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Abstract 

The purpose of my doctoral studies was to develop an algorithm for 
large-scale analysis of protein sets. This thesis outlines the 
methodology and technical work performed as well as relevant 
biological cases involved in creation of the core algorithm, the 
cleverMachine (CM), and its extensions multiCleverMachine 
(mCM) and cleverGO. The CM and mCM provide characterisation 
and classification of protein groups based on physico-chemical 
features, along with protein abundance and Gene Ontology 
annotation information, to perform an accurate data exploration. My 
method provides both computational and experimental scientists 
with a comprehensive, easy to use interface for high-throughput 
protein sequence screening and classification. 
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Resumen 

El propósito de mis estudios doctorales era desarrollar un algoritmo 
para el análisis a gran escala de conjuntos de datos de proteínas. Esta 
tesis describe la metodología, el trabajo técnico desarrollado y los 
casos biológicos envueltos en la creación del algoritmo principal –el 
cleverMachine (CM) y sus extensiones multiCleverMachine (mCM) y 
cleverGO. El CM y mCM permiten la caracterización y clasificación 
de grupos de proteínas basados en características físico-químicas, junto 
con la abundancia de proteínas y la anotación de ontología de genes, 
para así elaborar una exploración de datos correcta. Mi método está 
compuesto por científicos tanto computacionales como experimentales 
con una interfaz amplia, fácil de usar para un monitoreo y clasificación 
de secuencia de proteínas de alto rendimiento. 
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Preface 
 
The work carried out during my doctoral studies was focused on 
developing high-throughput methods for protein dataset analysis. 
My main aim was to develop a methodology to extract high-level 
features (such as propensity to aggregate or form secondary 
structures) using physico-chemical scales1, which was exploited in 
the development of the cleverMachine (Chapter I). Using an 
ensemble of machine learning techniques, I developed a 
classification method that offers an innovative way for end-users to 
build new classifiers with accuracies higher than other methods 
available in literatures.  
 
Relevant biological applications, as well as original research are 
presented along with the computational methods, namely secondary 
structure, solubility, chaperone requirements prediction 
(cleverSuite, Chapter I), RNA-binding, aggregation and disorder 
propensity prediction (Chapter II) and determination of physico-
chemical determinants of neurodegenerative diseases and cancer 
(Chapter III). Furthermore, an extension of the catRAPID suite, 
called catRAPID signature is introduced (Chapter IV). In the last 
chapter, I will discuss a collaboration focusing on finding biological 
significance of multiple repetitions of amino acids (Chapter V). 
 
All of the methods presented exploit protein sequences as input data 
and integrate functional annotation databases, such as expression 
level databases or physico-chemical scales, to perform data 
exploration and analysis. Both the cleverSuite and catRAPID 
signature can be used freely via a web service I built2. 
 
 
 

                                                
1 Numerical mappings between each amino acid and feature of interest 
2 See http://www.tartaglialab.com for links to each of the methods 
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INTRODUCTION 

In the last decade, there has been an exponential increase 
high-throughput screenings of experimental data 
(Hawkins, Hon, and Ren 2010), which has led to a 
paradigm shift in the analysis – moving from manual 
interpretation of experimental data to utilising 
computational algorithms to perform data screening and 
interpretation. The conceptual change allowed great 
expansion of already available information, ranging from 
building a more comprehensive understanding of 
biological processes to being able to perform new 
analyses with larger experimental readings. However, the 
technological advance also meant that researchers who 
used to be able to independently interpret their findings 
now rely on other teams to help them sift through the data, 
requiring both wider expertise as well as increased 
number of human resources involved. 

Many bioinformatics tools are being developed with the 
aim of automating and simplifying various aspects of data 
analysis (Bailey et al. 2009), both stand-alone tools (Rost 
1996) and online accessible algorithms and web services 
(Rice, Longden, and Bleasby 2000). Indeed, the latter 
form of algorithms proves to be more affordable and 
accessible means of performing computational research 
(Dudley et al. 2010). Notwithstanding, there still exists a 
barrier of entry for non-computational scientists that can 
render large amount of tools unavailable due to 
complexity or complete lack of graphical user interface. 
Many of the tools on the market focus on specific features 
only (Linding et al. 2003; Eden et al. 2009; L. Fu et al. 
2012) and no systematic approach has been attempted yet 
to provide end-users with a general purpose algorithm.  



 

 2 
 

My original contribution is the cleverSuite – a series of 
algorithms focused on providing easy to use, graphical 
user interface for data analysis and classification. In this 
thesis, I introduce the individual components of the 
toolkit, as well as their application in the later chapters. 
 
 
1. Amino-acids and peptides 
 
 
Amino acids (AAs) are biomolecules consisting of carboxylic acid 
and amine group bound together at the alpha-carbon of the 
carboxylic acid. A side chain can be bound to the same alpha-
carbon and provides each of the AA’s unique features (see Figure 1 
for basic Amino Acid structure).  
 
