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ABSTRACT 

Dietary polyphenols represent a group of secondary metabolites which widely occur in fruits, 

vegetables, wine, tea, extra virgin olive oil, chocolate and other cocoa products. These 

compounds exhibit many biologically-relevant functions, such as protection against oxidative 

stress, and can potentially have beneficial effects in the treatment of pathological conditions, such 

as age-related and degenerative diseases. Polyphenols may offer an indirect protection by 

activating endogenous defense systems and by modulating cellular signaling processes. Studies 

have reported the interaction of certain phenolic compounds with estrogen and adenosine 

receptors. In this regard, an important group of receptors, the G protein-coupled receptors G 

protein-coupled receptors superfamily, are the largest family of signal transduction molecules 

involved in most physiological processes. These receptors are widely studied because of their 

potential use as pharmacological targets in drug development. In fact, they are the most important 

targets for drug discovery representing ~40% of all drugs currently in the market.  

Rhodopsin, the prototypic member of the G protein-coupled receptors superfamily, is the major 

protein found in the disks membrane of the outer segments of retinal rod photoreceptor cells and 

the first whose crystal structure was solved. Some mutations in rhodopsin are associated with 

retinitis pigmentosa, a group of inherited visual diseases that causes progressive retinal 

degeneration leading to blindness. Some of the proposed strategies, to fight this condition, are 

based on pharmacological rescue, in which small molecules known as chemical or 

pharmacological chaperones bind to and stabilize misfolded opsins. Polyphenols have been 

proposed as useful agents against retinal toxicity but no clear direct evidence of the effect of these 

compounds at the visual phototransduction system level has been presented so far.  

Given the interest in finding new ligands that can compensate the deleterious effects caused by 

retinitis pigmentosa mutations, the aim of the current work was to evaluate the effect of 

polyphenols on the structure and function of the visual pigment rhodopsin and on the G90V, 

Y102H and I307N retinitis pigmentosa mutants and to study the binding preferences of such 

polyphenols to rhodopsin and 9-cis-rhodopsin. 

It was found that upon the addition of quercetin, resveratrol and epigallocatechin gallate to COS-

1 cell cultures expressing opsin, the expression of the wild-type and mutant opsins studied here 

decreased. However, no differences were observed in the physical and functional properties of 

immunopurified pigments regenerated with 11-cis-retinal when treated with quercetin and 

resveratrol at 1 µM and 10 µM. In contrast, molecular docking complementary analysis, conducted 

on pigments harboring 9-cis-retinal, indicated that these polyphenol compounds could bind to 

rhodopsin and could presumably act as allosteric ligands. 
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The results obtained by carefully analyzing the spectral and biochemical properties of rhodopsins 

heterologously expressed in cell cultures showed that quercetin improved the percentage and 

rate of regeneration of opsin regenerated with 9-cis-retinal when compared to the sample 

regenerated with 11-cis-retinal. Moreover, quercetin enhanced the structural compaction around 

the Schiff base in the retinal binding pocket, preventing the chemical reagent hydroxylamine from 

entering to hydrolyze the linkage. Moreover, functional studies on wild-type rhodopsin and the 

G90V mutant regenerated with 9-cis-retinal treated with 1 µM quercetin, presented a sigmoidal 

kinetics clearly representative of cooperative binding. Furthermore, the presence of quercetin in 

the final sample after immunopurification was demonstrated by HPCL-MS analysis.  

The results were further validated by means of molecular modeling approaches which suggested 

that the potential ligand binding sites are different when the orthosteric ligand is 11-cis-retinal or 

9-cis-retinal. In addition, docking studies revealed that quercetin bound to a site involving the 

extracellular loop 2 in 9-cis-rhodopsin, a site not found on 11-cis-rhodopsin. 

In summary, the results reported demonstrate, by using complementary molecular biology and 

analytical methods and in silico computational studies, that some polyphenol compounds, and 

particularly quercetin, can act as allosteric modulators of 9-cis-rhodopsin. This effect is particularly 

significant in the case of the G90V mutation associated with the retinal degenerative disease 

retinitis pigmentosa, where the deleterious properties of the mutation were partially compensated, 

and opens a novel possibility of using such compounds in the treatment of visual 

neurodegeneration such as that associated with retinitis pigmentosa. 
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ABBREVIATIONS, ACRONYMS AND SYMBOLS 

11CR 11-cis-retinal 

9CR 9-cis-retinal 

ABCA4 ATP-binding cassette transporter  

Abs absorbance 

ABTS 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) 

Amax absorption maximum 

APS ammonium persulfate 

ATP adenosine-5'-triphosphate 

BSA bovine serum albumin 

C cytosine 

cDNA complementary DNA 

cmp counts per minute 

CRBP cellular retinol-binding protein-1 

CSNB congenital stationary night blindness 

C3G cyanidin-3-glucoside 

DAPI 4',6-diamidino-2-phenylindole 

DM n-dodecyl β-D-matoside 

DMEM Dulbecco’s modified eagle’s medium 

dmp disintegrations per minute 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

ds double stranded 

DTT dithiothreitol 

E extracellular 

EDTA ethylenediaminetetraacetic acid 

EGCG epigallocatechin gallate 

ER endoplasmic reticulum  

FBS fetal bovine serum 

G guanine 

G90V 11CR G90V mutant regenerated with 11CR without 1 µM quercetin treatment 

G90V 11CR-Q G90V mutant regenerated with 11CR with 1 µM quercetin treatment 

G90V 9CR G90V mutant regenerated with 9CR without  1 µM quercetin treatment 

G90V 9CR-Q G90V mutant regenerated with 9CR with  1 µM quercetin treatment 

GPCRs G protein-coupled receptors 
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Gt transducin 

HRP horseradish peroxidase 

IF immunofluorescence 

IRBP interphotoreceptor retinoid-binding protein 

isoRho 9-cis-rhodopsin 

kDa kilodalton 

λmax wavelength maximum 

LRAT lecithin:retinol acetyltransferase 

Meta II metarhodopsin II 

Methanol MetOH 

min minutes 

MOPS 3-morpholinopropane-1sulfonic acid 

NADPH nicotinamide adenine dinucleotide phosphate 

ON overnight  

PAGE polyacrylamide gel electrophoresis 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PE phosphatidylethanolamine 

PEI polyethyleimine 

PSB protonated Schiff base 

Q quercetin 

qRT-PCR quantitative real-time-RT-PCR 

R resveratrol 

RDH all-trans-retinol dehydrogenase  

Rho rhodopsin 

RNA ribonucleic acid 

ROS rod outer segment 

RP retinitis pigmentosa 

RPE retinal pigment epithelium 

RPE65 retinal pigment epithelium-specific 65kDa protein 

rpm revolutions per minute 

SB  Schiff base 

SDS sodium dodecyl sulfate 

SN supernatant 

SP sodium phosphate 
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SR solubilized ROS rhodopsin 

t1/2 half-time 

TBS tris buffered saline 

TEAC trolox equivalent antioxidant capacity 

TEMED N,N,N',N'-tetramethylethane-1,2-diamine 

TM transmembrane 

Trolox 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid 

TTBS tween tris buffered saline 

UV-Vis ultraviolet-visible 

W/O without 

WT wild-type 

WT 11CR wild type regenerated with 11CR without 1 µM quercetin treatment 

WT 11CR-Q wild type regenerated with 11CR with 1 µM quercetin treatment 

WT 9CR wild type regenerated with 9CR without 1 µM quercetin treatment 

WT 9CR-Q wild type regenerated with CR with 1 µM quercetin treatment 
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1. INTRODUCTION 
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1.1 G protein-coupled receptors (GPCRs) 

In order to transmit extracellular signals, cells evolved transmembrane receptor proteins that 

connect the extracellular environment with the interior of the cell. Within these groups of proteins,  

GPCRs  constitute the largest class of membrane receptors, with approximately 800 different 

members in humans  (Hofmann et al., 2009). About 2% of the genes in the mammalian genome 

encode these receptor types. 

GPCRs superfamily is the largest family of signal transduction molecules involved in most relevant 

physiological processes. They respond to a broad spectrum of chemical entities, ranging from 

protons and calcium ions to small organic molecules (including odorants and neurotransmitters), 

peptides and glycoproteins. In addition, the photoreceptor rhodopsin (Rho) is specifically sensitive 

to photons of the light physical stimulus.  Many GPCRs are members of closely related 

subfamilies that respond to the same hormone or neurotransmitter. However, they have different 

physiologic functions based on the cells in which they are expressed  and the different signaling 

pathways that they exploit (Kobayashi, 2016). This receptor family is being widely studied due to 

the potential use of its members as pharmacological targets in drug discovery. Currently, one of 

the most active areas of interest in GPCRs signaling is “biased agonism”, a phenomenon that 

occurs when a given ligand is able to preferentially activate one (or some) of the possible signaling 

pathways (Franco et al., 2016; Pupo et al., 2016). This approach has received  close attention 

recently also for its potential use in the development of new biosensors (Hillger et al., 2015). 

1.1.1 GPCRs structure  

GPCRs have a variable length with an average between 450 and 600 amino acids which 

constitute a single polypeptide chain. They share a common structural architecture of seven 

hydrophobic transmembrane (7TM) helical segments, forming a helical bundle, connected by 

three extracellular hydrophilic loops (e1, e2 and e3) and three intracellular loops (c1, c2 and c3) 

(Figure 1.1).  A fourth loop is formed when the C-terminal segment binds to the membrane by 

means of lipid anchoring of palmitoylated cysteines to the lipid bilayer. The N-terminal region of 

GPCRs is at the extracellular side, and the C-terminal tail is located at the intracellular side. The 

N-terminal segment and the extracellular loops are responsible for recognizing a vast variety of 

ligands and modulating ligand binding to the receptor. The 7TM bundle region forms the structural 

core, binding ligands and transducing extracellular signals to the intracellular domain through 

conformational changes.  The intracellular loops interact with cytosolic G-proteins, arrestins, 

GPCRs kinases and other downstream signaling effectors (Zhang et al., 2015). 
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1.1.2 GPCRs classification  

Despite having a common 7TM motif and a great conservation in their three-dimensional 

structure, GPCRs exhibit a high functional and sequence diversity. This makes it difficult to 

develop a comprehensive classification system based on amino acid sequence. In humans, 

GPCRs are classified, according to PSI GPCR network, in five major groups or classes based on 

their sequence and functional similarity. This classification includes Class A containing the Rho-

like receptors, Class B with the secretin-like receptors, Class C with the glutamate receptors, 

class D with the adhesion receptors and Class F with the frizzled/smoothened receptors family 

(Alexander et al., 2013; Fredriksson et al., 2003; Stevens et al., 2013). Figure 1.2 shows the 

phylogenetic tree constructed from the sequence similarity in the 7TM motif among the different 

members. 

 

 

 

Figure 1.1 Schematic representation of  GPCRs general secondary  
structure showing the 7TM helices and the cytoplasmic and extracellular loops. The N-terminus is oriented 
to the extracellular domain and the C-terminus to the cytoplasmic domain. 
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Figure 1.2 Phylogenetic tree of the GPCRs showing their classification. The number of receptors in 
each group is shown between brackets and the solved structures are shown in circles (from GPCR
network-The Scripps Research Institute).  
http://www.scripps.edu/news/press/images/cherezov_vadim/gpcr_xfel3.jpg 
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The Rho-like family binds a wide range of diverse ligands in the 7TM region and usually has a 

small extracellular domain (Figure 1.3). Secretin-like family members detect peptide hormones 

and have a relatively large extracellular N-terminus with a conserved structural fold stabilized by 

cysteine bonds. Members of the glutamate family have a large extracellular N-terminal ligand-

binding region in the “Venus flytrap” fold for ligand binding with a conserved disulfide linkage to 

form a dimer. The adhesion and frizzled families contain GPCR-like transmembrane-spanning 

regions fused together with one or several functional N-terminal domains (Culhane et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Rho-like family has the largest number of receptors accounting for nearly 90% of all GPCRs 

(Fredriksson et al., 2003; Hiller et al., 2013; Zalewska et al., 2014). In this thesis, the Rho was 

used as a study model for GPCRs in order to get new insights into the effect of polyphenols on 

receptor structure and function in connection to the molecular mechanism of the visual 

degenerative disease retinitis pigmentosa (RP) associated with Rho mutations. 

Figure 1.3 Comparison of GPCRs families.  
Ligands are shown in red. Scissors in the adhesion family indicate the autoproteolysis-inducing domain 
(from Culhane et al., 2015) 

Family A 
ligands ranging from 
small molecules and 
peptides to proteins 

Family B 
peptide hormones 

 

Family C 
ions and small molecules 

 

Adhesion Family 
ligands mostly unknown 

Frizzled Family 
Wnt proteins 
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1.2 GPCRs as drug targets 

GPCRs represent ~40% of all drugs currently in the market (Pupo et al., 2016),  including 25% of 

the 100 top-selling drugs with world market profits in the range of >$100.000 million each year 

(Cvijic et al., 2015; Rask-Andersen et al., 2011). In addition, major research projects involving 

GPCRs are widely distributed throughout the pharmaceutical industry (Guo et al., 2014). The 

Human Genome Project has identified about 400 GPCR that are considered as potential drug 

targets, but currently marketed drugs target only about 30 of them, less than a 10%. They have 

identified 210 natural ligands for some receptors, but many others are still unknown. A great 

interest in the pharmaceutical industry is focused in gaining deep knowledge on the physiological 

roles of these receptors, in order to be used as targets for the development of new drugs (Franco 

et al., 2016; Martí-Solano et al., 2016) 

In recent years, the conformational flexibility of proteins and receptors has been exploited to 

identify ligands that modulate pharmacological function by actions at topographically distinct 

binding sites other than the defined regulatory site of the endogenous ligand (Lindsley et al., 

2016). In this regard, the main function of GPCRs is to recognize specific ligands from the variety 

of molecules present in the extracellular space and transmit information through the plasma 

membrane. When the ligand interacts with the receptor on the outside of the cell membrane, a 

conformational change occurs at the cytosolic domain. These changes in remote areas of the 

actual ligand-binding site are known as allosteric changes. The role of GPCRs as proteins able 

to interact with extracellular ligands has made of them good candidates as targets for drug design 

(Khoury et al., 2014; Sato et al., 2016) 

1.2.1 GPCRs signaling and ligands: potentials for new therapeutics 

GPCRs activation was first described as a two-stage model, where there is an equilibrium 

between two conformations, the active sate (e.g., G protein-coupled: the “on” state) and the 

inactive state (e.g., G protein-uncoupled: the “off” state). In the absence of ligands, the receptor 

activity is in the basal level, but any extracellular stimulus, such as hormones, neurotransmitters, 

peptides, and amino acids may alter the equilibrium between the inactive and the active states 

(Zhang et al., 2015). Considering this model, the properties of ligands were classified as agonists, 

antagonists and inverse agonists, according to their ability to stabilize the “on” state of the 

receptors. Those allowing full activation of the G protein are agonists, those reducing the basal 

spontaneous coupling to G proteins are termed inverse agonists, whereas those inhibiting 

receptor activation by competing with agonists for the receptor, without changing the equilibrium, 

are the “neutral” antagonists (Khoury et al., 2014) (Figure 1.4). In GPCRs, ligands bind to their 

main site, called the orthosteric site. However, accumulating evidence also indicates that such 

ligands, alone or in combination with others; such as those acting outside the orthosteric site (e.g., 
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allosteric modulators), have the ability to selectively engage subsets of signaling responses as 

compared to the natural endogenous ligands. Binding locations outside the orthosteric area are 

called allosteric sites (Khoury et al., 2014; Lane et al., 2013)..  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

1.2.2. Regulation of GPCRs by allosteric ligands 

As mentioned above, GPCRs also respond to a variety of endogenous allosteric modulators 

(Figure 1.5) which include ions, ligands, lipids, small and large molecules (e.g., antibodies) and/or 

protein complexes (e.g., receptor dimers and receptor-effector complexes). This kind of 

modulators regulate receptor function by binding to alternative regions, i.e. allosteric binding sites, 

instead of the conventional orthosteric binding site but still allowing orthosteric ligands to bind. As 

Figure 1.4 Different ligand types and binding sites for GPCRs.  
The GPCRs respond to a broad spectrum of chemical entities (orthosteric (blue ellipsoid) or/and 
allosteric (green circle) ligands), and trigger multiple signal-switching mechanisms, not only G-protein 
activation but also binding of β-arrestin proteins and other GPCR-interacting proteins (GIPs) which 
results in a highly complex signaling network (from (Bermudez & Wolber, 2015)). 



8 
 

such, allosteric ligands can modulate both orthosteric ligand affinity and efficacy (Lane et al., 

2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In both cases, orthosteric and allosteric ligands acting at the same GPCR can engage in acute 

signaling and trigger regulatory pathways by interacting with distinct effector proteins (Eff A, Eff 

B, and Eff C) and regulatory proteins such as β-arrestin (β-arr, Eff.D) or G protein (Figure 1.5). 

Both orthosteric and allosteric ligands may select different subsets of these signaling and 

regulatory pathways by stabilizing distinct receptor conformations, a phenomenon termed 

functional selectivity or stimulus bias. The subset of these pathways and processes engaged by 

a ligand-receptor complex will underlie the specific physiological effect of the ligand (Katritch et 

al., 2012; Lane et al., 2013). 

Figure 1.5 Biasing GPCRs signaling by allosteric ligands.  
Ligand-directed signaling can occur through the binding of either orthosteric or allosteric ligands to the 
receptor. This leads to the activation of multiple signaling pathways that are balanced between the G-
proteins, β-arrestins, and/or other signaling effectors. * Regulatory proteins (From Lane et al., 2013). 

*

* 
*
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1.2.3 Discovery of novel GPCR ligands for therapeutic applications  

In recent years, there has been increasing interest in ligands that bind to the allosteric sites of 

GPCRs because allosteric ligands can potentially be more selective than orthosteric ligands. This 

is because their binding to less conserved regions makes them promising therapeutic drug 

candidates with less adverse effects and lower overdose risk (Zhang et al., 2015). In silico 

methods such as virtual screening and de novo design can guide the search for novel ligands in 

the drug development process. Virtual screening is a powerful technique for the identification of 

potential ligands as starting points for medicinal chemistry and has been successfully applied to 

a wide range of different pharmacological targets (Lavecchia & Di Giovanni, 2013; Murgueitio et 

al., 2012).  

Molecular docking is the most commonly used computational screening method for the discovery 

of new GPCR ligands (Shoichet & Kobilka, 2012). It is used as a standard computational tool in 

structure-based drug design that aims at a prediction of experimental binding modes and affinities 

of small molecules within the binding site of a protein target. Other computational techniques 

applied in the field of GPCR research are: homology modeling and molecular dynamics 

simulations. The performance of the broad variety of in silico methods currently used for drug 

design, varies significantly with the target protein, available data, and available resources 

(Bermudez & Wolber, 2015). Nowadays, increased computational power enables docking 

screens of large chemical libraries to identify molecules that complement GPCR binding sites, 

and this may provide novel possibilities of ligand identification with suitable tailored 

pharmacological properties. 

1.3 Rhodopsin (Rho) as a model of GPCR: structure and function 

1.3.1 Rho structure  

Rho is the major protein found in the disk membranes of the rod outer segment (ROS) of retinal 

rod photoreceptor cells (Rho represents >90% of total membrane protein with a 5mM 

concentration within ROS) of the vertebrate retina and is responsible for scotopic vision (Nickell 

et al., 2007). The retina is a neuronal tissue composed of several cell types but rods constitute 

about 80% of cells in human, mouse, and bovine retina (Figure 1.6). The visual pigment Rho is 

composed of two elements: an apoprotein, opsin, and the chromophore 11-cis-retinal (11CR) 

(Bourne & Meng, 2000) 

Rho was the first GPCR whose crystal structure was solved at atomic resolution (Palczewski et 

al., 2000). It is considered the prototypic member of the GPCR superfamily, however, this visual 

pigment presents specific and unique structural features. Rho mediates dim light vision by 

converting photons into chemical signals that can trigger the biological processes enabling the 
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brain to sense the light stimulus (Hubbard & Kropf, 1958). 11CR is a vitamin A derivative that has 

been conserved throughout evolution because of its highly specialized role in vision, which 

includes a very fast response, and a high quantum yield, for its photon-triggered isomerization.  

The retinal ligand is covalently bound to opsin through a protonated Schiff Base (PSB) linkage to 

Lys-296 in the seventh transmembrane helix. Upon light absorption, 11CR changes its 

configuration to all-trans-retinal triggering a conformational change in the receptor that results in 

the formation of the active metarhodopsin II (Meta II) photointermediate through a series of short-

lived photointermediaries. Meta II binds and activates Gt eventually decaying to free opsin and 

all-trans-retinal.  

The photoactivated intermediates of Rho have been shown to be altered by several parameters 

such as ionic strength, pH, glycerol, and temperature (Figure 1.7). As a result, these intermediates 

can be trapped at low temperature and their lifetime can be determined (Palczewski, 2006).  

In order to unravel the structural features of the retinal binding site, and the details of the opsin-

ligand recognition process, other retinal isomers such as  7-cis-retinal, 9-cis-retinal (9CR), 13-cis-

retinal and all-trans-retinal have also been investigated for their binding ability (Harbison et al., 

1984). 9CR is often used as an exogenous analog to study the structure and function of visual 

pigments (Hubbard & Kropf, 1958; Nakamichi & Okada, 2007). 
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Figure 1.6 Schematic representation of the retina, rod cells and Rho location in the eye. 

Rhodopsin 

11-cis-retinal 

Rod 

Light 

Eye Retina 

In the eye, the retina is the essential component and serves the primary purpose of photoreception. The retina is uniquely structured for perception, integration, 
and transmission of visual information. It is a highly organized, multilayered complex of photosensitive neurons which includes photoreceptors, containing the 
rod and cone photoreceptor cells; driving neurons, including bipolar and ganglion cells; and the synaptic regions. Light absorption is mediated by visual 
pigments contained in the rod and cone cells. Rods are responsible for vison under dim-light illumination. These highly specialized cells have the visual pigment 
Rho which has two components, the 11CR chromophore and the opsin apoprotein. 
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1.3.2 Rho function 

1.3.2.1. Visual signal transduction  

The photoreceptors (rods and cones) are the primary sensory neurons that sense light and 

convert light energy into nerve impulses in a process called visual phototransduction. Light 

absorption is mediated by visual pigments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal transduction in the visual system involves two main processes: first, the activation of Rho 

by absorption of a photon of light, leading to a conformational change, and second, regeneration 

of Rho into the original dark inactive state, a the fundamental process regulating light adaptation 

(Kalt et al., 2010; Zhong et al., 2012). 

Figure 1.7 Rho photointermediates after photoactivation. 
Upon the absorption of a photon, Rho passes through several photointermediates till reaching the active 
form Metar II and decaying to opsin and free all-trans-retinal. (Palczewski, 2006) 
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The visual signal, responsible for light perception in the brain, starts with a photon absorption by 

the Rho chromophore, 11CR, causing its isomerization to the all-trans configuration. Complete 

isomerization to all-trans-retinal causes the molecule to straighten, making its adjustment to the 

opsin protein energetically less favorable. This form of higher energy, called Meta II, activates the 

signal transduction process through binding to, and activating Gt. This, in turn, activates a 

phosphodiesterase that hydrolyzes cGMP, leading to the closure of ion channels in the membrane 

and subsequent cell hyperpolarization (Figure 1.8) (Garriga & Manyosa, 2002; Kalt et al., 2010; 

Ridge et al., 2003). The difference potential in the outer segment in rods or cones is transferred 

through the synaptic terminal to second order neurons in the inner retina via modulation of 

neurotransmitter release towards the synaptic terminals of  bipolar, amacrine, horizontal and 

ganglion cells (Travis et al., 2007).  
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Figure 1.8  Visual signal phototransduction.  
Upon striking the retina, light activates Rho by causing the isomerization of covalently attached 11CR to all-trans-retinal. Activated Rho (Meta II) interacts with Gt, the heterotrimeric 
G-protein composed of α, β and γ subunits. Gt activation involves the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP),and dissociation of Gt α-subunit, 
containing GTP, from the βγ-subunit complex. Gtα-GTP activates cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE), promoting the hydrolysis of cGMP and its 
conversion to 5’-GMP. The consequent reduction in the cytoplasmic concentration of cGMP leads to the closure of cyclic nucleotide gated channels, blockage of the inward flux of 
Na+ and Ca2+ and final hyperpolarization of the cell. The decrease in intracellular Ca2+ concentration also activates the otherwise inhibited guanylate cyclase-activating protein 
(GCAP) which leads to the activation of guanylate cyclase and subsequent re-synthesis of cGMP, ensuing the continuity of the cycle. The modified membrane potential is transmitted 
as a neural signal to the brain. The inactivation of Rho is mediated by Rho kinase (RK) phosphorylation, inducing Gt α-subunit to uncouple, promoting the binding of arrestin, leading 
to a decrease in PDE activity, followed by an increase in the cGMP levels and the opening of cGMP-gated Ca2+ channels. A final step involving the recycling of opsin, will enable a 
fresh 11CR to reconstitute Rho (Herrera-Hernández, 2015). 
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1.3.2.1 The retinoid visual cycle 

After Rho activation, a constant supply of 11CR is required. This constant supply is obtained by 

the metabolic pathway referred to as the retinoid visual cycle, by which all-trans-retinal is re-

isomerized back to 11CR (Kiser et al., 2014) through a complex enzymatic pathway that is split 

between processes in photoreceptor cells and the retinal pigment epithelium (RPE) (Figure 1.9). 

As part of the phototransduction cascade, Rho releases all-trans-retinal, which is cleared by an 

ATP-binding cassette transporter (ABCA4) (Sun & Nathans, 2001; Weng et al., 1999) and all-

trans-retinol dehydrogenase (RDH). ABCA4 transports all-trans-retinal from the intradiscal space 

to the cytoplasmic space across photoreceptor disc membranes (Molday, 2007). 

The ABCA4  functions as an ATP-dependent flippase for N-retinylidine-phosphatidylethanolamine 

(N-retinylidine-PE) (Beharry et al., 2004; Sun et al., 1999). This requires the reaction of all-trans-

retinal with PE. After hydrolysis, N-retinylidine-PE is released to the cytosol of the photoreceptors 

as all-trans-retinal. The reduction of all-trans-retinal to all-trans-retinol is done by RDH, using 

NADPH as a reducing factor, mainly by RDH8 expressed in photoreceptor ROS (Maeda et al., 

2007; Parker & Crouch, 2010) whose activity is a limiting step in the cycle (Crouch et al., 1996; 

Saari, 2000). All-trans-retinol is taken up from the photoreceptors to the extracellular space, also 

called the interphotoreceptor matrix, where micromolar concentrations of an interphotoreceptor 

retinoid-binding protein (IRBP) (Adler & Edwards, 2000; Adler & Evans, 1985; Edwards & Adler, 

1994) are secreted by photoreceptors. Endogenous retinoid ligands for IRBP include all-trans-

retinol, 11CR and 11-cis-retinol (Adler & Spencer, 1991; Lin et al., 1989). These ligands are 

protected from oxidation and isomerization when bound to IRBP (Crouch et al., 1992; Pepperberg 

et al., 1993). Cellular retinol-binding protein-1 (CRBP) in the RPE has 100-fold higher affinity for 

all-trans-retinol than IRBP and promotes its uptake. All-trans-retinol is taken up from blood in the 

choroidal circulation through the basal membranes of RPE cells. All.trans-retinol is converted to 

all-trans-retinylester by the enzyme lecithin:retinol acetyltransferase (LRAT) and subsequently 

isomerized to 11-cis-retinol by a isomerohydrolase, a retinal pigment epithelium-specific 65kDa 

protein (RPE65) (Jin et al., 2005; Moiseyev et al., 2005). 11-cis-Retinol is oxidized to 11CR by 

11CR dehydrogenase, and this retinoid is transported back to the rod photoreceptor where it 

recombines with opsin in disk membranes to regenerate Rho (McBee et al., 2001) 
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1.4 Rho mutations and retinal diseases 

The integrity and function of photoreceptors are crucial for the complex process of vision. 

Mutations that affect photoreceptor function, or any other factor that may disrupt the 

phototransduction process, can lead to vision dysfunction and vision loss (Toledo et al., 2011). In 

addition, defects in other retinal cells types, specifically the RPE, can also lead to photoreceptor 

dysfunction and retinal degeneration (Veleri et al., 2015). 

