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Chapter 1

Introduction

This thesis studies integrability and convergence properties of Fourier series/transforms
of monotone (general monotone) functions or functions whose Fourier coefficients/trans-
forms are monotone (general monotone).

1.1 Lorentz and weighted Lebesgue spaces

We start with the definitions of weighted Lebesgue and Lorentz spaces [9]. Let (Ω, µ)
be a measure space.

Definition 1.1. Let f be a µ-measurable function on Ω, then by f∗ we denote the
non-increasing rearrangement of f , i.e.,

f∗(t) = inf{σ : µ{x ∈ Ω : |f(x)| > σ} ≤ t}.

Definition 1.2. Let 0 < p ≤ ∞ and 0 < q ≤ ∞. Then the Lorentz spaces Lp,q(Ω) is
the set of µ-measurable functions f for which, the functional

‖f‖Lp,q(Ω) :=


(

µ(Ω)∫
0

(
t

1
p f∗(t)

)q
dt
t

) 1
q

for 0 < p <∞ and 0 < q <∞,

sup
0≤t≤µ(Ω)

t
1
p f∗(t) for 0 < p ≤ ∞ and q = ∞,

is finite.

Definition 1.3. Let 0 < p ≤ ∞ and 0 < q ≤ ∞. Then the weighted Lebesgue spaces
Lq

w[p,q](Ω) is the set of µ-measurable functions f for which, the functional

‖f‖Lq
w[p,q]

(Ω) :=


(∫

Ω

∣∣∣t 1
p
− 1

q f(t)
∣∣∣q dt) 1

q

for 0 < p <∞ and 0 < q <∞,

ess sup
t∈Ω

t
1
p |f(t)| for 0 < p ≤ ∞ and q = ∞,

1



2 Chapter 1 Introduction

is finite.

Here w[p, q](t) stands for weight function t
1
p
− 1

q . We will denote by lp,q and lqw[p,q] similarly
defined Lorentz and weighted Lebesgue spaces of sequences, respectively.

Remark 1.1. Note that ‖f‖Lp,p(Ω) = ‖f‖Lp
w[p,p](Ω)

= ‖f‖Lp(Ω). Moreover, Hardy’s rear-
rangement inequality implies

‖f‖Lp,q(Ω) ≥ ‖f‖Lq
w[p,q]

(Ω) for q ≤ p ;

‖f‖Lp,q(Ω) ≤ ‖f‖Lq
w[p,q]

(Ω) for q ≥ p .

Throughout this thesis, we denote by C a positive constant that may be different on
different occasions. In addition, T . S means that there exists C > 0 such that T ≤ CS.
Moreover, T � S means T . S . T . Throughout this thesis, p′ denotes the conjugate
index of p : 1

p + 1
p′ = 1.

1.2 General monotonicity

Here we introduce the notion of general monotonicity, which is the key concept in this
work. General monotone sequences (or functions) play an important role in many classi-
cal problems of harmonic analysis and approximation theory (see, for instance, [16], [17],
[18], [34], [42], [58], [91], [95]). The definition of the GM(β) sequences (see [59, 88, 91])
reads as follows.

Definition 1.4. Let a = {an}∞n=1 and β = {βn}∞n=1 be two sequences of complex and
non-negative numbers, respectively. The couple (a,β) determines a general monotone
sequence a with majorant β, written a ∈ GM(β), if there exists C > 0 such that for all
n ∈ N,

2n∑
k=n

|∆ak| ≤ Cβn. (1.1)

It will be the key observation in our further study that GM(β) sequences preserve some
monotonicity properties. This is given by the following result.

Lemma 1.1 ([59, Lemma 3.1]). Let a ∈ GM(β), then for all n ∈ N we have

|ak| ≤ Cβn + |am| for all k,m = n, . . . , 2n; (1.2)

|ak| ≤ Cβn +
1
n

2n∑
j=n+1

|aj | for all k = n, . . . , 2n; (1.3)

|an| ≤
C

n

 n−1∑
k=[n

2 ]
βk +

2n−1∑
j=n

|aj |

 . (1.4)
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Note that the widest class of general monotone sequences is when βn =
2n∑

k=n

|ak|, since

in this case any sequence belongs to this class with C = 2. Let us give some examples
of majorants β, which will be useful in study of trigonometric series.

1. β1
n = |an|;

2. β2
n = 1

n

γn∑
s=n

γ

|as|, γ > 1;

3. β3
n = 1

n max
k≥n

γ

2k∑
s=k

|as|, γ > 1.

It is known that M ( QM ( GM(β1) ( GM(β2) ( GM(β3) (see [34, 91, 94]), where
M is the class of non-increasing sequences, and QM is the class of quasi-monotone
sequences. Recall that a sequence {an}∞n=1 is quasi-monotone if there exists τ > 0
such that

{
an
nτ

}
is non-increasing. More details about the various subclasses of general

monotone sequences can be found in [59, 94].

Now we describe some classical problems that we study in this thesis.

1.3 Hardy-Littlewood’s theorem: periodic case

We start with integrability properties of Fourier series. Integrability properties of Fourier
series with monotone coefficients were first considered by Hardy and Littlewood ([43],
[105, Ch. XII, §6], [14, §6]).

Theorem 1.1. Let 1 < p < ∞ and f(x) ∼
∞∑

n=1
(an cosnx + bn sinnx), where a =

{an}∞n=1, b = {bn}∞n=1 are non-increasing non-negative sequences vanishing at infinity.
Then

‖f‖Lp([0,2π]) �

( ∞∑
n=1

np−2(ap
n + bpn)

) 1
p

.

Generalizations of Theorem 1.1 for the Lorentz spaces Lp,q([0, 2π]) and weighted Lebesgue
spaces Lq

w[p,q]([0, 2π]) were proved by Sagher [76, Theorems 1 and 2].

Theorem 1.2. Let f(x) ∼
∞∑

n=1
(an cosnx+ bn sinnx), where a = {an}∞n=1, b = {bn}∞n=1

are non-increasing non-negative sequences vanishing at infinity. Then

‖f‖Lp,q([0,2π]) � ‖a‖lp′,q + ‖b‖lp′,q 1 < p <∞, 0 < q ≤ ∞, (1.5)

‖f‖Lq
w[p,q]

([0,2π]) � ‖a‖lq
w[p′,q]

+ ‖b‖lq
w[p′,q]

1 < p <∞, 1 ≤ q ≤ ∞. (1.6)
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Since for monotone sequence {an}∞n=1, a
∗
n = an, we obtain the following corollary.

Corollary 1.1. Let f(x) ∼
∞∑

n=1
(an cosnx+ bn sinnx), where a = {an}∞n=1, b = {bn}∞n=1

are non-increasing non-negative sequences vanishing at infinity. Then, for any 1 < p <

∞ and 1 ≤ q ≤ ∞,

‖f‖Lp,q([0,2π]) � ‖f‖Lq
w[p,q]

([0,2π]) � ‖a‖lp′,q + ‖b‖lp′,q

� ‖a‖lq
w[p′,q]

+ ‖b‖lq
w[p′,q]

.

There are many generalizations of Theorem 1.1. In particular, for weighted Lebesgue
spaces Theorem 1.1 was generalized in papers [4, 27, 32, 33, 34, 54, 76, 91, 103].

Analogues of Theorem 1.1 for the Lorentz spaces were proved in [16, 29, 31, 42, 68, 69,
76, 81].

1.4 Hardy-Littlewood’s theorem and Boas’ conjecture: non-

periodic case

One of the first results on the integrability properties of the Fourier transforms of mono-
tone functions is the well-known Hardy-Littlewood theorem [98, §4.12].

Theorem 1.3. Let 1 < p < 2 and f(x) be a non-increasing non-negative on (0,+∞)

function that vanishes at infinity, and f̂(t) =
+∞∫
0

f(x) cos tx dx be a cosine transform of

f . Then

‖f̂‖Lp(0,∞) ≤ C

(∫ ∞

0
xp−2f(x)p dx

) 1
p

.

In the paper [15], Boas stated the following

Conjecture. Let 1 < p <∞ and f be a non-increasing non-negative on (0,∞) function
that vanishes at infinity. And put f̂ is cosine or sine transform of f . Then x−γ f̂(x) ∈
Lp(0,∞) if and only if x1+γ− 2

p f(x) ∈ Lp(0,∞) provided − 1
p′ < γ < 1

p .

In [77], Sagher solved this problem in the setting of the weighted Lebesgue spaces and
the Lorentz spaces.

By E we denote the set of non-negative, even on R, non-increasing to 0 on (0,+∞)
functions.

Theorem 1.4 ([77]). Let f(x) ∈ E and f̂(y) =
∞∫
−∞

f(x)e−ixydx be the Fourier transform

of f . Then
‖f‖Lp,q(R) � ‖f̂‖Lp′,q(R), 1 < p <∞, 0 < q ≤ ∞, (1.7)
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‖f‖Lq
w[p,q]

(R) � ‖f̂‖Lq

w[p′,q]
(R), 1 < p <∞, 1 ≤ q ≤ ∞. (1.8)

The equality f∗(t) = f
(

t
2

)
for every f ∈ E immediately implies the following corollary.

Corollary 1.2. Let f(x) ∈ E, then

‖f̂‖Lq

w[p′,q]
(R) � ‖f̂‖Lp′,q(R), 1 < p <∞, 1 ≤ q ≤ ∞. (1.9)

There are several results related with Boas’ conjecture. In the paper [57] (see also
[60]), Liflyand and Tikhonov proved Boas’ conjecture for general monotone functions.
Moreover, in the case of the sine transform the range of γ was enlarged. Later on
Gorbachev, Liflyand, and Tikhonov [40] obtained the multidimensional version for radial
functions. Also, Boas’ conjecture was proved [28] for the wider class of general monotone
functions than the one studied in [57].

Note that relation (1.7) of Theorem 1.4 was generalized in [67, 69] for weak monotone
functions in the case when 1 < p < 2. Later on, Kopezhanova, Nursultanov, and Persson
[49] generalized (1.7) for weak monotone functions in the Lorentz spaces with general
weights.

In [100, 101], Volosivets and Golubov proved the Boas’ conjecture for multiplicative
Fourier transforms of general monotone functions f , extending the results from [28]
which deals with the trigonometric case.

1.5 Moduli of smoothness of Fourier series with monotone

coefficients

Let f be an integrable 2π-periodic function. Denote by

ωl(f, δ)p := sup
|h|≤δ

∥∥∥∆l
hf(·)

∥∥∥
p

the modulus of smoothness of function f ∈ Lp of order l ≥ 1, where

∆l
hf(x) := ∆h(∆l−1

h f(x)), ∆hf(x) := f(x+ h)− f(x).

The following relation between the modulus of the smoothness of the function f and its
Fourier coefficients was proved by Aljančić [1] and Potapov-Berisha [72].

Theorem 1.5. Let 1 < p <∞, l ∈ N. Let also f ∈ Lp([0, 2π]),

f(x) ∼
∞∑

n=1

(an cosnx+ bn sinnx),
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and {an}∞n=1, {bn}∞n=1 be non-increasing sequences. Then

ωl

(
f,

1
n

)
p

� 1
nl

(
n∑

k=1

k(l+1)p−2(ap
k + bpk)

) 1
p

+

( ∞∑
k=n+1

kp−2(ap
k + bpk)

) 1
p

.

The result of Theorem 1.5 was generalized in many papers, in particular, [39, 41, 51, 53,
70, 72, 85, 98, 102]. Moreover, this result and its generalizations play important role to
study characterizations and embedding theorems for smooth function classes.

1.6 Uniform convergence of sine and cosine series

Here we start with the well-known Chaundy-Jolliffee’s result [20] on the sine series

∞∑
n=1

an sinnx (1.10)

with monotone coefficients {an}∞n=1.

Theorem 1.6 ([20]). Let {an}∞n=1 be a non-negative non-increasing sequence. Then
series (1.10) converges uniformly on [0, 2π] if and only if nan → 0 as n→∞.

For the cosine series
∞∑

n=1

an cosnx, (1.11)

we highlight the following obvious fact.

Theorem 1.7. Let {an}∞n=1 be a non-negative sequence. Then series (1.11) converges

uniformly on [0, 2π] if and only if
∞∑

n=1
an converges.

Very recently, several generalizations of these theorems have been proved where different
extensions of monotonicity condition were considered (see, e.g., [33], [34], [53], [91], [94],
[104] and the references therein). Many generalizations involve consideration of general
monotone sequences. In particular, in the recent paper [37], the authors proved an
analogue of Theorem 1.6 for {an}∞n=1 ∈ GM(β2) without an assumption that {an}∞n=1

is a non-negative sequence.

1.7 Structure of thesis and main results

In Chapter 2, we generalize the Hardy-Littlewood-type theorem (Theorem 1.2) for se-
quences from class GM = GM(β2). The main results of Chapter 2 are Theorems 2.3
and 2.4.
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Theorem 2.3. Let f(x) ∼ a0
2 +

∞∑
n=1

(an cosnx + bn sinnx), and let sequences of real

numbers a = {an}∞n=0,b = {bn}∞n=1 ∈ GM . Then

‖f‖Lp,q([0,2π]) � ‖a‖lp′,q + ‖b‖lp′,q , 1 < p <∞, 1 ≤ q ≤ ∞. (1.12)

Theorem 2.4. Let f(x) ∼ a0
2 +

∞∑
n=1

(an cosnx + bn sinnx), and let sequences of real

numbers a = {an}∞n=0,b = {bn}∞n=1 ∈ GM . Then

‖f‖Lq
w[p,q]

([0,2π]) � ‖a‖lq
w[p′,q]

+ ‖b‖lq
w[p′,q]

, 1 < p <∞, 1 ≤ q ≤ ∞. (1.13)

The main novelty of Theorems 2.3 and 2.4 is that we do not assume that {an}∞n=0, {bn}∞n=1

are of constant sign. This allows us to consider a very rich class of sequences.

Section 2.4 provide us some needed properties of GM(β2) and WM sequences, where

WM =

{an}∞n=1 : |an| ≤ C

γn∑
k=n

γ

|ak|
k

C > 0, γ > 1

 .

In Section 2.5, we prove the main results of this chapter.

In Chapter 3, we generalize Aljančić’ and Potapov-Berisha’s result for sequences from
class GM = GM(β2), see [1, 72, 41, 91]. Our main result reads as follows.

Theorem 3.5. Let f(x) ∈ Lp([0, 2π]), 1 < p <∞,

f(x) ∼
∞∑

n=1

(an cosnx+ bn sinnx),

where {an}∞n=1, {bn}∞n=1 ∈ GM . Then, for any l ∈ N,

ωl

(
f,

1
n

)
p

� 1
nl

(
n∑

k=1

klp+p−2 (|ak|p + |bk|p)

) 1
p

+

( ∞∑
k=n

kp−2 (|ak|p + |bk|p)

) 1
p

.

In Sections 3.1 and 3.2, we give some historical remarks on relations between the smooth-
ness of a function and its Fourier coefficients. In Section 3.3, we formulate the main re-
sults. Section 3.4 provides us some needed properties of GM(β2) sequences for this chap-

ter. In Sections 3.5 and 3.6, we give upper estimates for the sums 1
nlp

n∑
k=1

|ak|pk(l+1)p−2

and
∞∑

k=n

|ak|pk(l+1)p−2, respectively, which will be used in the proof of Theorem 3.5. In

Section 3.7, we prove Theorem 3.5 and show that assertion of Theorem 3.5 is not true
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anymore for sequences from wider class WM , where

WM =

{an}∞n=1 : |an| ≤ C

∞∑
k=n

γ

|ak|
k

C > 0, γ > 1

 .

In Section 3.8, we give some corollaries of Theorem 3.5, in particular, we give character-
izations of norms of such functions in Besov spaces. As in Chapter 2 we do not assume
non-negativity or non-positivity of the Fourier coefficients.

In Chapter 4, we prove a multidimensional analogue of Boas-Sagher’s Theorem 1.4 for
anisotropic Lorentz and weighted Lebesgue spaces. The main results of this chapter are
the following theorems.

Theorem 4.2. Let 1 < p < ∞, 0 < q ≤ ∞ and f ∈ En. Then

‖f‖Lp,q(Rn) � ‖f̂‖Lp′,q(Rn).

Theorem 4.3. Let 1 < p < ∞, 1 ≤ q ≤ ∞ and f ∈ En. Then

‖f‖Lq
w[p,q]

(Rn) � ‖f̂‖Lq

w[p′,q]
(Rn).

Here, p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn) are n-dimensional vectors, En is a set of
monotone in each variable functions on Rn. By Lp,q(Rn) and Lq

w[p,q](R
n) we denote the

multidimensional anisotropic Lorentz and weighted Lebesgue spaces, respectively. The
definitions of these spaces can be found in Section 4.2. In Section 4.3, we formulate our
main results. Sections 4.4 and 4.5 are devoted to some auxiliary results. In Section 4.6,
we prove Theorems 4.2 and 4.3. Note that the main results of this chapter were proved
in [64].

In Chapter 5, we obtain generalizatons of Theorems 1.6 and 1.7. We consider a class of
general monotone sequences GM(β) with

βn =
1
n
Fn(ã),

where ã = {ãn}∞n=1, ãn =
2n∑

k=n

|ak|, and {Fn}∞n=1 is a sequence of admissible functionals

defined on the set of sequences (see the definition in Section 5.1).

The main results of this chapter are the following theorems.

Theorem 5.2. Let {Fn}∞n=1 be admissible. Let also {an}∞n=1 ∈ GM(β), where βn =
1
nFn(ã) and ã is a bounded sequence. Then the following conditions are equivalent:

(1) the series
∞∑

n=1
an sinnx converges uniformly on [0, 2π];
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(2) lim
n→∞

nan = 0;

(3) lim
n→∞

ãn = 0.

Theorem 5.3. Let {an}∞n=1 ∈ GM(β), where βn = 1
nFn(ã) with admissible {Fn}∞n=1

and bounded ã. Then the series
∞∑

n=1
an cosnx converges uniformly on [0, 2π] if and only

if the series
∞∑

n=1
an converges.

Along with these problems, in Chapter 5, we study the rate of convergence of partial
sums of series (1.10) and (1.11) in terms of growing properties of their coefficients.
Denote by g(x) and f(x) the sums of (1.10) and (1.11) series, respectively.

Theorem 5.5. Let {an}∞n=1 ∈ GM(β), where βn = 1
n

γn∑
k=n

γ

|ak|. Then, for 0 < α ≤ 1,

‖f − Sn(f)‖C[0,2π] = o

(
1
nα

)
⇐⇒ an = o

(
1

nα+1

)
.

‖g − Sn(g)‖C[0,2π] = o

(
1
nα

)
⇐⇒ an = o

(
1

nα+1

)
.

Theorem 5.6. Let {an}∞n=1 ∈ GM(β), where βn = 1
n

γn∑
k=n

γ

|ak|. Then, for 0 < α ≤ 1,

‖f − Sn(f)‖C[0,2π] = O

(
1
nα

)
⇐⇒ an = O

(
1

nα+1

)
.

‖g − Sn(g)‖C[0,2π] = O

(
1
nα

)
⇐⇒ an = O

(
1

nα+1

)
.

As corollaries of Theorem 5.6 we obtain necessary and sufficient conditions for function
to be in the Lipschitz space Lip α in terms of the rate of convergence of partial Fourier
sums. In Sections 5.2 and 5.3, we formulate and prove the main results of Chapter 5,
respectively. In Section 5.4, we give some examples of general monotone sequences. In
particular, it is shown that Theorem 5.2 extends results from the paper [37]. In Section
5.5, we show that Theorem 5.2 does not hold without assumption on the boundedness
of sequence {ãn}∞n=1. The main results of this chapter were proved in [30].





Chapter 2

Integrability theorems for the

trigonometric series with general

monotone coefficients

In this chapter, we consider the class of general monotone sequences GM(β) with

βn =
γn∑

k=n
γ

|ak|
k
, γ > 1.

For convenience, throughout this chapter, we denote this class by GM .

2.1 Historical remarks

Let f be an integrable 2π-periodic function with the Fourier series

∞∑
n=1

(an cosnx+ bn sinnx).

Let us start with the following well-known Pitt’s inequality (see [71, 84]) written in the
setting of the weighted Lebesgue spaces Lq

w[p,q] as follows

‖a‖lq
w[p′,q]

+ ‖b‖lq
w[p′,q]

. ‖f‖Lq
w[p,q]

([0,2π]),

where
1 < p ≤ q ≤ p′.

11
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Note that the case q = p′ corresponds to the Hausdorff–Young inequality (see [105, Ch.
XII, §2]) ( ∞∑

n=1

(
|an|p

′
+ |bn|p

′
)) 1

p′

. ‖f‖Lp([0,2π]), 1 < p ≤ 2 (2.1)

Moreover, the case q = p corresponds to the Hardy–Littlewood inequality (see [105, Ch.
XII, §3]). ( ∞∑

n=1

np−2 (|an|p + |bn|p)

) 1
p

. ‖f‖Lp([0,2π]), 1 < p ≤ 2. (2.2)

Recall that for monotone sequences {an}∞n=1, {bn}∞n=1 Hardy and Littlewood ([43], [105,
Ch. XII, §6]) proved the equivalence

( ∞∑
n=1

np−2 (|an|p + |bn|p)

) 1
p

� ‖f‖Lp([0,2π]), 1 < p <∞. (2.3)

Results of these type are of great importance in analysis since they provide a simple way
to calculate the Lp norm of a function. We only mention the papers [41, 76, 82], where
one can find applications of Hardy–Littlewood’s equivalence in approximation theory,
harmonic analysis, and functional analysis.

The equivalence (2.3) was generalized in [34] for general monotone sequences. In [34],
Dyachenko and Tikhonov considered weighted Lebesgue spaces. We rewrite their results
in terms of weighted Lebesgue spaces Lq

w[p,q].

Theorem 2.1 ([34, Theorems 4.2 and 4.3]). Let f(x) ∼
∞∑

n=1
(an cosnx+bn sinnx), where

{an}∞n=1, {bn}∞n=1 ∈ GM are non-negative sequences. Then

‖f‖Lq
w[p,q]

([0,2π]) � ‖a‖lq
w[p′,q]

+ ‖b‖lq
w[p′,q]

, 1 < p <∞, 1 ≤ q <∞.

Various generalizations of Hardy-Littlewood theorem in the setting of the weighted
Lebesgue spaces can be found in [4, 27, 32, 33, 54, 89, 91, 103].

