>

ETSEIB

TESI DOCTORAL

DYNAMIC SCHEDULING OF PARALLEL
APPLICATIONS ON SHARED-MEMORY
MULTIPROCESSORS

Autor: XAVIER MARTORELL BOFILL

Abstract

Current parallel shared-memory multiprocessors are complex machines, where a large number
of architectural aspects (both of processors and memory) have to be simultaneously addressed
in order to achieve high performance. The quick evolution of the parallel machines has been
followed by the evolution of the parallel execution environments. Both user and kernel
execution levels are the subject of current research works that try to achieve a good
cooperation between them and with the hardware. These were the trends we were interested in,
when we started the development of this thests.

The thesis proposes a paralle] execution environment, where is possible to integrate
new approaches both at user and kernel levels. The main goal is to achieve both efficient and
effective support for multi-user parallel processing across a wide range of shared memory
parallel computers, from small symmetric multiprocessors to high-end systems with globally
shared address space.

The fundamental concept used in this work to achieve the global objective is the
cooperation among the different execution levels in a parallel execution environment. The
three levels we consider are: compiler/application, user-level execution environment and
operating system. Cooperation must be bidirectional, from the application to the user-level
environment and operating system and vice-versa.

The kind of work and the experimentation needed to complete the previous goal
requires the availability of a whole parallel execution environment, from the operating system
to the compiler/application level, including the user-level execution management. This is the
reason why one of the main results of this thesis is a complete paralle] execution environment
(the NANOS execution environment) providing a compiler (the NANOS compiler), a user-
level threads library (NthLib), an operating system interface and scheduling mechanisms (the
NANOS 0.8.) and the definition of how the three levels are going to cooperate.

Our starting point is the Nano-Threads Programming Model. Under NPM, the
compiler decomposes the application in a hierarchical graph of parallel tasks. From this graph,
the compiler generates parallel code using the services provided by a threads package
interface. During code generation, the compiler statically determines the finest granularity of
parallel tasks worth to be exploited, having in mind the efficiency of the user-level package
implementation. Using the threads package and operating system interfaces at run-time, the
program is also able to group tasks in order to use a coarser level of granularity, adapted to the
actual system conditions. The hierarchy of parallel tasks allows us to experiment with the
exploitation of multiple levels of parallelism.

There are several mappings among the application, run-time and operating system
levels which are the key to provide high performance:

* The application is responsible for the mapping of application-level tasks to user-level

threads supported by the threads package.

» The user-level threads package is responsible of the mapping of user-level threads to
kernel-level threads (virtual processors), provided by the operating system.

* The operating system is responsible of the mapping of kernel-level threads to processors.

The objective of the user-level threads package interface is to support general, multi-
level, unstructured and fine-grained parallelization of applications. The compiler can then
represent successor and predecessor relationships between the application tasks, including the
ability of driving processors to execute different portions of the application. Fine-grain
parallelism is supported through mechanisms to efficiently schedule parallel loops.

The objective of the kernel-level interface is to provide a new, highly dynamic, space/
time-sharing environment using two levels of kemel scheduling. The kemel offers a set of
scheduling policies and the system manager can dectde which one is active, considering the
workload. The active kernel-level scheduling policy implements the first scheduling level.
Low-level management involving individual processors and the specific work they have to
perform becomes the second scheduling level. The motivation for these two levels of
scheduling is that, in our opinion, the application should be the scheduling target for the first
level and the individual processes the scheduling target for the second level. The kernel-level
interface gives support to both the application and the user-level threads package. The kernel-
level interface allows the application to dynamically request and release processors, indicating
the amount of parallelism that it can exploit. The application can also check the number of
processors currently allocated and can spawn the parallelism accordingly. The user-level
threads package uses the kernel interface to ensure that the application proceeds with an
execution as smooth as possible, even when the operating system moves some processors
away from the application.

The evaluation of the NANOS parallel execution environment has been done on a
Silicon Graphics Origin2000 machine. The evaluation consists of three different types of
experiments to evaluate the overhead introduced by the execution environment, the
performance obtained running applications in dedicated mode and the performance obtained
running parallel workloads. The NANOS and the SGIMP native execution environments are
compared in these experiments.

The results obtained can be summarized as follows:

* The NANOS execution environment provides higher functionality, and enables the
support of unstructured and multi-level parallelism. The runtime overhead is comparable
to the overhead introduced by the SGIMP commercial environment in Origin2000
machines.

» Existing applications can benefit from the exploitation of multiple levels of parallelism.
The improvement in performance of these applications ranges from 30% to 65% with
respect the single level version.

» The NANOS environment effectively shows better behavior in common heterogeneous
workloads consisting of several applications, requesting a different number of
processors. The improvement in performance ranges, in this case, from the 10% to a 80%
of the achieved throughput, comparing with the same workloads executed in the SGIMP

execution environment.

vi

Dedicatoria

Als meus pares.

Vil

fo—

R

et

N

viii

ACKNOWLEDGEMENTS

A lot of people has made possible this work. I would like to express my more frankly gratitude
to all of them for being there, working with me, helping me.

First of all, I want to thank Jesds Labarta and Nacho Navarro for being my advisors
during this work. [started working in operating systems and microkerels with Nacho Navarro
in my last undergraduate year. After my graduation, I continued working in the operating
systems group in the Computer Architecture Department of the Universitat Politécnica de
Catalunya. After some time, Jesds Labarta call us for starting the preparation of the NANOS
Esprit Project. From Jests Labarta, I think I’ve learned to organize things in a practical way.
From Nacho, to analyze and abstract new ideas relating them to well-known concepts.

I want to express my gratitude to the rest of colleagues participating in the NANOS
project, from the Computer Architecture Department: Eduard Ayguadé, for his work at the
compiler level, in the definition of the interface of NthLib (the name was given by him),
parallelizing applications, and for his comments about the organization of this document, along
the writing. Toni Cortés and Julita Corbalan for their participation in the definition and design
of the NANOS operating-system interface. Also to Julita Corbaldn for her dedication to
parallelize applications. To Marc Gonzalez and José Oliver (“Oli”) for their work in the design
and implementation of the OpenMP directives in the NANOS compiler. To Jordi Caubet and
Sergi Aldoma for their dedication to the study of the internals of the SGIMP library.

The NANOS project started October 1996. In addition to UPC, the other participants
are the University of Patras (Greece), the Consiglio Nazionale delle Ricerche (Naples, Italy)
and Pallas (Germany). I would like to thank all our partners for their participation during this
work, specially to Dimitris Nikolopoulos and Lefteris Polychronopoulos, for the discussions
on the kemel-level framework and scheduling policies and for their dedication during our two
work-weeks in Patras in 1997 and 1998. 1 cannot forget to thank Constantine
Polychronopoulos, from the University of Illinois at Urbana-Champaign, for inspiring the
NANOS project and provide us with the opportunity to work on this topic. I would also thank
to David Craig for his dedication during my two visits to the University of Illinois in 1997 and
recently, in 1999,

Thanks to Mateo Valero, the head of the High Performance Computing Group, for his
‘support, and to all my colleagues from the Computer Architecture Department. Specially to the
group researching on micro- and exokernels: Emest Artiaga, Yolanda Becerra, Marisa Gil and
Albert Serra. Special thanks also to Toni Juan, my office-mate during all these years, for
sharing his research time with me and for the discussions about cache memories. To Susana
Moteno, for using the NANOS environment on Alpha machines and for the work she did
solving problems with this implementation. To Daniel Ortega and Ivin Martel. And to Dolors
Royo, Roger Espasa, Marta Jiménez, Pepe Gonzélez, Gianluca Cornetta and Enric Fontdecaba.

I'm also grateful to the LCAC and CEPBA staffs, specially Oriol Riu (“Uri”) for his
help during the periods in which I've been intensively doing experiments in karnak
(Origin2000 system). Without his support for the experiments in dedicated mode, they would

have probably taken a longer time to complete.
Finally, but not less important, I would like to thank to my family and friends, for
their support along all this time.

iX

This work has been supported by the European Community under the Long Term
Research ESPRIT Project E21907 (NANOS) and the Ministry of Education of Spain (CICYT)
under contracts TIC97-1445-CE and TIC98-0511, TIC95-0492 and TIC94-0439.

Contents

Chapter 1.

Introduction. 1
I.1.Parallel architectures and parallel software. 2
1.2 Target architectures. vt i it i 4

1.2.1. Architectural taxonomy. i 4
1.2.2. Symmetric multiprocessors.ot 5
1.2.3.CC-NUMA symmetric multiprocessors (CC-NUMA SMP)7
1.2.4. Architectural considerations for our proposals. 12
1.3.Current paraliel execution environments 13
1.3.1. Commercial parallel execution environments. 13
1.3.2.Researchprojects o, 14
1.4.Software considerations for our proposals 15
1.5.Goalsof thiswork. 16
1.5.1. Application / compiler level 17
1.5.2. User-level execution environmentcovv.... 17
1.5.3.Operating systemlevel 18
1.6.Description of the complete execution environment. 18
1.7.Contributions of thisthesis, 20
1.7.1.Contributions at application level 21
1.7.2. Contributions at the user-level execution environment 21
1.7.3. Contributions at the operating system level 21
L8 Thesisstructure e 22

Chapter 2.

Programming Model 23
2.1.The Nano-Threads Programming Model (NPM) 24
2.1.1.The Hierarchical Task Graph (HTG) 24
2.1.2. The HTG execution mechanism, 25
2.2.Requirements set by NPM on the user-level environment 26
2.2.1. User-level resource identification. 26
2.2.2.Spawning parallelism through ready queues. 27
223 Waiting forwork.,o 27
2.2.4.Multiple levels of parallelism 28
2.3 Requirements set by NPM on the operating system 30
2.3.1. Application adaptability to the available resources 31
2.3.2.Operating system scheduling policies. 31

2.4 Programming language L e

X1

xii

Contents

2.4.1.Goals of the OpenMP directives 32
2.4.2 Expressing parallelisminOpenMPo L 32
Chapter 3.
Scheduling 35
3.1. Scheduling levels e 36
3.2.Application-level scheduling 36
3.2.1.Deciding the amount of parallelism. 37
3.2.2, Application-level scheduling policies 38
323.Locality1ssUes 39
3.2.4.Dependent parallel regionsof codeo ool 40
3.2.5.Multiple-levels of parallelism 41
3.2.6.Processor groupingt 43
3.3.Run-time library level scheduling 43
3.3.1.Resource identification and scheduling. 44
3.3.2.Mapping application tasks to virtual processors 44
3.3.3.Precedence driven €Xeculion, 44
34 Kemel-level scheduling i i 45
3.4.1.Sharing information with the upperlevels. 46
3.4.2.Synchronization and processor preemptions 46
3.4.3.The application as the scheduling target 47
344 Processoraffinity. i 47
3.5.Complete interaction between the three levels of operation 47
Chapter 4.
User-level Interface & Functionality . .. 49
4. 1.Run-time library. 50
4.1.1.Design deCiSions . ..o vttt e 50
4.1.2. User-level NthLib interface 51
4.2.Compiler direCtivesot 62
4.2.1.Description of the OpenMP directives. 62
4.2.2.Code generation from the OpenMP directives 66
Chapter 5.
Kernel-level Interface & Functionality. . 67
5.1.Kernel scheduling framework i i 68
5.1.1.Design deCisionst e 68
5.1.2. Operating system scheduling framework 70
52Kemelinterface ottt e 71
5.2.1.Processors request and supply of virtual processors 71

Contents

5.2.2.Specific processorrelease. i 72
5.2.3. Preempted Work reCoOveryot 72
5.2.4. Current status of processor allocation. 72
525.Codingexamples. 73
5.3.Kernel-level scheduling policies., 74
5.3.1.Equipartition (Equip) oo 74
532.Batch. 75
533.Round-robin(RR) 75
5.3.4. Processor Clustering (Cluster)c i, 75
Chapter 6.
Comparison with
Previous/Related Work 77
6.1.Comparison with existing user-level run-time packages 78
6.1.LPthreads. 78
6.1.2.CThreads. i 78
0.1.3.CIlK ..o 79
6.1 4. Flaments. e 80
6.1.5.CO0L 81
6.1.6.Illinois Concert System.ttt inann, 81
6.1.7. Active Threads & pSather. 82
6.1.8.Illinois-Intel Multithreading Library. 83
6.1.9.SGIIRIXMPLibrary........ ... i, 84
6.1.10.Integrating functional and loop parallelism. 85
6.2.Kemnel approaches. 85
6.2.1. Setting the degree of parallelism. 86
6.2.2.The application as the scheduling target. g7
6.2.3.Blocking events management 87
6.2.4. Synchronization iSSUesot i 88
6.2.5.User / kernel interaction 88
Chapter 7.
Implementation Issues. 89
7.1. User-level implementation iSSues. ciurnrinne..... 90
7.1.1.Data SUCTUTES. . .. ottt et e e et 90
7.1.2.Nano-thread creation. it 92
7.1.3.Nano-thread self identification 92
7.1.4.Dependenciescontrol, 93
7.1.5.Ready queue management.o, 93
7.1.6.Blocking 94
7.1.7. Portability 1SSUES i 94

Xifi

X1v

Contents

7.1.8.Mutualexclusion L 95
7.1.9.The virtual processors schedulingloop..................... 95
- 7.1.10.Thread fork/join techniques oLt 96
7.2.Kernel-level implementation issues. it 99
7.2.1. The user-level CPUManager 99
7.2.2.The complete virtual processors schedulingcode 100
7.2.3.Implementation of the kernel-level scheduling framework. 102

Chapter 8.

Programming Examples 107
8.1.Hand coded benchmarks: LU decomposition 108
B2 APPLCAtioNS.t 109

8.2.1.SPECO95HYDRO2D. 109
B2 2 NAS BT . o s 115

Chapter 9.

Evaluation........................ 117
9.1 Performance evaluation environmentc.coooui.... 118
9.2.Evaluation of the vser-level execution environment overhead 118
9.2.1.NthLib primitives overhead. 119
9.2.2.NthLib fork/joinoverhead 121
9.2.3.Conclusions of the overhead evaluation 128
9.3 Evaluation of individual application performance. 128
0.3.1.Benchmarksot e 128
932 Applications. e 129
9.3.3.Benchmark evaluation. i 130
9.3.4.Evaluation of individual applications 132
9.3.5. Conclusions of the evaluation of individual applications 140
9.4 Evaluation of workload performance. 140
9.4,1 Fine-tuned workload execution 142
9.4.2. Benefits of user/kernel cooperation.o 144
9.4.3. Workload with limited requests. ut. 147
9.4.4. Workload with largerrequests. il 153
9.4.5. Conclusions of the workload evaluation 156

Chapter 10.

Conclusions and Future Work 159
10.1.Conclusions of thisthesis. 160
10.1.1.Supporting the Nano-Threads Programming Model 160
10.1.2 Muitiple levels of parallelism and processor grouping 160

Contents

10.1.3.Fine-grain parallelism P 161
10.1.4.Cooperation between user and kemel levels. 162
10.1.5.Conclusions taken from the evaluation 162
102 Future work. oo e 163
References............ 167

XV

Xvi

Contents

R

e

Chapter 1.
Introduction

Abstract

This first chapter introduces the need for efficient and well-
funed parallel execution environments to support the execution of
parallel applications in shared memory multiprocessors. It shows the |
architecture of the current symmetric multiprocessors (SMP) and cache-
coherent NUMA machines, and the aspects to consider when developing
parallel execution environments. Taking them into consideration, it
presents the goals of this thesis, and an overview of the NANOS parallel
execution environment. It concludes with the contributions of this work.

Gene Roddenberry Crater on Mars

At the 42nd General Assembly of the
International Astronomical Union (IAU), held in The
Hague in 1994, a Martian crater was named in honor
of Gene Roddenberry.

The Roddenberry crater is located af Martian
latitude -49.9 degrees and longitude 4.5 degrees, in
Quad MC26SE on Map I-1682. [Quad defines the
name of the map on which it appears and "Map" is
the USGS number for that map.] Is diameter is
approximately 140 km or about 87 miles.

Introduction to "Death of a Neutron Star", Star
Trek Voyager, Eric Kotani, Pocket Books, March
1999,

Page 1

Chapter 1

1.1.Parallel architectures and parallel software

Parallel processing increases the computational power of computers ranging from low-end
workstations and even personal computers to big mainframes containing a large number of
processing elements. Small shared-memory multiprocessor machines are available from a
great number of computer builders: Silicon Graphics, SUN Microsystems, Compag/DEC,
Hewlett Packard, Intel, Sequent, Data General, etc. Some of them also build big mainframes.
Examples of current shared-memory multiprocessor mainframes are the Origin2000 [72] from
SGI, the SUN Enterprise 10000 [25], the Digital AlphaServer [37], etc.

The larger the machines, the more complex they are. Complexity comes partially
from the fact that the path from the processors to the memory becomes a bottleneck when more
than 10-12 processors are put together. Bad scalability motivates higher memory access
latencies and poor performance when the number of processors is increased, due to the
memory subsystem bottleneck. Several solutions have been adopted to solve the problem of
scalability. They include to improve the path from the processors to the memory, through
pipelined memory architectures in bus-based and NUMA computers. As a result, memory
accesses have different latencies. The resulting architecture is more complex and difficult to
manage to achieve high performance. Along with varying data access latencies, other elements
that make parallel processing difficult in current hardware systems are the architecture of the
current superscalar processors, the improved synchronization mechanisms and the support for
relaxed memory models.

Side by side with the hardware evolution, current system software is also greatly
evolving to introduce new and more powerful tools and abstractions for parallel processing.
The main functionality of the system software is to allow several applications to use the
computer resources {physical processors, memory, etc.). System software, initially based on
the operating system abstractions, provided medium cost tools for parallel processing. Later,
efficient user-level mechanisms replaced most of the operating system functionality. User-
level approaches take advantage of the current microprocessor architectures in a better way
because of the low cost of management. Besides, the operating system is responsible for
offering the basic abstractions to support parallel execution.

Running parallel applications efficiently in current shared-memory machines requires
good designs for the three main levels of operation, namely application, user-level run-time
execution environment and operating system. This three levels are widely used along this
thesis to serve as the foundation of a parallel execution environment.

At the higher level, the application level, the detection and/or expression of the
parallelism useful to be exploited is the key aspect to consider. It is necessary to provide both
good mechanisms inside the compiler to detect the parallelism and higher expressiveness in the
parallel language for the programmer to rearrange the parallel regions in conformity with the
underlying architecture. Current parallelizing environments provide tools both fo
automatically detect parallelism and to manually express it through language extensions or
directives. At this level, the compiler and the application programmer are responsible of
generating parallel code which could properly fit to the execution environment where the
application is going to be executed. Parallel code generation greatly influences the way the
application will be executed. Challenges like exploiting fine-grain parallelism, exploiting
multiple levels of parallelism, and improving data locality are easily broken because of an

Page 2

Introduction

inappropriate parallel code generation. Each one of these issues can be managed in different
ways, depending on the particular research interests. Multiple levels of parallelism can be
exploited inside a parallelization environment or using different parallelization environments.
The latter happens, for instance, when a parallel application consists of several loop-parallel
processes managed through message passing at a higher level.

Fine tuning is very important at the application level. Both the programmer and the
compiler have the largest amount of static information about the application (structure, data
dependences, algorithm, etc.} compared with the information available at lower levels. At the
same time, for the programmer it is easier to manage with information at a higher level than at
a low level. On the other hand, the main disadvantage of fine tuning at this level is that any
machine dependent arrangement breaks portability to other execution environments. The
tuning process often involves calibration of program parameters through experimentation, and
this work must be repeated for each paralle]l application, different input data set or target
machine. Fortunately, parallel machines provide several tools to analyze the execution of
parallel applications. In this way, fine tuning is affordable for system software developers and
experienced users.

In the middle level, the user-level execution environment, the key aspect is the
efficient support of the requirements of the application level. The main tasks of the user-level
execution environment are creation, management, synchronization and termination of
parallelism. Support parallelization as much fine-grain as possible means to reduce the
overhead of the user-level execution environment to a minimum. Improving any of the
creation, management, joining, aspects becomes important for this reason. Support for multiple
levels of parallelism means allowing the exploitation of any kind of parallelism inside the
application and at any moment. This also means not making differences among the sequential
and parallel entities, in the sense that all of them should be able to spawn paraliclism.
Achieving data locality at the user level means to follow the indications of the application with
respect which processors should access some specific data. Current parallelization
environments have a reduced overhead, achieved through fine tuning for each specific
architecture.

Finally, at the operating system level, several applications are executed at the same
time in the same machine with the operating system intervention. Given that a computer has a
limited number of processors, and that several applications are running at the same time, the
task of the operating system consists of distributing processors among the running applications
in such a way that each application can execute as if the machine were in a dedicated mode.
This is not an easy task when the number of processes created by all the applications exceeds
the number of physical processors in the machine. Resource sharing is unavoidable and usually
prevents achieving a performance comparable to the individual applications execution.

Itis commonly accepted that the three levels previously described have to be designed
in a complementary way, rather than independently. They must be designed having in mind
that from their proper relation the applications executing inside the parallel environment will
obtain more benefits when the decisions taken in one level are not the opposite to the ones
taken in another level. Several research works have already addressed this issue during the last
years [11][33][147][89][75]1[961[84][5]. In this thesis, we continue working to enforce the
cooperation among the different levels as the main goal of this thesis, along with the
experimentation with the main aspects which have been commented along this introduction:
Fine-grain parallelism, multiple levels of parallelism and data locality.

Page 3

Chapter 1

1.2. Target architectures

Currently, computer builders marketing high-end servers and high performance computer
systems are promoting new machines supporting a large number of processors. Some years
ago, machines with this characteristic were already the subject of some commercial and
research projects such as the Sequent Symmetry multiprocessor system [129], the DASH
multiprocessor [74], the Stanford FLASH multiprocessor [71] and the MIT Alewife
machine [2]. Due to the promising results of these research projects, along with the increasing
availability of high performance microprocessors, the same idea has also been taken by the
computer industry and has been encouraged commercially. As a result, during the last decade,
a number of different parallel computers have been arising in the commercial market.