Figure 1.9 Retinoid visual cycle.  
After photoisomerization of 11CR to all-trans-retinal, the chromophore dissociates from opsin. All-trans-
retinal is metabolized into all-trans-retinol and transported to de RPE where it is re-isomerized to 11-cis-
retinal and then redelivered to the photoreceptor. ABCA4 moves all-trans-retinal through the membrane of 
the photoreceptor disc into the cytoplasm of the outer segment. RDH catalyzes the reduction of all-trans-
retinal to all-trans-retinol, which is transported by means of IRBP through the subretinal space into the 
pigment epithelium cell. CRBP promotes all-trans-retinol uptake into de RPE. Then this is esterified by 
means of LRAT. RPE65 transforms it into 11-cis-retinol and finally, by means of 11CR RDH, it is 
transformed into 11CR. Later is transported by IRBP to the photoreceptor to reconstitute Rho (Herrera-
Hernández, 2015). 
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Naturally-occurring mutations in the opsin gene mainly consist of individual aminoacid 

replacement and are associated with retinal diseases. Most of these mutations are the cause of 

RP, a group of hereditary degenerative diseases of the retina (Farrar et al., 2002) that cause 

blindness through death of photoreceptor cells (Travis, 1998). Only a small number of mutations 

have been associated with a retinal disease characterized by a mild phenotype, congenital 

stationary night blindness (CSNB), which seems to affect the amino acid residues that cluster 

around the SB and are presumably associated with changes in the conformational stability and 

protonation state of the SB nitrogen (Ramon et al., 2003) 

1.4.1 Retinitis pigmentosa (RP)  

RP is a heterogeneous group of hereditary retinal degenerative disorders in which progressive 

loss of rod cells and then cone cells, with atrophy of RPE affecting the ocular fundus, leading to 

night blindness, tunnel vision, and eventually to blindness (Figure 1.10). 

Night blindness clinical signs include poor adaptation to darkness and dimly lit places. The 

reduction of peripheral vision requires those affected to turn his head to see what is around them. 

This is known as tunnel vision, because the visual field is narrowing and becoming more distant 

and diffuse. This reduction often causes serious visual impairments and can significantly affect 

the personal mobility of the affected individuals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 1.10 Example of a healthy retina and retina with RP disease. 
A. Representation of a healthy retina and the visual field. B. Representation of an RP retina. Intraretinal 
pigmentary deposits are clearly visible in the RP retina and the corresponding associated tunnel vision. 
From http://retinosis.umh.es/retinosis.html. 
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More than 150 mutations have been found to date in the opsin gene associated with RP, most of 

them inherited as an autosomal dominant trait. These mutations are found in all three domains of 

Rho: the intradiscal, transmembrane and cytoplasmic domains (Berson, 1993). Many of the 

mutations found in the transmembrane and intradiscal domains of Rho cause misfolding of the 

mutated proteins thereby preventing binding of 11CR (Liu et al., 1996)  The proper folding 

conformation of Rho allows efficient binding of the ligand by maintaining the correct set of 

interactions due to the appropriate structure of the retinal binding pocket. One of the molecular 

consequences in RP mutated Rho is the altered conformation of the protein with the formation of 

an abnormal disulfide bond between Cys-185 and Cys-187 that would irreversible lock the protein 

in its misfolded conformation (Figure 1.11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.11  Representation of a misfolded conformation due to mutations associated with RP.  
A. The disulfide linkage in correctly folded Rho is between Cys-110 and Cys-187. B. In misfolded Rho an 
abnormal disulfide bond can be formed between Cys-185 and Cys-187. 
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Rho mutants associated with RP are grouped into different classes which are shown in Figure 

1.12 and in Table 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1.12 Secondary structure of Rho showing the location of the point mutations. 

Mutation listed in Table 1. Taken from Mendes et al., 2005. 
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Table 1.1 Classification of Rho mutants  

 

 
Classification 

 

 
Behavior 

 

 
Site of point mutation 

 

 
Misfolds 

 
 
Class I 

 
Fold normally but are not 
transported to the outer 
segment 
 

 
L328, T342, Q344, 
V345, A346, P347 

No 

 
Class II 

 
Are retained in the 
endoplasmic reticulum (ER) 
and cannot easily 
reconstituted with 11CR 

 
T17, P23, G51, T58, 
V87, G89, G106, C110, 
L125, A164, C167, 
P171, Y178, E181, 
G182, C187, G188, 
D190, H211, C222, 
P267, S270, K296 
 

 
Yes 

 
Class III 

 
Affect endocytosis 

 
R135 

 
No 

 
 
Class IV 

 
Do not necessarily alter 
folding but affect Rho stability 
and posttranslational 
modification 
 

 
T4 

 
No 

 
Class V 

 
Mutations show increased 
activation rate for Gt  
 

 
M44, V137 

 
No 

 
Class VI 

 
Show constitutive activation of 
opsin in the absence of 
chromophore and in the dark  
 

 
G90, T94, A292 

 
No 

 
Unclassified 

 
No observed biochemical or 
cellular defects or not studied 
in detail 

 
N15, Q28, L40, F45, 
L46, P53, G109, G114, 
S127, L131, Y136, 
C140, E150, P170, 
G174, P180, Q184, 
S186, T193, M207, 
V209, P215, M216, 
F220, E249, G284, 
T289, S297, E341 
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1.5 Rho ligand binding domain  

One of the specific characteristics of Rho is its ligand, 11CR, intrinsically linked in the inactive 

state of the receptor by a PSB to Lys296. The binding site for the retinal is in the 7TM domain 

whereas the extracellular domain is partially involved in ligand binding for many other GPCRs. 

This is certainly a limitation when the crystal structure of Rho is used as a template for other 

GPCRs. However, the structure of Rho can still be very useful as a model for studies of lipophilic 

drug-receptor interaction in the transmembrane domains (Zhang et al., 2015). 

Complete knowledge of the structural ligand binding cavity of a GPCR allows the design of novel 

agonists and antagonists. In this regard, new avenues for the design of ligands were opened by 

the resolution of the crystal structure of Rho (Palczewski et al., 2000). In the broad family of 

GPCRs, ligands usually bind to the extracellular portion of the receptor, and can interact with the 

7TM domain, the three extracellular loops and/or the N-terminal domain. A significant number of 

GPCRs binding sites have been mapped, for their corresponding ligands, with a combination of 

mutagenesis, together with other biochemical techniques, and molecular modeling approaches 

relying on sequence homology (Bosch et al., 2005). Thus, a large number of small molecules 

capable of binding to receptors have been characterized. These ligands range from small 

catecholamines such as serotonin and dopamine, to large and small peptides, hormones, 

chemokines and proteins. From the standpoint of drug discovery, small molecules have main 

binding sites where most of candidates drugs would bind (Becker et al., 2003). 

1.6 Rho interaction with small molecules  

In numerous studies, attempts have been made in order to find novel ligands that could potentially 

compensate the mutational effects in Rho. Binding interactions between mutated Rho models and 

potential ligands have been predicted with the help of molecular docking using ligands that act 

either as agonists or as antagonists (Kanwal et al., 2012). 

A class of agonists proposed for Rho are cyanidin compounds (Matsumoto et al., 2003). 

Cyanidins belong to the group of anthocyanins (C6-C3-C6 structure) which belong to the group 

of flavonoids and fall within the large family of polyphenols (Figure 1.13). Among them, dietary 

polyphenols, and especially flavonoids, have been widely studied for their strong antioxidant 

properties and other effects on cell function regulation (Hartman et al., 2006). This family of 

compounds has been investigated for its potential benefits against cancer, as well as in 

cardioprotection, neuroprotection, urinary tract health, and antiaging effects (Stevenson & Hurst, 

2007) 

, 
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 Figure 1.13 Classification of dietary polyphenols.  
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Dietary polyphenols are the most abundant antioxidants in human diets. With over 8000 structural 

variants, these are secondary metabolites of plants and denote many substances with aromatic 

ring(s) bearing one or more hydroxyl moieties. They are subdivided into groups (Figure 1.13) 

characterized by the number of phenolic rings and by the structural elements that link these rings 

(Crozier et al., 2009; Tsao, 2010): (1) phenolic acids with the subclasses derived from 

hydroxybenzoic acids, such as gallic acid; and from hydroxycinnamic acid, such as caffeic acid, 

ferulic acid, and coumaric acid; (2) the large flavonoid subclass, which includes  flavonols, 

flavones, isoflavones, flavanones, anthocyanidins, and flavanols; (3) stilbenes; and (4) lignans 

and  polymeric lignins. 

Flavonoids are the most abundant polyphenol class, and recent research suggests that flavonoids 

may be involved in two major aspects of the different processes involved in vision physiology and 

eye health. On the one side, flavonoids may function in visual signal transduction, in ways that 

are as yet not well understood. On the other side, flavonoids may also function in their well-

established role as antioxidants, which is particularly important in the eye, where oxidative stress 

is significant and its damage is involved in a number of vision pathologies, including macular 

degeneration (Rhone & Basu, 2008).  

Cyanidin 3-glucoside (C3G) is an anthocyanin, belonging to the group of flavonoids, which has 

been evaluated for its role at different stages in the visual signal transduction process. Matsumoto 

et al. (Matsumoto et al., 2003) reported that specific blackcurrant anthocyanins stimulated 

regeneration of Rho. Kinetic analysis revealed that the Km for the formation of Rho was reduced 

by the presence of cyanidin glycosides, although it was not possible to determine the specific 

reaction affected. They also reported insignificant effects of these compounds on 

phosphodiesterase activity by means of cGMP-testing at different stages of the activation 

process, in light and in darkness. 

C3G has also been reported to directly interact with the dark and illuminated forms of Rho 

(Tirupula et al., 2009; Yanamala et al., 2009). Such interaction of C3G and Rho, purified from 

bovine retinas, was determined by nuclear magnetic resonance  (Tirupula et al., 2009). C3G was 

also found to increase the rate of Rho regeneration with 11CR. It was also suggested that 

anthocyanins could either inhibit or activate GMP-cyclic phosphodiesterase. Furthermore, 

computational docking experiments, using pH-dependent forms of C3G, suggested coupling of 

the cytoplasmic side of Rho with the C3G chalcone that was proposed to show higher binding 

affinity for this receptor domain. The pH of the extracellular medium of the photoreceptor is 

increased by exposure to light, and the vertebrate retina experiences diurnal changes of pH; such 

as being more alkaline during the day. Differences in the pH of the photoreceptor cells make the 

study of the pH-dependent differential effects of anthocyanins particularly interesting (Stevenson 

& Hurst, 2007). 



24 
 

Other studies described C3G interaction of the flavanone eriodictyol with opsin in vitro, affecting 

opsin signaling activity and also inducing G-protein activation in cone cells. In these studies, it 

was suggested that eriodictyol could act in a similar way to a retinoid and could potentially 

modulate physiological changes in photoreceptor function (Johnson et al., 2009). Significant 

beneficial effects of Q on eye health have also been proposed (Kalt et al., 2010). 

In addition, the in vitro antioxidant effects of flavonoids, and other phenolic compounds, have 

recently been studied using models and ocular cell types that are relevant to vision processes 

and pathologies. Cultured RPE cells have been employed to investigate how flavonoids cause 

oxidative damage and metabolic responses to oxidative stress in vitro (Table 1.2). In a previous 

study, a number of flavonoids were tested for their effect on the survival of immortalized human 

RPE cells after an oxidative stress treatment by the addition of either tert-butyl peroxide or 

hydrogen peroxide (Hanneken et al., 2006). The effective flavonoids included fisetin, luteolin, Q, 

eriodictyol, baicalein, galangin and epigallocatechin-gallate (EGCG), and the synthetic flavonoids, 

3,6-dihydroxy flavonol and 3,7 dihydroxy flavonol. Flavonoids acted through an intracellular route 

to block the accumulation of reactive oxygen species. Many of these flavonoids induced the 

expression of Nrf2 and the phase-2 gene product heme-oxygenase 1 in human RPE cells. Similar 

flavonoid antioxidant studies have been conducted in retinal ganglion cells (Maher & Hanneken, 

2005). 

Moreover, cellular models have been used to evaluate the antioxidant effect of flavonoids. In vivo 

models, using rats and mice, have also been used in order to assess the protective effect of 

flavonoids against light-induced retinal degeneration. In addition to flavonoids, other compounds 

of the polyphenols family, such as resveratrol (R), have been evaluated for their protective effect 

against light-induced damage, and in animal models of RP (Table 1.2).   
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Table 1.2 Phenolic compounds potentially active against retinal damage.  

Adapted from Herrera-Hernández et al., 2015. 

 

COMPOUND CONDITION EFFECT REFERENCES 

EGCG  UV-B light-induced 
retinal damage 

Regulates autophagy in RPE cells (Li et al., 2013) 
 

Valproic 
acid 

Preserving sight in 
glaucoma patients 

Prevents retinal ganglion cells death. 
Stimulates brain-derived neurotrophic factor 
(BDNF) up-regulation in Müller glial cells. 

(Kimura et al., 
2015) 
 

Lutein Light-induced retinal 
damage 

Attenuated light-induced visual impairment by 
protecting the photoreceptors cells DNA. 
Attenuates the thinning of the photoreceptor 
cell layer owing to apoptosis. Reduce 
oxidative stress in the retina.   

(Sasaki et al., 
2012) 
 

Q Oxidative stress 
model. Assay in vitro 
in human RPE cells 

Significant dose-dependent reduction of 
caveolin-1 mRNA. Down-regulation of 
caveolin-1 may be important for the RPE to 
prevent apoptotic cell death in response to 
cellular stress 

(Hanneken et al., 
2006; Kook et al., 
2008) 

Luteolin Oxidative stress 
model. Assay in vitro 
in human RPE cells 

Protects RPE cells from oxidative-stress–
induced death with a high degree of potency 
and low toxicity 

(Hanneken et al., 
2006) 

Eriodictyol Oxidative stress 
model. Assay in vitro 
in human RPE cells 

Protection through its effects on Nrf2 
activation and phase 2 gene expression and 
enhance multiple cellular defenses to 
oxidative injury 

(Hanneken et al., 
2006; Johnson et 
al., 2009) 

Fesitin Oxidative stress 
model. Assay in vitro 
in human RPE cells 

Protects RPE cells from oxidative-stress–
induced death with a high degree of potency 
and low toxicity 

(Hanneken et al., 
2006) 

R Oxidative stress 
model. Assay in vitro 
in human RPE cells. 
 

Prevents programmed cell death of human 
RPE cells induced by oxidative stress and the 
proliferation of RPE cells via inhibition of the 
mitogen activated protein kinase (MAPK)/ERK 
(MEK) and extracellular signal-regulated 
kinase (ERK 1/2)  

(King et al., 2005) 
 

Antibody-induced 
apoptosis of retinal 
cells in vitro 
 

Protection of retinal cells from apoptosis by R 
occurred through multiple early molecular 
events, such as reduction of intracellular 
calcium levels, down-regulation of pro 
apoptotic protein Bax, up-regulation of Sirtuin-
1 (SIRT-1) a regulator of aging and Ku70 
protein activities, and inhibition of caspase-3 
activity 

 
(Anekonda & 
Adamus, 2008) 
 

 
Light-induced retinal 
degeneration 
 

Suppresses the thinning of the outer nuclear 
layer thickness and the activity of the activator 
protein 1, a heterodimeric protein responsible 
for the regulation of cell proliferation and 
apoptosis. Activates SIRT-1.  

(Kubota et al., 
2010) 
 

Cells treated with 
benzo(e)pyrene 
(B(e)P), a toxic 
component of 
cigarette smoke. 

Can reverse the apoptosis and oxidant 
production generated by B(e)P. These 
inhibitors may be beneficial against retinal 
diseases associated with the loss of RPE cells 

 
(Mansoor et al., 
2010) 
 

Hesperidin Against the toxic 
effects of systemic 
cisplatin 

Prevents the effects caused by cisplatin,  
increasing of thiobarbituric acid reactive 
substances levels and decreasing glutathione 
levels and antioxidant enzyme activity of 
catalase, superoxide dismutase and 
glutathione peroxidase 

(Polat et al., 2015) 
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Novel methodological approaches have been developed on RP mutants in order to elucidate the 

molecular mechanism of the disease as a necessary first step before suitable therapeutic 

approaches can be developed. Some of the proposed treatments have been based on 

pharmacological rescue, in which small molecules known as chemical or pharmalogical 

chaperones bind and stabilize misfolded opsins acting as allosteric modulators. The use of natural 

products, like polyphenolic compounds, alone or in combination with other molecules, like retinal 

analogs, can be a powerful strategy to counteract the effects of mutations associated with retinal 

degeneration in RP. 

2.1 Main objective 

In view of this lack of scientific evidence on the potential benefits of these kind of natural products 

on visual health, the global objective of this research is to evaluate the effect of polyphenolic 

compounds on the structure and function of the visual pigment Rho and mutants associated with 

the retinal degenerative disease RP.  

2.2 Specific Objectives  

In line with the main goal, the specific objectives of this thesis are: 

1. To characterize selected polyphenols by UV-Vis and fluorescence spectroscopy in the 

same conditions as recombinant purified Rho will be studied. 

2. To clone, express and immunopurify WT Rho and RP mutants and to characterize the 

purified proteins by means of spectroscopic and biochemical methods. 

3. To determine the structure and stability properties of ROS Rho, WT and mutants 

associated with RP by different assays including chromophore regeneration, thermal and 

chemical stability, Meta II decay, photobleaching and acidification, in the absence and in 

the presence of the polyphenolic compounds studied. 

4. To determine the effect of the polyphenols studied on the chemical and thermal stability 

of WT Rho and the selected RP mutants. 

5. To evaluate the effect of the selected polyphenols on the ability of ROS Rho, WT and RP 

mutants, to activate Gt. 

6. To investigate the binding preferences of polyphenolic compounds to Rho by means of 

computational-aided modeling (in silico) studies.  
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3. MATERIALS AND METHODS 
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3.1 Materials 

3.1.1 General laboratory equipment 

Autoclave DARLAB K-400 

Balance Precisa QUALITY 

Benchtop centrifuge Beckman Coulter, Allegra X-15R. 

Biological safety cabinet laminar flow type II, NuAire 

CO2 Water-Jacketed Incubator, NuAire 

Double distilled water system, Millipore 

Electrophoresis system, BioRad Mini-PROTEAN-2. 

Fiber optic illuminator Doland-Jenner MI-150 

Fluorescence microscope, NIKON/Eclipse Ti-S 

Gel documentation system; Chemidoc XRS, BioRad 

Horizontal shaker MAGNA-AS-15 

Hybrid liquid coolant system Reserator XT, Zalman connected to the spectrofluorimeter 

Ice machine, BAR-LINE 

Incubator CertomatR BS-T, Satorius stedim biotech 

Incubator, SANYO 

Inverted microscope Olymus CK30 

Liquid nitrogen container, Air Liquid 

Liquid scintillation counter Tri Carb 2100TR, Perkin-Elmer 

Long-life mercury light source, Nikon intensilight   

Microtubes centrifuge, Biocen 

Millipore vacuum pump XF54 230 50 

Multiwell plate reader, Tecan/Infinite M200 

Orbital shaker, OVAN OS10-E  

Personal thermal cycler MJ MiniTM, BioRad 

pH meter  Hanna Instruments; Model pH213 

Refrigerated centrifuge, ALRESA 

Refrigerated centrifuge, Kubota 6500 

Safelight filter KODAK 2 

Spectrofluorimeter Photon Technologies QM-1 

Temperature controller dual cell peltier accessory connected to the spectrophotometer 

Transfer chamber for western blot, BioRad 

Ultracentrifuge Beckman Coulter, Optima LE-80K 

UV-Visible spectrophotometer Varian, Cary 100 Bio  

Vortex shaker, Heildoph REAX Top 
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Water bath Tectron 3000543 

Water bath Bath-100, DARLAB 

3.1.2 Chemicals and other materials 

11CR, National Eye Institute, National Institutes of Health (USA) 

9CR, Sigma, Spain  

Acrylamide/Bisacrylamide mix, BioRad, USA 

Alamar blue, Invitrogen-Thermo scientific, Spain 

Biodegradable scintillation fluid, GE healthcare life sciences, Spain 

Cellulose membrane and manifold for radioactivity assay, Millipore, France 

Chlorogenic acid  95 %, Sigma, Spain 

Cyanogen bromide (CNBr)-activated Sheparose 4B beads, Sigma, Spain 

Dark adapted bovine retinas, W L Lawson Company, NE, USA. 

DMEM-F12, Lab clinics, Spain 

dpnI,  Agilent technologies, CA,USA 

Dulbecco’s modified eagle medium  (DMEM), Sigma, Spain 

EGCG  95 %, Sigma, Spain 

Ellagic acid  96 %, Sigma, Spain 

Fetal bovine serum (FBS), Sigma, Spain 

GTPγS35 (250 µCi), Perkin Elmer, Spain 

Hesperetin  95 %, Sigma, Spain 

Hesperidin  80 %, Sigma, Spain 

Hydroxilamine, Sigma, Spain 

L-glutamine, Sigma, Spain 

mAb rho-1D4 antibody, Cell Essentials, Boston, USA 

n-dodecyl-β-D-maltoside (DM), Anatrace Inc., Maumee, OH, USA 

Naringenin   95 %, Sigma, Spain 

Naringin  95 % (HPLC), Sigma, Spain 

Nitrocellulose membrane 0.45µm , BioRad, USA 

Nonamer-peptide H-TETSQVAPA-OH, Unitat de Tècniques Separtatives i Sìntesi de Pèptids, 

Universitat de Barcelona, Barcelona, Spain 

Oligonucleotides, Sigma, Spain 

Opti-MEM, Fisher scientific, France 

Penicillin-streptomycin, Sigma, Spain 

Pfu ultra II fushion hsDNA polymerase,  Agilent technologies, CA,USA 

Phenylmethanesulfonyl fluoride (PMSF) , Sigma, Spain 

Polyethyleneimine (PEI), Polysciences Inc. (USA) 
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Protease inhibitor cocktail, Sigma, Spain 

Q  95% (HPLC), Sigma, Spain 

R  99% (HPLC), Sigma, Spain 

Rutin hydrate  94% (HPLC), Sigma, Spain 

SuperSignal West Pico chemiluminescent substrate, Thermo scientific, Spain 

SuperSignal West Pico stable peroxide solution, Thermo scientific, Spain 

Tris-HCL 0.5mM pH 6.8, BioRad, USA 

Tris-HCL 1.5mM pH 8.8, BioRad, USA 

All other chemicals and reagents were purchased from Sigma, Spain 

3.1.3 Biologic Materials 

3.1.3.1 pMT4 plasmid vector 

pMT4 is a 6.2 kbp ampicillin resistance vector containing the bovine opsin gene (Annex A) 

between EcoRI and NotI restriction sites (Figure 3.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 pMT4 plasmid vector.  
The β-lactamase confers the antibiotic resistance to the bacteria carrying this vector, allowing artificial 
selection to the transformed cells on an ampicillin supplemented media. 



32 
 

3.1.3.2 DH5α E. Coli cells 

DH5α cells are an E. coli strain widely used in molecular biology to clone recombinant DNA. 

Herein, these cells are utilized to obtain large amounts of the opsin gene for subsequent 

transfection into eukaryotic cells. Before usage, these cells need to be pretreated to facilitate the 

absorption and incorporation of the vector. For this purpose, CaCl2 was used to permeabilize the 

cell membrane under thermal shock in a procedure described in Annex D. 

3.1.3.3 Eukaryotic cell lines 

The cell lines employed during the development of this work were: 

COS-1: African green monkey kidney cells. They are obtained from the transformation of CV-1 

cells (monkey cells permissive for the development of lytic virus SV40) with SV40 DNA mutated 

in the origin of replication. COS-1 cells are generally used for transient transfections producing 

thousands and hundreds of thousands of copies of proteins in a time frame of 72h after 

transfection. These cells were used to express recombinant Rho. 

HEK 293S GnTI¯: Human embryonic kidney cells transformed with adenovirus 5 DNA. They lack 

N-acetylglucosaminyltransferase I (GnTI¯) activity, and consequently are unable to synthesize 

complex N-glycans, yielding homogenously glycosilated proteins. Herein, these cells are used for 

the production of WT and Rho mutants for electrophoretic and immunofluorescence assays. 

3.1.4 Preparation of polyphenol samples 

To evaluate the effect of phenolic compounds on Rho, recombinant Rho WT and mutants, the 

following experimental strategy shown below was followed. The compound initially selected to 

start this research was the flavonoid Q due to its proposed beneficial effect on eye health and its 

presence in the retina. Furthermore, this compouns is recognized by the Food and Drug 

Administration (USA) as safe. The compounds and concentrations used are shown in Table 3.1. 

To quickly assess if the compounds mentioned have an effect on recombinant WT and mutant 

expression levels, Western blot was chosen to detect possible changes in the electrophoretic 

pattern. Western blot was chosen instead of SDS-PAGE because it requires lower amount of 

protein for the assay. 

 

Table 3.1 Phenolic compounds 

Phenolic compound Concentration 

Q 1, 2.5, 5, 10, 15 and 50µM 
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Naringenin 1, 2.5, 5, 10, 15 and 50µM 

Hesperetin 1, 2.5, 5, 10, 15 and 50µM 

Chorogenic acid 1, 2.5, 5, 10, 15 and 50µM 

R 1, 2.5, 5, 10, 15 and 50µM 

Rutin 1, 2.5, 5, 10, 15 and 50µM 

EGCG 1, 2.5, 5, 10, 15 and 50µM 

Ellagic acid 1, 2.5, 5, 10, 15 and 50µM 

 

3.2 METHODS 

3.2.1 Obtaining recombinant DNA 

3.2.1.1 Transformation of DH5α competent cells  

1µg DNA was mixed with 50 µl of E. Coli competent cells, prepared as described in annex B, and 

incubated on ice for 30 min. After heat-shock treatment at 42°C for 45s, the cells were immediately 

placed back on ice for 5 more min. Then, 500 µl of sterile 2YT media (composition described in 

Annex G) was added to the transformed cells and shaked at 37°C, 230 rpm for 1 h. Finally, 100 

µl of cells were plated on LB agar (go to annex G for recipe) plate supplemented with ampicillin 

(100µg/mL). The plate was incubated inverted overnight (ON) at 37°C. 

3.2.1.2 Small-scale plasmid DNA purification (Miniprep) 

A single colony from the transformed plate was inoculated into 6 ml of LB broth containing 100 

µg/ml of ampicillin at 37°C, and shaked at 230 rpm ON. The mini-culture was centrifuged at 4000 

rpm for 20 min and the supernatant (SN) discarded. DNA was purified using QIAprep spin 

Miniprep kit (Qiagen plasmid purification kits, La Jolla, CA) and the protocol is detailed in annex 

C. Concentration and purity of the obtained DNA were determined by UV-vis spectroscopy. 

The concentration of purified DNA was calculated using: 

 
 

Concentration	of	DNA	 ቀ
μg
ml
ቁ ൌ A	260nm	x	50			x		DF 
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DF, dilution factor 

1 OD260nm of dsDNA = 50 µg/ml. 

DNA purity  (Kim et al., 2005) was determined by analyzing the following parameters : 

A260/A280  <1.8,   contamination by proteins. 

1.8  ≤ A260/A280 ≤ 2,  pure DNA  

A260/A280   >2, contamination by RNA  

3.2.1.3 Large-scale plasmid DNA purification (Maxiprep) 

Large scale DNA purification for transient transfection was carried out from a 500 µl mini culture, 

prepared as indicated in 3.2.1.2, in 1 L of LB media containing 100µg/ml ampicillin. For optimal 

growth conditions, the culture was split into two 500-ml flasks and incubated at 37°C 230 rpm ON. 

Cells were harvested at 4000 rpm, at 4°C, for 30 min. The SN was discarded and the DNA was 

purified following the protocol of PureLinkTM HiPure Plasmid filter Purification kit from Invitrogen, 

described in annex D. DNA concentration and purity were determined as described in 3.2.1.2.  

3.2.1.4 Site directed mutagenesis for mutants construction 

Quick-change mutagenesis protocol (Stratagene) was employed to introduce point mutations into 

the opsin gene and the procedure was conducted according to the following protocol. 

i Mutagenic primer design. Mutagenic primers are short oligonucleotides containing the desired 

mutation. The primers should be 25 bp to 45 bp with a melting temperature (Tm) ≥78°C. The GC 

content of the primers should be 40-60%, the desired mutation located in the middle of the primer 

and they should terminate with 1 or 2 C or G bases.  The mutated primers for the forward and 

backward strands were done using a DNA codon table. 

To calculate theTm, the next formula was used: 

 

Tm ൌ 81.5	 ൅ 	0.41	ሺ%GCሻ െ 675/N	 െ 	%mismatch 

Where : 

Tm=oligonucleotide melting temperature 

% GC= percentage of GC in the oligonucleotide 

N=length (number of bases) 

%mismatch = percentage of changes made in sequence from the original sequence. 
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The primers were provided by Sigma Aldrich in lyophilized form, and were prepared at a 

concentration of 125 ng/µl with sterile milliQ water 

ii Polymerase chain reaction (PCR). The mutated opsin genes were synthesized using a 

thermal cycler by PCR. The reaction mixture for synthesizing and amplifying the mutated plasmid 

is shown in Table 3.2.  

