UAB

Iterative Synthetic Strategy for Azaphenalene Alkaloids.

Total Synthesis of (-)-9a-epi-hippocasine

Ph.D. THESIS

Ph.D. in Chemistry

Sílvia Alujas Burgos

2017

V. Summary and Conclusions

Summary and Conclusions

A non-natural alkaloid, (-)-9a-epi-hippocasine, 56, has been synthesized in 11 steps and 22% overall yield starting from glutarimide, 150, and racemic butadiene monoepoxide, 151 (Scheme 66). The enantioselectivity is originated in an initial palladium-catalyzed asymmetric allylation. A key point of the approach is the generation of the acyliminium ion derived from 154 previously synthesized in our research group. ${ }^{55}$ An iterative strategy has been developed, encompassing two nucleophilic allylations and two ring closing metathesis processes.

Scheme 66. Total synthesis of (-)-9a-epi-hippocasine, 56.

Once the absolute configuration of 171 was confirmed, a chemoselective hydrogenation was necessary to keep the sterochemical information and avoid the synthesis of a meso alkaloid.

For this reason, the synthetic tactic was modified with the aim of changing the configuration of one stereogenic center (Scheme 67). As expected, the selectivity of the nucleophilic allylation steps did not change by altering the order in which the allylic residues were introduced and the configuration of the major isomer of 183 was the one required to furnish a final chiral alkaloid. Unfortunately, the second RCM leading to the construction of the
third six-membered ring was not accomplished, presumably due to steric hindrance and/or the instability of the starting material and/or products.

Scheme 67. Change of synthetic tactic. Synthetic approach to a saturated chiral alkaloid.

Two alternative approaches were tested, but none of them gave the desired results, because the involved intermediates showed low stability (Scheme 68).

Some preliminary studies based on a Relay Ring-Closing Metathesis alternative were also performed.

Scheme 68. Alternative synthetic approaches assayed.

VI. Experimental Section

1. General Procedures

1.1. Reagents and solvents

All commercially available reagents were used as received. Solvents were dried by distillation over the appropriate drying agents: $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right)$, DCE $\left(\mathrm{CaH}_{2}\right), \mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{CaH}_{2}\right)$, THF $\left(\mathrm{Na}^{0}\right)$, toluene $\left(\mathrm{Na}^{0}\right)$. When needed, reactions were performed avoiding moisture by standard procedures and under nitrogen atmosphere.

1.2. Spectroscopy

Nuclear magnetic resonance spectra (NMR) have been registered at Servei de Ressonància Magnètica Nuclear in the Universitat Autònoma de Barcelona. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker DPX250 (250 MHz), Bruker DPX360 (360 MHz) and Bruker ARX400 (400 MHz) spectrometers. Proton chemical shifts (δ) are reported in ppm ($\left.\mathrm{CDCl}_{3}, 7.26 \mathrm{ppm}\right) .{ }^{13} \mathrm{C}$ NMR spectra were recorded with complete proton decoupling on Bruker DPX250 (63 MHz), Bruker DPX360 (91 MHz) and Bruker ARX400 (101 MHz) spectrometers. Carbon chemical shifts are reported in ppm ($\left.\mathrm{CDCl}_{3}, 77.16 \mathrm{ppm}\right)$. NMR signals were assigned with the help of COSY, DEPT135, HSQC, HMBC, NOESY and selective n.O.e. experiments. All spectra have been registered at 298 K.

The abbreviations used to describe signal multiplicities are: s (singlet), bs (broad singlet), d (doublet), t (triplet), dd (double doublet), tt (triple triplet), ddd (double double duplet), ddt (double double triplet), m (multiplet) and qn (quintet).

Infrared spectra (IR) were recorded on a Bruker Tensor 27 Spectrophotometer equipped with Golden Gate Single Refraction Diamond ATR (Attenuated Total Reflectance) accessory at Servei d'Anàlisi Química in the Universitat Autònoma de Barcelona. Peaks are reported in cm^{-1}.

1.3. Mass spectrometry

High resolution mass spectra (HRMS) were recorded at Servei d'Anàlisi Química in the Universitat Autònoma de Barcelona in a Bruker micrOTOFQ spectrometer using ESIMS (QTOF) or at Parque Científico Tecnológico at the Universidad de Burgos in a Micromass AutoSpec using El-HR.

1.4. Optical Rotation

Specific optical rotations $\left([\alpha]_{\mathrm{D}}\right)$ were measured at $20 \pm 2^{\circ} \mathrm{C}$ and 589.3 nm using a JASCO J715 polarimeter in a 0.1 dm long cuvette at Servei d'Anàlisi Química in the Universitat Autònoma de Barcelona or by using a Perkin Elmer 341 spectometer at 20 and 589 nm and a 1 dm long cuvette at CSIC in Barcelona.

1.5. Chromatography

Thin-layer chromatography (TLC) were performed using silica gel 60 with fluorescent indicator UV_{254} pre-coated aluminium sheets (0.2 mm thickness) or aluminium oxide $N / U V_{254}$ pre-coated aluminium sheets (0.2 mm thickness) and they were visualized using a 254 nm UV lamp or developing with $\mathrm{KMnO}_{4} / \mathrm{NaOH}$ aqueous solution or ethanolic solution of molybdenum ammonium and cerium sulfate.

Flash column chromatography were performed using silica gel (pore size: 40-63 $\mu \mathrm{m}$) or neutral aluminium oxide (pore size: 58 Å)

Chiral High-Performance Liquid Chromatography (CHPLC) analyses were performed using a Waters 2690 chromatograph coupled to a UV-visible Waters 996 Photodiode Array Detector with a Daicel Chiralcel IC $0.46 \times 25 \mathrm{~cm}$ column (detector at 210 nm). All analyses were performed with a flow of $1 \mathrm{ml} / \mathrm{min}$ and 75:25 hexane:isopropanol as mobile phase.

2. Synthesis of (-)-9a-epi-hippocasine

2.1. Synthesis of the Trost ligand, (1R,2R)-152.

2

173
74\%

To a solution of 3.22 g (9.05 mmol) of 2-diphenylphosphino-1-naphtoic acid, 172, in 71 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$, was added $4.26 \mathrm{~mL}(30.5 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ followed by the dropwise addition of $2.12 \mathrm{~mL}(10.2 \mathrm{mmol})$ of $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}$. The reaction mixture was stirred at room temperature for 5 hours.

Meanwhile, 516.7 mg (4.5 mmol) of ($1 R, 2 R$)-cyclohexane-1,2-diamine, 173, was dissolved in 19 ml of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then, 55.3 mg (0.45 mmol) of DMAP were added to the solution.

After the five hours, the solution of $\mathbf{1 7 2}$ was transferred via cannula to the solution of diamine 173 and the mixture was stirred at room temperature for 12 h . The reaction mixture was then diluted with 80 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous sodium bicarbonate, dried over anhydrous sodium sulphate and concentrated under vacuum.

The crude was purified by flash column chromatography with neutral aluminium oxide (gradient, 100\% hexane to hexane:ethyl acetate 7:2) to afford 2.63 g ($3.33 \mathrm{mmol}, 74 \%$ yield) of $(1 R, 2 R)-152$ as a pale yellow solid.

Physical and spectroscopic data of $(1 R, 2 R)-152$

$\mathbf{R}_{\mathbf{f}}=0.75$ (1:1, hexane:ethyl acetate)
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87-7.79(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ - $7.65(\mathrm{~m}, 4 \mathrm{H}), 7.43$ - $7.12(\mathrm{~m}$, $22 H), 7.09-6.96(m, 4 H), 6.55-6.47(m, 2 H), 3.88-3.76(m, 2 H), 2.41-2.24(m, 2 H), 1.76-$ $1.65(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 4 \mathrm{H})$.

2.2. Assymmetric Allylic Alkylation (AAA)

2.2.1. Synthesis of 1-[(1S)-1-(hydroxymethyl)prop-2-en-1-yl]piperidine-2,6-dione, (S) 153^{57}

To a solution of 3.33 g (29.5 mmol) of glutarimide, $\mathbf{1 5 0}$, in 243 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $630.7 \mathrm{mg}(0.75 \mathrm{mmol})$ of the Trost ligand $(1 R, 2 R)-152,103.2 \mathrm{mg}(0.28 \mathrm{mmol})$ of π allylpalladium chloride dimer and $323.9 \mathrm{mg}(3.05 \mathrm{mmol})$ of sodium carbonate. $2.4 \mathrm{~mL}(30 \mathrm{mmol})$ of racemic butadiene monoxide, 151, were then added. The resulting mixture was stirred overnight at room temperature.

Afterwards, the reaction mixture was filtered through Celite ${ }^{\circledR}$ washing with ethyl acetate, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then concentrated under vacuum. The crude residue was purified by flash column chromatography (gradient, hexane:ethyl acetate from 1:1 to $2: 3$) to furnish $5.33 \mathrm{~g}(29 \mathrm{mmol}$, 99% yield) of (S)-153 as a yellow oil in a 95% of enantiomeric excess determined by CHPLC.

Physical and spectroscopic data of $(S)-153$

$\mathbf{R}_{\mathrm{f}}=0.33$ (100\% ethyl acetate)
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.12$ (ddd, J = $\left.17.4 \mathrm{~Hz}, 10.1 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-2^{\prime}\right), 5.41\left(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-1^{\prime}\right)$, 5.21 (m, $2 \mathrm{H}: \mathrm{H}-3^{\prime}$), $4.08-3.78\left(\mathrm{~m}, 2 \mathrm{H}: \mathrm{H}-1^{\prime \prime}\right), 2.68(\mathrm{t}, \mathrm{J}=6.55 \mathrm{~Hz}, 4 \mathrm{H}: 2 \mathrm{H}-3+2 \mathrm{H}-5), 2.50(\mathrm{dd}, \mathrm{J}=$ $8.5 \mathrm{~Hz}, 3.7 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{OH}$), 1.95 (qn, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}: 2 \mathrm{H}-4$).

2.2.2. Synthesis of 1-[(1S)-1-(\{[tert-butyl(diphenyl)silyl]oxy\}methyl)prop-2-en-1-

yl]piperidine-2,6-dione, 167

A solution of $5.11 \mathrm{~g}(27.9 \mathrm{mmol})$ of the starting imine $(S)-153 \mathrm{in} 253 \mathrm{~mL}$ of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0{ }^{\circ} \mathrm{C}$. Then, $9.1 \mathrm{~g}(133.9 \mathrm{mmol})$ of imidazole and $7.4 \mathrm{~mL}(28.5 \mathrm{mmol})$ of TBDPSCl were added. The reaction mixture was stirred at room temperature for 14 h .

After that time, the reaction mixture was concentrated under vacuum and filtered through Celite ${ }^{\circledR}$, removing a white solid (Imidazole $\cdot \mathrm{HCl}$), washing with ethyl acetate. The filtrate was concentrated under vacuum to obtain the crude product as a yellow oil.

The residue was purified by flash column chromatography (gradient, hexane:ethyl acetate from $7: 1$ to $1: 2$) to give $10.7 \mathrm{~g}(25.4 \mathrm{mmol}, 91 \%$ yield) of the protected imide $(S)-167$ as a white solid.