 

 
 
Figure 1. Amino Acid Core Diagram. The “R” is a placeholder for 
the side chain, which is the main factor in determining the AAs 
chemical features. For example, the side chain composition affects 
polarity, charge, overall size and many other aspects of the AA 
features. See Figure 2 for further details. 
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There is wide variety in the side-chain content – ranging from its 
complete absence in glycine, to attachment of aromatic heterocyclic 
compounds (indole) found in tryphtophan (see Figure 2 for 
overview of chemical features of proteogenic AAs). Approximately 
500 different AAs have been found in nature (Wagner and Musso 
1983) but only 20 are considered proteinogenic (compose proteins) 
and are directly encoded by the genetic code of eukaryotes. Based 
on the composition of their side chains, the AAs have different 
physico-chemical properties and can be classified by their polarity, 
pH level, presence of aromatic core, presence of hydroxyl or 
sulphur, etc. As building blocks of proteins, AAs and their 
interactions have fundamental influence on the protein features, 
such as protein secondary structure, overall polarity, conformational 
stability and solubility. 

Figure 2. Proteogenic Amino Acids (AAs) categorisation based 
on chemical features of their side chains. The AA features vary 
greatly based on chemical features of the side chain. For 
example, phenylalanine contains heterocyclic compound at its 
sidechain, making it aromatic, as well as hydrophobic AA. 
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To form proteins, amino acids are linked together via covalent 
bonds (peptide bonds); basic sequence of amino acid residues is 
referred to as the primary structure of the protein. For 
computational purposes, each of the proteinogenic amino acids has 
a code assigned. This allows mapping of the primary protein 
structure in to a sequence of letters; akin to the genetic code 
describing sequence of nucleotides in the genome. 
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2  Protein feature prediction 
 

2.1 Particle simulations 

Any biological structure can be represented as an entity in the 
physical world, consisting of particles and forces between them. 
Therefore, in a broad sense, to predict function of biological 
systems without making any approximations, it would require 
calculation of the electronic structure for the system – numerical 
solution of the system’s Schrödinger's equation.  While there are 
advantages of using first-principle molecular dynamics - mainly 
absence of any empirically derived parameters - it has so far only 
been applied to complex biological problems with smaller system 
size (Fattebert et al. 2015). There is progress being made in our 
ability to perform atomistic simulations in greater detail (Kapil, 
VandeVondele, and Ceriotti 2015), however, it is not yet feasible to 
perform such simulations on a scale required to simulate complex 
processes such as determination of protein structure or its function 
or interactions. 

An approach similar to molecular dynamics (MD) is the so called 
“classical” approach – close to the first principle MD (FPMD) in 
the sense that it contains model of particles but the forces and 
relationships between them are estimated by a function of varying 
complexity and accuracy depending on the computational power 
and resolution required.  

For example, in the CHARMM toolkit (Brooks et al. 2009) the 
particle trajectories are calculated using classical MD for simulation 
of an oligomeric peptide system. The following example considers 
all of the heavy atoms, as well as hydrogen atoms bound to nitrogen 
or oxygen atoms (PARAM19 potential function). The equation 1is 
used to calculate the free (effective) energy E, which corresponds to 
the force used in the MD: 

 𝐸 𝑟 = 	𝐸%&'(() 𝑟 +	𝐺,-.% 𝑟     ( 1 ) 
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In the equation above, the molecular system has its atom’s nuclei at 
𝑟 = (𝑟0, … , 𝑟3). The first part of the free energy equation is the free 
energy in vacuum: 

𝐸%&'(() 𝑟 = 	 0
5
	 𝑘77-89, 𝑏 − 𝑏< 5  ( 2 ) 

+	
1
2 𝑘? 𝜃 − 𝜃< 5

7-89	&8A.B,

+	
1
2 𝑘C 1 + cos 𝑛𝜙 − 	𝛿

9JKB9L&.	&8A.B,

+	0
5

𝑘M(𝜔 − 𝜔<)5J)OL-OBL	9JKB9L&.,  

+ 𝜖J	Q)J8
𝑑JQ)J8

𝑟JQ

05

− 2
𝑑JQ)J8

𝑟JQ

S

JTQ

+	
𝑞J𝑞Q

𝜖(𝑟JQ)𝑟JQJTQ

The variables in the equation above have following meaning; 𝑏 is 
bond length, 𝑘? is bond angle, 𝑘C is a dihedral angle 𝑘Mis an 
improper dihedral. The  𝑟JQsignifies distance between atoms 𝑖 and 𝑗, 
𝑞J and 𝑞Qare partial charges and the optimal van der Waals distance 
and energy are 𝑑JQ)J8 and 𝜖J	Q)J8. To account for effects of an aqueous 
solvent, the energy function can contain calculation of the solvation 
energy 𝐺,-.%: 