 

Table 3.2 Reaction mixture for the construction of mutated plasmid 

Reagents Volume (µl) 

Double-distilled water 41 

Forward primer (125 ng/µl) 1 

Reverse primer (125 ng/µl) 1 

pMT4 PLASMID (100 ng/ µl) 1 

dNTP MIX (100 Mm) 1 

10X reaction buffer 5 

PfuTurbo DNA polymerase (2.5 U/ µl) 1 

 

The mixture was prepared in a microfuge tube and was subjected to the conditions described in 

Table 3.3. 

 

Table 3.3 Thermocycler conditions for construction and amplification of plasmids containing 
mutation in the opsin gene. 

 

Step Temperature Time 

Initial denaturation  95 °C 30 s 

 

Amplification (18 cycles) 

 

95 °C 30 s 

60 °C 60 s 

68 °C 7 min 

Final extension 68 °C 7 min 
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iii DpnI digestion. In order to digest the template plasmid, 1 µl of the DpnI restriction enzyme 

was added and mixed well by pipetting the solution up and down several times and the mixture 

was incubated at 37°C for 2 h. After this time, 10 µl of the resulting DNA sample were taken and 

analyzed by 1% agarose gel electrophoresis. The remaining sample was placed in an Eppendorf 

tube, and 100 µl of cold ethanol and 5 µl of 3 M sodium acetate (pH 5.5) were added. The mixture 

was kept 30 min at -80 °C and subsequently centrifuged for 15 min at 14000 rpm. The SN was 

discarded and the tube was left open to allow the complete drying of the plasmid and eventually 

dissolved in water. 

 
iv Transformation. E. Coli DH5α cells were transformed according to the protocol described in 

section 3.2.1.1. pMT4 plasmid from the growing colonies was purified by following the 

experimental conditions described in section 3.2.1.2 .  

v DNA sequencing. The mutation introduced into the opsin gene was confirmed by DNA 

sequencing. The primers for DNA sequencing were designed from the sequence and they must 

be located 50pb upstream the mutation site. The DNA sequencing was carried out by STAB VIDA 

company in Caparica, Portugal. 

3.2.2 Protein expression 

Protein expression refers to the synthesis, modification and regulation of proteins in living 

organisms. In protein research, the term can apply to either the object of study or the laboratory 

techniques required to manufacture proteins. Proteins produced from recombinant DNA are 

called recombinant proteins. Traditional strategies for recombinant protein expression involve 

transfecting cells with a DNA vector containing the gene for the desired protein, and then culturing 

the cells to promote correct transcription and translation of the protein. Typically, the cells are 

then lysed to extract the expressed protein for subsequent purification. Both prokaryotic and 

eukaryotic protein expression systems are widely used. 

3.2.2.1 Thawing frozen cells 

The cells used in this study were recovered from liquid nitrogen storage container by thawing the 

cryotubes at 37°C in a water bath. Then, the cryotubes were cleaned using 70% ethanol and cells 

were transferred aseptically into a cell culture plate containing the specific culture medium of the 

cell line (see Annex I for more details). The thawed cells were incubated at 37°C and 5% CO2 

incubator and the media was replaced after 12 h. 
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3.2.2.2 Cell subculturing 

COS-1 and HEK GnTI¯ cells were routinely cultured in their respective cell culture media. When 

the cells achieved 90% confluence, the medium was removed using a suction pump under a pre-

UV-sterilized laminar flow hood, washed with sterile PBS in order to remove the dead cells and 

residual medium. In the case of COS-1 cells, the mono-layer of adherent cells was treated with 

5ml of trypsin solution (as described in Annex G), incubated at 37°C for 10 min, and immediately 

after cells detachment carefully by pipetting, 5ml of media were added in order to inactivate 

trypsin. Cells were subsequently split from 1 to 4 plates containing 20 ml of media. Trypsin was 

not needed for HEK-293S GnTI¯ cells due to their weak adherence on plate. Plates were 

incubated in a 37°C humid incubator with 5% CO2. 

3.2.2.3 Cryopreservation of cells  

For long term storage, cells were frozen in liquid nitrogen. For this purpose, detached cells from 

the plates were harvested by centrifugation at 2500 rpm, at 4ºC for 5 min. Then, after discarding 

the SN, cells were resuspended (1 ml/plate) in freezing media (see composition in Annex G. 

Finally, cells were aliquoted in 1 ml labeled cryotubes and kept at 4°C for 2 h followed by 5 h at -

20°C and ON at-80°C. Next day vials were transferred into a liquid nitrogen container. 

3.2.2.4 Transient transfection of pMT4 

Transfection process allows the introduction of a vector into eukaryotic cells for protein 

expression. Opsins were expressed after transient transfection of COS-1 or HEK-293S GnTI¯ 

cells by using polyethylenimine (PEI). PEI condenses DNA into positively charged particles 

(polymer-DNA complex) binding to anionic cell surface residues and enters the cell via 

endocytosis (Figure 3.2). Once inside the cell, PEI protonation results in an influx of counter-ions 

and a lowering of the osmotic potential in the vesicle. Consequently, osmotic swelling results and 

bursts the vesicle, releasing the polymer-DNA complex into the cytoplasm (Longo et al., 2013).  

 

 

 

 

 

 

 

 

 
 
 
  
Figure 3.2 . Schematic representation of chemical transfection using PEI. 
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For PEI preparation; 30 mg of powder were dissolved in distilled water and the pH was adjusted 

to 6.0 (the solution becomes clear as the pH is adjusted). After PEI was completely dissolved, the 

final concentration was adjusted to 1mg/ml and filtered through a 0.22 µM filtering unit. The 

prepared PEI was aliquoted and stored at -20°C until use and maintained at 4°C after thawing. 

Two types of plates, either 6-well plates or 150x20mm dishes, were used depending upon the 

type of experiment to be performed. In both cases, cells were grown as described in section 

3.2.2.2 until a confluence about 80% was reached. Transfection was performed following the 

procedure shown in Figure 3.3. 

In order to study the effect of the selected phenolic compounds on the expression of recombinant 

opsins, the culture medium was supplemented with the required amount of the stock solution of 

the given compound (20 mM), to achieve the desired final concentration. In any case, care was 

taken that the final concentration of 0.25% of DMSO (v/v) was never exceeded to avoid cell 

toxicity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Transfection procedure for the expression of recombinant opsins. 
For transfection in presence of polyphenolic compounds the quantity necessary to reach the desired 
concentration was added to the medium from the stock solution of each compound  



39 
 

3.2.2.5 Cell viability  

It was important to determine the cell viability in the presence of the compounds that we wanted 

to study to rule out toxic effects on the cells. AlamarBlue reagent, containing resazurin as the 

active compound, was used following the manufacturer's recommendations for this test. 

Resazurin is used as an oxidation-reduction (REDOX) indicator that undergoes colorimetric 

change in response to cellular metabolic reduction. The reduced form resorufin is pink and highly 

fluorescent, and the color change from blue to pink is proportional to the number of living cells. 

Through detecting the level of oxidation during respiration, alamarBlue acts as a direct indicator 

to quantitatively measure cell viability and cytotoxicity (Figure 3.4).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

One plate of COS-1 cells was trypsinized and resuspended in cell culture medium. The 

resuspended cells were adjusted at a density of 1x105 cells using a Neubauer chamber to count 

them. 100 µl per well of resuspended cells were placed into a 96-well plate and incubated in a 

37°C humid incubator with 5% CO2. 24 h later, the cell culture medium was removed and the cells 

were exposed to 300 µl of culture medium containing the corresponding concentration of 

compound (1, 10, 50 and 100 µM) under the same conditions described in section 3.2.2.4. 

Furthermore, one sample containing transfection solution was prepared to evaluate their toxicity 

together with two different controls, 1) cell culture medium without cells to determine the 

absorbance of the negative control; 2) an untreated cell control prepared by adding the same 

solvent used to dissolve the compound (DMSO). After 48 h of incubation, 200 µl of medium were 

Figure 3.4 A. Representative schematic of alamarBlue cell viability reagent undergoing reduction within
the cells. B. Absorbance spectra of alamarBlue reagent in oxidized and reduced states. From 
www.thermoscientific.com/pierce. 
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removed and 10 µl of alamarBlue reagent was added. The absorbance at 570nm was measured 

after 4h of incubation at 37°C using 600 nm as reference wavelength in a microplate reader. To 

calculate the % reduction of alamarBlue reagent the next formula was used: 

 

%Reduction	of	alamarBlue	reagent ൌ
ሺ୉୭୶୧଺଴଴	୶	୅ହ଻଴ሻିሺ୉୭୶୧ହ଻଴	୶	୅଺଴଴ሻ

ሺ୉୰ୣୢହ଻଴	୶	େ଺଴଴ሻିሺ୉୰ୣୢ଺଴଴	୶	େହ଻଴ሻ
  x 100 

 

Where, 

Eoxi570 =E of oxidized alamarBlue reagent at 570nm = 80586 M-1 cm-1 

Eoxi600 =E of oxidized alamarBlue reagent at 600nm = 117216 M-1 cm-1 

A570 = Abs of test wells at 570nm 

A600 = Abs of test wells at 600nm 

Ered570 =E of reduced alamarBlue reagent at 570= 155677 M-1 cm-1 

Ered600 =E of reduced alamarBlue reagent at 570= 14652 M-1 cm-1 

C570 = Abs of negative control well at 570nm 

C600= Abs of negative control well at 600nm 

 

3.2.2.6 Protein subcellular localization 

In eukaryotes, numerous complex sub-cellular structures exist. The majority of these are 

delineated by membranes. Many proteins are trafficked to be able to carry out their correct 

physiological function. As previously mentioned, Rho is a membrane protein that must be inserted 

into the lipid bilayer to be functional. Immunofluorescence (IF) microscopy is a broadly applicable 

method to assess the cellular localization of proteins of interest. This technique uses the 

specificity of antibodies, an unlabeled primary antibody that specifically binds to the target protein 

and a fluorophore-conjugated secondary antibody that recognizes this primary antibody. 

 

Briefly, a low density of HEK-293S GnTI¯ cells was seeded in six-well plates containing sterile 

coverslips and incubated for 24 h at 37ºC, 5% CO2. Next day, the old medium was removed and 

the cells were transfected as described in section 3.2.2.4. 24 h after transfection, the solution was 

removed and the cells were washed twice with 3 ml PBS. Then, cells were incubated in 1 ml of a 

mixture containing 37% formaldehyde and 15% methanol in water at 37°C for 20 min in order to 

fix and to permeabilize the transfected cells onto the coverslips. After this time, the formaldehyde 

solution was removed and the cells were washed three times with 2ml of TTBS buffer for 10 min 

in an orbital shaker. After washing, cells were blocked with 5% skim milk in TBS stirring for 30 

min. Cells were washed again three times with 2ml of TTBS for 10 min with shaking. Rho-1D4 

antibody (dilution 1: 2000 in TBS) was added and the cells were incubated for 1 h by shaking and 
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washed three times (2ml TTBS buffer for 10 min). Subsequently, the goat anti-mouse secondary 

antibody tagged with FITC (1:200 dilution in TBS) was added and cells were incubated for 1 h 

and washed as described. Coverslips containing the cells were mounted on a glass slide with the 

help of Vectashield Mounting Medium containing DAPI (Vector Labs, RU) which stains the 

nucleus. Images were collected using a fluorescence microscopy system, Nikon eclipse Ti 

equipped with a DS-QiMc camera. 

3.2.3 Purification of native bovine rhodopsin and heterologously expressed recombinant 

Rho  mutants 

Purification of proteins used in this study was performed by immunoaffinity chromatography using 

sepharose coupled to the Rho-1D4 antibody according to the manufacturer instructions ((GE 

Healthcare) see Annex E for more details). Once Rho-1D4 was bound to sepharose, the binding 

capacity was determined. 

3.2.3.1 Capacity binding of 1D4-coupled Sepharose 

This experiment was carried out to determine the efficiency of Rho binding by the sepharose-

Rho-1D4 resin. All manipulations were performed in total darkness (or dim red light) and keeping 

the samples on ice at all times to avoid protein aggregation. 

ROS membranes extracted from bovine retina using a sucrose gradient ((kindly provided by Dr. 

Sundaramoorthy Srinivasan), were solubilized in n-dodecyl-β-D-maltoside (DM) detergent. DM is 

a mild detergent. DM can dissolve membranes and as a result membrane proteins are transferred 

into detergent micelles, preserving membrane protein functionality.  

Briefly, 50 µl of ROS were placed in an Eppendorf tube with 400 µL of PBS and 50 µl of 10% DM 

(w/v in MilliQ water). The mixture was stirred for 1 h at 4°C and subsequently centrifuged for 30 

min at 7000 rpm and 4°C. Rho initial concentration was determined from the SN (solubilized ROS) 

by UV-vis spectroscopy and the Lambert-Beer law (initial protein). Then,100 µl of sepharose-Rho 

1D4 were added into the SN and incubated for 3 h, at 4°C by gently nutating. Finally, the sample 

was spun down for 5 min at 2500 rpm and 4°C and the concentration of unbound Rho was 

determined by using the Lambert-Beer law in (unbound protein).  

The binding capacity was measured by subtracting the initial protein to the unbound protein. 

 

Capacity	binding	μg/μl ൌ ሺμg	initial	protein െ μg	unbound	proteinሻ/100	μlሺSepharose െ Rho	1D4ሻ 
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3.2.3.2 Rho purification  

ROS membranes were solubilized as explained in the previous section and the sepharose-Rho-

1D4 beads were added. After the centrifugation, the SN containing the unbound Rho was 

collected and stored at -20°C for future purifications. The sepharose-Rho1D4 beads were washed 

4 times with 1 ml of elution buffer. The bound Rho was eluted in 100 µl of elution buffer containing 

100 µM 9-mer peptide (H-TETSQVAPA-OH). After 2 h incubation at 4ºC, the beads were 

centrifuged and the SN was collected for further experiments. The amount of purified Rho was 

measured from the collected SN by UV-vis spectroscopy. The sepharose beads were kept at 4ºC 

for further use after their regeneration (see Annex F for details). 

3.2.3.3 Regeneration and purification of recombinant proteins 

COS-1 cells are not photoreceptor cells, so they do not have the chromophore to form rhodopsin 

and retinal needs to be exogenously added. 

 Preparation of retinal. Both 11CR and 9CR were obtained in solid form and dissolved in ethanol. 

Both retinal molecules are light-sensitive changing the conformation to all-trans-retinal when 

illuminated, therefore they should be kept with aluminum foil and work under dim red light or in 

complete darkness. 

Retinal was prepared by taking a small amount of retinal and dissolving it in 200 µl of 

spectroscopic grade absolute ethanol and subsequently stored at -80ºC. A 1:2000 dilution was 

prepared and the concentration was determined by UV-vis spectroscopy. The values of molar 

extinction coefficient (ε) and λ are shown on Table 3.4 (Garwin & Saari, 2000). 

 

Table 3.4 λ of maximum ( λmax) absorbance and ε of 9CR and 11CR. 

 

Retinal λmax (nm) ε (M-1cm-1) 

9-cis retinal 373 36068 

11-cis-retinal 376.5 24935 

 

Regeneration of the transfected opsin. After 48 h of transfection (see section 3.2.2.4 for 

transfection details), cells were mechanically harvested using a scraper and centrifuged at 4000 

rpm for 20 min at 4°C. SN containing the medium was discarded and the cells were washed by 

resuspending the pellet with PBS (1 mL per plate) and centrifuged under the same conditions. 

The washing step was performed in duplicate. Once washed, the cells were resuspended in PBS 

(1ml per plate) and either 10 µM of 11CR or 20 µM of the 9CR analog were added. Cells were 

incubated ON at 4ºC in an orbital shaker. 
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Purification of recombinant proteins. Regenerated cells were subsequently solubilized adding 

1 ml 10% DM, 10 µl of 100 mM PMSF (prepared in methanol) and 10 µl protease inhibitors 

(Sigma). The mixture was stirred 1 h at 4°C and subsequently ultracentrifuged 35 min at 35000 

rpm and 4°C in a Ti50 rotor. The SN was transferred into a falcon tube containing 100 µl of 

sepharose-Rho-1D4 and incubated 3 h, at 4°C in a orbital shaker. After 2 or 3 hours, the 

sepharose-1D4 beads were washed in the same way than in section 3.2.3.2. 

3.2.4 Gel electrophoresis of proteins 

3.2.4.1 SDS-PAGE 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is a type of  

electrophoresis in which samples are denatured by the presence of reducing agents such as DTT 

or beta-mercaptoethanol, to break the disulfide bridges, and the water chaotropic agent SDS. 

This detergent denatures and coats the protein with negative charge allowing the separation of 

proteins depending only on their length and mass-to-charge ratio. Most of these gels are made 

of polyacrylamide, as a result of the chemical polymerization of a mixture of acrylamide and 

bisacrylamide. 

For electrophoresis, a Bio-Rad Mini-PROTEAN 2 gel running apparatus was used. A vertical gel 

was prepared consisting on a separating gel with a degree of crosslinking of 12%, and a stacking 

gel with low degree of crosslinking (5%) according to details shown in Table 3.5.  

Casting frames (clamping two glass plates in the casting frames) were set on the casting stands. 

The separating gel was prepared in a separate small beaker mixing the solution gently. The 

appropriate amount of separating gel solution was pipetted into the gap between the glass plates. 

Isopropanol was added to avoid oxidation of the mixture, facilitating correct solidification and 

flattening of the gel surface.  

After a few minutes, the isopropanol was discarded and the stacking gel prepared and pipetted 

into the glass plates until overflow. Immediately after, a well-forming comb was inserted. After gel 

solidification,  the glass plates were taken out of the casting frame and set in an electrode 

assembly. The electrophoresis running buffer was poured into the inner chamber and kept pouring 

after overflow until the buffer surface reaches the required level in the outer chamber, and the 

comb was removed carefully to allow sample loading. 

To prepare the samples, concentrations of the solubilized or purified proteins were normalized to 

equal amount of protein and mixed with protein loading buffer 4X (Annex G for composition). The 

prepared samples and 6 µl of the protein molecular weight marker were loaded into the 

corresponding wells and the gel was run at 100V for 2 h. The gel was stained ON using Generon 
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quick  Coomassie stain.  The stained gels were distained with water until the protein bands could 

be visualized. . 

 

 

Table 3.5 Reagents concentration for SDS-PAGE. 

Separating gel 

Reagents Stock 

Concentration in 

 the gel 

Volume 

ml 

Distilled water - - - - - -  1.25 

Tris-HCL 1.5M pH 8.8 0.75 M 5 

Acrylamide/Bisacrylamide 37.5%/0.8% 12%/0.5% 3.2 

SDS 10% 0.1% 0.1 

APS 10% 0.1 0.1 

TEMED 100% 0.05% 0.05 

 

Stacking gel 

Reagents Stock 

Concentration in 

 the gel 

Volume 

ml 

Distilled water - - - - - -  2.9 

Tris-HCL 0.5M pH 6.8 0.75 M 1.25 

Acrylamide/Bisacrylamide 37.5%/0.8% 5%/0.13% 0.67 

SDS 10% 0.1% 0.05 

APS 10% 0.1% 0.05 

TEMED 100% 0.1% 0.05 

 

3.2.4.2 Western blot 

Western blot is a technique that allows specific detection of proteins previously separated by an 

electrophoretic gel through the use of specific antibodies. Proteins are detected by a primary 
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antibody which is recognized by a horseradish peroxidase (HRP) conjugated secondary antibody. 

This HRP will react to a specific substrate and generate a detectable product. 

After separating the proteins using SDS-PAGE, the proteins from the gel were transferred onto a 

nitrocellulose membrane using the Trans-Blot SD Semi-Dry Transfer Cell (Bio-Rad). Before the 

transference, the nitrocellulose membrane, filter paper and gel were placed in transfer buffer (see 

composition in Annex G) separately for 10 min. The transfer sandwich was formed as follows: 

filter paper, membrane, gel and filter paper (avoiding the formation of bubbles between the gel 

and the membrane) and placed in the transfer apparatus. The transference was carried out for 

30 min at 15 V. Then, the membrane was blocked with 5% skim milk in TBS (see Annex G for 

composition) stirring ON. Next day, the membrane was washed 3 times for 10 min with TTBS 

(see Annex G for composition).  Later, the membrane was incubated for 1 h with the primary 

antibody Rho-1D4 (1:10000 in TBS buffer) and washed 3 times for 10 min with TTBS buffer. 

Subsequently, the blot was incubated with goat anti-mouse secondary IgG antibody (1:5000 in 

TBS buffer) for 1 h and after this time it was washed 3 times for 10 min in TTBS buffer. The blots 

were developed using substrate SuperSignal Wester Pico Chemiluminescent Substrate 

(Luminol/H2O2 1:1) (Thermo fisher scientific, France) by exposure to X-ray paper. 

3.2.5 Ultraviolet-visible (UV-vis) spectroscopy 

UV-vis spectroscopy plays an important role in analytical chemistry and has widespread 

application in chemistry, physics and life sciences. This technique covers only a small part of the 

electromagnetic spectrum, which includes such other forms of radiation as radio, infrared (IR), 

cosmic, and X rays. UV and visible absorption spectroscopy measures the attenuation of a beam 

of light after it passes through a sample or after reflection from a sample surface at a single λ or 

over an extended spectral range. When a sample is exposed to light energy that matches the 

energy difference between a possible electronic transition within the molecule, a fraction of the 

light energy would be absorbed by the molecule and the electrons would be promoted to the 

higher energy state orbital. A spectrometer records the degree of absorption by a sample at 

different λ and the resulting plot of absorbance (Abs) versus wavelength (λ) is known as a 

spectrum. 

This technique is commonly used to determine the concentration of an absorbing molecule in 

solution using Lambert-Beer law: 

 

ܣ ൌ 	ε	x	ܿ	x	݈ 

where  
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A= absorbance 

ε= the molar absorptivity with units of L mol-1 cm -1 

l = the path length of the sample- that is, the path length of the cuvette in which the sample is 

contained in cm. 

c= concentration of the chromophore in solution expressed in mol L-1 

 

3.2.5.1 Measurement conditions 

For spectroscopic characterization of Rho mutants, a Varian Cary 100 bio spectrophotometer 

(Varian, Australia) was used. Temperature was controlled by a peltier accessory equipped with a 

water-jacketed cuvette holder connected to a circulating water bath. All the spectra were recorded 

in the 250 nm-650 nm range with a bandwidth of 2nm, a response time of 0.5s and a scan speed 

of 400nm/min. The cuvettes used for these experiments are made of quartz with black wall and 

teflon cap to prevent evaporation of the sample. 

Given the photosensitivity of Rho, all spectroscopic experiments were carried out under dim red 

light using a red filter (Kodak safelight No.2). Rho absorbs light at 500 nm and the concentration 

of the sample can be determined by sing the absorbance value at this λ and ε= 40600 M-1cm-1. 

The assay is non-destructive as the protein in most cases is not consumed and can be recovered. 

Secondary, tertiary and quaternary structures all affect absorbance; therefore, factors such as 

pH, ionic strength among others, can alter the absorbance spectrum.  

3.2.5.2 Photobleaching and acidification 

Samples were illuminated with a 150-watt Dolan-Jenner MI-150 power source equipped with an 

optic fiber guide and using a 495nm cut-off filter for 90 s to ensure complete photoconversion to 

380nm absorbing species. Acidification was carried out, immediately after photobleaching, by the 

addition of 2N H2S04 which yields a pH ~2.0 and the absorption spectrum was subsequently 

recorded. The reprotonated Schiff base caused by acidification shifts the Aλmax to 440nm. 

3.2.5.3 Thermal stability 

Thermal stability of Rho was studied by monitoring the decrease of Amax of the visible spectral 

band as a function of time at 48°C. Spectra were recorded every 5 min and half-life times were 

determined by fitting the experimental data to single exponential curves. 

3.2.5.4 Chemical stability 

A solution of 1M hydroxylamine hydrochloride (adjusted to pH 7) was added to dark-adapted 

samples in a spectroscopic cuvette (final concentration of 50mM), and successive spectra were 
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recorded every 5min to monitor the decrease of Aλmax and formation of retinaloxime. The reactions 

were carried out in the dark at 20°C. The initial velocity was obtained by a linear regression fitting 

the first data points.  

3.2.5.5 Regeneration experiments 

For the regeneration experiments, 2.5-fold molar excess of 11CR (stock solution in ethanol) was 

added over dark adapted samples in the spectroscopic cuvette and thoroughly mixed. 

Immediately after, the sample was illuminated with a yellow cut-off filter (>495 nm) to avoid 

photobleaching of the free retinal, and successive spectra were registered every 5min at 20°C in 

the dark until no further increase in Aλmax was observed. 

3.2.6 Fluorescence spectroscopy 

Fluorescence spectroscopy is one of the most powerful methods to study protein folding, 

dynamics, assembly, an interaction, as well as membrane structure. This is because almost all 

proteins have natural fluorophores such as tyrosine and tryptophan residues, which allow the 

study of changes in protein conformation (Munishkina & Fink, 2007).  

3.2.6.1 Measurements conditions 

Fluorescence characterization was performed on a QuantaMaster 4 spectrofluorimeter (Proton 

Technology International) equipped with a cuvette holder peltier accessory TLC 50, for 

temperature control. Emission spectra of proteins and phenolic compound were recorded in the 

320nm-600 nm range when exciting at λ=280 nm and 295 nm, and in the 350 nm-600 nm range 

when exciting at λ=320 nm and 337 nm. Low excitation light intensities were used, by setting the 

excitation slits at 0.5 nm, to prevent Rho photobleaching  

3.2.6.2 Meta II decay measurements 

Initially, the Trp fluorescence of a dark-adapted sample was recorded at 20°C until a steady base 

line was obtained. After that, the sample was illuminated for 30s with a 150-watt Dolan-Jenner 

MI-150 power source using a cut-off filter (>495 nm) and the fluorescence intensity was monitored 

until it reached a plateau. All fluorescence spectra were carried out by exciting the samples for 2s 

at 295 nm, using a slit bandwidth of 0.5 nm, and blocking the excitation beam for 28 s with a beam 

shutter to avoid photobleaching of the sample. Trp emission was monitored at 330 nm with a slit 

bandwidth of 10 nm. 
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3.2.7 Transducin (Gt) activation 

In order to study the ability of Rho to bind and activate Gt, the uptake of [S35] GTPγS by Gt was 

followed with time. To this aim, Gt was first isolated from bovine retina (Fukada et al., 1994). 

3.2.7.1 Isolation of Gt from bovine retina 

Briefly, 100 dark adapted frozen bovine retinas unwrapped from the original package, were 

thawed ON at 4ºC. Next day, retina were transferred into a glass beaker and left on ice for 1h 

under direct light exposure. After this time, they were mixed with 150 ml of 47% sucrose 

(containing 2 mM DTT and 0.1 mM PMSF added immediately before use) and the retinas were 

broken by pressure using a 60 ml syringe (without needle) until the sample was homogenous (a 

homogenizer grinder was also employed to disaggregate some difficult retinas). The 

homogenized sample was centrifuged at 42000 g, 4°C for 20 min. The SN and the orange pellet 

attached to the walls were carefully taken and transferred into another glass beaker and diluted 

1:1 with buffer A (composition described in annex G). The residual pellet obtained at the bottom 

of the tube was discarded. The diluted sample was passed three times by syringe (using a 23G 

needle) and centrifuged at 30000 g for 20 min at 4°C. SN was discarded and the pellet was 

resuspended with buffer A up to 50 ml and passed 3 times by syringe and a 23G needle. The 

sample was divided and layered on top of polyethylene tubes containing a sucrose density 

gradient (from bottom to top: 1.2 mM / 1mM / 0.78 mM all them prepared in buffer A) and 

centrifuged at 42000 g for 30 min at 4°C, without break. 

