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Introduction

This dissertation focuses on the study of functions satisfying certain nonlinear mean
value properties related to the p-Laplace equation. The starting motivation is the classi-
cal mean value property for harmonic functions which plays a relevant role in Geometric
Function Theory and is indeed the fundamental key of the interplay between classical
potential theory, probability and Brownian motion.

In this introduction we summarize the results obtained during our research and we
briefly explain the context in which they have been developed. The detailed proofs –as
well as the background needed to understand them– can be found throughout the three
chapters in which the dissertation is divided.

The results in this memory are essentially part of several papers: Chapter 1 corre-
sponds to the article [AL2], while Chapter 2 contains the results in [AL1] and [AL3].
We want to make special emphasis in the fact that the results in Section 2.5 were partially
proved in [AL1], but the proofs presented here rely in some results obtained later in [AL3]
and are much simpler and direct than in the original article. The papers [AL1], [AL2] and
[AL3] have been done in collaboration and under the supervision of J.G. Llorente, while
Chapter 3 describes the results in the article [AHP] in collaboration with J. Heino and M.
Parviainen.

Harmonic functions and the mean value property

Well known results due to Gauss and Koebe established the connection between har-
monicity and the mean value property. More precisely, in the nineteenth century, Gauss
showed ([Gau]) that a harmonic function u in a domain Ω ⊂ Rn satisfies the mean value
property,

−
ˆ
B(x,r)

u dL = u(x) (1)

for each x ∈ Ω and all 0 < r < dist(x, ∂Ω), where L = Ln denotes the n-dimensional
Lebesgue measure.

A natural question raised by the analysts of the early XX century was the so-called
converse mean value property that asks under what conditions the mean value property (1)
implies harmonicity. The first converse result is a theorem due to Koebe stating that if (1)
holds for a continuous function u ∈ C(Ω) and for each admissible radius, then u is har-
monic in Ω (see [Koe]). More precisely, Koebe’s proof actually shows that the conclusion
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holds under weaker assumptions: if u is a continuous function in Ω ⊂ Rn and for each
x ∈ Ω there is a sequence of radii rk → 0 such that (1) holds for r = rk, then u is harmonic
in Ω.

Another possible extension comes from the formula

∆u(x) = 2(n+ 2) lim
r→0

1

r2

[
−
ˆ
B(x,r)

u dL − u(x)

]
, (2)

which follows essentially from averaging the second order Taylor’s expansion of u at a
neighborhood of x ∈ Ω. This suggests that we can define the laplacian without using
derivatives. In that sense, several works due to Blaschke, Privaloff and Zaremba ([Bla],
[Pri] and [Zar], respectively) characterized harmonicity in the following terms: a contin-
uous function u is harmonic in Ω if and only if it satisfies the so-called asymptotic mean
value property,

−
ˆ
B(x,r)

u dL = u(x) + o(r2) (r → 0)

for each x ∈ Ω.

The results mentioned above require some sort of asymptotic behavior of the contin-
uous functions in order to ensure harmonicity. On the other hand, an alternative gen-
eralization is the so-called restricted mean value property that asks how many radii in (1)
are enough to guarantee harmonicity. In particular, we focus our attention on the sin-
gle radius case: under which conditions on the function u, the domain Ω and the radius
function % = %(x) the restricted mean value property

−
ˆ
B(x,%(x))

u dL = u(x), (3)

for all x ∈ Ω implies harmonicity? One of the most remarkable results in this direction
says that if Ω is bounded, u ∈ C(Ω) and for each x ∈ Ω there is a radius % = %(x) with
0 < % ≤ dist(x, ∂Ω) for which (3) holds, then u is harmonic in Ω. This result was first
proved by Volterra for regular domains in [Vol] and later by Kellogg, who removed the
regularity assumption, in [Kel]. In short, this means that (under appropriate hypothesis)
one just needs a single radius at each point to ensure harmonicity.

Moreover, for Ω = B the unit ball of Rn, Littlewood asked ([Lit]) if the converse mean
value property with an single radius %(x) at each point is also true when the function u is
assumed to be continuous and bounded in Ω instead of continuous up to the boundary
(as it was proved by Volterra and Kellogg). This question remained open for several
decades until it was positively solved by Hansen and Nadirashvili in the 90’s (see [HN1,
HN2]). Furthermore, they showed that the converse is false when n = 2 if we consider
spherical mean values

−
ˆ
∂B(x,%(x))

u dLn−1 = u(x), (4)
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instead of (1) for each x ∈ B ⊂ R2. Indeed, they proved that there exists a bounded
continuous function u in the unit disk satisfying (4) that fails to be harmonic. We refer
the reader to the paper [NT] for a detailed description of this and other results regarding
the mean value property.

Asymptotic nonlinear mean value properties and the p-laplacian

During the last years, some efforts have been devoted to understand what sort of mean
value property should be related to the p-laplacian and the∞-laplacian in the same way
as it happens for the classical laplacian. If 1 < p < ∞, the p-laplacian is the divergence
form operator given by

∆pu : = div(|∇u|p−2∇u).

The equation ∆pu = 0 appears as the Euler-Lagrange equation for the p-norm of the
gradient, and its weak solutions in W 1,p

loc are called p-harmonic by analogy with the case
p = 2, for which we recover the classical laplacian. Suppose that u ∈ C2 and that∇u 6= 0.
Then direct computation gives

∆pu

|∇u|p−2 = ∆u+ (p− 2)∆∞u, (5)

which is sometimes called the normalized p-laplacian and is denoted by ∆N
pu. So, at least

in the smooth case and away from the critical points, the p-laplacian can be understood
as a sort of linear combination of the laplacian and the so-called∞-laplacian1,

∆∞u : = 〈D2u · ∇u
|∇u|

,
∇u
|∇u|

〉 =
1

|∇u|2
n∑

i,j=1

uxiuxjuxi,xj ,

which is a non-divergence form operator and the choice of its name is justified by the fact
that it is achieved –in a certain way– as limit of the p-laplacian when p → ∞. Indeed,
from equation (5), we see that

∆pu = 0 ⇐⇒ ∆u

p− 2
+ ∆∞u = 0,

and taking limits as p→∞we get ∆∞u = 0. Viscosity solutions of the equation ∆∞u = 0
are called∞-harmonic and they were first studied by Aronsson in the 60’s in connection
to the problem of finding optimal Lipschitz extensions (see [Aro1, Aro2]). Furthermore,
for u ∈ C2 and ∇u 6= 0, it turns out that we can write ∆∞u asymptotically in terms of
mean values similarly to (2),

∆∞u(x) = 2 lim
r→0

1

r2

[
1

2

(
sup
B(x,r)

u+ inf
B(x,r)

u

)
− u(x)

]
. (6)

1Some authors call this the normalized∞-laplacian while they define ∆∞u = 〈D2u · ∇u,∇u〉. Since for
our purposes it is not needed to distinguish between this two definitions, we prefer to state it in this way.
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Combination of formulas (2) and (6) together with (5) suggests the following tentative
asymptotic p-mean value property related to the p-laplacian:

p− 2

n+ p
· 1

2

(
sup
B(x,r)

u+ inf
B(x,r)

u

)
+
n+ 2

n+ p
−
ˆ
B(x,r)

u dL = u(x) + o(r2) (r → 0). (7)

It turns out that, for a function u ∈ C2 such that ∇u(x) 6= 0, the asymptotic expansion
(7) holds if and only if ∆pu(x) = 0. However, since p-harmonic functions are defined
as weak solutions of ∆pu = 0, they are not C2 in general. In fact, as it was proved by
Ural’tseva ([Ura]) and by Lewis ([Lew]), p-harmonic functions belong to C1,γ

loc for some
γ = γ(n, p) ∈ (0, 1). Despite this fact, the authors in [MPR1] showed that any continuous
function satisfying (7) is p-harmonic.

On the other hand, the converse is much more delicate. Indeed, it is known that
p-harmonic functions satisfy (7) in a weak (viscosity) sense (see [JLM] together with
[MPR1]). Thus, the following is an interesting question to pose: do p-harmonic func-
tions satisfy (7)? This is an open question for dimension n ≥ 3, while, for the planar case,
Lindqvist and Manfredi ([LM]) answered the question positively for 1 < p < 9.52 . . . We
dedicate Chapter 1 to show that, in fact, this property holds in the plane for the whole
range 1 < p <∞. This is the first original result presented in this thesis and can be found
in [AL2].

Theorem 1.2. Let Ω ⊂ R2 be a domain and let 1 < p < ∞. Then a function u ∈ C(Ω) is
p-harmonic in Ω if and only if the asymptotic expansion

p− 2

p+ 2
· 1

2

(
sup
B(x,r)

u+ inf
B(x,r)

u

)
+

4

p+ 2
−
ˆ
B(x,r)

u dL = u(x) + o(r2)

holds as r → 0 for each x ∈ Ω.

One of the main advantages of working with 2-dimensional PDE’s is that there are
more available tools –due to the complex structure of the plane– than in the general n-
dimensional space. This is the case of our proof of Theorem 1.2, which relies in a fact
showed by Bojarski and Iwaniec in the 80’s ([BI]): the complex gradient f(x+ iy) = uz =
1
2(ux− iuy) of a p-harmonic function u is a quasiregular mapping. Therefore, we can deal
with p-harmonic functions from a new perspective not available in higher dimensions.

The restricted mean value property and p-harmonious functions

Motivated by the asymptotic expansion (7) for p-harmonic functions, one may ask whether
p-harmonic functions satisfy an analogous version of (3) for p 6= 2 that we call restricted
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p-mean value propety (or simply p-mean value property) and is stated as follows,

α

2

(
sup
Bx

u+ inf
Bx
u

)
+ (1− α) −

ˆ
Bx

u dL = u(x), (8)

for each x ∈ Ω, where

α =
p− 2

n+ p
, (9)

and Bx = B(x, %(x)) with a a certain choice of the radii 0 < %(x) ≤ dist(x, ∂Ω).

Unfortunately, for p 6= 2, p-harmonic functions do not satisfy this restricted version of
the mean value property and a new class of functions arises when we consider solutions
of (8) for p 6= 2. Such solutions are called p-harmonious functions2. As one may expect,
the definition of p-harmonious functions depends on the choice of an admissible radius
function %(x), that is, a positive function % in Ω such that Bx : = B(x, %(x)) is contained in
Ω for each x ∈ Ω. A remarkable case happens when we set p = ∞. Then α = 1 and the
second term in the left-hand side of (8) cancels out, so there is no need of a measure in the
space and we can talk about solutions of (8) in a more general context of metric spaces.
A result in this direction was obtained by Le-Gruyer and Archer in [LA] when Ω ⊂ X is
a domain in a metrically convex compact metric space (X, d). Assuming the 1-Lipschitz
regularity of the admissible radius function %(x), the authors showed that, for any given
continuous function on the boundary f ∈ C(∂Ω), the Dirichlet problem

u(x) =
1

2

(
sup
Bx

u+ inf
Bx
u

)
for x ∈ Ω,

u(x) = f(x) for x ∈ ∂Ω,

has a unique solution u ∈ C(Ω) which was called the harmonious extension of f .

In Chapter 2, we deal with functions satisfying (8) in the more general setting of a
metric measure space (X, d, µ). Thus, for metric measure spaces other than Rn with the
euclidean distance and the Lebesgue measure, it does not make sense to talk about the
p-mean value property since the link (9) between p and α is missing. Instead of that, we
construct an analogous version of (8) as follows: let (X, d, µ) be a proper metric measure
space, Ω ⊂ X a bounded domain and % an admissible radius function in Ω. For α ∈ R,
a function u ∈ C(Ω) is said to satisfy the α-mean value property in Ω (with respect to the
admissible radius function %) if

Tαu = u, (10)

where Tα is the operator defined for functions u ∈ L∞(Ω) by

Tαu(x) : =
α

2

(
sup
Bx

u+ inf
Bx
u

)
+ (1− α)−

ˆ
Bx

u dµ

2The ’p-harmonious’ term was originally used in [MPR2] for denoting (not necessarily continuous) solu-
tions of (8) when the admissible radius functions is constant.
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for each x ∈ Ω. We sometimes refer to functions satisfying this property as generalized
p-harmonious functions. The choice of this name comes from the particular case where
X = Rn, d is de euclidean distance and µ = L is the Lebuesgue measure, in which case
the connection between p-harmonious functions and the α-mean value property has al-
ready been pointed out above.

For a bounded domain Ω ⊂ X, the main goal in this part of the dissertation is to
provide Hölder and Lipschitz regularity estimates for continuous functions satisfying
(10) in Ω, basically depending on the regularity of the admissible radius function % and
the choice of the measure µ. However, the existence part is not discussed here (see Sec-
tion 2.5 where the existence of solutions is proven in Rn with the euclidean distance and
the Lebesgue measure). In order to obtain these regularity results, we need to impose a
regularity assumption on the measure that has received an increasing attention over the
past few years: a metric measure space (X, d, µ) satisfies the δ-annular decay property for
δ ∈ (0, 1] if there exists a constant D ≥ 1 such that

µ(B(x,R) \B(x, r)) ≤ D
(
R− r
R

)δ
µ(B(x,R)),

for each x ∈ X and 0 < r ≤ R. This property was introduced in manifolds by Colding
and Minicozzi ([CM]) and, independently, in metric spaces by Buckley ([Buc]). See also
[BBL] for a local version. It is easy to check that the δ-annular decay property implies the
doubling property. Conversely, in [Buc], it is proved in particular that a geodesic metric
space (X, d, µ) with a doubling measure µ satisfies a δ-annular decay property for some
δ ∈ (0, 1], only depending on the doubling constant.

It is noteworthy to mention that the case α = 0 is interesting enough by itself. In
fact, harmonicity in a metric measure space in connection to the mean value property
was introduced in [GG] and [AGG] in the following way: a locally integrable function
in a domain Ω ⊂ X is said strongly harmonic in Ω if it satisfies the 0-mean value property
in any ball compactly contained in Ω. In particular, the authors in [AGG] proved that,
if (X, d, µ) is a metric measure space satisfying the δ-annular decay property for some
δ ∈ (0, 1], then every bounded and strongly harmonic function u in a domain Ω ⊂ X is
locally δ-Hölder continuous in Ω and, if δ = 1, then u is locally Lipschitz continuous in
Ω.

Our first main regularity result is stronger than in [AGG] in the sense that we do not
require the function u to satisfy the 0-mean value property at each B(x, r) with 0 < r ≤
dist(x, ∂Ω) in order to obtain regularity estimates, and just a single radius %(x) is needed
at each x ∈ Ω, provided that % is a Hölder or Lipschitz continuous function in Ω.

Theorem 2.20. Let (X, d, µ) be a proper metric measure space satisfying the δ-annular decay
property for some δ ∈ (0, 1]. Suppose that Ω ⊂ X is a bounded domain and % is a γ-Hölder
continuous admissible radius function in Ω for some γ ∈ (0, 1]. Then any u ∈ L∞(Ω) verifying
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the 0-mean value property in Ω (w.r.t. %),

−
ˆ
Bx

u dµ = u(x),

for each x ∈ Ω, is locally γδ-Hölder continuous in Ω. In particular, if γ = δ = 1 then u is locally
Lipschitz continuous in Ω.

Furthermore, we also obtain an analogous result for the general case α 6= 0. Note
that we need to introduce certain rigid control of the radius function in order to get the
regularity estimates.

Theorem 2.27. Let (X, d, µ) be a proper geodesic metric measure space satisfying the δ-annular
decay property for some δ ∈ (0, 1] and let Ω ⊂ X be a bounded domain. Suppose that % is a
Lipschitz admissible radius function in Ω with Lipschitz constant L ≥ 1 such that

λdist(x, ∂Ω) ≤ %(x) ≤ εdist(x, ∂Ω),

for all x ∈ Ω, where
0 < λ ≤ ε < 1− L |α| .

Then any u ∈ C(Ω) verifying the α-mean value property (10) in Ω (w.r.t. %) is locally δ-Hölder
continuous in Ω. In particular, if δ = 1 then u is locally Lipschitz continuous in Ω.

In Section 2.5 we return to the original setting X = Rn with d the euclidean distance
and µ = L the Lebesgue measure and we present a proof of the existence and uniqueness
of solutions of the Dirichlet problem for p-harmonious functions. The techniques applied
in this section are much more direct than in [AL1], where we originally proved this theo-
rem in a more particular case.

Our approach to existence for the Dirichlet problem relies on the equicontinuity of the
iterates {T kα u}k in Ω, where u is any continuous extension of the boundary data. While
the local equicontinuity in Ω can be obtained in the general metric measure space set-
ting (under appropriate restrictions on the radius function), boundary equicontinuity is
more delicate and we have been able to prove it when X = Rn with µ = L the Lebesgue
measure. One of the main peculiarities of the method employed in Section 2.5 is that we
require the domain Ω ⊂ Rn to be bounded and strictly convex, that is, for each x, y ∈ ∂Ω
the open segment joining x and y is entirely contained in Ω.

Theorem 2.29. Let Ω ⊂ Rn be a bounded and strictly convex domain, α ∈ [0, 1) and % a
continuous admissible radius function satisfying

λdist(x, ∂Ω) ≤ %(x) ≤ εdist(x, ∂Ω),

for all x ∈ Ω, where
0 < λ ≤ ε < 1− α.



20 Introduction

Then, for any f ∈ C(∂Ω), there exists a unique continuous function u ∈ C(Ω) such that Tαu = u in Ω,

u = f on ∂Ω.

Moreover, for any u0 ∈ C(Ω) such that u0

∣∣
∂Ω
≡ f , the sequence of continuous functions {uk}k

given recursively by
uk = Tαuk−1

converges uniformly to u. In addition, if % is Lipschitz continuous with constant L ≥ 1 and

0 < λ ≤ ε < 1− Lα,

then u is locally Lipschitz continuous in Ω.

Tug-of-war games and the normalized p(x)-laplacian

Restricted mean value properties also appear in the context of some stochastic differential
games known as Tug-of-war games. The importance of such games lies in their connection
with the p-laplacian and the∞-laplacian, which was introduced in the influential papers
[PS] and [PSSW]. Broadly speaking, a Tug-of-war game is a two-players, zero-sum game:
two players (say Player I and Player II) are in contest and the total earnings of one are
the losses of the other. Hence, Player I, plays trying to maximize his expected outcome,
while Player II is trying to minimize Player I’s outcome.

The game can be described as follows: given a bounded domain Ω ⊂ Rn and a fixed
constant ε > 0, a token is placed at some initial point xj ∈ Ω. Then, with probability
α ∈ [0, 1], a fair coin is tossed and the winner of the toss is allowed to choose the new
position xj+1 ∈ B(xj , ε) of the game token, and with probability 1−α, the token is placed
at a random point xj+1 in B(xj , ε). Note that, it may happen that the ball B(xj , ε) is not
entirely contained in Ω. For that reason, the domain Ω needs to be extended to the larger
domain

Ωε : = {x ∈ Rn : dist(x,Ω) ≤ ε} .

This step is repeated until the game token exits Ω for the first time. Then, Player II pays
to Player I the amount given by F (xτ ), where xτ is the position of the token at this time
and F is a pay-off function defined in Ωε. Let us denote by u the expected outcome for
Player I. Then, starting from xj ∈ Ω, Player I wins the toss and chooses the new token
position xj+1 ∈ B(xj , ε) maximizing u with probability α/2, that is,

xj+1 ∈ B(xj , ε) s.t. u(xj+1) = sup
B(xj ,ε)

u (with probability α/2).
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On the other hand, with the same probability, Player II wins the toss and chooses the new
token position

xj+1 ∈ B(xj , ε) s.t. u(xj+1) = inf
B(xj ,ε)

u (with probability α/2).

Otherwise,

xj+1 is randomly chosen in B(xj , ε) (with probability 1− α).

Summing up all the possible outcomes, by conditional probability, the expected outcome
for Player I starting from xj is a function satisfying a dynamic programming principle which
reads as

u(xj) =
α

2

(
sup

B(xj ,ε)
u+ inf

B(xj ,ε)
u

)
+ (1− α) −

ˆ
B(xj ,ε)

u dL

and corresponds essentially to the functional equation (8) with α ∈ [0, 1] andBx = B(x, ε)
for each x ∈ Ω.

Questions such as the existence, uniqueness and properties of solutions of (8) in the
extended domain Ωε with constant radii %(x) = ε > 0 were studied in several papers
(see [MPR2], [MPR3], [LPS1] and [LPS2]). Indeed, the authors in [MPR2] showed that, if
Ω ⊂ Rn is bounded and satisfies some regularity assumption, then there exists a unique
function uε satisfying (8) and having F as boundary values (in the extended sense). Fur-
thermore, uε → u uniformly in Ω as ε → 0, where u is the unique p-harmonic function
solving the Dirichlet problem ∆pu = 0 in Ω,

u(x) = F (x) on ∂Ω.

