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Abstract 

The efficacy of the energy management systems at dealing with energy 

consumption in buildings has been a topic with a growing interest in recent years due 

to the ever-increasing global energy demand and the large percentage of energy being 

currently used by buildings. The scale of this sector has attracted research effort with 

the objective of uncovering potential improvement avenues and materializing them with 

the help of recent technological advances that could be exploited to lower the energetic 

footprint of buildings. Specifically, in the area of heating, ventilating and air conditioning 

installations, the availability of large amounts of historical data in building management 

software suites makes possible the study of how resource-efficient these systems 

really are when entrusted with ensuring occupant comfort. Actually, recent reports have 

shown that there is a gap between the ideal operating performance and the 

performance achieved in practice. 

Accordingly, this thesis considers the research of novel energy management 

strategies for heating, ventilating and air conditioning installations in buildings, aimed 

at narrowing the performance gap by employing data-driven methods to increase their 

context awareness, allowing management systems to steer the operation towards 

higher efficiency. This includes the advancement of modeling methodologies capable 

of extracting actionable knowledge from historical building behavior databases, 

through load forecasting and equipment operational performance estimation 

supporting the identification of a building’s context and energetic needs, and the 

development of a generalizable multi-objective optimization strategy aimed at meeting 

these needs while minimizing the consumption of energy. 

The experimental results obtained from the implementation of the developed 

methodologies show a significant potential for increasing energy efficiency of heating, 

ventilating and air conditioning systems while being sufficiently generic to support their 

usage in different installations having diverse equipment. In conclusion, a complete 

analysis and actuation framework was developed, implemented and validated by 

means of an experimental database acquired from a pilot plant during the research 

period of this thesis. The obtained results demonstrate the efficacy of the proposed 

standalone contributions, and as a whole represent a suitable solution for helping to 

increase the performance of heating, ventilating and air conditioning installations 

without affecting the comfort of their occupants. 

Keywords: chiller sequencing; deep learning; energy efficiency; energy management; 

load forecasting; machine learning; model-predictive control; neural networks; optimal 

chiller loading; unsupervised learning. 
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1. Introduction 

This chapter introduces the research topic focusing on the research problem that 

defines the scope of the thesis, the formulation of the thesis hypotheses and finally the 

objectives and methodology to accomplish them during the development of this thesis. 

1.1 Research topic 

The manner in which we deal with power consumption has changed in recent years. 

This change has mainly been driven by the continued increased in energy demand, 

the difficulties associated with remaining competitive as the marketplace becomes 

global and the threat of instability in securing energy sources [1]. 

The efficiency of energy processes has been identified as a growing concern at the full 

range of the power spectrum, encompassing very large power consumers such as 

factories, medium power consumers such as buildings in the tertiary sector, or even 

the smaller consumers such as households. Consequently, global efforts are underway 

directed at raising awareness of the urgency to enable new developments and 

promoting further research in the field of energy efficiency to tackle current but also 

upcoming challenges. This is reflected by the weight of related topics in Europe’s main 

research and innovation programs, which contains initiatives like the Horizon 2020 

Programme [2]. 

Being the largest research and innovation program that the European Union has ever 

conducted, the Horizon 2020 Programme operates with a budget of approximately 80 

billion euros in available funding to be allocated between 2014 and 2020 for different 

topics. Approximately 7.5% of the available funding is directed towards the Secure, 

Clean and Efficient Energy research and innovation track, while 4% is directed towards 

the Climate Actions, Environment and Resource Efficiency track. Both this resource 

allocation and the proclaimed aim of the Energy Efficiency track of the Programme of 

reducing the primary energy consumption by 20% by 2020, showcases the 

commitment of the European Union to this goal [3]. 

The considered avenues for action include the realization of transformational changes 

at all the stages of the energy consumption chain, from generation to transformation 

and distribution, but having a special focus on the final stage of the energy chain: the 

consumption of energy, where the buildings and the transportation sector are 
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highlighted. It is precisely at the last stage of the energy chain, also called the demand 

side, where the greatest potential for energy savings is attributed. This is because there 

has been a continued growth in power demand, so the best way best way for increasing 

the overall energy efficiency is considered to be addressing the reduction of the this 

demand. 

Regarding the allocation of the global energy demand, there have been several studies 

that show how it is distributed by sectors. These show that the energy consumption in 

buildings, including the residential, commercial and public sector buildings, accounts 

on average for 40% of the worldwide energy consumption, and 50% of the total electric 

consumption [4,5]. 

The distribution of the energy consumption in the European Union is shown in Fig 1.1. 

As it can be observed it presents a consumption share in buildings similar to the 

worldwide average. However, these figures can become larger on different countries, 

for example in the United States up to 70% of the consumed electric energy could be 

associated with buildings, where half of that amount is attributed to commercial 

buildings and is projected to keep increasing even further respective to buildings in the 

residential, industrial or transportation sectors [6,7]. 

 

Fig 1.1 Distribution of total energy consumption in the European Union1. 

Nevertheless, recent studies point out that research focused on this topic could offer a 

great improvement potential specifically in buildings due to technological advances 

developed in the last two decades in a variety of areas, including engineering and 

materials science, but also in other areas such as in computer and data science. It is 

                                                 
1 European Commission, "EU Energy and Transport in figures 2010. Statistical pocket book," 

Publications Office of the European Union, 2010. 
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estimated that by researching and implementing energy saving strategies, it could 

generally be possible to achieve energy savings in the range from 10% to 30% [8,9]. 

Aligned with this estimate, Fig 1.2 shows the projected trend in annual market revenue 

for the sector of energy efficient products and services in Europe, which is expected to 

keep growing in the coming years, responding to a demand of solutions for tackling the 

energy efficiency problem. 

 

Fig 1.2 Annual market revenue projection of years 2014-2023 for energy efficient products and services 

in Europe2. 

The four major groups that are responsible for the energy consumption in modern, 

mixed-use, buildings are typically the Heating, Ventilating and Air Conditioning (HVAC) 

system, lighting system, IT equipment and assorted electrical plug-in equipment [6,10]. 

Out of these four groups, HVAC systems are comparatively the largest consumer, 

accounting for a share in the range of 30% to 50% of the building’s total energy 

consumption [11,12]. Thus, HVAC systems may account for 10% to 20% of the world’s 

total energy consumption. However, HVAC systems are also one of the groups that 

currently offer the greatest unrealized potential for improvement.  

Current research has established that by closely monitoring the operation of HVAC 

systems and by improving HVAC control strategies, it could be possible to detect 

energy waste, correct energy misuse circumstances and to prevent their occurrence. 

                                                 
2 Navigant Research, “Spending on Energy Efficient Buildings in Europe is expected to total 

nearly 800 billion from 2014 through 2023”, Building innovations – Energy Efficient Buildings, 
2014. 
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Combined, these actions may achieve a potential energy savings of up to 40% in HVAC 

systems in buildings [13]. 

This large savings potential is due to the fact that practically all HVAC facilities have 

hidden efficiency problems that difficult the efficient use of energy. The most common 

of these problems are i) misconfigured controls such as inefficient system 

configurations relating to incorrect operating setpoints or overall inefficient operating 

strategies, or ii) faulty equipment caused by compressed air leakages, dirty air filters, 

aging-related problems or others. Furthermore, such problems are commonly 

neglected unless dedicated tools for power demand management and energy 

efficiency analysis on the demand side are employed [14]. The framework that 

encompasses these and other tools is called Demand-Side Management (DSM). 