𝐺,-.% 𝑟 = 	 𝜎J𝐴J(𝑟)3
JZ0  ( 3 ) 

where 𝑁 is the number of heavy atoms with Cartesian coordinates 
𝑟 = (𝑟0, … , 𝑟3). There are only two values needed for the 𝜎J 
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parameter; one for sulphur and carbon atoms (𝜎\,] =
0.012	𝑘𝑐𝑎𝑙.𝑚𝑜𝑙e0	Å) and another for oxygen and nitrogen atoms 
(𝜎3,g = 0.06	𝑘𝑐𝑎𝑙.𝑚𝑜𝑙e0	Å). The 𝐴J(𝑟) parameter is solvent-
accessible surface, which approximated analytically using 1.4 Å 
probe radius. The model and force field outlined above have been 
used in literature to simulate aggregation and folding of structured 
peptides (Paci et al. 2004). Another, more recent example is 
ALMOST (B. Fu et al. 2014) – an atom molecular simulation 
toolkit for structure determination and assessment of structural and 
dynamic properties of complex molecular systems.  

 
There are currently multiple classical MD tools available to detect 
protein features, ranging from standalone tools, pure MD standalone 
tools (Pearlman et al. 1995; Brooks et al. 2009) to hybrid methods 
combining MD with machine learning to both speed up the 
calculation and improve the result (Khoury et al. 2014). The MD 
approaches, either FPMD or classical MD, have great advantage of 
using none or minimal amount or parameters and empirical 
knowledge, making them theoretically most precise metrics.  That 
said, they are also the most computationally intensive which makes 
them unsuitable for high-throughput data processing and screening. 
 
 
2.2 Motif-based methods 

Primary structure is often used to predict a number of features, such 
as secondary structure and hydrophobicity. Some methods focus on 
known functional parts of the protein sequence, such as domains, 
annotated functional sites or other sequence patterns (in general 
referred to as motifs) to identify features of interest. One example of 
such database, called PROSITE (Sigrist et al. 2002), contains 
curated set of motifs along with rich descriptions of the origin of the 
motif, experimental characterization supporting its existence, as 
well as known proteins associated with the database entry. To use  
existing models to describe new sequences, the database is searched 
for known patterns (de Castro et al. 2006) and matches against the 
provided sequence are reported. The use of database-backed 
methods allows identification of known motifs in the query 
sequence, which is linked to relevant data and literature. However, 
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The cleverSuite (Chapter I) is an example of an integrated approach 
that combines physico-chemical feature generation and model 
building in a single package, combining features of, for example, 
PROFEAT with custom subsequent analysis. 
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4  Signal detection in protein datasets 
 

As described in Chapter I, the physico-chemical scales can be used 
to detect differentially-enriched features of proteins sets. 
Introducing binary comparisons of datasets is an important concept, 
as it enables discrimination of a background signal from the true 
signal of interest. For example, simple single-set analysis may 
reveal that majority of an experimental sample contains alpha-
helical proteins. However, when we cross-reference this result with 
another sample coming from a similar population (but not 
exhibiting the phenotype of interest), we may find that alpha helix is 
not an important feature as it is found in both sets. To quantify the 
differential enrichment between sets, we introduce the concept of 
coverage (Klus et al. 2014, Chapter I): 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑃,𝑁 = 0
m���

𝜗 0
3���

𝜗(𝜋O − 𝜋8)8 − 𝛼O   ( 8 ) 

In the equation above, 𝜋	is the signal extracted from the protein 
profile, the counter function 𝜗(𝑥 − 𝑦) is 1 if 𝑥 > 𝑦  and 0 
otherwise. The 𝑃�-� and 𝑁�-�	are total numbers of sequences in the 
datasets P and N. The additional parameter 𝛼 is used as a counting 
cut-off (see Chapter I. for further details). Using the coverage 
parameter provides accurate measure to establish differential 
strength of each of the predictors in use. Furthermore, as the 
equation takes into account the calculated property strength and not 
an identifier or sequence, it discriminates based on the real feature 
enrichment. Allowing submission of both negative and positive sets 
is an important concept, as it completely removes any dependence 
on built-in data. While there exist efforts to build databases of 
negative/non interacting biomolecules (Blohm et al. 2014), it will 
never provide the per-case flexibility that is frequently needed. The 
cleverSuite approach covered in Chapter I has an advantage over 
other methods due to it being scale-neutral. It finds the best-
covering scales and their combinations (only 
combinatorial/computational complexity is the limit), either from 
built-in set or even from user-provided scales. It also builds ad hoc 
scale that could be used for discrimination. 
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There are similar approaches employed to interpret gene expression 
data - Gene Set Enrichment Analysis (Subramanian et al. 2005), or 
to assess over representation-based enrichment in protein or gene 
sets (Glaab et al. 2012).  
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5  Physico-chemical determinants of 
neurological diseases 

5.1 Solubility and saturation 

Maintaining solubility in the cell is an important part of its 
homeostasis as aggregation has been linked to a wide variety of 
diseases. One of the main outstanding questions in the field of 
protein aggregation is a clear determination whether protein is 
aggregation-prone based on its sequence alone without knowing its 
usual expression levels or further detail. This observation is further 
supported by the fact that only some of the proteins seem to be 
aggregating in vivo – suggesting a link between their concentration 
and solubility (Ciryam et al. 2013). Similar trend can be found 
when looking at proteins in S. cerevisiae with high and low 
solubility (Albu et al. 2015), where the less soluble proteins were 
found less abundant under normal conditions (see Chapter II). 
Intriguingly, proteins linked to genes up-regulated in Central 
Nervous System (CNS) disorders have also been found less 
abundant under physiological conditions (see Chapter III). 

