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PREFACE 

The cerebellum has been "the long forgotten" in the addiction field for many years. Its 

study was limited to motor functions and underestimated in the rest of the brain 

functions. Fortunately, it has changed in the last decades, and the study of the 

cerebellum has been included in research on language, memory, emotions, decision-

making, social behaviour, and drug addiction (Adamaszek et al, 2017; Blackwood et al, 

2004; Broche-Pérez et al, 2016; Carbo-Gas et al, 2014a, 2014b, 2017; Carta et al, 2019; 

Courchesne and Allen, 1997; Mariën et al, 2014; Miquel et al, 2016; Moers-Hornikx et 

al, 2009; Moulton et al, 2014; Sacchetti et al, 2002a, 2004; Strata et al, 2011; Turner et 

al, 2007; Vazquez-Sanroman et al, 2015b). 

Research on the cerebellum’s role in addiction is the core of this doctoral thesis. 

Previous studies in our laboratory involved this structure in drug-induced preference 

conditioning  (Carbo-Gas et al, 2014a, 2014b, 2017). This research demonstrated two 

cerebellar hallmarks of preference for cues linked to the cocaine experience. Both an 

increased cFos expression and stronger fully condensed perineuronal nets (PNNs) in the 

apical region of the granule cell layer (the dorsal region of the cerebellar cortex) were 

observed only when animals expressed a preference towards an odour associated with 

the drug. These distinctive features were not seen if the animals did not exhibit cocaine-

related memory. These findings supported and extended the results of neuroimaging 

studies on cue-reactivity in addicted cohorts, which found increased greater activation 

in the cerebellum after the presentation of drug-related cues (Bonson et al, 2002; Grant 

et al, 1996; Schneider et al, 2001).  

Overall, these earlier results suggested that the establishment or expression of cocaine-

induced conditioned memories somehow entails cerebellar activation. Moreover, they 

indicated that cocaine-induced memory encourages, at the cerebellar level, one of the 

mechanisms for synaptic stabilization, the expression of PNNs. In that way, the 

cerebellum might be part of the functional networks that represent long-lasting drug-

related memories (Sorg et al, 2016). Therefore, this doctoral thesis intends to be the 

first attempt to propose a causative working model for the cerebellum’s role in drug-

induced memories.  
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In the following pages, we managed to explore the role of the cerebellum in cocaine-

induced conditioned preference and its functional and anatomical relationships with the 

medial prefrontal cortex. We addressed this goal using temporal or permanent brain 

deactivations. 

The present doctoral dissertation begins with a small theoretical introduction about 

addiction, followed by a description of the cerebellar anatomy, and a summary of the 

state of the art in the field.   

The first chapter entitled “The role of the cerebellum in drug-cue associative memory: 

functional interactions with the medial prefrontal cortex” is an article already published 

in the European Journal of Neuroscience in which we investigated the role that specific 

regions of the cerebellum and medial prefrontal cortex (mPFC) play in the acquisition of 

cocaine-induced preference conditioning. To the best of our knowledge, this is the first 

study focused on the causative role of the cerebellum in drug addiction. Importantly, 

the results indicated that the deactivation of these two distal regions generates similar 

effects on cocaine-related behaviour. Nevertheless, the effects would depend on the 

specific prefrontal and cerebellar regions deactivated. This first study revealed a close 

interaction, probably compensatory, between the dorsal cerebellum and the infralimbic 

cortex in the establishment of cocaine-related memory. 

To ascertain the nature of cerebellar-prefrontal relationships and to propose a working 

functional model for cerebellar-prefrontal interactions, we investigated the 

consequences of impairing the function in one region for activity and plasticity in the 

other region. Thus, in the second chapter, “Changes in neural activity and perineuronal 

net expression in the cerebellum after deactivation of the medial prefrontal cortex” we 

addressed an exhaustive analysis of cFos and PNN expression in the cerebellum and 

other cerebral regions after mPFC deactivations. Importantly, cerebellar activity and 

PNN expression increased only after infralimbic deactivation. Based on a more detailed 

analysis, we discussed whether the observed functional interaction could be seen or not 

as compensatory.  

In the third chapter, “From back to front: A functional model for the cerebellar 

modulation in the establishment of conditioned preferences for cocaine-related cues”, 
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we explored the activity and plasticity in the striatum and mPFC after the cerebellar 

impairment. Additionally, we accomplished a tracing study using anterograde and 

retrograde tracers in order to build a working neuroanatomical model to explain the 

facilitative effect of the cerebellar lesion on cocaine-induced conditioned memory. Our 

findings hinted at an inhibitory control of the posterior vermis over the striatum and 

mPFC through the VTA. 

Finally, the doctoral thesis concludes with a general discussion, which helps to explain 

the results of the three chapters, and presents a hypothetical model to encourage future 

research. We also discuss the strengths and pitfalls of our findings. References can be 

found at the end of each chapter and on the last pages, after the strengths and pitfalls 

section.   
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GENERAL INTRODUCTION 

Addiction and drug reward 

Drug addiction is a disorder of the Central Nervous System (CNS) whose main symptoms 

have been characterized by escalating drug use, loss of control over limiting drug intake, 

the emergence of chronic compulsive drug-seeking, and a marked reduction of interest 

in other objectives and rewards (Robinson and Berridge, 2003). Initially, drug reward is 

the main premise for drug consumption in both humans and animals (Wise, 2009). Thus, 

addictive drugs compete with other natural stimuli in terms of their ability to initiate 

goal-directed behaviours, and trigger adaptation and neuroplasticity processes. 

However,  drugs of abuse progressively reduce the ability of individuals to initiate and 

sustain actions towards natural stimuli (Hyman et al, 2006; Kalivas and Volkow, 2005). 

Although much of the initial studies of drug addiction focused on the critical impact of 

addictive substances on the CNS, now attention is being directed towards the effects of 

chronic drug-intake and long-term neuronal brain changes that end in a relapse. A major 

factor for relapse is the persistence of maladaptive drug-associated memories, which 

can preserve drug-seeking and taking behaviour. In this respect, there is increasing 

evidence to support the ability of addictive drugs to promote stable changes in synaptic 

connections of brain circuits responsible for memories and behaviours established by 

Pavlovian and instrumental conditioning (Everitt and Robbins, 2005). Indeed, drug 

addiction results from an aberrant learning that induces the formation of strong 

instrumental memories, linking actions to drug-seeking and taking outcomes that are 

finally expressed as persistent stimulus-response habits (Milton and Everitt, 2012).  

Initially, neutral environmental stimuli become associated with drug highs through 

Pavlovian conditioning, driving the subsequent interactions between Pavlovian and 

instrumental memories to influence relapse. Therefore, long-lasting drug-induced 

modifications in Pavlovian and instrumental learning appear to be the most explanatory 

mechanism for the establishment of drug addiction.  

Everitt et al. (2001) showed that the aberrant engagement of Pavlovian and 

instrumental learning mechanisms leads to enhanced learning about the actions and 

environmental drug-associated cues or conditioned stimuli (CSs) that predict 
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opportunities for drug self-administration. They argued that these processes could be 

produced by the ability of drugs of abuse to increase the release of dopamine in several 

regions of the striatum-cortico-limbic system. Consequently, repeated drug-taking 

indeed these CSs to acquire an increasing role in controlling drug-seeking behaviour. As 

the state of addiction develops, the previously drug-paired CSs induced drug-seeking, 

independently of goal-directed actions.  In consequence, drug consumption becomes 

controlled by stimulus-response mechanisms that are habitual and automatic, via CS-

induced activation of drug-seeking motor programs in the dorsal striatum (Belin et al, 

2009; Belin and Everitt, 2008). In some individuals, drug-seeking becomes compulsive 

and persistent and generates an insensitivity to devaluation or punishment (Ahmed, 

2012; Belin and Everitt, 2008; Pelloux et al, 2007). In this way, the repeated association 

of a conditioned stimulus with drug effects seems to promote a shift from goal-directed 

instrumental behaviour to compulsive habits.  

The addiction circuitry 

Drug-induced memories are mainly stored through molecular interactions between 

dopaminergic and glutamatergic systems in the prefrontal-limbic-striatal networks 

(Everitt and Robbins, 2005).  

The medial prefrontal cortex (mPFC) is responsible for executive control, which includes 

the representation of contingencies, representation of outcomes and their value, and 

Figure 1. The addiction circuitry. Medial prefrontal cortex (mPFC), dorsolateral straitum (DL), nucleus 
accumbens (NAc), hippocampus (HIP), basolateral amygdala (BLA), ventral tegmental area (VTA). 
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subjective states associated with drugs (Everitt and Robbins, 2005). The prefrontal 

cortex, along with the nucleus accumbens (NAc) and the dorsomedial striatum (DMS), 

orchestrate goal-directed actions, whereas the interactions between some regions in 

the mPFC and the dorsolateral striatum (DLS) underpin the establishment of habits 

(Smith and Graybiel, 2013). The reestablishment of drug-seeking after abstinence 

depends on the mPFC release of glutamate and dopamine in the nucleus accumbens 

core (NAcC) and the integrity of the ventral pallidum (McFarland et al, 2003). The NAc 

exhibits neuroadaptations following drug experience, particularly changes in 

glutamatergic signalling (Kalivas and McFarland, 2003) that are hypothesized to increase 

the salience of drug-associated CSs and thereby their impact on behaviour (Kalivas, 

2004). Additionally, long-lasting plasticity changes in the orbitofrontal cortex (OFC), 

basolateral amygdala (BLA) and NAcC, regions richly interconnected, underlying the 

capacity of conditioned reinforcers to encourage drug-seeking after long periods of 

abstinence (Kalivas and McFarland, 2003; Schoenbaum et al, 2003; Shaham et al, 2003). 

Dopamine and glutamate interactions in the BLA and NAcC have also been observed in 

relapse (McFarland et al, 2003; See et al, 2001). Moreover, the BLA has been shown to 

be required for sensory-specific conditioned reinforcement and Pavlovian-instrumental 

transfer (Cardinal et al, 2002; Pelloux et al, 2013; Stefanik and Kalivas, 2013). The 

sequential phases of Pavlovian and instrumental learning may be especially relevant for 

the transition from initial drug use to drug abuse, and finally to compulsive drug-seeking. 

Pavlovian-instrumental transfer resulting in drug-seeking depends on afferents from 

specific regions of the mPFC to the DMS (Ostlund and Balleine, 2005; Yin et al, 2005). 

Likewise, the output from the NAcSh can influence the functioning of ascending 

dopamine projections to the NAcC, and from the NAcC via the substantia nigra to other 

domains of the DMS (Haber et al, 2000). Thus, the potentiation of conditioned 

reinforcement by stimulant drugs and Pavlovian-instrumental transfer could result from 

drug’s impact on the NAcSh, influencing processing of CSs in the NAcC and DMS.  

The amygdala and hippocampus are both key components for mediating the ability of 

drug-related contexts to trigger drug-seeking and relapse (Bonson et al, 2002; Grant et 

al, 1996). Context-induced reinstatement of drug-seeking requires the hippocampus 

(Carballo-Márquez et al, 2009; Sierra-Mercado et al, 2011), similar to its role in 
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contextual fear conditioning (Phillips and LeDoux, 1992). It has been observed that 

contexts previously associated with drug use can promote relapse in animals with an 

extensive history of drug self-administration (Bossert et al, 2011; Crombag and Shaham, 

2002; Fuchs et al, 2005). In this way, the hippocampus would represent context as a CS, 

with the amygdala associating the hippocampal-encoded context with the affective 

value of the unconditioned stimulus. This is the case for contextual memories associated 

with aversive outcomes, as well as appetitive conditioning for natural and drug 

reinforcers (Hitchcott and Phillips, 1997; Matus-Amat et al, 2007). 

In summary, plasticity mechanisms within the hippocampus, amygdala, and mPFC may 

all influence drug-seeking through their convergent projections to the NAc, perhaps 

competing for access to response strategies involving different prefrontal-striatal-limbic 

networks (Goto and Grace, 2005). It has been hypothesised that the transition from 

voluntary actions to more habitual modes of responding in drug-seeking involves a 

transfer from prefrontal to striatal control over responding, as well as from ventral to 

more dorsal striatal regions (Belin and Everitt, 2008; Everitt and Robbins, 2005), through 

a progressive recruitment of dopaminergic neurons in the midbrain (Haber et al, 2000). 

Together with an overreliance on striatal mechanisms, the progressive loss of control 

over drug consumption requires a reduction in the inhibitory control exercised by the 

prefrontal cortex (Volkow et al, 2013). Therefore, drug-seeking becomes less dependent 

on voluntary control and more prone to be triggered automatically and compulsively 

(Everitt and Robbins, 2005). 

Beyond the traditional neuroanatomical model of drug addiction, an increasing amount 

of data suggests the involvement of the cerebellum in many of the affected brain 

functions in addicts (Miquel et al, 2009, 2016; Moulton et al, 2014). The research we 

present and discuss in this thesis strongly supports the inclusion of the cerebellum as a 

part of the circuit responsible for long-lasting drug-induced behavioural effects.  
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Cerebellum: “the little brain” 

Cerebellum anatomy 

The cerebellum controls and regulates motor and non-motor functions. It is integrated 

by the vermis (the central region), the paravermal area (on each side of the vermis), and 

the hemispheres, which are the two most external regions. Two fissures divide the 

cerebellum in a rostral-caudal direction into anterior (lobules I to V), posterior (lobules 

VI to IX), and flocculonodular (lobule X) lobules (Marr, 1969). The cerebellum 

architecture consists of a thin layer of white matter covered by grey matter and three 

pair of deep cerebellar nuclei (medial/fastigial, interpositus, and lateral/dentate). The 

grey matter is composed by three layers: the molecular layer, Purkinje layer, and 

granular layer (Brodal, 2016; Voogd and Glickstein, 1998). The molecular layer is the 

outermost layer and contains few neuronal somas (basket and stellate cells), being 

mainly formed by dendrites and axons of other cells (Voogd and Glickstein, 1998). This 

layer includes dendritic arborizations of Purkinje cells, whose cell bodies are the 

predominant component of the Purkinje layer (Haines and Dietrichs, 2011). The granular 

layer is the deepest layer and limits with white matter. This layer is formed by Golgi, 

Lugaro, and unipolar brush cells, as well as in greater numbers, granule cells (Eccles et 

al, 1964). The majority of cells in the cerebellar cortex are glutamatergic neurons, 

including granule cells and unipolar brush cells. The rest of them are GABAergic neurons 

(Apps and Garwicz, 2005).  

The cerebellar cortex receives information mainly from cerebral cortices, limbic areas 

and basal ganglia through two glutamatergic afferents. Climbing fibres, coming from the 

Figure 2. Cerebellum divisions. The posterior coronal image shows the vermis, paravermis and 
hemispheres, and the posterior lobules. The sagittal image shows a medial section and the distribution of 
all the lobules. 
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inferior olive, climb up to 

dendrites of Purkinje 

neurons. Mossy fibres, 

originated in the pontine 

nuclei, synapse within 

the glomerulus, that 

included Golgi and 

granule cells (Albus, 

1971; Andersen et al, 

1992; Gilbert and Thach, 

1977; Marr, 1969). The 

glomerulus is a structure 

wrapped into a glial 

lamina that limits the 

diffusion of the 

neurotransmitter 

(Barbour and Häusser, 

1997). Golgi cells are the most numerous inhibitory interneuron of the granular layer 

and control the activity of as many as 100 billion granule cells (Marr, 1969). Golgi cells 

can reside at different depths in the granular layer, and their basal dendrites usually 

remain in the granular layer, while apical dendrites ascend into the molecular layer 

traversing the parallel fibre (Albus, 1971). The axons of granule cells ascend to the 

molecular layer and branch into parallel excitatory fibres that come into contact with 

Purkinje somas and dendrites (Brunel et al, 2004; Marr, 1969). Basket and stellate cells 

(inhibitory interneurons) regulate the excitatory inputs on Purkinje cells, and send 

inhibitory signals to the deep cerebellar nuclei (DCN), which control the final output of 

the cerebellum (Ito, 1984; White and Sillitoe, 2013). Golgi cells also receive inhibitory 

innervation from stellate and basket cells, as well as Lugaro cells (Eccles et al, 1964). 

Moreover, DCN receive axon collaterals from the inferior olive and pontine nuclei. The 

DCN are the main output from the cerebellum and are composed mainly of neurons with 

large glutamatergic projections, although they harbour a small number of GABAergic 

neurons that project towards the inferior olivary and pontine nuclei (Gao et al, 2016; 

Figure 3. Cerebellar cortex. Stellate cell (SC), basket cell (BC), Purkinje cell 
(PC), Lugar cell (LC), unipolar brush cells (UBC), Golgi cell (GgC), granule 
cell (GrC), deep cerebellar nuclei (DCN), inferior olive (IO), pontine nuclei 
(PN). 
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Voogd and Glickstein, 1998). The activation of these glutamatergic neurons releases the 

information out of the cerebellum (Shinoda et al, 2000).  

Cerebellum-cerebro reciprocal loops 

Several anatomical and functional studies have proposed that the cerebellum and the 

striatum-cortico-limbic circuit are interconnected (Bostan et al, 2013; Bostan and Strick, 

2018; Rogers et al, 2011). Bostan et al. (2010) demonstrated, with a virus transporter, 

that the subthalamic nucleus of the basal ganglia projects disynaptically to the cerebellar 

cortex (Bostan et al, 2010). Additionally, Rogers et al. (2011) proposed two 

glutamatergic pathways to connect the cerebellum and mPFC. The first network involves 

the lateral nucleus, reticulotegmental nuclei, pedunculopontine nuclei, ventral 

tegmental area (VTA), and finally mPFC (Forster and Blaha, 2003). The second arrives at 

the mPFC through the lateral nucleus and mediodorsal and ventrolateral thalamus 

(Rogers et al, 2011). Both neuronal circuities seem to contribute equally to cerebellar 

modulation of mPFC dopamine release. Studies in humans have observed that lesions 

or alterations of the cerebellum can generate similar deficits to those caused by 

alterations of the prefrontal cortex (Schmahmann and Sherman, 1998; Strata et al, 2011; 

Timmann et al, 2010). A greater release of dopamine in the cerebellar vermis has also 

been observed in humans after a hyperstimulation of the prefrontal cortex (Yoon et al, 

2006). In addition, several anatomical studies in animals have found a dopaminergic 

direct VTA-cerebellar projection (Ikai et al, 1992, 1994) and non-dopaminergic direct 

projections from the DCN to the VTA (Carta et al, 2019; Ikai et al, 1992; Watabe-Uchida 

et al, 2012). Some of these studies observed a connection between the prefrontal cortex 

and cerebellum through dopaminergic projections to the cerebellar cortex and non-

dopaminergic to the DCN (Ikai et al, 1992). Ikai et al. (1994) showed that VTA 

dopaminergic fibres reach both the granular layer and the Purkinje layer. On the other 

hand, the non-dopaminergic fibres from the VTA reached the DCN, mainly the lateral 

and interpositus nuclei. These non-dopaminergic projections were also observed in the 

opposite direction, from the DCN to the VTA, with a contralateral predominance (Carta 

et al, 2019; Ikai et al, 1994). Additionally, the medial and interpositus nuclei send 

projections to the thalamus (Stanton, 1980) and the lateral nucleus project to the 

caudate and putamen (Hoshi et al, 2005).  
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The cerebellum in addiction 

The role of the cerebellum has traditionally been related to posture, motor control, and 

coordination. However, as it has been demonstrated in the last decades, the cerebellum 

also participates in brain functions such as emotional memory and behaviour 

(Adamaszek et al, 2017; Sacchetti et al, 2002a, 2004; Strata et al, 2011; Turner et al, 

2007), linguistic processing (Mariën et al, 2014), planning, prediction and temporal 

perception  (Courchesne and Allen, 1997), reward (Wagner et al, 2017), and decision-

making (Blackwood et al, 2004; Broche-Pérez et al, 2016; Moers-Hornikx et al, 2009).   