The DSM topic includes a wide range of applications and methodologies, which can 

include from behavior-modifying strategies like the implementation of smart power 

tariffs aimed at incentivizing certain consumption patterns, to load shifting strategies 

than focus on peak shedding to prevent grid overloads, but also control applications 

aimed at increasing the efficient use of resources on the demand side. Amidst the 

different DSM approaches, it becomes evident that the most advantageous from the 

point of view of tackling the problem of reducing the use of resources, are those aimed 

increasing the energy efficiency of consumer-side processes. Methodologies aimed at 

load shifting, for example, are appropriate for increasing consumption flexibility, thus 

solving grid stability or production cost issues, but have little to no effect in terms of 

amount of energy consumed. 

The application of different flavors of methods within the DSM framework for the 

purpose of managing energy demand and energy efficiency in buildings has led to the 

concept of Smart Buildings, which can be considered as regular buildings with a layer 

of control, supervision and maintenance solutions built into the Energy Management 

systems that operate them [15]. 

The idea of Smart Buildings is based on a dual concept, i) the comprehensive sensing 

and monitoring of the events within the building, including the monitoring of all relevant 

equipment and technical systems, but also other factors such as the local weather 

conditions and occupant behavior, and ii) intelligent actuation strategies that interpret 

and consider the high-level information provided by the aggregated low-level sensor 

signals and are able to detect inefficient behaviors and implement actions aimed at 

correcting these inefficiencies but also to further increase efficiency where possible 
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while maintaining occupant comfort [16]. According to the state of the art in building 

operation, this kind of solution has a significant potential for energy savings in buildings 

when properly tuned and controlled [17–19]. 

Preprocessing Model Control

Data acquisition Configuration

Supervision

Forecasting

Planning

 

Fig 1.3 Simple Demand-Side Management implementation schema. 

A simple schema depicting the implementation of a DSM application for the operation 

of a building is shown in Fig 1.3, which includes the most common blocks of recently 

proposed approaches to sweeping reform of current EMS in buildings: i) the 

preprocessing of acquired data from building sensors to extract knowledge from the 

operating state, ii) the modeling of technical processes to provide a baseline for both 

supervision and implementation of control solutions, iii) the forecasting of energy 

consumption patterns to allow to efficiently plan the use of resources, and iv) the 

implementation of control strategies that take advantage of the increased context 

awareness regarding the current operating state, the modelled technical systems, and 

the forecasted consumption patterns to determine an operation strategy that 

maximizes the overall energy efficiency of the building. 

In this framework, this research thesis defines a path towards the development of novel 

strategies for supporting and achieving an increase of energy efficiency by means of 

the advancement of the state of art in HVAC system management for the advancement 

of Smart Buildings. 
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1.2 Research problem 

The trend towards including more and more instrumentation systems in buildings has 

been increasing during the recent years. The instrumented systems include the various 

HVAC equipment such as chillers, pumps or air handling units, but also other aspects 

such as the indoor room temperatures and humidity, other state variables such as 

occupancy, light levels, outdoor weather conditions and in some cases solar irradiance 

sensors when buildings have a large surface of windows [20–22]. 

Moreover, there has been an increase in the incorporation of field data acquisition 

systems using standardized building automation systems [23]. Some examples include 

BACnet, Modbus, KNX, LonWorks, OPC, among others. These have allowed the 

gathering and historical accumulation of a huge quantity of operational information 

made traditionally available to the building’s EMS or SCADA systems. This increased 

visibility into how the systems function allows to monitor their operation in a more 

detailed manner and encourages the study of their performance [24–26]. 

This increase of the in-depth visibility into the technical systems in buildings laid the 

foundation of Building Energy Management Systems (BEMS), which consist of 

computer-based tools that may integrate DSM techniques into software packages to 

support the management, supervision and control of a building’s technical systems, 

from the point of view of managing the energy usage required to allow the building to 

fulfill its purpose [15,27]. BEMS can support building managers by providing insight 

and tools to understand the energy usage of the building and to properly control and 

further improve the energy performance of the building without degrading the thermal 

comfort of the occupants [28]. 

The scientific interest on this topic has grown during recent years, as evidenced by the 

increase in the number of studies addressing the incorporation of tools for DSM within 

the context of the Smart Building. These have undoubtedly been motivated by these 

elevated monitoring and auditing capabilities found in modern BEMS. The derived gain 

in insight regarding the operation of the different technical systems has accelerated the 

research and development of solutions that are aware of the operating context of the 

building and are able to distill actionable knowledge that may help improve energy 

efficiency by a significant degree [29]. 

Nevertheless, limited tools are available to building engineers or building energy 

managers to actually analyze the energy usage patterns in relation to the operating 
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state of the equipment and behavior of the occupants, and to actually carry out 

improvements. BEMS solutions currently available require being operated manually by 

expert users and offer limited capabilities. Furthermore, recent surveys have 

highlighted that the state of the art in BEMS for control of energy systems at the 

consumer side present different shortcomings, therefore being a path with significant 

potential for further research and development [30]. 

Classical building management is focused on monitoring and controlling the indoor 

environment, mainly the temperature and humidity, by means of performing corrective 

actions when these deviate from predefined value ranges. However, this concept is 

shifting towards more advanced applications that take advantage of a more detailed 

view of the operating context of the building to select a more adequate actuation 

strategy based on this view [31]. In particular, the current trends in BEMS for modern 

buildings are contemplating the embedding of advanced monitoring systems capable 

of observing the environment and operating conditions, potentially permitting an 

intelligent management system to understand their state and rapidly focus on 

correcting and preventing energy inefficient behaviors. Consequently, further research 

is being carried out to develop data processing algorithms capable of extracting 

augmented information from large historical databases existing in current BEMS with 

the objective of extracting knowledge to support the creation of higher-level controllers 

[32]. 

From the perspective of monitoring the operation of the HVAC systems in buildings, 

the potential to identify inefficiencies and anomalous behavior by analyzing historical 

energy consumption data is often not fulfilled [17]. An approach to data analysis of the 

acquired energy consumption patterns must be effective and should be able to identify 

anomalous behavior, deviations from proper operation and to establish the desired 

baseline operation, yet it must be reliable, robust and must minimize the amount of 

expert knowledge required to properly operate it in order to achieve the expected 

impact by facilitating its widespread adoption. 

The information extracted by such approaches in HVAC systems can be a very 

valuable resource for example to alert the managers of a building regarding 

unexpected deviations from nominal operation with limited delay [33]. Furthermore, the 

detected anomalies but also the observation of trends in the consumption patterns may 

be used to estimate wear or faults in equipment, and may also play a role in scheduling 

maintenance operations by being a warning sign of potential equipment fault [34]. 



Introduction 

 Research problem 
 

 

Advanced energy management strategies for HVAC systems in smart buildings 19 
 

Nevertheless, both the complexity and the vast amounts of acquired historical data 

make it difficult to establish the baseline for nominal operating state, thus causing the 

classification of abnormal behavior to become challenging and identifying resolution 

actions impractical [35]. 