By (9) and since α ∈ [0, 1], the Tug-of-war introduced above is related to the p-
laplacian only when p ≥ 2. In order to avoid this inconvenient and cover also the case in
which 1 < p < 2, a slightly different type of Tug-of-war game was proposed in [KMP]:
the Tug-of-war with orthogonal noise. The game is defined as in the previous case, but the
token is moved to a new position according to a different rule: starting from xj ∈ Ω, a
fair coin is tossed and the winner of the toss chooses a direction |ν| = ε. With probability
α ∈ [0, 1], the token will be placed at the position xj+1 = xj +ν, otherwise, with probabil-
ity 1−α, the new token position will be chosen randomly in the (n− 1)-dimensional ball
of radius ε centered at xj and orthogonal to ν, that is xj+1 = xj + ν ′, where |ν ′| < ε and
ν ′⊥ν. This step is repeated until the game token exits Ω for the first time as in the original
Tug-of-war game and Player II pays to Player I the quantity F (xτ ). Hence, it turns out
that the expected outcome u for Player I satisfies a different mean value property which
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reads as follows:

u(x) =
1

2

[
sup
|ν|=ε

(
αu(x+ ν) + (1− α)−

ˆ
Bνε

u(x+ h) dLn−1(h)

)

+ inf
|ν|=ε

(
αu(x+ ν) + (1− α)−

ˆ
Bνε

u(x+ h) dLn−1(h)

)]
,

(11)

with α ∈ [0, 1], where Bν
ε : = B(0, ε)∩ν⊥ denotes the (n−1)-dimensional ball orthogonal

to ν and Ln−1 is the (n− 1)-dimensional Lebesgue measure (see Section 3.1 for a detailed
description of the game). The authors in [KMP] showed that, asymptotically, this mean
value property is related to the p-laplacian in the same way that in (7) but, in this case,
the relation the between coefficients α and p is given by

α =
p− 1

n+ p
, (12)

and thus 1 < p <∞ if and only if α ∈ (0, 1). Questions such as existence and uniqueness
of continuous solutions of (11) were obtained in [Har] introducing some correction near
the boundary.

Chapter 3 concerns this new type of Tug-of-war games with space dependent proba-
bilities, that is, instead of a constant probability α in (11), a probability α(x) depending
on x ∈ Ω is given. Moreover, we also include an additional boundary correction term
in the rules of the game. The existence and uniqueness of solutions in this case can be
obtained following the same ideas in [Har] for the constant α(x) case:

Theorem ([AHP, Theorem 3.7]). Let Ω ⊂ Rn be a bounded domain and α : Ω → (0, 1) a
continuous function. Then, for ε > 0 and any F ∈ C(Ωε), there exists a unique continuous
function uε ∈ C(Ω) satisfying

uε(x) =
1− δ(x)

2

[
sup
|ν|=ε

(
α(x)uε(x+ ν) + (1− α(x))−

ˆ
Bνε

uε(x+ h) dLn−1(h)

)

+ inf
|ν|=ε

(
α(x)uε(x+ ν) + (1− α(x))−

ˆ
Bνε

uε(x+ h) dLn−1(h)

)]
+ δ(x)F (x)

(13)

for each x ∈ Ω, where δ(x) : = min
{

0, 1− ε−1 dist(x,Rn \ Ω)
}

.

The main result in Chapter 3 is an asymptotic Hölder regularity estimate for functions
uε satisfying (13) and the statement reads as follows:

Theorem 3.2. Let Ω ⊂ Rn be a bounded domain and α : Ω→ (0, 1) a continuous function. For
ε > 0 and any F ∈ C(Ωε), let uε ∈ C(Ω) be the unique function satisfying (13) for each x ∈ Ω.
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Then u is asymptotically Hölder continuous for some exponent γ > 0, that is,

|uε(x)− uε(y)| ≤ C(|x− y|γ + εγ),

for each pair of points x and y contained in a ball B(z,R) ⊂ B(z, 2R) ⊂ Ω and some constant
C = C(α, n,R, γ) > 0.

Moreover, we obtained boundary estimates that allows us to to control the continuity
of the solutions near de boundary of the domain. For that purpose, we need to ask some
condition on the geometry of the domain in order to obtain these estimates. In particular,
we need the domain Ω ⊂ Rn to satisfy the so called boundary regularity condition: there
are universal constants r0, s ∈ (0, 1) such that, for each r ∈ (0, r0] and y ∈ ∂Ω there exists
a ball

B(z, sr) ⊂ B(y, r) \ Ω

for some z ∈ B(y, r) \ Ω.

Theorem 3.3. Let Ω ⊂ Rn be a bounded domain satisfying the boundary regularity condition
and α : Ω→ (0, 1) a continuous function. For ε > 0 and any F ∈ C(Ωε), let uε ∈ C(Ω) be the
unique function satisfying (13) for each x ∈ Ω. Let η > 0, then there is a constant r > 0 such
that for all r ∈ (0, r] there exist constants k ∈ N and ε0 > 0 such that for any y ∈ Rn satisfying
dist(y, ∂Ω) < ε it holds

|uε(x0)− F (y)| < η

for each 0 < ε < ε0 and x0 ∈ B(y, 41−kr) ∩ Ωε.

Finally, as a consequence of these two results, it can be shown that the value function
of the game uε converges to a continuous viscosity solution u of the normalized p(x)-
laplacian,

∆N
p(x)u(x) : = ∆u(x) + (p(x)− 2)∆∞u(x).

Theorem ([AHP, Theorem 6.2]). Let Ω ⊂ Rn be a bounded domain satisfying the boundary
regularity condition and α : Ω→ (0, 1) a continuous function. Let ε0 > 0 and F ∈ C(Ωε0). Let
uε denote the unique continuous solution to (13) with 0 < ε ≤ ε0. Then, there exists a sequence
εj → 0 such that {uεj}j converges uniformly to u ∈ C(Ω) a viscosity solution of the Dirichlet
problem for the normalized p(x)-laplacian, ∆N

p(x)u(x) = 0 for x ∈ Ω,

u(x) = F (x) for x ∈ ∂Ω,

where p : Ω → (1,∞) is a continuous function depending on α(x) as in (12). Moreover, the
function u is locally γ-Hölder continuous in Ω.
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Chapter 1

The asymptotic mean value property
for p-harmonic functions in the plane

As we noted in the Introduction, in this chapter we deal with p-harmonic functions in
Rn, which are defined as weak solutions in W 1,p

loc of the p-Laplace equation ∆pu = 0. In
addition, if u ∈ C2(Ω) such that∇u 6= 0, then u is p-harmonic if and only if satisfies

∆u+ (p− 2)∆∞u = 0, (1.1)

where ∆∞ stands for the∞-laplacian given by

∆∞u : = 〈D2u · ∇u
|∇u|

,
∇u
|∇u|

〉. (1.2)

Let u ∈ C2(Ω). It is well known that we can express the laplacian of u asymptotically
in terms of mean values as follows:

∆u(x) = 2(n+ 2) lim
r→0

1

r2

[
−
ˆ
B(x,r)

u dL − u(x)

]
, (1.3)

for each x ∈ Ω. Moreover, this formula allows us to characterize harmonic functions by
replacing ∆u(x) = 0 in (1.3). In order to obtain an analogous expression for p-harmonic
functions in C2 and in view of (1.1), first we need an asymptotic expression for the ∞-
laplacian. This can be done by considering the midrange average of u on B(x, r), which is
the quantity given by

1

2

(
sup
B(x,r)

u+ inf
B(x,r)

u

)
.

Proposition 1.1. Let u ∈ C2(Ω) and x ∈ Ω such that∇u(x) 6= 0. Then

∆∞u(x) = 2 lim
r→0

1

r2

[
1

2

(
sup
B(x,r)

u+ inf
B(x,r)

u

)
− u(x)

]
. (1.4)

The proof of formula (1.4) can be found in [MPR1] but we describe it here for the sake
of completeness.
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Proof. The Taylor’s expansion of u in a neighborhood of x reads as follows:

u(x+ r ζ) = u(x) + r〈∇u(x), ζ〉+
r2

2
〈D2u(x) · ζ, ζ〉+ o(r2), (1.5)

for any |ζ| ≤ 1 as r → 0. For each small enough r > 0, choose |ζmax(r)| , |ζmin(r)| ≤ 1 so
that

sup
B(x,r)

u = sup
|ζ|≤1

u(x+ rζ) = u(x+ r ζmax(r)),

inf
B(x,r)

u = inf
|ζ|≤1

u(x+ rζ) = u(x+ r ζmin(r)).

In particular,

1

2

(
sup
B(x,r)

u+ inf
B(x,r)

u

)
≤ 1

2

(
u(x+ r ζmax(r)) + u(x− r ζmax(r))

)
,

and replacing (1.5) the first order term vanishes and we get

1

2

(
sup
B(x,r)

u+ inf
B(x,r)

u

)
≤ u(x) +

r2

2
〈D2u(x) · ζmax(r), ζmax(r)〉+ o(r2).

Following an analogous argument for ζmin(r), we obtain

1

2

(
sup
B(x,r)

u+ inf
B(x,r)

u

)
≥ u(x) +

r2

2
〈D2u(x) · ζmin(r), ζmin(r)〉+ o(r2).

Since∇u(x) 6= 0, by a standard argument with Lagrange multipliers, it turns out that

lim
r→0

ζmax(r) = − lim
r→0

ζmin(r) =
∇u(x)

|∇u(x)|
.

Thus, replacing in the previous inequalities and after recalling (1.2) we get the expansion

1

2

(
sup
B(x,r)

u+ inf
B(x,r)

u

)
= u(x) +

r2

2
∆∞u(x) + o(r2).

Finally, rearranging terms and taking limits as r → 0 we obtain (1.4).

In consequence, combining (1.3) and (1.4) as in (1.1), it can be shown that if u ∈ C2

such that∇u(x) 6= 0, then ∆pu(x) = 0 if and only if the asymptotic expansion

p− 2

n+ p
· 1

2

(
sup
B(x,r)

u+ inf
B(x,r)

u

)
+
n+ 2

n+ p
−
ˆ
B(x,r)

u dL = u(x) + o(r2) (1.6)
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holds as r → 0. However, since p-harmonic functions are not C2 in general, it is not
clear if (1.6) should be true for any p-harmonic function. In any case, recalling the results
from [JLM] and [MPR1], it follows that if u is continuous and satisfies (1.6), then u is p-
harmonic.

As for the converse, when n = 2, Lindqvist and Manfredi proved ([LM]) that every
planar p-harmonic function with 1 < p < 9.52 . . . satisfies (1.6) even at those points
where u does not have continuous second derivatives. The main result of this chapter
(that can be also found in [AL2]) is an improvement of the previous result by Lindqvist
and Manfredi and it states that, in fact, this is also true for 1 < p <∞.

Theorem 1.2. Let Ω ⊂ R2 be a domain and let 1 < p < ∞. Then a function u ∈ C(Ω) is
p-harmonic in Ω if and only if the asymptotic expansion

p− 2

p+ 2
· 1

2

(
sup
B(x,r)

u+ inf
B(x,r)

u

)
+

4

p+ 2
−
ˆ
B(x,r)

u dL = u(x) + o(r2) (1.7)

holds as r → 0 at each x ∈ Ω.

Due to the complex structure of the plane (R2 ≈ C), we can identify each point (x, y) ∈
R2 with a complex number z = x + iy ∈ C. Therefore, instead of working with the
gradient∇u of a p-harmonic function u in Ω ⊂ R2, we use the complex gradient of u, ∂u,
which is defined by

∂u = uz =
1

2
(ux − iuy).

From [BI], it turns out that ∂u ∈ W 1,2
loc (Ω) is a quasiregular mapping. Indeed, the authors

in [BI] proved that the p-harmonic equation ∆pu = 0 in the plane can be rewritten as the
(quasi-linear) Beltrami equation

∂f =
2− p

2p

[
f

f
∂f +

f

f
∂f

]
(1.8)

in Ω, where f = ∂u and ∂ denotes the complex derivative with respect to z, that is,

∂ = ∂z =
1

2
(∂x + i∂y).

By quasiregularity, it turns out that the set of critical points S = {z ∈ Ω : ∂u(z) = 0} con-
sists of isolated points (unless u is constant) and ∂u is real-analytic outside S (see [BI] and
[IM]). In consequence, it is enough to prove that a p-harmonic function satisfies (1.7) at a
critical point. We will then focus on the local behavior of a p-harmonic function around
a critical point of multiplicity n ∈ N (not to be confused with the dimension of the space,
which in this chapter is fixed and equal to 2).

For simplicity, in what follows we assume without loss of generality that Ω ⊂ C is a
domain containing the origin and u is a p-harmonic function in Ω with only one critical
point of order n ∈ N at z = 0. The main idea in the proof of Theorem 1.2 consists on
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giving an asymptotic expansion for the p-harmonic function u in a neighborhood of the
critical point z = 0,

u(z) = u(0) + U(z) +O(|z|γ),

where γ = γ(n, p) > 2 and U is a p-harmonic function in the plane (Proposition 1.11)
whose symmetry properties imply that

p− 2

p+ 2
· 1

2

(
sup
|z|<r

U(z) + inf
|z|<r

U(z)

)
+

4

p+ 2
−
ˆ
|z|<r

U(z) dz = 0,

for small enough r > 0 (Lemma 1.12). Then equation (1.7) will follow.

1.1 The hodographic representation of u

As in [LM], we follow the so-called hodograph method, which was first proposed by Bers
and Lavrentiev in order to study non-linear problems in hydrodynamics. The method
consists on performing a change of variables in (1.8) in such a way that the independent
variable is the inverse of f and the resulting equation is linear with variable coefficients.
Our proof of Theorem 1.2 exploits the power series expansion of the complex gradient in
the hodographic plane that was obtained in [IM].

Let u be a p-harmonic function with a critical point of multiplicity n ∈ N at the origin
and let

f : = ∂u =
1

2
(ux − iuy)

be the complex gradient of u, which is a quasiregular mapping satisfying (1.8). However,
the inverse of f may not be well defined in Ω. For that reason, in order to follow the
hodograph method, we recall the Stoilow factorization theorem (see, for example, [AIM]).
Then, since f is quasiregular and has a zero of order n ∈ N at z = 0, it turns out that there
exists a quasiconformal mapping (and, thus, invertible) χ such that

f(z) = (χ(z))n, (1.9)

in a neighborhood of the origin.

We denote by H = χ−1 the inverse of χ. Note that, by quasiconformality, H is also
quasiconformal in a neighborhood of the origin. If we perform the hodograph change of
variables  ξ = χ(z),

z = H(ξ),
(1.10)

then (1.9) can be rewritten as
ξn = f(H(ξ))
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in a neighborhood of ξ = 0. Note that the left-hand side in the previous equation is an
holomorphic function, then  ∂(ξn) = n ξn−1,

∂(ξn) = 0,

and the chain rule yields [
n ξn−1

0

]
=

[
∂H ∂H

∂H ∂H

]
·
[
∂f

∂f

]
.

Let JH(ξ) denote the determinant of the matrix in the previous equation, that is, JH(ξ) =

|∂H(ξ)|2 −
∣∣∂H(ξ)

∣∣2. Since H is quasiconformal, it turns out that JH(ξ) > 0 for every ξ in
a neighborhood of the origin and we can solve the system,[

∂f

∂f

]
= J−1

H

[
∂H −∂H
−∂H ∂H

]
·
[
n ξn−1

0

]
.

In particular, 
∂f = nJ−1

H ξn−1 ∂H,

∂f = −nJ−1
H ξn−1 ∂H.

(1.11)

Replacing (1.9), (1.10) and (1.11) in (1.8) and rearranging terms we obtain

∂H =
p− 2

2p

[
ξ

ξ
∂H +

(
ξ

ξ

)n
∂H

]
(1.12)

in a neighborhood of ξ = 0.

The authors in [IM] obtained a series representation for solutions of (1.12) in a neigh-
borhood of the origin which reads as follows,

z = H(ξ) =

(
ξ

|ξ|

)−n ∞∑
k=n+1

|ξ|λk
[
Ak

(
ξ

|ξ|

)k
+ εk Ak

(
ξ

|ξ|

)k]
, (1.13)

where Ak ∈ C, An+1 6= 0 are constants satisfying

∞∑
k=n+1

k |Ak|2 <∞ (1.14)

and
εk =

λk + n− k
λk + n+ k

, λk =
1

2

(√
4k2(p− 1) + n2(p− 2)2 − np

)
. (1.15)
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From (1.15) it is easy to check that

0 < λk <
k2 − n2

n
and |εk| <

k − n
k + n

. (1.16)

Equation (1.13) can be interpreted as the hodographic representation of the point z =
x + iy near the origin. Note that, also from [IM], it follows that if H is given by (1.13)
for certain coefficients Ak, εk and λk satisfying (1.14) and (1.15) then there exists a p-
harmonic function u (with a critical point of order n ∈ N at z = 0) such that (1.9) holds
locally around the origin.

Let us denote by ũ the hodographic representation of u, i.e.,

ũ(ξ) : = (u ◦H)(ξ). (1.17)

The following result characterizes the hodographic representation of all p-harmonic func-
tions with a critical point at z = 0.

Proposition 1.3. u is a p-harmonic function with a critical point of order n ∈ N at z = 0 if and
only if its hodographic representation ũ = (u ◦H) has the following power series expansion in a
neighborhood of ξ = 0:

ũ(ξ) = u(0) +
∞∑

k=n+1

µk |ξ|n+λk Re

{
Ak

(
ξ

|ξ|

)k}
, (1.18)

where
µk =

4λk
λk + n+ k

and the coefficients Ak, εk and λk satisfy (1.14) and (1.15). Moreover, 0 ≤ µk < 4
(

1− n

k

)
.

Proof. Let u be p-harmonic with a critical point of order n at the origin and let z = H(ξ)
be the hodographic representation. We can split H(ξ) into its real and imaginary parts,
i.e., H(ξ) = z̃(ξ) = x̃(ξ) + iỹ(ξ). By (1.9) together with (1.10), ∂u(z) = ξn. Hence, in polar
coordinates ξ = ρeiϑ, this equation reads as{

ux = 2ρn cos(nϑ),
uy = −2ρn sin(nϑ).

Then, we compute ũρ using the chain rule in (1.17):

ũρ = (u ◦H)ρ = ux x̃ρ + uy ỹρ = 2ρn [x̃ρ cos(nϑ)− ỹρ sin(nϑ)] ,
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the expression in brackets being equal to Re
{
einϑHρ

}
. In polar coordinates, (1.13) reads

as

H(ρeiϑ) = e−inϑ
∞∑

k=n+1

ρλkϕk(ϑ),

where ϕk(ϑ) = Ake
ikϑ + εkAke

−ikϑ for each k = n+ 1, n+ 2, . . . Therefore, replacing this
in ũρ we get

ũρ = 2ρnRe
{
einϑHρ

}
= 2

∞∑
k=n+1

λk(1 + εk)ρ
n+λk−1Re

{
Ake

ikϑ
}
.

Integrating with respect to ρ and recalling (1.15) we get (1.18). The bound on µk follows
from (1.16). Since this argument can be reverted, the proof is completed.

Given any p-harmonic function u with a critical point of order n ∈ N at z = 0, it
follows from Proposition 1.3 that

ũ(ξ) = u(0) + Ũ(ξ) +O(|ξ|n+λn+2),

where Ũ(ξ) is the first term in the power series expansion of ũ, (1.18),

Ũ(ξ) = µn+1 |ξ|n+λn+1 Re

{
An+1

(
ξ

|ξ|

)n+1
}
. (1.19)

In particular, by Proposition 1.3, Ũ(ξ) is the hodographic representation of a p-harmonic
function U(z) with a critical point of order n ∈ N. More precisely,

U(z) = (Ũ ◦ A−1)(z), (1.20)

where A(ξ) is a quasiconformal mapping defined as the first term in the power series
expansion of the function z = H(ξ) associated to the p-harmonic function u, i.e.,

A(ξ) =

[
An+1

(
ξ

|ξ|

)n+1

+ εn+1An+1

(
ξ

|ξ|

)n+1
](

ξ

|ξ|

)−n
|ξ|λn+1 . (1.21)

Remark 1.4. From now on, we can assume without loss of generality that u(0) = 0.

