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RESUM

La diabetis tipus 1 (T1D) és una malaltia autoimmunitària que afecta a les cèl•lules β
del pàncrees que són responsables de l’excreció de la insulina i que resulta en nivells
crònicament elevats de glucosa en sang (BG). Globalment, s’estima que el nombre de nens

i adolescents (< 20 anys) amb T1D és 1,1 milions, amb un augment de 132.600 casos nous cada
any, i en països de renda elevada, la majoria de nens que són diagnosticats amb diabetis tenen
T1D. La T1D resulta en moltes complicacions agudes i cròniques que redueixen la qualitat de la
vida, augmenten la càrrega econòmica i augmenten el risc de mortalitat.

Han sorgit eines millorades per a la gestió de la T1D incloent-hi monitors de glucosa contínua
(CGM) i bombes d’insulina cada cop més sofisticades, amb millores en les formulacions d’insulina
també. Això ha promogut el desenvolupament del pàncrees artificial, que consisteix d’un CGM,
una bomba d’insulina i un algoritme de control que té el potencial de reduir les complicacions
associades amb la T1D prestant una regulació estricta de BG en pacients. S’han explorat diversos
algoritmes de control i s’ha obtingut un control millorat de BG; no obstant això, aquests són
sistemes híbrids que requereixen l’anunci de menjars i exercici, i sovint resulten en un rendiment
subòptim. Per tant, el desenvolupament d’estratègies innovadores que no requereixen l’anunci de
menjars ni exercici són necessaris per millorar el control de BG i reduir els problemes actuals
d’optimització, tal com la desestimació de menjars, bolus de menjar perduts i hipoglucèmia
induïda per exercici.

En aquesta investigació es desenvolupen estratègies de control en llaç tancat (CLC) encami-
nades a reduir la hiperglucèmia postprandial i la hipoglucèmia postexercici. Es desenvolupa una
nova metodologia per la detecció de pertorbacions que implica l’estimació d’un estat de pertor-
bació, D, d’un model mínim augmentat calculat amb un filtre de Unscented Kalman. L’algoritme
de la reducció d’hiperglucèmia postprandial (PHRA) i l’algoritme de la reducció d’hipoglucèmia
postexercici (EHRA) inclouen un algoritme de detecció que provoca accions automàtiques de
rebuig de pertorbacions per mitigar de manera segura i efectiva la hiperglucèmia postprandial
i la hipoglucèmia postexercici, respectivament. El PHRA és capaç de millorar el control de BG
quan es compara amb un controlador de CLC amb bolus de menjar perduts i és capaç de millorar
el control de BG durant els menjars d’absorció lenta quan es compara amb un controlador de CLC
amb àpats anunciats; malgrat això, no pot prevenir hiperglucèmia durant menjars d’absorció
ràpida degut als retards en la detecció d’àpats i l’acció pic d’insulina. El EHRA detecta exercici
sense utilitzar senyals fisiològics addicionals i és capaç de superar les estratègies d’exercici
aeròbic no anunciat i anunciat en un controlador de CLC evitant hipoglucèmia severa (<54 mg/dl)
sense provocar hiperglucèmia addicional a causa dels suggeriments de carbohidrats.

Els sistemes desenvolupats estan destinats a ser millorats, extensivament avaluats in silico i
després validats en futurs assajos clínics.
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RESUMEN

La diabetes tipo uno (T1D) es una enfermedad autoinmune que afecta a las células β del
páncreas que son responsables de la excreción de la insulina y que resulta en niveles
crónicamente elevados de glucosa en sangre (BG). Globalmente, se estima que el número

de niños y adolescentes (<20 años) con T1D es 1,1 millones, con un aumento de 132.600 casos
nuevos cada año, y en países de altos ingresos, la mayoría de niños que son diagnosticados con
diabetes tienen T1D. La T1D resulta en muchas complicaciones agudas y crónicas que reducen la
calidad de la vida, aumentan la carga económica y aumentan el riesgo de mortalidad.

Han surgido herramientas mejoradas para la gestión de la T1D incluyendo monitores de
glucosa continuos (CGM) y bombas de insulina cada vez más sofisticadas, con mejoras en las
formulaciones de insulina también. Esto ha promovido el desarrollo del páncreas artificial, que
consiste de un CGM, una bomba de insulina y un algoritmo de control que tiene el potencial
de reducir las complicaciones asociadas con la T1D prestando una regulación estricta de BG en
pacientes. Han sido explorados varios algoritmos de control y se ha obtenido un control mejorado
de BG; sin embargo, estos son sistemas híbridos que requieren el anuncio de comidas y ejercicio y
a menudo resultan en un rendimiento subóptimo. Por consiguiente, el desarrollo de estrategias
innovadoras que no requieren el anuncio de comidas ni ejercicio son necesarios para mejorar el
control de BG y reducir los problemas actuales de optimización, tal como la desestimación de
comidas, bolos de comida perdidos e hipoglucemia inducida por ejercicio.

En esta investigación, se desarrollan estrategias de control en lazo cerrado (CLC) encaminadas
a reducir la hiperglucemia postprandial y la hipoglucemia postejercicio. Se desarrolla una nueva
metodología para la detección de perturbaciones que involucra la estimación de un estado
de perturbación, D, de un modelo mínimo modificado calculado con un filtro de Unscented
Kalman. El algoritmo de la reducción de hiperglucemia postprandial (PHRA) y el algoritmo
de la reducción de hipoglucemia postejercicio (EHRA) incluyen un algoritmo de detección que
provoca acciones automáticas de rechazo de perturbaciones para mitigar de manera segura y
efectiva la hiperglucemia postprandial y la hipoglucemia postejecicio, respectivamente. El PHRA
es capaz de mejorar el control de BG cuando se compara con un controlador de CLC con bolos
de comida perdidos y es capaz de mejorar el control de BG durante comidas de absorción lenta
cuando se compara con un controlador de CLC con las comidas anunciadas; sin embargo, aún no
puede prevenir hiperglucemia durante comidas de absorción rápida por retrasos en la detección
de comidas y la acción pico de insulina. El EHRA detecta ejercicio sin usar señales fisiológicas
adicionales y es capaz de superar las estrategias de ejercicio aeróbico no anunciado y anunciado en
un controlador al impedir hipoglucemia severa (<54 mg/dl) sin provocar hiperglucemia adicional
debido a las sugerencias de carbohidratos.

Los sistemas desarrollados están destinados a ser mejorados, extensivamente evaluados in
silico y después validados en futuros ensayos clínicos.
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ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease that targets the insulin producing β-cells
in the pancreas that results in chronically elevated blood glucose (BG) levels and requires
lifelong insulin-replacement therapy. Globally, there is an estimated 1.1 million children

and adolescents (<20 years) with T1D, with an increase of 132,600 new cases per year and in
most high income countries, the majority of children that are diagnosed with diabetes have T1D.
T1D results in many acute and chronic complications that reduce life quality, increase economic
burden, and increase the risk of mortality.

Improved tools for the management of T1D have emerged including increasingly sophisti-
cated continuous glucose monitors (CGM) and insulin pumps, with improvements in insulin
formulations as well. This has led to the development of the artificial pancreas (AP), which is
composed of a CGM, an insulin pump, and a control algorithm that has the potential to reduce
the complications associated with T1D by providing tight BG regulation in patients. Several
control algorithms have been explored and improved BG control has been obtained; however,
these are hybrid systems that require the announcement of meals and exercise and often lead to
suboptimal performance. Therefore, the development of innovative strategies that do not require
the announcement of meals and exercise are necessary to improve BG control and remove current
optimization problems such as meal misestimation, missed meal boluses, and exercise-induced
hypoglycemia.

In the work presented in this dissertation, closed-loop control (CLC) strategies to reduce
postprandial hyperglycemia and postexercise hypoglycemia were developed. A new methodology
for the detection of disturbances, which involves the estimation of a disturbance state, D of an
augmented minimal model determined using an Unscented Kalman Filter has been developed.
The postprandial hyperglycemia reduction algorithm (PHRA) and the exercise-induced hypo-
glycemia reduction algorithm (EHRA) developed in this thesis include detection algorithms that
trigger automatic disturbance rejection actions to safely and effectively mitigate postprandial
hyerglycemia and hypoglycemia induced by aerobic exercise, respectively. The PHRA is able to
improve BG control when compared to a CLC controller with missed meal boluses and is able
to improve BG control during slow absorption meals when compared to a CLC controller with
announced meals; however, it is still unable to prevent hyperglycemia during fast absorption
meals due to the delays in meal detection and insulin peak action. The EHRA detects exercise
without the use of additional physiological signals and is able to outperform both unannounced
and announced aerobic exercise strategies in a CLC controller by preventing severe hypoglycemia
(<54 mg/dl) without causing excess hyperglycemia due to carbohydrate suggestions.

The systems developed in this thesis are intended to be improved, extensively evaluated in
silico, and then validated in future clinical trials.
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INTRODUCTION

D iabetes mellitus (DM) affects over 425 million people worldwide [1]. It is a group of

chronic metabolic disorders, which result in hyperglycemia and are associated with

many complications that lessen the quality of life for patients. This study offers a way to

improve the quality of life of people with type 1 diabetes (T1D) by removing the announcement of

meals and exercise that current hybrid closed-loop control (CLC) systems require. This introduc-

tory chapter of the thesis begins with an overview of the dissertation and the motivations of the

research and then, the challenges and objectives are presented. The chapter is concluded with a

description of the structure and content of the thesis.

1.1 Motivation

DM is a group of metabolic disorders characterized by elevated blood glucose (BG) levels, or

hyperglycemia, over a prolonged period of time, which is associated with chronic complications

such as retinopathy, nephropathy, neuropathy, and cardiovascular disease. DM can be classified

into three categories, T1D, type 2 diabetes (T2D), and gestational diabetes although, less common

types of DM also exist, including monogenic diabetes and secondary diabetes. This work is

focused on T1D, which originates from a deficiency in insulin producing β-cells in the islets of the

pancreas gland. T2D is the result of inadequate β-cell function leading to insulin resistance of

peripheral tissues and gestational diabetes arises during pregnancy due to hormone production

by the placenta that increases insulin resistance.

DM is currently one of the most common chronic conditions and has a significant impact on

European public health and economy. The International Diabetes Federation (IDF) [1] estimates

that more than 8.8% of the European population in the age range of 20–79, that is, approximately

58 million European citizens, including 22 million undiagnosed cases, currently suffer from
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DM; and this number is expected to increase to 66.7 million by the year 2045. The economic

consequences of diabetes in Europe, with annual costs of 142.7 billion EUR in 2017, are profound.

Europe has the highest number and incidence rate of children and adolescents (0-19 years) with

T1D at 286,000 cases and 28,200 new cases per year, respectively [1].

Progress can be seen in many areas of diabetes treatment. Glucometers, which enable on-

demand determinations of BG throughout the day, have evolved into continuous glucose monitors

(CGM) that are currently less accurate than glucometers. Continuous glucose monitoring provides

a clearer picture of overall BG control by providing glucose readings every 5 to 10 minutes

throughout the day, some with alarms for hyper- and hypoglycemia. Traditionally, multiple

daily injections (MDI) of insulin have been used to treat T1D, which require a basal injection of

slow-acting insulin once daily and boluses of fast-acting insulin to cover meals. Now, continuous

subcutaneous insulin infusion (CSII) treatment using an insulin pump is available, which can be

manually programmed to deliver both basal and bolus insulin according to patient needs.

In the last two decades, these technological advances have fueled research on CLC systems

intended for BG control in T1D patients, i.e. artificial pancreas (AP) systems, which regulate

BG levels using a CGM informed controller that adjusts insulin infusion via an insulin pump.

Although satisfactory clinical results have been reported for overnight BG control [2, 3], several

challenges for effectively realizing optimal daytime CLC of BG are evident. The need for meal and

aerobic exercise announcement due to lack of physiological control of BG in T1D, carbohydrate

(CHO) counting, missed meal boluses, the multifaceted nature of exercise, the effect of meal

composition on postprandial glucose, inter- and intra-variability in patients, delays in the subcu-

taneous route of insulin infusion and glucose sensing, and the lack of accuracy for existing CGMs

in the hypoglycemic range, during times of high rate of change, and during aerobic exercise have

been identified as limiting factors in the development of an AP for domiciliary use. Current hybrid

CLC systems perform optimally with the announcement of both meals and exercise, which are the

most frequent and persistent disturbances on BG control. The removal of these announcements

are the first natural step towards the realization of the AP as a fully CLC system. Several meal

detection algorithms have been developed [4–13]; however, these algorithms have been unable to

prevent postprandial hyperglycemia and often lead to hypoglycemic events [14, 15]. Additionally,

previous exercise detection studies have been developed for aerobic exercise [16–21]; however,

these approaches increase the system complexity, increase the burden to the patient, are prone to

failure, and are unable to distinguish between aerobic and anaerobic exercise.

Despite the existing control strategies for unannounced meals and exercise, satisfactory BG

control remains a significant challenge for CLC algorithms. Therefore, innovative strategies

are needed for effective and safe postprandial and postexercise BG control. Improvements in

detection algorithms and associated mitigation actions will deliver the required performance and

safety for automated postprandial and postexercise BG control in CLC systems intended for the

treatment of T1D.
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1.2 Problems and Challenges

A list of the primary challenges for the development of AP systems during meals and aerobic

exercise are outlined as follows:

• Physiological control system of meals in T1D: In healthy subjects, hypo- and hy-

perglycemia are counteracted by a physiological control system that includes pancreatic

hormones such as insulin and glucagon [22]. In T1D, insulin is virtually absent due to

autoimmune destruction of β-cells. Additionally, after a meal, T1D patients exhibit a

paradoxical postprandial hyperglucagonemia in which endogenous glucagon levels remain

elevated in the portal circulation. Administration of exogenous insulin alone does not

normalize the portal glucagon:insulin ratio and the liver continues to release glucose, which

enters the circulatory system by exogenous and endogenous means, resulting in further

hyperglycemia [23]. Therefore, in T1D, the physiological control system responsible for

mediating glucose is lacking, which is especially evident after a meal when a profound

postprandial increase in BG is experienced.

• Physiological control system of aerobic exercise in T1D: Aerobic exercise is charac-

terized as prolonged physical exertion of submaximal intensity (approximately 50-60% of

maximal oxygen consumption capacity (VO2max))[24], which produces an increased rate of

glucose disposal in the bloodstream as a result of increased glucose uptake in the skeletal

muscle [25]. In T1D, control of BG during aerobic exercise is challenging because, unlike

healthy subjects, insulin levels are unable to change rapidly in response to exercise. In-

sulin in the subcutaneous space is more rapidly absorbed into the bloodstream and excess

insulin in the bloodstream promotes amplified glucose uptake in the skeletal muscle and

suppresses the production of endogenous glucose. Additionally, it is not uncommon for T1D

patients to experience late-onset postexercise hypoglycemia that can occur 6-15 hr after

exercise due to factors such as impaired counterregulation in response to hypoglycemia in

T1D, the increase in glucose uptake by skeletal muscles for the replenishment of muscle

glucose stores, and a rise in insulin sensitivity after exercise [26]. The cumulative effect of

these responses results in an increased probability of a hypoglycemic event after aerobic

exercise in T1D subjects [27].

• The burden of current meal announcement strategies: AP systems are still depen-

dent on feed-forward actions such as meal announcements to achieve effective control.

Announcing a meal requires patients to estimate the amount of CHO they are about to

consume. This not only increases the burden to the patient but also introduces error into

the system as some boluses will be overestimated, underestimated, or missed [28–30]. An

overestimated bolus may also occur when the user delivers a bolus but does not consume

the entire meal. Overestimation of the meal bolus amount leads to an increased risk of hy-
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poglycemia. Additionally, several studies have reported a link between glycated hemoglobin

(HbA1c) levels and missed meal boluses [31–33]. These increases in HbA1c lead to an

increased risk of long-term complications. Furthermore, this type of meal announcement

does not take into account meals of differing compositions that require different types of

insulin administration.

• The burden of current exercise announcement strategies: The announcement of ex-

ercise is even more burdensome to the patient as current aerobic exercise recommendations

for T1D patients include decreasing basal insulin before aerboic exercise and ingesting a

predetermined amount of CHO before and during aerobic exercise [34]. Due to the com-

plexity of BG control before and during aerobic exercise, T1D patients either abstain from

exercise altogether or are unable to maintain BG within acceptable levels leading to poor

BG control. Additionally, similar to missed meal boluses, there is a high likelihood of a

patient forgetting to announce exercise or announcing exercise late.

• The downfalls of current strategies for unannounced meals: As of now, strategies

for unannounced meals focus on estimating the CHO content of meals and do not take

into account dietary fat and protein, which greatly effect how rapidly glucose appears in

the plasma, acute postprandial BG control, and prandial insulin dosing strategies [35].

Additional factors such as rate of glucose appearance (Ra) should be regarded as important

for dosing strategies during unannounced meals.

• The downfalls of current strategies for unannounced exercise: There is an added

complexity with the current approach to aerobic exercise detection, which includes the

addition of external physiological sensors, i.e. heart rate monitor (HRM), accelerometers,

etc. [16–21]. The addition of devices increases the burden to the patient, which must now

wear and maintain these devices in addition to the base components of the AP. The addition

of devices increases the probability of failure of individual devices and these physiolog-

ical sensors have been found to be prone to producing false positives [21]. Additionally,

these types of detection schemes are typically unable to differentiate between aerobic and

anaerobic exercise, which produce distinct changes to BG.

• Inter- and intra-patient variability: Due to the large inter-subject variability of glucose

regulation, which requires tuning of the system, an AP system must be patient-specific

and address intra-patient variability. Factors affecting inter-patient variability include

hormonal changes, stress, illness, and activity levels [36–40]. There exists a wide variability

in glucose profiles before, during, and after exercise that can be attributed to a multitude of

factors such as the amount of insulin-on-board (IOB), starting glucose, total muscle mass,

body mass index, age, duration of T1D, progression of T1D, stress level, insulin sensitivity,

rate of glucose uptake, etc. [34]. An AP must consider variations in insulin sensitivity
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produced by circadian rhythms, changes in insulin and meal absorption, and variability in

the glycemic response to aerobic exercise.

• Extensive physiological delays in the subcutaneous route: In healthy people, insulin

is delivered from the β-cells in the pancreas to the portal circulation. In this case, the

delay in insulin action is approximately 30 minutes [41]. When the subcutaneous route is

used to deliver insulin, there is a delay in time-to-peak plasma insulin concentration of

66 ± 22 minutes [42] from the time of infusion, even when rapid-acting insulin analogues

are used. An additional delay of 5-15 minutes is attributable to glucose sensing in the

subcutaneous route due to the transport of glucose from blood to the interstitial fluid

[43, 44]. These delays slow down both the detection of meals and exercise and postprandial

hyperglycemia control. Also, due to the IOB, the glucose-lowering effect of insulin that

has been delivered, but not yet taken effect, will persist during aerobic exercise although

insulin delivery has been shut off.

• The accuracy and reliability of existing CGM systems: CGM systems have now

achieved a mean absolute relative difference (MARD) of ±10% [45–47]. However, accuracy

decreases in the hypoglycemic range [48], with an increasing rate of change [49], and it has

been shown that there is a tendency for the MARD to increase during periods of aerobic

exercise [50–53]. Several factors have been attributed to this degradation in CGM accuracy

during aerobic exercise including microcirculation perturbation, variations of the oxygen

concentration in the blood, increase in body temperature, rapid BG changes in the plasma

caused by exercise, and mechanical forces on the sensor during aerobic exercise.

1.3 Objectives

The general objective of this research is to develop effective and safe CLC strategies for BG

control during unannounced meals and aerobic exercise in T1D patients. To achieve this objective,

the study addressed the following specific issues:

1. To implement a state estimator able to use the available data to gain information about

system disturbances. This state estimator will be used in meal and exercise detection

algorithms.

2. To build and analyze a meal detection algorithm with several tunings in the context of an AP

system in a way that it can be used to trigger automatic disturbance rejection actions that

safely and effectively mitigate postprandial hyperglycemia. The meal detection algorithm

and its tunings will be evaluated using standard detection metrics such as sensitivity,

change in glucose, detection time, true positive, false positive, false negative, and false

positives per day. Additionally, a sensitivity analysis will be performed to determine which

meals can be detected with the most efficacy.
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3. To derive postprandial glucose control strategies to be used after meal detection to safely

and effectively mitigate postprandial hyperglycemia during meals of various sizes and

compositions without the additional risk of postprandial hypoglycemia.

4. To build an exercise detection algorithm that detects aerobic exercise without the use of

additional physiological signals at various exercise intensities.

5. To derive aerobic exercise control strategies to be used after detection to safely and effec-

tively reduce hypoglycemia induced by aerobic exercise during exercise sessions of various

intensities. This will include disturbance rejection actions such as calculating and suggest-

ing a quantity of fast absorption CHO to be consumed and modifying controller dependent

and independent variables.

1.4 Thesis Structure

This dissertation is organized as follows:

• Chapter 1: Introduction introduces the motivation for this research, outlines the main

challenges of the development of the AP and presents the research objectives.

• Chapter 2: Type 1 Diabetes presents an overview of T1D, its prevalence, mortality rate,

economic impact, and its associated complications. It the describes glucose control in

humans and current T1D treatment.

• Chapter 3: The Artificial Pancreas describes the AP, the major advances in the field, and

the shortcomings of the current systems. The simulator and closed-loop controller used in

this thesis are also described breifly.

• Chapter 4: State Estimation is dedicated to the state estimator that employs a minimal

model and Unscented Kalman Filter (UKF) to estimate states of the system that are in

turn used in the detection of meals and exercise.

• Chapter 5: Unannounced Meal Detection and Control details the unannounced meal

detection and postprandial CLC strategies. First, the detection algorithm is detailed along

with the results and a discussion, then the postprandial disturbance rejection actions

triggered by the detection algorithm are described along with the results and a discussion.

• Chapter 6: Unannounced Aerobic Exercise and Control describes the aerobic exercise

detection algorithm and the postexercise CLC strategies employed after detection. First the

detection algorithm is detailed along with results and then the postexercise disturbance

rejection actions triggered by the detection algorithm are described along with the results

and a discussion.
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• Chapter 7: Conclusion outlines the conclusions and contributions of this research and

future studies.

• Appendix A: The University of Virginia/Padova Mixed Meal Simulation Model de-

scribes the T1D simulator used in this thesis.

• Appendix B: Closed-loop Controller describes the principal controller used in this thesis

and outlines the various clinical trials in which it has been tested.
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TYPE 1 DIABETES

T1D, formerly called juvenile or childhood-onset diabetes because of its classically early

onset, is an autoimmune disease targeting the insulin producing β-cells in the pancreatic

islets of Langerhans [54]. The hormone insulin is secreted in response to elevated BG

levels. This hormone promotes the transformation of glucose into glycogen and glucose uptake

into the muscles and other tissues, which ultimately decrease BG levels [55, 56]. T1D reflects a

loss of tolerance to tissue self-antigens caused by defects in both central tolerance, which aims

at eliminating potentially autoreactive lymphocytes developing in the thymus, and peripheral

tolerance, which normally controls autoreactive T-cells that escape the thymus. Like in other

autoimmune diseases, the mechanisms leading to T1D are multi-factorial and depend on a

complex combination of genetic, epigenetic, molecular, and cellular elements that result in the

breakdown of immunological tolerance [57]. Previously, people affected with T1D died from a

diabetic coma; however, since the discovery of insulin in 1921, T1D has been transformed from a

uniformly fatal condition into a chronic condition requiring lifelong insulin-replacement therapy

[58].

2.1 Prevalence, Mortality, and Economic Impact

DM is one of the most common chronic diseases worldwide with an increasing socio-economic

impact. In 2017, there were an estimated 425 million people (20-79 years) living with DM

throughout the world, T1D accounts for about 7-12% of this population in high income countries.

Globally, there is an estimated 1.1 million of children and adolescents (<20 years) with T1D,

with an increase of 132, 600 new cases per year. In most high income countries, the majority of

children and adolescents who develop DM have T1D [1]. Figure 2.1 shows the global incidence

rate of T1D in children and adolescents (<20 years).
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Figure 2.1: Estimated number of children and adolescents (0-19 years) with T1D per 100,000.
Data obtained from International Diabetes Federation [1].

Europe has the highest number of children with T1D compared with the other IDF regions

and the region also has one of the highest incidence rates of T1D in children. The Russian

Federation has the highest number of children and adolescents with T1D– approximately 43,100.

The European countries making the largest contribution to the overall numbers in T1D in

children are the Russian Federation, the United Kingdom, and Germany [1].

Individuals with T1D have been found to have an increased age-adjusted risk of all cause mor-

tality compared to the general population as a result of the development of chronic complications.

One study performed a registry-based observational study from 1998 to 2011 in Sweden and

found the mortality rate of patients with T1D to be higher at 8%, as compared to those without

diabetes at 2.9% [59]. Additionally, it has been found that women with T1D have approximately

40% greater excess risk of all cause mortality and double the excess risk of fatal and nonfatal

vascular events, when compared with men with T1D [60].

Despite the human burden characterized by premature mortality and lower quality of life due

to T1D-related complications, T1D also imposes an economic impact for countries, health-care

systems, and above all, for individuals with T1D and their families. In the United States, between

1999 and 2005, annual medical and non-health related costs for T1D accounted for an estimated

USD 14.4 billion [61]. In Brazil, between 2008 and 2010, an estimated USD 4.2 million was spent

annually on the treatment of T1D [62]. In the United Kingdom, an estimated USD 1.3 billion and

USD 1.2 billion were spent on medical and non-health related costs in 2010, respectively [63].

Finally, in Spain, the average annual cost of T1D in 2014 was USD 31,107 per patient [64].
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2.2 Complications

T1D complications may be disabling or even life-threatening and can be categorized as either

acute or chronic complications.

2.2.1 Acute Complications

Short-term complications are the day-to-day problems that can appear without warning. Hypo–

and hyperglycemia are considered short-term complications, and the symptoms vary depending

on the severity of hypo– or hyperglycemia.

Short-term complications of T1D related to hypoglycemia include:

• High blood pressure

• Headaches

• Weakness or shakiness

• Hunger

• Nervousness

• Nausea

• Dilated pupils

• Palpitations

• Pallor

• Seizures

• Loss of Consciousness

• Coma

Ultimately, after a significant period of time in coma or out of consciousness from hypoglycemia,

death can occur.

Short-term complications of T1D related to hyperglycemia include:

• Increased thirst

• Blurred vision

• Fatigue

• Headaches

• Frequent urination

• Unexplained weight loss

The omission of insulin can promote diabetic ketoacidosis (DKA), which is caused by high

levels of ketones in the blood and urine. Ketones are a byproduct of the breakdown of muscle

and fat that occurs with insufficient insulin in circulation leading to a buildup of acids in

the bloodstream. DKA requires immediate medical care as it can cause cerebral edema, acute

respiratory distress, thromboembolism, coma, and death [65].
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2.2.2 Chronic Complications

HbA1c is the "gold standard" in the management of T1D and is commonly used to assess long-

term BG control. The normal range for the HbA1c level is 4–6% for healthy human subjects.

Above this range, the higher the HbA1c value, the greater the risk of long-term complications.

Chronically elevated BG and HbA1c levels eventually results in long-term clinical complications,

including retinopathy, neuropathy, nephropathy, and heart disease.

Retinopathy: Retinopathy associated with DM is caused by vascular damage of the microvas-

culature in the retina and has been recognized as one of the most common causes of visual

impairment and blindess [66]. In people with T1D, retinopathy is usually not evident until

five or more years after onset, but after 20 years of T1D, almost all T1D patients show signs

of retinopathy [67]. Retinopathy is associated with a decreased quality of life [68] and in the

United Kingdom, an estimated USD 7.4 million was spent on the treatment of retinopathy in

T1D patients in 2010 [63]. Although the incidence of diabetes associated retinopathy is high,

evidence suggests that the prevalence of retinopathy might be decreasing in developed countries

[69].

Neuropathy: Neuropathy is the most frequent chronic complication of DM, is currently con-

sidered an irreversible end-organ damage complication, and has been found to be correlated

with a lower quality of life [70]. Peripheral neuropathy is a particularly debilitating complication

of DM and accounts for significant morbidity by predisposing the foot to ulceration and lower

extremity amputation [71]. In one study, it was found that 7% of youth with T1D had peripheral

neuropathy [72]. In 2001, the range of costs of peripheral neuropathy in T1D patients in the

United States was USD 0.3-1.0 billion [73]. In 2010, in T1D patients, the United Kingdom spent

USD 55.4 million on the treatment of neuropathy and USD 143.8 million on the treatment of foot

ulcers and amputations [63].

Nephropathy: Nephropathy is the leading cause of mortality in T1D [74–76] and has been shown

to decrease quality of life in patients [77]. Approximately, 20-30% of patients with T1D develop

evidence of nephropathy, with a higher percentage of T1D patients progressing to end-stage renal

disease [78]. In 2010, the United Kingdom spent USD 174 million and USD 66.4 million on the

treatment of nephropathy and on other renal costs in T1D patients, respectively. [63].

