

6.1 Summary

The original EEE protocol provides specifications for energy savings in 100Mb, 1Gb and
10Gb links. The success of EEE pushed for current and recent efforts for the standard-
ization of 40Gb, 100Gb and 400Gb backplanes and optical Ethernet, into including
energy savings mechanisms from EEE. While incorporating EEE for 40Gb, 100Gb and
400Gb links, the standard introduced an additional sleep state known as Fast- Wake.
In Fast-Wake mode the link does not turn off all its components, but only a few to
trade-off higher energy consumption for a faster wake-up time.

Ethernet protocols, specifically IEEE 802.3bj and 802.3bm, providing standards for
40Gb and 100Gb backplanes and optical Ethernet, respectively, were ratified as recently
as March 2015, and IEEE 802.3bs for 400Gb is expected to be ratified in 2017. As
with the original EEE protocol, products based on the recent standards, which include
Fast-Wake, when deployed for HPC is likely that Fast-Wake will be disabled by default.
About 40% of Top500 HPC machines use Ethernet based interconnects every year, that
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could potentially have these protocols in their switches; it is imperative to understand
the need for Fast-Wake, its performance impact and possible configuration parameters
in the context of HPC applications.

This chapter describes a comprehensive analysis of Energy Efficient Ethernet with
Fast-Wake using traces from fifteen HPC applications of various domains obtained from
production supercomputers. This analysis answers the following important questions
regarding the use of Fast-Wake, specifically:

1. How useful is Fast-Wake or an intermediate sleep state for HPC networks, or
would a single Deep-Sleep mode be sufficient?

2. How long should the link remain in the intermediate Fast-Wake state before en-
tering Deep-Sleep?

3. What is the reduction in performance overhead and the energy savings on using
Fast-Wake, compared with EEE without Fast-Wake?

The answers to these questions could potentially benefit interconnect vendors de-
signing interconnects with EEE and Fast-Wake targeting HPC.

The main contributions of the work presented in this chapter are,

1. A detailed analysis of the Fast-Wake mode over HPC applications to understand
its energy saving potential is presented. To this end, this chapter first presents a
comparative analysis of the older Deep-Sleep and the newer Fast-Wake.

2. A hybrid approach of using both Deep-Sleep and Fast-Wake and their energy per-
formance trade-offs are discussed. This show how using both the low power
modes together offers a better energy to performance trade-off than using either
alone.

3. The presented analysis also covers a design space analysis of wake-up timings
and other energy consumption levels of Fast-Wake.

6.2 Approach to investigating Fast-Wake in HPC

Before presenting the analysis of Fast-Wake, the approach used to investigate Fast-
Wake as well as a brief summary of terminology discussed in the Background Chapter
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is discussed below.

Figure 6.1 presents the working of Deep-Sleep and Fast-Wake. In Figure 6.1(a),
the link remains active during frame transfer, which is followed by a state change
that turns off the link, reducing power consumption to 10%. The later frame arrival
during the low power state requires a Full-Wake (4.48 µs) to power up the link to 100%
before transmission. Figure 6.1(b) is similar to that of the Figure 6.1(a) except that the
link powers down to Shallow-Sleep, which reduces power consumption to 60%. The
link powers back to 100% faster with Fast-Wake, since it only requires a few hundred
nanoseconds to do so.

Figure 6.1(c) and (d) present the working of Stall- Timers 1. In both, the link
remains on at 100% after frame transmission, as opposed to Figure 6.1(a) where the
link drops to Deep-Sleep immediately. In Figure 6.1(d), the frame that arrives before
the Stall-Timer expires can be transmitted immediately, with no wake-up delay.

Figure 6.2 presents a hybrid approach with both Deep-Sleep and Fast-Wake. Fig-
ure 6.2(a), illustrates an example to present a link that actively transmits data, fol-
lowing which remains on at full (or 100%) power until the Stall-to-Shallow timer
expires. After which the link switches to Shallow-Sleep consuming 60% energy until
the original Stall-Timer expires. The end of the original Stall-Timer drops the link to
Deep-Sleep consuming 10% power. The arrival of a frame during Deep-Sleep triggers
a full wake-up, before the link can transmit the frame. Figure 6.2(b), shows the case
where the next frame arrives during the Shallow-Sleep period, presenting a case where
Fast-Wake is used to quickly power up the link. The above mentioned terminology can
be described as follows,

• Deep-Sleep is the original Energy Efficient Ethernet (EEE) low power state con-
sumes 10% link energy and requires 3.88 and 4.48 µs to which states between ac-
tive and low-power and back respectively. Deep-Sleep was also previously known
as Low Power Mode (LPI).

• Full-Wake is the wake-up process or a state transition between low power to
active of a link in Deep-Sleep.

• Fast-Wake is the newly introduced low power state, with faster wake-up periods,
requiring only a few hundred nanoseconds. However the link consumes about

1This chapter and the next, uses the term Stall-Timer to describe the previously mentioned LinkOFF
Threshold or PowerDown Threshold
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Figure 6.1: Example timeline illustrating various low power and Stall-Timer states of
an EEE link
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Figure 6.2: Timeline illustrating hybrid Fast-Wake+Deep-Sleep

60% of the active energy in the low power state. This chapter uses the term
Fast-Wake to infer quick state transition process from low power (60%) to active
(100% power).

• Shallow-Sleep is when the link only requires a Fast-Wake to turn active, i.e.,
the link is in low power mode consuming 60% power as opposed to 10% of the
Deep-Sleep.

• Stall-to-Shallow is used with the hybrid approach as shown in Figure 6.2. Stall-
to-Shallow is the duration link remains on but idle, before entering Shallow-Sleep
to consume 60% power.

• Stall-Timer as discussed in previous chapters, leaves the link on but idle for a du-
ration, after which the link enters Deep-Sleep. In the hybrid approach discussed
in Figure 6.2, the only difference is that the Stall-Timer contains an intermedi-
ate power state, where the link transitions to Shallow-Sleep. Note that for this
reason, the Stall-Timer must be larger than or equal to Shallow-Sleep.
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With respect to the above, the approach towards investigating Fast-Wake is as fol-
lows. First a comparison between the individual power and performance characteris-
tics of Fast-Wake and Deep-Sleep is drawn. Based on this analysis, a case for a com-
bined/hybrid approach that uses both Fast-Wake and Deep-Sleep is explored. Further,
the following parameters are investigated: 1. Energy consumption during Fast-Wake
mode and 2. Link wake-up duration for Fast-Wake. The relationship and trade-offs
between optimal power and performance and careful adjustment of respective Stall-
timers is also discussed in the following sections. The experiments were performed
with a constant Stall-Timer/Stall-to-Shallow across all links of the network, since in-
vestigating optimal Stall-Timers for every link in the network is not feasible for the
sensitivity analysis presented below.

6.2.1 Methodology specifics

Note that the experimental methodology used in this chapter is identical to the previous
chapter 5. The experiments were done over the Dimemas simulator. The network
specifics, experimental configuration and applications used are the same as discussed
in the previous chapter 5. The key addition is that this work modifies the simulator to
add the above mentioned mechanisms (Fast-Wake and two different Stall-Timers along
slide Deep-Sleep) into the links.