1.2 Quantitative injectivity estimates for A

For simplicity, we will use hereafter the notations a . b (resp. a ≈ b) to indicate that
a ≤ Cb (resp. C−1a ≤ b ≤ Ca) for some positive constant C independent of a and b.
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Lemma 1.5. The following estimates hold in a neighborhood of ξ = 0:∣∣ũ(ξ)− Ũ(ξ)
∣∣ . |ξ|n+λn+2 , (1.22)

|H(ξ)−A(ξ)| . |ξ|λn+2 , (1.23)

|A(ξ)| ≈ |H(ξ)| ≈ |ξ|λn+1 . (1.24)

Proof. From (1.14) and (1.16), we get in particular that the sequence {Ak}k is bounded
and that |εk| < 1 for all k. Since {λk}k is increasing, (1.22), (1.23) and (1.24) follow from
the estimate

∞∑
k=n+2

|ξ|λk = O(|ξ|λn+2). (1.25)

Now an elementary computation shows that there is C = C(p) > 0 such that λk−λn+2 ≥
C(k − (n+ 2)) for all k ≥ n+ 2. This implies (1.25) and proves the lemma.

Now, we study the behavior of A and we give an injectivity estimate. For this pur-
pose, we will use the following elementary lemma, whose proof is omitted.

Lemma 1.6. Let τ > 0, λ > 0 and t ∈ R. Then for all k ∈ N,∣∣τeikt − 1
∣∣ ≤ k∣∣τeit − 1

∣∣. (1.26)

Furthermore, if Λ > 1 and if Λ−1 ≤ τ ≤ Λ then there is a constant C = C(λ,Λ) > 0 such that∣∣τλeit − 1
∣∣ ≥ Cτλ−1

∣∣τeit − 1
∣∣. (1.27)

Lemma 1.7. The mapping A : C→ C is bijective and satisfies

|A(ξ)−A(ζ)| ≥ C
∣∣∣|ξ|λn+1−1 ξ − |ζ|λn+1−1 ζ

∣∣∣ , (1.28)

where C = (1− (2n+ 1) |εn+1|) |An+1|.

Proof. First, we observe that (1.16) for k = n+ 1 implies that 0 < λn+1 < 2 + 1
n and that

|εn+1| <
1

2n+ 1
.

We show first that A is surjective. We write λ ≡ λn+1, ε ≡ εn+1 and A ≡ An+1. Then

A(ρeiϑ) = ρλeiϑ
(
A+ εAe−i2(n+1)ϑ

)
.

Assume, for simplicity, that A = 1. Then we can write

A(ρeiϑ) = ρλm(ϑ)eiφ(ϑ),

where
φ(ϑ) = ϑ+ arg(1 + ε e−i2(n+1)ϑ)
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and
m(ϑ) =

∣∣1 + ε e−i2(n+1)ϑ
∣∣ =

√
1 + ε2 + 2ε cos(2(n+ 1)ϑ). (1.29)

To prove that A is surjective, let w = seit ∈ C such that w 6= 0 (if w = 0 it is obvious that
A(0) = 0). Since φ(0) = 0 and φ(2π) = 2π, by continuity we can pick k ∈ Z and ϑ ∈ [0, 2π]
such that t+ 2kπ ∈ [0, 2π] and φ(ϑ) = t+ 2kπ. Then eiφ(ϑ) = eit. For that ϑ, choose ρ > 0
so that

ρ =

(
s

m(ϑ)

)1/λ

.

Then we have shown that A(ρeiϑ) = w so the surjectiveness of A follows. To finish the
proof of the lemma, it is enough to prove (1.28), which is a quantitative form of injective-
ness. By (1.21),

|A(ξ)−A(ζ)| ≥ |An+1|
∣∣∣∣|ξ|λ ξ

|ξ|
− |ζ|λ ζ

|ζ|

∣∣∣∣
− |An+1| |ε|

∣∣∣∣∣|ξ|λ
(
ξ

|ξ|

)2n+1

− |ζ|λ
(
ζ

|ζ|

)2n+1
∣∣∣∣∣ .

(1.30)

Now apply (1.26) with τ =

∣∣∣∣ξζ
∣∣∣∣λ, eit =

ξ/ζ

|ξ/ζ|
and k = 2n + 1, and multiply both sides of

the inequality by |ζ|λ. Then∣∣∣∣∣|ξ|λ
(
ξ

|ξ|

)2n+1

− |ζ|λ
(
ζ

|ζ|

)2n+1
∣∣∣∣∣ ≤ (2n+ 1)

∣∣∣∣|ξ|λ ξ

|ξ|
− |ζ|λ ζ

|ζ|

∣∣∣∣ .
Replacing this expression in (1.30) we obtain

|A(ξ)−A(ζ)| ≥ |An+1| (1− (2n+ 1) |ε|)
∣∣∣∣|ξ|λ ξ

|ξ|
− |ζ|λ ζ

|ζ|

∣∣∣∣ .
so the proof is finished.

Lemma 1.8. Let Λ > 1. Then there is a constant C = C(n, p,Λ, |An+1|) > 0 such that for any
ξ, ζ ∈ C with Λ−1 |ζ| ≤ |ξ| ≤ Λ |ζ| we have

|A(ξ)−A(ζ)| ≥ C |ξ|λn+1−1 |ξ − ζ| .

Proof. Apply (1.27) with τ =

∣∣∣∣ξζ
∣∣∣∣ and eit =

ξ/ζ

|ξ/ζ|
and multilply by |ζ|λ to obtain

∣∣∣∣|ξ|λ ξ

|ξ|
− |ζ|λ ζ

|ζ|

∣∣∣∣ ≥ C |ξ|λ−1 |ξ − ζ| . (1.31)

Then the lemma follows from (1.28) together with (1.31).
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1.3 The perturbation method

Given ξ in the hodographic plane, set z = H(ξ), ζ = A−1(z) and w = H(ζ). Then{
ξ = χ(z),

ζ = χ(w) = A−1(H(ξ)).

Since
|z| = |A(ζ)| ≈ |H(ζ)| = |w|

by (1.24), it follows from quasiconformality ([Ahl]) that

|ξ| = |χ(z)| ≈ |χ(w)| = |ζ| .

We recall the p-harmonic functions

u(z) = (ũ ◦ χ)(z),

U(z) = (Ũ ◦ A−1)(z),

where Ũ is given by (1.19).

Lemma 1.9. Let Λ > 1. There is a constant C = C(n, p,Λ, |An+1|) > 0 such that for any
ξ, ζ ∈ C with Λ−1 |ζ| ≤ |ξ| ≤ Λ |ζ| then∣∣Ũ(ξ)− Ũ(ζ)

∣∣ ≤ C |ξ|n |A(ξ)−A(ζ)| .

Proof. From (1.19), the fact that 0 ≤ µk < 4 if k ≥ n and direct computation it follows that∣∣Ũ(ξ)− Ũ(ζ)
∣∣ ≤ C |An+1| |ξ|n+λn+1−1 |ξ − ζ| ,

where C = C(n,Λ) > 0. Then the conclusion follows from Lemma 1.8.

Corollary 1.10. Let ξ, ζ ∈ C such that A(ζ) = H(ξ). Then the following estimate holds in a
neighborhood of ξ = 0: ∣∣Ũ(ξ)− Ũ(ζ)

∣∣ . |ξ|n+λn+2 .

Proof. Use the fact that |ξ| ≈ |ζ|, Lemma 1.9 and estimate (1.23).

Now we are ready to prove the following singular expansion of a p-harmonic func-
tion.

Proposition 1.11. Let u be a p-harmonic function with a critical point of order n at z = 0 and
u(0) = 0. Then u can be written as

u(z) = U(z) +O(|z|
n+λn+2
λn+1 )

in a neighborhood of z = 0.
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Proof. By (1.17) and (1.20) we can write

u(z)− U(z) = ũ(ξ)− Ũ(ζ) = Ũ(ξ)− Ũ(ζ) + ũ(ξ)− Ũ(ξ).

By (1.22), (1.24) and Corollary 1.10 we get

|u(z)− U(z)| . |ξ|n+λn+2 ≈ |H(ξ)|
n+λn+2
λn+1 = |z|

n+λn+2
λn+1 ,

so the proof is finished.

1.4 Proof of Theorem 1.2

As before, we will write λ, ε and µ instead of λn+1, εn+1 and µn+1, respectively. We can
assume without loss of generality that An+1 = 1. Then

A(ρeiϑ) = ρλe−inϑ(ei(n+1)ϑ + εe−i(n+1)ϑ)

and
∣∣A(ρeiϑ)

∣∣ = ρλm(ϑ), where m(ϑ) is given by (1.29). Furthermore

Ũ(ρeiϑ) = µρn+λ cos((n+ 1)ϑ).

Denote by Dr = B(0, r) the open disc centered at 0 with radius r > 0 and define the
hodographic disc D̃r as A−1(Dr). Then, a point ρeiϑ of the hodographic plane belongs to
D̃r if and only if

∣∣A(ρeiϑ)
∣∣ < r andD̃r can be described using in polar coordinates as

D̃r =

{
ρeiϑ : ρ <

(
r

m(ϑ)

)1/λ
}
.

Now we define the function J(ζ) as the absolute value of the jacobian ofA(ζ). Computing
J(ζ) in polar coordinates we get

J(ρeiϑ) = λρ2(λ−1)
(
1− (2n+ 1)ε2 − 2nε cos(2(n+ 1)ϑ)

)
. (1.32)

(Observe that, since |ε| < (2n + 1)−1, the expression in the right hand side of (1.32) is
positive).

Lemma 1.12. The p-harmonic function U(z) given by (1.20) satisfies the following properties, for
small enough r > 0:

sup
Dr

U + inf
Dr

U = 0, (1.33)

ˆ
Dr

U(z) dz = 0. (1.34)
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Proof. By (1.20), we need to study the behavior of Ũ(ξ) in D̃r. Then, (1.33) is a direct con-
sequence of the symmetries of D̃r. To show (1.34), observe that, by a change of variables,

ˆ
Dr

U(z) dz =

ˆ
D̃r

Ũ(ζ)J(ζ) dζ

and using polar coordinates we get

ˆ
Dr

U(z) dz = µλ

ˆ 2π

0

ˆ ρ(ϑ)

0
ρn+3λ−1 cos((n+ 1)ϑ)j(ϑ) dρ dϑ, (1.35)

where

ρ(ϑ) =

(
r

m(ϑ)

)1/λ

, j(ϑ) = 1− (2n+ 1)ε2 − 2nε cos(2(n+ 1)ϑ)

and m(ϑ) is given by (1.29). Now (1.34) follows directly from (1.35) and the symmetry
properties of m(ϑ) and j(ϑ).

Lemma 1.13. The inequality
n+ λn+2

λn+1
> 2 (1.36)

holds for each 1 < p <∞ and each n ≥ 1.

Proof. From (1.15) and some computation it follows that inequality (1.36) is equivalent to

n(p+ 2)
√
n2p2 + 16(n+ 1)(p− 1) > n2p2 + (−2n2 + 8n)p− (2n2 + 8n). (1.37)

Now we distinguish two cases. If n = 1 then (1.37) becomes

(p+ 2)
√
p2 + 32(p− 1) > p2 + 6p− 10.

If the right hand is negative then the inequality follows. Otherwise, squaring the previous
inequality we get

2p3 + 7p2 + 10p− 19 > 0.

which holds for each p > 1 since the left-hand side is increasing in p and vanishes for
p = 1. This proves (1.37) when n = 1.

Now assume n ≥ 2 and observe that
√
n2p2 + 16(n+ 1)(p− 1) ≥ np for each p > 1.

Then (1.37) would follow if

n2p(p+ 2) > n2p2 + (−2n2 + 8n)p− (2n2 + 8n),

which is equivalent to
(2n− 4)p+ n+ 4 > 0,

and holds trivially if n ≥ 2. This finishes the proof of the lemma.
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Proof of Theorem 1.2. As stated at the beginning of this chapter, we only need to prove
that planar p-harmonic functions satisfy (1.7) since the other implication is already clear.
We also discussed there that (1.7) need only to be checked at a critical point. Therefore,
we can assume that x = 0, u(0) = 0 and that 0 is a critical point of u.

Let r > 0 be small enough. By Proposition 1.11 and Lemma 1.12,

−
ˆ
Dr

u(z) dz = O
(
r
n+λn+2
λn+1

)
,

and
1

2

(
sup
Dr

u+ inf
Dr
u

)
= O

(
r
n+λn+2
λn+1

)
.

Finally, combine both equations and divide by r2 to obtain that for any α ∈ R

1

r2

[
α

(
1

2
sup
Dr

u+
1

2
inf
Dr
u

)
+ (1− α)−

ˆ
Dr

u(z) dz

]
= O

(
r
n+λn+2
λn+1

−2
)
.

By Lemma 1.13 the exponent of r in the right-hand side is strictly positive. Therefore,
taking limits as r → 0, we show that (1.7) holds at the origin and we conclude the proof.
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Chapter 2

The restricted mean value property
and p-harmonious functions

Let (X, d, µ) denote a proper metric space endowed with a Borel positive measure µ such
that 0 < µ(B) <∞ for any ball B ⊂ X. This chapter is concerned with functions satisfy-
ing the α-mean value property,

α

2

(
sup
Bx

u+ inf
Bx
u

)
+ (1− α)−

ˆ
Bx

u dµ = u(x), (2.1)

where Bx denotes the closed ball B(x, %(x)) with 0 < %(x) ≤ dist(x, ∂Ω) for each x in a
given bounded domain Ω ⊂ X. For the sake of simplicity, if u ∈ C(Ω) and x ∈ Ω, we
denote by Su(x) andMu(x) the midrange and the average of u on Bx, respectively. That
is, the operators given by

Su(x) : =
1

2

(
sup
Bx

u+ inf
Bx
u

)
, (2.2)

Mu(x) : = −
ˆ
Bx

u dµ, (2.3)

for each x ∈ Ω. Additionally, in what follows, we define Tα as the combination of these
two operators,

Tαu(x) : = αSu(x) + (1− α)Mu(x), (2.4)

where α ∈ R. Therefore, a function u ∈ C(Ω) satisfying the α-mean value property (2.1)
can be seen as a fixed point of Tα in C(Ω), that is, u is a solution of the functional equation

Tαu = u.

It is easy to check that, defined in this way, Tα is non-expansive in L∞(Ω) for α ∈ [0, 1],
that is,

‖Tαu− Tαv‖∞ ≤ ‖u− v‖∞ , (2.5)

for every u, v ∈ L∞(Ω). Indeed, by the properties of the supremum and infimum,

|Su(x)− Sv(x)| ≤ 1

2

∣∣∣∣ sup
Bx

u− sup
Bx

v

∣∣∣∣+
1

2

∣∣∣∣ inf
Bx
u− inf

Bx
v

∣∣∣∣ ≤ sup
Bx

|u(x)− v(x)|,
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for each x ∈ Ω, and thus (2.5) follows for α = 1. For α = 0, the non-expansiveness follows
immediately by the linearity of the integral in (2.3). Thus, by (2.4) we get the result for all
α ∈ [0, 1].

This chapter is divided into two different parts. In the first part, we present the results
obtained in [AL3] (although some previous results in this direction were already obtained
in [AL1] in the case X = Rn, with the euclidean distance, µ doubling and % 1-Lipschitz
continuous) where we provide a priori Hölder and Lipschitz regularity estimates for the
class of functions satisfying the α-mean value property (2.1). Such functions are also
called generalized p-harmonious functions in analogy to the (n-dimensional) euclidean case,
where the coefficient α is related to p by

α =
p− 2

n+ p
.

Regarding the functional equation Tαu = u, we distinguish two cases: α = 0 and
α 6= 0. For the first case, T0 corresponds to the operator M defined in (2.3), and the
estimates obtained for this operator depend essentially on the choice of the measure µ
and the radius function % instead of the function u itself (see Subsections 2.2.2 and 2.2.3).
Thus, the estimates in this case are much more direct than in the general case α 6= 0
in which the appearance of the operator S plays an important role. In Lemma 2.10, we
adapt an argument due to Le-Gruyer and Archer for obtaining continuity estimates for
S (see [LA]) and we combine it with the results forM in order to get an estimate for Tα.
However, the estimate obtained in this way is not enough for establishing a regularity
result for solutions of Tαu = u. For that reason, in Sections 2.3 and 2.4 we perform an
iteration method that gives better estimates.

Note that we need to assume the existence of continuous solutions in order to obtain
the estimates conducting to the regularity results. For that reason, the second part of
this chapter (which corresponds with Section 2.5) is concerned with the existence and
uniqueness of solutions in C(Ω) of the Dirichlet problem Tαu = u in Ω,

u = f on ∂Ω,

for a fixed continuous boundary data f ∈ C(∂Ω). We can reformulate this as a fixed point
problem, that is, to find a continuous function satisfying Tαu = u among all continuous
extensions u of f to the whole domain. Given a function f ∈ C(∂Ω), we denote byKf the
collection of all norm-preserving continuous extensions of f to Ω, that is,

Kf : =
{
u ∈ C(Ω) : u

∣∣
∂Ω
≡ f and ‖u‖∞,Ω = ‖f‖∞,∂Ω

}
. (2.6)

Therefore, by the non-expansiveness of the operator (2.5) and the fact that Tαu
∣∣
∂Ω
≡ u

∣∣
∂Ω

for every u ∈ C(Ω), it turns out that Tα maps Kf into Kf . Moreover, it is easy to check
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that Kf is a closed subset of C(Ω).

From these assumptions, it is not difficult to establish the uniqueness of solutions,
meaning that, if there exists a fixed point of Tα in Kf , then it must be unique. Indeed, it
can be immediately deduced from a comparison principle for generalized p-harmonious
functions (see Section 2.5.1).

On the other hand, existence of fixed points is more delicate and we prove it for the
case X = Rn with µ = L is the Lebesgue measure. The key point in our proof of existence
of solutions requires the sequence {T kα u0}k to be equicontinuous in Ω for any u0 ∈ Kf
(see Section 2.5.2). Equicontinuity at interior points of Ω can be deduced from Section 2.3
even in the general case of metric measure spaces, but we cannot deduce equicontinuity
on the boundary from these results. For that reason, we postpone the analysis of bound-
ary equicontinuity until Section 2.5.3 and we establish it in bounded and strictly convex
domains on Rn following an idea due to Javaheri (see [Jav]).

2.1 Preliminary facts

2.1.1 Metric spaces and admissible radius functions

We start recalling some basic concepts and definitions that will be useful in this chapter.

Definition 2.1. Let (X, d) be a metric space. We say that (X, d) is proper if every closed and
bounded subset of X is compact. (X, d) is a geodesic space if for any two points x, y ∈ X
there is a curve connecting x and y whose length is equal to d(x, y).

Given any subset G ⊂ X, we denote by dist(x,G) the infimum of all distances d(x, y)
where y ∈ G. Moreover, if G is bounded, let `(G) be the largest distance to the boundary
for points in G:

`(G) : = sup
x∈G
{dist(x, ∂G)} ≤ 1

2
diamG. (2.7)

Definition 2.2. A modulus of continuity in a bounded domain Ω ⊂ X is a non-decreasing
continuous function ω : [0,diam Ω] → [0,∞) such that ω(0) = 0. We will often require ω
to be concave too. If G ⊂ Ω and u ∈ C(G), we will denote by ωu,G a concave modulus of
continuity such that

|u(x)− u(y)| ≤ ωu,G(d(x, y)) (2.8)

for all x, y ∈ G.

Definition 2.3. Let (X, d) be a proper metric space and Ω ⊂ X a bounded and open
domain. We say that a non-negative function % ∈ C(Ω) is an admissible radius function in
Ω if

0 < %(x) ≤ dist(x, ∂Ω)

for each x ∈ Ω, and %(x) = 0 if and only if x ∈ ∂Ω. Whenever G b Ω, we define

%G : = inf
G
% > 0. (2.9)
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Also, we introduce the following notation for closed balls in Ω with radii given by %:

Bx : = B(x, %(x)),

for each x ∈ Ω. Since the balls Bx with x ∈ G are not necessarily contained in G, we
define G̃ as the union of all balls Bx with centers in G,

G̃ : =
⋃
x∈G

Bx. (2.10)

Remark 2.4. We will hereafter make use of some of the concepts introduced in this sub-
section (like the family of balls {Bx : x ∈ Ω} and the operator on sets (̃·)) without any
explicit mention of their dependence on the choice of the admissible radius function %,
which is assumed to be fixed.

