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Chapter 6.
Comparison with

Previous/Related
Work

Abstract
In this chapter we present the comparison of our work with
existing research/commercial projects. The comparison is divided in two
main sections: User and kernel levels. Nevertheless, some of the projects
fo compare with also take into account both levels, so the comparison is
extended to focus also in the relationship between both levels in each of
those cases.

".. 5i l'home conegués la seva capacitat de
procurar-se moinents de placidesa en les grans
crisis, no tindria tantes pors i seria més felic.”

"Ronda mnaval sota la boira", Pere Calders,
Edicions 62, octubre 1994,
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Chapter 6

6.1. Comparison with existing user-level run-time packages

In this section, we present the comparison of the NANOS execution environment with existing
user-level thread packages. Some of them are used mainly for parallel application
programmers; others are used specifically for parallel compilers to generate code; some of
them are designed to support both kinds of users.

6.1.1. Pthreads

The Pthreads package is the implementation of the POSIX Threads standard definition from
the IEEE organization of standards [19][65][124]. It is a general purpose threads package. It
provides the basic services for thread creation and joining, thread scheduling policies and
priorities, synchronization primitives (mutex and condition variables), thread local data
management and thread cancellation and signal management.

The Pthreads package is user oriented in the sense that it is thought to be used by
programmers, not by a compiler to produce parallel code. Nevertheless, it is sometimes used as
a basis to build compiler-oriented packages. This is the case of the MP libraries provided both
by Compaqg/DEC on Digital UNIX [41][42] and Portland Group on Linux [145][144].

The generality of the Pthreads package is the disadvantage to use it as an execution
environment to be used directly by a compiler. The Pthreads standard interface would provide
high portability to an execution environment built on it. But the existing implementations of
Pthreads usually are heavily dependent on the underlying operating system, respecting to
thread scheduling and thread local data support. Also, the environment (thread creation and
joining) is too heavy-weight to efficiently support multiple levels of parallelism and fine grain
parallelism. For this reason, when the package is used from a compiler, it is only used to create
the virtual processors at the beginning of the application and destroy them at the end.

6.1.2. CThreads
The CThreads package is provided with the Mach [1][18] operating system and OSF/I
[771[761[781[791[36]. It was originally developed at the Carnegie Mellon University [29].
Although the CThreads interface has remained nearly the same, several different
implementations have been also provided by the OSF organization (now, Open Group).
CThreads is a simple threads package (similar to Pthreads with respect the interface).
It was designed to efficiently support the thread management needed inside the Mach
operating system, The Mach micro-kernel and several of the UNIX subsystems running on top
of it are based on CThreads to manage their infernal parallelism/concurrence.

As occurs in the Pthreads case, the CThreads package is not designed to be used
directly by a compiler, but by an experienced programmer, which decides which tasks are
going to be parallel. The package is too heavy-weight to efficiently support both multiple
levels of parallelism and fine-grain parallelism.
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6.1.3. Cilk

The Cilk programming environment [17] comprises the Cilk language and the Cilk run-time
library. It is being developed by the Supercomputing Technologies Group, at the MIT
Laboratory for Computer Science. It its designed for shared-memory multiprocessors and it
also offers support to distributed shared memory. The following comparison applies to the
shared memory implementation.

Cilk is based on "fully strict" (well-structured) programs. Using the underlying model
of fully strict computations [16], it can be proved that the Cilk scheduler achieves execution
space, time and communication bounds all within a constant factor of optimal.

The Cilk language extends ANSI C in such a way that allows to express parallelism
through the thread construct. A thread is defined to be a subroutine receiving some arguments.
The Cilk preprocessor translates each thread to a C routine receiving a pointer to its arguments
(called the closure of the thread). Threads are spawned using the spawn construct. This
construct creates the closure for the thread, fills all available arguments and sets the join value,
which is the number of arguments that remain unavailable when the thread is created.
Unavailable arguments are considered like futures [149]. They are usually filled by other
threads. When the join value reaches zero, the thread is ready to be executed.

With these characteristics, programmers have to learn to code applications using the
explicit continuation passing style, which forces to split program subroutines in two or more
pieces in order to express parallelism. So, from the point of view of FORTRAN and C
programmers, Cilk is introducing an extra effort to understand and learn to use new language
constructs, which although can be well-suited for expressing parallelism, are not necessarily
clarifying what the application is doing. For this reason we have selected the method of
introducing directives in programs. In this way, we can take profit from existing applications
and we limit the needs to re-code them.

Cilk is mainly oriented to express parallelism in recursive programs and does not
provide any tool for expressing data-parallel constructs. For example, a Cilk programmer
should code a data-paraliel loop by means of a divide-and-conquer control structure [17].

The Cilk run-time library supports the Cilk language by implementing the
mechanisms explained in the previous paragraph. In addition, it includes the Cilk scheduler.
Each processor decides the next thread to run using the Cilk scheduler. It first searches for
work in the processor’s local queue. In case the local queue is empty, the Cilk scheduler
applies work stealing to search for work in other processor’s local queues. It selects randomly
which processor is the victim of the work stealing mechanism. In computing intensive
applications usually it is of much importance to achieve good data locality than to balance the
processor’s load. For this reason we think that it is not necessary to introduce that overhead
and complexity to the scheduling mechanisms. Tt is important that applications could express
their preferences for locality and leave opened an opportunity to tune the run-time load
balancing mechanisms.

Multiple levels of parallelism and processor grouping are supported by means of
recursion and language constructs to express processor affinity. The problem here is that the
recursive version of an application is generally not as efficient as the iterative version.

With respect the implementation, Cilk uses a counter for each closure to wait till all its
arguments are available. In this thesis, we present results showing that implementing join
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values is a source of major overhead, and this is specially noticeable when searching for fine-
grain parallelism.

Finally, Cilk does not include any support for dynamic processor management and
communication with the operating system. Execution of several Cilk applications requesting
more processors at a time than those in the machine will suffer from the operating system
scheduling decisions. This could lead to undesirable effects at Cilk threads synchronization

points.

6.1.4. Filaments

The Filaments execution environment [44]{82] was designed for shared-memory and has
evolved to run in distributed shared memory multiprocessors. The package was developed in
the Department of Computer Science at the University of Arizona. Filaments can be used from
C applications like the Pthreads and CThreads packages and from the Sisal functional language
[51].

A filament is a lightweight thread. Two classes of filaments are supported by the
Filaments package: Iterative filaments give support to data-parallel execution. They execute
repeatedly with an implicit barrier synchronization at the end of the loop code structure. Fork/
join threads are used in recursive programs. Each thread creates other threads and then waits
for their results.

The Filaments package supports fine-grain parallelism. Thread descriptors are created
directly by the programmer using the tools provided by the Filaments package. Thread
descriptors are small, so thousands of descriptors can be created before starting the parallelism.
Each thread descriptor contains the Filaments arguments and the function to be executed by the
thread. Parallelism is explicitly started calling another service of the Filaments package.
Iterative filament descriptors are automatically reused during execution. Filaments includes
tools for control of thread placement for data locality, efficient barrier and fork/join
synchronization mechanisms and automatic load balancing for fork/join threads.

The programmer of a Filaments application must learn a new interface and code his/
her applications using it, trying to express all the parallelism. There is an extra work to map
each parallel construct to the different classes of threads. Existing applications have to be re-
written to use the Filaments package.

Filaments support multiple levels of parallelism for the fork/join threads, because of
the recursive nature of such kind of threads, like in Cilk. Nevertheless, as Filament threads do
not provide an address space (stack), they do not allow creation of extra levels of parallelism,
in the general case, when some data should ne declared locally to be used by the inner levels of
parallelism.

As in the Cilk case, the Filaments package does not provide any possibility of
interaction between the application and the operating system. For this reason, any scheduling
decision taken at operating system level may cause synchronization delays due to undetected
processor preemptions.
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6.1.5. COOL

The COOL execution environment [23][22] comprises the COOL language and compiler and
the COOL run-time system. The COOL language (Concurrent Object Oriented Language)
extends C++ with tools for expressing concurrence and communication. It has been designed
to exploit coarse grain parallelism at the task level in NUMA shared memory multiprocessors.
COOL was developed in the Computer Systems Laboratory at the Stanford University.

The COOL run-time system is mainly oriented to execute parallelism expressed
through the parallel COOL construct. This construct applies to functions and object methods.
Calling a parallel function/method implies the creation of a rask to execute it. This task
executes asynchronously with the caller. The parallelism exposed by the application can be
constrained at invocation points just by indicating that the call must be done serially.

Mutual exclusion among parallel invocations of functions/object methods is achieved
by means of a function definition attribute. All object methods declared with the mutex
attribute execute in mutual exclusion with other methods in the same object. Mutual exclusion
is taken at function entry and released at function exit.

Parallel functions are inserted in ready queues when created as task descriptors.
Processors pick up work from the ready queues during execution. There are two kinds of ready
queues in the COOL run-time system in order to achieve data locality in three different ways:
Object, task and processor affinity. The programmer is able to express such affinity classes in
each function invocation. In addition, idle processors steal tasks from busy processors’ ready
queues to improve load balancing.

The programmer is allowed to help the run-time system about data and object
placement. This means to distribute object data across processor memories in NUMA
machines. Also to migrate data from one processor to another when it is required by the data
access pattern exhibited by the application.

As in the Cilk and Filaments cases, the COOL programmer must be aware of
restructuring his/her application in order to fit with the specifics of the new language. Our
approach simplifies the way the parallelism is expressed and it works fine in the general case,
where application data is allocated near the processor that first touches it.

The COOL execution environment is related with the Process Control approach at the
operating system level. The comparison of Process Control with our approach is presented in
the next subsection.

6.1.6. Illinois Concert System

The Illinois Concert System [27] is a concurrent object-oriented language and a run-time
system developed at the University of Illinois at Urbana-Champaign.

The Concert run-time system provides primitives for thread management,
communication, and mechanisms for achieving data-locality and load balancing. Such
primitives and mechanisms are efficiently implemented in such a way that they usually achieve
performance an order of magnitude higher than do corresponding primitives in vendor-
supplied communication and thread libraries [67]. They are designed to maintain a high level
of performance over the unpredictable dynamic behavior characteristics of irregular
applications.
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The run-time system is implemented on both shared and distributed memory
machines. Two main modules, language-independent and language-dependent provide the
following functionalities: communication, thread management, memory management and
object caching are language-independent. Users can add their own user-level scheduler.
Memory management provides a distributed garbage-collection algorithm to reclaim
unreferenced memory. Object support, contexts, futures and continuations are provided by the
language-dependent module.

ICC++ [26][67] is an extension of the sequential programming language C++ [143].
ICC++ allows the programmer to express concurrency among C++ statements and inside
loops. The compiler analyses the code and determines whether there are dependencies among
the statements, through aggressive static global program analysis and transformations. The
compiler uses a unified flow analysis framework to obtain information about the compiled
program. From the previous analysis, four inter-procedural static optimizations that reduce the
overhead associated with the concurrent object-oriented programming model are applied:
Method inlining, procedure cloning, object inlining and access region expansion to search for
larger basic blocks.

The Concert run-time system provides more functionality than NthLLib. This is due to
support for distributed memory machines and communication and also because of extended
memory management and garbage-collection, futures and continuations. Memory management
in NthLib is simplified and unified in the management of the nano-threads stacks. Futures are
not needed because of the consideration that it is the compiler which should be able to
determine whether a function call can be executed in parallel or not. Continuations, although
are internally used by NthLib to implement thread blocking, are provided to the user by means
of successor nano-threads.

6.1.7. Active Threads & pSather

Active Threads [150] is a threads package developed at the International Computer Science
Institute of the University of California at Berkeley. Active Threads was designed to facilitate
high-performance fine-grained platform-independent parallel programming, to help in taking
advantage of the memory hierarchy on modern machines and to make possible performance
profiling of threaded software [151].

In order to provide fine-grain parallelism support, the implementation searches for
efficiency in the thread creation, context switch, and synchronization operations. Also, the
interface allows to extend the scheduler by taking into account data locality or implementing
memory-conscious scheduling. New scheduling modules can capture the dynamic structure of
the evolving parallel computation and allow to schedule threads in a way that reflects this
structure. The run-time system allows to schedule nested paralle! constructs in a way that the
most internal Jevel can span all or a subset of the available processors. Each thread has an state,
by which it is controlled by the library.

Threads are defined as units of (potentially parallel) execution that share an address
space and other system resources. Groups of logically related threads are organized into thread
bundles. Threads in the same bundle share a common thread scheduler. This is the mechanism
that can be used to schedule parallel loops using groups of processors. At any given moment,
one bundle has the execution focus. The bundle which has the focus receives the idle
scheduling events and can assign work to the idle processors or it can propagate the idle event
through the bundle activation tree.
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The Active Threads implementation hides the number of available processors by
using virtual processors. Threads are scheduled on top of virtual processors. There is no limit
in the number of virtual processors, but it is recommended that threads accessing the same data
be scheduled on the same virtual processor. The package ensures that those threads will be
executed in the same physical processor.

The Active Threads library can be used directly or as a compilation target for parallel
languages. Along with the basic thread management primitives, the Active Threads interface
supports a great variety of synchronization mechanisms (spin-locks, mutexes, semaphores and
condition variables).

The library works on several architectures and operating systems (SUN SPARC/
Solaris, Alpha Axp/Digital UNIX, Intel 386 and HPPA) but it is uncompleted on several
operating systems in the sense that it does not allow to use more than one processor, by now.

The pSather language [93][142] is a parallel object oriented language which extends
the Sather language. Sather was initially based on Eiffel but now incorporates ideas and
approaches from several other languages. Thread extensions to Sather include the possibility
of declare parallel sections of code and parallel loops. The pSather compiler generates C code
from pSather programs in such a way that they are linked with the Active Threads package to
run on parallel machines.

Active Threads shares some characteristics with our nano-threads package. It
provides the bundle mechanism for supporting multiple levels of parallelism. And it allows the
users to change the scheduling policy for each bundle, thus providing a method for processor
grouping. Tt has also some extra functionality needed to support thread synchronization and
code generation from object oriented languages.

6.1.8. Illinois-Intel Multithreading Library

The Tllinois-Intel Multithreading Library (IML, [56][126]) is a user-level threads package
targeted to shared memory multiprocessors. It supports multiple levels of general, unstructured
parallelism. General (or functional) parallelism is provided by allowing the expression of task
exccution conditions through a directed acyclic graph. Multiple levels of parallelism is
provided through ready queues.

Applications supply work to the library through ready queues of application tasks and
the library schedules them on the available processors. There is one local ready queue for each
processor. Task queues allow several task descriptions to be active at the same time. IML
focuses on the design alternatives for implementing such task queues (centralized and/or
distributed). The library is in charge of mapping the tasks to the available processors. The
outer-most level of parallelism distributes work on the available processors. Inner levels of
parallelism generate work on the local processor spawning the parallelism. IML is also in
charge of load balancing. Library level scheduling allows processors to steal work from the
neighbor processors. The library interface does not allow to express any data locality hint.
Parallel loops are implicitly distributed by the IML among the participating processors.

IML supports code generation from Parafrase-2 and the Intel Fortran compilers. It
runs on Intel platforms and Windows NT.
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6.1.9. SGI IRIX MP Library

The SGI IRIX MP library [137][133] supports efficient parallel execution in the Silicon
Graphics multiprocessor machines. Applications are parallelized either automatically or
manually to run on top of the MP library. Automatic parallelization is achieved through the
PFA (Parallel Fortran Analyzer) tool [134]. PFA gets a sequential program, analyses it and
generates an optimized sequential program annotated with directives. Manual parallelization
consists on manually annotating a sequential application using OpenMP directives. In either
case, the MIPS Pro F77 compiler understands the OpenMP directives and generates the
parallel code.

The compiler generates two versions of each one of the parallel regions of the
program. The first one is the parallel version. In this version, the compiler encapsulates the
parallel region in a function and it replaces the code by a call to the MP library to spawn
parallelism on that function. The second one is a sequential version of the code to be used
when there is only one processor available, avoiding the overhead of the spawning and joining
mechanism. This version can also be used when the application detects, dynamically at run-
time, that there is not enough work to spawn in a parallel region, or when the parallelism has
already been spawned before.

The MP library provides a complete execution environment for each application,
supporting thread creation, management, synchronization and NUMA features, such as
memory placement. Also, the library is aware of the machine load, trying to adjust the
parallelism which is exploiting to the available resources.

When a parallel program starts, a pool of lightweight processes (sprocs or kernel
threads) are created, the number indicated by the user. When the execution reaches a parallel
region, the master processor enters the MP library and uses a unique work descriptor, located
at a fixed memory location, to spawn the parallelism. Other processes (the slaves) pick up
work from that global descriptor. Each process executes the same block of code (encapsulated
in the function containing the body of the parallel section [21]. Variables can be either shared
or privatized, at the parallel function entry, as necessary.

This implementation restricts the parallelism that can be exploited at application ievel
to a single level [133] because the descriptor cannot be reused until the previous parallelism
has been joined. If the program reaches a parallel section while already executing in previous
one, the sequential path is taken.

The SGI MP library provides three different implementations for thread joining: a
distributed joining structure in shared memory (used by default), a shared counter updated
through atomic machine level instructions (which provides bad performance when using more
than a few processors because of the large amount of traffic), and a shared counter based on
uncached atomic memory operations on the specialized hardware in the memory modules of
the Origin2000 system.

When a slave process completes its portion of the work of a parallel region, it returns
to the MP library code, where it picks up another portion of work if any work remains, or waits
polling for a while, and then suspends itself until the next time it is needed. The MP library
uses a two-phase synchronization mechanism. When a spinning process spends too much time
to acquire a spin lock, the library decides to yield the processor to allow the progress of other

processes in the system.
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While this is a good solution, it is not general enough to perform well in all situations.
A false processor utilization appears when an application reaches a sequential section and the
slave threads are spinning for some time before yielding. And as the operating system knows
nothing about the execution at user level, in a multiprogrammed machine, an application can
loose a processor which, in the worst case, may be given to another spinning process.

The SGI MP environment supports a per application control of the degree of
parallelism. An auxiliary process wakes up each approximately three seconds and suggests an
optimal number of ready process based on system load information. This number is considered
the next time a new parallel region is spawned. The application blocks/unblocks some
processes, if necessary. Using this mechanism, the application parallelism is decreased
progressively when the system load is high or when the application CPU usage is low due to
input/output or page faults [3]. This feature is related with an environment variable
(OMP_DYNAMIC, which can be set to TRUE or FALSE). It is activated by default.

The comparison between the SGI MP library and our approach is completed in the
evaluation of Chapter 9.

6.1.10.Integrating functional and loop parallelism

Several programming systems are trying to provide multiple levels of parallelism by
integrating functional (task) and loop (data) parallelism. They usually focus on allowing the
coordination of several program modules in architectures mixing shared and distributed
MEMmory.

The Fx project [57] focuses on proposing a small set of Fortran directives to integrate
task and data parallelism on a HPF framework [69]. Applications under consideration are
mainly related to processing continuous streams of data sets. The PARADIGM project [120]
proposes the use of controlling the degree of data parallelism in individual tasks through task
parallelism, an approach similar to our processor grouping. They extend the model proposed in
the Fx project to target a more general class of applications and to perform allocation and
scheduling of processors to HPF data parallel routines automatically without any user
intervention.

The HPF/MPI project [50] merges High Performance Fortran with the Message
Passing Interface standard. Calling MPI from HPF avoids to introduce new parallel constructs
in the language, providing a library based solution. This system allows the creation of a
number of parallel tasks written in HPF, that run in a data-parallel way on a specified
collection of machines, controlled by MPI. The tasks communicate with each other through the
MPI interface. Other related works propose extensions to the HPF directive set to indicate that
several calls to data paralle] HPF routines can proceed in parallel [49].

6.2.Kernel approaches

In this section, we compare our approach for the kernel interface and scheduling techniques,
the widely used gang scheduling [108][15], the SGI IRIX 6.4 operaling system [30] and the
user/kernel interface and scheduling techniques implemented recently in the SGI IRIX 6.5
operating system [32], as well as with well-known research projects, notably Process Control
[147][148], First-Class Threads [84] and Scheduler Activations [5][53][70]. As all the projects
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are very related and there are more similarities than differences among them, we directly
compare here the more interesting aspects to consider instead of comparing with each
individual project.

We summarize the comparison between the different approaches in fifth relevant
aspects: who is in charge of setting the degree of parallelism of each application; which is the
target for processor scheduling, the application or the individual processes; the effect of the
blocking events in the behavior of the scheduler; the synchronization issues related to
scheduling; and the type of user / kernel interaction. Current operating systems providing
scheduling support for multiprocessor architectures inherit several characteristics from their
original UNIX versions (System V [9], BSD [73]).