5.2 Role of protein expression 

A strong anti-correlation has been observed between in-vitro 
aggregation rates of human proteins and in-vivo expression rates of 
human genes, as is illustrated in Figure 4 (Tartaglia et al. 2007). 
The explanation for this trend is that an evolutionary pressure acts 
to decrease the risk of aggregation by reducing expression levels of 
aggregation-prone proteins (Bolognesi and Tartaglia 2013). The 
same trend has also been observed when investigating gene 
products involved in neurodegenerative diseases, which were 
consistently less abundant under physiological conditions (see 
Chapter III for more details). 



 20 

Figure 4. Aggregation rates correlate negatively with expression levels. (Tartaglia 
et al. 2007, Bolognesi and Tartaglia 2013).  
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CHAPTER I
The cleverSuite approach for protein characterization 

The main focus of my PhD work is the cleverSuite (CS). The 
original idea of the project was to provide a tool that would describe 
protein datasets and allow creation of ad-hoc classifiers, enabling 
non-computational users to create their own predictors without deep 
knowledge of machine learning algorithms. This publication 
represents the core of my work, a building block that is later user 
throughout my other publications. The first part of the CS is the 
cleverMachine (CM), a tool that performs statistical analysis on 
protein sequences by comparing their physico-chemical 
propensities. The CM contains a curated set of 80 predictors 
selected both from existing databases (Kawashima et al. 2008) and 
by performing statistical analysis on computational tools. The 
second part is the cleverClassifier, which applies model created 
with CM to classify other datasets. The CS has been validated with 
proteomic data from existing experiments – secondary structure, 
solubility, chaperone requirements and RNA-binding abilities were 
benchmarked and the CS achieved similar results to existing tools 
or outperformed them. Descriptions of the datasets generated by the 
CM were in great agreement with experimental findings. 

Klus P, Bolognesi B, Agostini F, Marchese D, Zanzoni A, Tartaglia GG. The 
cleverSuite approach for protein characterization: predictions of structural 
properties, solubility, chaperone requirements and RNA-binding abilities. 
Bioinformatics. 2014 Jun 1;30(11):1601–8. DOI: 10.1093/bioinformatics/btu074

https://academic.oup.com/bioinformatics/article/30/11/1601/283177?searchresult=1
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CHAPTER II 
Protein aggregation, structural disorder and RNA-
binding ability 

This chapter covers the extensions of the cleverSuite work 
described in the Chapter I, as well as other relevant example 
datasets. I introduced two new algorithms, the multiCleverMachine 
(mCM) and cleverGO (cGO). The mCM builds on top of the 
cleverMachine (CM) and extends it functionality by allowing easy 
submission and comparison of multiple datasets, which was the 
most common use case of the CM. The tool simplifies upload of 
multiple files and provides additional, high-level visualisation of 
properties found in the submitted sets. The result can be used on its 
own and the users can also “drill-down” into the individual 
comparisons to see full CM models or to launch further 
investigation using the second algorithm – cGO and Boxplotter, 
which are also described in this chapter: cGO is a tool that 
visualises semantic similarity between enriched GO terms. 
Boxplotter visualises protein trends performing statistical analysis. 
As sample use cases, this chapter investigates RNA-binding 
abilities of S. cerevisiae chaperone substrates and provides links 
between aggregation and structural disorder in S. cerevisiae, C. 
elegans, M. musculus and H. sapiens. The results of our 
investigation are in strong agreement with experimental evidence. 
. 

Klus P, Ponti RD, Livi CM, Tartaglia GG. Protein 
aggregation, structural disorder and RNA-binding ability: a 
new approach for physico-chemical and gene ontology 
classification of multiple datasets. BMC Genomics. 2015 Dec 
16;16(1):1071. DOI: 10.1186/s12864-015-2280-z 

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-2280-z
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CHAPTER III 
Neurodegeneration and cancer: Where Disorder 
prevails 

It has been reported in medical literature that genes up-regulated in 
cancer are often down-regulated in Central Nervous System CNS 
diseases and vice versa, which suggests a strong link between these 
two pathologies on a molecular level. In this chapter, we employ the 
tools introduced in Chapter I and II to investigate physico-chemical 
features distinguishing proteins associated with cancer and CNS 
diseases. The cancer group includes prostate, colorectal and lung 
cancers and in the CNS group included Parkinson’s and 
Alzheimer’s diseases and Schizophrenia. Analysis of protein 
abundances using the boxplotter3 algorithm reveals that CNS 
disease genes code for proteins that are less abundant under 
physiological conditions, suggesting that the disease state has strong 
effect on gene expression. The opposite trend is apparent for 
cancer-related genes, whose products show increased expression 
under physiological conditions. Using the multicleverMachine, we 
found that structural disorder is a key feature to differentiate cancer 
types and CNS diseases. More specifically, disorder is significantly 
enriched in the up-regulated protein groups for each of the CNS 
diseases and anti-correlates with order-promoting features (alpha-
helix and beta-sheet), as well as burial propensity. Also, in 
agreement with existing studies (Liu et al. 2006), we observed 
enrichment in nucleic-acid binding propensity of proteins up-
regulated in lung and colorectal cancer. The second part of the 
analysis was performed using cleverGO to investigate Gene 
Ontology features of the groups under investigation.  