Physical and spectroscopic data of (S)-167

$\mathbf{R}_{\mathbf{f}}=0.43$ (3:1, hexane:ethyl acetate)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65$ (m, 4H: 4H-Ph), 7.41 (m, 6H: 6H-Ph), 6.06 (ddd, J=17.4 Hz, 10.3 $\left.\mathrm{Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-2^{\prime}\right), 5.54\left(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-1^{\prime}\right), 5.16\left(\mathrm{~m}, 2 \mathrm{H}: 2 \mathrm{H}-3^{\prime}\right), 4.23\left(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-1^{\prime}\right), 3.83$ (dd, J = 9.9 Hz, 6.2 Hz, 1H: H-1'), $2.64(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}: 2 \mathrm{H}-3+2 \mathrm{H}-5$), 1.90 (qn, J = $6.6 \mathrm{~Hz}, 2 \mathrm{H}: \mathrm{H}-$ 4), 1.02 (s, 9H: 9H-t-Bu).

2.3. First nucleophilic allylation

2.3.1. Synthesis of 1-[(1S)-1-(\{[tert-butyl(diphenyl)silyl]oxy\}methyl)prop-2-en-1-yl]-

6-hydroxypiperidin-2-one, 154

A solution of $4.43 \mathrm{~g}(10.5 \mathrm{mmol})$ of the protected imide $(S)-167 \mathrm{in} 42 \mathrm{~mL}$ of anhydrous THF was cooled down to $-78{ }^{\circ} \mathrm{C}$. Subsequently, $16.8 \mathrm{~mL}(16.8 \mathrm{mmol})$ of a $\mathrm{LiBEt}_{3} \mathrm{H}$ solution (1 M in THF) were added dropwise. The resulting mixture was stirred during 45 minutes at the same temperature.

Afterwards, 60 mL of saturated NaHCO_{3} solution and 12 mL of $\mathrm{H}_{2} \mathrm{O}_{2} 30 \%$ solution were slowly added and the mixture was allowed to reach room temperature. Then, it was filtered through Celite ${ }^{\circledR}$ and washed with ethyl acetate. The two phases of the filtrate were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to give an oily residue which was purified by flash column chromatography (gradient, hexane:ethyl acetate from 5:1 to 3:1) to
furnish $3.78 \mathrm{~g}(8.93 \mathrm{mmol}, 85 \%$ yield $)$ of a diastereomeric mixture $1: 12$ of ($\left.1^{\prime} \mathrm{S}\right)$ - 154 as a yellow oil.

Physical and spectroscopic data of (1'S)-154

$\mathbf{R}_{\mathrm{f}}=0.43$ (1:1, hexane:ethyl acetate)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer $\delta 7.67$ (m, 4H: 4H-Ph), 7.44 (m, 6H: 6H-Ph), 5.79 (ddd, J $\left.=16.7 \mathrm{~Hz}, 10.6 \mathrm{~Hz}, 5.9 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-2^{\prime}\right), 5.29-5.00\left(\mathrm{~m}, 5 \mathrm{H}: 2 \mathrm{H}-3^{\prime}, \mathrm{H}-1^{\prime}, \mathrm{H}-6, \mathrm{OH}\right), 3.97$ (dd, J = 11.2 $\mathrm{Hz}, 3.5 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-1^{\prime \prime}$), 3.85 (dd, J=11.3 Hz, $6.1 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-1^{\prime \prime}$), $2.65-1.63(\mathrm{~m}, 6 \mathrm{H}: 2 \mathrm{H}-3+2 \mathrm{H}-4+$ $2 \mathrm{H}-5), 1.08$ ($\mathrm{s}, 9 \mathrm{H}: 9 \mathrm{H}-t-\mathrm{Bu}$).
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ characteristic signals of minor isomer $\delta 6.17$ (ddd, $J=17.6 \mathrm{~Hz}, 10.5$ Hz, 7.2 Hz, 1H: H-2'), 4.32 (m, 1H: H-6), 4.10 (m, 1H: H-1'), 3.66 (m, 1H: H-1").

2.3.2. Synthesis of 1-[(1S)-1-(\{[tert-butyl(diphenyl)silyl]oxy\}methyl)prop-2-en-1-yl]-

 6-(2-methylprop-2-en-1-yl)piperidin-2-one, 159

A solution of 3.36 g (7.94 mmol) of a diastereomeric mixture (1:12) of aminal (1'S)-154 with 42 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled down to $0^{\circ} \mathrm{C}$. Then, 447.5 mg (3.66 mmol) of DMAP, 1.88 mL (19.9 mmol) of acetic anhydride and $2.77 \mathrm{~mL}(19.9 \mathrm{~mL})$ of anhydrous triethylamine were added. The resulting mixture was stirred at room temperature overnight.

After that time, 30 mL of saturated NaHCO_{3} solution and 30 mL of water were slowly added. After the extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under vacuum to obtain intermediate 155 as a yellow oil which was dissolved in 42 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This solution is cooled down to - 78 ${ }^{\circ}$ C. Then, $2.8 \mathrm{~mL}(15.9 \mathrm{mmol})$ of methylallyltrimethylsilane were added, followed by the dropwise addition of $2.2 \mathrm{~mL}(11.9 \mathrm{mmol})$ of TMSOTf. The resulting mixture was stirred at the same temperature during 4 h .

Afterwards, 30 mL of saturated NaHCO_{3} solution were added. The mixture was allowed to reach room temperature and 30 mL of water were then added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

The solvent was removed under vacuum and the crude residue obtained was purified by flash column chromatography (gradient, hexane: $\mathrm{Et}_{2} \mathrm{O}$ from 7:3 to $1: 1$) affording $3.55 \mathrm{~g}(7.7 \mathrm{mmol}$, 97% yield) of a diastereomeric mixture 1:10 of amide (1'S)-159 as yellow oil.

Physical and spectroscopic data of (1'S)-159

$\mathbf{R}_{\mathbf{f}}=0.67$ (3:1 Et ${ }_{2} \mathrm{O}:$ hexane)
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer $\delta 7.66(\mathrm{~m}, 4 \mathrm{H}: 4 \mathrm{H}-\mathrm{Ph}), 7.49-7.31(\mathrm{~m}, 6 \mathrm{H}: 6 \mathrm{H}-\mathrm{Ph}), 6.20$ (ddd, J = $17.3 \mathrm{~Hz}, 10.6 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-2^{\prime}$), $5.15-4.99\left(\mathrm{~m}, 2 \mathrm{H}: 2 \mathrm{H}-3^{\prime}\right), 4.82$ (bs, 1H: H-3'"), 4.72 (bs, 1H: H-3'"), $4.38-4.24\left(m, 1 H: H-1^{\prime}\right), 3.95-3.76\left(m, 2 H: H-1^{\prime \prime}\right), 3.69-3.51(m, 1 H: H-6), 2.49$ -2.13 (m, 4H: $2 \mathrm{H}-3,2 \mathrm{H}-5$), $1.88-1.72$ (m, $2 \mathrm{H}: 2 \mathrm{H}-4$), 1.70 ($\mathrm{s}, 3 \mathrm{H}: 3 \mathrm{H}-\mathrm{Me}$), 1.06 ($\mathrm{s}, 9 \mathrm{H}: 9 \mathrm{H}-t-\mathrm{Bu}$).
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ characteristic signals of minor isomer $\delta 6.15-6.02\left(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-\mathbf{2}^{\prime}\right), 4.04$ (dd, J = $15.5 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 2 \mathrm{H}: \mathrm{H}-\mathbf{1}^{\prime \prime}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) major isomer $\delta 169.8$ (C-2), 141.9 (C-2'"), 135.7 (C-Ph), 135.6 (C-2'), 135.4 (C-Ph), 129.7 (C-Ph), 127.7 (C-Ph), 117.0 (C-3'), 113.5 (C-3"'), 66.1 (C-1'), 64.2 (C-1') 57.4 (C-6), $41.4\left(\mathrm{C}-1^{\prime \prime \prime}\right), 32.5(\mathrm{C}-5), 26.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.2(\mathrm{C}-3), 22.2(\mathrm{C}-\mathrm{Me}), 19.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.0(\mathrm{C}-4)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) characteristic signals of minor isomer $\delta 170.1$ (C-2), 142.0 (C-2'"), 134.8 (C-2'), 133.6 (C-Ph), 133.5 (C-Ph), 133.4 (C-Ph), 117.5 (C-3'), 113.3 (C-3"'), 64.5 (C-1'), 62.9 $\left(\mathrm{C}-1^{\prime \prime}\right), 54.2(\mathrm{C}-6), 41.8\left(\mathrm{C}-1^{\prime \prime \prime}\right), 32.0(\mathrm{C}-5), 22.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 15.9(\mathrm{C}-4)$.

2.4. First ring-closing metathesis

2.4.1. Synthesis of (6S)-6-(\{[tert-butyl(diphenyl)silyl]oxy\}methyl)-8-methyl-

1,2,3,6,9,9a-hexahydro-4H-quinolizin-4-one, 161

To a solution of $2.15 \mathrm{~g}(4.65 \mathrm{mmol})$ of a diastereomeric mixture (1:10) of lactam (1'S)-159 in 521 mL of anhydrous and previously degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 118.4 \mathrm{mg}$ (0.14 mmol) of second generation Grubbs catalyst were added portionwise. The resulting mixture was heated at reflux during 48 h .

After cooling down to room temperature, the reaction mixture was filtered through a short pad of silica gel washing with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated under vacuum and the crude product was purified by flash column chromatography (gradient, hexane: $\mathrm{Et}_{2} \mathrm{O}$ from 9:1 to 1:1) to obtain $1.84 \mathrm{~g}(4.23 \mathrm{mmol}, 91 \%$ yield) of a yellowish oil identified as pure bicyclic compound (6S)-161, obtained as a single isomer.

Physical and spectroscopic data of (6S)-161

$\mathbf{R}_{\mathrm{f}}=0.56$ (3:1, $\mathrm{Et}_{2} \mathrm{O}$: hexane)
${ }^{1} \mathrm{H}$ NMR (360 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~m}, 4 \mathrm{H}: 4 \mathrm{H}-\mathrm{Ph}), 7.37(\mathrm{~m}, 6 \mathrm{H}: 6 \mathrm{H}-\mathrm{Ph}), 5.62(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-7), 4.60(\mathrm{~m}$, $1 \mathrm{H}: \mathrm{H}-6), 3.93$ (dd, $J=9.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}: 1 \mathrm{H}-1^{\prime \prime}$), 3.78 (dd, $J=9.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}: 1 \mathrm{H}-1^{\prime \prime}$), $3.33(\mathrm{tt}, J=$ 11.1, $2.9 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-9 \mathrm{a}), 2.49-2.31(\mathrm{~m}, 2 \mathrm{H}: 2 \mathrm{H}-3), 2.24(\mathrm{~m}, 1 \mathrm{H}: 1 \mathrm{H}-9), 1.95-1.65(\mathrm{~m}, 7 \mathrm{H}: 2 \mathrm{H}-1+$ $2 \mathrm{H}-2+3 \mathrm{H}-\mathrm{Me}), 1.49$ (m, 1H: 1H-9), 1.04 (s, 9H: 9H-t-Bu).
${ }^{13} \mathrm{C}$ NMR ($91 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0$ (C-4), 135.7 (C-Ph), 135.4 (C-Ph), 133.9 (C-8), 129.6 (C-Ph), 127.6 (C-Ph), 127.6 (C-Ph), 121.2 (C-7), 65.3 (C-1'), 54.9 (C-9a), 54.0 (C-6), 37.0 (C-9), 32.9 (C-3), $31.0(\mathrm{C}-1), 26.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.3(\mathrm{C}-\mathrm{Me}), 20.9(\mathrm{C}-2), 19.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

HRMS:

Calculated for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{Si}: 456.2335\left(\mathrm{MNa}^{+}\right)$
Found: $456.2337\left(\mathrm{MNa}^{+}\right)$

2.4.2. Synthesis of ($6 S, 9 a S$)-6-(hydroxymethyl)-8-methyl-1,2,3,6,9,9a-hexahydro-4H-quinolizin-4-one, 168

To a solution of 1.92 g (4.43 mmol) of bicycle 161 in 63 mL of anhydrous THF, 4.3 mL (26.6 mmol) of $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ were added. The resulting mixture was stirred under reflux overnight.