1.2.1. Architectural taxonomy

The problem of scalability, or how to put side by side a large number of processors, building a
machine from which one can obtain good performance, has been attacked differently,
depending on the advantages that each builder wanted to obtain. This is one of the main current
research subjects related to building parallel machines. Anyway, the number of possible
solutions is limited, ranging from loosely coupled systems such as networks of workstations to
highly coupled systems like symmetric multiprocessors (SMP’s). Solutions can be summarized
as follows [130][131][125][48]:

» Network of workstations, consisting of several standalone servers connected over a
network. Each server runs its own copy of the operating system. Memory is physically
and virtually distributed. All communication relies in message passing.

» Massively parallel processor systems, usually without any shared resource and
communicating through a fast specialized interconnection network and message passing.
Each processor runs its local copy of the operating system. Memory is physically and

. virtually distributed.

¢ SMP nodes, consisting of a limited number of processors, sharing a cache-coherent
uniform memory access physical address space and running under one operating system.
SMP nodes are based on a global system bus architecture. Resource contention is a factor
that limits the number of processors that can be connected to the system bus. SMP nodes
can be used to build clustered systems and CC-NUMA SMP nodes.

» Clustered SMP nodes, consisting of several independent nodes, sharing some storage
devices. Each SMP node is executing its own copy of the operating system. There is
neither global physical nor virtual address space among nodes, although tools could be
provided to allow distributed shared memory, usually through mixed hardware/software
protocols.

* CC-NUMA nodes (large SMP nodes), consisting of many processors and resources
running under one operating system. They provide a cache-coherent non-uniform
memory access (CC-NUMA) physical address space.

The work done in this thesis is targeted to the currently existing shared-memory parallel
computers. Physically shared memory is provided by both SMP nodes and CC-NUMA nodes.
Although they are architecturally different, they both provide a unique physical address space
shared among all the processors in the machine. Nowadays, the number of processors
supported by single SMP nodes usually ranges from 2 to 64, while CC-NUMA nodes support
till 1024 processors. It is expected that these numbers could increase in the future.

Page 4

Introduction

In general, SMP and CC-NUMA nodes are of importance because they are well-
suited for parallel processing, including computing intensive applications, parallel transaction
processing, database management and informational network systems. SMP provides a smooth
migration path for applications running on uniprocessors to run on high-performance systems.
From the previous topics, this work focuses on improving the parallelism exploitation of
computing intensive applications.

1.2.2. Symmetric multiprocessors

A symmetric multiprocessor (SMP) node contains two or more processors, with no master/
slave division of processing. Figure 1 shows an example of a ten processor SMP node. Each
processor has equal access to the computing resources of the node. SMP’s are architecturally
characterized by a direct connection model where all components (processors, memory and
input/output) are equidistant and directly connected to one another. Symmetric multiprocessors
have uniform memory access times. Theoretically, variation in data access time is a result of
the component speed and nothing else.

9
Microprocessor

7
Microprocessor

3
Microprocessor

System bus

Figure 1: A single SMP node containing ten processors

As shown in Figure 1, SMP’s have all components connected to a single system bus,
providing a way for a tightly coupled connection among the resources. All data turnovers
between any two components have to use the system bus. The bus not only supports data
transfers, but also helps the system to provide data coherence. This is related to the cache
memoties attached to the microprocessors to improve their performance. Each data transfer
initiated from a component is snooped by all other components, that can, in this way, modify
the state of data blocks inside their cache memory containing the same data referenced.

Improving the performance of the machine is greatly related to the performance of the
system bus. There are only two ways of doing the bus faster: Lowering the latency and
increasing the bandwidth. Reducing latency requires to reduce the bus clock cycle time. This
limits the bus size because of clock signal propagation constraints. By increasing the
bandwidth, busses become wider, being able to transfer bigger data units. Most commonly, a
combination of both techniques is used, resulting in shorter and wider busses.

Page 5

Chapter 1

Two important factors limit the scalability of SMP nodes. In the first place, these very
short busses required for performance limit scalability because, simply, there is not enough
room in the bus to attach a large number of components. In the second place, another factor
that limits scalability in single SMP node systems is data access contention in the system bus.
Contention comes from the fact that the system bus is used for every data transaction between
any two components connected to the bus. While the bus is used for a transaction, any other
attempt to use the bus will be blocked till the next available bus cycle.

Examples of SMP nodes are the SUN Ultra Enterprise 10000 server
(Starfire) [25][123], the Compag/DEC AlphaServer 8400 and GS140 [37][38] and the HP
9000 T-Class servers [62]. The SUN and Compaq/DEC machines are commented next.

1.2.2.1. The SUN Ultra Enterprise 10000 (Starfire)

The SUN Ultra Enterprise 10000 server supports up to 64 processors and 64 Gbytes of main
memory. It is based on the 400 Mhz. Ultra SPARC II processor and the Gigaplane-XB
interconnect technology. Each processor comes with a 4 Mb. external secondary cache.

The Enterprise 10000 server accommodates a maximum of 16 system boards. Each
system board can be configured with up to 4 processors and 4 Gbytes of memory. System
boards are connected through the Gigaplane-XB interconnect, a crossbar designed specifically
for this machine. It uses a packed switched scheme with separate address and data paths. The
reason is that data is usually communicated point-to-point, while addresses have to be
distributed simultaneously throughout the system for the snooping protocol. The main
structure of the system is shown in Figure 2. Data transfers are done through a 16x16 crossbar
allowing communication between any two system boards at the same time. Contention arises
when a system board is the origin or the destination for two or more data transfers in the same
bus cycle. In this case, only one of the requests can be satisfied and the rest should wait for an
available bus cycle. Addresses are communicated to all boards through four independent
address busses. Each bus covers 1/4 of the total address space.

With this characteristics, the data crossbar has a latency of 468 ns. The latency of a

SUN Ultra 6000, a smaller machine supporting 24 processors is half (216 ns.) The problem is
that, in the Enterprise 10000, both local and remote memory references suffer the latency

penaity. SUN states that this can be improved in the future [25].

, 16 x 16 Data Crossbar {point-to-point communication) l

System Systemn System System
Board Board Board e Board

Four address busses (snoopy protocol}

Figure 2: SUN Enterprise 10000 bus architecture

Page 6

Introduction

1.2.2.2, Compaq/DEC AlphaServer GS140

The Compaq/DEC AlphaServer GS140 is based on the Alpha 21264 processor. It supports up
to 14 processors. Each Alpha processor runs up to 636 Mhz. and has a 4 Mb. external third-
level cache. Processors are connected through a system bus supporting a maximum of 28

Gbytes of main memory.

Processor Processor Processor
Processor or or or
Memory Memory Memory
System Bus '
1/0 4
Processor Processor Processor
Memory or Memory or Memory or
or I/O or I/O Memory

Figure 3: Compaq/DEC bus architecture

Figure 3 shows the structure of this system. The system bus supports the connection
of a maximum of 9 system boards. This limitation seems to confirm that the small bus size
required for performance is really conditioning the design of the computer. There are three
types of system boards: Processor boards, memory boards and 1/0 boards. A processor board
may contain up to two Alpha processors. A memory board can accommodate up to 4 Gbytes of
memory. This means that a 14 processor system is limited to 4 Gbytes of memory, due to the

maximum of 9 system boards connected to the system bus.

1.2.3. CC-NUMA symmetric multiprocessors (CC-NUMA SMP)

A CC-NUMA SMP node is a cache-coherent non-uniform memory access symmetric
multiprocessor. In contrast to a SMP node, in CC-NUMA machines it is assumed that the
access time from processors to memory can depend on the location of the originating processor
and the location of the memory module accessed. The following could be stated as main
objectives of CC-NUMA SMP machines [72]:
* Achieve larger scalability than SMP systems. Currently, this means breaking the frontier
at 64 processors provided by the SMP systems.
* Maintain the data coherence among the overall system, as in SMP systems.
* Limit the increment in the cost due to iniroducing complex hardware (multi-bus
alternatives, for instance, are more complex and costly).

Figure 4 shows the structure of a CC-NUMA SMP machine. Several SMP or custom nodes are
joined through a fast, low latency, interconnection network. Each node contains a number of
processors, memory, local I/O and a fast communication bridge to the central interconnection
network. All memory (and usually all I/O) is shared and accessible from all the processors
attached to the machine. The topology of the interconnection network greatly varies among
different designs and it is the factor that will limit the performance of the overall system. Data
coherence must be maintained through a special cache coherence protocol implemented by
means of a memory directory located in each node, which tracks data references to remote
nodes and references from the local node to remote data.

Page 7

Chapter 1

SMP / Customn Node

Control| | Directory | | Microprocessor

SMP / Custom
Node

SMP / Custom
Node

Co Node Microprocessor

Controller] .
Microprocessor

SMP / Custom|
Node — Interconnection

|
SMP h{ﬂg:s’min/ / \

SMP / Custormn
Node [T SMP / Custom
Node

Network

S.N;P / Custom

SMP / Custom Node

Node

Figure 4: Structure of a CC-NUMA symmetric mulﬁprocessor

Examples of CC-NUMA SMP nodes are the SGI Origin2000 machine [136], the HP
9000 V-Class Enterprise server [63], the Sequent NUMA-Q based servers [131]{128] and the
Data General AViiION AV 25000 CC-NUMA Server [35][34]. The Origin2000, HP 9000 and

Sequent servers are commented next.

1.2.3.1. SGI Origin2000 server

The SGI Origin2000 server supports up to 1024 processors and one Terabyte of main memory.
It is based on the 250 Mhz. MIPS R10000 processor (with 4 Mb. of external secondary cache)
and a distributed shared memory (DSM) architecture. The DSM architecture implements
directory-based memory coherence, removing the broadcast bottleneck that prevents
scalability in the snoopy bus-based SMP implementations [72].

The basic Origin2000 node is shown in Figure 5. Each node contains two R10000
processors, with their respective secondary cache memories. The central element in each node
is the HUB, which connects both processors to the memory, I/O and the interconnection
network (interconnection fabric, in SGI terminology). Each node can accommodate up to 64
Gbytes of main memory and its corresponding directory memory. The global shared address
space is distributed among the nodes in slices. Node 0 contains addresses in the lower range
(:N-1, node 1 follows, containing addresses N:2N-1, and so on. The DSM architecture
provides global addressability from any processor to all memory and I/O.

The Origin2000 system uses a directory-based memory coherence protocol. Each
cache line in memory has an associated directory entry. Directory memory is located near main
memory (in the same module, see Figure 5). Each entry contains information about the
associated cache line: its system-wide caching state and bit-vectors pointing to caches which
have copics of the cache line. Memory can determine which caches need to be involved in a
given memory operation in order to maintain coherence. The cache coherence protocol is
explained in [72].

Figure 6 shows the structure of an Origin2000 system containing 64 processors.
Processor nodes arc attached to the interconnection routers, which provide low latency
communication. Routers link the HUB inside the basic nodes to the CrayLink Interconnect.
Each router has six external full-duplex connections, which are managed internally by a full
six-way nonblocking crossbar switch. Machines with 128 processors use meta-routers (routers

Page 8

Introduction

connecting routers) to connect four 32-processor groups. Meta-routers are replaced by 5-D
hypercubes to reach up to 1024 processors.

Origin2000
R10000 R10000 node
Processor Processor
I [
Secondary Secondary
Cache Cache
Directo Crossbhar
3 Y / L HUB — E——r— To I/ O
Main Memory 1/Q Devices
‘ Interconnection fabric
R —— Router M
|

Figure 5: Origin2000 node and external connections

Processor node
{two processors)

® Router

Figure 6: Topology of a 64-processors Origin2000 system

Table 1 shows the average latency of the local and remote memory references in
machines with a different number of processors, from 1 to 128. The increment of the latency
between 8 and 32 processors is very small due to the use of redundant connection links in
routers called express links [72]. It is remarkable than, in a 64 processor machine, the average
latency of a remote memory access is only 2.7 times the latency of a local memory access.

In this thesis, we have used a machine with these characteristics (64 processors) for

the evaluation of our proposals.

Page 9

Chapter 1

Memory level Latency (ns.)

L1 cache (195 Mhz. processor) 5.1

L2 cache 56.4
local memory 310
4 cpus remote memory 540
8 cpus remote memory (avg.) 707
16 cpus remote memory {avg.) 726
32 cpus remote memory (avg.) 773
64 cpus remote memory (avg.) 867
128 cpus remote memory (avg.) 945

Table 1: Origin2000 average memory latencies

1.2.3.2, HP 9000 V-Class Enterprise server

The HP 9000 V-Class Enterprise server supports up to 128 processors and 128 Gbytes of main
memory. It is based on the 440 Mhz. HPPA-8500 processor and the HP’s Scalable Computing
Architecture (SCA). The V-Class SCA is a multi-level memory subsystem. The first level (up
to 32 Gbytes) consists of a traditional SMP memory; The second ievel is created by tying first-
level memories through a high performance interconnect. The interconnection is named SCA-
Hyperlink. The resulting system appears to be as a single globally shared memory
multiprocessor system.

The building-block of the HP 9000 V-Class server is shown in Figure 7. It consists on
a 8x8 crossbar switch to which 8 four-processor modules and up to 32 Gbytes of main memory
can be attached. Each four-processor module has a local I/O meodule. The connection of
memory modules to the crossbar is done through the SCA module, implementing multiple
rings connecting building-blocks. SCA allows remote memory accesses to/from other building
blocks. Up to four building-blocks can be joined in a 128 processors machine.

The system guarantees cache coherence between multiple building-blocks. Each SCA
module contains cache and directory memory (Hyperlink memory). The Hyperlink cache
memory contains the remote data referenced by the local building-block. The Hyperlink
directory memory contains, for each cache line, the list of building blocks sharing the same
information.

In contrast to the Origin2000 system, the HP 9000 V-Class server takes the approach
of building a large SMP crossbar-based system {containing up to 32 processors) and take it as
the building-block for a larger machine.

Page 10

e,

Introduction

I/0 1/0 I/0 I/O
4-processor 4-processor 4-processor 4-processor
module module module module
8x8 Crossbar 22
\— | , % | —r | 2 connections
SCA SCA SCA SCA to the next
I ™~ ’ N I ™~ l "N building-block
[Hyperlinks)
Memory Memory Memaory Memory
module meodule module module
Figure 7: HP 9000 V-Class huilding-block
1.2.3.3. Sequent NUMA-Q E300 server

The Sequent NUMA-Q E300 server supports up to 128 processors and 128 Gbytes of main
memory. It is based on the 400 Mhz. Intel Pentium II Xeon processor and the Scalable
Coherent Interface (SCI) [64].

NUMA-Q stands for NUMA based on quads. A quad (see Figure 8) is the basic block
for the Sequent server, consisting of four processors (Intel Pentium Pro / Pentium II),
connected to an SMP bus, with local memory (up to 4 Gbytes) and local I/O. Basic blocks are
attached to the 1IQ-Link network, which is the Sequent’s implementation of the SCI standard.
IQ-Link is a unidirectional ring network, running at 1 Gb/s. Figure 8 also shows the resulting
system structure. A maximum of 32 quads are supported for a total of 128 processors.

Like in the Origin2000 server, the global shared address space is distributed among
the nodes in slices. Data coherence is ensured in hardware inside each quad, like in a SMP
machine. The IQ-Link module inside each quad ensures data coherence among quads. It also
provides 32 Mb. cache memory for remote data and directory memory to keep track of the
state of the local and remote cache lines whose data is in the local quad [81].

Although the high speed network and good local memory latency (250 ns.), remote
memory latency is higher than in the SGI Origin2000 machine, reaching 8 times the local

latency [80][72].

Page 11

Chapter 1

Quad 0 S Quad 1 S Quad 2 - Quad 3
1
I
Quad N-1 | Quad
| Interconnection
p-If P-II P-1I P-1I | {(IQ-Link)
l ! [i

[| | '

IQ-Link 1O Memory :

l i

1

Figure 8: NUMA-Q server topology and Quad structure

1.2.4. Architectural considerations for our proposals

From the previous discussion, we have seen that different implementations of SMP and CC-
NUMA machines give pretty different low-level performance results. Scalability is a difficult
problem and the different solutions usually introduce a penalty in data access times. Hardware
constraints raise a barrier when reaching 12-16 processors in SMP machines.

Current SMP machines fry to break this barrier through complex hardware designs,
but maintaining the backplane bus and the snoopy cache protocols. The goal is to maintain the
memory access times equal from any processor to any memory module at a reasonable cost.
Nevertheless, memory contention should also be taken into account. Several processors
accessing the same memory module will have to wait for the memory accesses to be served
one after the other. Does this mean that equal memory access times are unachievable?

With the design of CC-NUMA machines, architects are implicitly assuming that
memory access times do not need to be always the same. This simplifies the hardware and
lowers the cost. Nowadays, this has allowed to add up as much as thousands of processors in a
single node, running a single copy of the operating system and applications.

From the software point of view, both types of machines are behaving in a very
similar way. Different memory accesses can have different latencies. This means that parallel
applications that are scaling well till 12-16 processors will suffer a problem similar to the
hardware scaling, when executed on 32 and more processors. For instance, an application task
spending one millisecond on one processor should ideally take 125 microseconds on 8
processors. Software can easily support this coarse grain distribution of work. By contrast, the
same task would spend 15 microseconds on 64 processors. Supporting such fine granularity is
very difficult to achieve, taking into account that memory access latencies can reach near one
microsecond. This limit in the ability of exploiting fine granularity always exists, although it
can be different, depending on the architecture. Application scalability can be achieved by
scaling the amount of data that the application is managing.

In this thesis we want to study another alternative. CC-NUMA architectures are based
on building-blocks and they further extend the traditional hierarchical view of the physical
memory. Parallel applications can adapt to the new hierarchy by exploiting, when possible,

Page 12

R N e

Introduction

multiple levels of parallelism, and grouping processors to work in more coarse grain
distributions of work, even when using more than 12-16 processors.

When we take into account that these machines will be used to run several
applications at a time, we realize that the operating-system scheduling mechanisms probably
should also be revisited. Operating-system scheduling takes usually the process/thread as the
scheduling target. This means that all kemel-level events (processor preemption, blocking,
unblocking, etc.) related to a process are communicated to it, without taking care of the parallel
application to which the process belongs. This mechanism comes from the uni-processor
implementations of the operating systems. Applications can also be considered as the
scheduling target. We want to study whether this alternative is feasible for kemel-level

scheduling and evaluate the benefits that can carry out.

1.3.Current parallel execution environments

Computer builders provide paraliel execution environments along with each parallel computer.
A parallel execution environment, from top to bottom, consists of a parallelizing compiler, a
user-level threads library and a multiprocessor operating system. The parallelizing compiler
either automatically decomposes the application in parallel tasks, or accepts annotated source
code, from which it generates parallel code calling the user-level threads library. The user-level
threads library supports the execution of the parallel tasks of the application, through efficient
fork/join and synchronization mechanisms. The threads library uses the operating system
interface to obtain execution resources. The multiprocessor operating system is in charge of
managing processors, physical memory and input/output. It manages processor scheduling and
memory allocation and placement.

In the following subsections, we introduce some of the commercial and research
projects related to supporting parallel execution, introducing the main aspects to consider
when designing a parallel execution environment. They are compared with our approaches,

later in Chapter 6.

1.3.1. Commercial parallel execution environments

Every commercial parallel execution environment provides a set of parallelizing compilers,
usually supporting the C and Fortran languages. For instance, both the MIPS Pro C [132] and
Fortran 77 [135] compilers provided by Silicon Graphics are able to automatically extract loop
parallelism from sequential applications. This is done with the help of the PCA (Parallel C
Analyzer) and PFA (Parallel Fortran Analyzer) tools [134], respectively. Both compilers also
accept annotated C and Fortran code. In this case, the programmer can express both parallel
loops and parallel sections (data and functional parallelism). Both in automatic and annotated
parallelizations, the resulting parallel code calls to the SGI MP library [137]{133], the custom
threads library provided by SGI to support parallel execution.

Commercial parallel execution environments provide different user-level threads
libraries. There are two main types of such libraries: First, the standard libraries such as
Pthreads (Posix threads) [65][124]. They are thought to be used by parallel programmers, to
build parallel applications, expressing the parallelism by hand. The programmer introduces
explicit calls to the threads library to create, manage, terminate and synchronize the parallel
application tasks. The Pthreads library is oriented to work with shared memory. There are also
standard libraries oriented to message passing, such as PVM [52] and MPI [90][91].

Page 13

Chapter 1

Secondly, there are custom threads libraries (such as the SGI MP library). Such
custom libraries are not used directly by programmers, but instead they are used through a
parallelizing compiler. Custom thread libraries are highly tuned for execution on top of the
parallel architecture. For instance, spawning parallelism in custom libraries is done from a
master processor to all the slave processors at a time, instead of supplying work in a one-to-one
basis, which it is the case in the Pthreads library. Such fine tuning motivates the use of very
simple structures to support the parallelism. Simplicity carries out efficiency, but also there is a
lack of functionality with respect to standard libraries. For instance, the SGI MP library forbids
to spawn parallelism inside a parallel region. That is allowed in the Pthreads library, which it is
not imposing such restriction by allowing that any pthread could spawn a new pthread. In
general, it is common that custom libraries do not support the exploitation of multiple levels of
parallelism.

The multiprocessor operating system assigns physical processors to application
processes (or threads). Different kernel-level scheduling policies are usually provided by the
operating system. For instance, the SGI IRIX operating system provides the time-sharing and
gang scheduling policies [138] to manage parallel applications. Time-sharing is a priority-
based scheduling policy, where processes are scheduled independently of each other. In gang
scheduling, instead, processes belonging to the same application are scheduled as a group. In
the SGI MP execution environment, the time-sharing policy is used because it is more dynamic
than gang scheduling and applications are able to adapt to the number of processors allocated.
In fact, each application has a specific thread in charge of controlling the load of the system
and whether the application is taking advantage of the allocated processors. This thread serves
two purposes. First, in case that thread detects that the load is high and the application is not
receiving enough resources, it decides to stop some of the processes of the application, to free
some physical processors and reduce the system load. Second, when that thread detects that the
load is low and the application can use more processors, it starts some of the processes of the
application to take advantage of more physical processors. This is a specific feature of the SGI
MP execution environment, not found in other environments.

Other operating systems, such as Digital UNIX, provide the FIFO and round-robin
scheduling policies, in addition to time-sharing, to schedule processes/threads on top of
processors. SunOS provided a gang scheduling class for lightweight processes (LWPs) [119].
Nevertheless, the parallel execution environments running on top of them are simpler than the
SGI one, lacking that kind of communication between the user and kernel levels.