The orange layer was taken out carefully and diluted (1:2) with buffer A to remove the sucrose 

and passed three times through a syringe using a 23G needle and centrifuged at 42000 g for 20 

min at 4°C. The SN was discarded and the pellet was resuspended with buffer C (100 ml) 

(composition described in Annex G) and passed again 3 times through syringe with 23G needle 

and centrifuged at 42000 g for 20 min at 4°C. The pellet was resuspended with 100 ml of buffer 

D (composition described in Annex G)  and passed again 3 times through syringe and centrifuged 

at 42000 g for 20 min at 4°C (this process was done twice). Finally, the pellet was resuspended 

in 50 ml of buffer D containing 100 µM of GTP and after 30 min incubation at 4°C, the sample 

was spun down at 163000 g for 45 min at 4°C. The SN was collected into a 50 ml falcon tube and 

filtrated using a syringe and 0.22 µm syringe driven filter to remove traces of membrane. Later, 

Gt sample was concentrated with amicon tubes of 10 kDa cut-off down to 8 ml. The concentrate 

was placed into a dialysis membrane and dialyzed using 250 ml buffer E (composition described 

in Annex G) (to remove the excess of GTP, to concentrate the SN by osmotic pressure and to 

exchange the buffer to 50% glycerol). Buffer E (composition described in Annex G) was replaced 

twice at intervals of 8 h. The harvested Gt was stored at 4°C. The concentration and quality of the 

purified Gt were analyzed using SDS-PAGE with bovine serum albumin (BSA) as standard. 
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3.2.7.2 Gt activation assay 

Gt activation was monitored with a radionucleotide filter binding assay by measuring the uptake 

of GTPγ35S by Gt upon binding to photoactivated Rho. For this purpose, a mixture (140 µl) 

containing the reagents and concentrations shown in Table 3.6 was prepared. 

 

Table 3.6 Mixture of reagents used for the Gt activation assay. 

Compound Concentration 

Sample (Rho, WT or mutant) 10 nM 

Gt buffer(composition in annex I) 1 X 

DTT 2.5 mM 

DM 0.0012% 

Gt 500 nM 

[S35]GTPγS 5 µM 

 

The assay was initiated by the addition of Rho in dark state. After different incubation times (every 

4 minutes), either in the dark (at 0, 4 and 8 min) or after illumination for 90s (at 12, 16, 20, 24 and 

28 min),15 µl of the mixture were placed onto a well of a 96-well cellulose membrane plate, and 

filtrated. The plate was fixed to a manifold filtering system unit. Immediately after, the membrane 

was washed ten times with 300 µl of Gt buffer and let it dry at room temperature. Finally, the filter 

was cut and placed in a vial containing 4mL of scintillation liquid, vortexed and bound GTPγ35S 

was measured by means of a Tri Carb 2100TR liquid scintillation counter. The activity measured 

as cpm was converted to pmol using the next formula: 

 

ሻ݈݋݉݌ሺ	35ܵߛܲܶܩ	݀݊ݑ݋ܤ ൌ
݉݌݀

݈݀݊ܽ݃݅	݂݋	ݕݐ݅ݒ݅ݐܿܽ݋݅݀ܽݎ	ݔ	1012ݔ	2.22
 

 

where, 

dmp= cpm / counter efficiency (55%) 

Radioactivity of the ligand = 1250 Ci/mMol 

1Ci= 2.22 x 1012 dpm 
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3.2.8 Antioxidant capacity of polyphenol compounds 

3.2.8.1 Trolox equivalent antioxidant capacity (TEAC) assay 

ABTS radical cation (ABTS•+) solution (7 mM) was produced by reacting ABTS with 2.45 mM 

potassium persulphate and allowing the mixture to stand in the dark at room temperature for 12-

16 h before use. ABTS•+ radical was diluted with PBS buffer to give an Abs of about 0.700 ± 0.020 

at 734 nm. For antioxidant capacity measurements, 10 µL of sample was mixed with 990 µL of 

the radical solution and Abs was monitored at 734 nm for 6 min. The decrease in absorption at 

this λ at  min 6, was used to calculate the TEAC value(van den Berg et al., 1999). All experiments 

were in triplicate. A calibration curve was prepared with different concentrations of Trolox diluted 

in ethanol. By measuring ΔAbs over 6 min for Trolox and the sample, Abs values were corrected 

for the solvent as follows:  

 

ΔAbsTrolox or sample =(Abst=0 Trolox or sample - Abst=6 min Trolox or sample) – Δ Abssolvent (0-6min). 

 

Where 

 Abs = Absorbance at 734 nm.  

 

Results were expressed in terms of µM Trolox equivalent 

3.2.9 Rho expression studies in COS-1 cells with quantitative real-time RT-PCR (qRT-PCR) 

qRT-PCR is an excellent tool for basic research, molecular medicine and biotechnology. It has 

become the method of choice widely used to quantify gene expression changes. The amount of 

an expressed gene can be measured by the number of copies of a RNA transcript of that gene 

present in a sample. In order to robustly detect and quantify gene expression from small amounts 

of RNA, amplification of the gene transcript is necessary. In real-time PCR, the fluorescence is 

measured during each cycle, which greatly increases the dynamic range of the reaction, since 

the amount of florescence is proportional to the amount of PCR product.  Prior to PCR, RNA first 

needs to be transcribed into cDNA using a reverse transcriptase.  

qRT-PCR assays are easy to perform, capable of high throughput, and can combine high 

sensitivity with reliable specificity. The whole process includes three stages: RNA purification, 

reverse transcription and PCR. 

3.2.9.1 Purification of total RNA 

The RNA isolation was done using the RNeasy Mini Kit Qiagen, following the manufacturing 

directions. Briefly, 24 h after transfection, a maximum of 3x106 COS-1 cells were harvested (using 
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trypsin and PBS). 350 µl of Buffer RLT (supplied in the kit) containing β-mercaptoethanol (10 µl 

per 1 ml of RLT) were added to harvested cells, and homogenized in vortex for 1 min. Immediately 

after, 350 µl of 70% ethanol were added and mixed well pipetting. The mixture (up to 700 µl, 

including any precipitate) was placed into an RNeasy Mini spin column placed in a 2ml collection 

tube, the lid was closed and the sample was centrifuged for 15s at 10000 rpm (re- use the collector 

tube). 350 µl of buffer RW1 were placed into the RNeasy column and centrifuged for 15 s at 10 

000 rmp (the flow-through was discarded). DNase I incubation mix (10 µl DNase I, prepared 

following the manufacturing directions, + 70 µl RDD were mixed by gently inverting the tube) was 

added directly to RNeasy column membrane, and placed on a benchtop (20°C-30°C) for 15 min. 

After the incubation, 350 µl Buffer RW1 were added to the RNeasy column and centrifuged for 15 

s at 10000 rpm (the flow-through was discarded). 500 µl of RPE buffer (prepared according to the 

manufacturer’s instructions) were added to the column and centrifuged for 2 min at 10000 rpm, 

and also centrifuged at full speed for 1 min to dry the membrane. The RNeasy spin column was 

placed in a new 1.5 ml collection tube and 30 µl-50µl of RNase-free water were added directly to 

the spin column membrane and centrifuged for 1 min at 10000rpm to elute the RNA. 

3.2.9.2 Quantification of RNA and its quality 

The concentration of RNA was determined by measuring the absorbance at 260 nm in a 

spectrophotometer. To ensure significance, A260 readings were greater than 0.15. An absorbance 

of one unit at 260 nm corresponds to 40 µg of RNA per ml. This relationship is valid only for 

measurements at neutral pH. The ratio of the readings at 260 nm and 280 nm (A260/A280) provides 

an estimate of the purity of the RNA with respect to contaminants that absorb in the UV spectrum, 

such as proteins. Pure RNA has an A260/A280 ratio of 1.9-2.1. 

In order to determine the RNA concentration, the A260nm of a diluted sample (1/100 in RNase-

free water) was measured by UV-vis spectroscopy and used in the next formula: 

 

 

݈݁݌݉ܽݏ	ܣܴܰ	݂݋	݊݋݅ݐܽݎݐ݊݁ܿ݊݋ܥ ൌ 40μ
݃
݈݉

 ݎ݋ݐ݂ܿܽ	݊݋݅ݐݑ݈݅݀	ݔ	260ܣ	ݔ

 

3.2.9.3 RNA Integrity  

The assessment of RNA integrity is a critical first step in obtaining meaningful gene expression 

data. Working with low-quality RNA may strongly compromise the experimental results. Using 

intact RNA is a key element for the successful application of  qRT-PCR (Fleige & Pfaffl, 2006). 

The integrity and size distribution of total purified RNA should be checked by denaturing agarose 

gel electrophoresis. The respective ribosomal RNAs should appear as sharp bands. The apparent 
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ratio of 28S rRNA to 18S RNA should be approximately 2:1. If the ribosomal band or peaks of a 

specific sample are not sharp, but appear as a smear towards smaller size RNAs, it is likely that 

the sample suffered major degradation either before or during RNA purification. 

A formaldehyde agarose gel was prepared with 1.5 g of agarose, 10 ml of 10X formaldehyde gel 

buffer (Table 3.7) and 90 ml of RNase-free water.   

 

Table 3.7 Composition of 10X formaldehyde gel buffer 

Compound Final Concentration 

MOPS 200 mM 

Sodium acetate 50 mM 

EDTA 10 mM 

pH to 7.0 with NaOH  

 

The RNA sample was prepared adding 1 volume of 5X RNA loading buffer (see composition in 

Table 3.8) to 4 volumes of RNA sample and mix.  Then the mixture was incubated for 5 min at 

65°C, chilled on ice, and loaded onto the gel. 

 

Table 3.8 RNA loading buffer composition 

Compound Volume/reaction 

Saturated aqueous bromophenol blue 

solution 

10 µl 

EDTA  500 mM, pH 8.0 80 µl 

Formaldehyde 37% (12.3M) 720 µl 

Glycerol 100% 2 ml 

Formamide 3.084 ml 

10X formaldehyde buffer 4 mL 

RNase-free water fill up to  10 ml  

 

3.2.9.4 Reverse transcription, synthesis of cDNA 

The synthesis of cDNA was carried out using the QIAGEN Kit QuantiNova Reverse Transcription, 

for cDNA synthesis with integrated removal of genomic DNA. 
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A genomic DNA removal reaction was prepared on ice according to Table 3.9.  

 

 

Table 3.9 Genomic DNA removal reaction components 

 

Component Volume/reaction 

G DNA removal mix  2 µl 

Template RNA, 5 µg variable 

Internal control RNA  1 µl 

RNase-Free water variable 

Total reaction volume 15 µl 

 

 

The mixture was incubated for 2 min at 45°C. Then place immediately on ice.  After that, freshly 

prepared reverse-transcription master mix (table 3.10) was added, incubated for 3 min at 25°C, 

then 10 min at 45°C and finally 5 min at 85°C.  

 

Table 3.10 Reverse-transcription reaction components 

 

Component Volume/reaction 

Reverse transcription enzyme 1 µl 

Reverse transcription MIx 4 µl 

Template RNA (entire genomic DNA elimination 

reaction) 
15 µl 

Total reaction volume 20 µl 

 

The reaction was placed on ice and it was carried out directly with real-time PCR.  

3.2.9.5 Real-Time PCR 

QuantiNova SYBR Green PCR Kit was used to carry out the real-time PCR following the protocol 

and recommendations described by the manufacturer. The primers used in this assay also were 

designed accordingly to the manufacturer recommendations. 
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A reaction mix was prepared according to Table 3.11. The cDNA template from the reverse 

transcription was diluted 1:10 and 1 µl was added to the reaction mix. 

 

 

Table 3.11 qRT-PCR reaction mix. 

 

Compound Volume/reaction 

2x SYBR Green PCR master mix 10 µl 

Primer A (10 µM) 1.4 µl 

Primer B (10 µM) 1.4 µl 

RNase-free water 6.2 µl 

cDNA template  1 µl 

 

The mixture was placed in a LightCycler capillary and the real-time cycler was programed 

according to table 3.12.  

 

Table 3.12 Cycling conditions 

 

Step Time Temperature  Ramp rate 

PCR Initial heat activation 2 min 95°C Maximal 

2-step cycling    

Denaturation 15 s 95°C Maximal 

Combined annealing/extension 45 s 60°C Maximal 

Number of cycles 45   

Melting curve analysis    

 

After real-time cycler, the specificity of PCR products was checked by agarose gel 

electrophoresis.  
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3.2.10 Quercetin (Q) identification by HPLC-ESI-MS/MS 

For Q extraction, 200 µl of 80% ethanol acidified with 0.1% formic acid was added to the sample. 

The mixture was vortexed for 1min and then sonicated for 5 min on ice.  After centrifugation at 

4000rpm for 20 min at 4°C, the SN was collected and evaporated to dryness under a steam of 

nitrogen gas. The sample was redissolved in 200 µl of (0.1% formic acid). After filtration with 4mm 

0.45 µm PTFE syringe filters, 20 µl of the resulting filtrate was injected into the HPLC-MS/MS. 

For the HPLC-ESI-MS/MS analysis, an Agilent Technologies 1100 HPLC equipped with 

autosampler and column oven (30°C) and coupled to an API 4000 triple-quadrupole mass 

spectrometer with a TurboIon spray source used in negative mode was used to identify Q. 

Chromatographic separation was achieved on a Luna C18 (50 x 2.0 mm, 5 µm) from Phenomenex 

column and a precolumn C18 (4x3 mm i.d.). The mobile phase was water (A) and acetonitrile (B) 

with 0.1% formic acid in both solvents. An increasing linear gradient (v/v) of B was used as follows: 

at time =0, 5% of B,   from 5% to 18% B in 10 min, from 18% to 100% B in 13 min, 100% B for 1 

min and from 100% to 5% of B in 15 min, followed by a 5 min re-equilibration step at a constant 

flow rate of 0.4 ml min-1. The TurboIon spray source settings were as follows: capillary voltage, -

4000V; nebulizer gas (N2), 10 (arbitrary units), curtain gas (N2), 12 (arbitrary units) drying gas 

(N2) heated to 400°C and introduced at a flow rate of 8000 cm3 min-1.  Full-scan data were 

acquired by scanning from m/z 100 to 800 in profile mode using a cycle time of 1s. 

3.2.11 Computer-aided modeling in silico. 

This work was carried out at the Laboratory of Molecular Engineering of UPC and was performed 

by Dra. Cecylia Severin Lupala and Prof. Juan Jesús Pérez. 

These assays use computational methodologies based on established chemical and biophysical 

knowledge and their application in the drug discovery process. The process can be carried out by 

comparison of the structural features of a set of diverse ligans or by studying the structure of the 

ligand (drug)-receptor (target) complex with the aim to postulate ligand refinements (Kapetanovic, 

2008; Terstappen & Reggiani, 2001) 

3.2.11.1. Protein-ligand docking.  

Molecular docking approaches are focused to computationally simulate the target-ligand 

recognition process. Using this technique our goal was to study the binding preferences of diverse 

polyphenols to opsin and the ligand bound Rho-11CR and Rho-9CR. For this purpose, the 

crystallographic structures 3CAP (opsin), 1GZM (Rho-11CR and 2PED (Rho-9CR) were obtained 

from the protein data bank. These structures were prepared (optimization of hydrogen bonds, 

protonation states, and other relevant parameters) using the protein preparation wizard tool of the 

Schrodinger software. 
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The structures of the polyphenols used in the present study were downloaded from the PubChem 

website and prepared (generating energy minimized 3D structures, sampling diverse ring 

conformation, stereoisomers, and other relevant factors) using LigPrep tool also from 

Schrodinger.  

Prior to molecular docking studies, all three receptors were examined in order to identify 

energetically favorable sites for ligands to bind. For this purpose, we used the Schrodinger’s site 

recognition software SiteMap, which locates binding sites which size, functionality, and extent of 

solvent exposure are suitable for occupancy by hydrophobic groups or by ligand hydrogen-bond 

donors, acceptors, or metal-binding functionalities. The sites are assessed for their inclination to 

ligand binding, and then accurately ranked in order to eliminate those not likely to be suitable for 

ligand occupancy. 
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4. RESULTS AND DISCUSSION  
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4.1 Effect of phenolic compounds on the Rho GPCR  

4.1.1 Spectroscopic characterization of Q at different conditions of buffer, pH and 

concentration of DM. 

As mentioned in the materials and methods section, the compound that was selected as the study 

model was Q, which is one of the most often studied dietary flavonoid compounds ubiquitously 

present in various vegetables as well as in tea and red wine (D’Andrea, 2015). The flavonoids are 

the large subclass of the polyphenol family. Epidemiological research has suggested that the 

consumption of foods and beverages rich in flavonoids correlates with  lower risk of various 

diseases (Graf et al., 2005). Nowadays, this family of compounds is being investigated for its 

potential benefits against cancer, as well as in cardioprotection, neuroprotection, urinary tract 

health, and antiaging effects (Croft, 2016; Tsao, 2010). 

The first task at hand was to select the solvent to prepare the Q stock solution taking into account 

that this compound is sparingly soluble in aqueous media. Methanol (MetOH) and dimethyl 

sulfoxide (DMSO) were used. A solution of Q in each solvent was prepared and was 

spectrophotometrically characterized (Figure 4.1). The compound solubility was better in DMSO. 

This was expected since DMSO has a higher dielectric constant compared to methanol, 47 and 

33 respectively, which makes DMSO a better solvent for the compound. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Many flavonoids are structurally derived from the parent compound with a tricyclic (C6-C3-C6) 

skeleton (Tsuchiya, 2010) (Figure 4.2 A).  The UV-vis spectrum of flavonoids is characterized by 

the presence of two main absorbance bands that are attributed to different parts of the conjugated 

Figure 4.1 UV-vis spectra of 1 µM Q in dimethyl sulfoxide (DMSO) and methanol (MetOH). 
A, Q dissolved in MetOH (solid line) and DMSO (dotted line) at 1 µM, the UV-vis spectrum was recorded 
immediately after its preparation. B, UV-vis spectra of Q dissolved in MetOH (solid line) and DMSO (dotted 
line) at 1 µM 90 min after its preparation. 
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aromatic rings (Figure 4.2 A). The first band (Band I) located in the 300nm-380nm region, 

represents the absorption due to ring B, comprising the cinnamoyl system; and  the second band 

(Band II) at 240nm-280nm corresponds to the absorption due to ring A, mainly representing the 

benzoyl system (Naseem et al., 2010). The number of hydroxyl groups modifies the absorption 

maximum of band I. 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

The Q UV-vis spectrum shows the two characteristic absorbance peaks at 260nm and 375nm 

(Figure 4.1). Spectra were measured with time to discard any changes, but after 90 min no change 

was observed in the UV-vis spectrum of Q.  

Given the existing knowledge of the flavonoid-dependence to environmental factors, such as 

solvent, pH, buffer and copigmentation to get the equilibrium, Q   was characterized at pH values 

of 4, 6, 7.4 and 8 and different buffers in the presence of DM detergent micelles by Abs 

spectroscopy (Figure 4.3). 

Figure 4.3 shows the Q absorption spectra in different buffers where some differences were 

observed. At pH 8 a red shift of 8 nm (from 375 to 383) was detected. In addition, a new band 

appeared at 316nm. In the case of pH 7, the appearance of a small shoulder at 316 nm could be 

detected. 

 

 

 

  

Figure 4.2 Chemical structure of  flavonoids.  A, General structure of flavonoids. B, Q structure. 
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For buffers at pH 6 and pH 4, a shift of 8 nm was also noticed but in this case, on the contrary to 

the case of pH 8, it was a blue shift. According to previous work (Day et al., 2000), the conjugation 

of the hydroxyl group at position 3 of Q causes a Band I shift of around 12-17 nm, whereas a 

shorter shift (3-5nm) occurred when conjugation was at position 4’, and no spectral modification 

was produced for substitutions at 7 and 3’. Spectra were measured with time until 90 min, and 

the biggest change was observed at pH 8. In view of the potential effect of time on the spectral 

behavior of the Q solution, spectra of Q, in the different buffer solutions, were recorded over time 

(Figure 4.4). 

No important changes were observed at pH 7.4, 6 and 4 buffers, the only difference being that it 

took some time for the compound to equilibrate in the buffer solution. However, significant 

changes were observed in Q at pH 8 where Band I (383 nm) underwent a large decrease with 

time and the concomitant appearance of a new band at 330 nm could be observed. 

 

 

 

 

  

Figure 4.3 UV-vis spectra  of  1µM Q at different pH and buffer. 
From a stock solution of 20mM Q, dissolved in DMSO, a dilution to 100 µM was prepared in the same 
solvent. 1 µL of Q 100 µM was mixed with 99 µL of buffer at 50 mM and 0.05%  DM detergent. UV-vis 
spectrua of 1 µM Q at pH 8 (Tris-HCl), pH 7.4  (HEPES-NaOH),  pH 6 (SP) and pH 4 (sodium acetate-
acetic acid). A, spectra recorded immediately after its preparation. B, spectra after 90 min of its preparation. 
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The  behavior of Q has been widely studied in different media including organic, aqueous, hydro-

alcoholic or physiological media (Jurasekova et al., 2014; Naseem et al., 2010; G. Xu et al., 2007; 

Zhou et al., 2007). One of the main chemical changes is that it can undergo a series of oxidation 

reactions in which the two -OH groups in ring B are readily oxidized (Volikakis & Efstathiou, 2000; 

G.-R. Xu & Kim, 2006) and the stabilities of the intermediate species resulting from this oxidation 

are substantially different depending on the environment.  In this case, the simultaneous 

appearance of a new peak at 330 nm with increased absorbance would indicate that a quinone 

has been formed (Metodiewa et al., 1999; Zhou et al., 2007). 

In addition to the experiments conducted at different pH, the behavior of Q by varying the 

detergent concentration was also evaluated (Figure 4.5). This effect was tested because the 

proteins are purified in this detergent and the concentration differs depending on the assay 

employed.  

  

Figure 4.4 Stability of 1 µM Q over time at different pH and buffer. 
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Spectra show the time that it takes for 1 µM Q  to equilibrate in the different buffers and pHs, and 0.05% 
DM. In all buffers, Q solution reached equilibrium after 1 h. A, pH 8 (Tris-HCl). B, pH 7.4 (HEPES-NaOH). 
C, pH 6 (SP). D, pH 4 (sodium acetate-acetic acid). 
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No differences in Q spectra at pH 6 and pH 4, by varying the DM detergent concentration, were 

observed. Similarly, no changes were observed at pH 7.4. Only pH 8 caused an increase in the 

330 nm band. This behavior is consistent with previous studies indicating that the hydrogen 

donating ability of Q may be due to the fact that the 3’- and 4’ hydroxyl, in presence of in SDS 

micelles, would be masked, and hence its activity reduced, and its B ring would be oriented 

towards the inside of the micellar surface (Liu & Guo, 2006). 

In addition, other tests were carried out in order to have the complete characterization of Q under 

the same experimental conditions used for Rho work (Figure 4.6). Such experiments include the 

effect on Q of temperature, illumination, acidification, among others, so that when performing the 

experiments of Rho-Q interactions we can be sure that the changes observed are a consequence 

of such interaction and we can rule out spectral changes arising from the effects of the 

experimental conditions on Q Abs properties.  

No major differences under the conditions evaluated were observed. Q was not affected by 

illumination.  In the case of the thermal stability, at pH 7.4, a similar effect found for buffer at pH8 

could be observed, that is the appearance of a new band at 330 nm. This behavior was not seen 

at pH 6, but in this sample, an increase in Band II was observed. 

 

 

 

 

  

Figure 4.5 Effect of DM detergent on the stability of  1 µM Q. 
UV-vis spectra of Q at  1%, 0.1%, 0.05% and 0.012 % in A, buffer Tris-HCl pH 8 and B, buffer HEPES-
NaOH pH 7.4. 
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4.1.2. Q effect on solubilized ROS Rho (SR) 

4.1.2.1 Photobleaching and acidification of SR 

After Q characterization, a series of experiments to evaluate the effect of Q on Rho were 

conducted.  For the beginning of this part of the research, we decided to use SR rather than the 

purified protein in order to optimize the working methodology and to avoid wasting purified protein 

given the high cost (and time) involved in the protein purification process. Once the best 

conditions for the experimental protocols were established, we set out to work with 

immunopurified Rho.  

For these experiments two different pHs 7.4 and 6 were chosen. In the case of pH 7.4, two buffers 

were used, HEPES and PBS. For pH 6 buffer the reagent used was SP. The first step was to 

Figure 4.6 Characterization of Q at conditions of temperature, illumination and acidification. 
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A. Absorption spectra of 1 µM Q in HEPES pH 7.5 and 0.05% DM, before (solid line) and after (dotted line) 
illumination. Q was illuminated for 30 s and  its UV-vis spectrum was immediately recorded at 20°C. B. Abs 
spectra of 1 µM Q in sodium phosphate (SP) pH 6 and 0.05% DM, before (solid line) and after (dotted line) 
the addition of 2 µL of H2SO4 2N. The spectra after acidification were recorded 20 min after acid addition. 
C. Thermal stability of 5 µM Q in HEPES pH 7.5 and 0.05% DM. The initial spectrum was taken at 20°C, 
the temperature was increased to 55 °C and successive spectra were recorded every 10 min until no 
spectral change was observed. D. Thermal stability of 5 µM Q in SP pH6 and 0.05% DM. The initial 
spectrum was taken at 20 °C, the temperature was increased to 55 °C and successive spectra were 
recorded every 10 min until no spectral change was observed. 
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solubilize ROS Rho using the buffers mentioned above according to the methodology described 

under Materials and Methods.  

The SR samples in DM in different buffers were analyzed at room temperature using a UV-vis 

spectrophotometer in which the absorbance spectra were recorded from 250nm to 650nm (Figure 

4.7). The measured spectra showed two main bands, one at 280 nm characteristic of the opsin 

apoprotein and another one at 500nm caused by the interaction of the 11CR chromophore with 

the protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rho concentration was determined from the absorbance at 500nm using the Lambert-Beer law. 

All experiments were performed using these prepared solutions and the final protein 

concentration used in each assay was 0.37 µM. 

 

Figure 4.8 shows the characteristic dark state, photobleaching and acidification spectra of Rho.  

One of the important features of Rho, relevant to its function, is the formation of the active 

conformation (Meta II) upon illumination. Photoactivation of Rho can be monitored by following 

the blue-shift of the 500 nm chromophoric band in the visible region to 380 nm. This shift reflects 

SB nitrogen deprotonation in the Meta II conformation (Palczewski, 2006). 

 

 

 

 

 

  

Figure 4.7 SR at different pH and buffer 
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A. PBS  pH 7.4. B HEPES pH 7.4. C. SP pH 6. The three samples contain 1% of DM. Spectra recorded at 
20 °C. 
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Upon acidification, the spectral band at 380 nm shifts to 440 nm.  The acid denaturation of the 

protein causes this shift, characteristic of a PSB linkage between 11CR and the opsin apoprotein. 

The SR in different buffers showed the same spectroscopic pattern shown in figure 4.8. 

To ensure complete Rho photoconversion upon illumination, it is useful to calculate a difference 

spectrum between the dark and the illuminated states (Figure 4.9). With this spectrum we can 

verify that the absorbance corresponds to the same initial absorbance. In our case, for a 

concentration of 0.37 µM which is being used in the experiments corresponds to an A500nm of 

0.015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Dark state, photobleaching and acidification behavior of SR in HEPES pH 7.4. 

Figure 4.9 Difference spectra of dark minus light state of SR in HEPES pH 7.4. 
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4.1.2.2 Photobleaching and acidification of SR in the presence of Q 

As the Q stock was dissolved in DMSO, control tests were also performed where the effect of this 

solvent on Rho spectra was assessed (Figure 4.10). The presence of DMSO did not affect the 

photobleaching pattern. By contrast, in the acidification experiment, an increase of about 15% in 

the band of 280 nm was observed. Conformational changes in proteins induced by high 

concentrations of DMSO have been reported (Batista et al., 2013; Jackson & Mantsch, 1991). 

DMSO concentrations below 10% have been recommended to avoid such effects, and in our 

case the DMSO concentration was below 1% in all experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The SR sample, in PBS pH 7.4, showed differences upon illumination and acidification. It could 

be noted that when the Q spectrum reaches an equilibrium in the presence of SR, it shows an 

increase in the Abs at 330 nm with the consequent decrease at 375 nm suggesting quinone 

formation due to the oxidation of  the hydroxyl groups of ring B (Figure 4.11). This behavior was 

not observed when Q stability alone, at pH 7.4, was evaluated. This would mean that the  

presence of SR could be accelerating its oxidation. An increase in Abs at 280 nm was also 

noticed, probably due to the effect of Q on ring B oxidation. 

On the other side, SR does not apparently completely photobleach upon illumination, and there 

is about 50% absorbance remaining in the visible region at around 470 nm which could be 

Figure 4.10 UV-vis spectrum of SR in DMSO. 
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assigned to the photointermediate metarhodopsin III that has an Amax  at 465 nm. A remarkable 

increase in the band of 280 nm is also observed which suggests the join effect of Q on ring A, 

and the additional effect of DMSO under the acidification experimental conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.2.3 Thermal stability of SR in the dark 

The thermal stability of the SR samples was determined by measuring the decrease in the Abs 

visible maximum at various intervals at 48°C. Rho can be photobleached in the dark by increasing 

the temperature that would force chromophore isomerization.  Such thermally-induced retinal 

isomerization consists of two steps. First, thermal isomerization of 11CR in the binding site of Rho 

yields all-trans-retinal bound to opsin, followed by hydrolysis of the deprotonated SB yielding free 

all-trans-retinal and opsin (Liu et al., 2013). 