Following the notation in (2.8), we denote by ω%,Ω a concave modulus of continuity
for % in Ω. Since |%(x)− %(y)| ≤ `(Ω) < diam Ω for each x, y ∈ Ω, we can also assume
that ω%,Ω(diam Ω) ≤ diam Ω (otherwise, we just replace ω%,Ω(t) by min {ω%,Ω(t), diam Ω},
which is also a concave modulus of continuity for %). As we will see in the next sections,
a distinguished case occurs when the admissible radius function is Lipschitz, that is,

|%(x)− %(y)| ≤ Ld(x, y),

for each x, y ∈ Ω and some L > 0, in which case we can simply take ω%,Ω(t) = Lt.
For technical reasons, we need to define another concave modulus of continuity for %
(that will be denoted by ω̂%) as follows: if ω%,Ω(t) ≤ t for all t ∈ [0, diam Ω] then we set
ω̂%(t) : = t. Otherwise, we define

ω̂%(t) : =
diam Ω

ω%,Ω(diam Ω)
ω%,Ω(t). (2.11)

Note that, defined in this way, ω̂%(t) is a concave modulus of continuity for % in Ω satis-
fying

max {t, ω%,Ω(t)} ≤ ω̂%(t) ≤ diam Ω = ω̂%(diam Ω) (2.12)

for each t ∈ [0,diam Ω]. Consequently, successive compositions of ω% with itself will
produce a sequence of continuous functions ω̂(k)

% : [0, diam Ω]→ [0,diam Ω] given by

ω̂(k)
% (t) : = ω̂%

(
ω̂(k−1)
% (t)

)
,

for k ∈ N, where ω̂(0)
% (t) = t.

In this setting, we can define the operator S as in (2.2) and we can obtain the desired
estimates for it (see Lemma 2.10).
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2.1.2 Metric measure spaces

Definition 2.5. A metric measure space (X, d, µ) is a metric space endowed with a Borel
positive regular measure µ. From now on, we will only consider measures µ such that
0 < µ(B) <∞ for every ball B ⊂ X.

Definition 2.6. Let (X, d, µ) be a metric measure space. We say that µ is doubling (equiv-
alently, (X, d, µ) is a doubling metric measure space) if there exists a constant Dµ ≥ 1 such
that

µ (B(x, 2r)) ≤ Dµ µ(B(x, r))

for any x ∈ X and each r > 0.

In order to get estimates for the operatorM, we will make use of the following prop-
erty, which will play a central role in what follows and is closely related to the doubling
property.

Definition 2.7. Let δ ∈ (0, 1]. A metric measure space (X, d, µ) satisfies the δ-annular decay
property if there exists a constant Dδ ≥ 1 such that

µ (B(x,R) \B(x, r)) ≤ Dδ

(
R− r
R

)δ
µ(B(x,R)), (2.13)

for each x ∈ X and 0 < r ≤ R. For δ = 1, this property is also known as the strong annular
decay property.

Example 2.8. As a canonical example, Rn endowed with the euclidean distance and L =
Ln the Lebesgue n-dimensional measure satisfies the 1-annular decay property. Indeed,

L(B(x,R) \B(x, r))

L(B(x,R))
=
Rn − rn

Rn
≤ n R− r

R
,

for each x ∈ Rn and 0 < r ≤ R.

It is easy to check that the δ-annular decay property implies the doubling property.
Conversely, in [Buc] it is proved in particular that a geodesic metric space (X, d, µ) with
a doubling measure µ satisfies a δ-annular decay condition for some δ ∈ (0, 1], where δ
only depends on the doubling constant. (See also Lemma 2.1 in [AL1] where this impli-
cation is proven in Rn).

In addition, we will also use the following definition when studying the continuity
properties of the operatorM.

Definition 2.9. We say that a (Borel, regular) measure µ in a metric space X is ring-
continuous if, for each x ∈ X the function

r 7−→ µ(B(x, r))

is continuous in (0,+∞).



44 The restricted MVP and p-harmonious functions

From (2.13), one can easily deduce that a measure µ satisfying the δ-annular decay
property for some δ ∈ (0, 1] is also ring-continuous. However, the converse is not true
and one can find examples of ring-continuous measures that do not satisfy this property
(see Example 2 in [AGG]).

2.2 Continuity and regularity estimates

2.2.1 Continuity of S

The following lemma was proven in [LA] when the admissible radius function is 1-
Lipschitz, that is

|%(x)− %(y)| ≤ d(x, y),

for every x, y ∈ Ω. Note that, since the operator S does not depend on any measure, we
state it in the context of a metric space (X, d).

Lemma 2.10. Let (X, d) be a geodesic metric space and let % be a continuous admissible radius
function in a bounded domain Ω ⊂ X. Then, for any u ∈ C(Ω), any compact subset K ⊂ Ω and
each x, y ∈ K we have

|Su(x)− Su(y)| ≤ ω
u,K̃

(ω̂%(d(x, y))) ,

where K̃, ω
u,K̃

and ω̂% are as in (2.10), (2.8) and (2.11), respectively. We have, in particular

ωSu,K(t) ≤ ω
u,K̃

(ω̂%(t)) . (2.14)

Proof. Recalling the definition of Su, (2.2), and the elementary formulas

sup
i∈I

xi − sup
j∈J

yj = sup
i∈I

inf
j∈J

(xi − yj),

inf
i∈I

xi − inf
j∈J

yj = sup
j∈J

inf
i∈I

(xi − yj),

we can write

Su(x)− Su(y) =
1

2
sup
s∈Bx

inf
t∈By

(u(s)− u(t)) +
1

2
sup
t∈By

inf
s∈Bx

(u(s)− u(t)). (2.15)

Note that it may happen that Bx 6⊂ K or By 6⊂ K. However, by (2.10), the inclusion
Bx ∪By ⊂ K̃ holds. Then,

sup
s∈Bx

inf
t∈By

(u(s)− u(t)) ≤ sup
s∈Bx

inf
t∈By

ω
u,K̃

(d(s, t)) ≤ ω
u,K̃

(
sup
s∈Bx

inf
t∈By

d(s, t)

)
.

Replacing this term (the other term is analogous) in (2.15) and using that ω
u,K̃

is concave,
we get

Su(x)− Su(y) ≤ ω
u,K̃

(
1

2
sup
s∈Bx

inf
t∈By

d(s, t) +
1

2
sup
t∈By

inf
s∈Bx

d(s, t)

)
.
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Thus, we need to show that, for any x, y ∈ Ω,

1

2
sup
s∈Bx

inf
t∈By

d(s, t) +
1

2
sup
t∈By

inf
s∈Bx

d(s, t) ≤ ω̂%(d(x, y)). (2.16)

From [LA, p.282], since (X, d) is geodesic by assumption, we get:

sup
t∈By

inf
s∈Bx

d(s, t) ≤ max {d(x, y) + %(x)− %(y), 0} ,

sup
s∈Bx

inf
t∈By

d(s, t) ≤ max {d(x, y) + %(y)− %(x), 0} .
(2.17)

Finally, (2.16) follows from (2.17) and (2.12). Therefore, this together with (2.15) finishes
the proof.

2.2.2 Continuity ofM

We will first look at the continuity and regularity of the function

x 7−→Mu(x) = −
ˆ
Bx

u dµ

where an admissible radius function % in a domain Ω ⊂ X, a measure µ and a bounded
continuous function u in Ω are given. The following Lemma is a preliminary result in
this direction. Before that, we introduce some notation: given two subsets A,B ⊂ X, we
denote by A4B = (A \B)∪ (B \A) the symmetric difference of A and B. If A,B,C ⊂ X,
it follows that

A4B = (A4C)4(C4B) ⊂ (A4C) ∪ (C4B).

If A,B ⊂ X are two measurable subsets, then

|µ(A)− µ(B)| ≤ µ(A4B),

and, from the triangle inequality,

µ(A4B) ≤ µ(A4C) + µ(C4B). (2.18)

Lemma 2.11. Let (X, d, µ) be a metric measure space. If B1 and B2 are two balls contained in X,
then ∣∣∣∣−ˆ

B1

u dµ−−
ˆ
B2

u dµ

∣∣∣∣ ≤ 2 ‖u‖∞
µ(B14B2)

max {µ(B1), µ(B2)}
,

for each u ∈ L∞(X).

Proof. We can assume that µ(B1) ≥ µ(B2), then

µ(B1)

(
−
ˆ
B1

u dµ−−
ˆ
B2

u dµ

)
=

ˆ
B1

u dµ−
ˆ
B2

u dµ+ (µ(B2)− µ(B1))−
ˆ
B2

u dµ,
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and estimating this, we obtain

µ(B1)

∣∣∣∣−ˆ
B1

u dµ−−
ˆ
B2

u dµ

∣∣∣∣ ≤ ∣∣∣∣ˆ
B1

u dµ−
ˆ
B2

u dµ

∣∣∣∣+ ‖u‖∞ |µ(B2)− µ(B1)|

≤
ˆ
B14B2

|u| dµ+ ‖u‖∞ µ(B14B2)

≤ 2 ‖u‖∞ µ(B14B2).

The following corollary follows from Lemma 2.11 and the non-expansivenes ofM in
L∞(Ω).

Corollary 2.12. Let (X, d, µ) be a metric measure space. Let Ω ⊂ X be a domain and % an
admissible radius function in Ω. Then, for each u ∈ L∞(Ω) and all x, y ∈ Ω we have

∣∣Mku(x)−Mku(y)
∣∣ ≤ 2 ‖u‖∞

µ(Bx4By)
max {µ(Bx), µ(By)}

. (2.19)

The importance of Corollary 2.12 lies in the fact that the continuity of Mu can be
derived from the continuity of the function

x 7−→ µ(Bx) = µ(B(x, %(x))

without any dependence of the function u. To see that, consider any x, y ∈ Ω and r1, r2 >
0 and recall (2.18). Then

µ(B(x, r1)4B(y, r2)) ≤ µ(B(x, r1)4B(x, r2)) + µ(B(x, r2)4B(y, r2)). (2.20)

Now suppose that µ is ring-continuous (see Definition 2.9). Since B(x, r1) ⊂ B(x, r2) or
B(x, r2) ⊂ B(x, r1), the first term in the right hand side of (2.20) is equal to

|µ(B(x, r1))− µ(B(x, r2))| ,

so it is controlled by the ring-continuity of µ. On the other hand, for the second term we
recall the following result due to Gaczkowski and Górka:

Lemma ([GG, Theorem 2.1]). Let (X, d, µ) be a metric measure space such that µ is ring-
continuous. Then for each x ∈ X and each r > 0,

lim
y→x

µ (B(x, r)4B(y, r)) = 0.

Moreover, the function x 7→ µ(B(x, r)) is continuous (w.r.t. d) for each fixed r > 0.

Therefore, replacing r1 = %(x) and r2 = %(y) in (2.20) we get the following proposi-
tion.

Proposition 2.13. Let (X, d, µ) be a metric measure space such that µ is ring-continuous. Sup-
pose that Ω ⊂ X is a domain and % is a continuous admissible radius function in Ω. Then,
M : L∞(Ω)→ C(Ω).
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Remark 2.14. By definition, the continuous admissible radius function % vanishes on the
boundary of the domain Ω, thus µ(Bx) tends to zero as x approaches the boundary of Ω.
In consequence, estimates obtained from (2.19) are local, that is, they only make sense on
compact subsets K ⊂ Ω.

2.2.3 Equicontinuity and regularity estimates forMk

Let Ω ⊂ X be a given domain in a metric measure space (X, d, µ) and let K ⊂ Ω be a
compact subset. We will construct moduli of continuityWµ,K depending on µ, % and K
such that

µ(Bx4By)
max {µ(Bx), µ(By)}

≤ 1

2
Wµ,K(d(x, y)), (2.21)

for every x, y ∈ K. Hence, by (2.19), we would have∣∣Mku(x)−Mku(y)
∣∣ ≤ ‖u‖∞Wµ,K(d(x, y)), (2.22)

for each k ∈ N.

In this subsection, we mainly obtain two different types of estimates: (local) equicon-
tinuity and regularity. In order to show equicontinuity of the sequence of iterates {Mk}k
one just needs the admissible radius function % to be continuous (Theorem 2.18), while
for the regularity of solutions ofMu = u, we have to ask some extra regularity to % (The-
orem 2.20).

We first assume that % is Lipschitz continuous.

Lemma 2.15. Let (X, d, µ) be a metric measure space satisfying the δ-annular decay property
(2.13) for some δ ∈ (0, 1] and Dδ ≥ 1. Suppose that % is a Lipschitz continuous admissible radius
function in a domain Ω ⊂ X for some Lipschitz constant L ≥ 1. Then, for any compact set
K ⊂ Ω and each x, y ∈ K we have

µ(Bx4By)
max {µ(Bx), µ(By)}

≤ 4LDδ

(
d(x, y)

%K

)δ
. (2.23)

Proof. Since % is Lipschitz by assumption, |%(x)− %(y)| ≤ Ld(x, y). Then:

– If d(x, y) >
%K
2L

, then Dδ

(
2Ld(x, y)

%K

)δ
> 1, and

µ(Bx4By) ≤ 2 max {µ(Bx), µ(By)}

< 2Dδ

(
2Ld(x, y)

%K

)δ
max {µ(Bx), µ(By)} .
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– If d(x, y) ≤ %K
2L

then, since L ≥ 1, we get that |%(x)− %(y)| ≤ %K/2 and, in particular,
%(y) ≥ %(x)/2 and %(x) ≥ %(y)/2. As a consequence, the following inclusions hold:

Bx \By ⊂ Bx \B(x, %(y)− d(x, y)),

By \Bx ⊂ By \B(y, %(x)− d(x, y)).

Thus, by the δ-annular decay property (2.13) and the fact that %(x), %(y) ≥ %K for every
x, y ∈ K, we obtain

µ(Bx \By) ≤ Dδ

(
%(x)− %(y) + d(x, y)

%K

)δ
max {µ(Bx), µ(By)} ,

µ(By \Bx) ≤ Dδ

(
%(y)− %(x) + d(x, y)

%K

)δ
max {µ(Bx), µ(By)} .

Using the Lipschitz assumption on % and adding these two quantities we get the estimate

µ(Bx4By) ≤ 2Dδ

(
(L+ 1) d(x, y)

%K

)δ
max {µ(Bx), µ(By)} ,

which implies (2.23).

Remark 2.16. Note that if x, y are as in the statement of Lemma 2.15, then only the point-
wise inequality |%(x)− %(y)| ≤ Ld(x, y) is really used in the proof.

Lemma 2.17. Let (X, d, µ) be a proper metric measure space satisfying the δ-annular decay prop-
erty (2.13) for some δ ∈ (0, 1] and Dδ ≥ 1. Suppose that % is a continuous admissible radius
function in a bounded domain Ω ⊂ X. Then, for any compact set K ⊂ Ω and each x,y ∈ K we
have

µ(Bx4By)
max {µ(Bx), µ(By)}

≤ C
(
ω̂%(d(x, y))

%K

)δ
, (2.24)

where C = C(Dδ, µ) > 0 and ω̂% is as in (2.11).

Proof. For each pair of points x, y ∈ K, we need to distinguish two cases depending on
the values of |%(x)− %(y)|.

– If |%(x)− %(y)| ≤ d(x, y), this case was already studied in Lemma 2.15 with L = 1, then
(2.24) follows from (2.23) and (2.12).

– Otherwise, |%(x)− %(y)| > d(x, y). We can assume that

d(x, y) < %(x)− %(y), (2.25)

since the other case is analogous. Then By ⊂ Bx and

Bx4By = Bx \By ⊂ B(y, %(x) + d(x, y)) \B(y, %(y)).
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Consequently, the δ-annular decay property (2.13) yields

µ(Bx4By) ≤ Dδ

(
%(x)− %(y) + d(x, y)

%(x) + d(x, y)

)δ
µ(B(y, %(x) + d(x, y))). (2.26)

On the other hand, since the δ-annular decay property implies that µ is doubling with
some constant Dµ ≥ 1, using the inclusion B(y, %(x) + d(x, y)) ⊂ B(y, 2%(x)), it turns out
that

µ(B(y, %(x) + d(x, y))) ≤ D2
µ µ(Bx).

Therefore, replacing this in (2.26) we get

µ(Bx4By) ≤ D2
µDδ

(
%(x)− %(y) + d(x, y)

%(x) + d(x, y)

)δ
µ(Bx).

Since d(x, y) ≥ 0, %(x) ≥ %K , µ(Bx) ≥ µ(By) and (2.25),

µ(Bx4By) ≤ D2
µDδ

(
2
%(x)− %(y)

%K

)δ
max {µ(Bx), µ(By)} .

Recalling (2.12) the proof is complete.

Recalling (2.22) we have shown the following theorem.

Theorem 2.18. Let (X, d, µ) be a proper metric measure space satisfying the δ-annular decay
property (2.13) for some δ ∈ (0, 1] and Dδ ≥ 1. Suppose that % is a continuous admissible radius
function in a bounded domain Ω ⊂ X. Then, for any u ∈ L∞(Ω), any compact set K ⊂ Ω, any
x, y ∈ K and each k ∈ N we have

∣∣Mku(x)−Mku(y)
∣∣ ≤ C ‖u‖∞( ω̂%(d(x, y))

%K

)δ
, (2.27)

where C = C(Dδ, µ) > 0. In particular, the sequence {Mku}k is locally uniformly equicontinu-
ous in Ω.

In particular, if % is γ-Hölder continuous with γ ∈ (0, 1], then we can assume directly
that ω̂%(t) = L tγ and we get the following corollary of Theorem 2.18.

Corollary 2.19. Let (X, d, µ) be a proper metric measure space satisfying the δ-annular decay
property (2.13) for some δ ∈ (0, 1] and Dδ ≥ 1. Suppose that % is a γ-Hölder continuous
admissible radius function in a bounded domain Ω ⊂ X, for some γ ∈ (0, 1]. Then, for any
u ∈ L∞(Ω), any compact set K ⊂ Ω, any x, y ∈ K and each k ∈ N we have∣∣Mku(x)−Mku(y)

∣∣ ≤ ‖u‖∞ Wµ,K(d(x, y)),

whereWµ,K : [0,diam Ω]→ R is given by

Wµ,K(t) = C %−δK t γ δ, (2.28)
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with C = C(Dδ, Dµ, L) and L > 0 is the Hölder coefficient of %. In particular, the operatorM
sends L∞(Ω) to the space C 0,γδ

loc (Ω) of locally γδ-Hölder continuous functions in Ω,

M : L∞(Ω)→ C 0,γδ
loc (Ω).

and the sequence {Mku}k is locally uniformly equicontinuous in Ω.

Moreover, we immediately deduce a regularity result for bounded solutions ofMu =
u which can be stated as follows.

Theorem 2.20. Let (X, d, µ) be a proper metric measure space satisfying the δ-annular decay
property for some δ ∈ (0, 1]. Suppose that Ω ⊂ X is a bounded domain and % is a γ-Hölder con-
tinuous admissible radius function in Ω for some γ ∈ (0, 1]. Then any u ∈ L∞(Ω) verifying the
0-mean value property in Ω with respect to % (that is,Mu = u) is locally γδ-Hölder continuous
in Ω. In particular, if γ = δ = 1 then u is locally Lipschitz continuous in Ω.

2.3 Iteration of Tα
We now focus our attention on the case α 6= 0, 1. The first step consists on giving a
continuity estimate for Tα which can be easily derived from the analogous estimates for
S andM in the previous sections. More specifically, the following is a direct consequence
of Proposition 2.13 and Lemma 2.10.

Proposition 2.21. Let (X, d, µ) be a proper geodesic metric measure space with µ ring-continuous.
Suppose that Ω ⊂ X is a bounded domain and let % be a continuous admissible radius function in
Ω. Then Tα : C(Ω)→ C(Ω) for any α ∈ R.

As in the case α = 0 in which Tα reduces toM, to go beyond this result we need to
take into consideration stronger hypothesis on the measure µ.

Lemma 2.22. Let (X, d, µ) be a proper geodesic metric measure space and let Ω ⊂ X be a bounded
domain. Suppose that % is an admissible radius function in Ω and assume that, for every compact
set K ⊂ Ω, a modulus of continuity Wµ,K is given satisfying (2.21). Then, if |α| ≤ 1, and
u ∈ C(Ω), the estimate

ωTαu,K(t) ≤ |α|ω
u,K̃

(ω̂%(t)) + (1− α) ‖u‖∞Wµ,K(t), (2.29)

holds for all t ∈ [0,diam Ω].