Having an effective means of establishing or modeling the relationship 

between the operating state and the energy consumption and efficiency 

of an HVAC facility becomes an essential milestone. Such a model may 

be employed to detect inefficient or anomalous behavior in the energy 

consumption patterns and to introduce appropriate corrective or 

preemptive actions to overcome them. 

On the operation side, this extracted information may also be employed to adjust the 

control strategies of HVAC equipment, regulating and scheduling their operation by 

considering the operational state of the building and avoiding inefficient operating 

ranges. However, most related research focuses on saving energy by implementing 

room temperature control solutions without considering the global operating state of 

the facility, its dynamics and relationships between equipment operating conditions and 

achieved energy performance [30,36]. Furthermore, part of the studies implement 

on/off controllers that operate equipment by reacting to the real-time demand by the 

users, but do not consider the historical operating patterns of energy demand and how 

a given control strategy may affect the efficiency of the HVAC system [37]. Some 

studies have focused on the implementation of scheduling actions for HVAC equipment 

for temperature control, but few have approached the link between these actions and 

the energy efficiency side of the problem, thus in-depth investigations regarding the 

optimal control of HVAC equipment are not available in the literature. As outlined in a 

review of integrated control of HVAC systems, possible reasons might be that 1) it is 

difficult to establish models that offer an acceptable tradeoff between accuracy and 

simplicity, making them convenient for optimization problems; 2) models are difficult to 

calibrate and; 3) the interactions and coupling between equipment may make it difficult 

and time consuming to search for the optimal or effective control strategy [12]. 

Therefore, there is a gap in the state of the art of BEMS control: 

Control strategies that consider the operational state of the equipment 

and the dynamics of the load demand of the building, conditioned by its 

operating environment and comfort constraints, are well positioned to 

fulfill significant potential savings by adapting the operation of the 
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system according to its most efficient configuration while satisfying the 

demand. 

In summary, considering the previously mentioned problems and limitations of current 

BEMS (relationship between state of operation and energy consumption and efficiency, 

performance supervision for maintenance purposes and control of the HVAC 

equipment of the building to achieve optimal energy efficiency configurations) further 

research is necessary with the objective of proposing a solid framework of analysis and 

actuation in order to tackle these issues and to strive towards greater energy efficiency. 

This framework shall be composed of novel data processing algorithms able to model 

the energy consumption and efficiency of the system regarding the state of operation 

of the equipment and to steer their operation towards the fulfilling the performance 

increase potential. 
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1.3 Hypotheses 

In order to address the described research problems, the following hypotheses were 

formulated as a starting point for this research work: 

 The performance of existing modelling methodologies for load forecasting can 

be improved by providing them with perception and knowledge about the 

internal state of the plant. 

 The internal states and conditions of the plant under analysis can be described 

by the variables which define the operation of the processes therein. 

 If the internal states of the plant are not directly observable through the 

variables exposed by the monitoring system, they can be estimated by means 

of data mining and data fusion techniques. 

 A modelling methodology with the aim to aid the solution of the supervision and 

control problem shall consider the state of the installation and its equipment of 

predominant influence to the energy consumption and efficiency of the whole 

system. 

 The correlation between the internal states of the plant, the actuations of the 

control system and the energy consumption shall allow to classify operating 

ranges depending on their efficiency and to steer towards high efficiency modes 

in control applications. 

In conclusion, 

 The implementation of advanced HVAC energy management strategies in the 

context of the smart building shall allow to identify the actual conditions of the 

underling subsystems in order to reach an optimal comfort-energy consumption 

tradeoff trough the introduction of models and control schemes by taking 

advantage of the wealth of historical operation information available. 
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1.4 Objectives 

The objective of this thesis is to progress the HVAC energy management state of the 

art in the context of the Smart Building by the proposal of an integral information 

management methodology and the definition of a framework to address the complex 

problem of increasing their energy efficiency. 

Specifically, the three main work areas of this thesis are declared as follows: 

 Power demand forecasting: the development of a load modeling and 

forecasting methodology specifically tailored for predicting the power demand 

in buildings, considering operating state variables such as weather conditions 

or occupancy of the building. 

 Operating performance modeling: the development of a generic methodology 

for modeling the energy characteristics of HVAC equipment, in particular their 

energy consumption, expected production and coefficient of performance, as a 

function of their operating state and control setpoints. 

 HVAC production equipment control: the development of a framework for 

implementing the control of HVAC production installations, coordinating the 

operation of different equipment and considering their estimated operating 

performance and future demand of the building. 

To successfully accomplish these contributions, the following specific objectives shall 

be achieved: 

 The selection and extraction of information in building databases for the 

purpose of obtaining useful knowledge regarding their operation and internal 

states of the building and its equipment. 

 The proposal of new approaches on the topic of operational state estimation 

and correlation with energy demand and efficiency. 

 The proposal of a novel methodology and algorithms, for demand and efficiency 

modelling and forecasting, considering the operational state of the plant instead 

of heavily relying on historical data. 
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 The proposal of new approaches for multi-objective and predictive control 

strategies for optimal point of operation based on the steering towards efficient 

operation modes, which could take into account the foreseen behavior to 

regulate the aggressiveness of the control. 

 The validation of the complete analysis and actuation framework by means of 

building operation databases acquired during the research period from a pilot 

plant. 

In order to allow the research, development of the contributions and validation of the 

outcomes of the declared objectives, a test environment was selected which includes 

the most common components in prevailing HVAC installations in modern buildings. 

The chosen test environment is a complete building that acts as a pilot plant and was 

fitted with additional instrumentation in order to acquire the relevant data and allow the 

validation of the proposed energy management tools. A description of the pilot plant is 

provided in Annex 1. Test environment. 

The methodology employed for meeting the declared objectives is defined as follows: 

 Detailed literature review of the state of the art related to energy management 

systems in buildings, specifically focused on building energy demand and 

HVAC equipment operation. 

 Definition of the research problem and objectives, proposal of a methodology 

to accomplish them and identification of a pilot plant to act as a test 

environment. 

 Instrumentation of the pilot plant and execution of data acquisition campaign to 

build a database of the historical behavior relating to i) the HVAC equipment in 

terms of operating modes and energetic performance, and ii) the building’s 

energy demand and operating context. 

 Research, development and implementation of novel techniques focused on 

solving the identified problems and expanding the associated state of the art. 
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 Evaluation of the attained novel techniques and comparison of their 

performance and trade-offs with state of the art solutions by means of 

implementation using experimental data. 

 Analysis and discussion of the research outcomes, drafting of conclusions and 

dissemination of the methods and results on indexed peer-reviewed journals 

and notable conferences. 
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1.5 Description of chapters 

This section describes the content of each of the remaining chapters in this document. 

A general literature review of energy management approaches for HVAC systems in 

buildings is presented in chapter 2. State of the art in HVAC energy management. 

This chapter outlines the main types of solutions being currently employed on modern 

buildings and actively being researched for further increasing the efficacy of BEMS and 

for increasing energy efficiency while ensuring occupant comfort. 

In chapter 3. Power demand forecasting in buildings, a study of the main factors 

influencing HVAC power demand is presented, leading to the development of a 

methodology aimed at creating forecasting models capable of accurately predicting the 

short-term thermal needs of a building considering factors such as the weather or the 

occupancy patterns. 