As above mentioned, several anatomical studies have shown that the cerebellum 

connects anatomically and functionally with the addiction circuitry (Bostan et al, 2018; 

Buckner et al, 2011; Carta et al, 2019; Chen et al, 2014; Hoshi et al, 2005; Ichinohe et al, 

2000; Ikai et al, 1992; Middleton and Strick, 2000, 2001; Panagopoulos et al, 1991; Sang 

et al, 2012; Stanton, 1980; Watabe-Uchida et al, 2012; Xiao et al, 2018). Moreover, it is 

known that drug use promotes neuroplasticity processes and reorganization in the 

prefronto-cerebellar circuits (Miquel et al, 2009, 2016; Moulton et al, 2014).  

Volumetric studies of magnetic resonance imaging (MRI) have observed smaller 

cerebellums in drug addicts (Barros-Loscertales et al, 2011; Gallinat et al, 2006; Lin et al, 

2012; Shear et al, 1996; Sim et al, 2007). A study conducted in methamphetamine-

addicted individuals showed an increase in grey matter volume in multiple cortical 

regions (angular and temporal gyrus, precuneus, insula, and occipital pole), but a 

reduction in the cerebellum as compared with the normal sample, even after one month 

of abstinence (Morales et al, 2012).  

Additionally, functional magnetic resonance imaging (fMRI) studies have repeatedly 

demonstrated activations in the cerebellum of addicted individuals during cue-reactivity 

tasks for all drugs of abuse. In a group of cocaine abusers exposed to drug-related cues, 

metabolic increases were described in the dorsolateral prefrontal cortex, amygdala, and 

cerebellum (Grant et al, 1996). Another study in cocaine addicts showed left 

hemispheric activation of lateral amygdala, lateral orbitofrontal cortex, and rhinal 

cortex, as well as right hemispheric activation of the dorsolateral prefrontal cortex and 

cerebellum after presentation of drug-related cues (Bonson et al, 2002). Cocaine-



 

13 

associated cues elicit selectively activation in lobules II, III, VIII, and IX of the vermis 

(Anderson et al, 2006). Increases in baseline fMRI activity have also been observed 

bilaterally in the ventral striatum and cerebellum in heroin addicts (Li et al, 2015). In 

alcoholic patients, craving-elicited odour cues activate the right amygdala, 

hippocampus, insula, and cerebellum (Schneider et al, 2001). Remarkably, opioid-

dependent patients present decreased functional connectivity at rest between reward 

structures (NAc and amygdala) and the cerebellum, including Crus I (Upadhyay et al, 

2010).  

It has been assumed that a main role of the basal ganglia in reward prediction and 

reward-based learning, while the cerebellum would be involved in adaptive modification 

of behaviour and error-based learning (Doya, 2000). However, fMRI research showed 

that reward prediction error in a Pavlovian reward association task correlated not only 

with striatum but also with cerebellar activity (O’Doherty et al, 2003). More importantly, 

granule cell activity appeared to encode the expectation of reward (Wagner et al, 2017). 

In this way, the cerebellum may play an influential modulatory role in reward/saliency, 

as it also shares reciprocal connections with dopaminergic systems in the basal ganglia 

(Bostan and Strick, 2010). Strongly supporting the cerebellum’s role in reward, Carta et 

al. (2019) have very recently shown that an optogenetic stimulation of the cerebellar 

axons in the VTA was as rewarding as direct optogenetic stimulation of dopaminergic 

neurons within the VTA.  

Recent research from our lab found a specific and distinctive cerebellar hallmark of 

preference for cues linked to chronic cocaine experience. We have shown that cocaine-

induced conditioned preference significantly increases the activity in neurons located in 

the most dorsal part of the cerebellar cortex in the vermis (the apical part) (Carbo-Gas 

et al, 2014a, 2014b). This pattern was not observed when animals did not develop 

conditioned preference, despite being treated with the same cocaine dose (Carbo-Gas 

et al, 2014a, 2014b).  More specifically, the cerebellar activity correlated with 

preference only in lobule VIII. Thus, lobe VIII could be especially relevant for addiction 

since it is one of the components of the sensorimotor (Bostan et al, 2013; Schmahmann, 

1991) and the limbic networks (Adamaszek et al, 2017), working as an interface among 

sensory processing, emotional states, and motor responses. The posterior vermis has 
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been proposed as "the limbic cerebellum" (Bostan et al, 2013; Strata et al, 2011; 

Timmann et al, 2010; Turner et al, 2007). Therefore, lobe VIII would exhibit an 

advantageous position when making predictions using drug-conditioned memories to 

evoke preparatory operations in motor networks that may automatically activate drug-

seeking (Carbo-Gas et al, 2014b). Supporting this hypothesis, the posterior vermis has 

been involved in the automation of behaviour repertoires towards drug-related cues 

(Yalachkov et al, 2010). 

In conclusion, all these findings indicate that different cerebellar regions participate in   

executive control, drug-induced memory, response selection, and salience (Goldstein 

and Volkow, 2002, 2011; Habas et al, 2009; Volkow et al, 2010) further highlighting the 

cerebellum’s potential role in addiction.  

Drug-induced plasticity changes in the cerebellum 

It has been observed that the acute and chronic experience with cocaine affects both 

the activity and plasticity in the cerebellum. Chronic cocaine use is related to the brain 

interactions between glutamate and dopamine, which have also been found in the 

cerebellum (Schweighofer et al, 2004). More concretely, it has been observed that levels 

of the NR2C subunits of the glutamate receptor were reduced in the rat cerebellum 

during the late withdrawal from cocaine (Yamaguchi et al, 2002). In addition, 

extracellular activity records in the cerebellar cortex showed that cocaine administration 

can decrease the spontaneous activation of Purkinje cells and glutamate-evoked 

discharges (Jiménez-Rivera et al, 2000). Other studies observed an increase of cFos 

levels in the granular layer of the cerebellar vermis (Carbo-Gas et al, 2014a, 2014b), 

mediated via D1 receptors in rats treated chronically with d-amphetamine or cocaine 

(Klitenick et al, 1995).  

The changes that cocaine causes in molecular and structural plasticity of the cerebellum 

appear already at the short term, but they seem to require an incubation time (Vazquez-

Sanroman et al, 2015a, 2015b). In mice, the direction of cerebellar plasticity changes 

depends on the duration of the withdrawal period that precedes a new cocaine 

experience (Vazquez-Sanroman et al, 2015a, 2015b). After a one-week withdrawal, a 

new cocaine administration promoted an increase in proBDNF levels and its expression 
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in Purkinje neurons, while no changes were observed in the expression of mature BDNF 

(Vazquez-Sanroman et al, 2015a). Moreover, cocaine-treated mice showed an increase 

in D3 receptor levels and internal expression of Glu2 subunit of the AMPA receptor. 

Interestingly, these changes were associated with pruning of dendritic spines and a 

reduction in the size and density of the Purkinje synaptic terminals. The cocaine-induced 

effects impaired the inhibitory Purkinje function over the DCN associated with a 

decrease in the probability of remodelling in the Purkinje-DCN synapses, due to an 

upregulation of perineuronal nets (PNNs) that surround the medial nuclear neurons 

(Vazquez-Sanroman et al, 2015a). Conversely, one-month withdrawal period induced an 

increase in both proBDNF and mature BDNF levels in the cerebellum (Vazquez-

Sanroman et al, 2015b). Externalization of GluR2 expression was selectively increased in 

the soma and dendrites of Purkinje cells in the posterior cerebellum. Additionally, we 

found more dendritic branching and larger axon terminals in Purkinje neurons to be 

associated with the increased balanced expression of BDNF. This kind of plasticity 

accompanied a reduction in PNN expression in the DCN that might facilitate the 

subsequent remodelling of Purkinje-DCN synapses.  

PNNs are a specialised extracellular matrix, composed of chondroitin sulphate 

proteoglycans surrounding the soma and proximal dendrites of several neuronal 

populations, which expression restricts neuronal plasticity to stabilize circuits (Brückner 

et al, 1993; Carulli et al, 2006; Foscarin et al, 2011). Consequently, PNN expression has 

been proposed as a stabilization mechanism for plasticity changes in learning and 

memory (Gogolla et al, 2009; Romberg et al, 2013; Tsien, 2013). 

 In addition, PNNs have been involved in the long-lasting expression of drug plasticity 

changes.  Similar effects of PNN disruption through the use of chrondroitinase ABC have 

been observed in different brain regions, and a large number of studies support a PNN’s 

role in drug-induced memories (Blacktop et al, 2017; Van den Oever et al, 2010; Slaker 

et al, 2015, 2016; Xue et al, 2014). PNN degradation in the prelimbic, but not in the 

infralimbic cortex, reduced acquisition and reconsolidation of cocaine-induced 

conditioned place preference (CPP) (Slaker et al, 2015), whereas the digestion of PNNs 

in the amygdala prevented priming-induced drug reinstatement as long as degradation 

was made before extinction (Xue et al, 2014). Furthermore, it has been shown that 
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deletion of PNNs in the anterior dorsal lateral hypothalamic area abolished the 

acquisition of cocaine-induced CPP and significantly diminished self-administration of 

cocaine (Blacktop et al, 2017). In a recent study in our laboratory, animals exposed to 

cocaine-induced preference conditioning showed that the formation of cocaine-related 

preference memories increased the expression of PNNs surrounding Golgi inhibitory 

interneurons and the activity of these Golgi cells surrounded by strong and fully 

condense PNNs in the dorsal region of lobule VIII. However, the expression of PNNs in 

the medial nucleus was reduced in all cocaine-treated groups and thereby was not 

memory related (Carbo-Gas et al, 2017). All these results suggest that the regulation of 

PNNs around Golgi neurons in the cerebellar cortex might be a relevant mechanism for 

the stabilization of drug-related memories.  

Overall, findings using drugs of abuse support the previously demonstrated role of the 

cerebellum in the formation of Pavlovian memories (Boele et al, 2010; Sacchetti et al, 

2002b, 2005; Thompson and Steinmetz, 2009), suggesting that the posterior vermis is 

an important region for the persistence of drug-related memories. More importantly, as 

we previously proposed (Miquel et al, 2009), the relevance of the cerebellum in 

addiction may increase as far as the activity of the prefrontal cortex is reduced. In the 

present doctoral thesis, we proposed for the first time a hypothetical model to explain 

prefrontal-cerebellar interactions for the establishment of cocaine-related conditioned 

memory. 
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AIMS AND HYPOTHESIS 
The premises underpinning the present thesis are the following:  

• The cerebellum is a fundamental region for the consolidation of Pavlovian and 

instrumental conditioned memories.  

• The cerebellum has connections with the prefronto-striatal circuits previously 

related to addictive behaviour.  

• Addictive drugs, and specifically cocaine, promote stable neuroplastic changes in 

the cerebellum.  

• Activity in the posterior cerebellum increases in mice that developed preference 

for cocaine-related cues. 

The general aim of the thesis is to investigate the role of prefronto-cerebellar networks 

in cocaine-induced conditioned memory. More specifically, the present thesis is aimed 

at: (1) studying the function of the prefronto-cerebellar circuits in the acquisition of 

cocaine-induced conditioned preferences; (2) investigating the effects of cerebellar-

prefrontal manipulations on neural activity and plasticity; and (3) proposing a working 

hypothetical model to explain cerebellum-prefrontal relationships in drug addiction.  

Specific aims: 

• To explore the effects produced by deactivations of the medial prefrontal cortex, 

comparing prelimbic and infralimbic cortices on the acquisition of cocaine-

induced preference conditioning. 

• To explore the effects produced by deactivations of the posterior cerebellum, 

specifically lobe VIII of the vermis on the acquisition of cocaine-induced 

preference conditioning. 

• To evaluate the effects of simultaneous prefrontal-cerebellar deactivations on 

cocaine-induced preference conditioning. 

• To investigate whether mPFC deactivations could promote plasticity changes in 

the cerebellum by analysing neuronal activity (cFos) and one of the mechanisms 

for synaptic stabilization, the expression of PNNs, associated with the acquisition 

of cocaine-induced conditioned memory. 
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• To investigate whether impairment in the posterior cerebellar cortex may affect 

activity and PNN expression in the mPFC and the striatum. 

The present thesis proposes, as a general hypothesis, that the posterior cerebellum 

plays a fundamental role in the storage of cocaine-related memories. In this way, our 

predictions were: 

• Infralimbic deactivation will facilitate the acquisition of cocaine-induced 

conditioned memory, while prelimbic impairment will prevent its acquisition. 

• Animals with deactivations of lobe VIII in the vermis will not acquire cocaine-

related memory. 

• No effect of the deactivations will be observed in animals trained under a 

random cocaine-cue association. 

• Activity and plasticity in the cerebellum will be promoted after mPFC 

deactivations.  

• Deactivation of lobule VIII will change the activity and plasticity in the mPFC and 

the striatum. 
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Abstract

Drug-induced Pavlovian memories are thought to be crucial for drug addiction because they guide behaviour towards environments
with drug availability. Drug-related memory depends on persistent changes in dopamine-glutamate interactions in the medial pre-
frontal cortex (mPFC), basolateral amygdala, nucleus accumbens core and hippocampus. Recent evidence from our laboratory indi-
cated that the cerebellum is also a relevant node for drug-cue associations. In the present study, we tested the role that specific
regions of the cerebellum and mPFC play in the acquisition of cocaine-induced preference conditioning. Quinolinic acid was used to
manage a permanent deactivation of lobule VIII in the vermis prior to conditioning. Additionally, lidocaine was infused into the prelim-
bic and infralimbic (IL) cortices for reversible deactivation before every training session. The present findings show, for the first time,
that the cerebellum and mPFC might act together in order to acquire drug-cue Pavlovian associations. Either a dorsal lesion in lobule
VIII or an IL deactivation encouraged cocaine-induced preference conditioning. Moreover, simultaneous IL-cerebellar deactivation
prevented the effect of either of the separate deactivations. Therefore, similar to the IL cortex, neural activity in the cerebellum may
be crucial for ensuring inhibitory control of the expression of cocaine-related memories.

Introduction

The strength and persistence of drug-seeking responses in drug
addiction are thought to be sustained by long-lasting drug-cue asso-
ciative memories that compel goal-directed behaviours towards con-
texts of drug availability (Everitt and Robbins 2005). The incentive
and conditioned reinforcing properties of drug-related cues depend
on persistent changes in dopamine-glutamate interactions in the
medial prefrontal cortex (mPFC), basolateral amygdala (BLA),
nucleus accumbens core (NAcore) and hippocampus (Belin and
Everitt 2008; Volkow et al. 2013).
Remarkably, the cerebellum is closely connected to the functional

loops in the striatum–cortico–limbic circuitry, which has been estab-
lished by tracing techniques, electrostimulation, and optogenetics
(Panagopoulos et al. 1991; Ikai et al. 1992; Hoover and Strick
1999; Ichinohe et al. 2000; Melchitzky and Lewis 2000; Hoshi
et al. 2005; Glaser et al. 2006; Yu et al. 2007; Bostan et al. 2010;
Chen et al. 2014; Herrera-Meza et al. 2014). Moreover, different
regions in the cerebellum have been demonstrated to be involved in

the formation and storage of motor and emotional Pavlovian mem-
ory (Steinmetz et al. 1992; Topka et al. 1993; Sacchetti et al. 2002,
2004; Gao et al. 2016; Giovannucci et al. 2017). Additionally,
growing evidence has indicated that the cerebellum is a relevant
node for drug-cue associations in humans (Moulton et al. 2014) and
animals (Carbo-Gas et al. 2014a,b, 2017). Neuroimaging studies of
cue reactivity in drug addicts have consistently shown activation in
the cerebellum when drug-related cues were presented (Grant et al.
1996; Schneider et al. 2001; Bonson et al. 2002; Anderson et al.
2006; Fuentes et al. 2012). Recent research from our laboratory has
gone a step further in determining an accurate location for the cere-
bellar area involved in these drug-cue associations (Carbo-Gas et al.
2014a,b, 2017). Overall, our findings have indicated that cocaine-
induced preference conditioning selectively increases neural activity
and the expression of perineuronal nets in the dorsal region of the
granular cell layer in the vermis. Correlations between neural activ-
ity and drug-induced conditioned preference were observed in lob-
ules III, VIII and IX. These cerebellar lobules receive dopaminergic
projections from the ventral tegmental area (VTA) (Ikai et al. 1992,
1994) and express dopamine transporters (Melchitzky and Lewis
2000; Carbo-Gas et al. 2014b).
Several studies have observed that the prelimbic (PL) and infralim-

bic (IL) cortices form different reciprocal loops through the brain
(Ong€ur and Price 2000; Vertes 2004; Hoover and Vertes 2007) and

Correspondence: Marta Miquel, as above. E-mail: miquel@uji.es

dited by John Foxe. Reviewed by Ryan LaLumiere and Guy Mittleman.

Received 28 February 2018, revised 14 June 2018, accepted 28 June 2018

All peer review communications can be found with the online version of the article.

© 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd

European Journal of Neuroscience, pp. 1–10, 2018 doi:10.1111/ejn.14187

http://orcid.org/0000-0001-9670-4210
http://orcid.org/0000-0001-9670-4210
http://orcid.org/0000-0001-9670-4210


exhibit opposite roles at the functional level (Ong€ur and Price 2000;
McFarland and Kalivas 2001; Capriles et al. 2003; Peters et al. 2009;
Sierra-Mercado et al. 2011; Ball and Slane 2012; Pfarr et al. 2015).
Specifically, reinstatement of cocaine-seeking behaviour requires the
integrity of the PL cortex (McFarland and Kalivas 2001; McLaughlin
and See 2003), whereas the IL cortex is needed for the suppression of
this response, presumably promoting the extinction of this behaviour
(LaLumiere et al. 2010; Lalumiere et al. 2012).
Thus, two different reciprocal loops have been proposed for the

mPFC. Reinstatement of cue-induced cocaine seeking is driven by
close interactions among the PL, NAcore, BLA and VTA. By con-
trast, the consolidation and expression of extinction of a previously
acquired cocaine seeking response are under the control of the IL,
NAshell and BLA (McFarland and Kalivas 2001; McLaughlin and
See 2003; Lalumiere et al. 2012).
Interestingly, human studies of drug addicts have indicated that the

prefrontal cortex and cerebellum may be recruited in a competitive
manner during reward tasks (Martin-S€olch et al. 2001; Desmond
et al. 2003; Hester 2004; Bolla et al. 2005). In these studies, a pre-
frontal impairment was accompanied by strong activation of the cere-
bellum. Thus, it seems that the cerebellum acquires higher functional
relevance when prefrontal function is compromised by disease or
chronic drug use (Anderson et al. 2006; Miquel et al. 2009).
Very recently, we proposed that the dorsal and ventral regions in

the posterior vermis could be functionally related to different pre-
frontal–striatal–limbic loops in order to initiate or restrain cocaine
seeking (Miquel et al. 2016). In the present investigation, we tested
for the first time the role that specific regions of the cerebellar cor-
tex play in the acquisition of cocaine-induced conditioned prefer-
ence. Additionally, we explored the effects of focal deactivation in
the IL and PL cortices. Finally, we wondered whether simultaneous
IL–cerebellum deactivation would be able to change the effects of
deactivating each of the regions separately. Importantly, this work is
the first attempt to provide support for a causative role of the cere-
bellum in the regulation of drug-related behaviours.