6.2.1. Setting the degree of parallelism

The first aspect concerns the question about who is in charge of setting the degree of
parallelism of an application. It is set by the user in gang scheduling, where the application
simply creates a number of processes and the operating system must schedule all of them
together to allow the application to make progress. Our approach allows the application to set
the maximum number of processors it wants to run on and the operating system will allocate
the most suitable number of processors taking into account the overall system load. The actual
degree of parallelism is set by the operating system. This feature is also included in the Process
Control approach [148] where the operating system sets a number in shared memory informing
the user of the number of currently running processes inside the application. It has also
recently been incorporated in the SGI IRIX 6.5 operating system in the form of a nestimated
number of processors [32].

In previous versions of the IRIX operating system (IRTX 6.4), the user-level MP
library tracks, through an extra process running inside the application, the machine load and
whether the application is executing well or not. This means that in fact the degree of
parallelism is set by the user-level execution environment. When the library detects that the
machine load is too high (over the amount of physical processors) and the application is not
running well (it is not receiving CPU time), it automatically shrinks the parallelism to be
spawned at the next parallel construct. This is done with no kernel intervention. There is no
global view and the decisions can not be accurate enough to achieve a good multiprogramming
efficiency. In particular, when the MP library checks the way the virtual processors are
executing, it can detect that they are doing well when, in fact they are running the MP library
idle threads, waiting for a synchronization. Also, the SGI MP library is in charge of stopping
those processes which are not currently given any work by the application. This is done in a
tunable way, allowing the application programmer to set the amount of time the processes are
going to spend searching for work before stopping themselves. By default, this time is set to
0.25 seconds (or 10,000,000 iterations in a MIPS R10000 processor running at 200 Mhz.). This
can be set individually for each application using the MP_BLOCKTIME environment
variable. Although the method is valid, two drawbacks are: first, applications with dynamic
parallelism are going to keep some processors during the configured time without making
useful work; and second, that this parameter should be tuned for each one of the applications
running in the system.

Similarly to Process Control and IRIX 6.5, we also allow dynamic processor requests

during the lifetime of an application. IRIX 6.4 is supporting dynamic requests by stopping the
processes which do not receive work from the application, as stated in the previous paragraph.
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6.2.2. The application as the scheduling target

The second important difference among our approach and other approaches is the way parailel
applications are managed by the scheduler. In current operating systems, kernel-level events
that are relevant to the execution of an application are communicated to each individual
process belonging to an application, in such a way that the rest of processes of the same
application continue execution ignoring what has happened. It is the case of gang scheduling.
When a process belonging to a parallel application is selected to run, other processes are
preempted in order to be able to cxecute the complete application. At this point, gang
scheduling is not aware of whether the preempted processes belong to different applications or
not. The affected applications are not informed about the preemptions. They are going to suffer
a penalty in their execution motivated from the disordered preemptions. Instead, in our
approach the scheduling target are the applications as a whole. In this way, the scheduler first
selects which applications are allowed to run and, in a second step, they are given some
processors, informed of how many are receiving and allowed to run. During execution,
processor movements between applications are minimized. And more important, applications
are preempted as a whole when the scheduling policy decides not to give processors to an
application during the following time quantum.

In the Scheduling Activations approach all the events are provided to the user level by
means of upcalls. This means that in this case the application is able to react to the event. The
communication mechanism, the upcalls, are usually too heavy-weight to provide good
response time. Shared memory is used both in Process Control and First-Class, as well as in
IRTX 6.5. Nevertheless, Process Control and First-Class continue assuming that the scheduler

target are the individual processes.

The IRIX 6.5 scheduler allows applications to inform the kernel about their processor
requirements. As soon as an application sets the requested number of processors, the IRIX
kernel assumes that all related processes belonging to the application should be managed as a
whole. The IRIX scheduler based on earnings is used to compute the estimated number
processors that should receive each application. When computed, this value is supplied to the
user-level scheduler as well as the corrected value (the allocated mumber of processors)
computed having in mind the requested number of processors.

6.2.3. Blocking events management

The third important difference between the different approaches is how blocking interferes
with kernel scheduling decisions. This is very related to the second difference (in Subsection
6.2.2), but as different designs present different solutions to this problem, we consider it as an
important aspect.

Starting with gang scheduling, when a process of a gang-scheduled application blocks
in the kernel, the processor immediately tries to execute another ready-to-run process. This
process may belong to another gang-scheduled application, reclaiming other processors to run
in its turn, and motivating more context switches. The problem here is that, although gang
scheduling ensures that all processes of a parallel application start executing together at the
beginning of a time quantum, it does not ensure that all the required processors will be
available to the application till the end of the time quantum. At this point the application
performance is degraded because of synchronization issues. Our approach maintains the
number and mapping of processors allocated to the application, similarly to Scheduler
Activations [5]. When a processor becomes free due to a blocking event, it is first returned to
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the application in case it has more work to do with it. Otherwise, it is given to another running
application and both applications are informed of this movement.

In IRIX 6.5, instead, when a process of a parallel application blocks, the process is not
guaranteed to remain in the application. The kernel can decide to move the processor to
another application running in the system. In this case, the application loosing the processor is
not informed about this fact until either the process unblocks and the processor returns or the
process is marked as a preempted one and the context is supplied to the user level through

shared memory.

6.2.4. Synchronization issues

With respect to the synchronization mechanisms used, gang scheduling usually is accompanied
with two-level synchronization methods at user-level [148][47][58]. When a spinning process
spends a predetermined amount of time to acquire a spin lock without success, the user-level
run-time package decides to yield the processor to allow the progress of other processes in the
system. As it has already been commented in Subsection 6.1.9, this is a good solution, but is
not general enough to perform well in all situations. As the operating system knows nothing
about the execution at user level, an application may loose a processor which, in the worst
case, may be given to another spinning process. This is the fourth difference with our
approach. We are not using two-level synchronization. Instead, every application detects, at
safe points, whether any of its virtual processors has been preempted and then it yields one of
its currently assigned processors to the preempted virtual processor.

6.2.5. User / kernel interaction

The last significant difference is the amount and quality of the information shared between an
application and the operating system. Process Control maintains a counter of processors
allocated to the application and informs the application of kernel ievel events through UNIX
signals. Scheduler Activations and First-Class Threads inform using upcalls. Our proposal is to
use the most efficient mechanism to inform applications of such events. Processor allocation
and blocking are easily communicated through upcalls, offering the new processor to the
application. Processor preemption and unblocking are most easily informed through shared
memory. For this reason, we maintain a shared memory area between the applications and the
operating system containing the information explained in Subsection 5.2.

The approach taken in IRIX 6.5 provides a per-application shared memory area
[116][32] similar to our proposal containing the number of processors requested by the
application, the number of currently allocated processors, the number of processors estimated
by the kernel that could run in the application; also, it contains the register save areas (RSA’s)
to save/restore the user-level threads state at blocking and preemption points. In this way, both
the user and kernel levels can resume user-level threads whose state is in the shared area.
Along with this information there is also some control data related indicating whether an RSA
is free or busy and to signal preemption status for each kernel-level thread.
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Abstract

This chapter highlights the most relevant implementation issues
both in user- and kernel-levels. At user-level, we present here the way
we have integrated multiple levels of parallelism with efficient work
descriptors and processor grouping.

At the kernel-level we show how our proposals for the kernel
scheduling framework can be implemented on existing operating
systems, using specific tools provided by the current operating system
interfaces.

"... moltes vegades a la vida, el problema és
identificar el problema."”
(Llegit en plena optimitzacis.)

Josep Borrell, Classe de Politigues Pabliques,

Universitat Pompeu Fabra. Diari Avui, dissabte, 23
de maig de 1998.
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7.1. User-level implementation issues

The following subsections present a detailed description of the implementation of the NthLib
package as it has been developed on the Silicon Graphics Origin2000 machines, and outlines
the different aspects that have been changed in the different ports to other systems. The current
implementations in several systems provide most of the {ollowing characteristics.

7.1.1. Data structures

The nano-threads library contains several data structures which maintain both information for
each nano-thread created and the global information about the user-level execution
environment of the nano-threaded application.

7.1.1.1. The nano-thread structure

The nano-thread structure (see Figure 21) contains the nano-thread descriptor, references to the
nano-thread successors, nano-thread private data and the nano-thread stack. It is initialized by

the nth_create() interface described in Subsection 7.1.2.

Nano-thread Private i
stack - o Successors | Descriptor

The contents of the nano-thread descriptor is as follows:

struct nth_desc {
atruct nth_desc *next;

int vp_id;

void *Spi

count_t npred;
spin_t npred_mutex;
count_t nsuce;

Figure 21: Nano-thread structure

The nano-thread descriptor contains the following fields:
* next. A pointer to a nano-thread. This field is used to queue the nano-thread in any of the
library queues, such as the ready queue.
» vp_id. The user-level identifier (0, 1, 2, ...) given by the package to the underlying
virtual processor currently executing this nano-thread. It is inherited between nano-

threads at context switch time.
* sp. The value of the stack pointer is saved in this field when the nano-thread is created or

when it is biocked.
* npred. The number of predecessors that remain already unresolved for this nano-thread.

When it becomes zero, the nano-thread is ready to be executed and can be queued in the

ready queue.
* npred_mutex. The synchronization variable to access the npred field in mutual

exclusion.
* nsucec. The number of successor nano-threads (representing HT'G nodes) depending on

this one.
References to successor nano-threads are stored beside the descriptor. At termination,

each nano-thread uses this field to update the predecessor counter for their successors. The
nano-threcad private data area keeps any variable that has to be privatized at nano-thread
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creation. In Fortran, all loop control variables supplied to a nano-thread have to be privatized
because, they are passed by reference by the Fortran compiler. The FIRSTPRIVATE clause, in
OpenMP, also uses this feature to pass the initial value of the private variable. The stack is
initialized containing the nano-thread arguments in such a way that nano-thread execution can
start in the associated C or FORTRAN function. During the nano-thread execution, standard
activation frames are allocated in the stack.

Nano-thread structures are allocated using the operating system virtual memory
primitives and are never deallocated. Instead, they are reused as described in Section 7.1.2.

7.1.1.2. The nano-threads global data
The nano-threads library maintains a data structure containing global data. It consists of
information used during the execution of the nano-threaded application. We have taken care of
the placement of each field in memory, avoiding as much as possible any conflicts among
them, such as false sharing, fitting each field in its own secondary data cache, when necessary.
The important fields in the global structure are:

 The nano-threads ready queue (global and per-processor queues).

 The queue of free nano-thread structures (global and per-processor).

 Stack sizes (total, and for the first and regular nano-threads).

* A reference to the memory shared with the CPU Manager, when present.

« Various counters to take statistics at execution time (e.g., number of allocated structures,

current number of created nano-threads and total number of created nano-threads).

The ready queue is a list of nano-threads which allows insertions both in front of it and at the
end. New nano-threads created from the start node of a compound node and ready to be
executed are usually added to the end of the queue, thus maintaining the same execution order
as is given by the application.

After a nano-thread termination, all nano-threads that become ready due to their
precedences resolution are enqueued in the ready queue provided by the application at nano-
thread creation. An alternative was to execute one of the readied successors in the same
processor. We have decided to enqueue it in the ready queue for a double reason: Processor
grouping is easily manage in this way and data locality is maintained as the application has
indicated.

The queue of free nano-thread structures contains those structures released when
nano-threads terminate. This queue is always managed in a LIFO order. In the current
implementation, this queue consists of several instances, one for each processor in order to
maintain the affinity between the nano-thread structures and the processor where they have
been executed.

The nano-threads library and the operating system maintain a shared memory area
containing the information related to the processors currently allocated to the application. In
such a way, both can accurately know the state of the hardware and software resources:
processors allocated, processors stolen, number of nano-threads in the ready queue, etc. When
running NthLib on proprietary operating systems (IRIX, Digital Unix, Solaris), we have
implemented a reduced interface between the library and the operating system depending on
the information that can actually be obtained. Subsection 7.2 describes this interaction in more

detail.
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7.1.2. Nano-thread creation
Nano-threads are created through the following interface:

¢ C interface:

struct nth_desc * nth_create (void (* fune) (...},
int npred,
int vp,
int nsucc,
int narg,
. /* nano-thread successors and arguments */ );

* FORTRAN interface:

struct nth_desc * nthi_create  ( void (* func) (...},
int * npred,
int * vp,
int * nsucc
nth_argdesc * desc,
int * narg,
. /* pointers to nano-thread successors and args

AR

Creation of a nano-thread consists in getting a nano-thread structure from the queue of
free structures and initialize it. If the queue is empty, a new structure is allocated using the
operating system virtual memory primitives. Typical primitives include mmap in IRIX, Digital
UNIX, Linux, Solaris and HPUX or vin_allocate in Mach.

Next, the starting stack pointer and the number of pending data precedences for the
nano-thread are initialized in the descriptor. The successor references are stored beside the
descriptor. Nano-thread arguments are copied in the nano-thread stack.

Nano-thread creation is slightly more complicated in FORTRAN because in this
language arguments are always passed by reference. In the FORTRAN interface an extra
argument (desc) is given in order to specify both the size (32/64 bits) and the need for
privatization (true/false)}. We ensure that private arguments are first copied into the nano-thread
stack. In this way, the original arguments, belonging to the creator nano-thread, can be
afterwards modified without modifying the privatized ones. Finally, the starting nano-thread
stack is completed with the correct references to the arguments. Arguments for which
privatizing is needed are usually loop control variables, which will be subsequently modified
by the creator nano-thread to advance to the next loop iteration. Arguments correctly passed by
reference are usually references to global program variables.

If the number of precedences is zero, the nano-thread is automatically enqueued in the
ready queue of the processor indicated by the vp argument. The nth_create() function
returns a reference to the newly created nano-thread. The caller is able to supply this nano-

thread as the successor for any other nano-thread.

7.1.3. Nano-thread self identification
An executing nano-thread is able to determine which is its nano-thread descriptor using the

following interface:
struct nth_desc * nth_self {);:

The nth_self () function returns a reference to the currently executing nano-thread.
The mechanism used to find the self reference is like the one used in the CThreads
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A

package [29] and the OSF/1 operating system [36], based on storing it at a fixed location in the
stack and working with stacks aligned to addresses multiple of a power-of-two.

7.1.4. Dependencies control

As we have introduced in Subsection 4.1.2.3, the number of precedences that remain
unresolved for a nano-thread can be dynamically increased/decreased when new inner
parallelism is started/terminated. The compiler uses the following interface for this purpose:

int nth_depsatisfy (struct nth_desc * nth);
void ath_depadd (struct nth_desc * nth, int npred);

The function nth_depsatisfy () decrements by one the counter of precedences for
the supplied nano-thread (ath). It returns true if the dependence counter reaches zero and
false otherwise. Nth_depadd() is used to increment the number of precedences by the

supplied value ndeps.

7.1.5. Ready queue management

The ready queue interface allows the application to dynamically generate new work to be
executed while spawning parallelism. One global ready queue lets the application to supply
nano-threads to the first available processor. Local per-processor ready queues allow to evenly
distribute work among processors. Local queues are useful to maintain data locality in paraliel
loops.

The queue structure maintains a synchronization variable to access it in mutual
exclusion and a reference to the first and last elements currently queued. Elements are defined
to be nano-threads. Figure 22 shows the structure of the ready queue and its interface. Each
queue instance is really allocated to fill an entire cache line to avoid false sharing among the

ProCessors.

/* Application-level global queue interface */
void nth_to_rg (struct nth desc * nth);
void nth_to_rqg end {struct nth desc * nth};

/* Queue structures */
struct nth_single_gueue {

spin_t g mutex;
struct nth_desc *q first;
struct nth desc *q_last; /* Application-level local gueue interface */

void nth_to_lrg (int which, struct nth_desc * nth);
void nth_te_lrg end {(int which,
struct nth_desc * nth);
/* Dequeue and test for emptiness functions are
}; internal and they are not visible to the application
level */

};

struct nth_ready_queue {
struct nth_single_gueue [MAX_CPUS]

Figure 22: Ready queue structure and interface

The nth_to _rqg() and nth_to_rqg end() functions insert an element (nth) in front of
the global ready queue or at the end, respectively. The same functions are provided to operate
on the local ready queues. They are nth_to_lrg() and nth_to_lrg end ().

There are internal functions to initialize the ready queue to an empty state, to dequeue
the first element in the queue and to test whether the queue is empty. The internal functions
ath_rqg empty () and nth_lrqg empty(which) return TRUE if the corresponding ready queune
is empty. A queue is defined to be empty when its g_first field is NULL. Waiting for work in
the ready queue can be performed by testing the ¢ first field without getting the queue lock,
in order to avoid cache ping-pong effects.

Page 93




Chapter 7

The queue of free structures, which is used internally by the nano-threads library uses
a similar interface.

7.1.6. Blocking
A nano-thread is able to block while waiting for the termination of other nano-threads. Before
blocking, the successor of those nano-threads is setup to be a reference to the blocking nano-

thread. The basic blocking primitive is:
void nth_block (void);

When a nano-thread blocks, it first searches for work to be done, exactly like in a
nano-thread termination. If it finds a ready nano-thread, the context switch is performed and
the blocking nano-thread simply waits for the termination of its new predecessors. The
implemented mechanism ensures a correct behavior in a multiprocessor environment avoiding
that early termination of the parallelism activates the nano-thread before blocking has been
done. If the blocking primitive does not find any nano-thread to execute, it simply waits for its
precedence counter to become zero and continue working.

The blocking interface is intended to be used in sequences like the following:

// add *N+1l’' new dependencies to the current nano-thread:
/7 ‘N’ for the new parallelism, ‘1’ for myself.
nth_depadd (nth_self ()}, N+1i):
// create and queue ‘N’ new nano-threads passing myself as the successor

for (i=0; i<N; i++) {
nth = nth_create {(func, 0, 1, narg, nth_self ()}, .../%* arguments */...);

nth_to_rq end (nth);
}
// block, waiting for the parallelism to be terminated

nth_block ();
// continue executing when the parallelism ig terminated

7.1.7. Portability issues

We have based the implementation of the nano-threads library on top of the Quick Threads
(QT) package [68]. This has shown very useful to improve portability. Basic thread creation
and context switch are efficiently implemented in the QT package. Nano-thread creation is
based on Quick Threads, which allows creation of threads with a varying number of
arguments.

Context switch is implemented in two ways in the QT package. First, it is possible to
make a standard context switch, which saves the previous state on the current thread stack,
changes the stack and restores the new context. This version is used when a nano-thread
blocks. It is also very useful to use a simplified context switch when the thread is terminating.
In this case, which is the common case in the nano-threads environment, the current context is
not saved. Only a switch to the new stack is done and the new context is restored.

Quick Threads also isolates the nano-threads package from several hardware
dependent parameters, such as the best size for the representation of integers and pointers
(usually 32 or 64 bits), the stack growth (to increasing/decreasing addresses), the best
alignment for scalar data and the hardware virtual page size. Porting QT to other architectures
is a well-defined task in the sense that a common interface consisting of a few routines has to
be supplied. We easily ported the QT package to work on R10000 processors using their 64-bit
programming environment and NthLib could be installed with minor changes.

The QT package does not offer mutual exclusion primitives. Next section describes
mutual exclusion in the nano-threads library.
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7.1.8. Mutual exclusion
Queue and dependence management requires simple and efficient mutual exclusion primitives,
In general, the time a thread has to wait for a data structure (the ready queue or the dependence
counter of a successor nano-thread) is very short. For this reason, the nano-threads library
defines the mutual exclusion interface based on spin locks at user level [58]. This interface is
intended to be used internally only.

A lock in the nano-threads library is a memory location which size is hardware
dependent. It is defined to be the same as the Quick Threads data type gt_word_t:

typedef volatile qt_word_t spin_t;

The following interface has been implemented to access it:

void spin_ init (spin_t * spin_var);
void spin_lock (spin_t * spin_var);
void spin_unlock (spin_t * spin_var):

The spin_init () function initializes the spin lock variable (it sets it to zero). This
function is hardware independent.

The spin_lock() function is based on festd&set hardware primitives. In order to
avoid a ping-pong effect among the caches of two or more processors spinning in the same
lock variable, this primitive tests the contents of the local variable in the local cache first, and
does not write to it till the test indicates the lock is zero.

This function is hardware dependent because it has to use an atomic test and set
instruction to update the spin lock variable. For example, the MIPS and DEC Alpha
implementations are based on a restartable atomic sequence containing a load linked and a
store conditional machine instructions [43][140][61][39]{40]. The implementation on the Intel
architecture uses the exchange machine instruction (xchg [66]) to atomically load the contents
of the spin lock variable and store a value of one.

The spin_unlock() function consists in resetting the spin lock variable to the initial
value (zero). It is hardware independent.

7.1.9. The virtual processors scheduling loop

At initialization time, each virtual processor receives a function and a stack where to start
execution at user-level. The starting function simply calls the nano-thread scheduling loop,
which is responsible for selecting the next nano-thread to execute. Virtual processors or kernel
threads are obtained through the operating system interface. The IRIX operating system
provides the sproc system call. Linux provides the clone system call, very similar to the IRIX
sproc. Digital UNIX and Mach provide the thread_create system call. Solaris and HPUX
provide the _lwp_create system call.