6.3 Deep-Sleep and Fast-Wake vs Stall-time

Figure 6.3(A) presents an analysis of the performance and energy consumption using
only the Deep-Sleep mechanism, as a function of its corresponding Stall-Timer. Specif-
ically, Figure 6.3(A)(i), shows the normalized execution time for each application re-
ferred to in the previous section, relative to the same with an always-on interconnect.
Figures 6.3(A)(ii), (iii) and (iv) are similar in that they show the average energy con-
sumption of links at each level of the network, where level-0 is connected to nodes and
level-2 is the highest.

Varying the Stall-Timers of Fast-Wake and Deep-Sleep presents interesting trade-
offs between power and performance, as seen in Figures 6.3(A) and (B), respectively.
Figure 6.3(A)(i) shows that, for all applications, the performance overhead reduces as
the Stall-Time increases. This is because, as the Stall-Timer increases to infinity, the
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network tends towards being always-on. This means that the Stall-Timer would even-
tually be larger than all idle periods between frame arrivals, and hence no subsequent
frame arrival would ever incur a wake-up delay, rendering zero performance overhead.
This however increases the energy consumption in all levels of the network, since an
always-on network consumes 100% power relative to its baseline. Figure 6.3(A) shows
that lower values of the Stall-Timer (0 to 100 µs) have relatively large performance over-
heads (greater than 10%) but high energy savings (70% on average). For higher values
of the Stall-Timer (100 µs to 1ms), the performance overhead drops to below 1%, while
the energy savings are still about 50% to 60% (average), for all levels of the network.

Figure 6.3(B) shows a similar analysis, but for Fast-Wake. Here, the Stall-Timer
represents Stall-to-Shallow, where the link drops from 100% power to 60% power, and
requires a Fast-Wake to wake-up. Figure 6.3(B)(i) is similar to Figure 6.3(A)(i) in that
performance overheads decrease with an increase in the Stall-Timer. Figure 6.3(B)(i),
however, shows the performance overhead drops below 1% (say) at a much lower
value of the Stall-Timer compared with Figure 6.3(A)(i). Correspondingly the energy
consumption as shown in Figure 6.3(B) begins at 60% and increases towards 100%.
The link energy consumption of applications in Figures 6.3(B)(ii), (iii) and (iv) start at
60% since the idle power of Fast-Wake is 60% of that of an active link.

On comparing the two mechanisms for application NAMD, for example, it can
be observed that for a performance overhead of less than 1% with Deep-Sleep (Fig-
ure 6.3(A)), a Stall-Timer larger than 1ms is required, for which the energy consump-
tion is about 85–90% (for Level-0 links). With Fast-Wake, as seen in Figure 6.3(B),
application NAMD falls below 1% at about 100 µs, where the energy consumption is
about 65–70%, for the same Level-0 links. Similar behavior can be seen for higher
network level links. Clearly for NAMD, Fast-Wake is the better mechanism. In contrast
to the above, application PEPC requires a Stall-Timer of about 100 µs for an overhead
of less than 1%, as shown in Figure 6.3(A), but it only consumes 20% link energy. In
Figure 6.3(B) however, that PEPC requires a Stall-Timer of less than 10 µs for over-
heads less than 1%, but its energy consumption is now above 60%. In the case of PEPC
therefore, Deep-Sleep is the better mechanism for energy savings and low performance
overhead.
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Figures 6.3(A) and (B) show that, for both Deep-Sleep and Fast-Wake, adjusting
the Stall-Timer varies power and performance, through an increase in energy savings
at the expense of performance, or vice-versa. It is clear that since Fast-Wake powers
back the link at a faster rate, relatively small Stall-Timers are required for low per-
formance overheads. However, with Deep-Sleep, larger Stall-Timers are required to
reduce performance overheads. It is interesting to see that for a fixed performance
overhead point (1% say), some applications such as NAMD, GROMACS, SP and MILC
tend to have better energy savings with Fast-Wake while others such as GADGET, FT,
QUANTUM and PEPC are better with Deep-Sleep. Specifically, applications that have
low network utilization and that are not latency sensitive are better with Deep-Sleep
compared to Fast-Wake. These applications do not require the faster wake-up time, so
they can benefit from Deep-Sleep’s lower energy consumption.

6.4 Pareto optimal analysis of Fast-Wake and Deep-Sleep

The analysis with Figures 6.3(A) and (B) clearly shows the need for a combined ap-
proach. As shown in Figure 6.2 using both Deep-Sleep and Fast-Wake would re-
quire adjusting the original Stall-Timers, which expires to Deep-Sleep and Stall-to-
Shallow, which expires to Shallow-Sleep. Together, these two Stall-Timers create a
2-dimensional search space.

An exhaustive search of this 2D search space is presented in Figure 6.4. The x-axis is
the performance overhead, up to 5%, as larger overheads would be unacceptable. The
y-axis is the energy consumption of all links in Level-0 of the network (the behavior of
higher network layers is discussed in the next section). The scatter points labeled “Deep
Sleep + Fast Wake + Stall timer sweep” show all combinations found by varying both
Stall-Timer values. Specifically, Stall-Timers were varied in multiples of 10, example
10 ns, 100ns and so on. To explore all combinations, for every Stall-Timer ’X’, Stall-to-
Shallow was varied between 10 ns to ’X’. The curve labeled “Deep Sleep + Fast Wake +
Stall timer - Pareto Optimal” is the Pareto-optimal curve derived from only the points
that are Pareto-optimal (which is roughly speaking only the points with lowest energy
consumption for a given performance overhead). The other curve, labeled “Deep Sleep
+ Stall Timer”, presents, for comparison, the power and performance obtained from
varying Stall-Timer using only the Deep-Sleep mode. This approach is compared with
Deep-Sleep because it represents the older approach to energy savings available in
EEE switches before the introduction of Fast-Wake. This figure therefore presents the
potential benefits of using both Fast-Wake and Deep-Sleep.
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Figure 6.4: Pareto-optimal analysis of average (level-0) link energy and performance
using both Deep-Sleep and Fast-Wake along with their corresponding Stall-Timers com-
pared to only using Deep-Sleep and its Stall-Timer
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Figure 6.4 makes a strong case for using a combination of Deep-Sleep and Fast-
Wake, since the Pareto-optimal curve is clearly below or overlapping the Deep-Sleep
curve for all applications. As seen, this technique is less useful for applications that
are not latency sensitive as in the case of FT, QUANTUM and GADGET, where simply
using Deep-Sleep is sufficient. However, with applications BT, CG, LU, SP, GROMACS,
MILC, NAMD, PEPC and WRF, a combined approach clearly improves energy and per-
formance overhead. With BT at 0.5% performance overhead has 45% energy savings
with the Pareto optimal curve compared to only 20% with Deep-Sleep. Applications
such as SP and MILC benefit most from the combined approach at low performance
overheads, where a further reduction of performance overhead is possible at the same
or similar energy savings. With GROMACS and WRF 5%–20% energy savings are ob-
tained compared with all points of Deep-Sleep.