The thermal decay was followed by the decrease in the 500 nm absorbing band and the 

concomitant increase in 380 nm band with time (Figure 4.12). The normalized Abs values at the 

absorption maximum were plotted against the incubation time. Curves were fit to an exponential 

decay equation and the half-life time (t1/2) values were obtained.  

 

  

Figure 4.11 . Photobleaching and acidification behavior of SR in the presence of 1 µM Q. 
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Figure 4.13 shows the t1/2 of the samples in the different buffer conditions. No significant 

differences in SR thermal stability, among the three buffer conditions in which ROS was 

solubilized, could be observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast, an increase in thermal stability was observed when Q was added to SR, especially in 

PBS pH 7.4 with an increase in stability of 65%. The fact that Q increases the thermal stability of 

SR is of great interest, especially in the case of some Rho mutants in which thermal stability is 

greatly diminished. However, this effect could not only be attributed to Q, since SR contain other 

Figure 4.12 An example of loss of Rho absorbance by thermal decay.  

Figure 4.13 Thermal stability of SR in different buffer solutions. 

A B 

A. Shows the loss of the 500nm absorbing species and increase in the 380nm absorbing species. B. 
Spectral data are curve fitted to obtain t1/2. 

The immunopurified Rho in the different buffers containing 0.05% DM, were incubated at 48°C. The 
normalized Abs values at λmax were plotted as a function of incubation time and the t1/2 was calculated.  
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membrane proteins and lipids. Therefore, this effect should be confirmed on purified Rho 

samples. 

4.1.2.4 Measurement of Meta II decay by fluorescence spectroscopy 

In the dark state, Trp265 fluorescence is quenched by the β-ionone ring of the retinal and, upon 

illumination, retinal is released from the protein binding pocket thereby resulting in an increase in 

Trp265 fluorescence emission which can be followed at 330 nm using an excitation wavelength 

of 295 nm. The fluorescence changes were monitored continuously  over time (Farrens & 

Khorana, 1995) (Figure 4.14).  To determine the t1/2 values for retinal release, experimental data 

was analyzed using a mono-exponential rise to maxima fit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Slight differences were observed regarding to Meta II decay in the conditions evaluated in the 

different buffers (Figure 4.15). At pH 7.4, the Meta II hydrolysis appeared to be slightly faster in 

HEPES (8.5±0.7min) compared to PBS (9.5±0.9min). However, this difference was not 

statistically significant. In the case of the SP buffer pH 6, the velocity was found to be significantly 

slower compared to the other buffers. This pH-dependence of Meta II hydrolysis was  already 

reported in other previous studies (Janz et al., 2003). 

 

 

 

 

  

Figure 4.14 Typical fluorescence curve of retinal release during Meta II decay experiments. 
The curve shows the kinetics profile for the fluorescence increase (330 nm) as the retinal leaves the binding 
pocket which parallels the Meta II decay process under our experimental conditions. 
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In contrast, the presence of Q decreased the velocity of Meta II hydrolysis in HEPES pH 7.4, 

whereas no significant differences were observed in PBS pH 7.4 and SP pH 6. 

4.1.2.5 Regeneration of SR 

After  Rho has been activated by light, it undergoes a series of inactivating reactions, passing 

through several intermediate forms before  being regenerated to the original state, Rho, and being 

able to bind  a fresh 11CR molecule (Lamb & Pugh, 2006).  In specific cases where opsin fails to 

reunite with the chromophore to regenerate Rho, the persistent activation of G protein by opsin 

destabilizes and eventually damages the rod cells leading to retinal degeneration (Deretic et al., 

2005; Frederick et al., 2001) Hence, the importance of the Rho regeneration process. 

In a chromophore regeneration experiment, 11CR is added to ROS Rho in the dark state and the 

sample is immediately illuminated with a yellow cut-off filter (λ >495 nm) to avoid photobleaching 

of the free retinal, and successive spectra are taken over time until no further increase in Amax is 

detected (Figure 4.16 A)). The percent of regeneration was calculated considering the increase 

at 500 nm and plotted against time (Figure 4.16 B)). 

 

 

  

Figure 4.15 Meta II decay of SR in different  buffers and pHs in the presence of 1 µM Q. 
The immunopurified Rho samples, in the different buffers containing 0.05% DM + 1µM Q, were incubated 
at 20°C. The samples were measured until obtaining a steady base line, and they were subsequently 
photobleached and the Trp fluorescence was monitored over time The t1/2  of the fluorescence increase  
was fit to a single exponential function. 
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The percentage of SR regeneration in different buffers is shown in Figure 4.17. SR in PBS showed 

the highest % of regeneration (97.5±1.4) followed by HEPES (90.5±6.2) and SP (85.5±6.0). The 

presence of Q significantly decreased the percentage of regeneration, about 20% for PBS pH 7.4 

and SP pH 6. In the case of the HEPES buffer pH 7.4 only a 12 % decrease was observed. 

 

 

  

Figure 4.16 An example of the Rho regeneration process. 
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A. Rho dark state (solid line), Rho dark state + 11CR (dotted line), and Rho dark state + 11CR illuminated 
(dashed line). The inset shows the increase at 500 nm over time due to the regeneration process. B. Plot 
of % of regeneration. 
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As already mentioned above, the Q effects observed on SR should be corroborated with purified 

Rho because in the case of SR some other membrane proteins and lipids could be present in the 

sample.   

4.1.3 Q effect on purified Rho 

4.1.3.1 Binding capacity of 1D4 antibody-sepharose beads and Rho purification 

In order to carry out Rho immunopurification, it was first necessary to couple the 1D4 antibody to 

CNBr-activated sepharose beads. Upon coupling of the antibody, the sepharose-1D4 beads 

binding capacity was determined. After ROS solubilization, its spectrum was recorded (Figure 

4.18)  and 100 µl of beads were added to the ROS sample.  

 

 

 

  

Figure 4.17 Regeneration (%) of SR in different pH and buffers and in the presence  of 1µM Q. 

2.5 fold of 11CR was added to the immunopurified Rho, in the different buffers containing 0.05% DM + 
1µM Q, This sample was illuminated with light of > 495 nm to avoid photobleaching of the free retinal, and 
successive spectra were registered every 5 min at 20°C in the dark until no further increase in Amax was 
detected. The regeneration % was determined from the Abs increase at 500nm with time. 
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After the incubation time, the SN spectrum was again recorded and the binding capacity was 

calculated to be 1.1 µg Rho/µL beads. This result indicated a successful antibody-sepharose 

coupling process. 

Once the Rho1D4 antibody-sepharose beads capacity binding was verified, Rho purification was 

carried out under different buffer and pH conditions (Figure 4.19). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Purified Rho under different conditions showed a A280nm/A500nm ratio of 1.8.This ratio is one of the 

criteria that indicates the purity of the Rho protein (Hubbard, 1954; McConnell et al., 1981; 

Salesse et al., 1984). Very pure Rho should have a ratio ranging within 1.6-1.8 (Heitzmann, 1972), 
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Figure 4.18 UV-vis spectra of SR before and after addition of sepharose-1D4 beads.  

Figure 4.19 Rho purified at different buffer and pH. 
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although ratios in the middle range (2.5-3.5) for ROS Rho purified on sucrose density gradients 

have been reported.  Further purification of Rho would bring the ratio down to less than 2 

(McConnell et al., 1981). These considerations are in agreement with the results obtained for our 

samples. 

4.1.3.2 Photobleaching and acidification of purified Rho in the presence of Q 

In purified Rho samples at different buffers, a similar effect of Q on illumination and acidification 

behavior was observed. For Rho in PBS the same effect was observed as in SR, an increase in 

the Q band at 330 nm (Figure 4.20). 
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Figure 4.20 . Photobleaching and acidification behavior of Rho purified in different buffers in the presence
of 1 µM Q. 
UV-vis spectra of Rho in the presence of 1 µM Q before after photobleaching and acidification. Spectra 
were recorded at 20°C, 0.05% of DM in different buffers. A SP 50 Mm pH 6. B. HEPES 50 Mm pH 7.4. C. 
PBS, pH 7.4.  
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An increase in the Abs at 280 nm, after acidification of the Q-containing sample, was also noticed. 

This increase could be due to the effect of the acid on the ring A of Q or because the protein is 

losing its structure by the combined effect of acid and DMSO.   

In the case of HEPES pH 7.4,  the band at 280 nm was greatly affected by acidification suggesting 

so that in this buffer the presence of acid and DMSO in the Q-containing sample considerably 

affects the protein structure (Batista et al., 2013). 

Less change could be observed in the Q-containing sample measured in SP buffer. Furthermore, 

a blue shift of 5 nm in the band at 375nm, induced by the Rho presence, was also noticed which 

suggested Q 4’ hydroxyl group conjugation. After acidification, Q band I showed a red shift and 

reverted to its original position at 375nm. Unlike in the cases of HEPES and PBS, the increase in 

the 280 nm band observed in SP buffer. suggests that this effect may be rather due to ring A of 

Q. 

4.1.3.3 Thermal stability, Meta II decay and regeneration of purified Rho in the 

presence of Q 

A slight decrease in thermal stability due to Q was noticed in Rho purified in PBS and HEPES pH 

7.4.  In SP buffer pH 6 there were no significant differences. Comparing the three conditions, Rho 

presents a greater thermal stability in PBS buffer. Regarding to Meta II decay, no important 

differences were observed. Only in the case of SP buffer the presence of Q appears to slightly 

decrease the hydrolysis rate of Meta II (Figure 4.21). 
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Figure 4.21 Thermal stability and Meta II decay of Rho in different pH and buffer with Q. 
A. Rho in the different buffers conteining 0.05% DM and 1 µM Q, were incubate at 48°C, the normalized 
absorbance values at λmax were ploted as a function of incubation time and the t1/2 was calculated. B. 
Samples were incubated at 20°C in the dark until a steady base line was obatined, and were subsequently 
photobleached and the Trp fluorescence was monitored over time The t1/2  of the fluorescence increase  
was fit to a single-exponential function.   
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The following regeneration pattern was observed in the different buffers: SP pH 6>PBS pH 7.4 > 

HEPES pH 7.4. In all treatments, the presence of Q decreased the regeneration by about 10% 

(Figure 4.22). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although in the experiments carried out until now no important changes could be observed, we 

proceeded to evaluate Q and other phenolic compounds on recombinant Rho in order to try to 

find some possible effect under these novel conditions. 

Based on the results obtained so far, PBS buffer 7.4 was selected for the following experiments  

 

4.1.4 UV-vis spectra of polyphenol compounds  

 

The characterization of other phenolic compounds belonging to the class of flavonoids, as well as 

ellagic and chorogenic phenolic acids, and the stilbene R, were also carried out. Like in the case 

of Q, stability tests were performed on these compounds in PBS buffer pH 7.4 The spectroscopic 

pattern of each compound is shown in Figure 4.23. 
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Figure 4.22 Rho regeneration at different pH and buffer in the presence of Q. 
2.5 fold of 11CR was added to the immunopurified Rho, in the different buffers containing 0.05% DM + 
1µM Q, This sample was illuminated with light of > 495 nm to avoid photobleaching of the free retinal, and 
successive spectra were registered every 5 min at 20°C in the dark until no further increase in Amax was 
detected. The regeneration % was determined from the Abs increase at 500nm with time. 
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Figure 4.23 Spectroscopic pattern of phenolic compounds studied at 5 µM. 
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A polyphenol sample of 500 µM in DMSO was prepared from a polyphenol stock solution of 20mM. 
dissolved in the same solvent. 1 µL of this dilution was mixed with 99 µL of PBS buffer and 0.05% of DM 
detergent. The UV-vis spectrum of each phenolic compound was recorded at 20°C. A. Q; B, R; C. EGCG; 
D..Chlorogenic acid; E. Rutin; F. Ellagic acid;.G. Hesperidin; H. Naringin; I. Hesperetin; J. Naringenin. 
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4.1.5 Effect of polyphenol compounds on opsin electrophoretic pattern  

Once the compounds were spectroscopically characterized, experiments were continued on cell 

cultures. The effect of phenolic compounds at different concentrations during opsin expression 

was evaluated according to the experimental protocol described in section 3.2.2.4. The first 

compound evaluated was Q and the Western blot is shown in Figure 4.24. 

In these experiments, before performing the membrane solubilization in the different treatments, 

all the samples were adjusted to the same optical density to ensure the same amount of cells. 

After solubilization and before electrophoresis, the samples were adjusted to equal 

concentrations of protein by measuring their Abs at 280 nm. This was done to ensure that the 

possible differences found, were due to the compounds and not to differences in the handling of 

the samples. In addition, a sample of purified Rho was used as a reference control.  

Four concentrations of Q, as well a DMSO control (because the compounds are dissolved in this 

solvent), were evaluated (Figure 4.24). The first lane corresponds to ROS Rho with its two 

characteristics bands main bands, a very intense one that would correspond to the monomer 

(40000 Da) and a less intense one corresponding to the dimer (66 000 Da). 

 

 

 

 

 

 

 

 

 

 

In all the other samples a pronounced smear was observed. This smear is characteristic of protein 

expressed in COS-1 cells because these cells glycosylate Rho differently than photoreceptor cells 

do (Oprian et al., 1987). The smear was more intense in treatments with 1, 2.5 and 5 µM of Q, 

but not for the treatment of 10 µM (where a lower amount of protein could be detected). In this 

Western blot is difficult to identify the bands corresponding to Rho (Figure 4.24 A), so the 

experiment was repeated at less concentration (Figure 4.24 B) and in this case the bands 

Figure 4.24 Effect of different Q concentrations on the Rho electrophoretic pattern. Frist (A) and second (B) 
repetition 

A B 
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corresponding to the Rho monomer and dimer can be better appreciated. The main observation 

is that the presence of 1 µM Q does not affect the electrophoretic pattern of the protein. 

Considering that a concentration of 10 µM Q produced intensity marked effect on the 

electrophoretic pattern, an experiment was performed at a higher concentration with other 

compounds (15 µM) (Figure 4.25). The electrophoretic pattern is similar in all cases except in the 

case of the EGCG that shows a significant decrease in the protein content. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Given the fact of the smeary pattern caused by the use of COS-1 cells and which do not allow a 

good appreciation of possible differences between treatments, we decided to use HEK-293S 

GnTI¯- cells which do not have N-acetylglucosaminyltransferase I (GnTI¯) enzyme activity and 

are therefore unable to synthesize N-glycans,  making glycosylation more homogeneous (Chang 

et al., 2007). Using these cells, the experiment was again performed (Figure 4.26 A) showing a 

similar behavior and confirming the lower amount of protein in the EGCG sample. In this latter 

case, a noticeable change in color of the collected cells could be also noticed (Figure 4.26 B). 

The brown color could be the result of some oxidative process of EGCG (Hou et al., 2005). 

 

 

 

  

Figure 4.25 Effect of several phenolic compounds (at 15 µM) on the Rho electrophoretic pattern. 
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Subsequently, the compounds naringenin, hesperetin and Q were tested at different 

concentrations. As shown in Figure 4.27A,  only one band was visible in the Western blot which 

may correspond to Rho monomer. The purification of these samples was carried out to perform 

SDS-PAGE gel (Figure 4.27 B) in which only a slight decrease of the bands was noted for the 

treatment with 1 µM hesperetin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 Effect of several phenolic compounds (at 15 µM) on the Rho electrophoretic pattern.  

Figure 4.27  Western blot (A) and SDS-PAGE gel (B) showing the effect of Q, naringenin and hesperetin 
on Rho electrophoretic pattern. 

A 

B 

A B 

HEK 293S GnTI¯ cells were used. A. Western blot. B. Cells collected for the Western blot. 
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In another test, Q, R and EGCG were evaluated at concentrations of 10 µM and 50 µM.  there is 

A decrease in the intensity of the Rho monomeric band was detected at concentrations of 50 µM 

(Figure 4.28). In the case of EGCG, a band below 40000 Da was observed and in the treatments 

with R, several lower bands could also be noticed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Continuing the tests at concentrations of 50 µM, Q, R and EGCG were again evaluated in addition 

to rutin and chlorogenic acid (Figure 4.29). We could clearly confirm the effect observed in the 

previous experiment where Q, R and EGCG appeared to have more effect on Rho expression in 

cell cultures. For these treatments, again a change in color was observed in the cells for both 

EGCG and Q.   

 

 

 

 

 

 

 

 

 
 
 

Figure 4.28 Q, R and EGCG effects on Rho electrophoretic pattern. 

Figure 4.29 Effect of 50 µM of Q, R, EGCG, rutin and chlorogenic acid on the Rho electrophoretic pattern. 

A B 

HEK 293S GnTI¯ cells were used. A. Western blot. B. Cells collected for the Western blot. 
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Based on these results, we decided to focus on Q, R and EGCC for further evaluating their effects 

on the physical and functional properties of recombinant Rho and mutants associated with 

degenerative diseases of the retina. 

4.1.6 Cytotoxic effect of phenolic compounds   

From the results obtained by Western blot, in which a decrease in the intensity of the bands of 

Rho electrophoretic profile indicating a decrease of protein amount, we decided to evaluate the 

cytotoxic effect of these compounds on the cells. This is due to the fact that the lower amount of 

protein detected could be a result of the compounds on cell viability.  

The results of the potential cytotoxic effect of Q, R an EGCG, on COS-1 cells, are shown at 

different concentrations (Table 4.1). It can be seen that OPTIMEM, the transfection solution, 

reduces cell viability by 4% and the solvent control (also present in the transfection solution) by 

6%.  

Table 4.1 Cytotoxicity of phenolic compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment % Cell viability 

OPTIMEM 95.8 ± 1.3 
DMSO 94.0 ± 1.5 
Q1µM 93.2 ± 4.6 
Q10 µM 91.7 ± 3.0 
Q 50 µM 91.6 ± 3.5 
Q100 µM 92.1 ± 2.6 
EGCG 1 µM 85.4 ± 4.2 
EGCG 10 µM 88.1 ± 2.2 
EGCG 50 µM 91.2 ± 4.0 
EGCG 100 µM 90.6 ± 1.0 
RES 1 µM 89.5 ± 1.8 
RES 10 µM 87.8 ± 2.1 
RES 50 µM 87.7 ± 1.4 
RES 100µM 85.9 ± 2.2 
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Of the three compounds under study, the one with the lowest cytotoxic effect was Q, which shows 

no difference in its effect at concentrations ranging from 1 µM to 100 µM. EGCG shows a tendency 

to increase cytotoxicity at lower concentrations since the 1 µM concentration showed the greatest 

reduction in cell viability (85%). Compared with the other treatments, the one with the highest 

cytotoxicity was R. In this case the percentages of viability obtained in the different concentrations 

indicate an opposite effect to the EGCG since for this compound a slight increase in its toxicity is 

observed as the concentration increases.  

The percentages of viability obtained in this test indicate only a minor effect of these compounds 

on cell viability. The effect of the compounds is very low, if we consider that around 6% of the 

observed effect is due to the transfection solution.   

4.1.7 Antioxidant capacity of phenolic compounds 

TEAC assay 

In addition to the cytotoxicity studies performed on the phenolic compounds selected, the 

antioxidant capacity of different concentrations of Q, R and EGCG was determined. The 

antioxidant properties of these compounds as well as their health benefits have been extensively 

studied. The purpose of carrying out this assay is to have complementary information and shed 

new light into any potential linkage between the antioxidant properties and the effects observed 

in the Western blot analysis. 

To determine the antioxidant capacity, a Trolox calibration curve was first made (Figure 4.30).  

 

 

 

 

 

 

 

 

 

 

Figure 4.30 Standard curve of Trolox. 
The calibration curve was prepared with different concentrations of Trolox diluted in ethanol.  The 
dilutions prepared were subject to the experimental assay to obtain the ΔAbs which was plotted 
against the concentration. 
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Solutions of Q, R and EGCG were prepared in DMSO at concentrations of 1 µM, 10 µM and 50 

µM. The different concentrations were tested according to the conditions described in section 

3.2.8.1. The antioxidant capacity of the compounds is shown in Figure 4.31.  

 

For the three compounds analyzed here, the antioxidant capacities, up to a concentration of 50 

µM, were found to be concentration dependent. This effect is not always observed since at certain 

concentrations some compounds, instead of exerting an antioxidant action, act as prooxidants. 

At 1 µM, R had the lowest antioxidant capacity and EGCG the highest. This same behavior was 

observed at 10µM for these compounds. A completely different behavior could be observed at 50 

µM, the antioxidant capacity of Q and R increased more than double, with Q being higher. For 

EGCG its antioxidant capacity remained the same as for the 10 µM concentration. 

 

 

 

 

 

 

 

 

 

 

The results obtained for the high antioxidant capacity of EGCG at low concentrations could be 

correlated with the fact that in the Western blot the first effect observed in the decrease of the 

amount of Rho was precisely in the EGCG case. Such an effect, at the same concentration, was 

not observed for R or Q. In the case of Q and R, a similar effect could only be detected at the 

higher concentration of 50 µM.  

.  

 

 

Figure 4.31 Antioxidant capacity of Q, R and EGCG, at 1 µM, 10 µM and 50 µM. 
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4.2 Biochemical and functional characterization of the immunopurified wild tpe 

(WT) and mutant Rho associated with RP 

Recombinant DNA techniques have been widely used to perform systematic structure-function 

studies of bovine Rho by specific amino acid replacements. Many of these amino acid 

substitutions that have been studied to date have been performed in order to elucidate the 

molecular mechanisms that accompany certain retinal degenerative diseases such as RP.  

The mutant G90V was first reported when it was identified in a Swiss family of three generations 

which showed a typical phenotype of an autosomal dominant form of RP, with marked fundus 

changes developing in later stages of life (Neidhardt et al., 2006). Subsequent to its discovery, 

studies of this mutant have been continued using heterologously expression systems and 

immunopurification strategies in order to deepen our knowledge on the structural details 

underlying the molecular mechanisms of the disease (Dong et al., 2015; Toledo et al., 2011). This 

is always a necessary step for new therapies to be developed. 

In the case of mutants Y102H and I307N these were developed in chemically mutagenized mice 

with the goal to study the disease (Budzynski et al., 2010). The interest in these mutations comes 

from the fact that there is no need to overexpress the protein since the mutation is already 

integrated in the mouse genome. This avoids concerns associated with overexpression that can 

cause retinal degeneration per se.  It was found that these mutants have phenotypic similarity to 

human B1 type Rho mutations. Patients with class B mutations display a slower disease 

progression, and maybe subdivided into class B1 and B2 (Cideciyan et al., 1998).  Rod 

degeneration is focal in class B1 and these mutations exhibit impaired deactivation of 

phototrasduction after exposure to high intensity light flashes (Cideciyan et al., 2005). That is why 

these mutations can be important tools in examining mechanisms underlying induced RP and for 

testing therapeutic strategies.  

Prior to the studies of the possible interaction of compounds selected in the previous section with 

Rho and RP mutants, it was first necessary to characterize these recombinant proteins. For WT 

and G90V mutant, the corresponding DNA plasmids were already available in the research group 

and had been obtained by means of site-directed mutagenesis. The other two mutations, Y102H 

and I307N were newly designed and the corresponding mutated genes were obtained. The 

primers designed to introduce these mutations were the following:  

 

Y102H: 

5’-CCTCTCTCCATGGGCACTTCGTCTTTGGG-3’ 
5’-CCCAAAGACGAAGTGCCCATGGAGAGAGG-3’ 
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I307N: 

5´-CCCGGTCATCTACAACATGATGAACAAGCAGTTCC-3’ 
5’-GGAACTGCTTGTTCATCATGTTGTAGATGACCGGG-3’ 
 

After the mutagenesis process, the mutated plasmids were sequenced in order to confirm the 

successful introduction of the mutations (Figure 4.32). 

 

 

 

 

 

 

 

Once the mutations were inserted, the plasmid was obtained on a large scale by Maxiprep and 

subsequently the concentration and purity were determined by UV-vis spectroscopy (Figure 4.33). 

The concentration was determined from the A260 and the A260/A280 ratio was used for purify 

assessment. A DNA purity within the established 1.8-2 range was obtained, and the amount 

obtained varied between 6 - 6.5 µg/µL 

 

 

 

 

 

 

 

 

 

 

Y102H I307N 

Figure 4.32 DNA sequencing confirmed the presence of the mutations (the mutated codons are boxed). 

Figure 4.33 UV-vis spectra of purified DNA. 
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4.2.1 UV-vis spectroscopy   

WT and mutants were expressed and immunopurified, and the UV-vis spectra were recorded at 

20ºC (Figure 4.34).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The Y102H and I307N mutants showed a spectroscopic behavior similar to WT, with a maximum 

absorption band in the visible region at 498 nm and 500 nm respectively. In the case of G90V 

mutant, a blue shift of 10 nm was observed, a behavior that had been previously reported (Dong 

et al., 2015; Toledo et al., 2011). A summary of the spectral parameters, including the absorbance 

value of the visible chromophoric band, the molar extinction coefficient (ε) and the spectral 

A280/Aλmax ratio is shown in Table 4.2. 

 
Table 4.2 Spectroscopic properties of WT and mutants. 

 WT G90V Y102H I307N 

λmax 500 490 498 500 

Ratio (A280/Aλmax) 2.3 ± 0.20 3.73 ± 0.23 2.7 ± 0.12 2.2 ± 0.04 

ε x 10 3 42.2 ± 2.2 37.8 ± 0.9 37.6 ± 1.3 43.9 ± 0.4 

 

Figure 4.34 Absorption spectra of WT Rho and G90V, Y102H and I307N mutants in the dark state. 
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Samples in PBS pH 7.4 buffer and 0.05% DM. Spectra were recorded at 20°C. A. WT. B. G90V mutant. 
C. Y102H mutant. D. I307N mutant. 
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The G90V and Y102H mutants show a slight increase in the ratio which could be due to the fact 

that the introduction of this mutation causes a small fraction of misfolded protein and/or leads to 

decreased structural stability. These mutants also have a very similar molar extinction coefficient. 

On the other hand, the mutant I307N presents a ratio and ε similar to WT. 

The purified mutants were also characterized by Western blot and SDS-PAGE. In the Western 

blot, a sample of purified Rho from ROS (Figure 4.35 A, lane 1) was loaded as a control. ROS 

Rho was also loaded in the SDS-PAGE gel in addition to the protein ladder molecular marker, as 

a control (Figure 4.35 B, lanes M and 1).  

 

 

 

 

 

 

 

 

 

 

A characteristic smear typically observed in Western blots of Rho expressed in COS-1 cells, and 

usually attributed to heterogeneous glycosylation, can be observed in all the samples, but 

particularly it appears to be more intense in the case of the G90V mutant (Figure 4.35 A, lane 3). 

In all cases, the Rho monomeric band is clearly observed, but the corresponding dimer band can 

only be clearly detected in the case of the ROS Rho control sample and in the case of the G90V 

mutant sample. In the latter case, however, the presence of the band corresponding to the dimer 

species is partially occluded by the intense smeary pattern observed for this protein.  

For Y102H and G90V, a clear definite band is observed below the Rho monomer band. The 

presence of a band around 27 kDa which could correspond to a truncated form of Rho has been 

previously described (Dong et al., 2015; Fernández-Sampedro et al., 2016; Krebs et al., 2010). 

Alternatively, lower bands at similar position in the gel could be attributed to non-glycosylated 

species. In the case of the I307N mutant, two less intense bands can be detected below the 40 

kDa main opsin band. By means of SDS-PAGE gel, it was possible to confirm the presence of 

such bands (Figure 4.35B).  

A B 

Figure 4.35 Western Blot  and SDS-PAGE of purified WT and RP mutants. 

 A. Westen blot . B. SDS-PAGE. M: ladder, 1:Rho, 2: WT, 3:G90V, 4: I307N and 5:Y102H. 



89 
 

The UV-vis spectra of WT and the mutants were recorded in the dark, upon illumination for 30s 

and after subsequent acidification (Figure 3.36).  The main difference observed was in the G90V 

mutant that did not show a complete conversion of the visible band to 380nm upon illumination. 

This remaining band (about 40% of the dark visible band) had a similar visible wavelength 

maximum as the dark pigment, suggesting conversion to a  photointermediate with retinal binding 

pocket similar to the dark  pigment, including the presence of a PSB linkage (Ramon et al., 2014). 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

Acidification of these photoactivated receptors resulted in a similar behavior, showing a band with 

a maximal absorbance at 440 nm corresponding to the PSB. 

4.2.2 Hydroxylamine reactivity and thermal stability  

Hydroxylamine is a compound that is used in Rho studies to determine whether a mutation can 

affect the structural compaction in the SB environment. This reagent can enter the retinal binding 

site and break the SB linkage. The WT and RP mutants in dark state were treated with 

hydroxylamine which causes a decrease in the visible maximal absorbance (Figure 4.37). 