1.3.2. Research projects
Several parallelizing compilers are being developed to generate code to run on top of custom
threads libraries. They are research projects oriented to individual application execution. For
instance, the SUIF compiler [60] gets sequential Fortran code and automatically generates
parallel code to run on a custom library, with no communication with the operating system.
The SUIF run-time system supports a single-level of parallelism, in the same way as the SGI
MP library does.

Searching for support of multiple levels of parallelism and fine granularity is the main
goal of several user-level thread libraries. The Illinois-Intel Multithreading Library (IML [56])
is a user-level threads package supporting nested parallelism and code generation from the
Intel Fortran compiler. It runs on PC-compatible Intel multiprocessor machines, on top of the

Page 14

Introduction

Windows NT kernel. Communication with the operating system includes a specific interface to
get the number of available processors and to stop and resume kemel threads.

COOQL [23] is a run-time system supporting parallel object-oriented programs written
in the COOL language [24]. It is thought for NUMA machines. The programmer is allowed to
express data locality in three different ways, through object, task and processor affinity.

Cilk, Filaments, Concert, Active Threads are thread libraries also providing support to
compiler generated code. Communication with the operating system is not considered, in any
of these projects. They provide support for multiple levels of paralielism. Data locality is taken
into account, providing tools in the library interface to map the application tasks on specific
processors. The Cilk language extends C with parallel constructs. The Cilk run-time system
[17] is oriented to express parallelism in recursive programs. Filaments [44] can be used
directly by the C programmer or from the Sisal functional language. It supports fine-grained
iterative and fork/join threads. Concert is a concurrent object-oriented language and run-time
system [27] designed to support fine-grain irregular applications which behavior is unknown at
compile time. Active Threads [150] is a run-time system supporting code generation for the
pSather compiler [93][142]. Threads are grouped in thread bundles, sharing a common
scheduler. Bundles facilitate data locality because threads accessing the same data could be
assigned to the same physical processors through the bundle.

Projects considering the improvement of communication with the kernel include
Process Control, Scheduler Activations, First-Class User-level Threads and Execution
Vehicles. Process Control [147][148] introduces the concept of dynamically adapt the
parallelism inside applications to the available resources, as indicated by the kernel. The
application receives enough information to start and stop processes when needed to adapt to
the allocated resources. Scheduler Activations [5] provides to the user level all scheduling
events related to the application. The events are receiving a new Processor, a processor
preemption, thread blocking and thread unblocking. All events are communicated through the
upcall mechanism, which sometimes is too costly to allow an efficient communication path
between user and kernel levels. First-Class User-Level Threads [84] merges the upcall
mechanism with the shared memory. The most aggressive approach is taken in the recent
implementation in IRIX6.5 of Execution Vehicles [32]. In this approach, the full context of the
kernel-level threads is made available to the user-level execution environment, in such a way
that both the kernel and the user levels can resume a preempted thread.

There are other rescarch projects providing threads libraries, such as Quartz [6],
FastThreads [4], Presto [14] and SwitchStacks [28] which are interesting for various reasons
and have also been studied during the development of this work.

1.4.Software considerations for our proposals

Fine-grain parallelism exploitation can be useful depending on the amount of processors
available to the application. From the hardware point of view, when a large number of
processors is available, the limits of fine-grain parallelism come from the fact that distributing
less work to more processors reduces the amount of data that each processor is accessing,
usually increasing the conflicts among the processors. This topic appears in large machines,
specially in NUMA architectures. When the amount of conflicts grow, the performance of the

Page 15

Chapter 1

parallel execution decreases. One solution to this problem is to exploit multiple ievels of
parallelism, when possible. Otherwise, the reduction of the conflicts is only possible by

enlarging the size of the data set managed by the application.

From the application point of view, allowing to exploit multiple levels of parallelism
means to be able to spawn parallelism at any point during the execution. Some of the current
parallel execution environments forbid spawning new parallelism when some parallelism has
been already spawned. Such environments forbid multiple levels of parallelism.

In the exploitation of multiple levels of parallelism it is interesting to consider the
aspect about how the new parallelism is going to be executed. A first approach consists of
using the same processors that are already executing other parallel constructs. Alternatively,
imagine that the application can be partitioned along the different parallel constructs. Different
processors can be then assigned to work in different portions of the application. Resource
distribution is let entirely as an application decision. It can be done in regular or irregular ways,
depending on the application structure. For instance, an irregular distribution of processors can
assign more processors along the critical path and less to execute other constructs. Application
partitioning is an interesting issue because it will potentially reduce the spawning overhead and
benefit data locality and working set size.

Supplying accurate information to the operating system about resource needs is also a
key aspect. When the application shrinks its parallelism, processors could become quickly
available for other applications running in the system, reducing idle time. On the other hand,
when an application needs more processors, it is guaranteed that the request will be taken into
account in a short enough amount of time. In this way, the application adapts its structure to the

available resources.

1.5.Goals of this work

The global objective of this thesis is to achieve efficient and effective support for multi-user
parallel processing across a wide range of shared memory parallel computers, from small
symmetric multiprocessors to high-end systems with globally shared address space. This work
searches for a complete execution environment for parailel applications. The environment
consists of a parallelizing compiler, a specialized user-level threads library, a new operating
system interface, new scheduling mechanisms and several system level scheduling policies.

Supporting parallel processing efficiently means to achieve both high global system
performance and reduced turnaround time for applications running simultaneously on the
parallel system. The execution environment is effective if it is able to support all the existing
applications which are amenable to be parallelized and new ones which can be already
designed to be executed in parallel.

The fundamental concept used in this work to achieve the global objective is the
cooperation among the different execution levels in a parallel execution environment. The
three execution levels which we consider are the compiler/application level, the user-level
execution environment and the operating system. Cooperation must be bidirectional, from the
application to the user-level environment and operating system and vice-versa.

The kind of work and the experimentation needed to complete the previous goal
requires the availability of a whole parallel execution environment, from the operating system
to the compiler/application level, and including the user-level execution management. This is
the reason why one of the main results of this thesis is a complete parallel execution

Page 16

Introduction

environment (the NANOS execution environment) providing a compiler (the NANOS
compiler), a user-level threads library (NthLib), an operating system interface and scheduling
mechanisms (the NANOS 0.S.) and the definition of how the three levels are going to
cooperate. Such cooperation can be seen like the path the information follows from the
application to the operating system. Most of the development done for the NANOS execution
environment has been done as part of the NANOS L.T.R. ESPRIT Project (E-21907)
[98][99][100][101]§102]{103][104], supported by the European Commission [45].

The main objective presented is decomposed below in partial goals, located at the
different levels, which have to be obtained first to prove the feasibility of the global one.

1.5.1. Application / compiler level

Supporting effective parallel processing includes the ability to express parallelism in high level
languages. This work focuses mainly on FORTRAN applications. The NANOS compiler
automaticaily parallelizes applications based on OpenMP directives [107]. It uses a
hierarchical task graph [55] as an internal representation of the parallelism extracted from the
application. The compiler generates parallel FORTRAN code from this internal representation.

The development of the NANOS compiler, although has been done outside this thesis,
has been directly guided by the design, the experimentation and the results presented in this
work.

The goal is to show the feasibility of compiling applications in order to efficiently
exploit parallelism in a multiprogrammed environment. This can be further decomposed, in the
following issues:

» Search for the limits of fine-grain parallelism. Find which is the limit of fine-grain
parallelism in current architectures and what the important aspects to consider are when
parallelizing applications at fine granularity levels.

» Allow the exploitation of multiple levels of parallelism, when possible, including both
structured parallelism at the loop level as well as task parallelism. Allow experimentation
with processor grouping.

* Enforce the cooperation with the lower levels (user-level execution environment and
operating system). Communicate information about data locality, and minimum
exploitable granularity to the user-level execution environment. Communicate the
resource needs of the application to the operating system.

 Facilitate the development of evolving and malleable [47]1 applications. Evolving
applications dynamically request at any moment the number of processors they need for
execution. Malleable applications are able to run on any number of processors, quickly
adapting their execution when the number of processors allocated to them changes.

1.5.2. User-level execution environment
Parallel code generated by the NANOS compiler is supported by a specialized threads library
(NthLib). This library has been designed as the NANOS compiler target. It can be also used
directly by a user/programmer. The goals at this level are:
» Achieve individual application high performance. This means to search for an efficient
implementation of the threads library, the basis of the user-level execution environment,
without compromising or restricting the achievement of the other goals.

Page 17

Chapter 1

» Support fine-grain parallelization. Provide an execution environment to investigate
which are the limits of {ine-grain parallelization. Search for techniques to supply work to
processors and mechanisms for thread joining, having in mind both UMA and NUMA
architectures.

» Support multiple levels of parallelism and processor grouping. Allow the application
level to spawn parallelism at any time and drive processors to execute portions of it.

» Offer mechanisms for the application level to control data locality and load balancing.

» Promote efficient cooperation of the user-level execution environment with the
application and the operating system levels. Provide the low-level mechanisms for
controlling the processors allocated to the application. Detect processor preemptions
from the operating system and recover the work to avoid delays in the application.

1.5.3. Operating system level

Parailel execution is supported by the NANOS O.S. The operating system is responsible of
managing physical resources and offering them to the applications. This work considers the
processor as the main resource to be shared among the executing applications. Memory
allocation is considered for NUMA machines. Other issues usually managed by the operating
system, such as memory management or input/output are not considered, by now. The goals at
this level are:

» Define an operating system interface to support the cooperation between the higher
levels (application and user-level execution environment) and the operating system.

* Design a new operating system scheduling framework to allow efficient processor
distribution and sharing, considering the application as the scheduling target and
providing a smooth kernel-level scheduling in accordance with the applications.

* Enable the design and implementation of kernel-level scheduling policies to distribute
the available processors among the executing applications in a dynamic environment.

* Dynamically adapt the parallelism exploited inside each application to the global
resource utilization. Processors are moved by the operating system from one application
to another to balance the overall system load and applications requirements.

» Consider processor affinity and memory placement in kernel-level scheduling policies,

benefiting data locality.

1.6.Description of the complete execution environment

The main structure of the execution environment is presented in Figure 9 and it consists of
three basic levels of operation (application/compiler, user-level execution environment and
operating system), their interfaces and the possible paths through them. The subject of this
thesis consists of the design of both the user and operating system interfaces and the paths
connecting them, represented by black arrows in Figure 9. The gray arrows mean paths which
are used in this work. We have participated in the development of such paths, but they are out
of the scope of the work presented in this document.

Page 18

TN ST g

Introduction

| APPLICATION CODES |

Hand-written AnnotatedEOpenMP code é Sequential code
”a“""hriggg C OpenMP interface) NANOS
(manual Parallelizing APPLICATION/
T R S— !
parallslization) Compiler COMPILER
Code Generation LEVEL
¥
—(User-level Execution Environment Interface)
USER-LEVEL
nano-threads EXECUTION

Run-time Library ENVIRONMENT

(NthLib)

User-level implementation

CPU Manager
support

—(Operating System Interface ————{Operating System Interface)
y 4 N\

In-kernel implementation

Stock OSs Operating system OPERATING
SGIIRIX / DEC UNIX + nano-threads support SYSTEM
Solaris / W-NT / Linux [Chorus] LEVEL

PARALLEL COMPUD

Figure 9: Nano-threads execution environment: main structure

The work done in this thesis uses three different ways of building parailel applications
(see the upper part of Figure 9): manual parallelization, parallelization with directives and
completely automatic parallelization through the NANOS parallelizing compiler. The NANOS
compiler is based on Parafrase-2 [114]{115][59], a parallelizing compiler developed at the
University of Illinois at Urbana-Champaign. The NANOS compiler includes a graphical
interface [20][54] to visualize the structure of parallel applications and add OpenMP directives
for parallelization. Along this thesis, a set of (extended) OpenMP directives is used to annotate
applications for expressing the parallelism. This is the visible top-level user interface of the
parallel execution environment. Each Fortran application is modified introducing the
necessary directives, obtaining applications structured following the underlying model. The
NANOS compiler parses the directives expressing the parallelism and integrates the
information obtained from them to the internal compiler structures. C applications are, by now,
manually parallelized using direct calls to the threads library interface.

This thesis defines the two internal interfaces between the three levels of operation:
the user-level execution environment interface and the operating system interface. Parallel
code is executed on top of the nano-threads library (NthLib, in the middle part of the figure),
using the user-level execution environment interface, which gives support to application-level
scheduling and efficient thread management. The user-level execution environment interface
allows to describe how the computation and data space of an application are structured and the
ways in which different execution flows can traverse them. The hierarchical representation of

Page 19

Chapter 1

the computation space has all the information needed to support both structured and
unstructured parallelism and dynamic allocation of execution flows (threads) to different
partitions of the program, as long as precedences allow it and there are available resources.

At the bottom, the operating system interface enforces the cooperation between the
user and kernel levels and allows the application level to adapt to a dynamic processor
allocation environment. The operating system interface provides a light-weight
communication path between active user applications and the operating system in order to
support requests of resources from the user-level execution environment, and also inform it of
actual resource allocation and availability. The operating system interface has been designed
and completely implemented inside the CHORUS microkernel [121] and partially
implemented with the help of a user-level CPU Manager in some stock operating systems.

A set of scheduling strategies have to be designed at each level in order to attain the
goals of this work. These strategies define the allocation of the entities available at each level
to the entities available in the next lower level (see Figure 10). At the application level, the
compiler has to identify sequences of instructions with granularity coarse enough to amortize
the management overhead. These sequences (or application tasks) map to user-level threads at
run-time following the scheduling policies defined by the user-level execution environment.
The user-level environment allows the application to map work to specific virtual processors
offered by the operating system level or to simply let the work available to execute on all the
processors available. At the operating system level, the scheduling decisions take care of
assigning virtual processors (kernel threads) to the available physical processors. It manages
also the kernel-level scheduling events relevant to the application and implements the kernel-

level scheduling policies.

o O
Application level Application tasks

User-level execution User-level
environment threads

Virtual processors /

level D D U U U D Kernel threads
Hardware level O O O O Physical processors

Figure 10: Mapping entities across the different execution levels

1.7.Contributions of this thesis

The main contribution of this thesis is to design and implement the Nano-Threads
Programming Model on a complete user- and kemel-level parallel execution environment,
resulting in an efficient product, competitive with widely-used parallel execution
environments. Cooperation between the user and kernel levels is the basis to achieve high

performance.

Page 20

Introduction

As in many other sections along this thesis, the contributions provided can be
classified by the level of operation where they are located (application/compiler, user-level
execution environment and operating system). Special emphasis is done to highlight the
aspects that improve cooperation among the levels.

1.7.1. Contributions at application level

The contributions at application level are the following:

» Mapping the hierarchical task graph structure (the internal compiler representation of an
application) to a user-level execution environment interface, allowing the execution of
applications decomposed in an hierarchy of parallel tasks.

* Allowing the application level to know about virtual processors, making the master/
slaves scheme more general and allowing the application to decide which processors
work as masters and which as slaves inside the hierarchy of parallel tasks.

* Merging the support of multiple levels of parallelism with data locality issues, resulting
in the proposal for establishing processor groups at application level. Within this
approach the application is able to restrict the number of processors participating in a
specific parallel construct, dedicating the remaining processors to other tasks.

* Mapping well-known application level scheduling algorithms (dynamic, guided self-
scheduling, etc.) to the Nano-Threads Programming Model, using the support from the
user-level execution environment.

1.7.2. Contributions at the user-level execution environment

The contributions at the user-level execution environment are:

* Define a user-level threads library interface to support parallelization following the
Nano-Threads Programming Model.

* Efficiently support multiple levels of parallelism, achieving the integration, in the same
execution environment, of different mechanisms for providing high functionality to the
higher levels of parallelism and high performance to the inner-most level. Provide nano-
threads, giving full functionality, and work descriptors, offering limited functionality/
high performance.

* Support processor grouping, allowing the application to supply work to specific
processors, setting the master and slaves for each parallel construct.

* Support thread bursts, avoiding the need to spawn all the parallelism at a time and
allowing to check the number of resources allocated between bursts, adapting the
parallelism.

* Provide an execution environment highly dynamic, enforcing the adaptability to the
available resources and enabling an efficient execution on a general-purpose multitasking
system by means of integrated cooperation with the operating system.

1.7.3. Contributions at the operating system level

The contributions at the operating system level are:
* Consider the application as the scheduling target, instead of independent processes or
threads. Physical processors are assigned to applications and remain assigned till the
application decides to free them or the current scheduling policy decides to allocate them

to another application.

Page 21

Chapter 1

* Design an operating system scheduling framework in which all applications requests are
considered globally for taking the decision of how many processors allocate to each
application.

+ Allow the operating system scheduling policy to decide to which applications allocate
free processors in the near future, in case some processors become out of work.

* Enforce the communication and cooperation with the higher levels, defining an efficient
interface between kernel and user levels, allowing the applications to dynamically
request and release processors. Integrate the best proposals of the previous works. Export
the kernel-level scheduling events to the user-level using the most efficient way.

* Provide a user-level design and implementation of the proposals through a CPU
Manager, enforcing portability to different operating systems.

1.8.Thesis structure

This document is organized in 10 chapters. Chapter 2 presents the complete definition of the
Nano-Threads Programming Model, including the elements required from the user-level
execution environment, the operating system. It presents also the programming language we
have selected to express the parallelism. From our point of view, at the same level of
importance, Chapter 3 discusses the relationship that we establish among the three levels of
operation (application, user-level execution environment and operating system) and how the
entities inside each level of operation are mapped on the entities of the next lower level.

Chapter 4 describes the user-level execution environment interface, which can be
used either for code generation from a compiler or directly by the programmer. Chapter 5
presents the extensions to the operating system interface to support the Nano-Threads
Programming Model.

After presenting all the proposals of this thesis, Chapter 6 discusses the comparison
with the previous and related work and Chapter 7 highlights what we consider the most
important aspects of the implementation of the NANOS parallel execution environment.

Chapter 8 shows some examples of use of the NANOS parallelizing environment,
both directly from a programming language such as C and using OpenMP Fortran directives.
OpenMP extensions are used to express multiple levels of parallelism and processor groups in
two well-studied applications.

Chapter 9 presents the evaluation of the complete NANOS parallel execution
environment as has been implemented in the Origin2000 machine, starting with the evaluation
of the overhead introduced by the user-level threads library, continuing with the evaluation of

the performance obtained in individual parallel applications and terminating with the
evaluation of several workloads. Along the evaluation, the NANOS parallel execution

environment 18 compared with the SGI MP execution environment.
Finally, Chapter 10 contains the conclusions of this thesis and the work planned for
the future.

Page 22

Chapter 2.
Programming Model

Abstract

This chapter presents the Nano-Threads Programming Model
(NPM). Following this model, parallel applications are decomposed in
tasks and represented through a Hierarchical Task Graph (HTG)
structure. The way an application is ~decomposed - enables the
exploitation of fine-grain and multi-level parallelism. This chapter
highlights the requirements that NPM needs from the user-level
execution environment and the operating system. Finally, it introduces
the programming language we have used to parallelize applications.

“El mar és com és, un gran amic enigmatic de
cardcter desigual. Moltes de Ies seves coses, no és
necessari entendre-les.”

"Ronda naval sota la boira", Pere Calders,
Edicions 62, octubre 1994.

Page 23

Chapter 2

2.1.The Nano-Threads Programming Model (NPM)

The complete programming model defined in this work is based on the Nano-Threads
Programming Model (NPM) [112]. The reason for using this model is that it provides a means
for detecting, representing and exploiting both fine-grain and multiple levels of parallelism
from existing applications.

The Nano-Threads Programming Model was first introduced in [112]{116] to provide
highly optimized light-weight threads. It has been further developed in [92][127]. As the
model defines, the parallelizing compiler identifies the maximum parallelism contained in the
application through data and control dependence analysis and generates an intermediate
representation of the parallel application taking the form of a Hierarchical Task Graph (HTG)
[92][112]. From the HTG, the compiler generates parallel code using the services provided by
a threads package interface. During code generation, the compiler statically determines the
finest granularity of parallel tasks worth to be exploited having in mind the efficiency of the
user-level package implementation. Using the threads package and operating system interfaces
at run-time, the program is also able to group tasks in order to use a coarser level of granularity,

adapted to the actual system conditions.

2.1.1. The Hierarchical Task Graph (HTG)

The hierarchical task graph (HTG) is a graph composed of simple and compound nodes.
Simple nodes contain sets of operations that need to be executed sequentially or do not
represent enough work to be executed in parallel. Compound nodes encapsulate a new level of
the hierarchy containing more complex computations. They are composed of simple and
compound nodes. Typical compound nodes correspond to loops and complex blocks of code
containing parallel sections. Compound nodes contain two special control nodes: the start and
the stop nodes. The start node is the entry point for the compound node and manages the
execution of the internal nodes; the stop node is the exit point that manages and signals to the
successors the completion of the corresponding compound node. Nodes at the same level of
the hierarchy in the HTG are connected by directed arcs if there are data or control
dependences between them. A node y is data dependent on node x if they access the same data
and at least one of them modifies the data. A node y is control dependent on node x if the
execution of y is decided by the execution of node x. Node x is the source of the dependence
and node y is the sink. Dependences impose a partial order on the execution of the nodes.

Figure 11 shows a sample program and the HT'G structure derived by the compiler.
The HTG has three levels of nodes: at the outer level of the hierarchy, there is a single
compound node representing the whole program. At the next level, nodes PROG and END are
the start and stop nodes, respectively, of the main compound node. Inside the main compound
node, one can find four compound nodes representing the three procedure invocations (z(), gf)
and % ()) and the DO loop. The node representing the loop contains threc simple nodes
(representing the assignment statements to arrays A and B, and the evaluation of the condition
in the 7F statement and three compound nodes (representing the THEN and ELSE bodies and
the invocation of function f). Dependences are represented by directed edges. Solid edges
represent data dependences. Dashed edges represent control dependences. For instance, the
compound node representing the invocation of procedure A()} is data dependent on nodes

Page 24

Programming Model

representing the invocation of z(} and the DO loop and it is control dependent on the start node
PROG. Both the THEN and ELSE bodies are control dependent on node IF.

We define a zask as a collection of HTG nodes at the same level of the hierarchy that
have enough granularity to be executed as a user-level thread. The compiler decides the finest
granularity for the tasks taking into account the overhead of the user-level execution
environment. For instance, in Figure 11, nodes A, B and f{) have been joined in a task.
Dependences between nodes of the HTG define precedence relations between the
corresponding tasks. These precedence relations establish a predecessor/successor relationship
between the tasks, that must be preserved in their parallel execution. The compiler generates a
function for each task in such a way that the code generated for the application can be seen as
an executable representation of its HTG.