In chapter 4. Performance modeling of HVAC equipment, the most employed 

methods for establishing the relationship between operating state, control actions and 

energy performance are reviewed and their drawbacks identified in order to introduce 

a novel generic method for modeling HVAC equipment based on a deep learning 

approach. 

In chapter 5. Predictive control of chiller groups, the state of the art relating to 

solving the optimal chiller loading and sequencing problems is critically reviewed in 

order to highlight the potential avenues for improvement, and a novel control strategy 

is developed by taking advantage of the previous thermal demand forecasting model 

and equipment performance model to implement a multi-objective predictive control 

solution. 

The general conclusions of the research work carried out in this thesis and the possible 

future work are presented in chapter 6. Conclusions and future work. 

A summary of the publications derived from this work is included in chapter 7. Thesis 

results dissemination, including also collaborations in related research projects. 

Finally, the pilot plant used as a test environment for the development of this thesis is 

described in Annex 1. Test environment. 
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2. 
State of the art in HVAC energy management 

This chapter outlines the main types of solutions being currently employed on 

modern buildings or actively being researched for further improving the energy efficiency of 

HVAC systems in buildings while ensuring occupant comfort. 

CONTENTS:  

2.1    Technological advances 

2.2    Data mining and modeling 

2.3    Control applications 

2.4    Supervision and maintenance 
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2. State of the art in HVAC energy management 

The magnitude of the worldwide energy demand in buildings for the operation of HVAC 

systems, the increasing sustainable energy production challenges and the impact of 

potential improvements have attracted the attention of ample research efforts. 

Consequently, energy management of HVAC systems has grown to be a very wide 

topic, and ongoing efforts are directed at multiple areas and tackle different problems, 

like HVAC machine technology, data mining and modeling, control or supervision and 

maintenance. 

This chapter outlines the main types of solutions being currently employed on modern 

buildings and actively being researched for further improving the energy efficiency of 

HVAC systems in buildings while ensuring occupant comfort. 

2.1 Technological advances 

In order to achieve better energy efficiency on new installations, one of the solutions is 

to investigate new technical systems from the point of view of HVAC components in 

order to replace current systems with technologically more advanced versions offering 

better characteristics. A review of strategies for saving energy in HVAC systems 

presented some of the paths for further developing air conditioning technologies, but 

highlighted that local weather conditions may have a significant impact when 

considering the types of HVAC technologies [38]. For example in the case of vapor 

compression systems, where better COP can be achieved by using water-cooled 

systems rather than air-cooled, this is contingent on whether installing a cooling tower 

might be feasible due to the local relative humidity, which may impact the performance 

of entire system. Furthermore, even though investing on new HVAC technologies is a 

worthwhile effort, the bulk of the benefits will be observed when these become cost-

effective and begin to be widely installed in new HVAC facilities, thus there is still a 

need for solutions to help increase the efficiency of existing installations. 

Retrofitting of existing installations is another avenue for increasing energy efficiency 

of HVAC systems, for example by replacing inefficient equipment to introduce improved 

versions, or by replacing machines or components that have deteriorated due to aging, 

presenting lower performance and possibly originating faults. Nevertheless, there is 

still a need to help identify the machines within an installation that could provide the 
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best return on investment when considering the retrofitting of equipment [39]. Helping 

to determine what equipment should be replaced and when to do it in order to maximize 

savings could be supported by data mining processes that analyze the state of 

operation of HVAC installations [40]. 

Similarly, a recent practical case approached the implementation of a case-based 

reasoning solution for supporting the decision making process on new retrofitting 

projects. However, instead of focusing on the actual target building, the study started 

with the collection of successful retrofitting cases and analyzing the attributes of the 

involved buildings, energy characteristics and cost parameters, then carrying out a 

weight optimization of the decision attributes by identifying similarities to existing cases 

[41].

2.2 Data mining and modeling 

Approaches that include data mining processes could help take advantage of the large 

amounts of operational data available in existing BEMS. A recent review of the potential 

of data mining strategies for energy efficiency enhancement in buildings pointed out 

that extracting insights from BEMS databases could provide awareness into avenues 

for implementing energy saving actions, and specifically underlined the capacity of 

unsupervised methods to extract knowledge from large datasets [42]. There are 

ongoing efforts to achieve the improvement potential reiterated by different reports. For 

example another review of recent advances and current challenges being faced in 

building engineering revealed the areas that are being currently targeted by 

researchers by means of data mining applications. These include the prediction of 

energy demand, the effects of building occupants and their behavior, the modeling of 

buildings for integration in optimal control, and fault detection and diagnosis 

applications [43]. 

A study of the operational signatures of HVAC systems attempted to evaluate the 

characteristics of the equipment available in an installation and match their values with 

the energy consumption patterns, focusing on the identification of what parameters 

caused the different behaviors observed in the energy usage [44]. The outcome 

included the automation of the selection of custom configuration for a group of air 

handling units in a building. 

Indeed, the usage of data mining systems for supporting the selection of settings is a 

common approach. A project participating in the FP7 Framework of the H2020 
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Programme focused on the development of a decision support system based on data 

mining methods that allowed the discovery of rules from different data sources 

including weather, energy usage and energy prices, with the objective of helping facility 

managers by producing future action suggestions in the short term [45]. However, the 

application of the generated suggestions is still left up to the manager, and further 

research into automated solutions could help close the loop for including them in 

control systems. 

However, not all data mining and modeling solutions are suitable for control 

applications. A review of modeling methods for HVAC systems in buildings specifically 

aimed at supporting control applications discussed that the modeling of these systems 

is a current unresolved problem due to difficulties caused by the characteristics of 

HVAC systems, including non-linearity [46]. A comprehensive taxonomy of the existing 

approaches is included in the review, providing recommendations for consideration 

when selecting a type of model and reiterating that implementing a modeling method 

for HVAC processes that matches the case is concern of upmost importance. Some of 

the recommendations include avoiding the over-simplification of processes, the 

validation in real systems and the consideration of the ease of usage of a method 

besides the features it provides.

2.3 Control applications 

Regarding the implementation of control applications, the development of effective 

strategies specifically for HVAC system applications is a crucial aspect of improving 

energy efficiency in buildings [47]. However, these present unique challenges due to 

non-linear behavior, time-varying disturbances and interactions between systems, 

among others. Fortunately, the costs of data storage have been steadily decreasing 

while processing capacity has been increasing, which makes it possible to create more 

advanced control strategies with increased knowledge of the operating behavior of the 

installation extracted from historical data, and implementing more complex optimization 

methods. In particular, the integration of predictive solutions in the control process, the 

usage of multi-objective cost functions and the development of advanced control 

algorithms could be some of the more promising features of modern control solutions 

[48]. 

For example, a recent experimental study implementing a model-predictive controller 

for an academic building considered some of these aspects to reduce the energy 
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consumption of the building while maintaining occupant comfort [49]. For the evaluation 

of control actions, the study employed a calibrated EnergyPlus model of the building 

but had to resort to a simplified model in order to overcome computational constraints, 

falling back to a random forest regression to estimate the average indoor temperature 

and aggregated consumption of the whole building for the next control iteration. 