After cooling down to room temperature, the reaction mixture was diluted with 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then 50 mL of saturated NaHCO_{3} solution were added dropwise. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum to obtain a residue which was purified by flash
column chromatography (gradient, hexane:ethyl acetate from 1:5 to 100% ethyl acetate) to give 813.9 mg ($4.16 \mathrm{mmol}, 94 \%$ yield) of alcohol ($6 \mathrm{~S}, 9 \mathrm{aS}$)-168 as a white solid.

Physical and spectroscopic data of (6S,9aS)-168

$\mathbf{R}_{\mathrm{f}}=0.19$ (100\% ethyl acetate)
$[\alpha]^{20}{ }_{\mathrm{D}}=+33.5\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
IR (ATR) $=3366,2928,2873,1610,1407,1286,1047 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (250 MHz, CDCl ${ }_{3}$) $\delta 5.43$ (m, 1H: H-7), 4.60 (m, 1H: H-6), 4.27 (bs, 1H: H-OH), 3.73 (dd, J $\left.=11.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-1^{\prime}\right), 3.49\left(\mathrm{dd}, J=11.5 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-1^{\prime}\right), 3.37(\mathrm{tt}, J=11.3 \mathrm{~Hz}, 3.0 \mathrm{~Hz}$, 1H: H-9a), 2.52 (m, 2H: 2H-3), 2.19 (m, 1H: H-9), $1.99-1.50$ (m, 5H: $2 \mathrm{H}-1+2 \mathrm{H}-2+1 \mathrm{H}-9$), 1.75 (s, 3H: 3H-Me).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 173.4$ (C-4), 135.61 (C-8), 120.0 (C-7), 68.1 (C-1'), 57.2 (C-6), 55.7 (C-9a), 36.5 (C-1), 32.7 (C-9), 30.6 (C-3), 23.1 (C-Me), 20.1 (C-2).

HRMS:
Calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}: 218.1157\left(\mathrm{MNa}^{+}\right)$
Found: $218.1152\left(\mathrm{MNa}^{+}\right)$.

2.5. Oxidation and Wittig alkenylation

2.5.1. Synthesis of ($6 \mathrm{~S}, 9 \mathrm{aS}$)-8-methyl-4-0xo-1,3,4,6,9,9a-hexahydro-2H-quinolizine-6-

 carbaldehyde, 174

To a solution of 862.5 mg (4.42 mmol) of alcohol 168 in 80 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 11 \mathrm{~mL}$ (5.3 mmol) of Dess-Martin perdiodinane ($15 \% \mathrm{wt}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were added. The resulting clear mixture was stirred at room temperature for 3 h .

Then, the reaction mixture was quenched by adding 50 mL of NaHCO_{3} and $\mathrm{NaS}_{2} \mathrm{O}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$ saturated aqueous solution. After vigorous stirring for 45 min , the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The
solvent was removed under vacuum obtaining the aldehyde 174 as a yellowish oil, which was used in the next step without further purification due to its instability.

2.5.2. Synthesis of ($6 R, 9 a S$)-8-methyl-6-(prop-1-en-1-yl)-1,2,3,6,9,9a-hexahydro-4H-

 quinolizin-4-one, 169

On one hand, a solution of $10.34 \mathrm{~g}(27.9 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{CH}_{3} \mathrm{Br}$ in 42 mL of anhydrous THF was cooled down to $0^{\circ} \mathrm{C}$. Then, 9.2 mL (23 mmol) of BuLi solution (2.5 M in hexanes) were added. The resulting mixture was stirred at room temperature for 1 h to form the corresponding ylide.

A solution of aldehyde 174 in 80 mL of anhydrous THF was treated with the solution of the phosphonium ylide and the new reaction mixture was stirred at room temperature overnight.

After that time, 80 mL of $\mathrm{Et}_{2} \mathrm{O}$ were added in order to precipitate $\mathrm{PPh}_{3} \mathrm{O}$. The solid was filtered through Celite ${ }^{\circledR}$ and the filtrate was concentrated under vacuum. The crude residue was purified by flash column chromatography (gradient, hexane: $\mathrm{Et}_{2} \mathrm{O}$ from $7: 3$ to 1:1) to give 851.8 $\mathrm{mg}(3.4 \mathrm{mmol}, 77 \%$ yield) of lactam ($6 R, 9 \mathrm{aS}$)-169 as yellow oil in a 6:1 Z/E ratio.

Physical and spectroscopic data of ($6 R, 9 \mathrm{aS}$)-169

$\mathbf{R}_{\mathbf{f}}=0.50\left(100 \% \mathrm{Et}_{2} \mathrm{O}\right)$
$[\alpha]^{20}{ }_{D}=-72.1\left(c 2.14, \mathrm{CHCl}_{3}\right)$
IR (ATR): 3458, 3015, 2916, 2854, $1643 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer (Z) $\delta 5.32\left(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-2^{\prime}\right), 5.23(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-7), 4.98(\mathrm{~m}, 1 \mathrm{H}$: $\mathrm{H}-6), 4.89\left(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-1^{\prime}\right), 3.25(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-9 \mathrm{a}), 2.31(\mathrm{~m}, 2 \mathrm{H}: \mathrm{H}-3), 2.03(\mathrm{~m}, 1 \mathrm{H}: 1 \mathrm{H}-1), 1.92-1.72(\mathrm{~m}$, $3 \mathrm{H}: 1 \mathrm{H}-1+1 \mathrm{H}-9+1 \mathrm{H}-2), 1.72-1.55\left(\mathrm{~m}, 6 \mathrm{H}: 3 \mathrm{H}-3^{\prime}+3 \mathrm{H}-\mathrm{Me}\right), 1.55-1.37(\mathrm{~m}, 2 \mathrm{H}: 1 \mathrm{H}-9+1 \mathrm{H}-2)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) significant signals of minor isomer $(E) \delta 5.41\left(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-2^{\prime}\right), 4.76(\mathrm{t}, \mathrm{J}$ $=5.5 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-6)$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) major isomer (Z) $\delta 170.3$ (C-4E), 132.2 (C-8), 131.3 (C-1'), 122.7 (C2'), 121.2 (C-7), 54.7 (C-9a), 50.5 (C-6), 36.8 (C-1), 32.9 (C-3), 31.1 (C-9), 22.9 (C-Me), 20.5 (C-2), 12.7 (C-3').
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) minor isomer (E) $\delta 170.2$ (C-4), 133.2 (C-8), 130.9 ($\mathrm{C}-1^{\prime}$), 124.3 (C-2'), 122.1 (C-7), 54.9 (C-9a), 53.8 (C-6), 36.4 (C-1), 32.7 (C-3), 31.0 (C-9), 22.8 (C-Me), 20.5 (C-2), 17.5 (C-3').

HRMS:
Calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}: 228.1359\left(\mathrm{MNa}^{+}\right)$
Found: $228.1363\left(\mathrm{MNa}^{+}\right)$

2.6. Second nucleophilic allylation. Synthesis of (4R,6R,9aS)-4-allyl-8-methyl-6-[1-propenyl]-1,3,4,6,9,9a-hexahydro-2H-quinolizine, 170

A solution containing $370.4 \mathrm{mg}(1.8 \mathrm{mmol})$ of a mixture $Z / E(6: 1)$ of lactam 169 in 25.7 mL of anhydrous THF was cooled down to $-55^{\circ} \mathrm{C}$. Once reached the desired temperature, 0.66 mL (2.16 mmol) of Red-Al solution (65% in THF) were added. The resulting mixture was stirred at the same temperature for 3 hours.

After that time, 18 mL (18 mmol) of allylmagnesium bromide solution (1 M in THF) was added and the solution was then stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h .

Then, the reaction mixture was treated with 30 mL of saturated NaHCO_{3} and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum obtaining an oily residue which was purified by flash column chromatography on silica gel (gradient, 100\% hexane to hexane:ethyl acetate $7: 3+3$ drops of $E t_{3} \mathrm{~N} / 10 \mathrm{~mL}$ of eluent) to afford $345 \mathrm{mg}(1.49 \mathrm{mmol}, 83 \%$ yield) of a $5: 1 \mathrm{Z} / \mathrm{E}$ mixture of amines ($4 S, 6 R, 9 \mathrm{a} S$) $\mathbf{- 1 7 0}$, respectively, as yellow oil.

Physical and spectroscopic data of ($4 S, 6 R, 9 \mathrm{aS}$)-170

$\mathbf{R}_{\mathbf{f}}=0.56$ (9:1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}+3$ drops of $\mathrm{Et}_{3} \mathrm{~N} / 10 \mathrm{~mL}$ of eluent $)$

IR (ATR): 3074, 3016, 2921, 2854, 1638, $1446 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer (Z) $\delta 5.67\left(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-\mathbf{2}^{\prime \prime}\right), 5.54\left(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-2^{\prime}\right), 5.25(\mathrm{~m}, 1 \mathrm{H}$: $\left.\mathrm{H}-1^{\prime}\right), 5.14-4.93\left(\mathrm{~m}, 3 \mathrm{H}: \mathrm{H}-7+2 \mathrm{H}-3^{\prime \prime}\right), 4.07(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-6), 3.09(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-4), 2.66(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-9 \mathrm{a})$, $2.42-2.13$ (m, 2H: $2 \mathrm{H}-1^{\prime \prime}$), 1.70 (dd, J = 6.9, $1.7 \mathrm{~Hz}, 3 \mathrm{H}: 3 \mathrm{H}-3^{\prime}$), 1.64 (bs, $3 \mathrm{H}: 3 \mathrm{H}-\mathrm{Me}$), $1.93-1.38$ (m, $8 \mathrm{H}: 2 \mathrm{H}-1+2 \mathrm{H}-2+2 \mathrm{H}-3+2 \mathrm{H}-9$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) significant signals of minor isomer $(E) \delta 3.62(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-6), 3.15(\mathrm{~m}$, 1H: H-4)
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer $\delta 137.5$ (C-2"), 133.8 ($\mathrm{C}-1^{\prime}$), 131.2 (C-8), 124.9 ($\mathrm{C}-2^{\prime}$), 122.8 (C-7), 115.9 (C-3"), 54.3 (C-4), 53.6 (C-6), 49.3 (C-9a), 39.4 (C-1), 34.8 (C-3), 28.1 (C-9), 26.7 (C-1'), 22.8 (C-Me), 18.2 (C-2), 13.4 (C-3).