3 See Chapter II for further details or access 
http://www.tartaglialab.com/boxplotter/submit directly 

Klus P, Cirillo D, Botta Orfila T, Tartaglia GG. 
Neurodegeneration and Cancer: Where the Disorder Prevails. 
Sci Rep. 2015 Dec 23;5(1):15390. DOI: 10.1038/srep15390

https://www.nature.com/articles/srep15390
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CHAPTER IV 
catRAPID signature 

Current RNA-binding tools often exploit sequence similarity 
between query sequences and known RNA-binding domains (RD). 
The approach relies on annotation of RDs only and cannot be 
employed to identify proteins that bind to RNA although lacking 
known RD. The catRAPID signature addresses this issue by 
considering the physico-chemical features of known RDs for 
training, and computing and comparing the same features for new 
query sequences. Such approach abstracts away from actual 
sequence and allows discovery of binding domains without 
knowledge of their exact sequence. My main contribution to 
catRAPID signature was the generation of a library of physico-
chemical predictors and associated features (profile generation, 
smoothing, signal extraction, etc.). 

 Livi CM, Klus P, Delli Ponti R, Tartaglia GG. cat RAPID 
signature : identification of ribonucleoproteins and RNA-
binding regions. Bioinformatics. 2016 Mar 1;32(5):773–5. 
DOI: 10.1093/bioinformatics/btv629

https://academic.oup.com/bioinformatics/article/32/5/773/1743553?searchresult=1
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CHAPTER V 
Non-random distribution of homo-repeats: links with 
biological functions and human diseases 

This chapter covers results of collaboration between our lab and 
Laboratory of Protein Physics at Institute of Protein Research 
(RAS), Russia.  

The number of homo-repeats in eukaryotic and bacterial proteomes 
is significantly larger than expected from theoretical estimates. Our 
calculations indicate that the minimal length that is statistically 
significant varies with amino acid type and proteome. In H. sapiens, 
occurrence of homo-repeats is associated with high content of 
structurally disordered regions and enhanced RNA-binding 
potential, which is in line with recent experimental findings. We 
also observed that proteins containing homo-repeats have a large 
number of interactions, which can promote perturbation of protein 
networks and cause dysfunction. Although the functional roles of 
homo-repeats are unknown, we found that their occurrence is 
associated with pathology.  

Lobanov MY, Klus P, Sokolovsky I V, Tartaglia GG, 
Galzitskaya O V. Non-random distribution of homo-repeats: 
links with biological functions and human diseases. Sci Rep. 
2016 Jul 3;6(1):26941. DOI: 10.1038/srep26941

https://www.nature.com/articles/srep26941
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DISCUSSION 

In the previous chapters, I have presented a series of biological 
problems that I have addressed through algorithms and other 
theoretical principles. The Chapters I to III, my first-author 
publications, were focused on the individual algorithms and their 
scientific significance. Although some applications are presented in 
Chapters IV and V, I will describe the future plans in the following 
text, along with a discussion on the technical implementations 
needed to make the work possible. Therefore, this final section is 
divided into two parts – “What does the future hold?” which covers 
work in progress and future plans of the cleverSuite. The second 
part, aptly titled “Technical challenges”, describes the work needed 
to implement the algorithms. 
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1. What does the future hold?

1.1. cleverSuite improvements 

As we can see in Table 1 below, the cleverSuite in its current 
version has performances on par with purpose-built tools and 
predictors. However, cleverSuite and its capabilities described in 
Chapter I are just a starting point in the lifecycle of the project. New 
features, both on technical and scientific side are currently in 
progress and will be released when they reach maturity.  

a) cleverMachine’s signal extraction
The original cleverMachine uses averages of physico-chemical 
properties to determine overall strength of the signal, which means 
a single value for each input sequence. My approach provides good 
discrimination with both experimentally and computationally 
derived scales. Nevertheless, there are areas in which this approach 
is lacking: 

cleverSuite Reference 

ACC1 

(%) 
TPR2 

(%) 
TNR2 

(%) 
Method TPR3  

(%) 
TNR3

(%) 

Alpha-beta 97.9 90.4 93.2 

RePROF 92.6 72.0 

Disorder 86.1 84.5 73.6 

FoldIndex 62.9 64.7 

Solubility 89.8 84.7 60.5 

PROSO II 78.5 74.0 

Chaperones 81.6 75.4 60.0 Limbo 100.0 22.5 

mRNA 84.3 72.9 79.2 

RNApred 82.5 52.8 

Table 1 cleverSuite performances 10-fold cross-validation 
accuracy for cleverMachine (CM) models (ACC is accuracy). 2. 
Independent validation performances for cleverClassifier (CC). 
3. Performance comparison with algorithms reported in
literature. TPR (true positive rate) and TNR (true negative rate)
are calculated on the same sets used to validate CC (2).
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• Protein contains specific sites that are neglected by the 
averaging approach; 

• The enrichment is based on full-length features. 
 