Proof. Let x, y ∈ K. Then, recalling the definition of the operator Tα, (2.4), we get∣∣Tαu(x)− Tαu(y)
∣∣ ≤ |α| ∣∣Su(x)− Su(y)

∣∣+ (1− α)
∣∣Mu(x)−Mu(y)

∣∣,
and (2.29) is obtained by taking into consideration the estimates (2.14) and (2.22).

However, estimate (2.29) is not good enough by itself to infer further regularity for
the solutions of Tαu = u. For that reason, the key point for this section is the iteration
of formula (2.29). Note that, in order to obtain better estimates for Tαu on the compact
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set K via iteration of the operator, we need to control u on K̃ ⊃ K, where K̃ is given by
(2.10). Thus, when iterating (2.29), we need to guarantee some control on the sequence
of sets given by successive application of the (̃·) operation over the compact set K. For
that reason, we need to assume that the domain Ω ⊂ X is bounded and we impose the
following restriction on % :

λdist(x, ∂Ω)β ≤ %(x) ≤ εdist(x, ∂Ω), (2.30)

for each x ∈ Ω, where 0 < λ ≤ `(Ω)1−βε, 0 < ε < 1 and β ≥ 1, with `(Ω) given by (2.7).
We also introduce the following exhaustion of Ω:

Km : = {x ∈ Ω : dist(x, ∂Ω) ≥ (1− ε)m} ,

for m ∈ N, where ε is the constant appearing in (2.30). Hence, K1 ⊂ K2 ⊂ · · · b Ω and
lim
m→∞

Km = Ω in the sense that, for every x ∈ Ω, there exists large enough m0 = m0(x) ∈
N such that x ∈ Km for all m ≥ m0. Moreover, by (2.10) and (2.30), it is easy to check that

K̃m ⊂ Km+1,

for m ∈ N. From (2.30), we can also control from below the values of % on Km:

%Km ≥ λ
(

inf
Km

dist(x, ∂Ω)
)β ≥ λ(1− ε)mβ, (2.31)

where %Km is as in (2.9). Replacing K by Km in (2.29) and iterating it we can control the
oscillation of T kα , for k ∈ N, as the next lemma shows.

Lemma 2.23. Let (X, d, µ) be a proper geodesic metric measure space, Ω ⊂ X a bounded domain
and let % be a continuous admissible radius function in Ω. Suppose that, for every compact
set K ⊂ Ω, a modulus of continuity Wµ,K is given satisfying (2.21). Then, for |α| ≤ 1 and
u ∈ C(Ω), the estimate

ωT kα u,Km(t) ≤ |α|k ωu,Km+k

(
ω̂(k)
% (t)

)
+ (1− α) ‖u‖∞

k−1∑
j=0

|α|jWµ,Km+j

(
ω̂(j)
% (t)

) (2.32)

holds for each m, k ∈ N and every t ∈ [0, diam Ω].

Proof. Since K̃m ⊂ Km+1, we get from (2.29)

ωTαu,Km(t) ≤ |α|ωu,Km+1 (ω̂%(t)) + (1− α) ‖u‖∞Wµ,Km(t)

for each t ∈ [0,diam Ω]. Now, iteration of this inequality gives (2.32).

To get local equicontinuity of the sequence {T kα u}k, we need to add some extra con-
dition that controls the convergence of the series in (2.32).
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Lemma 2.24. Let (X, d, µ) be a proper geodesic metric measure space with a continuous admissi-
ble radius function % in a bounded domain Ω ⊂ X. Suppose that, for every compact sect K ⊂ Ω,
a modulus of continuityWµ,K is given satisfying (2.22). Assume also that

|α| lim sup
j→∞

(
Wµ,Kj (diam Ω)

)1/j
< 1. (2.33)

Then for any u ∈ C(Ω), the sequence {T kα u}k is locally uniformly equicontinuous in Ω.

Proof. Fix m ∈ N. Regarding the first term in the right-hand side of (2.32) we note that,
since ω̂%(t) ≤ diam Ω for each t ∈ [0, diam Ω], then

|α|k ωu,Km+k

(
ω̂(k)(t)

)
≤ |α|k ωu,Ω (diam Ω) −−−−→

k→∞
0.

Thus, {
t 7−→ |α|k ωu,Ω

(
ω̂(k)
% (t)

)}
k
−−−−→
k→∞

0 (2.34)

uniformly in [0,diam Ω] as k → ∞. Consequently there exists a common modulus of
continuity F1 for the sequence (2.34). Now we focus on the series in (2.32). Note that

Wµ,Km+j

(
ω̂(j)
% (t)

)
≤ Wµ,Km+j (diam Ω)

for all t ∈ [0, diam Ω]. Then, since

lim sup
j→∞

(
Wµ,Km+j (diam Ω)

)1/j
= lim sup

j→∞

(
Wµ,Km+j (diam Ω)

)1/(m+j)
,

it follows from (2.33) that

|α| lim sup
j→∞

(
Wµ,Km+j (diam Ω)

)1/j
< 1,

so the root test implies that the series

∞∑
j=0

|α|jWµ,Km+j

(
ω̂(j)
% (t)

)
<∞

converges uniformly in [0, diam Ω]. In particular, there exists another modulus of conti-
nuity for the series, say F2. Summarizing:

ωT kα u,Km(t) ≤ F1(t) + (1− α) ‖u‖∞F2(t).

Since m is arbitrary and the right-hand side of the previous inequality does not depend
on k ∈ N, the proof is finished.

In particular, if we assume that the measure µ satisfies the δ-annular decay property
(2.13) we get the following theorem.
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Theorem 2.25. Let (X, d, µ) be a proper geodesic metric measure space satisfying the δ-annular
decay property (2.13) for some δ ∈ (0, 1]. Let |α| < 1 and suppose that % is a continuous
admissible radius function in a bounded domain Ω ⊂ X satisfying (2.30) with 0 < λ ≤ `(Ω)1−βε
and `(Ω) given by (2.7). Assume also that

0 < ε < 1− |α| , (2.35)

1 ≤ β <

log
1

|α|

log
1

1− ε

.

Then, for any u ∈ C(Ω), the sequence of iterates {T kα u}k is locally uniformly equicontinuous in
Ω.

Proof. We only need to check that the assumptions in Lemma 2.24 are satisfied. By The-
orem 2.18, for any compact set K ⊂ Ω, we can choose Wµ,K as in (2.27) for any com-
pact set K ⊂ Ω. Thus, after replacing K by Kj and t by diam Ω and recalling that
ω̂%(diam Ω) = diam Ω, we get,

(
Wµ,Kj (diam Ω)

)1/j
=
(
C(diam Ω)δ

)1/j
%
−δ/j
Kj

,

and by (2.31),

(
Wµ,Kj (diam Ω)

)1/j ≤ (C(diam Ω)δ

λδ

)1/j

(1− ε)−δ β.

Taking limits we get

lim sup
j→∞

(
Wµ,Kj (diam Ω)

)1/j ≤ (1− ε)−δ β.

On the other hand, by (2.35) we have |α| < 1 − ε ≤ (1 − ε) δ β so condition (2.33) follows
and the sequence {T kα u}k is locally uniformly equicontinuous in Ω by Lemma 2.24.

2.4 Regularity of solutions

In this section we give a priori regularity results for functions u ∈ C(Ω) satisfying the
α-mean value property (2.1) (that is, solutions of the functional equation Tαu = u) with
respect to an admissible radius function in a bounded domain Ω ⊂ X. When α = 0,
then T0 =M and the regularity of such solutions was already obtained in Theorem 2.20.
However, the case α 6= 0 is more delicate and stronger assumptions on the radius func-
tion % are needed, as we have already seen in Section 2.3.
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We focus our attention on inequality (2.32). Since the continuous function u is as-
sumed to be a fixed point of the operator Tα, after replacing T kα u by u, we are allowed to
pass to the limit when k →∞. Then (2.32) becomes

ωu,Km(t) ≤ (1− α) ‖u‖∞
∞∑
j=0

|α|jWµ,Km+j

(
ω̂(j)
% (t)

)
, (2.36)

for t ∈ [0, diam Ω], where m ∈ N is fixed. Therefore, the series in (2.36) will provide the
information about the regularity of the solution u. The following is the main regularity
result of this chapter.

Theorem 2.26. Let (X, d, µ) be a proper geodesic metric measure space satisfying the δ-annular
decay condition for some δ ∈ (0, 1] and let Ω ⊂ X be a bounded domain. Suppose that % is a
Lipschitz admissible radius function in Ω with Lipschitz constant L ≥ 1 such that

λdist(x, ∂Ω)β ≤ %(x) ≤ εdist(x, ∂Ω),

for all x ∈ Ω, where 0 < λ ≤ `(Ω)1−βε and `(Ω) is given by (2.7). Assume also that

|α| < L−1,

0 < ε < 1− L |α| ,

and choose β so that

1 ≤ β <

log
1

L |α|

log
1

1− ε

. (2.37)

Then any u ∈ C(Ω) verifying the α-mean value property in Ω with respect to % (that is, Tαu = u)
is locally δ-Hölder continuous in Ω. In particular, if δ = 1 then u is locally Lipschitz continuous
in Ω.

Proof. By assumption, % is Lipschitz continuous with constant L ≥ 1, therefore we have
ω̂%(t) = min {Lt,diam Ω}. Iterating we get the inequality ω̂(j)

% (t) ≤ Ljt for each t ∈
[0,diam Ω] and each j ∈ N. Moreover, since µ satisfies the δ-annular decay property
(2.13), from (2.28) together with (2.31) we get

Wµ,Km+j (t) ≤
C tδ

λδ(1− ε)(m+j)β δ

for some constant C = C(Dδ, Dµ, L) ≥ 1. Replacing all this in (2.36) we obtain the
following estimate:

ωu,Km(t) ≤
C(1− α) ‖u‖∞
λδ(1− ε)mβ δ

 ∞∑
j=0

(
Lδ |α|

(1− ε)β δ

)j tδ.
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Now observe that (2.37) implies the convergence of the above series and, consequently,
the desired Hölder regularity estimate.

In the particular case that β = 1, we obtain the following Theorem as a corollary of
Theorem 2.26.

Theorem 2.27. Let (X, d, µ) be a proper geodesic metric measure space satisfying the δ-annular
decay condition for some δ ∈ (0, 1] and let Ω ⊂ X be a bounded domain. Suppose that % is a
Lipschitz admissible radius function in Ω with Lipschitz constant L ≥ 1 such that

λdist(x, ∂Ω) ≤ %(x) ≤ εdist(x, ∂Ω),

for all x ∈ Ω, where
0 < λ ≤ ε < 1− L |α| .

Then any u ∈ C(Ω) verifying the α-mean value property in Ω with respect to % (that is, Tαu = u)
is locally δ-Hölder continuous in Ω. In particular, if δ = 1 then u is locally Lipschitz continuous
in Ω.

2.5 The Dirichlet problem for p-harmonious functions

Let X = Rn with d the euclidean distance and µ = L the Lebesgue measure. Given a
bounded domain Ω ⊂ Rn and any fixed continuous boundary data f ∈ C(∂Ω), in this
section we show existence and uniqueness of fixed points of Tα in Kf , where Kf stands
for the set of all norm-preserving continuous extensions of f to Ω defined in (2.6).

Uniqueness of solutions is easily deduced from a comparison principle for fixed points
of Tα which also holds for general metric measure spaces (see Proposition 2.31). On the
other hand, our proof of existence of fixed points relies on the equicontinuity of the se-
quence of iterates {T kα u}k in Ω for any u ∈ Kf . Indeed, in Theorem 2.33 we show that the
equicontinuity of the iterates in the clausure of the domain implies existence of solutions
even in the case of a metric measure space (X, d, µ).

Consequently, since the local equicontinuity has been already studied in Section 2.3,
the main issue in this section is to show the equicontinuity of the sequence {T kα u}k at
each point of the boundary. With that purpose, Section 2.5.3 describes the adaptation of
a clever argument due to Javaheri ([Jav]) for the operatorM in euclidean domains, as is
done in [AL1]. Unfortunately, this method cannot be employed in the context of a general
metric measure space. Moreover, as one may expect, the argument adapted from [Jav]
needs some extra hypothesis on the geometry of the domain, more precisely, (in addition
to boundedness) we require Ω to be strictly convex, that is, for each x, y ∈ ∂Ω the open
segment connecting x and y is entirely contained in Ω (see Theorem 2.34). This is the only
part of the proof where strict convexity is used.

To summarize, we state the main theorem of this section, which is consequence of the
results of this and previous sections.
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Theorem 2.28. Let Ω ⊂ Rn be a bounded and strictly convex domain, α ∈ [0, 1) and % a
continuous admissible radius function in Ω satisfying

λdist(x, ∂Ω)β ≤ %(x) ≤ εdist(x, ∂Ω)

with 0 < λ ≤ `(Ω)1−βε and `(Ω) is given by (2.7). Assume also that

0 < ε < 1− α,

1 ≤ β <
log

1

α

log
1

1− ε

.

Let Tα the operator (2.4) with µ = L the Lebesgue measure. Then, for any f ∈ C(∂Ω), there
exists a unique fixed point v = Tαv in Kf . Moreover, for any u ∈ Kf , the sequence of iterates
{T kα u}k converges uniformly to v.

Taking β = 1 we obtain the following as a corollary of the previous result and Theo-
rem 2.27.

Theorem 2.29. Let Ω ⊂ Rn be a bounded and strictly convex domain, α ∈ [0, 1) and % a
continuous admissible radius function satisfying

λdist(x, ∂Ω) ≤ %(x) ≤ εdist(x, ∂Ω)

for all x ∈ Ω, where
0 < λ ≤ ε < 1− α.

Then, for any f ∈ C(∂Ω), there exists a unique fixed point v = Tαv in Kf . Moreover, for any
u ∈ Kf , the sequence of iterates {T kα u}k converges uniformly to v. In addition, if % is Lipschitz
continuous with constant L ≥ 1 and

0 < λ ≤ ε < 1− Lα,

then u is locally Lipschitz continuous in Ω.

Remark 2.30. The results in this section were originally proved in [AL1] when the ad-
missible radius function is 1-Lipschitz, that is,

|%(x)− %(y)| ≤ |x− y| ,

for each x, y ∈ Ω. The proof of existence of solutions (Lemma 2.32 and Theorem 2.33)
is much more powerful than in [AL1] since we show the convergence of the sequence
of iterates {T kα u0}k for a fixed point directly, while in [AL1] we employed a different
argument based on a technical result for non-expansive mappings in Banach spaces due
to Ishikawa (see [Ish] and [GK]). This method requires the aid of an auxiliary operator
Hα = 1

2(I + Tα) (whose fixed points coincide with the fixed points of Tα) and consists on
studying the convergence of its iterates.



2.5. The Dirichlet problem for p-harmonious functions 57

2.5.1 Uniqueness of solutions

The uniqueness part follows from the next comparison principle.

Proposition 2.31. Let (X, d, µ) be a metric measure space endowed with a Borel positive regular
measure µ such that 0 < µ(B) < ∞ for every ball B ⊂ X. Let Ω ⊂ X be a bounded domain, %
an admissible radius function in Ω and α ∈ [0, 1). Suppose that u and v are fixed points of Tα in
C(Ω) satisfying that u ≤ v on ∂Ω. Then u ≤ v in Ω.

Proof. The argument is standard in comparison results. Let u and v as in the statement of
the proposition. Let m = max

Ω
(u−v). We will show that m ≤ 0. Suppose, on the contrary,

that m > 0. Then, by monotonicity, the inequalities

Su ≤ m+ Sv and Mu ≤ m+Mv (2.38)

hold. On the other hand, define

A : = {x ∈ Ω : (u− v)(x) = m} ,

which is a nonempty and closed subset of Ω, and take any y ∈ A. We will see thatBy ⊂ A
and thus A is also open. Indeed, since u and v are fixed points of Tα and u(y) = m+ v(y),

αSu(y) + (1− α)Mu(y) = α(m+ Sv(y))(1− α)(m+Mv(y)),

and by (2.38) we must have in particular thatMu(y) = m+Mv(y). Therefore,

−
ˆ
By

(v +m− u) dµ = 0.

The integrand in this equation is continuous and non-negative so by continuity and the
hypothesis on µ it follows that v+m−u ≡ 0 inBy. This proves thatA is open. Therefore,
by connectednessA = Ω and v−u ≡ m > 0 in Ω, which contradicts the assumption u ≤ v
on ∂Ω. Then m ≤ 0 and the proposition follows.

2.5.2 Equicontinuity in Ω implies existence

Let Ω ⊂ X be a bounded domain and consider f ∈ C(∂Ω) any continuous boundary data.
In order to show the existence of fixed points for Tα in Kf , as well as the convergence of
the sequence of iterates to a fixed point, we will make use of the following technical
result, which can be stated in the more general context of Banach spaces.

Lemma 2.32. Let (X, ‖·‖) be a Banach space, ∅ 6= K ⊂ X any closed subset and T : K → K
a non-expansive operator. For x ∈ K, suppose that the sequence of iterates {T kx}k has a limit
point y ∈ K. Let

C : = lim
k→∞

‖T k+1x− T kx‖ ≥ 0. (2.39)

Then,
‖T `+1y − T `y‖ = C, (2.40)



58 The restricted MVP and p-harmonious functions

for every ` = 0, 1, 2, . . . In particular, ifC = 0, the sequence {T kx}k is said to be asymptotically
regular and then y ∈ K is a fixed point of T .

Proof. Since y ∈ K is a limit point of {T kx}k, there exists a subsequence {T kjx}j con-
verging to y. The non-expansiveness of T implies that the sequence

{∥∥T k+1x− T kx
∥∥}

k
is non-increasing, thus the constant C ≥ 0 given by (2.39) is well-defined. Now, for any
` = 0, 1, 2, . . ., the triangle inequality and the non-expansiveness of T yield

‖T `+1y − T `y‖ ≤ ‖T kj+`+1x− T `+1y‖+ ‖T kj+`x− T `y‖+ ‖T kj+`+1x− T kj+`x‖

≤ 2‖T kjx− y‖+ ‖T kj+1x− T kjx‖,

for each j ∈ N. Taking limits as j →∞, we get
∥∥T `+1y − T `y

∥∥ ≤ C. On the other hand,

‖T kj+`+1x− T kj+`x‖ ≤ ‖T kj+`+1x− T `+1y‖+ ‖T kj+`x− T `y‖+ ‖T `+1y − T `y‖

≤ 2‖T kjx− y‖+ ‖T `+1y − T `y‖.

Again, taking limits we obtain the reversed inequality and we get (2.40). Finally, if C = 0,
choosing ` = 0 in (2.40) we get Ty = y, so y ∈ K is a fixed point of T .

For the next result, we assume that the sequence of iterates is equicontinuous in Ω
and we use Lemma 2.32 to show that this sequence converges uniformly to a fixed point.

Theorem 2.33. Let (X, d, µ) be a metric measure space endowed with a Borel positive regular
measure µ such that 0 < µ(B) <∞ for every ball B ⊂ X. Let Ω ⊂ X be a bounded domain, % an
admissible radius function in Ω and α ∈ [0, 1). For a fixed function f ∈ C(∂Ω), suppose that the
sequence of iterates {T kα u}k is equicontinuous in Ω for each u ∈ Kf . Then:

1. For any u ∈ Kf , the sequence of iterates {T kα u}k is asymptotically regular, that is,

lim
k→∞

‖T k+1
α u− T kα u‖ = 0.

2. There exists a unique function v ∈ Kf such that Tαv = v.

3. The sequence of iterates converges uniformly in Ω to the fixed point v ∈ Kf for each u ∈ Kf .

Proof. Since {T kα u}k is assumed to be equicontinuous in Ω, by Arzelà-Ascoli’s theorem,
there exists at least one subsequence converging uniformly to a function v ∈ Kf . Let

C : = lim
k→∞

‖T k+1
α u− T kα x‖∞ ≥ 0.

By definition (2.6), Kf is a closed subset of C(Ω) and Tα : Kf → Kf , thus Lemma 2.32
yields that

‖T `+1
α v − T `αv‖∞ = C, (2.41)
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for every ` = 0, 1, 2, . . . To see that C = 0, we argue by contradiction: suppose that C > 0
and choose a large enough ` ∈ N so that

` > 2
‖f‖∞
C

. (2.42)

Since T `+1
α v − T `αv is a continuous function vanishing on ∂Ω, we can choose an interior

point x0 ∈ Ω such that
|T `+1
α v(x0)− T `αv(x0)| = C.