Here, it is to be noted that a Pareto-optimal curve of the hybrid Fast-Wake and
Deep-Sleep is compared to the Stall-Timer sweep of Deep-Sleep. This is to say that the
scatter points in Figure 6.4 clearly show that for many combinations of Stall-to-Shallow
and Stall-Timer, higher performance overhead or much lower energy savings are ob-
tained. Specifically for ALYA, choosing an incorrect combination of Stall-Timers values
is highly likely since most other values perform worse compared to Deep-Sleep. Dy-
namically and automatically choosing these Stall-Timers for Fast-Wake and Deep-Sleep
during runtime could be an interesting problem for further research.

6.5 Fast-Wake on higher level links - L1, L2

In Figure 6.5 and all following figures a subset of the applications seen in Figure 6.4 is
discussed. Specifically, applications BT, SP, GROMACS, MILC and NAMD are chosen as
representatives to further the following discussions. These applications specifically are
discussed since other applications either behave similarly, or, in the case of FT, GADGET
and QUANTUM, do not benefit from Fast-Wake.

Figure 6.5 is the same as Figure 6.4, except that it shows the normalized energy
consumption of network Level-1 for Figure 6.5(A) and network Level-2 (highest) for
Figure 6.5(B). Comparing Figures 6.5(A) and (B) with Figure 6.4 shows that the bene-
fits of Fast-Wake plus Deep-Sleep at the higher levels of the network are similar to those
at Level-0. NAMD particularly has increasingly better trade-offs with higher link levels
compared to Deep-Sleep. Since NAMD utilizes its network sporadically rather than in
bursts, higher benefits from Fast-Wake can be seen. At higher levels of the network,



6.5. FAST-WAKE ON HIGHER LEVEL LINKS - L1, L2 76

1.00
1.01
1.02
1.03
1.04
1.05

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
al

iz
ed

 L
in

k 
E

n
er

g
y BT

1.00
1.01
1.02
1.03
1.04
1.05

SP

1.00
1.01
1.02
1.03
1.04
1.05

Normalized Execution Time

GROMACS

1.00
1.01
1.02
1.03
1.04
1.05

MILC

1.00
1.01
1.02
1.03
1.04
1.05

NAMD

Deep Sleep + Stall Timer
Deep Sleep + Fast Wake + Stall timer - Pareto Optimal
Deep Sleep + Fast Wake + Stall timer sweep

(A) Figure 6.4 presented for links in level-1

1.00
1.01
1.02
1.03
1.04
1.05

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
al

iz
ed

 L
in

k 
E

n
er

g
y BT

1.00
1.01
1.02
1.03
1.04
1.05

SP

1.00
1.01
1.02
1.03
1.04
1.05

Normalized Execution Time

GROMACS

1.00
1.01
1.02
1.03
1.04
1.05

MILC

1.00
1.01
1.02
1.03
1.04
1.05

NAMD

Deep Sleep + Stall Timer
Deep Sleep + Fast Wake + Stall timer - Pareto Optimal
Deep Sleep + Fast Wake + Stall timer sweep

(B) Figure 6.4 presented for links in level-2

Figure 6.5: Fast-Wake analysis on upper layer network links
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where the traffic is sporadic rather than uniform, large Stall-Timers for Deep-Sleep
are required to maintain acceptable overheads. Having an intermediate state between
these large Stall-Timers produces the better energy trade-off.

6.6 Fast-Wake energy ratio - 40/60/80% and Fast-Wake
timing analysis - 500 ns

This section investigates how the conclusions in this chapter would change, when vary-
ing the power consumption during Shallow-Sleep and its wake-up time. The power
consumption during Shallow-Sleep has been shown to be 60% compared to when the
link is active [58], but the precise value cannot be known for sure until products ar-
rive on the market. Figures 6.6(A) and (B), are similar to Figure 6.4 in that they
have a Fast-Wake time of 250ns, and they show the energy and performance trade-
offs for Level-0 links. However, unlike Figure 6.4, Figures 6.6(A) and (B) model the
power during Fast-Wake to be 40% and 80%, respectively, compared to when the link
is active. In Figure 6.6(A), where Shallow-Sleep only consumes 40% energy, a higher
energy to performance trade-offs can be observed compared to Shallow-Sleep with
60% shown in Figure 6.4. Note that for a given performance overhead of 1%, the link
energy savings for GROMACS increases from 15% (with 60% Shallow-Sleep as seen
in Figure 6.4) to about 25%. These benefits indicate that a number of points in the
Pareto-optimal curve have Stall-Timer values configured so that the link spends signifi-
cant time in Shallow-Sleep. Consuming lower energy during Fast-Wake’s Shallow-Sleep
therefore contributes to significantly higher link energy savings. In Figure 6.6(B), how-
ever, where the power consumption in Shallow-Sleep is 80%, the curve is similar to
Deep-Sleep only.

In Figure 6.6(C) the Shallow-Sleep energy consumption is modeled back to 60%,
but the Fast-Wake time is modeled to be 500ns, instead of 250ns (used in all previous
figures). Fast-Wake with 1 µs and 2 µs was also investigated. As expected, the results
with other values of Fast-Wake time show that the gap between the two curves of the
Pareto-optimality study, reduces, as the Fast-Wake time increases. Since Deep-Sleep
requires 4.48 µs, increasing Fast-Wake time towards 4.48 µs, tends to make Fast-Wake
closer to that of Deep-Sleep. However, between 250ns and 500ns, only a small reduc-
tion in energy savings or performance compared to Figure 6.4 can be seen. It is con-
ceivable that a higher wake-up time for Fast-Wake could allow for more components to
be turned off, further reducing its energy consumption.
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(B) Figure 6.4 with Link at 80% energy in shallow-sleep
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Figure 6.6: Fast-Wake analysis on link energy consumption and link wake-up time
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between Shallow-Sleep and Deep-Sleep

6.7 Ratio of energy savings between Fast-Wake and Deep-
Sleep

Figure 6.7, shows the proportion of energy savings from Fast-Wake and Deep-Sleep re-
spectively. The figure shows a scatter plot of points obtained from the Pareto-optimal
curve in Figure 6.4 for each corresponding application. The x-axis shows the propor-
tion of energy savings obtained while the application is in Shallow-Sleep and the y-axis
shows the proportion in Deep-Sleep. The size of the scatter point is proportional to its
performance overhead, where larger points represent a higher overhead.