Figure 4.36 UV-vis characterization of the immunopurified WT and RP mutants. 
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Dark state (solid line), photobleaching (dotted line) and acidification (dashed line). Samples in PBS pH 7.4 
buffer and 0.05% DM. Spectra were recorded at 20°C. A. WT. B. G90V mutan. C. Y102H mutant. D. I307N 
mutant. 
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As it was expected, the SB in Rho is remarkably stable in the presence of hydroxylamine. In 

contrast, the G90V mutant showed a dramatic decrease in the visible maximal absorbance due 

to the less compact structure in the SB linkage environment (Dong et al., 2015; Toledo et al., 

2011). Also for the mutant Y102H a decrease in Amax was observed which was not as marked as 

in the case of G90V mutant. The I307N showed a similar behavior to that of the WT which 

indicates that this RP mutant has a better structural compaction, around ths SB, compared to the 

Y102H and G90V mutants. For a better comparison, the initial velocity was calculated and then 

normalized. It is noticed that hydroxylamine reactivity is 38.5 times faster for G90V mutant 

compared to WT, and 4.5 and 1.8 times faster for the case of Y102H and I307N mutants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the thermal stability monitored at 48°C, the G90V and Y102h mutants were very unstable in 

dark state (Figure 4.38), showing very fast thermal bleaching kinetics with t1/2  of 2min and 3 min 

respectively. Although less dramatic, I307N receptor was also unstable with a half-life of 23 

minutes, four times faster than WT. 

 

 

Figure 4.37 Chemical stability of WT and G90V, Y102H and I307N. 
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Samples purified in PBS pH 7.4 and 0.05% DM were incubated with 50 mM hydroxylamine, pH 7 and the 
decrease of Abs at λmax was recorded over time at 20°C, and the initial rate was calculated. A. WT Rho. 
B.G90V mutant. C. Y102H and I307N mutants. D. Initial velocity of  Abs decrease process.  
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4.2.3 Meta II decay  

The stability of the active state of purified WT and mutants was carried out by means of 

fluorescence spectroscopy following the Trp fluorescence increase upon illumination, due to its 

release from the binding pocket. The fluorescence curves are shown in Figure 4.39, as well as 

the t1/2 values derived from each curve. For all mutants, the Meta II stability reflected a slower 

decay when compared with WT (13 ± 0.20 min) (Figure 4.39).  G90V mutant showed the highest 

difference with a t1/2 of 36 ± 1.13. This result agrees with that reported in other studies for this 

mutant (Toledo et al., 2011).  
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Figure 4.38 Thermal stability of WT and G90V, Y102H and I307N. 

Figure 4.39 Meta II decay of WT and G90V, Y102H and I307N mutants.  

Immunopurified WT and mutants in PBS pH 7.4 buffer and 0.05% DM were incubated at 48°C, the 
normalized Abs values at λmax were plotted as a function of incubation time (A) and the t1/2 was calculated 
(B). 

A. Fluorescence curve of retinal release. B. t1/2 values derived from the fluorescence curves.  
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Y102H and I307N mutants had a t1/2 of 18 ± 1.21 min and 21.8 ± 1.50 min. A study carried out by 

Budzynski et al (2010) showed similar behavior for these mutants, both presented higher MetaII 

decay values compared to WT (WT= 5.9 min, Y102H=7.5 min and I307N=7.9 min) with a slightly 

longer time for I307N mutant. These differences were not statistically significant due to the large 

standard error shown by the experimental values. The difference in the values presented here 

with those reported in that study could be due to the experimental conditions in which the 

experiment was carried out, since the buffer used was SP pH 6.7 and the concertation of DM was 

0.1%. In our experiment de buffer was PBS pH 7.4 and 0.05% of DM detergent. On this regard, 

the effect of pH and DM detergent concentration on the stability and function of Rho have been 

reported(Janz & Farrens, 2003; Ramon et al., 2003). Furthermore, this study was carried out with 

a mutant with an engineered disulfide bond that is inherently more stable than our case 

(Budzynski et al., 2010). 

4.2.4 Chromophore regeneration  

In the experiment of pigment regeneration with 11CR after Rho photobleaching, the percentage 

and velocity of regeneration were the parameters analyzed (Figure 4.40). 

 It was found that Y102H and G90V mutants had the lowest percentage of regeneration (61 and 

70% respectively) compared to WT. Surprisingly the mutant I307N showed a slightly higher 

regeneration (97%) than WT.  This result agrees with the amount of protein obtained during the 

purification of these receptors where the highest yield was in I307N mutant, then the WT and with 

a lower yield the mutants Y102H and G90V.  

 

 

 

 

 

 

 

 

 

 

Figure 4.40 Percentage and velocity of regeneration of photoactivated WT and RP mutants. 
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2.5 fold of 11CR was added to dark adapted immunopurified WT and mutants in PBS pH 7.4 0.05% DM  
and the percentage of regeneration was determined after pigment illumination with light of > 495 nm to 
avoid photobleaching of the free retinal. To determine the extent of chromophore regeneration successive 
spectra were recorded every 5 min at 20°C until no further increase in Amax was detected. A. Percentage 
of chromophore regeneration. B. Chromophore regeneration rates.  
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The G90V mutant showed the slowest regeneration rate. In the case of the Y102H mutant, despite 

presenting the lowest percentage of regeneration, it presents the same regerenration rate as the 

WT. On the other hand, the I307N had the fastest regeneration rate compared to all other 

receptors. 

4.2.5. Gt activation of purified WT and RP mutant Rho 

As already mentioned, the function of Rho is to activate Gt and initiate the visual signal 

transduction cascade. Gt activation involves the exchange of guanosine diphosphate for 

guanosine triphosphate which results in the dissociation of the transducin α-subunit from the Gβγ 

heterodimer. The ability of purified WT and RP mutants to catalyze guanine nucleotide exchange 

by Gt was assayed using a radioactive filter-binding assay method. Before starting the assay, it 

was first necessary to isolate Gt. Once purified, the concentration and quality were analyzed by 

SDS-PAGE with bovine serum albumin (BSA) as a standard (Figure 4.41). 

Gt activation was monitored with a radionucleotide filter binding assay by measuring the uptake 

of GTPγ35S by Gt upon binding to activate Rho. The amount of GTPγ35S bound was determined 

as described in 3.2.7.2 section.  

 

 

 

 

 

 

 

 

 

 

 

The photoactivated mutants Y102H and G90V activated Gt with a similar kinetics to the WT 

(Figure 4.42). However, the amount of GTPγ35S bound was lower compared to the WT. The I307N 

mutant showed an altered kinetics but a similar quantity of GTPγ35S bound similar to the WT.  

Figure 4.41 SDS-PAGE gel of Gt isolated from bovine retina.  
Lane 1, 10µl of purified Gt; lane 2, 20 µl of purified Gt; Lane 3 protein ladder, Lane 4, SN after Gt isolation, 
Lane 5-8, BSA 1, 2,3 and 5 µg.. 
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All RP receptors showed lower activation, especially in the case of the mutants G90V and I307N 

which were twice as slower to activate Gt with respect to the WT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.6 Subcellular localization  

Rho as a membrane protein, must be localized at their appropriate subcellular compartment 

(membrane) in order to perform its proper function. Rho synthesis and degradation are highly-

regulated processes, and several mutations can affect them by causing misfolding and 

aggregation. Furthermore, some mutations can impair opsin transport to the outer segment 

membrane. In this regard, the heterologous expression of rod WT and mutant opsins in cell culture 

can be used to study protein biogenesis, trafficking, aggregation and degradation. 

As reported in previous studies, WT opsin traffic to the membrane is a very efficient process, and 

most of the synthesized protein can be found in the membrane. We analyzed the location of the 

RP mutant opsins, and we found that in some cases they showed retention in the ER and also 

the formation of intracellular inclusions (Figure 4.43), especially for the G90V mutant. 

Figure 4.42 Gt activation by WT and G90V, Y102H and I307N mutants. 
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Gt activity was measured by means of a radionucleotide filter-binding assay in Gt buffer.. The reaction was 
initiated by the addition of the WT or mutants, and samples were filtrated at different times in the dark and 
after illumination. A. WT. B. G90V mutant. C. Y102H mutant. D. I307N mutant. 
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The RP mutants studied here are located in different receptor domains. The Gly90 and Ile307 

mutations are found in the transmembrane domain where the helices are  closely packed but 

there is a cavity for retinal binding formed by helices 3,4,5,6 and 7 (Unger et al., 1997). In contrast, 

Try102 is located at the extracellular domain in E1 loop (Figure 4.42), which is a compact domain 

that functions as a “retinal plug” including two antiparallel β-sheets in the N- terminus and ECL-II 

loop. The part of ECL-II  that includes Glu 181, penetrates deep into the Rho interior, closer to 

the chromophore molecule (Palczewski, 2006). 

In spite of being found at different domains, the G90V and the Y102H mutants presented a very 

similar behavior. Both showed a poor performance in the purification process and a higher ratio 

(A280nm/Amax) than the WT indicating a slight problem of protein folding. Likewise, they presented 

a very similar molar extinction coefficient. Unlike the G90V mutant, Y102H did not present any 

alteration related to the formation of photointermediaries after illumination and this mutant only 

showed a slight blue shift of 2 nm instead of the 10-nm blue shift observed for the G90V mutant.  

In the electrophoretic analysis, in both mutant cases, a prominent band appears below the Rho 

monomer band that has been reported to correspond to an N-terminal truncated product of opsin. 

These fragments are recognized by the C-terminal antibody used  for  Western blot, and having 

Figure 4.43 Subcellular localization of WT and mutants expressed in HEK 293S GnTI¯ cells 

A B C D 

A. WT Rho. B.G90V mutant. C. Y102H mutant. D.I307N mutant. Cells were immunolocalized 24 h after 
transfection. 
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lost the N-terminus, these fragments would not be  glycosylated (Krebs et al., 2010; Tam & Moritz, 

2007).  

In addition, both mutants showed a great instability in the dark state at high temperature even 

though the Y102H mutant showed a more compact structure around the SB linkage when 

compared to the G90V as seen from their hydroxylamine reactivity behavior. Another of the 

similarities between these two mutants was a somehow lower chromophore regeneration which 

agrees with the low yield obtained during the purification. It is noteworthy that despite having both 

lower chromophore regeneration than the WT, the Y102H receptor shows the same regeneration 

rate than the WT. The same behavior was also noticed in Gt activation where also the Y102H 

mutant had more similar behavior to that of the WT. This decrease observed in Gt activation 

correlates well with the results obtained in Meta II decay experiments, where G90V mutant 

showed a slower rate (about double) but  the Y102H mutant showed a t1/2 more similar to that of 

the WT. 

In previous studies with the G90V mutant, this behavior has been attributed to an increase in the 

required space for the valine side chain in comparison to glycine which would be  affecting  amino 

acid 113 (Neidhardt et al., 2006)  that  together with  Lys296 are of utmost structural importance 

in Rho. In dark state Rho, the chromophore is covalently bound by a PSB linkage lo Lys296 at 

the seventh TM helix. This positive charge is stabilized by an electrostatic interaction with the 

Glu113 carboxylate side chain that serves as a counterion (Sakmar et al., 1989). If Glu113 is 

affected, it is likely that the chromophore orientation may be also affected by the amino acid side 

chain of valine due to the fact that the chromophore is oriented almost parallel to TM 3 involving 

amino acids 113, 114, 117, 118, and 120. Moreover, the hydrophobic chain in G90V either would 

not allow a water molecule in the vicinity of Glu 113 and the SB to be accommodated or would 

decrease the water molecule affinity (Toledo et al., 2011). Such water molecule plays an important 

role in the deprotonation step of the SB in Meta II (Jastrzebska et al., 2011). 

In the case of the Y102H mutant, Tyr102 is a conserved amino acid in the GPCR Rho subfamily 

(Rakoczy et al., 2011), and for which naturally-occurring mutations at this position had not been 

reported in humans. The only mutation reported was that by Budzynski et al (2010) in mice to 

study RP disease. The observed effects caused by this mutation might be related to the fact that 

Try102 is part of the structural core governing Rho stability.  This core includes several clusters, 

the largest one, in which Tyr102 is found, is located surrounding the conserved disulfide bond 

between residues Cys110 and Cys187 lining the retinal binding pocket (Iannaccone et al., 2006) 

(Figure 4.41, amino acid circles in red). 90% of these amino acids were  predicted by Floppy 

Inclusion and Rigid Substructure Topography (FIRST) methodology to be part of the core cause 

misfolding upon mutation (Rader et al., 2004). 
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The largest core consists of parts of TM helices III-V, and E1 and E2 loops. Specifically, it includes 

residues 9, 10, 22-27, 102-116, 166-171, 175-180, 185-188, 203-207 and 211. Cys 110 and 187 

which form the disulfide bond are also part of this core. Much of this region overlaps with the 

11CR binding region which could be related whit the low chromophore regeneration of this mutant.   

Ile307 is found in a region further away from the other two mutants, and its thermal stability was 

not as severely reduced as the other two mutations, accounting for a 80% decrease compared to 

WT stability. The high percentage and rate of chromophore regeneration together with the slow 

retinal release in this mutant could be related with the uptake and release of the retinal through 

the proposed retinal channel. In the Meta II crystal structure, it was noticed that the retinal must 

go through complex elongation and torsional motions of its polyene chain and of the β–ionone 

ring during its binding process (Choe et al., 2011). Moreover, the reorganized seven-helical 

Mutants studied are boxed in blue. Red and blue circles show the two clusters of mutually rigid residues 
belonging to the core of rhodopsin stability. Amino acids underlined in green are involved in inactive 
conformation of Rho (L131:V254, T58:Y306, Y306:F313 and I307:R314) Amino acids underlined in orange 
are involved in Gt activation by the active state of rhodopsin (Y306:L131 and V258:F220) (adapted from 
Iannaccone et al.,,2006). 

Figure 4.44 Secondary structure model of Rho. 
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bundle displays not only the cytoplasmic crevice as a binding site for α-Gt subunit. The 

reorganization of the TM bundle also provides two openings into the hydrophobic membrane layer 

namely opening A between TM1 and TM7 and opening B between TM5 and TM6 (Figure 4.45) 

(Choe et al., 2011; Park et al., 2008; Standfuss et al., 2007).  

 

 

 

 

 

 

 

 

 

 
 

 

A continuous retinal channel through the protein was  identified, by means of computational 

studies, which connects these two nonpolar openings, where the 11CR would be uptaken through 

opening A and  all-trans-retinal released through opening B (Hildebrand et al., 2009).  It could be 

possible that the substitution, in TM7, which forms part of opening A, of Ile307 for Asn may 

improves the entry of  11CR through the channel (Figure 45). However, although studies have 

been carried out on the effect of channel mutation on uptake and release of the retinal ligand, the 

mutations did not probe local channel permeability  but rather affected global protein 

dynamics(Piechnick et al., 2012). 

Regarding the low Gt activation and its altered  kinetics  shown by the mutant I307N, recent 

studies have found that the Ile307 and Try306 play an importer role in the Rho activation pathway 

(Venkatakrishnan et al., 2016). Upon Rho activation, when retinal isomerises from the 11-cis form 

to the all-trans form, due to photon absorption, the β-ionone ring moves up vacating the cavity in 

the inactive state between TM3, TM5 and TM6 (Tehan et al., 2014). The cytoplasmic side of TM6 

moves away from the rest of the TM bundle, exposing several accessible residues which were 

previously inaccessible. Many of these residues participate in triggering the mechanism for GDP 

Figure 4.45 Coplanar cut through opsin revealing the channel with openings A and B (from Hildebrand et 
al., 2012). 
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release in G proteins (Flock et al., 2015). In its inactive state, V254 is engaged in a residue contact 

with L131, Y306 with T58 and F313 and I307 with R314 (Figure 4.42 underlined in green). Upon 

activation (Figure 4.42 underlined in orange) V254 breaks the contact with L131 and forms a new 

contact with Try306 within the highly conserved NPXXY motif of TM7. In the inactive state, Try307 

can not engate with L131 because TM7 and TM3 are far apart and require TM6 to move out in 

order to form a contact. It could be that the mutation at this Ile307 compromises the 

rearrangement that occurs during the Gt activation in the amino acids Try306 and Ile307 

(Venkatakrishnan et al., 2016) and this would be responsible for the altered Gt activation observed 

in the I307N mutant case. 
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4.3 Effect of Q, resveratrol (R) and epigallocatechin gallate (EGCG) on WT Rho and 

the G90V, Y102H and I307N mutants associated with RP 

Once the characterization of the mutants was carried out, the effect of the compounds selected 

in section 4.1, Q, R and EGCG at concentrations of 1 µM, 10 µM and 50 µM  were analyzed. 

During the transfection of WT and mutants into COS-1 cells, these compounds (previously 

dissolved in DMSO) were added to the cell culture media, yielding the desired concentration of 

each compound and a maximal DMSO concentration of 0.25%. After 48 h, the cells were 

harvested and the medium was removed. To completely remove the culture medium and the 

excess of compounds, the cells were washed twice with 15 mL of PBS. Subsequently, the opsins 

were regenerated with 11CR ON at 4°, subsequently solubilized in DM and immunopurified. 

4.3.1 UV-vis spectroscopic characterization 

After immunopurification, the UV-vis spectra of WT and mutants at the different conditions were 

recorded. Figure 4.46 shows the absorption spectra of WT and mutants obtained after different 

Q treatments. For both WT and mutants, the protein yield was diminished as the Q concentration 

increased. The decrease was so drastic at 50 µM that the band at 500 nm was barely detectable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.46 Absorption spectra of the immunopurified WT and mutants G90V, Y102H and I307N at different 
Q treatments. 
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A. WT Rho. B.G90V mutant. C. Y102H mutant. D.I307N mutant. Samples in PBS pH 7.4 buffer and 0.05% 
DM. Spectra were recorded at 20°C 
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Samples treated with R showed the same behavior that those treated with Q (Figure 4.47). As 

the concentration of R increased the yield of protein was lower. Due the poor protein yield in 

treatments of Q and R at 50 µM, we decided to exclude this concentration for future experiments. 

In any event, real-time RT-qPCR experiments were performed to evaluate mRNA levels in order 

to understand the possible cause of the low protein yield. This assay will be discussed later. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For EGCG, its effect on the protein yield was much intense compared to the previous treatments 

(Figure 4.48), since at 1 µM of EGCG the recovered protein was almost the same than that 

obtained for the treatments with Q and R at 50 µM. These results are consistent with those 

obtained in Western blot analyses in section 4.1 in which lower protein content was observed for 

EGCG-treated samples. For the following tests, the treatments of Q and R were continued only 

at concentrations of 1µM and 10µM.  

 

Figure 4.47 Absorption spectra of the immunopurified WT and mutants G90V, Y102H and I307N at different
R treatments. 
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A. WT Rho. B. G90V mutant. C. Y102H mutant. D.I307N mutant. Samples in PBS pH 7.4 and 0.05% DM. 
Spectra were recorded at 20°C. 
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4.3.2 Photobleaching and acidification 

The UV-vis spectra of WT expressed in the presence of Q and R were recorded in the dark, upon 

illumination for 30 s and after subsequent acidification (Figure 4.49). No differences were 

observed in the spectroscopic pattern of the WT samples treated with Q and R upon illumination 

and acidification. In all treatments, the conversion of the 500 nm visible band to 380 nm band 

corresponding to Meta II was observed. Similarly, after acidification, all samples showed a shift 

in the band at 380 nm to 440 nm, which is characteristic of PSB linkage between 11CR and opsin. 

 

 

 

  

Figure 4.48 Absorption spectra WT and WT expressed in the presence of 1 µM EGCG. 
Samples in PBS  pH 7.4 and 0.05% DM. Spectra were recorded at 20°C. 
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In the case of the G90V mutant, as for WT, no important differences could be observed in the 

spectroscopic pattern for the treatments with Q and R (Figure 4.50). Only a slight decrease in the 

remaining band at 490 nm, for G90V, after mutant photoactivation was observed due to the 

treatments, especially in the case of 1 µM R. 

 

 

  

Figure 4.49 UV-vis characterization for the immunopurified WT and WT expressed in the presence of Q
and R (1 µM and 10 µM) and 50 µM Q. 
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A. 0 µM Q. B. 1 µM Q. C. 10 µM Q. D. 50 µM Q. E. 1 µM R. F. 10 µM R. Samples in PBS pH 
7.4 and 0.05% DM. Spectra were recorded at 20°C. 
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Neither in the case of the mutants Y102H (Figure 4.51) nor in I307N (Figure 4.52) were 

differences observed in photobleaching and acidification patterns after Q and R treatments.  

 

 

 

 

 

 

 

  

Figure 4.50 UV-vis characterization of the immunopurified G90V mutant expressed in the presence of Q 
and R.  
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A. 1 µM Q. B. 10 µM Q. C.1 µM R. D. 10 µM R. Samples in PBS pH 7.4 and 0.05% DM. Spectra were 
recorded at 20°C. 
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Figure 4.51 UV-vis characterization for the immunopurified Y102H mutant expressed in the presence of 
Q and R. 

Figure 4.52 UV-vis characterization of the immunopurified I307N mutant expressed in the presence of Q 
and R (1 µM and 10 µM) 
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A. 1 µM Q. B. 10 µM Q. C.1 µM R. D. 10 µM R. Samples in PBS pH 7.4 and 0.05% DM. Spectra were 
recorded at 20°C. 

A. 1 µM Q. B. 10 µM Q. C.1 µM R. D. 10 µM R. Samples in PBS pH 7.4 and 0.05% DM. Spectra were 
recorded at 20°C. 
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4.3.3 Thermal stability 

The thermal stability of WT and mutants was not affected by the treatments with Q and R (Figure 

4.53). In the case of the mutant Y102H, 1 µM Q apparently slightly decreased its thermal stability 

and R at 10 µM slightly increased its stability. However, the differences are not statistically 

significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.4 Chemical stability and Meta II decay 

Similarly to the thermal stability behavior, the treatments with the compounds had no effect on 

the structural compaction in the SB environment. Only in the case of the G90V mutant treatments 

with R 1 and 10 µM there was a somehow increased chemical stability of this mutant (Figure 

4.52). 

 

 

 

Figure 4.53 Half-life time of the thermal stability of WT and mutants expressed in the presence of Q and
R.

0 
Q 1 

 

Q10 
R1 

R10 

H
al

f-
lif

e 
tim

e 
(t

1/
2)

, m
in

0.0

0.5

1.0

1.5

2.0

2.5

0 
Q 1 

 

Q10 
R1 

R10 

H
al

f-
lif

e 
tim

e 
(t

1/
2)

, 
m

in

0

5

10

15

20

25

30

0 
Q 1 

 

Q10 
R1 

R10 

H
al

f-
lif

e 
tim

e 
(t

1/
2
),

 m
in

0

20

40

60

80

100

0 
Q 1 

 

Q10 
R1 

R10 

H
al

f-
lif

e 
tim

e 
(t

1
/2

),
 m

in

0

1

2

3

4

5

A B 

C D 

A. WT Rho. B. G90V mutant. C. Y102H mutant. D.I307N mutant. Samples purified in PBS pH 7.4 and 
0.05% DM, were incubated at 48°C, and the normalized Amax were plotted as a function of incubation time 
and the t1/2 were calculated. 
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No significant differences were observed during Meta II hydrolysis and retinal release for the WT 

and mutants under the different treatments evaluated (Table 4.3). 

 

Table 4.3 Half-life time of retinal release during Meta II hydrolysis of WT and mutants with different 
treatments of Q and R. 

Receptor Treatment 

 0 µM 1 µM Q 10 µM Q 1 µM R 10 µM R 

WT 13±0.2 13±0.8 13.3±0.5 13.5±0.5 12.5 ±0.6 

G90V 36.8 ±1.1 34±1.5 36.0±1.0 35.0±1.5 36.2±1.3 

Y102H 18±1.2 17.5±1.0 16.8±1.2 18.5±0.9 17.5±0.7 

I307N 21.7±1.4 20.5±1.1 19.5.0±1.5 22.1 ±1.3 21.3±1.0 

Figure 4.54 Hydroxylamine reactivity of WT and mutants expressed in the presence of Q and R (1 µM and 
10 µM). 
A. WT Rho. B.G90V mutant. C. Y102H mutant. D.I307N mutant. Samples purified in PBS pH 7.4 and 
0.05% DM, were incubated with 50 mM hydroxylamine, pH 7 and the decrease of Amax was recorded over 
time at 20°C. 
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4.3.5 Chromophore regeneration 

In the regeneration assay (Table 4.4), the treatment with 1 µM Q decreased WT regeneration by 

25%. None of the treatments had an effect on the percentage of regeneration in the G90V mutant. 

In the case of the Y102H mutant, R at 10 µM increased its regeneration by 6%. The treatments 

of 1µM Q,  and 1µM and 10 µM R slightly reduced the regeneration for this mutant. Overall the 

results indicate that the chromophore regeneration is not affected by the compounds studied. 

 

Table 4.4 Chromophore regeneration of WT and mutants at different treatments of Q  and R. 

Receptor Treatment 

 0 µM 1 µM Q 10 µM Q 1 µM Q 10 µM Q 

WT 87.5±2.5 65±2.0 89.0±2.0 80.5±3.0 91.0 ±2.5 

G90V 71.5 ±1.5 74 ±1.0 70.3±3.0 75.0±1.5 71.0±2.5 

Y102H 61±3 61±2.0 60±3.0 63.5±2.0 65.0±3.0 

I307N 97±1.5 98.0±1.0 95.0±3.5 94.1 ±2.0 93.0±4.0 

 

4.3.6 Subcellular localization 

As mentioned in section 4.2.5, the trafficking of WT opsin to the cell membrane was very efficient 

in the case of the mutants, no dramatic effects were observed that affect the traffic within the cell. 

In order to know if the presence of Q and R have any effect on the trafficking of opsins towards 

the membrane, subcellular localization studies were carried out.  As a previous control, an assay 

was performed to determine if the high concentration of those compounds could be inhibiting the 

transfection process.  For this, an experiment was carried out to monitor the time the cell takes to 

introduce the plasmid, express the protein and transport it to the membrane.  It was observed that 

opsin is already in the membrane 8 h after transfection (Figure 4.55).  
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A new experiment was performed with WT by adding 50 µM Q 8 h after transfection. The cells 

were collected after 48 h, regenerated and the protein immunopurified. Even though Q was added 

after plasmid insertion, the yield that was obtained after purification continued to be as low as 

when it was added immediately after transfection (Figure 4.56 A). This result indicates that the 

lower protein production is not due to Q inhibiting transfection. 

 

 

 

 

 

 

 

 

 

In addition, opsin was found on the cell membrane by immunofluorescence analysis (Figure 4.56 

B) although the observed amount of transfected cells was much lower compared to WT without 

treatment.  

 

Table 4.5 shows the images obtained from the immunofluorescence assay of opsin and the 

mutants subject to  Q and R treatments.   

 

  

Figure 4.55 Opsin localization in HEK  293S  GnTI¯ cells at different transfection times. 

Figure 4.56  UV-vis spectrum of 50 µM WT Rho and opsin subcellular localization  
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Localization at 2 h (A), 4 h (B), 6 h (C) and 8 h (D) after transfection. 

A. UV-vis spectrum of immunopurified WT with 50 µM Q treatment, 8 h after transfection. B. Opsin 
subcellular localization, treatment with 50 µM Q. 
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Table 4.5 Subcellular localization of opsin and mutated opsins expressed at different 
concentrations of Q and R. 
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At 1 µM Q, no differences were observed for both WT and mutants. Some inclusion bodies were 

found at 10 µM Q treatment mainly in the mutants. R was the compound that most affected the 

trafficking of opsin to the membrane. Inclusion bodies were observed in the WT at 1 µM R as well 

as for the mutants G90V and I307N in which cases the protein was not able to fully reach the 

plasma membrane. The most dramatic case was that of the treatment with 10 µM R, where in all 

mutants the opsin could not be found in the membrane and several inclusion bodies were 

observed. 

4.3.7 SDS-PAGE and Western blot 

In order to gain further insight into the causes of the low protein yield obtained during the 

expression of the receptors in the presence of 50 µM Q, the electrophoretic analysis of these 

receptors was performed using SDS-PAGE and Western blot. It is well known that chaperones 

can help stabilizing misfolded proteins. These chaperones aid consists in unfolding the protein for 

translocation through membranes or for their degradation, and/or aiding them for proper folding 

and assembly. To determine if these chaperones were present, an elution was performed with 

1M NaCl after eluting with the 9-mer peptide in order that the high salt concentration could 

completely remove any presumably misfolded opsin retained in the sepharose beads.  