At the termination of a nano-thread, the scheduling loop is also automatically invoked
by the QT package. At this point, the successors of the terminating nano-thread are activated as
explained in Subsection 7.1.1.2. Then, it searches for work in the ready queue. It first searches
in the local queue of the current processor and, if it is empty, it searches in the global queue.

While performing a context switch from one nano-thread to another, the library
transfers the identifier of the virtual processor (vp_id) from the old to the new thread. This
identifier allows the library to know which are the characteristics and status of the processors
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assigned to the application. Also, it allows to the application to implement several techniques
to improve data locality.

Subsection 7.2 presents the interaction with the operating system which is done also
inside the library-level scheduling loop and the Example 7.1 shows the complete virtual
processor scheduling algorithm.

7.1.10.Thread fork/join techniques

The main goal of our proposals for implementing efficient thread fork/join in the nano-threads
environment is the support for multiple levels of parallelism and processor grouping. In this
subsection, we present the implementation of both the GWD and LWD techniques for
supplying work to processors and an improved thread joining scheme [85].

7.1.10.1. Forking threads

Forking threads efficiently at the inner-most Ievel of parallelism is based on supplying a work
descriptor to the participating processors. The work descriptor consists of a pointer to the
function encapsulating the work that has to be executed and its arguments. When the same
work descriptor is supplied to a group of processors, each one decides the portion of work that
has to execute, based on the arguments, the number of processors working in the group and its

own identifier inside the group.

All-to-all (using GWD) | A || Grouping (using LWD) |B]

B

(=2

Loop is executed
b on P processors

Figure 23: Two alternatives for the exploitation of multiple levels of parallelism

Functionality. The forking techniques are GWD (Global Work Descriptors) and LWD (Local
Work Descriptors). Along this subsection, we use the abbreviation WD to refer to both the
LWD and GWD techniques. The GWD can be used in spawning the inner-most level in a
multi-level parallel application. It supports multiple levels of parallelism because it allows the
coexistence of multiple opened parallel constructs, solving the limitation of a single work
descriptor found in implementations supporting a single level of parallelism (see Subsection
6.1.9). All processors share a single GWD structure, they all can simultaneously supply work
to the GWD and they execute the same work. GWD is expected to perform comparable to
existing highly tuned implementations when exploiting a single level of parallelism. Figure
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23 A shows the execution of a parallel construct consisting of a parallel loop, four independent
sections (also containing parallel loops) and another parallel loop. In this case, the master
thread executing each section spawns the parallelism associated to the parallel loops inside the
section to all the processors. Since the same descriptor is supplied to all the processors for each
parallel loop, each processor in the system will execute a chunk of iterations of all the loops
(probably always the same, if the compiler exploits loop affinity)

LWD is a more advanced technique that inherits most of the characteristics of the
GWD and also allows processor grouping. Using processor grouping, the application is abie to
drive several processors to work on a independent task or set of tasks. Each group has a master
and (possibly) several slave processors. The master processor starts the parallel task and it is in
charge of spawning the parallelism encountered inside it. After that, the slave processors
cooperate with the master to execute the parallelism. At the end, the master processor waits for
the slaves to complete the work. This execution model requires that any processor can supply
work to any other processor. There exists one LWD structure for each processor, allowing
different work to be supplied to different processors from different parts of the parallel
application. In Figure 23B, the master thread executing each section spawns the parallelism
associated to the parallel loops inside the section to just a subset of all the processors (in this
case, each group of four processors is supplied with a different work descriptor). Due to the
definition of these groups, now each processor executes a chunk of iterations for a subset of all
the loops inside the parallel sections. However, for loops outside them, all processors
cooperate in the execution of the parallel loops. Care should be taken into account about how
this change in the structure of the parallelism can influence data locality.

As a result, the LWD overhead can be higher than that of GWD due to the individual
supply of work descriptors, but it is expected that limiting the number of processors
participating in an inner paralle! construct makes worthwhile the exploitation of multiple levels

of paralielism.

Implementation. The two WD proposals are implemented as arrays of pointers to work
descriptors, behaving as circular lists (see Figure 24, A and B). There is a shared GWD
structure and one per-processor LWD structure. Each processor searches for work first in its
own LWD and then in the GWD. The size of the WD structures is a multiple of the secondary
cache line size and they are aligned to cache line boundaries to avoid false sharing. Both
implementations use one-way communication from the master processor to the slave
processors. This means that the master processor writes pointers and the slaves read them.
After the master processor writes a pointer to a WD location, it takes advantage of having
exclusive access to the cache line to also clear a previously used location. This one-way
communication mechanism saves several cache misses and invalidations while generating
work, thus speeding up part of the critical path of the run-time library. Each processor has its
own local index to the WD structures to extract work from them. It knows that there is no work
in a WD structure when the location pointed by its index is NULL. The master processor uses
a global index (WDP) to store a new pointer in the next available location of the WD
structures. The global index is necessary to allow several processors to add work at the same
time. Mutual exclusion through load-linked and store conditional instruction sequences is used
to update this global index.

For example, in Figure 24 A, four work descriptor pointers (shaded area) are currently
stored in the GWD, possibly from different parts of the application. Not all processors have
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executed the same number of descriptors and some of them are extracting work from different
locations. Each processor has a local index for work extraction.

Figure 24B presents the implementation of the LWD. It shows four LWD structures
for four different processors. In the example, two groups of two processors are already
spawned. Each master processor (0 and 2) uses an index associated to each LWD to insert new
work. This index is accessed in mutual exclusion to allow several processors to add work to a
LWD at the same time. Again, clearing an already used location during work insertion
improves the cache behavior. Each processor waits for work in its LWD using a local index.
Processors working in a group are consecutive and are identified O (the master), 1, 2, and so

on.

7.1.10.2. Thread joining

Like many implementations, our proposal for thread joining is based on a distributed structure,
to minimize false sharing. However, we add a local sequence number for each processor and a
per-processor join values array (PJV) to support multiple levels of parallelism. The per-
processor sequence number allows that each individual processor participates in a different
number of parallel regions before collaborating again in the same group due to a change in the
structure of the parallelism. This is different from the previous implementations, where the
sequence number was identifying the currently executing parallel construct.

Figure 24C shows the proposed implementation. When a slave processor in a group
terminates its work, it writes its per-processor join sequence number in the Distributed Join
Structure (DJS). One cache line stores the sequence numbers of four processors. The master
processor has a copy of each thread sequence value in its PIV. It waits for completion of the
parallel work by looking at both ends of the DJS. When it detects that the value stored in DIJS
for one of the two current locations is greater than its local copy, it records the new value in
PJV and proceeds to the next processor. Both the DJS and the PIV are allocated in the stack of
the master processor in order to allow the existence of several master processors at the same

time.

i) Master processor generates work and clears some previous | A [|i) Slave processors in a group (6-11) indicate termination. C
location. It uses the global insertion index Each processor stores its own join sequence number in DIS

NULL WDP 4 / “ 4
Global Work Descriptors D{strlbutcd Join Struct.

ii) Slaves take some new work
EBach one uses its own index

All processors get all work 0-3 4-7 \ /ﬁ-ll

- . iii) and copies them
i) Several master processors generate work for their group B ii) The master waits for ) to recr?r d the last
~a—  First group —w=- ~=— Second group —w=- values greater than the join value for each
processer in PV

WDPO WDP1 WDP2 WDP3 current join valne

Local Per-processor (current) Join|Values
Work N
Desc. % el
G
ii) Slave processors take work from their local WD 0 6 1112

Figure 24: Thread fork / join data structures
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7.2.Kernel-level implementation issues

We have implemented the kernel-level scheduling framework and scheduling policies
described in Chapter 5 in the context of a user-level CPU Manager. This implementation has
allowed us to evaluate our approaches in a machine like the Origin2000 system.

7.2.1. The user-level CPU Manager

The user-level CPU Manager partially implements the interface presented in Subsection 5.1,
establishing the cooperation between the user-level execution environment provided by
NthLib and the kernel level. The resulting structure of the execution environment including the
CPU Manager is presented in Figure 25.

At initialization time, the CPU manager gets control over the processors of the
machine on which it is running by creating one idle thread bound to each physical processor. It
also creates the main scheduler thread, which is able to run on any physical processor. Its
mission is to apply any of the user-selectable scheduling policies to the application workload.

Applications

CPU Manager

Shared
Memo
v Siot 0
IRIX
Hardware

Figure 25: Implementation of the kernel-level scheduling framework
on top of the IRIX operating system

The CPU manager establishes a memory area which is shared between the CPU
manager and the applications. This area is used to implement, efficiently and with minimal
overhead, the proposed kernel interface. As explained in Subsection 5.1.2, this area contains
one slot for each application which runs under the control of the CPU Manager. The basic

fields in each slot are:

* The number of requested processors (n_cpus_request).

» The number of processors currently allocated to the application (n_cpus_current).

* The number of processors requested by the CPU manager to be released as soon as
possible by the application (n_cpus_askedfor)

¢ The number of processors stolen from the application (n_cpus_stolen).

» In addition, each slot contains an array of virtual processors. Virtual processors are
numbered in this array and each entry contains the identifier of the kernel thread or
process which corresponds to the virfual processor, the physical processor currently
assigned to it, if any, and the status of the virtual processor, which can be: RUNNING in
the application, FREED from the application, or STOLEN from the application.
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Applications are launched by the CPU Manager. Application termination is
communicated to the CPU Manager by means of UNIX signals (SIGCHLD). The primitives
cpus_release_self () and cpus_processor_handoff () are implemented entirely in the
context of NthLib, and communicate the modifications on the status of the application to the
CPU Manager through the shared memory area.

Each new application, at initialization time, attaches to an empty slot in the shared
memory area and informs the CPU Manager of its arrival using a signal. The signal wakes up
the scheduler thread in the CPU Manager, which allocates free processors, if any, to the new
application, according to the current scheduling policy. If there are no free processors, either
the application is not started or a global scheduling is forced.

Throughout the lifetime of an application, events like processor requests, processor
releases and processor stealings are communicated through shared-memory, by using the
application slot. The CPU Manager maintains also a private area in memory, which is used for
the bookkeeping needed by the scheduling policy. A time quantum is initially set for the CPU
Manager. The scheduler thread of the CPU Manager wakes up at the expiration of every time
quantum and distributes processors among the current applications applying the desired
scheduling policy. In the current implementation, we use a common time quantum of 100
milliseconds between successive invocations of the CPU manager. Due to the difficulties of
implementing a processor preemption mechanism after giving the application a grace time to
return processors, we have set the grace time to zero. In that way, processors are preempted as
soon as the scheduling policy decides the new allocation.

The operating system supplies physical processors with the creation of virtual
processors. In the current implementation virtual processors are pre-created from the
application. Creation of virtual processors is based on the basic primitives provided by
operating systems to create kernel threads inside a shared address space. Examples of these
primitives in current operating systems are the sproc call in IRIX [31] and the thread_create
call in Mach [1] and Digital UNIX [42][41][76][77].

The CPU Manager controls the execution of the applications through specific IRIX
system calls. The calls blockproc {pid) and unblockproc (pid) are used to start and stop the
execution of individual processes belonging to the applications. These system calls simulate
the events of allocating a new processor and stealing a processor, respectively. In other
operating systems, a different interface should be used. In the Digital UNIX and Mach
operating systems, for instance, the same system calls are thread_suspend and

thread_resume.

The CPU Manager is aware of processor affinity. It uses other specific IRIX system
calls to bind processes to physical processors. The system call sysmp (MP_MUSTRUN_PID,
cpu, pid) is used to bind the process indicated by the pid argument to the physical processor
number cpu. In Digital UNIX and Mach, this call should be replaced by

bind_thread to_cpu.

7.2.2. The complete virtual processors scheduling code

NthLib is tightly coupled with the operating system in order to adapt at user-level when any
kernel-level scheduling event alters the user-level execution. NthLib uses the kernel interface
in order to maintain as many user-level threads running as the number of physical processors

assigned by the operating system.
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The interaction with the operating system is done mainly by NthLib at every user-
level scheduling point, when a nano-thread terminates execution and the package knows that
the processor can be preempted safely.

When a nano-thread terminates execution, the Nthlib internal function nth_cleanup

is automatically invoked (QuickThreads manage such invocation). Inside nth_cleanup
resides all operating system related stuff. The Example 7.1 sketches its functionality.

Example 7.1. User-level scheduling code

1 /*

2 Main NthLib scheduling loop (nth_cleanup)

3 */

4 void nth eleanup {struct nth_desc¢ * nth, int user return}

5 {

6 /* Satisfy dependences for the successor threads */

7 i=0;

8 while (i<nth->nsuce) {

9 struct nth_desc * suce = NTH SUCC{nth, 1};:

10 if (nth_depsatisfy (succ)

11 nth_to_lrg (succ->vp_id, sucec};

12 ++i;

13 }

14

15 /* Idle thread starts here */

16 while (1) {

17

18 check_og_conditions ();

19

20 /* get the next work-descriptor, if any, and execute it #*/

21 wd = getwd ();

22 if (wdl=NULL) {

23 schedule (wd):;

24 continue;

25 3

26

27 /* get the next nano-thread from the ready queues and execute it */
28 next = getwork (};

29 if (next!=NULL)

30 nth_dispatch (next);

31 }

32 }

33

34 FAd

35 Auxiliary function to test the 0.8. conditiong at every scheduling point
36 */

37 void check_os_conditions ()

38 {

319 if (cpus_askedfor () > 0) {

40 /* First check whether the operating system is requesting any processors
41 to be returned. If so, the current processor is released */
42

43 cpus_release self ()

44 }

45

46 if (cpus_preempted_work ()} > 0) {

47 /* Second, check whether there is amy preempted work (kernel thread)
48 If so, the current processor is used to recover it in order to
49 gquickly allow the application to continue execution */

50

51 work = cpus_get_preempted_work ();

52 cpus_processor_handoff (work);

53 }

54 }
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The first thing to do when a nano-thread terminates is to satisfy one dependence for
each successor. At this point, the library knows that it has reached a safe point where the kernel
thread has no useful context from the application point of view. The library takes profit from
this situation and makes several tests to check whether the operating system is reclaiming
processors to be returned (calling cpus_askedfor) or it has already preempted any application
work (calling cpus_preempted_work). In the first case, the library simply releases the current
processor (calling cpus_release self) and updates the current number of processors the
application is running on. In the second case, the library transfers the current processor to the
preempted work, in order to recover it as soon as possible and let it continue executing
application code (this is done calling cpus_get_preempted _work  and
cpus_processor_handoff). The number of processors currently assigned does not change. In
either case, the current kernel thread is suspended.

Finally, when the operating system conditions have been checked, the nth_cleanup
function searches for work in the application ready queue and executes it. When there is no
work to be done, the operating system conditions are continuously checked in order to release
first the processors that are not executing application work, if any.

7.2.3. Implementation of the kernel-level scheduling framework

As it has been stated in Chapter 5, the NANOS operating system level scheduling is
application-oriented and takes applications as the scheduling target. In this subsection, we
present the implementation of the main abstractions that are used by the operating system
scheduling mechanisms to manage and distribute physical processors among the running

applications.

7.2.3.1. Data structures

The kernel-level scheduling framework consists of two main data structures: the application
slots shared with the applications and the kernel internal structures. They are presented in
Figure 26. The left portion of the figure represents the shared memory area, which the kernel
shares with all the applications. This area is divided in application slots, one slot for each
application. In the right part of the figure, there are the kernel internal data structures
consisting of the work list structure, the application descriptors and the process descriptors.

With respect the memory shared with the applications, from the kernel point of view,
all application slots are readable and writable from any physical processor. The kernel reads
data written from applications and writes data to be used by the applications. The kernel does
not rely on data written by itself on this memory area, for security reasons. From the
applications point of view, each application is able to read and write to its associated slot. The
execution of parallel application relies on the information the kernel publishes in this area. The
applications can not break the kernel by writing invalid data in this region.

The information available in this area includes, inside each application slot, all the
data explained in Subsection 5.2. It is summarized in Table 8, presenting the application-wide
information, and in Table 9, presenting the information related to each virtual processor. This
information is available to both the kernel the running applications in order to cooperaie in the
kernel scheduling tasks.

An implementation could find useful to replace the global ready queues inside the
kernel by ready queues associated to each application. In this way, each application owns a
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ready queue where processes/threads are enqueued when they become ready and dequeued for
execution. In this way, it is easier for a processor to get work from its preferred application.

— - T T~
g Per-applicatiorn™ N
- virtual \
7 PTOCESSOIS | Al A0 Al| A1[A2 |A3| AQ|AQ| on...
A0 \
— ’I:H:Lﬂl:l \ work list
\
Al AQ
AN A3 DUD UUU
A2 AD
) A5 DUD I
' Application Process D
Application | A3 - descriptors descriptors
slots - (virtual processors)
-
e - Kernel internals
Shared memory

Figure 26: Data structures defined by the kernel scheduling framework

The right portion of Figure 26 represents the information needed inside the kernel
(kernel internal structures), which consists of the work list, and the application and process
descriptors. The work list is a list containing a reference to all the applications which are
requesting more processors than those allocated to them. Usually, as many references to an
application are inserted in this list as processors are needed by the application to complete its
request. This list is used to maintain working all the processors that are released by other
applications running in the system due to any reason (virtual processor blocking, lack of
parallel work inside the application, etc.) Processors released go immediately to visit the work
list to find a new application where they can go to execute a ready virtual processor.

Data contained in the array of application and process descriptors is simply the
information needed by the kemel to manage with applications and processes. This information
is mostly replicated in the shared memory area.

Name Explanation

The application identifier

The number of processors requested by the application
at any given time

The number of processors currently allocated

The number of processors currently blocked

application_id

n_cpus_requested

n_cpus_current

n_cpus_blocked

n_cpus_askedfor

The number of processors with preemption warning

n_cpus_preempted

The number of processors currently preempted

thread_info_lock

Lock to access the thread_info array

thread_info [NCPUS]

Array containing the status of each virtual processor
(see Table 9)

Table 8: Information shared between the kernel and an application
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Name Explanation

vp_id The virtual processor identifier
vp_status The virtual processor status, indicating:

RUNNING it is running in a processor

FREED ready, it is available for running

BLOCKED it is blocked in the kernel

PREEMPTED it has been preempted and can be recovered
phys_cpu The physical processor where the virtual processor is

running

vp_context The context of the virtual processor

Table 9: Virtual processor status information (thread_info)

The following subsection presents the main kernel-level algorithms that manage with
these data structures.

7.2.3.2.  Algorithms

Two main algorithms are involved in the kernel-level scheduling framework. The first one is
the algorithm that applies the current scheduling policy to distribute processors among the
running applications. The second one deals with processors released from applications and
searching for work in the work list.

Applying a scheduling policy. In this framework, physical processors are first assigned to an
application, and then they choose a virtual processor belonging to that application for
execution. Processor assignment to an application is done by the current scheduling policy.
The current policy is applied every a certain amount of time (the time quantum), or when a
processor needs to apply it to find work to perform. We have selected a time quantum of 100
milliseconds, which is commonly used for scheduling in various operating systems.

Figure 27 presents the resulting algorithm. It shows the main data structures involved
and a physical processor while executing the algorithm. The physical processor starts
executing the algorithm by collecting all the information about processor requests supplied by
the applications (step i), in the figure). Then, the current scheduling policy decides how many
processors is going to receive each application for the next time quantum (step ii)). The
allocation results are communicated to the applications (step iii)). To do that, the new
numbers about processors allocated (n_cpus_current) and processors asked for the kernel to
be released (n_cpus_askedfor) are stored in the shared memory area for each application.
From that point, the application knows that after a grace time, the processors will be stolen by
the kernel. Finally, the work list structure is used to state which applications are going to
receive new processors in the next time quantum (step iv)). Two kind of references to
applications are stored. First, the kernel stores references to the applications that it has already
decided to assign processors. Next, it stores references to applications that could receive more
processors than those assigned when any processor is released from other applications. For
each different new processor, a different reference is added.
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Figure 27: Algorithm for applying the kernel-level scheduling policies

After applying the previous algorithm, some applications are going to loose
processors either because the application detects at user-level the n_cpus_askedfor request
and calls cpus_release_self () or when each physical processor enters the kernel, it detects
that it should not be allocated to the current application and the grace time for releasing it has
expired. Reaching this point, the processor is ready to apply the algorithm to search for new
work to perform. The algorithm is described next.