HRMS:

Calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}$: $232.2060\left(\mathrm{MH}^{+}\right)$
Experimental: $232.2059\left(\mathrm{MH}^{+}\right)$

2.7. Second ring-closing metathesis. Synthesis of (3aS,6aR,9aS)-5-methyl-

1,2,3,3a,4,6a,9,9a-octahydropyrido[2,1,6-de]quinolizine, 171

To a solution of 345 mg (1.5 mmol) of a Z / E mixture (5:1) of amine 170 in 200 mL of anhydrous and previously degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 127.3 \mathrm{mg}$ (0.15 mmol) of second generation Grubbs catalyst were added in one portion. The resulting mixture was heated at reflux overnight.

After cooling down to room temperature, the reaction mixture was filtered through a short pad of silica gel washing with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated under vacuum and the crude product was purified by flash column chromatography on neutral alumina (gradient, 100\% hexane to hexane:ethyl acetate $7: 3+3$ drops of $E t_{3} \mathrm{~N} / 10 \mathrm{~mL}$ of eluent) to furnish $245.8 \mathrm{mg}(1.25$ mmol, 83% yield) of a yellow oil corresponding to tricyclic amine (3aS, $6 a R, 9 a S$)-171.

Physical and spectroscopic data of (3aS,6aR,9aS)-171

$\mathbf{R}_{\mathrm{f}}=0.51\left(9: 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}+3\right.$ drops of $\mathrm{Et}_{3} \mathrm{~N} / 10 \mathrm{~mL}$ of eluent $)$
$[\alpha]{ }^{20}{ }_{D}=-52.1\left(c 1.14, \mathrm{CHCl}_{3}\right)$
IR: 2924, 2854, 1735, 1638, 1446, $633 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.66$ (m, 2H: H-8 + H-7), 5.22 (m, 1H: H-6), 4.02 (m, 1H: H-6a), 3.28 (m, 1H: H-3a), 2.67 (m, 1H: H-9a), $2.51-2.26$ (m, 2H: $2 \mathrm{H}-4$), $2.10-1.22(\mathrm{~m}, 8 \mathrm{H}: 2 \mathrm{H}-1+2 \mathrm{H}-2+$ $2 \mathrm{H}-3+2 \mathrm{H}-9$), 1.68 (s, 3H: 3H-Me).
${ }^{13} \mathrm{C}$ NMR (63 MHz, CDCl 3) $\delta 130.6$ (C-5), 128.3 (C-7), 123.4 (C-6), 121.4 (C-8), 56.7 (C-6a), 53.5 (C9a), 42.2 (C-3a), 34.6 (C-3), 33.9 (C-1), 30.0 (C-4), 27.6 (C-9), 23.3 (C-Me), 19.0 (C-2).

HRMS:
Calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}: 190.1590\left(\mathrm{MH}^{+}\right)$
Experimental: $190.1583\left(\mathrm{MH}^{+}\right)$

2.8. Synthesis of (3aS,6aS,9aR)-8-methyl-1,2,3,3a,4,5,6,6a,7,9a-decahydropyrido[2,1,6-de]quinolizine, 56

A solution containing $40.5 \mathrm{mg}(0.21 \mathrm{mmol})$ of tricyclic amine 171 in 1.5 mL of methanol and 3 drops of acetic acid was hydrogenated in presence of $4 \mathrm{mg}(10 \%)$ of $\mathrm{Pd} / \mathrm{C}(10 \%)$ at 2 atm for 48 h . After that time, the solution was filtered through Celite ${ }^{\circledR}$ washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated NaHCO_{3} solution. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue obtained was purified by flash column chromatography in neutral alumina (gradient, 100\% hexane to hexane:Et ${ }_{2} \mathrm{O} 1: 1+3 \mathrm{drops}$ of $\mathrm{Et}_{3} \mathrm{~N} / 10 \mathrm{~mL}$ of eluent) to furnish 26.6 mg ($0.14 \mathrm{mmol}, 65 \%$ yield) of (-)-9a-epi-hippodamine, 56, as a single isomer. A solution of target compound in $\mathrm{CDCl}_{3}(600 \mu \mathrm{~L})$ was treated with TFA (100 $\mu \mathrm{L}$) in order to obtain the corresponding salt, which was fully characterized by NMR.

Physical and spectroscopic data of (3aS,6aS,9aR)-56

$\mathbf{R}_{\mathbf{f}}=0.45$ (100\% $\mathrm{Et}_{2} \mathrm{O}+3$ drops of $\mathrm{Et}_{3} \mathrm{~N} / 10 \mathrm{~mL}$ of eluent)
$[\alpha]_{D}^{20}=-0.71\left(c 0.27, \mathrm{CHCl}_{3}\right)$

IR: 2926, 2854, 2363, 2344, 1686, 1199, 1129, $631 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 56•TFA $\delta 5.23$ (m, 1H: H-9), 4.26 (m, 1H: H-9a), 3.84 (m, 1H: H-6a), 3.15 (m, 1H: H-3a), 2.49 (m, 1H: 1H-7), 2.25-2.00 (m, 3H: $2 \mathrm{H}-1+1 \mathrm{H}-7$), 1.95-1.55 (m, 11H: $1 \mathrm{H}-1$ $+2 \mathrm{H}-2+2 \mathrm{H}-3+2 \mathrm{H}-4+2 \mathrm{H}-5+2 \mathrm{H}-6$), 1.85 (s, $3 \mathrm{H}: 3 \mathrm{H}-\mathrm{Me}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathbf{5 6} \cdot \mathrm{TFA} \delta 134.4(\mathrm{C}-8), 118.5(\mathrm{C}-9), 56.9(\mathrm{C}-9 \mathrm{a}), 56.0(\mathrm{C}-6 \mathrm{a}), 52.7(\mathrm{C}-3 \mathrm{a})$, 30.4 (C-3 or C-4), 30.3 (C-3 or C-4), 28.7 (C-1), 28.5 (C-7), 26.8 (C-6), 22.6 (C-Me), 17.8 (C-5), 17.2 (C-2).

HRMS:
Calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}: 191.1747\left(\mathrm{MH}^{+}\right)$
Found: $191.1752\left(\mathrm{MH}^{+}\right)$

3. Towards other azaphenalene alkaloids

3.1. First nucleophilic allylation. Synthesis of 6-allyl-1-[(1'S)-1-(\{[tert-butyl(diphenyl)silyl]oxy\}methyl)prop-2-en-1-yl]piperidin-2-one, 158

A solution of 4.45 g (10.5 mmol) of a diastereomeric mixture (1:12) of aminal (1'S)-154 with 55.3 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled down to $0{ }^{\circ} \mathrm{C}$. Once reached the desired temperature, 592.2 mg (4.84 mmol) of DMAP, 2.49 mL (26.3 mmol) of acetic anhydride and 3.66 $\mathrm{mL}(26.3 \mathrm{~mL})$ of anhydrous triethylamine were added. The resulting mixture was stirred at room temperature overnight.

The reaction mixture was treated with 30 mL of saturated NaHCO_{3} solution and 30 mL of water. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum to obtain intermediate 155 as a yellow oil which was dissolved in 55.3 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This solution was cooled down to $-78{ }^{\circ} \mathrm{C}$. Then, $3.34 \mathrm{~mL}(21 \mathrm{mmol})$ of allyltrimethylsilane were added, followed by the dropwise addition of $2.86 \mathrm{~mL}(15.8 \mathrm{mmol})$ of TMSOTf. The reaction mixture was stirred at the same temperature during 4 h .

Afterwards, 30 mL of saturated NaHCO_{3} solution were added. The mixture was warmed up to room temperature and 30 mL of water were then added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum and the residue obtained was purified by flash column chromatography (gradient, hexane: $\mathrm{Et}_{2} \mathrm{O}$ from $8: 2$ to $1: 1$) to get 3.62 g ($8.1 \mathrm{mmol}, 77 \%$ yield) of a diastereomeric mixture 20:1 of amide (1'S)-158 as yellow oil.

Physical and spectroscopic data of (1'S)-158

$\mathbf{R}_{\mathbf{f}}=0.46$ (3:1 Et ${ }_{2} \mathrm{O}:$ hexane)
IR (ATR): 3071, 2931, 2857, 1637, 1427, $1107 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer $\delta 7.69-7.61(\mathrm{~m}, 4 \mathrm{H}: 4 \mathrm{H}-\mathrm{Ph}), 7.48-7.33(\mathrm{~m}, 6 \mathrm{H}: 6 \mathrm{H}-$ Ph), 6.20 (ddd, J = $17.3 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 1 \mathrm{H}: 1 \mathrm{H}-2^{\prime}$), $5.74-5.53$ (m, 1H: 1H-2'"), $5.15-4.99$ (m, 4H: 2H-3' $+2 \mathrm{H}-3^{\prime \prime \prime}$), $4.34-4.20\left(\mathrm{~m}, 1 \mathrm{H}: 1 \mathrm{H}-1^{\prime}\right), 3.90-3.77\left(\mathrm{~m}, 2 \mathrm{H}: 2 \mathrm{H}-1^{\prime \prime}\right), 3.47-3.32(\mathrm{~m}$, $1 \mathrm{H}: 1 \mathrm{H}-6), 2.55-2.10\left(\mathrm{~m}, 4 \mathrm{H}: 2 \mathrm{H}-3+2 \mathrm{H}-1^{\prime \prime \prime}\right), 1.87-1.59(\mathrm{~m}, 4 \mathrm{H}: 2 \mathrm{H}-4+2 \mathrm{H}-5), 1.05(\mathrm{~s}, 9 \mathrm{H}: 9 \mathrm{H}-$ $t-\mathrm{Bu})$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) significant signals of minor isomer $\delta 6.12-5.99\left(\mathrm{~m}, 1 \mathrm{H}: 1 \mathrm{H}-2^{\prime}\right) 5.18$ ($\mathrm{m}, 4 \mathrm{H}: 2 \mathrm{H}-3^{\prime}+2 \mathrm{H}-3^{\prime \prime \prime}$) , $4.18-3.90$ (m, 2H: 2H-1')
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer $\delta 169.9$ ($\mathrm{C}-2$), 135.7 (C-Ph), 135.7 (C-Ph), 135.3 (C-Ph), 134.6 (C-Ph), 133.7 (C-2 or C-2'"'), 133.5 (C-2 or C-2'"'), 129.8 (C-Ph), 127.8 (C-Ph), 117.9 (C-3 or C-3'"'), 117.1 (C-3 or C-3'"') 66.0 (C-1" $), 64.2$ (C-1'), 59.0 (C-6), 37.7 (C-3), 32.6 (C-1'"'), 27.0 $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.7(\mathrm{C}-4$ or $\mathrm{C}-5), 19.3(\mathrm{C}-4$ or $\mathrm{C}-5), 16.28\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

HRMS:

Calculated for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{NO}_{2} \mathrm{Si}: 470.2486\left(\mathrm{MNa}^{+}\right)$
Found: $470.2491\left(\mathrm{MNa}^{+}\right)$

3.2. First ring-closing metathesis

3.2.1. Synthesis of (6S)-6-(\{[tert-butyl(diphenyl)silyl]oxy\}methyl)-1,2,3,6,9,9a-

 hexahydro-4H-quinolizin-4-one, 160

To a solution of $2.74 \mathrm{~g}(6.12 \mathrm{mmol})$ of a diastereomeric mixture (20:1) of lactam (1'S)-158 in 227 mL of anhydrous and previously degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 51 \mathrm{mg}(0.06 \mathrm{mmol})$ of second generation Grubbs catalyst were added. The resulting mixture was heated at reflux overnight.