Figure 6.7, application NAMD, for example, shows that the higher the energy sav-
ings from Deep-Sleep, the higher the performance overhead. The size of the scatter
points reduces with the reduction in overhead, as the contribution of energy savings
from Deep-Sleep reduces. Reduced energy savings from Deep-Sleep also means that
the total interconnect energy increases, due to higher Stall-Timer values. The same be-
havior can be seen with Shallow-Sleep where overhead correspondingly reduces with a
reduction in energy savings from Shallow-Sleep. It is interesting to see that Stall-Timer
values correspond to points in Figure 6.7. Choosing the correct Stall-Timers is critical
to maximizing energy savings and reducing overheads.
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6.8 Conclusions

This chapter presents an analysis of Fast-Wake for HPC workloads, examining its poten-
tial for energy savings and possible performance overheads. This analysis showed that
using both an hybrid approach with both Fast-Wake and Deep-Sleep offers higher en-
ergy savings in links with lower average performance overhead than their use as stan-
dalone mechanisms. This work also showed that for optimal energy and performance,
the corresponding Stall-Timers of Fast-Wake and Deep-Sleep must be chosen carefully.
Further, higher network layers are shown to benefit more from the use of the hybrid
approach compared to edge links. With the ratification of Fast-Wake in March 2014 and
2015 for 40/100Gb Ethernet, and the ongoing standardization effort for 400Gb Ether-
net, this analysis could could help HPC interconnect vendors build Ethernet solutions
that integrate Fast-Wake.



Chapter 7
Double PerfBound: PerfBound on

Fast-Wake

The previous chapter presented an analysis of Fast-Wake, this chapter presents Dou-
blePerfBound - an approach that uses PerfBound for performance-aware energy savings
with Fast-Wake.

7.1 Summary

In extending EEE beyond 10Gbit/s, an additional sleep state, known as Fast-Wake, was
added, in order to trade higher energy consumption for a faster wake-up time. The
previous chapter showed that a combination of Fast-Wake and the original Deep-Sleep
together delivered a better performance–energy trade-off than either on its own, with
up to 20% higher energy savings at the same performance overhead. The key to these
higher energy savings however is in finding two different Stall-Timers on or below the
Pareto-optimal curve. This is hard since the optimal Stall-Timers vary for every appli-
cation. The challenge here is further compounded by the fact that with Fast-Wake, now
two Stall-Timers require dynamic adjustment over a two-dimensional search space,
while the original PerfBound with Deep-Sleep only required one.

This chapter introduces DoublePerfBound, a self- contained technique to manage
Fast-Wake + Deep-Sleep to minimize energy subject to a bound on the performance
degradation. The algorithm dynamically switches between active, Fast-Wake and Deep-
Sleep modes, adapting to application characteristics. The key to achieving low perfor-
mance overhead, as discussed in Chapter 5 that discusses PerfBound, is to ensure that
not too many frames incur a link wake-up delay. Just as in PerfBound, the approach to
lower performance overhead here is to use the Stall-Timer, in keeping the link on for
a period after transmitting a frame, so that any subsequent frames can be transmitted
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without incurring a wake-up delay. With a single sleep mode, as in PerfBound, chang-
ing the Stall-Timer either increases execution time and decreases energy consumption,
or vice- versa. This gives a simple trade-off between performance and energy. In this
case, for a given performance overhead bound, the Stall-Timer with the highest en-
ergy savings is the smallest value that respects the bound. With two sleep modes, each
sleep mode has its own independent Stall-Timer, and varying these values gives a two-
dimensional search space. Not only is this much larger than in the one-dimensional
case, but a given performance overhead now translates to a curve of Stall-Timer pairs,
each with the same performance overhead, but a different energy consumption. Find-
ing the optimal solution can only be done based on an estimate of the energy consump-
tion. This is a much more complex problem, but as we show, it can be solved using the
relatively inexpensive DoublePerfBound algorithm.

The contributions and novelty of this chapter are as follows:

1. This work introduces DoublePerfBound, a novel algorithm that manages the Stall-
Timers of both Fast-Wake and Deep-Sleep, maximising energy consumption sub-
ject to a performance overhead bound. DoublePerfBound is self- contained and
does not require any changes to applications and only uses information available
at the NICs and switches. Furthermore, it does not introduce additional commu-
nication messages and is compatible with multi-hop networks. The evaluation of
DoublePerfBound shows that heuristic finds Pareto- optimal performance–energy
points and saves up to 70% link energy. This work also compares DoublePerf-
Bound with the previous proposal PerfBound 5, that controls a single Stall-Timer,
and shows, on average, 10% better EDP.

2. This work presents a low-complexity feed-forward control mechanism that im-
proves the accuracy of PerfBound and in extension DoublePerfBound in finding
Stall-Timers closer the given performance overhead bound.

7.2 Motivation

DoublePerfBound automatically adjusts two stall-timers subject to a bound on perfor-
mance overhead. Analysis of stall-timers for multiple link sleep states discussed in the
previous chapter shows its benefits. The previous chapter however does not provide
a mechanism for automatically controlling two stall- timers such that Pareto-optimal
energy–performance can be achieved.
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This section briefly discusses relevant information from the previous work presented
in Chapters 4, 5 and 6 to show how DoublePerfBound extends from the above results.
The methodology and experimental setup of this chapter is identical to the previous
chapter except for DoublePerfBound modeled within EEE enabled links that control
the stall-timers, as opposed to the static control of the previous chapter.

From the previous chapters, the following key attributes of HPC application behav-
ior on on/off based links is clear. First, increase in Stall-Timer values causes a decrease
in execution time and increase in link energy. This is obvious since Stall-Timer causes
links to remain on for longer durations after turning idle, and hence they delay fewer
messages and thereby reduce overheads, but increase link energy. However, for a given
Stall-Timer, there are large differences in trade-offs for each application with regard to
energy and performance. Second, as presented in chapter 6, some applications benefit
more from either using Fast-Wake or only Deep-Sleep, i.e., they have lower perfor-
mance overhead and higher energy savings with only either one of them. Analysis
presented in chapter 6 clearly makes a case for using a combined approach, in using
both Deep-Sleep and Fast-Wake.

Figure 7.1 shows the energy–execution time trade-off for the hybrid scheme. Fig-
ure 7.1 is obtained from the results presented in the previous chapter. As in the previous
chapter, the x-axis is execution time and the y-axis is average link energy (both nor-
malized to non-EEE). The blue line is for Deep-Sleep only, and is a one- dimensional
sweep of the single Stall- Timer. The scatter plot is an exhaustive search for the hybrid
Fast- Wake + Deep-Sleep scheme, covering the two-dimensional space given by the two
Stall- Timers. The dark line connects the Pareto-optimal points from the scatter plot,
which are roughly the points with lowest energy consumption for a given performance
overhead.

Figure 7.1 presents results for three applications as motivation but results of all ap-
plications compared to that of the proposed technique DoublePerfBound is presented in
Section 7.5. Figure 7.1 can be used to identify the following conclusions of the previous
work, first, applications benefit from 5% to 20% with the use of the hybrid Fast-Wake +
Deep-Sleep as opposed to only using Deep-Sleep. Second, this benefit is only possible if
the right stall-timers are chosen, since, as seen in ALYA and SP, many combinations of
stall-timers can make the performance and energy significantly worse than even Deep-
Sleep. A bad choice of stall-timer for ALYA could result in up to 20% higher energy
consumption compared to the Pareto-optimal curve, and 15% worse than Deep-Sleep.