This process was performed on the WT (Figure 4.57) and mutants G90V (Figure 4.58) and Y102H 

(Figure 4.59) with and without treatment with 50 µM Q. The protein obtained was analyzed by 

SDS-PAGE and Western blot. 

The UV-vis spectrum of the elution usually performed with buffer and the 9-mer peptide and a 

second elution with the same buffer but with 1M NaCl added are shown in Figure 4.57 A and B. 

The absorption spectrum obtained from the 1M NaCl elution showed a largely increased protein 

band (60%) in the case of the WT treated with 50 µM of Q. This result indicates that after the 

elution with the 9-mer peptide there was still protein retained in the sepharose beads. However, 

the band observed shows a displacement of 20 nm being at 260 nm instead of 280 nm. These 

effects were not observed in WT without treatment. 

When performing the SDS-PAGE gel (Figure 4.57 C), no differences were observed in the 

electrophoretic pattern of the elution with 9-mer peptide compared with the 1M NaCl elution of the 

untreated WT. However, in the treatment with 50 µM Q, an altered electrophoretic pattern was 

noticed in the elution carried out with the peptide. For this same sample, the 1M NaCl elution 

showed the presence of three low molecular weight bands that were not found in the first elution 

with the 9-mer peptide. These bands correspond to species of apparent molecular weights of 

16kDa, 15 kDa and 12 kDa respectively. Western blot analysis (Figure 4.57D) confirmed the 

altered glycosylation pattern in the WT treated with 50 µM Q showing a great smear in this sample. 

The low molecular weight bands detected by SDS-PAGE gel in elution with WT NaCl expressed 
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in the presence of 50 µM Q could correspond to truncated Rho at the N-terminus which could not 

be detected by Western blot since the 1D4-rho antibody recognizes the C-terminal of Rho. 
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In the case of the G90V mutant, the same behavior as the WT was observed (Figure 4.58). For 

this mutant, the band corresponding to the protein fraction obtained in the elution with NaCl was 

5-fold more intense than that of the first elution with the 9-mer peptide. In this case, the low 

mobility bands could be detected in the Q-treated sample. For this same sample, a band at 120 

kDa was observed in the 9-mer pepide elution. Western blot indicated that this band could 

correspond to a tetrameric form of the G90V mutant.  

 

 

 

  

Figure 4.57 Spectroscopic  and electrophoretic pattern of  WT and WT expressed in presence of 50 µM Q 
eluted with 9-mer peptide and 1M NaCl.  

wavelength (nm)

300 400 500 600

A
bs

or
ba

n
ce

0.00

0.04

0.08

0.12

0.16

1
2

wavelength, nm
300 400 500 600

A
bs

or
ba

n
ce

0.00

0.01

0.02

0.03

0.04

0.05

3
4

A B 

C D 

A. UV-vis spectrum of immunopurified WT eluted with 9-mer peptide in PBS pH 7.4 and 0.05% DM (1) and 
eluted with 1M NaCl in PBS and 0.05% DM (2). B. UV-vis spectrum of immunopurified WT expressed in 
the presence of 50 µM Q eluted with 9-mer peptide in PBS pH 7.4 and 0.05% DM (3) and eluted with 1M 
NaCl in PBS and 0.05% DM (4). C. SDS-PAGE gel. D. Western blot. 
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Under the same experimental conditions, the Y102H mutant had a similar behavior to that of the 

WT Rho (Figure 4.59). 

 

 

 

 

 

  

Figure 4.58 Spectroscopic  and electrophoretic pattern of  G90V  and G90V mutant  expressed in presence
of 50 µM Q eluted with 9-mer peptide and NaCl 1M. 

wavelength (nm)

300 400 500 600

A
bs

or
ba

n
ce

0.00

0.02

0.04

0.06

0.08

0.10

1
2

wavelength (nm)

300 400 500 600

A
bs

or
ba

n
ce

0.0

0.2

0.4

0.6

3
4

A B 

C D 

A. UV-vis spectrum of immunopurified G90V mutant eluted with 9-mer peptide in PBS pH 7.4 and 0.05% 
DM (1) and eluted with 1M NaCl in PBS and 0.05% DM (2). B. UV-visible spectrum of immunopurified 
G90V mutant expressed in the presence of 50 µM Q eluted with 9-mer peptide in PBS pH 7.4 and 0.05% 
DM (3) and eluted with 1M NaCl in PBS and 0.05% DM (4). C. SDS-PAGE. D. Western blot. 
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4.3.8 Opsin expression studies in COS-1 cells by means of qRT-PCR 

qRT-PCR represents a sensitive and powerful method for the detection of mRNA with a 

tremendous potential for quantitative applications. Typically, the expression of a target gene is 

analyzed together with a reference gene to normalize the amount of the PCR template and, thus, 

to enable the calculation for relative expression of the target gene. Instead of using a standard 

curve, the target gene expression levels are calculated relative to the reference. In this work, the 

reference gene was the housekeeping gene β-actin. Opsin expression was evaluated in the case 

of WT opsin and the G90V and Y102H mutants subject to Q treatments of 1 µM, 10 µM and 50 

µM. 

Figure 4.59 Spectroscopic and electrophoretic pattern of Y102H mutant  expressed in the presence of 50 
µM Q eluted with 9-mer peptide and 1M. NaCl. 

wavelength (nm)

300 400 500 600

A
bs

or
ba

n
ce

0.0

0.1

0.2

0.3

0.4

3
4

wavelength (nm)

300 400 500 600

A
bs

or
ba

n
ce

0.00

0.04

0.08

0.12

1
2

A B 

C D 

A. UV-vis spectrum of immunopurified Y102H mutant eluted with 9-mer peptide in PBS pH 7.4 and 0.05% 
DM (1) and eluted with 1M NaCl in PBS and 0.05% DM (2). B. UV-vis spectrum of immunopurified Y102H 
mutant expressed in the presence of 50 µM Q eluted with 9-mer peptide in buffer PBS pH 7.4 and 0.05% 
DM (3) and eluted with 1M NaCl in PBS and 0.05% DM (4). C. SDS-PAGE. D. Western blot. 
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4.3.8.1 Isolation and RNA integrity  

In qRT-PCR, it is preferable to use high-quality intact RNA as a starting point due to the fact that 

accuracy of gene expression evaluation is recognized to be influenced by the quantity and quality 

of the starting RNA. Purity and integrity of RNA are critical elements for the overall success of 

qRT-PCR analysis. After RNA isolation, its quantity and purity were determined according to 

section 3.2.9.2. The amount of total RNA and its purity was determined to be within the 

established range, the samples were diluted at the same concentration and a denaturing agarose 

gel was performed to evaluate the integrity of the purified RNA (Figure 4.60). If the analyzed 

sample showed degradation as was the case of G90V-50µMQ and Y102H and Y102H-50µMQ, 

a new RNA extraction was carried out ant the analysis was repeated until the obtained RNA was 

intact. 

 

 

 

 

 

 

 

 

 

 

4.3.8.2 qRT-PCR 

Once the RNA quality was confirmed, reverse transcription was performed for cDNA synthesis. 

To date, internal control genes are most frequently used to normalize de mRNA fraction 

(Vandesompele et al., 2002). This internal control should not vary in the tissues or cells under 

investigation, or in response to experimental treatment.  In this assay the internal control gene 

(housekeeping gene) chosen was β-actin. The primers employed for the real-time PCR were the 

following:  

β -Actin: 

Forward     5’- CCCCAGGCACCAGGGCGTGAT -3’ 
Reverse       5’- GGTCATCTTCTCGCGGTTGGCCTTGGGGT -3’ 

Figure 4.60 Agarose gel of total RNA isolated from the different treatments with Q.  

Concentration in µM. nt = non-transfected cells. 
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Opsin: 

Forward     5´-GTTATCATGGTCATCGC -3’ 
Reverse     5’-AGACGTCTTGGCAAAGAAA -3’ 
 

qRT-PCR was performed in the LightCycler® 2.0 System (Roche) using SYBR green detection. 

The endpoint used in the real-time PCR quantification, Ct, is defined as the number of cycles 

required for the fluorescence signal to reach a certain threshold of detection and thus directly 

correlates with the amount of template (Chey et al., 2010).  

The amplification efficiency of both genes was calculated by preparing a dilution series from the 

cDNA sample.  Each dilution series was then amplified in real-time and the Ct values obtained 

were used to construct standard curves. The amplification efficiency (E) for each target was 

calculated according to the following equation: 

 

The standard curves of opsin and β-actin are shown in Figure 4.61. The amplification efficiencies 

are comparable since the differences in Ct values of target and reference genes are constant 

when the amounts of template are varied. The PCR efficiency for the opsin gene was 90% and 

that for β-actin 93%. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.61 Comparison of the amplification efficiencies of opsin and β-Actin genes. 
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The Ct values of opsin and β-actin of WT and G90V and Y102H mutants at different treatments 

with Q are shown in Figure 4.62. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was noticed that the housekeeping gene did not vary in response to the experimental treatment. 

The average Ct value for the housekeeping gene was 17.3. For the WT, G90V and Y102H 

mutants significant differences could be detected in Q-treated samples. Gene expression was 

presented using the 2-ΔΔCt method (Winer et al., 1999) using the following formulas: 

  

Figure 4.62 Ct values of opsin and β-Actin genes corresponding to different treatments with Q.  
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 Normalized garget gene expression level in sample = 2-ΔΔCT 

 ΔΔCT = ΔCT (sample) - ΔCT (calibrator) Calibrator = target gene without any treatment 

 ΔCT (sample) = CT target gene – CT reference gene 

 ΔCT (calibrator) = CT target gene – CT reference gene 

  

The results showed that the levels of WT opsin expression increased significantly as the 

concentration of Q increased (Figure 4.63). For mutated G90V opsin, treatment with 1µM Q 

decreased expression levels by 60% whereas concentrations of 10 µM and 50 µM appeared to 

increase expression. A similar behavior was observed for the Y102H mutant but the decrease 

was only 25%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.63 Expression of opsin gene and mutated opsins G90V and Y102H at different Q concentrations.
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The chaperone environment at the cytoplasmic face of the endoplasmic reticulum (ER) plays an 

important role in the biogenesis of Rho and other GPCRs (Chapple & Cheetham, 2003). In our 

case, we did not specifically determine the presence of chaperones. For the WT, some bands 

observed in the SDS-PAGE gel, between 50 kDa and 70 kDa, in the elution with NaCl, could 

indicate the presence of chaperones, but this was not clearly observed in the mutants case. 

When WT opsin is heterologously expressed in cultured mammalian cells, it translocates to the 

plasma membrane, whereas Rho with misfolding mutations accumulates within the cell. Misfolded 

opsin does not acquire mature oligosaccharides, indicating that it does not transit through the 

Golgi apparatus, and also fails to produce a functional receptor. Instead, misfolfed Rho undergoes 

retro translocation to  the ER and degradation by the ubiquitin-proteosome machinery (Saliba et 

al., 2002). Saturation of the normal proteolytic machinery causes inclusion bodies which were 

present in nearly all treatments of WT and G90V and Y102H  both with Q and R. 

Taken together, the results obtained here indicate that the low protein yield eventually obtained 

for  the receptors as the concentration of Q increased, and its poor folding that generated inclusion 

bodies in the cell, might be due to the fact that the high concentration of Q increased the 

overexpression of the opsin gene resulting in a  highly crowded cytosolic environment enhancing 

protein  aggregation (Hartl & Hayer-Hartl, 2002). The tendency of non-native states to aggregate 

in the cells is expected to be sharply increased as a result of the high local concentration of 

nascent chains in polyribosomes and the added effect of macromolecular crowding. 
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4.4. Binding specificity of retinal analogs influences the allosteric modulation of Q 

on Rho and G90V mutant associated with RP 

As noted in the previous section, no significant effects were detected in the spectroscopic 

properties of WT and mutants (regenerated with 11CR) at different concentrations of Q and R. 

The only effect observed was a decrease in protein recovery after purification, at high 

concentrations of phenolic compounds used, possibly due to mRNA increased production that 

caused problems in the processing machinery of the cell. 9CR is the most studied analog of retinal 

that produces isorhodopsin containing a PSB between 9CR and opsin. It undergoes an identical 

bleaching sequence to that of Rho (regenerated with 11CR) and it is characterized by a blue-

shifted Amax in the visible band. 9CR is often used as an artificial analog to probe the structure 

and function of native Rho (Sekharan & Morokuma, 2011). 

The pharmaceutical application of 9-cis retinoids to remedy retinal dysfunction caused by delayed 

or deficient regeneration with 11CR has been investigated over the past decade (Koenekoop et 

al., 2014; Maeda et al., 2009; Van Hooser et al., 2002). Several properties have been attributed 

to this retinal analog such as the increase in stability of  the RP mutant G90V (Toledo et al., 2011). 

Hence, these factors increase our  interest in carrying out the experiments using the 9CR analog. 

To this aim, the effect of Q on WT and G90V mutant with its natural chromophore, and its 

comparison with the opsins regenerated with the 9CR analog, was evaluated. 

4.4.1. UV-vis spectroscopic characterization 

The UV-vis spectra of WT and G90V mutant Rhos were recorded immediately after 

immunopurification (Figure 4.64). WT Rho without (WT 11CR) and with treatment of 1 µM Q (WT 

11CR-Q) showed a similar spectroscopic pattern with an Amax of 500±1 and 499±2 nm 

respectively, as well as the ratio (A280/Amax) of 2.1±0.2 and 2.2±0.3. In the case of WT isorhodopsin 

without (WT 9CR) and with treatment (WT 9CR-Q) these also showed a similar spectrum with 

λmax of 485±3 nm and 486±2 nm and a ratio of 1.86±0.2 and 1.9±0.3 respectively. WT 9CR 

showed a slight blue shift of 15 nm compared to WT 11CR which may be attributed to the 

decrease in bond length alternation of the retinal and its interaction with the amino acids in the 

binding pocket.  In the case of G90V mutant without (G90V 11CR) Q treatment, a blue shift of 10 

nm was observed, behavior that has already been reported previously (Toledo et al., 2011). In 

the case of the G90V mutant with 1 µM Q treatment (G90V 11CR-Q), it showed λmax at   488±2 

nm and 489±2 nm respectively. A slightly increased ratio was previously reported (Dong et al., 

2015; Toledo et al., 2011) that essentially  agrees with the results obtained here for G90V 11CR 

(3.7±0.23). This increase could be due to the introduction of this mutation causes a small fraction 

of misfolded protein or to the lack of structural stability. In this mutant, the presence of Q reduced 

its ratio by 15% (3.1±0.2) as well as increased its purification yield.  
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G90V 9CR showed a larger blue shift due to the combined effect of the mutation and the 9CR 

presenting a λmax of 472±3  nm in the case of G90V 9CR  and 471±2  for G90V 9CR-Q. In both 

cases, a higher yield was observed than with 11CR, and the absorbance ratio was more similar 

to the WT, especially in the case of the G90V 9CR-Q  which presented a ratio of 2.5±0.2 whereas 

in the case of G90V 9CR this ratio was 2.9±0.3. 

4.4.2. Photobleaching and acidification 

Photobleaching of Rho can be followed by the blue-shift of the 500 nm (Amax) chromophoric band 

in the visible region to 380 nm. This shift is due to the SB nitrogen deprotonation  in the Meta II 

state (Palczewski, 2006). The UV-vis spectra of WT (Figure 4.62) and mutant (Figure 4.65) were 

recorded in the dark, upon photobleaching for 30s and after subsequent acidification.   

  

Figure 4.64 Absorption spectra of the immunopurified WT and G90V mutant regenerated with 11-cis-retinal 
(11CR) and 9-cis-retinal (9CR). 
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Solid line represents the receptor without treatment, dotted line represents the receptor with the treatment 
of 1 µM.Q. Samples in PBS pH 7.4 and 0.05% DM. Spectra were recorded at 20°C. A. WT 11CR. B. WT 
9CR. C. G90V 11CR. D. G90V 9CR. 



122 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The largest difference observed was in the case of G90V 11CR (Figure 4.66) which upon 

illumination did not show a complete conversion of the visible band to the 380 nm species. This 

remaining band (about 44% of the dark visible band) had a similar visible wavelength maximum 

as the dark pigment, suggesting conversion to a photointermediate with retinal binding pocket 

similar to the dark  pigment, including the presence of a PSB linkage (Ramon et al., 2014).  This 

effect was diminished by the presence of Q since in G90V 11CR-Q the remaining band upon 

photobleaching was only about 30%. 

 

 

 

  

Figure 4.65 UV-vis characterization of WT regenerated with 9CR and 11CR with and without (W/O) 1 
µM Q. treatment.  
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Dark state (solid line), photobleaching (dotted line) and acidification (dashed line). Samples in PBS pH 7.4 
and 0.05% DM. Spectra were recorded at 20°C. A. WT 11CR. B. WT 11CR-Q. C. WT 11CR. D.WT 9CR-
Q. 
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The change of the natural chromophore to the 9CR analog reduced the effects observed in the 

remaining Amax band that was only 30% as opposed to 44% for G90V-11CR. In this case, the 

presence of Q did not affect this measurement. 

For all samples, a higher Abs A380nm with regard to the Amax was observed after illumination.  The 

acidification of these photoactivated receptors resulted in a distinct behavior, a band with a 

maximal absorbance at 440 nm corresponding to the PSB except in the case of G90V 9CR-Q 

which shows an absorbance of 415 nm after acidification. This behavior was previously reported 

in some Rho mutants (Aguilà et al.; Toledo et al., 2011) but in this case, it is presumably due to 

the presence of Q. The band obtained by acid denaturation of illuminated G90V 9CR-Q indicated 

that the SB linkage had undergone partial hydrolysis and this band shows the contributions from 

both free retinal at 380 nm and PSB-linked species absorbing at about 465 nm. 

Figure 4.66 UV-vis characterization of G90V mutant regenerated with 9CR and 11CR with and W/O 1 µM 
Q treatment. 
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Dark state (solid line), photobleaching (dotted line) and acidification (dashed line). Samples in PBS pH 7.4 
and 0.05% DM. Spectra recorded at 20°C. A. G90V 11CR. B. G90V 11CR-Q. C. G90V 11CR. D.G90V 
9CR-Q. 
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4.4.3 Thermal stability 

In the thermal stability assay, monitored at 48°C, the G90V mutant was very unstable in the dark 

state compared to the WT, showing faster thermal bleaching with t1/2 of ~2 min (Figure 4.64). In 

the WT, the change of the natural chromophore to the 9CR analog reduced significantly its 

thermal stability by 30%, an effect that was compensated by Q. In the case of G90V-9CR, it 

appears that Q can slightly increase the thermal stability of the mutant. Although this effect is not 

as clear because of the fact that the temperature-induced retinal isomerization and hydrolysis of 

the deprotonated SB is too fast. The thermal stability of the samples was determined by 

measuring the samples from 250 nm to 650 nm at various time intervals at the temperature of 

48°C. It has been shown that Rho can be activated in the dark by increasing the temperature that 

would force chromophore isomerization (Liu et al., 2013). 

 

  

 

 

 

 

 

 

 

 

 

4.4.4 Chemical stability 

WT 11CR is remarkably stable in the presence of hydroxylamine as well as WT 9CR and they 

showed a linear kinetics for this assay. For the WT 9CR, the presence of Q favors the compaction 

of the protein preventing hydroxylamine accessibility to the retinal binding site and hydrolysis of 

the SB linkage. In contrast, G90V 11CR showed  a non-linear kinetics and a dramatic decrease 

due to the less compact structure in the SB linkage environment (Dong et al., 2015; Toledo et al., 

2011). In our measurements, Q slightly increased the chemical stability of G90V 11CR-Q. 

However, for G90V the 9CR analog increased considerably the stability of this mutant and also 

showed a non-linear kinetics. A similar behavior was previously reported for this mutant (Toledo 

Figure 4.67 Thermal stability of the immunopurified WT and G90V mutant regenerated with 11CR and 
9CR. 
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WT and G90V mutant were regenerated with 11CR or 9CR and immunopurified in PBS pH 7.4 and 0.05% 
DM, and were incubated at 48 °C. The normalized Abs values at  Amax were plotted as a function of 
incubation time and the t1/2 was calculated. A. WT. B. G90V. W/O= without 
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et al., 2011). Furthermore, treatment with Q on this mutant receptor further increased the stability 

of the receptor, which is indicative of a more compact structure of the protein. In addition, it could 

also be observed that this kinetic behavior was more linear than non-linear, as in the case of WT 

(Figure 4.68). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.5. Chromophore regeneration 

WT 11CR showed the highest percentage of regeneration which was affected by Q, decreasing 

the WT 11CR regeneration by 25% (Figure 4.69). In the case of WT 9CR, the regeneration was 

slightly lower compared to WT regenerated with its natural chromophore 11CR. However, the 

presence of Q improved the regeneration of WT 9CR which was eventually the same as that of 

WT 11CR. 

 

 

Figure 4.68 Chemical stability of the immunopurified WT and G90V mutant.  
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Samples immunopurified in PBS pH 7.4 and 0.05% DM after Q treatment, were incubated with 50 mM 
hydroxylamine, pH 7 and the decrease of Amax was recorded over time at 20°C. A. WT 11CR with (◌) and 
W/O 1 µM Q (●). B. WT 9CR with (◌) and W/O 1 µM Q (●). C.G90V 11CR with (◌) and W/O 1 µM Q (●). 
D. G90V 9CR with (◌) and W/O 1 µM Q (●). 
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The G90V mutant presented a lower regeneration compared to that obtained for the WT. For this 

receptor, the lowest percentage of regeneration was observed when it was regenerated with 

11CR. The treatment with 1 µM Q did not affect this percentage. An increase of 8% was observed 

in this mutant, when using 9CR, upon expression in the presence of Q. This result agrees with 

the amount of protein obtained during the purification of these receptors where the highest yield 

was in the G90V 9CR-Q and G90V 9CR cases. This could be attributed to the stronger interaction 

energy acquired by the C-13 methyl group from Y268 and W265, favoring the entry into the retinal 

binding site (Srinivasan et al., 2014). 

The initial velocities of regeneration (Table 4.6) coincide with the results obtained from the 

regeneration percentage with the exception of WT 11CR-Q which showed the lowest percentage 

of regeneration but its velocity was slightly higher than that of  WT-11CR-Q. 

 

Table 4.6  Initial velocities of chromophore regeneration. 

  Initial velocity (min-1)   

WT 11CR 
W/O* Q 2.20 ± 0.167  0.30 ±0.005     W/O  Q 

G90V 11CR 
1 µM Q 2.65 ± 0.190  0.44 ± 0.01     1 µM Q 

WT 9CR 
W/O Q 3.05 ±0.155  0.56 ± 0.02     W/O  Q 

G90V 9CR 
1 µM Q 4.60 ± 0.250  0.92 ± 0.05     1 µM Q 

Figure 4.69 Chromophore regeneration of the immunopurified WT and G90V mutant with 1 µM Q.
treatment 
2.5 fold of 11CR or 9CR was added to the immunopurified WT and the G90V mutant, in the different buffers 
containing 0.05% DM + 1µM Q, The sample was illuminated with light of > 495 nm to avoid photobleaching 
of the free retinal, and successive spectra were registered every 5 min at 20°C in the dark until no further 
increase in Amax was detected. The regeneration % was determined from the Abs increase at 500nm with 
time. A. Percentage of chromophore regeneration of WT 11CR and WT 9CR B.  Percentage of 
chromophore regeneration of G90V 11CR and G90V 9CR 
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During the experiments, a second protein elution was performed to recover as much protein as 

possible. This second elution was done in PBS pH 6 and used in the regeneration experiments. 

When it was possible, up to a third elution was carried out in the samples that showed a higher 

yield, as was the case in the treatments with Q in the receptors regenerated with 9CR. When the 

absorption spectrum of the third elution of G90V 9CR-Q was recorded, a different spectroscopic 

pattern was observed and two more bands appeared, one large and marked at 310 nm and a 

small shoulder at 360 nm. In addition, the band a 280 nm representing the protein fraction showed 

a red shift of 4 nm (Figure 4.70).  

 

 

 

 

 

 

 

 

 

 

 

A new independent experiment was carried out under the same conditions and the same bands 

were observed but not in the same amount as in the previous one (compare Figures 4.70 A and 

B). These results indicated that Q could actually be bound to the protein and this interaction had 

survived the purification process. In order to confirm the Q presence, a HPLC-ESI-MS/MS study 

was performed that would be later described. 

In addition, the Western blot of these samples was performed and the G90V 9CR-Q mutant 

showed reduced intensity in the band corresponding to truncated protein. 

4.4.6 Meta II decay measurement 

The stability of the active state of purified WT and mutant was carried out by means of 

fluorescence spectroscopy. In dark state, Trp265 fluorescence is quenched by the β-ionone ring 

of the retinal and, upon illumination, retinal is released from the protein binding pocket thereby 

resulting in an increase in Trp265 fluorescence emission which can be followed at 330 nm at an 

Figure 4.70 Q identification in immunopurified G90V 9CR mutant. 
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excitation wavelength of 295 nm. The fluorescence changes were monitored continuously  over 

time (Farrens & Khorana, 1995).  To determine the t1/2 values for retinal release, experimental 

data was analyzed using a mono-exponential rise to maxima fit. 

The Meta II hydrolysis was slightly slower for WT 9CR than for WT 11CR. In both cases, the t1/2 

was not affected by Q.  G90V 11CR mutant showed a higher difference compared to the WTs 

with a t1/2 of 36 ± 1.13 which is twice slower. For this mutant, regenerated with its natural 

chromophore, the presence of Q did not affect the Meta II decay (Figure 4.71).  

 

 

 

 

 

 

 

 

 

 

 

 

The reverse case was observed when the G90V mutant was regenerated with 9CR analog in 

which the hydrolysis of the photointermediates Meta II was slower (46 min) compared to the G90V 

11CR. Strikingly, in this case the presence of Q almost doubled the hydrolysis rate of Meta II with 

a t1/2 of 88 min. 

4.4.7 Gt activation 

In this assay, Gt activation by WT and mutant was measured in the dark and after photobleaching.  

A similar kinetics behavior for WT 11CR and WT 9CR was observed (Figure 4.69). In the case of 

WT 11CR-Q the activation velocity was slightly faster than in the case of WT 11CR. Surprisingly, 

the WT 9CR-Q showed a completely different kinetics to the hyperbolic kinetics presented by WT. 

In this case the kinetics is sigmoidal which clearly would reflect  cooperative binding (Figure 4.72). 

  

Figure 4.71 Meta II decay of the immunopurified WT and G90V mutant regenerated with 11CR or 9CR
with or W/O  1 µM Q treatment 
Samples were incubate at 20 °C, and after a steady base line was obtained, they were photobleached and 
the Trp fluorescence was monitored over the time The fluorescence increase  was fit to a single exponential 
function and the t1/2 calculated. 
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G90V 11CR showed a similar kinetics to that of WT 11CR but in this case the rate of Gt activation 

was slower compared to WT 11CR. The presence of Q during the expression decreased its Gt 

activation rate. This demeanor observed in the Gt activation for this mutant, correlates very well 

with the results obtained in the Meta II decay experiments where the all-trans-retinal release as 

consequence of Meta II hydrolysis is slower with respect to WT 11CR. For G90V 9CR-Q the Gt 

activity was slower compared to the mutant without treatment. In the case of the mutant 

regenerated with the 9CR analog, the same effect than in the WT 9CR case could be observed. 

Of all treatments, the G90V 9CR-Q showed the lowest Gt activation and could be correlated with 

its high t1/2 in the Meta II decay assay. These results suggest again that Q is likely bound to the 

immunopurified receptors.  

Figure 4.72 Gt activation by WT and G90V mutant regenerated with 11CR or 9CR with or W/O  1 µM Q 
treatment. 
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Gt activity was measured by means of a radionucleotide filter-binding assay in Gt buffer. The reaction was 
initiated by the addition of the WT or mutant, and samples were filtrated at different times in the dark and 
after illumination. A. WT 11CR with (◌) and W/O 1 µM Q (●). B. WT 9CR with (◌) and W/O 1 µM Q (●). 
C.G90V 11CR with (◌) and W/O 1 µM Q (●). D. G90V 9CR with (◌) and W/O 1 µM Q (●). 
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4.4.8. Q identification by HPLC-ESI-MS/MS 

For the mass spectrometry study, Q standard was run at a concentration of 1 ppm (Figure 4.73) 

and it was found at a retention time of 3.97 min.  

 

 

 

 

 

 

 

 

 

 

 

In the sample, a presence of a peak at one minute displaced compared to the retention time of Q 

was observed. To ensure that this peak corresponds to Q, a product ion scan of both the sample 

and the standard was done (Figure 4.74). In this experiment the ions characteristics of Q could 

be found in the sample.  The concentration detected was 0.0035 ppm (0.0115 µM).  