Cardiovascular Complications: A decrease in mortality and a remarkable improvement

in life expectancy occurred during the past decades in patients with T1D due to improved

prevention and care towards cardiovascular complications. The comparison of two subcohorts of

the Pittsburgh Epidemiology of Diabetes Complications study based on the period of diabetes

diagnosis (1950–1964 vs. 1965–1980) found an increase in life expectancy by approximately

14 years [79]. Nevertheless, the overall risk of CVD for people with T1D compared to people

without diabetes is increased two- to threefold in men, and three- to fivefold in women. A
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significant increase in CVD mortality related to increasing HbA1c levels has been reported in T1D

[80]. In 2010, the United Kingdom spent USD 65.7 million, USD 37.7 million, USD 39.7 million,

and USD 213.2 million on ischemic heart disease, myocardial infarction, heart failure, and other

cardiovascular disease treatments of T1D, respectively.

2.3 Glucose Control System

Glucose concentration is tightly regulated in healthy individuals by a complex neuro-hormonal

control system. It is currently known that at least ten hormones participate closely in glucose

regulation, with several more controlling related functions such as satiety, digestion, and growth.

The central nervous system also plays an important role by modulating the responses of endocrine

and other tissues according to a variety of inputs, including the circadian rhythm [81]. It is also

important to bear in mind that our knowledge of these complex mechanisms is still expanding.

In the healthy human subject, glucose is maintained at a midnormal range of 88–96 mg/dl

(4.9–5.3 mmol/L) [82]. Upon ingestion of a meal, incretins help prepare the pancreas for the

imminent surge of BG. The incretins glucagon-like peptide 1 (GLP-1) and gastric inhibitory

peptide (GIP), secreted by specialized cells in the gastrointestinal tract, promote the first phase

secretion of insulin in proportion to the glucose content of the meal even before its appearance

in the bloodstream [83]. This constitutes an anticipatory or feed-forward control loop. Insulin

promotes the uptake of glucose primarily in skeletal muscle, adipose tissues, the liver, and of

proteins in various tissues. Insulin also suppresses lipolysis, the breakdown of lipids. Amylin

is co-secreted with insulin by β-cells in the pancreas. Amylin, in combination with GLP-1 and

GIP, helps reduce the total insulin demand by slowing gastric emptying and promoting satiety

[84]. Insulin and amylin also seem to suppress the release of glucagon, further attenuating the

postprandial glucose peak. Incretins also influence the late phase of insulin secretion [83].

During prolonged exercise increased demand for glucose by contracting muscle causes in-

creased glucose uptake to working skeletal muscles due to an increase in the translocation of

insulin, contraction of sensitive glucose transporter-4 proteins to the plasma membrane, and

activation of the glycolytic and oxidative pathways responsible for glucose disposal. During exer-

cise, glucose production is derived mainly from liver glycogenolysis, which occurs following the

activation of glycogen phosphorylase and simultaneous inactivation of glycogen synthase through

a series of phosphorylation reactions initiated by hormones such as glucagon and norepinephrine

[25]. Liver gluconeogenesis accounts for 10-20% of glucose production during exercise; however,

with increasing exercise duration, the contribution of gluconeogenesis rises to about 50% of

the total liver glucose production. Gluconeogensis is important for the conversion of glycerol,

lactate, and amino acids into glucose in order to delay depletion of liver and muscle glycogen.

The rate of gluconeogenesis is mainly controlled by the activities of the unidirectional enzymes,

phosphoenol pyruvate carboxylase (PEPCK), fructose 1,6-bisphosphatase (FP2ase), and glucose
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6-phosphatase (G6Pase) [85]. The gene transcription of these gluconeogenic enzymes is controlled

by hormones, mainly insulin, glucagon, and glucocorticoids. While insulin inhibits gluconeogene-

sis by suppressing the expression of PEPCK and G6Pase, glucagon and glucocorticoids stimulate

gluconeogenesis, thereby hepatic glucose production by expressing these genes [85]. Exercise

increases the sensitivity of skeletal muscle to the action of insulin, which together with increased

insulin flow due to enhanced muscle flow, may overcome a reduction in plasma insulin levels.

Furthermore, insulin affects muscle glucose uptake via its inhibitory effects on adipose tissue

lipolysis and muscle glycogenolysis [86].

During hypoglycemia, the healthy human subject has numerous systems in place to maintain

an adequate supply of glucose to the brain. As glucose drops below ∼80 mg/dl, insulin secretion

ceases, allowing renal and hepatic glucose production to be favored. If levels keep falling to

∼70 mg/dl, glucagon and catecholamine (epinephrine and norepinephrine) secretions are activated

in the pancreas and adrenal glands, respectively. These hormones activate multiple pathways

that counteract hypoglycemia. Glucagon stimulates hepatocytes to produce glucose from stored

glycogen (glycogenolysis), glycerol, lactate, and amino acids (gluconeogenesis). Catecholamines

increase the effect of glucagon directly by stimulating hepatic glucose production and indirectly

by mobilizing gluconeogenic substrates. Falling insulin levels trigger the release of lipids through

sensitive lipolytic pathways. Prolonged hypoglycemia over several hours promtes the secretion

of growth hormone (<65 mg/dl) and cortisol (<60 mg/dl) to help recruit alternative fuels (via

lipolysis, proteinolysis, and ketogenesis) and reduce insulin sensitivity in the peripheral tissues,

which reduces the uptake of glucose by non-essential organs and tissues. Finally, at lower glucose

levels, brain functions become impaired [87].

In healthy subjects, the glucose control system is finely tuned to maintain glucose homeostasis.

However, in T1D, insulin-producing β-cells are destroyed due to an autoimmune response in the

body and exogenous insulin must be provided to regulate BG levels. Although T1D patients are

able to survive using insulin-replacement therapy, other hormones related to glucose control

are also disrupted leading to increased difficulty in the control of glucose homeostasis during

activities such as eating and exercise.
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2.4 Type 1 Diabetes Treatment

T1D became treatable after the discovery and isolation of insulin in 1921 [57]. Due to the

proteolysis of the insulin hormone by gut enzymes, parenteral administration of insulin is

mandatory. Insulin injections using the subcutaneous route have represented the usual means to

deliver insulin; additives to the insulin solute such as protamine or zinc have been used to prolong

insulin action, especially for basal coverage. Over the past twenty years or so, the development of

bioengineering has allowed the synthesis of insulin analogues characterized by modifications of

the insulin primary sequence. These analogues keep the biological action of insulin while they

either accelerate or slow down its absorption after a subcutaneous injection.

MDI, which is the combination of a slow-acting analogue for basal coverage, taken once or

twice a day to keep BG levels consistent and a fast-acting analogue at meal times, to control

BG levels after eating, allows a better mimicry of physiological insulin secretion than previously

used combinations (illustrated in Figure 2.2) [88]. Although other hormones, such as glucagon,

amylin, glucocorticoids, etc., are used in the physiological control of BG, they are seldom used

therapeutically. Glucagon is only available as an emergency treatment for hypoglycemia and

other hormones are either not available or are not used for the treatment of T1D.
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Figure 2.2: Illustration of the basal/bolus concept. Basal insulin is a slow-acting insulin analogue
that appears in the plasma throughout the day. Bolus insulin is a fast-acting insulin analogue
given at meal times to control BG after eating.

The need for tight glucose control in the long term, aiming at sustained near-normoglycemia,

has been clearly demonstrated by the Diabetes Control and Complications Trial (DCCT) per-

formed in T1D patients [89] that showed that the lower the average HbA1c level for several years,

the better were the outcomes in terms of chronic complications. However, only limited subsets of

patients are able to reach and maintain tight control, close to defined ideal goals, using MDI [89].

Besides being inefficient, the limitations of MDI include postprandial regulation of glucose levels,
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the risk of over delivery (resulting in hypoglycemia), and daily burden [4, 90].

Since early 2000, improved tools for managing T1D have emerged. These include CGMs and

increasingly sophisticated insulin pumps. CGMs are able to approximate BG concentration using

a glucose-oxidase reaction in the subcutaneous space and are required to be calibrated every

6–12 hours using a glucometer. Although, there are now sensors the do not require calibration,

such as the Freestyle Libre (Chicago, IL, USA), which is a 14-day factory calibrated flash glucose

monitoring system that has proven to be accurate [91]. CGM systems now boast a MARD of

±10% [45–47] and numerous studies have demonstrated clinical benefits such as improvement

in HbA1c levels and/or reduction in the risk of hypoglycemia in multiple patient populations–

pediatrics, adolescents, adults, T1D and T2D with various levels of BG control at baseline [92–97].

The Dexcom G5 Mobile sensor and Dexcom G6 CGM (San Diego, CA, USA) have been deemed safe

and effective by the FDA for non-adjunctive therapeutic decisions, i.e. insulin dosing [98–100]

with other models soon to follow.

Insulin pump therapy, also known as CSII, is primarily used by people with T1D and is

an open-loop system designed to mimic physiological delivery of insulin. CSII has been asso-

ciated with improved glycemic management, clinical outcomes [101–105], and increased cost

effectiveness [106] when compared to MDI. Introduced in 1970, CSII pumps now have the ability

to infuse rapid-acting insulin at preselected infusion rates with multiple programmable basal

profiles, which mimics basal insulin secretion. Many CSII pumps now have dedicated meters for

self-monitoring of BG that can automatically send BG readings to the pump and are equipped

with algorithms for suggesting bolus doses based on user-estimated grams of CHO, BG level from

a BG meter or CGM, insulin sensitivity factors, and IOB [107, 108].

Systems with automation are appearing, such as the Medtronic 530G, 640G, and 670G

(Northridge, CA, USA), which consist of a dedicated CGM, a CSII pump, and a control algorithm

that include low glucose suspend (LGS), predictive low glucose management (PLGM), or hybrid

CLC system, respectively. LGS allows basal insulin infusion to be interrupted for up to two hours

if the BG level goes below a preset threshold and the patient does not respond to the hypoglycemia

alerts [109, 110], PLGM suspends insulin infusion if hypoglycemia is predicted to occur within

30 minutes and resumes insulin delivery when BG levels begin to rise [111], and the hybrid CLC

system automatically adjusts insulin basal infusion based on BG levels and includes a PLGM

feature [112].

Although there have been many advancements in the field of T1D treatment, patients still

experience a heavy burden when it comes to BG control. This is due to the complexity of BG

control during exercise and meals where both hypo- and hyperglycemia still occur. Current

hybrid CLC systems require the announcement of both meals and exercise. This feed-forward

system is an imperfect one as CHO must be estimated to calculate the required insulin to be

administered for meals. Also, basal insulin levels must be lowered and a quantity of CHO must

be selected for consumption before and/or during aerobic exercise to prevent hypoglycemia. This

16



2.5. SUMMARY

not only introduces the possibility of error to the system but also disregards other important

meal and exercise factors that affect BG control such as protein and fat composition of meals and

exercise type and intensity. Therefore, to ensure patient safety, increase the effectiveness of T1D

treatment, and reduce the burden from the patient, these announcements must be removed.

2.5 Summary

T1D is an autoimmune disease that targets the insulin producing β-cells in the pancreas. Globally,

it is estimated that 1.1 million children and adolescents (<20 years) have T1D, with 132,600 new

cases per year. T1D results in many acute and chronic complications that reduce life quality and

increase the risk of all cause mortality.

BG control in a healthy subjects is a finely tuned control system, maintaining BG levels and

ensuring that high and low BG levels are immediately counteracted. However, those with T1D

lack this control system. This is especially evident after a meal and after the commencement of

exercise, where either a large postprandial increase or a large postexercise decrease in BG is

experienced. Current treatment options allow a better mimicry of physiological insulin secretion;

however, feed-forward announcements of meals and exercise are still required, which introduce

patient error into the system and disregard important meal and exercise factors that affect BG

control such as protein and fat composition of meals and type and intensity of exercise. Therefore,

to increase the efficacy of current CLC systems, increase patient safety, and decrease the burden

to the patient, the removal of meal and exercise announcements is paramount.
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THE ARTIFICIAL PANCREAS

The AP is a CLC system with the potential to reduce the complications associated with T1D

by providing tight BG regulation in patients. As highlighted by the DCCT [89], tighter

BG control leads to lower HbA1c levels, which ultimately leads to better outcomes in

terms of diabetes-related complications. The AP is composed of a controller with an embedded

algorithm that uses BG values provided by a CGM to modulate the insulin infusion rate of a CSII

pump (Figure 3.1).

The components of the AP have made several advances in the recent years. BG meters used

for self monitoring of BG (used to calibrate the majority of CGM devices), CGMs, and CSII

pumps have all evolved into smaller, more reliable devices when compared to their predecessors.

Additionally, there has been substantial progress in the development of the AP and a variety of

Figure 3.1: Illustration of the basic components in the AP (adapted from [113]).
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AP approaches have been investigated. Both insulin only and bihormonal (including glucagon)

approaches to the AP have been explored and several control algorithms such as, proportional-

integral-derivative (PID) control, model predictive control (MPC), generalized predictive control

(GPC), predictive derivative (PD) control, and fuzzy logic (FL) have been employed [114–121].

These systems have been challenged using different scenarios, mostly involving meals and

exercise. Furthermore, the number of studies of CLC systems aimed to control BG levels in T1D

have increased substantially with upwards of 90 clinical trials completed within the past five

years. AP studies have advanced from clinical trials to home studies. The first AP devices have

been introduced to the market in the form of the LGS and PLGM devices, with the most recent

release of the Medtronic 670G Hybrid Closed Loop System (Northridge, CA, USA), which will be

tested in patients aged 12 to 25 years over a six month period to determine its safety and efficacy

[122].

3.1 Current State of the Artificial Pancreas

Improved glucose control and quality of life via the use of AP therapy has been found in many stud-

ies, with improved time in target (70-180 mg/dl) to ∼70–75% and time below target (<70 mg/dl)

to <4% [2, 3, 123–126], with one recent study achieving 88% time in the target glucose range

[127]. However, these systems are largely hybrid systems that require user announcement of

meals and exercise resulting in suboptimal performance due to the lag in insulin, misestimation

of CHO, missed meal boluses, the varying effect of meal composition on BG, and different types

and intensities of exercise, which have resulted in continued daily hyperglycemia (>180 mg/dl)

with the persistent concern of hypoglycemia (<70 mg/dl).

3.1.1 Insulin Lag

Since the discovery of insulin, incremental advances such as highly purified animal-derived

insulin, synthetically derived human insulin, rapid acting insulin, and long and ultra long

acting insulin [128] have afforded those with T1D more convenience, a higher quality of life, and

improvement in overall glycemic control [129]. However, current rapid acting insulin analogues

are not absorbed quickly enough to mimic the pattern of physiological insulin secretion and action

modulated by the β-cell in response to changes in insulin sensitivity, meal composition, diurnal

variations, hormonal changes, and exercise [130].

Subcutaneous exogenous insulin is absorbed into the peripheral rather than the portal

circulation. This delivery method leads to a delay in the onset of action (0-15 minutes), peak

insulin BG concentration (40-60 minutes), and peak effect (∼120 minutes) [101, 131, 132]. Due to

this delay, studies have found that the optimum time for prandial insulin dosing is 15–20 minutes

before a meal [132]. However as previously noted, these delays do not only apply to the prandial
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period, as many other activities including exercise, require insulin levels in the plasma to be

quickly adjusted.

New insulin formulations such as faster-acting insulin aspart (insulin aspart in a new

fomulation) have been found when compared to insulin aspart to have a faster absorption and

a onset of action of 5 min. Faster-acting insulin aspart was found to have an earlier insulin

exposure and early glucose-lowering effect of 1.5-to-2 fold larger when compared to insulin aspart

[133]. New administration routes such as pulmonary insulin delivery found in Technosphere

Inhaled Insulin (Afrezza) has been found to have a faster peak insulin plasma concentration

of 8-15 minutes, maximum insulin absorption of ∼15 min, and a shorter duration of action of

180-240 minutes [134].

Currently, the lag in insulin is the main culprit of poor BG control during times when insulin

BG concentrations are required to change rapidly in response to changing conditions e.g. during

meals and aerobic exercise. Until new formulations and administration routes remove this lag,

BG control during these disturbances will continue to be a challenge.

3.1.2 Meal Misestimation

CHO counting has been used in diabetes care since the 1920s. The DCCT [89] used CHO counting

as one approach to meal planning that resulted in improved glycemic control, a reduction in

HbA1c, improved quality of life, and flexibility with food choices. However, it is well-known that

patients tend to under- and overestimate CHO quantities leading to higher HbA1c levels and

postprandial glucose excursions [135].

One study based on multiple 24-hour food recalls showed that parents tend to overestimate

the CHO content of their children’s meals by approximately 20% [136]. Another study found an

average meal CHO difference, between the patients’ estimates and those assessed by a dietitian

using a computerized analysis program, of 15.4 ± 7.8 grams or 20.9 ± 9.7% of the total CHO

content per meal and 62.7% of the 448 meals analyzed were underestimated [137]. Meade and

Rushton [30] found that patients over- and underestimated CHO content by an average of 40%

and 12%, respectively. Smart et al. [135] and Kawamura et al. [138] found that CHO tended

to be underestimated for larger meals and overestimated for foods containing relatively small

amounts of CHO. Additionally, accurate estimation of the CHO in food containing a large amount

of rice was particularly difficult and the CHO contents of high-calorie foods such as meats, fried

foods, and desserts tended to be overestimated [138]. In addition, one study found that one of

five participants who learned CHO counting did not use it to estimate their meal boluses, which

suggests that this method may be difficult to implement for a non-negligible proportion of patients

with T1D [139].

An additional note to consider is that CHO counting does not take into account dietary fat

and protein, which affect the overall meal excursion, the duration of postprandial hyperglycemia,

and prandial BG control [35]. Dietary fat modifies postprandial glycemia by delaying gastric
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emptying resulting in a later postprandial peak [140–143] and sustained late postprandial

hyperglycemia [142, 144]. Protein affects BG concentrations in the late postprandial period but

behaves differently when consumed with and without CHO. For protein loads ≥75 grams without

CHO, BG levels began to rise after 100 minutes [145], for meals with both protein and CHO,

increased BG levels were noted after 3-4 hours [142, 143, 146].

Due to the error incurred by current meal size estimation practices, a new methodology of

determining meal bolus quantity is required to optimize BG control.

3.1.3 Missed Meal Boluses

Missed meal boluses increases HbA1c levels, which can lead to an increased risk of long-term

complications [31–33]. Burdick et al. [31] reported that out of 49 adolescent patients, 17 patients

(35%) missed <1 mealtime bolus per week, while 31 patients (65%) missed ≥1 mealtime bolus

per week and showed an average increase in HbA1c of 4 mmol/mol (0.3%) during a 2-week period

due to missed meal boluses [31].

A few studies have used unannounced meals simply as a challenge to see how well their

controller works when a premeal bolus is not given [147, 148] and have found that their controller

is able to overcome small unannounced meals but have difficulty with larger meals [148]. This is

largely due to the delay in insulin action that lags behind the rise in BG preventing a sufficient

decrease in the glucose excursion. Larger unannounced meals therefore require meal detection

systems that are able to quickly detect meals and implement strategies to combat postprandial

hyperglycemia.

Dassau et al. [4] designed a meal detection system that uses binary detection that is triggered

by a voting scheme. This system was trained with a MiniMed CGMS Gold (Northridge, CA, USA)

dataset and tested in clinic using Freestyle Navigator CGM (Chicago, IL, USA) readings. Lee and

Bequette [5] detected a meal based on certain logical conditions of first and second derivatives of

glucose levels, and then a finite impulse response (FIR) filter was applied to estimate the meal

size. Then, Lee et al. [6] refined the logical conditions and generated a series of meal impulses,

a moderately sized bolus was then given according to the meal impulses. Cameron et al. [7]

developed a probabilistic detection algorithm based on a set of meal shapes with the meal start

time and postprandial glucose appearance estimated at the same time. Later on, Cameron and

Niemeyer [8] came up with a multi-model method to detect and estimate unannounced meals.

The method is also probabilistic based but assumes a constant meal absorption shape. Chen

et al. [9] and Weimer et al. [10] are able to detect meals utilizing a bin-counting heuristic that

counts the number of decisions generated using a dual parameter-invariant statistics leveraged

from a linearized physiological model. Xie and Wang [11] use a multi-model approach to detect

meals, meal start time, and meals size using a Variable State Dimension method, which uses a

switching criteria to switch between models with different state dimensions. Turksoy et al. [12]

propose a method for meal detection and bolus estimation based on an estimated rate of glucose
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appearance (Ra). Finally, Mahmoudi et al. [13] use an adaptive Unscented Kalman Filter (UKF)

and two redundant CGM sensors to detect meals based on glucose predicted by a model and CGM

values. A meal is detected when CGM values of both sensors fall outside the 95% confidence

interval of the predicted model.

Lee et al. [6] and Cameron et al. [7] have achieved remarkable in silico results in an adult

cohort in terms of postprandial hyperglycemia mitigation with a time in range (70-180 mg/dL)

of 90% and 89%, respectively. However, these results have not been translated into a clinical

setting where detection modules are still unable to prevent a large majority of postprandial

hyperglycemia and in turn result in many hypoglycemic events as seen in Turksoy et al. [14] and

Cameron et al. [15]. Therefore, a means to improve outcomes due to unannounced meals and

provide an improved methodology for overcoming meal excursions is required.

3.1.4 Exercise

Although, evidence suggests that regular physical activity can lower mortality and morbidity and

improve cardiovascular health, lipid profiles, and physiological wellbeing in patients with T1D

[149–151], those with T1D are reluctant to participate in exercise due to fear of exercise-induced

hypoglycemia.

Current aerobic exercise recommendations for T1D patients include decreasing basal insulin

and ingesting a predetermined amount of CHO before and during aerobic exercise [34]. A study by

Schiavon et al. [152] found that the optimum adjustment of basal insulin in an in silico population

was a reduction of 50% 90 minutes before exercise, with a reduction of 30% during exercise.

However, patients should be aware of increased risk of DKA due to insulin reduction/omission

over an extended period of time [34]. The amount of CHO required by each patient differs based

on intensity and duration of exercise, as well as internal metabolic factors, e.g. rate of glucose

uptake, insulin sensitivity, etc.

Due to the multifaceted nature of aerobic exercise, T1D patients either abstain from exercise

altogether or are unable to maintain BG within acceptable levels leading to poor BG control.

Additionally, similar to missed meal boluses [32, 153], there is a high likelihood of a patient

forgetting to perform the manual adjustments before exercise required of current hybrid systems

or performing these actions late. Therefore, a methodology to reduce the likelihood of exercise-

induced hypoglycemia and remove the burden from the patient is required to improve outcomes

due to aerobic exercise, specifically unannounced aerobic exercise.

Stenerson et al. [16] showed that insulin suspension based on accelerometery input alone was

successful in preventing exercise-induced hypoglycemia in silico, but not successful in preventing

hypoglycemia in children with T1D playing soccer [17]. Turksoy et al. [18] did a study that used

a multisensor called SensWear Pro3 (BodyMedia Inc, Pittsburgh, PA) that used accelerometer

and skin impedance data as inputs to their single-hormone AP to reduce the delivery of insulin

during unannounced exercise; CHO were also suggested if glucose was dropping sharply or
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dropping too low. In a study by Breton et al. [21] the addition of a hear rate monitor (HRM) as

an input to modify dosing of a control-to-range single-hormone AP system was able to reduce

exercise-induced hypoglycemia. Dasanayake et al. [19] used both an accelerometer and HRM to

detect both the start and end of exercise using principal component analysis. Finally, Jacobs et al.

[20] used an accelerometer and heart rate monitor as inputs into a validated regression model to

detect exercise during a 22-hour overnight inpatient study with 13 T1D subjects.

Although previous exercise detection studies have been able to detect aerobic exercise in a

short period of time and improve outcomes due to aerobic exercise [16–21], there is an added

complexity with the current approach to exercise detection, which includes the addition of

external physiological sensors, i.e. heart rate monitor (HRM), accelerometer, etc. The addition of

devices increases the probability of failure of individual devices as seen in Dasanayake et al. [19],

where dropouts were experienced in both the HRM and accelerometer for significant periods of

time. It was also found that both heart rate and accelerometry data are prone to producing false

positives, as heart rate can be increased in the presence of stress or a fever and accelerometer

data can be increased during activities such as horseback riding [21]. Furthermore, due to the

additional burden, patients are likely to resist the use of additional devices that are required to

be worn and maintained in conjunction with their existing devices.

Furthermore, this type of detection is not able to distinguish between aerobic and anaerboic

exercise. Anaerobic exercise, in contrast to aerobic exercise, can lead to a dramatic increase in BG

due to a feed-forward mechanism that causes hepatic glucose production to exceed muscle glucose

utilization. Therefore, it is also necessary to distinguish between aerobic and anaerobic exercise

during detection. Thus far, there has been one study using additional physiological signals to

develop a classification system [154]; however, it has not been implemented into a CLC system

and its usefulness has not been determined. Therefore, a new methodology is required for the

control of BG during exercise that does not include announcement and is proven safe to the

patient.

3.2 The Type 1 Diabetes Simulator

A modified T1D simulator based on the University of Virgina/Padova (UVA/Padova) T1D Sim-

ulator [155] was used in this thesis to build different types of scenarios to test the detection

and control of meals and aerobic exercise. The simulator is a mixed meal simulation model of

a glucose-insulin-glucagon system and further information about the model and its equations

can be found in Appendix A. Various insulin pump and CGM models are implemented into the

simulator.

The T1D Simulator uses the patient population from the S2008 version of the UVA/Padova

T1D Simulator [156] that includes a cohort of ten adults, ten adolescents, and ten children.

Although, the newer versions of the UVA/Padova include 100 subjects for each of the three patient
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populations, the ten subjects used in our studies give insight into the interpatient variability of

key metabolic parameters found in the general population of individuals with T1D [156].

The T1D Simulator has been modified to include a meal library, which consists of 31 fast

absorption meals (over 60% of the ingested CHO are absorbed within the first two hours after

meal time), 15 medium absorption meals (less than 60% of the ingested CHO absorbed within the

first two hours after meal time and more than 80% of the ingested CHO are absorbed within the

first four hours after meal time), and three slow absorption meals (less than 80% of the ingested

CHO are absorbed within the first four hours after meal time) [157, 158]. An exercise model

[159] has also been added to the simulator and fitted using clinical data (previously described

in Bertachi et al. [160]) to be used for testing the detection and disturbance rejection of aerobic

exercise. Circadian insulin sensitivity variation (sinusoidal type with 24-hour period) was also

implemented with random amplitude according to a uniform distribution of ±30% and random

phase.

3.3 Closed-Loop Controller

The algorithms presented in this thesis were built around a base closed-loop controller. This

closed-loop controller is a PD controller with sliding mode reference conditioning (SMRC) and

insulin feedback (IFB) [161–163]. Figure 3.2 is a block diagram of the closed-loop controller which

is composed of two loops. The inner control loop is a PD controller with IFB designed to drive

the measured glucose to a target value. The outer loop is a safety supervisory loop that uses

SMRC to modulate the glucose target value based on the estimated IOB, which reduces the

1st Order
Filter

Controller
PD(s)

Patient
G(s)

γ

IOB ModelSwitch, σ

Insulin
PK Model

ubasalubolus

+
-

+ + + + +
-

Gr

umeal

Grf

uPD uAP uIFB

Îp

IOBω

umeal

Figure 3.2: Closed-loop controller composed of an inner control loop that contains a PD controller
with IFB designed to drive the measured glucose value (G) to a target value (Gr) and an outer
loop that acts as a safety supervisory loop and uses SMRC)to modulate Gr to Gr f based on the
estimated IOB.
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risk of hypoglycemia due to controller overcorrection. Further information about the closed-loop

controller can be found in Appendix B.

3.4 Summary

The AP is composed of a CGM, an insulin pump, and a control algorithm that has the potential

to reduce the complications associated with T1D by providing tight BG regulation in patients.

Several control algorithms have been explored such as PID, MPC, GPC, PD, and FL and improved

BG control has been obtained; however, these are hybrid systems that require the announcement

of meals and exercise and often lead to suboptimal performance.

Innovative strategies that do not require the announcement of meals and exercise are neces-

sary to improve BG control and remove current optimization problems such as meal misestima-

tion, missed meal boluses, and exercise-induced hypoglycemia. However, the lag introduced by

the subcutaneous administration of insulin further complicates the control of these events and

this limitation must also be taken into account.

The methodologies presented in this thesis will be created, tested, and incorporated into a

closed-loop controller using a T1D Simulator, which is a powerful tool for testing the efficacy of

CLC strategies on a T1D population.
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4
STATE ESTIMATION

A t the core of the strategies proposed in this thesis to better handle unannounced meals

and exercise is a state estimator. The derivation of said estimator is presented here

with its application/incorporation into the control strategies presented in later chapters.

State estimates were performed using an UKF that employs a minimal model. This chapter first

presents the minimal model with all of its equations and then elaborates on the UKF.

4.1 Minimal Model

The equations of the minimal model (Figure 4.1) are provided in the following subsections.