Now we consider some results related to the Lorentz spaces. Note that the estimates
(2.1) and (2.2) in the case when 1 < p < 2 follows from the general Hausdorff-Young
inequality given by

‖a‖lp′,q + ‖b‖lp′,q . ‖f‖Lp,q([0,2π]), 1 < p < 2, 0 < q ≤ ∞; (2.4)

see, e.g., [75]. As was mentioned in Section 1.3, for monotone sequences {an}∞n=1, {bn}∞n=1

Sagher [76] proved the following equivalence

‖a‖lp′,q + ‖b‖lp′,q � ‖f‖Lp,q([0,2π]), 1 < p <∞, 0 < q ≤ ∞. (2.5)
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Recently, Grigoriev, Sagher, and Savage [42] generalized equivalence (2.5) for GM se-
quences. For given 0 ≤ α < 2π, 0 ≤ β < π

2 , let us denote

Sα,β = {reiϕ : |ϕ− α| ≤ β, r ≥ 0}. (2.6)

Theorem 2.2 ([42]). Let h(x) ∼
∞∑

n=0
cne

inx, where sequence of complex numbers c =

{cn}∞n=0 ∈ GM such that, for any n ≥ 0, cn ∈ Sα,β for some 0 ≤ α < 2π, 0 ≤ β < π
2 .

Then
‖h‖Lp,q([0,2π]) � ‖c‖lp′,q , 1 < p <∞, 1 ≤ q ≤ ∞. (2.7)

Other generalizations of Hardy-Littlewood theorem in the setting of the Lorentz spaces
obtained in [16, 29, 31, 42, 68, 69, 76, 81].

2.2 Main results

The main results of this chapter are Hardy-Littlewood theorems for functions with gen-
eral monotone coefficients.

Theorem 2.3. Let f(x) ∼ a0
2 +

∞∑
n=1

(an cosnx + bn sinnx), and let sequences of real

numbers {an}∞n=0, {bn}∞n=1 ∈ GM . Then

‖f‖Lp,q([0,2π]) � ‖a‖lp′,q + ‖b‖lp′,q , 1 < p <∞, 1 ≤ q ≤ ∞. (2.8)

Theorem 2.4. Let f(x) ∼ a0
2 +

∞∑
n=1

(an cosnx + bn sinnx), and let sequences of real

numbers {an}∞n=0, {bn}∞n=1 ∈ GM . Then

‖f‖Lq
w[p,q]

([0,2π]) � ‖a‖lq
w[p′,q]

+ ‖b‖lq
w[p′,q]

, 1 < p <∞, 1 ≤ q ≤ ∞. (2.9)

The main novelty of Theorems 2.3 and 2.4 is that we do not assume additional condi-
tions on {an}∞n=0, {bn}∞n=1 except general monotonicity as in the previous study. This
allows us to consider a rich function class, for which the Hardy–Littlewood–Sagher type
equivalences are valid.

Theorems 2.3 and 2.4 along with Lemma 2.3 below imply the following corollary.

Corollary 2.1. Let f(x) ∼ a0
2 +

∞∑
n=1

(an cosnx + bn sinnx), and let sequences of real

numbers {an}∞n=0, {bn}∞n=1 ∈ GM . Then, for any 1 < p <∞ and 1 ≤ q ≤ ∞,

‖f‖Lp,q([0,2π]) � ‖f‖Lq
w[p,q]

([0,2π]) � ‖a‖lq
w[p′,q]

+ ‖b‖lq
w[p′,q]

� ‖a‖lp′,q + ‖b‖lp′,q .
(2.10)
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Remark 2.1. Note that, for any 0 ≤ β < π
2 , the set S0,β (see Definition 2.6) contains a

positive half-line R+, i.e., relation (2.7) holds for h(x) ∼
∞∑

n=0
cne

inx with {cn}∞n=0 ∈ GM ,

cn ≥ 0. On the other hand, for any 0 ≤ α < 2π and 0 ≤ β < π
2 , the set Sα,β does not

cover a real line R.

Remark 2.2. Theorem 2.4 was proved for non-negative sequences {an}∞n=0, {bn}∞n=1 ∈
GM in [103] for 1 < q <∞ and in [34] for 1 ≤ q <∞.

Throughout this chapter, we fix constants C > 0 and γ > 1 from the definition of GM
sequences. All constants in this chapter may depend only on C, γ, p, and q.

2.3 Pitt-type inequalities involving averages of Fourier co-

efficients

Recall that Pitt’s inequality for a function f(x) ∼ a0
2 +

∞∑
n=1

(an cosnx+ bn sinnx) in the

setting of the weighted Lebesgue spaces Lq
w[p,q] reads as follows

‖a‖lq
w[p′,q]

+ ‖b‖lq
w[p′,q]

. ‖f‖Lq
w[p,q]

,

where
1 < p ≤ q ≤ p′;

see [71, 84].

The condition 1 < p ≤ q ≤ p′ is sharp, see, e.g., [34]. In this section we will extend
Pitt’s inequality for the case 1 < p < ∞ and 1 ≤ q ≤ ∞ with the help of averages of
Fourier coefficients. We start with the following known result.

Lemma 2.1 ([77, Theorem 2.4]). Let 1 < p < ∞, 0 < q ≤ ∞ and let {an}∞n=1 be the
sequence of Fourier coefficients of an integrable function f with respect to {sinnx}∞n=1,

or {cosnx}∞n=1. Then, for σn(a) := 1
n

n∑
k=1

ak, we have

‖m(σn(a))‖lp′,q . ‖f‖Lp,q([0,2π]), (2.11)

where m(σn) := sup
k≥n

|σk|.

Remark 2.3. A stronger inequality than (2.11) was proved by Nursultanov in [68, The-
orem 3] for p > 2 in setting of the net spaces [68, 69].

An analogue of Lemma 2.1 for weighted Lebesgue spaces is written as follows.
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Lemma 2.2. Let 1 < p <∞, 1 ≤ q ≤ ∞ and let {an}∞n=1 be Fourier coefficients of an
integrable function f with respect to {sinnx}∞n=1, or {cosnx}∞n=1. Then, for σn(a) :=
1
n

n∑
k=1

ak, we have

‖m(σn(a))‖lq
w[p′,q]

. ‖f‖Lq
w[p,q]

([0,2π]), (2.12)

where m(σn) := sup
k≥n

|σk|.

We establish Lemma 2.2 following ideas from [77, Theorems 2.4 and 3.1] and using
interpolation methods. Let us recall some notions. Let (A0, A1) be a compatible couple
of quasi-normed spaces and

K(t, a) = K(t, a;A0, A1) = inf
a=a0+a1

(‖a0‖A0 + t‖a1‖A1), a ∈ A0 +A1

be the Peetre K-functional ([11]).

The space (A0, A1)θ,q, 0 < θ < 1, consists of all elements a ∈ A0 + A1 for which the
functional

‖a‖(A0,A1)θ,q
=


(∞∫

0

(t−θK(t, a))q dt
t

) 1
q

, 0 < q <∞;

sup
0<t<∞

t−θK(t, a), q = ∞,

is finite.

Recall that if (A0, A1) and (B0, B1) are compatible couples of quasi-normed spaces, and a
quasi-linear operator T : Ai → Bi, i = 0, 1 is bounded, then T : (A0, A1)θ,q → (B0, B1)θ,q

is bounded for any 0 < θ < 1 and 0 < q ≤ ∞.

Proof of Lemma 2.2. We only present the proof for the sine series. For the cosine series
and, consequently for the general trigonometric series, Lemma 2.2 follows from the
boundedness of the Hilbert operator in the weighted Lebesgue spaces. We first establish
the weak inequality

‖m(σn(a))‖ls′,∞ . ‖f‖Lτ
w[s,τ ]

([0,2π]), 1 < s <∞, 1 ≤ τ ≤ ∞. (2.13)

Let 1 < s <∞. Using simple calculations, we obtain

σn(a) =
1
n

n∑
k=1

ak =
1
n

n∑
k=1

∫ 2π

0
f(x) sin kxdx

=
2
n

n∑
k=1

∫ π

0
f(x) sin kxdx =

2
n

∫ π

0
f(x)

(
n∑

k=1

sin kx

)
dx

=
∫ π

0
f(x)

cos x
2 − cos

(
n+ 1

2

)
x

n sin x
2

dx

=
∫ π

0
f(x)

(
cos x

2 (1− cosnx)
n sin x

2

+
sinnx
n

)
dx.

(2.14)
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Assume first that 1 < τ ≤ ∞. Then Hölder’s inequality yields

|σn(a)| ≤
∫ π

0
|f(x)|

∣∣∣∣cos x
2 (1− cosnx)
n sin x

2

+
sinnx
n

∣∣∣∣ dx
=
∫ π

0
x

1
s
− 1

τ |f(x)|x
1
s′−

1
τ ′

∣∣∣∣cos x
2 (1− cosnx)
n sin x

2

+
sinnx
n

∣∣∣∣ dx
≤ ‖f‖Lτ

w[s,τ ]

(∫ π

0
x

τ ′
s′ −1

∣∣∣∣cos x
2 (1− cosnx)
n sin x

2

+
sinnx
n

∣∣∣∣τ ′ dx
) 1

τ ′

.

(2.15)

Now we estimate the integral on the right-hand side as follows

I :=
∫ π

0
x

τ ′
s′ −1

∣∣∣∣cos x
2 (1− cosnx)
n sin x

2

+
sinnx
n

∣∣∣∣τ ′ dx
≤ 2τ ′−1

∫ π

0
x

τ ′
s′ −1

((
1− cosnx
n sin x

2

)τ ′

+
(

1
n

)τ ′
)
dx

≤ 2τ ′−1 s
′

τ ′
π

τ ′
s′

(
1
n

)τ ′

+ 2τ ′−1

∫ π

0
x

τ ′
s′ −1

(
1− cosnx
n sin x

2

)τ ′

dx.

Using the inequality sin x
2 ≥

x
π , x ∈ [0, π], and substituting nx on y in the last integral,

we obtain

I .

(
1
n

)τ ′

+
∫ π

0
x

τ ′
s′ −1

(
1− cosnx
n sin x

2

)τ ′

dx

≤
(

1
n

)τ ′

+ πτ ′
∫ π

0
x

τ ′
s′ −1

(
1− cosnx

nx

)τ ′

dx

=
(

1
n

)τ ′

+ πτ ′
∫ nπ

0

(y
n

) τ ′
s′ −1

(
1− cos y

y

)τ ′ dy

n
.

(2.16)

It follows from estimates (2.15) and (2.16) that

|σn(a)| .

((
1
n

)τ ′

+
∫ nπ

0

(y
n

) τ ′
s′ −1

(
1− cos y

y

)τ ′ dy

n

) 1
τ ′

‖f‖Lτ
w[s,τ ]

≤

 1
n

+
1

n
1
s′

(∫ ∞

0
y

τ ′
s′ −1

(
1− cos y

y

)τ ′

dy

) 1
τ ′
 ‖f‖Lτ

w[s,τ ]

. n−
1
s′ ‖f‖Lτ

w[s,τ ]
.

(2.17)

Let now τ = 1. Taking into account (2.14), we have
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|σn(a)| ≤
∫ π

0
|f(x)|

∣∣∣∣cos x
2 (1− cosnx)
n sin x

2

+
sinnx
n

∣∣∣∣ dx
=
∫ π

0
x

1
s
−1|f(x)|x

1
s′

∣∣∣∣cos x
2 (1− cosnx)
n sin x

2

+
sinnx
n

∣∣∣∣ dx
≤ ‖f‖L1

w[s,1]
sup

x∈[0,π]
x

1
s′

∣∣∣∣cos x
2 (1− cosnx)
n sin x

2

+
sinnx
n

∣∣∣∣ .
Consider the function

H(x) := x
1
s′

cos x
2 (1− cosnx)
n sin x

2

.

If 0 < x ≤ 1
n , then

|H(x)| ≤ 1

n
1
s′

∣∣∣∣∣2 sin2 nx
2

n sin x
2

∣∣∣∣∣ ≤ 1

n
1
s′

2nx
2

nx
π

= πn−
1
s′ .

If 1
n < x < π, then

|H(x)| ≤ x
1
s′

2
n sin x

2

≤ x
1
s′

1
nx

π

=
π

n

1

x1− 1
s′
<
π

n
n1− 1

s′ = πn−
1
s′ .

The last two estimates immediately imply that

|σn(a)| ≤ ‖f‖L1
w[s,1]

(
sup

x∈[0,π]
|H(x)|+ sup

x∈[0,π]
x

1
s′

∣∣∣∣sinnxn

∣∣∣∣
)

≤ ‖f‖L1
w[s,1]

(
πn−

1
s′ + π

1
s′ n−1

)
≤ 2πn−

1
s′ ‖f‖L1

w[s,1]
.

(2.18)

Using (2.17) and (2.18) and the monotonicity of {m(σn(a))}∞n=1, we arrive at (2.13). In
other words, the operator Tf = m(σn) satisfies

T : Lτ
w[s,τ ] → ls′,∞, 1 < s <∞, 1 ≤ τ ≤ ∞.

Let now 1 < p <∞ and 1 ≤ q ≤ ∞. Then there exist p0, p1 such that p0 < p < p1 and
therefore, there exists θ ∈ (0, 1) such that 1

p = 1−θ
p0

+ θ
p1

. Above arguments yield that

T : Lq
w[p0,q] → lp′0,∞,

T : Lq
w[p1,q] → lp′1,∞.

Interpolating we obtain that

T : (Lq
w[p0,q], L

q
w[p1,q])θ,q → (lp′0,∞, lp′1,∞)θ,q.
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It remains to apply Stein-Weiss’ and Marcinkiewicz’ interpolation theorems(see [11, Ch.
V]).

2.4 Properties of general and weak monotone sequences

Let us start with the following definition of weak monotone sequences (see [61, 96]).

Definition 2.1. A sequence of complex numbers {an}∞n=1 is called weak monotone, writ-
ten {an}∞n=1 ∈WM , if there exist constants C > 0 and λ > 1 such that, for any n ≥ 1,

|an| ≤ C

λn∑
k=n

λ

|ak|
k
. (2.19)

It is easy to see that the inequality (1.3) imply that GM ⊂ WM . We will use the
following property of the weak monotone sequences.

Lemma 2.3 ([17, Theorem 3], [42, Theorem 3.11]). Let {an}∞n=1 ∈WM . Then, for all
1 < p <∞, 1 ≤ q ≤ ∞ and for p = q = ∞, we have

‖a‖lp,q � ‖a‖lq
w[p,q]

. (2.20)

Now we discuss several important notions related to GM sequences obtained in [35].
Without loss of generality, in the definition of general monotone sequences we may
assume that γ = 2ν , where ν is a natural number. Let {an}∞n=1 ∈ GM . Denote for any
n > 2ν

An := max
2n≤k≤2n+1

|ak|

and
Bn := max

2n−2ν≤k≤2n+2ν
|ak|.

The following concept was introduced in [35].

Definition 2.2. Let {an}∞n=1 ∈ GM . We say that a non-negative integer number n is
good, if either n ≤ 2ν or

Bn ≤ 24νAn.

The rest of non-negative integer numbers we call bad.

Remark 2.4. For given C > 0 and ν ∈ N, there exists sequence {an}∞n=1 ∈ GM =
GM(C, ν) such that the set of good numbers of {an}∞n=1 is finite. For example, for the
sequence {2−n}∞n=1 the inequality Bn ≤ 24νAn does not hold for any n ≥ 4ν.

We set
Mn :=

{
k ∈ [2n−ν , 2n+ν ] : |ak| >

An

8C22ν

}
,
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M+
n := {k ∈Mn : ak > 0} and M−

n := Mn \M+
n .

Lemma 2.4 ([35, Lemma 2.2]). Let a vanishing sequence {an}∞n=1 ∈ GM . Denote
N0 := [log2(C3210ν+8)] + 1. Then, for any good n such that n ≥ N0, there exists an
interval [ln,mn] ⊆ [2n−ν , 2n+ν ] such that at least one of the following condition holds:
(i) for any k ∈ [ln,mn], we have ak ≥ 0 and

|M+
n ∩ [ln,mn]| ≥ 2n

C3215ν+8
;

(ii) for any k ∈ [ln,mn], we have ak ≤ 0 and

|M−
n ∩ [ln,mn]| ≥ 2n

C3215ν+8
.

Lemma 2.5. Let a vanishing sequence {an}∞n=1 be such that {an}∞n=1 ∈ GM . Then, for
any bad number r ∈ N, there exists either a set of integer numbers

r = ξ0 > ξ1 > ξ2 > . . . > ξs =: ξr,s (2.21)

or
r = ξ0 < ξ1 < ξ2 < . . . < ξs =: ξr,s (2.22)

such that ξ1, ξ2, . . . , ξs−1 are bad, ξr,s is good and

Ar < 2−4νAξ1 < 2−8νAξ2 < . . . < 2−4sνAξs ,

|ξi − ξi+1| ≤ 2ν, i = 0, . . . , s− 1.

The claim of Lemma 2.5 was proved in [35, Theorem 2.1]. For convenience, we sketch
the proof.

Proof of Lemma 2.5. Let r be a bad number. Then Ar < 2−4νBr. Note that there exists
an integer number ξ such that Br = Aξ and −2ν ≤ ξ − r ≤ 2ν − 1. Set

ξ1 := min{ξ : −2ν ≤ ξ − r ≤ 2ν − 1, Br = Aξ}.

Assume first that ξ1 < r. Then either ξ1 is a good number or there exists an integer
number ξ such that −2ν ≤ ξ − ξ1 < 2ν − 1 and

Aξ1 < 2−4νBξ1 = 2−4νAξ.

Set
ξ2 := min{ξ : −2ν ≤ ξ − ξ1 < 2ν − 1, Bξ1 = Aξ}.

Since ξ1 < r, it follows that

[2ξ1 , 2ξ1+2ν ] ⊂ [2r−2ν , 2r+2ν ].
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Therefore, for any k ∈ [2ξ1 , 2ξ1+2ν ] ∩ Z, we have |ak| ≤ Aξ1 = Br. If ξ2 > ξ1, then
[2ξ2 , 2ξ2+1]∩Z ⊂ [2ξ1 , 2ξ1+2ν ]∩Z. On the other hand, we have Aξ2 > Aξ1 = Br, arriving
at contradiction. Hence, ξ2 can not be greater than ξ1, i.e., ξ2 < ξ1.

Continuing this procedure, we arrive at a finite sequence (since {ξj} is the decreasing
sequence)

r = ξ0 > ξ1 > . . . > ξs−1 > ξs,

where the numbers ξ0, ξ1, . . . , ξs−1 are bad, and the number ξs is good. Moreover,
ξj − ξj+1 ≤ 2ν and Aξj

< 2−4νAξj+1
for any 0 ≤ j ≤ s− 1.

Let now ξ1 > r. Then either ξ1 is a good number, or there exists a number ξ2 > ξ1 such
that ξ2 − ξ1 ≤ 2ν − 1 and Aξ1 < 2−4νAξ2 . Continuing this procedure and taking into
account the fact that the sequence {an}∞n=1 converges to 0, we obtain a finite sequence
of numbers

r = ξ0 < ξ1 < . . . < ξs−1 < ξs,

where the numbers ξ0, ξ1, . . . , ξs−1 are bad, and the number ξs is good. Moreover, for
any 0 ≤ j ≤ s− 1 the inequalities ξj+1 − ξj ≤ 2ν hold and Aξj

< 2−4νAξj+1
.

Remark 2.5. From the proof of Lemma 2.5 it follows that, for any bad number r, we
can construct a sequence of numbers like (2.21) or (2.22) uniquely. In particular, for
any bad number r, the good number ξr,s from (2.21) or (2.22) may be chosen uniquely.
Therefore, for any good number n we can construct two sets of bad numbers Q1

n and Q2
n

as follows.

• Q1
n is a set of bad numbers r such that (2.21) holds with ξr,s = n;

• Q2
n is a set of bad numbers r such that (2.22) holds with ξr,s = n.

The number s will be called the length of the bad number r. Note that Qi
n ∩Q

j
m = ∅ for

any good numbers n 6= m and for any i, j = 1, 2. Denote by G the set of good numbers
of sequence {an}∞n=1. Then we have

N0 = G
⊔(⊔

n∈G

Q1
n

)⊔(⊔
n∈G

Q2
n

)
. (2.23)

Remark 2.6. Let us discuss the case when a sequence {an}∞n=1 is such that the set of
good numbers is finite. In this case, for any bad number r greater than the last good
number, only the case (2.21) is possible. Moreover, the set Q2

n is finite for any good
number n (in particular, Q2

n might be empty).

Remark 2.7. We note that

1. for any number n ∈ G, each of the sets Q1
n and Q2

n contain not more than 2ν bad
numbers of length 1, not more than (2ν)2 bad numbers of length 2, etc;
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2. for any r ∈ Q1
n of length s, the inequalities

n < r ≤ n+ 2sν and Ar < 2−4sνAn

hold;

3. for any r ∈ Q2
n of length s, the inequalities

n− 2sν ≤ r < n and Ar < 2−4sνAn

hold.

2.5 Proofs of main results

Proof of Theorem 2.3. We give the proof for functions

f(x) ∼
∞∑

n=1

an cosnx.

The general case follows from the boundedness of the Hilbert operator in the Lorentz
spaces.

Part ” & ”. First, we consider the case of the sequence {an}∞n=1 such that there exist
good numbers n ≥ N0, where N0 is given by Lemma 2.4. We divide the proof into two
cases: q <∞ and q = ∞.

A. Let q <∞. By Lemma 2.3, it is sufficient to prove the inequality

‖f‖Lp,q & ‖a‖lq
w[p′,q]

.

Applying Lemma 2.1, we obtain

‖f‖q
Lp,q

& ‖m(σn(a))‖q
lp′,q

=
∞∑

n=1

n
q
p′−1

sup
k≥n

1
k

∣∣∣∣∣∣
k∑

j=1

aj

∣∣∣∣∣∣
q

�
∞∑

n=0

2n q
p′

 sup
k≥2n

1
k

∣∣∣∣∣∣
k∑

j=1

aj

∣∣∣∣∣∣
q

=
∞∑

n=N0

2
(n−N0)q

p′

 sup
k≥2n−N0

1
k

∣∣∣∣∣∣
k∑

j=1

aj

∣∣∣∣∣∣
q

�
∞∑

n=N0

2
nq
p′

 sup
k≥2n−N0

1
k

∣∣∣∣∣∣
k∑

j=1

aj

∣∣∣∣∣∣
q

=:
∞∑

n=N0

Pn.