Searching for work in the work list. Any free (idle) processor at kernel-level, or any processor
that has detected that should change its allocation to another application, executes the
algorithm to search for new work in the work list, presented in Figure 28. It first visits the work
list to find a reference to an executing application which has not all its processor requests
satisfied (step i), in the figure). Then, it informs the applications involved in the change of the
assignment. If the processor was idle, it has to inform the new application that it is going to
start working for it. If the processor was allocated to another application it marks its previous
virtual processor as stolen and saves the context in the shared memory area before assigning to
the new application. In the figure, this is represented in step ii), which assumes that the
processor was assigned to application A0 and it is now assigned to application A1, which
corresponds to the first entry in the work list. Finally, the processor searches for a released or
stolen virtual processor in the new application and exits to user-level, to participate in the

application work (step 1i1), in the figure).
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Virtual processors exit to user-level

- - it
P Per-task ™ N
g . virtual \ 4 ’ A
N Processors \
A0 \ /Al /AO/AI Al|A2 A3 AQOTAQ| cveens
~ \\ see
i) work list
Al
i Kernel internals

A2
Application | A3 'DBDD

slots
— . assraran - -
e Physical processors
Shared memory (searching for work )
Figure 28: Algorithm for searching for new work in other applications

This scheduling framework has been implemented inside a user-level CPU Manager,
sharing memory with the running applications for the evaluation of the complete execution

environment in the Origin2000 machine.
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Programming
Examples

Abstract

In this chapter, we present three interesting parallelizations
that we have achieved in this work. In the first place, it shows how the
LU decomposition benchmark can be parallelized using nano-thread
bursts. The second example presents the annotated version of a portion
of the HYDROZ2D application, exploiting multiple levels of parallelism,
and the resulting parallel code. Finally, the last example shows the
structure of the NAS BT application and explains two different
approaches for parallelize it.

Frank Pocle: “... There's a very good piece of
advise I've often found useful: ‘Never attribute to
malevolence what is merely due to incompetence.” ..."

“3001, The Final Odyssey”, Arthur C. Clarke,
Ballantine Beooks, New York, March 1997.
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8.1.Hand coded benchmarks: LU decomposition

Along the development of this thesis, 2 number of hand-coded benchmarks have been useful to
help in the design and test of the NthLib threads library. Among them, we present in more
detail the LU benchmark because it is a good example of use of the application level
scheduling techniques based on nano-threads bursts.

The LU benchmark computes the LU decomposition of a matrix. The Example 8.1-
(1) presents the sequential and parallel codes. The LU sequential code consists of a main
sequential loop (k loop, in the example), which iterates over the columns of the matrix. Inside,
there are two parallel loops. The first one iterates over the elements of the current columns,
dividing them by the element in the diagonal. This is a small cost loop with respect to the
second one. The second loop is double nested and it iterates over the elements remaining

between k+7 and N, both in rows and columns.

Example 8.1-(1). LU decomposition
Sequential code. Parallel code. (continued on Example 8.1-(2))
1 double A[N][N]; 1 double A[NI]INI;
2
2
3 veid 1lu () 3 veid 1w ()
4 { 4 {
5 for (k=0; k<N; k++) { 5 int k;
[ for (i=k+1; i<N; i++) { 6 !
7 Ali} (k] /= A[k]Ik]: 7 Eor (k=0; k<N; k++) {
8 } o 8 parallel lu loop 1 {(k, N, A);
9 for (i=k+l; L<N; ii4) { 9 parallel_lu_loop_ 2 (k, N, A);
10 for (j=k+l; j<N; j++) { 10 }
1L ALA113] -= AL DRI#ADRIL3D: | 4;
12 }
13 }
14}
15  }

The parallel version has been hand-coded following the conventions decided during
the design phase of NthLib. Both loops have been replaced by a call to a function which
spawns the parallelism (parallel_lu_loop_1 and parallel_lu loop_2). Both functions receive
the same arguments: The current iteration (k), the size of the matrix and a reference to the
matrix. These functions are the same, except that each one creates nano-threads on functions
implementing different loop bodies ({u_loop_1 and lu_loop_2, respectively). Example 8.1-(2)
also shows the function parallel_lu_loop_2 (see next page). This function creates nano-thread
bursts (with nthf_burst_create, nthf_block and nthf_burst_wait, in lines 8, 27 and 43)
as are shown in Figure 14a (see Chapter 3). Observe that after creating the nano-thread
controlling the barrier synchronization, the loop in line 9 iterates over nano-thread bursts. In
each iteration, the scheduler nano-thread checks the number of processors ailocated to the
application (line 10). This avoids to generate work on processors preempted by the operating
system. It also allows to use newly allocated processors for the actual burst, adapting to the
system conditions. The conditional in line 18 checks whether enough iterations remain to
spawn a complete burst. If so, the scheduler generates the first part of the current burst,
creating as many nano-threads as processors and supplying them for execution (lines 20-22).
Next, it creates the dispatcher nano-thread (line 23) and the second part of the burst (lines 24-
26). Then it blocks, waiting for the execution of the dispatcher nano-thread. When this nano-
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thread has been executed, this means that at least one processor has terminated its work and the
next burst is generated. Lines 29 to 41 generate a partial burst for the last loop iterations. Along
the loop execution all nano-threads created receive the nano-thread controlling the barrier
synchronization as their successor, and as such, its number of precedences is incremented
accordingly (lines 19 and 34).

Lines 46 to 57 contain the function Ix_loop_2, encapsulating the loop body. This
function is executed by all nano-threads. It receives as arguments the iterations they have to
execute (min and max), the current iteration k£, the dimension of the matrix and a reference to

the matrix.

8.2. Applications

From the six applications used for evaluation in this thesis, there are two (SPEC HYDRO2D
and NAS BT) that benefit from exploiting multiple levels of parallelism. We show now their
internal structure and how they have been parallelized [85].

8.2.1. SPEC 95 HYDRO2D

The HYDRO2D application solves the hydrodynamical Navier Stokes equations to compute
galactical jets. It offers two levels of parallelism worth to be exploited. Several subroutines can
take advantage of being split in parallel sections, at an outer level. At an inner level, each one
of the parallel sections usually contain parallel loops sometimes encapsulated in other
subroutines. As an example, Figure 29 shows the structure of subroutine ADVNCE (in the
center of the figure) and related subroutines. This set of subroutines is called repeatedly during
the execution of HYDRO2D for each timestep. As can be observed, subroutine ADVNCE
starts with a parallel loop (in BBF) and then three parallel sections can be spawned, each one
containing different subroutine calls (CORIF, STAGF1 and STAGF2). CORIF contains a
parallel loop. STAGF1 and STAGF2 are showed in the right side of Figure 29. Each one
contains four parallel sections containing parailel Ioops. Subroutine ADVNCE continues
calling subroutines TRANSI/TRANS2. Their internal structure is presented in the left side of
the figure. Finally, subroutine ADVNCE calls four times the subroutine FCT, each time
working with different data, so the calls are independent. Inside FCT, loop level parallelism is
exploited again. Only the execution of the subroutine FCT accounts for the 61% of the total
execution time of HYDRO2D application. This is of importance because we are taking
advantage of multiple levels of parallelism in a significant portion of the application and we
are obtaining good results (see Subsection 9.3.4, where the HYDRO2D application is

evaluated).
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Example 8.1-(2). LU decomposition (continued)

1 void parallel_lu_loop_2 (int k, int n, double A[IN][N]}

2 {

3 int vp;

4 int i = k+1;

5 gtruct nth_desc * nth _end chunk;

6 gtruct nth_desc * nth;

7

8 nth end chunk = nth_burst_create (1l};

[} while (i<n} {

10 int lkthreads = nth_cpusg_ cuxrent ();

i1 unsigned int first = lkthreads;

12 unsigned int last = lkthreads;

13 ungigned int dim = (n-(k+1}) / (lkthreads*4);

14 int diml; {
15 if (dim==0) dim = 1; ;
16 diml = n - dim*(firat+last); t
17 r
18 if (di<diml) {

19 nth depadd (nth_end chunk, first+lasgt);

20 for (vp=0; vp<first; vp++, I+=dim) {

21 nth = nth create 1s (lu_locp_2, 0, vp, nth end chunk, 5, i, i+dim, k, n, A);
22 3

23 nth_digpatcher create (nth_self (}):

24 for (vp=0; vp<last; vp++, i+=d4im) { {
25 nth = nth create_lg (lu_loop_2, 0, vp, nth end chunk, 5, i, i+dim, k, n, A);
26 }

27 nth_block (};

28 }

29 else {

30 diml = n-i;

31 first = diml / dim;

32 diml %= dim;

33 if (diml>0 && first==0) first = 1, dim = 0;

34 nth_depadd (nth_end_chunk, first);

35 nth = nth _create 1s (lu_loop 2, 0, 0, nth_end_chunk, 5, i, i+dim+diml, k, n, A);
36 i += dim+diml;

37 for {(vp=l; wvp<first; vp++, i+=dim) {

38 nth = nth_create_ 18 {(Ilu_loop 2, 0, vp%lkthreads, nth end chunk,

39 5, i, i+dim, k, n, 4);

40 }

41 }

42 }

43 nth_burst_wait (nth_end_ chunk);

44 }

45

46 void lu_loop_2 (int min, int max, int k, int n, double A[N][N])}

47 {

48 int i = min;

49 while (i<max) {

50 int § = k+1;

51 while (j<n) {

52 A[i] [§] -= A[il[k] * AlkI[3];

53 ++3;

54 1

55 ++i;

56 }

57 }
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subroutines trans/trans2: subroutine advnce: subroutines stagfl/stagf2:

nested loops: s
subroutine calls: k, I, m, n, 0, p, g, T
nested loops: a, b, ¢, d, ¢, | (with parallel loops inside)
subroutine calls: f, g, h, i
(with parallel loops inside})  nested loops: 1, 2
subroutine calls: 7, 8, 9, 10
(with paraflel loops inside)}

Figure 29: Structure of subroutine ADVNCE and opportunities for parallelization

An important property of the structure of the subroutine ADVNCE is that along the
different parallel sections, the same data is accessed. For instance, nodes labeled k and o (in
STAGF1), nodes b and f (from TRANS1) and node 7 (in ADVNCE), all work on matrices
named RON and RO. Nodes 1, p, ¢, g and 8 work on matrices ENN and EN, and so on. This
means that driving a processor to work on these nodes will benefit data locality. Besides, this is
an opportunity to distribute processors to execute different sections, thus enlarging the working
set of each processor in each parallel section where it participates. The result is that subroutine
ADVNCE can establish four groups of processors, each group executing along one of the
parallel sections.

The execution environment proposed by OpenMP talks about zeams of processors, as
a concept related to orphan DO / SECTIONS directives. When a processor reaches an orphan
directive, either a previously PARALLEL directive has defined the team of processors to work
in parallel or the parallelism has not been spawned and, then, the team consists of only one
processor. We generalize this idea to allow that inside a parallel region more parallelism could
be exploited. The Example 8.2-(1) shows the original code of a portion of the subroutines
ADVNCE and FCT. Subroutine ADVNCE calls four times to subroutine FCT with different
data to work. Subroutine FCT contains a series of parallel loops, like the one shown in the
figure.

Processor groups or feams are established using a few extensions to OpenMP. The
annotated application resulting after directive insertion is shown in the Example 8.2-(2). The
number of processors is got from the operating system interface using the
nthf cpus_current primitive (line 24). The number of processors got here will be used along
all the parallel section to generate parallelism and in the work sharing constructs to distribute
work. The threads library is aware of ensuring execution of at least ncpus virtual processors
during the execution of the parallel section. The number of independent parallel sections is
computed in line 25 as the minimum value between the number of available processors and the
maximum number of sections (four, in this case). After that, the parallelism is spawned. Each
paraliel section is mapped onto a specific processor using the ONTO clause on the SECTION
directives. The expression supplied evaluates to the identifier of the virtual processor where
the section should be executed. In case 8 processors are available (ncpus=8), the sections are
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started in virtual processors 0, 2, 4 and 6. The interface of the subroutine FCT has been
modified to receive the group configuration in order to correctly spawn the inner level of
parallelism. For instance, from the first section point of view, only two processors are available
and they are numbered 0 and 1. The second section will use processors 2 and 3, and so on.

Example 8.2-(1). HYDRO2D original code
1 SUBROUTINE ADVNCE

2 cen

3 CALL FCT { RON , RON , RO }

4 CALL FCT { ENN , ENN , EN )

5 CALL FCT { GZN , GZN , GZ }

6 CALL FCT { GRN , GRN , GR }

i -

8 END

]

10 SUBROUTINE FCT ( UNEW, UTRA, UOLD }
11 aas

12 DO 100 J = 1,NQ

13 Do 100 I = 1,Mpl

14 EK = DT / DZ(I)

15 DE = DC{ EK , VZB1{(I,J) )

16 AR = AC{ EK , VZ1{(1,TJ) )

17 DZ1(I,J) = { DE + VCL(I,J) } * { UOLD{X+1,3) - UOLD(I,J)} )
18 AZ1(I,J) = AK * { UTRA(I+1,J) - UTRA(I,J) )
19 100 CONTINUE

20

21 END

With respect the subroutine FCT, shown in Example 8.2-(2), the parallel loop is
specified using a PARALLEL DO directive, with WDSTATIC scheduling for high
performance of the inner-level of parallelism, PRIVATE variables EK, DK and AK and the
CPUS and RELATIVE extended clauses are used. The CPUS clause specifies an expression
indicating that NCPUS/NSECT processors should be used in this parallel loop. Assuming
eight processors were available in ADVNCE, NCPUS/NSECT=8/4 = 2 processors should be
used in this loop. The next question is which processors should be used. Using the RELATIVE
clause, the programmer specifies that the processor reaching the paraliel loop is the processor
with the lowest identifier to participate in its execution. This processor becomes the master of
the group. It will execute the loop as processor 0 and NCPUS/NSECT-1 processors with
higher identifier, numbered consecutively will help in the execution as slave processors. In the
running example, assuming 8 available processors, the loop inside the first section (FCT
(RON...)) is executed using processors 0 and 1, which is what was previously planned. Not
shown here, there is the possibility of specifying that the work supply should be done in the
virtual processors identified by their absolute number. This would be done using the
ABSOLUTE clause, instead of RELATTVE.

For completion, the Example 8.2-(3) shows the parallel code generated by the
NANOS compiler. Lines 59 to 69 in subroutine ADVNCE are the code executed by the
scheduler nano-thread to create the four parallel sections and supply them to the appropriate
processors. After creation, the scheduler nano-thread blocks, waiting for the termination of all
sections, and the virtual processor goes to execute the first parallel section, along with the slave
processors. Each nano-thread created executes a subroutine containing a call to the subroutine
FCT, passing the appropriate arguments for each section (lines 73 to 76). Inside the subroutine
FCT, the code for spawning the second (inner-most) level of parallelism uses work-descriptors
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for performance (lines 80 to 89), supplied individually to build the groups of processors.
Notice here how the RELATIVE clause causes the generation of the code in lines 80-81 to
determine in which virtual processor the code is running. The virtual processor identifier
obtained is set as the master of the new parallel region and it is used as the starting point to

supply the new parallelism.

Example 8.2-(2). HYDRO?2D annotated code (extended OpenMP)

22 SUBROCUTINE ADVNCE

23 e

24 NCPUS = nthf_cpus_current ()
25 NSECT = min{4, NCPUS)

26 C$0MP PARALLEL
27 C%OMP SECTICNS
28 C30MP SECTION ONTC{mod(0,NSECT)* {NCPUS/NSECT))

29 CALL FCT { RON , RON , RO , NCPUS, NSECT)
30 C40MP SECTION ONTO (mod(l,NSECT)}* (NCPUS/NSECT)}
31 CALL FCT ( ENN , ENN , EN , NCPUS, NSECT)
32 C$0MP SECTION ONTO {mod(2,NSECT)* (NCPUS/NSECT))
33 CALL FCT { GZN , GZN , GZ , NCPUS, NSECT}
34 C$OMP SECTION ONTO (mod{3,NSECT)*(NCPUS/NSECT))
35 CALL FCT ( GRN , GRN , GR , NCPUS, NSECT)

36 C$OMP END SECTIONS
37 C$OMP END PARALLEL

38 “en

39 END

40

41 SUBROUTINE FCT { UNEW, UTRA, UQLD , NCPUS, MNSECT}
42 “en

43 C5CMP PARALLEL DO SCHEDULE (WDSTATIC) PRIVATE(EE,DK,AK)
44 C$OMP& CPUS{NCPUS/NSECT} RELATIVE

45 Do 100 I = 1,NQ
46 DO 100 I = 1,MQL

47 EK = DT / DE{I}

48 DK = DG{ ER , VZL(I,J)} )

49 2K = AC( EE , VZI{I,J} )

50 DZL{I,JT) = { DR + VC1(I,J) ) * { UOLD{I+1,J) - UOLD{I,J} )
51 AZ1(I,J) = AK * { UTRA{I+1,J) - UTRA(I,dT) }

52 100 CONTINUE
53 e
54 END

The inner-most level of parallelism starts executing subroutine fct_loop_024 (line
93), which contains the body of the parallel loop. This subroutine receives as arguments,
among other, the identifier of the virtual processor where it is running on (nth_me_024), the
number of processors participating in the parallel loop (nth_nprocs_024) and the identifier of
the master processor for the current parallelism (nth_firstcpu_024). With these arguments, the
current processor obtains the portion of the loop that should execute (lines 96 to 104). Then, it
enters the execution of the loop body (lines 105 to 113). Other arguments passed to this
function are variables that the compiler has found in the loop body and that are neither declared
as PARAMETER nor residing in COMMON blocks.

The evaluation of the execution of the HYDRO2D application is shown in Chapter 9,
where the results of the multi-level paralielization are compared with those of the single-level

version.
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Example 8.2-(3). HYDRO2D parallel code (calling NthLib)

55 SUBROUTINE advnce

56 ces

57 ncpus = nthf_ cpus_current ()}

58 nsect = min(4,ncpus)

58 CALL nthf depadd(nthf_self{),05)

60 nth_mask = 0

61 nth = nthf create ls({advnce_s_031,0,mcd{3,nsect) * (ncpus / nsect),
62 nthf self(),nth mask,2,ncpus,nsect)

63 nth = nthf create_ls{advnce g _030,0,mod(2,nsect) * (nepus / nsect),
64 nthf self(),nth mask, 2,ncpus,nsect)

65 nth = nthf create_ls(advnce_s 029,0,mod({l,nsect) * (ncpus / nsect),
66 nthf self(},nth mask,2,ncpus, nsect)

87 nth = nthf create ls{advwace $ 028,0,mod(0,nsect) * (ncpus / nsect}.,
[£:] nthf self () ,nth mask,2 nopus,nsect)

69 CALL nthf _block(}

70 ces

71 EMND

72

73 SUBROUTINE advnce_sg_ 028 (ncpus,nsect}

74 -

75 CALL fect{ron,ron,ro,ncpus,nsect)

76 END

77

78 SUBROUTINE fct (unew,utra,ueld,ncpus,nsect)

79 “ee

BO nth_selfv 024 = nthf self()

81 nth cpuv_024 = nthf_cpu(nth_selfv 024)

82 nth_nprocs_ 024 = ncpus / nsect

83 CALL nthf wdereate(nth_wdesc_024,fct_loop_024,nth_selfv 024,07,nth nprocs_ 024,
84 nth_cpuv_024,azl ,utra,uold,vel, dzl)

85 CALL nthf depadd({nth selfv 024,nth nprocs_024 + 1)

86 00 nth p 024 = nth_cpuv 024,nth nprocs 024 - 1 + nth cpuv 024
87 CALL nthf_wdsupply(nth p_ 024,nth_wdesc 024}

88 END DO

3] CALL nthf_ endsupply(nth_selfv_024)

90 -

91 END

92

a3 SUBROUTINE fct_loop_ 024 (nth me_024,nth_nprocs_ 024,

o4 nth firstepu_024,azl,utra,vuold,vel,dzl)
95 s

96 nth_lme 024 = nth me 024 - nth firstcpu 024

97 nth bottom 024 = 1

98 nth_top_024 = ng

89 nth niter 024 = nth_top_024 - nth_bottom 024 + 1

100 nth_rest_024 = mod(nth niter_024,nth nprocs _024)

101 nth_chunk 024 = nth niter 024 / nth nprocs_024

102 nth_down 024 = min(nth_ lme_ 024,nth reszt 024)+nth bottom 024+nth_chunk_ 024*nth lme 024
103 ath palance 024 = nth lme_ 024 .LT. nth _rest 024

104 nth up 024 = nth down_024 + nth chunk 024 + nth_balance 024 - 1
105 DO j = nth_down 024,.nth up_ 024

106 DO 100 i = 1,mgl

107 ek = dt / dz(i)

108 dk = de(ek,vzl({i, i)}

109 ak = ac(ek,vzl{i,j))

110 dz1{i,3} = {(dk + wel{i,F)) * (uold{(i + 1,j}) - uweld{i,di))
111 azl(i,j) = ak * {(utra(i + 1,3) - utra(i,j)}

112 100 CONTINUE

113 END DO

114 END
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8.2.2. NAS BT
The NAS BT benchmark [10] solves three sets of uncoupled block tridiagonal systems of
equations, first in the x, then in the y and finally in the z direction. Each block contains 5x5
elements. These systems arise in many CFD applications.