4.1.1 Glucose Subsystem

The model is comprised of the Bergman equations (see [164]):

Ġp(t)=−(
p1 + X (t)

)
Gp(t)+ p1Gb +

D(t)
VG

, (4.1)

Ẋ (t)=−p2X (t)+ p2SI I(t), (4.2)

where Gp is plasma glucose concentration, X is proportional to insulin in the remote compartment,

and Gb is basal glucose. p1 represents the rate at which glucose is removed from the plasma

space independent of the influence of insulin. VG is the distribution volume, p2 is the rate of

disappearance of remote insulin from the remote insulin compartment, and SI = p3/p2 is the

insulin sensitivity. D, identified using an UKF (Equation (4.9)), is a lumped signal used to

describe plasma glucose variations due to meals, exercise, and other disturbances that are not

described by the other parameters of the model.
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Gp Gsc

X I

S1 S2

Disturbance Parameter, D

g/τ

1/tmax, I

1/τ

1/tmax, I

kep2

p1

Insulin Infusion, u

p2SI

Figure 4.1: Compartmental model of glucose-insulin system. Gp and Gsc represent glucose
concentrations in the accessible (plasma) and non-accessible (subcutaneous) compartments, I
represents plasma insulin, and X represents a remote insulin compartment that accelerates
glucose disappearance [164].

The blood-to-interstitial glucose dynamics are described as a first-order linear system [165]:

Ġsc(t)=−1
τ

Gsc(t)+ g
τ

Gp(t), (4.3)

where Gsc represents subcutaneous glucose, τ represents the time constant of the system and g

is the static gain of the system.

4.1.2 Insulin Subsystem

Insulin absorption [166] is described as:

Ṡ1(t)= u(t)− S1(t)
tmax,I

, (4.4)

Ṡ2(t)= S1(t)−S2(t)
tmax,I

. (4.5)

S1 and S2 are a two compartment chain representing the subcutaneous absorption of rapid-

acting (e.g., Lispro) insulin and u(t) (µU/kg/min) represents administration (bolus and infusion)

of insulin.

The plasma insulin concentration [166] is given by:

İ(t)=−keI(t)+ 1
VI

· S2(t)
tmax,I

, (4.6)

28



4.2. UNSCENTED KALMAN FILTER

where ke is the fractional elimination rate, VI is the distribution volume, and tmax,I is the

time-to-maximum insulin absorption.

The T1D subject model was discretised using a first forward difference derivative approxima-

tion (1 min step size) [167]. The mean population values found in Table 4.1 are utilized in this

model.

Table 4.1: Mean population parameter values

Symbol Quantity Value Units Reference
p1 Glucose removal rate from the plasma space

independent of the influence of insulin
0.035 1/min [168]

p2 Disappearance rate of remote insulin from the
remote insulin compartment

0.05 1/min [168]

p3 Appearance rate of remote insulin into the re-
mote insulin compartment

0.000028 mL/µU· min2 [168]

Gb Basal plasma glucose 100 mg/dL [164]
VG Volume distribution of glucose compartment 1.6 dL/kg [166]
VI Volume distribution of insulin compartment 120 mL/kg [166]
ke First-order decay rate of insulin in plasma 0.138 1/min [166]

tmax,I Time-to-maximum insulin absorption 55 min [166]
τ Time constant of the system 8.2237 min [165]
g Static gain of the system 1 unitless [165]

4.2 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) proposed by [169] is a powerful technique used in nonlinear

estimation and machine learning applications. Its foundation lies in the intuition that it is easier

to approximate a probability distribution than it is to approximate an arbitrary nonlinear function

or transformation [170]. Using the discretized model of Equations (4.1)–(4.6) and the inputs of

glucose and insulin infusion rate obtained from a CGM and an insulin pump, respectively, a

nonlinear state space model is derived:

x(k+1)= f (x(k),u(k))+w(k), (4.7)

y(k)= g(x(k))+v(k), (4.8)

where x(k) is the state vector, which has been augmented by D(t), with state equation:

Ḋ(k)= 0. (4.9)

u(k) is the input and w(k) and v(k) are defined to be process and measurement noises, respectively.

The nonlinear functions f (·) and g(·) are defined from Equations (4.1)–(4.6).

The nonlinear function, y= f (x) of variable x (dimension L) is applied to each point, in turn,

to yield a cloud of transformed sigma points, X i in the form of matrix X (dimension 2L+1)
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according to the following:

X0(k−1)= x̂(k−1), (4.10)

X i(k−1)= x̂(k−1)+
(√

(L+λ)P(k−1)
)

i
i = 1, . . . ,L, (4.11)

X i(k−1)= x̂(k−1)−
(√

(L+λ)P(k−1)
)

i−L
i = L+1, . . . ,2L, (4.12)

with scalar weights Wi defined as:

Wm
0 = λ

L+λ , (4.13)

W c
0 = λ

L+λ + (1−α2 +β), (4.14)

Wm
i =W c

i = 1
2(L+λ)

i = 1, . . . ,2L, (4.15)

where λ = α2(L+κ)−L is a scaling parameter, α determines the spread of the sigma points

around x̂, κ is a secondary scaling parameter, and β is used to incorporate prior knowledge of the

distribution of x. P(k−1) is the covariance matrix and
(p

(L+λ)P(k−1)
)

i
is the ith column of

the matrix square root, i.e., lower triangle Cholesky factorization.

The sigma vectors, X i(k−1) are then propagated through the nonlinear function, f (·) as

follows:

X−
i (k)= f [X i(k−1),u(k)] i = 0, . . . ,2L. (4.16)

The statistics of the transformed points can then be calculated to form an estimate of the

nonlinearly transformed mean (x̂) and covariance (P(k)):

x̂−(k)=
2L∑
i=0

Wm
i X̂−

i (k−1), (4.17)

P−(k)=
2L∑
i=0

W c
i (X−

i (k−1)− x̂−(k))(X−
i (k−1)− x̂−(k))T +Qp, (4.18)

where Qp is the covariance matrix of the process noise. The sigma points X−
i are propagated

through the nonlinear function g(·) for the calculation of Y−
i :

Y−
i (k)= g[X−

i (k),u(k)] i = 0, . . . ,2L. (4.19)

The measurement estimations are obtained from X−
i as:

ŷ−(k)=
2L∑
i=0

Wm
i Y−

i (k). (4.20)

The innovation and cross-covariance matrices are then calculated as:

Pyy(k)=
2L∑
i=0

W c
i [Y−

i (k)− ŷ−(k)][Y−
i (k)− ŷ−(k)]T +Qm, (4.21)

Pxy(k)=
2L∑
i=0

W c
i [X−

i (k)− x̂−(k)][Y−
i (k)− ŷ−(k)]T , (4.22)
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where Qm represents the covariance of measurement noise. Lastly, the Kalman filter gain and

the updated state vector estimation and covariance matrix are calculated:

K(k)= Pxy(k)(Pyy(k))−1, (4.23)

x̂(k)= x̂−(k)+K(k)(y(k)− ŷ−(k)), (4.24)

P(k)= P−(k)−K(k)Pyy(k)(K(k))T . (4.25)

The UKF requires the definition of initial conditions and tuning parameters, which in our

case were selected as:

x̂(0)=



Gp(0)

X (0)

I(0)

S1(0)

S2(0)

Gsc(0)

D(0)


=



BG(0)

0

0

u(0)

0

BG(0)

0


,

q = 0.6103 r = 8.9614,

Qp = diag
[
q2 0 0 0 0 q2 q2]

,

P(0)= I7×7 Qm = r2,

α= 10−3 κ= 0 β= 2,

where Gsc(0) is the first measured glucose value from a CGM, q is the standard deviation of the

process noise, and r is the standard deviation of the measurement noise.

4.3 Unscented Kalman Filter State Estimations

The in silico state estimations of an augmented minimal model using an UKF were compared to

the model states of the T1D Simulator and the populational values are shown in Figure 4.2. The

scenario used for this comparison included: three meals per day with varying CHO content and

meal time following a normal distribution with mean 30 grams at 8:30h (breakfast), 60 grams

at 13:00h (lunch), and 50 grams at 19:00h (dinner). Coefficient of variance for the meal size

was ±20%, and the standard deviation for meal time was ±10 minutes. For each meal, a meal

absorption profile was selected randomly from a meal library of eleven meals, which are the

meals of the ten adults and the average adult provided by the T1D Simulator.

The root mean squared error (RMSE) between the T1D Simulator and the UKF was calculated

for each of the states over a 14-day period. The RMSE values of the mean populational values

for Gp, Gsc, Ip, X , S1, S2, and Ra were found as 5.8 mg/dl, 0 mg/dl, 3.7 pmol/l, 25.6 pmol/l,

43.2 pmol/l, 60.1 pmol/l, and 2.8 mg/dl/min, respectively. The percentage error of the mean
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Figure 4.2: Population state estimations of the T1D Simulator versus the UKF over a 24-hour
period in silico. States shown are plasma glucose (GP ), subcutaneous glucose (GSC), plasma
insulin (Ip), remote insulin (X ), insulin in the first subcutaneous compartment (S1), insulin in
the second subcutaneous compartment (S2), and rate of glucose appearance (Ra) equated to
the disturbance parameter, D. Graph reported as median (bold lines) and 25 percentile and 75
percentile (lightly shaded area), minimum (thin lower line), and maximum values (thin upper
line).

population values for Gp, Gsc, Ip, X , S1, S2, and Ra were found as 1%, 0%, 31%, 49%, 23%, 37%,

and 28%, respectively. These findings suggest that the states were estimated with reasonable

precision. The states of S1 and S2 have been found to have higher RMSE values, although both

UKF estimated states seem to follow a similar trend to that of the T1D Simulator model states.

The X state has been found to have a higher percentage error value, where large deviations in
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the median value can be seen in Figure 4.2. The Ra between the T1D Simulator and the UKF was

found to have a relatively low RMSE and percentage error however, the peak time and absorption

dynamics appear to be quite different and these differences must be taken into account if using

this state to aid in bolus decisions.

4.4 Summary

The states of an augmented minimal models are estimated using a UKF with the inputs of glucose

and insulin infusion rate values from the T1D Simulator. The UKF is able to estimate the states

of the T1D Simulator with reasonable precision and are a viable option for the use in meal and

exercise detection.
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5
UNANNOUNCED MEAL DETECTION AND POSTPRANDIAL

GLYCEMIC CONTROL

In AP systems, postprandial control remains one of the biggest challenges. This is due to

the lag in insulin action that occurs in current insulin formulations administered subcu-

taneously. This means that insulin must be administered preemptively in order to prevent

postprandial hyperglycemia. Postprandial control is further complicated by current hybrid CLC

systems that calculate meal boluses using a user-estimated CHO quantity and an insulin-to-

carbohydrate ratio. This requires T1D patients to estimate the CHO content of a meal prior to

ingestion, which can lead to CHO misestimation and missed meal boluses due to lack of user

compliance. CHO underestimation can lead to postprandial hyperglycemia, CHO overestimation

carries a serious risk of hypoglycemia due to insulin overdosing, and missed meal boluses can

lead to severe postprandial hyperlgycemia. CHO estimation also tends to neglect the effect of

dietary fat and protein, which have a profound effect on postprandial outcomes. Additionally,

it has been found that a subset of patients tend to opt-out of CHO estimation entirely. These

downfalls in postprandial control generally produce an increase in HbA1c levels that leads to the

development of diabetes-related complications.

The idea behind this work was to build a postprandial hyperglycemia reduction algorithm

(PHRA) in the context of an AP system that includes a meal detection algorithm, which trig-

gers automatic disturbance rejection actions to safely and effectively mitigate postprandial

hyperglycemia.
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5.1 Meal Detection

The meal detection algorithm presented in this thesis was tuned and validated using a 14-day

in silico simulation. A sensitivity analysis is also presented for meals over a 500-day period in

ten adult subjects. The algorithm collects glucose and insulin infusion rate values and computes

a disturbance parameter from an augmented minimal model using an UKF (as described in

Chapter 4). The cross-covariance between the glucose data and the forward difference of computed

disturbance parameter is then calculated over three different sliding windows. A threshold is

then applied, different for each sliding window. One threshold is applied to obtain a detection

that has a high true positive (TP) value, the second is a trade-off tuning, which has both a high

TP value and a low false positive (FP) value, and the third tuning has a very low FP value.

5.1.1 Meal Detection Algorithm

After the states in Equations (4.1)–(4.6) are estimated using the UKF, the values of Gsc(k)

from the CGM simulated data and Ddi f f (k), which is the forward difference of D(k), are scaled

between −1 and 1 using minimum and maximum values determined a priori through simulation.

Then, the biased estimate of the cross-covariance between the two sequences is calculated during

windows of a specified length.

The true cross-covariance sequence of two jointly stationary random processes, Gscn and

Ddi f fn , is the cross-correlation of mean-removed sequences [171],

ΦGsc,D(m)= E
{
(Gsc(n+m)−µGsc )(Ddi f f (n)−µDdi f f )

∗)
}
, (5.1)

where µGsc and µDdi f f are the mean values of the two stationary random processes and E is the

expected value operator. The asterisk denotes complex conjugation.

The raw cross-covariances are computed as:

cGsc ,Ddi f f (m)=



N−m−1∑
n=0

(
Gsc(n+m)− 1

N
N−1∑
i=0

Gsc(i)
)(

D∗
di f f (n)− 1

N
N−1∑
i=0

D∗
di f f (n)

)
m ≥ 0,

c∗Ddi f f ,Gsc
(−m), m < 0,

(5.2)

where Gsc(n) and D∗
di f f (n) are indexed from 0 to N −1, and cGsc,Ddi f f (m) from −(N −1) to N −1,

where N is the number of samples.

A meal is then detected as follows:

Meal =



True, i f cGsc,Ddi f f (m)≥ threshold,

and Ddi f f (k)> 0,

and Gsc(k)−Gsc(k−3)> 0,

False, otherwise.

(5.3)
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Figure 5.1: Flow chart of the meal detection algorithm. First, the states of a minimal model are
estimated using an UKF and then the cross-covariance is found between the state estimation for
the forward difference of the disturbance parameter (Ddi f f ) and the glucose value Gsc obtained
from a CGM. A threshold is applied to the cross-covariance, and, once crossed, the last unscaled
value of Ddi f f and the slope with respect to the measurement 15 minutes ago (3 samples) of Gsc
are checked, if both are positive and it is daytime, a meal is detected.

A meal was assumed to have been consumed if the cross-covariance between the Gsc(n) and

Ddi f f (n) signals exceeded a pre-specified threshold and the last unscaled value of Ddi f f and

the slope of Gsc with respect to the measurement 15 minutes ago (three samples) were positive

(see Figures 5.1 and 5.2). It should be noted that meals are not detected during the nighttime

period (23:00h–6:00h) as a safety precaution.

5.1.2 Performance Metrics

Seven performance metrics were used: sensitivity, TP, FP, false negative (FN), FP per day,

detection time, and ∆ glucose. True negatives (TN) and specificity cannot determined in this

framework due to the fact that one TP can span multiple time points depending on meal duration;

however, a TN can be counted for each time sample that a negative occurrence is correctly

identified. This skews the specificity to the higher end of the spectrum. Therefore, sensitivity

and FP were used as measures of performance. Sensitivity measures the percentage of positive

results that are correctly identified. Correct detection (a TP) is when the algorithm has detected

a meal from the beginning of the meal to 120 minutes after the time of the commencement of the

meal. An FP is when detection is positive without a meal. Negative detection or an FN is when a

meal has not been detected up to 120 minutes after ingestion. To compare the FP values between

the two scenarios, the FP/day is used. Detection time reflects the time at which a TP is detected

with respect to meal time and ∆ glucose reflects the change in glucose from the start of the meal

to the time when the meal was detected. All values are reported as mean ± standard deviation

and median (5th percentile, 95th percentile).
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Figure 5.2: Illustration of the meal detection algorithm showing subcutaneous glucose (Gsc)
values from a CGM values (top graph), cross-covariance (middle graph) and the forward difference
of the disturbance parameter, Ddi f f (bottom graph).

5.1.3 Diabetes Simulation Scenario

The T1D Simulator (Chapter 3.2) was used to build two different types of scenarios: (1) a meal

detection tuning and validation scenario and (2) a meal detection sensitivity analysis scenario.

Meal absorption rate and subcutaneous insulin absorption rate were varied at each meal ac-

cording to a uniform distribution of ±10% and ±30%, respectively. Circadian insulin sensitivity

variation (sinusoidal type with 24-hour period) was implemented with random amplitude accord-

ing to a uniform distribution of ±30% and random phase. Finally, CGM error was according to

the default model available in the T1D simulator.

Meal Detection Tuning and Validation Scenario
Two challenging 14-day scenarios were built: one scenario was used for tuning and the other was

used for validation. These scenarios included: three meals per day with varying CHO content and

meal time following a normal distribution with a mean of 30 grams at 8:30h (breakfast), 60 grams

at 13:00h (lunch), and 50 grams at 19:00h (dinner). Coefficient of variance for the meal size was

±20%, and the standard deviation for meal time was ±10 min. For each meal, a meal absorption

profile was selected randomly from a meal library of eleven meals, which are the meals of the ten

adults and the average adult provided by the T1D Simulator. There were 420 meals in total for

all ten subjects over the 14-day period.
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Meal Detection Sensitivity Analysis Scenario
A 500-day scenario with ten adult subjects was built for a sensitivity analysis of the meal

detection algorithm. Meals were uniformly distributed and ranged from 20 to 120 grams of CHO

with meal time following a normal distribution with a standard deviation of ±10 minutes at

8:30h (breakfast), 13:00h (lunch), and 19:00h. (dinner). For each meal, a meal absorption profile

was selected randomly from a meal library of 49 meals. The meal library consisted of 31 fast

absorption meals, 15 medium absorption meals, and three slow absorption meals. There were

15,000 meals in total for all ten subjects over the 500-day period.

5.1.4 Results

Three different tunings of the same detection algorithm were analyzed, one had the highest

sensitivity, the second had a trade-off between the number of TP and FP, and the third had

the lowest number of FP. These tunings were used to decipher the usefulness of the detection

algorithms for the purpose of postprandial hyperglycemia mitigation during unannounced meals.

Here, the results for the scenarios where the algorithms were first tuned and validated, and then

a sensitivity analysis scenario where the algorithm is analyzed in depth to determine factors that

affect detection performance are presented.

Meal Detection Algorithm: Tuning
The tuning of the algorithm was done both by window size and threshold on the cross-covariance

between Ddi f f and the current CGM value. The window sizes and thresholds were empirically

derived based on the sensitivity and the FP number, which were used as indicators of performance.

In general, smaller window sizes and lower thresholds result in a higher sensitivity in the

meal detection algorithm as seen in Table 5.1. The amount of CHO consumed per meal by the

ten adult subjects in the tuning and validation scenarios had a mean of 47 ± 16 grams and

47 ± 13 grams and a median of 45 (23, 74) grams and 46 (28, 69) grams, respectively. These

scenarios reflect CHO consumption on a typical day for an average patient. Table 5.1 reports the

mean, standard deviation, median, 5th percentile, and 95th percentile values for the sensitivity,

∆ glucose, detection time, TP, FP, FN, and FP/day of each meal detection tuning. Typically, a

higher sensitivity reflects lower ∆ glucose, detection time, and FN values with increased TP, FP,

and FP/day values. The high sensitivity tuning for both the tuning and validation scenarios had

a mean sensitivity of 99 ± 1% and 99 ± 2% and a median of 99 (95, 100)% and 98 (90, 100)% and

FP of mean 18 ± 6 and 20 ± 6 and median of 19 (9, 25) and 20 (11, 26). The trade-off tuning for

both the tuning and validation scenarios had a mean sensitivity of 93 ± 5% and 94 ± 5% and

median of 93 (86, 100)% and 94 (83, 100)% and FP of mean 4 ± 4 and 4 ± 3 and median 3 (0, 7)

and 4 (1, 9). Finally, the low FP tuning for both the tuning and validation scenarios had a mean

sensitivity of 47 ± 10% and 47 ± 16% and median of 50 (26, 64)% and 45 (29, 71)% and mean FP

of 0 ± 0 and 0.2 ± 0.4 and median of 0 (0, 0) and 0 (0, 1).
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Table 5.1: Population performance metrics of meal detection algorithm in tuning scenario. Total
number of meals per patient was 42.

Sensitivity
(%)

∆ Glucose
(mg/dL)

Detection
Time (min) TP FP FN FP/day

Highest Sensitivity (window = 15 min; threshold = 0.000039)

Tuning 99 ± 2 7 ± 7 28 ± 10 41 ± 1 17 ± 5 1 ± 1 1 ± 1
99 (95, 100) 6 (−1, 17) 25 (15, 45) 42 (40, 42) 19 (9, 25) 1 (0, 2) 1 (0, 3)

Validation 98 ± 4 6 ± 8 28 ± 9 41 ± 2 18 ± 5 1 ± 2 1 ± 1
98 (90, 100) 5 (−2, 13) 25 (15, 40) 42 (38, 42) 20 (11, 26) 0 (0, 4) 1 (0, 3)

Trade-Off (window = 45 min; threshold = 0.00019)

Tuning 93 ± 5 19 ± 5 37 ± 9 39 ± 2 3 ± 2 3 ± 2 0.2 ± 0.5
93 (86, 100) 19 (11, 28) 35 (25, 55) 39 (36, 42) 3 (0, 7) 3 (0, 6) 0 (0, 1)

Validation 93 ± 6 19 ± 5 37 ± 83 39 ± 3 3 ± 3 3 ± 3 0 ± 0
94 (83, 100) 18.43 (11, 26) 35 (25, 50) 40 (35, 42) 4 (1, 9) 3 (0, 7) 0 (0, 0)

Lowest False Positive (window = 60; threshold = 0.00082)

Tuning 47 ± 12 45 ± 7 46 ± 8 20± 5 0 ± 0 22 ± 5 0 ± 0
50 (26, 64) 45 (36, 54) 45 (35, 60) 21 (11, 27) 0 (0, 0) 21 (15, 31) 0 (0, 0)

Validation 46 ± 16 43 ± 7 48 ± 8 19 ± 7 0.2 ± 0.4 23 ± 7 0.01 ± 0.1
45 (29, 71) 45 (35, 56) 50 (35, 60) 19 (12, 30) 0 (0, 1) 23 (12, 30) 0 (0, 0)

Values reported as mean ± standard deviation and median (5th percentile, 95th percentile).

Meal Detection Algorithm: Sensitivity Analysis
A 500-day simulated scenario was used to perform a sensitivity analysis. The amount of CHO

consumed per meal by the ten adult subjects had a mean of 70 ± 29 grams and a median of

70 (25, 116) grams. The population performance metrics can be found in Table 5.2, which, when

compared to the three-meal algorithm tunings in the previous section (Chapter 5.1.4), shows a

decrease in sensitivity for both the high sensitivity and trade-off tunings with mean values of

92 ± 3% and 82 ± 4% and median values of 92 (87, 96)% and 83 (76, 87)%, respectively. The low

FP tuning, however, showed an increase in sensitivity with a mean value of 54 ± 9% and median

value of 52 (44, 71)%. The FP/day between scenarios are roughly the same. The FP/day of the high

sensitivity scenario for the tuning and validation scenarios and the sensitivity all shared a mean

of 1 ± 1 and a median of 1 (0, 3). The FP/day in the trade-off scenario also had a similar value for

the sensitivity analysis with a mean 0.2 ± 0.5 and median 0 (0, 1) versus mean 0.2 ± 0.5 and 0 ± 0

and median 0 (0, 1) and 0 (0, 0) of the tuning and validation scenarios. The FP/day in the low

FP scenario was only slightly higher with a mean value of 0.02 ± 0.2 and median 0 (0, 0) versus

mean 0 ± 0 and 0.01 ± 0.1 and median 0 (0, 0) and 0 (0, 0) in the tuning and validation scenarios.

Figure 5.3 illustrates the cumulative detection rates over change in time and ∆ glucose from the

onset of meals for the three meal algorithm tunings and further emphasizes that algorithms with

higher sensitivities have a shorter detection time and lower ∆ glucose at detection.
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Table 5.2: Population performance metrics of meal detection algorithm in sensitivity analysis
scenario. Total number of meals per patient was 1500.

Sensitivity
(%)

∆ Glucose
(mg/dL)

Detection
Time (min) TP FP FN FP/day

Highest Sensitivity (window = 15 min; threshold = 0.000039)

92 ± 3 6 ± 13 31 ± 16 1375 ± 38 719 ± 111 126 ± 38 1 ± 1
92 (87, 96) 5 (−8, 17) 25 (10, 60) 1374 (1306, 1433) 716 (561, 897) 126 (67, 194) 1 (0, 3)

Trade-Off (window = 45 min; threshold = 0.00019)

82 ± 4 19 ± 9 38 ± 14 1232 ± 56 100 ± 23 268 ± 56 0.2 ± 0.5
83 (76, 87) 19 (6, 31) 35 (25, 65) 1242 (1139, 1310) 96 (72, 154) 259 (190, 361) 0 (0, 1)

Low False Positive (window = 60 min; threshold = 0.00082)

54 ± 9 42 ± 18 43 ± 11 813 ± 130 11 ± 9 687 ± 130 0.02 ± 0.2
52 (44, 71) 45 (10, 56) 40 (30, 65) 776 (663, 1060) 10 (5, 34) 724 (440, 837) 0 (0, 0)

Values reported as mean ± standard deviation and median (5th percentile, 95th percentile).
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Figure 5.3: Cumulative detection rates over change in ∆ glucose and time from the onset of
meals for the meal algorithm tunings of high sensitivity, trade-off, and low false positive in the
sensitivity analysis scenario.

An analysis of the effect of CHO quantity (Table 5.3) on detection performance was performed.

CHO quantities of 20–40 grams have the longest detection time followed by 40–80 grams and then

80–120 grams. However, CHO quantities of 20–40 grams had the lowest ∆ glucose at detection

followed by 40–80 grams and then 80–120 grams. The meal detection sensitivity increased with

increasing amounts of CHO. The sensitivity for the highest sensitivity tuning was mean 74 ± 6%

and median 72 (67, 87)% for 20–40 grams of CHO, mean 93 ± 3% and median 94 (87, 96)%

for 40–80 grams of CHO, and mean 99 ± 1% and median 99 (97, 100)% for 80–120 grams of

CHO. The sensitivity for the trade-off tuning was mean 49 ± 9% and median 47 (39, 64)% for

20–40 grams of CHO, mean 84 ± 4% and median 86 (76, 89)% for 40–80 grams of CHO, and mean

96 ± 2% and median 97 (94, 98)% for 80–120 grams of CHO. The sensitivity for the lowest FP
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Table 5.3: Analysis of the effect of carbohydrate quantity on detection time, ∆ glucose, and
sensitivity.

Carbohydrates (grams)

20–40 40–80 80–120

High
Sensitivity

window = 15 min
threshold = 0.000039

Detection
Time (min)

Mean 39 ± 22 31 ± 16 25 ± 13
Median 30 (10, 90) 30 (10, 60) 25 (0, 50)

∆ Glucose
(mg/dL)

Mean 5 ± 14 5 ± 10 7 ± 15
Median 5 (−13, 23) 5 (−7, 16) 6 (−6, 15)

Sensitivity
(%)

Mean 74 ± 6 93 ± 3 99 ± 1
Median 72 (67, 87) 94 (87,96) 99 (97, 100)

Trade-Off
window = 45 min

threshold = 0.00019

Detection
Time (min)

Mean 46 ± 18 40 ± 16 32± 15
Median 45 (25, 80) 35 (25, 65) 30 (0, 55)

∆ Glucose
(mg/dL)

Mean 18 ± 11 17 ± 9 20 ± 9
Median 19 (0, 32) 18 (0, 28) 20 (8, 32)

Sensitivity
(%)

Mean 49 ± 9 84 ± 4 96 ± 2
Median 47 (39, 64) 86 (76, 89) 97 (94, 98)

Low False
Positive

window = 60 min
threshold = 0.00082

Detection
Time (min)

Mean 45 ± 11 44 ± 8 41 ± 11
Median 50 (14, 71) 45 (30, 65) 40 (30, 60)

∆ Glucose
(mg/dL)

Mean 29 ± 42 42 ± 18 42 ± 16
Median 43 (−46, 57) 45 (12, 57) 44 (16, 56)

Sensitivity
(%)

Mean 8 ± 7 49 ± 12 83 ± 7
Median 6 (2, 26) 45 (36, 71) 82 (73, 93)

Values reported as mean ± standard deviation and median (5th percentile, 95th percentile).

tuning was mean 8 ± 7% and median 6 (2, 26)% for 20–40 grams of CHO, mean 49 ± 12% and

median 45 (36, 71)% for 40–80 grams of CHO, and mean 83 ± 7% and median 82 (73, 93)% for

80–120 grams of CHO.