Regarding the optimization method, a genetic algorithm was used for calculating 

permutations of the predictive control setpoint for the next few iterations. Solutions such 

as this one commonly achieve the reduction of energy consumption successfully at the 

expense of occupant comfort, which could become compromised because there is a 

direct tradeoff between the thermal energy delivered to a space and the comfort 

conditions within [50]. 

Besides the usage of models appropriate for control and the adoption of algorithms 

better suited for control applications than generic global optimization methods like the 

genetic algorithm, focusing on other aspects of the building’s operation could also 

provide savings without sacrificing occupant comfort. For example a solution not aimed 

towards the minimization of the energy used for space conditioning, but instead 

targeting the optimal utilization of the HVAC equipment to meet the required energy 

demand while minimizing the consumption of the equipment could be worth 

investigating [51]. 

Accordingly, another investigation topic corresponds to the optimal chiller loading and 

sequencing, which typically has no effect on the comfort due to being aimed at 

controlling the operation of the machines to maximize their performance, rather than 

minimizing energy demand.

2.4 Supervision and maintenance 

Another research area within energy management consists on the detection and 

diagnostic of faults to aid in the supervision and maintenance of HVAC installations. 

Considerable studies focus on the development and implementation of automated fault 

detection and diagnosis (FDD) solutions for integration in BEMS, mainly due to existing 

research having documented that a large portion of HVAC equipment present in 

existing buildings may require repairs or contain faults, and that their early detection 

and rectification could help to considerably reduce the amount of energy waste [52]. 

FDD can provide a solution to this problem, as it consists on the automated detection 

of faults in equipment and the diagnosis of the component causing them. This is 
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typically implemented in one of two ways, either by using supervised learning when the 

failure modes are known and there is sufficient data available to classify operation 

samples to determine if they match a known fault, or by using unsupervised or novelty 

detection solutions when this is not the case. Indeed, when the failure modes are not 

known, or there is no data to compare them, it is still possible to implement fault 

detection for example by monitoring whether the system operates within known ranges 

or by defining and tracking the value of specific features [53]. 

An application of FDD is shown in a study consisting on the selection of the main 

features for allowing the detection and classification of faults with sufficient accuracy in 

a case study where the failure modes are well documented, having a focus on 

minimizing the amount of sensors required, thus reducing costs, and employing a multi-

class support vector machine for classification [54]. Alternatively, another study used 

an array of nonlinear repressors for estimating the behavior of the HVAC system, 

implementing a Gaussian model of the process and using the variance of the prediction 

error to classify whether the behavior had been observed or the system is operating 

outside of known ranges [55]. These studies represent two very different approaches 

for implementing FDD, but both are based on the idea that finding and fixing faults shall 

lead to the reduction of energy waste, thus increasing the efficiency of the HVAC 

installation. 

In conclusion, multiple avenues for improving the energy efficiency are being explored 

and significant efforts are underway to develop novel solutions that tackle this issue 

from different perspectives. Current research effort targets a broad range of studies, 

from research on technical systems and HVAC equipment technologies, to artificial 

intelligence-based management solutions. However, it is likely that not one solution will 

solve the problem and that future building energy management systems will need to 

adopt a combination of these solutions to close the performance gap between ideal 

energetic performance and performance achieved in practice. 
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3. 
Power demand forecasting in buildings 

Load forecasting is an important topic in the context of building energy 

management due to the numerous applications it facilitates, including control, planning and 

supervision. This chapter studies the main factors influencing HVAC power demand with the 

objective of proposing and developing a methodology aimed at creating forecasting models 

capable of accurately predicting the short-term thermal needs of a building. 

CONTENTS: 

3.1    Introduction 

3.2    Modeling for thermal demand forecasting 

3.3    Experimental implementation and validation 

3.4    Discussion and conclusions 
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3. Power demand forecasting in buildings 

This chapter describes the role of power demand forecasting in buildings and carries 

out a study of the main factors influencing HVAC power demand, leading to the 

proposal and development of a methodology aimed at creating forecasting models 

capable of accurately predicting the short-term thermal needs of a building considering 

factors such as the weather or the occupancy patterns. 

3.1 Introduction 

This section introduces the background and motivation for pursuing this line of 

research, reviews the state of the art related to load forecasting applied to HVAC 

systems in buildings and describes the innovative contributions of this work. 

3.1.1 Background and motivation 

As previously discussed, recent advances in the functionalities of modern BEMS in 

terms of monitoring and supervision [13,56] have paved the way in the framework of 

smart buildings for the introduction of DSM practices [57], which are one of the most 

important methods for achieving energy savings [58]. The increased insight derived 

from this progress has been instrumental in the further study of context-aware solutions 

that are capable of improving the energy efficiency of technical services in BEMS by 

building on the expanded knowledge available [59]. By accounting for up to 40% of the 

power consumed in buildings, heating ventilating and air conditioning (HVAC) systems, 

in particular, have attracted a substantial share of current research efforts [6,12]. 

In modern buildings, load modeling and forecasting methodologies able to predict the 

future power demand of HVAC systems are an important concern of installation 

managers due to the useful knowledge that they provide [60], since real-time demand 

information plays a role in mitigating energy waste [61]. Several types of methodologies 

exist, being data-driven approaches the most prevalent. However, when applied to 

HVAC systems, these methodologies are mostly aimed at forecasting the consumption 

load [62]. Instead, focusing on the thermal power demand may help abstract from 

performance differences caused by regulation systems and to better reflect the power 

needs of the facility. Automation systems can benefit from this information in order to 

make decisions autonomously by following energy-saving optimization strategies. This 

is especially true for the control of HVAC equipment, where the predicted load could 
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be used for implementing model-predictive control strategies. Multiple control 

approaches applied to HVAC systems that could benefit from this information can be 

found in the literature, such as the planning of energy storage during off-peak periods 

using cooling storage systems [63]. Others also include the planning of adequate 

startup and shutdown times for heating and cooling equipment in order to save energy 

by meeting the right amount of power demands, and for the orchestration of machine 

actuations in installations where multiple machines are available [64]. Furthermore, the 

combination of HVAC load forecasting with equipment efficiency maps represents an 

underexploited avenue of improvement with a high potential for the optimization of the 

operation of the system. That is, the demand anticipation and the utilization of the most 

suitable machine for each situation would provide a positive affectation to the overall 

equipment’s performance, which is a significant present-day problem in building 

management and maintenance. Indeed, the overall efficiency of the installation could 

be improved, since the current most common method for allocation HVAC capacity is 

based on setting the same water temperature thresholds on all the available machines 

[65]. 

Even though this framework represents one of the main current research interests 

stated by the related scientific community, the obstacles to its implementation are 

double-sided. First, the efficiency maps are difficult to obtain when precision beyond 

the manufacturer’s sparse figures is desired, as they would require extensive testing 

of the unit in each installation, and would likely drift over time as the equipment 

deteriorates with aging. Secondly, the methodologies for obtaining load predictions in 

HVAC systems are not mature enough and their implementation can be quite 

challenging due to the potential complexity of energy systems [66]. 