Methods

Subjects

Male Sprague-Dawley rats weighing 175–200 g (N = 151) were
obtained from Janvier (ST Berthevin Cedex, France). Rats were
individually housed in the animal facility (Jaume I University,
Spain) under standard laboratory conditions (12-h light cycle from
8:00 AM to 8:00 PM) with access to food and water ad libitum.
Handling was performed on a daily basis for 2 weeks before the
experiments began. Rats were subjected to stereotaxic surgery when
they reached a weight of 270–350 g. Behavioural protocols took
place within the first 5 hours of the light cycle, 2 hours after the
lights were turned on. All animal procedures were approved by the
local Animal Welfare Ethics Committee and Empowered Body and
were developed in accordance with the European Community Coun-
cil directive (2010/63/EU), Spanish directive BOE 34/11370/2013
and local directive DOGV 26/2010.

Pharmacological agents

Cocaine hydrochloride (Alcaliber S.A., Madrid, Spain) was dis-
solved in a 0.9% saline solution and administered intraperitoneally
(IP). The 0.9% saline solution was used as the control vehicle.
Anaesthesia was induced using a cocktail of ketamine (100 mg/kg)
(Imalgene 100 mg/mL; Mersal Laboratorios S.A., Barcelona,

Espa~na) and xylazine (10 mg/kg) (xylazine hydrochloride ≥ 99%:
Sigma-Aldrich Co. LLC, Madrid, Espa~na). Lidocaine (6%; 60 mg/
mL) (lidocaine hydrochloride: Sigma-Aldrich Co. LLC) and quino-
linic acid (90 nmol/ll) (2,3-pyridinedicarboxylic acid: Sigma-
Aldrich Co. LLc) were used for deactivation of the mPFC and the
cerebellum respectively.

Stereotaxic surgery and brain deactivation procedures

All rats weighed between 270 and 350 g before stereotaxic surgery.
Surgery was performed using a Kopf stereotaxic apparatus. For the
intracranial infusion, a stainless steel guide cannula (length, 10 mm;
external diameter, 23 gauge) was targeted at the following coordinates
with respect to bregma (Paxinos and Watson 1998). For the cerebel-
lum, the dorsal area (AP: �14.5; ML: 0; DV: �4.5) and the ventral
area (AP: �13; ML: 0; DV: �4.5) of lobule VIII in the vermis were
targeted. For the mPFC, the PL (AP: +3.2; ML: +0.6/�0.6; DV: �3)
and IL (AP: +3.2; ML: + 0.6/�0.6; DV: �4) cortices were targeted
(Fig. 1). After the surgery, all the animals received analgesic treatment
with meloxicam (Metacam 5 mg/mL; Boehringer Ingelheim Espa~na
S.A., Barcelona, Espa~na), repeated every 24 hours for 3 days. The
animals remained undisturbed for 3 to 5 days after surgery for recov-
ery (for the experimental timeline see Fig. 2A).
Excitotoxic lesions from quinolinic acid were preferred for the

lesion of the posterior cerebellum (lobule VIII) because in our past
experience, the cannula installation did not remain in place for a
long time. In this case, the infusion was performed only once during
the initial surgery under anaesthesia. Quinolinic acid (90 nmol/ll)
was released through a removable stainless steel injector (length,
11 mm; external diameter, 30 gauge) inserted into the previously
implanted guide cannula and connected to an infusion pump (vol-
ume, 0.5 ll; infusion ratio, 0.2 ll/min). The infusions were made
unilaterally at the middle line of lobule VIII in the vermis (ML: 0),
which is in this cerebellar region that we have previously described
plasticity changes linked to cocaine-related memory (Carbo-Gas
et al. 2014a,b, 2017). After the infusion was completed, the injector
remained in place for 3 minutes to avoid liquid aspiration. Then, the
guide cannula was removed, and the wound was sutured. The same
procedure was implemented in the sham group, but in this case,
phosphate buffered saline (PBS) was infused.
For mPFC deactivations, the guide cannulas were attached to the

skull through stainless steel screws fixed with acrylic dental cement.
Stainless steel obturators were kept in the guide cannula to maintain
the cannula’s integrity. Rats were gently handled while restrained, and
6% lidocaine (60 mg/mL) was infused either into the IL or PL cortex
before each training trial (volume, 1 ll; infusion ratio, 0.5 ll/min).
Rats were not anaesthetised during the microinjections because this
procedure does not involve pain or discomfort for the animals. Beha-
vioural trials began 2 minutes after the infusion, as deactivation via
lidocaine only lasts for 20 minutes (Martin 1991). Sham animals
underwent the same procedure, but saline was infused instead of lido-
caine. Cannula placements for each site were counterbalanced among
the animals in terms of the right and left sides, and infusions were
made unilaterally. Bilateral cannula installations were not included in
this study as we intended to preserve mPFC functions partially in
order to obtain a more realistic picture of what would happen during
an early chronic experience with the drug or in vulnerable brains.
Finally, simultaneous deactivations of the cerebellum and IL cor-

tex were achieved using the two abovementioned procedures in the
same rat. Therefore, rats were trained under a unilateral IL deactiva-
tion together with a neurotoxic lesion in the dorsal region of lobule
VIII. The rationale behind this study was to test whether these two
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regions might act to compensate each other after impairment of any
of them. In this case, one could expect that the effect of separate
deactivations would be prevented.

Cocaine-induced preference conditioning procedure

Conditioning was developed in an opaque, oblong corridor
(90 9 20 9 60 cm) that included two lateral black chambers
(20 9 20 9 60 cm) located on opposite sides. We evaluated the initial
preference for two olfactory stimuli (lavender and rose) of four animals.
Because the innate preferences for the odours were not different [Stu-
dent’s t-test for dependent samples: t (3) = 0.8692, P = 0.4487], these
two equally preferred odours were used in the conditioning experiment.
Two drops of lavender or rose fragrance were put on gauze and pre-
sented inside a steel ball with holes that hung on the walls of the cham-
bers. One of the odours acted as the conditioned stimulus (CS+) and was
associated with cocaine (15 mg/kg, IP). On alternate days, rats were
exposed to the other odour (CS) and received saline injections. During
the training session, the animals remained confined in one of the lateral
chambers, and access to the other side was blocked by a panel. Each
pairing session lasted for 15 min. A total of eight cocaine-cue paired ses-
sions were conducted, and the odours used as the CS+ and CS�, as well
as the left and right locations in the corridor, were counterbalanced
among the animals (Fig. 2B).

Preference for the cocaine-related cue was evaluated 48 hours after
the last cocaine administration in a 30 minutes drug-free test in which
the CS+ and CS� were presented simultaneously on both sides of the
corridor. Importantly, the location of the odours (CS+ and CS�) was
opposite to that in the training. Therefore, for the first 10 minutes of
the test session, the animals were allowed to explore the new location
of the cues, and thus, this period was not included in the analysis.
Then, the time spent (TS) in each chamber was recorded for the last
20 min. All the test sessions were videotaped and scored by a blind
observer. The preference score was calculated as [TS in (CS+)/TS in
(CS+) + TS in (CS�)] 9 100. Additionally, we included a pseudo-
conditioning group (Unp group) that was treated with the same
number of cocaine injections but was randomly associated with both
olfactory stimuli (Fig. 2C). These unpaired groups allowed us to test
for memory-related effects of our brain deactivations.

Locomotor activity

Activity was scored by a blind observer in the videos obtained from
the preference test session. The 20-minute testing period was split into
four segments of 5 min. The number of crossovers was registered by
dividing the corridor into four equal quadrants on the screen. A loco-
motion score was assigned each time an animal crossed over from one
quadrant to another on all four legs. Locomotion was assessed only

A

B

C

Fig. 2. (A) Experimental timeline. Different stages of the experimental procedure from the stereotaxic surgery to the animal perfusion. (B) Cocaine-induced prefer-
ence conditioning protocol for the paired group. For 16 training days, rats received eight cocaine ‘C’ and eight saline ‘S’ administrations on alternate days that were
associated with olfactory stimuli that acted as the CS+ (dark grey) or CS- (light grey). (C) Cocaine-induced preference conditioning protocol for the unpaired group.
The number of cocaine ‘C’ and saline ‘S’ injections was the same as previously mentioned, but they were randomly associated with the odours.

Fig. 1. Diagrams of the cannula locations. Schematic diagrams depicting the largest (grey) and smallest (black) diffusion areas in the PL and IL cortices, as well as
in the dorsal and ventral regions of the cerebellar vermis. The extent of the diffusion areas was assessed using light microscopy and lucida camera drawings.
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during the preference test. During conditioning, motor activity was
not considered, as rats were confined to one of the lateral chambers
for the entire session. Thus, despite the fact that free movement was
possible inside these boxes, the movement was limited to a very short
distance.

Perfusion protocol and brain sampling

Animals were deeply anaesthetised with sodium pentobarbital
(30 mg/kg) (Dolethal 100 mL; Vetoquinol E.V.S.A., Madrid,
Espa~na) 90 minutes after the preference test and were perfused tran-
scardially, first with saline solution (0.9%) and then with
paraformaldehyde (4%). After perfusion, the brain and cerebellum
were quickly dissected and placed in a container with the same fixa-
tive for 24 hours at 4 °C. After this time, the tissue was immersed
in a 30% sucrose solution in PBS until the brain sank. The brain tis-
sue was rapidly frozen by quick immersion in liquid nitrogen, and
40-lm sections were performed with a cryostat microtome (Microm
HM560; Thermo Fisher Scientific, Barcelona, Spain). Four series of
tissue sections were collected and stored at �80 °C in cryoprotec-
tant solution with ethylene glycol. Sagittal sections of the cerebel-
lum and brainstem were selected according to the lateral coordinates
from �0.72 to 0.72 mm, comprising the whole vermis. For the pre-
frontal cortex, coronal sections were collected according to bregma
coordinates from 4.70 to 1.70 mm (Paxinos and Watson 1998). Sev-
eral sections were stained with cresyl violet for assessment of the
cannula locations. Lesion sites were identified and represented using
light microscopy and camera lucida drawings. Rats with cannula
misplacement were used as negative controls and were not included
in the statistical analysis (Fig 1).

Experimental design and statistics

All behavioural data were based on the preference scores obtained
on the test day. Statistical analyses were performed using GraphPad
Prism 7 software (GraphPad Software Inc., La Jolla, CA, USA). As
a first step, we analysed the effect of cerebellar and prefrontal deac-
tivations on cocaine-induced preference conditioning. In this analy-
sis, because the normality requirements were met, the results were
presented as the mean � SEM and were analysed by one-way
ANOVA or Student’s t-tests for independent samples. Then, post hoc
comparisons were performed using Tukey’s HSD tests. As a second
step, we used an arbitrary cut-off point of 60% to cluster sham rats
in two subgroups: the preference (≥ 60%, Sham P) and no prefer-
ence (< 60%, Sham NP) groups. The rationale behind the use of a
cut-off point to conform these two different subgroups was based on
our previous findings that indicated a completely different kind of
cocaine-induced plasticity when comparing mice expressing prefer-
ence with those that did not (Carbo-Gas et al. 2014a,b, 2017). Com-
parisons of the variances in these groups were carried out using
Kruskal–Wallis nonparametric analyses tests with post hoc Dunn’s
multiple comparison test. The results were depicted by scatter plots
and median scores. For the data regarding the proportion of rats
expressing preference scores higher than 60%, a chi-square test was
used to determine differences between the expected vs. observed fre-
quencies. In all analyses, the statistical level of significance was set
at P < 0.05.

Results

The injection sites are shown in Fig 1. As can be seen, focal infu-
sions with very small diffusion areas were achieved in the present

study. Neither of the sham deactivations produced significant effects
on cocaine-induced preference conditioning, as demonstrated by Stu-
dent’s t-tests for independent samples [Sham Dorsal vs. Sham Ven-
tral: (t (19) = 0.6104, P = 0.5489); Sham IL vs. Sham PL: (t
(17) = 0.7523, P = 0.4622)]. Therefore, sham animals were col-
lapsed for each brain region to shape two different control groups,
namely, the Sham cerebellum and Sham mPFC groups. Then, these
two groups were split into preference (P) and no preference (NP)
groups, as explained above. Additionally, we tested for significant
differences between the effects of deactivation on the left and right
sides of the mPFC. Neither the sham [(t (17) = 1.05, P = 0.3085)]
nor the lidocaine groups [IL (t (6) = 1.299, P = 0.2418); PL (t
(5) = 0.06548, P = 0.9503)] exhibited any kind of lateralisation
effect.

An excitotoxic lesion in the dorsal region of lobule VIII
facilitates cocaine-induced preference conditioning

A one-way ANOVA of the preference scores yielded a significant
group effect (F (2,32) = 4.672, P = 0.0166). As shown by subse-
quent post hoc comparisons using Tukey’s HSD tests, the quinolinic
acid dorsal group (QA Dors) (n = 6) exhibited a significantly higher
preference for the CS+ than the control (Sham) (n = 21)
(P = 0.0143) and unpaired dorsal (Unp Dors) (n = 8) (P = 0.0492)
groups (Fig. 3A).
As seen in figure 3A, only a subgroup of the sham rats showed

a clear preference for the cocaine-related odour cue. Therefore,
the sham animals were split into two subgroups, namely, the
Sham NP (n = 15) and Sham P (n = 6) groups, by using the
arbitrary preference cut-off point of 60%. A Kruskal–Wallis test
demonstrated a significant effect of the group factor (H
(4) = 23.06, P < 0.0001). Post hoc comparisons revealed that all
lesioned animals (QA Dors) showed the same preference level as
that of the Sham P group (P > 0.99) (Fig. 3B), and both groups
exhibited an increased preference for the CS+ compared to that
of the Sham NP group (P < 0.001). Then, a chi-square test was
conducted to compare the proportion of animals that met our cri-
teria for preference in each group. Remarkably, the excitotoxic
lesions in the dorsal lobule VIII promoted the acquisition/expres-
sion of cocaine-induced preference conditioning in 100% of the
trained animals (v² (2) = 10.89, P = 0.0043). However, the per-
centage of preference animals in the sham group was 28.57%
(Fig. 3C).

Rats with a ventral region of lobule VIII do not show cocaine-
induced preference conditioning

A one-way ANOVA comparing the preference for the CS+ did not
demonstrate a significant effect of the group factor (F (2,36) = 1.301,
P = 0.2848) (Fig. 3D). Nevertheless, the nonparametric analysis,
which split the sham group into the NP (n = 15) and P (n = 6) groups,
yielded a significant effect of the group factor (H (4) = 16.31,
P < 0.001) (Fig. 3E). Dunn’s multiple comparisons test revealed that
ventrally lesioned animals (QA Vent) showed a similar preference
score to those of the Sham NP (P > 0.99) and unpaired ventral (Unp
ventral) groups (P > 0.99). In addition, the Sham P group exhibited a
higher preference than the Sham NP (P < 0.001) and QA Ventral
(P < 0.004) groups (Fig. 3E). Despite the fact that no lesioned animal
reached the preference score of 60%, a chi-square test revealed no sig-
nificant differences in the proportions of rats that acquired cocaine-
induced conditioned preference after ventral lesions (v² (2) = 3.954,
P = 0.138) (Fig. 3F).
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A temporary deactivation of the IL cortex promotes cocaine-
induced preference conditioning

A temporal deactivation of the IL cortex facilitated the acquisition
of cocaine-induced preference conditioning, as indicated by a one-
way ANOVA (F (2,31) = 8.879, P = 0.0009). As shown by a subse-
quent post hoc comparison using Tukey’s HSD tests, the lidocaine
IL group (Lido IL) (n = 8) exhibited a significantly higher prefer-
ence for the CS+ than the sham (n = 19) (P = 0.0021) and unpaired
lidocaine groups (Unp IL) (n = 7) (P = 0.0021) (Fig. 4A). The
Kruskal–Wallis test showed a significant effect of the group factor
(H (4) = 21.3, P < 0.0001) (Fig. 4B). Dunn’s post hoc comparisons
revealed that a repeated IL deactivation before each training session
increased preference to the same level as that shown by the Sham P
group (P > 0.99). Additionally, both groups were different from the
Sham NP group (P < 0.001 and P < 0.03 respectively), but only the
animals in the lidocaine IL group exhibited a significantly higher
preference than the unpaired group (P < 0.02) (Fig. 4B). Moreover,
100% of deactivated animals expressed a preference score higher
than 60% (v² (2) = 10.6, P = 0.005) (Fig. 4C).

Rats with a temporary deactivation of the PL cortex do not
show cocaine-induced preference conditioning

The transient deactivation of the PL cortex did not produce a signifi-
cant effect on cocaine-induced conditioned preference (F
(2,31) = 1.152, P = 0.3293) (Fig. 4C). Nevertheless, as seen in the

scatter plots (Fig. 4D), PL-deactivated animals (n = 7) showed a
preference score similar to that of the Sham NP group (n = 12). A
Kruskal–Wallis test demonstrated a significant effect of the group
factor (H (4) = 13.14, P = 0.0043). Both the Sham NP (P < 0.01)
and lidocaine PL (P < 0.05) groups were different from the Sham P
group (n = 7), as revealed by post hoc tests (Fig. 4D). However, a
chi-square test of the proportions of animals that met the criterium
for preference revealed no significant differences (v² (2) = 3.579,
P = 0.167) (Fig. 4F).

Simultaneous deactivation of the IL cortex and dorsal lobule
VIII prevents the facilitative effect on cocaine-induced
preference conditioning

Remarkably, the effect of IL deactivation was very similar to that
observed after dorsal lesions of the cerebellar cortex. Therefore, we
managed to deactivate both regions simultaneously in order to ascer-
tain if these regions might outweigh the lack of activity in the other
region after impairment. As expected if they were functionally
related, the facilitative effect of the separate deactivations was pre-
vented by combining both a unilateral deactivation of the IL cortex
and a dorsal lesion of lobule VIII. Student’s t-test for independent
samples supported no differences in the preference scores between
the animals with deactivation and sham animals (t (9) = 0.8126,
P = 0.4374) (Fig 5A). Thus, the proportion of rats expressing pref-
erence was rescued to control levels [(v² (1) = 0.5051, P = 0.4773)]
(Fig. 5B).
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Fig. 3. Effect of an excitotoxic lesion in the cerebellum on cocaine-induced preference conditioning. (A) Preference scores for the CS+ on the test day in the
control (Sham) (n = 21), quinolinic acid dorsal (QA Dors) (n = 6) and unpaired dorsal (Unp Dors) (n = 8) groups. Data are shown as the mean � SEM. (B)
Scatterplots of preference scores for the CS+ on the test day in the Sham NP (n = 15), Sham P (n = 6), QA Dors and Unp Dors groups. Data are shown as the
median and individual preference scores. (C) Percentages of rats expressing a preference score above and below 60% after dorsal lesions of lobule VIII. Dorsal
cerebellar lesions increased the number of rats with a preference score ≥ 60 by up to 100%. (D) Preference scores for the CS+ on the test day in the control
(Sham) (n = 21), quinolinic acid ventral (QA Vent) (n = 11) and unpaired ventral (Unp Vent) (n = 7) groups. Data are shown as the mean � SEM. (E) Scatter-
plots of the preference scores for the CS+ on the test day in the Sham NP (n = 15), Sham P (n = 6), QA Vent and Unp Vent groups. Data are shown as the
median and individual preference scores. (F) Percentages of rats expressing a preference score above and below 60% after ventral lesions of lobule VIII. The
lesions prevented rats from expressing a preference towards the cocaine-related cue. (*P < 0.05; **P < 0.01; ***P < 0.001).
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Motor activity during the preference test is unaffected by
either prefrontal or cerebellar deactivations

Locomotion was assessed during the preference test by dividing the
20-minute testing period into 5 minute segments. Neither of our
manipulations affected locomotion during the preference test, as was
demonstrated by two-way repeated measures ANOVAs of each region.
In all cases, locomotion decayed during the session for all groups
independent of the group factor [Dorsal cerebellum: Group F
(2,10) = 0.888, P = 0.4415; Time F (3,15) = 35.72, P < 0.0001;
Interaction F (6,30) = 2.338; P = 0.0569]; [Ventral cerebellum:
Group F (2,12) = 2.16 P = 0.1581; Time F (3,18) = 25.85,
P < 0.0001; Interaction F (6,36) = 2.212, P = 0.0642]; [IL: Group
F (2,12) = 1.293, P = 0.31; Time F (3,18) = 33.04, P < 0.0001;
Interaction F (6,36) = 0.728, P = 0.0629]; [PL: Group F
(2,12) = 0.489, P = 0.6247; Time F (3,18) = 18.43, P < 0.0001;
Interaction F (6,36) = 2.282, P = 0.0573] (Fig. 6).