After cooling down to room temperature, the reaction mixture was filtered through a short pad of silica gel washing with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated under vacuum and the crude residue was purified by flash column chromatography (gradient, hexane: $\mathrm{Et}_{2} \mathrm{O}$ from 9:1 to 1:1) to obtain 2.47 g ($5.88 \mathrm{mmol}, 96 \%$ yield) of a yellow oil corresponding to bicycle (6S)-160, which was isolated as a single isomer.

Physical and spectroscopic data of (6S)-160
$\mathbf{R}_{\mathbf{f}}=0.38$ (3:1, $\mathrm{Et}_{2} \mathrm{O}:$ hexane)
IR (ATR): 2928, 2854, 1668, 1612, 1406, $1095 \mathrm{~cm}^{-1}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=-85.8\left(c 1.00, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.66$ (m, 4H: 4H-Ph), 7.38 (m, 6H: 6H-Ph), 6.06 (ddd, J = 9.5, 6.7, 2.4 $\mathrm{Hz}, 1 \mathrm{H}: \mathrm{H}-7$), 5.98 (ddd, $J=10.0,5.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-8), 4.65(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-6), 3.88\left(\mathrm{~m}, 2 \mathrm{H}: 2 \mathrm{H}-1^{\prime}\right), 3.30$ (tt, J = 11.0, 3.1 Hz, 1H: H-9a), $2.40(\mathrm{~m}, 2 \mathrm{H}: 2 \mathrm{H}-3), 2.14(\mathrm{~m}, 2 \mathrm{H}: 2 \mathrm{H}-9), 1.86(\mathrm{~m}, 2 \mathrm{H}: 1 \mathrm{H}-1+1 \mathrm{H}-2)$, 1.74 (m, 1H: 1H-2), 1.51 (m, 1H: 1H-1), 1.05 (s, 9H: 9H-t-Bu).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 171.3$ (C-4), 135.7 (C-Ph), 133.9 (C-Ph), 133.8 (C-Ph), 129.6 (C-Ph), 128.0 (C-7), 127.7 (C-Ph), 127.6 (C-Ph), 127.0 (C-8), 65.3 (C-1’), 55.0 (C-9a), 53.9 (C-6), 32.9 (C3), $32.0(\mathrm{C}-9), 31.1(\mathrm{C}-1), 27.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.8(\mathrm{C}-2), 19.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

HRMS:
Calculated for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}: 419.2281\left(\mathrm{M}^{+}\right)$
Found: $419.2287\left(\mathrm{M}^{+}\right)$

3.2.2. Synthesis of ($6 S, 9 a S$)-6-(hydroxymethyl)-1,2,3,6,9,9a-hexahydro-4H-quinolizin-

4-one, 181

To a solution of 2.38 g (5.66 mmol) of bicycle (6 S) $\mathbf{- 1 6 0} \mathrm{in} 81 \mathrm{~mL}$ of anhydrous THF, 5.5 mL (34 mmol) of $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ were added. The resulting mixture was stirred under reflux overnight.

After cooling down to room temperature, the reaction mixture was diluted with 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then 55 mL of saturated NaHCO_{3} solution were added dropwise. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum to obtain a residue which was purified by flash column chromatography (gradient, hexane:ethyl acetate from 1:5 to 100\% ethyl acetate) affording 966.2 mg ($5.33 \mathrm{mmol}, 94 \%$ yield) of alcohol ($6 \mathrm{~S}, 9 \mathrm{aS}$)-181 as a white solid.

Physical and spectroscopic data of (6S,9aS)-181

$\mathbf{R}_{\mathrm{f}}=0.2$ (100\% ethyl acetate)
$[\alpha]{ }^{20}{ }_{\mathrm{D}}=-35.5\left(c 1.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}$ NMR (250 MHz, CDCl ${ }_{3}$) $\delta 5.97(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-7), 5.75(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-8), 4.56(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-6), 3.68(\mathrm{dd}, \mathrm{J}=$ $\left.11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}: 1 \mathrm{H}-1^{\prime}\right), 3.49$ (dd, J=11.4, $\left.5.8 \mathrm{~Hz}, 1 \mathrm{H}: 1 \mathrm{H}-1^{\prime}\right), 3.29(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-9 \mathrm{a}), 2.45(\mathrm{~m}, 2 \mathrm{H}:$ $1 \mathrm{H}-3+1 \mathrm{H}-9), 2.08(\mathrm{~m}, 2 \mathrm{H}: 1 \mathrm{H}-3+1 \mathrm{H}-9), 1.95-1.43(\mathrm{~m}, 4 \mathrm{H}: 2 \mathrm{H}-1+2 \mathrm{H}-2)$.
${ }^{13} \mathrm{C}$ NMR ($91 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9$ (C-4), 126.9 (C-7 or C-8), 126.5 (C-7 or C-8), 66.9 (C-1'), 56.4 (C9a), 55.4 (C-6), 32.5 (C-3 or C-9 or C-1), 31.3 (C-3 or C-9 or C-1), 30.4 (C-3 or C-9 or C-1), 20.0 (C$2)$.

HRMS:
Calculated for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2}: 204.1000\left(\mathrm{MNa}^{+}\right)$
Found: $204.1995\left(\mathrm{MNa}^{+}\right)$

3.3. Dess-Martin oxidation and Wittig alkenylation.

3.3.1. Synthesis of
 (6S,9aS)-4-oxo-1,3,4,6,9,9a-hexahydro-2H-quinolizine-6-

 carbaldehyde, 184

To a solution of 562.5 mg (3.1 mmol) of alcohol 181 in 56 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 18 mL (4.6 mmol) of Dess-Martin perdiodinane ($8 \% \mathrm{wt}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were added. The resulting mixture was stirred at room temperature for 3 h .

Then, the reaction mixture was treated with 50 mL of NaHCO_{3} and $\mathrm{NaS}_{2} \mathrm{O}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$ saturated aqueous solution. After vigorous stirring for 45 min , the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum obtaining aldehyde 184 which was used in the next step without further purification due to its instability.

3.3.2. Synthesis of (6R,9aS)-6-(prop-1-en-1-yl)-1,2,3,6,9,9a-hexahydro-4H-quinolizin-

4-one, 182

A solution of $7.25 \mathrm{~g}(19.5 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{CH}_{3} \mathrm{Br}$ in 114.8 mL of anhydrous THF was cooled down to $0^{\circ} \mathrm{C}$. Then, 6.5 mL (16.1 mmol) of BuLi solution (2.5 M in hexanes) were added. The resulting mixture was stirred at room temperature for 1 h .

When the formation of the phosphonium ylide had finished, a solution of the aldehyde 184 dissolved in 28 mL of anhydrous THF was transferred over the solution of the phosphonium ylide. The reaction mixture was stirred at room temperature overnight.

After that time, 80 mL of $\mathrm{Et}_{2} \mathrm{O}$ were added in order to precipitate $\mathrm{PPh}_{3} \mathrm{O}$. The solid was filtered through Celite ${ }^{\circledR}$ and the filtrate was concentrated under vacuum.

The crude residue was purified by flash column chromatography (gradient, hexane: $\mathrm{Et}_{2} \mathrm{O}$ from $7: 3$ to $1: 1$) to give $510.5 \mathrm{mg}(2.67 \mathrm{mmol}, 86 \%$ yield) of lactam ($6 R, 9 \mathrm{aS}$) -182 as a yellow oil with a Z / E ratio of 6:1.

Physical and spectroscopic data of (6R,9aS)-182

$\mathbf{R}_{\mathbf{f}}=0.47\left(100 \% \mathrm{Et}_{2} \mathrm{O}\right)$
$[\alpha]{ }^{20}{ }_{D}=-99.7\left(c 0.97, \mathrm{CHCl}_{3}\right)$
IR (ATR): 3500, 2923, 2852, 1641, 1444, 1405, $1336 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer (Z) $\delta 5.84(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-8), 5.64$ (ddd, J $=9.8 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 2.8$ $\mathrm{Hz}, 1 \mathrm{H}: \mathrm{H}-7), 5.44\left(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-2^{\prime}\right), 5.11(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-6), 4.98\left(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-1^{\prime}\right), 3.31(\mathrm{tt}, \mathrm{J}=10.7 \mathrm{~Hz}, 3.4 \mathrm{~Hz}$, 1H: H-9a), 2.39 (m, 2H: 2H-3), $2.19-2.00(\mathrm{~m}, 1 \mathrm{H}: 2 \mathrm{H}-9), 1.95-1.81(\mathrm{~m}, 2 \mathrm{H}: 2 \mathrm{H}-2), 1.75(\mathrm{dd}, \mathrm{J}=$ 6.9 Hz, 1.7 Hz, 3H: H-Me), 1.72 - 1.49 (m, 2H: 2H-1).
${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) significant signals of minor isomer $(E) \delta 5.90(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-8), 5.74$ (ddd, $J=9.7 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-7), 5.55\left(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}^{\prime} \mathbf{2}^{\prime}\right), 5.31\left(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-1^{\prime}\right), 4.87(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-6)$.
${ }^{13} \mathrm{C}$ NMR (63 MHz, CDCl_{3}) major isomer (Z) $\delta 171.0(\mathrm{C}-4), 131.1(\mathrm{C}-1$ '), 128.1 (C-7), 124.1 ($\mathrm{C}-8$), 123.9 (C-2'), 55.1 (C-9a), 50.8 (C-6), 33.2 (C-3), 32.2 (C-1), 31.5 (C-9), 20.8 (C-2), 13.1 (C-3').
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) minor isomer (E) $\delta 130.6$ (C-1'), $129.3(\mathrm{C}-7)$, 125.4 (C-8), $125.0\left(\mathrm{C}-2^{\prime}\right)$, 55.4 (C-9a), 54.0 (C-6), 33.0 (C-3), 32.1 (C-1), 31.3 (C-9), 22.8 (C-2), 14.3 (C-3').

HRMS:

Calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}: 191.1388\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$
Found: $191.1379\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$
3.4. Second nucleophilic allylation. Synthesis of (6R,9aS)-4-(2-methylprop-2-en-1-yl)-6-(prop-1-en-1-yl)-1,3,4,6,9,9a-hexahydro-2H-quinolizine, 183

A solution with 94.7 mg (1.8 mmol) of a mixture $Z / E(6: 1)$ of lactam ($6 R, 9 \mathrm{aS}$)-182 in 25.7 mL of anhydrous THF was cooled down to $-55^{\circ} \mathrm{C}$. Once reached the desired temperature, 0.66
mL (2.16 mmol) of Red-Al solution (65% in THF) were added. The resulting mixture was stirred at the same temperature for 3 hours.