(2.24)

Let us denote

Wn :=
2n+1−1∑
k=2n

k
q
p′−1|ak|q.
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Taking into account (2.23), we have

‖a‖q
lq
w[p′,q]

=
∞∑

n=1

n
q
p′−1|an|q =

∞∑
n=0

2n+1−1∑
k=2n

k
q
p′−1|ak|q =

∞∑
n=0

Wn

≤
∑

n<N0

Wn +
∑
n∈G
n≥N0

Wn +
∑
n∈G

∑
v∈Q1

n

Wv +
∑
n∈G

∑
v∈Q2

n

Wv

=: J1 + J2 + J3 + J4.

(2.25)

Now we show the estimates Ji . ‖f‖q
Lp,q

, i = 1, 2, 3, 4.

Step 1A. The estimate of J2. Let n be a good number such that n ≥ N0. Without
loss of generality, we can assume that condition (i) of Lemma 2.4 is valid. Since for
integers ln,mn from Lemma 2.4 the inequalities 2n+ν ≥ mn > ln−1 ≥ 2n−ν−1 > 2n−N0

hold, we derive

Pn = 2n q
p′

 sup
k≥2n−N0

1
k

∣∣∣∣∣∣
k∑

j=1

aj

∣∣∣∣∣∣
q

≥ 2n q
p′−1

 1
ln − 1

∣∣∣∣∣∣
ln−1∑
j=1

aj

∣∣∣∣∣∣
q

+ 2n q
p′−1

 1
mn

∣∣∣∣∣∣
mn∑
j=1

aj

∣∣∣∣∣∣
q

≥ 2n q
p′−1

 1
2n+ν

∣∣∣∣∣∣
ln−1∑
j=1

aj

∣∣∣∣∣∣
q

+

 1
2n+ν

∣∣∣∣∣∣
mn∑
j=1

aj

∣∣∣∣∣∣
q

≥ 2−(ν+1)q+n q
p′

 1
2n

∣∣∣∣∣∣
mn∑

j=ln

aj

∣∣∣∣∣∣
q

.

Lemma 2.4 implies

Pn & 2n q
p′

 1
2n

mn∑
j=ln

aj

q

≥ 2n q
p′

 1
2n

∑
j∈[ln,mn]∩M+

n

aj

q

≥ 2n q
p′

(
1
2n

An

8C22ν

2n

C3215ν+8

)q

≥ 1
C4q2(17ν+11)q

2n q
p′

1
2n

2n+1−1∑
k=2n

|ak|q &
2n+1−1∑
k=2n

k
q
p′−1|ak|q = Wn.

Hence, using (2.24), we obtain

J2 =
∑
n∈G
n≥N0

Wn .
∑
n∈G
n≥N0

Pn ≤ ‖f‖q
Lp,q

.
(2.26)
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Step 2A. The estimate of J1. Using Hölder’s inequality, we estimate

J1 =
∑

n<N0

2n+1−1∑
k=2n

k
q
p′−1|ak|q =

2N0−1∑
n=1

n
q
p′−1|an|q

.
2N0−1∑
n=1

n
q
p′−1

(∫ 2π

0
|f(x)|dx

)q

.
2N0−1∑
n=1

n
q
p′−1‖f‖q

Lp,q
. ‖f‖q

Lp,q
.

(2.27)

Note that in the last inequality inequality depend only on p, q, C, and ν.

Step 3A. The estimate of J3. Let n ∈ G and let r ∈ Q1
n be a bad number of length

s. Then, by the definition of the set Q1
n (see Remark 2.7) we have r ≤ n + 2sν and

Ar ≤ 2−4sνAn. Therefore,

Wr =
2r+1−1∑
k=2r

k
q
p′−1|ak|q . Aq

r2
r q

p′ ≤ 2−4sνqAq
n2(n+2sν) q

p′ . 2−2sνqAq
n2n q

p′ . (2.28)

Assume that n ≥ N0 and condition (i) of Lemma 2.4 is valid. Then Lemma 2.4 yields

Wr . 2−2sνqAq
n2n q

p′ ≤ 2−2sνq2n q
p′

 8C22ν

|[ln,mn] ∩M+
n |

∑
j∈[ln,mn]∩M+

n

aj

q

≤ 2−2sνq2n q
p′

C4217ν+11

2n

mn∑
j=ln

aj

q

. 2−2sνq2n q
p′

 1
2n

∣∣∣∣∣∣
mn∑
j=1

aj

∣∣∣∣∣∣+ 1
2n

∣∣∣∣∣∣
ln−1∑
j=1

aj

∣∣∣∣∣∣
q

.

Taking into account that 2n+ν ≥ mn > ln − 1 ≥ 2n−ν − 1 > 2n−N0 , we derive

Wr . 2−2sνq2n q
p′

 1
2n

∣∣∣∣∣∣
mn∑
j=1

aj

∣∣∣∣∣∣+ 1
2n

∣∣∣∣∣∣
ln−1∑
j=1

aj

∣∣∣∣∣∣
q

≤ 2(ν+1)q−12−2sνq2n q
p′

 1
mn

∣∣∣∣∣∣
mn∑
j=1

aj

∣∣∣∣∣∣
q

+

 1
ln − 1

∣∣∣∣∣∣
ln−1∑
j=1

aj

∣∣∣∣∣∣
q

≤ 2(ν+1)q2−2sνq2n q
p′

 sup
k≥2n−N0

1
k

∣∣∣∣∣∣
k∑

j=1

aj

∣∣∣∣∣∣
q

= 2(ν+1)q2−2sνqPn.

(2.29)

Let now n < N0. Then from (2.28) by using Hölder’s inequality, we establish

Wr . 2−2sνqAq
n2n q

p′ . 2−2sνq2n q
p′ ‖f‖q

Lp,q
. (2.30)
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Recall that for any good number n the set Q1
n contains not more than 2ν bad numbers

of length 1, not more than (2ν)2 bad numbers of length 2, etc. It follows that (2.29)
and (2.30) imply

J3 =
∑
n∈G

∑
r∈Q1

n

Wr =
∑
n∈G
n<N0

∑
r∈Q1

n

Wr +
∑
n∈G
n≥N0

∑
r∈Q1

n

Wr

. ‖f‖q
Lp,q

∑
n∈G
n<N0

2n q
p′

∑
r∈Q1

n

2−2sνq

+
∑
n∈G
n≥N0

Pn

∑
r∈Q1

n

2−2sνq


≤ ‖f‖q

Lp,q

∑
n∈G
n<N0

2n q
p′

( ∞∑
s=1

(2ν)s2−2sνq

)
+
∑
n∈G
n≥N0

Pn

( ∞∑
s=1

(2ν)s2−4sνq

)
.

Hence, using (2.24), we obtain

J3 . ‖f‖q
Lp,q

∑
n∈G
n<N0

2n q
p′ +

∑
n∈G
n≥N0

Pn .
(
2N0

q
p′ + 1

)
‖f‖q

Lp,q
. ‖f‖q

Lp,q
.

(2.31)

Step 4A. The estimate of J4. Using the same arguments as in the previous step, we
estimate

J4 . ‖f‖q
Lp,q

. (2.32)

Combining estimates (2.26), (2.27), (2.31) and (2.32), we finally obtain

‖a‖q
lq
w[p′,q]

. J1 + J2 + J3 + J4 . ‖f‖q
Lp,q

.

B. Let q = ∞. Recall that N0 is given by Lemma 2.4. Lemma 2.1 implies

‖f‖Lp,∞ & sup
n≥1

n
1
p′ sup

k≥n

1
k

∣∣∣∣∣∣
k∑

j=1

aj

∣∣∣∣∣∣ = sup
n≥0

sup
2n≤k≤2n+1−1

k
1
p′ sup

l≥k

1
l

∣∣∣∣∣∣
l∑

j=1

aj

∣∣∣∣∣∣
� sup

n≥0
2n 1

p′ sup
k≥2n

1
k

∣∣∣∣∣∣
k∑

j=1

aj

∣∣∣∣∣∣ = sup
n≥N0

2(n−N0) 1
p′ sup

k≥2n−N0

1
k

∣∣∣∣∣∣
k∑

j=1

aj

∣∣∣∣∣∣
� sup

n≥N0

2n 1
p′ sup

k≥2n−N0

1
k

∣∣∣∣∣∣
k∑

j=1

aj

∣∣∣∣∣∣ =: sup
n≥N0

P̃n.

Setting
W̃n := max

2n≤k≤2n+1−1
k

1
p′ |ak|,

we obtain
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‖a‖l∞
w(p′,∞)

= sup
n≥1

n
1
p′ |an| = sup

n≥0
max

2n≤k≤2n+1−1
k

1
p′ |ak| = sup

n≥0
W̃n

= sup

max
n<N0

W̃n, sup
n∈G
n≥N0

W̃n, sup
n∈G

sup
r∈Q1

n

W̃r, sup
n∈G

sup
r∈Q2

n

W̃r

 .

As in case A we divide the proof into four steps.

Step 1B. The estimate of sup
n∈G
n≥N0

W̃n. Let n ≥ N0 be a good number. Without loss of

generality, we can assume that condition (i) of Lemma 2.4 is valid. Since 2n+ν ≥ mn >

ln − 1 ≥ 2n−ν − 1 > 2n−N0 , we have

P̃n = 2n 1
p′ sup

k≥2n−N0

1
k

∣∣∣∣∣∣
k∑

j=1

aj

∣∣∣∣∣∣
≥ 2n 1

p′−1 1
ln − 1

∣∣∣∣∣∣
ln−1∑
j=1

aj

∣∣∣∣∣∣+ 2n 1
p′−1 1

mn

∣∣∣∣∣∣
mn∑
j=1

aj

∣∣∣∣∣∣
≥ 2n 1

p′−1 1
2n+ν

∣∣∣∣∣∣
ln−1∑
j=1

aj

∣∣∣∣∣∣+ 2n 1
p′−1 1

2n+ν

∣∣∣∣∣∣
mn∑
j=1

aj

∣∣∣∣∣∣ & 2n 1
p′

1
2n

∣∣∣∣∣∣
mn∑

j=ln

aj

∣∣∣∣∣∣ .
Using Lemma 2.4, we derive

P̃n & 2n 1
p′

1
2n

mn∑
j=ln

aj ≥ 2n 1
p′

1
2n

∑
j∈[ln,mn]∩M+

n

aj ≥ 2n 1
p′

1
2n

An

8C22ν

2n

C3215ν+8

& 2n 1
p′An & W̃n.

Therefore,
sup
n∈G
n≥N0

W̃n . sup
n∈G
n≥N0

P̃n ≤ sup
n∈G

P̃n . ‖f‖Lp′,∞ . (2.33)

Step 2B. The estimate of max
n<N0

W̃n. It is easy to see that

max
n<N0

W̃n = max
n<N0

max
2n≤k≤2n+1−1

k
1
p′ |ak| ≤ 2(N0+1) 1

p′

∫ 2π

0
|f(x)|dx

= 2(N0+1) 1
p′

∫ 2π

0
x
− 1

p′ x
1
p′ |f(x)|dx

≤ 2(N0+1) 1
p′ ‖f‖Lp′,∞

∫ 2π

0
x
− 1

p′ dx . ‖f‖Lp′,∞ .

(2.34)
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Step 3B. The estimate of sup
n∈G

sup
r∈Q1

n

W̃r. Let n ∈ G and let r ∈ Q1
n be a bad number

of length s. By Remark 2.7, we have r ≤ n+ 2sν and Ar ≤ 2−4sνAn, and therefore

W̃r = max
2r≤k≤2r+1−1

k
1
p′ |ak| ≤ Ar2

(r+1) 1
p′ ≤ 2−4sνAn2(n+2ν+1) 1

p′ . (2.35)

Suppose that n ≥ N0. The last inequality and Lemma 2.4 give

W̃r . 2−4sνAn2n 1
p′ . 2−4sν2n 1

p′

 1
|[ln,mn]|

∣∣∣∣∣∣
mn∑

j=ln

aj

∣∣∣∣∣∣


. 2−4sν2n 1
p′

 sup
k≥2n−N0

1
k

∣∣∣∣∣∣
k∑

j=1

aj

∣∣∣∣∣∣
 = 2−4sνP̃n ≤ ‖f‖Lp,∞ .

(2.36)

If n < N0, then (2.35) yields

W̃r . 2−4sνAn2n 1
p′ . 2−4sν2n 1

p′ ‖f‖Lp,∞ . ‖f‖Lp,∞ . (2.37)

Inequalities (2.36) and (2.37) imply

sup
n∈G

sup
r∈Q1

n

W̃r . ‖f‖Lp,∞ . (2.38)

Step 4B. The estimate of sup
n∈G

sup
r∈Q2

n

W̃r. Similarly to the argument in step 3B we

estimate
sup
n∈G

sup
r∈Q2

n

W̃r . ‖f‖Lp,∞ . (2.39)

Combining inequalities (2.33), (2.34), (2.38), and (2.39), we derive that

‖a‖l∞
w(p′,∞)

. sup

max
n<N0

W̃n, sup
n∈G
n≥N0

W̃n, sup
n∈G

sup
r∈Q1

n

W̃r, sup
n∈G

sup
r∈Q2

n

W̃r

 . ‖f‖Lp,∞ .

Thus, in both case q < ∞ and q = ∞ the inequality ”&” has been proved when the
sequence {an}∞n=1 contains good numbers n ≥ N0. In the case when all good numbers
of {an}∞n=1 are less than N0 we can repeat the proof skipping Steps 1A and 1B.

Part ”.”. It is known [37, Theorem 2.1] that for any {an}∞n=1 ∈ GM there exists B > 0

such that the sequences

bn = B
n

γn∑
k=n

γ

|ak|

 and {cn = Bbn − an} are non-negative and

belong to GM .
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Let {an}∞n=1 ∈ lp′,q. Then by Hardy’s inequality and by [42, Theorem 8.1] we obtain

‖a‖lp′,q & ‖a‖lq
w[p′,q]

& ‖b‖lq
w[p′,q]

+ ‖c‖lq
w[p′,q]

& ‖b‖lp′,q + ‖c‖lp′,q & ‖g‖Lp,q + ‖h‖Lp,q & ‖f‖Lp,q ,

where g(x) =
∞∑

n=1
bn cosnx and h(x) =

∞∑
n=1

cn cosnx.

Proof of Theorem 2.4. The proof of the estimate ” & ” is similar to the proof of part
”&” of Theorem 2.3 using Lemma 2.2 in place of Lemma 2.1.

Regarding the estimate ”.”, if q < ∞, this part follows from [34]. Here we remark
that in spite of the fact that Theorems 4.2 and 4.3 in [34] were proved for non-negative
Fourier coefficients the proof of this part is also valid for general sequences. If q = ∞,
the estimate ”.” was proved in [35, Theorem 5.1].

Remark 2.8. Under conditions of Theorem 2.3 we have

‖f‖Lp,q([0,2π]) � ‖f‖Lq
w[p,q]

([0,2π]) �

( ∞∑
n=0

2n q
p′Aq

n

) 1
q

.





Chapter 3

Smoothness of functions and the

Fourier coefficients

3.1 Behaviour of the Fourier coefficients of functions from

Lp. The general case

Let f be an integrable 2π-periodic function with the Fourier series

∞∑
n=1

(an cosnx+ bn sinnx). (3.1)

Recall that (see, e.g., [25])

ωl(f, δ)p := sup
|h|≤δ

∥∥∥∆l
hf(·)

∥∥∥
p

is the modulus of smoothness of the function f ∈ Lp of order l ≥ 1, where

∆l
hf(x) := ∆h(∆l−1

h f(x)), ∆hf(x) := f(x+ h)− f(x).

First we write simple estimates for the modulus of smoothness of the function f ∈ Lp,
1 ≤ p ≤ ∞ in terms of its Fourier coefficients:

|an|+ |bn| . ωl

(
f,

1
n

)
p

.
1
nl

n∑
k=1

kl(|ak|+ |bk|)

+
∞∑

k=n+1

(|ak|+ |bk|).

The left-hand side inequality is the well-known Lebesgue estimate for p = 1 (see [5]),
the right-hand side inequality follows from the Fourier representation of ∆l

hf in the case
of p = ∞ (see, for example, [90]).

29
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By Lip (α, p) we denote the Lipschitz class:

Lip (α, p) := {f ∈ Lp([0, 2π]) : ω(f, δ)p = O(δα)},

where
ω(f, δ)p := ω1(f, δ)p = sup

|h|≤δ
‖∆hf(·)‖p

is the Lp-modulus of continuity of f . In the middle of the last century, there were found
necessary and sufficient conditions for belonging of a function f to the Lipschitz class.
In particular, Lorentz [62] showed that for 2 ≤ p ≤ ∞ and 0 < α < 1 the condition

∞∑
k=n

(
|ak|p

′
+ |bk|p

′
)

= O

(
1
nαp′

)
, (3.2)

implies f ∈ Lip (α, p). Note that condition (3.2) for any positive α is equivalent to the
condition

2n∑
k=n

(
|ak|p

′
+ |bk|p

′
)

= O

(
1
nαp′

)
.

For 1 < p ≤ 2, condition (3.2) is necessary for f ∈ Lip (α, p), see [97].

Gorbachev and Tikhonov [41, Theorem 2.1] obtained a more detailed relationship be-
tween the modulus of smoothness of a function f ∈ Lp and its Fourier coefficients.

Theorem 3.1. Let (3.1) be the Fourier series of a function f ∈ Lp([0, 2π]).

(A) Let 1 < p ≤ 2. Then, for p ≤ q ≤ p′, we have

1
nl

(
n∑

k=1

k

(
l+1− 1

p
− 1

q

)
q(|ak|q + |bk|q)

) 1
q

+

( ∞∑
k=n+1

k

(
1− 1

p
− 1

q

)
q(|ak|q + |bk|q)

) 1
q

. ωl

(
f,

1
n

)
p

.

(3.3)

(B) Let 2 ≤ p <∞ and

( ∞∑
n=1

n

(
1− 1

p
− 1

q

)
q(|an|q + |bn|q)

) 1
q

<∞,

where p′ ≤ q ≤ p. Then

1
nl

(
n∑

k=1

k

(
l+1− 1

p
− 1

q

)
q(|ak|q + |bk|q)

) 1
q

+

( ∞∑
k=n+1

k

(
1− 1

p
− 1

q

)
q(|ak|q + |bk|q)

) 1
q

& ωl

(
f,

1
n

)
p

.

(3.4)
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The part (A) of this theorem recently was generalized in [24]. Note that Theorem 3.1
is sharp with respect to conditions on p and q. Moreover, for 0 < α < l, Theorem 3.1
implies the following fact. The condition ωl (f, δ)p = O(δα) is sufficient (in case of p ≤ 2)
and necessary (in case of p ≥ 2), for condition (3.2). In other words, in this case the
choice of the parameter q = p′ is the best possible. However, in some cases this is not
true anymore. For instance, if

|an| = |bn| � n−l−1/p′ ln−1/p n,

then, for q = p, Theorem 3.1 gives

ωl

(
f,

1
n

)
p

.
(ln lnn)1/p

nl

in case of p ≥ 2 and the inverse inequality in case of p ≤ 2. For other values of q the
esimates are weaker.

3.2 Behaviour of the Fourier coefficients of functions from

Lp with additional conditions

Assuming some additional conditions (monotonicity, general monotonicity) on the co-
efficients of series (3.1) it is possible to fully obtain interrelation between smoothness
of a function and behaviour of its Fourier coefficients. In particular, Konyushkov [48],
showed that for functions with monotone Fourier coefficients condition (3.2) is equivalent
to the condition f ∈ Lip (α, p).

Theorem 3.2. Let 1 < p < ∞ and 0 < α < 1. Let also (3.1) be the Fourier series of
function f ∈ Lp([0, 2π]), and {an}∞n=1, {bn}∞n=1 be non-increasing sequences. Then the
following conditions are equivalent:

(i) f ∈ Lip (α, p);

(ii) |an|, |bn| = O
(
n

1
p
−α−1

)
;

(iii)
∞∑

k=n

(|ak|p
′
+ |bk|p

′
) = O

(
n−αp′

)
.

Later on it was shown that it is possible to characterize the behaviour of the modulus
of smothness in terms of the Fourier coefficients of the function.

Theorem 3.3 ([1, 72]). Under conditions of Theorem 3.2 the following equivalence

ωl

(
f,

1
n

)
p

� 1
nl

(
n∑

k=1

k(l+1)p−2(ap
k + bpk)

) 1
p

+

( ∞∑
k=n+1

kp−2(ap
k + bpk)

) 1
p
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holds.

Similar problems were considered in the papers [2, 3]. Such results are very important
to characterize some smooth function spaces, see, e.g., [41, 73, 80, 86, 87, 91, 92, 93]. In
particular, Askey [3] proved the following result.

Theorem 3.4. Let 0 < α < 2, 1 < p < ∞, 1 ≤ q ≤ ∞. Let also
∞∑

n=1
an cosnx be the

Fourier series of a function f ∈ Lp([0, 2π]), and {an}∞n=1 be a non-increasing sequence.
Then ( ∞∑

n=1

aq
nn

q
(
α+1− 1

p

)
−1

) 1
q

<∞

if and only if

(∫ π

0

[∫ π

0

∣∣∣∣f(x+ t)− 2f(x) + f(x− t)
tα

∣∣∣∣p dx]
q
p dt

t

) 1
q

<∞. (3.5)

Note that the condition (3.5) is equivalent to the condition f ∈ Bα
p,q, where the Besov

space Bα
p,q is defined as follows.

Definition 3.1. Let 1 ≤ p ≤ ∞ and τ, r > 0. The Besov space Br
p,τ ([0, 2π]) is a set of

functions f ∈ Lp([0, 2π]) such that

‖f‖Br
p,τ

:= ‖f‖Lp +
(∫ 1

0

(
ωl(f, t)p

tr

)τ dt

t

) 1
τ

<∞,

where l > r.

Note that Theorems 3.3 and 3.4 were generalized in various papers (see [39, 41, 51, 55,
70, 72, 85, 91, 102]), where the authors weaken the monotonicity condition on Fourier
coefficients.

3.3 Main results

In this chapter we consider the class of general monotone sequences GM(β) with

βn =
γn∑

k=n
γ

|ak|
k
, γ > 1.

For convenience, throughout this chapter, we denote this class by GM . The main result
of this chapter is the following theorem.
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Theorem 3.5. Let f(x) ∈ Lp([0, 2π]), 1 < p <∞,

f(x) ∼
∞∑

n=1

(an cosnx+ bn sinnx),

and {an}∞n=1, {bn}∞n=1 ∈ GM . Then, for any l ∈ N,

ωl

(
f,

1
n

)
p

� 1
nl

(
n∑

k=1

klp+p−2 (|ak|p + |bk|p)

) 1
p

+

( ∞∑
k=n

kp−2 (|ak|p + |bk|p)

) 1
p

.