PROGRAM
m = z{}
g{m}
Do i= ...
A{i)= ...
B{i}= ...
C(i)= £(a(i},B(i)}
IF (...}

1 1]
1 1
’ /
then_code

else_code
ENDIF
ENDDO el

him,<) ™ '
ENDPROGRAM > /
® Simple HTG node
----- = Control dependsence ar¢
Compound HTG node

————= Data dependence arc
Start or stop node

Figure 11: Sample program and its associated HTG

ELSE

Collection of nodes
becoming a task

2.1.2. The HT'G execution mechanism

The execution of the parallel program consists of the execution, in some order, of the functions
associated to the HTG tasks. The execution order must ensure that all the precedences for a
task are satisfied before its associated function is executed. A nano-thread corresponds to an
instantiation of an HTG task in the form of an independent user-level control flow.

A task can be instantiated as a nano-thread when at least one control dependence is
resolved by a predecessor task. The user-level execution environment offers nano-threads to
instantiate the application tasks as user-level threads. One nano-thread instantiates one or more
tasks, depending on the specific level of the hierarchy and the current availability of processors
running in the application. It is possible that a nano-thread executes several tasks sequentially
in case of lacking processors. The nano-thread instantiating a task may not be ready to be
executed as some data dependences may be still unresolved. As soon as all data dependences
for it have been satisfied, the nano-thread is ready for execution. The user-level execution
environment offers a user-level ready queue to keep all those nano-threads waiting for

available processors.

Page 25

Chapter 2

The execution of an HTG begins with the main node being prepared for execution and
inserted in the ready queue as a nano-thread. Virtual processors assigned to an application use
auto-scheduling [92][110] to execute a nano-thread selected from the ready queue. Auto-
scheduling means that processors search for work independently from each other.

A compound node is a candidate to create new parallelism. The execution of a
compound node begins at its start node. The function generated for the start node is a control
function, which is in charge of the application level scheduling of the tasks enclosed in the
compound node. This function evaluates, at run-time, the availability of resources and the
parallelism it could generate based on the precedences among its internal tasks. Using that
information, it decides whether to create nano-threads for its internal tasks or to execute
himself the computations of the internal tasks, avoiding to manage too many contexts and
reducing the associated overhead. In case it decides to spawn parallelism, the precedences
observed among the internal tasks of the compound node are represented as predecessor/
successor relations among nano-threads. For this reason, nano-threads have to be created from
the bottom to the top. For instance, the four nodes inside the main compound node of Figure
11, are created starting with A() and g() and continuing with z(), and the DO loop.

The function associated with the sfop node of a compound node has a double purpose
as defined by NPM. On one hand, it is in charge of satisfying the precedence relations of the
successor nodes, allowing them to execute, when all their precedences have been satisfied. On
the other hand, it can check the execution conditions looking at the information given by the
operating system level. This is used to detect, and correct when necessary, at user-level, any
kernel-level scheduling event influencing the execution of the application, such as processor

preemptions.
In the following two sections, the requirements imposed by NPM into the user-level
execution environment and into the operating system are examined.

2.2.Requirements set by NPM on the user-level environment

The Nano-Threads Programming Model introduces a specific parallelization scheme, and a
great coordination among the different levels of operation, both aspects different from other
parallelization models. The supporting user-level run-time environment should take the
differences into account. In this subsection, we consider the ways the model can be supported
by a user-level execution environment. Such environment is influenced by the application and
the operating-system levels, and it has to provide solutions to the requirements of both.

2.2.1. User-level resource identification

All thread packages provide some means of thread self identification. Knowing thread
identifiers is usually enough to work with a traditional threads package, where the application
level is not aware of the processors where the parallel work is executed, such as in Pthreads.

Knowing thread identifiers only is not enough to support the NPM. The reason is that
the application is more aware than in other parallel environments of its own structure
(represented through the HT'G) and the mapping of such structure to the processors provided
by the operating system. As a result, the application level wants to identify which user-level
thread is executing a specific portion of the paraliel work. Also, the application wants to be
able to map such parallel work to one of the virtual processors offered by the operating system.

Page 26

Programming Model

The user-level execution environment has to provide the basic tools to allow the
application to correctly map its parallel structure to the available processors. Tools include
naming of virtual processors, along with each processor status, whether each processor is
available or not and the reason why (e.g., it has been preempted, it is blocked, etc.).

Processor and thread identification is commented in more detail in Subsection 3.3.1.

2.2.2. Spawning parallelism through ready queues

NPM does not define any scheme for parallelism spawning (work generation) from the
application level. Any work generation scheme (static, dynamic, guided self-scheduling, etc.)
can be appropriately mapped to NPM to allow the application to generate work to processors in
the way that favors data locality, load balancing or both. This means that the run-time
execution environment should support the standard and well-known application-level
scheduling algorithms [83]. Scheduling algorithms on NPM are explained in more detail in
Subsection 3.2.2.

In addition to the support of application-level scheduling algorithms, the user-level
execution environment has to support a mechanism to represent predecessor/successor
relationships between application tasks. Representing precedences between tasks is
accomplished by specifying the tasks which have to be executed after a given one, at creation
time. This feature is explained in more detail in Subsection 3.3.3.

Supporting a single level of parallelism can be achieved through a work descriptor
located in a known memory area, from which all processors get the work to execute. For
multiple levels of parallelism, data structures supporting the description of parallel work have
to allow that several processors generate work at the same time. The descriptions of different
tasks are going to co-exist to be executed by the same or different processors. A common data
structure useful to support several task descriptions co-existing at the same time is a queue.
The user-level execution environment has to offer ready queues to keep work ready to do, but
having no processor on which to execute.

Work spawning can be done in a global way, in the sense that any available processor
can get its work from a global pool (a global ready queue can be used for this purpose). Or
otherwise, work can be supplied to a specific processor or group of processors, introducing the
need for local work generation and virtual processor identification at application-level. As a
result, both global and per-processor local ready queues are required by NPM and should be

offered by the user-level execution environment.

2.2.3. Waiting for work

The user-level execution environment is responsible of managing the processors when there is
no parallel work to execute, and the application decides not to free the processors {(e.g., when
the application is execuiing in a short sequential section). While the application does not
spawn parallelism, the user-level execution environment maintains processors actively waiting
for work. This is performed by means of an idle function. Each potentially available processor
has the option of invoke the idle function when it does not have work to do. Global and per-
processor local ready queues have to be periodically examined by idle functions.

In addition, the operating system may claim some of the processors executing in the
application to be returned to the operating system. Idle functions also check for the operating

Page 27

Chapter 2

system conditions and they answer accordingly. This is an extra functionality supported by the
idle functions in a dynamic resource allocation environment, like the one proposed by NPM.

Idle functions should work in a safely way, that is without getting any mutual
exclusion. This is important because this behavior makes easy to release a processor from the
idle function code. Also, idle functions can be safely preempted at any point, without
compromising the execution of other threads, due to synchronization issues. For these reasons,
we say that the idle functions work is a safe point for preemption.

The complete functionality of the idle functions inside the user-level execution

environment is presented in Subsection 7.1.9.

2.2.4. Multiple levels of parallelism

Supporting multiple levels of parallelism is one of the most complex features included in the
user-level execution environment. Next subsections sketch how data belonging to different
levels of parallelism is available and it can be accessed and a way to achieve efficiency when

supporting multiple levels of parallelism.

2.24.1. Local address spaces

Supporting multiple levels of parallelism requires that the execution at each level maintains a
set of local variables which can be used not only by the current execution level, but also by all
the enclosed levels. So, such set of variables has to be maintained during the execution of the
most internal levels. Several alternatives were studied in order to find the best choice having in
mind all possible aspects of the problem:

* Local variables could be statically allocated in the data segment. This solution does not
allow to spawn any parallelism because the variables can not be replicated for each
thread. OId Fortran compilers allocate local variables in the data segment. New
compilers do that in the local stack. Parallelizing compilers need to allocate variables in
the local stack.

+ Local variables could be allocated in the heap. This means an extra memory management
for thread address spaces, using implementations similar to malloc/free, but with the
extra of having to know how many threads are accessing each local address space and
with the addition of some kind of garbage collection to release unused memory.

» Another solution consists of using a cactus stack. Using cactus stacks, the local variables
are allocated in the stack of the parent thread. They are accessed through a static link,
supplied from the parent to the child threads. The drawback with this alternative is that
the compiler must be aware of the cactus stack structure and it has to generate special
code to access local data belonging to the parent threads [92].

+ Local variables could also be allocated in the stack of the executing thread (the parent of
the parallelism), as in the cactus stack solution and all references to local variables

needed by the children threads can be passed to them as parameters.

We adopted the last solution. This solution makes the user-level threads package to
provide primitives for thread creation with a variable number of arguments. As it is seen along
this thesis, the overhead introduced by argument passing is very small and can be assumed for
the benefits obtained by the new functionalities provided. Another advantage of argument
passing is that each thread can access variables in a standard way, and any compilation back-
end can be used to generate the machine language code from the parallelized Fortran/C source
code, relying on the efficient local variables allocation mechanism used by the standard

Page 28

Programming Model

compilation back-ends. This scheme avoids the need for dynamic allocation of address spaces
from the heap [92]. An extra heap management does not agree with our design decisions. The
library already handles a heap from where it allocates memory for nano-thread stacks. Our
goal is to avoid two different memory managements in the nano-threads package.

As a consequence of allocating local variables in the parent thread stack, the parent
thread should be blocked during the execution of the children, in case it can not proceed with
the execution. In this way, as a side effect of taking this solution, the parent and successor HTG
nodes have been joined in one nano-thread with a blocking primitive, thus maintaining the
nano-thread stack where data resides.

Taking the previous discussion into account, in order to execute the application, nano-
threads access two kinds of application data using standard mechanisms:

» Global application data, as defined by the application programmer through the high level
language (Fortran or C), resides in the global shared data segment.

* Function and subroutine arguments and local data and nano-thread local data, defined
respectively by the programmer through the high level language (Fortran, C)! and by the
parallelizing compiler; in our implementation, they reside in the nano-thread stack. We
call this set of data the address space of a nano-thread.

Nano-thread code access application global data using the same addressing modes
than in a standard sequential program. If access to global data has to be done in a certain order,
a data dependence arc will force to execute one nano-thread before the other. The HTG
definition and the nano-thread sequence control mechanism make unnecessary mutual
exclusion between nano-threads. Only inside the nano-threads library mutual exclusion is
necessary to access shared internal library data.

Allocating the local address space of a compound node in the stack of the start node
may require to maintain it when the start node terminates, till the stop node is executed. To see
that, consider the execution of the compound node shown in Figure 12. The nano-thread
instantiating the start node allocates in its stack the local variables of the function. To do it, the
compiler uses the standard local variable allocation mechanism (initializing the frame pointer
and decrementing the stack pointer). Then, the start node nano-thread instantiates the body of
the routine, launching the internal nodes nano-threads (seg_:). As an option, any of the parallel
sequences could be joined with the start and stop nodes to build a larger task to be executed as
a nano-thread. This is indicated in the figure through the shaded area.

Every internal node nano-thread has to receive a pointer to a local variable in order to
be able to reference it. In addition, the start node nano-thread would have to wait for the
termination of the internal nodes before destroying the local variables of the function. The
address space destruction consists in the standard deallocation of local variables (restoring the
stack pointer from the frame pointer). This operation corresponds to the stop node. As a result,
the code for the start and stop nodes has to be joined in one function using a block operation, in
between, to wait for the rest of the parallel sequences.

1. Standard FORTRAN-77 subroutine local data declarations are allocated in the data segment, not in the stack.
FORTRAN parallelizing compilers (and C compilers) use the stack to allocate subroutine local data.

Page 29

Chapter 2

vold sub _ex (args)

{

// local wvariables declaration

// subroutine code in form of
// N parallel sequences

seq 1 T..’ seq i , ..[seq N ,

return

Figure 12: Compound node associated to a subroutine,

2.2.4.2, Support for fine-grain parallelism

Nano-threads provide the basis for supporting multiple levels of parallelism. Several parts of
the application can proceed in parallel while spawning more parallelism. Each part of the
application is depending on the nano-thread which started it, working with its own local
address space, independent from the other parts of the application.

Nevertheless, nano-thread creation and management imposes more overhead than the
strictly necessary when only one level of parallelism is exploited, or even when the inner-most
level of parallelism is exploited. Overhead comes from the fact that each nano-thread is
defining an address space. This is necessary for the outer levels of parallelism, but not for the
inner-most level.

In order to reduce the overhead of spawning parallelism in the inner-most level, a
different mechanism can be provided. Resembling the parallel execution environments which
provide a single level of parallelism, this mechanism is based on work descriptors. A work
descriptor is a data structure describing the work to be done in parallel. Work descriptors are
created before spawning the parallelism and they are supplied to the executing processors.
Each processor gets a pointer to the work descriptor and starts the execution of a portion of the
work described. The exact portion depends on the self identification. This mechanism 1is
thought for the inner-most level of parallelism.

This is the way we propose for integrating, in an efficient way, multiple levels of
parallelism in a single environment. Outer levels of parallelism are spawned using threads
providing an address space. The inner-most level can be spawned more efficiently using a
work descriptor. Idle functions search for both work descriptors and new threads to execute.
When a work descriptor is found, it is executed simply by calling the associated function.
When a new thread is found, the idle thread makes a context switch to execute it.

2.3.Requirements set by NPM on the operating system

The operating system is in charge of distributing processors among the executing applications.
The NPM imposes that all changes in processor allocations done by the operating system and
relevant to the applications have to be communicated to the applications [118]. In this section,
the requirements for applications adaptability and operating-system scheduling policies are

presented.

Page 30

Programming Model

2.3.1. Application adaptability to the available resources

The execution of a nano-threaded application is able to adapt to changes in the number of
processors assigned to it. The adaptation is dynamic, at run-time, and includes three important
aspects: first, the amount of parallelism that a compound node generates is limited someway
by both the number of processors assigned to the application and the current amount of work
already pending to be executed. Second, the application is able to request and release
processors at any time. And third, the application should be able to adapt to processor
preemptions and allocations resulting from the operating-system allocation decisions.

With respect the first aspect, the nano-thread starting the execution of a compound
node takes the decision whether to proceed in parallel or to execute itself (sequentially) the
computations of the internal nodes. The operating system has to provide some interface to
allow the application to check which the number of processors available for spawning
parallelism. Checking this number just before spawning parallelism, the application ensures
that it is going to use all the processors allocated to it.

The second aspect, enabling the request for processors, demands from the operating
system an interface to set the number of processors each application wants to run on. The
operating system should guarantee that the number of requested processors from each
application is considered as soon as it distributes processors among applications.

The third aspect, applications being able to adapt to processor preemptions, requires
also some help from the operating system. The operating system moves processors from one
application to another following some scheduling policy. The requirement from the application
point of view is that preemptions do no occur. As this is usually not possible, the run-time
execution environment may help to provide such a feeling, by recovering preemptions. A good
solution from the operating system point of view is, on one hand, to provide some mechanism
to reduce preemptions at a minimum. And at the other hand, to provide a complete interface for
preemption recovery. This is explained in Chapter 5.

2.3.2. Operating system scheduling policies

Kernel-level scheduling usually also consists of a set of kernel-level scheduling policies which
the operating system applies to distribute processors to applications. Several kernel-level
scheduling policies help in achieving good results in performance inside the NPM.

At any time, there is a current active scheduling policy, applied to all applications
running in the system. The active policy can be dynamically changed without incurring any
overhead to the running applications. Applications only notice the different performance
results obtained from the processor allocation decisions taken by the policy newly established.
Different application workloads can benefit from different policies [33][75].

The active scheduling policy is in charge of looking at the requirements of all running
applications and decide which resources to allocate to each one. Each parallel application is
considered as a whole. This is the way space-sharing is established in NPM. As long as the
policy decides to allocate a number of processors to each application, a portion of the machine
is effectively given to that application and the application decides what to do with the
processors. The mechanism in charge of determining the exact processors to be assigned to
each application ensures that the processors assigned to the application are going to be the ones
that more recently have been running on it, enforcing data locality. Specific architectural

Page 31

Chapter 2

characteristics, such as a NUMA memory subsystem can also be taken into account at that
point.

The benefit of looking at applications as a whole is that processors know where to
look for work first (the application where they are assigned to). In case the application has no
work to perform, its cooperation with the operating system makes it to release some
processors, which will search for work in other applications. The scheduling policies
implemented and evaluated in this work are presented in Subsection 5.3.

2.4.Programming language

The Nano-Threads Programming Model is a good way of representing the parallelism found
inside applications, but sometimes the compiler finds code structures that are difficult to
analyze and parallelize, With the purpose of increasing the ecxpressiveness given to
programmers, we use an extended set of OpenMP directives [107] for expressing parallelism

in Fortran.

2.4.1. Goals of the OpenMP directives

Expressing parallelism at application level is usually a hard work for application programmers.
Sequential applications can be parallelized by hand after a short/long period of study of the
application and the parallel execution environment, depending on the complexity and size of
the application. Fortunately, compilers provide some help, by allowing programmers to
annotate source code with directives. Directives in Fortran and pragmas in C are the standard
way for expressing parallelism at application level.

The main goal of the current OpenMP directives proposal is to provide a powerful
standard method for expressing parallelism in Fortran applications written in a sequential
form. Most applications are first written sequentially and later parallelized. For this reason it is
very important that the tools for expressing parallelism in sequential codes become more and
more expressive, easy to use and portable.

OpenMP directives are more powerful than previous directive standards (for instance,
than Parallel Computing Forum - PCF - directives). New clauses have been added and there is
also the possibility of expressing multiple levels of parallelism. This feature is very important
for using these directives in conjunction with the NPM.

2.4.2. Expressing parallelism in OpenMP

The sample program presented in Figure 11 could be parallelized using OpenMP as is
presented in Figure 13, where three levels of parallelism are expressed, although not all the
relationships between parallel tasks are represented. For instance, the HTG structure shows
that tasks g() and A() can be executed in parallel and this is not possible in the OpenMP
version. In this thesis, we are using, along with the standard OpenMP directives, some
extensions to provide the programmer with more expressiveness. Extensions include the
expression of processor groups and the ability to set predecessor/successor relationships

among several parallel sections.

Page 32

Programming Model

Sequential
Version

OpenMP
Version

PROGRAM
m = z{)
g {m)
Do i

then_code
ELSE
else_code
ENDTF
ENDDO
him,C)
ENDPROGRAM

PROGRAM
CSOMP PARALLEL SECTIONS
C$OMP SECTICN
m = z(}
g {m)
CSOMP SECTION
CSOMP PARALLEL DO
DO i = ...
CSOMP PARALLEL SECTIONS
C50MP SECTION
Aldi)= ...
Blil= ...
Cc{i)= £{a(i).,B(1))
CSOMP SECTION
if (...}
then_code
ELSE
else_code
ENDIF

C$OMP END PARALLEL SECTIONS—-——

ENDDO
C50MP END PARALLEL DO

P T —

CSOMP END PARALLEL SECTIONS -

him,C)
ENDPROGRAM

Figure 13: Sample program parallelized using OpenMP directives

When expressing multiple levels of paralielism, the programmer wants to control how
to distribute the parallel tasks among the participating processors, establishing groups of
processors. This is the motivation of the first extension to the OpenMP directives. Each time
parallelism is spawned, the programmer can express in which processor(s) the new parallelism
“should be executed (see Subsections 4.2.1.2 and 8.2.1).

The second extension to OpenMP allows the programmer to set the predecessor/
successor relationships among several parallel sections, allowing that some of them can be
executed in parallel, but sequentially with respect to others. This approach can reduce the
amount of unbalance that several parallel sections could have among them.

Using the OpenMP directives in this work, we have achieved the following goals:

» Easy the task of parallelizing applications. Parallelizing applications with directives is

easier than code them by hand to run in parallel.
» Offer a standard parallelization environment. OpenMP directives are being impulsed by
the OpenMP organization and they are a powerful standard proposal for expressing

parallelism.

» Enforce portability. Applications parallelized on the NPM can be run in other OpenMP -
based execution environments. Applications parallelized using OpenMP can be run on

the NPM.

» Use some extensions to the original OpenMP proposal, providing support for them from
the NANOS user-level execution environment and test their usefulness to express and

exploit parallelism.

Page 33

Page 34

Chapter 2

Chapter 3.
Scheduling

Abstract

This work considers that a complete parallel execution
environment can be divided into three levels of operation (application,
user-level execution environment and operating system). This division
establishes three changes for mapping the entities of one level to the
entities of the next level. This is commonly known as scheduling.

The application level needs to be able to map application tasks
to user-level threads. The user-level environment must offer efficient
user-level threads supporting multiple levels of parallelism and mapped
to the virtual processors offered by the operating system. The operating
system has to map virtual processors to physical processors and
communicate all application-related scheduling events to the user-level.

“Excuse me’ - Barnaby said - ‘but this isn't the
Academy. And a student’s thesis is a long way from a
workable plan.™

“Descent”, Star Trek, The Next Generation,
Pocket Books, Oct. 1993.

Page 35

Chapter 3

3.1. Scheduling levels

The Nano-Threads Programming Model (presented in Chapter 2) is the starting point to
achieve the goals of this thesis, that is, to efficiently support both global-system and
individual- application high performance in shared-memory parallel systems, achieving a good
cooperation among the different levels of execution.

In Chapter 2 we have introduced the requirements needed for each one of the three
levels of operation, namely application, user-level run-time environment and operating system.
In this chapter, we focus in the cooperation established among them. There are several
mappings among application, run-time and operating system levels which are the key to
provide high performance:

* The application is responsible for the mapping of application-level tasks to user-level
threads supported by the threads package.

» The user-level threads package is responsible of the mapping of user-level threads to
kernel-level threads (virtual processors), provided by the operating system.

» The operating system is responsible of the mapping of kemel-level threads to processors.

How to establish the mappings between the entities used in the different levels of
operation is usually known as application-, run-time- and (operating-system) kernel-level
scheduling. The subject of this chapter is the design of the scheduling techniques at the three
levels and the cooperation established among them.