Discussion

It is widely accepted that mPFC impairment is a crucial part of the
physiopathology of drug addiction (McFarland and Kalivas 2001;
Van den Oever et al. 2010; Goldstein and Volkow 2011). However,
not until recently has the cerebellum been considered a relevant struc-
ture in understanding the persistent drug-induced behavioural alter-
ations in addiction (Miquel et al. 2009, 2016; Moulton et al. 2014).
The present results show, for the first time, that the dorsal region

of the posterior cerebellum plays a role similar to that of the IL

cortex in the establishment of drug-cue Pavlovian memory. The loss
of activity in either of these regions dramatically increased the num-
ber of animals that expressed cocaine-induced conditioned prefer-
ence. The effects of a lesion in the ventral region of lobule VIII or a
deactivation of the PL cortex are less clear. In both cases, the inacti-
vation seems to reduce the proportion of rats that show preference
for the cocaine-related cue, although statistics do not provide full
support for the significance of the effects. Thus, further research is
needed in order to propose any functional interactions between these
two regions. Importantly, as all the effects were memory-related and
specific for the formation of drug-cue associations, none of our
manipulations were shown to be effective in the pseudo-conditioned
rats (unpaired groups).
We noticed that in our procedure only a small group of control

rats (29%) developed a clear preference for the cocaine-related cue.
Several methodological issues, such as the high cocaine dose used
(15 mg/kg), the use of a discrete odour cue instead of a place pref-
erence procedure or the elevated number of drug-cue pairings, might
explain the reduced number of conditioned animals found in the
sham groups. Nevertheless, both IL and dorsal cerebellar impairment
caused a consistent and robust effect, increasing by up to 100% the
number of animals expressing conditioned preference (Figs 34C–C).
As the IL deactivation was unilateral, the intact contralateral IL or

even the PL cortex might increase its activity, promoting the acquisi-
tion of cocaine-related memory. As a matter of fact, the PL cortex
may be inhibited by the IL cortex (McFarland and Kalivas 2001; Lalu-
miere et al. 2012), and thus, the facilitative effect on cocaine-induced
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Fig. 4. Effect of a temporary deactivation in the mPFC before each training session on cocaine-induced conditioned preference. (A) Preference scores for the
CS+ on the test day in the Sham (n = 19), lidocaine infralimbic (Lido IL) (n = 8) and unpaired infralimbic (Unp IL) (n = 7) groups. Data are shown as the
mean � SEM (**P < 0.01). (B) Scatterplots of the preference scores for the CS+ on the test day in the Sham NP (n = 12), Sham P (n = 7), Lido IL and Unp
IL groups. Data are shown as the median and individual preference scores. (C) Percentage of rats expressing a preference score above and below 60% after the
deactivation of the IL cortex. The IL deactivation increased the number of rats showing a preference score ≥ 60 by up to 100%. (D) Preference scores showed
by the control (Sham) (n = 19), lidocaine prelimbic (Lido PL) (n = 7) and unpaired prelimbic (Unp PL) (n = 8) groups on the test day. Data are shown as the
mean � SEM. (E) Preference scores for the CS+ on the test day in the Sham NP (n = 12), Sham P (n = 7), Lido PL and Unp PL groups. Data are shown as
the median and individual preference scores. (F) The percentage of rats expressing a preference score above and below 60% after the deactivation of PL. The
IL lesion dramatically reduced the proportion of rats that expressed cocaine-induced conditioned preference. (*P < 0.05; **P < 0.01; ***P < 0.001).
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conditioning, caused by a partial IL deactivation, might then be
explained by a reduced inhibition of PL activity. IL deactivation could
also enhance activity in the cerebellum. Indeed, it has been shown that
the prefrontal dysfunction observed in drug addicts is accompanied by
an increase in cerebellar activity (Martin-S€olch et al. 2001; Desmond
et al. 2003; Hester 2004; Bolla et al. 2005). Similarly, lesions of the
dorsal cerebellum could boost neural activity in the mPFC, striatum
and limbic regions and thereby facilitate cocaine-induced preference
conditioning. Supporting a close functional loop, our results also
revealed that simultaneous cerebellum-IL impairment prevents the
facilitative effect of separate deactivations. This finding suggested that
both the IL cortex and the dorsal cerebellum might increase their rele-
vance during conditioning when the other region has been compro-
mised. Subsequently, if both areas are impaired at the same time, this
compensatory function will not be possible, and the propensity to

acquire cocaine-induced conditioned preference will resemble that of
the control group.
The present findings argued in favour of our recent hypothesis

proposing that the dorsal regions of the posterior vermis are part of
the IL-NAshell-BLA network (Miquel et al. 2016). Our previous
work established that the plasticity hallmark signatures of cocaine-
induced preference conditioning are expressed in the dorsal region
of the cerebellar cortex (Carbo-Gas et al. 2014a,b). Strikingly, we
showed here that the acquisition of drug-cue associations is facili-
tated when the same region of the cerebellar cortex is damaged.
Taken together, our findings suggested that the dorsal region of the
posterior vermis might inhibit drug seeking using previously learned
Pavlovian associations that involve other additional regions in the
striatum–cortico–limbic circuitry. Interestingly, behavioural inhibi-
tion has been one of the functions ascribed to the cerebellum

A B

Fig. 5. Effect of a simultaneous deactivation of the IL cortex and dorsal cerebellum on cocaine-induced preference conditioning. (A) Preference scores for the
CS+ on the test day in the Sham (n = 7) and IL + Dorsal (n = 4) groups. Data are shown as the mean � SEM. The facilitative effect of separate deactivations
was blocked after combining both a unilateral deactivation of the IL cortex and a dorsal lesion of lobule VIII. (B) The percentage of rats expressing a preference
score above and below 60% after the simultaneous IL + Dorsal cerebellar deactivation. The number of rats that acquired preference for the cocaine-related olfac-
tory stimulus was similar to that in the control group.

A B C D

Fig. 6. Effects of deactivation in the cerebellum and mPFC on locomotor activity during the preference test. (A) A dorsal excitotoxic lesion in the cerebellum
[(Sham: n = 21); (QA Dors: n = 6); (Unp Dors: n = 8)]. (B) Ventral excitotoxic lesion in the cerebellum [(Sham: n = 21); (QA Vent: n = 11); (Unp Vent:
n = 7)]. (C) Deactivation of the IL cortex [Sham: n = 19; (Lido IL: n = 8); (Unp IL: n = 7)]. (D) Deactivation of the PL cortex [(Sham: n = 19); (Lido PL:
n = 7); (Unp PL: n = 8). Data are shown as the mean � SEM. Locomotion decayed during the session for all groups independent of the group factor and the
region deactivated.
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(Moers-Hornikx et al. 2009; Picazio and Koch 2015). Cerebellar
lesions promote behavioural disinhibition (Schmahmann and Sher-
man 1998; Tanaka et al. 2003), whereas increasing activity in the
cerebellum improves inhibitory control (Brunamonti et al. 2014).
Numerous studies have found reciprocal loops between the pre-

frontal cortex and the cerebellum that may provide anatomical evi-
dence to explain the present results (Middleton and Strick 1994,
2001; Schmahmann and Pandya 1997; Sang et al. 2012; see Bostan
and Strick 2018 for a recent compelling review). Moers-Hornikx
et al. (2009) observed an increase in cFos expression in the deep
cerebellar nuclei and the prefrontal cortex after deep brain stimula-
tion of the mediodorsal and ventrolateral thalamic nuclei in rats.
Furthermore, cortical regulation of striatal activity can be modulated
by the cerebellum (Chen et al. 2014). A direct dopaminergic VTA-
cerebellar projection has also been demonstrated (Ikai et al. 1992,
1994). Detectable DA levels were found in the posterior lobules of
the vermis (VII–X), the right and left hemispheres and the fastigial,
interpositus and dentate nuclei (Glaser et al. 2006). In addition, it
has been shown that the cerebellar cortex may regulate dopamine
release in the mPFC by several independent pathways. First, the
cerebellum connects to the VTA through the reticulotegmental and
pedunculopontine nuclei (Forster and Blaha 2003). Second, the cere-
bellum projects to the VTA through the mediodorsal and ventrolat-
eral thalamus (Rogers et al. 2011). Finally, and more relevant for
the present discussion is the finding of a direct projection from the
deep cerebellar nuclei to the VTA (Watabe-Uchida et al. 2012).
This projection would be crucial for explaining the present results as
it provides a direct pathway for the cerebellum to control the cor-
tico-striatal circuitry through an increase in dopaminergic activity.
Nevertheless, a number of caveats and limitations of the present

study should be considered. Our sample only included rats with focal
lesions in lobule VIII. It is noteworthy that other anterior or posterior
cannula locations (lobule VII or IX) did not seem to reproduce the
facilitative effect on cocaine-induced preference conditioning. Recent
evidence indicated that the cerebellum is subdivided into different spe-
cialised regions to regulate specific behaviours (Glickstein et al. 2011;
Witter and De Zeeuw 2015). However, it has also become clear that a
cerebellar lobule is not the main functional unit. First, a lobule can
contain several functional areas; second, cerebellar functions can
encompass several lobules (Witter and De Zeeuw 2015). This raises
the question of which functional characteristics and connectivity pat-
terns make the dorsal region of lobule VIII in the vermis somehow rel-
evant to associative memory and behavioural inhibition. The dorsal
cerebellar cortex receives sensorimotor corticopontine and exterocep-
tive components of the mossy fibre afferent system, providing neural
information from cortical sensorimotor networks to the cerebellum
(Ekerot and Larson 1972; Voogd and Ruigrok 2004). In addition, a
recent study of motor associative learning established a prominent
nucleocortical excitatory projection of mossy fibres to the most superfi-
cial region of the granule cell layer that optimised the conditioned
response (Gao et al. 2016). Granule cell activity in this area is present
during unconditioned and conditioned stimuli, as well as during the
conditioned response (Giovannucci et al. 2017). This activity also
encodes the expectation of reward (Wagner et al. 2017). Classically,
lobule VIII in the vermis was considered part of the skeletomotor divi-
sions of the cerebellum, projecting to motor cortices through the fasti-
gial nucleus and also to the descending motor pathways (Glickstein
et al. 2011). It is important to highlight that the present cerebellar
lesion did not cause a generalised and unspecific motor disinhibition
because locomotor activity during the preference test was not affected.
Lobules VII–X of the vermis have also been proposed to serve as an
interface among sensory processing, emotional states and motor

responses, due to the anatomical and functional connectivity with the
amygdala and other areas of the emotional brain (Adamaszek et al.
2017). Therefore, it is plausible for the cerebellum to modulate the
reward response in other areas of the striatum–cortico–limbic circuitry.
In conclusion, our findings open new avenues to understanding

the role of the cerebellum in drug addiction. Further research using
specific experimental approaches is needed to determine the control
of different neuronal populations in the dorsal and ventral regions of
the vermis.
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ABSTRACT 
Prelimbic (PL) and infralimbic (IL) cortices exhibit opposite roles in drug-related 

behaviour. The PL cortex is involved in initiating cocaine-seeking, while the IL cortex is 

responsible, among other functions, for the inhibitory control over drug-seeking. 

Importantly, several findings support the existence of reciprocal loops between the 

medial prefrontal cortex (mPFC) and the cerebellum. Neuroimaging studies in human 

addicts with prefrontal damage have shown an overactivation of the cerebellum during 

reward and cognitive tasks. Thus, the cerebellum may become more relevant when 

prefrontal function is compromised by disease or chronic drug use. In the present 

research, we investigated whether impairment of the mPFC during the acquisition of 

cocaine-induced preference conditioning may increase drug impact on neural activity 

and PNN expression in the cerebellum, as well as different striatal regions. Before every 

training session, lidocaine was infused into PL and IL for a reversible deactivation. The 

results showed that IL deactivation increased the probability of developing cocaine-

induced preference conditioning, while PL deactivation prevented it. Moreover, the 

formation of cocaine-related preference memories was associated with an increase in 

cFos expression and PNNs intensity in the dorsal region of the posterior cerebellum. 

Additionally, cocaine-induced preference memory increased cFos expression in the 

nucleus accumbens shell. Therefore, our findings suggest that impairment of the mPFC 

function increases susceptibility to the acquisition of drug-induced Pavlovian memory, 

but do not exhibit a direct effect of mPFC deactivations on cerebellar activity and 

plasticity. All this data suggest that the cerebellum might be a critical region for the 

storage or reactivation of conditioned associations that predict drug availability. 

 

Keywords: cocaine, mPFC, cerebellum, lidocaine, PNNs 
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INTRODUCTION 
The rat medial prefrontal cortex (mPFC) includes four different functional regions: the 

medial precentral cortex (PrCm), anterior cingulate cortex (AC), prelimbic (PL) cortex, as 

well as infralimbic (IL) cortex (Edward, 1992; Heidbreder and Groenewegen, 2003; 

Hoover and Vertes, 2007; Ongür and Price, 2000; Vertes, 2004). The different 

subdivisions have been linked to a wide range of brain functions dramatically affected 

in drug addiction, such as working memory, decision-making, executive control, 

instrumental learning, and emotion (Cardinal et al, 2002; Delatour and Gisquet-Verrier, 

2000; Dias and Aggleton, 2000; Heidbreder and Groenewegen, 2003; Milad and Quirk, 

2002; Mogensen and Holm, 1994; Morgan et al, 1993; Ragozzino et al, 1998, 1999). 

Particularly, several studies have observed that the PL and IL cortices exhibit opposite 

roles in drug-related behaviours (Ball and Slane, 2012; Capriles et al, 2003; McFarland 

and Kalivas, 2001; Ongür and Price, 2000; Peters et al, 2009; Pfarr et al, 2015; Sierra-

Mercado et al, 2011). The PL cortex is involved in initiating cocaine-seeking (Martín-

García et al, 2014; McFarland and Kalivas, 2001; Zavala et al, 2003), while the IL cortex 

is responsible, among other functions, for the inhibitory control over drug-seeking 

(Lalumiere et al, 2012; LaLumiere et al, 2010; McFarland and Kalivas, 2001; Peters et al, 

2008). Thus, infusions of dopaminergic antagonists or pharmacological inactivators into 

the PL cortex prior to the reinstatement of cocaine self-administration decreased lever 

pressing for the drug (McFarland et al, 2004; McFarland and Kalivas, 2001; McLaughlin 

and See, 2003). Oppositely, the IL deactivation before extinction promoted cocaine-

seeking (Lalumiere et al, 2012; Peters et al, 2008). Consistent with an inhibitory role of 

the IL region, its pharmacological stimulation before relapse decreased drug-seeking 

(Peters et al, 2008). Notwithstanding these findings, inhibitory control seems also to 

require PL function, since optogenetic stimulation of the PL cortex decreased 

compulsive cocaine-seeking in rats (Chen et al, 2013).  

The PL and IL cortices form separated reciprocal loops through the striatum-limbic 

circuitry (Hoover and Vertes, 2007; Ongür and Price, 2000; Vertes, 2004). Indeed,  the 

nucleus accumbens core (NAcC) receives inputs primarily from the PL cortex, whereas 

the nucleus accumbens shell (NAcSh) receives afferences from the IL cortex (Sesack et 

al, 1989; Voorn et al, 2004). The activation of the glutamatergic projection from the PL 
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cortex to the NAcC seemed to be critical for the reinstatement of cocaine-seeking after 

extinction (McFarland et al, 2003, 2004). Conversely, the inactivation of the 

glutamatergic projection from the IL cortex to the NAcSh restored cocaine-seeking after 

extinction (Lalumiere et al, 2012; Peters et al, 2008). Furthermore, the manipulation of 

the plasticity mechanism for synaptic stabilization within the PL and IL cortices impact 

differently on cocaine-related behaviour. Thus, the degradation of perineuronal nets 

(PNNs) around GABAergic inhibitory interneurons in the PL, but not in the IL cortex, 

attenuated acquisition and reconsolidation of cocaine-induced conditioned place 

preference (Slaker et al, 2015).  

Importantly, several findings support the existence of reciprocal loops between the 

mPFC and the cerebellum (Bostan and Strick, 2018; Middleton and Strick, 1994, 2001; 

Sang et al, 2012; Schmahmann and Pandya, 1997). Electrical stimulation of the fastigial 

nucleus, the main output nucleus of the vermis, evokes local action potentials and 

regulates the activity in the PL cortex (Watson et al, 2014). Moreover, cortical regulation 

of striatal activity can be modulated by the cerebellum (Chen et al, 2014). Moers-

Hornikx et al. (2009) observed an increase in cFos expression in the deep cerebellar 

nuclei and the prefrontal cortex after deep brain stimulation of the mediodorsal and 

ventrolateral thalamic nuclei in rats. Neuroimaging studies in human addicts with 

prefrontal damage have shown an overactivation of the cerebellum during reward tasks, 

especially with increased cognitive demands (Bolla et al, 2005; Desmond et al, 2003; 

Hester and Garavan, 2004; Martin-Sölch et al, 2001). These results indicated that the 

cerebellum may become more relevant when prefrontal function is compromised by 

disease or chronic drug use, suggesting that both regions can be recruited to functionally 

compensate each other (Anderson et al, 2006; Miquel et al, 2009).  

In a previous study (the first chapter), we investigated the functional relationships 

between the PL and IL subdivisions of the mPFC and the cerebellum in a model of 

cocaine-induced conditioned preference (Gil-Miravet et al, 2018). Our findings showed 

that a deactivation of either the apical region of lobule VIII in the vermis or the IL cortex 

encouraged the acquisition of cocaine-induced preference conditioning. Simultaneous 

deactivation of both regions prevented this facilitative effect on cocaine-related 

memory. However, opposite results were found after a deactivation of the PL cortex or 
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deeper regions of lobule VIII. In both cases, the acquisition of preference for the cocaine-

related cue was prevented. 

In the present research, we investigated whether impairment of the mPFC during the 

acquisition of cocaine-induced preference conditioning may increase drug impact on 

neural activity and PNN expression in the cerebellum as well as different striatal regions.  

 

METHODOLOGY 

Subjects 
The present study included 27 male Sprague-Dawley rats (Janvier, ST Berthevin Cedex, 

France) randomly selected from the total number of rats included in the first study with 

mPFC deactivation (N = 49) (Gil-Miravet et al, 2018) (Chapter 1). Rats, weighing between 

175 and 200 g, were individually housed under standard laboratory conditions with 

temperature and humidity controlled (12 h light cycle from 8:00 a.m. to 8:00 p.m.). 

Access to food and water was ad libitum (Jaume I University, Spain). Animals were 

handled on a daily base one week before the experiment began and were habituated to 

all of the experimental procedures. Animal procedures were approved by the local 

Animal Welfare Ethics Committee and Empowered Body (2014/VSC/PEA/00208) and 

adhered to the European Community Council directive (2010/63/EU), Spanish directive 

BOE 34/11370/2013, and local directive DOGV 26/2010. 