We assume that T `+1
α v(x0)−T `αv(x0) = C since otherwise the proof goes in an analogous

way. Recalling the definition of Tα andM, (2.4) and (2.3), respectively, it turns out that

C = α
[
S(T `αv)(x0)− S(T `−1

α v)(x0)
]

+ (1− α) −
ˆ
Bx0

(T `αv − T `−1
α v) dµ. (2.43)

For α 6= 0, using (2.41), we know that

−
ˆ
Bx0

(T `αv − T `−1
α v) dµ ≤ C,

then, replacing in (2.43), rearranging terms and dividing by α,

C ≤ S(T `αv)(x0)− S(T `−1
α v)(x0) ≤ ‖ST `αv − ST `−1

α v‖∞.

From the non-expansiveness of the operator S and (2.41), we get

S(T `αv)(x0)− S(T `−1
α v)(x0) = C,

and, as a consequence of (2.43),

−
ˆ
Bx0

(T `αv − T `−1
α v) dµ = C,

which is also true when α = 0 (just replace it in (2.43)). Together with (2.41) and since
µ(Bx0) > 0, this implies that the function in the previous averaged integral is equal to C
in Bx0 . In particular,

T `αv(x0)− T `−1
α v(x0) = C,

so we can repeat this argument iteratively until we finally reach that

T `αv(x0) = v(x0) + `C.

Recalling that Tα : Kf → Kf together with (2.6) and (2.42), we obtain the desired contra-
diction,

‖f‖∞ ≥ T
`
αv(x0) = v(x0) + `C > −‖f‖∞ + 2 ‖f‖∞ = ‖f‖∞ ,

and thus C = 0. This proves not only that the sequence of iterates is asymptotically
regular, but the existence of a fixed point v ∈ Kf for Tα (see Lemma 2.32). Finally, to see
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that the iterates actually converge uniformly to the fixed point, suppose on the contrary
that there are ε > 0 and a subsequence {T kjα u}j such that

‖T kjα u− v‖ ≥ ε

for each j ∈ N. We can assume that this subsequence converges uniformly to a function
w ∈ Kf (otherwise, by equicontinuity and Arzelà-Ascoli’s theorem we can take a further
subsequence converging uniformly to w). In particular,

‖w − v‖∞ ≥ ε. (2.44)

However, following the same reasoning, it turns out that w is also a fixed point for Tα
in Kf and, by uniqueness (Section 2.5.1) it turns out that w = v in Ω, which contradicts
(2.44).

2.5.3 Boundary equicontinuity in the euclidean case

In this section, let X = Rn, d the euclidean distance and µ = L the Lebesgue measure. In
what follows, we will assume that Ω ⊂ Rn is a bounded and strictly convex domain (that
is, for each pair of points x, y ∈ ∂Ω, the open segment connecting them is contained in Ω)
and % is a continuous admissible radius function in Ω. Here, the operator Tα is defined as
usual. Then, we show the following result:

Theorem 2.34. Let α ∈ [0, 1). Then, for any u ∈ C(Ω), the sequence of iterates
{
T kα u

}
k

is
equicontinuous at each point of ∂Ω.

As we mentioned at the beginning of this section, in order to show Theorem 2.34, we
adapt an argument from [Jav]. The idea is to show that the graph of each iterate T kα u is
contained in the convex hull of the graph of u for any u ∈ C(Ω). Then, together with
the strict convexity of the domain Ω, this property imposes a control on the behavior of
the iterates near the boundary in such a way that the equicontinuity at each point in ∂Ω
follows.

Once the boundary equicontinuity has been proved, we are in conditions of showing
the existence result for strictly convex domains in Rn:

Proof of Theorem 2.28. Uniqueness of solutions follows directly from the comparison prin-
ciple for generalized p-harmonious functions (Proposition 2.31), while the existence of
solutions will follow from Theorem 2.33 once the equicontinuity of {T kα u} in Ω has been
provided for any continuous extension u ∈ Kf . Indeed, equicontinuity at points in ∂Ω
is proven in Theorem 2.34, while for equicontinuity at interior points we recall Theo-
rem 2.25.

First, we introduce some basic notation. For u ∈ C(Ω), we define the graph of u as
the set

Gu : =
{

(x, u(x)) : x ∈ Ω
}
⊂ Ω× R ⊂ Rn+1.
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Moreover, we denote by co(A) the convex hull of a set A, that is, the smallest convex set
containing A.

Proposition 2.35. Let α ∈ [0, 1]. If u ∈ C(Ω), then

GT kα u ⊂ co(Gu), (2.45)

for each k ∈ N.

Proof. Note that, to obtain (2.45), it is enough to prove that the inclusion

GTαu ⊂ co(Gu) (2.46)

holds for each function u ∈ C(Ω). Indeed, if (2.46) holds, then

co(GTα(T k−1
α u)) ⊂ co(GT k−1

α u)

for every k ∈ N and we easily get (2.45) after applying this inclusion iteratively. Moreover,
since α is assumed to be between 0 and 1, by definition of Tα (2.4), each point in the graph
of Tαu is convex combination of a point in GSu with a point in GMu, more precisely,

(x, Tαu(x)) = α (x,Su(x)) + (1− α) (x,Mu(x))

for each x ∈ Ω, and thus we just need to prove (2.46) for the extreme cases α = 0 and
α = 1, that is,

GSu ⊂ co(Gu), (2.47)
GMu ⊂ co(Gu). (2.48)

Fix x ∈ Ω. To see (2.47), since u is continuous, we can select points ξmax and ξmin in
Bx = B(x, %(x)) such that

sup
Bx

u = u(ξmax),

inf
Bx
u = u(ξmin),

together with their reflections with respect to x, ξ′max = 2x − ξmax and ξ′min = 2x − ξmin,
then

u(ξmin) + u(ξ′min) ≤ sup
Bx

u+ inf
Bx
u ≤ u(ξmax) + u(ξ′max),

and by continuity, there exists ξ ∈ Bx such that

Su(x) =
u(ξ) + u(ξ′)

2
.

where ξ′ = 2x− ξ ∈ Bx. Consequently,

(x,Su(x)) =
1

2
(ξ, u(ξ)) +

1

2
(ξ′, u(ξ′)),
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which is a convex combination of points in Gu, and (2.47) follows.

We prove now (2.48). Since ζ ∈ Bx if and only if 2x − ζ ∈ Bx and L is the Lebesgue
measure on Rn, then ˆ

Bx

u(ζ) dζ =

ˆ
Bx

u(2x− ζ) dζ

and we can write

Mu(x) = −
ˆ
Bx

u(ζ) + u(2x− ζ)

2
dζ.

Therefore, by continuity, there exists ξ ∈ Bx so that

Mu(x) =
u(ξ) + u(ξ′)

2
,

and (2.48) follows as in the previous case.

Lemma 2.36. Let u ∈ C(Ω). Then,

co(Gu) ∩ ({ξ} × R) = {(ξ, u(ξ))} ,

for each ξ ∈ ∂Ω.

Proof. Fix any ξ ∈ ∂Ω and suppose that t ∈ R is given such a way that the point
(ξ, t) is contained co(Gu). We need to show that this forces t to be equal to u(ξ). By
Carathéodory’s theorem, (ξ, t) can be written as a convex combination of (at most) n+ 2
points in Gu, that is,

(ξ, t) =

n+2∑
i=1

λi(xi, u(xi))

where x1, x2, . . . , xn+2 ∈ Ω and λ1, λ2, . . . , λn+2 ≥ 0 satisfy λ1 + · · · + λn+2 = 1. We
deduce that the convex combination in the previous equation must be trivial in the sense
that, say, λ1 = 1 and λ2 = · · · = λn+2 = 0. Otherwise, ξ ∈ ∂Ω would be a proper convex
combination of points in Ω, which contradicts the strict convexity of Ω. Then x1 = ξ and
t = u(ξ) for the choices of the parameters above.

Proof of Theorem 2.34. We proceed by contradiction: suppose that there exists a continu-
ous function u ∈ C(Ω) such that the sequence of iterates {T kα u}k is not equicontinuous
at certain ξ ∈ ∂Ω. Then there is a small enough ε > 0, an increasing sequence of integers
{kj}j ⊂ N and a sequence of points {xj}j ⊂ Ω satisfying xj → ξ and

|T kjα u(xj)− u(ξ)| = |T kjα u(xj)− T
kj
α u(ξ)| ≥ ε
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for each j ∈ N. We can assume (otherwise we could take a further subsequence) that
T kjα u(xj)→ t ∈ R as j →∞ and that

|t− u(ξ)| ≥ ε

2
. (2.49)

By Proposition 2.35,
(xj , T

kj
α u(xj)) ∈ co(Gu)

for each j ∈ N, and since co(Gu) is a closed set, taking limits we get

(ξ, t) ∈ co(Gu).

Then the contradiction follows from the (2.49) together with Lemma 2.36. Therefore{
T kα u

}
k

is equicontinuous at each point of ∂Ω.
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Chapter 3

Tug-of-war games and the
normalized p(x)-Laplacian

In this chapter we study a tug-of-war game with orthogonal noise and space dependent
probabilities. One of the key tools in studying the tug-of-war games is the dynamic pro-
gramming principle (DPP), which, in this case, reads as

u(x) =
1− δ(x)

2

[
sup
|ν|=ε

(
α(x)u(x+ ν) + β(x)−

ˆ
Bνε

u(x+ h) dLn−1(h)

)

+ inf
|ν|=ε

(
α(x)u(x+ ν) + β(x)−

ˆ
Bνε

u(x+ h) dLn−1(h)

)]
+ δ(x)F (x),

with a given boundary cut-off function δ, a continuous boundary function F and con-
tinuous probability functions α(x), β(x). Here, Bν

ε denotes the (n − 1)-dimensional ball
orthogonal to ν and Ln−1 stands for the (n − 1)-dimensional Lebesgue measure. This
formula can be understood as some sort of mean value property.

The results in this chapter are contained in [AHP]. However, in this memory we do
not describe all the results of this article and we mainly focus on giving a detailed proof
of the (asymptotic) regularity estimates for solutions of the DPP. We organize this chapter
in three sections: first, in Section 3.1 we describe the game introduced above which turns
out to be very helpful for showing existence and uniqueness of solutions of DPP. Later,
in Section 3.2, we show that these solutions satisfy some locally asymptotic Hölder con-
tinuity estimate (Theorem 3.2). Finally, Section 3.3 is devoted to give boundary estimates
for the solutions using barrier arguments.

3.1 The two-player tug-of-war game

First we introduce some notation that will be useful to describe the game and throughout
the following sections. Given a bounded domain Ω ⊂ Rn and ε > 0, we define the
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following open sets:

Iε = {x ∈ Ω : dist(x, ∂Ω) < ε} ,
Oε =

{
x ∈ Rn \ Ω : dist(x, ∂Ω) < ε

}
,

ant the extended domain Ωε : = Ω ∪ Oε. Also, for brevity, the compact boundary strip of
the game domain is denoted by Γε : = Iε ∪ Oε. Let F be a continuous boundary func-
tion F ∈ C(Γε). For measurability reasons, we need to introduce a boundary correction
function δ : Ωε → [0, 1] which is given by

δ(x) = min
{

0, 1− ε−1 dist(x,Oε)
}
. (3.1)

Then, δ(x) = 0 if and only if x ∈ Ω \ Iε. Suppose that α, β : Ω → (0, 1) are continuous
functions such that

α(x) + β(x) = 1

for all x ∈ Ω. In addition, we define the bounds

0 < αmin : = inf
x∈Ω

α(x) ≤ sup
x∈Ω

α(x) = : αmax < 1, (3.2)

and, in consequence, βmin : = 1− αmax and βmax : = 1− αmin. We denote by Bν
ε the open

ball of radius ε in the (n− 1)-dimensional hyperplane ν⊥ orthogonal to 0 6= ν ∈ Rn, that
is,

Bν
ε : = B(0, ε) ∩ ν⊥ : = {y ∈ Rn : |y| < ε and 〈y, ν〉 = 0} .

Let us consider a game involving two players (say PI and PII). A token is placed at
a starting point x0 ∈ Ω. Suppose that, after j = 0, 1, 2, . . . movements, the token is at a
point xj ∈ Ω. Then,

• if xj ∈ Ω \ Iε, then PI and PII decide their possible movements νI
j+1 and νII

j+1,
respectively, with |νI

j+1| = |νII
j+1| = ε. A fair coin is tossed and if i ∈ {I, II} and Pi

wins the toss, we have two possibilities:

– with probability α(xj), the token is moved to xj+1 = xj + νij+1, and

– with probability β(xj), the token is moved to a point xj+1 ∈ xj + B
νij+1
ε uni-

formly random;

• if xj ∈ Iε,

– the game ends with probability δ(xj) and then, PII pays PI the amount given
by F (xj), and

– with probability 1 − δ(xj), the players play a game as in the previous case
xj ∈ Ω \ Iε.

• if xj ∈ Oε, then the game ends and PII pays PI the amount given by F (xj).
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Let τ denote the time when the game ends, and denote by xτ ∈ Γε the position where the
game ends. Then, PII pays PI the quantity F (xτ ). We define a history of the game as the
vector (x0, x1, . . . , xj) describing the positions of the token at each step after j repetitions.
A strategy is a sequence of Borel measurable functions that gives the next game position
given the history of the game. Therefore, we define Si : = (Sji )

∞
j=1 with

Sji : {x0} ×
j−1⋃
k=1

(Ωε)
k −→ ∂B(0, ε),

for all j ∈ N and with both i ∈ {I, II}. Given a starting point x0 ∈ Ω and strategies SI, SII,
we define a probability measure Px0SI,SII

on the natural product σ-algebra of the space of
all game trajectories.

Since αmax < 1, it can be proven that the game described above ends almost surely
in finite time (τ < ∞) regardless of the strategies SI and SII (see Section 2 in [AHP] for a
detailed proof and [Har] for the case in which α(x) is constant). Therefore, for all starting
points x0 ∈ Ω, we can define a value function for PI and for PII by

uI(x0) = sup
SI

inf
SII

Ex0SI,SII
[F (xτ )],

uII(x0) = inf
SII

sup
SI

Ex0SI,SII
[F (xτ )].

(3.3)

Moreover, it turns out that these value functions satisfy the dynamic programming prin-
ciple,

u(x) =
1− δ(x)

2

[
sup
|ν|=ε

(
α(x)u(x+ ν) + (1− α(x))−

ˆ
Bνε

u(x+ h) dLn−1(h)

)

+ inf
|ν|=ε

(
α(x)u(x+ ν) + (1− α(x))−

ˆ
Bνε

u(x+ h) dLn−1(h)

)]
+ δ(x)F (x),

(3.4)

where we denote

−
ˆ
Bνε

u(x+ h) dLn−1(h) : =
1

Ln−1(Bν
ε )

ˆ
Bνε

u(x+ h) dLn−1(h),

with Ln−1 the (n− 1)-dimensional Lebesgue measure.

As we have mentioned, our main interest in this chapter is to study the regularity of
solutions of (3.4), for that reason, we introduce the auxiliary function

Au(x, ν) : = α(x)u(x+ ν) + β(x)−
ˆ
Bνε

u(x+ h) dLn−1(h) (3.5)
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and the operator

Ru(x) : =
1− δ(x)

2

[
sup
|ν|=ε
Au(x, ν) + inf

|ν|=ε
Au(x, ν)

]
+ δ(x)F (x) (3.6)

for all x ∈ Ωε and any continuous functions u ∈ C(Ωε). By using this operator, we can
identify the solutions to (3.4) with the fixed points of R. Note that, despite the fact that
α(x) and β(x) are not defined in the outside strip Oε, (3.6) is well-defined by setting
Ru(x) = F (x) for all x ∈ Oε. Similarly, we set δ(x)F (x) = 0 for all x ∈ Ω \ Iε.

Defined in this way, R : C(Ωε)→ C(Ωε) and, if u, v ∈ C(Ωε) satisfy u ≤ v then Ru ≤
Rv, that is, the operator R is monotone. Next, we state the existence and uniqueness of
solutions of (3.4).

Theorem 3.1. Let ε > 0 and let F : Γε → R be a continuous function. Then, there exists a
continuous function uε : Ωε → R with the boundary data F such that it satisfies the dynamic
programming principle (3.4). Moreover, this function is unique and is the value function of the
game, i.e., uε = uI = uII with uI and uII defined in (3.3).

In the following, we give a brief idea of the proof. For a detailed proof of this re-
sult, we refer the reader to Section 3 in [AHP] (see also [Har] for the case in which the
probability function α(x) is constant).

Sketch of the proof. The idea of the proof is to show the existence of a lower and an upper
semicontinuous solutions of (3.4),

Ru = u and Ru = u,

respectively, by iterating the operator R defined in (3.6). In fact, these functions can be
defined as the following pointwise limits: u(x) : = lim

k→∞
Rk(inf F ),

u(x) : = lim
k→∞

Rk(supF ),

where (inf F ) and (supF ) are understood as constant functions in Ωε. Then, it can be
shown that every measurable solution u satisfying (3.4) is bounded between these two
semicontinuous functions, that is, u ≤ u ≤ u for every measurable function u such that
Ru = u. Finally, by using the tug-of-war game defined above, it turns out that both
semicontinuous solutions are, in fact, the same. From this, existence and uniqueness of
solutions follows at the same time.

Once the existence and uniqueness of continuous solutions of Ru = u have been
established, in Section 3.2 we give a local asymptotic regularity estimate for the solutions
of (3.4) in Ω \ Iε. This is the main result of this chapter and can be stated as follows.
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Theorem 3.2. Let x, y ∈ B(0, R) with B(0, 2R) ⊂ Ω and

0 < γ <
αmin

αmax
− κ (3.7)

for arbitrary small κ ∈ (0, αmin/αmax) with αmin, αmax defined in (3.2). Then, if u satisfies (3.4),
we have

|u(x)− u(y)| ≤ C |x− y|
γ

Rγ
+ C

εγ

Rγ
(3.8)

with C : = C(αmin, αmax, n,R, supB2R
u, γ) and 0 < ε < 1.

Note that, by the definition of the operatorR and the boundary cut-off function (3.1),
the dynamic programming principle in Ω \ Iε reduces to the equation

u(x) =
1

2

[
sup
|ν|=ε

(
α(x)u(x+ ν) + β(x)−

ˆ
Bνε

u(x+ h) dLn−1(h)

)

+ inf
|ν|=ε

(
α(x)u(x+ ν) + β(x)−

ˆ
Bνε

u(x+ h) dLn−1(h)

)]
.

(3.9)

Therefore, we need to control the continuity of the solutions near de boundary of the
domain. For that purpose, in Section 3.3, we obtain boundary estimates by using barrier
arguments. As one may expect, we will need to ask some condition on the geometry
of the domain in order to obtain these estimates. In particular, we need the domain
Ω ⊂ Rn to satisfy the so called boundary regularity condition: there are universal constants
r0, s ∈ (0, 1) such that, for each r ∈ (0, r0] and z ∈ ∂Ω there exists a ball

B(y, sr) ⊂ B(z, r) \ Ω

for some y ∈ B(z, r) \ Ω.

Theorem 3.3. Consider Ω ⊂ Rn a bounded domain satisfying the boundary regularity condition.
Let η > 0 and let u be the solution of (3.4) with continuous boundary data F . Then, there is a
constant r ∈ (0, r0] such that for all r ∈ (0, r] there exist constants k ∈ N and ε0 > 0 such that
for any z ∈ Γε it holds

|u(x0)− F (z)| < η

for all 0 < ε < ε0 and x0 ∈ B(z, 41−kr) ∩ Ωε.

As a consequence of Theorems 3.2 and 3.3, and in view of the Arzelà-Ascoli’s theorem,
there exists a continuous function u on Ω with the boundary values F and a subsequence
{εk}k such that uεk → u uniformly on Ω as k → ∞. Moreover, it turns out that this
function is a weak solution to the normalized homogeneous p(x)-Laplace equation

∆N
p(x)u(x) : = ∆u(x) +

(
p(x)− 2

)
∆∞u(x)

= ∆N
1u(x) +

(
p(x)− 1

)
∆∞u(x)

= 0,

(3.10)
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where the relation between α(x) and p(x) is given by

α(x) =
p(x)− 1

n+ p(x)
.

Thus, p : Ω→ (1,+∞) is uniformly continuous and

1 < pmin : = inf
x∈Ω

p(x) ≤ sup
x∈Ω

p(x) = : pmax <∞.

Since equation (3.10) is in a non-divergence form, the weak solutions are defined via
viscosity theory. Furthermore, by the estimate obtained in Theorem 3.2, it turns out that
this solution is locally γ-Hölder continuous. We state this as a theorem and we direct the
reader to Theorem 6.2 in [AHP] for the proof.