Figure 30 shows the structure of the application. An iterative loop sequentially calls to
routines compute_rhs, x_solve, y_solve and z_solve. The dependences in these routines
determine which loops can be parallelized. For instance, x_solve carries the dependence in the
first dimension being the loops that traverse the second and third dimension completely
parallel; similarly, y_solve carries the dependence in the second dimension and z_solve in the
third dimension. A possible strategy would be to parallelize the loop that traverses the third
dimension in routines x_solve and y_solve and parallelize the loop that traverses the second
dimension in routine z_solve. Although this parallelization strategy implies totally parallel
loops, it suffers from the data movement overhead (transposition) that occurs when going from
y_solve to z_solve and back again.

Figure 30: Internal structure of the NAS BT application

The data movement overhead of the transposition can be avoided if the third
dimension is also parallelized in z_solve; this requires the use of the OpenMP ORDERED
clause and directive that forces the sequential execution of the distributed loop iterations. In
order to allow a pipelined execution of the ORDERED dimension, loop blocking is applied. In
this way, a chunk of iterations in processor p+1 is executed when the same chunk of iterations
finishes its execution in processor p. Figure 31 shows the data distribution among processors
and the resulting execution model for the one-dimensional parallelization in the z_solve
routine. Although this introduces the overhead of blocking and synchronization, the overlap of
different chunks in different processors results in an improved performance.

When the number of iterations is small to fed a large number of processors, two
dimensions are worth to be parallelized. In order to avoid data movement, our strategy
parallelizes the second and third dimension in all the routines. This implies that two
dimensions are executed in parallel in x_solve, but one of the two dimensions parallelized are
executed in an ORDERED way in both the y_solve and z_solve routines. Figure 32 shows the
data distribution performed among processors and the resulting execution model for the
multidimensional parallelization in the z_solve routine.
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Figure 31: One-dimensional data distribution and pipelined ORDERED execution
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Figure 32: Two-dimensional data distribution and pipelined ORDERED execution

The evaluation of the execution of the NAS BT application is shown in Chapter 9,
where the results of the multi-level parallelization are compared with those of the single-level

version.
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Evaluation

Abstract

This chapter presents the performance evaluation of the
NANOS parallel execution environment. The performance evaluation is
carried on a Silicon Graphics Origin2000 computer. Along the
evaluation, the main contributions of this thesis are validated The
results are compared with the performance of the native parallel
environment shipped with the Origin machine.

Molins de Rei - Platja de Gava (by bike)

Dist. Avg, Accum. time _
(lamn) (km/h) (h:mm:ss)
Molins de Rei )

Torrelletes 12,92 19.7 0:39:15
Begues 16.02 18.4 0:58:31
Gava, platja 33.45 19.4 1:43:16
Gava 39.22 - -
Pic de Sant

Clirnent 46,47 - -
Sant Boi 47.76 19.7 2:25:22

Molins de Rei 58.07 20.0 2:54:08
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9.1.Performance evaluation environment

The design and implementation of the NANOS paralle] execution environment has been
carried on a Silicon Graphics Origin2000 machine [139][72]. The machine is owned by the
European Center for Parallelism of Barcelona (CEPBA [46]). It has sixty-four R10000 MIPS
processors [61] ranning at 250 Mhz (chip revision 3.4). Each processor has separated 32 Kb.
primary instruction and data caches and a common 4 Mb. secondary cache. The CC-NUMA

architecture of the machine is explained in the Subsection 1.2.3.1.

The Origin2000 computer is running the Silicon Graphics IRIX 6.5 operating system,
shipped by Silicon Graphics. The operating system provides low level tools for analyzing the
performance of parallel applications, including support for collecting the performance counters
of the R10000 processors or tracing the system calls invoked by the processes. Silicon
Graphics provides also tools to parallelize applications and run them in parallel.

All the benchmarks and applications used for evaluation in this chapter have been
compiled to run on both the SGI MP and NANOS environments. We have used the native
MIPSpro F77 to parallelize the programs to run in the SGI MP environment. Input source
programs were previously annotated with standard OpenMP directives. The SGI MP
environment has been described in Chapter 6 (Subsection 6.1.9).

We have used the NANOS compiler to generate parallel code to run on the NANOS
execution environment. The input source files to the NANOS compiler have been annotated
with the extended OpenMP directives proposed in this work. The NANOS compiler generates
an intermediate Fortran file, containing calls to NthLib. This intermediate file is then compiled
through the native MIPSpro F77 compiler and linked to Nthiib.

Compilation of all the benchmarks and applications in both environments has been
done using the same command line options for the native MIPSpro F77 compiler: -64 -mips4 -
r10000 -Ofast=ip27 -LNO:prefetch_ahead=1.

The following sections present the results of the performance evaiuation and
comparison of both environments. The evaluation is done through the following types of
experiments:

* Evaluation of the overhead introduced by the user-level execution environment on the

parallel applications.
 Evaluation of the performance of individual applications on a dedicated machine.

» Evaluation of workload performance.

9.2.Evaluation of the user-level execution environment overhead

During the development of the nano-threads library, we have evaluated the overhead of thread
management and we have found the major hardware/software issues that usually hurt
performance.

The key is that it is not enough to ensure that the thread primitives are efficient on
their own. Thread management can be done in a very simple way and the specific thread
routines can be individually very efficient. But the important question is how they perform
during a parallel execution, when they are interacting with each other.

It is more important to reduce the primitives interaction than to try to reduce the
number of instructions that any primitive contains. For example, using a counter in shared
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memory seems the best way to implement thread joining due to the simplicity of the code. But
this is usually not the case, specially in NUMA machines. We are going to show that
implementing thread creation/work supply and thread joining with more complex structures,
but taking into account the way the memory accesses are performed, we can achieve better
performance than with simpler data structures.

For this reason, in this subsection, we present the evaluation of the individual library
services, and also the evaluation of the performance of the primitives executed in a parallel
environment using a synthetic benchmark (overhead), which is specially designed to measure

the fork/join performance.

9.2.1. NthLib primitives overhead

An initial evaluation of the overhead introduced by the NthLib primitives was done in a
previous implementation in the Intel architecture. Results are presented in [88]. The overhead
introduced by NthLib in the MIPS architecture is presented in this subsection. The overhead is
measured as the execution time taken by the most common NthLib primitives and code
sequences. All the measurements done in this subsection have been obtained using the
memory-mapped free-running hardware counter provided by the Origin2000 hardware [31].
The clock resolution is as precise as 800 nanoseconds.

Table 10 presents the execution time (in microseconds) taken by four of the most-used
NthLib primitives. Two of the four primitives are related to nano-thread management
(nthf_create_ls and nthf depadd) and the other two are related to work descriptors
(nthf_wdcreate and nthf_wdsupply). Nano-thread and work descriptor creation is done with
four user arguments. The primitives are evaluated running inside a micro-benchmark, in which
we have introduced the probes needed to obtain the execution time of the primitives. The
micro-benchmark is used to measure the execution time of the different primitives, each time it
spawns parallelism. It has been run on 1 to 8 processors to demonstrate the effect of having
several processors running at the same time, and interacting with each other, on the
performance of the primitives. For each experiment, the table presents the minimum and
maximum execution times, obtained in different executions.

In Table 10, we can observe that the execution time of the nthf _create_ls primitive
increases when the number of processors running in the benchmark is greater. This is because
when supplying work to one processor, all data fits in the cache memory of the processor and
the execution is cfficient. Instead, when nano-threads are created to be supplied to other
processors, the cache lines initialized at creation time are later accessed from another processor
to execute the thread. And, when the nano-thread structure is reused to create another nano-
thread, the same cache lines (residing now in the cache of the remote processor) are reclaimed
again from the processor creating the nano-thread. This ping-pong effect causes the increment
in the execution time. Depending on how far is the remote processor, the primitive takes more
or less time, ranging from 4.8 to 10.4 microseconds when running the experiment in &
processors. The minimum time correspond to executions where the two processors involved in
the nano-thread creation are close. Maximum times correspond to a larger distance between the
processors involved. The execution time of this primitive can be taken as a reference of the
nthf_burst_create and nthf_dispatcher_create primitives, which consist of a single

nthf create_ls.

The same happens to the nthf_depadd primitive. When running on one processor, the
primitive is very efficient initializing the precedence counter of the calling nano-thread. But
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when several processors have previously accessed the counter for writing, they leave the
modified value in a remote cache and the primitive spends more time waiting for the coherence
mechanism in the Origin2000 to get the value from there. The execution time reaches a top
limit at 4 microseconds.

Compare the previous results with the next two primitives. The primitive
nthf_wdcreate only packs its arguments into a work descriptor. Initializing the descriptor and
copying four arguments takes a maximum of 1.6 microseconds. And the primitive
nthf_wdsupply only stores a pointer to a descriptor in a work descriptor array of pointers after
computing the next free location. Although its execution time depends on the number of
processors, it is at least three times faster than nthf_create_1s under all conditions.

NthLib primitives Processors | Execution time (in us.)
16-24
4.8-8.8
4.8-9.6
4.8-10.4
< (.8
24-32
32-4.0
32-4.0
<0.8
<0.8
08-16
0.8-1.6
<08
0.8-1.6
1.6-2.4
2.4-32

Table 10: NthLib primitives evaluation

[y

nthf_create_1s (4 user arguments)

nthf_depadd

nthf_wdcreate (4 user arguments)

nthf_wdsupply

ok |oo(d | |— oo |k |to]l—|oo|d e

The execution time of the two most common code sequences for supply work to
processors are presented in Table 11. In the first place, the calling sequence for spawning
parallelism using nano-threads consists of a call to nthf_cpus_current to determine the
number of processors currently allocated, a call to nthf_depadd to initialize the precedence
. counter and as many calls to nthf_create_1s as needed to supply work to the given number
of processors. Execution times quickly grow to a hundred microseconds when running on 8
processors. This sequence is shown in the Example 4.5 (lines 11 to 31), presented in Chapter 4.

On the other hand, the calling sequence for spawning parallelism uwsing work
descriptors consists of the same calls to nthf_cpus_current, and nthf_depadd, plus a call to
nthf_wdcreate and as many calls to nthf_wdsupply as the number of processors assigned.
This code sequence is shown in the Example 4.7 (lines 10 to 18), presented in Chapter 4.
Observe that, again, the execution times of the work descriptor sequence is three times faster
than the nano-threads one. The important difference here is that while when using nano-threads
a new local address space (stack) is allocated and initialized, when using work descriptors the
work is efficiently represented by a work descriptor and supplied to the processors without the

need of nano-thread creation.
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NthLib common S e
. Processors | Execution time (us.)
creation sequences
1 24-4.8
Spawning parallelism 2 18.4-24.0
USil'lg nano-threads 4 38.4-584
8 744-111.2
i 1.6-24
Spawning parallelism 2 7.2-96
using work descriptors 4 12.0- 14.4
8 28.8-32.2

Table 11: Evaluation of common creation sequernces

9.2.2. NthLib fork/join overhead

In order to evaluate the overhead of the fork/join mechanisms used in NthLib, we have
implemented a specific benchmark which stresses the thread creation and joining primitives.
Using this test, we have measured all the thread creation techniques (nano-threads and work
descriptors) and the joining mechanisms (shared counter and the joining distributed structure).
Experiments presented here include the evaluation of one and two levels of parallelism.

9.2.2.1, Evaluation of the one-level parallelism overhead

Parallel applications are usually parallelized using one-level of parallelism. For such
situations, NthLib allows to use both work descriptors and nano-threads. The motivation is
that, on one side, for each fine-grain work sharing constructs you should use work descriptors
in order to attain good performance. On the other side, nano-threads allow to use advanced
scheduling techniques at user-level. In cases where the amount of work is enough, such
scheduling techniques can improve performance.

The overhead benchmark (see Figure 33) consists of a main loop which performs
1000 iterations. Each iteration of the main loop spawns and joins parallelism on the desired
processors, from I to 64. The work supplied to each processor (subroutine cost) is an
unoptimized empty loop doing a number of iterations. As much as twelve experiments have
been done, varying the cost of the inner-most loop, from 1024 to a million and a half iterations.
From them, we have selected six representatives, labeled #0, #2, #4, #6, #8 and #9. For each
experiment, Table 12 presents the cost of the work which would be performed by each
processor in absence of overhead, measured both in microseconds and number of iterations per
processor, from a real fine-grain parallelism to a more coarse grain parallelism. For instance,
when running on 4 processors, the benchmark #2 spends 24.8 microseconds to perform 4096
iterations of the inner loop (1024 iterations per processor). Some of the numbers of iterations
to perform have been selected to be divisible by 24 and 48 processors.
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PROGRAM overhead
integer iter, i
integer N,M
integer cost

READ (*, 10) N ! 1000
READ (*, 10) M t 64, 192
READ (*, 10} cost 1 16 - 2048

10 FORMAT (I)

do iter = 1, W

CS0MP PARALLEL DO SCHEDULE (WDSTATIC) LOCAL{I)}) SHARED{cost

do 1 =1, M
call work (cost)
enddo
enddo
END

Figure 33: Source code of the overhead benchmark

Microseconds/ Experiment number/
Iter. per proc. Overhead (number of empty iterations)
Processors #0/ #2/ #4/ #6/ #8/ #9/
1024 | 4096 | 12288 | 49152 | 196608 | 393216
1 24.8/ | 992/ 297/ 1188/ 4755/ 9510/
1024 | 4096 | 12288 | 49152 | 196608 | 393216
4 6.20/ | 248/ | 74.5/| 297/ 1188/ 2377/
256 | 1024 | 3072 | 12288 | 49152 | 98304
8 3.10/ | 124/ 37.2/| 149/ 594/ 1188/
128 5121 1536 | 6144 | 24576 | 49152
16 1.55/ | 6.20/ | 18.6/| 74.5/ 297/ 594/
64 256 768 | 3072 | 12288 | 24576
3 077/ 3.10/| 930/ | 37.2/ 149/ 297/
32 128 384 ¢ 1536 6144 | 12288
64 0.39/ | 1.55/| 4.65/| 18.6/ 74.5/ 149/
16 64 192 768 3072 6144

Table 12: Microseconds and iterations per processor
spent by each processor in the overhead benchmark

Chapter 9

Figures 34 - 36 show the performance of the overhead benchmark in each one of the
experiments, including the overhead introduced by the parallel execution environment. Each
one of the figures is associated with a column in Table 12. The figures present the execution
time taken by the benchmark when executed sequentially and using from 1 to 64 processors.
Six different versions of the benchmark are presented in each figure. SEQx is the sequential
version in each case, given as a reference. MP-FOPx and MP-SHMx are SGI-MP versions. In
the MP versions, work supply is done always through a global descriptor. Thread joining,
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instead, can be implemented using atomic operations in memory (FOP’s) or a shared memory
distributed joining structure (SHM). The NANOS environment is evaluated through the three
ways of generating work implemented. NNTH-GWDx and NNTH-LWDx are the versions
using local-supplied and global-supplied work descriptors in the NANOS environment. LWD
and GWD use 2 distributed joining structure for joining threads. NNTH-NTHXx is the version
using nano-threads and ready queues. NTH joins threads through the shared dependence

counfer.
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g MP-FOPD = 8  MP-FOP2
.% 1.68 8 MP-SEMO E« 168 8 MP-SHM2
2 w0 1 NNTHGWDO E o f 8  NNTH-GWD2
a3 % 8 NNTH-LWDQ 3 ) 0 NNTH-LWDZ
£ i 8 NNTH-NTHO 2. B & o
e (g - SEQO gt O SEQ2
E 084 2 ot i
0.56 0.56
028+ [ o PO——————
0,00 Loz tEn bEH R HE Tl Fen Hey P 0.00—"
16 24 32 40 48 56 o4 1 2 4 8 16 24 32 40 48 56 64
Processors Processors
Figure 34A: Overhead execution time Figure 34B: Overhead execution time
{in secs.) - 25 us., 1024 iterations (in secs.) - 100 us., 4096 iterations

The experiment shown in Figure 34A distributes 1024 iterations among the
participating processors. This experiment is really fine-grained. Only 16 iterations are given to
each processor when running on 64 processors. The sequential execution time (SEQQ) is very
small, as much as 0.036 seconds. All parallel implementations running on 1 processor show
some overhead. In the case of the SGI-MP library, MP-FOPO and MP-SHM perform slightly
worse in one processor (they take 0.040 seconds) because of the extra code of checking the
number of processors available and deciding to proceed sequentially. The efficient NNTH
implementations (LWDO0 and GWD0) take around 0.040 seconds also, spawning parallelism
on one processor. The NTHO experiment spends more time (0.043 seconds) due to the creation

of the nano-threads.

The different implementations evolve in a similar way when more processors are
used. Nearly all the execution time shown in the plot is due to the overhead of the run-time
execution environment. For this reason, the graph does not show any speedup in the execution
time. The plot shows that the overhead increases linearly with the number of processors. The
NTH implementation is the exception when using 64 processors. Usually, the SGI-MP
implementations suffer from more overhead when running in less processors (2-8), probably
because the SGI-MP library is tuned for working with a large number of processors. From 32
processors and above, the FOP implementation beats the SHM one. This agrees with the goal
of the FOP implementation which is to ensure a good synchronization behavior when running

in a large number of processors.

The NNTH implementations have different behavior when the number of processors
increases. The GWD technique performs usually as well as the MP versions. The LWD
technique shows slightly more overhead than the previous commented implementations. The
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direct cause for this behavior is the way the work is provided to the processors, one at a time,
instead of through a giobal work descriptor. Supplying the work in this way enlarges the
critical path of the application each time the master processor needs to generate work. Even
with this drawback, LWD behaves comparable to the MP library. Both the GWD and LWD
techniques are validated in this way. The NTH implementation, based on nano-threads, shows
higher overhead, when using 16 processors and more, due to the conflicts motivated by the
implementation based on ready queues and the joining counter. The overhead of nano-threads
is twice the overhead of any of the other implementations, when running in 64 processors. This
means that nano-threads, as actually implemented, are not supporting efficiently such fine-
grain parallelism.

Figure 34B shows the performance when the total number of iterations is multiplied
by four (reaching 4096). In this case, all techniques show that the overhead when running in 2
and 4 processors is large enough to compensate the benefits of having additional processors.
As a result, a slight loss of performance is observed. This means that when the work supplied
to a processor is below 25 microseconds (or 1024 empty iterations), it is not possible for the
run-time execution environment to hide the time to spawn parallelism.

When using 8 and more processors, the overhead exceeds the benefits of spawning
parallelism and the execution time starts rising. GWD2 and LWD?2 are also comparable to the
MP implementations. At 16 processors and more, the NTH implementation presents more
overhead than others. At 64 processors, the FOP and GWD implementations are comparable
and also are the SHM and LWD techniques. Only NTH shows again an overhead nearly
doubling that of its counterparts. Observe that the NNTH-NTHO bar at 64 processors is taller
than the NNTH-NTH2 bar. This indicates that most of the execution time is due to the
management of parallelism. This fact is possible because of the noticeable standard deviation

of this experiments.
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Figure 35A: Overhead execution time Figure 35B8: Overhead execution time
(in secs.) - 0.3 ms., 12288 iterations (in secs.) - 1.2 ms., 49152 iterations

Figures 35A-B show the performance of the overhead benchmark when distributing
12288 and 49152 iterations among the participating processors. The work spawned when
running in one processor is 0.3 and 1.2 milliseconds, respectively. Typical applications have
parallel constructs of this size. This graphs show that this work sizes can be efficiently
executed in no more than 8 processors. Executing in 16 processors will provide nearly the
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same improvement than executing with 8, although the number of processors is doubled.
Observe that, in these experiments, the performance of NTH4 and NTHG is already
comparable to that of GWDx, FOPx and SHMXx till the point where no more improvement is
achieved (between 8 and 16 processors). Showing a behavior comparable to the SGI-MP
environment till this point using nano-threads is interesting because it allows to exploit the
same amount of parallelism that the SGI-MP environment, but providing (and being able to

exploit) more functionality.

832

728+

B MP.-FOP

8 MP-SHMSE

B NNTH-GWDS
]
[}

6.24 -

520

NNTH-LWD$
NNTH-NTHS
------ SEQS

416}

Execution time (in secs.)
Execution time (in secs.)

3,12 4]}

208 -1

1.04 -}

i3
0.00 =4
]

2 4 8 16 24 32 40 48 56 64
Processors

1 2 4 8 16 24 32 40 48 56 64
Processors

Figure 36A: Overhead execution time Figure 36B: Overhead execution time
(in secs.) - 4.7 ms., 196608 iterations {in secs.) - 9.5 ms., 393216 iterations
Figures 36A-B are examples of coarse grain applications, in which the work size
ranges from 4 to 10 milliseconds, when executed on 1 processor. Nevertheless, the
parallelization becomes fine grain when distributed across 32 or 64 processors (becoming as
small as cents of microseconds). Again, the comparison of the different techniques shows that
they behave similarly. As a result, applications containing parallel tasks on the order of
milliseconds can exploit parallelism efficiently using 16-24 processors. Beyond that number,
we think that this is the point where applications can exploit multiple levels of parallelism. The
nano-threads implementation can be used to spawn the higher levels of parallelism, while the
work descriptor approaches will be used for the inner level.