Pharmacological agents 
Cocaine hydrochloride (Alcaliber S.A., Madrid, Spain) was dissolved in a 0.9% saline 

solution and administered intraperitoneally (IP). Saline solution was used as a control 

vehicle. Anaesthesia was induced using a cocktail of ketamine (100 mg/kg) (Imalgene 

100 mg/ml, Mersal Laboratorios S.A., Barcelona, Spain), and xylazine (10 mg/kg) 

(Xylazine hydrochloride ≥99%, Sigma-Aldrich, Madrid, Spain). Lidocaine 6% (60 mg/ml) 

(Lidocaine hydrochloride, Sigma-Aldrich, Madrid, Spain) was used for a transient 

deactivation of the PL or IL.  

 



 

34 

Stereotactic surgery and temporal deactivation 
Animals weighing between 270 and 350 g were anaesthetised with a cocktail of 

ketamine/xylazine (100/10 mg/kg) (IP). Surgery was performed using a Kopf stereotaxic 

apparatus. For the intracranial infusion, a stainless steel guide cannula (10 mm length; 

23-gauge external diameter) was placed in the PL (AP: +3.2; ML: + 0.6/−0.6; DV: −3) or 

IL (AP: +3.2; ML: + 0.6/−0.6; DV: −4) cortices (Paxinos and Watson, 1998) (Fig. 1). The 

guide cannula was applied to the skull with screws and acrylic dental cement. After 

surgery, all animals received analgesic treatment with meloxicam (Metacam 5 mg/ml, 

Boehringer Ingelheim, Barcelona, Spain). Administration was repeated every 24 hours 

for three days. The rats were left undisturbed for five days after surgery for recovery. 

Before each training session, lidocaine 6% (60 mg/ml) was infused in the PL or IL using 

an infusion pump (1 μl volume; infusion ratio of 0.5 μl/min). Microinjections were 

conducted in awake animals because this procedure is painless. Behavioural testing 

started two minutes after the lidocaine infusion. Sham surgery followed the same 

protocol, but saline was infused instead of lidocaine. This procedure was repeated 

before every conditioning trial (16 days). Cannula installations were unilateral in all the 

Figure 1. Diagrams of the cannula locations. Schematic diagrams depicting the largest (grey) and 
smallest (black) diffusion areas in the PL and IL cortices. The extent of the diffusion areas was assessed 
using light microscopy and camera lucida drawings. 
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experiments, counterbalancing the right and left hemispheres. The rationale was to 

partially preserve the functions of the mPFC in order to model an early chronic 

experience with the drug in susceptible brains.  

Cocaine-induced preference conditioning procedure  
Conditioning was developed in an opaque corridor (90 × 20 × 60 cm) containing two 

black chambers (20 × 20 × 60 cm) located on the opposite arms (Gil-Miravet et al, 2018). 

We evaluated the initial preference for two odours (lavender and rose) in four animals. 

A Student t-test for independent samples [t (6) = 0.2843; p = 0.7856] revealed no 

preference towards any of these olfactory stimuli. Then, these two equally preferred 

odours were used in the conditioning experiment as previously described (Gil-Miravet 

et al, 2018). One of the odours was associated with cocaine (15 mg/kg, IP) (CS+) and the 

other one with saline (CS-). The odours were counterbalanced between animals. For 

each pairing session, the rats were confined in one of the chambers for 15 min. Eight 

cocaine- and eight saline-paired sessions were conducted on alternate days. Odour 

locations were also counterbalanced in the corridor.  

Preference for the CS+ was evaluated 48 h after the last cocaine administration in a 30 

min drug-free test in which CS+ and CS− odours were present simultaneously but in 

opposite arms in the corridor. All the test sessions were videotaped and scored by a 

blind observer. The first ten minutes were not considered in order to allow the animal 

to explore the location of the odours. Preference score was calculated as [Time Spent in 

CS+ / (Time Spent in CS+ + Time Spent in CS−)] × 100. An additional group of rats 

underwent the same procedure as the deactivated animals, but cocaine injections were 

randomly associated with the odours (Gil-Miravet et al, 2018) (the Unp group). This 

pseudo-conditioned group allowed us to test for memory-related effects of prefrontal 

deactivations.  

Perfusion protocol and brain sampling 
Animals were perfused 90 min following the preference test. Animals were deeply 

anaesthetised with sodium pentobarbital (30 mg/kg) (Dolethal 100 ml, Vetoquinol 

E.V.S.A., Madrid, Spain) and perfused transcardially with saline (0.9%) and 

paraformaldehyde (4%). After perfusion, the brain and cerebellum were quickly 
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dissected and placed in a container with the same fixative for 24 h at 4 ºC. Then, the 

tissue was immersed in sucrose solution (30%). The tissue was rapidly frozen by quick 

immersion in liquid nitrogen. Sagittal (cerebellum) and coronal (brain) sections were 

performed at 40 μm with a cryostat microtome (Microm HM560, Thermo Fisher 

Scientific, Barcelona, Spain). Four series of tissue sections were collected and stored at 

−80 °C in cryoprotectant solution. Lesion sites were localized and represented using light 

microscopy and camera lucida drawings. Animals with cannula misplacement were not 

included in the statistical analysis. 

Immunohistochemistry and immunofluorescence 
cFos immunohistochemistry was performed on free-floating sections. For peroxidative 

immunostaining, tissue peroxidases were eliminated with 0.3% of H₂O₂ and methanol 

20%, during a period of 30 min. Tissue was incubated for 48 h with polyclonal primary 

antibody rabbit anti-cFos (1:1000; Synaptic Systems, Goettingen, Germany) in PBS 0.1M 

tween X-100 (PBSt) at 4 °C. In a second step, sections were exposed to affinity purified 

secondary biotinylated antibody goat anti-rabbit (1:400; Jackson InmunoResearch 

Laboratories, Inc., West Grove, PA, USA) in PBSt for 120 min at room temperature. For 

magnification, we used preassembled biotin–avidin peroxidase complex according to 

the Vector Labs recommendations (ABC Elite; Vector Laboratories, Bulingame, Ca, USA). 

Sections were exposed to DAB solution with nickel. Then, the tissue was rinsed and 

mounted in Eukitt (Sigma-Aldrich, Madrid, Spain). 

PNNs were labelled by incubating cerebellar tissue with the lectin Wisteria Floribunda 

Agglutinin (WFA) (1:200; Sigma-Aldrich, Madrid, Spain) at 4 °C overnight in PBS 0.1M 

triton X-100. Samples were then exposed to Cy3-conjugated Streptavidin (1:200; 

Jackson InmunoResearch Laboratories, Inc., West Grove, PA, USA) for 120 min at room 

temperature. The sections were mounted in Mowiol.  

Image analysis 
Images from cFos immunostaining were acquired using an optic microscope (Nikon E-

800, Izasa Werfen Group, Valencia, Spain) with 20x lenses and a resolution of 1,360 x 

1,024 dpi. We acquired images of the following regions: the apical region of lobules VIII 

and IX of the cerebellar vermis, dorsomedial striatum (DMS), dorsolateral striatum (DLS), 
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ventrolateral striatum (VLS), NAcC, and NAcSh. Three images were taken by structure 

and hemisphere in coronal sections. We used bregmas between 1.60 mm to 0.70 mm 

for the striatum and NAc, as well as three sagittal sections between lateral 0.40 mm to 

-0.40 mm for the cerebellum. Unmanipulated images were used to estimate the density 

of cFos+ neurons. The estimation was made in selected regions of interest (ROIs) of 

80,000 μm² for striatal structures and 20,000 μm² for the cerebellum. We considered 

cFos positive neurons only those cells exhibiting a uniform and constant black labelling 

in the nucleus. Results are given as number of cFos positive neurons per mm².  

PNNs images were captured in a confocal microscope (Leica DMi8, Leica Microsystems 

CMS GmbH, Wetzlar, Germany) with 20× lenses and resolution 2,048 x 2,048 dpi. Laser 

intensity (1%), gain (750), and offset (-1) were maintained constant in each acquisition. 

Three images in sagittal sections of the dorsal region of lobules VIII and IX were taken 

from the vermis. We assessed the intensity (brightness range 0-255) of all PNNs in 

unmodified images by randomly selecting 15 pixels (approximately equidistant from 

each other) in the net surrounding the neuronal soma and calculating their average. We 

also counted the number of PNNs and calculated their average manually with ImageJ’s 

software cell counter plugin. We used FIJI free software (Schindelin et al, 2012) for all 

analyses. 

Experimental design and statistics 
Behavioural data relied on preference scores obtained on the test day. Statistical 

analyses were performed using GraphPad Prism 7 software (GraphPad Software Inc., La 

Jolla, CA, USA). First, we analysed the effect of mPFC deactivations on preference scores 

and immunohistochemistry data by means of one-way ANOVAs and post hoc Tukey’s 

HSD tests. Results were presented as mean ±SEM. Second, we applied an arbitrary cut-

off point of 60% to cluster sham rats in two subgroups: the preference group (≥60%, Sh 

P) and the no preference group (<60%, Sh NP) (Gil-Miravet et al, 2018). Our previous 

findings have shown the utility of such clustering to predict cocaine-induced cerebellar 

plasticity (Carbo-Gas et al, 2014a, 2014b, 2017) and the effects of mPFC lesions (Gil-

Miravet et al, 2018). Therefore, we compared cFos and PNN expression among the Sham 

P, Sham NP, mPFC deactivation (PL or IL) and Unp groups. Comparisons between 

variances and frequencies in these groups were carried out using Kruskal-Wallis for non-
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parametric distributions. Post hoc analyses were performed by Dunn’s multiple 

comparison tests. Spearman's correlation analyses were calculated to investigate the 

correlation between cFos expression and preference scores. The statistical level of 

significance was set at p < 0.05. Scatterplots were depicted in all figures.  

 

RESULTS 
Histological infusion sites and their respective diffusion areas can be seen in figure 1. 

The comparison of preference scores between the sham IL and sham PL groups did not 

yield significant differences (Student’s t-tests (t (12) = 0.06335, P = 0.9505). For this 

reason, we pooled both groups to form a single sham group for the analysis. Then, the 

sham group was split using the cut-off point of 60% into the preference (Sh P) and no 

preference (Sh NP) groups.  

Figure 2. Effect of IL or PL temporal deactivation before each training session on cocaine-induced 
conditioned preference The IL deactivation increased the proportion of rats that expressed cocaine-
induced conditioned preference, while the PL deactivation prevented it. (A) IL deactivations. Data are 
shown as the mean ± SEM and scatterplots of the preference scores for the CS+ on the test day in the sham 
(n=14), infralimbic deactivation (IL) (n = 7) and unpaired IL deactivation (Unp IL) (n = 6) groups. (C) PL 
deactivations. Mean ± SEM and scatterplots of preference scores for the CS+ on the test day in the sham 
(n=14), prelimbic deactivation (PL) (n = 7) and unpaired PL deactivation (Unp PL) (n = 6) groups. (B-D) 
Results after clustering the sham group in the sham no preference (Sh NP) (n = 7) and sham preference (Sh 
P) (n = 7) groups. Data are shown as the median and scatterplots. (*P < 0.05; **P < 0.01; ***P < 0.001).  
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A one-way ANOVA showed significant effects for the group factor (F (2,24) = 4.774, p = 

0.0180). As shown by a subsequent post hoc comparison using Tukey’s HSD tests, the IL 

deactivation facilitated the acquisition of cocaine-induced preference conditioning. The 

IL group (n = 7) exhibited a significant higher preference for the CS+ than the sham (n = 

14) (p = 0.049) and unpaired groups (Unp IL) (n = 6) (p = 0.019) (Fig. 2A). On the contrary, 

the PL deactivation did not produce a significant effect on cocaine-induced conditioned 

preference (F (2,24) = 1.718, p = 0.2007) (Fig. 2C). No lateralisation effect was found in 

any of the groups when comparing left and right deactivation sides: Sham (t (12) = 

0.5654, P = 0.5822); IL (t (5) = 1.076, P = 0.3310); PL (t (5) = 0.0655, P = 0.9503).  

After clustering rats using the cut-off point for preference (60%), a Kruskal–Wallis 

analysis confirmed that IL deactivation increased the number of animals that exhibited 

a preference score higher than 60% (H (4) = 15.66, P = 0.0013) (Fig. 2B). Dunn’s post hoc 

comparisons showed that the IL group (n = 7) exhibited significantly higher preference 

for the CS+ than the Sh NP (n = 7) (P = 0.0005) and Unp IL (n = 6) (P = 0.0042) groups. 

However, post hoc comparisons revealed no differences between the IL and Sh P groups 

(P > 0.2) (Fig. 2B).  

Oppositely, PL deactivation seemed to block the acquisition of cocaine-induced 

preference conditioning. A Kruskal–Wallis test showed a significant effect of the group 

factor (H (4) = 10.71, P = 0.0134), being the Sh P group that exhibited a higher preference 

as compared to the Sh NP (P = 0.0081), PL (P = 0.0033) and Unp PL (P = 0.0278) groups 

(Figure 2D). 

Deactivations of mPFC generate differential effects on cerebellar 
activity  
We focused our analysis on cFos activity in the apical (dorsal) region of lobules VIII and 

IX, as previous research from the group indicated that this is the cerebellar region that 

showed significant differences linked to the expression of cocaine-induced conditioned 

preference (Carbo-Gas et al, 2014a, 2014b). Therefore, we were interested in 

investigating whether the effects of mPFC deactivations on cerebellar activity could be 

modulated by the expression of preference for the cocaine-related cue. A Kruskal–Wallis 

test showed significant effects in the number of cFos+ cells in lobule VIII (H (4) = 22.01, 
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P < 0.0001) and lobule IX (H (4) = 19.99, P = 0.0002). In lobule VIII, cFos expression 

increased in the IL and Sh P groups regarding the groups not expressing preference (Sh 

NP: P = 0.0017 and P = 0.0368, respectively) and (Unp IL: P < 0.0001 and P = 0.0014, 

respectively) (Fig. 3A). Similar increase in the number of cFos+ neurons was found in 

lobule IX as an effect of the IL deactivations (Sh NP (P = 0.0071) and Unp IL (P < 0.0001) 

groups). However, in this case, the Sh P group was only different from the Unp IL (P = 

0.0010) group (Fig. 3B).   

The expression of cFos in the cerebellum after PL deactivations showed a different 

pattern. Kruskal–Wallis test also demonstrated a significant effect for lobule VIII (H (4) = 

18.52, P = 0.0003) and IX (H (4) = 18.35, P = 0.0004). However, Dunn’s multiple 

comparisons test for lobule VIII revealed that the number of cFos+ neurons in the PL 

group was not different from that of the Sh NP (P > 0.3) and Unp PL (P > 0.3) groups. 

Only the Sh P group exhibited higher cFos expression than the other groups (Sh NP (P = 

0.022), PL (P = 0.0016), Unp PL (P < 0.0001)) (Fig. 4A). Similar results were observed for 

Figure 3. Effect of PL deactivation on cFos expression in the dorsal region of lobules VIII and IX of the 
cerebellar vermis. (A-B) Number of cFos positive cells/mm2 in lobule VIII and IX 90 min after the preference 
test in the Sh NP (n = 7), Sh P (n = 7), prelimbic deactivation (PL) (n = 7) and unpaired PL deactivation (Unp 
PL) (n = 6) groups. Representative pictures of cFos staining in lobule VIII and IX for each group are depicted 
on the bottom panel. All images were taken at 20x magnification. Scale 50 μm. (*P < 0.05; **P < 0.01; 
***P < 0.001, ****P < 0.0001). Brightness was standardised across images. 
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lobule IX. The expression of cocaine-induced preference (Sh P) increased cFos levels as 

compared to those groups that did not express preference (Sh NP (P = 0.0339), PL (P = 

0.0071), Unp PL (P < 0.0001)) (Fig. 4B).  

Significant correlations were 

observed between cFos 

expression and preference in 

lobule VIII (r = 0.8216; P < 0.0001) 

and IX (r = 0.7956; P < 0.0001) 

(Fig. 5A-B). 

In summary, the expression of 

preference for cocaine-related 

cues was associated with an 

increase in cFos expression in the 

Figure 5. Correlations between cFos expression and preference 
scores in lobules VIII and IX (A) Correlation between cFos 
positive cells/mm2 and percentage of preference in lobule VIII. 
(B) Correlation between cFos positive cells/mm2 and preference 
percentage in lobule. IL group (purple dots), PL group (green 
dots), sham group (blue dots).  

Figure 4. Effect of IL deactivation on cFos expression in the dorsal region of lobules VIII and IX of the 
cerebellar vermis. (A-B) Number of cFos positive cells/mm2 in lobule VIII and IX, 90 min after the preference 
test in the Sh NP (n = 7), Sh P (n = 7), IL deactivation (n = 7) and Unp IL deactivation (n = 6) groups. 
Representative pictures of cFos staining in lobule VIII and IX for each experimental group appear below. 
All images were taken at 20x magnification. Scale bar 50 μm. (*P < 0.05; **P < 0.01; ***P < 0.001, ****P 
< 0.0001). Brightness was standardised across images. 
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posterior cerebellum. IL and PL deactivations oppositely influenced cerebellar activity, 

and their effects seem to be modulated by the expression of cocaine-induced 

conditioned preference. While all rats with IL deactivation showed conditioned 

preference and an increase in cerebellar activity, those that underwent PL deactivation 

did not.  

Different impact of mPFC deactivations on striatal activity 
The Kruskal–Wallis tests for the results of the IL experiment showed significant effects 

on cFos expression in the DMS (H (3) = 7.75, P = 0.0208) and NAcSh (H (3) = 12.79, P = 

0.0017)), but not in the DLS (H (3) = 2.08, P = 0.3539), VLS (H (3) = 2.57, P = 0.2773), and 

NAcC (H (3) = 1.21, P = 0.5672) (Fig. 6A). Significantly greater numbers of cFos+ neurons 

were observed in the DMS and NAcSh for the IL (P = 0.0264, P = 0.0071) and Sh P (P = 

0.0103; P = 0.0007) groups as compared to the Sh NP group, respectively.  

Significant effects were observed in the DMS (H (3) = 7.03, P = 0.0.297), NAcC (H (3) = 

9.11, P = 0.0.105) and NAcSh (H (3) = 11.26, P = 0.0011), but not in the DLS (H (3) = 1.79, 

P = 0.4077) and VLS (H (3) = 3.29, P = 0.1932) in the PL experiment (Fig. 6B). For the DMS, 

Figure 6. Mean number of cFos positive cells/mm2 in DMS, DLS, VLS, NAcC and NAcSh for IL and PL 
deactivations. (A) IL deactivation. DMS, DLS, VLS, NAcC and NAcSh in Sh NP (n = 7), Sh P (n = 7) and IL (n = 
7) groups. (B) PL deactivation. DMS, DLS, VLS, NAcC and NAcSh in Sh NP (n = 7), Sh P (n = 7) and PL (n = 7) 
groups. On the right, representative pictures of cFos staining in the NAcC and NAcSh for the four 
experimental groups. All images were taken at 20x magnification. Scale bar 50 μm. (*P < 0.05; **P < 0.01; 
***P < 0.001). Brightness was standardised across images. Data are shown as the median score 
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the Sh NP group showed lower cFos activity than the Sh P (P = 0.0251) and PL (P = 0.0189) 

groups. In the NAcC, PL deactivation increased the number of cFos+ neurons as 

compared to the Sh NP (P = 0.0032) and Sh P (P = 0.0429) groups. Finally, in the NAcSh, 

the level of cFos expression in PL deactivated animals was very similar to that of the Sh 

NP group. Only the Sh P group showed a significant increase in cFos activity with respect 

to the other groups (Sh NP: P = 0.0014; PL: P = 0.0125).  