The effect of Ra on meal detection performance was also analyzed (Table 5.4). Meals with

faster Ra values have a shorter detection time but a greater ∆ glucose, while meals with slower Ra

values take longer to detect but result in a lower ∆ glucose before detection. The meal detection

sensitivity increased with faster Ra values. The sensitivity for the highest sensitivity tuning was

mean 77 ± 9% and median 77 (62, 92)% for meals with slow Ra values, mean 87 ± 4% and median

88 (81, 95)% for meals with medium Ra values, and mean 95 ± 1% and median 95 (92, 97)%

for meals with fast Ra values. The sensitivity for the trade-off tuning was mean 54 ± 10% and

median 57 (38, 71)% for meals with slow Ra values, mean 73 ± 6% and median 73 (65, 81)% for

meals with medium Ra values, and mean 89 ± 3% and median 89 (84, 92)% for meals with fast

Ra values. The sensitivity for the lowest FP tuning was mean 10 ± 8% and median 6 (2, 29)% for

meals with slow Ra values, mean 33 ± 12% and median 29 (18, 57)% for meals with medium Ra

values, and mean 68 ± 7% and median 67 (59, 81)% for meals with fast Ra values.
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Table 5.4: Analysis of the effect of rate of glucose appearance on detection time, ∆ glucose, and
sensitivity.

Rate of Glucose Appearance

Slow Medium Fast

High
Sensitivity

window = 15 min
threshold = 0.000039

Detection
Time (min)

Mean 47 ± 22 38 ± 20 27 ± 11
Median 45 (10, 90) 35 (10, 80) 25 (10, 45)

∆ Glucose
(mg/dL)

Mean 3 ± 15 4 ± 13 6 ± 13
Median 4 (−22, 25) 4 (−14, 23) 6 (−5, 15)

Sensitivity
(%)

Mean 77 ± 9 87 ± 4 95 ± 1
Median 77 (62, 92) 88 (81, 95) 95 (92, 97)

Trade-Off
window = 45 min

threshold = 0.00019

Detection
Time (min)

Mean 57 ± 18 47 ± 16 34 ± 10
Median 55 (35, 90) 45 (30, 80) 30 (25, 50)

∆ Glucose
(mg/dL)

Mean 16 ± 14 18 ± 12 20 ± 7
Median 18 (−5, 36) 19 (1, 33) 19 (9, 30)

Sensitivity
(%)

Mean 54 ± 10 73 ± 6 89 ± 3
Median 57 (38, 71) 73 (65, 81) 89 (84, 92)

Low False
Positive

window = 60 min
threshold = 0.00082

Detection
Time (min)

Mean 63 ± 14 52 ± 13 40 ± 9
Median 65 (45, 80) 50 (35, 75) 40 (30, 55)

∆ Glucose
(mg/dL)

Mean 37 ± 44 43 ± 24 41 ± 15
Median 48 (−39, 72) 47 (−2, 63) 44 (13, 55)

Sensitivity
(%)

Mean 10 ± 8 33 ± 12 68 ± 7
Median 6 (2, 29) 29 (18, 57) 67 (59, 81)

Values reported as mean ± standard deviation and median (5th percentile, 95th percentile).

5.1.5 Discussion

In this study, three different tunings of the same meal detection algorithm were evaluated in

order to determine meal detection performance. This first tuning obtains the highest sensitivity

possible as seen in Tables 5.1 and 5.2 where sensitivities of mean 99 ± 2% and median 99 (95,

100)% for the tuning scenario, mean 98 ± 4% and median 98 (90, 100)% for the validation scenario,

and mean 92 ± 3% and median 92 (87, 96)% for the sensitivity analysis scenario were achieved.

The purpose of this high sensitivity tuning is to allow postprandial hyperglycemia mitigation

action to be performed at the earliest possible instant. However, this tuning also contains a

high FP value that increases risk of hypoglycemia due to insulin administration without meal

ingestion.

The second tuning was a trade-off tuning that has both a high sensitivity with a low FP/day

value. It obtained sensitivities of mean 93 ± 5% and median 93 (86, 100)% for the tuning scenario,

mean 93 ± 6% and median 94 (83, 100)% for the validation scenario, and mean 82 ± 4% and

median 83 (76, 87)% for the sensitivity analysis scenario (see Tables 5.1 and 5.2). The FP/day

values were mean 0.2 ± 0.5 and median 0 (0, 1) for the tuning scenario, mean 0 ± 0 and median

0 (0, 0) for the validation scenario, and mean 0.2 ± 0.5 and median 0 (0, 1) for the sensitivity

analysis scenario. This tuning serves as a detection that is more reliable with less FP/day but
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has a longer detection time than that of the high sensitivity tuning, which entails a greater delay

in insulin delivery and action.

The final tuning was a low FP tuning, originally the fixed FP value was evaluated during

tuning but for the purposes of comparison between scenarios the FP/day values were used.

The FP/day values were mean 0 ± 0 and median 0 (0, 0) for the tuning scenario, mean 0.01 ± 0.1

and median 0 (0, 0) for the validation scenario, and mean 0.02 ± 0.2 and median 0 (0, 0)

for the sensitivity analysis scenario (see Tables 5.1 and 5.2). This tuning allows postprandial

hyperglycemia mitigation with very little risk of hypoglycemia due to FP detections. However, it

has the longest detection time of the three tunings and its obtained sensitivities are quite low:

mean 47 ± 12% and median 50 (26, 64)% for the tuning scenario, mean 46 ± 16% and median

45 (29, 71)% for the validation scenario, and mean 54 ± 9% and median 52 (44, 71)% for the

sensitivity analysis scenario.

Several other meal detection algorithms have been created for use during unannounced meals

and their comparable metrics can be found in Table 5.5. Dassau et al. [4] studied 17 patients

using clinical data during a breakfast of 56 grams with a range between 22 and 105 grams.

However, with only meal detection time, it is difficult to compare the performance between meal

detection algorithms. Lee et al. [6] studied an in silico population of 100 patients during 72 hours

with an average meal size of 47.5 ± 25 grams. Their meal detection algorithm can be compared to

the trade-off tuning of this study when the sensitivity and detection time are compared. Although

the sensitivities in this study in the tuning and validation scenarios are higher and comparable

for the sensitivity analysis scenario, without an FP/day value, it is not possible to determine

which meal detection algorithm outperforms the other. Chen et al. [9] studied 10,000 patients

over three days. However, with only the sensitivity value, it is difficult to compare algorithms.

Weimer et al. [10] studied 61 patients using clinical data over a period of 17 days. Their algorithm

has both a lower sensitivity of 86.9% and high FP/day of 2.01.

Table 5.5: Population performance metrics of meal detection algorithm in other studies.

Reference Sensitivity
(%)

∆ Glucose
(mg/dL)

Detection
Time (min) TP FP FN FP/day

Dassau et al. [4] – – 30 – – – –
Lee et al. [6] 82 – 31 656 54 144 –

Chen et al. [9] 99.6 – – – – – –
Weimer et al. [10] 86.9 – – – – – 2.01
Xie and Wang [11] 95 – – – – – –
Turksoy et al. [12] 97 ± 6 16 ± 9 – 7 ± 2 0.1 ± 0.3 0.2 ± 0.4 –

Mahmoudi et al. [13] 99.5 46.3 ± 21.2 58.4 ± 18.7 – – – –

Values reported as mean ± standard deviation.

Xie and Wang [11] studied 30 patients during two days with an average meal size of

61.7 ± 14.4 grams. However, with only a sensitivity value, it is difficult to compare algorithms.

Turksoy et al. [12] studied nine in clinic patients over 32 hours with an average meal size of
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44 ± 9.4 grams. This meal detection algorithm has both a high sensitivity of 97 ± 6% and low

∆ glucose of 16 ± 9.4 mg/dL and, out of 63 meals and snacks, there was only one FP and two

FN. Although their results outperform the results found in this study, the duration of this study

was not long enough to truly reflect meal detection capabilities. Finally, Mahmoudi et al. [13]

studied ten in silico patients over 50 days. They achieved a high sensitivity of 99.5% however,

their detection time was very long at 58.4 ± 18.7 minutes. In addition, additional information

about FP or FP/day is not given, making it difficult to compare algorithms.

A sensitivity analysis was done to see the effect of CHO quantity and meal composition on

meal detection performance. Meal absorption related parameters of the T1D Simulator were

varied in meals in such a way to suggest varying fat percentages, which ultimately affected Ra

[172]. Although this is simulated data with a small cohort and meal variability limited to the

meals included in the meal library, it gives insight into the effect of CHO quantity and meal

composition on detection capabilities. The population performance metrics (Table 5.2) differ from

those in the tuning and validation scenario because of the increased amount of meal variability

as mentioned in Chapter 5.1.3. In addition, meals in the sensitivity analysis scenario tended

towards higher CHO amounts due to the uniform distribution of meals between 20 and 120 grams.

It can been seen that there is a decrease in the sensitivities of the highest sensitivity and trade-off

tunings with values of mean 92 ± 3% and median 92 (87, 96)% and mean 82 ± 4% and median

83 (76, 87)%, respectively. There is a slight increase in the sensitivity for the low FP tuning to

mean 54 ± 9% and median 52 (44, 71)%. Interestingly, the number of FP/day remain very similar

between scenarios.

An analysis of the effect of CHO quantity (Table 5.3) on detection performance reveals that

larger amounts of CHO have a shorter detection time but a greater ∆ glucose, while smaller

quantities of CHO take longer to detect but result in a lower glucose increase before detection

due to lower amounts of CHO ingestion. The meal detection sensitivity decreased with decreasing

amounts of CHO representing that small meals are generally more difficult to detect.

The effect of meal composition and ultimately Ra on meal detection performance was also

analyzed (see Table 5.4). A similar trend was found when compared to CHO quantity where just

like large meals, meals with faster Ra values take less time to be detected but result in a greater

∆ glucose. The meal detection sensitivity increased with faster Ra values representing that meals

that are slowly digested or have a higher quantity of fat are generally more difficult to detect.

This is consistent with the results reported by Bell et al. [35], which state that, during high fat

meals, glucose values have a reduced area under the curve in the first 2-3 hours due to a delayed

gastric emptying rate.

This sensitivity analysis reveals that, fortunately, the meals of most interest, i.e., those that

require both detection and postprandial hyperglycemia mitigation due to large disturbances in

glucose, such as large and rapidly appearing meals, are able to be detected quickly with very

little change in glucose at detection. However, meals with slow rates of glucose appearance such
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as those high in fat may be more prone to late-onset postprandial hyperglycemia.

5.2 Postprandial Glucose Control

This section describes the three refined tunings for the detection of meals, the identification of

fast absorption meals, CHO estimation, and the disturbance rejection actions of the PHRA.

5.2.1 Diabetes Simulation Scenario

Meal type discrimination, CHO estimation, and postprandial disturbance rejection actions were

tested using two sets of nine 15-day scenarios, which include large, medium, and small CHO

content meals and fast, medium, and slow absorption meals in all combinations using the T1D

Simulator (see Chapter 3.2). One set was used for tuning and the other set was used for validation.

Each scenario included breakfast at 7:00h, lunch at 14:00h, and dinner at 21:00h. Large, medium,

and small meals were uniformly distributed between 80 and 120, 40 and 80, 15 and 40 grams of

CHO, respectively. For each meal, a meal absorption profile was selected randomly from a meal

library of 31 fast, 15 medium, or 3 slow absorption meals depending on the Ra of the scenario.

Circadian insulin sensitivity variation (sinusoidal type with 24-hour period) was implemented

with random amplitude according to a uniform distribution of ±30% and random phase. The

standard deviation for meal time was ± 20 min. There were 450 meals in total for all ten subjects

over the 15-day period.

5.2.2 Refined Meal Detection Tunings

The meal detection tunings found in Chapter 5.1 have been refined using the tuning set of

the nine scenarios described above and have been tuned so that each detection is separated

by ∼5 minutes. To find these tunings, a detection bank was created using window sizes from

5–75 minutes with intervals of 5 minutes. Thresholds for windows sizes 5–25 minutes were tested

from 0.00001 to 0.001 with intervals of 0.000005. Thresholds for window sizes 30–75 minutes

were tested from 0.001 to 0.0035 with intervals of 0.00001. Outcomes for this detection bank were

compared and three combinations of windows and thresholds were chosen based on performance

and following the same criteria as Chapter 5.1. The refined tunings were then tested using the

validation set of the nine scenarios.

The first detection is called Detection 1 (win = 5 minutes; TH = 0.000045) and is the fastest

detection tuning with the highest sensitivity and FP, the second detection is called Detection 2

(win = 10 minutes; TH = 0.00012) and is slower than the previous detection with a lower sensitivity

and FP, and the third detection is called Detection 3 (win = 20 minutes; TH = 0.000415) is the

slowest detection of all three with the lowest sensitivity and FP. The performance metrics for

these three detections can be found in Tables 5.6, 5.7, and 5.8.

46



5.2. POSTPRANDIAL GLUCOSE CONTROL

Table 5.6: Population performance metrics of the Detection 1 tuning (win=5 minutes;
TH=0.000045).

Scenario Sensitivity
(%)

∆ Glucose
(mg/dl)

Detection
Time (min) FP/day

Large Fast
Tuning 98.9 ± 1.6 5.0 ± 7.5 23.4 ± 3.9 0.4 ± 0.2

100 (95.6, 100) 5.1 (-6.3, 16.6) 25 (20, 30) 0.3 (0.1, 0.7)

Validation 99.8 ± 0.7 5.4 ± 7.5 23.4 ± 5.1 0.4 ± 0.2
100 (97.8, 100) 5.8 (-6.8, 16.5) 25 (20, 30) 0.4 (0.1, 0.6)

Large Medium
Tuning 76.2 ± 8.8 9.1 ± 19.6 37.4 ± 17.7 0.5 ± 0.2

75.6 (62.2, 91.1) 5.1 (-11.4, 48) 30 (20, 80) 0.4 (0.1, 0.7)

Validation 81.3 ± 10.3 8.2 ± 18.1 36.2 ± 18 0.4 ± 0.2
78.9 (62.2, 95.6) 5.1 (-11.7, 43.2) 30 (20, 81) 0.4 (0.3, 0.7)

Large Small
Tuning 40.2 ± 12.5 7.2 ± 17.4 46.6 ± 20.4 0.7 ± 0.2

41.1 (24.4, 57.8) 4.8 (-17.6, 40.2) 45.0 (10.0, 90.0) 0.6 (0.5, 1.0)

Validation 40.0 ± 12.8 9.1 ± 16.5 47.9 ± 20.6 0.8 ± 0.2
44.4 (22.2, 57.8) 7.4 (-12.8, 45.4) 45.0 (5.0, 85.0) 0.8 (0.5, 1.1)

Medium Fast
Tuning 89.1 ± 4.9 8.0 ± 10.0 27.5 ± 10.4 0.4 ± 0.2

88.9 (80.0, 97.8) 7.0 (-4.3, 20.4) 25.0 (20.0, 35.0) 0.4 (0.1, 0.7)

Validation 88.2 ± 6.2 6.6 ± 8.5 26.3 ± 6.5 0.4 ± 0.1
88.9 (77.8, 100.0) 6.3 (-5.5, 19.1) 25.0 (20.0, 35.0) 0.4 (0.2, 0.7)

Medium Medium
Tuning 49.3 ± 10.8 10.9 ± 16.5 40.7 ± 21.2 0.6 ± 0.2

45.6 (33.3, 66.7) 7.4 (-7.6, 44.7) 35.0 (20.0, 90.0) 0.6 (0.2, 0.9)

Validation 47.6 ± 12.2 11.2 ± 18.0 41.4 ± 22.1 0.5 ± 0.3
46.7 (33.3, 68.9) 7.3 (-7.2, 53.6) 35.0 (25.0, 95.0) 0.4 (0.1, 0.9)

Medium Small
Tuning 25.3 ± 11.7 5.9 ± 15.5 51.8 ± 25.0 0.7 ± 0.2

23.3 (11.1, 46.7) 5.1 (-16.3, 29.8) 50.0 (10.0, 105.0) 0.7 (0.5, 1.1)

Validation 24.0 ± 5.6 9.7 ± 16.8 47.6 ± 23.9 0.6 ± 0.2
24.4 (15.6, 33.3) 7.5 (-12.2, 43.4) 45.0 (9.5, 95.5) 0.6 (0.3, 0.9)

Small Fast
Tuning 38.7 ± 11.5 10.5 ± 13.4 35.2 ± 18.5 0.6 ± 0.2

35.6 (24.4, 55.6) 8.9 (-3.3, 37.2) 30.0 (20.0, 86.0) 0.7 (0.3, 1.1)

Validation 42.2 ± 10.6 9.4 ± 10.1 33.4 ± 16.0 0.6 ± 0.3
42.2 (24.4, 57.8) 8.8 (-6.1, 29.0) 30.0 (20.0, 75.0) 0.6 (0.1, 1.1)

Small Medium
Tuning 25.1 ± 11.5 11.8 ± 14.6 51.1 ± 31.3 0.5 ± 0.2

25.6 (8.9, 42.2) 10.3 (-6.4, 44.1) 40.0 (6.5, 115.0) 0.6 (0.1, 0.7)

Validation 19.3 ± 6.7 13.8 ± 18.4 54.2 ± 31.4 0.6 ± 0.2
16.7 (11.1, 33.3) 10.5 (-7.7, 47.6) 45.0 (14.3, 115.0) 0.6 (0.3, 0.9)

Small Slow
Tuning 13.1 ± 4.0 9.4 ± 12.0 55.9 ± 32.6 0.6 ± 0.2

13.3 (6.7, 20.0) 8.4 (-8.0, 30.3) 50.0 (5.0, 115.0) 0.5 (0.3, 0.9)

Validation 14.4 ± 4.8 7.0 ± 12.1 57.5 ± 28.3 0.7 ± 0.2
15.6 (6.7, 20.0) 6.1 (-12.5, 34.2) 55.0 (13.8, 116.3) 0.7 (0.4, 1.0)

Values reported as mean ± standard deviation and median (5th percentile, 95th percentile).
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Table 5.7: Population performance metrics of the Detection 2 tuning (win=10 minutes;
TH=0.00012).

Scenario Sensitivity
(%)

∆ Glucose
(mg/dl)

Detection
Time (min) FP/day

Large Fast
Tuning 98.7 ± 1.9 9.7 ± 9.1 25.9 ± 5.1 0.2 ± 0.1

100.0 (95.6, 100.0) 9.4 (-2.5, 21.0) 25.0 (20.0, 35.0) 0.1 (0.1, 0.4)

Validation 99.3 ± 1.5 9.7 ± 7.6 25.5 ± 4.3 0.2 ± 0.1
100.0 (95.6, 100.0) 9.8 (-3.3, 21.9) 25.0 (20.0, 30.0) 0.2 (0.1, 0.3)

Large Medium
Tuning 72.2 ± 10.0 12.4 ± 19.3 39.7 ± 17.2 0.3 ± 0.1

70.0 (55.6, 86.7) 8.4 (-10.6, 51.9) 35.0 (25.0, 77.5) 0.2 (0.1, 0.5)

Validation 76.7 ± 12.5 11.9 ± 18.2 38.1 ± 16.6 0.3 ± 0.1
75.6 (51.1, 95.6) 8.7 (-8.4, 41.5) 35.0 (25.0, 75.0) 0.2 (0.1, 0.6)

Large Small
Tuning 33.6 ± 13.6 10.6 ± 17.0 48.0 ± 20.1 0.4 ± 0.2

35.6 (13.3, 51.1) 9.4 (-13.0, 39.7) 45.0 (10.0, 85.0) 0.3 (0.1, 0.7)

Validation 33.1 ± 10.9 12.2 ± 16.7 49.7 ± 19.0 0.4 ± 0.2
34.4 (17.8, 48.9) 11.4 (-8.7, 44.6) 50.0 (10.0, 85.0) 0.5 (0.1, 0.7)

Medium Fast
Tuning 86.7 ± 5.6 11.6 ± 10.0 29.7 ± 9.7 0.2 ± 0.1

86.7 (80.0, 95.6) 11.2 (-1.2, 23.1) 30.0 (25.0, 40.0) 0.2 (0.1, 0.5)

Validation 87.6 ± 7.0 10.6 ± 8.9 28.7 ± 6.4 0.2 ± 0.1
88.9 (73.3, 100.0) 10.1 (-2.6, 24.4) 25.0 (25.0, 40.0) 0.2 (0.1, 0.3)

Medium Medium
Tuning 40.4 ± 13.7 12.9 ± 15.6 40.4 ± 17.6 0.3 ± 0.2

36.7 (24.4, 64.4) 11.2 (-6.4, 40.1) 35.0 (25.0, 82.0) 0.2 (0.1, 0.6)

Validation 39.1 ± 12.0 14.3 ± 17.6 43.2 ± 20.3 0.2 ± 0.1
36.7 (22.2, 62.2) 9.9 (-3.7, 52.6) 35.0 (25.0, 95.0) 0.2 (0.0, 0.5)

Medium Small
Tuning 16.2 ± 8.7 8.9 ± 14.9 51.9 ± 22.2 0.4 ± 0.2

14.4 (4.4, 33.3) 8.2 (-14.2, 34.8) 50.0 (10.0, 93.5) 0.3 (0.1, 0.7)

Validation 16.2 ± 6.3 13.5 ± 18.7 50.0 ± 22.9 0.4 ± 0.2
18.9 (6.7, 24.4) 9.8 (-13.0, 42.4) 50.0 (10.0, 95.0) 0.4 (0.1, 0.7)

Small Fast
Tuning 33.6 ± 10.7 13.5 ± 13.6 36.5 ± 17.7 0.4 ± 0.2

34.4 (17.8, 51.1) 10.7 (-1.1, 40.3) 30.0 (25.0, 79.5) 0.3 (0.1, 0.7)

Validation 32.2 ± 12.9 12.2 ± 9.7 34.2 ± 14.3 0.3 ± 0.2
35.6 (15.6, 51.1) 11.9 (-1.7, 25.5) 30.0 (25.0, 60.0) 0.3 (0.1, 0.7)

Small Medium
Tuning 16.0 ± 8.2 15.1 ± 16.8 51.4 ± 27.7 0.2 ± 0.2

16.7 (4.4, 31.1) 13.3 (-4.5, 45.0) 42.5 (20.5, 110.0) 0.3 (0.0, 0.5)

Validation 12.0 ± 5.2 20.9 ± 20.6 53.2 ± 33.3 0.3 ± 0.2
12.2 (6.7, 20.0) 13.9 (-4.5, 65.9) 40.0 (6.0, 119.0) 0.3 (0.1, 0.7)

Small Slow
Tuning 6.9 ± 2.7 16.6 ± 14.4 62.1 ± 33.7 0.3 ± 0.2

6.7 (2.2, 11.1) 13.4 (-5.8, 41.8) 50.0 (10.0, 114.5) 0.3 (0.1, 0.7)

Validation 8.7 ± 4.0 10.5 ± 13.3 60.4 ± 29.8 0.3 ± 0.2
8.9 (2.2, 15.6) 7.0 (-9.2, 35.1) 60.0 (12.3, 117.7) 0.3 (0.0, 0.7)

Values reported as mean ± standard deviation and median (5th percentile, 95th percentile).
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Table 5.8: Population performance metrics of the Detection 3 tuning (win=20 minutes;
TH=0.000415).

Scenario Sensitivity
(%)

∆ Glucose
(mg/dl)

Detection
Time (min) FP/day

Large Fast
Tuning 98.0 ± 2.4 20.6 ± 8.3 30.1 ± 4.7 0.0 ± 0.0

98.9 (93.3, 100.0) 20.3 (7.9, 33.3) 30.0 (25.0, 40.0) 0.0 (0.0, 0.1)

Validation 98.2 ± 2.9 20.7 ± 8.4 29.9 ± 5.9 0.0 ± 0.1
100.0 (93.3, 100.0) 20.5 (6.3, 34.2) 30.0 (25.0, 35.0) 0.0 (0.0, 0.1)

Large Medium
Tuning 51.8 ± 15.0 19.8 ± 17.0 41.4 ± 11.6 0.1 ± 0.1

50.0 (31.1, 73.3) 17.0 (-2.1, 48.5) 40.0 (30.0, 60.0) 0.1 (0.0, 0.1)

Validation 58.9 ± 14.3 22.0 ± 17.1 41.9 ± 13.1 0.1 ± 0.1
56.7 (35.6, 82.2) 18.7 (1.7, 52.8) 40.0 (30.0, 66.3) 0.0 (0.0, 0.2)

Large Small
Tuning 15.8 ± 10.2 18.2 ± 16.6 52.3 ± 16.0 0.1 ± 0.1

13.3 (4.4, 35.6) 17.4 (-9.0, 49.1) 50.0 (16.0, 74.8) 0.0 (0.0, 0.2)

Validation 12.2 ± 8.5 21.2 ± 16.7 54.0 ± 15.4 0.1 ± 0.1
12.2 (2.2, 26.7) 19.5 (-0.6, 44.4) 55.0 (21.3, 75.0) 0.1 (0.0, 0.3)

Medium Fast
Tuning 75.1 ± 10.5 21.7 ± 9.9 33.7 ± 6.8 0.0 ± 0.1

77.8 (57.8, 91.1) 21.1 (9.2, 34.0) 35.0 (25.0, 40.0) 0.0 (0.0, 0.1)

Validation 76.9 ± 9.9 21.0 ± 8.7 33.4 ± 5.4 0.0 ± 0.1
75.6 (64.4, 95.6) 20.9 (7.6, 34.1) 32.5 (25.0, 41.0) 0.0 (0.0, 0.1)

Medium Medium
Tuning 22.4 ± 10.1 23.8 ± 13.4 43.6 ± 12.2 0.1 ± 0.1

20.0 (8.9, 35.6) 23.0 (4.6, 49.5) 40.0 (30.0, 70.0) 0.1 (0.0, 0.2)

Validation 20.7 ± 10.2 22.8 ± 14.9 43.3 ± 14.1 0.0 ± 0.0
18.9 (8.9, 44.4) 20.4 (5.0, 49.2) 40.0 (30.0, 69.2) 0.0 (0.0, 0.1)

Medium Small
Tuning 4.4 ± 5.0 15.7 ± 13.8 53.0 ± 20.8 0.1 ± 0.1

2.2 (0.0, 15.6) 16.5 (-12.8, 36.3) 55.0 (12.5, 87.5) 0.1 (0.0, 0.2)

Validation 4.4 ± 3.5 26.9 ± 21.7 55.8 ± 21.1 0.1 ± 0.0
4.4 (0.0, 11.1) 24.2 (-14.5, 68.8) 55.0 (15.0, 97.5) 0.1 (0.0, 0.1)

Small Fast
Tuning 14.4 ± 7.4 20.9 ± 9.9 37.3 ± 9.2 0.1 ± 0.1

12.2 (6.7, 28.9) 19.3 (8.4, 36.1) 35.0 (28.8, 52.5) 0.1 (0.0, 0.3)

Validation 16.4 ± 11.0 21.1 ± 9.0 36.1 ± 7.5 0.0 ± 0.0
14.4 (4.4, 37.8) 19.3 (6.9, 34.3) 35.0 (30.0, 45.0) 0.0 (0.0, 0.1)

Small Medium
Tuning 3.8 ± 3.6 28.7 ± 16.8 44.7 ± 19.3 0.0 ± 0.0

3.3 (0.0, 11.1) 26.7 (11.6, 69.3) 40.0 (30.0, 92.2) 0.0 (0.0, 0.1)

Validation 2.0 ± 3.4 27.5 ± 20.3 64.4 ± 34.1 0.1 ± 0.1
1.1 (0.0, 11.1) 21.7 (1.1, 57.3) 45.0 (25.0, 110.0) 0.1 (0.0, 0.2)

Small Slow
Tuning 1.3 ± 1.6 26.7 ± 18.6 63.3 ± 48.9 0.1 ± 0.1

1.1 (0.0, 4.4) 21.8 (8.6, 50.5) 72.5 (5.0, 110.0) 0.1 (0.0, 0.3)

Validation 1.6 ± 1.5 21.1 ± 21.8 71.4 ± 23.8 0.1 ± 0.1
2.2 (0.0, 4.4) 16.1 (0.3, 62.7) 75.0 (40.0, 105.0) 0.1 (0.0, 0.2)

Values reported as mean ± standard deviation and median (5th percentile, 95th percentile).

49



CHAPTER 5. UNANNOUNCED MEAL DETECTION AND POSTPRANDIAL CONTROL

5.2.3 Meal Type Discrimination

Two additional tunings were identified from the detection bank mentioned in the previously

in Chapter 5.2.2. All detections with the difference between detection times equal to zero were

compared and their ability to detect rapidly appearing meals was measured. These tunings are

called Rapid 1 (win=5 minutes; TH=0.00009) and Rapid 2 (win=5 minutes; TH=0.000125). It was

found that when these two detection tunings detect a meal at the same time, the meal detected is

more likely to be a meal that rapidly appears in the BG (see Table 5.9).

Rapid Meal=
true if Rapid 1= true∧ Rapid 2= true,

false otherwise.
(5.4)

Table 5.9: Identification of fast absorption meals.