To complete the study of the different techniques we present also a plot in Figure 37,
showing the cache behavior in the set of experiments running on 32 processors.
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Figure 37: Cache misses, external interventions and invalidations related to execution time
in the overhead benchmark running on 32 processors
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Figure 37 compares, with respect the cache behavior, the five techniques for work
generation (FOP, SHM, GWD, WD and NTH). Each bar represents the execution time of the
benchmark running on 32 processors, running the experiment indicated in the associated label.
For instance, NNTH-LWD?2 corresponds to the experiment #2 (which performs a total of 4096
iterations) using the LWD technique. Along with the execution times of the benchmark, the
plot also presents the normalized numbers of primary and secondary data cache misses and the
normalized number of store operations requiring exclusive access to a shared cache line. These
events have been collected using the R10000 hardware event counters, through the perfex
analysis tool, provided by SGI.

Observe that for the FOP, SHM and GWD (techniques, the events presented behave
the same. For the LWD technique, the number of stores that reclaim exclusive access to a
cache line increases. This is because of the way the work is supplied to processors, one to one.
The store event is caused each time the master processor generates work, getting exclusive
access to the cache line where it stores the pointer to the work descriptor. The cache line is,
then, read by the destination slave processor, which requests shared access to the line. Thus,
one cache line per processor exchanges twice its status each time work is generated. Finally,
for the nano-threads implementation (NTH) all the events increase. This is due to the extra
functionality of allocating a nano-thread for each processor, initialize and supply them. The
important thing here is that the number of events is under control, so that nano-threads can be
effectively used for the outer levels of parallelism.

C$OMP SECTION ONTC (mod(l,nsect)*{ncpus/nsect)})}
C50MP PARALLEL DO LOCAL(I) SHARED(cost)
CS0MP& SCHEDULE {WDSTATIC)
CSOMP& CPUS(ncpus/nsect) RELATIVE
do i = 1, M/nsect
call work {cost)
! 1000 enddo

PROGRAM overhead2levels
integer iter, i

integer N,M

integer cost

READ (*, 10} W

READ (*, 10) M I 64, 192
READ (*, 10) cost 1 16 - 2048 CSOMP SECTION ONTO (mod(2,nsect)*(ncpus/nsect))

10 FORMAT (I) CSOMP PARALLEL DO LOCAL(I) SHARED(cost)
C40MPE SCHEDULE (WDSTATIC)
C80OMP& CPUS(ncpus/nsect) RELATIVE

do i = 1, M/nsect

do itexr = 1, N
call work {(cost)

nthf_ cpus_actual () enddo
min {4, ncpus}

ncpus
nsect

CSOMP SECTION ONTC (mod(3,nsect)*(ncpus/nsect})
CSOMP PARALLEL SECTIONS C40OMP PARATLEL DO LOCAL(I) SHARED({cost)
CSOMP SECTION ONTO {(mod{0,nsect)* (ncpus/nsect) )C$OMP& SCHEDULE{WDSTATIC)
CSOMP PARALLEL DO LOCAL(I) SHARED{cost} CSOMP& CPUS (nepus/nsect) RELATIVE
CS$OMP& SCHEDULE (WDSTATIC) do i = 1, M/nsect
C$OMP& CPUS (ncpus/nsect) RELATIVE call work {(cost)

do i = 1, M/nsect enddo
call work (cost}
enddo enddo
END

Figure 38: Source code of the overhead2ievels benchmark

9.2.2.2. Evaluation of the two-level of parallelism overhead

NthLib is going to be used by applications exploiting multiple levels of parallelism. For this
reason we also want to measure the overhead introduced by the library when the application
spawns multiple levels of parallelism. From our experience, the most common situation will be
to exploit two levels of parallelism: A first level consisting of parallel sections and a second,
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inner level, consisting of parallel loops. This is the case we have modelled with the
overhead2{evels benchmark, whose code is shown in Figure 38. The code presented consists of
4 parallel sections containing parallel loops, a common structure found in real applications
(HYDRO2D, TURB3D, see Chapter 8). The amount of work done by the two-levels overhead
benchmark is the same that the work done by the one-level version (Subsection 9.2.2.1). For
this reason, we can compare the overhead introduced by NthLib in the two versions.

Figures 39A and B show a comparison between the LWD- and NTH-based singie-
level versions of the overhead benchmark against the following versions of the
overhead2levels benchmark: NNTH-2L4x corresponds to the code presented in Figure 38,
where 4 parallel sections are spawned at the outer level. NNTH-2L16x and NNTH-2L32x
corresponds, respectively, to experiments spawning 16 and 32 parallel sections at the outer
level. Executions are done using from 1 to 64 processors and the execution time is presented.
The overhead of the two-level parallelizations depends on the number of processors used and
the amount of work supplied. In Figure 34A, for a small number of processors (1-8) and a
limited number of parallel sections (experiment NNTH-2L.4-2), the overhead is comparable
with the single-level versions. Instead, the overhead of spawning the outer level on 16 or 32
processors is noticeable (experiments NNTH-2L16-2 and NNTH-21.32-2). This is because
those experiments create 16 or 32 nano-threads for the parallel sections and they have to be
executed on the limited number of processors available. With that overhead, the execution time
of the two-levels benchmark more than doubles the execution time of the single-level
- benchmark. When the number of processors increase, the overhead is not so noticeable. This
means that for applications with fine-grain two-level parallelism, the performance on a small
. number of processors will be worse than when using a single-level, but they could take
advantage of the multiple levels when using a larger number of processors.
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Figure 39A: Overhead execution time (in Figure 39B: Overhead execution time (in
secs.) using two levels of parallelism secs.) using two levels of parallelism

{100 us., 4096 iterations) (4.7 ms., 196608 iterations)

Figure 39B shows that, when the amount of work increases, the overhead on a small
number of processors does not reach 5%. On the other hand, when the number of processors is
large (8 and above), the overhead of the two-level parallelization is less than the parallelization
using nano-threads (NNTH-NTHS). This is a good result because it shows that the approach of
having an efficient way of work supply based on work descriptors is useful for the two-levels

parallelization.
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9.2.3. Conclusions of the overhead evaluation

From the previous evaluation of the overhead of the NthLib, we conclude that the nano-threads
primitives are well tuned for the underlying architecture and the mechanisms for thread
spawning and joining are at least as efficient as the mechanisms used inside the SGI MP
library.

Nano-thread creation and enqueuing is the most costly operation, its cost being, in
general, below 10 microseconds. This experiment has been run in a 64 processor machine
where the average latency for a remote memory access is around 800 ns. This means that the
number of remote memory accesses in a nano-thread creation is very limited. Probably, this
point requires further investigation to determine whether the actual number of remote accesses
can be reduced.

The work descriptors primitives, on the other hand, are really more efficient than the
nano-threads primitives. This is because the functionality they are providing is limited
compared with the nano-threads functionality. The simplicity of the work descriptors
primitives reduces the number of remote accesses and obtains a performance which is at least
three times better than nano-threads.

With respect the fork/join experiments, they show that the overhead introduced by the
NANOS environment is, most of times, comparable to the overhead introduced by the SGI MP
environment. The fork/join experiments put under stress the mechanisms designed and
implemented in this work. The results show that, even providing an extra functionality, as is
the support of multiple levels of parallelism and processor grouping, the mechanisms perform
comparable to the SGI MP ones.

A more specific experiment to evaluate the impact of these mechanisms on the
memory performance show also that the extra functionality is the cause of a slight increment
on the memory traffic.

After that, the next section, which shows the evaluation of the performance of
individual applications running in the NANOS environment, will clarify whether the
mechanisms proposed are useful for real parallel execution.

9.3.Evaluation of individual application performance

Following, we present the benchmarks and applications we have used to validate the design
and implementation of our user-level proposals (Subsections 9.3.1 and 9.3.2). Two
benchmarks and six applications are used to compare the user-level environment when running

in a dedicated Origin2000 machine (Subsections 9.3.3 and 9.3.4).

9.3.1. Benchmarks

Two synthetic benchmarks are used to evaluate some of the application-level scheduling
algorithms presented in Subsection 3.2.2. Such algorithms are implemented using nano-

threads.
Synthetic Jacobi Iteration. The Jacobi Iteration benchmark resolves a linear system of
equations. It uses a matrix of 2000 rows by 2000 columns and spends 400 iterations.

Synthetic LU matrix decomposition. This benchmark computes the LU decomposition of a
matrix. It has been presented in Subsection §.1. The matrix size is set to 2000 rows by 2000

columns.
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9.3.2. Applications

The set of applications used to validate the approach presented in this thesis are from the SPEC
FP 95 benchmarks [122] (five applications) and the NAS Paralle] Benchmarks [10] (one

application).

SPEC 95 SWIM application. The SWIM application solves the system of shallow water
equations using finite difference approximations on a N1xN2 grid (usually 512x512). SWIM
offers loop level parallelism within a set of procedures (CALC1, CALC2 and CALC3), that are
executed repeatedly. The execution of these routines accounts for the 99% of the total
execution time. The application is useful to evaluate the overhead introduced by the user-level
threads library and the parallelization process done by the compiler.

SPEC 95 TOMCATY application. The TOMCATYV benchmark is a mesh generation program.
It uses a mesh of 512x512. The execution of TOMCATYV has two phases: First, the application
reads a large file during a few seconds; And then, it enters the computation phase. TOMCATV
consists of a single function, containing the input statements to read the input file and a
sequential loop with several coarse-grained parallel loops inside, to perform the computation.
It offers a single level of loop parallelism. This application is useful to evaluate the overhead
introduced by the user-level threads library and the parallelization process done by the

compiler.

LTOMCATY application. The LTOMCATYV application is a SPEC95 TOMCATYV application
enclosed inside an outer sequential loop. This allows us to have an application requesting a
different number of processors during its execution. LTOMCATYV spends ten iterations of the
TOMCATYV application. It requests one processor each time it starts reading the input file.
Then, it requests the number of processors indicated by the user to execute the computation
phase. This application is used for the workload evaluation in Subsection 9.4.

SPEC 95 TURB3D application. The TURB3D program is used for simulating an isotropic,
homogeneous turbulence in a cube with periodic boundary conditions in a 3-dimensional
space. It solves the Navier-Stokes equations using a pseudo-spectral method. Leapfrog-Crank-
Nicolson scheme is used for time stepping. The application offers several levels of parallelism.
At an outer level, it offers section-level parallelism that computes the same function (FFI') over
different arrays. At the inner level, the execution of the subroutine FFT offers two levels of
parallelism, both consisting of parallel loops. Which one of the two inner levels can be
exploited is a matter of how much fine-grain they are, and how much is the overhead

introduced by the user-level threads package.

SPEC 95 SU2COR application. The SU2ZCOR benchmark computes, using the Monte-Carlo
method, the masses of elementary particles in the framework of the Quark-Gluon theory. This
application offers two levels of parallelism. The outer level consists of up to four parallel

sections. The inner level contains parallei loops.

SPEC 95 HYDRO2D application, The HYDRO2D application solves the hydrodynamical
Navier Stokes equations to compute galactical jets. It offers two levels of parallelism worth to
be exploited. At an outer level, section level parallelism can be exploited as several (equal and
different) procedures are called on different data. For instance, the execution of the subroutine
FCT accounts for the 61% of the total execution time. In the inner level, each invocation of this
subroutine also offers loop-level parallelism. The application seems to be useful to prove how
a well balanced allocation of processors to the different levels of paralielism can result in a
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better processor utilization. See Chapter 8 for a complete description of the parallelization of
this application.
NPB BT application. The BT benchmark solves three sets of uncoupled systems of equations,

each being block tridiagonal with 5x5 element blocks. These systems arise in many CFD
applications. See Chapter 8 for a complete description of the parallelization of this application.

9.3.3. Benchmark evaluation
The evaluation of the LU and Jacobi benchmarks is presented in the following subsections.

Synthetic Jacobi Iteration benchmark. Figure 40 shows the results obtained in the execution of
the Jacobi benchmark. The figure presents the execution time (in seconds) of various versions
of the application, from 1 to 64 processors. The sequential execution time is 108 seconds
(labeled SEQ, dotted line) and has been obtained executing the sequential version of the
benchmark. Parallel versions of this benchmark execute in the NANOS environment and use
regular nano-threads for spawning parallelism. In all versions, data locality is maintained
across Jacobi iterations. This means that in all iterations, the same data (a slice of the matrix) is

distributed to (and accessed by) the same processor.
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Figure 40: Execution times obtained for the Jacobi benchmark

Bars labelled NNTH-bursts-8 and NNTH-bursts-32 show the execution time of the
paralielization based on bursts. In these versions, each time the execution reaches a parallel
region, the work is only partially spawned and the remaining work is saved for later spawning.
The experiment NNTH-bursts-8 distributes work in chunks of 8 iterations of the parallel loop
for each processor. The experiment NNTH-bursts-32 uses a chunk size of 32 iterations.
Finally, bar labeled NNTH-static shows the results when the iterations are distributed N/P for
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each processor. In this case, the work is distributed once, as evenly as possible, for each
parallel loop.

Results show that the burst-based parallelizations perform as well as the static
approach. This means that, when data locality is maintained, the extra overhead of managing
bursts during the execution of the benchmark is hidden by the benefits of running in parallel.

Synthetic LU matrix decomposition benchmark. Figure 41 shows the execution time of three
versions of this benchmark, running from 1 to 64 processors. The sequential execution time
(SEQ, dotted line) is 155 seconds. It corresponds to the execution of the sequential version of
the LU benchmark.

Bar labeled NNTH-bursts corresponds to the parallelization explained in Chapter 8
(Subsection 8.1). In this version, each time the execution reaches a parallel region, the work is
partially spawned using bursts. The chunk size to be used is computed each time the
parallelism is spawned. In the figure, this is compared with the traditional static approach (bar
labelled NNTH-static). In this case, the work is distributed once for each parallel region. Both
versions are based on nano-threads.

In this benchmark, as the LU decomposition of the matrix proceeds, data locality is
slightly disturbed because the parallel loop is smaller than in the previous iteration. From the
comparison, we extract that using bursts when data locality is not completely guaranteed may
hurt performance even when the static approach performs well. This is because of the extra
overhead of burst management. Usually, this kind of problems could be solved by applying
more aggressive techniques for data locality.
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Figure 41: Execution times obtained for the LU decomposition benchmark
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9.3.4. Evaluation of individual applications

The execution of the six applications presented in Subsection 9.3.2 is now evaluated. Figures
42 to 50 present several experiments for each application. In general, the experiments are
labelled as follows: The dotted line labelled SEQ represents the execution time of the
sequential version of the application, given as a reference. MP-FOP and MP-SHM are two
different experiments running on top of the MP library. The difference between them is the
mechanism used for joining threads. FOP stands for the hardware-based atomic memory
operations and SHM for a distributed joining structure in shared memory. The labels NNTH-
GWD, NNTH-LWD and NNTH-NTH stand for single level parallelizations using, global work
descriptors, local work descriptors and nano-threads respectively. NNTH-1LVL stands for a
single-level parallelization on the NANOS environment, based on local work descriptors. And
NNTH-MLV corresponds to multi-level parallelizations on the NANOS environment,
spawning the outer levels using nano-threads and the inner-most level using local work
descriptors.

SPEC 95 SWIM application. Figure 42 shows the execution times of the SWIM application
when running, from 1 to 64 processors, in the MP and NANOS environments. The sequential
time (SEQ) is indicated through the dotted line, as a reference. The figure presents two
different experiments running on the MP library, and three different experiments running on
the NANOS environment. The MP library based experiments show no differences in
performance, except when running in one processor. This means that, for applications with
coarse granularity loops, the distributed joining mechanism implemented on shared memory
offers the same performance than the mechanism based on the Origin atomic memory
operations (FOP’s). The usual unbalance existing in parallel regions avoids the situation where
all processors are trying to join with the master at the same time and the memory subsystem
does not become a bottleneck. When running in one processor, we have detected that the MP-
SHM version of that application suffers from cache effects that increase the execution time.

The experiments on the NANOS environment when running using the GWD and
LWD techniques show the same cache effects on 1 to 4 processors. When the size of the
application data fits in the caches of the processors (from 8 processors and above), there is no
difference between the different implementations. The efficient LWD and GWD
implementations behave the same that the MP library based implementations. Only the nano-
thread based implementation (NTH) shows the overhead of the extra management of local
address spaces and ready queues.

From the plot, the best number of processors to execute SWIM is 24. The absolute
minimum execution time is reached when using 32 processors, but the difference with respect
the execution on 24 processors is of several cents of a second. As a conclusion, the
performance 1s better in 24 processors. The FOP and SHM versions reach an execution time of
5.21 and 5.25 seconds, respectively. LWD downs to 4.47 seconds. The results show that within
coarse-grained applications, spawning parallelism from the master to the slaves in a one-to-one

way is performing very good.
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Figure 42: SPEC95 SWIM execution times

SPEC 95 TOMCATY application. Figure 43 shows the execution times of the TOMCATV
application when running, from 1 to 64 processors, in the MP and NANOS environments. The
sequential time (SEQ) is indicated through the dotted line, as a reference. The figure presents
two different experiments running on the MP library, and three different experiments running
on the NANOS environment. In TOMCATYV, all the experiments show the same behavior.
When running from 1 to 4 processors the application does not fit in the secondary cache of the
participating processors. For this reason, the execution time of the application is increased in
some executions due to cache effects. The standard deviation of these experiments is larger
than the standard deviation of the experiments running on more than 4 processors.

From the plot, TOMCATYV seems to achieve good speedup when running up to 16
processors only. This is because the execution time of the sequential phase (input/output
phase) is around five seconds. The execution time of the parallel computation phase is 3.5
seconds on 16 processors and 3.1 seconds of 24 processors, which is a gain already noticeable.
In this case, the differences between the MP and NANOS environments are minimal.
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Figure 43: SPEC95 TOMCATV execution times

SPEC 95 TURB3D application. Figures 44 and 45 show the internal structure and the
evaluation of the TURB3D application [7]. Figure 45 presents the execution time of the
sequential TURB3D application (SEQ, represented through the dotted line), as a reference.
Along with it. the figure also presents the execution time of the MP-SHM and NNTH-1LVL
experiments, which are equivalent single-level parallelizations, exploiting the parallel loops
only, running one top of the MP and NANOS environments, respectively. There are no
significant differences among them. The best number of processors for spawning parallelism in
TURB3D is 24, where the execution time reaches 30.5 seconds, or an speedup of 9.5.

The figure also presents the evaluation of two multiple level parallelizations. The first
one (NNTH-MLV-MIX) corresponds to the spawning of the parallel sections numbered 1-18
and 20-31 (see Figure 44), along with the paraliel loops inside them and inside nodes 19 and
32. In this parallelization, data computed by sections 13 to 18 is merged in node 19, which gets
the contribution of the parallel sections and computes new values. And the same happens
between data computed in node 19 and parallel sections in nodes 20 to 23 and between nodes
26 to 31 and node 32. This mixing of data causes an increment of the memory traffic, which
avoids getting good performance compared with the loop-level parallelization, in which this
merging does not occur because each parallel loop accesses the same portion of the data.