Taken together, the present results indicated that mPFC deactivations showed 

differential effects in the NAc. After IL deactivation, activity in the NAcSh increased at 

the same level as that of those animals expressing preference. On the contrary, PL 

deactivation increased neural activity within the NAcC, but did not change activity in the 

NAcSh. Moreover, after the PL deactivation, neural activity in the NAcSh was very similar 

to that exhibited by those rats not expressing preference for cocaine-related cues. 

Deactivation of both mPFC regions impacted DMS activity similarly and did not change 

neural activity in other striatal regions.  

Cocaine-induced conditioned preference upregulates PNN 
expression around Golgi interneurons in the cerebellar cortex  
The expression of PNNs surrounding Golgi interneurons showed significant effects for 

the group factor in both experiments. (IL) lobule VIII (H (4) = 19.87, P = 0.0002) and IX (H 

(4) = 19.58, P = 0.0002); (PL) lobule VIII (H (4) = 12.25, P = 0.0066), and IX (H (4) = 14.69, 

P = 0.0021). 

Cerebellar PNNs in those groups expressing preference (IL and Sh P) were stronger than 

PNNs in the Sh NP (P = 0.0011; P = 0.0184, respectively) and Unp IL (P = 0.0002 and P = 

0.0039, respectively) groups (Fig. 7A). In Lobule IX, the results were very similar, and 

more intense PNNs were found in the IL and Sh P groups as compared to the Sh NP (P = 

0.0005; P = 0.0311, respectively) and Unp IL (P = 0.0002; P = 0.0125, respectively) groups 

(Fig. 7B).  

Oppositely, PL deactivation induced fainter expression of PNNs in lobules VIII and IX 

resembling the expression of those groups that did not express cocaine-induced 

conditioned preference. Thus, in this case, only the Sh P group showed PNNs more 

intense than the rest of groups in lobule VIII (P < 0.02) and IX (P < 0.05) (Fig. 8A-B). 
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Finally, the correlation between preference and PNNs intensity were significant in lobule 

VIII (r = 0.6521; P = 0.0002) and in the lobule IX (r = 0.5817; P = 0.0012) (Fig. 9A-B).  

In conclusion, the expression of preference for the cocaine-related cue was associated 

with stronger and fully condense PNNs. As was previously described for neural activity, 

the key factor in explaining the upregulation of PNNs around Golgi interneurons was the 

acquisition of cocaine-induced conditioned memory that seemed to be mediating the 

effects of mPFC deactivations on cerebellar plasticity.  

 

 

Figure 7. PNN expression surrounding Golgi interneurons in the posterior vermis after IL deactivation. 
(A-B) Average intensity of WFA at the dorsal region of the granule cell layer in lobules VIII and IX in the Sh 
NP (n = 7), Sh P (n = 7), IL (n = 7) and Unp IL (n = 6) groups. On bottom panels, representative 
microphotographs of PNNs around Golgi interneurons stained with Wisteria floribunda agglutinin (WFA) 
(red). The confocal images were acquired at 20x with a 2x zoom for a final amplification of 80x, 
respectively. Scale bar 20 µm. PNN surrounding Golgi cells were still stronger and more prominent in the 
Sh P and IL groups. (*P < 0.05; **P < 0.01; ***P < 0.001).  
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Figure 8. PNN expression around Golgi interneurons the posterior vermis after PL deactivations. (A-B) 
Average intensity of WFA at the dorsal region of the granule cell layer in lobules VIII in the Sh NP (n = 7), 
Sh P (n = 7), PL (n = 7) Unp PL (n = 6) groups. Representative microphotographs of PNNs in the dorsal region 
of cerebellar cortex stained with Wisteria floribunda agglutinin (WFA) (red). The confocal images were 
acquired at 20x with a 2x zoom for a final amplification of 80x, respectively. Scale bar 20 µm. PNN 
surrounding Golgi cells were stronger and more prominent only in the Sh P group. (*P < 0.05; **P < 0.01; 
***P < 0.001). 

Figure 9. Correlations between PNNs intensity and preference scores in lobules VIII and IX (A) Correlation 
between WFA intensity and percentage of preference in lobule VIII. (B) Correlation WFA intensity and 
preference percentage in lobule IX. IL group (purple dots), PL group (green dots), sham group (blue dots). 
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DISCUSSION 
A large number of studies have shown that prefrontal cortex plays a crucial role in drug 

addiction in animals and humans (Chen et al, 2013; Goldstein and Volkow, 2011; 

Lasseter et al, 2010; McFarland and Kalivas, 2001; Volkow et al, 2015). Functional 

impairment of the prefrontal cortex underlies loss of inhibitory control over drug-

seeking (Chen et al, 2013; Jentsch and Taylor, 1999). Remarkably, the cerebellum, 

always being considered a motor structure, has revealed itself as an important region 

for the addiction field during  the last decade (Miquel et al, 2009, 2016; Moulton et al, 

2014). In previous studies, we showed that cocaine-induced preference conditioning 

enhanced cFos expression and upregulates PNN expression in the apical region of the 

posterior cerebellum in mice  (Carbo-Gas et al, 2014a, 2014b, 2017).  In the present 

study, we wanted to explore whether mPFC hypofunction would influence cocaine-

dependent activity and plasticity in the cerebellum. Thus, we trained rats to acquire a 

cocaine-cue conditioned association under temporal deactivation of either the IL or PL 

cortex. Our findings indicated that impairment of these two regions in the mPFC may 

have a different impact on cocaine-related memory. Then, such an impact modulates 

neuronal activity and plasticity in the cerebellum.  

In the first chapter (Gil-Miravet et al, 2018), we demonstrated that an IL deactivation 

produces a robust increase in the percentage of animals that develop a preference for 

the cocaine-related cue. The analysis of the subsample of rats we selected for the 

immunohistochemistry study yielded the same results. Therefore, we can conclude that 

IL deactivation during conditioning increased the likelihood of acquiring drug-induced 

memories. As lidocaine administrations were performed before each training session, 

but not on the test day, the IL deactivation could only affect the acquisition phase. In 

this way, on the test day, IL deactivated animals were under similar conditions to those 

in the sham group. Our results, together with the already existing literature (Lalumiere 

et al, 2012; LaLumiere et al, 2010; Peters et al, 2008; Rocha and Kalivas, 2010), suggest 

that the IL cortex can be part of an inhibitory route for the acquisition of drug-seeking. 

IL deactivation enhanced neural activity in the apical region of the granule cell layer in 

the posterior vermis. This increase was not seen in animals with PL deactivation. Neither 

was it seen in those cerebella from control animals that did not express preference for 
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the cocaine-related cue. However, a more careful analysis of the present data did not 

support a direct effect of the IL deactivation. Neural activity in this region of the 

cerebellar cortex also increased in control rats expressing preference. Hence, our results 

suggest that IL deactivation by facilitating the acquisition of cocaine-induced 

conditioned preference increased neural activity in the cerebellum. The present results 

are consistent with our previous observations in mice and support also our hypothesis 

about the function of the posterior cerebellar cortex in drug reward (Carbo-Gas et al, 

2014a, 2014b, 2017; Moreno-Rius and Miquel, 2017). We have proposed that the 

posterior cerebellar cortex generates unconscious predictions of drug availability after 

cue presentation while monitoring the internal state under drug abstinence (Moreno-

Rius and Miquel, 2017). Cue exposure would then trigger a cerebellum-generated 

prediction of drug availability, thereby activating the preparation of the brain networks 

(striatal-limbic loops) responsible for drug-seeking and taking. Moreover, we observed 

that when animals are confined in the only presence of the cocaine-related cue without 

the possibility of selecting the other alternative (CS-), the increase in cerebellar activity 

is prevented (Carbo-Gas et al, 2017). Therefore, our past and present results indicate 

that neural activity in the granule cell layer of the cerebellar cortex may reflect the 

behavioural selection driven by the cocaine-related cue. They also indicate that if drug 

experience occurs under IL impairment, the probability for the acquisition of cocaine-

induced conditioned memory, as well as the development of associated cerebellar 

changes raises. Interestingly, neuroimaging studies showed that greater cerebellar 

activity accompanied prefrontal dysfunction in drug addicts (Bolla et al, 2005; Desmond 

et al, 2003; Hester and Garavan, 2004; Moulton et al, 2014). 

In the present research, the acquisition of cocaine-induced preference was also 

associated with an upregulation of PNNs around Golgi inhibitory interneurons in the 

apical region of the cerebellar cortex. Stronger and fully condense PNNs were found 

after IL deactivation, but also in control animals that acquired the conditioned memory. 

These findings suggest that cocaine-induced conditioned memory, and not IL 

hypofunction, is the key factor in increasing PNNs expression around Golgi interneurons. 

Indeed, those groups that did not express conditioned preference, such as the PL 

deactivation group, pseudo-conditioned groups, and the no preference group all exhibit 
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faint PNNs around Golgi interneurons. Similar results were described previously in mice 

(Carbo-Gas et al, 2017). The expression of PNNs surrounding Golgi inhibitory 

interneurons in the apical region of the cerebellar cortex were stronger in animals that 

exhibit preference for the cue associated with cocaine. A reduced PNN intensity might 

correspond to an immature PNN with increased capacity for plasticity, whereas higher 

intensity would correspond to a mature PNN with decreased capacity for plasticity 

(Wang and Fawcett, 2012).  In this way, the animals that acquired preference and, 

therefore, generated cocaine associated memories, developed fully condense PNNs and 

consequently their capacity for plasticity was reduced. Sorg et al. (2016) have proposed 

that stronger PNNs could "stamp in" synaptic connections that represent drug-cue 

associations, preventing future synaptic remodelling. With stronger PNNs, the new 

synapses formed during drug-induced conditioning would be more stable and difficult 

to modify.  Accordingly, a recent study observed that the degradation of PNNs in the PL 

cortex in cocaine-induced CPP memory impaired acquisition and reconsolidation of 

cocaine-induced place preference memories (Slaker et al, 2015).  Moreover, PNNs 

degradation in the amygdala following drug exposure, but before extinction training, 

augments extinction and inhibits subsequent reinstatement of drug-seeking behaviour 

(Xue et al, 2014). Other recent investigations have observed that the degradation of 

PNNs in the lateral hypothalamic area abolishes the acquisition of cocaine-induced 

conditioned place preference, reduces cocaine self-administration, and blocked the 

expression of cue-induced reinstatement of cocaine- but not sucrose-seeking behaviour 

(Blacktop et al, 2017; Blacktop and Sorg, 2018).  

In the cerebellum, PNNs are also developed around glutamatergic and GABAergic 

projection  in the deep cerebellar nuclei (DCN) (Carulli et al, 2006). These PNNs did not 

change after the acquisition of cocaine-induced preference memory, at least as far as 

the medial nucleus concerns (Carbo-Gas et al, 2017). They have demonstrated, 

however, to be regulated by plasticity events affecting Purkinje neurons during periods 

of cocaine abstinence. Thus, stronger and more intense PNNs are found after a short 

period of abstinence associated with a kind of molecular and structural plasticity which 

reduce Purkinje cell capacity to inhibit DCN neurons (Vazquez-Sanroman et al, 2015). On 

the contrary, PNNs are downregulated in the medial nucleus when the synaptic capacity 
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of Purkinje neurons increased after longer periods of abstinence (Vazquez-Sanroman et 

al, 2015).  

Deactivations of the IL and PL cortices generated different effects on activity in the NAc. 

Literature suggests that the PL-to-NAcC pathway promotes drug-seeking behaviour and 

the IL-to-NAcSh pathway is responsible for the extinction of drug-seeking behaviour 

(Lalumiere et al, 2012; McFarland and Kalivas, 2001; Peters et al, 2008). As observed in 

the cerebellum, neural activity in the NAcSh was related to cocaine-induced conditioned 

preference. NAcSh activity increased only in animals expressing preference. Several 

studies suggest that NAcSh is involved in the suppression of cocaine-seeking behaviour 

(Di Ciano et al, 2008; Peters et al, 2008). Lalumiere et al. (2012) found that AMPA 

receptor blockade in the NAcSh restored cocaine-seeking previously inhibited by a 

positive modulator of AMPA receptor activation of IL afferents to the NAcSh (Lalumiere 

et al, 2012). Oppositely, AMPA receptor blockade in the NAcC prevented cue-induced 

reinstatement of cocaine-seeking (Bäckström and Hyytiä, 2007; Di Ciano and Everitt, 

2001; Cornish and Kalivas, 2000; McFarland and Kalivas, 2001). The NAcSh and NAcC 

receive glutamatergic input from the IL and PL, respectively,  and dopaminergic inputs 

from the VTA (Fallon and Moore, 1978; Sesack et al, 1989). A recent study observed that 

optical inhibition of VTA-to-NAcC afferents prevented cocaine-seeking reinstatement 

(Stefanik and Kalivas, 2013). These dopaminergic projections seem to be critical for 

learning and maintenance of goal-directed responding, including drug-seeking 

behaviour (Ettenberg, 1989; Koob and Swerdlow, 1988). Moreover, dopaminergic and 

non-dopaminergic projections from the VTA to cerebellum have been described (Ikai et 

al, 1992, 1994), supporting the presence of dopamine transporters and receptors in the 

cerebellar cortex and deep nuclei  (Ikai et al, 1992; Melchitzky and Lewis, 2000; 

Panagopoulos et al, 1991). Previous studies in our laboratory observed increases in 

levels of dopamine transporter in the posterior cerebellum of animals that develop 

cocaine-induced conditioned preference (Carbo-Gas et al, 2014a).  

In conclusion, our laboratory studies do not support a direct effect of mPFC 

deactivations on cerebellar activity and plasticity. On the contrary, they indicate that 

impairment of the mPFC function increases or decrease susceptibility to the acquisition 

of drug-induced Pavlovian memory thereby modulating cerebellar activity. In addition, 
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they suggest that the cerebellum might be a critical region for the storage or reactivation 

of conditioned associations that predict drug availability. 
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ABSTRACT 
It is now clear that the cerebellum may modulate brain functions altered in drug 

addiction. We previously demonstrated that cocaine-induced conditioned preference 

increased activity at the apical region of lobule VIII in the vermis. Activity in lobule VIII 

was significantly correlated with the level of preference towards cocaine-conditioned 

cues. Unexpectedly, a neurotoxic lesion of lobule VIII raised by up to one hundred the 

percentage of animals that acquired cocaine-induced conditioned preference. The 

present research aimed at providing an explanatory model for the facilitative effect of 

the cerebellar lesion on cocaine-induced conditioned memory. We evaluated cFos 

expression in different regions of the medial prefrontal cortex and striatum after a lesion 

in lobule VIII before conditioning. Additionally, to explore whether the cerebellar lesion 

might affect synaptic stabilization mechanisms in the medial prefrontal cortex, PNN 

expression was assessed. Damage in this region of the vermis induced a general 

disinhibition of the mPFC and striatal subdivisions that receive dopaminergic 

projections, mainly from the ventral tegmental area (VTA). Moreover, cerebellar 

impairment induced an upregulation of PNN expression in the mPFC. Finally, we 

addressed a tracing study using anterograde and retrograde tracers in order to build a 

working neuroanatomical model to explain the present results. We found a direct 

projection from the lateral nucleus to the VTA that also receives Purkinje axons from 

lobule VIII in the vermis. Hypothetically, this pathway might control activity and 

plasticity of the cortico-striatal circuitry through an increase in dopaminergic activity. 

 

Keywords: cocaine, cerebellum, quinolinic acid, PNNs, VTA 
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INTRODUCTION 
For decades, the cerebellum’s role has been restricted only to motor functions. 

Fortunately, in recent years, numerous investigations have described the involvement 

of the cerebellum in non-motor functions including language, spatial and emotional 

processing, reward, working memory, and executive functions (Ball et al, 1974; Carta et 

al, 2019; Corbett et al, 1982; Sacchetti et al, 2002; Schmahmann and Pandya, 1997; 

Turner et al, 2007; Wagner et al, 2017; Watson et al, 2014; Zhu et al, 2011). Anatomical 

and functional studies in rodents and non-human primates have shown extensive 

pathways that connect the cerebellum to the prefrontal cortex, striatum, amygdala, 

thalamus, hippocampus and basal ganglia (Bostan et al, 2018; Buckner et al, 2011; Chen 

et al, 2014; Hoshi et al, 2005; Ichinohe et al, 2000; Ikai et al, 1992; Middleton and Strick, 

2000, 2001; Panagopoulos et al, 1991; Sang et al, 2012; Stanton, 1980; Xiao et al, 2018). 

More recently, two findings pointed to a direct control of the cerebellum over the 

ventral tegmental area (VTA) (Carta et al, 2019; Watabe-Uchida et al, 2012). All these 

results suggest that the cerebellum is part of cortical-striatal-limbic loops and may 

modulate brain functions altered in drug addiction (Miquel et al, 2009, 2016; Yalachkov 

et al, 2010). 

Indeed, the cerebellum plays an important role in the consolidation of emotional 

memory, as well as in the establishment of automatic behavioural protocols (Callu et al, 

2007; Sacchetti et al, 2002). Moreover, neuroimaging studies of drug-induced cue 

reactivity in drug addicts described cerebellar activation after the presentation of drug-

related cues (Anderson et al, 2006; Bonson et al, 2002; Fuentes et al, 2012; Grant et al, 

1996; Moulton et al, 2014; Schneider et al, 2001). In a mice model of cocaine-induced 

conditioned preference, we showed that only those animals that developed preference 

for cocaine-related cues exhibited increased activity at the apical region of the cerebellar 

vermis (Carbo-Gas et al, 2014a, 2014b, 2017). Although this effect was found throughout 

the cerebellar cortex, only activity in lobule VIII was significantly correlated with the level 

of preference towards cocaine-related cues (Carbo-Gas et al, 2014b). Furthermore, 

cocaine-induced conditioned preference also increased the expression of perineuronal 

nets (PNNs) surrounding Golgi inhibitory interneurons located in the same region of the 

vermis (Carbo-Gas et al, 2017), suggesting that drug-induced Pavlovian memory 
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encouraged one of the main mechanisms for synaptic stabilization (Sorg et al, 2016).  On 

that basis, one could expect a neurotoxic lesion localised in lobule VIII to prevent the 

acquisition of cocaine-induced conditioned preference. On the contrary, the cerebellar 

lesion dramatically raised by up to 100 the percentage of rats that acquired cocaine-

induced conditioned preference (Gil-Miravet et al, 2018). The same effect was observed 

after a reversible deactivation of the infralimbic (IL) cortex (Gil-Miravet et al, 2018). 

Moreover, simultaneous IL-cerebellar deactivation prevented the effect of either of the 

separate manipulations (Gil-Miravet et al, 2018). These results were in agreement with 

findings reporting that the IL cortex is required for the suppression of cocaine-seeking 

response and expression of extinction memory (Lalumiere et al, 2012; LaLumiere et al, 

2010). Overall, our findings suggested that both the cerebellum and IL cortex might act 

together in regulating the establishment of drug-cue Pavlovian associations.  

In the present work, we aimed at: (1) further investigating cerebellum-infralimbic 

functional relationships for the acquisition of cocaine-induced conditioned preference; 

and (2) proposing a functional model to explain the effects of the cerebellar lesion in 

cocaine-conditioned memory. We assessed cFos expression in different regions of the 

medial prefrontal cortex (mPFC) and striatum after a neurotoxic lesion in the apical 

region of lobule VIII before conditioning. Also, to explore whether the cerebellar lesion 

might affect synaptic stabilization mechanisms in the mPFC, PNN expression was 

evaluated. Finally, we addressed a tracing study using anterograde and retrograde 

tracers in order to build a working neuroanatomical model to explain the present results.  