(3.6)

Remark 3.1. It is sufficient to prove relation (3.6) for the functions

f(x) ∼
∞∑

n=1

an cosnx.

All auxiliary lemmas will be proved for the cosine Fourier series. The key estimates for
the proof of Theorem 3.5 will be obtained in Lemmas 3.6 and 3.7. For non-negative
general monotone sequences Theorem 3.5 follows from [41, 91].

Remark 3.2. All constants in the proof of Theorem 3.5 depend on p, l, C, and γ.

Remark 3.3. Note that similar results in L∞ were studied in [34, 92, 94].

It is natural to ask if one can further extend the monotonicity condition in order that
the results of Theorem 3.5 still hold. In this respect, we will show that if the sequences
{an}∞n=1, {bn}∞n=1 belong to the wider class of weak monotone sequences WM , where

WM =

{an}∞n=1 : |an| ≤ C
∞∑

k=n
γ

|ak|
k

C > 0, γ > 1

 ,

then Theorem 3.5 is not true any more. Note that GM ⊂ WM ⊂ WM . The fol-
lowing result, in particular, shows that relation (3.6) does not hold for weak monotone
sequences, and the best possible estimates are given by Theorem 3.1.

Theorem 3.6. Let l ∈ N.

(A) Let p > 2, then there exists a continuous function

f(x) ∼
∞∑

n=1

(an cosnx+ bn sinnx),

where {an}∞n=1, {bn}∞n=1 ∈WM , such that inequality (3.3) does not hold for any q > 0.
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(B) Let 1 < p < 2, then there exists a continuous function

f(x) ∼
∞∑

n=1

(an cosnx+ bn sinnx),

where {an}∞n=1, {bn}∞n=1 ∈WM , such that inequality (3.4) does not hold for any q > 0.

Note that all results of the chapter are valid for moduli of smoothness of fractional order
(l > 0). The importance of this remark follows, in particular, from consideration of
sharp Ul’yanov inequalities [82].

3.4 Auxiliary results for general monotone sequences

In the proof of the main results of this chapter we will use the same technique and
notation as in Chapter 2. Without loss of generality, we can assume in the definition of
the class GM that γ = 2ν , where ν is a natural number. For a given sequence {an}∞n=1,
let us denote:

An := max
2n≤k≤2n+1

|ak|;

Bn := max
2n−2ν≤k≤2n+2ν

|ak|;

Mn :=
{
k ∈ [2n−ν , 2n+ν ] : |ak| >

An

8C22ν

}
;

M+
n := {k ∈Mn : ak > 0}, and M−

n := Mn \M+
n .

Here we slightly modify the concepts of good and bad numbers (cf. Definition 2.2).

Definition 3.2. Let {an}∞n=1 ∈ GM . We say that a non-negative integer number n is
good, if either n ≤ 2ν or

Bn ≤ 24lνAn.

The rest of non-negative integer numbers we call bad.

The following result is a modified version of Lemma 2.4.

Lemma 3.1 ([35, Lemma 2.2]). Let a vanishing sequence {an}∞n=1 be such that {an}∞n=1 ∈
GM . Let N0 := [log2(C3210ν+8)]+1. Then, for any good n ≥ N0, there exists a segment
of integer numbers [ln,mn] ⊆ [2n−ν , 2n+ν ] such that one of the following two conditions
holds:

(i) for any k ∈ [ln,mn], we have ak ≥ 0 and

|M+
n ∩ [ln,mn]| ≥ 2n

C32(12l+6)ν+8
;
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(ii) for any k ∈ [ln,mn], we have ak ≤ 0 and

|M−
n ∩ [ln,mn]| ≥ 2n

C32(12l+6)ν+8
.

Let us denote

Is(x) :=
2s+1−1∑
k=2s

ak cos kx.

Then

I(l)
s (x) =

2s+1−1∑
k=2s

klak cos
(
kx+

lπ

2

)
.

Lemma 3.2. Let {an}∞n=1 ∈ GM and n ≥ N0 be a good number, where N0 is given by
Lemma 3.1. Then ∥∥∥∥∥

n+ν∑
s=n−ν

Is

∥∥∥∥∥
p

p

&
2n+ν∑

k=2n−ν

kp−2|ak|p.

Proof. Let n ≥ N0 be a good number. Without loss of generality, we can assume that
condition (i) of Lemma 3.1 holds, and we consider the sum

Qn(x) :=
mn∑

k=ln

ak cos kx.

Note that for any 0 ≤ x ≤ 1
2n+ν all terms of Qn(x) are non-negative. Using the inequality

cos t ≥ 3
2π t for any t ∈

[
0, π

3

]
and Lemma 3.1, we obtain, for any 0 ≤ x ≤ π

3
1

2n+ν ,

Qn(x) =
mn∑

k=ln

ak cos kx ≥ 3
2π
x

mn∑
k=ln

akk

≥ 3
2π
x

∑
k∈[ln,mn]∩M+

n

akk

≥ 3
2π
x2(n−ν) An

8C22ν

2n

C32(12l+6)ν+8

& 22nAnx.

Using the last inequality and the fact that ‖SM (f, ·)− SN (f, ·)‖p . ‖f‖p, we derive∥∥∥∥∥
n+ν∑

s=n−ν

Is

∥∥∥∥∥
p

p

& ‖Qn‖p
p ≥

∫ π
3

1
2n+ν

0
Qp

n(x)dx

& 22npAp
n

∫ π
3

1
2n+ν

0
xpdx & 2(p−1)nAp

n

&
2n+ν∑

k=2n−ν

kp−2|ak|p.
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Using the fact that {akk
δ} ∈ GM whenever {ak} ∈ GM , see [59], similarly to Lemma

3.2 one can obtain the following result.

Lemma 3.3. Let n ≥ N0 be a good number, where N0 is given by Lemma 3.1. Then∥∥∥∥∥
n+ν∑

s=n−ν

I(l)
s

∥∥∥∥∥
p

p

&
2n+ν∑

k=2n−ν

k(l+1)p−2|ak|p.

The following lemma is a slightly modified version of Lemma 2.5 from Chapter 2.

Lemma 3.4. Let a vanishing sequence {an}∞n=1 be such that {an}∞n=1 ∈ GM . Then, for
any bad number r ∈ N, there exists either a set of integer numbers

r = ξ0 < ξ1 < ξ2 < . . . < ξs =: ξr,s (3.7)

or
r = ξ0 > ξ1 > ξ2 > . . . > ξs =: ξr,s (3.8)

such that ξ1, ξ2, . . . , ξs−1 are bad, ξr,s is good and

Ar < 2−4lνAξ1 < 2−8lνAξ2 < . . . < 2−4lsνAξr,s ,

|ξi − ξi+1| ≤ 2ν, i = 0, . . . , s− 1.

Remark 3.4. Recall that the sets (3.7) and (3.8) from Lemma 3.4 are constructed for
any bad number r uniquely. In sequel, we say that sets (3.7) and (3.8) are increasing
and decreasing chains, respectively, of the number r. Recall that the number s is called
the length of the bad number r. Moreover, in this case, we will say that bad number r
transforms into the good number ξr,s.

We set

Pn :=
2n+1−1∑
k=2n

kp−2|ak|p, Pn,ν :=
2n+ν∑

k=2n−ν

kp−2|ak|p,

P̃n :=
2n+1−1∑
k=2n

k(l+1)p−2|ak|p, P̃n,ν :=
2n+ν∑

k=2n−ν

k(l+1)p−2|ak|p.

Lemma 3.5. Let n ≥ N0 be a good number and Rn be a set of bad numbers transforming
into n. Then ∑

r∈Rn

Pr . Pn,ν . (3.9)
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Moreover, if A is a subset of the set of good numbers such that min
n∈A

n ≥ N0, and B is
a set of bad numbers transforming only into the numbers from A. Then∑

r∈B

Pr .
∑
m∈A

Pm,ν . (3.10)

Expressions Pr and Pm,ν in the estimates (3.9) and (3.10) we can replace by P̃r and
P̃m,ν , respectively.

Proof. First we prove inequality (3.9). Divide the set Rn into two disjoint parts:

Rn = Q1
n

⊔
Q2

n,

where Q1
n is the set of bad numbers which transform into n with decreasing chain, and

Q2
n is the set of bad numbers which transform into n with increasing chain.

Consider the set Q1
n. Let r ∈ Q1

n be a bad number of length s. Then, by Lemma 3.4,
r ≤ n+ 2sν and Ar ≤ 2−4lsνAn. Therefore,

Pr =
2r+1−1∑
k=2r

|ak|pkp−2 . Ap
r2

r(p−1) ≤ 2−4lsνpAp
n2(n+2sν)(p−1)

. 2−2psνAp
n2n(p−1).

(3.11)

On the other hand, by Lemma 3.1, we derive

Pn,ν =
2n+ν∑

k=2n−ν

|ak|pkp−2 ≥
mn∑

k=ln

|ak|pkp−2

≥
∑

k∈[ln,mn]∩Mn

|ak|pkp−2 & Ap
n

∑
k∈[ln,mn]∩Mn

kp−2

& Ap
n2n(p−2) |[ln,mn] ∩Mn| & Ap

n2n(p−1).

(3.12)

Combining (3.11) and (3.12) for the bad number r ∈ Q1
n of length s = sr, we get

Pr . 2−2psrνPn,ν .

Note that the set Q1
n consists no more than 2ν bad numbers of length 1, no more than

(2ν)2 bad numbers of length 2, etc. Hence,

∑
r∈Q1

n

Pr . Pn,ν

∑
r∈Q1

n

2−2psrν ≤ Pn,ν

∞∑
s=1

(2ν)s2−2psν . Pn,ν , (3.13)

since
∞∑

s=1
(2ν)s2−2psν <∞.
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Similarly, we have that ∑
r∈Q2

n

Pr . Pn,ν . (3.14)

From (3.13) and (3.14) we obtain∑
r∈Rn

Pr =
∑

r∈Q1
n

Pr +
∑

r∈Q2
n

Pr . Pn,ν .

Second, we show inequality (3.10). We enumerate the elements of the set A: A =
{m1,m2, . . . ,m|A|}, where |A| denotes the cardinality1 of set A. We divide the set B
into the following disjoint sets:

B = Rm1

⊔
Rm2

⊔
. . .
⊔
Rm|A| ,

where Rmi is a subset of bad numbers of the set B which transform into mi, i =
1, 2, . . . , |A|. Then from inequality (3.9) it follows that

∑
r∈B

Pr =
|A|∑
i=1

∑
r∈Rmi

Pr .
|A|∑
i=1

Pmi,ν =
∑
m∈A

Pm,ν .

3.5 Upper estimate for n−lp
n∑
k=1

|ak|pk(l+1)p−2

Lemma 3.6. Let p > 2, f(x) ∈ Lp([0, 2π]), f(x) ∼
∞∑

n=1
an cosnx, and {an}∞n=1 ∈ GM .

Then
1
nlp

n∑
k=1

|ak|pk(l+1)p−2 .
1
nlp

∥∥∥S(l)
2ν+2n

∥∥∥p

p
+ ‖f − S[2−ν−2n]‖p

p, (3.15)

where Sk(x) :=
k∑

s=1
as cos sx is the k-th partial sum of Fourier series of the function f .

Proof. Choose N such that 2N−1 ≤ n < 2N . Then

1
nlp

n∑
k=1

|ak|pk(l+1)p−2 ≤ 1
2(N−1)lp

2N−1∑
k=1

|ak|pk(l+1)p−2

.
1

2Nlp

N∑
r=0

2r+1−1∑
k=2r

|ak|pk(l+1)p−2 =
1

2Nlp

N∑
r=0

P̃r.

(3.16)

1We admit cases when |A| = ∞.
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A. Let first N > N0. Let us denote by G the set of good numbers. Divide segment
[0, N ] ∩ Z into six parts:

[0, N ] ∩ Z = ([0, N0) ∩ Z)
⊔
GN

⊔
B1

N

⊔
B2

N

⊔
B3

N

⊔
B4

N ,

where

1. GN := G ∩ [N0, N ] is a set of good numbers r ∈ [N0, N ];

2. B1
N is a set of bad numbers r ∈ [N0, N ] with increasing chain such that ξr,s ≤ N

(see the definition of ξr,s in Remark 3.4), and, hence, the following inequality holds:

N0 ≤ r < ξr,s ≤ N ;

3. B2
N is a set of bad numbers r ∈ [N0, N ] with increasing chain such that ξr,s > N ,

and, hence, the following inequality holds:

N0 ≤ r ≤ N < ξr,s;

4. B3
N is a set of bad numbers r ∈ [N0, N ] with decreasing chain such that ξr,s ≥ N0,

and, hence, the following inequality holds:

N0 ≤ ξr,s < r ≤ N ;

5. B4
N is a set of bad numbers r ∈ [N0, N ] with decreasing chain such that ξr,s < N0,

and, hence, the following inequality holds:

ξr,s < N0 ≤ r ≤ N.

Therefore,

1
2Nlp

N∑
r=0

P̃r =
1

2Nlp

∑
r∈[0,N0−1]tB4

N

P̃r +
1

2Nlp

∑
r∈GNtB1

NtB3
N

P̃r

+
1

2Nlp

∑
r∈B2

N

P̃r =: J1 + J2 + J3.

(3.17)

Step 1. The estimate of J1.

Take r ∈ B4
N . There exists a good number ξr,s such that

Ar < 2−4lsνAξr,s

and
ξr,s ≤ N0 ≤ r ≤ ξr,s + 2sν.
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Then

P̃r =
2r+1−1∑
k=2r

k(l+1)p−2|ak|p . Ap
r2

r((l+1)p−1)

≤ 2−4lsνpAp
ξr,s

2(ξr,s+2sν)((l+1)p−1) ≤ 2−2sνAp
ξr,s

2ξr,s((l+1)p−1)

< 2−2sνAp
ξr,s

2N0((l+1)p−1) . 2−2sνAp
ξr,s
.

Repeating arguments from the proof of Lemma 3.5, since the series
∞∑

s=1
(2ν)s2−2sν con-

verges, we get∑
r∈B4

N

P̃r .
∑
ξ∈G
ξ≤N0

Ap
ξ ≤ N0 max

1≤k≤2N0+1
|ak|p ≤ N0 max

1≤k≤2N0+1
|klak|p.

(3.18)

Consider now r ∈ [0, N0 − 1]. It is easy to obtain that

P̃r =
2r+1−1∑
k=2r

k(l+1)p−2|ak|p

≤ max
1≤k≤2N0+1

|klak|p
2N0−1∑
k=1

kp−2 . max
1≤k≤2N0+1

|klak|p.

Therefore,

N0−1∑
r=0

P̃r . max
1≤k≤2N0+1

|klak|p. (3.19)

Note that, for any k ≤ 2N0+1, the expression |klak| is an absolute value of the k-
th Fourier coefficient of the function S

(l)
2ν+2n

(x). Using inequalities (3.18), (3.19), and
Hölder inequality, we obtain

J1 =
1

2Nlp

∑
r∈[0,N0−1]tB4

N

P̃r

.
1

2Nlp
max

1≤k≤2N0+1
|klak|p .

1
nlp

∥∥∥S(l)
2ν+2n

∥∥∥p

p
.

(3.20)

Step 2. The estimate of J2. Since all bad numbers r ∈ B1
N tB3

N transform only into
good numbers m ∈ [N0, N ], then, by Lemma 3.5, we get

J2 =
1

2Nlp

∑
r∈GN

P̃r +
1

2Nlp

∑
r∈B1

NtB3
N

P̃r .
1

2Nlp

∑
m∈GN

P̃m,ν .
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Using Lemma 3.3, we derive

J2 .
1

2Nlp

∑
m∈GN

P̃m,ν .
1

2Nlp

∑
m∈GN

∥∥∥∥∥
m+ν∑

s=m−ν

I(l)
s

∥∥∥∥∥
p

p

≤ 1
2Nlp

N∑
m=ν

∥∥∥∥∥
m+ν∑

s=m−ν

I(l)
s

∥∥∥∥∥
p

p

.

(3.21)

Step 3. The estimate of J3. Let r ∈ B2
N , then there exists a good number ξr,s such

that
Ar < 2−4lsνAξr,s (3.22)

and
r < ξr,s ≤ r + 2sν ≤ N + 2sν. (3.23)

Then (3.22) and r < ξr,s imply

1
2Nlp

P̃r =
1

2Nlp

2r+1−1∑
k=2r

|ak|pk(l+1)p−2 .
1

2Nlp
Ap

r2
r((l+1)p−1)

≤ 1
2Nlp

2−4lsνpAp
ξr,s

2ξr,s((l+1)p−1).

(3.24)

To be definite, assume that condition (i) of Lemma 3.1 is valid. Using Lemma 3.1, from
inequality (3.24) we get

1
2Nlp

P̃r ≤
1

2Nlp
2−4lsνp2ξr,s((l+1)p−1)Ap

ξr,s

≤ 1
2Nlp

2−4lsνp2ξr,s((l+1)p−1) (8C22ν)p∣∣∣[lξr,s ,mξr,s ] ∩M+
ξr,s

∣∣∣
∑

k∈[lξr,s ,mξr,s ]∩M+
ξr,s

|ak|p

.
1

2Nlp
2−4lsνp2ξr,s((l+1)p−1) 1

2ξr,s

2ξr,s+ν∑
k=2ξr,s−ν

|ak|p

=
1

2Nlp
2−4lsνp2ξr,slp2ξr,s(p−2)

2ξr,s+ν∑
k=2ξr,s−ν

|ak|p

.
1

2Nlp
2−4lsνp2ξr,slp

2ξr,s+ν∑
k=2ξr,s−ν

|ak|pkp−2.

(3.25)
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Combining inequality (3.25) with the inequality ξr,s ≤ N + 2sν, we derive that

1
2Nlp

P̃r .
1

2Nlp
2−4lsνp2ξr,slp

2ξr,s+ν∑
k=2ξr,s−ν

|ak|pkp−2

= 2(ξr,s−N−2sν)lp2−2lsνp
2ξr,s+ν∑

k=2ξr,s−ν

|ak|pkp−2

≤ 2−2lsνp
2ξr,s+ν∑

k=2ξr,s−ν

|ak|pkp−2 = 2−2lsνpPξr,s,ν .

Thus, for any bad number r ∈ B2
N , we have

1
2Nlp

P̃r . 2−2lsνpPξr,s,ν .

Since
∞∑

s=1
(2ν)s2−2lsνp <∞, using similar arguments to those given in the proof of Lemma

3.5, we get ∑
r∈B2

N

1
2Nlp

P̃r .
∑
ξ∈G
ξ>N

Pξ,ν .

Hence, by Lemma 3.2,

J3 =
∑

r∈B2
N

1
2Nlp

P̃r .
∑
ξ∈G
ξ>N

Pξ,ν

.
∑
ξ∈G
ξ>N

∥∥∥∥∥∥
ξ+ν∑

k=ξ−ν

Ik

∥∥∥∥∥∥
p

p

≤
∞∑

ξ=N+1

∥∥∥∥∥∥
ξ+ν∑

k=ξ−ν

Ik

∥∥∥∥∥∥
p

p

.

(3.26)

Now we prove the estimate for the sum 1
2Nlp

N∑
r=0

P̃r. Applying (3.20), (3.21), and (3.26),

we write

1
2Nlp

N∑
r=0

P̃r = J1 + J2 + J3

.
1

2Nlp

N∑
m=ν

∥∥∥∥∥
m+ν∑

k=m−ν

I
(l)
k

∥∥∥∥∥
p

p

+
∞∑

ξ=N+1

∥∥∥∥∥∥
ξ+ν∑

k=ξ−ν

Ik

∥∥∥∥∥∥
p

p

+
1
nlp

∥∥∥S(l)
2νn

∥∥∥p

p
.

(3.27)
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Using Jensen’s inequality and the Littlewood-Paley theorem, we obtain that

N∑
m=ν

∥∥∥∥∥
m+ν∑

k=m−ν

I
(l)
k

∥∥∥∥∥
p

p

=
∫ 2π

0

N∑
m=ν

∣∣∣∣∣
m+ν∑

k=m−ν

I
(l)
k (x)

∣∣∣∣∣
p

dx

≤
∫ 2π

0

 N∑
m=ν

∣∣∣∣∣
m+ν∑

k=m−ν

I
(l)
k (x)

∣∣∣∣∣
2


p
2

dx

≤
∫ 2π

0

(
(2ν + 1)2

N+ν∑
k=0

∣∣∣I(l)
k (x)

∣∣∣2)
p
2

dx

.

∥∥∥∥∥∥
(

N+ν∑
k=0

∣∣∣I(l)
k

∣∣∣2)
1
2

∥∥∥∥∥∥
p

p

.
∥∥∥S(l)

2ν+2n

∥∥∥p

p
.

(3.28)

In a similar way, we get

∞∑
ξ=N+1

∥∥∥∥∥∥
ξ+ν∑

k=ξ−ν

Ik

∥∥∥∥∥∥
p

p

=
∫ 2π

0

∞∑
ξ=N+1

∣∣∣∣∣∣
ξ+ν∑

k=ξ−ν

Ik(x)

∣∣∣∣∣∣
p

dx

≤
∫ 2π

0

 ∞∑
ξ=N+1

∣∣∣∣∣∣
ξ+ν∑

k=ξ−ν

Ik(x)

∣∣∣∣∣∣
2

p
2

dx

.

∥∥∥∥∥∥
( ∞∑

k=N+1−ν

|Ik|2
) 1

2

∥∥∥∥∥∥
p

p

. ‖f − S[2−ν−2n]‖p
p.

(3.29)

Combining inequalities (3.27)–(3.29), we complete the proof of Lemma 3.6 in the case
when N > N0.

B. Suppose now that N ≤ N0. Then

1
2Nlp

N∑
r=0

P̃r =
1

2Nlp

N∑
r=0

2r+1−1∑
k=2r

k(l+1)p−2|ak|p

.
1

2Nlp
max

1≤k≤2N+1
|klak|p.

Since for any 1 ≤ k ≤ 2N+1 the expression |klak| is an absolute value of the k-th Fourier
coefficient of the function S(l)

2ν+2n
(x), applying Hölder’s inequality, we derive

1
2Nlp

N∑
r=0

P̃r .
1

2Nlp
max

1≤k≤2N+1
|klak|p .