After that time, $18 \mathrm{~mL}(18 \mathrm{mmol})$ of allylmagnesium bromide solution (1 M in THF) prepared in situ was added and the solution was then stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h .

The reaction mixture was treated with 30 mL of saturated NaHCO_{3} and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum obtaining an oily residue which was purified by flash column chromatography (gradient, 100% hexane to hexane:ethyl acetate 7:3 +3 drops of $\mathrm{Et}_{3} \mathrm{~N} / 10 \mathrm{~mL}$ of eluent) to afford 307.7 mg ($1.33 \mathrm{mmol}, 74 \%$ yield) of ($Z, 4 \mathrm{C}, 6 \mathrm{R}, 9 \mathrm{aS}$) $-\mathbf{1 8 3}$ and 37 mg ($0.16 \mathrm{mmol}, 9 \%$ yield) of ($Z, 4 R, 6 R, 9 \mathrm{aS}$)-183.

Physical and spectroscopic data of $(Z, 4 S, 6 R, 9 a S)-\mathbf{1 8 3}$

$\mathbf{R}_{\mathrm{f}}=0.75$ ($9: 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}+3$ drops of $\mathrm{Et}_{3} \mathrm{~N} / 10 \mathrm{~mL}$ of eluent)
IR (ATR): 3314, 3025, 2920, 2359, 1647, $1443 \mathrm{~cm}^{-1}$.
$[\alpha]_{0}{ }^{20}=-101.4\left(c 1.00, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.63$ ($\mathrm{m}, 1 \mathrm{H}: \mathrm{H}-7$), 5.53 ($\mathrm{m}, 1 \mathrm{H}: \mathrm{H}-\mathrm{z}^{\prime}$), $5.35(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-8), 5.28(\mathrm{~m}, 1 \mathrm{H}:$ $\left.\mathrm{H}-\mathrm{i}^{\prime}\right), 4.72$ (s, 1H: $1 \mathrm{H}-3^{\prime \prime}$), 4.68 ($\mathrm{s}, 1 \mathrm{H}: 1 \mathrm{H}-3^{\prime \prime}$), 4.12 (m, 1H: H-6), 3.21 (m, 1H: H-4), $2.70(\mathrm{~m}, 1 \mathrm{H}:$ H-9a), 2.36-2.19 (m, 2H: 2H-1"), 2.08-1.93 (m, 1H: 1H-9), $1.90-1.80$ (m, 1H: 1H-9), $1.76-$ 1.15 (m, 6H: $2 \mathrm{H}-1+2 \mathrm{H}-2+2 \mathrm{H}-3$), 1.69 ($\mathrm{dd}, \mathrm{J}=7.0,1.4 \mathrm{~Hz}, 3 \mathrm{H}: 3 \mathrm{H}-3^{\prime}$), $1.65-1.62(\mathrm{~m}, 3 \mathrm{H}: 3 \mathrm{H}-$ Me).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.5$ (C-2"), 133.8 ($\left.\mathrm{C}-\mathrm{I}^{\prime}\right), 128.7$ (C-8), 125.0 (C-2'), 123.5 (C-7), 112.0 (C-3"), 53.4 (C-6), 52.3 (C-4), 48.8 (C-9a), 34.9 (C-1), 34.5 (C-9), 30.1 (C-1"), 27.7 (C-3), 22.14 (C-Me), 18.3 (C-2), 13.6 (C-3').

HRMS:
Calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}: 232.2065\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$
Found: $232.2056\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$

Physical and spectroscopic data of ($Z, 4 R, 6 R, 9 a S$)-183
$\mathbf{R}_{\mathrm{f}}=0.20$ (9:1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}+3$ drops of $\mathrm{Et}_{3} \mathrm{~N} / 10 \mathrm{~mL}$ of eluent)
$[\alpha]_{0}{ }^{20}=-50.7\left(c 0.41, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.77$ (m, 1H: H-7), 5.55 (m, 1H: H-2'), 5.46 (m, 1H: H-2), 5.32 (ddd, J $=10.7,9.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-\mathrm{i}^{\prime}$), $4.88\left(\mathrm{~s}, 1 \mathrm{H}: 1 \mathrm{H}-3^{\prime \prime}\right), 4.79\left(\mathrm{~s}, 1 \mathrm{H}: 1 \mathrm{H}-3^{\prime \prime}\right), 4.32(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-6), 3.73(\mathrm{~m}$,
$1 \mathrm{H}: \mathrm{H}-4), 2.83(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-9 \mathrm{a}), 2.25-1.97\left(\mathrm{~m}, 4 \mathrm{H}: 2 \mathrm{H}-1^{\prime \prime}+1 \mathrm{H}-3+1 \mathrm{H}-9\right), 1.91-1.35(\mathrm{~m}, 6 \mathrm{H}: 2 \mathrm{H}-1$ $+2 \mathrm{H}-2+2 \mathrm{H}-3$), 1.75 (s, 3H:3H-Me), 1.70 (dd, J = 6.9, $1.7 \mathrm{~Hz}, 3 \mathrm{H}: 3 \mathrm{H}-3^{\prime}$).
${ }^{13} \mathrm{C}$ NMR ($91 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9$ ($\mathrm{C}-2^{\prime \prime}$), 132.6 ($\mathrm{C}-1^{\prime}$), 129.8 ($\mathrm{C}-8$), 125.9 ($\mathrm{C}-2^{\prime}$), 125.8 (C-7), 113.7 (C-3'), 68.6 (C-4), 53.2 (C-9a), 52.5 (C-6), $46.4\left(C-1^{\prime \prime}\right), 37.3$ (C-2), 36.9 (C-3), 32.1 (C-9), 22.6 (CMe), 22.2 (C-1), 13.4 ($\left.\mathrm{C}-3^{\prime}\right)$.

3.5. Alternative approaches

3.5.1. Tebbe alkenylation. Synthesis of ($6 R, 9 a S$)-6-vinyl-1,2,3,6,9,9a-hexahydro-4H-

 quinolizin-4-one, 187

A solution of 89.6 mg (0.494 mmol) of the unpurified aldehyde ($6 S, 9 \mathrm{aS}$)-184 in 19.7 mL of anhydrous THF was cooled down to $0^{\circ} \mathrm{C}$. Once reached the desired temperature, $0.99 \mathrm{~mL}(0.494$ mmol) of Tebbe reagent (1 M in THF) was added and the reaction mixture was stirring at the same temperature for 50 min .

After that time, some drops of a $5 \% \mathrm{NaOH}$ aqueous solution were added to the reaction mixture and, after $5 \mathrm{~min}, 10 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$ were added. The solution was filtered through Celite ${ }^{\circledR}$, washed with $\mathrm{Et}_{2} \mathrm{O}$ and then concentrated under vacuum.

The crude residue was purified by column chromatography over silica gel (gradient, hexane: $\mathrm{Et}_{2} \mathrm{O}$ from $9: 1$ to $1: 1$) to obtain 50.78 mg ($0.286 \mathrm{mmol}, 58 \%$ yield) of the alkene ($6 R, 9 \mathrm{aS}$)187 as a yellow oil.

Physical and spectroscopic data of ($6 R, 9 \mathrm{aS}$)-187
$\mathbf{R}_{\mathbf{f}}=0.5\left(100 \% \mathrm{Et}_{2} \mathrm{O}\right)$
IR (ATR): 3268, 3043, 2924, 2853, 1637, $1443 \mathrm{~cm}^{-1}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=-102.3\left(c 0.53, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.95$ (ddd, J=9.7, $7.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-8$), $5.82-5.69(\mathrm{~m}, 2 \mathrm{H}: \mathrm{H}-7+\mathrm{H}-$ $\left.1^{\prime}\right), 5.12\left(\mathrm{dt}, J=17.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}: 1 \mathrm{H}-2^{\prime}\right), 5.01\left(\mathrm{dt}, J=10.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}: 1 \mathrm{H}-2^{\prime}\right), 4.98-4.91(\mathrm{~m}, 1 \mathrm{H}:$
$\mathrm{H}-6), 3.34$ (tt, J = 11.1, $3.2 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-9 \mathrm{a}$), 2.45 (m, 2H: $2 \mathrm{H}-3$), 2.17 (m, 1H: 1H-9), $2.06(\mathrm{~m}, 1 \mathrm{H}: 1 \mathrm{H}-$ 9), $1.96-1.85(\mathrm{~m}, 2 \mathrm{H}: 1 \mathrm{H}-1+1 \mathrm{H}-2), 1.82-1.68(\mathrm{~m}, 1 \mathrm{H}: 1 \mathrm{H}-2), 1.63-1.52(\mathrm{~m}, 1 \mathrm{H}: 1 \mathrm{H}-1)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.89(\mathrm{C}-4), 137.79\left(\mathrm{C}-1^{\prime}\right), 128.39(\mathrm{C}-7), 125.58(\mathrm{C}-8), 113.61$ (C2'), 55.25 (C-9a), 54.71 (C-6), 32.94 (C-3), 31.71 (C-9), 31.23 (C-1), 20.73 (C-2).

3.5.2. Hydrogenation - Dess-Martin Oxidation - Wittig olefination

3.5.2.1. Synthesis of ($6 S, 9 a R$)-6-(hydroxymethyl)octahydro-4H-quinolizin-4-one, 190

A solution containing 103 mg (0.57 mmol) of alcohol (6S,9aS)-181 in 2 mL of methanol and 3 drops of acetic acid was hydrogenated in presence of $10.3 \mathrm{mg}(10 \%)$ of $\mathrm{Pd} / \mathrm{C}(10 \%)$ at 2 atm. of H_{2} overnight.

After that time, the solution was filtered through Celite ${ }^{\circledR}$ washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with saturated NaHCO_{3} solution and the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum.

The residue was filtered through a short pad of silica gel to give 82 mg ($0.45 \mathrm{mmol}, 78 \%$ yield) of alcohol (6S,9aR)-190.

Physical and spectroscopic data of ($6 S, 9 \mathrm{a} R$)-190

$\mathbf{R}_{\mathrm{f}}=0.2$ (100\% ethyl acetate)
IR (ATR): 3371, 2940, 2872, 1603, 1410, 1343, $1050 \mathrm{~cm}^{-1}$.
$[\alpha]^{20}{ }_{D}=-80.0\left(c 0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CHCl}_{3}$) $\delta 4.94(\mathrm{dd}, J=7.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-\mathrm{OH}), 3.82\left(\mathrm{~m}, 2 \mathrm{H}: 2 \mathrm{H}-1^{\prime}\right), 3.52(\mathrm{~m}, 1 \mathrm{H}:$ $\mathrm{H}-6), 3.39$ (m, 1H: H-9a), 2.42 (m, 2H: $2 \mathrm{H}-3$), $2.05-1.43$ (m, 10H: $2 \mathrm{H}-1+2 \mathrm{H}-2+2 \mathrm{H}-7+2 \mathrm{H}-8+$ $2 \mathrm{H}-9$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CHCl 3) $\delta 171.2$ (C-4), 65.4 (C-1), 62.2(C-9a), 57.6 (C-6), 33.4 (C-1 or C-3 or C7 or C-9), 31.8 (C-1 or C-3 or C-7 or C-9), 29.9 (C-1 or C-3 or C-7 or C-9), 26.0 (C-1 or C-3 or C-7 or C-9), 21.4 (C-2 or C-8), 18.7 (C-2 or C-8).