In summary, while significant energy savings are available from using Deep- Sleep



7.3. RELATING LINK WAKE-UPS TO THE STALL-TIMER 84

1.00
1.01
1.02
1.03
1.04
1.05

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
al

iz
ed

 L
in

k 
E

n
er

g
y

ALYA

1.00
1.01
1.02
1.03
1.04
1.05

Normalized Execution Time

SP

1.00
1.01
1.02
1.03
1.04
1.05

GROMACS

Deep-Sleep+Stall-Timer
Pareto Optimal (Deep-Sleep+Fast-Wake+2-Stall-Timers)
Exhaustive Search Deep-Sleep+Fast-Wake+2-Stall-Timers

Figure 7.1: Pareto-optimal analysis of performance/energy using both Deep-Sleep and
Fast-Wake vs. only using Deep-Sleep with Stall-Timers

and Fast-Wake, Stall-Timers must be carefully chosen. This is not obvious since optimal
values are application-dependent, and cover a two- dimensional space that includes
points that are far from Pareto optimal. Moreover, for a given performance overhead
there are many choices of stall- timer pairs, each consuming different amounts of en-
ergy. Hence, finding the Pareto–optimal solution can only be done based on an estimate
of the energy consumption. The following sections show how DoublePerfBound auto-
matically finds optimal stall-timer pairs for a given performance overhead bound such
that energy consumption is at its the lowest.

7.3 Relating link wake-ups to the Stall-Timer

Section 7.4 will discuss the DoublePerfBound scheme that adjusts Stall-Timers to min-
imise energy subject to a bound on the performance overhead. Doing this requires that
the performance overhead is actually known at runtime, which is in general difficult.
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PerfBound, as discussed in Chapter 5, however, has shown, that the performance over-
head introduced by link wake-ups is approximately proportional to the number of times
that the link is switched off then back on. This is an approximation that does not track
dependency chains among nodes, which would determine whether the introduced de-
lays are on the critical path or not. Tracking dependency chains would require either
that the user or compiler modifies or annotates the application, or that additional mes-
sages are sent at run time and monitored by the NICs and switches. Both approaches
add complexity, and as previously argued, such a proposal would be unlikely to be
adopted in practice. This work follows along the same lines as PerfBound because, on
balance, as seen in the Section 7.5, it gives the right compromise.

Below is a brief summery of relevant information from PerfBound. The previous
PerfBound algorithm was proposed adjust a single Stall-Timer such that maximum en-
ergy savings could be achieved, while bounding the performance overhead. PerfBound
first relates the given performance bound to the number of messages that can be per-
mitted to incur wake-up delays. Secondly, it adjusts a single Stall-Timer value using a
histogram in order to delay this target number of messages.

For DoublePerfBound, the same calculation from PerfBound for the maximum num-
ber of messages to delay is used. As in PerfBound, the overhead is assumed to come
only from delayed messages, so the maximum number of them that can be tolerated,
within a bound of B%, in a period of length X is lX/TW, where TW is the wakeup delay
and l = 0.01B is the percentage overhead as a fraction. As X increases over time, the
number of messages that can be delayed increases in proportion.

For multi-hop networks, the extension to PerfBound, the PerfBoundRatio essentially
calculates a local performance bound to apply at the link, replacing the original (global)
performance bound. The local bound depends only on information already available
locally at the switch. A global performance bound of 1% could therefore be translated
to a local bound of say B = 0.3% at a particular link.

7.4 DoublePerfBound: Fast-Wake + PerfBound

This section introduces DoublePerfBound, a self-contained technique to manage hybrid
Fast-Wake + Deep-Sleep, optimizing energy subject to a bound on the performance
degradation. The motivation for DoublePerfBound, as outlined in Section 7.2, comes
from benefits in using an hybrid Deep-Sleep + Fast-Wake approach and their need for



7.4. DOUBLEPERFBOUND: FAST-WAKE + PERFBOUND 86

optimal Stall- Timers. This chapter presents and describes DoublePerfBound from its
behavior at a single link however the multi-hop network extension of PerfBound, its
PerfBoundRatio is directly applicable. The results section present results with ideas
from PerfBoundRatio integrated even though the following discussion focuses on a sin-
gle link.

7.4.1 Single Stall-Timer case

The previously mentioned PerfBound heuristic discusses how a target number of de-
layed messages can be mapped to a single Stall-Timer value. This is done using a his-
togram that records for each link, the lengths of their idle periods1 A snapshot of this
idle period histogram for application BT is shown in Figure 7.2(A). The histogram is
updated after every message or frame on a link, by inserting the length of the previous
idle period. It therefore represents the distribution of inter-message idle periods.

The Stall-Timer is adjusted to selectively delay only the longest idle periods, in or-
der to get the greatest energy savings for a fixed number of wakeups. Its value is found
by searching from the right-hand side of the histogram, starting from the longest idle
period, until the target number of messages has been counted. If the histogram has
been collected for a total time X, the link’s local performance bound is l, and the time
to wake from Deep-Sleep is TW, then Section 7.3 gave the number of messages to delay
as ND = lX/TW. The Stall-Timer is the midpoint of the smallest bin with at most ND

messages in all bins to the right. As indicated in Figure 7.2(A), only intervals longer
than the Stall- Timer, which appear on the right-hand side of the histogram, benefit
from energy savings and incur wake-up overheads.

7.4.2 Extending PerfBound to hybrid Fast-Wake + Deep-Sleep

In the case of hybrid Fast-Wake + Deep-Sleep, the number of messages to delay is not
fixed, as it depends on how many messages cause a wake from Fast-Wake, each incur-
ring a delay of TFW, and how many wake from Deep-Sleep, each incurring a delay of
TDS. The first step should therefore identify the total of the wakeup times, TD = lX,
rather than the number of messages to delay, ND.

1 After active transmission of all frames in the frame- buffer, links remain idle awaiting new frames
for transmission. This duration of inactivity is termed an "idle link period".
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Figure 7.2: Idle period histograms for Application BT, illustrating effect of Stall-Timer
placement on link delay and energy savings

Figure 7.2(B) shows how the idle period histogram is used by DoublePerfBound.
Instead of a single Stall-Timer, the algorithm must determine two, Stall-to-Shallow and
Stall-to-Deep. Similarly to Figure 7.2(A), the left of the histogram has short idle inter-
vals, of length less than Stall-to-Shallow, during which the link remains active, at 100%
power, and there is no wake-up penalty. In the middle of the histogram are intervals
larger than Stall-to-Shallow but less than Stall-to-Deep, during which the link (even-
tually) enters Shallow-Sleep, consuming 60% power but later incurring a Fast-Wake
penalty of TFW. The right of the histogram has intervals longer than Stall-to-Deep, dur-
ing which the link enters Deep-Sleep, consuming just 10% power but later incurring
the full penalty of TDS.