1
nlp

∥∥∥S(l)
2ν+2n

∥∥∥p

p
. (3.30)
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3.6 Upper estimate for
∞∑
k=n

|ak|pkp−2

Lemma 3.7. Let p > 2, f(x) ∈ Lp([0, 2π]), f(x) ∼
∞∑

n=1
an cosnx, and {an}∞n=1 ∈ GM .

Then

∞∑
k=n

|ak|pkp−2 .
1
nlp

∥∥∥S(l)
2ν+2n

∥∥∥p

p
+ ‖f − S[2−ν−2n]‖p

p. (3.31)

Proof. Let n ∈ N. Choose N such that 2N ≤ n < 2N+1. Then

∞∑
k=n

|ak|pkp−2 ≤
∞∑

k=2N

|ak|pkp−2

=
∞∑

r=N

2r+1−1∑
k=2r

|ak|pkp−2 =
∞∑

r=N

Pr.

(3.32)

A. Suppose that N < N0. Divide the set [N,∞) ∩ Z into six sets as follows.

[N,∞) ∩ Z = ([N,N0) ∩ Z)
⊔
TN

⊔
K1

N

⊔
K2

N

⊔
K3

N

⊔
K4

N ,

where

1. TN := G ∩ [N0,∞) is a set of good numbers r ∈ [N0,∞);

2. K1
N is a set of bad numbers r ∈ [N0,∞) with increasing chain, and, hence, the

following inequality holds:
N < N0 ≤ r < ξr,s;

3. K2
N is a set of bad numbers r ∈ [N0,∞) with decreasing chain such that ξr,s ≥ N0,

and, hence, the following inequality holds:

N < N0 ≤ ξr,s < r;

4. K3
N is a set of bad numbers r ∈ [N0,∞) with decreasing chain such that N <

ξr,s < N0, and, hence, the following inequality holds:

N < ξr,s < N0 ≤ r;

5. K4
N is a set of bad numbers r ∈ [N0,∞) with decreasing chain such that ξr,s ≤ N ,

and, hence, the following inequality holds:

ξr,s ≤ N < N0 ≤ r.
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Therefore,

∞∑
r=N

Pr =
∑

r∈[N,N0−1]tK3
N

Pr +
∑

r∈TNtK1
NtK2

N

Pr +
∑

r∈K4
N

Pr

=: Θ1 + Θ2 + Θ3.

Step 1A. The estimate of Θ1. Let r ∈ K3
N , then there exists a good number ξr,s such

that
Ar < 2−4lsνAξr,s

and
r ≤ ξr,s + 2sν.

The last inequalities yield

Pr =
2r+1−1∑
k=2r

|ak|pkp−2 . Ap
r2

r(p−1) ≤ Ap
ξr,s

2−4lsνp2(ξr,s+2sν)(p−1)

≤ Ap
ξr,s

2−2lsνp2N0(p−1) . Ap
ξr,s

2−2lsνp.

Combining this with arguments from the proof of Lemma 3.5, we write∑
r∈K3

N

Pr .
∑
ξ∈G

N≤ξ<N0

Ap
ξ ≤ N0 max

2N≤k≤2N0+1
|ak|p . max

2N≤k≤2N0+1
|ak|p.

(3.33)

On the other hand, it is easy to get

N0−1∑
r=N

Pr =
N0−1∑
r=N

2r+1−1∑
k=2r

|ak|pkp−2 . max
2N≤k≤2N0

|ak|p. (3.34)

From estimates (3.33) and (3.34) we have

Θ1 =
N0−1∑
r=N

Pr +
∑

r∈K3
N

Pr . max
2N≤k≤2N0+1

|ak|p . ‖f − S[2−ν−2n]‖p
p. (3.35)

Step 2A. The estimate of Θ2. Since all bad numbers r ∈ K1
N tK2

N transform only
into good m ∈ [N0,∞), according to Lemma 3.5, we have

Θ2 =
∑

r∈TN

Pr +
∑

r∈K1
NtK2

N

Pr .
∑

m∈TN

Pm,ν .
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Now, by Lemma 3.2,

Θ2 .
∑

m∈TN

Pm,ν .
∑

m∈TN

∥∥∥∥∥
m+ν∑

k=m−ν

Ik

∥∥∥∥∥
p

p

≤
∞∑

m=N

∥∥∥∥∥
m+ν∑

k=m−ν

Ik

∥∥∥∥∥
p

p

. (3.36)

Step 3A. The estimate of Θ3. Let r ∈ K4
N , then there exists a good number ξr,s

such that
Ar < 2−4lsνAξr,s

and
r ≤ ξr,s + 2sν.

Then, using the last inequalities, we get

Pr =
2r+1−1∑
k=2r

|ak|pkp−2 . Ap
r2

r(p−1) ≤ Ap
ξr,s

2−4lsνp2(ξr,s+2sν)(p−1)

≤ Ap
ξr,s

2−2lsνp2N0(p−1) . Ap
ξr,s

2−2lsνp

≤ 2N0lp 1
2Nlp

Ap
ξr,s

2−2lsνp

.
1

2Nlp
Ap

ξr,s
2−2lsνp ≤ 2−2lsνp 1

2Nlp
max

2ξr,s≤k≤2ξr,s+1
|klak|p.

Repeating the arguments from the proof of Lemma 3.5, we obtain

∑
r∈K4

N

Pr .
∑
ξ∈G
ξ<N

1
2Nlp

max
2ξ≤k≤2ξ+1

|klak|p

≤ N0

2Nlp
max

1≤k≤2N+1
|klak|p .

1
2Nlp

max
1≤k≤2N+1

|klak|p.

Since, for any 1 ≤ k ≤ 2N+1, the expression |klak| is an absolute value of the k-th
Fourier coefficient of the function S(l)

2νn(x), we have

Θ3 =
∑

r∈K4
N

Pr .
1

2Nlp
max

1≤k≤2N+1
|klak|p .

1
nlp

∥∥∥S(l)
2ν+2n

∥∥∥p

p
. (3.37)

Now we estimate the sum
∞∑

r=N

Pr. From inequalities (3.35)–(3.37), we obtain that

∞∑
r=N

Pr = Θ1 + Θ2 + Θ3

.
∞∑

m=N

∥∥∥∥∥
m+ν∑

k=m−ν

Ik

∥∥∥∥∥
p

p

+ ‖f − S[2−ν−2n]‖p
p +

1
nlp

∥∥∥S(l)
2ν+2n

∥∥∥p

p
.
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In the same way as in the proof of inequality (3.28), we derive

∞∑
m=N

∥∥∥∥∥
m+ν∑

k=m−ν

Ik

∥∥∥∥∥
p

p

. ‖f − S[2−ν−2n]‖p
p.

This completes the proof of Lemma 3.7 in this case.

B. Suppose now that N ≥ N0. Divide set [N,∞) ∩ Z into five sets:

[N,∞) ∩ Z = TN

⊔
K1

N

⊔
K2

N

⊔
K3

N

⊔
K4

N ,

where

1. TN := G ∩ [N,∞) is a set of good numbers r ∈ [N,∞);

2. K1
N is a set of bad numbers r ∈ [N,∞) with increasing chain, and, hence, the

following inequality holds:
N0 ≤ N ≤ r < ξr,s;

3. K2
N is a set of bad numbers r ∈ [N,∞) with decreasing chain such that ξr,s ≥ N ,

and, hence, the following inequality holds:

N0 ≤ N ≤ ξr,s < r;

4. K3
N is a set of bad numbers r ∈ [N,∞) with decreasing chain such that N0 <

ξr,s < N , and, hence, the following inequality holds:

N0 < ξr,s < N ≤ r;

5. K4
N is a set of bad numbers r ∈ [N,∞) with decreasing chain such that ξr,s ≤ N0,

and, hence, the following inequality holds:

ξr,s ≤ N0 ≤ N ≤ r.

Therefore,

∞∑
r=N

Pr =
∑

r∈TNtK1
NtK2

n

Pr +
∑

r∈K3
N

Pr +
∑

r∈K4
N

Pr =: L1 + L2 + L3.

Step 1B. The estimate of L1. Similarly to the estimate of Θ2 from above (see Step
2A) we get

L1 =
∑

r∈TN

Pr +
∑

r∈K1
NtK2

N

Pr .
∞∑

r=N

∥∥∥∥∥
r+ν∑

k=r−ν

Ik

∥∥∥∥∥
p

p

. (3.38)
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Step 2B. The estimate of L2. Let r ∈ K3
N , then there exists a good number ξr,s such

that
Ar < 2−4lsνAξr,s (3.39)

and
r ≤ ξr,s + 2sν ≤ N + 2sν. (3.40)

Then (3.39) and the inequality r ≤ ξr,s + 2sν yield

Pr =
2r+1−1∑
k=2r

|ak|pkp−2 . Ap
r2

r(p−1) ≤ 2−4lsνpAp
ξr,s

2(ξr,s+2sν)(p−1). (3.41)

To be definite, suppose that condition (i) of Lemma 3.1 is valid. By Lemma 3.1 and
inequality (3.41), we obtain

Pr ≤ 2−4lsνp2(ξr,s+2sν)(p−1)Ap
ξr,s

≤ 2−4lsνp2(ξr,s+2sν)(p−1) (8C22ν)p∣∣∣[lξr,s ,mξr,s ] ∩M+
ξr,s

∣∣∣
∑

k∈[lξr,s ,mξr,s ]∩M+
ξr,s

|ak|p

. 2−4lsνp2(ξr,s+2sν)(p−1) 1
2ξr,s

2ξr,s+ν∑
k=2ξr,s−ν

|ak|p

. 2−2lsνp2−2sν2−ξr,slp
2ξr,s+ν∑

k=2ξr,s−ν

|ak|pk(l+1)p−2.

Since N ≤ ξr,s + 2sν, it follows that

Pr ≤ 2−2sν 1
2Nlp

2ξr,s+ν∑
k=2ξr,s−ν

|ak|pk(l+1)p−2 = 2−2sν 1
2Nlp

P̃ξr,s,ν .

Therefore, for any bad number r ∈ K3
N ,

Pr . 2−2sν 1
2Nlp

P̃ξr,s,ν .

In similar manner as in the proof of Lemma 3.5, we derive

∑
r∈K3

N

Pr .
1

2Nlp

∑
ξ∈G
ξ<N

P̃ξ,ν .
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Hence, by Lemma 3.2,

L2 =
∑

r∈K3
N

Pr .
1

2Nlp

∑
ξ∈G
ξ<N

P̃ξ,ν

.
1

2Nlp

∑
ξ∈G
ξ<N

∥∥∥∥∥∥
ξ+ν∑

k=ξ−ν

I
(l)
k

∥∥∥∥∥∥
p

p

≤ 1
2Nlp

N∑
ξ=ν

∥∥∥∥∥∥
ξ+ν∑

k=ξ−ν

I
(l)
k

∥∥∥∥∥∥
p

p

.

(3.42)

Step 3B. The estimate of L3. Let r ∈ K4
N , then there exists a good number ξr,s such

that
Ar < 2−4lsνAξr,s

and
N ≤ r ≤ ξr,s + 2sν.

Last two inequalities imply

Pr =
2r+1−1∑
k=2r

|ak|pkp−2 . Ap
r2

r(p−1) ≤ Ap
ξr,s

2−4lsνp2(ξr,s+2sν)(p−1)

≤ Ap
ξr,s

2−2lsνp2−2sν2N0(p−1) . Ap
ξr,s

2−2lsνp2−2sν

. 2−2lsνp2−2sν 1
2ξr,slp

max
2ξr,s≤k≤2ξr,s+1

|klak|p

≤ 2−2sν 1
2Nlp

max
2ξr,s≤k≤2ξr,s+1

|klak|p.

Using arguments from the proof of Lemma 3.5, we arrive at

L3 =
∑

r∈K4
N

Pr .
1

2Nlp

∑
ξ∈G
ξ<N0

max
2ξ≤k≤2ξ+1

|klak|p

≤ N0

2Nlp
max

1≤k≤2N+1
|klak|p .

1
2Nlp

max
1≤k≤2N+1

|klak|p

.
1
nlp

∥∥∥S(l)
2ν+2n

∥∥∥p

p
.

(3.43)

From inequalities (3.38), (3.42), and (3.43) it follows that

∞∑
r=N

Pr = L1 + L2 + L3

.
∞∑

r=N

∥∥∥∥∥
r+ν∑

k=r−ν

Ik

∥∥∥∥∥
p

p

+
1

2Nlp

N∑
ξ=ν

∥∥∥∥∥∥
ξ+ν∑

k=ξ−ν

I
(l)
k

∥∥∥∥∥∥
p

p

+
1
nlp

∥∥∥S(l)
2ν+2n

∥∥∥p

p
.

It remains to apply the Jensen inequality and the Littlewood-Paley theorem to first two
terms from the right-hand side of the last inequality.
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3.7 The proof of Theorems 3.5 and 3.6

Here we use the following realization theorem for the modulus of smoothness [26, 80]:

ωp
l

(
f,

1
n

)
p

� 1
nlp

∥∥∥S(l)
n

∥∥∥p

p
+ ‖f − Sn‖p

p , 1 < p <∞.

Proof of Theorem 3.5. Upper estimate .. The upper estimate follows from [41, Theo-
rem 6.1], where periodic functions with Fourier coefficients from a wider class GM1 ⊃
GM , where

GM1 =

{an}∞n=1 :
∞∑

k=n

|ak − ak+1| ≤ C
∞∑

k=n
γ

|ak|
k

C > 0, γ > 1

 ,

were considered. In spite of the fact that Theorem 6.1 from [41] is formulated for
non-negative Fourier coefficients, the proof of this part of the theorem is also true for
non-constant sign sequences.

Lower estimate &. Let p ≤ 2, then from the realization theorem for the modulus of
smoothness and the Hardy-Littlewood theorem on Fourier coefficients given by (2.2), we
obtain

ωp
l

(
f,

1
n

)
p

� 1
nlp

∥∥∥S(l)
n

∥∥∥p

p
+ ‖f − Sn‖p

p

&
1
nlp

n∑
k=1

k(l+1)p−2|ak|p +
∞∑

k=n

kp−2|ak|p.

Note that here we can also apply Theorem 3.1 in case of q = p.

Consider the case p > 2. By properties of the modulus of smoothness and Lemmas 3.6
and 3.7, we have

ωp
l

(
f,

1
n

)
p

� ωp
l

(
f,

1
2ν+2n

)
p

+ ωp
l

(
f,

1
[2−ν−2n]

)
p

&
1
nlp

∥∥∥S(l)
2ν+2n

∥∥∥p

p
+
∥∥f − S[2−ν−2n]

∥∥p

p

&
1
nlp

n∑
k=1

k(l+1)p−2|ak|p +
∞∑

k=n

kp−2|ak|p.
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Remark 3.5. In Theorem 3.5 we can assume that we deal with a trigonometric series
∞∑

n=1
(an cosnx+ bn sinnx) such that {an}∞n=1, {bn}∞n=1 ∈ GM , and

( ∞∑
k=n

kp−2 (|ak|p + |bk|p)

) 1
p

<∞.

In this case, the function f can be defined as corresponding an Lp-limit of the trigono-
metric polynomials.

Proof of Theorem 3.6. (A). We follow to proof of Theorem 4.2 from [35]. Let {εn}∞n=0

be Rudin-Shapiro’s sequence, for which the inequality∣∣∣∣∣
N∑

n=0

εne
int

∣∣∣∣∣ < 5
√
N + 1

holds for any t ∈ [0, 2π] and N = 0, 1, · · · .

In the paper [35] (see the proof of Theorem 4.2), it was proved that if an increasing on
(0, 1) function ϕ satisfies the condition

u∫
0

ϕ(t)
dt

t
= O(ϕ(u)) as u→ 0,

then the function

fϕ(x) =
∞∑

n=1

εnϕ(1/n)

n
1
2

sinnx

satisfies the condition

ωl(fϕ, δ)C . ϕ(δ) + δl

[1/δ]∑
k=1

kl−1ϕ(1/k).

Let us consider ϕ0(x) = xl. Then the corresponding function

fϕ0(x) =
∞∑

n=1

εn

nl+ 1
2

sinnx

is continuous and it satisfies
ωl

(
fϕ0 ,

1
n

)
C

.
lnn
nl

.

On the other hand, for p > 2, the Fourier coefficients of the function fϕ0 satisfy
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1
nl

(
n∑

k=1

k

(
l+1− 1

p
− 1

q

)
q|bk|q

) 1
q

+

( ∞∑
k=n+1

k

(
1− 1

p
− 1

q

)
q|bk|q

) 1
q

� n
1
2
− 1

p

nl
.

This shows that inequality (3.3) does not hold for any q > 0.

(B). Let us define a continuous function

g(x) =
∞∑

n=1

ηn

nl+ 1
2

(
cos
(
nx− πl

2

)
+ sin

(
nx− πl

2

))
,

where the sequence ηn = ±1 is such that the series

∞∑
n=1

ηn

n
1
2

(
cosnx+ sinnx

)
(3.44)

is not the Fourier series (see [105, Ch. V, (8.14)]). Note that the Fourier coefficients of
the function g, for 1 < p < 2 and any q > 0, satisfy the condition

1
nl

(
n∑

k=1

k

(
l+1− 1

p
− 1

q

)
q(|ak|+ |bk|)q

) 1
q

+

( ∞∑
k=n+1

k

(
1− 1

p
− 1

q

)
q(|ak|+ |bk|)q

) 1
q

� 1
nl
.

Therefore, inequality (3.4) implies ωl (f, δ)p = O(δl). This relation is equivalent to
f (l) ∈ Lp. This contradicts the fact that series (3.44) is not the Fourier series. Hence,
inequality (3.4) is not true for any q > 0.

3.8 Applications

In approximation theory, the following direct and inverse estimates are well known (see
[25, p. 210])

1
nl

(
n∑

ν=0

(ν + 1)τl−1Eτ
ν (f)p

) 1
τ

. ωl

(
f,

1
n

)
p

.
1
nl

(
n∑

ν=0

(ν + 1)ql−1Eq
ν(f)p

) 1
q

,

(3.45)
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where f ∈ Lp([0, 2π]), 1 < p < ∞, l, n ∈ N, q = min(2, p), τ = max(2, p), and En(f)p

is the best approximation in Lp of function f by trigonometric polynomials of degree n.
Note that inequalities (3.45) are equivalent (see [22]) to the relations

tl
(∫ 1

t
u−τl−1ωτ

l+1(f, u)p du

) 1
τ

. ωl(f, t)p

. tl
(∫ 1

t
u−ql−1ωq

l+1(f, u)p du

) 1
q

.

The following theorem provides a sharp relation between moduli of smoothness ωl(f, t)p

and ωl+1(f, t)p, and modulus of smoothness ωl(f, t)p and the best approximations Ek(f)p

for functions with general monotone Fourier coefficients.

Theorem 3.7. Let f ∈ Lp([0, 2π]), 1 < p <∞,

f(x) ∼
∞∑

n=1

(an cosnx+ bn sinnx),

and {an}∞n=1, {bn}∞n=1 ∈ GM . Then

ωl(f, t)p � tl
(∫ 1

t
u−lpωp

l+1(f, u)p
du

u

) 1
p

� tl

[1/t]∑
k=0

(k + 1)lp−1Ep
k(f)p

 1
p

, 0 < t <
1
2
.

Remark 3.6. The proof of Theorem 3.7 is similar to the proofs of Theorems 7.1 and
7.2 from [41] by using Theorem 3.5.

From Theorem 3.5 it is possible to get the following description of Besov spacesBr
p,τ ([0, 2π]),

cf. Definition 3.1.

Theorem 3.8. Let 1 < τ ≤ ∞, 1 < p ≤ τ . Let also f ∈ Lp([0, 2π]),

f(x) ∼
∞∑

n=1

(an cosnx+ bn sinnx)

and {an}∞n=1, {bn}∞n=1 ∈ GM . Then f ∈ Br
p,τ ([0, 2π]) if and only if

∞∑
n=1

n
rτ+τ− τ

p
−1(|an|τ + |bn|τ ) <∞, if 1 < τ <∞

and
sup

n
n

r+1− 1
p (|an|+ |bn|) <∞, if τ = ∞, 1 < p <∞.
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Corollary 3.1. Let 1 < p < q <∞. Let also f ∈ Lp([0, 2π]),

f(x) ∼
∞∑

n=1

(an cosnx+ bn sinnx)

and {an}∞n=1, {bn}∞n=1 ∈ GM . Then for r = 1
p −

1
q we have

f ∈ Br
p,q([0, 2π]) ⇐⇒ f ∈ Lq([0, 2π]).

Theorem 3.8 and Corollary 3.1 can be proved similarly to Theorem 7.3 and Corollary
7.2 from [41], respectively.

Remark 3.7. 1. If we consider a more restrictive condition in the definition of general
monotone sequences (see [91])

2n∑
k=n

|ak − ak+1| ≤ C|an|,

then Theorem 3.8 holds for any 1 < p <∞ and 0 < τ ≤ ∞.

2. Theorem 3.8 for l = 2, 0 < r < 2, and 1 < τ ≤ ∞ implies Theorem 3.4. In the case
when τ = ∞, l = 1, 0 < r < 1, and 1 < p <∞, Theorem 3.8 implies Theorem 3.2.

3. Note that results similar to Theorem 3.8 for different function classes (under more
restrictive monotonicity condition) were studied in [86, 87].



Chapter 4

Boas’ conjecture in anisotropic

spaces

4.1 Historical remarks

Let us start with some Fourier inequalities. For the Fourier transform given by

f̂(y) =
∫

R
f(x)e−ixydx,

the Hausdorff-Young-Riesz inequality reads as follows (see [11, Ch. I], [75]):

‖f̂‖Lp′,q(R) . ‖f‖Lp,q(R), 1 < p < 2, 1 ≤ q ≤ ∞. (4.1)

This inequality is a partial case of weighted Fourier inequalities, which has a long history
(see [7], [19], [23], [44], [46], [47], [63]). In particular, for the weighted Lorentz spaces
such problems were studied in [8, 19, 83]. In [69], Nursultanov and Tikhonov proved the
following estimates:

‖Hf‖Lp,q(R) . ‖f̂‖Lp′,q(R) . ‖f‖Lp,q(R) 1 < p < 2, 0 < q ≤ ∞, (4.2)

where Hf(x) = 1
|x|

|x|∫
−|x|

f(t)dt. Note that for a function f satisfying the condition

|f(x)| ≤ C|Hf(x)|,

inequality (4.2) implies the relation

‖f̂‖Lp′,q(R) � ‖f‖Lp,q(R), 1 < p < 2, 0 < q ≤ ∞.