3.1.2 State of the art 

In the recent literature, considerable scientific effort has been committed to the 

research of load forecasting algorithms and methodologies, as seen in the latest review 

papers [67]. A comprehensive review of more than one hundred papers on electrical 

load forecasting defined a general taxonomy for selecting modeling algorithms from 

the point of view of their popularity in different applications, indicating that data-driven 

approaches are mainly used in short-term forecasting applications due to their complex 

dynamics [68]. In contrast, a comparative analysis studied eleven modeling algorithms 

from the point of view of their performance when applied to the same dataset, revealing 

their applicability in different scenarios including cases with limited data or high 



   
Power demand forecasting in buildings 

Introduction 
 

 

36 Advanced energy management strategies for HVAC systems in smart buildings 
 

variability [69]. However, even though numerous general-purpose approaches exist for 

the implementation of load forecasting, their limitations are revealed when applied to 

real HVAC systems as opposed to simulations or synthetic data. These limitations are 

mainly related to the difficulty of adapting the predictions to the power demand changes 

caused by fluctuations of influencing parameters, such as the weather and the 

occupant’s behavior during the day [66]. 

In this regard, recent studies as the one presented in [70], confirm the significant 

correlation between the occupancy of the building’s spaces and the HVAC equipment’s 

actuations and consequent operational regime changes. This, as promoted by different 

authors, for example in [71], indicates that the occupancy should be a key aspect in 

the research of energy usage in buildings, because of its potential contributions to 

efficiency improvements. Actually, a recent review of energy efficient ventilation 

strategies concluded that large amounts of energy are being wasted because of 

conditioning building areas that have effectively empty periods of time, and that 

accounting for these may help to greatly increase efficiency [72]. Indeed, most of the 

current load simulation and forecasting methodologies show a lack of occupancy 

awareness, while the available studies dealing with the integration of occupancy data 

into load forecasting systems to enhance the accuracy of power demand predictions 

present critical limitations and insufficient proficiency [73]. 

Similarly, a recent review of artificial intelligence methods for load forecasting in 

buildings suggested that the integration of occupancy data has the potential for 

improving energy predictions [74]. Moreover, it was stated in a study of the application 

of neural networks for building energy forecasting, that occupancy-based inputs should 

be taken into consideration in future studies because of the impact that the occupancy 

can have on the building’s thermal energy usage. This is shown in [75] and further 

developed in [76], where several attributes were studied, concluding that it would be 

useful to create occupancy indicators for improving the prediction capabilities. 

On this subject, some methodologies for the modeling and forecasting of occupancy in 

buildings exist, being Agent-Based Modeling (ABM), and Hidden Markov Models 

(HMMs) the most common. ABM approaches try to mimic the behavior of occupants of 

a building in order to simulate either occupancy patterns or their effects at the occupant 

level [77], hence being too fine-grained for full building applications. Alternately, HMMs 

are stochastic processes that naturally fit the problem of modeling occupancy patterns, 

because they treat occupancy as a series of transitions between states and attempt to 
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estimate and simulate the probabilities of transitions among such states [78]. HMMs 

are useful at low aggregation levels, for example for assessing the probability of a given 

space becoming occupied, but are not a good fit for big scenarios, as the complexity 

grows exponentially with the number of zones [79]. Another disadvantage of HMMs at 

high aggregation levels is that their future state is a function of their current state, not 

taking into consideration past states. This property could neglect important features of 

the aggregated occupancy, such as the ratio of change. Indeed, complete and viable 

solutions are yet to be investigated, and the proper way to monitor the occupancy, to 

define the indicators and to integrate them into a load forecasting system remains to 

be established. 

3.1.3 Innovative contribution 

In this chapter, an HVAC thermal power demand forecasting methodology composed 

by the integration of a power demand model and an activity indicator model is studied. 

The methodology aims to extract the occupancy patterns in order to determine the level 

of activity in the building and thus to improve the accuracy of the power demand 

forecasting. With this objective, the building’s historical database is divided into 

occupancy and load data for separate preprocessing. Then, an activity indicator is built 

and a model is implemented using Recurrent Neural Networks (RNN) to enhance the 

consideration of dynamic temporal patterns, while the power demand characterization 

is carried out by means of a state-of-the-art Adaptive Neuro-Fuzzy Inference System 

(ANFIS) structure. Finally, a reliable and robust power demand forecasting model is 

obtained by the serialized fusion of both inference systems. 

The main contribution of this study lies in a new data-driven short-term load forecasting 

methodology for the prediction of the thermal power demand of HVAC systems in 

buildings, and the introduction and verification of an activity indicator estimation 

procedure to support the prediction of the power demand. 

Aligned with the current research challenges in the field, the methodology takes 

advantage of real-time occupancy data in order to predict an activity indicator, providing 

accurate insight regarding the thermal needs of the building in terms of the volume of 

consumption endpoints in operation. Furthermore, due to the difficulty in directly 

measuring the thermal power demand signal, which would involve the use of extensive 

instrumentation installed in consumption endpoints throughout the building, an 

estimation method is proposed in order to calculate the actual power draw, derived 
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from the measurement of the thermal power output of the HVAC energy production 

equipment in the building. 

The novelty of this work includes the implementation of a new hybrid solution that offers 

major advantages over traditional approaches. In particular, the collaborative model 

structure, comprehending the separate modeling of the activity indicator’s dynamics 

and the thermal power demand characterization, differs from classical single model 

approaches in that it allows the selection, tuning and fitting of each structure 

independently, increasing its adaptability to the dynamics of each signal and improving 

the resulting accuracy through the specialization of its modeling process. 

It should be noted that this is the first time that this methodology, as well as this activity 

indicator modeling, is used in building automation and energy management for 

providing accurate insight regarding the thermal needs of the building, with the 

objective of supporting the enhancement of resource management and the 

optimization of the operation of local HVAC equipment. 
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3.2 Modeling for thermal demand forecasting 

A step-by-step diagram of the complete methodology is shown in Fig 3.1, which is 

divided into three stages: the activity indicator modeling stage, where an artificial 

activity indicator is defined and modelled, the power demand modeling stage, where 

the power demand of the HVAC system is estimated and modelled separately and 

finally the demand forecasting stage, where predictions are obtained by means of the 

evaluation of the models. 
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Fig 3.1 Steps of the proposed power demand forecasting methodology divided into activity modeling 

stage and power demand modeling stage. 
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Initially, on the activity indicator modeling stage, the occupancy data is extracted from 

the building’s historical database and is preprocessed in order to remove gaps due to 

acquisition interruptions, outliers and erroneous readings (a). The activity indicator is 

then defined as the aggregation of the binary occupancy signals (b) and the obtained 

indicator is modeled by means of a recurrent neural network with global feedback (c). 

The trained network’s performance is evaluated over a test dataset in order to validate 

that it has properly learned the indicator’s behavior (d). 

Afterward, during the power demand modeling stage, power data plus auxiliary signals 

are loaded and preprocessed in a similar manner (f). Then, a power demand estimation 

method (g) allows the calculation of the total power demand corresponding to the 

consumption endpoints in the building, decoupling the effect of the distribution bus 

capacity and the control strategy. Next, an ANFIS model is built for the forecasting of 

the obtained thermal power consumption signal by selecting the most suitable set of 

input variables and training the inference structure (h). After the model is trained, it is 

validated (i) in a similar manner as the activity indicator model in order to ensure its 

accuracy. 