As presented in Chapter I, we are evaluating methods to extract 
specific regions from the profiles. One of the proposed solutions is 
to consider areas that are one standard deviation away from the 
local (protein) or global (dataset) mean. Another approach would 
exploit fragmentation of the profiles into smaller parts to consider 
them as individual entities for the purposes of the enrichment 
calculation. There are other improvements that are currently under 
way, for example detection of feature changes for single-point 
mutations and integration of protein networks to consider 
interaction sites. Lastly, we are exploring new approaches to 
directly integrate other algorithms. The cleverSuite currently 
contains computationally derived scales that were produced by 
linking AA frequencies to features detected by the tools but does 
not integrate the tools directly. This leads to inevitable loss of 
information that could be avoided by integrating the third-party 
tools directly. 

b) Classification feature enhancements 
The cleverClassifier currently supports binary classification of 
incoming set, with an addition of signal strength. Calculations are 
done through multiple samplings of the input data and by creating 
of different models where the score is effectively an agreement 
between them. Apart from using the models to provide binary 
classifications of the input set, there is a potential in extending the 
confidence percentage in to a score metric that could better evaluate 
the input data. 

c) Database(s) integration 
One of the primary goals of cleverSuite (CS) was to be organism 
“agnostic”. To achieve this requirement, it was designed without 
any links to existing libraries or protein sets. While this requirement 
stays the same for the CS core, there is a benefit in enriching the 
calculation by using information from existing databases of 
knowledge – for example, it may be helpful to only consider 
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specific sets (Bateman et al. 2000) for information extraction, or, 
alternatively, use them as another independent information source.  

d) Pair-wise prediction 
Another feature that is in the works is to expand on which 
information goes in to the profiles. For example, we want to be able 
to create protein-protein or protein-RNA interaction profile for 
further data mining, similar to approach taken in PAnDA (Cirillo, 
Botta-Orfila, and Tartaglia 2015).  
 
1.2. Easier sharing of ideas and code 
 
As mentioned earlier in this chapter, parts of my effort during the 
PhD pertained to making reuse of ideas and algorithms easier. We 
have seen creation of shared code repositories, which lead to fruitful 
collaboration within the lab. However, due to the nature of the work 
and licenses bound to part of the algorithms, it was not yet possible 
to make the repositories completely public. Furthermore, some of 
the algorithms have very specific dependencies that can alter the 
result if not set up exactly as they should be.  
 
During my PhD, a software solution became industry-ready that 
could alleviate the second point – managing dependencies and 
requirements of the algorithms. The solution is containerisation, 
with Docker (Merkel 2014) being the most notable example. In a 
nutshell, it allows packaging of algorithms including their 
dependencies in a pre-configured container. Using containerisation 
to encapsulate the algorithm and all of its dependencies is only the 
first part of the equation in simplifying the distribution. Akin to 
github (Dabbish et al. 2012), the Docker project also maintains an 
open repository of existing containers, making the task of code re-
use a matter of issuing a few simple commands. During the last year 
of my PhD, I have started a shift of all of our software to Docker, 
with the plan of including binary versions of algorithms where 
source code could not be disclosed (see more on this below). The 
containerization is the ideal solution in terms of space-efficiency 
and portability, however, there is a learning curve associated with it 
for the algorithm developers and users alike. Furthermore, the 
Docker project is extremely fast growing, which means that the 
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documentation does not always keep up and it does require specific 
version of the operating system to run in an optimal manner.  
 
Therefore, for users who simply wants to run the algorithm on their 
machine, I have collaborated with other members of our lab to build 
set of virtual machines containing the algorithms and all of their 
dependencies, as well as running webserver for easy result review. 
Using a set of open standards, the virtual machine can be used by 
variety of desktop virtualization solutions (VMWare 
Player/Workstation/Fusion, Parallels Desktop, Oracle Virtual Box 
and any other supporting the Open Virtualization Format). 
 
Distributing the algorithm inside of a container or a virtual machine 
brings the computation to the user’s control and they can easily 
integrate our tools into their pipelines and workflows. While this is 
a great step forward in dissemination and sharing of our work, there 
is still much more that could be done to foster collaboration on even 
deeper level. The future plan for all of the algorithms mentioned in 
my thesis is to make them fully open-source. This does not mean 
simply flipping the switch and making the repository public, a 
process needs to be undertaken to refactor some of the source code 
to make it more accessible, as well as to provide documentation on 
how to setup development environment and create robust 
compilation and deployment scripts.  
 