Carbohydrates (grams)
15-40 40-80 80-120 15-120

Tuning

Sensitivity (%)
Mean 6 ± 4.5 44.9 ± 16 90.4 ± 7.6 47.1 ± 36.5

Median 4.4 (0, 15.6) 44.4 (17.8, 68.9) 92.2 (77.8, 100) 44.4 (2.2, 100)

∆ Glucose (mg/dl)
Mean 20.9 ± 0 14.4 ± 9.6 13.4 ± 7 25.7 ± 3.1

Median 20.9 (20.9, 20.9) 12.9 (0.3, 33.5) 11.8 (4.3, 28.7) 25 (20, 30)

Detection Time (min)
Mean 25 ± 0 27 ± 2.9 25 ± 3.1 13.9 ± 7.9

Median 25 (25, 25) 25 (25, 31.7) 25 (20, 30) 12.2 (3.3, 28.9)

Validation

Sensitivity (%)
Mean 6.7 ± 6.1 52.7 ± 14.1 92.2 ± 6 50.5 ± 36.7

Median 4.4 (0, 17.8) 52.2 (35.6, 80) 90 (84.4, 100) 52.2 (2.2, 100)

∆ Glucose (mg/dl)
Mean 44.2 ± 55.1 14.4 ± 8.4 13.5 ± 7 25.7 ± 6.7

Median 44.2 (5.2, 83.1) 13.4 (-0.3, 30.7) 13 (3.2, 24.9) 25 (20, 35)

Detection Time (min)
Mean 50 ± 28.3 26.7 ± 4.2 23.9 ± 3.5 14.8 ± 11.2

Median 50 (30, 70) 25 (20, 35.7) 25 (20, 30) 13.2 (2.9, 30.3)

Values reported as mean ± standard deviation and median (5th percentile, 95th percentile).

This discrimination technique is able to detect 47 ± 37% (44 (2, 100)%) in the tuning set and

51 ± 37% (52 (2, 100%)) in the validation set of all fast absorption meals, with the ability to

detect 90 ± 8% (median: 92 (78, 100)%) in the tuning set and 92 ± 6% (median: 90 (84, 100)%) in

the validation set of fast absorption meals with >80 grams of CHO, 45 ± 16% (44 (18, 69)%) in

the tuning set and 53 ± 14% (52 (36, 82%)) in the validation set of fast absorption meals with

between 40–80 grams of CHO, and 6 ±5% (4 (0, 16)%) in the tuning set and 7 ± 6% (4 (0, 18%)) in

the validation set of fast absorption meals with <40 grams of CHO.
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For medium absorption meals, the technique incorrectly identifies 25 ± 11% (23 (9, 47)%)

and 31 ± 11% (29 (18, 53)%) of meals with >80 grams of CHO, 6 ± 6% (4 (0, 20)%) and 6 ± 6%

(4 (0, 18)%) of meals with 40–80 grams of CHO, and 2 ± 3% (1 (0, 9)%) and 1 ± 2% (0 (0, 7)%) of

meals with <40 grams, for the tuning and validation sets, respectively. For slow absorption meals,

4 ± 5% (2 (0, 11)%) and 4 ± 4% (3 (0, 9)%) of meals with >80 grams of CHO, 1 ± 2% (0 (0, 7)%)

and 2 ± 2% (1 (0, 4)%) of meals with 40–80 grams of CHO, and 1 ± 1% (0 (0, 2)%) and 1 ± 2%

(0 (0, 4)%) of meals with <40 grams are incorrectly identified for the tuning and validation sets,

respectively. Although some medium absorption meals with >80 grams of CHO are detected,

these meals are likely to cause a profound increase in BG. This discrimination will be utilized in

the next sections to aid in CHO estimation and during postprandial glucose control.

5.2.4 Carbohydrate Estimation

After detection, the CHO of each meal is estimated using the area under the curve of the

disturbance parameter, D multiplied by a gain, kCHOi as follows:

umeal =
∫ t

t−1
D(τ)dτ ·kCHOi (5.5)

where

kCHOi =



25.4 if Rapid Meal= true ∧ Bolus 1= true,

16.6 if Rapid Meal= false ∧ Bolus 1= true,

22.3 if Rapid Meal= true ∧ Bolus 2= true,

15.9 if Rapid Meal= false ∧ Bolus 2= true.

(5.6)

The estimation of error of the estimated CHO quantities in the tuning and validation sets of

scenarios (Chapter 5.2.1) can be found in Table 5.10 and Figures 5.4, 5.5, 5.6, and 5.7 contain

histograms of the CHO estimation for all meals estimated and also separated by absorption rate

and CHO quantity for the tuning and validation sets of the Detection 2 and Detection 3 tunings,

respectively.

Here we can see that there is a tendency towards underestimation in the CHO estimation

methodology presented. The is no difference between Detection 2 and Detection 3, nor between

the tuning and validation sets in terms of accuracy of CHO estimation. However, Figures 5.4

and 5.5 show that the CHO estimation in the Detection 3 tuning tends more towards zero than

that of the Detection 2 tuning and the same is true for Figures 5.6 and 5.7. Additionally, the

spread of error seen (Table 5.10 and Figures 5.4–5.7) is quite large indicating an overall poor

precision. Therefore, the application of CHO estimation for the use in postprandial hyperglycemia

mitigation may be limited.
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Table 5.10: The root mean squared error of carbohydrate estimation and detected meals.

Detection 2 Detection 3

Scenario
CHO

(grams)
Estimated

CHO (grams)
Estimated
Error (%)

Estimated
CHO (grams)

Estimated
Error (%)

Tuning
Large
Fast

Mean 98 ± 12 71 ± 51 -27 ± 52 71 ± 52 -27 ± 53
Median 98 (82, 117) 54 (16, 176) -44 (-84, 79) 54 (15, 178) -45 (-84, 79)

Large
Medium

Mean 99 ± 12 77 ± 62 -21 ± 65 75 ± 67 -24 ± 70
Median 100 (81, 117) 58 (18, 189) -40 (-83, 100) 53 (16, 196) -46 (-84, 102)

Large
Slow

Mean 103 ± 13 92 ± 67 -10 ± 66 92 ± 65 -10 ± 68
Median 106 (82, 119) 65 (26, 239) -35 (-76, 121) 65 (28, 230) -35 (-75, 133)

Medium
Fast

Mean 61 ± 12 42 ± 28 -30 ± 47 39 ± 28 -36 ± 43
Median 61 (41, 78) 36 (9, 91) -40 (-86, 60) 34 (6, 86) -43 (-89, 49)

Medium
Medium

Mean 61 ± 11 47 ± 41 -20 ± 71 42 ± 37 -32 ± 63
Median 61 (43, 77) 37 (5, 110) -42 (-93, 115) 33 (3, 115) -46 (-94, 81)

Medium
Slow

Mean 63 ± 12 55 ± 32 -11 ± 54 56 ± 35 -2 ± 68
Median 65 (43, 79) 48 (16, 115) -23 (-74, 102) 41 (17, 119) -31 (-68, 149)

Small
Fast

Mean 31 ± 6 28 ± 23 -5 ± 78 24 ± 29 -27 ± 85
Median 31 (18, 38) 25 (1, 64) -15 (-96, 130) 22 (-4, 64) -34 (-112, 71)

Small
Medium

Mean 31 ± 6 31 ± 21 6 ± 72 36 ± 30 12 ± 90
Median 31 (19, 39) 28 (6, 61) -11 (-84, 140) 28 (3, 108) -25 (-90, 191)

Small
Slow

Mean 29 ± 7 40 ± 25 48 ± 100 35 ± 35 18 ± 102
Median 32 (16, 37) 37 (3, 86) 52 (-89, 184) 27 (-15, 82) 23 (-146, 136)

Validation
Large
Fast

Mean 100 ± 11 69 ± 50 -31 ± 49 69 ± 51 -31 ± 50
Median 103 (82, 118) 51 (18, 171) -46 (-80, 75) 51 (18, 174) -46 (-81, 77)

Large
Medium

Mean 105 ± 9 81 ± 60 -22 ± 58 80 ± 61 -24 ± 59
Median 105 (90, 119) 60 (15, 209) -43 (-86, 104) 60 (13, 209) -44 (-88, 104)

Large
Slow

Mean 102 ± 11 92 ± 61 -8 ± 63 90 ± 66 -10 ± 71
Median 103 (84, 119) 74 (21, 215) -29 (-80, 115) 67 (19, 230) -37 (-82, 166)

Medium
Fast

Mean 61 ± 11 46 ± 33 -24 ± 52 46 ± 35 -26 ± 54
Median 62 (44, 76) 39 (10, 102) -35 (-84, 74) 37 (10, 112) -38 (-86, 73)

Medium
Medium

Mean 63 ± 11 49 ± 40 -21 ± 67 44 ± 45 -32 ± 72
Median 64 (44, 80) 38 (7, 135) -38 (-89, 111) 28 (4, 137) -50 (-94, 122)

Medium
Slow

Mean 63 ± 13 53 ± 43 -17 ± 60 68 ± 60 0 ± 79
Median 61 (44, 79) 36 (9, 154) -38 (-88, 123) 43 (12, 187) -39 (-82, 150)

Small
Fast

Mean 31 ± 6 27 ± 21 -7 ± 77 27 ± 25 -15 ± 82
Median 33 (19, 38) 24 (4, 60) -22 (-83, 172) 22 (1, 81) -28 (-98, 148)

Small
Medium

Mean 31 ± 7 41 ± 28 36 ± 94 49 ± 33 73 ± 139
Median 33 (20, 40) 33 (10, 102) 1 (-64, 209) 56 (-6, 101) 52 (-126, 322)

Small
Slow

Mean 27 ± 8 32 ± 25 34 ± 128 45 ± 42 78 ± 185
Median 28 (15, 39) 31 (-7, 67) 0 (-121, 348) 44 (-13, 122) 68 (-147, 444)

Values reported as mean ± standard deviation and median (5th percentile, 95th percentile).
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Figure 5.4: Histograms of CHO estimation of the tuning set during the Detection 2 meal
detection tuning for all meals, meals of large, medium, and small sizes and fast, medium, and
slow absorption meals.
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Figure 5.5: Histograms of CHO estimation of the validation set during the Detection 2 meal
detection tuning for all meals, meals of large, medium, and small sizes and fast, medium, and
slow absorption meals.
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Figure 5.6: Histograms of CHO estimation of the tuning set during the Detection 3 meal
detection tuning for all meals, meals of large, medium, and small sizes and fast, medium, and
slow absorption meals.
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Figure 5.7: Histograms of CHO estimation of the validation set during the Detection 3 meal
detection tuning for all meals, meals of large, medium, and small sizes and fast, medium, and
slow absorption meals.

54



5.2. POSTPRANDIAL GLUCOSE CONTROL

5.2.5 The Postprandial Hyperglycemia Reduction Algorithm

The closed-loop controller previously described in Chapter 3 and Appendix B has been modified

to include a meal rejection loop as seen in Figure 5.8. The top inner loop is the meal rejection

loop that comprises of the PHRA that uses an UKF to estimate the disturbance parameter, D,

which is used to detect meals and apply postprandial hyperglycemia mitigation actions.

1st Order
Filter

Controller
PD(s)

Patient
G(s)

UKF

γ

IOB ModelSwitch, σ

Insulin
PK Model

PHRA

IOBmax

ubasalubolus

+
-

+ + + + +
-

Gr

umeal

Grf

uPD uAP uIFB

Îp

IOBω

D

Figure 5.8: Closed-loop controller composed of an inner control loop that contains a PD controller
with IFB, a top outer loop that acts as a safety supervisory loop and uses SMRC, and a top
inner loop that uses an UKF to estimate the disturbance parameter, D that is then introduced
into a PHRA, which when activated applies disturbance rejection actions to reduce postprandial
hyperglycemia by modifying IOBmax.

Due to the increased risk of hypoglycemia due to late boluses and the lack of precision of the

CHO estimation described previously, the PHRA will not utilize the meal type discrimination or

the CHO estimation methodologies in the following sections.
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The three meal detection tunings, Detection 1, Detection 2, and Detection 3 detect a meal

and are triggered in succession. All three meal detections allow changes to the IOBmax, which

increases insulin delivery to the patient as follows:

IOBmax(t)=


IOBmaxn (t) ·kIOBadapt if ∀Ġ(t−2, ...t)> 0∧ IOB(t−1)>= IOBmax(t−1)

2 ,

IOBmax(t−1) ∨∀Ġ(t−2, ...t)> 0,

IOBmaxn (t) otherwise.

(5.7)

where IOBmaxn (t), described in Appendix B, is calculated as follows:

IOBmaxn (t)= kIOB
2 ·ubasal(t)
60 ·kDI A

, (5.8)

Ġ is the derivative of the measured glucose, and kIOBadapt is a gain on IOBmax(t) equal to 1.011.

5.2.6 Performance Metrics

Glucose values are measured as population median glucose (median of the median value for each

subject), percentage of time between 70–180 mg/dl, >180 mg/dl, <70 mg/dl, and <54 mg/dl. The

number of hypoglycemic events are categorized as either a level 1 or level 2 event defined as BG

<70 mg/dl and ≥54 mg/dl and BG <54 mg/dl, respectively [65]. A hypoglycemic event requires a

minimum duration of 15 min below/within threshold, with a separation of at least 30 minutes

[173]. All values are reported as median (25th percentile, 75th percentile). The Wilcoxon signed-

rank test was used to obtain p values where a p value of <0.05 is considered significant. The

percentage of time between 70–180 mg/dl, >180 mg/dl, and <70 mg/dl are used as measures of

performance, where higher values are desirable for the percentage of time between 70–180 mg/dl

and lower values are desirable for the percentage of time >180 mg/dl and <70 mg/dl.

5.2.7 Typical Day Scenario

A challenging 15-day scenario was built that included: three meals per day with varying carbo-

hydrate content and meal time following a normal distribution with mean 30 grams at 8:30h

(breakfast), 60 grams at 13:00h (lunch), and 50 grams at 19:00h (dinner). Coefficient of variance

for the meal size was ±20%, and the standard deviation for meal time was ±10 min. For each meal,

a meal absorption profile was selected randomly from a meal library of 31 fast, 15 medium, or 3

slow absorption meals. There were 450 meals in total for all ten subjects over the 15-day period.

Circadian insulin sensitivity variation (sinusoidal type with 24-hour period) was implemented

with random amplitude according to a uniform distribution of ±30% and random phase.
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5.2.8 Results

Three insulin-only CLC cases of missed meal boluses, announced meals, and unannounced meals

were tested using the scenarios previously described. The announced meals controller has been

successfully tested in a clinical trial [161] and further information about the controller can be

found in Appendix B. The PHRA was tuned using the nine tuning scenarios, validated with the

nine validation scenarios (Chapter 5.1.3), and then tested in the context of a real-life typical day

(Chapter 5.2.7). The Tables 5.11–5.19 contain the overall outcomes for the tuning and validation

scenarios and allow us to compare and contrast the three strategies during meals of varying sizes

and absorption rates.

Table 5.11: Overall population outcomes of a 15-day simulation with large (80–120 grams) fast
absorption meals for three strategies in closed-loop control: missed meal boluses, announced
meals, and unannounced meals with a PHRA. There were 450 meals in total.

Missed Meal Boluses Announced PHRA p∗ p†

Tuning

Population Median
Glucose (mg/dl) 206.2 (177.3, 272.5) 129.8 (127.7, 135.1) 160.7 (147.0, 188.8) 0.002 0.002
Insulin/day 37.3 (30.2, 42.6) 50.0 (47.1, 59.9) 41.2 (37.4, 44.6) 0.002 0.002
Percentage of time
spent in... (mg/dl)

70-180 40.1 (18.4, 50.9) 87.3 (85.0, 89.5) 55.4 (47.6, 60.1) 0.002 0.002
>180 59.9 (49.1, 81.6) 12.5 (10.3, 15.0) 44.6 (39.9, 52.4) 0.002 0.002
>250 32.7 (24.1, 58.0) 0.3 (0.0, 0.5) 21.4 (17.6, 34.8) 0.002 0.002
<70 0.0 (0.0, 0.0) 0.4 (0.0, 0.5) 0.0 (0.0, 0.0) 1 0.016

Hypoglycemic Events
Level 1 0 13 0 1 0.063
Level 2 0 4 0 1 0.125

Validation

Population Median
Glucose (mg/dl) 205.3 (179.2, 260.4) 129.6 (127.8, 135.5) 163.3 (147.6, 174.3) 0.002 0.002
Insulin/day 37.4 (30.4, 42.3) 50.6 (46.6, 60.9) 41.5 (36.5, 44.3) 0.002 0.002
Percentage of time
spent in... (mg/dl)

70-180 38.6 (19.0, 50.2) 88.0 (80.5, 91.0) 55.0 (50.9, 60.9) 0.002 0.002
>180 61.4 (49.8, 80.7) 11.8 (9.0, 18.7) 45.0 (39.1, 48.5) 0.002 0.002
>250 28.4 (23.0, 54.4) 0.2 (0.0, 0.3) 21.4 (15.2, 31.8) 0.002 0.002
<70 0.0 (0.0, 0.0) 0.6 (0.0, 0.8) 0.0 (0.0, 0.0) 1 0.031

Hypoglycemic Events
Level 1 0 8 1 1 0.25
Level 2 1 10 1 1 0.031

Values reported as median (25th percentile, 75th percentile). ∗p value between missed meal boluses
and PHRA scenarios. †p value between announced and PHRA.
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Large sized meals (Tables 5.11–5.13) were the most difficult to control during missed meal

boluses, the announced meals strategy, and the PHRA strategy. Missed meal boluses experi-

enced the lowest percentage of time between 70–180 mg/dl with 40 (18, 51)% and 39 (19, 50)%,

33 (6, 46)% and 30 (3, 40)%, and 33 (6, 46)% and 30 (3, 40)% for fast, medium, and slow absorption

meals, respectively. The announced meals strategy had the highest percentage of time between

70–180 mg/dl, however, it also experienced the most amount of time <70, which resulted in many

hypoglycemic events for the tuning and validation scenarios with 13 and 8, 23 and 23, and 52

Table 5.12: Overall population outcomes of a 15-day simulation with large (80–120 grams)
medium absorption meals for three strategies in closed-loop control: missed meal boluses, an-
nounced meals, and unannounced meals with a PHRA. There were 450 meals in total.

Missed Meal Boluses Announced PHRA p∗ p†

Tuning

Population Median
Glucose (mg/dl) 213.4 (188.5, 285.5) 135.0 (130.2, 142.4) 172.3 (153.9, 191.9) 0.002 0.002
Insulin/day 37.2 (29.9, 41.0) 51.0 (47.7, 61.1) 41.4 (37.4, 44.9) 0.002 0.002
Percentage of time
spent in... (mg/dl)

70-180 32.7 (6.1, 45.8) 92.3 (82.8, 94.7) 52.7 (46.1, 62.0) 0.002 0.002
>180 67.3 (54.2, 93.9) 7.7 (4.4, 15.9) 47.3 (38.0, 53.9) 0.002 0.002
>250 24.6 (16.4, 67.5) 0.0 (0.0, 0.2) 13.9 (9.7, 30.7) 0.002 0.002
<70 0.0 (0.0, 0.0) 0.5 (0.2, 1.7) 0.0 (0.0, 0.0) 1 0.008

Hypoglycemic Events
Level 1 0 23 0 1 0.016
Level 2 0 6 0 1 0.125

Validation

Population Median
Glucose (mg/dl) 220.2 (203.4, 293.7) 138.6 (133.7, 143.8) 176.5 (164.4, 203.1) 0.002 0.002
Insulin/day 37.5 (29.8, 42.2) 52.5 (49.2, 62.3) 41.9 (37.1, 46.3) 0.002 0.002
Percentage of time
spent in... (mg/dl)

70-180 30.3 (3.4, 39.7) 88.9 (83.6, 93.4) 51.0 (42.9, 55.9) 0.002 0.002
>180 69.7 (60.3, 96.6) 11.1 (5.1, 16.4) 49.0 (44.1, 57.1) 0.002 0.002
>250 30.8 (26.6, 71.5) 0.0 (0.0, 0.0) 18.5 (12.2, 37.0) 0.002 0.002
<70 0.0 (0.0, 0.0) 0.4 (0.0, 1.4) 0.0 (0.0, 0.0) 1 0.016

Hypoglycemic Events
Level 1 0 23 0 1 0.016
Level 2 0 9 0 1 0.125

Values reported as median (25th percentile, 75th percentile). ∗p value between missed meal boluses
and PHRA scenarios. †p value between announced and PHRA.
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and 55 level 1 events and 4 and 10, 6 and 9, and 125 and 116 level 2 events for fast, medium,

and slow absorption meals, respectively. The PHRA when compared to the missed meal boluses

achieved a significant improvement in time between 70–180 mg/dl without increasing the number

of hypoglycemic events during large meals with a time between 70–180 mg/dl for the tuning and

validation scenarios of 55 (48, 60)% (p = 0.002) and 55 (51, 61)% (p=0.002), 53 (46, 62)% (p=0.002)

and 51 (43, 56)% (p=0.002), and 41 (37, 57)% (p=0.004) and 48 (33, 55)% (p=0.002) for the fast,

medium, and slow absorption meals, respectively.

Table 5.13: Overall population outcomes of a 15-day simulation with large (80–120 grams) slow
absorption meals for three strategies in closed-loop control: missed meal boluses, announced
meals, and unannounced meals with a PHRA. There were 450 meals in total.

Missed Meal Boluses Announced PHRA p∗ p†

Tuning

Population Median
Glucose (mg/dl) 211.9 (189.1, 288.0) 138.6 (133.6, 147.4) 191.5 (170.6, 201.5) 0.002 0.002
Insulin/day 38.0 (30.0, 41.1) 52.7 (49.8, 64.3) 41.3 (36.0, 45.7) 0.002 0.002
Percentage of time
spent in... (mg/dl)

70-180 23.6 (4.2, 42.3) 76.6 (69.3, 84.5) 41.3 (36.7, 57.0) 0.002 0.004
>180 76.4 (57.7, 95.8) 16.7 (6.1, 24.5) 58.7 (43.0, 63.3) 0.002 0.002
>250 19.8 (9.4, 76.9) 0.0 (0.0, 1.0) 9.5 (2.0, 27.0) 0.002 0.004
<70 0.0 (0.0, 0.0) 5.3 (3.5, 10.2) 0.0 (0.0, 0.0) 1 0.002

Hypoglycemic Events
Level 1 0 52 0 1 0.002
Level 2 0 125 0 1 0.002

Validation

Population Median
Glucose (mg/dl) 205.2 (188.5, 282.7) 136.0 (131.2, 142.5) 185.6 (174.7, 213.8) 0.002 0.002
Insulin/day 38.0 (30.0, 41.1) 53.3 (49.6, 63.7) 41.5 (36.0, 46.5) 0.002 0.002
Percentage of time
spent in... (mg/dl)

70-180 26.7 (3.7, 42.5) 77.8 (67.2, 84.5) 44.7 (33.1, 54.7) 0.002 0.002
>180 73.3 (57.5, 96.3) 15.4 (10.6, 24.8) 55.3 (45.3, 66.9) 0.002 0.002
>250 15.8 (8.9, 73.0) 0.0 (0.0, 0.2) 7.4 (3.7, 24.6) 0.002 0.002
<70 0.0 (0.0, 0.0) 4.4 (3.5, 12.2) 0.0 (0.0, 0.0) 1 0.002

Hypoglycemic Events
Level 1 0 55 0 1 0.002
Level 2 0 116 0 1 0.002

Values reported as median (25th percentile, 75th percentile). ∗p value between missed meal boluses
and PHRA scenarios. †p value between announced and PHRA.
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During medium sized meals (Tables 5.14-5.16, the PHRA achieved adequate improvement

in glycemic control when compared to missed meal boluses, without provoking additional hy-

poglycemic events for the tuning and validation scenarios with 76 (65, 78)% (p=0.002) and

74 (66, 79)% (p=0.002), 74 (66, 79)% (p=0.002) and 76 (66, 82)% (p=0.002), and 81 (55, 87)%

(p=0.004) and 81 (57, 84)% (p=0.004) of time between 70–180 mg/dl for fast, medium, and slow

absorption meals, respectively.

Table 5.14: Overall population outcomes of a 15-day simulation with medium (40–80 grams)
fast absorption meals for three strategies in closed-loop control: missed meal boluses, announced
meals, and unannounced meals with a (PHRA. There were 450 meals in total.

Missed Meal Boluses Announced PHRA p∗ p†

Tuning

Population Median

Glucose (mg/dl) 157.4 (148.2, 202.6) 125.4 (123.9, 132.0) 135.1 (130.1, 146.2) 0.002 0.002

Insulin/day 36.5 (28.8, 39.2) 43.4 (37.4, 50.1) 38.2 (32.4, 40.4) 0.002 0.002

Percentage of time

spent in... (mg/dl)

70-180 66.4 (35.6, 69.1) 96.9 (91.2, 98.0) 75.8 (65.1, 78.0) 0.002 0.002

>180 33.6 (30.9, 64.4) 3.1 (2.0, 8.8) 24.2 (22.0, 34.9) 0.002 0.002

>250 3.6 (0.9, 19.4) 0.0 (0.0, 0.0) 2.2 (0.5, 6.4) 0.002 0.004

<70 0.0 (0.0, 0.0) 0.0 (0.0, 0.2) 0.0 (0.0, 0.0) 1 0.25

Hypoglycemic Events

Level 1 0 6 0 1 0.25

Level 2 0 2 0 1 1

Validation

Population Median

Glucose (mg/dl) 161.5 (146.5, 208.0) 127.2 (124.3, 129.9) 135.9 (131.7, 148.7) 0.002 0.002

Insulin/day 36.4 (28.8, 39.3) 43.5 (38.2, 50.6) 38.6 (32.9, 40.5) 0.002 0.002

Percentage of time

spent in... (mg/dl)

70-180 64.9 (34.6, 70.8) 96.2 (91.1, 98.0) 74.2 (65.8, 79.1) 0.002 0.002

>180 35.1 (29.2, 65.4) 3.8 (1.9, 8.9) 25.8 (20.9, 34.2) 0.002 0.002

>250 4.2 (0.9, 21.6) 0.0 (0.0, 0.0) 2.7 (0.5, 5.1) 0.002 0.002

<70 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 0.5

Hypoglycemic Events

Level 1 0 2 0 1 0.5

Level 2 0 3 0 1 1

Values reported as median (25th percentile, 75th percentile). ∗p value between missed meal boluses
and PHRA scenarios. †p value between announced and PHRA.

60



5.2. POSTPRANDIAL GLUCOSE CONTROL

Generally, small meals (Tables 5.17–5.19) achieved the highest performance during missed

meal boluses and during the implementation of the PHRA. During missed meal boluses the tuning

and validation scenarios achieved 96 (91, 98) and 97 (90, 98)%, 97 (91, 100) and 98 (94, 100)%, and

100 (97, 100) and 100 (97, 100)% of time between 70–180 mg/dl for small meals of fast, medium,

and slow absorption, respectively. The PHRA achieved during the tuning and validation scenarios

Table 5.15: Overall population outcomes of a 15-day simulation with medium (40–80 grams)
medium absorption meals for three strategies in closed-loop control: missed meal boluses, an-
nounced meals, and unannounced meals with a PHRA. There were 450 meals in total.

Missed Meal Boluses Announced PHRA p∗ p†

Tuning

Population Median

Glucose (mg/dl) 161.5 (146.5, 208.0) 127.2 (124.3, 129.9) 135.9 (131.7, 148.7) 0.002 0.002

Insulin/day 36.4 (28.8, 39.3) 43.5 (38.2, 50.6) 38.6 (32.9, 40.5) 0.002 0.002

Percentage of time

spent in... (mg/dl)

70-180 64.9 (34.6, 70.8) 96.2 (91.1, 98.0) 74.2 (65.8, 79.1) 0.002 0.002

>180 35.1 (29.2, 65.4) 3.8 (1.9, 8.9) 25.8 (20.9, 34.2) 0.002 0.002

>250 4.2 (0.9, 21.6) 0.0 (0.0, 0.0) 2.7 (0.5, 5.1) 0.002 0.002

<70 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 1

Hypoglycemic Events

Level 1 0 2 0 1 0.5

Level 2 0 3 0 1 0.5

Validation

Population Median

Glucose (mg/dl) 157.9 (147.8, 198.1) 128.3 (125.4, 136.1) 147.0 (140.7, 155.6) 0.002 0.002

Insulin/day 36.7 (29.0, 39.7) 43.9 (38.5, 49.5) 37.5 (31.1, 40.2) 0.002 0.002

Percentage of time

spent in... (mg/dl)

70-180 70.8 (38.4, 77.8) 97.6 (96.3, 99.0) 76.0 (66.0, 82.4) 0.002 0.002

>180 29.2 (22.2, 61.6) 2.1 (0.5, 3.5) 24.0 (17.6, 34.0) 0.002 0.002

>250 0.6 (0.0, 12.5) 0.0 (0.0, 0.0) 0.4 (0.0, 6.5) 0.016 0.016

<70 0.0 (0.0, 0.0) 0.1 (0.0, 1.0) 0.0 (0.0, 0.0) 1 0.0625

Hypoglycemic Events

Level 1 0 13 0 1 0.25

Level 2 0 12 0 1 0.125

Values reported as median (25th percentile, 75th percentile). ∗p value between missed meal boluses
and PHRA scenarios. †p value between announced and PHRA.
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97 (94, 99) and 98 (93, 100)%, 98 (94, 100) and 98 (94, 100)%, and 100 (97, 100) and 100 (97, 100)%

of time between 70–180 mg/dl for small meals of fast, medium, and slow absorption, respectively.