55
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Recall that, for even monotone on R+ functions, Sagher obtained the following equiva-
lences:

‖f‖Lp,q(R) � ‖f̂‖Lp′,q(R), 1 < p <∞, 0 < q ≤ ∞, (4.3)

‖f‖Lq
w[p,q]

(R) � ‖f̂‖Lq

w[p′,q]
(R), 1 < p <∞, 1 ≤ q ≤ ∞, (4.4)

‖f̂‖Lq

w[p′,q]
(R) � ‖f̂‖Lp′,q(R), 1 < p <∞, 1 ≤ q ≤ ∞, (4.5)

see Theorem 1.4. Note that the equivalence (4.4) proves Boas’ conjecture stated in [15].

In [57], Liflyand and Tikhonov proved Boas conjecture in the setting of the weighted
Lebesgue spaces for general monotone functions. Let us denote

GMF =

{
h ∈ BVloc(R+) :

∫ 2x

x
|dh(x)| ≤ C

∫ γx

x/γ

|h(u)|
u

du C > 0, γ > 1

}
,

where BVloc(R+) is a set of locally of bounded variation on R+ functions vanishing at
infinity.

Theorem 4.1 ([57, Corollary 1]). Let f be a non-negative function on R+ such that
f ∈ GMF . Then

‖f‖Lq
w[p,q]

(R+) � ‖f̂‖Lq

w[p′,q]
(R+), 1 < p <∞, 1 ≤ q <∞. (4.6)

Later on, this result was generalized in [28, 50]. Moreover, Gorbachev, Liflyand and
Tikhonov [40] obtained the multidimensional version of (4.4) for radial functions.

4.2 Anisotropic weighted Lebesgue and Lorentz spaces

First we define multidimensional analogues of the Lorentz and weighted Lebesgue spaces.
We will need the following notion. Let f(x1, . . . , xn) be a measurable function on Rn.
By f∗1(t1, x2, . . . , xn) we denote the rearrangement of f(x1, x2, . . . , xn) with respect
to x1, i.e., f∗1(t1, x2, . . . , xn) is a non-increasing function on t1 and the functions
f∗1(t1, . . . , xn) and |f(x1, . . . , xn)| are equimeasurable as functions of one variable for
almost all x2, . . . , xn. By rearranging f∗1(t1, x2, . . . , xn) with respect to other vari-
ables we obtain the function f∗1∗2...∗n(t1, t2, . . . , tn) non-increasing in each variable and
equimeasurable with f .

Throughout this chapter, by bold letters we denote vectors. And all operations on
vectors are performed componentwisely. Let p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn)
be n-dimensional vectors such that if 0 < qi <∞, then 0 < pi <∞, and if qi = ∞, then
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0 < pi ≤ ∞. We define the functionals Φp,q and Φ+
p,q by

Φp,q(ϕ) =

(∫ ∞

−∞
. . .

(∫ ∞

−∞

(
|t1|

1
p1 . . . |tn|

1
pn |ϕ(t1, . . . , tn)|

)q1 dt1
t1

) q2
q1

. . .
dtn
tn

) 1
qn

and

Φ+
p,q(ϕ) =

(∫ ∞

0
. . .

(∫ ∞

0

∣∣∣∣t 1
p1
1 . . . t

1
pn
n ϕ(t1, . . . , tn)

∣∣∣∣q1 dt1
t1

) q2
q1

. . .
dtn
tn

) 1
qn

.

In the case q = ∞, the expressions
(∞∫

0

(F (t))q dt
t

) 1
q

and

(
∞∫
−∞

(F (t))q dt
t

) 1
q

are considered

as sup
t>0

F (t) and sup
t∈R

F (t), respectively.

Definition 4.1. The anisotropic Lorentz space ([6], [13], [65], [66]) Lp,q(Rn) is the set
of measurable functions f , for which

‖f‖Lp,q := Φ+
p,q(f∗1∗2...∗n) <∞.

Definition 4.2. The anisotropic weighted Lebesgue space Lq
w[p,q](R

n) is the set of mea-
surable functions f , for which

‖f‖Lq
w[p,q]

:= Φp,q(f) <∞.

Here, w[p,q](t1, . . . , tn) stands for the weight function

w[p,q](t1, . . . , tn) = |t1|
1

p1
− 1

q1 . . . |tn|
1

pn
− 1

qn .

Note that some interpolation properties of the spaces Lp,q(Rn) were considered in [65].

4.3 The main results

Definition 4.3. We say that a function f(x1, x2, . . . , xn) belongs to the class En if

1. f is non-negative on Rn;

2. f(ε1x1, ε2x2, . . . , εnxn) = f(x1, x2, . . . , xn) for all x = (x1, x2, . . . , xn) and ε =
(ε1, ε2, . . . , εn), where εi ∈ {1,−1}, i = 1, 2, . . . , n;

3. f(x1, x2, . . . , xn) is decreasing in each variable on R+, that is

f(x1, . . . , xi−1, x
1
i , . . . , xn) ≤ f(x1, . . . , xi−1, x

2
i , . . . , xn)
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for 0 ≤ x2
i ≤ x1

i , 1 ≤ i ≤ n;

4. f(x1, x2, . . . , xn) → 0 as |x1|+ |x2|+ . . .+ |xn| → ∞.

The main results of this chapter are the following Boas-Sagher-type theorems for the
Fourier transform

f̂(y) =
∫

Rn

f(x)e−ixydx, n ≥ 1.

Theorem 4.2. Let 1 < p < ∞, 0 < q ≤ ∞, and f ∈ En. Then

‖f‖Lp,q � ‖f̂‖Lp′,q .

Theorem 4.3. Let 1 < p < ∞, 1 ≤ q ≤ ∞, and f ∈ En. Then

‖f‖Lq
w[p,q]

� ‖f̂‖Lq

w[p′,q]
.

Corollary 4.1. Let 1 < p < ∞, 1 ≤ q ≤ ∞, and f ∈ En. Then

‖f̂‖Lp′,q � ‖f̂‖Lq

w[p′,q]
.

Remark 4.1. For convenience, we prove Theorems 4.2 and 4.3 in the case n = 2. In
the general case the arguments are similar. For functions f in E2, we have

f̂(y1, y2) = 4f̂c(y1, y2) = 4
∫ ∞

0

∫ ∞

0
f(x1, x2) cosx1y1 cosx2y2 dx1 dx2.

4.4 Auxiliary results

The following Hardy’s inequality [9, p. 124] and Minkowski’s inequality [56, p. 47] are
often needed.

Lemma 4.1 (Hardy). Let ψ be a non-negative measurable function on (0,∞) and sup-
pose −∞ < λ < 1, 1 ≤ q ≤ ∞. Then

(∫ ∞

0

[
tλ

1
t

∫ t

0
ψ(s)ds

]q
dt

t

) 1
q

≤ C

(∫ ∞

0

[
tλψ(t)

]q dt
t

) 1
q

. (4.7)

Lemma 4.2 (Minkowski). Let (X,µ) and (Y, ν) be measurable spaces. Let 1 ≤ p ≤ ∞,
and f(x, y) be a measurable function on (X,µ)× (Y, ν). Then

(∫
Y

(∫
X
|f(x, y)|dµ(x)

)p

dν(y)
) 1

p

≤
∫

X

(∫
Y
|f(x, y)|pdν(y)

) 1
p

dµ(x). (4.8)
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Remark 4.2. Note that for 0 < q < 1 inequality (4.7) holds for monotone functions on
R+. Moreover this inequality holds for quasi-monotone functions (see [10], [96]).

We will need the following Hardy lemma for decreasing rearrangements [9, p. 44].

Lemma 4.3. Let µ be Lebesgue measure on R, and f , g be µ-measurable functions on
R. Then ∫ ∞

−∞
|f(x)g(x)| dx ≤

∫ ∞

0
f∗(u)g∗(u) du.

Also we will use the following [10, Lemma 2.1].

Lemma 4.4. Let f be a non-negative non-increasing function on (0,∞), and let A > 0,
0 < q < 1. Then the following inequality holds(∫ A

0
f(x)dx

)q

≤ C

∫ A

0
(f(x))qxq−1dx. (4.9)

Lemma 4.5. Suppose f ∈ E2. Then

f̂(y1, y2) ≤ 36
∫ 1

|y2|

0

∫ 1
|y1|

0
f(x1, x2) dx1 dx2 (4.10)

for all (y1, y2) ∈ R2.

Proof. From condition (2) of Definition 4.3 for E2 it suffices to prove inequality (4.10)
for y > 0. Let y = (y1, y2), yi > 0, i = 1, 2. We have

f̂(y1, y2) = 4
∫ +∞

0

∫ +∞

0
f(x1, x2) cosx1y1 cosx2y2 dx1 dx2

= 4
∫ 1

y2

0

∫ 1
y1

0
f(x1, x2) cosx1y1 cosx2y2 dx1 dx2

+ 4
∫ +∞

1
y2

∫ 1
y1

0
f(x1, x2) cosx1y1 cosx2y2 dx1 dx2

+ 4
∫ 1

y2

0

∫ +∞

1
y1

f(x1, x2) cosx1y1 cosx2y2 dx1 dx2

+ 4
∫ +∞

1
y2

∫ +∞

1
y1

f(x1, x2) cosx1y1 cosx2y2 dx1 dx2

= I1 + I2 + I3 + I4.

Applying the second mean value theorem with respect to the second variable in I2, we
get
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I2 = 4
∫ 1

y1

0

[∫ +∞

1
y2

f(x1, x2) cosx2y2 dx2

]
cosx1y1 dx1

= 4
∫ 1

y1

0

[
f

(
x1,

1
y2

)∫ ξ

1
y2

cosx2y2 dx2

]
cosx1y1 dx1

= 4
∫ 1

y1

0

[
f

(
x1,

1
y2

)
sin y2ξ − sin 1

y2

]
cosx1y1 dx1.

Hence,

|I2| ≤
8
y2

∫ 1
y1

0
f

(
x1,

1
y2

)
dx1 ≤ 8

∫ 1
y2

0

∫ 1
y1

0
f(x1, x2) dx1 dx2.

In the same way, we get

|I3| ≤ 8
∫ 1

y2

0

∫ 1
y1

0
f(x1, x2) dx1 dx2.

Using twice the second value mean theorem for I4, we have

I4 = 4
∫ +∞

1
y2

[
f

(
1
y1
, x2

)∫ ζ

1
y1

cosx1y1 dx1

]
cosx2y2 dx2

= 4
∫ +∞

1
y2

[
f

(
1
y1
, x2

)
sin y1ζ − sin 1

y1

]
cosx2y2 dx2

= 4f
(

1
y1
,

1
y2

)
sin y1ζ − sin 1

y1

sin y2α− sin 1
y2

.

Hence,

|I4| ≤
16
y1y2

f

(
1
y1
,

1
y2

)
≤ 16

∫ 1
y2

0

∫ 1
y1

0
f(x1, x2) dx1 dx2.

Therefore, we obtain

|f̂(y1, y2)| ≤ |I1|+ |I2|+ |I3|+ |I4|

≤ 36
∫ 1

y2

0

∫ 1
y1

0
f(x1, x2) dx1 dx2.

Corollary 4.2. Let f ∈ E2. Then

f̂∗1,∗2(t1, t2) ≤ C

∫ 1
t2

0

∫ 1
t1

0
f(x1, x2) dx1 dx2

for all (t1, t2) ∈ R2
+.
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4.5 Applications of interpolation results for Lorentz spaces

to Fourier inequalities

Let p = (p1, p2), q = (q1, q2). According to [13], we say that a measurable function f

belongs to the mixed norm Lorentz space Lp2,q2 [Lp1,q1 ](R2) if

‖f‖Lp2,q2 [Lp1,q1 ] :=

(∫ ∞

0
t

q2
p2
−1

2

[(∫ ∞

0
t

q1
p1
−1

1 (f∗1(t1, ·))q1 dt1

)∗2
(t2)
] q2

q1

dt2

) 1
q2

<∞.

Now we need a special case of Corollary 2 in [65, p. 258]. For the reader’s convenience,
we state it in the following form.

Theorem 4.4. Let 0 < pi, ri < ∞ be two-dimensional vectors, i = 0, 1. And let
p0

j 6= p1
j , r

0
j 6= r1j , j = 1, 2. If T is a linear operator such that

T : Lp0
2,1[Lp0

1,1] → L(r0
1 ,r0

2)(∞,∞),

T : Lp1
2,1[Lp0

1,1] → L(r0
1 ,r1

2)(∞,∞),

T : Lp0
2,1[Lp1

1,1] → L(r1
1 ,r0

2)(∞,∞),

T : Lp1
2,1[Lp1

1,1] → L(r1
1 ,r1

2)(∞,∞),

then
T : Lp,q → Lr,q,

where
1
p

=
1− θ

p0
+

θ

p1
,

1
r

=
1− θ

r0
+

θ

r1
,

and 0 < q ≤ ∞, 0 < θ < 1.

Let S = S(R2) denote the Schwartz space of rapidly decreasing functions on R2.

Let f ∈ Lpq and ϕ ∈ S. Define

Tϕ(f)(t) = (f, ϕt) =
∫ ∞

−∞

∫ ∞

−∞
f(x1, x2)ϕt(x1, x2) dx1 dx2,

where t = (t1, t2) and ϕt(u1, u2) = 1
t1

1
t2
ϕ
(

u1
t1
, u2

t2

)
. Note that

ϕ̂t(u1, u2) = sign t1 sign t2 ϕ̂(t1u1, t2u2).

Put ϕ(x1, x2) = e−
x2
1+x2

2
2 . Note that ϕ = ϕ̂, ϕ ∈ S ∩ E2, and ϕ(x1, x2) = ϕ1(x1)ϕ2(x2),

where ϕi(xi) = e−
x2

i
2 , i = 1, 2.
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Theorem 4.5. Let 1 < p < ∞, 0 < q ≤ ∞. Let also ϕ(x1, x2) = e−
x2
1+x2

2
2 . Then

‖Tϕf̂‖Lp′,q ≤ C(p, ϕ)‖f‖Lp,q .

Proof. Let 1 < p < ∞ and suppose f ∈ Lp2,1[Lp1,1] ∩ S. Using Lemma 4.3 twice, we
obtain

|Tϕf̂(t)| = |(f̂ , ϕt)| = |(f, ϕ̂t)| ≤
∫ ∞

−∞

∫ ∞

−∞
|f(x1, x2)ϕ̂t(x1, x2)| dx1 dx2

=
∫ ∞

−∞

∫ ∞

−∞
|f(x1, x2)ϕ̂1t1(x1)ϕ̂2t2(x2)| dx1 dx2

≤
∫ ∞

−∞

∫ ∞

0
f∗1(u1, x2)ϕ̂∗1t1(u1)ϕ̂2t2(x2) du1 dx2

≤
∫ ∞

0

(∫ ∞

0
f∗1(u1, ·)ϕ̂∗1t1(u1) du1

)∗2
(u2)ϕ̂∗2t2(u2) du2

=
∫ ∞

0

(∫ ∞

0
f∗1(u1, ·)ϕ̂1t1

(u1

2

)
du1

)∗2
(u2)ϕ̂2t2

(u2

2

)
du2

=
∫ ∞

0

(∫ ∞

0
f∗1(u1, ·)u

− 1
p′1

1 u

1
p′1
1 ϕ̂1

(
t1u1

2

)
du1

)∗2
(u2) u

− 1
p′2

2 u

1
p′2
2 ϕ̂2

(
t2u2

2

)
du2

≤ sup
u1≥0

u

1
p′1
1 ϕ̂1

(
t1u1

2

)
sup
u1≥0

u

1
p′2
2 ϕ̂2

(
t2u2

2

)
×
∫ ∞

0

(∫ ∞

0
f∗1(u1, ·)u

1
p1
−1

1 du1

)∗2
(u2)u

1
p2
−1

2 du2

≤ Cu

1
p′1
1 u

1
p′2
2 (|t1u1|)

− 1
p′1 (|t2u2|)

− 1
p′2 ‖f‖Lp2,1[Lp1,1] ≤ C‖f‖Lp2,1[Lp1,1]|t1|

− 1
p′1 |t2|

− 1
p′2 .

Hence,
‖Tϕf̂‖Lp′,∞ ≤ C‖f‖Lp2,1[Lp1,1]

for all f ∈ Lp2,1[Lp1,1] ∩ S. By density of S in Lp2,1[Lp1,1], we derive

‖Tϕf̂‖Lp′,∞ ≤ C‖f‖Lp2,1[Lp1,1]

for all f ∈ Lp2,1[Lp1,1], that is, the operator Tϕ◦F is bounded from Lp2,1[Lp1,1] to Lp′,∞.

Now let 1 < p < ∞ and 0 < q ≤ ∞, then we can define vectors 1 < p0 < p < p1 < ∞,
0 < θ < 1 such that 1

p = 1−θ
p0 + θ

p1 . From the above we get

Tϕ ◦ F : Lp0
2,1[Lp0

1,1] → L((p0
1)′,(p0

2)′)(∞,∞),

Tϕ ◦ F : Lp1
2,1[Lp0

1,1] → L((p0
1)′,(p1

2)′)(∞,∞),

Tϕ ◦ F : Lp0
2,1[Lp1

1,1] → L((p1
1)′,(p0

2)′)(∞,∞),

Tϕ ◦ F : Lp1
2,1[Lp1

1,1] → L((p1
1)′,(p1

2)′)(∞,∞).
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By Theorem 4.4, we get
Tϕ ◦ F : Lp,q → Lp′,q.

4.6 Proofs of main results

4.6.1 Proof of Theorem 4.2

We begin with the upper estimate of ‖f‖Lp,q . Let (t1, t2) ∈ R2, and ϕ be as above.
Then by non-negativity and monotonicity of f , we obtain

sign t1 sign t2(f, ϕt) =
1
|t1|

1
|t2|

∫ ∞

−∞

∫ ∞

−∞
ϕ

(
u1

t1
,
u2

t2

)
f(u1, u2) du1 du2

≥ 1
|t1|

1
|t2|

∫ t2

−t2

∫ t1

−t1

ϕ

(
u1

t1
,
u2

t2

)
f(u1, u2) du1 du2

≥ f(t1, t2)
1
|t1|

1
|t2|

∫ t2

−t2

∫ t1

−t1

ϕ

(
u1

t1
,
u2

t2

)
du1 du2

= f(t1, t2)‖ϕ‖L1[−1,1]2 ,

where

‖ϕ‖L1[−1,1]2 =
∫ 1

−1

∫ 1

−1
|ϕ(u1, u2)| du1 du2

Therefore,

0 ≤ f(t1, t2) ≤
1
‖ϕ‖L1

Tϕf(t1, t2).

Hence, by Theorem 4.5 and the lattice property of anisotropic Lorentz spaces, we obtain

‖f‖Lp,q ≤
1
‖ϕ‖L1

‖Tϕf‖Lp,q ≤ Cp,ϕ‖f̂‖Lp′,q .

Now we derive the lower estimate for f . Let t1, t2 > 0, then by Corollary 4.2 we have

f̂∗1,∗2(t1, t2) ≤ C

∫ 1
t2

0

∫ 1
t1

0
f(x1, x2) dx1 dx2.

Hence,

‖f̂‖Lp′,q ≤ C

∫ ∞

0

(∫ ∞

0

[
t

1

p
′
1

1 t

1

p
′
2

2

∫ 1
t2

0

∫ 1
t1

0
f(x1, x2) dx1 dx2

]q1

dt1
t1

) q2
q1 dt2

t2


1
q2

= C

∫ ∞

0

(∫ ∞

0

[
t

1

p
′
1

1

∫ 1
t1

0
ϕ(x1, t2) dx1

]q1

dt1
t1

) q2
q1 dt2

t2


1
q2

,
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where

ϕ(x1, t2) = t

1

p
′
2

2

∫ 1
t2

0
f(x1, x2) dx2.

Substituting 1
t1

for z1 and applying Hardy’s inequality (4.7) to the inner integral we get

‖f̂‖Lp′,q ≤ C

∫ ∞

0

(∫ ∞

0

[
t

1

p
′
1

1

∫ 1
t1

0
ϕ(x1, t2) dx1

]q1

dt1
t1

) q2
q1 dt2

t2


1
q2

= C

(∫ ∞

0

(∫ ∞

0

[
z

1
p1
−1

1

∫ z1

0
ϕ(x1, t2) dx1

]q1 dz1
z1

) q2
q1 dt2

t2

) 1
q2

≤ C

(∫ ∞

0

(∫ ∞

0

[
z

1
p1
1 ϕ(z1, t2)

]q1 dz1
z1

) q2
q1 dt2

t2

) 1
q2

= C

∫ ∞

0

(∫ ∞

0

[
z

1
p1
1 t

1

p
′
2

2

∫ 1
t2

0
f(z1, x2) dx2

]q1

dz1
z1

) q2
q1 dt2

t2


1
q2

.

Let q1 ≥ 1. Then, by Minkowski’s inequality (4.8) we have

‖f̂‖Lp′,q ≤ C

∫ ∞

0

(∫ ∞

0

[
z

1
p1
1 t

1

p
′
2

2

∫ 1
t2

0
f(z1, x2) dx2

]q1

dz1
z1

) q2
q1 dt2

t2


1
q2

≤ C

(∫ ∞

0

(
t

1

p
′
2

2

∫ 1
t2

0

[∫ ∞

0

(
z

1
p1
− 1

q1
1 f(z1, x2)

)q1

dz1

] 1
q1

dx2

)q2

dt2
t2

) 1
q2

= C

(∫ ∞

0

(
t

1

p
′
2

2

∫ 1
t2

0
ψ(x2) dx2

)q2

dt2
t2

) 1
q2

,

where

ψ(x2) =
[∫ ∞

0

(
z

1
p1
− 1

q1
1 f(z1, x2)

)q1

dz1

] 1
q1

.