3.2. Application-level scheduling

After the NANOS compiler has decomposed the application in tasks and built the HTG, each
task (equivalent to a node in the HI'G) can be executed in parallel with all other tasks with
which there has no dependence relation. Direct execution of the HTG structure as is, following
the paths defined by the precedences between nodes, would provide the largest amount of
parallelism. Assuming there would be no parallelism management overhead and assuming
infinite resources for parallel execution, direct execution would provide the best performance.

Anyway, coming to the actual world, parallelism management overhead is noticeable
and the number of processors available is limited. The latter is solved through the kernel level
scheduling, which distributes processors among the applications. Management overhead is the
reason for introducing application level scheduling. The user-level execution environment can
also use scheduling to map application generated threads to operating-system virtual

Processors.

A first step in application-level scheduling, which we consider already done when
executing a parallel application, is to make the HTG as coarse grained as possible. This means
that the compiler joins both dependent nodes and nodes too small to make worthwhile the
spawning of parallelism. The potential overhead introduced by the parallelization is limited in
this way. So, the applications executed on top of the NPM are already tuned for parallel
execution, avoiding spawning parallelism for tasks too small. The NANOS compiler is in
charge of this rearrangement of the HTG structure, before generating the parallel code.

A second step consists of allowing the application to decide the amount of parallelism
to spawn with respect the available processors (see Subsection 3.2.1). In the third place,
depending on the structure of the parallelism, the application wants to use different work

Page 36

Scheduling

generation schemes to provide work to the processors. Such schemes are well-known
scheduling policies such as static, interleaved, guided, trapezoid, etc. (the mapping of such
scheduling policies to NPM is presented in Subsection 3.2.2). In the fourth place, maintaining
locality is a key aspect to achieve high performance (see Subsection 3.2.3). In the fifth place,
the application wants to express unstructured parallelism through the predecessor/successor
relations among parallel regions of code (Subsection 3.2.4). Finally, there is the question about
whether multiple levels of parallelism and processor grouping are affordable (This issue is

discussed in Subsections 3.2.5 and 3.2.6).

3.2.1. Deciding the amount of parallelism

The application can determine, during run-time and from the interface with the user-level
execution environment, the number of processors it is running on and decide the amount of
parallelism to spawn. Depending on the conditions of the actual execution environment, the
application can actually spawn all the parallelism available at a time, only spawn a portion of
it, or even decide to proceed sequentially.

The amount of parallelism spawned at a given time is independent of the application-
level scheduling scheme used. Alternatives provided to applications range from spawning all
the parallelism at a time in a static way till spawning a portion of the total amount of
parallelism in a dynamic way. In the first case, the work is distributed as evenly as possible
among the available processors at a time. Processors execute their corresponding part of the
work till each one finishes and signals termination. This is usually a good alternative for small
parallel regions, in which the overhead of parallelism should be maintained as small as
possible. Optionally, each portion of the work can be assigned to a specific processor (under
application control) to maintain data locality as much as possible. The disadvantages of this
static approach are that load balancing is not possible, as the work is distributed once, with no
option to reconsider the decision. Also, in case new processors are allocated to the application
during the execution of the parallelism, they can not participate in the parallel work again
because the initial decision can not be reconsidered.

In the second case, spawning a portion of the parallelism in a dynamic way, all work
will be available to all processors and they will pick it up from a global structure. Although this
approach prevents the preserval of data locality, it favors load balancing. Also, it allows to
reconsider the decision of spawning parallelism, taking again into account whether the number
of processors allocated by the operating system has changed from the last decision point.

Other approaches and scheduling algorithms for spawning parallelism arc discussed
in Subsection 3.2.2. This is also related to the requirements needed for the user-level run-time
execution environment (presented in Section 2.2). What usually happens is that when an
application spawns all the parallelism at a time, it uses the most efficient way (work
descriptors) to represent the work to be done. Instead, dynamic spawning of the parallelism
must paid an extra overhead to allow the expression of the later continuation of the spawning
operation, which is done through the creation of nano-threads.

Static approaches are usually better when dealing with fine-grain parallelism because
of its reduced overhead. Also, it is used in small machines, where the number of processors
allocated to an application is not going to change by a great amount. On the other hand, as the
parallelism becomes coarser or the parallel environment offers more processors, the dynamic
approaches can be more suitable. In any case, in current machines data locality is a precious
1ssue. Usually, preserving data locality (Subsection 3.2.3) is more important than allowing

Page 37

Chapter 3

dynamic application-level scheduling {83]. This is the reason why we have given enforced
support for the static approaches.

3.2.2. Application-level scheduling policies

Orthogonally to the decision of how much parallelism to spawn at any moment, there is the
question of how to distribute work among the processors. The policies proposed in [83] for
loop scheduling have been taken into account to provide the proper support for application-

level scheduling.
The set of application-level scheduling policies which we have tested on NPM is

composed by the following:

* Static; The application distributes work among the available processors as evenly as
possible. Chunks of N/P consecutive iterations are assigned to each processor, where N is
the amount of iterations which is distributed at this time, and P is the number of available
processors at this time. N may be the complete set of iterations or vary during execution.
In case N is the complete set of iterations, the decision is taken once. Otherwise, during
the execution of the entire loop, the decision of spawning is evaluated several times.
Locality is enforced by assigning the same data to the same processors, being the
application which controls the assignment of iterations to processors.

+ Static with chunk=C, also known as Interleave; The application distributes work among
the available processors in chunks of C consecutive iterations. Each processor has to
execute N/C chunks. Again, the decision of spawning can be taken just once, in case all
loop iterations are considered at a time, or several times if only a portion of the complete
set of iterations is used at any time. This scheme is useful for triangular loops, where the
amount of work per iteration greatly varies from iteration to iteration. Locality is also
enforced by assigning the same data to the same processors, under application control.

* Dynamic with chunk=C; The dynamic scheduling policy sets a global work descriptor
from which all processors pick up work. Each processor gets C iterations at a time,
executes them and tries to get C iterations more, and so on, till the work is exhausted.
This is useful for unbalanced loops, where there is no previous knowledge about the
amount of work to be done in each iteration. Data locality is not preserved because the
processors get work randomiy.

+ Guided self-scheduling (GSS [113]); GSS begins assigning large chunks of iterations.
Each processor receives as much work as the number of remaining iterations divided by
the number of allocated processors (N/P). Following this formula, chunks quickly
decrease in size till all the work has been generated.

* Trapezoid self-scheduling; Trapezoid starts with chunks smaller than GSS, searching for
a compromise to avoid giving too large chunks. It assigns first N/2P iterations to each
processor. The size of the chunk decreases slower than in GSS (at a rate of N/(8*P*P)).

» Adaptable-size chunking [86]; This algorithm is explicitly thought to be used in a
dynamic environment, where processors quickly move from a one application to another.
It generates work using two chunk sizes. Processors receiving the larger chunk size are
assumed to be stable in the application, so are going to work with small overhead.
Processors receiving small chunks are candidates to leave from the application first when

the operating system requests to do so.

To avoid taking the decision of spawning parallelism only once, all policies are able to
be combined with factoring, also from [83], to execute the parallelism in bursts. Before

Page 38

R S o

Scheduling

generating each burst, the application has the opportunity of checking the number of available
processors and decide whether to execute in parallel or not and compute the parameters for the
scheduling policy in use to spawn parallelism next time. Figure 14 shows the behavior of the

interleave and adaptable size chunking approaches when using bursts.

Figure 14a shows how work is generated when using an interleaved scheme and nano-
thread bursts. For each processor (3 in the example) a first chunk containing two iterations is
generated. After that, a dispatcher nano-thread is enqueued and the burst is completed
supplying a second chunk for each processor. All nano-threads, including the dispatcher are
enqueued in the global ready queue. When the first processor finishes executing, it picks up the
dispatcher, thus generating more work to be done (the second burst), and continues working on
the second part of the first burst. The goal here is to maintain the processors working with
enough work generated without generating all the parallelism in a fine-grain manner at a time,
which would spend a large amount of memory.

nano-thread

regeiving

N iterations

of work

1 Dispatcher

nano-thread
Ist ; 2nd burst
burst burst

work

generaticn a) Interleave scheduling b) Adaptable size chunking (Adap)

Figure 14: Work generation using burst-based scheduling algorithms

Figure 14b shows the bursts technique applied to a different scheme for application
level scheduling. In this case, large chunks are merged with small chunks to reduce the
overhead introduced through spawning parallelism. The idea is also to maintain at least one
processor executing a small chunk of iterations to be able to quickly adapt to changes in
processor allocation introduced by the operating system.

3.2.3. Locality issues

The application level relies on the services provided by the run-time library to spawn and
manage parallel tasks. While designing a new run-time library, one has to think of which the
needs of parallel applications are, having in mind the physical execution environment
(hardware) where they are going to execute.

Our target machines range from small symmetric multiprocessors to production
machines containing a large number of processors. A key aspect to consider is how much the
application should be involved in the assignment of parallel tasks to processors. We have
determined that it is very important to allow the application to guide the run-time library about
where to execute its tasks. This is because the application can be aware of how the data access
patterns are for each parallel construct. This issue is more important on NUMA architectures.
The mechanism provided to the application consists of allowing work generation on specific
processors.

Also, the compiler can help in achieving locality by generating code for each
processor which correctly accesses the same data across different parallel loops. Sometimes,

Page 39

e

Chapter 3

the code inside parallel loops can be slightly modified to align the data accesses done by the
processors with the data accesses done by the previous loops.

3.2.4. Dependent parallel regions of code

As soon as an application is represented through an HTG structure, the parallelism detected by
the compiler can be highly unstructured in the sense that inside every node several dependant
regions can be spawned in parallel if the supporting threads library allows to represent the
precedences among them. Parallelization through directives is not usually expressive enough
to allow such an unstructured representation.

Figure 15 shows an example consisting of a parallel application structure (Figure
15a), in which there are eight regions of code which are dependent as indicated in the figure
(region 3 depends on region 2, region 5 depends on region 4 and so on). This parallel structure
can be parallelized using two main approaches. The first one is used in traditional
parallelization environments (Figure 15b). It uses a barrier synchronization to control the end
of the four first parallel regions and signal the starting of the four second parailel regions.
When the parallel execution shows some load unbalance among the different parallel regions,
this approach sums the unbalances along the largest path (consisting of regions 4 and 3, in the
figure).

The second approach, which is supported in the NANOS environment, is to allow the
application to express the precedences among regions. Observe in Figure 15¢ how this
approach is able to mitigate the effect of load unbalance due to the removal of the barrier
synchronization involving all processors. Instead, when the execution of a parallel region
terminates, the application automatically starts executing the dependent one. In general, the
load unbalance is reduced with respect the traditional approach. The application can express
any precedence relation among parallel regions. The extended OpenMP directives used for
expressing such precedences are presented in Chapter 4.

//\\ /AN

\
: // é; EeloIclo 8:::
bobd| 0oae
_ \\Q/ / J ~«— Barrier synchronization { Dependence resolution

a) Application structure b) Structured parallelization ¢) Unstructured parallelization

Dependent parallel regions Earlier termination due to
load unbalance equilibrium

Figure 15: Structured vs. unstructured parallelization

Page 40

Scheduling

3.2.5. Multiple-levels of parallelism

Supporting the execution of the hierarchical parallelism represented by the HTG structure is
equivalent to provide multiple levels of parallelism. In this work, we have taken advantage of
having the applications decomposed in a hierarchical way, to provide support for exploiting
multiple levels of parallelism.

Figure 16 shows the structure of a parallel application which exhibits two levels of
parallelism. At an outer level, regions 2, 4, 6 and 8 are independent among each other, The
same happens with regions 3, 5, 7 and 9. Among them, region 3 depends on region 2 and so on.
At an inner level, each one of the regions contains a parallel loop.

Application
Structure

5=
@ %

@ ® @
N o

\/

Figure 16: Application structure allowing multiple levels of parallelism

Parallel
Loops

Figure 17 shows the differences between the exploitation of single and multiple levels
of parallelism and the different approaches that can be taken in each case. When exploiting a
single level of parallelism only, either the outer or the inner level of parallelism can be
exploited, but not both. Figure 17a shows the result of exploiting the outer level of parallelism
in the application represented in Figure 16, assuming that 16 processors are available. The
outer level consists of two groups of 4 parallel regions. The parallelism is spawned in such a
way that one processor executes one parallel region. If the run-time execution environment
forbids spawning further levels of parallelism, no other parallelism can be exploited. In
particular, parallel loops inside each one of the parallel regions have to be executed
sequentially. As a result, only 4 processors are used in the outer level approach.

Figure 17b shows the parallelization of the inner level. This is usually the approach
taken by most of programmers and parallelizing compilers because it is easy to detect
parallelism in loops and it is the most commonly supported parallelism exploitation. This
second approach allows to use all 16 available processors. Also, it is going to exhibit the best
performance when the parallel loops are large enough. There are, although, locality issues that
should be taken into account. For instance, in the example of Figure 17b, it seems better (o

Page 41

S A B 55123 L 150 01 e A58 R0bmbfefemtes etor sor+s 5.

Chapter 3

execute the loop in the way it is shown (regions 1, 2, 3, 4, and so on), instead of executing
regions in the following order: 1, 2, 4, 6, 8§, 3, 5, 7 and 9. This is because, if there is a
‘dependence from region 2 to region 3, it is probable that a portion of the data used in region 2
is also used in region 3. So, it is better to execute region 3 immediately after region 2 than
execute regions 4, 6, and § in between, polluting the cache memory of the processors before
executing region 3.

Figure 17c shows a first approach for multi-level parallelization (all-to-all). Four
parallel regions (2, 4, 6 and 8) are first spawned. The processor executing each region finds a
parallel loop inside and spawns further parallelism. All parallel loops are executed by ail
processors (16, in the example). This means that each processor is going to receive the same
portion of the parallel loop than in Figure 17b approach. The difference is that the work is
supplied as soon as the parallel regions are spawned. This early spawning of parallelism
provides, at a time, four times more work than in Figure 17b approach. This is a good solution
to reduce the effect of load unbalancing because as soon as a processor terminates with the
iteration of a parallel loop, it can proceed executing the next loop. The same execution can be
achieved by eliminating the implicit barrier synchronization at the end of parallel loops in
traditional parallelization environments.

Single-level | Multiple-levels
Parallelizations Parallelizations

a) Outer level b) Inner level | c¢) All-to-ail d) Grouping

P an®-

el 9 9

BES
(3\(5\ /?/9)1
OQ.

1

/
Loop is executed
> on P processors

1

@O : =D~
OO OO0

Figure 17: Single-level vs. multiple-level parallelization

Page 42

e

Scheduling

3.2.6. Processor grouping

When allowing to spawn multiple levels of paralielism, the execution environment can provide
tools to drive processors to execute at different parts of the application. It is very different to
make all processors to participate in the execution of all paraliel tasks, like in a single-level
parallel execution, from guiding each processor to execute the desired tasks.

Processor grouping is the method we have selected at application level to guide
processors to execute some (but not all) of the active parallel tasks. Figure 17d shows that
approach (grouping) that can be taken when supporting multiple levels of parallelism. Tt
consists of driving processors to independently execute a portion of the application. In the
example, all parallel loops inside parallel regions are executed using 4 processors, for a total of
16 processors. A first group of 4 processors is used to execute regions 2 and 3, another group
for regions 4 and 5, an so on. The advantage is that the inner level of parallelism is distributed
among less processors than in the all-to-all approach. The working-set size assigned to each
processor is the same than in the » and ¢ approaches, but the number of different data
structures used for each processor is smaller. In general, processor grouping makes larger the
working set each processor takes from a parallel task, thus improving locality and reducing
false sharing among the processors. This is of importance when the amount of work inside the
inner level is big enough to be exploited using 4/8 processors, but it is too small to be exploited
on more processors [106].

The method we use to drive processors consists of establishing the processor groups
at every spawning point. All spawning points at an outer level of parallelism are able to drive
some selected processors (o each one of the parallel tasks, building a group of processors. One
of the processors assigned to each task executes the task. It is the group master for the task it
has started executing on. Other processors inside the same task are group slaves. Then,
independently inside every processor group, each time the group master finds an inner parallel
task, it spawns the new parallelism over the group slaves (sometimes we also call them as its
friends; OpenMP uses feam, instead).

3.3.Run-time library level scheduling

The purpose of the run-time execution environment is to coordinate the application needs with
what the operating system offers. The application wants to execute tasks and the operating
system offers virtual processors to execute them. The relation between a run-time library
giving support to NPM and the applications has three important aspects to consider. First, the
run-time library has to allow the application to map tasks to specific virtual processors (usually
for data locality purposes). This can be done by exporting virtual processor identifiers to the
application level (see Subsection 3.3.1). Second, the application also wants to stock several
tasks at a time for execution. The library can support this feature through ready queues (see
Subsection 3.3.2). And third, the application wants to express predecessor/successor relations
between parallel tasks (explained in Subsection 3.3.3).

The relation of a run-time library supporting NPM and the operating system is based
on the operating system interface providing information about the current status of processor
allocation. The run-time library is in charge of tracking the status of each one of the virtual
processors and decide low level processor movements to benefit the execution of the
application. This will be explained in Section 3.4.

Page 43

Chapter 3

3.3.1. Resource identification and scheduling

The run-time library provides tools for virtual processor identification (also commented in
Subsection 2.2.1). Virtual processors are identified by consecutive numbers starting from zero
to the number of processors available in the machine minus 1; Gaps are not allowed. A
decision here is to ensuare that when the operating system informs an application that it has
allocated P physical processors, the application automatically knows that those processors are
represented by virtual processors numbered from O to P-1. No translation is required to know
which virtual processors are available. This assumption can be broken when the operating
system assigns/preempts processors. In these situations, the threads library is in charge of the
situation, fixing a consecutive numbering of virtual processors and being aware of providing
physical processors to all virtual processors, while the application terminates the currently
spawned parallelism.

Using the virtual processor identifiers, the application indicates the mapping of nano-
threads to virtual processors. After the mapping is set, it is maintained and the threads package
ensures that virtual processors having work to do are eventually mapped on a physical
processor. This means that the scheduling performed by the operating system may break the
mapping between physical processors and nano-threads, but not between virtual processors
and nano-threads. Checking often the number of allocated processors 1s a good way of
minimizing the number of times that such mapping is hurt by the operating system scheduling.

3.3.2. Mapping application tasks to virtual processors

The application level instantiates its parallel tasks using nano-threads. Nano-threads are
mapped to virtual processors labeling them with the virtual processor identifier. This is usually
done at thread creation; it can also be done sooner or later after thread creation; or even, it can
be done in a random way. The purpose of explicitly mapping tasks to virtual processors is to
achieve data locality. Instead, allowing a random mapping searches for improving the load
balancing.

The run-time execution environment offers a ready queue of ready-to-run nano-
threads. The structure of the ready queue is as follows:

* A global ready queue serves the purpose of load balancing. All virtual processors search
for work in the global ready queue. Nano-threads enqueued in the global ready queue are
picked up at random by a processor and executed in it.

» Local per-processor ready queues are oriented to support data locality. One virtual
processor searches for work in each local ready queue. For this reason, the local ready
queues are identified with the identifier of the associated virtual processor. Nano-threads
labeled with a virtual processor identifier are always enqueued in the matching ready
queue.

Different implementations of the ready queues can be provided to the application
level in order to provide simple/extended functionality without compromising performance

when the extra functionality is not needed.

3.3.3. Precedence driven execufion

From the application structure given by the HTG, application tasks are instantiated as nano-
threads. Nano-threads are a run-time representation of the structure of the HTG through the
expression of predecessors and successors among them. Figure 18 presents a sample HTG

Page 44

e

Scheduling

annotated to show which characteristics are associated to each task when it is instantiated by a
nano-thread. Nano-threads provide the address space for the execution of the HTG node. They
maintain the predecessor/successor relationships and can be labeled to execute in specific

virtual processors.

\

Virtual processor: 8
Function: x
Predecessors: NO
Successors: end

J

Figure 18: Sample HTG, nano-threads and precedence relations

For instance, in Figure 18, the nano-threads instantiating nodes g, # and x are created
first, setting their successor to the end node. Node y can be instantiated as soon as % is. And
node z, after g and % are instantiated. Instantiation always proceeds from the bottom of the
HTG to the top. The node 7 has two predecessors (z and y). This means that as soon as nodes z
and y have been executed, nano-thread instantiating node 4 can be enqueued in the ready queue
for execution. When a node finishes execution, it has to signal its successors in case they have
to be enqueued. In the figure, node z signals both nodes g and 4 because they are its successors.

When a nano-thread should be enqueued for execution, the run-time library takes into
account whether the nano-thread is labeled with a virtual processor identifier (VP). When it is
the case, the nano-thread is enqueued in the local ready queue of the given virtual processor.
Otherwise, it is enqueued in the global ready queue. In the example of Figure 18, node z is
enqueued at the very beginning to be executed in virtual processor 0 (vp: 0), node y in virtual
processor 4 and node x in virtual processor 8. Nodes g and % are labeled for execution in virtual
processors 0 and 4, respectively. This is useful to maintain data locality, when the application
knows, for instance, that nodes z and g access a large amount of shared data.

3.4.Kernel-level scheduling

Kernel-level scheduling solves the problem of having a limited number of physical resources
where to execute the user applications. Each user application maps user-level threads (nano-
threads in our model) to virtual processors offered by the operating system. The operating
system maps the virtual processors to physical processors, allowing that all user applications
execute in a shared environment.

Usually, in parallel execution environments, each application assumes that the
operating system assigns a physical processor to each one of its virtual processors. This is not
always possible because the demand for virtual processors in the system can exceed the
number of physical processors. The total demand for virtual processors is known as the load of

Page 45

Chapter 3

the system. The role of the operating system in processor scheduling becomes important when
the load of the machine is high, so that a number of physical processors must be shared by a
larger number of virtual processors. This work concentrates in providing new techniques and
mechanisms for supporting well-known and new scheduling policies. The scheduling
mechanisms are designed to enforce a close cooperation among the application, the run-time
execution environment and the operating system. Cooperation is based on information shared

across the different levels.

3.4.1. Sharing information with the upper levels

Each application executing on the NANOS parallel execution environment shares information
with the operating system. The information dynamically flows from the application to the
operating system and vice versa.

The information includes the number of processors on which the application wants to
run at any moment and the number of processors currently allocated by the operating system to
the application. From the number of requested processors, the operating system simply
decides, in a first step, how many processors to allocate to each application. Processors are
then moved, in a second step, from one application to another. It is possible that between the
two steps, some time passes to allow the application to release the processors to be moved
voluntarily. This functionality is designed to avoid as much as possible the preemption of
running processes by the operating system.