HRMS:

Calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{2}$: $183.1338\left(\mathrm{MH}^{+}\right)$
Found: $183.1360\left(\mathrm{MH}^{+}\right)$

3.5.2.2. Synthesis of (4S,9aR)-6-oxooctahydro-2H-quinolizine-4-carbaldehyde, 193

To a solution of $38.3 \mathrm{mg}(0.21 \mathrm{mmol})$ of ($6 \mathrm{~S}, 9 \mathrm{aR}$)-190 in 3.8 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 106.9$ $\mathrm{mg}(0.252 \mathrm{mmol})$ of DMPI were added. The resulting mixture was stirred at room temperature for 3 hours.

After that time, the reaction mixture was treated with 5 mL of NaHCO_{3} and $\mathrm{NaS}_{2} \mathrm{O}_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$ saturated aqueous solution. After 45 min of stirring, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 5 \mathrm{~mL}$) and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, to give aldehyde (4S,9aR)-193 as yellow oil, which was used in the next step without further purification due to its instability.

3.5.2.3. Synthesis of (6S,9aR)-6-(prop-1-en-1-yl)octahydro-4H-quinolizin-4-one, 192

A solution of $93.6 \mathrm{mg}(0.25 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{CH}_{3} \mathrm{Br}$ in 1.6 mL of anhydrous THF was cooled down to $0^{\circ} \mathrm{C}$ and 0.1 mL (0.25 mmol) of BuLi solution (2.5 M in hexane) were then added. The resulting mixture was stirred at room temperature during 1 hour.

On the other hand, the aldehyde ($4 S, 9 a R$)-193 was dissolved in 3.8 mL of anhydrous THF. When the phosphorous ylide was formed, the previous solution was transferred over the solution of the aldehyde and the new reaction mixture was stirred at room temperature overnight.

After that time, 10 mL of $\mathrm{Et}_{2} \mathrm{O}$ were added in order to precipitate triphenylphosphine oxide. The solution was filtered through Celite ${ }^{\circledR}$ washing with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate was concentrated under vacuum obtaining the residue which was purified by flash column
chromatography (gradient, 100\% hexane to $100 \% \mathrm{Et}_{2} \mathrm{O}$) to give $11 \mathrm{mg}(0.06 \mathrm{mmol}, 28 \%$ yield) of lactam (6S,9aR)-192 as yellow oil.

Physical and spectroscopic data of (6S,9aR)-192

$\mathbf{R}_{\mathrm{f}}=0.21\left(100 \% \mathrm{Et}_{2} \mathrm{O}\right)$
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 5.50\left(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-2^{\prime}\right), 5.42\left(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-1^{\prime}\right), 4.91(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-6), 3.49(\mathrm{~m}, 1 \mathrm{H}:$ $\mathrm{H}-9 \mathrm{a}$), 2.37 (m, 2H: $2 \mathrm{H}-3$), $1.98-1.30(\mathrm{~m}, 3 \mathrm{H}: 2 \mathrm{H}-1+2 \mathrm{H}-2+2 \mathrm{H}-7+2 \mathrm{H}-8+2 \mathrm{H}-9), 1.74$ (d, J=6.6 $\left.\mathrm{Hz}, 3 \mathrm{H}: 3 \mathrm{H}-3^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7$ (C-4), 132.3 (C-1'), 124.9 (C-2'), 53.4 (C-9a), 49.5 (C-6), 32.9 (C-3), 31.4 (C-1, C-2, C-7, C-8 or C-9), 26.1 (C-1, C-2, C-7, C-8 or C-9), 20.4 (C-1, C-2, C-7, C-8 or C9), 16.7(C-1, C-2, C-7, C-8 or C-9), 13.1 (C-3').

3.5.3. Preliminary studies for the RRCM

3.5.3.1. Synthesis of (2aS,5aS)-2,2a,5,5a,6,7,8,8a-octahydrooxazolo[2,3,4-de]quinolizine, 198

A solution of 619.6 mg (3.42 mmol) of alcohol ($65,9 \mathrm{aS}$)-181 in 50 mL of anhydrous THF was cooled down to -55° C. Once reached the desired temperature, $3.33 \mathrm{~mL}(10.3 \mathrm{mmol})$ of RedAl solution (65% in THF) were added slowly and the resulting mixture was stirring overnight at the same temperature.

The reaction mixture was treated with 30 mL of $5 \% \mathrm{NaOH}$ solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum obtaining ($2 \mathrm{aS}, 5 \mathrm{aS}$)-198, which was used in the following step without further purification due to its instability.

3.5.3.2. Synthesis of [(6S,9aS)-4-(2-methylprop-2-en-1-yl)-1,3,4,6,9,9a-hexahydro-2H-

 quinolizin-6-yl]methanol, 199

The residue obtained in the previous step was dissolved in 50 mL of anhydrous THF and cooled down to $0^{\circ} \mathrm{C}$. Then, $34.2 \mathrm{~mL}(34.2 \mathrm{mmol})$ of methylallylmagnesium bromide solution (1 M in THF, prepared in situ) were added. The reaction mixture was stirred during 4 h at the same temperature.

After that time, it was treated with 30 mL of $5 \% \mathrm{HCl}$ solution and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then, the aqueous phase was neutralized with saturated NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The lasts organic extracts were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under vacuum to obtain $453.8 \mathrm{mg}(2.05 \mathrm{mmol}, 60 \%$ yield) of amine (6S,9aS)-199 in a diastereomeric ratio of 1:5, as a brown oil, which were pure enough to use in the next step without further purification.

Physical and spectroscopic data of (6S,9aS)-199

$\mathbf{R}_{\boldsymbol{f}}=0.46$ (3:7, hexane:ethyl acetate)
IR (ATR): 3336, 3072, 3035, 2928, 2865, 1723, 1643, $1445 \mathrm{~cm}^{-1}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=-15.4\left(c 0.50, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CHCl}_{3}$) major isomer $\delta 5.85$ (ddd, $J=8.0,6.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-8$), 5.57 (dt, $J=$ 10.0, 3.0 Hz, 1H: H-7), 4.76 (s, 1H: H-3'), 4.70 (s, 1H: H-3"), 3.75 (dd, J=10.5, 4.0 Hz, 1H: $1 \mathrm{H}-1^{\prime}$), 3.42 (s, 1H: H-6), 3.33 (dd, J= 10.4, 1.8 Hz, 1H: 1H-1'), 3.18 (m, 1H: H-4), 2.78 (m, 1H: H-9a), 2.39 (dd, J=13.5, 10.6 Hz, 1H: $1 \mathrm{H}-1^{\prime \prime}$), $2.18\left(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}: 1 \mathrm{H}-1^{\prime \prime}\right), 2.03-1.78(\mathrm{~m}, 2 \mathrm{H}: 2 \mathrm{H}-9), 1.76$ -1.72 (m, 2H: $2 \mathrm{H}-2$), 1.69 ($\mathrm{s}, 3 \mathrm{H}: 3 \mathrm{H}-\mathrm{Me}), 1.67-1.44(\mathrm{~m}, 4 \mathrm{H}: 2 \mathrm{H}-2+2 \mathrm{H}-3)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CHCl}_{3}$) significant signals of minor isomer $\delta 5.97(\mathrm{~m}, 1 \mathrm{H}: \mathrm{H}-8), 4.78(\mathrm{~s}, 1 \mathrm{H}$: $\left.1 \mathrm{H}-3^{\prime \prime}\right), 4.73$ (s, 1H: $1 \mathrm{H}-3^{\prime \prime}$), 2.66 ($\mathrm{m}, 1 \mathrm{H}: \mathrm{H}-9 \mathrm{a}$), 2.53 ($\mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}: \mathrm{H}-4$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CHCl}_{3}$) major isomer $\delta 143.8$ ($\mathrm{C}-2^{\prime \prime}$), 127.5 (C-7), 126.3 (C-8), 112.5 ($\mathrm{C}-3^{\prime \prime}$), 61.4 (C-1'), 56.9 (C-6), 52.5 (C-4), 48.7 (C-9a), 34.5 (C-1), 33.1 (C-9), 32.0 (C-1"), 28.1 (C-3), 22.4 (C-Me), 18.2 (C-2).

HRMS:

Calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}: 222.1848\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$
Found: $222.1838\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$