Again by changing variables z2 = 1
t2

and by Hardy’s inequality, we get

‖f̂‖Lp′,q ≤ C

(∫ ∞

0

(
z

1
p2
−1

2

∫ z2

0
ψ(x2)dx2

)q2 dz2
z2

) 1
q2

≤ C

(∫ ∞

0

(
z

1
p2
2 ψ(z2)

)q2 dz2
z2

) 1
q2

= C

(∫ ∞

0

(
z

1
p2
2

[∫ ∞

0

(
z

1
p1
− 1

q1
1 f(z1, z2)

)q1

dz1

] 1
q1

)q2

dz2
z2

) 1
q2

= C‖f‖Lp,q .
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Now, let 0 < q1 < 1. Then by inequality (4.9) we arrive at

‖f̂‖Lp′,q ≤ C

∫ ∞

0

(∫ ∞

0

[
z

1
p1
1 t

1

p
′
2

2

∫ 1
t2

0
f(z1, x2)dx2

]q1

dz1
z1

) q2
q1 dt2

t2


1
q2

≤ C

∫ ∞

0

(
t

q1

p
′
2

2

∫ ∞

0
z

q1
p1
−1

1

[∫ 1
t2

0
(f(z1, x2))q1xq1−1

2 dx2

]
dz1

) q2
q1 dt2

t2


1
q2

= C

∫ ∞

0

(
t

q1

p
′
2

2

∫ 1
t2

0

∫ ∞

0
z

q1
p1
−1

1 (f(z1, x2))q1xq1−1
2 dz1 dx2

) q2
q1 dt2

t2


1
q2

.

We substitute 1
t2

for z2

‖f̂‖Lp′,q ≤ C

∫ ∞

0

(
z

q1

(
1

p2
−1

)
2

∫ z2

0

∫ ∞

0
z

q1
p1
−1

1 f q1(z1, x2)x
q1−1
2 dz1 dx2

) q2
q1 dz2

z2


1
q2

= C

∫ ∞

0

(
z

q1

(
1

p2
−1

)
+1

2

1
z2

∫ z2

0
ξ(x2) dx2

) q2
q1 dz2

z2


q1
q2

1
q1

,

where
ξ(x2) =

∫ ∞

0
z

q1
p1
−1

1 (f(z1, x2))q1xq1−1
2 dz1

is a quasi-monotone function, (since ξ(x2)x
−(q1−1)
2 is a non-increasing function). Apply-

ing Hardy’s inequality given by Lemma 4.1, we obtain

‖f̂‖Lp′,q ≤

∫ ∞

0

(
z

q1

(
1

p2
−1

)
+1

2

1
z2

∫ z2

0
ξ(x2)dx2

) q2
q1 dz2

z2


q1
q2

1
q1

≤ C

∫ ∞

0

(
z

q1

(
1

p2
−1

)
+1

2 ξ(z2)

) q2
q1 dz2

z2


q1
q2

1
q1

= C

∫ ∞

0

(
z

q1

(
1

p2
−1

)
+1

2

∫ ∞

0
z

q1
p1
−1

1 (f(z1, z2))q1zq1−1
2 dz1

) q2
q1 dz2

z2


q1
q2

1
q1

= C‖f‖Lp,q .

4.6.2 Proof of Theorem 4.3

Proof. The inequality
‖f̂‖Lq

w[p′,q]
≤ C‖f‖Lq

w[p,q]
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is proved in the same way as in the Theorem 4.2 by using Lemma 4.5. We will prove
the reverse inequality. Let z = (z1, z2) > 0, then

H(z) :=
∫ z2

0

∫ z1

0

∫ u2

0

∫ u1

0
f̂(x1, x2) dx1 dx2 du1 du2

=
∫ z2

0

∫ z1

0

∫ u2

0

∫ u1

0

∫ ∞

0

∫ ∞

0
f(t1, t2) cosx1t1 cosx2t2 dt1dt2 dx1dx2 du1du2

=
∫ z2

0

∫ z1

0

∫ ∞

0

∫ ∞

0
f(t1, t2)

∫ u2

0

∫ u1

0
cosx1t1 cosx2t2 dx1dx2 dt1dt2 du1du2

=
∫ z2

0

∫ z1

0

∫ ∞

0

∫ ∞

0

f(t1, t2)
t1t2

sin t1u1 sin t2u2 dt1 dt2 du1 du2

=
∫ ∞

0

∫ ∞

0

f(t1, t2)
t1t2

∫ z2

0

∫ z1

0
sin t1u1 sin t2u2 du1 du2 dt1 dt2

= 2
∫ ∞

0

∫ ∞

0

f(t1, t2)
t21t

2
2

sin2 t1z1
2

sin2 t2z2
2

dt1 dt2 ≥ 0.

Hence,

H

(
π

2x1
,
π

2x2

)
=
∫ π

2x2

0

∫ π
2x1

0

∫ u2

0

∫ u1

0

∣∣∣f̂(y1, y2)
∣∣∣ dy1 dy2 du1 du2

≥

∣∣∣∣∣
∫ π

2x2

0

∫ π
2x1

0

∫ u2

0

∫ u1

0
f̂(y1, y2) dy1 dy2 du1 du2

∣∣∣∣∣
= 2

∫ ∞

0

∫ ∞

0

f(t1, t2)
t21t

2
2

sin2 πt1
4x1

sin2 πt2
4x2

dt1 dt2

≥ C

∫ 2x2

x2
2

∫ 2x1

x1
2

f(t1, t2)
t21t

2
2

dt1 dt2 ≥ C
f(2x1, 2x2)

x1x2
.

(4.11)

Denote h(u1, u2) =
∫ u2

0

∫ u1

0

∣∣∣f̂(y1, y2)
∣∣∣ dy1 dy2. Then (4.11) implies

‖f‖Lq
w[p,q]

=

(∫ ∞

−∞

(∫ ∞

−∞

[
|t1|

1
p1 |t2|

1
p2 f(t1, t2)

]q1 dt1
t1

) q2
q1 dt2

t2

) 1
q2

= 2
1
q1

+ 1
q2

(∫ ∞

0

(∫ ∞

0

[
t

1
p1
1 t

1
p2
2 f(t1, t2)

]q1 dt1
t1

) q2
q1 dt2

t2

) 1
q2

≤ C

∫ ∞

0

(∫ ∞

0

[
t

1
p1

+1

1 t
1

p2
+1

2

∫ π
t2

0

∫ π
t1

0
h(u1, u2) du1du2

]q1
dt1
t1

) q2
q1 dt2

t2


1
q2

.

Further, we change variables z = π
t and apply Hardy’s inequality to get
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‖f‖Lq
w[p,q]

≤ C

(∫ ∞

0

(∫ ∞

0

[
z
− 1

p1
−1

1 z
− 1

p2
−1

2

∫ z2

0

∫ z1

0
h(u1, u2)du1du2

]q1 dz1
z1

) q2
q1 dz2

z2

) 1
q2

≤ C

(∫ ∞

0

(∫ ∞

0

[
z
− 1

p1
1 z

− 1
p2
−1

2

∫ z2

0
h(z1, u2)du2

]q1 dz1
z1

) q2
q1 dz2

z2

) 1
q2

= C

(∫ ∞

0
z

(
− 1

p2
−1

)
q2

2

(∫ ∞

0

[∫ z2

0
z
− 1

p1
− 1

q1
1 h(z1, u2)du2

]q1

dz1

) q2
q1 dz2

z2

) 1
q2

.

Applying Minkowski’s inequality, we estimate

‖f‖Lq
w[p,q]

≤ C

(∫ ∞

0
z

(
− 1

p2
−1

)
q2

2

(∫ z2

0

[∫ ∞

0

(
z
− 1

p1
− 1

q1
1 h(z1, u2)

)q1

dz1

] 1
q1

du2

)q2

dz2
z2

) 1
q2

= C

(∫ ∞

0

(
z
− 1

p2
−1

2

∫ z2

0

[∫ ∞

0

(
z
− 1

p1
− 1

q1
1 h(z1, u2)

)q1

dz1

] 1
q1

du2

)q2

dz2
z2

) 1
q2

.

By Hardy’s inequality, we get

‖f‖Lq
w[p,q]

≤ C

(∫ ∞

0

(
z
− 1

p2
2

[∫ ∞

0

(
z
− 1

p1
− 1

q1
1 h(z1, z2)

)q1

dz1

] 1
q1

)q2

dz2
z2

) 1
q2

= C

(∫ ∞

0

[∫ ∞

0

(
z
− 1

p1
1 z

− 1
p2

2

∫ z2

0

∫ z1

0

∣∣∣f̂(y1, y2)
∣∣∣ dy1 dy2

)q1 dz1
z1

] q2
q1 dz2

z2

) 1
q2

.

Using Hardy’s inequality twice and Minkowski’s inequality to the last expression, we
arrive at the required estimate.





Chapter 5

Uniform convergence of the

trigonometric series with general

monotone coefficients

We will study the trigonometric series

∞∑
n=1

an sinnx, (5.1)

∞∑
n=1

an cosnx, (5.2)

∞∑
n=1

(an cosnx+ bn sinnx), (5.3)

with some conditions of their coefficients.

5.1 Several important classes of general monotone sequences

In this chapter, we consider the GM(β) sequences with majorants β having the form
described below. Let S be the set of numerical sequences. Denote by x = {xk}∞k=1 any
element of S.

We will say that a sequence of functionals on S, that is, Fn : S → R+, n ∈ N, is
admissible if

(i) Fn(x) → 0 as n→∞ for any x = {xk}∞k=1 vanishing at infinity,

(ii) {Fn(x)}∞n=1 is bounded whenever x = {xk}∞k=1 is bounded.

69
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The examples of such F = {Fn}∞n=1 are

(a) F 1
n(x) = |xn|α, α > 0;

(b) F 2
n(x) =

γn∑
k=n

γ

|xk|
k , γ > 1;

(c) F 3
n(x) = max

k≥n
γ

|xk|, γ > 1;

(d) F 4
n(x) = 1

n

n∑
k=1

|xk|;

(e) F 5
n(x) =

∞∑
k=1

ank|xk|, where {ank}∞n, k=1 is a regular matrix (see [105, Ch. III, §1]);

(f) The composition F = G ◦ H, Fn(x) := Gn(Hk(x)), of admissible sequences
{Hn}∞n=1, {Gn}∞n=1 is also admissible.

A typical example of non-admissible {Fn} is

Fn(x) =
n+λn∑
k=n

|xk|
k
,

where a positive sequence {λn}∞n=1 is such that λn/n → ∞. Note also that conditions
(i) and (ii) in the definition of admissible functionals are independent; take for example

Fn(x) = |xn|α + c with α, c > 0 and Fn(x) =
n2∑

k=n

kxk−2.

For a given sequence a = {an}∞n=1, denote by ã the following sequence:

ãn :=
2n∑

k=n

|ak|.

Recall that a sequence {an}∞n=1 belongs to the class of general monotone sequences
GM(β) if there exists C > 0 such that, for all n ∈ N,

2n∑
k=n

|∆ak| ≤ Cβn.

Let us recall some important examples of majorants β:

1. β1
n = |an|;

2. β2
n = 1

n

γn∑
s=n

γ

|as|, γ > 1;

3. β3
n = 1

n max
k≥n

γ

2k∑
s=k

|as|, γ > 1.
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We study a class of general monotone sequences GM(β) with

βn =
1
n
Fn(ã).

Note that the class GM(β3) is the class GM(β) with βn = 1
nF

3
n(ã). Moreover, GM(β2)

coincides with GM(β) with βn = 1
nF

2
n(ã). Indeed, considering the sum

N∑
k=M

ãk
k , where

N > 2M , we note that

N∑
k=M

1
k

2k∑
s=k

|as| =
2M∑

s=M

|as|
s∑

k=M

1
k

+
N∑

s=2M+1

|as|
s∑

k= s
2

1
k

+
2N∑

s=N+1

|as|
N∑

k= s
2

1
k

and therefore,

C1

N∑
s=2M

|as| ≤
N∑

k=M

ãk

k
≤ C2

2N∑
s=M

|as|.

5.2 The main results

5.2.1 Historical remarks

The goal of this chapter is to study of uniform convergence of sine series. Recall that,
according to Chaundy-Jolliffee, the series (5.1) with monotone coefficients {an}∞n=1 con-
verges uniformly if and only if nan → 0 as n → ∞. This result was generalized, in
particular, in [91] for non-negative sequences {an}∞n=1 ∈ GM(β1). In its turn, this was
extended in [94, 104] for non-negative sequences {an}∞n=1 ∈ GM(β2) and in [34] for non-
negative sequences {an}∞n=1 ∈ GM(β3). Various generalizations of Chaundy-Jolliffe’s
criterion can be found in the papers [34, 91, 104]. In the recent paper [37], the authors
proved the following theorem.

Theorem 5.1. Let {an}∞n=1 ∈ GM(β2). Then series (5.1) converges uniformly on
[0, 2π] if and only if nan → 0 as n→∞.

Note that in Theorem 5.1 the authors do not assume non-negativity or non-positivity
of sequence {an}∞n=1.

5.2.2 Uniform convergence of the trigonometric series

Theorem 5.2. Let {Fn}∞n=1 be admissible. Let also {an}∞n=1 ∈ GM(β), where βn =
1
nFn(ã) and ã is a bounded sequence. Then the following conditions are equivalent:

(1) the series (5.1) converges uniformly on [0, 2π];
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(2) lim
n→∞

nan = 0;

(3) lim
n→∞

ãn = 0.

Remark 5.1. (i) It is clear that the condition of boundedness of ã is needed only to
show the implication (1) ⇒ (2).

(ii) Generally speaking, the statement of Theorem 5.2 is not true without assuming that
the sequence {ãn}∞n=1 is bounded. The corresponding counterexample is constructed in
Theorem 5.9 below. More precisely, there exists the uniformly converging sine series with
coefficients satisfying {an}∞n=1 ∈ GM(β3) such that nan 9 0 and ãn 9 0 as n→∞.

(iii) It is easy to see that dealing with admissible {Fn}∞n=1 allows us to expect that Fn(ã)
is bounded for a bounded sequence ã. In light of the previous remark, this property is
essential in the proof. In general, Theorem 5.2 is not valid for non-admissible sequnces.
In particular, the corresponding example can be given using lacunary sequences. Take
the non-admissible functional Fn(x) = nxn and the lacunary sequence

ak =

m−2 k = 2m,

0 k 6= 2m.

Then lim
n→∞

ãn = 0, the series
∞∑

k=1

ak sin kx converges uniformly, but {kak}∞k=1 is not

bounded.

Another example can be given for non-admissible functional Fn(x) =
n+λn∑
k=n

|xk|
k with

λn/n→∞ using Rudin-Shapiro construction; see Remark 5.7 (ii).

(iv) Regarding the fact that GM(β2) ( GM(β3), we note that there exists a sequence
a ∈ GM(β3) \ GM(β2) such that ã is bounded (see Section 5.4). This shows that
Theorem 5.2 extends Theorem 5.1.

A counterpart for the cosine series reads as follows.

Theorem 5.3. Let {an}∞n=1 ∈ GM(β), where βn = 1
nFn(ã) with admissible {Fn}∞n=1

and bounded ã. Then series (5.2) converges uniformly on [0, 2π] if and only if the series
∞∑

n=1
an converges.

Remark 5.2. The condition of boundedness of ã in Theorem 5.3 is needed only to prove
the ”only if” part.

The following can be seen as the main result of this section.

Corollary 5.1. Let {Fn}∞n=1 and {Gn}∞n=1 be admissble. Let {an}∞n=1 ∈ GM(β) with
βn = 1

nFn(ã) and {bn}∞n=1 ∈ GM(β) with βn = 1
nGn(b̃).



Chapter 5 Uniform convergence of the trigonometric series with GM coefficients 73

Suppose that ã and b̃ are bounded sequences. Then for the series (5.3) the following
conditions are equivalent:

(1) the series (5.3) is the Fourier series of a continuous function;

(2) the series (5.3) converges uniformly on [0, 2π];

(3)
∞∑

n=1
an converges and nbn → 0 as n→∞.

5.2.3 Approximation by partial sums of Fourier series.

Here, we study the convergence rate of ‖h−Sn(h)‖C[0,2π], where Sn(h) is the n-th partial
sum of the Fourier series of h. In [52] (see also [105, Ch. II, §10]), Lebesgue proved that
for a function h from the Lipschitz space Lip α, given by

Lip α = {f ∈ C[0, 2π] : ω(f, δ)C = O(δα)},

one has
‖h− Sn(h)‖C[0,2π] = O

( lnn
nα

)
. (5.4)

Recall that ω(f, δ)C is the modulus of continuity of f , i.e.,

ω(f, δ)C = sup
|h|≤δ

‖∆hf(·)‖C and ∆hf(x) = f(x+ h)− f(x).

Salem and Zygmund [78] showed that the logarithm cannot be suppressed even if, in
addition to the hypotesis h ∈ Lip α, we suppose that h is of bounded variation. However,
they demonstrated that if a function h ∈ Lip α is of monotonic type, then the logarithm
can be omitted in (5.4).

Theorem 5.4 ([78, Theorem I]). Let h be a continuous function of monotonic type;
that is, there exists a real constant K such that the function h(x) + Kx is either non-
decreasing or non-increasing on (−∞,∞). Let h ∈ Lip α, where 0 < α < 1. Then

‖h− Sn(h)‖C[0,2π] = O
( 1
nα

)
. (5.5)

We will show (see Corollaries 5.2–5.3 below) that estimate (5.5) holds for functions from
Lip α having the Fourier series with coefficients from the GM(β2) class. Denote by g(x)
and f(x) the sums of (5.1) and (5.2) series, respectively. Here our main results read as
follows.

Theorem 5.5. Let {an}∞n=1 ∈ GM(β), where βn = 1
n

γn∑
k=n

γ

|ak|. Then, for 0 < α ≤ 1,

‖f − Sn(f)‖C[0,2π] = o

(
1
nα

)
⇐⇒ an = o

(
1

nα+1

)
. (5.6)



74 Chapter 5 Uniform convergence of the trigonometric series with GM coefficients

‖g − Sn(g)‖C[0,2π] = o

(
1
nα

)
⇐⇒ an = o

(
1

nα+1

)
. (5.7)

Theorem 5.6. Let {an}∞n=1 ∈ GM(β), where βn = 1
n

γn∑
k=n

γ

|ak|. Then, for 0 < α ≤ 1,

‖f − Sn(f)‖C[0,2π] = O

(
1
nα

)
⇐⇒ an = O

(
1

nα+1

)
. (5.8)

‖g − Sn(g)‖C[0,2π] = O

(
1
nα

)
⇐⇒ an = O

(
1

nα+1

)
. (5.9)

Remark 5.3. (i) Note that the condition ‖f −Sn(f)‖C[0,2π] = O
(

1
nα

)
implies that the

sum f is a continuous function and {an}∞n=1 is the sequence of Fourier coefficients of f .

(ii) For α = 0, Theorem 5.5 also holds in the case of the sine series, which gives an
alternative proof of the main result in [37] (see Theorem 5.1).

Moreover, Theorem 5.6 along with [35, Theorem 2.2 and Corollary 3.4] imply the fol-
lowing results.

Corollary 5.2. Let {an}∞n=1 ∈ GM(β), where βn = 1
n

γn∑
k=n

γ

|ak|. Also let (5.2) be the

Fourier series of a continuous function f . Then, for 0 < α ≤ 1, the following conditions
are equivalent:

(i) f ∈ Lip α,

(ii) ‖f − Sn(f)‖C = O
(

1
nα

)
,

(iii) En(f)C = O
(

1
nα

)
.

Here, En(f)C is the best approximation of a function f by trigonometric polynomials
of degree n in C[0, 2π].

Corollary 5.3. Let {an}∞n=1 ∈ GM(β), where βn = C
n

γn∑
k=n

γ

|ak|. Let also (5.1) be the

Fourier series of a continuous function g. Then, for 0 < α < 1, the following conditions
are equivalent:

(i) g ∈ Lip α,

(ii) ‖g − Sn(g)‖C = O
(

1
nα

)
,

(iii) En(g)C = O
(

1
nα

)
.

Moreover, for α = 1, conditions (ii), (iii), and

(iv) an = O
(

1
n2

)
are pairwise equivalent, but the condition g ∈ Lip 1 is not equivalent to any of them.
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Remark 5.4. Regarding the case α = 1 in Corollaries 5.2 and 5.3, we first note that
the direct and inverse theorems of trigonometric approximation [25]; namely,

En(ψ)C ≤ Cω
(
ψ,

1
n

)
C
≤ C

n

n+1∑
ν=1

Eν−1(ψ)C ,

immediately imply that

ψ ∈ Lip α if and only if En(ψ)C = O

(
1
nα

)
for 0 < α < 1.

We see that dealing with series with general monotone coefficients allows one to extend
this result for the limiting case α = 1 when ψ = f . A similar result does not hold for sine
series (ψ = g), because of the following reason. For series with monotone coefficients,
a necessary and sufficient condition for g ∈ Lip 1 is already given by

∑
k kak < ∞.

This fact was first observed by Boas [14], and in turn is related to the behavior of the
derivative of g at the origin. In particular, the function g(x) =

∑
k

sin kx
k2 is such that

En(g)C ≤ ‖g − Sn(g)‖C = O
(

1
n

)
, but g /∈ Lip 1. See [92, 93, 94] for the related results

regarding series with non-negative GM coefficients.

5.3 Proofs of main results

Remark 5.5. Without loss of generality, we may assume in Theorems 5.2 and 5.3 that
the inequality

ãn ≤ Fn(ã) (5.10)

is valid for all sequences a = {an}∞n=1 and for all n ∈ N. Indeed, if it is not the case,
that we can consider the majorant:

Gn(ã) = max{ãn, Fn(ã)}

which satisfies (5.10). It is clear that conditions (i)–(ii) hold for the sequence {Gn}∞n=1.
Moreover, instead of the class GM(β) with βn = Fn(ã)

n we can consider the class
GM(β∗) ⊇ GM(β), where β∗n = Gn(ã)

n . Throughout this chapter, we will assume that
{Fn}∞n=1 satisfies (5.10).

Lemma 5.1. Let a ∈ GM(β), where βn = Fn(ã)
n . Then, for all n ∈ N,

|ak| ≤ C
Fn(ã)
n

for all k = n, . . . , 2n. (5.11)

Proof. The proof follows from (5.10) and inequality (1.3).
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5.3.1 Proof of Theorem 5.2

Here we need the following general result.

Theorem 5.7 ([33, Theorem 2.1, part (C)]). Let β = {βn}∞n=1 be a majorant such that
nβn → 0 as n→∞. Then series (5.1) converges uniformly on [0, 2π].

Proof. We will prove Theorem 5.2 as follows: (2) ⇒ (3) ⇒ (1) ⇒ (2).

The implication (2) ⇒ (3) is clear.

(3) ⇒ (1). Let ãn → 0 as n→∞. Then from the property (i) of Fn, we get

Fn(ã) → 0 as n→∞.

Finally, we use Theorem 5.7 with βn = Fn(ã)/n.