The experiment labelled NNTH-MLV consists of changing the parallelization of the
nodes 19 and 32. The goal is to maintain data locality in these parallel loops. Although
algoritmically it is possible to modify both loops to maintain data locality through loop
partitioning, the results are not good because a number of operations should be replicated in
each new parallel section and the extra work is too large to get better speedup than the single

level parallelization.
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subroutine turb3d, parallel phase
O @ @ @ 6 6 caLenr.)
Parallel sections working on
0 9 9 @ @ @ CALL zfft (..., +1}  gifferent matrices
(containing parallel loops)
(1) (9 (19 (9 () (18 cALL st (.41
@ CALL uxw Parallel lo'op combining reﬁults
from previeus parallel sections
@ @ @ @ @ CALL xyfft (..., -1) Parallel sections working on
different matrices
@ @ @ @ @ CALL zfft (..., -1) (containing parallel loops)
CALL linavg Parallel loops combining results
giii ]l?lixavg from previous paraliel sections

Figure 44: Structure of the TURB3D application
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Figure 45: SPEC95 TURB3D execution times

SPEC 95 SU2COR application. Figure 46 shows the evaluation of the SU2COR application. It
presents the execution time of the sequential version of the application (SEQ, dotted line),
given as a reference. In this case, the experiments labelled MP-SHM and NNTH-1LVL are the
equivalent parallelizations of SU2COR running on top of the MP and NANOS environment.
The SU2COR application has several fine-grained loops, which make the parallelization based
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on local work descriptors to reflect more overhead than the MP based parallelization. On the
other hand, the current multi-level parallelization (NNTH-MLV) is not taking advantage of
data locality, and is not obtaining better performance than the single level one.
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Figure 46: SPEC25 SU2COR execution times

SPEC 95 HYDRO2D application, Figures 47 and 48 show the execution time and speedup of
several experiments running the HYDRO2D application [85]. The structure and parallelization
of the HYDRO2D application is presented in Chapter 8. Four different versions of the
Hydro2D benchmark have been executed using the reference input file, as provided in the
SPEC benchmarks. Sequential execution time is 154.71 seconds, which agrees with the 154
seconds reported in the SPEC benchmark CFP95 summaries [122]. This is represented through
the dotted line (SEQ) in Figure 47. The experiments labelled MP-SHM and NNTH-1LVL are
equivalent parallelizations of the application running on the MP and NANOS environments,
respectively. This application contains several parallel loops which are fine-grained (below
100 us.). This motivates that the NNTH-1.VL version (based on local work descriptors)
reflects more overhead than the MP version. This is also the reason to expect better
performance in the NNTH-MLV experiments. Inside the multi-level parallelization, such small
loops are partitioned using less processors (more specifically, 1/4 of the processors used in the
single level version). Two effects benefit the execution of the multi-level version: First, the
spawning time for each parallel region is reduced and, seconds, the different parallel regions
can proceed independently, achieving a higher load balancing. This can be seen in Figure 48,
looking at the speedup of the multi-level version when running on 32 and more processors.
The single level versions of the application stop getting speedup when running with 16
processors and the multi-level version continues obtaining good performance.
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Figure 48: SPEC95 HYDRO2D speedup
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A fair comparison can be established between the single (NNTH-1LVL) and multi-
level (NNTH-MLYV) versions. As a result, for up to 8 processors, the overhead of the two-level
parallelization causes an increment in the execution time below 10%. In this application, four
different processor groups are established at the outer parallelization level, so at least &
processors are required to effectively exploit multiple levels of parallelism. Four groups of 2
processors give an speedup of 4.0 compared to the 4.5 achieved by the one-level version
running in § processors. When 16 processors (four groups of 4 processors) are used, nearly the
same speedup is achieved by both NNTH versions. When using more than 16 processors, the
one-level version is unable to scale, while the multi-level version scales tilf a speedup of 9.3 on
48 processors and giving an improvement of 30% in 32 processors with respect the single level

version.

NAS BT application. Figures 49 and 50 show the execution time and speedup of the NPB
APPBT application [85]. We have selected to run the experiments with the small version (class
W) of the BT application because achieving good results in small applications is important, so
that this means the overhead introduced by the run-time environment is small. All versions of
the BT application have been compiled with O3 compilation option instead of -Ofast=ip27
because this is the option used in the standard compilation of the NAS benchmarks in SGI
machines. We have observed that compiling with the -O3 option the application shows better
performance than with -Ofast=ip27. Due to the parallelization scheme and the application
class, the application can be executed on as much as 24 processors.

In Figure 49, the execution time of the sequential version of the application is showed
(SEQ, dotted line). It is higher than the execution time of the parallelized versions running on
one processor. This is because of some optimizations done in the parallel versions, which
improve data locality. The MP-SHM is the single-level loop parallelization version, running on
the MP environment. The NNTH-1LVI. experiment is the one-dimensional pipelined
parallelization running on top of the NANOS environments (see Chapter §). This version
shows higher overhead when running on a small number of processors, but it shows an
improvement with respect the MP-SHM version when using 4 and more processors.

The NNTH-MLV version corresponds to the two-dimensional pipelined
parallelization achieved through two-levels of parallelism (as shown in Chapter 8). Comparing
the results in the nano-threads environment, the results on a small number of processors show
that the multi-level version is worse than the one level version. This is due to the extra
overhead introduced by the multi-level version. However, when using more than 4 processors,
the multiple-level version achieves higher speedup (see Figure 50), reaching 14.5 on 24
processors. The gain in the speedup reaches 65% with respect to the one dimensional

parallelization.
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Figure 49: NAS BT execution times
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9.3.5. Conclusions of the evaluation of individual applications

From the previous evaluation of several benchmarks and applications running in a dedicated
NANOS environment, we conclude that our proposed environment performs as well as the
native SGI MP environment for applications when exploiting a single level of parallelism, and
that there exist some applications that effectively take advantage of the exploitation of multiple
levels of parallelism.

From the evaluation of the LU and Jacobi benchmarks, using nano-thread bursts, we
learn that application-level scheduling based on nano-thread bursts performs comparable to the
static approaches, when data locality is not an issue. Otherwise, when data locality is broken
due to the algorithm, as happens in the execution of the LU benchmark, the overhead
introduced by the burst-based approach is noticeable when increasing the number of

Processors.

From the evaluation of two applications exploiting a single level of parallelism
(SPEC95 SWIM and TOMCATV), we conclude that the performance of the parallelization
based on work descriptors perform as well as the native SGI MP library environment. From
these experiments, we detect that the cache behavior can influence both the LWD and GWD
techniques when running in a small number of processors. This will be a subject of further
study after the termination of this work. It is remarkable than, when running on 8 and more
processors, the behavior on both environments is very similar. Although above 24 or 32
processors, the applications do not obtain further speedup, the interesting point is that the
performance is not degrading when using GWD or LWD. This is important because it means
that applications containing both fine-grain and coarse grain parallel loops, such as the SWIM,
can be executed on a large number of processors, ensuring that the execution environment will
not degrade performance when executing the small loops. With respect the evaluation of nano-
threads, instead, we observe that the nano-threads behavior is degrading when the number of
Processors increase.

From the evaluation of four applications exploiting multiple levels of parallelism we
conclude that achieving high performance is possible, but it can be limited by the structure of
the applications. TURB3D and SU2COR do not benefit from the exploitation of multiple
levels of parallelism because of the large amount of data exchanged among the processors.
Instead, in the HYDR2D and the NAS APPT BT applications, exploiting multiple levels of
parallelism benefits the execution of the applications when running in 16 and more processors.
Achieving data locality in applications exploiting multiple levels of parallelism is an open
issue, to be studied after the termination of this work.

9.4.Evaluation of workload performance

In the following subsections, the execution of four different workloads is evaluated in the MP
and NANOS environments. Each different workload is used to highlight some of the
characteristics of the two execution environments. The workloads are built using the
applications explained in Subsection 9.3.2 and evaluated individually in Subsection 9.3.4. The
only exception is the LTOMCATYV application. The LTOMCATYV application is a dynamic
version of the TOMCATYV application. In LTOMCATY, a TOMCATYV application has been
enclosed inside an outer sequential loop performing ten iterations. For each outer iteration, it
requests one processor for the input data phase and it requests the processors indicated by the

user for the computation phase.
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All workloads consist of several (possibly different) applications, executed in parallel,
requesting a number of processors. All applications start at the same time. When one of the
applications terminates, another instance of the same application, with the same processor
request is launched automatically. All instances start executing with one processor and they
request for more processors when spawning the parallelism for the first time. The
LTOMCATYV releases P-1 processors each time it enters a sequential phase.

The resulting workload execution is visualized through the Paraver tool [109],
representing time in the x axis and applications in the y axis (see Figure 51, as an example).
The names of the applications are displayed on the left-hand side of the figure, along with the
number of processors that they are requesting (enclosed in parenthesis). For each application,
an horizontal line is displayed. For each instance of an application, a different color is used to
fill the horizontal line. Different colors represent, thus, the execution of the different instances
of the corresponding application. Throughout each horizontal line, the points where the lines
change their color are also marked using flags, allowing the black and white printing of these
images. For example, in Figure 51, nine complete instances of the appl 3 are executed, while
only two instances of the appl 6 are completely executed in the same amount of time. In this
kind of figures, we will count the number of instances executed from the starting of a specific
instance of an application (shown at the left-hand side), till the termination of another specific
instance of an application (at the right-hand side).

Two versions of the workloads are executed. The first one is the MP-SHM version of
the applications running on top of the SGI MP Library and the IRIX operating system as
shipped by Silicon Graphics, with the dynamic adaptation to the number of available
processors activated, as is by default (the OMP_DYNAMIC environment variable is set to
TRUE). And the second version is the NNTH-LWD version of the applications, exploiting
multiple levels of paralfelism in the HYDROZ2D and BT cases, running on top of NthLib and
the CPU Manager, using the user and kernel interfaces presented in Chapters 4 and 5,

respectively.

In the following subsections, we present the different workloads and their evaluation.
The first workload (wll) uses the dynamic LTOMCATYV application to find which is the
correct fine-tuning of the MP library for it. Other applications need not to be fine-tuned
because they proceed in parallel most of time during their execution.

After determining the correct block time value for the LTOMCATYV application, the
second workload (wl2) shows that fine-tuning is not enough to achieve a smooth execution for
all the applications running in the system. In particular, applications requesting a larger number
of processors than others can suffer from synchronization problems, resulting in higher
execution times.

The third and fourth workloads consists of a larger number of applications. In the
third workload (wl3), applications can request a limited number of processors (the [imit is set
to eight processors). Research and production centers usually limit the number of processors
that each application can request in order to avoid overloading the system. In the case
presented here, one application is allowed to execute with a larger number of processors to
evaluate also its execution.

In the fourth workload (wl4), all the applications are executed using the number of
processors at which they achieve better speedup during an individual execution in a dedicated
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machine. Results show that this is the case where the NANOS environment outperforms
significantly the SGIMP environment.

prpl B (PE)

6 (P&

Figure 51: Example of the representation of a workload execution

9.4.1, Fine-tuned workload execution

The objective of the first workload (wil) is to show that the SGIMP environment must be fine-
tuned to achiecve better performance. Fine tuning is not easy because it depends on the
application. The workload wll consists of five LTOMCATYV applications requesting 16
processors each, Table 13 shows the workload composition. It requests a maximum of 80
processors, in a 64 processors machine. Fine tuning is achieved through the block time
parameter, which allows processes to release the physical processor when no parallel work is
available for execution (Subsection 6.2.1 explains in more detail this parameter).

Requested
Application Processors
LTOMCATV 1,16
LTOMCATV 1, 16
LTOMCATV 1,16
LTOMCATY 1,16
LTOMCATV 1, 16
TOTAL requests 80

Table 13: W11 workload composition

Three different experiments are done with this workload. The first one (Figure 52,
window named SGIMP(1)) corresponds to the standard SGIMP environment, with the default
block time (10,000,000 iterations). In the second one (window SGIMP(2)) the block time has
been reduced to 200,000 iterations. This number has been selected after testing the workload
with different blocking times ranging from 50,000 to 10,000,000 iterations. The third one
(Figure 52, window NNTH-Cluster) is the execution of the workload on the NANOS
environment with the Cluster scheduling policy. All windows use the same scale for the
visualization. They present the workload execution from the point where the second instance

of each application starts.
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Figure 52: WI1 workload execution on the SGI-MP and NANOS environments

It can be observed that, while the standard SGIMP environment is able to execute
around six complete instances of the applications, both the fine-tuned SGIMP and NANOS
environments are executing as much as nine instances of each application. This result indicates
that it is good for the global workload performance that dynamic applications can release
processors when they are executing in a sequential section. Either the executfion environment
or the application itself can be aware of releasing the processors. The SGIMP environment is
in charge of that and the block time parameter indicates how much time to wait from the point
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where processors become idle till they will be blocked. In the case of the NANOS
environment, it is the application which sets the number of requested processors to one and
releases the processors.

Comparing the SGIMP(2) and NNTH-Cluster windows, we determine that the best
results are obtained for the SGIMP fine-tuned execution. The ninth instance of each
application in the SGIMP environment terminates earlier than the corresponding instance in
the NANOS environment.

Table 14 shows the numeric evaluation of the wll workload, also reflecting the
previous conclusion. The table presents the number of complete instances executes of each
application, the average execution time and its standard deviation. In the numbers presented in
Table 14 we observe that fine tuning in the SGIMP environment greatly influences the
execution time of the applications, from around 53 seconds to 35 seconds. The execution time
of the applications running in the NANOS environment is only slightly higher (36 seconds).
Observe also that the standard deviation of the execution times of the different instances are
significantly greater in both SGIMP executions with respect the results given by the Cluster
policy. This is a first important result for the execution in our environment, which will be a
observed consistently in the evaluation of the following workloads. Users will observe a
smoother kernel-level scheduling when running in the NANOS environment than when
runmning in the SGIMP environment, resulting in a more predictable execution.

Number of complete instances /
o Average execution time (in secs.) /
Application Standard deviation
SGIMP (1) SGIMP (2) Cluster

LTOMCATV 6 53 ] 7.1 9 35 4.5 8 36 1.5
LTOMCATV 5 155762 9 | 34|45 9 | 36 | 17
LTOMCATV 5 [ 54 {8} 9 |35 40| 9 | 36 ¢ 10
LTOMCATV 6 52 | 53 9 34 | 45 9 35 1.6
LTOMCATV 6 33 4.1 8 35 473 9 35 0.6

Table 14: Resulis of the evaluation of the wll workload

9.4.2. Benefits of user/kernel cooperation

The objective of the second workload (wl2) is to show that, even when applying fine tuning,
not all applications are going to take advantage of the processors allocated to them. To
demonstrate that, we have changed three of the LTOMCATYV applications in wll for two
SWIM applications requesting 32 and 24 processors, respectively. Table 15 shows the resulting
workload. From the evaluation of the individual applications, presented in Subsection 9.3 .4,
SWIM obtains the same execution time when using 32 and 24 processors. This means that
working inside the workload, both SWIM applications should also take the same amount of
execution time. That will demonstrate a fair distribution of processors.
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C . Requested
Application Processors
LTOMCATV 1,16
LTOMCATV 1,16
SWIM 32
SWIM 24
TOTAL requests 58-88

’fable 15: W12 workload compaosition

Figure 53 shows the execution of the wl2 workload on the two different
environments: SGIMP and NANOS. The LTOMCATYV application is tuned as in the previous
workload, in the SGIMP environment. Three different scheduling policies are presented in the
NANOS environment: Equipartition, Cluster and Batch. Numeric results for the w12 workload
are presented in Table 16.

With respect the SGIMP environment (window named SGIMP in Figure 53), it can be
observed that the execution of the SWIM application requesting 32 processors is delayed with
respect the SWIM application requesting 24 processors. All instances of the SWIM application
requesting 32 processors suffer from higher execution times. The average of their execution
time is 8.2 seconds, compared with the 6.1 seconds taken in average by the SWIM application
requesting 24 processors (see Table 16). Although the LTOMCATYV applications are releasing
the processors during their sequential phase and the mechanism providing dynamic adaptation
to the number of available processors is activated, the kernel-level scheduling policy is not
able to ensure that the same processes belonging to each application are executed. This is the
cause of synchronization problems, noticeable in the SWIM application that requests 32
processors, delaying its execution.

The previous result can be compared with the effect of applying the Equipartition
policy (window named NNTH-Equip in Figure 53). In this case, Equipartition decides to give
16 processors (= 64 processors / 4 applications) to each application, regardless of the number
of processors they are requesting. The resulting execution times for the SWIM applications are
very similar and lower than the execution times achieved by the SGIMP environment. The
difference with the SGIMP environment is that, in this case, the number of ready processes is
limited to 64. This avoids any synchronization problem, but not all processors are used at all
time because the LTOMCATYV applications are releasing 15 processors each, during their
sequential I/0 section. The Equipartition policy does not assign these processors to other
applications. '

The Cluster policy (window named NNTH-Cluster in Figure 53) solves the
Equipartition drawback. Each time a LTOMCATYV application releases the processors to
execute the sequential section, the processors are given to the SWIM applications. Also, when
the LTOMCATYV applications again requests the processors, they are reassigned. The use of the
NANOS kemel interface results in improved execution. With this approach the execution
times of the applications receiving the processors are even better (from 7 to 6.5 seconds, or an
average improvement of 7%, with respect the Equipartition). As the Cluster policy assigns
processors in clusters of 4, both SWIM applications receives the processors released as evenly

as possible.
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In Figure 53 we present also the execution of the same workload under the Batch
policy (window named NNTH-Batch). This policy has a very predictable behavior and it is
useful to see how the processors released by some applications (LTOMCATV) can be used by
another ones. Under the Batch policy, physical processors are usually assigned to the
LTOMCATYV applications (32) and to the SWIM requesting 32, for a total of 64 processors
allocated. Each processor released by the LTOMCATYV applications is automatically assigned
to the SWIM requesting 24 processors. The resulting environment for this last application is
that it executes only when the LTOMCATYV applications release processors. When all
applications are running, the second SWIM spends 9.7 seconds. When the first SWIM
terminates, the average execution time of the second one goes down to 6.0, giving a total
average of 7.8 seconds, as reported in Table 16.

With respect the standard deviations showed by the execution time of the different
instances, observe in Table 16 that both the Equipartition and the Cluster policies achieve
standard deviations significantly lower than the SGIMP environment.

Number of complete instances /
L. Average execution time (in secs.) /
Application Standard deviation
SGIMP Equip Cluster Batch
LTOMCATYV I 31 - 1 35 - | 34 - 1 35
ITOMCATYV 1 32 - 1 35 - 1 36 - 1 36 -
SWIM (32) 9 82 1 33 9 7.1 | 09 9 6.7 | 14 9 50 | 04
SWIM (24) 9 6.1 | 1.3 9 701 04 9 6.5 | 1.0 9 78 | 2.1

Table 16: Results of the evaluation of the wl2 workleoad

9.4.3. Workload with limited requests

The goal of the third workload (wI3) is to evaluate what happens when a larger number of
applications is executed at the same time. The number of processors requested for each
application is decreased with respect the requests in the previous workloads, in order to avoid
overloading the machine. This comes from a policy used in a number of research and
production centers [46], where the maximum number of requested processors is explicitly
limited by the system administrators to avoid overloading the parallel computer. For the
execution of this workload we consider that the number of processors is limited to 8, except for
one application, which has been allowed to run on 16 processors. The complete workload
description is shown in Table 17. This workload is requesting a maximum of 72 processors, not
far away from the 64 processors available in the machine. This suggests that there will not be
large synchronization problems during the execution of the applications.
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. Processors
Application
requested

BT 8

BT 4
LTOMCATV 8
LTOMCATV 4
SWIM 8
SWIM 4
HYDROZD 16
HYDRO2D 8
SU2COR 4
TURB3D 8
TOTAL requests 57-72

Table 17: W13 workload composition

Figure 54 shows the execution of the wl3 workload in the SGIMP and NANOS
environments. Both LTOMCATYV applications are tuned as in the previous workloads, using a
block time of 200,000 iterations, for the SGIMP environment. The workload has also been
executed with the standard block time for all the applications and no differences in
performance have been observed, probably because only the LTOMCATYV applications are
able to release processors and the number of processors involved (10) 18 smaller than in the
previous workloads. The Cluster policy is used in the NANOS environment.

The execution on the SGIMP environment (window SGIMP in Figure 54) shows that,
in general, the instances of the same application requesting more processors receive a larger
number of them along the execution, and their execution time is smaller than the execution
time requesting less processors. Nevertheless, this is not the case of the HYDRO2D
application. The instances of HYDRO2D requesting 16 processors run worse than the
instances requesting eight processors. Again, this confirms that synchronization issues among
a large number of processes are degrading the execution of the applications. And this problem
usually appears between 8 and 16 processors in the SGIMP execution environment.

Instead, the execution of the applications in the NANOS environment (window
NNTH-Cluster in Figure 54) proceeds slightly better and the applications requesting more
processors can take advantage of the them, including the HYDRO2D application requesting 16

Processors.

Table 18 shows the numeric evaluation of the wl3 workload. The NANOS
environment is able to execute more instances of the BT(8), LTOMCATV({4), SWIM(8) and
HYDRO2D(16) applications. Instead, the SGIMP environment executes more instances of the
SWIM(4) and HYDRO2D(8), meaning that both environments perform in a similar way. The
interesting differences raise in the execution time taken by the HYDRO2D(16) application in
the SGIMP environment (118 seconds) compared with the execution time obtained by in the
NANOQS environment (41 seconds). Also, and as it has been commented in the previous
workloads, the standard deviation obtained in the execution of all the applications is
consistently lower in the NANOS environment.
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Number of complete instances /
Average execution time (in secs.) /

Application Standard deviation
SGIMP Cluster
BT @ | 12 ] 17 | 12 | 16 | 13 | 09
BT (C))] 8 24 2.9 8 24 1.3
L.TOMCATV (8) 4 39 i.4 4 40 0.6
LTOMCATV (4) 2 57 0.7 3 54 0.4
SWIM @ | 17 | 12 | 1.8 | 18 | 11 | 04
SWIM @ | 7 | 20 |61] 6 | 29 | 07
HYDRO2D (16) | 1 | 118 | - | 4 | 41 | 10
HYDRO2D (8) 4 44 3.0 3 48 2.1
SU2COR (@) | 4 | 38 | 23 | 4 | 44 | 10

TURB3D (8) 2 62 4.3 2 59 1.8
Table 18: W13 workload evaluation

The analysis of this workload is completed with two plots presenting the mapping of
applications (consisting of several processes) to physical processors as it has been decided by
each scheduling policy. Figure 55 (window SGI-IRIX-MP) shows the mapping done by the
IRIX 6.5 kernel level scheduling and Figure 56 (window NNTH-CLUSTER) shows the
mapping done by the NANOS Cluster policy. These figures present execution time in the x
axis and each one of the 64 physical processors in the y axis. An horizontal line for each
processor is displayed, possibly using different colors along the execution time. All processes
belonging to the same application are displayed using the same color in the different physical
processors. A change in the color of an horizontal line means that a different process of a
different application has been scheduled in the corresponding processor. In addition, a vertical
yellow line is displayed to indicate a process migrating from one processor to another.