Finally, the activity indicator model (e) is combined with the obtained power demand 

model (j) to support the calculation of power demand predictions (k). The combination 

is performed in series, where the output of the activity model is used as an input of the 

power model. 

The following subsections describe the main stages of the methodology in detail. 

3.2.1 Activity indicator modeling 

In the literature, some studies use timetables as a rough estimation of occupancy, 

exploring the potential energy savings that could be achieved by implementing 

management strategies that take advantage of personalized occupancy schedules 

[80], schedules of the temperature settings of the building [81], or occupancy patterns 

derived by mining the energy consumption of appliances [82]. However, a recent 

review of occupancy modeling approaches concluded that schedule-based 

methodologies are not suitable for applications aimed at improving energy efficiency in 

buildings, in favor of more sophisticated methods that are able to learn and predict the 

behavior of occupants [73]. Accordingly, the implementation of a new model of the 

occupancy pattern of a building is introduced in this methodology. 
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Thus, in the proposed methodology the concept of an activity indicator is introduced 

with the aim of incorporating the information relating to the occupancy of the building 

into the load forecasting system. The proposed activity indicator is defined as the 

percentage of active spaces in a building, given that the spaces are monitored with 

presence detectors, which are common in modern buildings for climate and lighting 

control purposes. The percentage of active spaces is not intended to be a direct 

measurement of the occupation as the number of present occupants, instead, it is used 

as a measurement of the amount of activity in the building in terms of spaces where 

the HVAC system is in operation. The integration of this indicator into the load 

forecasting system may lead to more accurate predictions because the amount of 

rooms with an operating local air handling unit (AHU) is likely to significantly affect the 

load of the HVAC equipment (chillers, heat pumps, etc.) at the energy production stage. 

However, information regarding this or any other artificial activity indicator is unknown 

beforehand, as opposed to variables such as weather conditions, which can be pulled 

from a local weather service with reasonable accuracy. In consequence, a dedicated 

activity modeling system is integrated into the methodology in order to independently 

obtain a model of the dynamics of this signal so it can be used for improving the 

accuracy of the subsequent power demand forecasting. 

The modeling of the activity indicator is based on an RNN, which is a data-driven 

technique that is well suited for cases where the target signal does not present a direct 

correlation with other signals that could have been used as model inputs, and instead 

depends on learning the target signal’s own dynamics. This is possible because RNNs 

introduce the time element through their internal states, which allow the network to 

remember information about the past and to use it for the calculation of predictions, 

facilitating the learning of the temporal dynamics of the target, instead of relying solely 

on the current inputs [83]. This feature of RNNs makes them suitable for modeling the 

activity indicator, which is not strongly correlated with other signals, thus the modeling 

relies on the accumulated state for learning its temporal dynamics, in this case, 

complemented with the time of the day and the day of the week for increased 

robustness. Additionally, memory units have been incorporated into the network in 

order to provide auto-regressive behavior; this allows the network to not only take into 

account the previous recurrent state, but past states as well. 

The RNN is trained in open-loop form by means of backpropagation, where its 

coefficients are tuned with the objective function corresponding to the minimization of 

the mean-squared error of the prediction of the state of the next iteration. After the 
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modeling process is carried out using the open-loop network, the feedback loop is 

closed to allow the calculation of predictions taking advantage of the recurrent nature 

of the network. Using the closed-loop form, prediction iterations are calculated based 

on the value of the previous state, the inputs and past states provided by the memory 

units. The structure of the complete closed-loop RNN is shown in Fig 3.2. The trained 

network is then validated in terms of accuracy using several error metrics, evaluating 

its performance as more iterations are calculated. The results of the validation 

ascertain whether the performance is sufficient at the desired prediction horizon. 
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Fig 3.2 Structure of the closed-loop recurrent neural network, composed by an input layer with memory 

units, a hidden layer, and an output layer with a feedback loop. 

3.2.2 Power demand modeling 

The implementation of the power demand model begins with the initial step of 

preprocessing the signals to interpolate possible gaps and filter noisy signals acquired 

by sensors. In addition, a final step is considered for the validation of the trained model 

structure. However, the core of the proposed power demand modeling is composed of 

the following two main steps: the power demand estimation, and the fitting of the ANFIS 

model. 

3.2.2.1 Power demand estimation 

The power consumption of HVAC systems is a form of instrumentation that is frequently 

found in buildings, especially in modern smart buildings that incorporate BEMS, which 

are the main target environment of novel methodology proposals. Thermal power 

demand, however, is not a variable that is commonly monitored directly due to the high 

cost of installing sensors in consumption endpoints, even though it is the most useful 

signal to support the optimization of local resources. The reasoning is based on the 
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fact that when load forecasting systems are implemented for demand response 

programs or other applications in the context of the smart grid, it makes sense to 

provide the power consumption of the complete system, because these applications 

are focused on the optimization and planning of upstream resources. Instead, the 

proposed method is aimed at providing a forecasting model of the thermal power 

demand, which can be used to optimize the operation of on-site resources such as 

HVAC machines. 

Since directly measuring the thermal power consumption of the building in real-time is 

not a commonly affordable option, which would limit the applicability and impact of the 

methodology, an indirect solution is proposed. The method follows a grey-box 

approach to allow the estimation of the power demand observed in the thermal 

distribution bus of the building, implemented as described next. 

The energy balance of the bus (Eq. 3.1) is calculated for each time sample, where ܳ௜௡ 

is the thermal power produced by the HVAC equipment, measured using an ultrasonic 

flow meter plus a differential temperature sensor, and ܳ ௢௨௧ is the power drawn from the 

bus, which is not known. The energy accumulated in the bus Qbus during each cycle 

is described by (Eq. 3.2) where ܥ௣ is the specific heat of the fluid in the bus, ∆ ௕ܶ௨௦ is 

the increment of the temperature of the bus, and m is the total mass of the fluid. 

∆ܳ௕௨௦ ൌ ܳ௜௡ሺݐሻ െ ܳ௢௨௧ሺݐሻ Eq. 3.1 

ܳ௕௨௦ ൌ ௣ܥ ൉ ݉ ൉ ∆ ௕ܶ௨௦ Eq. 3.2 

Once the energy balance is defined by the input energy flow ܳ௜௡ and the energy 

accumulated in the bus ܳ௕௨௦, the resulting power flow being drawn by the consumption 

endpoints ܳ௢௨௧ can be calculated by subtraction. 

3.2.2.2 Power demand model fitting 

After the thermal power demand is obtained, a forecasting model is built for this new 

signal. The method used in this study for the implementation of the load forecasting is 

the Adaptive Neuro-Fuzzy Inference System (ANFIS). Even though neural networks 

are the most popular data-driven methods, mainly due to their accuracy and non-linear 

mapping capabilities [84], they present drawbacks such as falling on local minima and 

requiring large datasets [85]. Instead, ANFIS combines the advantages of neural 
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networks with fuzzy systems to better handle complex and adaptive systems, having 

been validated in multiple load forecasting studies [86]. 