The search for the optimal pair of Stall-Timer values is illustrated in Figure 7.3.
The two-dimensional space on the left of the figure contains all potential pairs of Stall-
Timer values. Only the pairs in the lower-right triangle are valid, since Stall-to-Shallow
must always be less than or equal to Stall-to-Deep. The (pink) region in the lower-
left contains valid Stall-Timer pairs that should be excluded because the estimated
performance overhead is greater than the link’s local performance bound, l. The algo-
rithm then chooses the acceptable solution with the greatest estimated energy savings.
As indicated at the right, and explained in detail below, the performance overhead
and energy savings are estimated using histograms derived from that of Figure 7.2(B).
Also, two “monotonicity” properties, also described below, mean that the search is one
dimensional, not two, and this is suggested by the (green) arrow.
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Figure 7.3: Stall-Timer search logic of DoublePerfBound; (1) Idle period histogram
used to find possible solutions and (2) for each possible solution, energy histogram is
used to find lowest energy solution

The performance overhead is estimated using the idle period histogram of Fig-
ure 7.2(B), illustrated at the bottom- right of Figure 7.3 and marked (1). Given the two
Stall-Timer values, the histogram is used to determine the number of idle periods that
are followed by a Fast-Wake, denoted MFW, and the number of idle periods followed by
a Full-Wake, denotedMDS. The estimated overhead is then Toverh =MFW·TFW+MDS·TDS.
The first step of DoublePerfBound calculated the total acceptable wakeup time as
TD = lX, so the Stall-Timer pair is excluded whenever this bound is exceeded; i.e. if
Toverh > TD. Otherwise, the pair of Stall- Timers give an acceptable solution, although
it may not be optimal in terms of energy.

The energy savings are estimated as shown at the top-right of Figure 7.3 and marked
(2). This step is done using the energy histogram, which measures the total idle time
in each bin, and is proportional to the energy savings, rather than the idle period his-
togram, which measures the number of idle intervals in the bin, and was proportional
to the performance overhead. In fact, instead of separately collecting the energy his-
togram, we found that it was sufficient to approximate it from the idle period histogram
in Figure 7.2(B), simply by multiplying the number of idle periods in each bin by the
mid-point of the bin. If IFW is the total idle time in idle periods followed by a Full-Wake,
determined from the energy histogram, and IDS is the total idle time in idle periods fol-
lowed by a Deep-Sleep, also from the histogram, then the energy savings are estimated
to be Esav =

40
100
IFW + 90

100
IDS.
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Algorithm 1 DoublePerfBound search algorithm

BD = DMAX . Stall-to-Deep bin index
BS = 0 . Stall-to-Shallow bin index
EBEST = 0 . Best energy savings so far
BBEST = (BD, BS) . Best Stall-Timers so far
do

Calculate Toverh and Esav

if Toverh < TD then . Acceptable, so Move left
if Esav > EBEST then

EBEST = Esav

BBEST = (BD, BS)
end if
BD = BD − 1

else . Rejected, so Move up
BS = BS + 1

end if
while BS ≤ BD

return BBEST

Combining the above, the optimal pair of Stall-Timers is chosen to maximise Esav

subject to Toverh ≤ TD, and this can be naively done using a two-dimensional search
over all pairs of valid Stall-Timers.

The optimised one-dimensional search is given in Algorithm 1. This algorithm ma-
nipulates the bin indexes for the two Stall-Timers, labelled BD and BS, rather than the
Stall-Timers themselves. It starts with Stall-to-Deep at its maximum value (BD = DMAX)
and Stall-to-Shallow at zero (BS = 0). Whenever the performance overheads are ac-
ceptable, then the best energy savings is updated if necessary, and Stall-to-Deep is re-
duced (by decrementing BD), moving to the left in Figure 7.3. If the overheads are too
high, then Stall-to-Shallow is increased (by incrementing BS), moving up. The algo-
rithm terminates when the Stall-Timers cross, which is when the solution enters the in-
valid upper-left triangle in Figure 7.3. Since it is always true that 0 ≤ BS ≤ BD ≤ DMAX,
both Stall-Timers stay in bounds.

This algorithm can be proved to be correct, using two “monotonicity” properties.
These are easier stated if the values of Stall-to-Shallow and Stall-to-Deep are abbrevi-
ated as SS and SD, respectively. Firstly, if (SD, SS) is excluded because the overhead is
too high, then clearly all (S ′

D, S
′
S) with S ′

D ≤ SD and S ′
S ≤ SS have smaller Stall-Timers,

and therefore larger overheads, so they must be excluded also. Secondly, if (SD, SS)

has acceptable overheads and the energy savings have been estimated, then all (S ′
D, S

′
S)

with S ′
D ≥ SD and S ′

S ≥ SS have larger Stall-Timers, and therefore smaller energy
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savings, so they cannot be closer to optimal.2

Using these properties, the algorithm can be shown to be equivalent to scanning
the two-dimensional space in Figure 7.3, starting from the lower-right, and moving
right-to-left then bottom-to-top, excluding pairs that do not need to be checked due to
the monotonicity relationships. When a pair is rejected because the performance over-
heads are unacceptable, then performance monotonicity implies that all values to the
left can be ignored, as the performance overheads will also be unacceptable. Moreover,
all values one row up and strictly to the right can also be excluded due to energy mono-
tonicity applied to the previously visited Stall-Timer pair. Hence the next potentially
optimal pair of Stall-Timers is found by moving up.

Since BD − BS starts at DMAX, and it decreases by one in each iteration of the loop,
the number of iterations is simply DMAX. This is the same as the worst case for the
original PerfBound, though maybe twice its average case. It is also worth noting that
it is not necessary to recalculate Toverh and Esav from scratch on each iteration, since,
each iteration, only the contributions from a single bin are changed. This optimization
is not included in Algorithm 1 for the sake of simplicity, though it is the reason why
Esav is calculated every iteration instead of only when needed.

7.4.3 Stall-Timer Error Correction

This section describes a low-complexity feed-forward control mechanism that improves
the accuracy of PerfBound and in extension of DoublePerfBound in reaching a target
performance overhead bound. As described above, PerfBound translates its perfor-
mance overhead bound to a target number of messages that are allowed to be delayed
and then chooses Stall-Timers to match this target. Although the algorithm is reason-
ably accurate, the target messages that can be delayed does not always exactly match
the actual messages delayed, as observed at the links. This is mainly because of the
discrete nature of histograms. In particular, the Stall-Timers are always chosen to be at
a mid-point of one of the bins. Increasing the number of bins reduces the error, at the
cost of increased computation time.

Figure 7.4 (A) illustrates this tracking error, for application BT. The dashed black

2The phrase “has acceptable overheads” is necessary because when the overheads are large, increas-
ing Stall-Timers may actually save energy indirectly through a decrease in execution time.
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Figure 7.4: Stall-Timer Error Correction and #Target messages to actual messages de-
layed by PerfBound and DoublePerfBound for BT

line is the target number of delayed messages, and the yellow line is the actual num-
ber of messages delayed by PerfBound. As seen, there is a consistent error of about
20%, with the actual number of delayed messages lower then the target, meaning that
PerfBound achieves lower energy savings than it could have. This tracking error was
similarly observed in other examined applications.

Figure 7.4 (B) plots error difference between actual messages delayed and target
messages delayed as presented in Figure 7.4 (A). Here, zero represents no deviation
between target and actual messages delayed. It is clear from Figure 7.4 (B) that this
deviation increases without bound for the previous PerfBound (in red).