As can be observed by comparing both figures, the execution in the NANOS
environment is smoother. The number of times a processor decides to change the process it is
executing is smaller than in the SGIMP environment and the number of process migrations is
reduced. The reduction of the process migrations goes from 1,300 migrations in the SGIMP
environment to 500 in the NANOS environment, achieving greater processor affinity. This also
benefits to achieve global workload performance.
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Figure 55: SGIMP kernel level scheduling for the w13 workload
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Figure 56: NANOS kernel level scheduling for the w13 workload
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9.4.4. Workload with larger requests

The objective of the fourth workload (wl4) is to show which is the behavior of the execution of
a workload consisting of 6 different applications, each one requesting a number of processors
(from 8 to 24). The workload composition is presented in Table 19 and the evaluation is
presented in Figures 57-60 and in Table 20. Each application is requesting a number of
processors in which its execution as an individual application achieves good speedup. The load
of the system while running this workload ranges from 81 to 96 processors, on a 64 processor
machine, depending on the current phase of the LTOMCATV application. The workload
represents a common system load for this kind of machine.

g Processors
Application
requested

BT 16
LTOMCATV 1,16
SWIM 16
TURB3D 24
HYDRO2D 16
SU2COR 8
TOTAL requests 81-96

Table 19: Wl4 workload composition

Figure 57 shows the behavior of the workload running in the MP environment, from
the point where the second instance of the BT application is launched (left-most flag) till the
termination of the eleventh instance of the BT application (right-most flag). During this period
of time, the machine is heavy loaded with 81 to 96 processors requested and the scheduling
frameworks and synchronization issues in the respective environments are stressed.

Figures 58 to 60 show the execution of the same workload in the NANOS
environment, using the same time scale, and running under the Equipartition, Round-robin and
Cluster policies. It can be observed that the BT and SWIM applications are clearly benefited in
the NANOS environment. The LTOMCATYV, TURB3D and HYDRO2D show smaller
execution times also.

The good behavior obtained from the Equipartition, Round-robin and Cluster policies
indicates that the NANOS scheduling framework is well designed to achieve high performance
when running parallel workloads with a high degree of parallelism, outperforming the results
obtained from the IRIXMP environment. Further research to determine which can be an
optimal kernel-level scheduling policy for the NANOS environment is currently under
development [117], and falls off the scope of this thesis.

Page 153




Chapter 9

;
e _ ' . .
atv (1h) . L
(%3]
Figure 59: W14 workload execution on the NANOS environment (Round-Robin policy) (
Page 154 *




Evaluation

bt

ltoncaty

Figure 60: W14 workload execution on the NANOS environment (Cluster policy)

Table 20 shows the number of complete instances of each application executed, and
the average execution time and standard deviation obtained for the different applications, for
each one of the policies under evaluation. The number of instances executed for all the
applications is greater when the workload runs on the NANOS environment than in the SGIMP
environment. The benefits in the execution of the applications are also observed in that the
standard deviation of the execution time of each instance is smaller when running in the
NANOS environment, From the data presented, we conclude also that the SGIMP environment
penalizes the applications which try to use more processors. This is because of synchronization
is more difficult to achieve in these applications. For example, only two instances of the
TURB3D are executed in the SGIMP environment, while the Equipartition and Cluster
policies execute up to three and four complete instances, respectively. Both policies benefit
from the NANOS scheduling framework, where the movements of processors between
applications are communicated to the application and the user-level execution environment

helps in solving the preemptions.

Number of complete instances /
Average execution time (in secs.) /

Application Standard deviation

SGIMP Equip RR Cluster
BT 10 22 1.8 18 12 0.5 19 11 0.9 18 12 2.0
LTOMCATV 4 44 3.8 5 37 1.4 4 45 14 5 36 1.2
SWIM 7 26 3.8 24 90 | 03 23 93 | 0.6 23 94 j 2.0
TURB3D 2 102 7 3 52 0.8 2 ol 2.1 4 44 3.0
HYDRO2D 4 46 1.4 5 37 0.9 3 51 10 3 51 1.6

SU2COR 5 37 1.0 5 35 2.3 3 49 2.4 5 39 1.0
Table 20: Results of the evaluation of the wld workload

In this workload, the Round-robin policy shows a flaw compared to both the
Equipartition and Cluster policies. For example, it executes only two instances of the TURB3D
application, due to the large number of context switches between applications caused by this
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policy. Context-switching applications at every time quantum breaks processor affinity and
hurts the performance of the applications. From that fact, we conclude that a specific policy,
designed for the Nano-Threads Programming Model, is of great importance.

9.4.5. Conclusions of the workload evaluation

After presenting the evaluation of four different workloads consisting of different
combinations of applications, in this subsection we summarize the results obtained in them and
we briefly extract some conclusions.

Table 21 shows the throughput and average response times obtained in each one of the
workloads, for both the SGIMP and NANOS environments. The Cluster policy is used when
collecting the results in the NANOS environment. The throughput is computed by counting all
the complete instances shown in the corresponding figures. The average response time is
computed as the weighted mean of the different average execution times, following the

formula:

nappls
Z avgtime, - instances,

i=1

Average response time =

Throughput
Ref. to figure Throughput A"e"ag“' response time
{in seconds)
Workload NNTH NNTIL NNTH
SGIMP Cluster SGIMP Cluster SGIMP Cluster
Wil Fig.52 | Fig.52 44 44 345 35.6
W2 Fig.53 | Pig.53 20 20 9.6 9.4
W3 Fig. 54 | Fig 54 61 68 26.9 249
Wi4 Fig. 57 | Fig. 60 32 58 36.0 19.6

Table 21: Throughput and average response time {in s.) obtained in the workload execution

Comparing the results obtained from the different workloads, we conclude that the
NANOS execution environment is able to achieve at least the same throughput and similar
average response times for the two first workloads. These workloads have been used fo tune
the execution of the applications in the SGIMP environment.

After that, and more important, the NANOS environment effectively shows better
behavior in common heterogeneous workloads consisting of several applications, requesting a
different number of processors. In the third workload (wl3), the throughput achieved by the
NANOS environment is 10% better than in the SGIMP environment and the average response
time is 8% better. In addition, when the applications are allowed to exploit parallelism,
requesting the number of processors which provide good speedup (workload wl4), the
throughput is increased by 80% and the average execution falls to nearly half in the NANOS

environment.
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The NANOS execution environment reduces the need of fine-tuning of individual
applications, providing an environment which is already tuned for the applications, as they are
partitioned and parallelized by the compiler. The resulting execution is smoother, providing
lower standard deviations in the execution time of several instances of the same application.
The user will observe more predictability in the execution time of its applications. Finally, but
not least important, we have observed that the SGIMP environment is unable to guarantee a
constant allocation of processors to each application, resulting in a problem similar to a
priority inversion, when applications requesting more processors run slower than applications
requesting less processors. This problem is solved for applications running in the NANOS

environment.
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Chapter 10.
Conclusions and

Future Work

Abstract

This chapter presents the conclusions obtained from this thesis
and the work we plan to do in the future to continue the research on
parallel execution environments.

Barga - Brasil 2-2
... while writing the conclusions...
April 28, 1999
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10.1. Conclusions of this thesis

After working during the last years in the development of this thesis, one has to think about
which the initial goals were and which degree of achievement has been reached for them. The
initial giobal objective of providing an efficient and effective support for muliti-user parallel
processing in shared-memory multiprocessors has been achieved. The design and development
of the NANOS execution environment presented in this thesis demonstrates that point. The
NANOS environment is efficient. It provides similar performance than the SGIMP parallel
execution environment. By using an standard way of expressing the parallelism, we also
achieve the effectivity claimed in the global objective. Existing and new applications coded in
a standard way run on the provided environment. In addition, the NANOS environment
integrates several topics currently under research and not present in commercial environments.
Applications benefit from exploiting multiple levels of parallelism and the improved
cooperation with the operating system. The main objective was decomposed in the
introduction of this work in several sub-objectives. They are now checked and the results

obtained are explained.

10.1.1. Supporting the Nano-Threads Programming Model

The work done in this thesis takes the Nano-Threads Programming Model as a basis for the
development of the NANOS parallel execution environment. The NPM infroduces a
hierarchical decomposition of the applications in parallel tasks, through the Hierarchical Task
Graph (HTG) structure. The approach taken translates each parallel task in a parallel function,
to be executed through a user-level thread (nano-thread). Tasks are related through
precedences in the HTG. Nano-threads have been designed to support the representation of the
HTG, including precedences among them. Compound tasks contain further parallelism to be
exploited. Nano-threads instantiating compound tasks are allowed to spawn further
parallelism. The resulting environment supports the execution of arbitrarily unstructured and
deep HTG structures.

During this work, it has been of great importance to understand the kind of HTG
structures that usually represent parallel applications and how the compound tasks are usually
organized, in order to provide the correct support for multiple levels of parallelism. This
understanding has allowed us to design the NthLib interface to map general HTG structures to
parallel code.

A contribution of this thesis deals with the mapping of different application-level
scheduling policies to the NPM. They include the static, dynamic, guided self-scheduling and
trapezoid scheduling policies. In addition, our proposal is the adaptive-size chunking
scheduling policy. All the dynamic policies can also be combined with factoring (based on
nano-thread bursts), which allows us to provide high adaptivity to an environment where the

number of processors allocated dynamically changes.

10.1.2. Multiple levels of parallelism and processor grouping

This work demonstrates that providing efficient exploitation of multiple levels of parallelism is
possible and makes important contributions both in the design and implementation phases of
execution environments supporting this feature.
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Providing local address spaces. Local address spaces are needed to support privatization of
variables at the outer levels of parallelism. In our approach, local variables to be used by the
inner levels of parallelism are allocated in the current nano-thread stack. They are always
passed as parameters to these further levels. They can be passed by reference or through
privatization. The nano-thread creation primitives support this local address space
management. After the evaluation of this mechanism, the conclusion is that passing this extra
number of parameters compared with other parallel execution environments is not introducing

a noticeable overhead.

Processor grouping. Merging multiple levels of parallelism with data-locality issues, results in
the proposal for processor groups. When allowing to spawn multiple levels of parallelism, the
application decides which processors spawn the parallelism (act as masters) and which ones
are merely executing work (act as slaves). The application reflects its HTG structure in the
generation of the parallelism, giving more importance to some parts of the paralle]l execution
by assigning more processors to them.

The execution environment provided by NthLib provides tools to drive processors to
execute at different parts of the application as a processor group. The advantage of this
approach is that each processor accesses a larger portion of the data structures involved in the
parallel computation, reducing the conflicts between processors, such as false sharing.

Implementation issues. The implementation of the support for multiple levels of parallelism is
based on local ready queues. Each processor owns a local queue and extracts work from it. All
processors can generate work on all queues. Each queue acts as a buffer to save the work that
the application has assigned to the associated processor. The contribution of this thesis is that
local queues are also used to establish processor groups when the application wants to use

them.

10.1.3. Fine-grain parallelism

In this thesis, we have been looking for the limits in the exploitation of fine-grain parallelism
in shared-memory multiprocessors. Current SMP and CC-NUMA architectures allow to break
the barrier at 12-16 processors and machines containing a larger number of processors are
available. The larger the machines, the more difficult to achieve high performance, taking
advantage of a large number of processors, in individual applications due to the complexity of
finding a good data distribution. The techniques for spawning and joining parallelism
developed inside this work support a granularity as fine as other parallel execution
environments, providing, at the same time, higher functionality.

Not only the approach of multiple levels of parallelism has been extended to support
processor grouping, but also a contribution of this work is the integration of two fork/join
techniques in the same execution environment. The first mechanism, based on nano-threads, is
to be used by the outer levels of parallelism. It provides all the functionality needed for
supporting multiple levels of parallelism. The second mechanism, based on work descriptors,
is to be used by the inner-most level of parallelism. It provides high performance and limited
functionality. Combining both mechanisms has been the key to allow the exploitation of fine
grain parallelism and achieve high performance when exploiting multiple levels of parallelism.
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10.1.4. Cooperation between user and kernel levels

The proposals done in this thesis for user-kernel cooperation have been proven to be useful to
provide a smooth kernel-level scheduling, in accordance with the needs of each application.
Joining several techniques for informing the applications about kernel-level scheduling
decisions and providing a small amount of time to the applications to answer to the changes
(the grace time), the execution is improved.

Malleable applications. Applications coded in the NANOS environment tend to become
malleable. They request a number of processors for working, possibly reconsidering it during
execution. And they adapt to the kernel conditions, by running on the number of processors the
kernel allocates to them. The evaluation done in the thests demonstrates that this kind of
applications facilitates kernel-level scheduling, improving the throughput of the system.

Kernel-level scheduling framework. This thesis proposes a2 new kernel-level scheduling
framework, where the application becomes the scheduling target. This means that processors
are allocated to applications and try to select work form that preferred application first. Only in
case the application releases the processor, it is allowed to change its preferred application.

A contribution of this thesis is that the scheduling policy can decide, not only the
allocation changes for the current quantum, but it can also provide a work list of applications
which are going to receive processors during the current quantum in case other applications
release processors. For this reason, changing the preferred application of a processor is done in
two different situations: When the operating system decides a new reallocation of processors to
applications, or when a processor is released from an application and finds work in the work
list. .

The evaluation of the execution of application workloads demonstrates that the
number of process migrations and context switches is reduced when using our kemel
scheduling framework, compared with the results obtained in a commercial system.

10.1.5. Conclusions taken from the evaluation
We have evaluated the NANOS execution environment through the evaluation of the user and
kernel levels. The experiments were classified as follows:

» Evaluation of the overhead introduced by the user-level execution environment on the

parallel applications.
» Evaluation of the performance of individual applications on a dedicated machine.
» Evaluation of workload performance.

From the evaluation of the overhead introduced by the user-level execution
environment in the parailel applications, we conclude that the number of remote memory
accesses is limiting the performance of the nano-threads primitives. Nevertheless, the overhead
is low enough to allow a good exploitation of multiple levels of parallelism, due to the
integration of the mechanisms based on work descriptors.

From the evaluation of individual applications, running in a dedicated mode, we
conclude that the NANOS environment is comparable to the SGIMP environment when
exploiting a single level of parallelism. In some cases, the results are even slightly better.
When exploiting multiple levels of parallelism, the evaluation using complete applications
demonstrates that the integration of two different mechanisms for spawning parallelism (based
on nano-threads and work descriptors, respectively) achieves better performance than
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exploiting a single level. In this way, applications can take advantage of being executed on a
larger number of processors.

Finally, from the evaluation of different workloads running in both the SGIMP and
NANOS environments, we conclude that the NANOS environment effectively shows better
behavior in common heterogeneous workloads consisting of several applications, requesting a
different number of processors. When the applications are allowed to exploit a high degree of
parallelism, requesting the number of processors which provide good speedup, the throughput
is increased by 80% and the average execution falls to nearly half in the NANOS environment,
compared with the SGIMP environment running the same applications.

The NANOS execution environment reduces the need for fine-tuning of individual
applications, providing an environment which is already tuned for the applications, as they are
partitioned and parallelized by the compiler. The resulting execution is smoother, providing
lower standard deviations in the execution time of several instances of the same application.
The user will observe more predictability in the execution time of its applications. In addition,
the design of the kernel scheduling framework is validated observing that the NANOS
environment guarantees that requesting more processors ensures a faster execution.

10.2. Future work

Several issues remain opened and can be further developed as a continuation of this thesis.
They are outlined in the following subsections.

Extensions to the OpenMP directives. Along this thesis we have used a set of extensions to the
OpenMP directives. These extensions are part of another work, currently under development,
We are providing a complete parallel execution environment on top of which new proposals of
directives can be easily designed, implemented and tested.

Programmers, when parallelizing applications, search for improved expressiveness
and casy of use. The goal is to continue developing directive extensions, enriching the
expressiveness of the current ones. The main open question is how the groups of processors are
defined when using these directives. This is important to help programmers to exploit multiple
levels of parallelism in applications.

Improvements in the definition of the directives can lead to changes in the user-level
execution environment interface. The NthLib interface proposed in this thesis is opened to
improvements to better adapt to code generation from different proposals with respect

directives,

Take advantage of the work descriptor experience. The development of two different, and
mntegrated, mechanisms (nano-threads and work descriptors) for supporting multiple levels of
parallelism has been one of the approaches taken in this thesis which has been carried out with
more discussions during its development. Although we finally decided to proceed with the
distinction, it is not clear that both mechanisms can not be joined, providing a common
interface. The important question is whether the resulting mechanism could offer the same
functionality than nano-threads and the same performance than work descriptors. We plan to
continue studying how this can be achieved, re-designing and evaluating the new proposals.

Introducing automatic load balancing mechanisms. In this work, data locality has been given
more importance than load balancing. For irregular applications, where the amount of work
can not be distributed evenly among the processors because the amount of work is not known

Page 163




Chapter 10

when spawning parallelism, load balancing is of importance. Dynamic Bisectioning
Scheduling (DBS) has already been implemented inside NthLib and it is currently under

evaluation as an open issue, to be completed in the near future.

Improving the user-kernel cooperation. Although we think we are providing a good and well-
tuned mechanism for cooperation between the user and kernel levels, an open question is
whether the applications can help the kernel-level scheduling. The goal is to allow each
individual application to dynamically detect at run-time which is the number of processors
from which it can obtain better performance.

Within this approach, the application itself is able to decide how many processors to
request, given the computed performance and the maximum number of processors offered by
the operating system. Again, this open issue will improve the interface between the user and
kernel levels for better individual and workload performance.

Kernel-level framework. The evaluation of the proposals at the kernel level will be completed
in the future. We want to evaluate the benefits which can be obtained from scheduling in
advance, taking into account the information supplied by the applications, and planning the
processor allocations for the future to avoid abrupt changes in the allocation of processors.
This will allow to extensively apply the grace time to allow the applications to completely
avoid processor preemptions.

Kernel-level scheduling. Another open question is the search for a more specific scheduling
policy, specifically designed for the Nano-Threads Programming Model, which can improve
the results of application workloads. The idea here is to offer two level scheduling policies,
where the machine is first partitioned at the higher level, using Dynamic Space Sharing
Scheduling (DSS), among the executing applications taking into consideration the processor
requirements of each application, as well as the overall system workload. At the lower level,
Selective Scheduling is applied in order to promote processor affinity. This issue has already
provided good results [118][117], within the work done with the High Performance
Information Systems Laboratory in the University of Patras (Greece).

Distributed memory architectures. After having worked with SMP and CC-NUMA machines,
an open line consists of taking advantage of the experience to port a similar parallel execution
environment to distributed memory machines, including clusters of SMP’s, and networks of
workstations. We think that the notion of group of processors can be very useful to provide
high performance to applications running on such machines, with the ability of exploiting
multiple levels of parallelism.

Real applications. Another open issue consists of getting real applications, study them using the
experience got from this work and determine whether they can take advantage of any of the
achievements of this thesis. The main goal would be to evaluate how many applications can
take profit from the exploitation of multiple levels of parallelism. As a result, the guidelines for
the exploitation of such kind of parallelism would be clarified for programmers to use it.

Porting to other architectures / operating systems. The NANOS execution environment is being
ported to other architectures and operating systems. It has already been tested on the Alpha
AXP architecture/Digital UNIX, in SPARC/Solaris and in Pentium/Linux. Further portings

include Pentium/Windows NT.
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Influence commercial execution environments. Some of the ideas discussed and implemented in
our prototype can influence commercial operating systems and parallelizing environments. In
this direction, we have recently visited Silicon Graphics and Kuck & Associates, Inc. (KAI).
Our environment has been presented to them and they have expressed some interest in being in
touch to continue sharing points of view. For example, we have started to experiment on
rumning SGIMP-parallelized applications on top of the NANOS environment. SGI commercial
compilers are able to get optimum performance from the SGI architecture and our execution
environment can exploit multiple levels of parallelism. Another experience is to modify the
dynamic adaptability of the SGI applications to the suggested number of processors by using
our global reallocation policies.
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