Last days of my time at the CRG were devoted to making the above 
process a reality. I handed over the work on “dockerization” of 
algorithms, as well as put plans down for making the cleverSuite 
repositories public and accessible to the scientific community. I 
have also been involved in patent disclosure process4 for the public 
release of the catRAPID suite of algorithms, which is now approved 
the software is now being distributed. 
 
 
 
 
  
                                                
4 Software Disclosure Form (SDF) with identifier “ID 0056_CRG_SDF” 
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2. Technical challenges 
 
Apart of the scientific challenges presented in the previous chapters, 
a several technical advancements had to be made to make 
algorithms work together efficiently and to distribute the calculation 
across resources. 

 

 
 

 
2.1 Computational infrastructure overview 
 
The cleverSuite (CS) algorithms introduced in Chapter I inspired 
the first step of computational infrastructure development I have 
performed as part of my PhD. First of all, the amount of calculation 
required meant that CS jobs had to be distributed across multiple 
server resources and the execution properly coordinated. Also, we 
had to enable other lab members to easily re-use the system and 
introduce new algorithms. As there was no easy off-the-shelf 
solution we could use, I have developed a simple system for job 
submission, distribution, result storage and other “glue” 
functionality needed to complete the submission lifecycle. The 

 
Figure 3. Computational infrastructure overview. To deliver 
results to users of our algorithms, we employ hybrid 
infrastructure consisting of local servers for the heavy 
computation (under CRG logo) and cloud infrastructure to store 
the results and manage the computational pipeline. 
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challenge was to come up with a complete system that would fit all 
the requirements in very modest amount of time there was. The 
solution comprises of following parts: 
 
a) Algorithm definition 
 
While not necessarily a software component, the algorithm 
definition is an important part of the system that describes each of 
the algorithms, their inputs and outputs, and allows exchange of 
information between all of the components. 
 
Algorithm definition is a text file that outlines inputs of the 
algorithm and technical details needed for its execution. We have 
considered multiple formats as one of the requirements was 
minimizing the user’s learning curve when trying to setup new tools 
online. We have chosen YAML file format as it is both a human 
and machine readable format and does not require any special tools 
or knowledge for its creation or maintenance. The algorithm 
definition has following parts: 

• Algorithm name 
• Algorithm description 

o Shown to end-users on the website on submission 
pages. 

• Field definition 
o To allow automatic form-generation on the server.  

• Command structure 
o Command line arguments and path to the algorithm 

including relevant placeholders for input data and 
output directories. 

• Supporting data 
o Additional information for users to show before/after 

the automatically generated form, links to 
documentation and tutorial, etc. 

 
 
b) Submission interface 
 
The job submission, status checking and results database can be 
accessed using the website component, which creates an user 



 

 71 

interface based on the algorithm definitions. The interface caters for 
new job creation, status checking and related administrative tasks 
and can be ran locally, as well as deployed to remote servers.  This 
makes it easier for other lab members to prototype new algorithms 
and makes them available faster. To cater for public usage of our 
algorithms, a website has been created at http://s.tartaglialab.com 
using the website component. 
 
c) Job queue and execution 
 
The submission system had to be able to cater for multiple 
independent entities submitting and processing work. This is 
addressed by using a per-algorithm global queue (Amazon SQS5), 
which ensures that no two entities claim job for processing, jobs get 
processed in first come first served manner and that creation of new 
jobs is possible no matter what other activity there is. Furthermore, 
the system also caters for computational nodes failing and not 
completing a job. This is achieved by adopting a “renewal” 
mechanism where computational nodes need to periodically inform 
the queue manager that they are still busy working on a job. Should 
this notification fail to arrive in a timely manner, job is returned to 
the queue and is made available for processing to other machines. 
 
d) Result storage and submission database 
 
Our services use cloud-hosted database (Amazon SimpleDB6) and 
cloud-based storage (Amazon Simple Storage Service7) to 
synchronise data across its instances, providing both ease of use and 
data durability. 
 
e) Real world usage 
 
The information in this section provide brief overview of the 
computational infrastructure I have built during my PhD to support 
the work presented in this thesis, as well as creation and evolution 
of multiple algorithms at our lab. After the initial release, the 
system was quickly adopted for both new and legacy algorithms. In 
                                                
5 https://aws.amazon.com/sqs/ 
6 https://aws.amazon.com/simpledb/ 
7 https://aws.amazon.com/s3/ 
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a span of mere 2 years, following new algorithms were developed 
on top of the new system: 
 

• catRAPID omics (Agostini et al. 2013) 
• ccSOL omics (Agostini, Cirillo, Livi, et al. 2014) 
• catRAPID signature (Livi et al. 2015) 
• cleverSuite (Klus et al. 2014) 
• multiCleverMachine (Klus et al. 2015) 
• SeAMotE (Agostini, Cirillo, Ponti, et al. 2014) 
• PAnDA (Cirillo, Botta-Orfila, and Tartaglia 2015) 

 
 
2.2 Interoperability 
 
a) Code re-use 
 
The job distribution and result storage system described in this 
chapter provides a way to create jobs and reuse their results, 
however, it still treats each of the algorithms as independent “black 
boxes” without any restrictions on their internal structure. This 
makes it very easy to create new algorithms and make them 
available to potential users but it does not necessarily make it easier 
for developers to re-use parts of algorithms and create derivative 
work.  
 