Along with the number of requested and allocated processors, information about each
one of the virtual processors, checked by the user-level execution environment during
synchronizations, helps the application when the operating system decides to reallocate
processors to another application.

3.4.2. Synchronization and processor preemptions

Each time the application needs to do some operation dependent on the number of running
processors, it uses the number of processors allocated provided by the operating system. This
ensures that, at least during a short amount of time, such processors are available (in average,
during half a scheduling period or quantum). This means that, most of times, the processors are
not going to lose a synchronization, so they are not going to delay the whole application

execution.

In these situations, the behavior of the application depends, during a certain amount of
time, on the number of processors allocated. Typicaily, this happens when the application
spawns parallelism, checking the number of processors allocated to know how many
processors are going to participate in the parallelism. From that point to the next
synchronization point, in a barrier or while joining the parallelism, the processors should
remain assigned to the application, avoiding that a delay in the synchronization slows down the
execution of the application. If the operating system decides to reallocate some processors
during the execution of the parallelism, some of the virtual processors will be preempted. This
can occur, and the user-level execution environment will be always informed, thus detecting
the preemptions at synchronization points. No time will be lost waiting for a synchronization

with a preempted processor.

Also, when a preemption is detected, any processor of the application (usually the one
that detects the preemption) can be directly transferred to execute the preempted work.

Page 46

Scheduling

3.4.3. The application as the scheduling target

The NANOS operating system environment distributes processors among the running
applications, having into account the applications as a whole and their exact requests. Looking
at the requests of all the running applications, along with their priorities, the operating system
can figure out which is the load of the machine, which applications have more priority to be
executed and it can distribute processors accordingly.

To minimize movements of processors between applications, a processor allocated to
an application searches for work in that application first. In case there is no ready virtual
processor to run in its application, the processor is allowed to automatically assign to another
application and get work from it. Usually, the scheduling policy applied at each quantum
prepares a hist of applications which have been given less processors than requested. Those
applications are the candidates to receive the processors that become free due to some
application terminating.

The scheduling policies that can be applied by the NANOS operating system range
from the well-known equipartition, batch or round-robin policies to other kind of policies that
can make more use of the information about processors request.

3.4.4. Processor affinity

Processor affinity is an important issue to consider in kemel-level scheduling because of the
different access latencies that have cached, local and remote memory locations. Cache memory
is always of importance, both in SMP and CC-NUMA machines [146][94][141]. When a
processor runs inside an application, the processor caches are filled with data which is usually
accessed several times. Moving processors from one application to another causes a total or
partial cache corruption. Processor affinity is useful for the cases where partial cache
corruption occurs to take advantage of the data remaining in the cache when the processor is
allocated again to the same application.

In CC-NUMA machines, local and remote memory accesses are also important to
consider due to the different access times, which can range from 0.3 to 2 microseconds.
Usually, in NUMA machines, the operating system places data near the processor that has
accessed it for the very first time. This means that other application tasks accessing the same
data can benefit of being scheduled on the same processor. The benefits in this case will be
greater, if the data already is in the cache of the processor. Otherwise, at least the cost
accessing local memory will be lower than accessing remote memory.

Scheduling at operating system level uses two levels of affinity. In a first step, a

processor is assigned to an application where it has run before. In a second step, inside an
application, a processor is assigned to a virtual processor where it run before, if any.

3.5.Complete interaction between the three levels of operation

As a result of the previous discussion about scheduling among the three levels of operation, the
resulting environment behaves as follows:
» Each application dynamically informs the user-level execution environment and the
operating system about its requirements (number of processors) reflecting the actual
degree of parallelism that the application wants to exploit at user-level.

Page 47

Chapter 3

» The operating system distributes processors at least at fixed time slices, taking this
information into account. It can also redistribute processors using other events, such as
changes in processor requests.

* The application is informed about the operating-system allocation decisions and tries to
match the parallelism that it generates to the assigned number of processors.

* The user-level execution environment is in charge of ensuring that the parallelism
spawned by the application will execute as smoothly as possible, even when the
operating system reallocates processors.

In more detail, when it is time for the operating system to reallocate processors, it
applies the current scheduling policy, deciding how many processors is going to receive each
application in the next time slice. As a result of this decision, some applications are going to
loose processors. Then, it asks these applications for processors to be freed, optionally giving
them a certain amount of time (the grace time {84][152]) to answer to the request by releasing
the processors. If an application does not answer to the request in time, or when the grace time
for that application is zero, the operating system will forcefully claim back processors through
preemption, and inform the application. When some work has been preempted, the application
always readapts at user-level when a running virtual processor reaches a safe point (see
Subsection 2.2.3), by yielding the associated physical processor to a preempted process. A safe
point is a user-level dispatching point, where the virtual processor knows that the application
and runtime synchronization constraints are satisfied. Ensuring that all preempted virtual
processors are stopped at safe points is very important in order to avoid preemption inside
critical sections. To try to drive preempted virtual processors to safe points 1s critical to avoid
situations where virtual processors are preempted while holding a user-level lock.

Processors moving to another application are allocated to them. The applications
receiving processors are informed in such a way that the processors can participate either in the
current parallel execution, if there is work available to perform, or as soon as the application
checks the number of processors allocated from the operating system.

Page 48

Chapter 4.
User-level Interface &
Functionality

Abstract

In this chapter we present the user-level interfaces designed
and used in this thesis. First, we present the design of the user-level
threads library (NthLib) interface and functionality that supports the
Nano-Threads Programming Model and adapts to the available
resources. The NthLib interface is used directly by the NANOS Compiler
to generate parallel code. It can also be used to hand-code parallel
applications, although this is usually a hard task.

Then, we present the OpenMP directives and extensions we
have used to parallelize ar source level the applications presented in

chapters 8 and 9.

"Posa la teva mirada en el cami del cim, peré no
t'oblidis de mirar-te els peus. El darrer pas depén det
primer. No et pensis que ja hi has arribat, perque
veus €l cim. Pensa en els peus, assegura el préxim
pas, perd que aixd no et distregui de 1ideal més
elevat. EI primer pas depén de I'altim."

Un admirador de la muntanya.

Page 49

Chapter 4

4.1.Run-time library

NthLib (the NANOS user-level threads library [87][88]) is a fundamental part of this thesis
because it joins the upper part of the parallel execution environment (application/compiler
level) with the lower part (operating system level), enforcing the cooperation between all three

levels of operation.

In this section, we present the design decisions adopted for the development of
NthLib, along with a complete description of its interface and external functionality. Chapter 7

sketches its implementation.

4.1.1. Design decisions

"The nano-threads package is designed to support general, multi-level, unstructured and fine-
grained parallelization of applications. As the parallelization is performed through a compiler,
the package interface has been specifically designed to provide the functionality needed by the
compiler. The current package interface consists of a basic interface plus some extensions. The
basic interface allows the compiler to generate new nano-threads setting their successors and
predecessors, controlling dependencies and queueing them in the ready queue. Extensions to
the basic interface introduce mechanisms to efficiently schedule parallel loops. The interface
allows that the code generated for an application could be seen as an executable representation
of the application HTG.

The first design decision is to use standard compilation back-ends to generate the
executable code. The code generated for each node is embedded into a standard C or Fortran
function and standard activation frames are created following the same conventions used in
sequential programs. Each nano-thread can access the application global data and some local
private data. Global data is accessed in the same way the sequential programs do. Data
dependences between nano-threads guarantee a correct data access order. Local data resides in
the thread stack and it is also accessed using standard mechanisms. The library also provides a
mechanism to allow threads to block, giving their children access to the parent local variables.

The second design decision, in accordance with NPM, is to create, at a specific point,
the appropriate amount of parallelism that can be efficiently executed with the available
resources. For large parallel nodes this implies that the decision of spawning parallelism is
taken several times, correctly adapting the number of threads created to the resources currently
allocated by the operating system. This establishes a difference between our nano-threads
implementation and other thread implementations, such as Cilk [17], COOL [23], Filaments
[44], Concert [27] in which the decision of spawning parallelism is taken once - and
irremediably - for an entire section of parallel code. The main goal of our limited creation
decision is to maintain the ready queue with enough work to be performed in the future,
avoiding whenever possible that it becomes empty, but without wasting memory to represent a
lot of threads and also to be able to dynamically adapt to resource changes. Our tests show that
trying to feed an average of six user-level threads for each physical processor is enough to
provide the correct amount of parallelism in most of the applications. When resources are
enough, the application can spawn the finest granularity nano-threads. In this way, it keeps the
ability to quickly respond to the processor reallocation mechanism of the operating system.
When resources are scarce, the application can generate less nano-threads and slightly more
coarse-grained in order to reduce the user-level scheduling overhead.

Page 50

User-level Interface & Functionality

The third design decision is to reduce the memory management overhead to a
minimum. We want to avoid separated management of thread descriptors, thread arguments
and local variables. As at least one structure containing the thread stack is necessary to execute
the thread, we use such structure to enclose all those data. The (relative large) size of the nano-
thread structure is not a problem in our implementation, as applications can control the amount
of threads they create at the same time. We are also examining memory management
techniques that exploit affinity between the thread stacks and the processors [105].

The fourth design decision consists on achieving an explicit and compact
representation of the precedence relations among threads that can be dynamically build and
updated at run-time depending on the system conditions. Output data dependencies are
represented through successor nano-threads, and HTG nodes at the same level of the hierarchy
are created in reverse order to correctly setup the successors for each (predecessor) node.
Several successors can be specified for each nano-thread. A per-thread counter represents the
remaining unresolved input data dependencies for each nano-thread [12]. The counter is
initialized at thread creation. Every time a predecessor terminates, the counter is decremented.
When the counter reaches zero, the nano-thread is ready for execution. Due to several
optimizations done while creating parallelism it may occur that new nano-threads can
dynamically be added as predecessors of a previously created end node. In this case, the
counter of unresolved dependencies is therefore incremented by the amount of new
predecessor nano-threads.

The fifth design decision is to include, in the library, mechanisms to allow good load
balancing and exploitation of data locality. For this reason, we include both one global and per-
processor local ready queues, respectively. The global queue provides a means to generate
work to be performed by any processor and, therefore, to obtain a good load balancing. The
data affinity allowed by local queues is very important to achieve a good performance. We
have also experimented with hierarchical ready queues and processor grouping in order to
allow applications to drive processors where they could be more useful [106].

The last design decision is to allow the compiler to select between the fuil
functionality or a simpler and more efficient form of spawning parallelism. This decision
motivated the introduction of work descriptors, a data structure used to represent parallel work
to be done and to supply it to the allocated processors.

4.1.2. User-level NthLib interface

Tables 2 and 3 present the nano-threads user-level interface for Fortran and C, respectively. In
the following description of the interface, the Fortran primitives are used. Differences with the
C interface are highlighted when necessary. Along the description, the sample HTG
represented in Figure 19 is used. Left part of Figure 19 presents an HTG composed of a
starting and an ending sequential parts (nodes labeled initial and final) and six paraliel
sections of code. The sections are not completely parallel, but instead they have several
dependences among them, indicated by the arrows between the nodes. The right part of Figure
19 represents the HTG of each one of the parallel sections, consisting of a parallel loop. Thus,
two levels of parallelism can be exploited in this HTG.

Page 51

Chapter 4

NthLib (FORTRAN) interface Functionality

void nthf_package_init_ (Package initialization
struct nth_package args * nthargs,
void (* nthf_main) (...),
int * narg, ...);

struct nth_args {
int max_processors;
int requested _processors;
int initial_stack_size;
int stack_size;
}s
struct nth_desc * nthf_create_ (Nano-thread creation

void (* nth_func) (...),
int * npred, nthf_create is the general primitive

int * vp_id,
int * nsucc,
nth_argdesc * argdesc,
int * narg,
.- [list of successor nano-threads */
... /* list of arguments */ };
struct nth_desc * nthf_create_Is_ (

void (* nth_func) (...}, nthf_create_1s is a simplified primitive, accepting a
int * npred, single successor nano-thread only
int * vp_id,

struct nth_desc * succ,
nth_argdesc * argdesc,

int * narg,

... /* list of arguments */);

typedef unsigned long nth_argdesc;

struct nth_desc * nthf_burst_create_ (Nano-thread burst starting point
int * npred);
void nthf_dispatcher_create_ (Application-level scheduler
struct nth_desc ** nth);
struct nth_desc * nthf_self_ (void); Nano-thread self identification
int nthf_cpuv_ (struct nth_desc * nth); Virtual processor where nano-thread is executing
int nthf_depsatisfy_ (struct nth_desc ** nth); Dependence resolution
void nthf_depadd_ (Dependence addition

struct nth_desc ** nth,
int * npred);

void nthf_to_rq_ (struct nth_desc ** nth); (lobal ready queue management

void nthf_to_rq_end_ (struct ath_desc ** nth);

void nthf_to_lrg_ (Local ready queue management
int * which,

struct nth_desc ** nth);
void nthf_to_Irq_end_ (

int * which,

struct nth_desc ** nth);
int nthf_block_ (void); Nano-thread blocking

Table 2: User-level NthLib interface for Fortran

Page 52

N e

User-level Interface & Functionality

NthlLib (FORTRAN) interface Functionality
void nthf_burst_wait_ (Nano-thread burst termination control
struct nth_desc ** nth_burst);
void nthf_wdcreate_ (Work descriptor initialization

struct work_desc * wd,
void (* func) (...},
struct nth_desc ** suce,
int * narg, ...);

void nthf_gwdsupply_ (Global/local work descriptor supply
struct work_desc * wd,
struct nth_desc * succ);

void nthf_wdsupply_ (

int * vp_id,
struct work_desc * wd);

void nthf_endsupply_ (Nano-thread blocking, waiting for work descriptor
struct nth_desc * succe), termination

Table 2: User-level NthLib interface for Fortran

NthLib (C) interface Functionality

void nth_package init_ (Package initialization
struct nth_args * nth_args,
void (* nth_main) (...),
int narg, ...);

struct nth_desc * nth_create (Nano-thread creation
void (* nth_func) (...),
int npred,
int vp_id,
int nsuce,
int narg,
... [* list of successor nano-threads */
... /* list of arguments */);

struct nth_desc * nth_create_1s (
void (* nth_func) (...},

int npred,

int vp_id,

struct nth_desc * suce,

int narg,

... I list of arguments #/);
struct nth_desc * nth_burst_create (int npred); Nano-thread burst starting point
void nth_dispatcher_create (struct nth_desc * nth); Application-level scheduler
struct nth_desc * nth_self (void); Nano-thread self identification
int nthf_cpuv (struct nth_desc * nth); Virtual processor where nano-thread is executing
int nth_depsatisfy (struct nth_desc * nth); Dependence resolution
void nth_depadd (Dependence addition

struct nth_desc * nth,

int npred);
void nth_to_rq (struct nth_desc * nth); Giobal ready queue management
void nth_to_rg_end (struct nth_desc * nth);
void nth_to_lrq (int which, struct nth_desc * nth); Local ready queue management

void nth_to_lrg_end {int which, struct nth_desc * nth);
Table 3: User-level NthLib interface for C

Page 53

Chapter 4

NthLib (C) interface

Functionality

int nth_block (void);

Nano-thread blocking

void nth_burst_wait (struct nth_desc * nth_burst);

Nano-thread burst termination control

void nth_wdcreate (
struct work_desc * wd,
void (* nth_func) (...},
struct nth_desc * succ,
int narg, ... /* arguments ¥/);

Work descriptor initialization

void nth_gwdsupply (
struct work_desc * wd
struct nth_desc * succ);
void nth_wdsupply (
int vp_id,
struct work_desc * wd);

Global/local work descriptor supply

void nth_endsupply (struct nth_desc * succ);

Nano-thread blocking, waiting for work descriptor
termination

‘Table 3: User-level NthLib interface for C

SUBROUTINE nthf_main

SUBROUTINE forward

N

Figure 19: Example HTG used along the description of the NthLib primitives

4.1.2.1. NthLib package initialization

The NthLib package is initialized using the nthf_package_init procedure (see Example 4.1).
The primitive receives as arguments, a reference to a structure containing several run-time
variables (see the nth_args structure in Table 2), the function which will be started by the first
nano-thread (nthf_main), the number of arguments and the arguments which is receiving the

nthi_main function.

The structure nth_args includes the arguments used by NthLib to setup the execution
environment. The field max_processors indicates the maximum number of processors the

application will be able to use. The field requested_processors contains the number of

processors requested automatically by NthLib before calling nthf_main. Later on, the

application can dynamically request more or less processors, with a maximum of
max_processors, The field initial_stack

Page 54

size should be setup with the size (expressed in

PR

User-level nterface & Functionality

virtual memory pages) of the stack that should be allocated by the very first nano-thread. The
field stack_size should contain the stack size (also in pages) allocated for the regular nano-
threads. Usually, the stack size of the first nano-thread should be greater than the regular nano-
threads stack size. This is because usually the first nano-thread stack contains a large amount
of variables, belonging to the Fortran main program, while the regular nano-threads do not

need the same amount of space.

Example 4.1. Using ntnt package init
SUBROUTINE nthf main (N}

PROGRAM nanos
INTEGER N

INTEGER N
INTEGER nthargs (4) DOUBLE PRECISION A(N,N)

..! Start parallelism here

nthargs(l) = 1& ! max processors
nthargs(2) = 1 ! requested "
nthargs(3) = 1024 ! first_stack size END
nthargs{4) = 4 ! gstack size

CALL pthf package init(nthargs, 1, N)

END

4.1.2.2. Nano-thread creation

Nano-threads are created using the nthf_create call (see Example 4.2). Creating a nano-
thread means, first, to instantiate a task of the HTG, setting the relationship of the task with its
predecessors and successors; Second, it means to establish a new user-level context to execute
the task; and third, it means to setup a hint for the processor where the task should be executed.

Example 4.2, USiIlg nthf create

SUBROUTINE nthf main (N)
INTEGER N
DOUBLE PRECISION A(N,N)
EXTERNAL f£inal

SUBROUTINE final (A, N}
INTEGER N
DOUBLE PRECISION A(N,N)

END

INTEGER*8 mask, nth
nth_mask = 0 ! Argumehts by reference
nth = pthf create (final, | Function to call
2, ! Number of precedences
0, ! Processor for enqueuing
0, ! Number of successors
nth_mask ! Argument description
2, A, M) | Number of arguments and arguments

END
During nano-thread creation, information is provided to set the relationship of the task
instantiated with its predecessors and successors, establishing a run-time representation of the
HTG structure of the application. This is done through the npred and the varying size list of
successors (see Table 2). The npred argument tells NthLib the number of predecessors
which are given this nano-thread as a successor. Only when the number of predecessors
becomes zero, meaning that all the precedences have been satisfied, the nanothread can be
executed on a processor. After the nano-thread execution, NthLib is in charge of decrementing
the counter of precedences of its successors (givenin the 1ist of successors), and set them
ready for execution in case the number of precedences reach zero.
For the newly created nano-thread, the new context consists of a pointer to a function

to be executed (nth_func) and a varying number of arguments supplied to that function (1ist
of arguments). A variable number of arguments is necessary because, depending on the

Page 55

Chapter 4

amount of variables used by the nano-thread, a different number of arguments have to be
supplied. The number of arguments supplied to the nano-thread is indicated by narg. Each
argument is described through the argdesc bitmap, indicating whether the argument is 64- or
32-bit size and whether it should be privatized for the new nano-thread or passing a reference
to the original value is enough. Two bits in argdesc describe each argument. In the
nth_create C interface, the mask is not necessary because the arguments can be passed by
value, if necessary.

During nano-thread creation, a hint can be provided about the processor on which to
execute it. This is done through the vp_id argument. In case the vp_id indicates a valid
processor and npred is zero, the nano-thread is enqueued immediately for execution. In case
the npred argument is greater than zero, the nano-thread is simply marked to be queued in the
given processor. In case the given vp_id is -1, the application is in charge of supplying it to a

Processor.
The nthf_create function returns a reference to a nano-thread descriptor, in case the
application wants to be aware of its enqueuing to the ready queue.

The primitives nthf_burst_create and nthf_dispatcher_create are forms of
nano-thread creation, designed specifically for burst management. They are described in

Chapter 8.

4.1.2.3. Nano-thread basic management

Nano-thread self identification. An executing nano-thread can obtain a reference to its own
nano-thread descriptor using the nthf_self function. This is useful to perform different
operations on the currently executing nano-thread.

Precedence management. The initial number of precedences set to a nano-thread can be
dynamically modified both to add new precedences in case new inner parallelism is spawned
or to satisfy dependences. Dependence resolution is used when the application can determine
that a nano-thread can be activated earlier than expected. This usually happens due to the
evaluation of conditional sentences. Adding dependences is performed through the
nthf_depadd interface and dependence removal through nthf_depsatisfy.

It is legal that the currently executing nano-thread add a number of dependences to
itself before spawning parallelism and wait for its termination. In this case, one extra
precedence, representing the thread itself, must be added to the total amount of parallelism

spawned.

Nano-thread blocking. Although nano-threads are run-to-completion threads, usually it is
useful to join the nano-threads instantiating the start and stop nodes of a compound node to
save the context between the start and stop nodes. The local variables declared at the scope of
the start node are maintained till the execution of the stop node and can be accessed by the
parallelism spawned inside. Nano-threads are blocked using the nthf_block primitive.

Example 4.3 shows how the HTG represented in the left half of Figure 19 is translated
to executable code. The code generated to spawn parallelism starts adding a number of
precedences to the current nano-thread (line 2). In the example, the current nano-thread adds
three precedences to itself because it is going to wait for two of the parallel sections (named
above and below) and itself. The nano-threads are then spawned from the bottom to the top of
the HTG (line 4 to line 14). The order is imposed by the precedences expressed by the HTG
structure. One or two successors are supplied to each nano-thread to represent the successor

Page 56

User-level Interface & Functionality

relations also present in the HTG structure. The precedence counter of each nano-thread is
setup indicating the amount of predecessors it has. For instance, the nano-thread instantiating
the right task is created with a precedence counter of 0 because it is going to start execution
immediately and two successors (above and forward sections, see line 13). It receives two
arguments (a and §) and it is supplied to processor 0 to start execution. In line 14, the left task
is supplied to processor 1 to start execution in parallel with the right task. The nano-thread
spawning the parallelism blocks in line 15, waiting for all the parallelism to terminate. At this
point, the processor is allowed to execute any work that it finds available.