 

METHODOLOGY 

Subjects 
Twenty-two male Sprague-Dawley rats (Janvier, ST Berthevin Cedex, France) weighing 

between 175 and 200 g were randomly selected from the rats included in the first study 

(Gil-Miravet et al, 2018) (Chapter 1). Animals were individually housed under standard 

laboratory conditions, with controlled temperature and humidity (12 h light cycle from 

8:00 a.m. to 8:00 p.m.) and access to food and water ad libitum (Jaume I University, 

Spain). Rats were handled and habituated to all of the experimental procedures. All 
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animal procedures were approved by the local Animal Welfare Ethics Committee and 

Empowered Body (2014/VSC/PEA/00208) and developed in accordance with the 

European Community Council directive (2010/63/EU), Spanish directive BOE 

34/11370/2013 and local directive DOGV 26/2010. 

Brain infusions and stereotactic surgery 
The animals were anaesthetized using a cocktail of ketamine (100 mg/Kg) (Imalgene 100 

mg/ml, Mersal Laboratorios S.A., Barcelona, Spain) and xylazine (10 mg/kg) (Xylazine 

hydrochloride ≥99%, Sigma-Aldrich, Madrid, Spain) (IP), and placed in a Kopf stereotaxic 

apparatus for the surgery. We use a stainless-steel guide cannula (10 mm length; 23-

gauge external diameter) for the intracranial infusion of quinolinic acid (QA) (90 

nmol/μl) (2,3-Pyridinedicarboxylic acid, Sigma-Aldrich, Madrid, Spain) dissolved in 

phosphate buffered saline (PBS). The coordinates for the dorsal region of lobe VIII in the 

vermis were AP: −14.5; ML: 0; DV: −4.5  (Paxinos and Watson, 1998) (Fig. 1). QA infusion 

(0.5 μl volume; infusion ratio of 0.2 μl/min) was released through a removable stainless-

steel injector (length, 11 mm; external diameter, 30-gauge) inserted into the previously 

implanted guide cannula. After infusion, the cannula remained in place for 3 min to allow 

for diffusion. The same procedure was implemented in the sham group infusing PBS. 

After the surgery, all the animals received analgesic treatment with meloxicam 

(Metacam 5 mg/ml, Boehringer Ingelheim, Barcelona, Spain) for 24 hours for three days. 

Cannula locations were verified by Nissl immunostaining and camera lucid. More 

detailed information can be found in (Gil-Miravet et al, 2018).  

Figure 1. Diagrams of the cannula locations. Schematic diagrams depicting the largest (grey) and smallest 
(black) diffusion areas in the apical region of lobule VIII in the vermis. The extent of the diffusion areas was 
assessed using light microscopy and camera lucida drawings. 
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For the tracing study, retrograde and anterograde tracers were infused in different 

regions of the brain. As a retrograde tracer, we used FluoroGold with DAPI (FG) 

(Hydroxystilbamidine, Biotium, Barcelona, Spain). The anterograde tracing was 

accomplished using Dextran Biotin (BDA) (10,000 MW, Lysine Fixable, Thermo Fisher 

Scientific, Barcelona, Spain). The following coordinates were used: IL (AP: +3.2; ML: + 

0.6/−0.6; DV: −5); VTA (AP: -5.2; ML: + 0.9/−0.9; DV: −8.3); lateral nucleus (Lat) (AP: -

11.4; ML: + 3.6/−3.6; DV: −6.2); interpositus nucleus, anterior part (IntA) (AP: -11.3; ML: 

+ 2.5/−2.5; DV: −5.8); interpositus nucleus, posterior part (IntP) (AP: -11.7; ML: + 

2.5/−2.5; DV: −6.2); medial nucleus (Med) (AP: -11.4; ML: + 1/−1; DV: −6.2); and the 

apical area of lobe VIII in the vermis (AP: −14.5; ML: 0; DV: −4.5) (Paxinos and Watson, 

1998). FG or BDA infusion volumes were 0.5 µl in the IL and 0.3 µl in the rest of regions 

with an infusion ratio of 0.2 µl /min. After infusions, the rats remained undisturbed for 

ten days before perfusion. 

Cocaine-induced preference conditioning procedure  
The cocaine-induced conditioning procedure has been published previously (Gil-Miravet 

et al, 2018). Briefly, conditioning was conducted using two equally preferred olfactory 

stimuli located in the walls of a black chamber (20 × 20 × 60 cm) at the opposite arms of 

a corridor. One of the odours acted as the conditioned stimulus (CS+) and was associated 

with an IP injection of cocaine hydrochloride (15 mg/kg, IP) (Alcaliber S.A., Madrid, 

Spain). On alternate days, rats were exposed to the other scent (CS−) placed at the 

opposite black chamber in the corridor and received 0.9% saline injections. During 

pairing sessions (15 min) animals remained confined in the chamber. A total of eight 

cocaine-paired sessions were conducted. The olfactory cues and locations in the corridor 

were counterbalanced between animals. Preference for the cocaine-related cue was 

evaluated 48 h after the last cocaine administration in a 30 min drug-free test in which 

CS+ and CS− odours were present simultaneously but in opposite arms of the corridor. 

The first ten minutes were not considered in order to allow the animal to explore the 

location of the odours, which was the opposite to the conditioning phase. The 

preference score was calculated as [TS in CS+ / (TS in CS+ + TS in CS−)] × 100. Additionally, 

we included a pseudo-conditioning group (the Unp group) that was treated with the 

same number of cocaine injections, but randomly associated with the olfactory stimuli. 
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The Unp group allowed us to test for memory-related effects of our cerebellar 

deactivations. Animals were perfused transcardially 90 min following the preference 

test. 

Immunohistochemistry and immunofluorescence 
Animals were deeply anaesthetised with sodium pentobarbital (30 mg/kg) (Dolethal 100 

ml, Vetoquinol E.V.S.A., Madrid, Spain) and perfused transcardially with saline (0.9%) 

and paraformaldehyde (4%) 90 min following the preference test. After perfusion, the 

brain and cerebellum were quickly dissected and placed in a container with the same 

fixative for 24 h at 4 ºC. Then, the tissue was immersed in sucrose solution (30%). The 

brain tissue was frozen with liquid nitrogen, and sections were performed at 40 μm with 

a cryostat microtome (Microm HM560, Thermo Fisher Scientific, Barcelona, Spain). Eight 

series of tissue sections were collected and stored at −80 °C in cryoprotectant solution. 

Lesion sites were localized and represented using light microscopy and camera lucida 

drawings. Animals with cannula misplacement were not included in the statistical 

analysis. 

Immunolabelling was performed on free-floating sections. For cFos peroxidative 

immunostaining, tissue peroxidases were eliminated and the brain tissue was incubated 

for 48 h with a polyclonal primary antibody, rabbit anti-cFos (1:1000; Synaptic Systems, 

Goettingen, Germany) and then, for 120 min with an affinity purified secondary 

biotinylated antibody, goat anti-rabbit (1:400; Jackson InmunoResearch Laboratories, 

Inc., West Grove, PA, USA). For magnification, we used preassembled biotin–avidin 

peroxidase complex according to the Vector Labs recommendations (ABC Elite; Vector 

Laboratories, Bulingame, Ca, USA). Sections were exposed to DAB solution with nickel. 

Then the tissue was rinsed and mounted in Eukitt (Sigma-Aldrich, Madrid, Spain).  

For the double fluorescence immunolabelling of PNNs and cFos, brain tissue was 

incubated with lectin from Wisteria Floribunda Agglutinin (WFA) (1:200; Sigma-Aldrich, 

Madrid, Spain) and the polyclonal primary antibody, rabbit anti-cFos (1:1000; Synaptic 

Systems, Goettingen, Germany) at 4 °C for 48 hours in PBS 0.1M triton X-100. In a second 

step, brain samples were exposed to FICT-Streptavidin (1:50; Jackson InmunoResearch 
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Laboratories, Inc., West Grove, PA, USA) and goat anti-rabbit Cy5 (1:200, Synaptic 

systems, Goettingen, Germany).  

The anterograde tracer BDA was revealed using Cy3-conjugated Streptavidin (1:300; 

Jackson InmunoResearch Laboratories, Inc., West Grove, PA, USA). Different 

transporters were marked at the same time as the tracers. In a first step, brain tissue 

was incubated with rabbit anti-Calbindin 28k (1:1500; Swant, Marly, Switzerland) and 

guinea pig Anti-VGAT cytoplasmic (1:100; Synaptic Systems, Goettingen, Germany), and 

then exposed to donkey anti-rabbit Alexa 488 (1:500; Thermo Fisher Scientific, Geel, 

Belgium) and goat anti-guinea pig Alexa 647 (1:500; Thermo Fisher Scientific, Geel, 

Belgium). Different sections were incubated with rabbit anti-Tyrosine Hydroxylase 

(1:500; Millipore Merck KGaA, Darmstadt, Germany) and mouse anti-Synapsin1 (1:500; 

Synaptic Systems, Goettingen, Germany), and then exposed to goat anti-rabbit FITC 

(1:200; Vector Laboratories, Bulingame, Ca, USA) and donkey anti-mouse Alexa 647 

(1:500; Jackson InmunoResearch Laboratories, Inc., West Grove, PA, USA). In the last 

fluorescence immunostaining, tissue was incubated with rabbit anti-Tyrosine 

Hydroxylase (1:500; Millipore Merck KGaA, Darmstadt, Germany) and guinea pig anti-

vGluT2 (1:500; Synaptic Systems, Goettingen, Germany), and then exposed to goat anti-

rabbit FITC (1:200; Vector Laboratories, Bulingame, Ca, USA) and goat anti-guinea pig 

Alexa 647 (1:500; Thermo Fisher Scientific, Geel, Belgium). All the sections were 

mounted with Mowiol.  

Image acquisition and analysis 
Images of immunoperoxidase cFos expression were acquired using an optic microscope 

(Nikon E-800, Izasa Werfen Group, Valencia, Spain) with 20x lenses and a resolution of 

1,360 x 1,024 dpi. Three photos were taken by structure (IL, PL, dorsomedial striatum 

(DMS), dorsolateral striatum (DLS), ventrolateral striatum (VLS), nucleus accumbens 

core (NAcC) and shell (NAcSh)), and hemisphere in coronal sections. We included 

bregma coordinates between 3.20 mm to 2.20 mm for PL and IL, and for the striatum 

and NAc between 1.60 mm to 0.70 mm.  

Fluorescence images of cFos and PNNs were captured in a confocal microscope (Leica 

DMi8, Leica Microsystems CMS GmbH, Wetzlar, Germany) with 20× lenses and 
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resolution 1,024 × 1,024 dpi. Laser intensity (1%), gain (600) and offset (-4) were 

maintained constant in each acquisition. Each image was formed by a stack of ten 

images. Image stacks were pre-processed applying a maximal projection process with 

Leica Application Suite LAS X (Leica Microsystems CMS GmbH, Wetzlar, Germany). Three 

image stacks in coronal sections for brain regions and in sagittal sections for deep 

cerebellar nuclei were acquired by structure and hemisphere.  

FIJI free software (Schindelin et al, 2012) was used for all quantifications. The cFos 

expression was evaluated using the cell-counter plugin of FIJI software. Additionally, 

PNN expression was estimated using a densitometry assessment of WFA intensity 

(brightness range 0-255) in all the PNNs that were found in three sections of each ROI 

(Carbo-Gas et al, 2017; Vazquez-Sanroman et al, 2015a, 2015b). Unmodified images 

were used for all the analyses. 

Fluorescent images of the infusion locations, tracer diffusion and transporters were 

acquired as eight confocal stacked images using the tile-scan tool in order to obtain 

complete coronal sections in which ROIs were presented.  

Experimental design and statistics 
All statistical analyses were performed using GraphPad Prism 7 software (GraphPad 

Software Inc., La Jolla, CA, USA). One-way ANOVAs and Student t-tests for independent 

samples were carried out to analyse preference scores and immunohistochemistry data. 

Data were presented as mean ±SEM. Post hoc comparisons were performed using 

Tukey’s HSD tests. The statistical level of significance was set at P < 0.05.  

 

RESULTS 
In chapter 1 (Gil-Miravet et al, 2018), we showed that an excitotoxic lesion in the apical 

region (dorsal) of lobule VIII before conditioning facilitated cocaine-induced conditioned 

preference. Indeed, the whole sample of lesioned animals developed a preference for 

the cocaine-related cue, as compared to only one third of the sham group. In the present 

study, we confirmed the results with the smaller sample of rats (N=18) in which 

immunohistochemistry studies were conducted (the sham group (n = 6), the lesioned 
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group (QA) (n = 6), and the pseudo-conditioned group (Unp) (n = 6)). As expected, the 

cerebellar lesion promoted the acquisition of cocaine-induced conditioned preference 

(F (2,15) = 5.337, P = 0.0178). Post hoc analysis revealed that the QA group showed 

significant higher preference that the sham (P = 0.0463) and Unp (P = 0.0235) groups. 

No difference was found between the sham and Unp groups (P = 0.9350). Remarkably, 

the neurotoxic lesion was ineffective in affecting the behaviour of the Unp group, 

indicating that any effect of the lesion was learning-related (Fig. 2).  

A lesion of lobule VIII in the vermis increases neural activity and 
PNN expression in the medial prefrontal cortex 
Then, we explored the impact of the cerebellar lesion on neural activity (cFos) and PNN 

expression (WFA) in the medial prefrontal cortex of these rats. As shown in figure 3, the 

cerebellar lesion increased cFos expression in both the PL (F (2,15) = 13.4, P = 0.0005) 

and the IL (F (2,15) = 12.23, P = 0.0007) subdivisions of the mPFC. In the IL cortex, Tukey 

tests showed higher number of cFos+ neurons in the lesion group as compared to the 

sham (P = 0.004) and unpaired (P = 0.0009) groups. The number of cFos+ neurons also 

increased significantly in the PL region of the lesioned rats as compared to the sham (P 

= 0.0018) and unpaired (P = 0.0008) groups. 

Moreover, the lesion in lobule VIII enhanced WFA intensity in PNNs around GABAergic 

interneurons either in the PL (F (2,15) = 7.262, P = 0.0062) or IL (F (2,15) = 18.03, P = 

0.0001) cortex. Post hoc tests indicated that prefrontal PNNs were stronger after the  

Figure 2. Effect of AQ lesion before each training session on cocaine-induced conditioned preference. 
The QA lesion increased the proportion of rats that expressed cocaine-induced conditioned preference. 
Scatterplots of the preference scores for the CS+ on the test day in the sham (n = 6), QA lesion (QA) (n = 6) 
and unpaired (Unp) (n = 6) groups. Data are shown as the mean ± SEM and individual preference scores 
(*P < 0.05). 
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Figure 3. Effect of an excitotoxic lesion in lobule VIII of the vermis on cFos activity in the mPFC. The 
cerebellar lesion was made before cocaine-induced conditioning training. cFos expression in PL and IL 
cortices for Sham (n = 6), QA (n = 6) and Unp (n = 6) groups. (A) the PL and (B) IL cortices for Sham (n = 6), 
QA (n = 6) and Unp (n = 6) groups. The cerebellar lesion increased cFos expression in both subdivisions of 
the mPFC. The lesion was ineffective in producing both effects when cocaine was randomly associated 
with the odour cues (Unp). Data are shown as the mean ± SEM and individual scores (**P < 0.01; ***P < 
0.001). All images on the right panels were taken at 20x magnification. Scale bar 100 μm. 

 

Figure 4. Effect of an excitotoxic lesion in lobule VIII of the vermis on PNNs expression in the mPFC. WFA 
intensity in PNNs in the PL and IL cortices for the Sham, QA and Unp groups (n = 6). The cerebellar lesion 
increased WFA intensity in both subdivisions of the mPFC. The lesion was ineffective in producing both 
effects when cocaine was randomly associated with the odor cues. Data are shown as the mean ± SEM 
and individual scores (*P < 0.05; ***P < 0.001). Right, representative microphotographs of PNNs in the IL 
and PL cortex stained with Wisteria Floribunda Agglutinin (WFA) (red). The confocal images were acquired 
at 20x. Scale bar of 100 µm.  
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cerebellar lesion as compared to the sham (PL (P = 0.0108); IL (P = 0.0006)) and Unp (PL 

(P = 0.0151); IL (P = 0.0002)) groups (Fig. 4).  

Neural activity in the NAc and striatum increased after the lesion 
of lobule VIII 
Additionally, we wonder whether cerebellar impairment during the acquisition of 

cocaine-induced conditioned memory might affect striatal activity. Student’s t-test for 

independent samples showed that the cerebellar lesion raised cFos expression in the 

NAc and the majority of subdivisions of the striatum as compared to the sham group 

(NAcC (t (10) = 3.479, P = 0.0059); NAcSh (t (10) = 5.062, P = 0.0005); DMS (t (10) = 2.676, 

P = 0.0233); and DLS (t (10) = 4.761, P = 0.0008)). The only striatal region unaffected by 

the cerebellar lesion was the VLS (T (10) = 1.526, P = 0.158) (Fig. 5). 

  

Figure 5. Effect of an excitotoxic lesion in lobule VIII on cFos expression in several striatal regions and 
the nucleus accumbens. DMS, DLS, VLS, NAcC and NAcSh in the sham and QA groups (n=6). Data are 
shown as the mean ± SEM. The cerebellar lesion increased cFos expression in DMS, DLS, NAcC and NAcSh 
but not in the VLS (*p < 0.05; ***p < 0.001). All images were taken at 20x magnification. Scale bar is equal 
to 100 μm.  
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A lesion in lobule VIII increases neural activity and PNNs 
expression in the lateral nucleus 
Student’s t-tests revealed that the lesion of the vermis did not significantly change the 

cFos expression in the interpositus nucleus, either anterior (IntA) (t (10) = 1.48, P = 

0.1697) or posterior (IntP) (T (10) = 2.037, P = 0.069) (Fig. 6). Neither PNNs in the IntA (P 

= 0.3384) nor in the IntP (P = 0.5832) were affected by the lesion (see also Fig. 7).  

However, it is remarkable that the lesion in the posterior vermis increased cFos (t (10) = 

2.597, P = 0.0266) in the lateral nucleus (Lat) (Fig. 6). Moreover, WFA intensity was 

stronger in PNNs of this nucleus after the lesion of the posterior vermis (t (10) = 2.614, 

P = 0.0259) (Fig. 7).  

  

Figure 6. Effect of a lesion of lobule VIII in the vermis on cFos activity in the DCN. cFos expression rose in 
the Lat nucleus as an effect of the lesion of the posterior vermis (n=6). Bottom panels depict representative 
pictures of cFos staining (red) for each group. All images were taken at 20x magnification. Scale bar 100 
μm. Data are shown as the mean ± SEM. Scatterplots were overlapped for each group (*P < 0.05). 
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A working neuroanatomical model for the cerebellar regulation of 
cocaine-induced conditioned preference 
To propose a working neuroanatomical model to explain the effects of the lesion in the 

posterior vermis, we carried out a tracing study using anterograde (BDA/red) and 

retrograde (FG/blue) tracers. BDA was infused into the apical region of lobule VIII in the 

vermis (the same location as the excitotoxic lesion) and the lateral nucleus. In turn, we 

infused FG into the VTA and IL cortex. We searched for colocalization between BDA and 

FG within the VTA and lateral nucleus (n=3) (Figs 8-9).  

Despite the fact that the infusion point was restricted to lobule VIII in the vermis (Fig. 

8), BDA-labelled projections were found throughout the whole vermis, but also the 

hemispheres reaching Crus I. However, the molecular layer was devoid of BDA labelling. 