Meanwhile, the announced strategy had a higher propensity for hypoglycemic events during

these meals with 4 and 2, 9 and 8, and 18 and 29 level 1 events and 0 and 0, 6 and 7, and 10 and

20 level 2 events for slow, medium, and fast absorption meals, respectively.

Table 5.16: Overall population outcomes of a 15-day simulation with medium (40-80 grams) slow
absorption meals for three strategies in closed-loop control: missed meal boluses, announced
meals, and unannounced meals with a PHRA. There were 450 meals in total.

Missed Meal Boluses Announced PHRA p∗ p†

Tuning

Population Median

Glucose (mg/dl) 158.8 (147.0, 200.3) 127.9 (127.0, 134.0) 154.2 (144.0, 175.7) 0.002 0.002

Insulin/day 37.2 (29.3, 40.0) 44.6 (38.8, 51.0) 37.7 (31.2, 40.4) 0.002 0.002

Percentage of time

spent in... (mg/dl)

70-180 77.5 (32.0, 84.6) 93.1 (90.1, 94.2) 80.5 (54.5, 87.4) 0.002 0.004

>180 22.5 (15.4, 68.0) 3.4 (1.8, 5.5) 19.5 (12.6, 45.5) 0.002 0.002

>250 0.2 (0.0, 13.4) 0.0 (0.0, 0.0) 0.0 (0.0, 5.3) 0.125 0.125

<70 0.0 (0.0, 0.0) 3.0 (1.9, 5.4) 0.0 (0.0, 0.0) 1 0.002

Hypoglycemic Events

Level 1 0 40 0 1 0.004

Level 2 0 71 0 1 0.008

Validation

Population Median

Glucose (mg/dl) 157.3 (148.4, 203.0) 128.0 (125.4, 133.2) 153.6 (145.1, 169.2) 0.002 0.002

Insulin/day 37.0 (29.4, 40.5) 44.7 (38.6, 50.3) 37.4 (32.0, 40.8) 0.002 0.002

Percentage of time

spent in... (mg/dl)

70-180 76.5 (36.1, 80.6) 93.5 (85.6, 95.8) 80.6 (57.4, 83.5) 0.002 0.004

>180 23.5 (19.4, 63.9) 4.2 (0.9, 11.8) 19.4 (16.5, 42.6) 0.002 0.002

>250 0.5 (0.0, 9.1) 0.0 (0.0, 0.0) 0.3 (0.0, 2.9) 0.031 0.031

<70 0.0 (0.0, 0.0) 3.0 (2.7, 3.4) 0.0 (0.0, 0.0) 1 0.002

Hypoglycemic Events

Level 1 0 42 0 1 0.002

Level 2 0 74 0 1 0.002

Values reported as median (25th percentile, 75th percentile). ∗p value between missed meal boluses
and PHRA scenarios. †p value between announced and PHRA.
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The announced meals strategy performed its best during fast meals (Tables 5.11, 5.14, and

5.17) where it experienced a higher percentage of time between 70–180 mg/dl compared with

the PHRA strategy with few hypoglycemic events. The announced meals strategy achieved

87 (85, 90)% (p=0.002) and 88 (81, 91)% (p=0.002), 97 (91, 98) (p=0.002) and 96 (91 98)% (p=0.002),

and 100 (99, 100)% (p=0.004) and 100 (99, 100)% (p=0.004) of time between 70–180 mg/dl for

large, medium, and small sized meals with fast absorption, respectively.

Table 5.17: Overall population outcomes of a 15-day simulation with small (15—40 grams) fast
absorption meals for three strategies in closed-loop control: missed meal boluses, announced
meals, and unannounced meals with a PHRA. There were 450 meals in total.

Missed Meal Boluses Announced PHRA p∗ p†

Tuning

Population Median

Glucose (mg/dl) 124.5 (121.7, 132.4) 119.1 (117.8, 121.4) 123.0 (120.9, 125.3) 0.002 0.002

Insulin/day 35.2 (27.7, 38.4) 37.2 (30.0, 39.7) 35.4 (28.0, 38.5) 0.002 0.002

Percentage of time

spent in... (mg/dl)

70-180 96.4 (91.2, 98.4) 99.8 (99.4, 100.0) 97.3 (93.5, 98.9) 0.002 0.004

>180 3.6 (1.6, 8.8) 0.1 (0.0, 0.5) 2.7 (1.1, 6.5) 0.002 0.004

>250 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 1

<70 0.0 (0.0, 0.0) 0.0 (0.0, 0.1) 0.0 (0.0, 0.0) 1 0.25

Hypoglycemic Events

Level 1 0 4 0 1 0.25

Level 2 0 0 0 1 1

Validation

Population Median

Glucose (mg/dl) 125.8 (122.2, 132.9) 120.7 (118.7, 122.1) 124.0 (121.2, 126.6) 0.004 0.002

Insulin/day 35.2 (27.9, 39.0) 37.4 (30.3, 40.2) 35.4 (28.1, 39.1) 0.002 0.002

Percentage of time

spent in... (mg/dl)

70-180 97.0 (89.8, 99.7) 100.0 (99.4, 100.0) 97.7 (92.5, 99.8) 0.016 0.004

>180 3.0 (0.3, 10.2) 0.0 (0.0, 0.6) 2.3 (0.2, 7.5) 0.016 0.004

>250 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 1

<70 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 0.5

Hypoglycemic Events

Level 1 0 2 0 1 0.5

Level 2 0 0 0 1 1

Values reported as median (25th percentile, 75th percentile). ∗p value between missed meal boluses
and PHRA scenarios. †p value between announced and PHRA.
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During medium absorption meals (Tables 5.12, 5.15, and 5.18), the announced meals strategy

also experienced a high performance in terms of time between 70–180 mg/dl, however, many

hypoglycemic events occurred during this meal type. The percentage of time between 70–180 mg/dl

for the announced meals strategy for the tuning and validation scenarios were 92 (83, 95)%

and 90 (84, 93)%, 96 (91, 98)% and 98 (96, 99)%, and 99 (99, 100)% and 100 (99, 100)% for

large, medium and small sized meals with medium absorption, respectively. The number of

hypoglycemic events were 23 and 23, 2 and 13, and 9 and 8 level 1 and 6 and 9, 3 and 12, and 6

Table 5.18: Overall population outcomes of a 15-day simulation with small (15—40 grams)
medium absorption meals for three strategies in closed-loop control: missed meal boluses, an-
nounced meals, and unannounced meals with a PHRA. There were 450 meals in total.

Missed Meal Boluses Announced PHRA p∗ p†

Tuning

Population Median
Glucose (mg/dl) 127.1 (125.4, 137.0) 120.7 (119.2, 123.6) 126.3 (125.3, 133.7) 0.006 0.002
Insulin/day 35.4 (28.0, 39.2) 37.8 (30.9, 40.4) 35.5 (28.2, 39.2) 0.002 0.002
Percentage of time
spent in... (mg/dl)

70-180 97.4 (91.4, 99.7) 99.4 (99.0, 99.9) 97.7 (93.8, 99.7) 0.004 0.037
>180 2.6 (0.3, 8.6) 0.1 (0.0, 0.7) 2.3 (0.3, 6.2) 0.004 0.002
>250 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 1
<70 0.0 (0.0, 0.0) 0.1 (0.0, 0.7) 0.0 (0.0, 0.0) 1 0.063

Hypoglycemic Events
Level 1 0 9 0 1 0.063
Level 2 0 6 0 1 0.25

Validation

Population Median
Glucose (mg/dl) 126.1 (122.3, 132.1) 119.5 (118.1, 121.8) 125.5 (122.0, 128.0) 0.004 0.002
Insulin/day 35.7 (27.8, 39.2) 37.9 (30.3, 40.4) 35.7 (27.9, 39.2) 0.004 0.002
Percentage of time
spent in... (mg/dl)

70-180 98.3 (94.3, 99.7) 99.8 (99.4, 99.9) 98.4 (94.4, 99.8) 0.008 0.014
>180 1.7 (0.3, 5.7) 0.1 (0.0, 0.3) 1.6 (0.2, 5.6) 0.008 0.002
>250 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 1
<70 0.0 (0.0, 0.0) 0.0 (0.0, 0.3) 0.0 (0.0, 0.0) 1 0.063

Hypoglycemic Events
Level 1 0 8 0 1 0.125
Level 2 0 7 0 1 0.5

Values reported as median (25th percentile, 75th percentile). ∗p value between missed meal boluses
and PHRA scenarios. †p value between announced and PHRA.
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and 7 level 2 events, for the announced meals strategy for large, medium and small sized meals

with medium absorption, respectively.

It can be seen in Table 5.13, 5.16, and 5.19 that slow meals are the most challenging to control

during the announced meals strategy for both the tuning and validation scenarios leading to

5 (4, 10)% and 4 (4, 12)%, 3 (2, 5)% and 3 (3, 3)%, and 1 (0, 1)% and 1 (0, 2)% of time <70 mgdl for

large, medium and small meals with slow absorption, respectively. During these slow absorption

meals, the tuning and validation scenarios for the announced meal strategy experienced 52 and

Table 5.19: Overall population outcomes of a 15-day simulation with small (15—40 grams) slow
absorption meals for three strategies in closed-loop control: missed meal boluses, announced
meals, and unannounced meals with a PHRA. There were 450 meals in total.

Missed Meal Boluses Announced PHRA p∗ p†

Tuning

Population Median
Glucose (mg/dl) 124.3 (123.0, 131.8) 119.5 (118.5, 123.7) 124.3 (123.0, 130.8) 0.049 0.002
Insulin/day 35.9 (28.0, 39.2) 37.9 (30.6, 40.5) 35.9 (28.0, 39.2) 0.02 0.002
Percentage of time
spent in... (mg/dl)

70-180 99.9 (96.6, 99.9) 99.4 (99.3, 99.7) 99.9 (96.6, 99.9) 0.5 0.625
>180 0.1 (0.1, 3.4) 0.0 (0.0, 0.1) 0.1 (0.1, 3.4) 0.5 0.008
>250 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 1
<70 0.0 (0.0, 0.0) 0.6 (0.2, 0.7) 0.0 (0.0, 0.0) 1 0.004

Hypoglycemic Events
Level 1 1 18 1 1 0.004
Level 2 0 10 0 1 0.031

Validation

Population Median
Glucose (mg/dl) 126.7 (124.5, 135.0) 120.7 (118.7, 125.6) 126.5 (124.3, 134.0) 0.004 0.002
Insulin/day 36.0 (28.1, 39.3) 38.2 (30.9, 40.5) 36.0 (28.2, 39.3) 0.002 0.002
Percentage of time
spent in... (mg/dl)

70-180 99.6 (96.6, 99.9) 98.9 (98.0, 99.6) 99.7 (96.7, 99.9) 0.063 0.375
>180 0.4 (0.1, 3.4) 0.2 (0.0, 0.2) 0.3 (0.1, 3.3) 0.063 0.008
>250 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 1
<70 0.0 (0.0, 0.0) 1.0 (0.4, 1.7) 0.0 (0.0, 0.0) 1 0.002

Hypoglycemic Events
Level 1 0 29 0 1 0.004
Level 2 0 20 0 1 0.031

Values reported as median (25th percentile, 75th percentile). ∗p value between missed meal boluses
and PHRA scenarios. †p value between announced meals and the PHRA.
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55, 40 and 42, and 18 and 29 level 1 hypoglycemic events and 125 and 116, 71 and 74, and 10

and 20 level 2 hypoglycemic events for large, medium and small meals, respectively.

For the PHRA, one level 1 and one level 2 hypoglycemic event occurred in the validation

for the large fast scenario and one level 1 hypoglycemic event occurred in the tuning for the

small slow scenario. All three of these events occurred due to insulin administration in the late

postprandial period leading to postprandial hypoglycemia.

A final test to the PHRA was performed using a typical day scenario described in Chapter

5.2.7. Table 5.20 shows the overall outcomes during CLC during missed meal boluses, announced

meals, and with the PHRA. For all of the ten subjects, there were 146 fast, 150 medium, and 154

slow absorption meals and 170 small and 280 medium sized meals. The median CHO amount was

46 grams, the 5th percentile was 23 grams, the 95th percentile was 69.5 grams, the minimum

was 20 grams, and the maximum was 74 grams.

Table 5.20: Meal related outcomes of a 15-day typical day simulation for three strategies in
closed-loop control: missed meal boluses, announced meals, and unannounced meals with a PHRA.
There were 450 meals in total.

Missed Meal Boluses Announced PHRA p∗ p†

Population Median
Glucose (mg/dl) 140.9 (131.3, 169.4) 121.4 (120.2, 127.5) 135.8 (128.0, 143.5) 0.002 0.002
Insulin/day 36.5 (28.7, 39.5) 41.3 (35.2, 44.6) 36.9 (30.7, 39.8) 0.002 0.002
Percentage of time
spent in... (mg/dl)

70-180 81.5 (56.4, 90.9) 96.7 (94.9, 98.4) 86.6 (73.6, 92.4) 0.002 0.002
>180 18.5 (9.1, 43.6) 1.7 (0.2, 4.2) 13.4 (7.6, 26.4) 0.002 0.002
>250 1.3 (0.0, 6.3) 0.0 (0.0, 0.0) 0.5 (0.0, 2.5) 0.031 0.031
<70 0.0 (0.0, 0.0) 1.1 (0.7, 1.6) 0.0 (0.0, 0.0) 1 0.004

Hypoglycemic Events
Level 1 1 28 1 1 0.004
Level 2 0 22 0 1 0.008

Values reported as median (25th percentile, 75th percentile). ∗p value between missed meal boluses
and PHRA scenarios. †p value between announced and PHRA.

The PHRA in this scenario is able to significantly improve outcomes without increasing the

number of hypoglycemic events when compared to missed meal boluses with a percentage of time

between 70–180 mg/dl of 87 (74, 92)% (p=0.002) and 13 (8, 26)% of time >180 mg/dl (p=0.002).

The percentage of time between 70–180 mg/dl is significantly greater and the percentage of time

>180 mg/dl is significantly lower for the announced meals strategy however, the percentage of

time <70% mg/dl is increased to 1 (1, 2)% (p=0.004) with 28 level 1 hypoglycemic events (p=0.004)

and 22 level 2 hypoglycemic events (p=0.008) over the 15-day period for the ten adult subjects.
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Table 5.21: Meal related outcomes of a 15-day typical day simulation for three strategies in
closed-loop control: missed meal boluses, announced meals, and unannounced meals with a PHRA.
There were 450 meals in total.

Missed Meal Boluses Announced PHRA p∗ p†

Meal Related Outcomesa

Preprandial Glucose (mg/dl) 124.2 (117.5, 131.8) 118.1 (113.6, 123.3) 121.0 (116.2, 124.5) 0.002 0.0137

Postprandial Peak (mg/dl) 189.0 (172.5, 211.8) 154.9 (148.8, 161.0) 184.5 (172.4, 202.4) 0.049 0.002

Postprandial Nadir (mg/dl) 116.2 (112.7, 124.0) 103.8 (96.9, 109.1) 113.5 (110.9, 120.9) 0.002 0.002

Meal Excursion (mg/dl) 55.1 (47.1, 62.2) 31.0 (26.8, 32.7) 55.6 (49.8, 67.4) 0.02 0.002

From meal start + 1 hour
Population Median

Glucose (mg/dl) 128.6 (123.8, 140.2) 120.3 (115.3, 126.1) 125.6 (122.4, 133.7) 0.002 0.002

Insulin/meal 82.3 (65.0, 94.6) 191.5 (155.9, 227.9) 89.2 (68.2, 98.6) 1 1

Percentage of time

spent in... (mg/dl)

70-180 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 1 1

>180 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 1

>250 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 1

<70 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 1

Hypoglycemic Events

Level 1 0 10 0 1 0.125

Level 2 0 20 0 1 0.016

1 hour after meal start + 1 hour
Population Median

Glucose (mg/dl) 170.1 (157.5, 179.0) 123.7 (113.8, 127.4) 163.7 (156.2, 176.0) 0.002 0.002

Insulin/meal 74.6 (59.0, 80.4) 18.6 (11.3, 27.0) 79.5 (66.4, 91.3) 1 1

Percentage of time

spent in... (mg/dl)

70-180 94.2 (50.0, 100.0) 100.0 (100.0, 100.0) 100.0 (65.4, 100.0) 0.031 0.125

>180 5.8 (0.0, 50.0) 0.0 (0.0, 0.0) 0.0 (0.0, 34.6) 0.031 0.125

>250 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 1

<70 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 1

Hypoglycemic Events

Level 1 0 0 0 1 1

Level 2 0 0 0 1 1

Values reported as median (25th percentile, 75th percentile). ∗p value between missed meal boluses
and PHRA scenarios. †p value between announced and PHRA. a Meal related outcomes are calculated
during a postprandial period of 5 hr.
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The meal related outcomes of the typical day are shown in Table 5.21. This table shows that

the PHRA is able to significantly improve outcomes compared to missed meal boluses with a

postprandial peak of 185 (172, 202) mg/dl (p=0.049), a postprandial nadir of 114 (111, 121) mg/dl

(p=0.002), and a meal excursion of 56 (50, 67) mg/dl (p=0.002). During the announced strategy

10 level l (p=0.125) and 20 level 2 (p=0.016) hypoglycemic events occurred from the start of the

meals to one hour after the commencement of exercise. From one hour after the start of a meal to

two hours after the start of the meal the PHRA is able to significantly improve outcomes when

compared to missed meal boluses and the outcomes achieved are not statistically different from

that of the announced strategy. The PHRA achieved a percentage of time between 70–180 mg/dl

of 100 (65, 100)% (p=0.031 (missed meal bolus) vs. p=0.0125 (announced)) and a percentage of

time >180 mg/dl of 0 (0, 35)% (p=0.031 (missed meal bolus) vs. p=0.125 (announced)).

5.2.9 Discussion

In this study, a PHRA that detects a meal and triggers postprandial hyperglycemia mitigation

actions was implemented into an existing closed-loop controller and tested in silico on ten adult

subjects using the T1D Simulator in realistic and challenging scenarios. The PHRA used three

refined tunings based on the methodology found in Chapter 5.1. One difficulty that can be

expected to be encountered when applying this methodology in real life is finding the minimum

and maximum values required for the scaling of data prior to finding the cross-covariance between

Ddi f f and G(t). This will require the acquisition of rich data that represents frequent activities

that the subject participates in such as eating out, exercising, etc. Additional data are necessary

for the tuning of the PHRA for meal detection as data with a variety of meals without meal

boluses are required to adequately tune the PHRA following the methodology used. Therefore,

further research on the tuning of the PHRA is required.

Using the data available with different meal types, a methodology was devised to identify

rapidly appearing meals using two meal detection tunings, one with a high sensitivity and the

other with a low amount of FP. The idea behind this technique is that if the meal is rapidly

appearing both detections will be triggered at the same time, i.e., there is a large and rapid

disturbance in BG. Although this is an imperfect system for identifying the Ra, it gives the

controller insight into meal dynamics and allows actions to be modified accordingly.

A methodology to estimate CHO quantity of a detected meal was also developed using the area

under the curve of D, a tunable gain, and the Ra. This technique uses these parameters as indi-

cators of the quantity of CHO ingested. However, the spread of the CHO estimation error is quite

large. The estimation error for Detection 1 and Detection 2 were -19 ± 63% (-17 ± 48 grams CHO)

and -27 ± 59% (-22 ± 49 grams CHO) for the tuning set and -19 ± 63% (-18 ± 48 grams CHO)

and -25 ± 62% (-22 ± 50 grams CHO) for the validation set (mean ± standard deviation). These

estimations are larger than those found in human estimates of ∼21–40% overestimation and

∼12–21% underestimation [30, 136, 137].
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Samadi et al. [174] developed a CHO estimation algorithm that determines a distributed

approximation of CHO content of an unannounced meal when the slope of the measured BG

is positive without satisfaction of a safety criteria that causes the estimation of CHO to be

paused. The estimation error achieved using this methodology is -1.7 ± 28.1 grams CHO. Lee

and Bequette [5] estimated the CHO of a detected meal using continuous observations of the first

and second derivative of glucose to produce series of meal impulses when a set of conditions are

satisfied. These meal impulses are converted into grams of CHO by a scaling factor that can be

different for each individual and obtained an estimated error of -0.75 ± 9.3 grams CHO. Based on

the estimated CHO by other studies the results achieved in this study are poorer in comparison

and therefore limited in its ability to aid to meal bolusing.

The aim of the PHRA is to improve glycemic outcomes without increasing the number of

hypoglycemic events; unlike several clinical trials [14, 15] where rescue CHO were required due

to hypoglycemia caused by meal detection algorithms. Also, contrary to the preliminary tuning

of the meal detection algorithm in Chapter 5.1, the PHRA was active at all times to account for

those who practice non-standard schedules such as night shift workers. The PHRA utilized a

mechanism to increase the IOBmax, which was triggered at each meal detection and remained

active until the derivative of BG over three time samples was no longer positive. This type of

disturbance rejection adds safety to the system during a FP where the amount of insulin delivered

will only increase if it is necessary. The estimation of Ra and CHO were not utilized for bolus

suggestions as it was found that bolusing after the consumption of meal increased the likelihood

of hypoglycemia.

Cameron et al. [7] developed a meal detection and estimation of total glucose appearance

using an evolving probabilistic method by first comparing the CGM signal to no-meal predictions

made by a simple insulin-glucose model, then it fits residuals to potential, assumed meal shapes,

finally, it compared and combines these fits to detect any meals and estimate the meal total

glucose appearance, shape, and total glucose appearance uncertainty. This algorithm was tested

in silico in a 36-hour simulation with 100 subjects with meals of 40 (breakfast 7:00h), 50 (lunch

12:00h), 20 (snack 16:00h), and 60 (dinner 18:00h) grams of CHO. The results obtained with

disturbance rejection and meal detection were a mean BG of 132 mg/dl, 0% of time <50 mg/dl,

11% of time >180 mg/dl, and 89% of time between 70–180 mg/dl. This scenario most resembles

the typical day scenario where our algorithm obtained similar results with a population median

BG of 136 mg/dl, 0% of time <70 mg/dl, 13% of time >180 mg/dl, and 87% of time between

70–180 mg/dl.

Lee and Bequette [5] used the same simulation to test their unannounced meals algorithm as

the one described in Cameron et al. [7], however, the dinner time meal was 80 grams of CHO. The

results obtained with disturbance rejection with meal detection in adult subjects were a mean

BG of 132 mg/dl, 0.5% of time <70 mg/dl, and 90% of time between 70-180 mg/dl. These results

are also similar to our results.
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During slow absorption meals the PHRA is safer than the announced meals strategy which

results in many hypoglycemic events. Hypoglycemia in the announced meals strategy due to slow

absorption meals, occurs because this strategy is not prepared for this type of meal and results in

an increased risk of hypoglycemia. Therefore, other techniques of bolusing for announced meals

are required for slow absorption meals as noted by Slattery et al. [132]. The PHRA is able to

significantly reduce the number of level 1 and level 2 hypoglycemia events, increasing patient

safety during meals of slower absorption rates.

Fast absorption meals are difficult for the PHRA to control and the time between 70–180 mg/dl

for the announced meals strategy is higher for all meal sizes. However, meals consumed are

generally mixed and contain both fat and protein, which slow down absorption [35]. Meals

with a CHO content >80 grams also prove to be challenging in all three cases of missed meal

boluses, announced meals, and unannounced meals with the PHRA. The announced meals

strategy obtained the highest amount of time between 70–180 mg/dl, however, resulted in many

hypoglycemic events. The PHRA obtained significantly better results than the missed meal

boluses case; however, this type of meal poses a challenge to the system and is a limitation of

the PHRA. This is in part due to the delay in meal detection and also in part due to the delay of

subcutaneously delivered insulin.

Due to the delay of insulin action, the development of a PHRA is necessary to handle meals

that have not been announced to the controller and that no premeal bolus has been given. If

there were no delay in insulin action, this would not be necessary as the majority of meals

could be handled by the feedback response of the controller to rising BG levels. Additionally,

the delay in the insulin action means that the PHRA is unable to prevent early postprandial

hyperglycemia, which will continue to be a persistent problem with unannounced meals until

improved fast-acting insulin formulations are available.

5.3 Summary

In this study, a PHRA that detects meals, determines its Ra, estimates CHO quantity, and triggers

postprandial hyperglycemia mitigation actions was implemented into an existing closed-loop

controller and tested in silico using the T1D Simulator in several scenarios. The meal detection

algorithm was tuned empirically according to patient population outcomes and is more sensitive

to large and fast absorption meals, which it can detect in a relatively short period of time with

little change to BG. After meal detection, the PHRA allows the IOBmax to increase to allow

additional insulin administration. The PHRA outperforms a CLC controller with missed meal

boluses in all scenarios tested and is typically able to reduce severe hyperglycemia (>250mg/dl)

without increasing the likelihood of a hypoglycemic event. The PHRA is still unable to prevent

hyperglycemia during fast absorption and large meals due to the delays in meal detection and

insulin action.
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6
UNANNOUNCED AEROBIC EXERCISE DETECTION AND

POSTEXERCISE GLYCEMIC CONTROL

C losed-loop control systems intended for BG control in people with T1D, i.e. AP systems,

lack exercise-induced hypoglycemia prevention strategies. Current hybrid CLC systems

suggest that patients temporarily raise their target glucose to 150 mg/dl from 120 mg/dl

before aerobic exercise. However, this recommendation has been found insufficient in preventing

hypoglycemia due to aerobic exercise [175]. Additional recommendations include ingesting CHO

before and during prolonged exercise and lowering basal insulin levels before the commencement

of exercise [34]. However, these recommendations are not realistic as they require the patient

to concurrently calculate CHO and control basal insulin levels prior to exercise. Additionally,

anaerobic exercise, which produces a paradoxical increase in BG, is not considered in this scheme.

The objective of this work was to build an exercise-induced hypoglycemia reduction algorithm

(EHRA) that detects exercise without the use of additional physiological signals and triggers

automatic disturbance rejection actions that safely and effectively reduce hypoglycemia induced

by aerobic exercise. Therefore, we hypothesize that the proposed EHRA provides sufficient

sensitivity and reliability to be used safely and effectively within an AP system.
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6.1 Diabetes Simulation Scenario

The T1D Simulator (see Chapter 3.2) coupled with an exercise model described in Bertachi et al.

[160] was used to build a 15-day scenario with ten adult subjects. Additionally, the effect of fast

absorption rescue CHO on glucose was added to the simulator using a two-compartment model

[166]:
Ġp(t)= −Gp(t)

τmax
+uCHO(t) · Ag (6.1)

Ġ t(t)=
Gp(t)−G t(t)

τmax
(6.2)

uG = G t(t)
τmax

(6.3)

where uG is the glucose absorption rate into the plasma, Ag is the CHO bioavailability, τmax is

the time-to-maximum glucose absorption set to 20 minutes for fast absorption CHO.

The scenario included eight exercise sessions with a duration of 50 minutes at 60% VO2max

distributed on days 1, 3, 5, 7, 9, 11, 13, and 15 at 7:00h, 14:00h, 20:00h, 10:00h, 7:00h, 18:00h,

23:00h, and 12:00h, respectively. There were three meals per day with varying CHO content

following a normal distribution with mean 30 grams at 8:30h (breakfast), 60 grams at 13:00h

(lunch), and 50 grams at 19:00h (dinner). The coefficient of variation for the meal size was ±20%.

For each meal, a meal absorption profile was randomly selected from a meal library of eleven

meals. Meal absorption rate and subcutaneous insulin absorption rate were varied at each meal

according to a uniform distribution of ±10% and ±30%, respectively. Circadian insulin sensitivity

variation (sinusoidal type with 24-hour period [162]) was implemented with random amplitude

according to a uniform distribution of ±30% and random phase. Finally, CGM error was according

to the default model in the T1D simulator.

6.2 Exercise Detection Algorithm

The EHRA presented in this thesis was tested in silico on a 15-day scenario with eight exercise

sessions on alternating days. The algorithm collects glucose and insulin infusion rate values and

computes a disturbance parameter, D(t), from an augmented minimal model using an UKF (see

Chapter 4). A patient-specific threshold, kTH was determined using the minimum D(t) value

found in an in silico 15-day, well-controlled, closed-loop scenario without exercise. This threshold

was used to detect aerobic exercise and in turn trigger disturbance rejection actions that aim to

reduce the risk of exercise-induced hypoglycemia. Exercise is detected if the threshold is crossed

and more than 60 minutes have elapsed since the last detection (Figure 6.1).
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Start
Estimate

States
Using UKF

Disturbance
Threshold
Crossed?

> 60 Min Since
Last Detection?

Exercise
Detected

yes yes

no no

Figure 6.1: Flow Chart of Exercise Detection Algorithm. First the states of a minimal model are
estimated using an UKF. A threshold is applied to the UKF estimated disturbance parameter,
once crossed and there has not been a detection for at least 60 min, exercise is detected.