(1) ⇒ (2). From Lemma 5.1 and property (ii) on {Fn}∞n=1 it follows that it is sufficient
to prove lim

n→∞
ãn = 0. Let ε > 0, then by Cauchy’s criterion, we can choose N ∈ N such

that for all N ≤ k ≤ l ∥∥∥ l∑
j=k

aj sin jx
∥∥∥

C[0,2π]
< ε. (5.12)

Let n > N and ãn 6= 0. By (5.10), note that Fn(ã) 6= 0. We put

An :=
{
k : |ak| ≥

ãn

4n
, n ≤ k ≤ 2n

}
. (5.13)

Note that An is not empty set. Let us obtain a lower estimate for the cardinality of An

denoted by |An|. By (5.11), we have |ak| ≤ C
nFn(ã), n ≤ k ≤ 2n, and therefore,

ãn =
2n∑

s=n

|as| =
∑

s∈[n,2n]\An

|as|+
∑
s∈An

|as|

≤
∑

s∈[n,2n]\An

ãn

4n
+
∑
s∈An

C

n
Fn(ã)

≤ 2nãn

4n
+ |An|

C

n
Fn(ã) =

ãn

2
+ |An|

C

n
Fn(ã).

Hence,

|An| ≥
n

2C
ãn

Fn(ã)
. (5.14)

Following [37], we construct disjoint subsets S1, . . . , Sκn of [n, 2n]. Put m1 = minAn,
and select ν1 according to the following procedure:

(a) If there exists j0 ≥ 1 such that for j = 0, 1, . . . , j0, n ≤ m1 + j ≤ 2n the numbers
am1+j have the same sign, and for j = 0, 1, . . . , j0−1, |am1+j | ≥ ãn

8n , and |am1+j0 | <
ãn
8n , then we set ν1 = j0.
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(b) If such j0 does not exist, then let ν1 = l0 such that m1 + l0 ∈ [n, 2n] and am1+l0 is
the first element to become zero or of opposite sign than am1 .

(c) If neither (a) nor (b) happens, then simply ν1 = l0, for which m1 + l0 is the first
number greater than 2n.

Define a set
S1 = {m1,m1 + 1, . . . ,m1 + ν1 − 1}.

Next, if the set An \ S1 is not empty, we put m2 = min(An \ S1). Using the same
procedure as above, we select ν2 and define

S2 = {m2,m2 + 1, . . . ,m2 + ν2 − 1}.

We continue this procedure until we reach an Sκn for which

An \ (S1 ∪ . . . ∪ Sκn) = ∅.

Now we obtain the upper estimate for κn. If κn > 1, we note first that for all 1 ≤ j < κn,
we have ∑

k∈Sj

|∆ak| ≥ |amj − amj+νj | ≥
ãn

8n
.

From the definition of GM(β), βn = Fn(ã)
n , we get

2n∑
s=n

|∆as| ≤
C

n
Fn(ã).

Hence,
C

n
Fn(ã) ≥

2n∑
s=n

|∆as| ≥
κn−1∑
j=1

∑
k∈Sj

|∆ak| ≥
κn−1∑
j=1

ãn

8n
= (κn − 1)

ãn

8n
.

Therefore,

κn ≤
8CFn(ã)

ãn
+ 1 ≤ 9CFn(ã)

ãn
. (5.15)

If κn = 1, then (5.15) also holds. Let x = π
4n and n ≤ k ≤ 2n. Then

sin kx ≥ 2
π

πk

4n
≥ 1

2
.

Since all ak, k ∈ Sj have the same sign, we derive

1
2

∑
k∈Sj

|ak| ≤

∣∣∣∣∣∣
∑
k∈Sj

ak sin
πk

4n

∣∣∣∣∣∣ < ε (5.16)
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for all n > N . Hence,

∑
k∈An

|ak| ≤
κn∑
j=1

∑
k∈Sj

|ak| < ε
18CFn(ã)

ãn
.

From the definition (5.13) of the set An and estimate (5.14), we arrive at

1
8C

ã2
n

Fn(ã)
≤ ε

18CFn(ã)
ãn

.

Hence,
ã3

n

Fn(ã)2
→ 0 as n→∞.

Since {Fn(ã)}∞n=1 is bounded, we obtain that ãn → 0 as n → ∞. Hence Fn(ã) → 0 as
n→∞.

5.3.2 Proof of Theorem 5.3

Here we need the following result.

Theorem 5.8 ([33, Theorem 2.1, part (B)]). Let a ∈ GM(β). If nβn = o(1) as
n → ∞, then series (5.2) converges uniformly on [0, 2π] if and only if the series

∑
n
an

converges.

Proof. The ”only if” part is clear.

To show the ”if” part, as in the proof of Theorem 5.2, it is enough to show that

lim
n→∞

ãn = 0. (5.17)

For ε > 0, we choose N ∈ N such that for all l ≥ k ≥ N

∣∣∣ l∑
j=k

aj

∣∣∣ < ε.

Relation (5.17) is proved in the same way and with the same notation as in Theorem
5.2, using the inequality

1
2

∑
k∈Sj

|ak| =
1
2

∣∣∣ ∑
k∈Sj

ak

∣∣∣ < ε, Sj ⊂ [n, 2n], n > N (5.18)

instead of inequality (5.16). Then since {Fn}∞n=1 is admissible, we obtain that Fn(ã) → 0
as n→∞. Thus, a ∈ GM(β) with nβn = o(1) and Theorem 5.8 concludes the proof.
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5.3.3 Proof of Corollary 5.1

We divide the proof into two parts: (1) ⇔ (2) and (2) ⇔ (3).

(1) ⇒ (2). Let series (5.3) be the Fourier series of a continuous function h(x). Note that
for a sequence {an}∞n=1 ∈ GM(β) with βn = 1

nFn(ã), the boundedness of the sequence
{nan}∞n=1 is equivalent to boundedness of the sequence {ãn}∞n=1. From boundedness of
{nan}∞n=1 it follows that an ≥ −C

n for all n ≥ 1 and some C > 0. The last inequality
with the Paley–Fekete theorem (see [36, Theorem C]) implies the uniform convergence
of series (5.3).

(2) ⇒ (1). This part is clear.

(2) ⇒ (3). Let series (5.3) converge uniformly. Denote by h(x) the sum of series (5.3).

Note that the series
∞∑

n=1
an cosnx and

∞∑
n=1

bn sinnx are the Fourier series of the continuous

functions
h(x) + h(−x)

2
and

h(x)− h(−x)
2

,

respectively. Since both series converge uniformly, Theorems 5.2 and 5.3 imply (3).

(3) ⇒ (2). This part follows from Theorems 5.2 and 5.3.

5.3.4 Proof of Theorems 5.5 and 5.6

Here as in the proof of main results of Chapter 2 we follow the proof of [35]. In the

definition of GM(β) with βn = 1
n

γn∑
k=n

γ

|ak| we assume that γ = 2ν , where ν is an integer

number. We use the notations introduced in Section 2.4

An = max
2n≤k≤2n+1

|ak|,

Bn = max
2n−2ν≤k≤2n+2ν

|ak|,

and
Mn =

{
k ∈ [2n−ν , 2n+ν ] : |ak| >

An

8C22ν

}
,

M+
n := {k ∈Mn : ak > 0} and M−

n := Mn \M+
n ,

where C and ν are constants from the definition of GM(β) class with βn = 1
n

2νn∑
k= n

2ν

|ak|.

Recall that a natural number n is called good if either n ≤ 2ν or Bn ≤ 24νAn. The rest
of all natural numbers consists of bad numbers.

We need Lemma 2.4 mentioned in Section 2.4. For convenience we write this lemma
here with the same number.
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Lemma 2.4. Let a vanishing sequence {an}∞n=1 ∈ GM . Denote N0 := [log2(C3210ν+8)]+
1. Then for any good n such that n ≥ N0 there exists an interval [ln,mn] ⊆ [2n−ν , 2n+ν ]
such that at least one of the following condition holds:

(i) for any k ∈ [ln,mn], we have ak ≥ 0 and

|M+
n ∩ [ln,mn]| ≥ 2n

C3215ν+8
;

(ii) for any k ∈ [ln,mn], we have ak ≤ 0 and

|M−
n ∩ [ln,mn]| ≥ 2n

C3215ν+8
.

Proof of Theorems 5.5 and 5.6. We will prove only the case of the sine series of Theorem
5.5. For the case of the cosine series in Theorem 5.5 and for both cases in Theorem 5.6,
the proof is similar.

First, we prove the part ”=⇒”. Let ε > 0, then there exists N ∈ N such that for all
n > N , we have

‖g − Sn(g)‖C[0,2π] ≤
ε

nα
.

Let n be a good number and 2n > max{C3215ν+11, 2νN}. Assume Lemma 2.4(i) is valid
and consider

Qn(t) =
mn∑

k=ln+1

ak sin kt.

Then |Qn(t)| ≤ 2ε
2(n−2ν)α for all t ∈ [0, 2π]. Setting t = 1

2n+ν , we obtain

2ε
2(n−2ν)α

≥
mn∑

k=ln+1

ak sin
k

2n+ν
≥ 2
π

1
22ν

An

8C22ν

(
2n

C3215ν+8
− 1
)

≥ 1
2

1
22ν

An

8C22ν

2n

C3215ν+9
=

2nAn

C4219ν+13
.

Therefore,

An ≤
L1ε

2(α+1)n
.

Then
An ≤

L2ε

2(α+1)n

holds for all good numbers, where L2 ≥ L1 is another constant.

Let n be a bad number. Then An < Bn2−4ν . Note that Bn = As1 , where |s1 − n| ≤ 2ν.

Assume first that s1 < n. Then either s1 is a good number or there exists s2 such that
|s1 − s2| ≤ 2ν and As1 < As22

−4ν . Also, we have

[2s1 , 2s1+2ν ] ∪ Z ⊂ [2n−2ν , 2n+2ν ] ∪ Z. (5.19)
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Then there is no ak, k ∈ [2s1 , 2s1+2ν ] ∪ Z, such that |ak| > As1 . Hence, the case s2 > s1

is not possible.

Repeating the process, since sj is a decreasing sequence, we arrive at a finite sequence
n = s0 > s1 > . . . > si−1 > si, where numbers s0, s1, . . . , si−1 are bad, and si is good.
Moreover, sj − sj−1 ≤ 2ν and Asj < Asj+12

−4ν for any j. Since si is a good number,
using the proof above we have Asi ≤ L2ε

2(α+1)si
, which implies

An = As0 ≤
As1

24ν
≤ . . . ≤ L2ε

24νi2(α+1)si
. (5.20)

Now, since n ≤ si + 2iν, we have

An ≤
L2ε

24νi2(α+1)si
=

L2ε

2(α+1)n

2(α+1)n

2(1+α)(2νi+si)

1
22νi(1−α)

≤ L3ε

2(α+1)n
. (5.21)

Let now s1 > n. Then either s1 is a good number or there exists s2 > s1 such that
s2 − s1 ≤ 2ν and As1 < As22

−4ν . Continuing this process and taking into account
that the sequence of the Fourier coefficients vanishes at infinity, we arrive at the finite
sequence n = s0 < s1 < . . . < si−1 < si, where the numbers s0, s1, . . . , si−1 are bad, and
si is good. Then Asi ≤ L2ε

2(α+1)si
implies

An < As1 < As2 < . . . Asi ≤
L2ε

2(α+1)si
≤ L2ε

2(α+1)n
.

Then we have
An ≤

L3ε

2(1+α)n

for any n. Let k ∈ N such that k ∈ [2l, 2l+1] and 2l ≥ N . Then

|ak| ≤ Al ≤
L2ε

2(1+α)l
≤ L2ε

2(1+α)l
≤ L3ε

k1+α
.

We would like to remark that for certain sequences {ak} the number of good points is
finite. In this case the proof of the ”=⇒” part follows the same lines as above for all
n being bad numbers. We repeat the procedure for s1 < n; see (5.19)–(5.21), since the
case s1 > n is impossible.

Now we prove the part ”⇐=”. Let ε > 0, then the inequality

‖g − Sn(g)‖C[0,2π] ≤
∞∑

k=n+1

|ak| ≤ ε

∞∑
k=n+1

1
kα+1

≤ ε
1
nα

holds for all n ≥ N , where N is sufficiently large integer number depending on ε.

Remark 5.6. Regarding the Lebesgue and Salem-Zygmund estimates stated in Subsec-
tion 5.2.3, see (5.4) and (5.5) respectively, it is worth mentioning that if a function h
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belongs to the Lipschitz space Lip α, then

‖h(x)− σn(h, x)‖C[0,2π] = O
( 1
nα

)
, α < 1, (5.22)

‖h(x)− σn(h, x)‖C[0,2π] = O
( lnn
nα

)
, α = 1, (5.23)

where σn(h, x) is the first arithmetic mean of the Fourier series of h. These results were
obtained by Bernstein [12]. Note that (5.22) implies that En(h)C = O

(
1

nα

)
, which is

equivalent to the condition h ∈ Lip α for α < 1. Moreover, the function f(x) =
∞∑

n=1

cos nx
n2

belongs to Lip 1, but

‖f(x)− σn(f, x)‖C[0,2π] ≥
lnn
n
.

It is important to note that there is a crucial difference between the results (5.4)–(5.5)
and (5.22)–(5.23) which becomes apparent only when we consider these relations for a
particular value of x. Indeed, the relation h(x)−σn(h, x) = O

(
1

nα

)
depends only on the

behaviour of x in the neighborhood of the particular point x concerned but the relation
h(x) − Sn(h, x) = O

(
1

nα

)
depends on the behaviour of x in the entire interval [0, 2π];

see the discussion in [38].

5.4 Several examples of general monotone sequences

To compare Theorem 5.1 and Theorem 5.2, we construct several examples of sequences
{ak}∞k=1 ∈ GM(β3) \ GM(β2). First, for convenience, we recall the definitions of
GM(β2) and GM(β3) classes.

A sequence {ak}∞k=1 ∈ GM(β2), if there exist C > 0, γ > 1 such that for all n ∈ N,

2n∑
k=n

|∆ak| ≤
C

n

γn∑
s=n

γ

|as|. (5.24)

A sequence {ak}∞k=1 ∈ GM(β3), if there exist C > 0, γ > 1 such that for all n ∈ N,

2n∑
k=n

|∆ak| ≤
C

n
max
k≥n

γ

2k∑
s=k

|as|. (5.25)

We set,
N1 = 1, Nj+1 = Nj + 2Mj ,
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whereMj > Nj and {Mj}∞j=1 is an increasing sequence of integers. Consider the sequence

ak =


(−1)k

Cj
, Nj ≤ k < 2Nj ;

1
Cj
, 2Nj ≤ k < 2Nj +Mj ;

0, 2Nj +Mj ≤ k < Nj+1,

(5.26)

where {Cj}∞j=1 is an increasing sequence.

1. We show that a /∈ GM(β2). Let k = Nj , then

2k∑
s=k

|∆as| =
2Nj∑

s=Nj

|∆as| �
2Nj∑

s=Nj

2
Cj

� Nj

Cj
.

On the other hand, we have

1
k

γk∑
s= k

γ

|as| ≤
1
Nj

γNj∑
s=

Nj
γ

1
Cj

� 1
Nj

Nj
1
Cj

=
1
Cj
.

Therefore, condition (5.24) does not hold.

2. Now we obtain sufficient conditions on {Mj}∞j=1 for the sequence a to belong to the
class GM(β3). It is clear that it is enough to verify condition (5.25) for k = Nj . We
have

1
k

max
s≥ k

γ

2s∑
i=s

|ai| =
1
Nj

max
s≥

Nj
γ

2s∑
i=s

|ai| ≥
1
Nj

2Nj+Mj∑
i=Nj+Mj/2

|ai|

� 1
Nj

1
Cj

(Nj +Mj/2) =
1 + Mj

2Nj

Cj
.

Comparing the expressions
1+

Mj
2Nj

Cj
and Nj

Cj
, we obtain that if

N2
j = O(Mj) as j →∞,

then (5.25) holds, i.e., {ak}∞k=1 ∈ GM(β3).

3. Now we study the uniform boundedness of the sums
2k∑

s=k

|as|. Let 2k = 2Nj + Mj ,

then
2k∑

s=k

|as| =
2Nj+Mj∑

s=Nj+Mj/2

|as| �
Nj +Mj

Cj
.

Hence, the following hold:
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(a) the condition
Nj +Mj = O(Cj) as j →∞.

implies the uniform boundedness of the sums
2k∑

s=k

|as|. In particular, the sequence

a = {ak}∞k=1 belongs to GM(β3), where

ak =


(−1)k

2Nj Nj
, Nj ≤ k < 2Nj ;

1

2Nj Nj
, 2Nj ≤ k < 2Nj +Nj2Nj ;

0, 2Nj +Nj2Nj ≤ k < Nj+1,

and
2n∑

k=n

|ak| ≤ 2, n ≥ 1. But by Theorem 5.2, the series
∞∑

k=1

ak sin kx is not

uniformly convergent, since kak 9 0.

(b) the condition
Nj +Mj = o(Cj) as j →∞.

implies
2k∑

s=k

|as| → 0 as k → ∞. In particular, the series
∞∑

k=1

ak sin kx with coeffi-

cients a = {ak}∞k=1 , where

ak =


(−1)k

jα 2Nj Nj
, Nj ≤ k < 2Nj ;

1

jα 2Nj Nj
, 2Nj ≤ k < 2Nj +Nj2Nj ;

0, 2Nj +Nj2Nj ≤ k < Nj+1,

and α > 0, converges uniformly. Notice that {ak}∞k=1 ∈ GM(β3) \GM(β2).

4. Note that if {Cj}∞j=1 increases fast enough, then uniform convergence of
∞∑

k=1

ak sin kx

simply follows from the absolute convergence of
∞∑

k=1

ak, since

∞∑
k=1

|ak| =
∞∑

j=1

Nj+1−1∑
k=Nj

|ak| =
∞∑

j=1

2Nj+Mj∑
k=Nj

|ak|

=
∞∑

j=1

1
Cj

(Nj +Mj + 1) .

In particular, the condition

jα(Nj +Mj) = O(Cj) as j →∞,

where α > 1, implies convergence of the series
∞∑

k=1

ak sin kx.



Chapter 5 Uniform convergence of the trigonometric series with GM coefficients 85

5.5 Counterexample to Theorem 5.2

Theorem 5.9. There exists a uniformly convergent sine series
∞∑

k=1

ak sin kx such that

(i)
2n∑

k=2n−1

|ak| ≥ 2
n
2
−1dn, n ≥ 1,

(ii) k|ak| ≥ 2n−1|a2n−1 | = 2
n
2
−1dn, 2n−1 ≤ k < 2n, n ≥ 1,

where {dn}∞n=1 is arbitrary positive sequence such that

(a)
∞∑

n=1
dn <∞;

(b) 2
n
2 dn →∞ as n→∞.

Note that formally speaking, the constructed sequence {an}∞n=1 is in GM(β3). We will
use the Rudin-Shapiro sequence, see [74, Theorem 1] and [79].

Lemma 5.2 (Rudin-Shapiro). There exists a sequence {εk}∞k=0, εk = ±1, k ≥ 0 such
that ∣∣∣∣∣

N∑
k=0

εke
ikt

∣∣∣∣∣ < 5
√
N + 1 (5.27)

for all t ∈ [0, 2π] and N = 0, 1, . . .

Proof of Theorem 5.9. Let {dn}∞n=1 be a positive sequence satisfying conditions (a) and
(b). Let also {εk}∞k=0 be the Rudin-Shapiro sequence. Consider the series

∞∑
n=1

cn

2n−1∑
k=2n−1

εke
ikt, (5.28)

with cn ∈ R such that |cn| = 2−
n
2 dn, n ∈ N. By using the Rudin-Shapiro theorem, we

obtain

∞∑
n=1

∣∣∣∣∣cn
2n−1∑

k=2n−1

εke
ikt

∣∣∣∣∣ ≤
∞∑

n=1

|cn|

∣∣∣∣∣
2n−1∑
k=0

εke
ikt

∣∣∣∣∣+
∣∣∣∣∣∣
2n−1−1∑

k=0

εke
ikt

∣∣∣∣∣∣


≤ C

∞∑
n=1

|cn|2
1
2
n ≤ C

∞∑
n=1

dn.

Hence, the convergence of the series
∞∑

n=1
dn implies the uniform convergence of series

(5.28). Then the series
∞∑

n=1

cn

2n−1∑
k=2n−1

εk sin kt (5.29)
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converges uniformly. Denote by f its sum and by ak(f) the Fourier coefficients of f .
Then

2n∑
k=2n−1

|ak(f)| ≥
2n−1∑

k=2n−1

|cn| = |cn|2n−1 = 2
n
2
−1dn.

Condition (ii) is clear.

Remark 5.7. (i) As mentioned above in Section 1.2, the widest class of general

monotone sequences satisfying condition (1.1) is when βn =
2n∑

k=n

|ak|. All sequences of

the form
ak = cnεk, 2n−1 ≤ k < 2n, n ∈ N,

where cn ∈ R and {εk}∞k=1 is the Rudin-Shapiro sequence (see the example in Theorem
5.9), belong to this extreme class. Moreover, such sequences do not belong to any smaller
class since we always have

2n∑
k=n

|∆ak| � C

2n∑
k=n

|ak|, n ≥ 6.

This follows from the fact that for any k, the sequence εk, εk+1, εk+2, εk+3, εk+4 changes
its sign at least once. Therefore, for any integer s ≥ 6 such that 2n−1 < s ≤ 2n, n ∈ N,

2s∑
k=s

|∆ak| ≥
( 2n∑

k=s

+
2s∑

k=2n+1

)
|∆ak|

≥ 2n − s+ 1
5

|cn|+
2s− 2n

5
|cn+1|+ |cn ± cn+1|

≥ C
( 2n∑

k=s

+
2s+1∑

k=2n+1

)
|ak| =

2s+1∑
k=s

|ak|.

(ii) Taking dn = 2−
n
2 , n ∈ N, in Theorem 5.9 and following the construction, we see

that |cn| = |ak| � 2−n, 2n−1 ≤ k < 2n. In other words, there is a uniformly convergent

series
∞∑

k=1

ak sin kx such that

m|am| �
2m∑

k=m

|ak| � 1.

Moreover, in view of part (i) of this remark, {ak} satisfies the following condition

2m∑
k=m

|∆ak| � 1 � C

m

m+λm∑
k=m

|ak|, λm = m2m.

In other words, {an}∞n=1 ∈ GM(β), where βn = 1
nFn(ã) with non-admissible functionals

Fn(x) =
m+λm∑
k=m

|xk|
k . This shows that Theorem 5.2 does not hold for non-admissible
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functionals.
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