This is solved with the use of simple feed-forward controller that monitors the dif-
ference between the actual and target numbers of delayed messages. If this difference
exceeds an arbitrary but fixed value of twenty messages, it applies an offset to the
Deep-Sleep Stall-Timer to force the difference towards zero. In Figure 7.4(A), the red
line is the number of messages delayed after this error correction and in Figure 7.4(B),
the red line shows the deviation from the target. As shown, the error after correction
stays close to zero.
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7.5 Results

The performance–energy trade-offs for the DoublePerfBound algorithm are shown in
Figure 7.5. These results were obtained using the methodology and applications de-
scribed in the methodology section of Chapter 6. For each application, the x-axis is the
execution time and the y-axis is the average link energy, both normalized to the corre-
sponding values for an always-on network. In these plots, moving down and/or left is
preferred, since this corresponds to decreasing energy and/or improving performance,
respectively. In practice, the mechanism offers a trade-off between performance and
energy; hence the curves.

The baseline results are as follows. The dashed blue line is a static sweep of a single
Stall-Timer, and the large yellow triangle is the result from PerfBound, configured for
a performance overhead of 1%. The smaller yellow triangles are results for PerfBound
configured for performance overheads of 0.5%, 2%, 3% and 4%.

The Fast-Wake results are as follows. The dashed black line is the Pareto-optimal
curve from an exhaustive static search over all pairs of Stall-Timers, obtained as ex-
plained in the description of Figure 7.1. Finally, the large red square is the result from
DoublePerfBound configured for a performance overhead of 1%. The small red squares
are obtained by varying the performance overhead parameter as above. This section
focuses on discussing the 1% performance overhead configurations, which were high-
lighted by the larger points. The conclusions from the other configurations are similar.

The first observation from Figure 7.5 is for ten of the fourteen applications, Dou-
blePerfBound finds a result on or below the static Pareto-optimal curve. Specifi-
cally, the DoublePerfBound curve overlaps the static Pareto-optimal curve. Applications
SP and MILC has DoublePerfBound values below the Pareto-optimal curve, indicating
higher energy and lower performance overheads than obtainable with a sweep. The
reason for this is that all links of a sweep are all a configured to a single fixed Stall-
Timer. An ideal sweep would vary for all links all possible Stall-Timers, but this would
have translated to an enormous number of simulations so it was not feasible. Since
PerfBound and DoublePerfBound are independent and local to each link, the heuris-
tics naturally configure different Stall-Timers for each link, depending on locally visible
traffic and can thus be better than the sweeps.
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In Figure 7.5, for a 1% overhead, SP shows about 20% improvement in energy
from DoublePerfBound. This was the dangerous example discussed in Section 7.2, for
which the Stall- Timer speed contains values far from the Pareto-optimal curve. Dou-
blePerfBound for SP has its value on the Pareto-optimal curve itself. Similarly, BT and
MILC also show high energy savings from DoublePerfBound. The possible 5% higher
energy saving potential observed for MG is captured by DoublePerfBound. For appli-
cation ALYA however only 2% is saved from its possible 5%. Although even ALYA, for
performance overheads larger than 1%, have DoublePerfBound values overlapping the
Pareto-optimal curve. Section 7.2, specifically discusses ALYA for its many combina-
tions of possible Stall-Timer values that are significantly worse than the Pareto-optimal
curve or even the Deep-Sleep sweep. To this end, for ALYA, both DoublePerfBound and
PerfBound have nearly optimal energy to configured performance overheads. Similar
to ALYA and MG are applications, CG, WRF and GROMACS with the similar 5% im-
provement in energy savings. Some applications, specifically GADGET, LINPACK and
QUANTUM, have no opportunity to obtain energy savings from Fast-Wake. Therefore,
for the three applications where Fast-Wake offers no additional energy savings, Dou-
blePerfBound found the same Pareto-optimal solution as PerfBound.

Figure 7.5 also presents the accuracy of DoublePerfBound in maintaining its con-
figured performance overhead bound. For twelve out of fourteen applications, the
deviation from the configured performance overhead was less than 1%. This error
is potentially due to the inherent application behavior. For example, when an applica-
tion ends immediately after a network long idle period, with no further messages, an
opportunity to delay messages is lost. This is because, with the PerfBound heuristic,
the number of messages delayed and in extension incurred performance overhead is
proportional to time. A large idle period introduces time that could potentially be used
to delay more messages for energy savings. This however cannot be exploited if the
application immediately ends with no new impending messages. Hence in this scenario
expected overhead is slightly lower than the configured overhead bound. Similarly a
large burst of messages towards the end of an application, could introduce many de-
layed messages, and may not give the heuristic time to react or adjust its Stall-Timers
to correspondingly control overheads caused by the same. This may cause a small in-
crease in overhead compared to the bound. Two applications, specifically NAMD and
LU have higher overhead than the configured bound but still is less than 5% for the
configured 1% bound. These applications have high inter-message dependencies that
PerfBound does not account for in its calculation.
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Figure 7.6: Energy Delay Product obtained from Figure 7.5

Out of fourteen, DoublePerfBound saves 70% energy for six applications and 40-
70% for another six, with a performance overhead bounded to only 1%. The two ap-
plications that have lower than 40% energy saving, LU and GROMACS both have high
network usage. GROMACS in specific is also latency sensitive and a bad choice of Stall-
Timers have the potential for large performance overheads. While DoublePerfBound
does not save energy when the opportunity is limited, it still bounds performance over-
heads.

Figure 7.6 shows for the energy–delay product (EDP) for all points in Figure 7.5
with applications configured at a 1% performance overhead bound. On average Dou-
blePerfBound has EDP 10% better than PerfBound.

7.5.1 Discussion

This thesis assumes the possibility of having PerfBound/Double PerfBound implemented
within each NIC. A brief hardware requirement/feasibility discussion is presented be-
low. The Double PerfBound heuristic itself requires two histograms, hardware counters
and a simple 1-pass logic as discussed in Section 7.4. The histograms were set to
only 100 bins and since analyzes on larger histograms did not show any major ben-
efit. All idle periods below 1us were ignored, i.e., the algorithm is not invoked since
stall- timers operate at hundreds of microsecond values. In calculating stall- timers,
the heuristic decides when to turn off the link and this is not time critical. A simple
hardware logic could compute the stall- timers in few hundred cycles but the decisions
are only required in microsecond ranges, making the overhead of this heuristic very
low. Furthermore since the the heuristic is not time critical, it can implemented over
slower but power efficient hardware.
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7.6 Conclusions

Energy consumption is a key challenge in high-performance computing, but the pri-
mary goal will continue to be performance. Mechanisms to reduce system energy con-
sumption will, therefore, only be employed if the impact on performance is known
and small. Switches and NICs implementing the new Energy Efficient Ethernet stan-
dards, with support for Fast-Wake, will soon be deployed in HPC systems, but, without
continued investigation, these features will likely be disabled by default.