Theorem 3.4 ([AHP, Theorem 6.2]). Let Ω ⊂ Rn be a domain satisfying the boundary regu-
larity condition, and let uε denote the unique continuous solution to (3.4) with ε > 0 and with
a continuous boundary function F : Γε → R. Then, there are a function u : Ω → R and a
subsequence {εi}i such that uεi converges uniformly to u in Ω and the function u is a viscosity
solution to (3.10) with the boundary data F . Moreover, u is locally γ-Hölder continuous for some
γ ∈ (0, 1).

3.2 Local regularity

The regularity result is based on a method established by Luiro and Parviainen in [LP].
The method consists of several steps:

– First, we choose a comparison function f having the desired regularity properties.
Then, the idea is to analyze two different cases separately. At a small scale, we need to
control the effects arising from the discretization. At a bigger scale, the key term of the
comparison function is C |x− y|γ with x, y ∈ Rn, 0 < γ < 1 and C > 0 big enough.

– In the second step, we aim to prove that the error u(x) − u(y) − f(x, y), where u is
the solution to (3.9), is smaller in (B1 × B1) \ T than in (B2 × B2) \ (B1 × B1 \ T ) with
both sets belonging to R2n, where we used the notation BR for the ball B(0, R) and the
set T is the set of points (x, y) ∈ R2n such that x = y. Then, we thrive for a contradiction
by assuming that the error is bigger in (B1 ×B1) \ T .

– As a final step, we get a contradiction by using a multidimensional dynamic pro-
gramming principle for the comparison function f . In the proof below, intuition based
on suitable strategies is helpful even though we are not using stochastic arguments.

Proof of Theorem 3.2. By using a scaling x 7→ Rx, we can assume that R = 1. In addition
by translation, it is enough to consider the claim (3.8) in the case y = −x. For simplicity,
we assume supB2×B2

(u(x)− u(y)) ≤ 1.
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Given C > 1, let N ∈ N be such that

N ≥ 100C

γ
.

Then, we define the following functions in R2n

f1(x, y) = C |x− y|γ + |x+ y|2 ,

f2(x, y) =

{
C2(N−i)εγ if (x, y) ∈ Ai,
0 if |x− y| > N

ε

10
,

f(x, y) = f1(x, y)− f2(x, y),

with Ai =
{

(x, y) ∈ R2n : (i− 1) ε
10 < |x− y| ≤ i

ε
10

}
for i = 0, 1, . . . , N . The function f2

is called an annular step function and it is needed to control the small scale jumps. Note
that we have sup f2 = C2Nεγ reached on

T : = A0 =
{

(x, y) ∈ R2n : x = y
}
.

It holds that f1 ≥ 1 in (B2 × B2) \ (B1 × B1). Here, we need the term |x+ y|2 in the
function f1, because

|x+ y|2 = 2 |x|2 + 2 |y|2 − |x− y|2 ≥ 3

for all x, y ∈ (B2 × B2) \ (B1 × B1) such that |x− y| ≤ 1. Therefore, together with
u(x)− u(y) ≤ 1 in B2 ×B2 and u(x)− u(y) = 0 in T , we have

u(x)− u(y)− f(x, y) ≤ sup f2 = C2Nεγ , (3.11)

if (x, y) ∈ T or (x, y) ∈ (B2×B2) \ (B1×B1). We have to show that this inequality is also
true in (B1 ×B1) \ T . Thriving for a contradiction, write

M : = sup
(x,y)∈B1×B1\T

(u(x)− u(y)− f(x, y))

and suppose that M > C2Nεγ . By (3.11), this is equivalent to

M = sup
(x,y)∈B2×B2

(u(x)− u(y)− f(x, y)). (3.12)

For all η > 0, we choose a pair of points (x, y) ∈ (B1 ×B1) \ T such that

M ≤ u(x)− u(y)− f(x, y) +
η

2
. (3.13)

Then by (3.9), we have

u(x)− u(y) ≤ 1

2
sup
νx,νy

(Au(x, νx)−Au(y, νy)) +
1

2
inf
νx,νy

(Au(x, νx)−Au(y, νy)), (3.14)
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where Au is the auxiliary function defined in (3.5).

Given |νx| = |νy| = ε, let Pνy ,−νx denote any rotation that sends νy to−νx. By recalling
α(x) + β(x) = 1 for x ∈ Ω, we can decompose the difference Au(x, νx) − Au(y, νy). For
simplicity, we may assume that α(x) ≥ α(y). Thus, we get

Au(x, νx)−Au(y, νy) = α(y) [u(x+ νx)− u(y + νy)]

+ β(x)−
ˆ
B
νy
ε

[
u(x+ Pνy ,−νxh)− u(y + h)

]
dLn−1(h)

+ (α(x)− α(y))

[
u(x+ νx)−−

ˆ
B
νy
ε

u(y + h) dLn−1(h)

]
.

(3.15)

Next, we use the counter assumption (3.12) to estimate each of the terms in (3.15) from
above. Consequently, we can estimate

u(x)− u(y) ≤M + f(x, y)

for all x, y ∈ B2. Then, we define

G(f, x, y, νx, νy) : = α(y)f(x+ νx, y + νy)

+ β(x)−
ˆ
B
νy
ε

f(x+ Pνy ,−νxh, y + h) dLn−1(h)

+ (α(x)− α(y))−
ˆ
B
νy
ε

f(x+ νx, y + h) dLn−1(h).

(3.16)

Thus, we have
Au(x, νx)−Au(y, νy) ≤M +G(f, x, y, νx, νy). (3.17)

By taking the supremum, we obtain

sup
νx,νy

(Au(x, νx)−Au(y, νy)) ≤M + sup
νx,νy

G(f, x, y, νx, νy). (3.18)

On the other hand, choose |%x| = |%y| = ε such that

inf
νx,νy

G(f, x, y, νx, νy) ≥ G(f, x, y, %x, %y)− η.

This together with (3.17) yields

inf
νx,νy

(Au(x, νx)−Au(y, νy)) ≤ Au(x, %x)−Au(y, %y)

≤M +G(f, x, y, %x, %y)

≤M + inf
νx,νy

G(f, x, y, νx, νy) + η.
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Therefore, by applying this inequality and (3.18) to (3.14) we get

u(x)− u(y) ≤M +
1

2

[
sup
νx,νy

G(f, x, y, νx, νy) + inf
νx,νy

G(f, x, y, νx, νy)

]
+
η

2
.

Combining this with (3.13), we need to show

sup
νx,νy

G(f, x, y, νx, νy) + inf
νx,νy

G(f, x, y, νx, νy) < 2f(x, y).

This inequality follows from Proposition 3.5 below. Consequently, the equation (3.11)
holds in B2 ×B2.

Proposition 3.5. Let f and T be as at the beginning of the proof of Theorem 3.2, and fix (x, y) ∈
B1 ×B1 \ T . In addition, let G be as in (3.16). Then, it holds that

sup
νx,νy

G(f, x, y, νx, νy) + inf
νx,νy

G(f, x, y, νx, νy) < 2f(x, y).

The main part of the section is to show this estimate for G. This is done in several
steps below.

Proof of Proposition 3.5

Let V ⊂ Rn be the space spanned by x − y 6= 0. We denote the orthogonal complement
of V by V ⊥, i.e.,

V ⊥ : = {z ∈ Rn : 〈z, x− y〉 = 0} .

Given any z ∈ Rn, we can decompose

z = zV
x− y
|x− y|

+ zV ⊥ ,

where zV ∈ R is the scalar projection of z onto V and zV ⊥ ∈ V ⊥, respectively. For the
decomposed point it holds

zV = 〈z, x− y
|x− y|

〉,

|zV ⊥ | =
√
|z|2 − z2

V .

By using this notation, the second order Taylor’s expansion of f1 is

f1(x+ hx, y + hy)− f1(x, y)

= Cγ |x− y|γ−1 (hx − hy)V + 2〈x+ y, hx + hy〉

+
1

2
Cγ |x− y|γ−2

{
(γ − 1)(hx − hy)2

V + |(hx − hy)V ⊥ |
2
}

+ |hx + hy|2 + Ex,y(hx, hy),

(3.19)
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where Ex,y(hx, hy) is the error term. In the above, we used the calculations

〈∇f1(x, y), (h>x , h
>
y )〉 = Cγ |x− y|γ−2 〈x− y, hx − hy〉+ 2〈x+ y, hx + hy〉

and

D2f1 =

[
A −A
−A A

]
+ 2

[
I I
I I

]
with

A : = Cγ |x− y|γ−2

{
(γ − 2)

x− y
|x− y|

⊗ x− y
|x− y|

+ I

}
.

The matrix I stands for the n×n identity matrix, and we denote the tensor product of two
vectors by ⊗, i.e., h⊗ s : = hs> for column vectors h, s ∈ Rn. By recalling the elementary
formula h>(s⊗ s)h = 〈h, s〉2 for all h, s ∈ Rn, we get (3.19).

By Taylor’s theorem, the error term satisfies

|Ex,y(hx, hy)| ≤ C
∣∣(h>x , h>y )

∣∣3(|x− y| − 2ε)γ−3,

if |x− y| > 2ε. With the choice N ≥ 100C
γ and if |x− y| > N

10ε, we can estimate

|Ex,y(hx, hy)| ≤ C(2ε)3

(
|x− y|

2

)γ−3

≤ 64Cε2 |x− y|γ−2 ε

|x− y|
≤ 10 |x− y|γ−2 ε2,

(3.20)

because |hx| , |hy| ≤ ε. Therefore, to prove the result, we distinguish two separate cases.
In the first case, we have |x− y| ≤ N

10 ε and in the second case, we have |x− y| > N
10 ε.

Proof of Proposition 3.5: Case |x− y| ≤ N ε
10

In this case, we do not utilize the formula (3.19). We use concavity and convexity esti-
mates for the terms in f1 and the properties of the annular step function f2. For x, y ∈ B1

and |hx| , |hy| < ε < 1, it holds

|f1(x+ hx, y + hy)− f1(x, y)| ≤ 2Cεγ + 16ε ≤ 3Cεγ

for C > 16. Consequently by (3.16), we have

sup
hx,hy

G(f1, x, y, hx, hy) ≤ f1(x, y) + 3Cεγ .

Together with f2 ≥ 0, these estimates yield

sup
hx,hy

G(f, x, y, hx, hy) ≤ f1(x, y) + 3Cεγ . (3.21)



3.2. Local regularity 75

Find i ∈ {1, 2, . . . , N} such that (i − 1) ε
10 < |x− y| ≤ i ε10 and choose |νx| , |νy| < ε such

that (x+ νx, y + νy) ∈ Ai−1. Then for C > 1 large enough, we can estimate

sup
hx,hy

G(f2, x, y, hx, hy) ≥ G(f2, x, y, νx, νy)

≥ α(y)f2(x+ νx, y + νy)

= α(y)C2(N−i+1)εγ

= α(y)

(
C2 − 2

α(y)

)
C2(N−i)εγ + 2f2(x, y)

> 6Cεγ + 2f2(x, y),

where we use f2 ≥ 0 in the second inequality and α(y) > αmin > 0 for all y ∈ Ω in the
last inequality. Therefore, by f = f1 − f2 and (3.21) it holds

inf
hx,hy

G(f, x, y, hx, hy) ≤ sup
hx,hy

G(f1, x, y, hx, hy)− sup
hx,hy

G(f2, x, y, hx, hy))

≤ f1(x, y)− 2f2(x, y)− 3Cεγ .

Combining this inequality with (3.21), we get

sup
hx,hy

G(f, x, y, hx, hy) + inf
hx,hy

G(f, x, y, hx, hy) < 2f(x, y).

Hence, the proof of the case is complete.

Proof of Proposition 3.5: Case |x− y| > N ε
10

In this case, f2(x, y) = 0 and hence f ≡ f1. We apply (3.19) to get the result. For η > 0, let
νx, νy be such that

sup
hx,hy

G(f, x, y, hx, hy) ≤ G(f, x, y, νx, νy) + η.

Therefore for any |%x| , |%y| ≤ ε, we get the following inequality

sup
hx,hy

G(f, x, y, hx, hy) + inf
hx,hy

G(f, x, y, hx, hy)

≤ G(f, x, y, νx, νy) +G(f, x, y, %x, %y) + η. (3.22)

By (3.20) and |hx| , |hy| ≤ ε, the last two terms in (3.19) are bounded above by

(4 + 10 |x− y|γ−2)ε2.

We denote
E : = E(f, x, y, γ, ε) : = f(x, y) + (4 + 10 |x− y|γ−2)ε2,
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and recall the notation Ph,s denoting the rotation sending h to s for any vectors |h| = |s|
in Rn. By (3.22) and (3.16), it suffices to study

[I] : = G(f, x, y, νx, νy) +G(f, x, y, %x, %y)− 2E

= α(y) [f(x+ νx, y + νy) + f(x+ %x, y + %y)− 2E]

+ β(x)

[
−
ˆ
B
νy
ε

f(x+ Pνy ,−νxh, y + h) dLn−1(h)

+−
ˆ
B
%y
ε

f(x+ P%y ,−%xh, y + h) dLn−1(h)− 2E

]

+ (α(x)− α(y))

[
−
ˆ
B
νy
ε

f(x+ νx, y + h) dLn−1(h)

+−
ˆ
B
%y
ε

f(x+ %x, y + h) dLn−1(h)− 2E

]
.

(3.23)

For simplicity, we decompose the previous expression into three terms to be examined
separately,

[I] = α(y)[II] + β(x)[III] + (α(x)− α(y))[IV]. (3.24)

Then, by (3.19), we have

[II] ≤ Cγ |x− y|γ−1 [(νx − νy)V + (%x − %y)V ]

+ 2〈x+ y, (νx + νy) + (%x + %y)〉

+
1

2
Cγ |x− y|γ−2

{
(γ − 1)

[
(νx − νy)2

V + (%x − %y)2
V

]
+
[
|(νx − νy)V ⊥ |

2 + |(%x − %y)V ⊥ |
2
]}

.

(3.25)

Note that the first order terms in [III] vanishes when we integrate over the ball. Therefore,
we can estimate

[III] ≤ 1

2
Cγ |x− y|γ−2 ·

·

{
−
ˆ
B
νy
ε

[
(γ − 1)(h− Pνy ,−νxh)2

V +
∣∣(h− Pνy ,−νxh)V ⊥

∣∣2] dLn−1(h)

+−
ˆ
B
%y
ε

[
(γ − 1)(h− P%y ,−%xh)2

V +
∣∣(h− P%y ,−%xh)V ⊥

∣∣2] dLn−1(h)

}
.

(3.26)
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In addition, it holds

[IV] ≤ Cγ |x− y|γ−1 (νx + %x)V + 2〈x+ y, νx + %x〉

+
1

2
Cγ |x− y|γ−2 ·

·

{
−
ˆ
B
νy
ε

[
(γ − 1)(νx − h)2

V + |(νx − h)V ⊥ |
2
]
dLn−1(h)

+−
ˆ
B
%y
ε

[
(γ − 1)(%x − h)2

V + |(%x − h)V ⊥ |
2
]
dLn−1(h)

}
.

(3.27)

We distinguish between two cases depending on the value of (νx − νy)2
V and fix τ0 <

τ < 1 with 0 < τ0 < 1 to be defined later.

a) Case |(νx − νy)V | ≥ (τ + 1)ε: In this case, we choose %x = −νx and %y = −νy. Replac-
ing these vectors in the inequalities [II], [III] and [IV] and by symmetry, we obtain

[II] ≤ Cγ |x− y|γ−2
[
(γ − 1)(νx − νy)2

V + |(νx − νy)V ⊥ |
2
]
,

[III] ≤ Cγ |x− y|γ−2−
ˆ
B
νy
ε

∣∣(h− Pνy ,−νxh)V ⊥
∣∣2 dLn−1(h),

[IV] ≤ Cγ |x− y|γ−2

[
(γ − 1)−

ˆ
B
νy
ε

(νx − h)2
V dLn−1(h)+−

ˆ
B
νy
ε

|(νx − h)V ⊥ |
2 dLn−1(h)

]
.

We used γ − 1 < 0 and the choice Pνy ,−νx = P−νy ,νx in the estimate for [III]. By assump-
tion, it holds (νx − νy)2

V ≥ (τ + 1)2ε2 implying

|(νx − νy)V ⊥ |
2 ≤

[
4− (τ + 1)2

]
ε2.

Thus, we need to obtain uniform bounds for the terms (νx − h)2
V , |(νx − h)V ⊥ |

2 and∣∣(h− Pνy ,−νxh)V ⊥
∣∣2 for h ∈ Bνy

ε .

The assumption |(νx − νy)V | ≥ (τ + 1)ε, together with |νx| , |νy| ≤ ε and Pythagoras’
theorem, implies  τε ≤ |(νx)V | ≤ ε, 0 ≤ |(νx)V ⊥ | ≤

√
1− τ2 ε,

τε ≤ |(νy)V | ≤ ε, 0 ≤ |(νy)V ⊥ | ≤
√

1− τ2 ε.
(3.28)

Moreover, the same facts yield

|(νx + νy)V | ≤ (1− τ)ε and |(νx + νy)V ⊥ | ≤ 2
√

1− τ2 ε.
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By combining these and using Pythagoras’ theorem, we get

|νx + νy| <
√

8
√

1− τ ε, (3.29)

since τ < 1. Let h ∈ Bνy
ε . Then, we have

0 = 〈h, νy〉 = hV (νy)V + 〈hV ⊥ , (νy)V ⊥〉

implying

hV = −〈hV ⊥ , (νy)V ⊥〉
(νy)V

.

In addition by applying this equality together with (3.28) and |hV ⊥ | ≤ |h| ≤ ε, we obtain

|hV | ≤
ε

τ

√
1− τ2.

Consequently, we get the estimates

(νx − h)V ≥

(
τ −
√

1− τ2

τ

)
ε (3.30)

and
|(νx − h)V ⊥ | ≤ |(νx)V ⊥ |+ |hV ⊥ | ≤

(
1 +

√
1− τ2

)
ε. (3.31)

We can assume that τ0 is close enough to 1 guaranteeing the positivity of the quantity
τ − τ−1

√
1− τ2. In order to obtain the last estimate needed, we recall that Pνy ,−νx is any

rotation sending the vector νy to −νx. In particular, we choose a rotation satisfying∣∣h− Pνy ,−νxh∣∣ ≤ ∣∣νy − Pνy ,−νxνy∣∣ = |νy + νx|

for every |h| ≤ ε. Hence by recalling (3.29), we get∣∣(h− Pνy ,−νxh)V ⊥
∣∣2 ≤ 8(1− τ)ε2. (3.32)

By replacing the estimates (3.30), (3.31) and (3.32) in [II], [III] and [IV], we can calcu-
late

[II] ≤ Cγ |x− y|γ−2 ε2
[
(γ − 1)(τ + 1)2 + 4− (τ + 1)2

]
,

[III] ≤ Cγ |x− y|γ−2 ε2 [8(1− τ)] ,

[IV] ≤ Cγ |x− y|γ−2 ε2

(γ − 1)

(
τ −
√

1− τ2

τ

)2

+
(

1 +
√

1− τ2
)2

 .
In addition by (3.24), we get

[I] ≤ [V] · Cγ |x− y|γ−2 ε2,
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where [V] is equal to

(γ − 1)

α(y)(τ + 1)2 + (α(x)− α(y))

(
τ −
√

1− τ2

τ

)2


+ (α(x)− α(y))(1 +
√

1− τ2 )2 + α(y)
[
(4− (τ + 1)2)

]
+ β(x) 8(1− τ).

The assumption on γ in (3.7) implies that we can choose τ0 : = τ0(κ) < 1 close enough to
1 such that the previous expression is negative, i.e.,

[V] < (γ − 1)
(
4α(y) + α(x)− α(y)

)
+ α(x)− α(y) + καmax

< 4
(
γαmax − αmin

)
+ καmax

< 0.

Now, by recalling (3.23), we have

G(f, x, y, νx, νy) +G(f, x, y, ωx, ωy)− 2f(x, y)

≤ 8ε2 + (20 + [V] · Cγ) |x− y|γ−2 ε2.

By choosing C > 1 large enough, we obtain

(20 + [V] · Cγ) |x− y|γ−2 ε2 < −108 |x− y|γ−2 ε2 < −107ε2.