Example 4.3. Nano-thread basic management

SUBROUTINE nthf_main(N)
INTEGER N

DOUBLE FRECISION A(NM,N)
EXTERNAL final

INTEGER*E nth_mask
INTEGER*8 gelf, nth_below, nth above, nth_backward, nth_forward, nth right, nth left

Get reference to self

1 self = pthi self() !

2 CALL. pthf depadd({self, 3} ! Predecessors: above, below and self

3 nth mask = 0 ! Arguments by reference

4 nth below = pthf creats(n belowl, 2, ! Two precedences

5 -1, ! No hint for processor

& 1, nth_mask, ! Number of successors and argument mask
7 2 ! Number of arguments

8 self, ! Successor

-] A, N) 1 Arguments

10 nth_above = nLhf create(n abovel,2,-1,1,nth _mask,2,self,a,N)

11 nth_forward = npthf creste{n forwardl,l,-1,1,nth mask,2,nth below,A,N)

12 nth_backward = nthf gregte(n backwardl,l1,-1,1,nth _mask,2,self, A H)

13 nth_right = pihf create(n rightl,0,0,2,nth_mask,2,nth above,nth forward,A, N}
14 nth_left = Lhf create(n leftl,0,1,2,nth_mask,2,nth below,nth backward,a,N)
15 caLL pthf block()

END

4.1.2.4. Ready quere management

Nano-threads can be enqueued in different ready queues. The application is in charge of it, in
case it does not supply a valid vp_id number at nano-thread creation. Nano-thread dequeue

from ready queues for execution is usually done inside NthLib only.
The primitives nthf_to_rq and nthf_to_rqg_end allow to enqueue nano-threads for

execution in the global ready queue (at the head or at the end, respectively). The primitives
nthf_to_lrqg and nthf _to_lrg end allow to enqueue nano-threads at the head or at the end

of the specified local ready queue.

Example 4.4 shows how nth_right is enqueued in the global ready queue (line 4)
and nth_left is enqueued in the local queue of virtual processor number 1 (line 10).

Page 57

Chapter 4

Example 4.4. Ready queue management
SUBROUTINE nthf _main

1 nth_right = pthf create(n rightl,0,-1,!
2 2,nth_mask, 2,nth above,

3 nth forward,a,N)}

4 nthf €o rg end(nth right) !
5 nth_left = pthf create(n leftl,0,-1,

& 2.,nth_mask, 2,nth_helow,

7 nth _forward,a,N)

8 e !
9 !
10 nthif o lrg end{(l,nth left) 1

Y

END

No precedences, and no hint for enqueuing

Enqueuing at the global ready gqueus

Perform other tasks before engqueuing and
Encueue at local ready queue of
processor number 1

SUBROUTINE forward(a,n)
INTEGER *8 nth_mask_01

INTEGER *8 self, nth 01

EXTERNAL forward_loop_01
INTEGER n
DOUBLE PRECISION a(n,n)
INTEGER i
0 self = pthf gelf()
11 =nth nproes 01 = pthf gous current()
12 nth bottom 01 = 1
13 nth_top 01 = n

B WOWoNaw s W

17 CALL pthf depadd{=self,nth nprocs_01 + 1)
18 nth_mask_01 = 011

18 nth_down_01 nth_bottom 01

20 DO nth_p 01 = 0,nth_rest 01l - 1

31 END DO

32 caALn pLhf blogk()
33 END

36 INTEGER 1
37 DOUBLE PRECISION a(n,n)
ki:} INTEGER n, nth_min, nth _max

Example 4.5, Static application level scheduling

INTEGER nth rest_01, nth_p 01, nth_chunk 01, nth down 01, nth up_ 01

INTEGER nth_bottom 01, nth_top_01, nth_nprocs_01

14 nth chunk_01 = {nth top_01 - nth bottom 01 + 1) / nth nprocs_01
15 nth_rest_01 = abs{mod(nth_tcp_01 - nth bottom 01 + 1i,nth_nprocs_01l})
16 IF {(nth_chunk 01 .EQ. 0} nth_nprocs_01 =

21 nth_up_ 01l = nth_chunk_0l1 + nth down 01

22 nth 01 = pnthf create(forward_loop_01,0,nth_p_0l1,1l,nth mask 01,04,
23 self,a,n,nth_down_01,nth_up_01)

24 nth_down_01 = nth_down_01 + nth chunk 01 + 1

25 END DO

26 DO nth_p 01 = nth_rest _0l,nth nprocs 01 - 1

27 nth up 01 = nth down 01 + nth chunk 01 - 1

28 nth 01 = pthf create(forward loecp 01,0,nth_p_01,1,nth mask 01,04,
29 self,a,n,nth_down_01,nth_up_01)

30 nth down_901 = nth chunk 01 + nth down_ 01

35 SUBROUTINE forward loop 0l{a,n,nth min,nth max) N

39

40 DO i = nth min,nth max CSOMP END PARALLEL DO
41 ! loop beody(a,n) “aes

42 END DO END

43 END

nth rest 01

Original OpenMP code.
SUBROUTINE forward(&,n)

C40MP PARALLEL DO SCHEDULE({STATIC)
DO i =1, N
tloop body({a,n)
ENDDO

Page 58

Yo
e
i

User-level Interface & Functionality

4.1.2.5. Application level scheduling and nano-thread bursts

Code generation for different application level scheduling is achieved by means of different
code structures. Example 4.5 shows the code generated for the parallel loop shown in the right
portion of Figure 19. It shows the code generated for the STATIC loop scheduling expressed
through the directives also shown in the example (at the bottom right corner of the figure). See
Section 4.2, for a description of the OpenMP directives and extensions used in this work.

In the code of the Example 4.5, line 10 obtains a reference to the nano-thread
currently executing for later use. Line 11 calls the operating system interface (defined in this
work, see Chapler 5) to obtain the number of processors allocated to the application. After
knowing how many processors are available, lines 12 to 16 are used to compute whether the
total amount of iterations is divisible between the number of processors. If so, all Processors
receive the same number of iterations; otherwise, nth_rest processors are receiving one
iteration more than the others, thus distributing the iterations as evenly as possible. The
following DO loops distribute the work between the processors, creating one nano-thread for
each processor. Nano-threads are created and enqueued in the ready queue of the participating
processors (ranging from 0 to nth_nprocs_01-1, see lines 22, 23, 28 and 29). The number of
precedences supplied to each nano-thread is zero because they can start execution
immediately. After generating the work, the nano-thread blocks itself (line 32). Observe that
the same mechanism used in the Example 4.3 is used to ensure a correct blocking; in line 17,
nthf_depadd is used to add a number of precedences to the current nano-thread, indicating the
amount of parallelism spawned plus itself.

When the amount of work to do inside a parallel loop is large enough, the loop can be
further partitioned in small chunks. This is also going to favor that the application can be able
to control the generation of parallelism inside the loop taking into account the number of
processors assigned to it along the execution of the loop. Nano-threads are then generated in a
burst mode, similar to the factoring technique [83]. In each burst, a number of regular nano-
threads matching the number of processors plus a dispatcher nano-thread are created. The
regular nano-threads execute a portion of the total iteration space. The dispatcher nano-thread
is in charge of controlling the end of the current burst and starting the next. When the
dispatcher is executed, it decides to schedule again a number of iterations on the available
processors. The process is repeated till all the loop iterations are exhausted. Different
scheduling algorithms (from [83]) have been mapped to the burst generation style.

Example 4.6 shows the forward loop implemented with the burst scheme applied to
an interleave scheduling policy. The OpenMP directives used are shown at right, in the figure.

Lines 11 to 15 setup the bottom and top limits of the parallel loop along with the
chunk size, the description of the arguments to be supplied to the nano-threads and get a
reference to the current nano-thread. From this point, the current nano-thread becomes the
scheduling nano-thread for this loop. In line 16, it creates a special nano-thread (the barrier
nano-thread) whose purpose is to implement the barrier synchronization at the end of the
paraliel loop. Line 17 starts the loop which controls the creation of the nano-thread bursts.
Inside, the number of available processors is read (line 18) and a first burst is started (lines 19
to 25). Observe that the successor of all nano-threads created here is set to the nano-thread
barrier. This means that the scheduling nano-thread becomes free to continue executing. When
the first burst is already created, the scheduling nano-thread creates the dispatcher nano-thread
(line 26). This sets the dispatcher as a precedence of the scheduling nano-thread, in such a way
that the scheduling nano-thread can block, waiting for the execution of the dispatcher (line 27).

Page 59

Chapter 4

When the dispatcher is executed it simply wakes up the scheduling nano-thread to spawn the
next burst. This process is continued till all the loop iterations have been scheduled. Observe
that ecach time a new burst is created, the number of allocated processors is taken into account

to schedule the correct amount of iterations.

Example 4.6, Nano-thread bursts

1 SUBROUTINE forward(a.n)
2 INTEGER *8 ath_masgk 01
3 INTEGER nth_rest_ 01, nth_p_ 01, nth_chunk 01, nth_down_0l1l, nth up_01
4 INTEGER nth_bottom 01, nth_top 01, nth nprocs 01
5 INTEGER *8 self, nth_ 01
6 EXTERNATL forward_loop_01 Original OPEDMP code.
7 INTEGER n
8 DOUBLE PRECISION a(n,n) SUBROUTINE forward(a,n)
9 INTEGER i
10 ...
C§OMP PARALLEL EDULE { INTERLEAVE

11 nth_chunk 01 = 16 ¥ . DO SCHEDULE (INT r18)
12 nth_bottom 01 = 1 po i =1, N
13 nth top 01 = N t1ecp body(a,n)
14 nth_ma2£ 01“— 011 ENDDO

— T MP END PARALLEL DO
15 self = nthf self() cso Np
16 nth end chunk 01 = nthf burst create(1) EN.D
17 WHILE (nth_bottom 01 .LT. nth top 01)

ig nth_nproes_01 = pthf cpus cuxrent()

13 CALL pnthf depadd(nth end_chunk, nth nprocs_01)

20 DO nth p 01 = 0, nth _nprocs 01 - 1

21 nth_down_01 = nth bottom 01

22 nth_up 01 = MIN(nth down 01 + nth_chunk_0l1l - 1,tep_01)

23 nth = pthf create(forward_loop_01,0,nth_p_ 01,1,nth mask 01,04,
24 nth_end chunk 01,a,n,.nth_down 01,nth up 01}
25 ENDDO

26 Ccanl pthf dispatcher create()

27 CALEL phhf block()

28 END WHILE

29 CALL pthf burst wait{nth end chunk_ 01)
30 s

31 END

4.1.2.6. Loop scheduling using work descriptors

When the compiler determines that the amount of work in a parallel loop is small, it can decide
to spawn it using work descriptors, instead of nano-threads. Work descriptors provide higher
performance than nano-threads, specially when managing small loops, although the former
offer limited functionality. In particular, work descriptors can only be used at the inner-most
level of parallelism. Fortunately, loops at the inner-most level of parallelism are usually the
ones that offer the smallest amount of work, so both facts occur at the same time.

Example 4.7 shows the code generated by the NANOS compiler when using work
descriptors along with the original OpenMP code (see Section 4.2 for the explanation of these
directives and extensions). The structure of the code is similar to the nano-threads version, but
it has three remarkable differences: First, all work supplied to the processors is represented
through a specific structure, called the work descriptor. Instead of providing independent
arguments to each processor, as is the case when using nano-threads, the same arguments are
provided using the work descriptor structure. Second, work descriptors are thought for simpler
and more efficient code generation than nano-threads. Only the STATIC and INTERLEAVE
scheduling algorithms are supported. It is supposed that the loop is so small that no other
scheduling algorithms can provide high performance. Specifically, any DYNAMIC algorithm,

Page 60

User-level Interface & Functionality

in which the processors should compete to get the iterations to perform, is going to pay a too
high synchronization penalty to offer high performance. Third, the iteration space distributed
to each processor is computed by the processor itself, instead of being computed by the
scheduling code. This helps in the performance improvement because it reduces the time to

schedule the loop iterations.

Example 4.7. Parallel loop using work descriptors

1 SUBROUTINE forward(a,n) Original OpenMP code.

2 INTEGER nth_cpuv_ 01

3 INTEGER *8 nth wdesc 01{0:%) SUBROUTINE forward(a,n)
4 INTEGER *8 nth selfv_01 “es

B INTEGER nth_bottom 01, nth top_01 CS0OMP PARALLEL DO SCHEDULE {WDSTATIC)
6 INTEGER nth_nprocs_01 Do i =1, N

7 EXTERNAL forward_lecop_01 !loop bedy(a,n}

8 INTEGER n ENDDO

9 DOUBLE PRECISION a{n,n) CS0MP END PARALLEL DO

10 =nth_selfv 01 = gthf self() e

11 nth_epuv_01 = pthf copu{nth selfv 01) END

12 nth nprocs 0l = pthf coug current()

13 CALL pthf wdcreate(nth wdeac 01, forward loop 0l1,nth _selfv 01,04,
14 nth _nprocs_01,nth_epuv 01,a,n)

15 CALL pthf depadd(nth selfv 01,nth nprocs 01 + 1)

16 DO nth_ p 01 = nth cpuv_01,nth nprocs_01 - 1 + ath _cpuv_01

17 CALL nthf wdsupply(nth p 0l,nth_wdesec 01)

18 END DO

19 CALL pthf endsupplv(nth_selfvy 01)

20 END

22 SUBROUTINE forward_loop 0l(nth me_01,nth_nprocs_01,nth firstepu_01,a,n)

23 INTEGER nth me_0l1, nth_nprocs 01, nth_firstcpu_01

24 DOUBLE PRECISION a(n,n)

25 INTEGER n

26 INTEGER nth_Ime 01, nth _balance 01, nth niter 01, nth step_ 01, nth rest_ 01
27 INTEGER nth chunk_ 01, nth_down_ 01

28 INTEGER nth up 01, nth_bottom 01, nth top 01, i

29 nth 1me_01 = nth me_ 01 - nth_firstepu 01

30 nth_bottom 01 = 1

31 nth top_01 = n

32 nth _niter_ 01 = nth_top 01 - nth bottom 01 + 1

33 nth rest_01 = mod({nth niter_ 01l,nth_nprocs 01}

34 nth_chunk 01 = nth niter ! / nth nprocs_01

35 nth_down_ 01 = min(nth_lme_01,nth _rest_0l)+nth_bottom_ 0l+nth_chunk_0l*nth lme_ 01
36 nth balance 0l = nth _ime 01 .LT. nth rest_ 01

37 nth_up 01 = nth_down_01 + nth_chunk 01 + nth_balance 01 -~ 1

38 DO i = nth_down_01,nth up 01

39 ! loop body(a,n)
40 END DO
41 END

Lines 10 to 19 in Example 4.7 contain the scheduling code of the forward parallel
loop using a STATIC scheduling policy and work descriptors. After getting the processor
where the current nano-thread is executing (line 11) and the number of processors available for
executing the loop (line 12), the work descriptor is created in line 13. The primitive
nthf_wdcreate receives a reference to the memory area where the work descriptor should be
created (usually in the nano-thread stack), the function that should be executed, the successor
nano-thread (usually itself), the number of arguments and the specific arguments supplied for
the execution of this loop. After that, the work descriptor can be supplied to specific processors
using the primitive nthf_wdsupply. In this exampie, the loop is executed on all available

Page 61

Chapter 4

processors (the number given by the nthf_cpus_current primitive). Code generation for
processor grouping is similar and it is commented extensively in Chapter 8. The scheduling
code terminates calling the nthf_endsupply primitive (line 19), which is the equivalent of
nth_block when using work descriptors. Calling this function, the master processor goes to
execute its portion of the loop, if any, and waits for the parallelism to terminate.

The loop body procedure starts at line 22. The code computes which iterations has to
perform the current thread (lines 29 to 37), based on the relative thread identifier (in
nth_lme_01). The loop body follows in lines 38 to 40.

4.2. Compiler directives
The description of the OpenMP directives used in this thesis to parallelize applications is
presented in this section.

4.2.1. Description of the OpenMP directives

The NANOS compiler parses the following OpenMP standard directives and extensions to
build / refine the HTG representing the application.

42.1.1. Standard OpenMP directives

The subset of the OpenMP directives and clauses that have been used is summarized in Tables
4 and 5. A parallel loop in OpenMP is defined by the directive pair PARALLEL DO / END
PARALLEL DO, containing the parallel loop. This directive specifies that each working
processor can execute separate iterations of the enclosed loop. The SCHEDULE (mode,
chunk) clause (see Table 5) is used to specify the way the compiler schedules iterations from
the loop among the participating processors (mode=STATIC[[,CHUNK] | DYNAMIC |
GUIDED). Directive END PARALLEL DO is optional.

The PARALLEL SECTIONS directive allows the user to parcel out code into a set of
independent sections. Directive SECTION is used to identify the beginning of each section.
All sections can run completely in parallel.

A more general parallel region in OpenMP is defined by the directive pair
PARALLEL / END PARALLEL. It establishes the boundary where new parallelism is created.
All code between PARALLEL and END PARALLEL directives is executed by all the
processors allocated to the application. Inside, the specific tasks that should be executed by
only one processor are expressed by means of a set of work-sharing constructs. There are three
different types of work-sharing constructs: the first one is oriented to the parallel execution of
loops. The second one expresses parallelism among several independent sections of code. The
third one is related to restrict the execution to only one processor. The result is as several
parallel loops/sections had been encapsulated in one PARALLEL / END PARALLEL
construct, possibly including some sequential parts. This saves the creation of parallelism at
cach work-sharing construct, thus reducing the overhead.

The first work-sharing construct is started through a DO directive, which specifies
that each processor can execute separate iterations of the enclosed loop. A NOWAIT clause at
the END DO directive means that the processors reaching the end of the loop can continue
execution without waiting for the other processors to terminate the loop execution. If nothing
is specified at the end directive, a barrier synchronization is assumed.

Page 62

User-level Interface & Functionality

The second work-sharing construct is started through a SECTIONS directive, which
specifies that each one of the enclosed SECTION can be executed in parallel by a different
processor. A NOWAIT clause can be used to omit the implicit barrier at the synchronization at
the END SECTIONS directive.

The third work-sharing construct limits the execution to only one processor. Other
processors are going to wait for it to terminate. OpenMP offers this possibility of expressing
sequential execution through the SINGLE and MASTER directives. SINGLE means that the
following code must be executed by any (and just one) of the participating processors.
MASTER specifies that the working processor entering the sequential section must be the
master.

Directive ' Description

C$OMP [END] PARALLEL DO [clauses] Start [end] of a parallel DO loop

C$OMP [END] PARALLEI SECTIONS [clauses] | Start [end] of a set of parallel sections

C$OMP SECTION Start of a new section inside a SECTIONS

C3$OMP [END] PARALLEL [clauses] Start {end] of a set of work-sharing constructs

C$OMP [END] DO {clauses] Start [end] of an iterative work-sharing construct

C$OMP [END] SECTIONS [clauses] Start [end] of a non-iterative work-sharing construct

CSOMP [END] SINGLE Start [end] of a code section executed only by one of the
participating processors

C$OMP [END] MASTER Start [end] of a code section executed only by the master
Processor

C$OMP BARRIER Force a barrier synchronization including all processors

Table 4: Standard OpenMP directives

A set of clauses defined by OpenMP can be supplied to the previous directives and
work sharing constructs to specify SHARED and PRIVATE variables (see Table 5). SHARED
variables are accessed by all the processors. PRIVATE variables are defined local to each
processor. Either preserving or not the value that they have before entering - FIRSTPRIVATE -

and/or after leaving - LASTPRIVATE - a parallel region.
The REDUCTION clause can be used to specify the variables that are involved in a
reduction operation.

Page 63

Chapter 4

Clause Description

SCHEDULE(STATIC[,CHUNK]) | Static/interleave application-level scheduling in a parallel loop

SCHEDULE(DYNAMIC) Dynamic application-level scheduling in a parallel loop
SCHEDULE(GUIDED) Guided application-level scheduling in a parallel loop
PRIVATE (varl {,var2...]) Specified variables are local to the work-sharing construct, they are

not initialized by default

FIRSTPRIVATE (varl [,vai2...]) Specified variables are local to the work-sharing construct, each copy
is initialized with the current vaiue

LASTPRIVATE (varl [,var2...]} Specified variables are local to the work-sharing construct, the iast
value is returned to the original variable after closing the parallelism

SHARED {varl [,var2..]) Variables are shared among the processors working in parallel

REDUCTION {(op: varl[,var2...]) | Variables are involved in a reduction operation. The specific opera-
tion is indicated by "op”

Table 5: Standard OpenMFP directive clauses

4.2.1.2. NANOS extensions fo the OpenMP directives

The purpose of the following extensions to the OpenMP directives is to provide support for
unstructured parallelism, processor grouping and control the functionality desired in spawning
the parallelism [8].

The NAME directive (sec Table 6) has been designed to extend the parallelism
supported by the PARALLEIL SECTIONS directive and the SECTIONS work-sharing
construct. It allows the definition of precedence relations among different sections. This
directive assigns a name to a section and allows the specification of its predecessors, using the
clause PRED (namel [,name2...]), and of its successors (clause SUCC).

The ONTO (exprl [,expr2]) clause, given to a SECTION / NAME directive, specifies
the processor that should be used as the master of the parallel section and optionally the
number of processors to use inside it. This number of processors will be available to spawn
further parallelism. The RELATIVE / ABSOLUTE clause is used to indicate whether the
virtual processor identifier obtained from expr! should be considered relative to the current
executing processor or as an absolute virtual processor identifier. Identifier range is assumed to
be from 0 to P-1, where P is the number of processors currently allocated to the application.
For the PARALLEL SECTIONS / PARALLEL DO directives, the CPUS clause specifies the
number of processors that the application wants to be allocated to the execution of the parallel
construct,

The clauses WDSTATIC and GWDSTATIC are related to specific work generation
for loops. They indicate that work descriptors, instead of nano-threads, should be used to
spawn the parallelism of the following parallel loop. It is assumed that, at this point, the
application is spawning the inner-most level of parallelism, usually small enough to be
considered fine-grain parallelism, so the programmer wants to use the most efficient
mechanism for spawning.

Page 64

User-level Interface & Functionality

The WDSTATIC clause indicates that local work descriptors have to be used for
spawning the loop. Using local work descriptors, the work is supplied from the master
processor to the slaves in a one-to-one basis. This allows to establish processor groups and

distribute different loops to different processors.