6.2.1 Performance Metrics

Seven performance metrics were used. Sensitivity, TP, FP, FN, FP/day, detection time, and ∆

glucose. TN and specificity cannot be determined in this framework due to the fact that one TP can

span multiple time points depending on exercise duration; however, a TN can be counted at each

time sample when a negative occurrence is correctly identified. This skews the specificity to the

higher end of the spectrum. Therefore, sensitivity and FP were used as measures of performance.

Sensitivity measures the percentage of positive results that are correctly identified. Correct

detection (a TP) is when the algorithm has detected an exercise session from the beginning of

exercise to 480 minutes after the time of the commencement of exercise. A FP is when detection is

positive without the occurrence of exercise. Negative detection or a FN is when an exercise session

has not been detected up to 480 minutes after commencement. FP/day values are included for

easy comparison between studies. Detection time reflects the time at which a TP is detected with

respect to exercise time and ∆ glucose reflects the change in glucose from the start of exercise to

the time when exercise was detected. All values are reported as mean ± standard deviation and

median (5th percentile, 95th percentile).

6.2.2 Results

The exercise detection algorithm threshold, kTH was obtained using the lowest estimated D(t)

value for each patient in a 15-day in silico simulation with no exercise. The scenario is the same

as the scenario described in Section 6.1 with the exclusion of exercise. The overall, daytime,

and nighttime outcomes were reported as median glucose, percentage of time spent between

70–180 mg/dl, >180 mg/dl, <70 mg/dl, <54 mg/dl, and hypoglycemic events separated between

level 1 and level 2 are shown in Table 6.1. This is a well-controlled simulation with no time

below 70 or 54 mg/dl and with 1 level 1 hypoglycemic event. No nocturnal hypoglycemia was

experienced. Daytime outcomes reveal 8 (5, 9)% of time above 180 mg/dl due to meals.

The exercise detection algorithm was tested in a 15-day in silico scenario with eight exercise
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Table 6.1: Outcomes of a 15-day in silico simulation with no exercise.

Median Glucose Percentage of time spent in (mg/dl) Hypoglycemic Events
(mg/dl) <54 <70 70-180 >180 Level 1 Level 2

Overall Outcomes

131.4 (128.2, 136.4) 0 (0, 0) 0 (0, 0) 94.5 (93.4, 96.5) 5.5 (3.5, 6.6) 1 0

Daytime Outcomes

138.9 (136.4, 145.6) 0 (0, 0) 0 (0, 0) 92.5 (90.6, 95) 7.5 (5, 9.4) 1 0

Nighttime Outcomes

100 (99.1, 100) 0 (0, 0) 0 (0, 0) 100 (99.1, 100) 0 (0, 0.9) 0 0

Values reported as median (25th percentile, 75th percentile).

sessions at 60% VO2max on alternating days. The intensity of exercise in the scenario described in

Section 6.1 was then decreased and increased by 25% to test the exercise detection algorithm and

exercise-induced hypoglycemia mitigation strategies for robustness. The population performance

metrics can be found in Table 6.2. The exercise detection algorithm for the nominal intensity

(60% VO2max) was able to detect all 80 sessions. The ∆ glucose had a mean drop of 54 ± 22 mg/dl

and median drop of 52 (24, 89) mg/dl. The time to detection was mean 41 ± 10 minutes and

median 40 (30, 63) minutes. The number of FP were mean 2 ± 2 and median 2 (0, 6) with a

FP/day of mean of 0.2 ± 0.4 and median 0 (0, 1). There were no FN occurrences. Compared to

the nominal intensity (60% VO2max) the exercise detection metrics with the intensity decreased

by 25% had a lower sensitivity, FP, FP/day and a higher detection time and FN. The ∆ glucose

had a negligible change. Compared to the nominal intensity (60% VO2max) the exercise detection

metrics with the intensity increased by 25% had the same sensitivity and FN, a lower detection

time, FP, and FP/day, and a higher ∆ glucose.

Table 6.2: Population performance metrics of exercise detection algorithm in 15-day scenario
with a total of eight exercise sessions per patient with a nominal (60% VO2max), decreased by
25% and increased by 25% intensity.

Sensitivity
(%)

∆ Glucose
(mg/dl)

Detection
Time (min) TP FP FN FP/day

Nominal Exercise Intensity (60% VO2max)
Mean 100 ± 0 53.7 ± 21.8 41.1 ± 9.7 8 ± 0 0.7 ± 0.7 0 ± 0 0.0 ± 0.0

Median 100 (100, 100) 52 (23.7, 89.4) 40 (30, 62.5) 8 (8, 8) 1 (0, 2) 0 (0, 0) 0 (0, 0.1)

Exercise Intensity Decreased by 25%
Mean 96.3 ± 6.0 53.6 ± 22.3 50.5 ± 20 7.7 ± 0.5 0.6 ± 0.7 0.3 ± 0.5 0.0 ± 0.0

Median 100 (87.5, 100) 51.6 (24.0, 90.4) 45 (31.8, 73.3) 8 (7, 8) 0.5 (0, 2) 0 (0, 1) 0 (0, 0.1)

Exercise Intensity Increased by 25%
Mean 100 ± 0 55.0 ± 21.0 37.3 ± 7.7 8 ± 0 0.6 ± 0.7 0 ± 0 0.0 ± 0.0

Median 100 (100, 100) 55.6 (27.1, 94.3) 35 (25, 52.5) 8 (8, 8) 0.5 (0, 2) 0 (0, 0) 0 (0, 0.1)

Values reported as mean ± standard deviation and median (5th percentile, 95th percentile).
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Figure 6.2 illustrates the cumulative detection rates over change in ∆ glucose drop and time

from the onset of exercise for the three intensities of exercise and demonstrates that the detection

algorithm is increases in the detection rate as the drop in BG increases across all three intensities

of exercise.
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Figure 6.2: Cumulative detection rates over change in ∆ glucose and time from the start of
exercise for the EHRA for nominal (60% VO2max), -25%, and +25% intensities of exercise.

6.3 Postexercise Glucose Control

6.3.1 The Exercise-Induced Hypoglycemia Reduction Algorithm

The closed-loop controller previously described in Chapter 3 has been modified to include an

exercise rejection loop as seen in Figure 6.3. The middle loop is the exercise rejection loop that

comprises of the EHRA that uses an UKF to estimate the disturbance parameter, D, which is

used to detect exercise and apply exercise-induced hypoglycemia mitigation actions.

The exercise rejection loop applies heuristic actions to the closed-loop controller only when

exercise is detected and escape conditions are not met. If at any point the escape conditions are

met, all three disturbance rejection actions (described below) are removed. The escape conditions,

which are checked once exercise has been detected, are defined as:

escape =



true if G(k)> 120∧ Ġ(k)> 0,

∨ (G(k)> 90∧ Ġ(k)> 1),

∨ (Ġ(k)> 0∧uIFB(k)> 0),

∨ (Ġ( j)> 1.5∧uIFB( j)> 0),

f alse otherwise.

∀k ∈ (t−2, ..., t)

∀k ∈ (t−2, ..., t)

∀k ∈ (t−2, ..., t)

∀ j ∈ (t−1, t)

(6.4)

where k and j represent multiple time points for a given sampling time, t, G(t) is represented in

mg/dl, Ġ(t) is the derivative of glucose in mg/dl/min and uIFB is the delivered insulin.
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Figure 6.3: Closed-loop controller composed of an inner control loop that contains a PD controller
with IFB designed to drive the measured glucose value (G) to a target value (Gr), a top outer
loop that acts as a safety supervisory loop and uses SMRC to modulate Gr to Gr f based on the
estimated IOB, and a top inner loop that uses an UKF to estimate the disturbance parameter, D
that is then introduced into an EHRA, which when activated applies disturbance rejection actions
to reduce exercise-induced hypoglycemia by modifying IOBmax, ubasal, ubolus, and suggesting
carbohydrates, uCHO.

Three disturbance rejection actions adapted from Bertachi et al. [160] are applied when

exercise is detected:

1. Basal insulin (ubasal) is reduced to zero and kIOB is reduced to 0.85

2. The following meal insulin bolus (ubolus) is reduced by 30%

3. A specified amount of CHO is suggested to the patient

where kIOB is defined as a gain that regulates the amplitude of the upper limit of the IOB

(IOBmax(t)). The time-variant IOBmax(t) is computed as follows:

IOBmax(t)= kIOB
2ubasal(t)
60kDI A

(6.5)

where kDI A is a tuned gain for the duration of insulin action (DIA) [162]. At exercise detection,

the first action is applied for 60 minutes and then these values are linearly returned to their

nominal values over a period of 120 min. The CHO suggestion is calculated at the moment of
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detection as follows:

uCHO(t)= Gex −G(t)
kCHO

· D(t)
kTH

kFF (6.6)

where Gex is the maximum desired BG level during exercise (mg/dl), kCHO is a insulin-to-

carbohydrate correction factor, kTH is the threshold of the EHRA, and kFF (t) is a tunable gain

that decreases by 50% if there is a second exercise detection within eight hours of the previous

one and D(t) is less than D(t∗) (D at the previous detection). This second detection is considered

to be of the same exercise session and accounts for late-onset postexercise hypoglycemia [176].

uCHO is rounded to the nearest 5.

The carbohydrates-on-board (COB) or COB(t) is then estimated using a two-compartment

chain [166]: �COB(t)= 1−
∫ t

t∗+1

uCHO(t∗+1)Agτe−
τ

τmax

τmax2 dτ
/

AguCHO(t∗+1) (6.7)

where t∗+1 is the time instant of CHO consumption (assumed to be one time sample after

detection). The COB estimation can be approximated using a discrete FIR filter as follows:

�COB(k)=
N∑

i=1
δiuCHO(k− i+1) (6.8)

where �COB(k) is the percentage of active CHO at time instant, k. δi are the FIR parameters

that model the absorption of the consumed CHO that have yet to appear in the plasma and can

be identified for individual patients using the BG response in basal conditions of the desired

fasting-acting CHO, i.e. glucose gels or tablets. The calculated �COB(t) is used to prevent controller

overcorrection by inhibiting the insulin action:

uIFB(t)= uAP −γ(Îp(t)− Î∗p(t))−β�COB(t) (6.9)

where Îp(t) (estimated plasma insulin concentration), Î∗p(t) (estimated basal plasma insulin

concentration at steady-state), and γ (IFB gain [177]) are parameters belonging to the IFB

component. β is an adjustable carbohydrate-to-insulin inhibition gain. The controller parameters

for the EHRA can be found in Table 6.3.

Table 6.3: EHRA Controller parameter values.

Symbol Quantity Value Units
Gex Maximum desired glucose level during exercise 250 mg/dl

kCHO Carbohydrates correction factor 2.7 unitless
kTH Threshold of the exercise detection algorithm patient specific unitless
kFF Gain on carbohydrate estimation 0.6 unitless
Ag Carbohydrate bioavailability 0.9 unitless
τmax Time-to-maximum glucose absorption 20 min
β Carbohydrate-to-insulin gain 0.5 g/U
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6.3.2 Performance Metrics

Glucose values are measured as median glucose (median of the median value for each subject),

percentage of time between 70-180 mg/dl, >180 mg/dl, <70 mg/dl and <54 mg/dl. The number of

hypoglycemic events are categorized as either a level 1 or level 2 event defined as BG <70 mg/dl

and ≥54 mg/dl and BG <54 mg/dl, respectively [65]. A hypoglycemic event requires a minimum

duration of 15 minutes below/within threshold, with a separation of at least 30 minutes [173]. All

values are reported as median (25th percentile, 75th percentile). The Wilcoxon signed-rank test

was used to obtain p values where a p value of <0.05 is considered significant. The percentage

of time between 70-180 mg/dl, <70 mg/dl and <54 mg/dl are used as measures of performance,

where higher values are desirable for the percentage of time between 70-180 mg/dl and lower

values are desirable for the percentage of time <70 mg/dl and <54 mg/dl.

6.3.3 Insulin-Only Closed-Loop Strategy with Unannounced Exercise

The unannounced exercise strategy is tested in the same scenario described in Chapter 6.1, how-

ever, exercise is not unannounced and no strategy is used to avoid exercise-induced hypoglycemia.

This strategy includes rescue CHO when the patient’s BG drops below 70 mg/dl. The patient

ingests 15 grams of fast absorption CHO if their BG level is <70 mg/dl, waits 20 minutes and if

BG is still <70 mg/dl, they consume another 15 grams of CHO. This process repeats until BG is

>70 mg/dl. Rescue CHO are consumed exercise is ongoing.

6.3.4 Insulin-Only Closed-Loop Strategy with Announced Exercise

The announced exercise strategy is tested in the same scenario described in Chapter 6.1, how-

ever, exercise is announced. This strategy has been previously published [160] and follows the

consensus recommendations for conventional insulin therapy [34]. The strategy involves the

patient ingesting a controller-calculated amount of CHO 20 minutes before the commencement

of exercise. The absorption profile for these CHO is randomly selected from a meal library of 31

fast absorption meals. This type of CHO is tailored to resemble a snack such as a sandwich or

fruit. The controller also makes adjustments to the kIOB, ubasal , τd (PD gain tuned based on

individual insulin requirements), and ω+ (amplitude of discontinuous change in glucose set-point

by SMRC loop [178]), as well as reducing the insulin bolus by 50% and omiting any correction

bolus for the next meal.

78



6.3. POSTEXERCISE GLUCOSE CONTROL

6.3.5 Results

Three insulin-only closed-loop control strategies of unannounced exercise, announced exercise,

and unannounced exercise with the EHRA were tested using the scenario described in Chapter

6.1. Tables 6.4 and 6.5 show the overall outcomes and exercise related outcomes during CLC for

the three control strategies. The data show that the EHRA is able to outperform the unannounced

strategies, this is primarily shown in the number of level 1 and level 2 hypoglycemic events

and the percentage of time <70 mg/dl and <54 mg/dl. The EHRA is able to prevent severe

hypoglycemia and therefore there are no level 2 hypoglycemic events. Between the announced

strategy and the EHRA, there was only a significant difference in the percentage of time <70 mg/dl

(p=0.006). The difference between the strategies is even more stark when compared for the two

hours after the start of exercise. Here we can see that the drop in glucose is decreased by

∼21 mg/dl (p=0.002) and the percentage of time <70 mg/dl is reduced from 28% to 1% (p=0.002)

when comparing the unannounced exercise strategy with the EHRA. Additionally, the percentage

of time >180 mg/dl is reduced from 3% to 0% when comparing the announced exercise strategy

with the EHRA (p=0.063). The results from two hours after the start of exercise to six hours after

the start of exercise show how the lasting effects of aerobic exercise affect BG control. Here we

can see similar performance for both the announced strategy and the EHRA, with both strategies

able to prevent all level 2 hypoglycemic events with 0% of time <54 mg/dl (p=1).

Table 6.4: Overall population outcomes of a 15-day simulation for three strategies in closed-loop
control: unannounced exercise, announced exercise, and unannounced exercise with an EHRA.
There were 80 exercise sessions in total.

Unannounced Announced EHRA p∗ p†

Overall Outcomes
Population Median
Glucose (mg/dl) 119.6 (118.7, 124.5) 126.4 (122.4, 129.0) 125.1 (120.7, 130.4) 0.002 0.375
CHO/day (g/day) 27.9 (22.5, 39.6) 31.1 (28.6, 32.9) 33.4 (28.9, 37.1) 0.109 0.232
Percentage of time
spent in... (mg/dl)

70–180 93.8 (93.2, 95.9) 93.8 (91.7, 95.0) 93.6 (90.8, 93.9) 0.084 0.492
>180 4.2 (2.0, 4.6) 5.9 (4.5, 7.8) 6.4 (6.0, 8.7) 0.002 0.432
<70 1.9 (1.5, 2.8) 0.4 (0.2, 0.6) 0.1 (0.0, 0.1) 0.002 0.006
<54 0.2 (0.1, 0.5) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.004 0.25

Hypoglycemic Events
Level 1 118 15 6 0.002 0.117
Level 2 24 2 0 0.008 0.5

Values reported as mean ± standard deviation and median (25th percentile, 75th percentile).∗p value
between unannounced and EHRA scenarios. †p value between announced and EHRA.
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Table 6.5: Exercise related outcomes of a 15-day simulation for three strategies in closed-loop
control: unannounced exercise, announced exercise, and unannounced exercise with an EHRA.
There were 80 exercise sessions in total.

Unannounced Announced EHRA p∗ p†

BG at exercise start (mg/dl) 136.9 (132.6, 148.0) 151.2 (145.0, 158.8) 137.2 (132.8, 148.0) 1 0.002
Pre-exercise CHO/session
(g/session) 0.0 (0.0, 0.0) 45.0 (37.5, 47.5) 0.0 (0.0, 0.0) 1 0.002

From exercise start + 2 hours
Population Median
Glucose (mg/dl) 91.6 (84.8, 94.7) 125.1 (122.1, 132.3) 113.5 (111.6, 119.6) 0.002 0.004
BG drop (mg/dl) 82.7 (77.5, 93.6) 62.9 (57.2, 73.0) 62.0 (58.4, 63.9) 0.002 0.92
CHO/session (g/session) 30.0 (30.0, 30.0) 0.0 (0.0, 0.0) 45.0 (42.5, 45.0) 0.004 0.002
Percentage of time
spent in... (mg/dl)

70–180 71.0 (66.0, 78.0) 93.0 (90.0, 100.0) 100.0 (98.0, 100.0) 0.002 0.102
>180 0.0 (0.0, 0.0) 3.0 (0.0, 10.0) 0.0 (0.0, 0.0) 1 0.063
<70 28.0 (22.0, 32.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.002 1
<54 0.0 (0.0, 12.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.25 1

Hypoglycemic Events
Level 1 52 6 5 0.004 0.594
Level 2 23 1 0 0.008 1

2 hours after exercise start + 4 hours
Population Median
Glucose (mg/dl) 92.8 (87.7, 97.5) 126.7 (119.4, 135.1) 114.7 (112.0, 120.1) 0.002 0.002
CHO/session (g/session) 15.0 (0.0, 22.5) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.125 0.5
Percentage of time
spent in... (mg/dl)

70–180 92.9 (88.8, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 0.016 0.5
>180 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 1
<70 7.1 (0.0, 11.2) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.016 1
<54 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1 1

Hypoglycemic Events
Level 1 58 7 1 0.002 0.063
Level 2 1 0 0 1 1

Values reported as mean ± standard deviation and median (25th percentile, 75th percentile).∗p value
between unannounced and EHRA scenarios. †p value between announced and EHRA.

Figure 6.4 shows an aggregated plot of the CGM readings, insulin delivery, and delivered

CHO for all 80 exercise sessions (eight sessions per patient). Exercise commenced at hour zero

for a duration of 50 minutes. The improvement in BG control one hour before exercise and six

hours after exercise for the EHRA can be visualized in this plot, which shows a lower prevalence

in median (25th percentile, 75th percentile) glucose values above 180 mg/dl and below 70 mg/dl
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when compared to the unannounced and announced exercise strategies. Additionally, it can be

seen that during the unannounced exercise strategy the controller overcorrects for consumed

rescue CHO resulting in unnecessary insulin delivery.
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Figure 6.4: Aggregated population CGM readings (mg/dl), insulin delivery (U/min), and carbo-
hydrates delivery (grams) for 80 exercise sessions for the unannounced, announced and EHRA
control strategies. Exercise commenced at hour 0 for a duration of 50 min. Graph reported as
median (bold lines), 25th percentile and 75th percentile (lightly shaded area), hypoglycemia
threshold of 70 mg/dl (dotted lower line), and hyperglycemia threshold of 180 mg/dl (dotted upper
line).

The intensity of exercise in the scenario previously described was decreased and increased by

25% from the nominal value of 60% VO2max to test the EHRA for robustness. Table 6.6 shows

the overall outcomes for the three control with the exercise intensity decreased and increased by

25%. Here we can see the ability of the EHRA to respond to different exercise intensities as the

amount of CHO/day is increased from 29 to 41 g/day from -25% intensity to +25% intensity. While

the announced exercise strategy performs well with -25% intensity with no significant difference

in the number of hypoglycemic events when compared to the EHRA (p=1), it performs poorly with

+25% intensity. The announced exercise strategy produces seven level 2 hypoglycemic events

compared to the EHRA, which is able to avoid all level 2 hypoglycemic events (p=0.031).

The overall outcomes for the EHRA for all three intensities of aerobic exercise (see Tables
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Table 6.6: Overall population outcomes of a 15-day simulation with exercise intensity decreased
and increased by 25% for three strategies in closed-loop control: unannounced exercise, announced
exercise, and unannounced exercise with an EHRA. There were 80 sessions of exercise in total.

Unannounced Announced EHRA p∗ p†

Exercise Intensity Decreased by 25%
Population Median
Glucose (mg/dl) 120.6 (119.3, 124.9) 129.2 (124.1, 132.6) 126.0 (123.0, 132.8) 0.002 0.16
CHO/day (g/day) 21.4 (13.9, 27.9) 31.1 (28.6, 32.9) 28.8 (26.4, 34.6) 0.004 0.951
Percentage of time
spent in... (mg/dl)

70–180 94.5 (93.8, 96.5) 92.7 (89.2, 93.9) 93.4 (91.0, 94.3) 0.014 0.412
>180 4.3 (2.0, 4.6) 7.3 (5.9, 10.8) 6.6 (5.7, 9.0) 0.002 0.557
<70 1.4 (0.9, 1.9) 0.0 (0.0, 0.1) 0.0 (0.0, 0.0) 0.002 0.25
<54 0.0 (0.0, 0.1) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.063 1

Hypoglycemic Events
Level 1 97 3 2 0.002 1
Level 2 7 1 0 0.125 1

Exercise Intensity Increased by 25%
Population Median
Glucose (mg/dl) 119.1 (118.5, 124.7) 124.1 (121.5, 128.0) 124.8 (121.5, 130.4) 0.002 0.131
CHO/day (g/day) 34.8 (27.9, 46.1) 31.1 (28.6, 32.9) 41.3 (40.4, 48.9) 0.008 0.002
Percentage of time
spent in... (mg/dl)

70–180 93.6 (92.6, 95.4) 93.6 (91.0, 95.3) 92.0 (90.9, 92.7) 0.01 0.02
>180 4.2 (2.0, 4.6) 5.6 (3.9, 7.6) 7.6 (7.1, 9.1) 0.002 0.004
<70 2.4 (1.9, 3.4) 0.7 (0.2, 1.4) 0.1 (0.0, 0.2) 0.002 0.006
<54 0.3 (0.2, 0.8) 0.1 (0.0, 0.2) 0.0 (0.0, 0.0) 0.002 0.031

Hypoglycemic Events
Level 1 133 25 13 0.002 0.094
Level 2 36 7 0 0.002 0.031

Values reported as mean ± standard deviation and median (25th percentile, 75th percentile).∗p value
between unannounced and EHRA scenarios. †p value between announced and EHRA.

6.4 and 6.6) show no significant difference in the percentage of time between 70–180 mg/dl with

p=0.625 (nominal vs. -25%), p=0.064 (nominal vs. +25%), and p=0.416 (-25% vs. +25%). There

was also no significant difference in the percentage of time <54 mg/dl with p=1 for nominal vs.

-25%, nominal vs. +25%, and -25% vs. +25%. However, there was a significant difference in the

percentage of time <70 mg/dl with p=0.031 (nominal vs. -25%), p=0.016 (nominal vs. +25%), and

p=0.008 (-25% vs. +25%). Although with greater intensities of exercise there is an increase in the

amount of hypoglycemia experienced as seen in the percentage of time <70 mg/dl, the EHRA is

able to prevent severe hypoglycemia (BG <54 mg/dl) for all intensities of exercise tested, thereby
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increasing the level of safety to the patient.

The EHRA was then tested when the patient decides not to comply with the suggested

CHO consumption and instead consume rescue CHO only when BG is <70 mg/dl similar to the

unannounced case (Chapter 6.3.3). Table 6.7 are the results during the three intensities with the

intensity decreased by 25%, the nominal intensity of 60% VO2max, and the intensity increased

by 25%. Here we can see that when compared to unannounced exercise, although the amount

of level 1 hypoglycemic events are reduced from 97 to 67, 118 to 59, and 133 to 52 for the three

different intensities, the amount of the level 2 hypoglycemic events have not been markedly

reduced from 7 to 6, 24 to 22, and 36 to 34.

Table 6.7: Overall population outcomes of a 15-day simulation with exercise intensity decreased
by 25% (-25%), for the nominal intensity of 60% VO2max (nominal), and with the intensity
increased by 25% (+25%) during unannounced exercise with an exercise-induced hypoglycemia re-
duction algorithm (EHRA) without suggested carbohydrate consumption. There were 80 sessions
of exercise in total.

-25% Nominal +25%

Overall Outcomes
Population Median Glucose (mg/dl) 123.7 (121.5, 130.7) 123.1 (120.5, 129.0) 122.5 (120.2, 128.0)
CHO/day (g/day) 16.1 (10.7, 18.2) 18.2 (13.9, 22.5) 19.8 (16.1, 24.6)
Percentage of time spent in (mg/dl)

70–180 93.6 (92.3, 95.1) 93.2 (91.7, 95.5) 92.8 (91.6, 94.7)
>180 5.5 (3.7, 6.5) 5.5 (3.1, 7.0) 5.6 (3.8, 7.2)
<70 1.1 (0.6, 1.2) 1.3 (0.9, 1.6) 1.4 (1.1, 1.9)
<54 0.0 (0.0, 0.1) 0.1 (0.1, 0.5) 0.2 (0.1, 0.8)

Hypoglycemic Events
Level 1 67 59 52
Level 2 6 22 34

Values reported as mean ± standard deviation and median (25th percentile, 75th percentile).

6.4 Discussion

In this study, an EHRA that detects aerobic exercise and triggers exercise-induced hypoglycemia

mitigation actions was implemented into an existing closed-loop controller and tested in silico

using the T1D Simulator extended with the exercise model [160] in a realistic and challenging

scenario. The EHRA was tuned using the lowest D value in a well-controlled in silico simulation

without exercise that represented normal patient dynamics and variation. The principal idea

behind the tuning of the EHRA was that glucose uptake during aerobic exercise produces a more

profound effect on D than the effect of insulin-promoted glycogenesis; therefore, D values during

exercise should be lower than those experienced in the absence of exercise. To effectively use the
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methodology outlined in this study, the threshold must be optimally adjusted for each patient as

it plays a central role in both the detection of exercise and in CHO dosing. Primarily, the EHRA

responds to glycemic impact of exercise and detects a prominent and inexplicable decrease in

glucose that is assumed to be aerobic exercise as seen in the ∆ glucose in Figure 6.2.

In a real-life setting, the threshold tuning can be performed with retrospective data from

patients or using an adaptive threshold. Ideally, three sets of clincal data are required to tune

and validate the EHRA: 1) a well-controlled scenario for tuning, 2) a scenario without announced

exercise for testing the threshold, and 3) a scenario without announced exercise for validation of

the threshold. However as seen in Table 6.1, this well-controlled scenario may be overly optimistic

as to gain these results requires a very well-tuned controller, a period of fasting, or a period

of consuming small meals. Furthermore, more research is required on the state estimations

performed and on the methodologies required to identify different tuning methodologies.

Dasanayake et al. [19] reported detection times of both the start and end of 60 and 90 minutes

exercise sessions of 30% and 50% predicted heart rate reserve (HRR). An accelerometer and

HRM were used to detect exercise using principal component analysis. Onset was identified

within 6 ± 3 minutes and 5 ± 2 minutes (mean ± standard deviation), while completion was

detected within 3 ± 8 minutes and 6 ± 5 minutes, respectively. ∆ glucose from start of exercise

to detection time was 1 ± 6 mg/dl and –1 ± 3 mg/dl, and, from the end of exercise to detection

time was 6 ± 4 mg/dl and –17 ± 13 mg/dl, respectively, for the two exercise sessions. FP and FN

ratios were 4 ± 2% and 21 ± 22%. Here we can see that the use of external physiological signals

allow exercise to be detected at an earlier time with little change in glucose when compared to

the EHRA. However, there is a high FP and FN ratio compared to the EHRA having a FP/day

of mean 0 ± 0 (median: 0 [0, 0.1]) with no FN occurrences. There is also an added burden with

the use of these devices as they must be maintained and worn by the user. It should be noted

that these values cannot be directly compared because HRR is not equivalent to VO2max, but is

instead equivalent to a percentage of the difference between resting and maximal VO2 or the

VO2reserve [179].

Jacobs et al. [20] performed a study that included 13 subjects with T1D using an accelerometer

and HRM. Each subject underwent 45 minutes of mild aerobic exercise (30-50% VO2max). Exercise

was detected using an accelerometer and a HRM as inputs into a validated regression model.

Their detection algorithm was reported to have a sensitivity of 97.2% and a specificity of 99.5%.

This intensity of exercise can be likened to the scenario with exercise decreased by 25% where

the sensitivity obtained was marginally lower at 96 ± 6% (median: 100 [88, 100]%). Although,

the specificity was not calculated it is suggested that the high specificity obtained in Jacobs et al.

[20] means there were very few FP occurrences, which is similar to our FP/day results of 0 ± 0

(median: 0 [0, 0.1]).