This estimate yields

G(f, x, y, νx, νy) +G(f, x, y, ωx, ωy)− 2f(x, y) < 0.

b) Case |(νx − νy)V | ≤ (τ + 1)ε: In this case, the first order terms in (3.19) imply the
result. By choosing %x = −ε x−y|x−y| and %y = ε x−y|x−y| in V and utilizing these in (3.25), (3.26)
and (3.27), we get

[II] ≤ Cγ |x− y|γ−1 [(νx − νy)V − 2ε] + 2〈x+ y, νx + νy〉

+
1

2
Cγ |x− y|γ−2

{
(γ − 1)

[
(νx − νy)2

V + 4ε2
]

+ |(νx − νy)V ⊥ |
2
}
,

[III] ≤ 1

2
Cγ |x− y|γ−2 ·

·

{
−
ˆ
B
νy
ε

[
(γ − 1)(h− Pνy ,−νxh)2

V +
∣∣(h− Pνy ,−νxh)V ⊥

∣∣2] dLn−1(h)

}
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and

[IV] ≤ Cγ |x− y|γ−1 [(νx)V − ε] + 2〈x+ y, νx − ε
x− y
|x− y|

〉

+
1

2
Cγ |x− y|γ−2 ·

{
−
ˆ
B
νy
ε

[
(γ − 1)(νx − h)2

V + |(νx − h)V ⊥ |
2
]
dLn−1(h)

+ (γ − 1)ε2 +−
ˆ
Bx−yε

|h|2 dLn−1(h)

}
.

The second order terms in these inequalities can be estimated above by

3Cγ |x− y|γ−2 ε2.

In addition, we deduce that (νx − νy)V <
[
1 +

(
τ+1

2

)2]
ε. Therefore, we have

[II] ≤ Cγ |x− y|γ−1

[(
τ + 1

2

)2

− 1

]
ε+ 4 |x+ y| ε+ 3Cγ |x− y|γ−2 ε2,

[III] ≤ 3Cγ |x− y|γ−2 ε2,

[IV] ≤ 4 |x+ y| ε+ 3Cγ |x− y|γ−2 ε2.

By combining all these and recalling (3.23) and (3.24), we get

G(f, x, y, νx, νy) +G(f, x, y, %x, %y)− 2f(x, y)

≤ Cα(y)γ |x− y|γ−1

[(
τ + 1

2

)2

− 1

]
ε+ 4α(x) |x+ y| ε+ 8ε2

+ (20 + 3Cγ) |x− y|γ−2 ε2

≤ Cα(y)γ |x− y|γ−1

[(
τ + 1

2

)2

− 1

]
ε+ 8ε2 +

(
γ +

2

C

)
γ |x− y|γ−1 ε

≤ γ |x− y|γ−1 ε

{
γ + 1 + Cαmin

[(
τ + 1

2

)2

− 1

]}
+ 8ε2.

As in the previous case, we can choose the constant C > 1 large enough to ensure the
negativity of the previous equation. Thus, the proof is complete.

3.3 Regularity near the boundary

In this section, provided some regularity on the boundary of the set, we show that the
value function of the game is also asymptotically continuous near the boundary. The
proof is based on finding a suitable barrier function and a strategy for the other player
so that the process under the barrier function is a super- or submartingale depending on
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the form of the function. Then, the result follows by analyzing the barrier function and
iterating the argument.

Lemma 3.6. Let r > 0 and y ∈ Rn and let v(x) = a |x− y|σ + b, for each x ∈ Rn such that
|x− y| > r, where σ < 0, a < 0 and b ≥ 0. Then, there is a constant C > 0 such that

sup
|ν|=ε
Av(x, ν) ≤ Av

(
x, ε

x− y
|x− y|

)
+ Cε3 (3.33)

and

Av
(
x, ε

x− y
|x− y|

)
+Av

(
x,−ε x− y

|x− y|

)
< 2v(x) + aσ |x− y|σ−2 (α(x)(σ − 1) + β(x)) ε2 + Cε3 (3.34)

for all ε > 0 and x ∈ Rn such that |x− y| > r, where Av stands for the auxiliary function
defined in (3.5).

Proof. Since v is real-analytic in Rn \ B(y, r), we can write the second order Taylor’s ex-
pansion of v in a neighborhood of any x ∈ Rn such that |x− y| > r,

v(x+ h) = v(x) +
1

2
aσ |x− y|σ−2

(
2〈x− y, h〉+ |h|2 + (σ − 2)

〈x− y, h〉2

|x− y|2

)
+O(|h|3)

as h→ 0. Thus, for any given|ν| = ε,

v(x+ ν) = v(x) +
1

2
aσ |x− y|σ−2

(
2〈x− y, ν〉+ ε2 + (σ − 2)

〈x− y, ν〉2

|x− y|2

)
+O(ε3),

and averaging over Bν
ε the first order term vanishes and we get

−
ˆ
Bνε

v(x+ h) dLn−1(h)

= v(x) +
1

2
aσ |x− y|σ−2

(
n− 1

n+ 1
ε2 + (σ − 2)−

ˆ
Bνε

〈x− y, h〉2

|x− y|2
dLn−1(h)

)
+O(ε3),

where the identity

−
ˆ
Bνε

|h|2 dLn−1(h) =
n− 1

n+ 1

has been used above. Since aσ(σ − 2) < 0, we can estimate

−
ˆ
Bνε

v(x+ h) dLn−1(h) ≤ v(x) +
1

2
aσ |x− y|σ−2 n− 1

n+ 1
ε2 +O(ε3).
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Note that the equality is reached when ν = ±ε x−y
|x−y| . Recalling (3.5),

Av (x, ν) ≤ v(x) +
1

2
aσ |x− y|σ−2

[
2α(x)〈x− y, ν〉+

(
α(x) + β(x)

n− 1

n+ 1

)
ε2

+ α(x)(σ − 2)
〈x− y, ν〉2

|x− y|2

]
+O(ε3).

Thus, Taylor’s formula proves the equation (3.33).

Next, we show (3.34). Replacing h = ±ε x−y
|x−y| in the Taylor’s expansion of v(x + h)

we get

v

(
x± ε x− y

|x− y|

)
= v(x) +

1

2
aσ |x− y|σ−2 (±2 |x− y| ε+ (σ − 1)ε2

)
+O(ε3).

On the other hand, since Bν
ε denotes exactly the same set for each ν ∈ span {x− y}, then

〈x− y, h〉 = 0 for every h ∈ Bx−y
ε and

−
ˆ
Bx−yε

v(x+ h) dLn−1(h) = v(x) +
1

2
aσ |x− y|σ−2 n− 1

n+ 1
ε2 +O(ε3).

By (3.5) we obtain

Av
(
x,±ε x− y

|x− y|

)
= v(x) +

1

2
aσ |x− y|σ−2

[
±2α(x) |x− y| ε+

(
α(x)(σ − 1) + β(x)

n− 1

n+ 1

)
ε2

]
+O(ε3).

Therefore, since the coefficient of the β(x) term is positive and strictly less than 1, (3.34)
follows for a large enough C > 0.

Lemma 3.7. Given a bounded domain Ω ⊂ Rn satisfying the boundary regularity condition with
some constants r0, s ∈ (0, 1), for z ∈ ∂Ω and r ∈ (0, r0], let B(y, sr) ⊂ B(z, r) \ Ω. If u is the
solution of (3.4) with 0 < ε < ε0 < 1 and continuous boundary data F ∈ C(Γε), then for each
η > 0 there exists k ∈ N such that ∣∣∣∣u(x0)− sup

B(y,4r)∩Γε

F

∣∣∣∣ < η

for each 0 < ε < ε0 and each x0 ∈ B(z, 41−kr) ∩ Ωε.

Proof. We only show that
u(x0)− sup

B(y,4r)∩Γε

F < η, (3.35)

since the other case can be shown following an analogous argument. The idea is to find a
suitable barrier function so that by Lemma 3.6, ifPI pulls towards the point y ∈ B(z, r)\Ω,
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the game process inside the barrier function is a supermartingale. Then, recalling the
properties of the barrier function, we get the result by iteration.

Let s ∈ (0, 1) given by the boundary regularity condition and fix

θ =
sσ − 2σ

sσ − 4σ
∈ (0, 1)

where
σ = −2

βmax

αmin
< 0. (3.36)

We can assume without loss of generality that F is continuous in Γ1 (otherwise, we just
consider any continuous extension of F to Γ1). We choose a large enough k ∈ N (depend-
ing on η > 0) in such a way that the oscillation of F on Γ1 is controlled as follows,

θk
(

sup
Γ1

F − inf
Γ1

F

)
< η.

In particular, since bU : = sup
Γε

F ≤ sup
Γ1

F and b4r : = sup
B(y,4r)∩Γε

F ≥ inf
Γ1

F , we have

θk (bU − b4r) < η. (3.37)

Next, we define the function

vk(x) = a |x− y|σ + b

in the annulus 41−ksr < |x− y| < 42−k, where the constants a ≤ 0 and b ≥ 0 are chosen
such that

vk(x) =

{
b4r + θk−1 (bU − b4r) if |x− y| = 42−kr,

b4r if |x− y| = 41−ksr.
(3.38)

If bU = b4r, it turns out that a = 0 and the proof is clear. Otherwise, suppose that bU > b4r,
then a < 0. We extend the function vk to the set Rn \B(y, 41−ksr − 2ε).

Note that the boundary regularity condition with 41−kr instead of r implies the fol-
lowing inclusion,

Ω ∩B(z, 41−kr) ⊂ Ω ∩B(y, 2 · 41−kr) \B(y, 41−ksr).

Thus, considering any x0 ∈ B(z, 41−kr) ∩ Ω, then

x0 ∈ Ω ∩B(y, 2 · 41−kr) \B(y, 41−ksr).

By using the boundary values (3.38), we can choose the constants a and b in the function
vk such that

vk(x0) ≤ b4r + θk (bU − b4r) . (3.39)
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Thus, we just need to show that u(x0) ≤ v(x0). For that purpose, consider the game
starting from x0. We construct a strategy S∗II for PII as follows: if PII wins the m-th toss,
then the game is played by pulling towards the point y, that is, the displacement of the
game token will be equal to −ε xm−y|xm−y| . Also, fix any other strategy for PI and denote it by
SI. By using (3.33) and (3.34) from Lemma 3.6 we can estimate

Ex0SI,S
∗
II

[vk(xm+1) |x0, . . . , xm]

≤ 1− δ(xm)

2

[
sup
|ν|=ε
Avk(xm, ν) +Avk

(
xm,−ε

xm − y
|xm − y|

)]
+ δ(xm)F (xm)

≤ 1− δ(xm)

2

[
2vk(xm) + aσ |xm − y|σ−2 (α(xm)(σ − 1) + β(xm)) ε2 + 2Cε3

]
+ δ(xm)F (xm)

for each m ∈ N and some large enough C > 0. Note that, by the choice of the exponent σ
in (3.36), α(xm)(σ − 1) + β(xm) < −1. In addition, we have

aσ |xm − y|σ−2 > aσ (diam Ω + 1)σ−2 > 0.

Thus, by choosing ε0 : = ε0(αmin, r,Ω, k) > 0 small enough, we can ensure that

Ex0SI,S
∗
II

[vk(xm+1) |x0, . . . , xm] ≤ (1− δ(xm)) vk(xm) + δ(xm)F (xm) ≤ vk(xm)

for all ε < ε0. In consequence, the process Mm : = vk(xm) is a supermartingale when PII

uses the strategy S∗II and PI uses any strategy SI.

Define a boundary function Fvk : Γε → R such that

Fvk = vk
∣∣
Γε
.

By Theorem 3.1, we have u = uI where uI is the value function for PI, (3.3). Since F ≤ Fvk ,
(Mm)∞m=1 is a supermartingale, Fvk is bounded and τ <∞ almost surely, we can estimate
with the help of the optimal stopping theorem

u(x0) = sup
SI

inf
SII

Ex0SI,SII
[F (xτ )] ≤ sup

SI

Ex0SI,S
∗
II

[F (xτ )]

≤ sup
SI

Ex0SI,S
∗
II

[Fvk(xτ )] ≤ vk(x0).

Hence, by (3.37) and (3.39), we finally get (3.35).
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Proof of Theorem 3.3. As in the proof of Lemma 3.7, we only need

u(x0)− F (z) < η

and the other case follows by an analogous argument. First, assume that z ∈ ∂Ω. Lemma 3.7
implies that, for any r ∈ (0, r0], there are constants k ∈ N and ε0 > 0 such that

u(x0)− sup
B(y,4r)∩Γε

F <
η

10

for all ε < ε0 and x0 ∈ B(z, 41−kr) ∩ Ωε. Let z∗ ∈ B(y, 4r) ∩ Γε be such that

sup
B(y,4r)∩Γε

F < F (z∗) +
η

10
.

The boundary function F is continuous on the compact set Γε, so there is a modulus of
continuity ωF = ωF,Γε for the function F . Thus, we can estimate

u(x0)− F (z) = [u(x0)− F (z∗)] + [F (z∗)− F (z)] <
η

5
+ ωF (|z∗ − z|).

By the boundary regularity condition, y is some point in B(z, r) \ Ω. Therefore, this
together with z∗ ∈ B(y, 4r) ∩ Γε implies |z∗ − z| < 5r. Thus, we choose small enough
r > 0 such that

ωF (5r) <
η

10

holds for each r ∈ (0, r]. This yields that, for any r < r,

u(x0)− F (z) <
η

2

for each 0 < ε < ε0 and x0 ∈ B(z, 41−kr) ∩ Ωε.

Next, assume that z 6∈ ∂Ω and pick a point zb ∈ ∂Ω such that z ∈ B(zb, ε). We choose
small enough ε0 > 0 so that

ωF (ε0) <
η

2
.

This implies that
|F (z)− F (zb)| ≤ ωF (|z − zb|) <

η

2

for each 0 < ε < ε0. Since zb ∈ ∂Ω, we can use the estimates above to get the result.
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Open problems and further remarks

Let Ω ⊂ Rn be a bounded domain and 1 < p < ∞. In Chapter 1 we recalled that if u is a
continuous function in Ω such that the asymptotic expansion

p− 2

n+ p
· 1

2

(
sup
B(x,r)

u+ inf
B(x,r)

u

)
+
n+ 2

n+ p
−
ˆ
B(x,r)

u dL = u(x) + o(r2) (14)

holds as r → 0 at each x ∈ Ω, then u is p-harmonic (see [MPR1]). In Theorem 1.2 we
showed that the converse is also true when n = 2. However, for n ≥ 3 it is not known
if p-harmonic functions satisfy (14) or not, and we have to understand the asymptotic
expansion in a viscosity sense in order to obtain a result in this direction (see [MPR1]
together with [JLM]). This sets out the following problem.

Problem. If u is a p-harmonic function in Ω ⊂ Rn with n ≥ 3, does the asymptotic
expansion (14) hold as r → 0 at each x ∈ Ω?

As we mentioned, the main difference between the planar case and the higher dimen-
sional case is the complex structure available when n = 2. In particular, in our proof
of Theorem 1.2, we recalled that the complex gradient f = ∂u of a planar p-harmonic
function u is a quasiregular mapping satisfying the Beltrami equation

∂f =
2− p

2p

[
f

f
∂f +

f

f
∂f

]
(15)

(see [BI]). As an immediate consequence of this, the principle of Unique Continuation fol-
lows for p-harmonic functions in the plane. Also, making use of this technique, Manfredi
was able to prove the Strong Comparison Principle in two dimensions (see [Man]). It is
noteworthy to mention that this two principles are not know in higher dimensions. But
the most valuable example of the use of equation (15) can be found in [IM]. In this article,
Iwaniec and Manfredi obtained the sharpest Hölder exponent γ = γ(p) for the gradients
of p-harmonic functions. This improved the previous regularity results by Ural’tseva and
Lewis when n = 2 ([Ura, Lew]). Concerning the p = ∞ case, it has been recently proved
by Evans and Savin that the gradients of∞-harmonic functions in the plane are locally
Hölder continuous for some non-explicit exponent ([ESa]). It is easy to check that the
exponents γ(p) converge to 1

3 when p → ∞. However, the estimates obtained in [IM] do
not allow to ensure that this is the optimal exponent for the regularity of the gradients
of∞-harmonic functions. On the other hand, the existence of∞-harmonic functions in
that class of regularity and the lack of counterexamples lead us to recall the following
conjecture, which also sets out a challenging problem to be faced in a future research:
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Conjecture. Planar∞-harmonic functions are of class C
1, 1

3
loc .

The question of the regularity of p-harmonic functions is one of the major topics in the
analysis of PDE’s, and some partial results have been obtained in the past few decades,
like the results by Ural’tseva and Lewis mentioned above. For p = ∞, the problem is
much harder and the techniques employed are different from the finite p case. In the gen-
eral n-dimensional case, Evans and Smart showed in [ESm] that ∞-harmonic functions
are everywhere differentiable, but the following question remains unanswered:

Problem. Are n-dimensional ∞-harmonic functions of class C1,γ
loc for some γ > 0 when

n ≥ 3? If so, which is the explicit exponent γ = γ(n)?

Most of the higher dimensional problems that have been mentioned would definitely
require the development of new techniques. For that reason, in the recent years, the re-
stricted mean value properties related to the p-laplacian and the p-harmonious functions
have received an increasing attention. In Chapter 2 of this dissertation we have pre-
sented regularity results for p-harmonious functions in the context of a metric measure
space (X, d, µ), that is, continuous functions u satisfying

Tαu = u, (16)

for |α| < 1, where Tα is the operator defined in (2.4). However, we do not cover the case
α = 1 which is related to∞-harmonious functions. The first approach to this particular
case was due to Le Gruyer and Archer ([LA]) where they showed existence and unique-
ness to the Dirichlet problem for functions satisfying (16) with α = 1. Thus, as far as the
author knowledge, the following question remains unanswered.

Problem. Let (X, d) be a geodesic metric space and Ω ⊂ X a bounded domain. Let % be
an admissible radius function in Ω and u ∈ C(Ω) a function satisfying (16) with α = 1.
What can we say about the regularity of u?

Moreover, in Section 2.5 we have solved the Dirichlet problem for p-harmonious func-
tions when p ≥ 2 (that is, α ∈ [0, 1)) in strictly convex domains of Rn with the Lebesgue
measure (Theorem 2.29). A natural question to ask is if we can drop the strict convexity
of the domain Ω ⊂ Rn from the assumptions in Theorem 2.29 and still have existence of
solutions. On the other hand, it turns out that our method cannot be extended for the
case 1 < p < 2 (corresponding with negative values of the coefficient α in (16)) since
we need to require the non-expansiveness of the operator Tα. Furthermore, the question
of existence of generalized p-harmonious functions in (X, d, µ) is pretty much open. In
particular, by Theorem 2.33, it turns out that we just need to provide boundary equicon-
tinuity in order to obtain existence of the Dirichlet problem Tαu = u in Ω,

u = f on ∂Ω,
(17)

for any given f ∈ C(∂Ω).
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Problem. Let (X, d, µ) be a proper geodesic metric measure space and |α| < 1. Suppose
that Ω ⊂ X is a bounded domain and % an admissible radius function in Ω. Then, un-
der which conditions on X, d, µ, Ω, α and % can we ensure that the sequence of iterates
{T kα u}k is equicontinuous on ∂Ω for any u ∈ C(Ω)? In particular, if X = Rn with d
the euclidean distance and µ = L the Lebesgue measure, does the problem (17) has a
continuous solution for more general domains? Moreover, what if α ∈ (−1, 0)?

On the other hand, as we have seen in this memory, the restricted mean value prop-
erty appears also in the Tug-of-war games. In Chapter 3 we have shown that the (unique)
solution uε ∈ C(Ω) to

uε(x) =
1− δ(x)

2

[
sup
|ν|=ε

(
α(x)uε(x+ ν) + (1− α(x))−

ˆ
Bνε

uε(x+ h) dLn−1(h)

)

+ inf
|ν|=ε

(
α(x)uε(x+ ν) + (1− α(x))−

ˆ
Bνε

uε(x+ h) dLn−1(h)

)]
+ δ(x)F (x),

is asymptotically γ-Hölder continuous for some γ ∈ (0, 1). Moreover, by taking a subse-
quence, it turns out that {uε}ε>0 converges uniformly to a viscosity solution of∆N

p(x)u(x) = 0 for x ∈ Ω,

u(x) = F (x) for x ∈ ∂Ω,
(18)

when ε → 0 for some continuous p : Ω → (1,∞) depending on α(x). Thus, u ∈ C0,γ
loc (Ω).

However, since it is not known whether the viscosity solution of (18) is unique or not, we
cannot deduce that all solutions of (18) are locally Hölder continuous when 1 < pmin < 2.
Hence, this motivates the following problem:

Problem. Let u and v be viscosity solutions of (18) where p : Ω→ (1,∞) is a continuous
function such that 1 < pmin < 2. Do u and v agree in Ω?
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