The GWDSTATIC clause indicates that global work descriptors have to be used.
Using global work descriptors, the work is supplied to all processors allocated to the
application. This should be used for loops in the exploitation of a single-level of parallelism.

The implementations of both local work descriptors (LWD) and global work

descriptors (GWD) are explained later in Chapter 7 (Subsection 7.1.10).

Directive/Clause

Description

C3OMP NAME (name) PRED(namel [,name?...])
SUCC (namel [,name2...])

Named section directive including clauses to indicate
predecessor and successor relationships for this section

ONTO (exprl [, expr2])

Clause indicating where to execute the work and the
number of processors to be used

RELATIVE | ABSOLUTE

Clause indicating that processor numbering is relative to
the master processor or is an absolute processor identifier

CPUS {(expr)

Clause indicating number of processors in a work-shar-
ing construct

SCHEDULE(WDSTATIC [, chunksize])

Optimized (inner-level) static/interleave scheduling sup-
porting processor groups

SCHEDULE(GWDSTATIC {, chunksize])

Optimized (inner-level) static/interleave scheduling to all
available processors

Table 6: Extensions to the OpenMP directives and clauses

Sample program.

PROGRAM nanos
PARAMETER (N=1024)
DOUBLE BRECISION A(N,N)

C5$OMP PARALLEL SECTIONS
! left section code

! right section code
CSOMP NAME (backward) succ(above}
! backward section code
CSOMP NAME (forward) succ(below)
! forward section code
CS0OMP NAME {abowve)
I above section code
C$0OMP NAME (below)
! below saction code
CSOMP END PARALLEL SECTIONS

END

! initial code (sequential porticon)
CS50MP NAME(left} succ({backward,below}

CS0MP NAME{right) succ{forward,above)

!final code (sequential portion) Qﬂg&

PROGRAM nanos

initial

Figure 20: Sample code annotated with OpenMP directives and associated HTG

Page 65

Chapter 4

As an example of use of the NAME directive extension, Figure 20 shows a sample
Fortran code annotated with OpenMP directives and the associated HTG structure obtained by
the NANOS compiler from the analysis of the directives. The benefits of expressing
parallelism through NAME directives instead of SECTION is that the execution is more
dynamic, allowing, in some cases, to hide the unbalance among the execution of several

parallel sections.

4.2.2. Code generation from the OpenMP directives

From the directives described in the previous subsection, the compiler builds / refines the HT'G
representing the application being compiled and a parallel program is obtained from the HTG
representation of the parallel application. In our environment, the parallel code generated for
the application has the following characteristics:

+ A Fortran function is generated for each node in the HTG.

* Input and output control dependences are embedded into the code as calls to the run-time
library.

» Qutput data dependences are represented through successor relations.

 Input data dependences are represented through by a per-node counter [13][12].

A Fortran function is generated both for simple and compound nedes. Code generated
for simple nodes performs the set of operations contained in the node. Code generated for a
compound node consists of a control function (associated to the start node) that sequences the
execution of the internal nodes. To do this, the control function evaluates if it is useful to
execute in parallel the functions associated with the enclosed nodes based on the available
system resources. In order to improve code generation, it is possible to join two or more
functions in one. In particular, functions associated to the start and stop nodes in a compound
node are usually joined.

All services needed by the generated code such as creation of parallelism, control of
dependencies, thread management, etc. are currently provided by a run-time user-level threads
package (nthLib), although this also could be done through direct code injected by the
compiler.

Following the previous scheme, the emitted code is an executable representation of

the HTG.

Page 66

Chapter 5.
Kernel-level Interface
& Functionality

Abstract

In this chapter we present the extensions we propose for the
kernel-level interface and functionality designed in this thesis, for
supporting the Nano-Threads Programming Model.

The kernel scheduling framework includes new data structures
inside the kernel and shared with the user level to allow the
implementation of kernel-level scheduling policies which take the
application as the scheduling target.

The kernel interface promotes the cooperation between the user
and kernel levels and enforces efficiency by selecting the most efficient
way of communicating kernel level events to the application.

' ... hay tantos nanosegundos en un segunde
como segundos en treinta v dos afios."

"Interacciones”, Sheldon L. Glashow, Tusquets
Editores, S.A., mayo 1994,

Page 67

Chapter 5

5.1.Kernel scheduling framework

In this section, we present the design decisions taken in the design of the kernel-level
scheduling framework and the resulting functionality, in detail.

5.1.1. Design decisions

During the design of the kernel-level interface, several design decisions guided this work to
provide a new, highly dynamic, space/time-sharing environment using two levels of kernel
scheduling. The kernel offers a set of scheduling policies and the system manager can decide
which one is active, considering the workload. The active kernel-level policy implements the
first scheduling level. Low-level management involving individual processors becomes the
second level. The motivation for these two levels of scheduling is that we consider that the
application should be the target for the first level and the individual processes the target for the
second level.

The first design decision consists of ensuring that the kernel-level scheduling policy is
able to work with the information provided dynamically by the applications with respect to
resource requests (mainly processors). Applications use the kernel interface to set the number
of requested processors at any time. The scheduling policy uses this value to redistribute
processors to applications.

The second design decision is to consider the application as the scheduling target. The
application is seen as a whole by the kernel scheduling policy, taking into account its global
needs and not the needs of every independent process/thread. Processors are assigned to
applications by the kernel scheduling policy. Each processor is labeled with the application to
which it is assigned. The application becomes the preferred application of the processor. The
practical consequence of this decision is that the processor is going to execute threads in that
application unless the scheduling policy decides to reallocate it to another application. This is
going to enforce affinity between a set of processors and their preferred application.

The third design decision is that any change in the number of processors allocated to
an application (both in the number and in their status) is automatically communicated to the
user-level through the kernel interface. As a consequence, the interface should be powerful
enough to provide all this information.

In traditional operating systems, processors becoming idle usually take work
(processes) from the operating-system ready queue. They do not ensure that the process taken
from the ready list belongs to the same application where the processor was previously
running. This goes against our decision of considering the application as the scheduling target.
The correct way to go to execute work in another application is to find which is the new
application that should receive processors and be assigned to it. In this way, the kemnel avoids
to get a process ready to run which could belong to an application which has not been selected
to run by the scheduling policy. This situation could lead some processors to stay idle when all
the work currently distributed is consumed. In this direction, the fourth design decision is that
every time the kernel scheduling policy redistributes processors, it will also prepare a list,
consisting of applications that will receive processors in the future. Applications in this Iist will
receive more processors in case the currently running applications terminate or release some

Processors.

Page 68

Kernel-level Inmterface & Functionality

The fifth design decision has to do with the events that will trigger a new
redistribution of processors. We are considering to redistribute processors every time the
current quantum expires. We consider a quantum to be the maximum time between two global
redistributions of processors. We are not considering to redistribute processors every time an
application starts or terminates (or even every time an application changes its request for
processors) because we think that this would introduce a lot of movements and the application
would suffer because of this. We consider that the interface for requesting and releasing
processors is asynchronous with respect the scheduling policy. New applications will be
inserted at the end of the list of work, just in case a processor becomes idle. These applications
are going to be considered by the scheduling policy during the next global redistribution. A
presumably good alternative would be to redistribute processors when the list of work is found
empty. By now, we consider that the list of work is large enough for all the current quantum.

For completion, the sixth design decision is that applications not explicitly coded to
cooperate with the kernel (not making use of the NANOS kemel interface) are also considered
by the operating system when deciding the allocation of processors. Any useful information
available, such as the number of ready processes/threads limited by the number of physical
processors in the system, can be used by the kernel to estimate the requirements of these
applications. Therefore, these applications do not escape from kernel scheduler control. Space-
sharing is also applied to them, ensuring that their performance will be very close to the one
achieved using the traditional time-sharing scheduling policies. As these applications could not
control their own internal scheduling and this can lead to starvation or considerable
degradation of the performance, the kernel scheduling has to take into consideration to perform
a round-robin assignment of processors to their processes.

The seventh design decision is related to the behavior of the second scheduling level.
A processor that should get a new process/thread to run proceeds in the following way: First, it
tries to select any process with pending work in kernel mode. This favors kernel work and
allows kernel tasks to execute as usual. Processor affinity may be taken into account for
running such kernel tasks. Next, it tries to get work from its current preferred application. If it
succeeds, it proceeds to execute to user-mode and works inside its application. This is expected
to be the normal behavior, all along the current quantum. Otherwise, it extracts the next
application from the list of work, and assigns itself to the application. In case the list of work is
empty, the processor could perform a redistribution of processors.

The last design decision refers to the mechanisms used to inform the user-level about
the kernel-level processor allocations. We use an upcall mechanism and shared memory to
inform applications about kernel-level scheduling decisions. We have selected the following
mechanisms for informing each event taking performance into account: Processor allocation
and blocking on I/O are communicated to user-level through upcalls because there is already
an available processor to do this work and the overhead is small [5]. The events for returning
processors to the kernel, processor preemption and unblocking are communicated through
shared memory [32][84]. In this case, the application polls the shared memory at every user-
level scheduling point to see whether there is any of such events. Fine-grain parallelization
helps in that such polling is made often enough to detect most of the operating-system requests

[86].

Page 69

TR 5§ gt o e st g ooy

Chapter 5

5.1.2. Operating system scheduling framework

As it has been stated both in Chapter 3 and in the previous design decisions, the NANOS
operating-system level scheduling is application-oriented and takes applications as the
scheduling target. It searches for an environment where the execution of the applications can
proceed as smooth as possible, without large or abrupt processor movements. In this
subsection, we present the main ideas that are used by the operating-system scheduling
mechanisms to manage and distribute physical processors among the running applications.

The first idea we take for achieving a smooth kernel-level scheduling comes from the
First-Class User-Level Threads approach [84]. It consists of providing the applications with a
grace time when any processor has to be preempted. With such a grace time, the application is
given an opportunity to reach a user-level safe point and release voluntarily the processor. In
this way, each time the operating system applies the active scheduling policy, the processors
need not to be moved immediately, but, instead, they can be moved when they are released by
the applications or forcefully after the grace time has expired. This means that each processor
has to be informed about which application will be its destination. In some sense, it is like pre-
allocating processors to the applications where they are going to execute in a small amount of
time.

The second idea extends the previous one, and consists of collecting all the
information about the pre-allocation of processors into a kernel structure, called the work list.
The work list will contain, at any given instant, the applications that are going to receive
processors in the near future. Each entry in the work list is a reference to an application,
indicating a number of processors that will choose this application as their preferred one. In
order to better balance the processor allocation among the different applications, one
application can be represented by more than one entry in the work list, each entry possibly
indicating a different number of processors. Each time a processor visits an entry in the work
list, it decrements the counter and, from now on, it will select processes from this application
to run on it. When the counter reaches zero, the entry is removed from the work list.

The scheduling algorithm distributes processors taking into consideration all the
requests and the current allocation. This results on a set of applications that will run during the
next quantum and the corresponding distribution of processors. From this set, applications that
the number of processors does not change for the next quantum, are not disturbed and continue
running. Applications in the set that have to release processors are signaled through shared
memory. The applications that will receive more processors or will start running are put in the
work list with the corresponding number of processors they will use in the next quantum.

The work list is then filled with enough more entries that will feed work to the
processors that could become idle, after consuming the work prepared for the next quantum.

The work list decouples the work done by the kernel-level scheduling policy from the
actual individual processor movements between applications. By means of the work list, the

events of requesting more processors and starting a new application are equivalent because an
starting application is exactly the same as its request for the first processor. These events add a

new entry at the end of the work list.
Also, the events of terminating an application or releasing processors, both

voluntarily and under a grace time, and processor preemptions will proceed in the same way.
The free processors have to get an entry from the work list and assign to the application.

Page 70

Kernel-level Interface & Functionality

Taking into account locality issues, a processor can get an entry different from the first, to
select an application into which it had run before.

Every time the operating system applies the current scheduling policy, it fills a new
work list, which will be used till the end of the current quantum.

The previous approach favors malleable applications. They will be able to reconfigure
their parallelism to use more or less processors. And the approach guarantees that, in case of
processor preemption, the application will be accurately informed and can easily recover the
preempted work. The implementation of this framework is presented in Chapter 7 (Subsection

7.2.3).

5.2.Kernel interface

In this section, we describe the kernel interface established between parallel applications and
the operating system, following our design of the NPM. As explained in the previous section,
this interface enables dynamic application adaptability and runtime management of parallelism
within individual applications. At the same time, it assists the operating system in allocating
processors to parallel applications in order to minimize application turnaround times and
maximize processor utilization. Table 7 shows the proposed operating system interface to
support the processor scheduling. It is described in the following subsections and several

examples are presented.

Operating system interface Description
int cpus_request (int ncpus); Processor request/release
int cpus_requested (void); Informational services

int cpus_current (void);
int cpus_askedfor (void);
int cpus_preempted_work {void);

work_t cpus_get_preempted_work (void); Returns a descriptor for a preempted
thread

int cpus_processor_handoff {work_t work); Transfers the physical processor to the
supplied thread

int cpus_release_self (void); Voluntarily releases the current processor

Table 7: Operating system interface

5.2.1. Processors request and supply of virtual processors

At any time, applications use the cpus_request {ncpus) primitive to set the number of
requested processors that they want to run on. The operating system will try to assign as many
processors as possible without exceeding ncpus. The primitive can be used dynamically at
runtime to request more or less processors than those currently assigned. It is illegal to request
a number of processors above the number of processors instalied in the system. The kernel
maintains two different numbers of processors: current and requested.

A request for less processors using cpus_request() implies that the application
voluntarily wants to release some processors, possibly because the current degree of
parallelism inside the application cannot exploit them. When the kernel scheduler detects this
situation, it automatically steals current minus requested number of processors. The

Page 71

Chapter 5

application may also release the desired processors, instead of letting the scheduler to steal
them (see the following subsection).

5.2.2. Specific processor release

The application can release a specific running physical processor, as an answer to an operating
system request using the cpus_release_self () primitive. This primitive attempts to release
the physical processor on which the calling virtual processor runs. When this primitive returns,
it means that either the processor was not needed by the scheduler or that a new processor has
been allocated to the application. The data shared with the operating system reflects both
situations, informing about the currently assigned processors.

5.2.3. Preempted work recovery

The kernel also offers the possibility of transferring a physical processor from the current
virtual processor to another virtual processor of the same application. This feature is provided
to allow an application to recover the execution of a preempted virtual processor. To allow an
application to recover the execution of preempted work, the kemel offers the
cpus_processor_handoff (work) primitive [15]. The virtual processor identified by work
receives the current physical processor. work can be the identifier of a preempted virtual
processor or a reference to the new context to be resumed at user-level. It is assumed that the
identifiers of the preempted virtual processors could be obtained through the
cpus_get_preempted_work () primitive, described in the following subsection.

5.2.4. Current status of processor allocation

The following primitives provide information about the current status of processor allocation
for the calling application. The primitive cpus_recuested() informs about the number of
processors that the application has requested from the operating system. The cpus_current ()
primitive returns the number of physical processors actually owned by the application.

The application is also informed about the need of releasing some of the available
processors, like in [84][152]. The primitive cpus_askedfor() returns the number of
processors that the operating system is reclaiming from the application.

The cpus_requested(), cpus_current () and cpus_askedfor () primitives help
the application to know at any time which is the status of the number of processors allocated to
the application by the operating system.

At any time, the operating system can decide fo reassign processors from one
application to another. Applications loosing processors are informed about this fact and the
contexts of the preempted works are put at their entire disposition to be resumed by one of the
remaining assigned processors, if necessary. The following functions are used to obtain this
information:

Preempted work recovery is supported through the following primitives:
cpus_preempted (void), and work_t cpus_get_preempted_work {(void).
Cpus_preempted teturns the number of processors which have been preempted from the
application by the operating system. And cpus_get_preempted_work () returns a reference to
a preempted context that can be resumed at user-level. The functionality of these primitives
has been extended, when they arc implemented through shared memory, to allow the
application to select which one of the preempted virtual processors to resume.

Page 72

Kernel-level Interface & Funcrionality

5.2.5. Coding examples

The primitives presented in the previous subsection can be used from the user-level to request
processors and obtain information about the resources allocated and their status. As an
example of using the kernel interface, we present the way an application requests processors
and the basic implementation of the idle function inside NthLib.

5.2.5.1. Requesting processors and spawning parallelism

Example 5.1 shows the code used for requesting and releasing processors inside the
application. In this example, the kernel-leve] interface is called from the Fortran language. For
this reason, the names of the primitives have been prefixed by the prefix nchf_. In line 2, a
new parallel region starts and the application requests N processors, using the primitive
nthf_cpus_request (). After that, the parallelism is spawned. We present a simple code to
spawn a parallel loop (lines 3 to 9). The number of processors currently allocated is got from
the operating system (line 4) using the primitive nthf_cpus_current{). After that, a nano-
thread is created on each available processor. After the parallelism has been joined in line 9,
the primitive nthf_cpus_request () is used again to release the processors and continue the
execution with one for the next sequential portion of code.

Example 5.1. Requesting processors and spawning parallelism

nthf_ cpus_request (N)
self = nthf self()
ncpus = nthf_cpus_current()}
CALL nthf depadd (self, ncpus)
DO nth p = 0, ncpus-1
CALL nthf create (func locop 01, 0, nth p, 1, nth_mask, 4, self, ...)
ENDDO
CALL nthf block ()
10 nthf_cpus_regquest (1)
11 // Sequential code
12

LB I W I PV S Y

w

5.2.5.2. The virtual processors scheduling loop

Exampie 5.1 presents a simple idle function based on the proposed kernel-level interface. The
code can be used inside the nano-threads library to force each virtual processor, after execution
of an application task, to check for the operating system conditions and search for new
application tasks at user-level.

The sample idle function consists of a main loop, to be executed forever, starting at
line 3. The first thing to do is to check whether the operating system is reclaiming any
processor to be released (line 4). This is possible, for instance, immediately after applying the
kernel-level scheduling policy and having redistributed the physical processors. In case a
number of processors are reclaimed, the current virtual processor stops, releasing the physical
processor, using the primitive cpus_release_self() (line 5). Another operating system
condition that should be checked is whether there are any preempted processes in the
application. This is done in line 7. In case there are preempted processors, lines 8 and 9 get one
of the preempted processes and transfer the current physical processor to it. The current virtual
processor will also be stopped, in this case. Finally, when reaching lines 11 and 12, the virtual
processor has not detected any warning condition from the operating system, gets a new nano-
thread to execute and dispatches it.

Page 73

Chapter 5

In this example, we assume that when the virtual processor is stopped while executing
either the primitive cpus_release_self() Or cpus_processor_handoff (), its context can
be later reused for another physical processor to be assigned to the application, continuing the
execution from that point. Another solution would be to provide a specific entry point for new
processors entering the application.

Example 5.2. Sample idle function

1 // Executed for each virtual processor
2

3 for (;:) {

4 if (cpus_asked_for()) {

5 cpus_release_self();

6 }

7 if (cpus_preempted work{)}} {

8 work _t w = cpus_get_preempted_work();
9 cpus_processor_handoff (w)};

10 }

11 nth = nth getwork (}:

12 // dispatch new nano-thread

13 }

5.3.Kernel-level scheduling policies

The goal of the scheduling policies supporting the NPM should be to help in achieving the
main goal of this thesis, that is, to provide high global-system performance. In this work we are
using the proposed environment to test several policies and compare among them and with
existing operating-system scheduling policies. Several scheduling policies have been
implemented at kernel level. The main purpose of this implementation is to validate the design
and implementation of the kernel scheduling mechanisms.

This work does not search for the best policy, but instead tries to demonstrate that the
ideas and mechanisms proposed are valid. A proposal for a specific policy to be used inside
NPM is out of the scope of this thesis. The following subsections describe the behavior of the
four policies during the execution of application workloads. Three of the policies presented
have been obtained from the literature [95][47][89][75]: Equipartition, Batch and Round-
robin. The fourth comes from the experimentation done along this work. Our experience
indicates that applications usually request an even number of processors and most of times the
number of processors is a multiple of 4. From this experience, the Cluster policy is provided.

The following policies are evaluated and results are shown in Chapter 9, along with
some examples of the behavior of the applications running under them.

5.3.1. Equipartition (Equip)

This policy divides the number of physical processors by the number of running applications,
and it assigns the resulting number of processors to each application. When an application
requests less processors than the result of the division, the processors exceeding that number
are not assigned to any application. In case there are more applications than processors, only
the first P applications are executed, assuming there are P processors.

Some processors can remain unused when using this policy, depending on the amount
of applications and the requests of each application. Equipartition is implemented (o obtain a
reference, given by such a simple policy, to which the behavior of the rest of policies could be

compared.

Page 74

v, \

Kernel-level Interfuce & Functionality

5.3.2. Batch

This policy allocates processors to applications in strict ordering of arrival. Each application
receives all requested processors, till all the processors in the computer have been allocated.
The last application receiving processors will receive less processors than those requested if
there is not so many processors available in the machine. Also, if the requests for processors
change during execution, the number of applications receiving processors may change. The
work list is used to ensure that those applications not receiving all the requested processors will
receive some of them when processors are voluntarily released by other applications.

When using the Batch policy, applications arriving first are benefitted from that and
applications arriving later are delayed till the first ones terminate.

5.3.3. Round-robin (RR)

The operating system allocates processors to applications in a round robin manner. Each
application receives as many processors as requested. The policy remembers the last
application receiving processors at each quantum. At the next quantum, it continues allocating
processors from the next application. At each reallocation, the last application receiving
processors can receive less processors than those requested, if there is not so many processors
available in the system. The work list is used to ensure that those applications not receiving all
the requested processors will receive some of them when processors are voluntarily released

by other appiications.
The Round-robin policy will motivate a large number of context switches between the
applications, due to time-sharing.

5.3.4. Processor Clustering (Cluster)

The Processor Clustering policy allocates processors in clusters of 4 processors. In a first step,
this policy allocates a cluster of 4 processors to all running applications. If some applications
are not receiving processors because there is a large number of applications in the system, they
are added to the work list for the current quantum. In case a number of processors remain
unallocated, this policy starts a second step, allocating again in clusters of 4. And so on, till all
the processors have been allocated or all the requests have been satisfied. When less than four
processors remain to be allocated, some applications can receive two or even one processor to

maintain all processors working.

Page 75

Chapter 5

Page 76

	tesis
	tesis-1
	tesis-2
	tesis-3
	tesis-4
	tesis-5