The outcomes reported in this study are unable to be compared to other exercise detection

studies with exercise-induced hypoglycemia mitigation strategies [16, 17, 21] because results for
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these studies were compared among different arms in their respective study but they failed to pro-

vide general comparable metrics such as time between 70–180 mg/dl or number of hypoglycemic

events.

Although the lasting effects of aerobic exercise are not fully understood, and it is unknown if

they are well represented in the exercise model implemented, results obtained in this study are

in keeping with the literature [26, 176] where the exercise detections up to eight hours after the

initial detection of exercise can be attributed to the persistent effect of aerobic exercise. This also

explains the need for two values of kFF , where if there is a second detection within eight hours

of the previous one and D(t) is less than D(t∗) it is assumed that it is a second detection of the

same exercise session due to late-onset postexercise hypoglycemia. This allows the controller to

perform disturbance rejection actions with a reduced CHO suggestion to account for the delayed

effect of aerobic exercise on BG. This persistent effect of aerobic exercise on BG control further

reinforces the need for exercise detection as it is particularly challenging for patients to control

on their own.

As stated before, the EHRA exploited in this study detects a profound and pervasive drop

in BG that is assumed to be provoked by a physiological process other than insulin-promoted

glycogenesis, i.e. drops in glucose that are not a result of insulin delivery. If a FP occurs, the

patient is likely in a state where action is required to prevent a hypoglycemic event. Therefore,

the outcomes of the actions implemented by the EHRA are unlikely to produce a negative effect.

Additionally, the controller returns to its nominal state when certain escape conditions are met

and ensures that the patient will not enter into extreme hyperglycemia due to these actions.

An increase of 25% in the intensity was chosen as any greater increase may result in the

activation of the anaerobic system, where glucose dynamics and patient requirements are differ-

ent and not represented in the implemented exercise model. The nominal intensity of exercise

(60% VO2max) was increased and decreased by manipulating the fitted heart rate value [160] in

the Model C exercise model found in Dalla Man et al. [159], which increased or decreased the

impact of exercise on BG. The different intensities tested can also account for the wide variability

in glucose profiles present before, during and after exercise [180] attributed to a multitude of

factors such as the amount of IOB, starting glucose, total muscle mass, BMI, age, duration of

T1D, progression of T1D, stress level, insulin sensitivity, rate of glucose uptake, etc.

In the previous simulations described it is assumed that the user will consume CHO in

the time sample following exercise detection. However, it is known that one major challenge

of systems such as these is user adherence and despite CHO suggestions, users will opt out of

CHO consumption. Therefore, a simulation was included that assumed that the user ignored

or did not hear the alarm to consume CHO. Table 6.7 shows that there is a degradation in

system performance and user glycemic outcomes especially in the amount of level 2 hypoglycemic

events experienced. This suggests that without preemptive CHO consumption, these severe

hypoglycemic events cannot be prevented during unannounced aerobic exercise with the current
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EHRA implementation. Despite the challenges associated with user adherence, it is also possible

for the user to improve the system by confirming or denying exercise, improving system outcomes

and avoiding severe hyperglycemia caused by unnecessary rescue CHO consumption.

It can be seen that a downfall of the announced exercise strategy is that the alternations to

the controller and number of CHO given to the patient remain the same regardless of exercise

intensity. Here we can see that the EHRA is adaptive based on the glycemic impact of the exercise

session, as less CHO are suggested during lower intensity exercise and more are suggested

during higher intensity exercise. The IOB is also lower when the EHRA detects exercise and

therefore, the rescue CHO have a greater effect on glycemia when compared to the announced

strategy where CHO are given before exercise. The EHRA also includes a COB calculation, which

prevents a calculated amount of insulin relative to the amount of CHO consumed from being

delivered that in turn prevents an overcorrection by the controller due to rescue CHO. However,

a similar COB strategy could also be implemented into an exercise announcement strategy.

Furthermore, the EHRA has the added benefit of calculating the amount of CHO required to

prevent hypoglycemia, further removing the burden from the patient. This COB calculation can

be tailored to any type of fast-acting CHO, according to user preference (e.g. glucose gels or sports

drinks). In this application, fast-acting CHO where the carbohydrate quantities are easily found

on the packaging are desirable. However, this would require tuning for each subject and each

type of CHO, which must be further explored. For simplicity, the carbohydrate-to-insulin gain, β,

was given a populational value, however in a real-life setting this value should be patient specific

and must also be further explored.

The EHRA relies on the accuracy of CGM readings as they are a direct input to the UKF.

However, it has been shown that there is a tendency for the MARD to increase during periods

of aerobic exercise [50–53]. Several factors have been attributed to this degradation in CGM

accuracy including microcirculation perturbation, variations of the oxygen concentration in the

blood, increase in body temperature, rapid BG changes in the plasma caused by exercise, and

mechanical forces where the sensor is placed or movement around or within the insertion area

and sensor during aerobic exercise. After the cessation of exercise, it has been found that CGM

accuracy returns to baseline values. Therefore, one major possible downfall of this strategy lies

in inaccurate CGM readings, however, with new CGM generations these short comings might be

addressed. Another possible downfall lies in current insulin formulations that experience a delay

between its administration and insulin action. The delays associated with subcutaneous insulin

administration contribute to increased amounts of IOB, which increase the risk of hypoglycemic

events during aerobic exercise.

An advantage of the EHRA is that it is linked to a profound drop in BG as seen in Figure 6.2

and is therefore unlikely to be triggered in the presence of anaerobic exercise due to the increase

in BG experienced during this type of exercise.
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6.5 Summary

In this study, an EHRA that detects aerobic exercise and triggers exercise-induced hypoglycemia

mitigation actions was implemented into an existing closed-loop controller and tested in silico

using the T1D Simulator extended with an exercise model in a 15-day scenario with eight exercise

sessions on alternating days. The EHRA was tuned using the lowest D value in a well-controlled

in silico simulation without exercise that represented normal patient dynamics and variation.

The exercise detection algorithm is able to detect all exercise events with a detection time of

41.1 ± 9.7 minutes (median: 40 (30, 62.5) minutes) and a drop in glucose of 53.7 ± 21.8 mg/dl

(median: 52 (23.7, 89.4) mg/dl) during exercise at 60% VO2max. After exercise detection, the

EHRA triggers a CHO suggestion, a decrease in basal insulin, and a reduction of the next meal

bolus. The EHRA outperforms both unannounced and announced aerobic exercise strategies

in terms of BG control and is able prevent all severe hypoglycemic events (<54 mg/dl) without

causing excess hyperglycemia due to CHO suggestions and has been proven robust during an

intensity of 60% VO2max and when this intensity is decreased and increased by 25%. However, if

the suggested CHO are not consumed, BG control deteriorates and level 2 hypoglycemic events

cannot be prevented.
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CONCLUSION

Hybrid closed-loop AP systems are gradually moving towards a fully closed-loop design.

Therefore, the user of the system will be required to perform less actions and have

less responsibility for their overall T1D management. The first step to closing the loop

is removing meal and aerobic exercise announcement; however, many challenges still remain

due to the delay in meal detection, insulin action lag time, and the discrepancy in postprandial

hyperglycemia, which is dependent on meal composition and intra-patient variability.

A PHRA and EHRA that use CGM values and a disturbance parameter, D, estimated

from an adapted minimal model using an UKF have been presented. Tuning of the PHRA

is complicated by the need to administer insulin as soon as possible due to the lag in insulin

action. Therefore, three tunings that are useful for the mitigation of postprandial hyperglycemia,

Ra discrimination, and CHO estimation methodologies and postprandial mitigation actions have

been explored. Furthermore, an EHRA tuned using the lowest value of D in a well-controlled in

silico simulation without exercise along with disturbance rejection actions to prevent exercise-

induced hypoglycemia have been tested. Both the PHRA and EHRA were implemented using the

T1D Simulator, a modified version of the UVA/Padova T1D Simulator well-known as a tool for the

testing of novel technologies in diabetes care and a well-established starting point for evaluating

the presented PHRA and EHRA.

Limitations to the proposed strategies include the lag in insulin action, which complicates

control during the postprandial period and aerobic exercise. The CHO estimation methodology

presented has a large estimation error that limits is usefulness. The methodology to identify

fast absorption meals, although effective, has not been utilized for postprandial hyperglycemic

mitigation and further research is required here. Lastly, the degradation in performance of the

EHRA due to the user not consuming the suggested CHO is a limitation to this strategy, as severe
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hypoglycemia cannot be prevented without the consumption of the these sugeested CHO.

This thesis concludes by providing a summary of the contributions of this thesis and a

discussion of potential future research on the subject of this thesis.

7.1 Contributions

The main contribution of this thesis is the development of effective and safe CLC strategies

for postprandial and postexercise glucose control in patients with T1D, which is the beginning

steps of the realization of the AP as a fully CLC system. A postprandial hyperglycemia reduction

algorithm (PHRA) and a exercise-induced hypoglycemia reduction algorithm (EHRA), which

were designed and developed in this thesis, will be extensively evaluated in silico and then are

expected to be validated clinically. As a result of this thesis the following contributions have been

made:

• The development of a detection system able to detect perturbations using a state estimator,

which consists of an augmented minimal model and an UKF. This system has the ability to

be used and tested with other disturbances present in T1D patients such as during stress

or illness.

• The development of a novel meal detection algorithm that uses the state estimator to

estimate a disturbance parameter. The cross-covariance between the glucose data and the

forward difference of computed disturbance parameter is then calculated over different

sliding windows. A threshold is then applied, different for each sliding window. This

algorithm able to detect large and rapidly appearing meals quickly with very little change

in glucose at detection.

• The implementation of a PHRA, which includes three tunings able to detect meals with

varying detection times and sensitivities. Using the three tunings, disturbance rejection

actions are applied and are able to reduce postprandial hyperglycemia.

• The implementation of a EHRA, that offers a reliable and easy tuning methodology. Dis-

turbance rejection actions are applied after detection that include a CHO estimation and

changes in controller dependent and independent variables. This EHRA has been proven to

be robust during exercise of varying intensities.
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7.2 Future Work

To continue the research initiated by this thesis, several improvements should be made to the

developed systems to be employed in a real life situation:

• To obtain rich clinical data that represents frequent activities that the subject participates

in such as eating out, exercising, etc., in order to develop a methodology for determining

the minimum and maximum values required for the scaling of data prior to finding the

cross-covariance between Ddi f f and G(t) in the PHRA.

• To obtain the clinical data necessary for the tuning of the PHRA for meal detection. This

requires data with a variety of meals without meal boluses, in which a detection bank of

multiple thresholds and windows can be developed and the most favorable tunings selected.

• To obtain three sets of clinical data to tune and validate the EHRA: 1) a well-controlled

scenario for tuning, 2) a scenario with unannounced exercise for testing the threshold, and

3) a scenario with unannounced exercise for validation of the threshold.

• The integration of the two strategies into current hybrid systems to increase their efficacy

and safety during meals and exercise. This includes combining the meal type discrimination

to lower hypoglycemic events during slow absorption meals, including CHO suggestions

before and during aerobic exercise to to lower the burden to the patient, and including COB

to prevent controller overcorrection allowing the patient to enter CHO amounts anytime

rescue CHO are consumed.

• The exploration of the IOBm in, which may be necessary during aerobic exercise where

the omission of insulin administration over an extended period of time can lead to life

threatening DKA.

• To join the two algorithms developed in this thesis into a unified system. This will include

significant alterations to the two algorithms to prevent systems clashes.

• To explore other ways in which improvement to BG control during the postprandial periods

can be improved, such as the infusion of other hormone replacements e.g. pramlintide and

GLP-1 receptor agonists.
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THE UNIVERSITY OF VIRGINIA/PADOVA MIXED MEAL SIMULATION

MODEL

The mixed meal simulation model found in the UVA/Padova T1D Simulator is shown in Figure

A.1 is outlined below.

Glucose Subsystem
A two compartment model was used to describe glucose kinetics:

Ġp(t)= EGP(t)+Ra(t)−Uii −E(t)−k1 ·Gp(t)+k2 ·G t(t) Gp(0)=Gpb

Ġ t(t)=−Uid(t)+k1 ·Gp(t)−k2 ·G t(t) G t(t)= 0

G(t)= Gp(t)
VG

G(0)=Gb

(A.1)

where Gp and G t (mg/kg) are glucose masses in plasma and rapidly-equilibrating tissues, and in

slowly-equilibrating tissues, respectively, G (mg/dl) is the plasma glucose concentration where

suffix b denotes basal state, EGP is the endogenous glucose production (mg/kg/min), Ra is

the glucose rate of appearance in plasma (mg/kg/min), E is the renal excretion (mg/kg/min),

Uii and Uid are the insulin-independent and –dependent glucose utilizations (mg/kg/min), VG is

the glucose distribution volume (dl/kg), and k1 and k2 (min-1) are rate parameters.

Insulin Subsystem
A two-compartment model was used to describe insulin kinetics:

İp(t)=−(m2 +m4) · Ip(t)+m1 · I l(t)+Rai(t) Ip(0)= Ipb

İ l(t)=−(m1 +m3) · I l(t)+m2 · Ip(t) I l(0)= I lb

I(t)= Ip(t)
VI

I(0)= Ib

(A.2)
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where Ip and I l (pmol/kg) are insulin masses in plasma and in liver, respectively, I (pmol/l) is the

plasma insulin concentration, Rai is insulin secretion (pmol/kg/min), VI is the insulin distribution

volume (l/kg), and m1, m2, m4 (min-1) are rate parameters. Here a linear peripheral degradation

(m3) is assumed, while hepatic extraction (HE) is:

HE(t)=−m5 ·Rai(t)+m6 HE(0)= HEb

m3(t)= HE(t) ·m1

1−HE(t)

(A.3)

where m5 and m6 (min-1) are rate parameters.

Figure A.1: Model scheme of the the UVA/Padova T1D Simulator [155].
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Endogenous Glucose Production
The functional description of endogenous glucose production (EGP) comprises of a direct glucose

signal of both delayed and anticipated insulin signals. The model has been updated to assume

that EGP is stimulated by the basal glucagon concentration with a delay:

EGP(t)= kp1 −kp2 ·Gp(t)−kp3 · X L(t)+ξ · X H(t) EGP(0)= EGPb

Ẋ L(t)=−ki · (X L(t)− I ′(t)) X L(0)= Ib

İ ′(t)=−ki · (I ′(t)− I(t)) I ′(0)= Ib

Ẋ H(t)=−kH · X H(t)+kH ·max((H(t)−Hb),0) X H(0)= 0

(A.4)

where X L(t) is the delayed insulin action in the liver, ki, kp1, kp2, and kp3 are rate parameters,

H(t) is the plasma glucagon concentration, X H(t) is the delayed glucagon action on EGP, ξ is the

liver responsivity to glucagon, and 1/kH is the delay between the glucagon concentration and

action.

Glucose Rate of Appearance
Glucose intestinal absorption is modeled as:

Qsto(t)=Qsto1(t)+Qsto2(t) Qsto(0)= 0

Q̇sto1(t)=−kgri ·Qsto1(t)+D ·δ(t) Qsto1(0)= 0

Q̇sto2(t)=−kempt(Qsto) ·Qsto2(t)+kgri ·Qsto1(t) Qsto2(0)= 0

Q̇gut(t)=−kabs ·Qgut(t)+kempt(Qsto) ·Qsto2(t) Qgut(0)= 0

Ra(t)= f ·kabs ·Qgut(t)
BW

Ra(0)= 0

(A.5)

where Qsto (mg) is amount of glucose in the stomach (solid, Qsto1, and liquid phase, Qsto2), Qgut

(mg) is the glucose in the intestine, kgri (min-1) is the rate of grinding, kabs (min-1) is a rate

constant of intestinal absorption, f is the fraction of intestinal absorption which appears in

plasma, D (mg) is the amount of ingested glucose, and BW (kg) is body weight. kempt(Qsto)

(min-1) is a rate constant of gastric emptying which is a nonlinear function of Qsto calculated as:

kempt(Qsto)= kmin + kmax −kmin

2
·
(
tanh

(
α(Qsto −b ·D)

)− tanh
(
β(Qsto − c ·D)

)+2
)

(A.6)

where kmax is when the stomach contains the amount of ingested glucose D, α is the rate at

which kmax decreases to a minimum (kmin), and β is the rate at which kmin increases back to its

maximum (kmax) [172].
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Glucose Utilization
Glucose utilizations by body tissues is made up of two components Uii and Uid. Insulin-independent

utilization takes place in the first compartment, is constant, and represents glucose uptake by

the brain and erythrocytes (Fcns):

Uii(t)= Fcns (A.7)

Insulin-dependent utilization occurs in the remote compartment, which represents peripheral

tissues and depends nonlinearly, i.e., via Michaelis–Menten kinetics, on glucose in tissues:

Uid(t)=
(
Vm0 +Vmx · X (t) · (1+ r1 · risk)

) ·G t(t)
Km0 +G t(t)

(A.8)

where G t (mg/kg) is glucose mass in the remote compartment and Vm0 is assumed to be linearly

dependent on X (pmol/l), which represents remote insulin described by:

Ẋ (t)=−p2U · X (t)+ p2U (I(t)+ Ib) X i(0)= 0, (A.9)

where Ib plasma insulin in the basal states, and p2U (min-1) is the rate constant of insulin

action on peripheral glucose utilization. The model assumes that Uid(t) increases when glucose

decreases below a certain threshold, following the BG risk function:

risk =


0 i f G ≥Gb

10 · ( f (G))2 i f G th ≤G <Gb

10 · ( f (G th))2 i f G <G th

f (G)= (
log(G)

)r2 − (
log(Gb)

)r2

(A.10)

where G th is the hypoglycemic threshold set at 60 mg/dl and r1 and r2 are model parameters.

Renal Excretion
Glucose excretion by the kidney occurs if Gp exceeds a certain threshold and can be modeled by a

linear relationship with Gp:

E(t)=
ke1 · (Gp(t)−ke2) i f Gp(t)> ke2

0 i f Gp(t)≤ ke2

(A.11)

where ke1 (min-1) is the glomerular filtration rate and ke2 (mg/kg) is the renal threshold of

glucose.

Subcutaneous Insulin Kinetics
Insulin secretion is represented by a two compartment model:

Rai(t)= ka1 · Isc1(t)+ka2 · Isc2(t)

İsc1(t)=−(kd +ka1) · Isc1(t)+ I IR(t) Isc1(0)= Isc1ss

İsc2(t)= kd · Isc1(t)−ka2 · Isc2(t) Isc2(0)= Isc2ss

(A.12)
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where Isc1 and Isc2 are insulin in the first and second subcutaneous compartments, respectively,

kd (min-1) is the rate constant of insulin dissociation, and ka1 and ka2 are rate constants of

nonmonomeric and monomeric insulin absorption, respectively.

Subcutaneous Glucose Kinetics
The blood to interstitial glucose dynamics are described as a first-order linear system:

Ġs(t)=− 1
Ts

Gs(t)+ 1
Ts

G(t) Gs(0)=Gb (A.13)

where Gs represents subcutaneous glucose and Ts represents the time constant of the system.

Glucagon Kinetics and Secretion
Glucagon kinetics are described by a one compartment linear model:

Ḣ(t)=−n ·H(t)+SRH(t)+RaH(t) H(0)= Hb (A.14)

where H(t) is the plasma glucagon concentration, SRH(t) is the glucagon secretion (SRb
H(t) is

the basal value), and n is the clearance rate. Glucagon secretion is described as a sum of two

compartments:

SRH(t)= SRs
H(t)+SRd

H(t)

˙SRs
H(t)=


−ρ ·

(
SRs

H(t)−max
(
σ2 · (Gth−G(t))+SRb

H ,0
))

if G(t)≥Gb

−ρ ·
(
SRs

H(t)−max
(
σ·(Gth−G(t))

I(t)+1 +SRb
H ,0

))
if G(t)<Gb

(A.15)

where σ and σ2 are alpha-cell responsivity to glucose level, 1/ρ is the delay between static

glucagon secretion and plasma glucose. In this way, static secretion is stimulated when Gp <Gb

(but modulated by insulin) and inhibited when Gp ≥Gb. The second component is proportional to

glucose rate of change:

SRd
H(t)= δ ·max

(
− dG(t)

dt
,0

)
(A.16)

where dG(t)/dt is the glucose rate of change and δ is the alpha-cell responsivity to glucose rate of

change.

Subcutaneous Glucagon Kinetics
The interstitial to blood glucagon dynamics are described as a two compartment model:

RaH(t)= kh3 ·Hsc2(t)

Ḣsc1(t)=−(kh1 +kh2) ·Hsc1(t)+Hinf (t) Hsc1(0)= Hsc1b

Ḣsc2(t)= kh1 ·Hsc1(t)−kh3 ·Hsc2(t) Hsc2(0)= Hsc2b

(A.17)

where Hsc1 and Hsc2 are glucagon in the first and second subcutaneous compartments, respec-

tively, Hinf is the glucagon infusion rate, and kh1, kh2 and kh3 are rate constants.
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CLOSED-LOOP CONTROLLER

The closed-loop controller is composed of two loops: the inner control loop, which is a PD controller

with IFB designed to drive the measured glucose to a target value and the outer loop, which is

a safety supervisory loop that uses SMRC to modulate the glucose target value based on the

estimated IOB, which reduces the risk of hypoglycemia due to controller overcorrection [161–163].

B.1 The Proportional-Derivative Controller Loop

The total insulin control action of the inner loop is described as:

uAP (t)= ubasal(t)+ubolus(t)+uPD(t) (B.1)

where ubasal(t) is the basal insulin needed by the patient to keep a normal plasma glucose

concentration between meals and at night (usually around 100 mg/dl), ubolus(t) is the feed-

forward meal bolus derived as:

ubolus(t∗)= umeal

K i2c
+

∫ t∗+60
t∗ ubasal(τ)dτ

60
+ G(t∗)−Gr(t∗)

Kc f
, (B.2)

where t∗ is the meal time. uPD(t) is the PD control algorithm:

uPD(t)= kp(G(t)−Gr f (t))+kpτdĠ(t), (B.3)

kp is the proportional gain tuned according to [177]:

kp = 60
τd

ITDD

1500

where umeal is the meal carbohydrate content in grams, K i2c (U/g) is the insulin-to-carbohydrate

ratio, G(t) is the measured glucose value, Gr(t) is the predefined glucose target (usually constant),
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Kc f (mg/dl/U) is the correction factor, Gr f (t) is the modulated glucose target described in Section

B.2, τd (min)is the derivative time, and ITDD (U/day) is the patient’s total daily insulin.

The use of an IFB component is widely used in AP applications [116] and is based on the

assumption that plasma-insulin concentration inhibits insulin secretion directly at the β-cell

level [177]. To replicate this effect in the control algorithm, the plasma insulin concentration (Ip)

is estimated as follows [181]:

İp(t)= kDI A ·C2(t)
BW ·VI

−ke · Ip(t) (B.4)

where ts (min) is the sampling time, kDI A (min-1) is the subject-specific time constant for the

duration of insulin action [162], BW (kg) is the body weight of the patient, VI (l/kg) is the volume

of the plasma insulin compartment, and ke (min-1) is the fractional elimination rate of insulin

from plasma. C2(t) is an insulin mass compartment described in Section B.2, Equation B.13.

Then, using the estimated Ip(t), the insulin control action is proportionally inhibited as follows:

uIFB(t)= uAP (t)−γ(Ip(t)− I∗p) (B.5)

where γ (l/h) is a IFB term tuned according to [177] and I∗p is the estimated basal plasma insulin,

so that under basal conditions this additional term is nullified.

B.2 Safety Supervisory Loop

The safety supervisory outer control loop is a SMRC [178] module, which modulates Gr in order

to avoid violating the IOB constraints. SMRC originates from concepts of invariance control

and acts as a transitional mode of operation. For simplicity, IOBmin(t) is set to zero and the

time-variant IOBmax(t) is computed as follows:

IOBmax(t)= kIOB · 2 ·ubasal(t)
60 ·kDI A

(B.6)

where kIOB is a gain on IOBmax. Given the upper and lower IOB limits (possibly time-variant)

and denoting x(t) system’s state, the sets:

Σ− :=
{

x(t)|IOB(t)≤ IOBmax(t)
}

(B.7)

Σ+ :=
{

x(t)|IOB(t)≥ IOBmin(t)
}

(B.8)

are invariant for a discontinuous signal ω(t) of the form:

ω(t)=


ω+ if σ−(t)> 0,

ω− if σ+(t)< 0,

0 otherwise.

(B.9)
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where ω+ and ω− are set according to [178] and the switching function, σ is defined as:

σ−(t)=


1 if IOB(t)− IOBmax(t)+

l−1∑
i=1

τi
(
IOB(t)(i) − IOBmax(t)(i))< 0,

0 otherwise.
(B.10)

σ+(t)=


1 if IOB(t)− IOBmin(t)+

l−1∑
i=1

τi
(
IOB(t)(i) − IOBmin(t)(i))> 0,

0 otherwise.
(B.11)

where dIOB(t) is calculated as:

dIOB(t)= IOB(t)− IOB(t−1)
ts

(B.12)

where τi is a constant gain and IOBmax(t) and IOBmin(t) are the maximum and mimimum

IOB limits, respectively. IOB(t) is estimated using a two-compartment model [182] expanded to

account for basal and deviation IOB:

Ċ1(t)=uIFP (t)−kDI AC1(t)

Ċ2(t)=kDI A (C1(t)−C2(t))

IOB(t)=C1(t)+C2(t)

(B.13)

where C1(t) and C2(t) are the insulin mass in the two subcutaneous compartments that account

for basal conditions. Gr is filtered using a low-pass first-order filter that induces smooth changes

in the target value:

Ġr f (t)=λGr f (t)+λ
(
Gr(t)+ω(t)

)
(B.14)

where λ is the filter cut-off frequency [162]. The parameter values used in this controller can be

found in Table B.1.

B.3 Clinical Trials

The controller previously described has been tested thus far in two clinical settings [161]. The

first was a crossover randomized study performed in two clinical centers with 20 T1D subjects

used to compare the CLC system to open loop (OL) therapy during announced meals. For the

CLC versus OL, the percent of time-in-range was higher (80% vs. 64%; p<0.001). There was no

significant difference in the percent of time below 70 mg/dl (6.1% vs. 3.2%; p>0.05; CLC vs. OL)

or the number of rescue CHO (40% vs. 22.5%; p>0.05; CLC vs. OL).

The second study was crossover randomized study with five T1D subjects used to test the

CLC system compared to the OL therapy during aerobic and anaerobic exercise. Each subject

performed six exercise sessions, which at least one week between each session. Three of the

sessions included aerobic exercise and three of the session included anaerobic exercise. after each

exercise sessions the patient evaluated the intensity of exercise using the Borg Scale of Perceived
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Table B.1: Controller parameter values

Symbol Quantity Value Units
K i2c Insulin-to-carbohydrate ratio patient specific U/g
kc f Insulin correction factor patient specific mg/dl/U
τd Derivative of time 90 min

ITDD Total daily insulin patient specific U/day
Gr Predefined glucose target 100 mg/dl

kDI A Gain of the duration of insulin action 0.013 min−1

ω+ Lower switching signal 0 mg/dl
ω− Upper switching signal 350 mg/dl
τi Sensitivity of SMRC for IOB changes 10 min
λ Filter cut-off frequency 0.1 unitless
γ Insulin-feedback term 25.2 l/h
ke Insulin elimination from plasma 0.138 min−1

VI Insulin distribution volume 0.12 l/kg
BW Body weight of the patient patient specific kg
ts Sample time of the SMRC algorithm 0.5 min

Exertion. For aerobic exercise, the subjects performed three sets of 15 min in a cycloergometer

at 60% VO2max with five min of rest between sets. For anaerobic exercise, subjects performed

five series of eight repetitions of four weighted exercises with 90 s of rest between sessions. Each

of the four exercises implicated different muscular groups with a weight corresponding to 70% of

the patient’s maximum exercise capacity. Rescue CHO of 15 grams in the form of glucose gels

were given by the clinician if the patient was below 60 mg/dl for ten min or more; following this,

CHO were given every 15 min until BG was above 70 mg/dl.

The mean glucose level was 124.0 ± 25.1 mg/dl in the aerobic studies and 152.1 ± 34.1 mg/dl

in the anaerobic studies. Percentage of time in the different glucose ranges of 70-180, >180 and

<70 mg/dl for aerobic vs. anaerobic sessions were 89.8 ± 18.6%, 7.7 ± 18.4%, and 2.5 ± 6.3% vs.

75.9 ± 27.6%, 23.2 ± 28.0%, and 1.0 ± 3.6%. Six rescues with CHO were required during the

studies (4 in aerobic and 2 in anaerobic) [183].

Currently, a third clinical trial is ongoing that includes ten T1D subjects to test a new PD

CHO controller added to the controller previously described. Each subject will undergo three

aerobic exercise tests, each one at 1-3 week intervals in a random order. The CLC algorithm will

be used in two of the exercise tests (one with announced exercise and the other without). For

the third exercise test, the control study, the patient will wear a CSII system with a Dexcom G5

Mobile CGM in blinded mode. The trial is expected to be completed in April 2019.
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