 

 

 

 

 

 

 

 

 

 

Figure 4.73 Q identification by HPLC-MS 
A. Extracted-ion chromatogram of Q standard (A) and Q extracted from G90V 9CR-Q (B), and mass 
spectrum of Q standard (C) and Q extracted from G90V 9CR-Q (D)
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Figure 4.74 Product ion scan of both Q standard and Q extracted from the sample  
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The displacement in the retention time that has been observed in the sample could be due to the 

presence of remaining detergent still present in the sample, since a complete scan of the sample 

detected a mass of 509 that coincides with the mass of DM detergent (Figure 4.75) 

. 

 

 

 

 

 

 

 

 

 

 

 

9CR is the most studied analog of Rho in addition to the native 11CR containing protein. Several 

properties have been attributed to this analog such as being a potential  therapeutic agent for 

type 2 Leber congenital amaurosis (Koenekoop et al., 2014) as well as certain forms of RP 

(Toledo et al., 2011). In addition,  9-cis retinoids may bind more freely with the opsin apoprotein 

than the native 11-cis retinoid (Srinivasan et al., 2014). 

The results found in this research show the specific binding properties of 9CR, especially in the 

case of the G90V mutant in which its percentage and rate of regeneration were higher with this 

analog than with 11CR. This could be attributed to the stronger interaction energy acquired by 

the C-13-methyl group from Y268 and W265, favoring the entry into the retinal binding site 

(Srinivasan et al., 2014).  In addition, its chemical stability also increases after regeneration with 

the retinal analog and that reflects an improvement of the structural compaction in the SB 

environment. Our results indicate a synergistic effect of the combination of 9CR and Q in 

improving some of the properties of RP mutations. Thus, besides the known pharmaceutical 

application of retinoids to address visual dysfunctions, other small molecules have also been 

investigated for their properties as  pharmacological chaperones (Bernier et al., 2004; Krebs et 

al., 2004; Sawkar et al., 2006). Many of these molecules acting as pharmacologic chaperones 

would  bind and stabilize mutant proteins thus improving folding problems (Noorwez et al., 2008). 

Figure 4.75 Extracted-ion chromatogram that could correspond to DM detergent. 
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In this regard, Q improved the partial misfolding problem of G90V RP mutant. In this case the  

A280/Amax ratio was more similar to the WT reducing in about 15% the misfolding  problems that 

are common for RP mutants (Opefi et al., 2013). Previous research suggested that flavonoids 

(the group to which Q belongs) may be involved in  in vision physiology and eye health (Kalt et 

al., 2010). 
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4.5. Computational studies on Rho and its interaction with polyphenols 

The computational analysis carried out in this investigation had the objective to study the binding 

preferences of the polyphenols studied here. Structures of these compounds (Figure 4.76) were 

downloaded from the PubChem website and prepared (generating energy minimized 3D 

structures, sampling diverse ring conformation, stereoisomers etc.) using LigPrep tool also from 

Schrodinger.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.76 Polyphenols structures used  prepared using LigPrep 
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4.5.1 Binding site identification 

Prior to molecular docking studies, the receptors were examined in order to identify energetically 

favorable sites for ligands to bind. For this purpose, we used the Schrodinger site recognition 

software SiteMap, which locates binding sites which size, functionality, and extent of solvent 

exposure are suitable for occupancy by hydrophobic groups or by ligand hydrogen-bond donors, 

acceptors, or metal-binding functionality. The sites are assessed for their inclination to ligand 

binding, then accurately ranked in order to eliminate those not likely to be suitable for ligand 

occupancy. The crystallographic structures: 2PED (9-cis-Rho), 1GZM (11-cis-Rho) and 3CAP 

(opsin) were obtained from the protein data bank. These structures were prepared (optimization 

of hydrogen bonds, protonation states etc.) using the protein preparation wizard tool of the 

Schrodinger software. 

In opsin, the results from SiteMap (Figure 4.77) showed 5 possible binding sites for a ligand to 

occupy.  The first annotated as 1 in the figure is the orthosteric site found inside the helices just 

below the extracellular region of the receptor. Due to the fact that the second extracellular loop 

(ECL2) of opsin goes a bit deeper in the receptor that in most crystallized class A GPCRs, this 

pocket seems a little smaller than in other crystallized class A GPCRs. The site is characterized 

to be both hydrophobic and with hydrogen bond donor and acceptor characteristics.  Binding site 

number 2 is found just along the orthosteric site 1 but on the outside of the helixes (TM1 and 

TM2). This is very small site in comparison to site 1 and is mostly hydrophobic.  

Site 3 is found on the extracellular region of the receptor and involves some residues in the ECL2 

and some of N-terminal residues.  The site pocket has very little hydrophobic character, and is 

majorly hydrogen bond acceptor and donor pocket. Like site 2, site 4 is found on the sides of 

helices. In this case, site 4 is found just above the intracellular region, on the side between TM3, 

TM4 and TM5. Lastly, site 5 is majorly located in the intracellular region of the receptor and it is 

the biggest site with both hydrophobic character and hydrogen bond acceptor and donor 

characteristics. Along with site 2, site 4 and 5, were not considered to be relevant because it was 

considered that the membrane bilayer would impair ligand binding to these sites. 
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For Rho (Figure 4.78A) and  isoRho (Figure 4.78B), in general, the identified sites are similar to 

those found in native opsin with the major difference being that not all the sites in opsins are found 

in the Rho neither in isoRho. With site 1 already occupied by the respective retinal, each Rho 

contains 3 binding sites. 9-cis-Rho, only site 3 site 4 and site 5 are identified, while in 11-cis-Rho, 

only site 2, site 4 and site 5 are identified. Along with site 2, site 4 and 5 are not considered as 

possible binding sites due to the assumption that the membrane bilayer would impair the ligand 

entering these sites. 

 

 

 

  

Figure 4.77 Pictorial view of the putative binding sites identified using SiteMap in opsin. 
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4.5.2 Molecular docking 

Site 1 

This is the binding site of retinal and consequently, it is only available in opsin. Out of the 10 

ligands, only R, chorogenic acid, ellagic acid, hesperitin, naringen and Q bind to it. Considering 

the size of hesperidin, naringin, rutin and EGCG with respect to the size of the orthosteric site 1, 

it can be concluded that they are unable to bind at this pocket because they are too big for the 

pocket. The prospective bound conformation shows the ligands sitting on the hydrophobic pocket 

interacting with Glu181. Only chorogenic acid and ellagic acid show an additional interaction with 

Lys296.  

Site 2 and Site 5 

Due to their characteristics, being shallow hydrophobic pockets none of the 10 polyphenols were 

found to bind to these sites.  

A B 

Figure 4.78 Putative binding sites identified by SiteMap in rhodopsin (11CR) and isorhodopsin (9CR)  

A Rho with 11CR in green sticks. B. 9 cis-Rho with 9CR in gray space filling balls. 
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Site 3 and Site 4 

All ten compounds are found to bind to these two sites. As previously stated, site 3 is only 

available to 9-cis-Rho. Figure 4.79 shows the prospective bound conformation of the diverse 

ligands to the site. In contrast, site 4 which is at the cytoplasmic side is available to all three 

crystallographic structures and all the compounds were found to dock there nicely. 

 

 

 

 

 

                                                                                                              

 

 4.5.2 Comparison of Rho and 9-cis-Rho and Q molecular docking  

Due to these differences found in the binding sites of Rho and isoRho, a comparison of the two 

structures was performed. It was found that although the ligands do not change significantly the 

TM region (Figure 4.80A), the two structures show differences in EC2 (Figure 4.80B). 
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Figure 4.79 Polyphenol compounds as they are bound to opsin (A) and isoRho (B) in site 3. 

Figure 4.80 Overlapping of the structures of Rho (in blue) and isoRho (in green) showing a structural
difference at ECL 2. 
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 The results of the docking study reveal that Q binds differentially to both structures. Specially, it 

binds to a site involving the extracellular loop EC2 in the 9-cis-Rho that is not found on the 

corresponding Rho (Figure 4.81). 

 

 

 

 

 

 

 

 

 

 

 

 

In silico studies demonstrate that the potential ligand binding sites are different when the 

orthosteric ligand is 11CR or 9CR. The molecular docking results reveal that the binding site 3, 

which is not found in Rho, is the site where Q can bind. This site involves the ECL2 in which a 

slight difference was observed by superimposing the structures of Rho and isoRho, difference 

that also was observed in the N-terminus. The ECL2 in particular has been the target of a number 

of functional studies indicating its role in GPCRs activation that bind either small molecules or 

large peptide ligands (Klco et al., 2005; Scarselli et al., 2007). 

It has been shown that all the phenolic compounds studied here can bind to the 3 and 4 putative 

binding sites, but the binding site 3 only occurs when the orthosteric ligand is 9CR. In our case, 

the experiments performed at different concentrations of Q, R and EGCG for the WT and G90V, 

Y102H and I30YN mutants were done with the native 11CR and therefore no significant 

differences were observed. This opens an interesting avenue for future research aimed at 

elucidating the action mechanism of these phenolic compounds as allosteric modulators but using 

9CR as the orthosteric ligand.  

Figure 4.81 Structure of Q (orange) bound to the 9CR (green). 
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5. GENERAL DISCUSSION 

Our results suggest that Q may act as an allosteric modulator of Rho and G90V mutant when 

their orthosteric ligand is 9CR. In silico studies demonstrate that the potential ligand binding sites 

are different when the orthosteric ligand is 11CR or 9CR. The molecular docking results reveal 

that the binding site 3, which is not found in Rho, would be the site where Q could bind. This site 

involves the ECL2 in which a slight difference was observed by superimposing the structures of 

Rho and isoRho, difference that was also observed in the N-terminus. The second extracellular 

loop in particular has been the target of a number of functional studies indicating its role in GPCRs 

activation that bind either small molecules or large peptide ligands (Klco et al., 2005; Scarselli et 

al., 2007). In Rho, ECL 2 is part of the retinal plug (Janz et al., 2003), and forms a cap over the 

binding site of its photoreactive chromophore. A well-defined H-bonded network stabilizes the 

ECL2 structure which is formed by a number of polar residues, at the center of this network is 

Glu181 which is H-bonded to Try192 and Try 268, and is connected to Glu113 the counterion to 

the retinal PSB. Computational studies identified ECL2 as part of the stable folding core of inactive 

Rho (Rader et al., 2004). In its active conformation (Meta II) it has been reported the displacement 

of ECL2 from the retinal binding site and a rearrangement in the hydrogen-bonding networks 

connecting ECL2 with the extracellular ends of TM4, TM5 and TM6. Furthermore, NMR 

measurements reveal that structural changes in ECL2 are coupled to the motion of helix TM5 and 

breaking of the ionic lock that regulates activation (Ahuja et al., 2009). 

Given the characteristics of the ECL2, it is probable that, because the Q is bound there, it gives 

more stability and compaction in the retinal binding pocket environment which is reflected in the 

chemical stability presented by WT 9CR-Q and G90V-9CR-Q. In addition, this more compact 

structure also affects the retinal release after the hydrolysis of Meta II which was increased to 

almost double in the G90V 9CR-Q mutant. This great difference in the Meta II decay for this 

mutant (with Q that would be bound at ECL2) could be due to the replacement of glycine by valine, 

increase the required space of valine side chain which affects the C2 constriction within of the 

channel through which the retinal is uptake through opening A and the release of all-trans-retinal 

through opening B. It is important to note that along almost its full length, the floor of the channel 

is provided by ECL2 (Hildebrand et al., 2009).  

In the Gt activation assays, very marked changes in the activation kinetics were observed again 

in the samples WT 9CR-Q and G90V 9CR-Q, and in the case of G90V 9CR-Q the Gt activation 

was lower than in the mutant without treatment. These results suggest that when Q is bound to 

ECL2, the activation process is affected because the presence of Q prevents the rearrangement 

in the hydrogen-bonding networks connecting ECL2 with the extracellular ends of  TM5 impairing 

the breaking of  the ionic lock that regulates activation (Ahuja et al., 2009). 
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In this study, using various techniques of molecular biology and analytical methods coupled with 

in silico computational studies, Q has been shown to act as an allosteric modulator of 9-cis-Rho 

and more importantly, that property has an effect on the stability of G90V 9CR mutant associated 

with RP. The results presented here demonstrate that the same allosteric modulator (Q) can act 

as an orthosteric ligand enhancer (because it increases the regeneration rate) and at the same 

time decrease Gt activation. This modulated response that presents Q like an allosteric modulator 

of Rho mutants can be exploited in drug design and the development of novel pharmacological 

approaches for RP treatment. This opens the possibility of exploring other flavonoids and phenolic 

compounds that could have an effect similar to those found for Q. However, further studies are 

still needed to provide more detailed information on the effects reported here. 
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6. CONCLUSIONS 

 
 The levels of WT opsin expression, at the level of mRNA, increased significantly as the 

concentration of Q increased. 

 

 Q, R and EGCG affected the expression of the WT and mutants studied here, decreasing 

the protein yield possibly due to overcrowding effects in the cytosol of the cell. 

 No significant differences were observed in the physical and functional properties of 

pigments regenerated with 11CR (11CR) treated with Q or R at concentrations of 1 µM 

and 10 µM. 

 The in silico studies suggest that the potential ligand binding sites are different when the 

orthosteric ligand is 11CR or 9CR, and the docking study reveals that Q binds to a site 

involving the extracellular loop 2 (ECL2) in the 9-cis-Rho which is not found on Rho. 

 Molecular modeling analysis also indicated that the flavonoids Q, rutin, hesperidin, EGCG, 

naringin, hesperitin and naringenin, the stilbene R, and the phenolic acids chorogenic and 

ellagic, can bind to different sites in the case of 9-cis-Rho and in the case of Rho 

(regenerated with 11CR). 

 

 The presence of Q during the WT 9CR and G90V 9CR mutant expression increases the 

thermal and chemical stability of the purified photoreceptor proteins. 

 The kinetics change in Gt activation, in the Q-treated samples, clearly indicates a 

cooperative effect between Q and 9CR. 

 The identification of Q by HPLC-MS in the purified samples together with the other results 

reported, suggests that Q could be acting as an allosteric modulator of WT Rho and G90V 

Rho mutant Associated with retinitis pigmentosa 

 

 Overall, our studies using various experimental techniques going from molecular biology 

to analytical methods, coupled with in silico computational studies, have shown that Q can 

potentially act as an allosteric modulator of 9-cis-Rho and more importantly, that property 

has an effect on the stability of G90V-9CR mutant associated with RP. 

 These results open new possibilities to use natural polyphenolic compounds, in 

combination with specific retinoids like 9CR, for the treatment of retinal degeneration 

associated with RP. This approach will help in preventing potential immunogenic problems 

with the use of microbial opsins in optogenetic methods. It may also elude the potential 

toxic effects of photochromic ligands recently proposed as therapeutical strategies in 

optopharmacological innovations. 
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9. ANNEXES 

Annex A 
 
 
 
Sequence of  synthetic bovine opsin gene   
 
 
aattcatgaacggtaccgaaggcccaaacttctacgttcctttctccaacaagacgggcgtg 
  F  M  N  G  T  E  G  P  N  F  Y  V  P  F  S  N  K  T  G  V  
gtgcgcagcccgttcgaggctccgcagtactacctggcggagccctggcagttctccatg 
V  R  S  P  F  E  A  P  Q  Y  Y  L  A  E  P  W  Q  F  S  M  
ctggccgcctacatgttcctgctgatcatgcttggcttcccgatcaacttcctcacgctg 
L  A  A  Y  M  F  L  L  I  M  L  G  F  P  I  N  F  L  T  L  
tacgtcacagtccagcacaagaagcttcgcacaccgctcaactacatcctgctcaacctg 
Y  V  T  V  Q  H  K  K  L  R  T  P  L  N  Y  I  L  L  N  L  
gccgtggcagatctcttcatggtcttcggtggcttcaccaccaccctctacacctctctc 
A  V  A  D  L  F  M  V  F  G  G  F  T  T  T  L  Y  T  S  L  
catgggtacttcgtctttgggccgacgggctgcaacctcgagggcttctttgccaccctg 
H  G  Y  F  V  F  G  P  T  G  C  N  L  E  G  F  F  A  T  L  
ggcggtgaaattgcactgtggtctctggtagtactggcgatcgagcggtacgtggtggtg 
G  G  E  I  A  L  W  S  L  V  V  L  A  I  E  R  Y  V  V  V  
tgcaagcccatgagcaacttccgcttcggtgagaaccacgccatcatgggcgtcgccttc 
C  K  P  M  S  N  F  R  F  G  E  N  H  A  I  M  G  V  A  F  
acctgggtcatggctctggcctgtgcggccccgccgctcgtcggctggtctagatacatc 
T  W  V  M  A  L  A  C  A  A  P  P  L  V  G  W  S  R  Y  I  
ccggagggcatgcagtgctcgtgcgggatcgattactacacgccgcacgaggagaccaac 
P  E  G  M  Q  C  S  C  G  I  D  Y  Y  T  P  H  E  E  T  N  
aatgagtcgttcgtcatctacatgttcgtggtccacttcatcatcccgctgattgtcatc 
N  E  S  F  V  I  Y  M  F  V  V  H  F  I  I  P  L  I  V  I  
ttcttctgctatggccagctggtgttcaccgtcaaggaggctgcagcccagcagcaggag 
F  F  C  Y  G  Q  L  V  F  T  V  K  E  A  A  A  Q  Q  Q  E  
agcgccaccactcagaaggccgagaaggaggtcacgcgtatggttatcatcatggtcatc 
S  A  T  T  Q  K  A  E  K  E  V  T  R  M  V  I  I  M  V  I  
gctttcctaatctgctggctgccatatgctggtgtggcgttctacatcttcacccatcag 
A  F  L  I  C  W  L  P  Y  A  G  V  A  F  Y  I  F  T  H  Q  
ggctctgactttgggcccatcttcatgaccatcccggctttctttgccaagacgtctgcc 
G  S  D  F  G  P  I  F  M  T  I  P  A  F  F  A  K  T  S  A  
gtctacaacccggtcatctacatcatgatgaacaagcagttccggaactgcatggtcacc 
V  Y  N  P  V  I  Y  I  M  M  N  K  Q  F  R  N  C  M  V  T  
actctctgctgtggcaagaacccgctgggtgacgacgaggcgtcgaccaccgtctccaag 
T  L  C  C  G  K  N  P  L  G  D  D  E  A  S  T  T  V  S  K  
acagagaccagccaagtggcgcctgcctaag 
T  E  T  S  Q  V  A  P  A  -   
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Annex B 
 

Competent cells protocol 

 

The whole procedure is performed under sterile conditions. All materials and solutions used must 

be autoclaved and work near the flame to avoid any contamination. 

 

1. Incubate one colony of E coli DH5 in a falcon tube containing 50 ml of LB media at 37°C and 

230 rpm ON. 

2. Transfer 1 ml of this culture to 100 ml of LB media and incubate 37°C , 230 rpm until A600 =0.6 

(normally between 3-4 h). 

3. Obtained the absorbance, keep the culture 25 min on ice. Centrifuge 10 min at 4000 rpm, 4°C 

and discard the SN. 

4. Manually or with pipette resuspend very gentle the  cells with CaCl2 100 mM and keep on ice 

for  30 min and then centrifugue 10 min, 4000 rpm and 4°C. Discard the SN. 

5. Resuspend the cells with 2 ml solution of CaCl2 100 mM and 20% of glycerol. Divide in aliquots 

of 50 ul and store at -80°C. 

6.- To verify the correct functioning of the cells prepared, make a transformation with 100 ng of 

DNA.   
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Annex C 
 

Miniprep procedure using QIAprep Spin Miniprep Kit 

 

1 Resuspend pelleted bacterial cells in 250 µl Buffer P1 and transfer to a microcentrifuge tube. 

2 Add 250 µl Buffer P2 and mix thoroughly by inverting the tube until the solution becomes clear. 

Do not allow the lysis reaction to proceed for more than 5 min.  

3. Add 350 µl buffer N3  and mix immediately and thoroughly by inverting the tube. 

4. Centrifuge  for 15 min at 14,000 rpm 

5. Apply the supernatant from step 4 to the QIAprep spin column by decanting. Centrifuge for 60 

s and discard the flow-through 

6. Wash the QIAprep spin column by adding 0.75 ml buffer PE. Centrifuge for 60 s and discard 

the flow through. 

7. Centrifuge 1 min to remove residual wash buffer 

8. Place the QIAprep column in a clear 1.5 ml microcentrifuge tube. To elute DNA add 30 µl  of 

dd water to the center of the QIAprep spin column. Let stand for 15 min and centrifuge for 1 min. 
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Annex D 
 

Maxiprep procedure using PureLinkTM HiPure Plasmid filter Purification form 

Invitrogen. 

 

1.- Add 10 mL resuspension buffer (R3) with RNase A to each pellet (one pellet per each 500 ml 

of culture), resuspend the bacteria until homogeneous. 

2.- Add 10 ml lysis buffer (L7). Mix gently by inverting the capped tube until the lysate mixture is 

thoroughly homogeneous. Do not vortex. Incubate at room temperature for 5 min (Do not allow 

lysis to proceed for more than 5 min. 

3.- Add 10 ml precipitation buffer (N3) and mix immediately by inverting the tube until the mixture 

is thoroughly homogeneous (Do not vortex). 

4. Transfer the precipitated lysate from above  into a previously equilibrated (30 ml equilibration 

buffer (EQ1)  HiPure filter maxi column. Let the lysate run through   the filter by gravity flow until 

the flow stops. Discard the flow through. 

5.- Wash the residual bacterial lysate in the HiPure filter maxi column with 10 ml wash buffer (W8). 

Again, let the buffer flow through the column until the flow stops. 

6. Immediatley after, remove the inner filtration cartridge from the column (discard it) and wash 

the column with 50mL of wash buffer (W8). Allow the solution in the column to drain by gravity 

flow. Discard the flow-through  

7.-  Place a sterile 50-ml tube (elution tube) under the column and add 15 ml elution buffer (E4) 

into the Maxi column to elute the DNA. Allow the solution to drain by gravity flow. Do not force out 

any remaining solution. The elution tube contains the purified DNA. 

8.- Add 10.5 ml isopropanol to the elution tube. Mix well and centrifuge the tube at 18 000 rpm for 

50 min at 4°C. Carefully remove and discard the SN. 

9.- Add 5 ml 70% ethanol to resuspend the DNA pellet and centrifuge 14 000 rpm for 15 min at 

4°C. Carefully remove and discard the SN. 

10. Resuspen the DNA pellet in 500 µl  TE buffer (TE)  or water  and proceeds to quantify. 
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Annex E 
 

Coupling the antibody Rho-1D4 to the CNBr-activated Sepharose 4B 

 

1.- Measure a dilution (1:10) of Rho-1D4 antibody in the spectrophotometer at 280 nm. Get the 

concentration by Beer-Lambert law using ɛ= 1383 

2. According to the final amount of gel to be prepared and based on the concentration of antibody, 

make appropriate calculations. It is considered that 1 gram of lyophilized sepharose gives about 

3.5 ml final volume of gel, and are needed 5-10 mg antibody per ml gel. 

3.-Dissolve the Rho-1D4 antibody  in coupling buffer (0.1M) NaHCO3 pH 8.3 containing 0.5M 

NaCl. Use about 5 ml coupling solution /g  lyophilized powder. 

4.- Weigh out the required amount of powder of CNBr-activated Sepharose 4B  and suspend it in 

10 ml 1mM HCl. Let it dissolve for 15 min until all the lumps are completely dissolved. If it is 

necessary, stir with a glass bar. 

5.- Wash the sheparose  using a glass filter (porosity G3) connected to a vacuum pump. Use 

approximately 200 ml  1mM HCl  per gram of powder (add it in several aliquots). Do it slowly, in 

a time of 30 min. 

6.- Wash again with 2 gel volumes of coupling buffer and transfer by using a spatul into a tube 

containing the antibody previously dissolved in the coupling buffer. Agitate overnight at 4°C. 

7.- Wash away excess of antibody at least 5 (gel) volumes of coupling buffer. 

8.- Block any remaining active groups. Transfer the gel to 0.1M Tris-HCl buffer, pH 8.0. Let it 

stand for 2 hours agitating at room temperature.  

9.- Remove the Tris-HCl by filtering at least three cycles of alternating pH buffers, 0.01M acetic 

acid/sodium acetate, pH 4 containing 0.5M NaCl followed b a a wash with 0.1M Tris-HCl, pH 8. 

Wash with 5 gel volume of each buffer.  

10. Transfer the treated sheparosa couples into a 15 ml falcon tube containing 6 mL  buffer PBS 

1x and 0.004% AzNa. Allow to settle and adjust the buffer volume (1:1 gel: buffer). Storage at 

4°C 

11.- Determine the capacity binding  
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Annex F 
 

Regeneration protocol CNBr-activated Sepharose 4B coupled to Rho-1D4  

 

Once used Sepharose-Rho1D4, can be reused a second or third time after a regeneration. 

 

1.- Put 3 ml used Sepharose-Rho1D4 in a 10 ml syringe with filter and wash with 4x3ml and 2x5ml 

Glycine buffer (100 mM glycine, 100 mM NaCl , 0.2% DM pH 2.2) 

2.- Wash again with 4x3ml and 3x10ml PBS 1x buffer containing 0.004% NaAz pH 7.4. Check 

that pH of the last wash is around 7. 

3.- Transfer the regenerated Sepharose-Rho1D  into a 15 ml falcon tube containing 6 mL  buffer 

PBS 1x and 0.004% AzNa. Allow to settle and adjust the buffer volume (1:1 gel: buffer). Storage 

at 4°C 

4.- Determine the capacity binding  
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Annex G 
 
 
Buffers, culture media and solutions used 

 

Elution buffer 
Buffer (PBS 1x or HEPES or SP) containing 

0.05% of DM, pH 7.4 or 6 (for SP) 

2YT medium 1.6 g Tryptone, 1.0 g yeast extract, 0.5 g NaCl. 

Buffer A 

20 mM Tris, pH 7.4, 1mM CaCl2,  2 mM DTT, 0.1 

mM PMSF (DTT and PMSF are added just before 

use) 

Buffer C 

10 mM Tris, pH 7.4, 100mM NaCl,  5 mM MgCl2, 

2 mM DTT, 0.1 mM PMSF (DTT and PMSF are 

added just before use) 

Buffer D 

10 mM Tris, pH 7.4, 0.1mM EDTA, 2 mM DTT, 

0.1 mM PMSF (DTT and PMSF are added just 

before use) 

Buffer E 

20 mM Tris, pH 7.4, 100mM NaCl, 50% grlycerol 

5 mM MgCl2, 2 mM DTT, 0.1 mM PMSF (DTT and 

PMSF are added just before use 

COS-1 culture media 

500 ml DMEM media, 50 ml FBS, 5 ml L-

glutamine 200mM and 5 ml of penicillin-

streptomycin solution (5,000 units penicillin and 

5mg streptomycin/mL) 

Gt buffer 10X 0. 25 M Tris, pH 7.5, 50 mM MgCl2 and 1 M NaCl  

HEK Gnti culture media 

500 ml DMEM F12 media, 50 ml FBS, 5 ml L-

glutamine 200mM and 5 ml of penicillin-

streptomycin solution (5,000 units penicillin and 

5mg streptomycin/mL) 

LB agar LB media and Agar 3% 

PBS 1X 
137mM NaCl, 2.7mM KCl, 10mM Na2HPO4 and 

1.8mM KH2PO4 

Protein loading buffer 4X 
Tris 0.0625 M, 2% SDS, 10% glycerol, 0.4M DTT 

and 0.1% Blue Bromophenol. 

TBS buffer 
8g NaCl, 1.121g Tris, 0.4 ml HCl in 1 L ddH2O, 

pH 8.0 
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TGS 
3g  Tris, 14.4 g Glycine, 1 g SDS, pH 8.3 up to 1 

L with  ddH2O. 

Trypsin solution 
4.5ml of PBS 1X and 0.5ml of Trypsin-EDTA 10X 

(0.5% trypsin, 0.2% EDTA) 

TTBS buffer Tween 20 (1 ml) dissolved in 1L TBS solution 
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Annex H 
 

 

Amino acids 

 

A alanine (Ala) 

C cysteine (Cys) 

D aspartate (Asp) 

E glutamate (Glu) 

F phenylalanine (Phe) 

G glycine (Gly) 

H histidine (His) 

I isoleucine (Ile) 

K lysine (Lys) 

L leucine (Leu) 

M methionine (Met) 

N asparagine (Asn) 

P proline (Pro) 

Q glutamine (Gln) 

R arginine (Arg) 

S serine (Ser) 

T threonine (Thr) 

V valine (Val) 

W tryptophan (Trp) 

Y tyrosine (Tyr) 

 

 

 