VII. References

1. a) Daloze, D.; Braekman, J. C.; Pasteels, J. M. Chemoecology 1994/1995, 5/6, 173-183. b) King, A. G.; Meinwald, J. Chem. Rev. 1996, 96, 1105-1122.
2. Badii, M. H.; Abreu, J. L. Int. J. Good Cons. 2006, 1, 82-89.
3. Caltagirone, L. E.; Doutt, R. L. Ann. Rev. Entomol. 1989, 34, 1-16.
4. Happ, G. M.; Eisner, T. Science 1961, 134, 329-331.
5. Gerasyuto, A. I.; Hsung, R. P. Org. Lett. 2006, 8, 4899-4902.
6. de Jong, P. W.; Holloway, G. J.; Brakefield, P. M.; de Vos, H. Chemoecology 1991, 2, 15-19.
7. Tursch, B.; Braekman, J. C.; Daloze, D.; Hootele, C.; Losman, D.; Karlsson, R.; Pasteels, J. M. Tetrahedron Lett. 1973, 14, 201-202.
8. Hart, N. K.; Johns, S. R.; Lamberton, J. A. Aust. J. Chem. 1967, 20, 561-563.
9. Eisner, T.; Goetz, M.; Aneshansley, D.; Ferstandig-Arnold, G.; Meinwald, J. Experientia 1986, 42, 204-207.
10. Brown, W. V.; Moore, B. P. Aust. J. Chem. 1982, 35, 1255-1261.
11. Attygalle, A.; Xu, S.-C; McCormick, K. D.; Meinwald, J.; Blankespoor, C.; Eisner, T. Tetrahedron 1993, 49, 9333-9342.
12. Braconier, M. F.; Braekman, J. C; Daloze, D.; Pasteels, J. M. Experientia 1985, 41, 519-520.
13. Attygalle, A.; McCormick, K. D.; Blankespoor, C. L.; Eisner, T.; Meinwald, J. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 5204-5208.
14. Moore, B. P.; Brown, W. V. Insect Biochem. 1978, 8, 393-395.
15. Timmermans, M.; Braekman, J. C.; Daloze, D.; Pasteels, J.; Merlin, J.; Declercq, J.P. Tetrahedron Lett. 1992, 33, 1281-1284.
16. a) McCormick, K.; Attygalle, A.; Xu, S.-C.; Svatos, A.; Meinwald, J.; Houck, M.; Blankespoor, C.; Eisner, T. Tetrahedron 1994, 50, 2365-2372. b) Shi, X.; Attygalle, A.; Meinwald, J.; Houck, M.; Eisner, T. Tetrahedron 1995, 51, 8711-8718.
17. Schröder, F. C.; Tolasch, T. Tetrahedron 1998, 54, 12243-12248.
18. Lebrun, B.; Braekman, J. C., Daloze, D. Tetrahedron Lett. 1999, 40, 8115-8116.
19. a) Langlois, L.; Soulier, J. L.; Yang, D.; Bremont, B.; Florac, C.; Rampillon, V.; Giudice, A. Eur. J. Med. Chem. 1993, 28, 869-880. b) Rejzek, M.; Stockman, R. A.; Hughes, D. L. Org. Biomol. Chem. 2005, 3, 73-83.
20. Leong, R. L.; Xing, H.; Braekman, J. C.; Kem, W. R. Neurochem. Res. 2014, 40, 2078-2086.
21. Tursch, B.; Daloze, D.; Dupont, M.; Pasteels, J. M.; Tricot, M.C. Experientia 1971, 27, 13801381.
22. Karlsson, R.; Losman, D. J. Chem. Soc., Chem. Commun. 1972, 626-627.
23. Tursch, B.; Daloze, D.; Pasteels, J. M.; Cravador, A.; Braekman, J. C.; Hootele, C.; Zimmermann, D. Bull. Soc. Chim. Belg. 1972, 81, 649-650.
24. Tursch, B.; Daloze, D.; Braekman, J. C.; Hootele, C.; Cravador, A.; Losman, D.; Karlsson, R. Tetrahedron Lett. 1974, 15, 409-412.
25. Tursch, B.; Daloze, D.; Braekman, J. C.; Hootele, C.; Pasteels, J. M. Tetrahedron 1975, 31, 1541-1543.
26. Garraffo, H. M.; Simon, L. D.; Daly, J. W.; Spande, T. F.; Jones, T. H. Tetrahedron 1994, 50, 11329-11338.
27. Mueller, R. H.; Thompson, M. E.; DiPardo, R. M. J. Org. Chem. 1984, 49, 2217-2231.
28. Ayer, W. A.; Bennett, M. J.; Browne, L. M.; Purdham, J. T. Can. J. Chem. 1976, 54, 1807-1813.
29. Tursch, B.; Daloze, D.; Hootele, C. Chimia 1972, 26, 74-75.
30. Fujita, S.; Sakaguchi, T.; Kobayashi, T.; Tsuchikawa, H.; Katsumura, S. Org. Lett. 2013, 15, 2758-2761.
31. Sherwood, T. C.; Trotta, A. H.; Snyder, S. A. J. Am. Chem. Soc. 2014, 136, 9743-9753.
32. Guerola, M.; Sánchez-Rosselló, M.; Mulet, C.; del Pozo, C.; Fustero, S. Org. Lett. 2015, 17, 960-963.
33. Ayer, W. A.; Dawe, R.; Eisner, R. A.; Furuichi, K. Can. J. Chem. 1976, 54, 473-481.
34. Ayer, W. A.; Furuichi, K. Can. J. Chem. 1976, 54, 1494-1495.
35. a) Robinson, R. J. Chem. Soc. 1917, 111, 762-768. b) Schöpf, C. Angew. Chem. 1937, 50, 779787.
36. Stevens, R. V.; Lee, A. W. M. J. Am. Chem. Soc. 1979, 101, 7032-7035.
37. Langlois, M.; Yang, D.; Soulier, J. L.; Florac, C. Synth. Commun. 1992, 22, 3115-3127.
38. Mueller, R. H.; Thompson, M. E. Tetrahedron Lett. 1979, 20, 1991-1994.
39. Mueller, R. H.; Thompson, M. E. Tetrahedron Lett. 1980, 21, 1093-1096.
40. Mueller, R. H.; Thompson, M. E. Tetrahedron Lett. 1980, 21, 1097-1100.
41. Adams, D. R.; Carruthers, W.; Crowley, P. J. J. Chem. Soc., Chem. Commun. 1991, 1261-1263.
42. Yue, C.; Nicolay, J.-F.; Royer, J.; Husson, H.-P. Tetrahedron 1994, 50, 3139-3148.
43. a) Takahata, H.; Ouchi, H.; Ichinose, M.; Nemoto, H. Org. Lett. 2002, 4, 3459-3462. b) Takahata, H.; Saito, Y.; Ichinose, M. Org. Biomol. Chem. 2006, 4, 1587-1595.
44. Kitching, W.; Lewis, J. A.; Perkins, M. V.; Drew, R.; Moore, C. J.; Schurig, V.; König, W. A.; Francke, W. J. Org. Chem. 1989, 54, 3893-3902.
45. Newton, A. F.; Rejzek, M.; Alcaraz, M. L.; Stockman, R. A. Beilstein J. Org. Chem. 2008, 4.
46. Jesberger, M.; Davis, T. P.; Barner, L. Synthesis 2003, 13, 1929-1958.
47. Barton, D. H. R.; Bridon, D.; Fernandez-Picot, I.; Zard, S. Z. Tetrahedron 1987, 43, 2733-2740.
48. Gerasyuto, A. I.; Hsung, R. P. J. Org. Chem. 2007, 72, 2476-2484.
49. Díaz-Gavilán, M.; Galloway, W. R. J. D.; O’Connell, K. M. G.; Hodkingson, J. T.; Spring, D. R. Chem. Commun. 2010, 46, 776-778.
50. Kuznetsov, N. Y.; Lyubimov, S. E.; Godovikov, I. A.; Bubnov, Y. N. Russ. Chem. Bull., Int. Ed. 2014, 63, 529-537.
51. Kobayashi, T.; Nakashima, M.; Hakogi, T.; Tanaka, K.; Katsumura, S. Org. Lett. 2006, 8, 38093812.
52. a) Kobayashi, T.; Tanaka, K.; Miwa, J.; Katsumura, S. Tetrahedron: Asymmetry 2004, 15, 185188. b) Tanaka, K.; Mori, H.; Yamamoto, M.; Katsumura, S. J. Org. Chem. 2001, 66, 30993110.
53. Karatholuvhu, M. S.; Sinclair, A.; Newton, A. F.; Alcaraz, M. L.; Stockman, R. A.; Fuchs, P. L. J. Am. Chem. Soc. 2006, 128, 12656-12657.
54. a) Trost, B. M.; Bunt, R. C; Lemoine, R. C.; Calkins, T. L. J. Am. Chem. Soc. 2000, 122, 59685976. b) Trost, B. M.; Horne, D. B.; Woltering, M. J. Chem. Eur. J. 2006, 12, 6607-6620.
55. González-Gálvez, D.; García-García, E.; Alibés, R.; Bayón, P.; de March, P.; Figueredo M.; Font, J. J. Org. Chem. 2009, 74, 6199-6211.
56. a) Klitzke, C. F.; Pilli, R.A. Tetrahedron Lett. 2001, 42, 5605-5608. b) Girandinà, A.; Mecozzi, T.; Petrini, M. J. Org. Chem. 2000, 65, 8577-8282. c) Pin, F.; Comesse, S.; Garrigues, B.; Marchalín, S.; Daïch, A. J. Org. Chem. 2007, 72, 1181-1191.
57. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.
58. Xiao, K. J.; Wang, Y.; Huang, Y. H.; Wang, X. G.; Huang, P. Q. J. Org. Chem. 2013, 78, 83058311.
59. Oliveras-González, C. Màster en Experimentació Química, UAB, 2010.
60. Atom numbering following the IUPAC rules.
61. Hog, D. T.; Huber, F. M. E.; Jiménez-Osés, G.; Mayer, P.; Houk, K. N.; Trauner, D. Chem. Eur. J. 2015, 21, 13646-13665.
62. a) Wright, D. L.; Schulte II, J. P.; Page, M, A. Org. Lett. 2000, 2, 1847-1850. b) Woodward, C. P.; Spiccia, N. D.; Jackson, W. R.; Robinson, A. J. Chem. Commun. 2011, 47, 779-781. c) Senter, T. J.; Schulte, M. L.; Konkol, L. C.; Wadzinski, T. E.; Lindsley, C. W. Tetrahedron Lett. 2013, 54, 1645-1648.
63. Scholl, M.; Ding, S.; Lee. C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956.
64. Nicolaou, K. C.; Snyder, S. A.; Huang, X.; Simonsen, K. B.; Koumbis, A. E.; Bigot, A. J. Am. Chem. Soc. 2004, 126, 10162-10173.
65. a) Hoye, T. R.; Jeffrey, C. S.; Tennakoon, M. A. Wang, J.; Zhao, H. J. Am. Chem. Soc. 2004, 126, 10210 - 10211. b) Wang, X.; Bowman, E. J.; Bowman, B. J.; Porco, J. A. Angew. Chem. Int. Ed. 2004, 43, 3601 - 3605.
66. a) Druais, V.; Hall, M. J.; Corsi, C.; Wendeborn, S. V.; Meyer, C.; Cossy, J. Tetrahedron, 2010, 66, 6358-6375. b) Fujioka, K.; Yokoe, H.; Yoshida, M.; Shishido, K. Org. Lett. 2012, 14, 244247.
67. Amat, M.; Llor, N.; Hidalgo, J.; Escolano, C.; Bosch, J. J. Org. Chem. 2003, 68, 1919-1928.
68. Corey, E. J.; Kim, C. U. J. Am. Chem. Soc. 1972, 94, 7586-7587.
69. Maheng, J-H.; Funk, R. L. Org. Lett. 2002, 4, 331-333.
70. Rosillo, M.; Arnáiz, E.; Abdi, D.; Blanco-Urgoiti, J.; Domínguez, G.; Pérez-Castells, J. Eur. J. Org. Chem. 2008, 3917-3927.
71. a) Omura, K.; Swern, D. Tetrahedron, 1978, 34, 1651-1660. b) Mancuso, A. J.; Brownfain, D. S.; Swern, D. J. Org. Chem. 1979, 44, 4148-4150.

VIII. Spectra

(1'S)-154

(6S)-161

 2H-3
$9 \mathrm{H}-t-\mathrm{Bu}$
${ }^{1} \mathbf{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

169

169

170
 H-6B

\qquad $\mathrm{H}-6$ M

H-6A \rfloor 3.8

170

\square

180

@
.0
00
\longrightarrow 回

$3 \mathrm{H}-\mathrm{Me}$
(3aS,6aR,9aS)-171

${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(3aS,6aS,9aR)-56•TFA

(1'S)-158
\qquad

(6S)-160
$9 \mathrm{H}-t-\mathrm{Bu}$

(6S,9aS)-181

$3 H-3^{\prime}$

(Z,4S,6R,9aS)-183

(Z,4R,6R,9aS)-183

${ }^{13} \mathrm{C}$ NMR ($91 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(6S,9aR)-190

($6 S, 9 a R$)-192

$\mathrm{C}-1+\mathrm{C}-2+\mathrm{C}-7$
$+\mathrm{C}-8+\mathrm{C}-9$

$$
3 \mathrm{H}-\mathrm{Me} \mid
$$

(6S,9aS)-199