This chapter introduced DoublePerfBound, a self-contained technique to manage
hybrid Fast-Wake + Deep-Sleep to minimise the interconnect link energy consumption,
subject to a bound on the performance degradation. DoublePerfBound was evaluated
using traces from a production supercomputer and for twelve of fourteen applications,
DoublePerfBound finds a result on or below the static Pareto-optimal curve. Overall,
DoublePerfBound achieves an energy–delay product 10% better than the single stall-
timer PerfBound technique. No changes are required to the application, and, since
it uses only local information already available at the switches and NICs, there is no
additional communication. It is also compatible with multi-hop networks. With the
ratification of Fast-Wake in March 2014 and 2015 for 40/100Gb Ethernet, and the
ongoing standardization effort for 400Gb Ethernet, this work could help interconnect
vendors to build Fast-Wake into energy-efficient switches and NICs that target HPC.



Chapter 8
Conclusions

The field of HPC has become increasingly concerned by power consumption and en-
ergy efficiency. This is especially true in the design of future Exa-scale systems, which
will only be practicable through a dramatic improvement in energy efficiency. Succes-
sive technological advances in micro-architecture and process technology have not only
sustained tremendous performance scaling, but have also considerably increased per-
formance per watt. With energy optimized processors and memory, attention is moving
towards the interconnect.

High performance interconnects consume a significant portion of system energy.
Typical interconnects consume up to 12% of the total system energy at full load and
more when the application does not fully utilize the CPU and memory. Interconnects,
in particular, are not energy efficient because their links, which consume up to 65% of
the total interconnect power, are essentially always-on, consuming energy even when
idle. Links traditionally remain always- on, continually transmitting signals, for link
alignment and synchronization. Advances in energy proportionality of compute and
memory elements further increases the proportion of system energy by interconnects.

Recognizing the need for energy proportional interconnects, the IEEE 802.3az En-
ergy Efficient Ethernet (EEE) standard was ratified providing specifications to turn off
links during periods of inactivity. While the standard provides mechanisms to turn on
and off links, the mechanisms that govern power management are vendor specific and
are an active area of research. Although Ethernet switches with EEE currently exist in
the market, HPC vendors typically do not enable energy savings mechanisms due to
their largely unknown effect on performance.

This thesis is among the first to evaluate the IEEE 802.3az Energy Efficient Ether-
net (EEE) standard for its potential use in HPC. The results showed that while EEE
promised energy savings, its wake-up delay results in performance degradation for la-
tency sensitive applications. To control performance overheads, Stall-Timer or Power-
Down Threshold as a mechanism was shown to reduce overhead while still ensuring
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significant energy savings. One problem with Stall-Timers however is that they are
application dependent, each with its own optimal value.

PerfBound as a solution was discussed to mitigate this issue. PerfBound automati-
cally adjusts the Stall-Timer such that maximum energy savings can be obtained while
bounding performance overhead. PerfBound is a self–contained mechanism that does
not require any changes to the application and only uses information locally present in
NICs and hence no additional communication is added.

This thesis further discusses an addition to EEE, Fast-Wake an intermediate link
state. Evaluation of Fast-Wake showed that a hybrid approach with both Fast-Wake and
Deep-Sleep showed higher energy savings as opposed using only either of them alone.
This opportunity for higher energy savings can only be obtained with careful adjust-
ment of the two Stall-Timers of Deep-Sleep and Fast-Wake respectively. An extension
from PerfBound, DoublePerfBound was proposed, that which finds Pareto-optimal so-
lutions with regard to energy– performance.

Combined these proposed techniques and evaluation make a strong case for the use
of EEE and similar energy saving mechanisms in HPC links. The results presented in
this thesis show that up to 70% of the link energy can be saved with these mechanisms
with only a 1% performance overhead. With the ratification of Fast-Wake in March
2014 and 2015 for 40/100Gb Ethernet, and the ongoing standardization effort for
400Gb Ethernet, this thesis could help interconnect vendors to build EEE into energy-
efficient switches and NICs that target HPC.

8.1 General discussion and Potential extensions

Multiple application traffic flows: This thesis presented results evaluating a single
application per simulation but in actual HPC systems many 10s or 100s of applications
may execute at a given time with complex traffic in the network. In regards to this, note
that for in any indirect network, edge links between a node and a lowest-level switch
are only ever used by one application. In multi-level networks typical of Ethernet, e.g.
fat trees, since jobs are generally scheduled to groups of adjacent nodes, we believe
that relatively few higher-level links see traffic from multiple applications.

Furthermore, the proposed algorithm in bounding performance overheads, would
in fact work well in the case of concurrent applications. The 1% bound is still respected,
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for each application separately, but the energy savings on the (few) shared links is
somewhat conservative. To see this, imagine that a particular link is shared between
application A and application B. Then the heuristic introduces wakeup overheads that
total at most 1% of the elapsed time. The heuristic does not distinguish the messages
of application A from those of application B, so these overheads are divided among the
applications in some way; e.g. 0.3% on A and 0.7% on B. Since the total overhead is still
1%, both applications necessarily have overhead <= 1%. A more aggressive algorithm
could push the overhead to 1% on each application, to achieve greater energy savings
on the shared links. Since we observed that the number of shared links is small, this
was seen as a small optimization that would not be worth the extra complexity.

A possible extension of this work could be to extend the PerfBound heuristic to adapt
to multiple application flows. This may particularly useful for higher level network
links that may have shared links where traffic flow from multiple applications can make
PerfBound take a conservative approach.

Routing and Topology in EEE: This thesis discussed Energy Efficient Ethernet over
static routing and a fat-tree based hierarchical network topology. Different adapta-
tions of EEE may be required for specific topologies and routing techniques. It is still
important however to restrict performance overheads and build techniques similar to
PerfBound in ensuring a bound on overheads. A possible extension of this work could
be in analyzing how PerfBound and/or EEE could be applied to topologies such as Torus
or DragonFly.

Asynchronous communication patterns: The applications discussed in this thesis
showed iterative and predictable communication behavior. There is however an in-
creased push in the community for applications that overlap communication and com-
putation. Having overlapped communication and computation or asynchronous com-
munication comes with various advantages. Firstly, communication overlapped with
computation means waits for messages are reduced and hence performance increases.
Secondly, overlapping communication removes communication from the critical path.
This could make applications more latency tolerant. The use of such communica-
tion models brings about interesting challenges for energy savings. Applications with
overlapped communication and computation phases may have MPI messages spread
throughout the application. Thus traffic patterns could be more sporadic making it
harder to build energy saving heuristics.
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8.2 Work published

[ISPASS 2013] Karthikeyan P. Saravanan, Paul M. Carpenter and Alex Ramirez,
"Power/Performance evaluation of Energy Efficient Ethernet (EEE) for High Performance
Computing" in proceedings of 2013 IEEE International Symposium on Performance
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[ICS 2014] Karthikeyan P. Saravanan, Paul M. Carpenter and Alex Ramirez, "A Per-
formance Perspective on energy efficient HPC links " in proceedings of 28th ACM Interna-
tional Conference on Supercomputing (ICS), 2014 [51]

[ICCD 2015] Karthikeyan P. Saravanan, Paul M. Carpenter and Alex Ramirez, "Ex-
ploring multiple sleep modes in on/off based energy efficient HPC networks" in proceedings
of 33rd IEEE International Conference on Computer Design (ICCD), 2015 [52]
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