To address this, I have pioneered use of distributed source code 
version control (using git) in our centre to open up all of our work 
to collaboration and sharing of ideas on the raw code level. This 
started transition from individual, independent tools to collaborative 
approach where everybody can easily contribute and improve each 
of the group’s algorithms, as well as cherry-pick and re-use 
interesting features. Results of this level of collaboration can be 
seen in Chapter IV – algorithm catRAPID signature. To create 
catRAPID signature, parts of the cleverSuite (Chapter I) have been 
re-used and adapted to suit a new purpose. 
 
b) Result re-use and custom “server“ creation 
 
The unified result storage opened up an option to create customised 
version of each of the algorithms based on the user submitted data. 
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For example, one can obtain a re-usable classification algorithm 
after training the cleverMachine (Chapter I). This can be easily 
shared between users. Example of this approach can be seen in 
Figure 4. 

 
 
  

	

Figure 4 Featured models and derived classifiers Ad-hoc 
page featuring classifiers built with cleverMachine that are 
available to the community (full page available at 
http://service.tartaglialab.com/static_files/algorithms/clever_
machine/featured_submissions.html) 
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Conclusions 
This thesis, titled “The Clever Machine – a computational tool for 
dataset exploration and prediction” provides description of all of my 
activities during my PhD at the Centre for Genomic Regulation 
(CRG) in Barcelona, Spain. It describes both scientific and 
technical work performed to achieve publications in chapters I to V, 
as well as work outside of the publications. The chapters are 
organised in a chronological manner, with the exception of Chapter 
V, which spanned through almost entire duration of my PhD. 
 
This thesis, titled “The Clever Machine – a computational tool for 
dataset exploration and prediction” provides description of all of my 
activities during my PhD at the Centre for Genomic Regulation 
(CRG) in Barcelona, Spain. It describes both scientific and 
technical work performed to achieve publications in chapters I to V, 
as well as work outside of the publications. The chapters are 
organised in a chronological manner, with the exception of Chapter 
V, which spanned through almost entire duration of my PhD. 
 
Chapters: 

I. The cleverSuite (CS), a toolkit designed to simplify data 
extraction and classification of protein sequences. At its 
core, it uses physico-chemical scales to extract features from 
protein sequences. The CS contains curated list of 80 
physico-chemical scales, which predict protein secondary 
structures; aggregation, disorder, membrane protein and 
nucleic acid binding propensities, as well as solubility. 
Information is extracted for all of the included scales (and 
any custom scales the user provides) and enrichment is 
calculated and shown to the user on an interactive webpage. 
Furthermore, the submitted data is used to train a 
classification model that can be then used for predictions. To 
sum up, the CS serves two purposes – it’s a tool for feature 
detection and visualisation, as well as an ad-hoc classifier 
creation service. 

II. Extension of the cleverSuite algorithm to allow for more 
efficient exploration of larger number of datasets manifested 
as a new algorithm – multiCleverMachine (mCM). The 
mCM greatly simplifies evaluation of multiple datasets by 
allowing batch-execution of cleverMachine jobs and 
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providing unified user interface to interpret the results. It 
also serves as a central “launchpad” for running other 
integrated tools on the already submitted data. Second part 
of the chapter describes second tool, the cleverGO (cGO). 
The cGO algorithm is a new, integrated approach to 
visualisation of Gene Ontology enrichment information by 
providing semantic similarity visualisation of the enriched 
terms. 

III. Application of the tools described in Chapter I and II to 
investigate physico-chemical features that distinguish CNS 
diseases and cancer. Using the boxplotter algorithm, we 
have found that CNS disease genes code for proteins that are 
less abundant under physiological conditions, suggesting 
that the disease has an effect on gene expression. The 
opposite is true for cancer-related gene products, which 
show increased expression under physiological conditions. 
Furthermore, we have found the structural disorder to be the 
most distinguishing feature (enriched in up-regulated for 
each of the CNS diseases) between the two disease groups.  

IV. Result of a re-use of the cleverSuite core to create predictor 
of RNA-binding domains (RD) which is not based on 
known sequences but uses features of the sequences to 
predict its propensity to be RNA-binding. This approach 
allows discovery of novel RDs as it’s not based on sequence 
similarity. My contribution was the creation of the re-
useable library of physico-chemical predictors and their 
associated function library. 

V. Investigation of biological function and prevalence of homo-
repeats in 122 bacterial and eukaryotic genomes. 
Discrepancy between expected number of homo-repeats and 
total number is investigated, as well as interaction profiles of 
proteins containing homo-repeats. Lastly, the chapter covers 
physico-chemical features of highly-interacting proteins and 
their relation to human diseases. 
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