Figure 7. Effect of a lesion of lobule VIII in the vermis on WFA intensity in the lateral nucleus. PNN 
expression increased in the Lat nucleus as an effect of the lesion in the posterior vermis (n=6). Bottom: 
representative microphotographs of PNNs stained with Wisteria Floribunda Agglutinin (WFA) (green). The 
confocal images were acquired at 20x. Scale bar 100 µm. Data are shown as the mean ± SEM. Scatterplots 
were overlapped for each group (*P < 0.05). 
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BDA is an anterograde tracer that identifies only a neural projection from their source 

to their point of termination. Hence, one plausible explanation for these results is that 

Purkinje-to-Purkinje collaterals would have spread the tracer laterally from the middle 

line along the cerebellar cortex. Purkinje collateral branches originate within the 

parasagittal plane and their maximum length can reach 2 mm towards the apex and the 

base of the lobule in adult rodents (Witter et al, 2016). Importantly, these findings 

suggest that lobule VIII is interconnected with the whole cerebellum. As expected, we 

Figure 8. Infusions of FG (blue) in the VTA and BDA (red) in the dorsal region of lobule VIII in the vermis. 
Upper left, the infusion point for FG in the VTA. Upper right, the infusion point for BDA in lobule VIII of the 
vermis. BDA diffusion was found not only in the vermis but also throughout the hemispheres.  
Colocalization was only found within the IntA and Lat nuclei. 

Figure 9. Infusions of FG (blue) in the IL cortex and BDA (red) in the lateral nucleus. Colocalization was 
observed within the contralateral parabrachial pigmented nucleus of the VTA (PBP). 
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observed a great number of BDA-labelled terminals within the medial nucleus, but also 

in the interpositus (Int) and lateral (Lat) nuclei (Fig. 8). 

When FG was infused into the VTA, FG-labelled somas were found within the 

contralateral IntA, IntP, and Lat nuclei, but not in the Med nucleus (Fig. 8). This 

cerebellum-VTA projection was confirmed by infusing BDA into the Lat nucleus (Fig. 9). 

Unilateral BDA infusions in the Lat nucleus reached ipsilateral cerebellar hemisphere, 

lobule VIII and IX of the vermis, and contralateral parabrachial pigmented nucleus of the 

VTA (PBP), the most caudal part of the VTA (Fig. 9). We also observed FG+ somas in mPFC 

and NAcSh, among other structures, replicating the results observed in different studies 

(Geisler and Zahm, 2005; Kasanetz et al, 2008). A magnification image within the Lat 

Figure 10. A coronal section of the lateral nucleus. Infusion of BDA (red) into the apical region of the 
vermis and FG (blue) in the VTA. The arrows indicate an example of a synaptic contact between a Purkinje 
terminal from lobule VIII of the vermis (BDA+) and one output neuron in the Lat (FG+). Purkinje puncta was 
identified by calbindin (CALB/green) and the GABA vesicular transporter (vGAT/purple). All confocal 
images were taken at 40x with 2.5x zoom. Scale bar 10 µm. Right top panel: Digital amplification of 300x. 
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nucleus showed an example of a synaptic contact between a Purkinje BDA+ terminal 

from lobule VIII and FG+ cerebellar-VTA projection (Fig 10).  

Additionally, FG was infused in the IL cortex and BDA in the Lat (n=2). We observed FG 

and BDA co-labelling within the PBP (Fig. 9), supporting the mentioned observations and 

pointing to the caudal VTA as an interface through which the cerebellum would regulate 

prefrontal activity and striatal function. Projections from the lateral nucleus seemed to 

be glutamatergic and contacted both TH+ and TH- cells (Fig. 11, 12, 13).  

 

  

Figure 11. Coronal section of the VTA. Infusions of BDA (red) in the lateral nucleus and FG (blue) in the IL 
cortex. The arrows indicate an example of a synaptic contact between the terminal of a projection neuron 
from Lat nucleus (BDA+) and one TH+ neuron in the VTA (FG+). Dopamine neuron was identified as 
expressing tyrosine hydroxylase (TH/green). Synapsin is a presynaptic protein (SYN/purple). All the pictures 
are taken a 40x and 2.5x zoom in a confocal. Scale bar of 10 µm. Digital co-labelling amplification of 300x. 
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DISCUSSION 
The present research is aimed at providing an explanatory model for the facilitative 

effect of a lesion in the apical region of lobule VIII on cocaine-induced conditioned 

memory. First, our findings showed that damage in this region of the vermis induced a 

general disinhibition in the mPFC and striatal subdivisions that receive dopaminergic 

projections mainly from the VTA. Second, they also showed that impairment of the 

posterior vermis induced an upregulation of PNN expression in the mPFC. Finally, we 

found a direct projection from the lateral nucleus to the VTA that also receives Purkinje 

Figure 12. Coronal section of the VTA. Infusions of BDA (red) in the lateral nucleus and FG (blue) in the IL 
cortex. The arrows indicate an example of a synaptic contact between the terminal of a projection neuron 
from Lat nucleus (BDA+) and one TH+ neuron in the VTA (FG+). The dopamine neuron was identified as 
expressing tyrosine hydroxylase (TH/green). Vesicular glutamate transporter (vGluT2/purple). All confocal 
images were taken at 40x with 2.5x zoom. Scale bar of 10 µm. Right top panel: Digital amplification of 
300x. 
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axons from lobule VIII in the vermis. Hypothetically, this pathway might control activity 

and plasticity of the cortico-striatal circuitry through an increase in dopaminergic 

activity. The working hypothetical model that emerged from the present findings 

predicts that the impairment of the posterior cerebellar cortex, by increasing activity in 

the lateral nucleus would heighten glutamate release within the VTA and facilitate the 

release of DA in the mPFC and striatal regions.  

The idea of a cerebellar modulation of the VTA is not new. It has been grounded in a few 

previous findings which described indirect cerebellar-VTA pathways (Forster and Blaha, 

2003; Rogers et al, 2011), but also a direct control of the cerebellum onto the VTA (Carta 

Figure 13. Coronal section of the VTA. Infusions of BDA (red) in the lateral nucleus and FG (blue) in the IL 
cortex. The arrows indicate an example of a synaptic contact between the terminal of a projection neuron 
from Lat nucleus (BDA+) and one TH+ neuron in the VTA (FG+). Dopamine neuron was identified as 
expressing tyrosine hydroxylase (TH/green). Vesicular glutamate transporter (vGluT2/purple). All the 
pictures are taken a 40x and 2.5x zoom in a confocal. Scale bar of 10 µm. Digital co-labelling amplification 
of 300x. 



 

76 

et al, 2019; Watabe-Uchida et al, 2012). Indeed, the cerebellum could reach the VTA 

through the reticulotegmental and pedunculopontine nuclei (Forster and Blaha, 2003) 

and the mediodorsal and ventrolateral thalamus (Rogers et al, 2011). More importantly, 

there is a direct cerebellar-VTA pathway (Watabe-Uchida et al, 2012), whose functional 

properties have been recently delineated in an elegant study (Carta et al, 2019). 

Supporting the present working model, the optogenetic stimulation of the cerebellar-

VTA pathway increased firing in one third of VTA neurons in vivo, elicited excitatory 

synaptic currents, and induced strong place preference for the location in which mice 

received the optogenetic stimulation of the cerebellar projection (Carta et al, 2019). 

Moreover, the optogenetic stimulation of the cerebellar axons was as rewarding as the 

direct optogenetic activation of dopaminergic neurons in the VTA (Carta et al, 2019).  

The fact that a small lesion in the posterior vermis was able to induce an upregulation 

of PNN expression in the mPFC was remarkable. PNNs have been proposed as one of 

the mechanisms for the stabilization of drug-induced memories (Sorg et al, 2016). 

Interestingly, previous findings demonstrated that drug-induced conditioned 

preference and drug self-administration increase PNN expression in the cerebellum 

(Carbo-Gas et al, 2017) and different prefrontal areas (Blacktop et al, 2017; Vazquez-

Sanroman et al, 2017). Furthermore, PNN digestion within the prelimbic cortex and the 

anterior lateral hypothalamus prevented the expression of cocaine-induced conditioned 

place preference (Slaker et al, 2015) and cocaine self-administration (Blacktop et al, 

2017). The present data suggest that the cerebellar lesion by increasing synaptic 

stabilization mechanisms in the mPFC could facilitate the acquisition of cocaine-cue 

associations and strengthen drug-induced memories. 

In our opinion, the major finding of the present research is to provide an explanatory 

model for the function of the posterior cerebellar vermis on drug-related memory. In 

this model (Figure 14), damage of the posterior vermis would release striatum-cortical 

networks from the inhibitory tonic control exerted by the cerebellum over the VTA, 

thereby promoting drug effects. The present findings may help to explain why patients 

with lesions or diseases affecting the posterior cerebellum presented difficulties in 

controlling their behaviour and emotions (Kim et al, 2013; Schmahmann and Sherman, 

1998; Silveri et al, 1994; Tessier et al, 2015). Moreover, our model predicts that the 
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stimulation of the posterior cerebellar vermis would reduce drug-related effects and 

improve behavioural inhibition.  

In summary, the present results indicate that: (1) the posterior cerebellar cortex may 

exert an inhibitory control over the striatum and mPFC; (2) the lateral nucleus seems to 

be the most plausible exit route for the cerebellar cortex to modulate activity and 

plasticity in the prefrontal-striatal network; and (3) the VTA could be a candidate to 

mediate cerebellar influences on activity and plasticity in prefrontal-striatal loops that 

in turn can regulate cocaine-related behaviour.  
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GENERAL DISCUSSION 
The present research focused on providing an explanatory model of the cerebellum’s 

role in cocaine-induced conditioned memory. As we have already said, addiction is a 

neuroplasticity disorder that involves mechanisms similar to those proposed for learning 

and memory (Hyman et al, 2006; Miles et al, 2003; Milton and Everitt, 2012). It is well 

established that the mPFC is involved in reward learning and addiction (Tzschentke and 

Schmidt, 2000). Several studies have observed that excitotoxic lesions of mPFC enhance 

cocaine-seeking and facilitate cocaine self-administration by increasing sensitivity to 

effects of cocaine reinforcement (Schenk et al, 1991; Weissenborn et al, 1997), which 

may be due to a behavioural disinhibition after mPFC impairment. On the contrary, the 

implication of the cerebellum in addiction is very recent. A large number of studies have 

demonstrated the involvement of the cerebellum in memory, decision-making, 

emotional processing, and executive functions (Sacchetti et al, 2002b; Schmahmann and 

Pandya, 1997; Turner et al, 2007; Watson et al, 2014; Zhu et al, 2011), all of them 

affected in addicted subjects. Moreover, reciprocal loops between the cerebellum and 

the prefrontal-striatal-limbic circuity have been clearly demonstrated (Bostan et al, 

2018; Buckner et al, 2011; Chen et al, 2014; Hoshi et al, 2005; Ichinohe et al, 2000; Ikai 

et al, 1992; Middleton and Strick, 2000, 2001; Panagopoulos et al, 1991; Sang et al, 2012; 

Stanton, 1980; Xiao et al, 2018). Taken together, the background information underpin 

the hypothesis of a significant cerebellar role in learning, memory, and addiction. 

The present thesis proposes a functional relationship between the IL and the dorsal area 

of  lobe VIII. Impairment of either of these regions increases the percentage of animals 

that developed a preference for the cues associated with cocaine. In both cases, the 

deactivation affected the number of animals expressing cocaine-induced conditioned 

preference, but not the magnitude of the conditioned response that was very similar to 

the sham individuals expressing conditioned preference. Behavioural similarities were 

also found when we deactivated the PL cortex or the ventral region of lobule VIII. 

However, the functional relationship between these areas could not be explored in 

depth and thereby we have not been able to establish any hypothesis about their 

functions and relationships, beyond the behavioural effects described in the first 

chapter. 
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To propose a hypothetical working model that can explain the effects of brain and 

cerebellar deactivations, we then explored changes in neuronal activity and plasticity as 

an effect of deactivations. The results of mPFC deactivations were consistent with those 

already published in the previous literature. As previous studies have shown,  IL and PL 

have opposite functions in drug-seeking (Ball and Slane, 2012; Capriles et al, 2003; 

McFarland and Kalivas, 2001; Ongür and Price, 2000; Peters et al, 2009; Pfarr et al, 2015; 

Sierra-Mercado et al, 2011). In the present thesis, we observed that the inactivation of 

the IL cortex, in addition to promoting cocaine-induced memory, also increased activity 

in the posterior cerebellum and NAcSh. Similar results were observed with respect to 

the intensity of PNNs, which were more intense and stronger in lobule VIII and IX from 

all animals expressing preference, regardless of the IL deactivation. These findings 

suggest that the cerebellar activity and plasticity modifications are not directly related 

to the IL impairment but the development of preference. Thus, the increase in cerebellar 

activity would be linked to the reactivation of previous acquired drug-cue association in 

order to select between CS+ and CS-. In fact, when the behavioural selection was 

prevented as occurs when the animal is confined in the CS+ compartment, cerebellar 

activation was not seen (Carbo-Gas et al, 2017).  Moreover, stronger PNNs around Golgi 

interneurons in the posterior vermis might promote a stabilization of the new 

connections representing cocaine-related memories. Contrary to what was observed 

after the IL deactivation, PL impairment during conditioning induced a similar expression 

of cFos and PNNs to that of the groups that did not show preference. Importantly, mPFC 

deactivations did not have effects when rats were trained under a random association 

between the cue and drug. Consequently, these animals did not develop cocaine-

induced conditioned preference, and their cFos and PNN expression did not differ from 

the no preference groups. These data argue in favour of memory-related effects on 

cerebellar activity and plasticity after mPFC deactivations.  

Worthy of mention, the expression of cocaine-induced preference was associated with 

stronger PNNs around Golgi cells in the dorsal cerebellar cortex, supporting previous 

studies in mice (Carbo-Gas et al, 2017). Golgi cells are inhibitory interneurons (Eccles et 

al, 1964) that crucially control the temporal dynamics and the spatial distribution of 

information through the cerebellar cortex (D’Angelo, 2009). Golgi cells regulate the 
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synchronization of granule cell activity, as well as spike timing and burst transmission, 

determining the sign, intensity, and duration of long-term synaptic plasticity at the 

mossy fibre-granule cell relay (D’Angelo, 2009; Eccles et al, 1964). Palay and Chan-Palay 

(1974) showed that Golgi cells receive glutamatergic inputs from granule cells and mossy 

fibres within the cerebellar glomerulus (Palay and Chan-Palay, 1974). Conversely, Golgi 

cells receive GABAergic and glycinergic inhibitory signals from stellate, basket, and 

Lugaro cells (Sotelo and Llinás, 1972). Thus, Golgi cells are essential in the control of 

synaptic plasticity at the level of the granular layer. Here, we described that cerebellar-

dependent mechanisms of cocaine associative memory are involved in the upregulation 

of PNNs around Golgi cells. The majority of Golgi neurons that express stronger PNNs 

are active (Carbo-Gas et al, 2017). It has been shown that blocking inhibition of Golgi 

cells turns the balance in favour of long-term potentiation in the cerebellar cortex 

(Mapelli and D’Angelo, 2007). On the contrary, when inhibition is higher than excitation, 

long-term depression may dominate (D’Angelo and De Zeeuw, 2009). Therefore, one 

can speculate that the establishment of cocaine memory may encourage the 

feedforward inhibitory control by Golgi cells.  

A neurotoxic lesion of the dorsal cerebellar cortex in lobule VIII generated a global 

disinhibition in prefrontal and striatal regions, as well as stronger PNNs around 

GABAergic interneurons of the mPFC. Previous research demonstrated that the 

degradation of PNNs in the PL cortex blocked conditioned place preference (Slaker et al, 

2015) and prevented reinstatement to drug-seeking (Slaker et al, 2018). Our findings 

also suggest that the lateral nucleus is the most likely cerebellar output to mediate the 

present effects. Both activity and PNN expression increased specifically in this DCN after 

the lesion. No significant lesion effects were seen on the other DCN. Remarkably, as the 

tracing study demonstrated, the dorsal region of lobule VIII in the vermis sends 

projections to all of the DCN, including the most lateral portions. However, when 

infusing the retrograde tracer into the VTA, we only were able to find colocalization in 

the interpositus and lateral nuclei, but not in the medial nucleus. More importantly, the 

most caudal region of the contralateral VTA (the parabrachial pigmented nucleus/PBP) 

receives direct projections from the lateral nucleus that seem to be glutamatergic. 

Retrograde tracing from the IL cortex indicated that cerebellum-VTA projections make 
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synaptic contacts with dopaminergic neurons that reach the IL cortex. Altogether, the 

present findings strongly claim in favour of a key role of the cerebellum in the 

establishment of drug-cue associations (Miquel et al, 2009, 2016) and point to the 

caudal VTA as the interface through which the cerebellum would regulate the activity 

and plasticity of the prefrontal-striatal loops. Our results support previous studies that 

also found direct projections from the DCN to VTA (Carta et al, 2019; Watabe-Uchida et 

al, 2012). The role of the VTA and dopaminergic projections to the prefrontal cortex in 

reward and drug addiction are well established (Chao and Nestler, 2004; Geisler and 

Zahm, 2005). However, only very recently, it has been shown that optogenetic 

stimulation of cerebellar projections activate VTA neurons and induce powerful 

rewarding effects (Carta et al, 2019).   

The resulting hypothetical neuroanatomical model indicates that the posterior 

cerebellar cortex may exert a direct inhibitory modulation of the prefrontal-striatal 

circuitry controlling dopaminergic activity of the VTA neurons. Under impairment of the 

posterior cerebellar cortex, the lateral nucleus, by increasing glutamatergic activity 

release within the VTA, encourages activity of dopaminergic neurons within the mPFC 

and striatal regions. 

In our view, this hypothetical model has a high predictive power. Specifically, the 

cerebellum may be crucial for restraining ongoing actions when environmental 

conditions change by adjusting prefrontal activity in response to the new external and 

internal stimuli, thereby promoting flexible behavioural control. Beyond the regulation 

of cocaine-induced preference conditioning, our model may explain why cerebellar 

lesions have been shown to generate behavioural disinhibition, impulsivity, and 

compulsivity (Miquel et al., in press).   
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STRENGTHS AND PITFALLS 

Strengths 

• The main contribution of this thesis is to propose a working neuroanatomical model 

for the role of the cerebellum in drug addiction with a high predictive power. 

Moreover, this work represents the first experimental approach to explain the 

modulatory function of the posterior cerebellum on the prefrontal-striatal circuitry 

for the establishment of cocaine-associated memories. 

• Another significant contribution is the demonstration of a direct cerebellar control 

over the VTA. 

• This thesis also provides support for a functional relationship between the 

cerebellum and the medial prefrontal cortex in drug-related memory. 

Pitfalls, weaknesses, and future directions 

• The difficulties to maintain cannulas in the cerebellum forced us to perform 

permanent injuries in this region. This approach generated a difference between 

the animals with mPFC deactivations and the animals with lesions in the cerebellum 

on the test day. In future research, both regions should be studied under the same 

conditions during the acquisition and expression phases. 

• The tracer study shows connection networks between the cerebellum and the 

prefrontal cortex. It would be interesting to study further the outputs of neurons 

from the cerebellum, as well as the targeted neurons in the VTA. 

• The direct pathway Lateral nucleus-VTA should be blocked and stimulated to 

confirm the model. 

• It would also be interesting to use DREADDs in future research to activate and 

deactivate all these regions and be able to alter the entire circuit at certain times. 

• Finally, beyond the establishment of cocaine-induced Pavlovian memory, it would 

be interesting to observe how our deactivations affect other paradigms of self-

administration, as well as models of extinction and reconsolidation. 
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