For the implementation of the ANFIS model, several input signal candidates are 

considered besides the previously built activity indicator, including weather parameters 

and other variables commonly available in BEMS, as described in the test environment 

section. In order to select the set of input signals that allows the proper characterization 

of the power demand, an input selection process is carried out, which is based on the 

cross-correlation analysis between each of the input candidates and the target signal 

to rule out uncorrelated signals, and the study of their dynamics by means of the 

frequency analysis of each variable. Having considered the candidate inputs and 

obtained the final selection, an ANFIS model is trained and then evaluated using 

common performance indicators: the Root Mean Squared Error (RMSE), the Mean 

Absolute Percentage Error (MAPE), the Mean Absolute Error (MAE), the Determination 

Coefficient (R2) and the Maximum Error (MAX). 

3.2.2.3 Power demand forecasting 

Finally, the power demand of the HVAC system of the building can be predicted using 

the combination of the trained models obtained following the previous steps. The 

activity indicator model provides a measure of the future occupancy level, which drives 

the HVAC power. Then, the expected power demand is calculated to obtain the final 

prediction, corresponding to this activity and the other influencing variables. In 

summary, the obtained models are combined in series, with the activity indicator 

forecast being fed to the power demand model to calculate the final prediction. 

Besides the activity indicator estimation procedure, the hybrid solution adopted in this 

study offers several advantages over traditional approaches. Namely, instead of fitting 

a single model using a general-purpose tool, a collaborative and modular structure is 

proposed based on specialized models built for the activity and for the power demand. 

Such solution allows to fit and tune each method independently, adapting it to the 

dynamics of each signal and allowing to separately train the models with the use of 

different datasets. 
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3.3 Experimental implementation and validation 

This section shows the implementation of the proposed thermal load forecasting 

methodology and discusses the obtained experimental results in the test environment 

described in Annex 1. Test environment. 

Two separate datasets are used for the experimental validation of the proposed 

methodology. For the activity indicator model, the available dataset comprises 8 

months of data, from March to October of 2016, including the individual occupancy 

signal of each of the spaces of the building. Separately, the dataset for the power 

demand model comprises 11 weeks of data, from late June to early September of 2016, 

as the dataset corresponds to the cooling power demand, which is only relevant during 

summer. The power demand dataset contains the power output of the energy 

production equipment, the bus impulsion and return temperatures, and the external 

temperature and solar irradiation, measured by a local weather station. 

The forecasting horizon is set to one hour in this case, as a shorter horizon would limit 

the applicability of the load forecasting methodology, and would not allow optimization 

systems to plan actions with sufficient foresight. Furthermore, a one-hour forecast 

horizon is sufficient to adapt the predictions to the significant dynamics observed in the 

building’s datasets, which are in the range of two to three hours. 

3.3.1 Activity indicator modeling 

After the preprocessing of the dataset’s signals to remove gaps and to filter out 

erroneous out-of-range samples, the activity indicator is built using the sum of the 

individual occupancy signals obtained from the presence detector associated to each 

space. The resulting activity indicator is shown in Fig 3.3. The pattern presented by the 

resulting signal follows an expected trend, the indicator rises in the morning as more 

spaces in the building become occupied and their presence detector is triggered, some 

drops are observed at midday as people leave for lunch, and finally, most people leave 

during the evening. However, being a research facility, some remnant occupation can 

routinely be observed in the building, even during nighttime. 
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Fig 3.3 Activity indicator estimated from the aggregate of the individual occupancy signals during a week 

in March of 2016 

Next, the activity indicator model is built using an RNN, which must be configured 

before the training. The parameters to be configured are the time step between the 

recurrent iterations, the number of memory units on the inputs and on the output 

feedback loop, and finally the number of neurons in the hidden layer. 

Considering the temporal aspect of RNNs, it is necessary to properly configure the 

iteration time step according to the dynamics present in the signal and the desired 

prediction horizon. Thus, a small time step value in the range of minutes is required in 

order to capture the dynamics for the next hour horizon. Further experimentation was 

performed in order to characterize the effect of increasing the iteration time step value. 

This improves the performance of the network when predicting the activity indicator 

several hours ahead. In fact, it was possible to predict the activity of the next 8 hours 

with slightly over 10% RMSE. However, even though increasing the time step lead to 

expanding the forecasting horizon where the model was still usable, the performance 

decreased in the short-term, which is precisely when maximum performance is 

required in order to feed the power demand model. Thus, the value of the iteration time 

step of the RNN was configured at 4 minutes, which is the minimum acquisition-step 

available in this case. 

Regarding the number of memory units, this amount is set to zero for the inputs, since 

the dynamics of the input signals of the activity indicator model, which are the day of 

the week and the time of the day, are not relevant. Instead, the number of memory 

units in the output feedback loop is set to 15, which at 4 minutes per iteration step 

matches the one-hour forecasting horizon desired. Therefore, the past states in the last 
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hour are used when forecasting the next hour. Additional experiments were conducted, 

confirming that including too few units resulted in poor performance, while including too 

many units did not improve the prediction accuracy, but severely increased the training 

time due to the added parameters. 

Concerning the number of neurons in the hidden layer, related studies recommend 

using a number of neurons bigger than the number of inputs in order to contribute to 

an information expansion prior to the output convergence. Subsequently, further 

empirical experiments were carried out in order to select an optimal configuration. An 

amount of 16 neurons is finally selected for the hidden layer, as fewer neurons were 

not able to fully estimate the dynamics of the signal, and more neurons increased the 

training time while actually decreasing performance. 

After the training of the network with the selected configuration, the performance of the 

resulting model was evaluated over a reserved validation dataset, which accounted for 

30% of the available data. The selected performance indicators are the defined for the 

power demand model: the root-mean-square error (RMSE), the mean absolute 

percentage error (MAPE), the mean average error (MAE), the maximum error (MAX) 

and the coefficient of determination (R2). Because of the iterative nature of the 

evaluation of the recurrent network, where each prediction is fed back into the model 

to generate the next state, it is not enough to evaluate the forecasting performance of 

a single step, as the error is accumulated at each iteration. Thus, the multi-iteration 

performance must be evaluated to find out if the model is suitable. Fig 3.4 shows the 

progression of the selected performance indicators as the prediction horizon is 

expanded. As it can be observed, all of the considered error indicators exhibit a 

performance decrease as more iterations are applied to the RNN. At 1-hour prediction 

horizon the mean absolute error is 2.3%, which is a very accurate response taking into 

account the apparently random behavior of the occupancy in buildings, therefore the 

model is deemed acceptable for the further implementation of the methodology. It is 

also observed that the evaluation time increases in a linear trend as more feedback 

loops are applied in order to increase the prediction horizon. 
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Fig 3.4 Performance of the activity indicator model when used for multi-iteration predictions using the 

validation set. Root mean squared error, RMSE. Mean absolute percentage error, MAPE. Mean 

absolute error, MAE. Maximum error, MAX. Determination coefficient, R2. Evaluation time 

3.3.2 Power demand modeling 

Having accomplished the activity indicator modeling stage and having obtained an 

activity model suitable for use, the next step is to carry out the power demand modeling 

stage, where the activity forecasting is integrated with ANFIS in order to model the 

power demand of the HVAC system. 

A dataset was extracted from the building’s historical database, comprising the 

variables defined in the test environment section. After the preprocessing of these 

signals, the first step was to calculate the power demand signal from the measured 

power output of the machines and the bus temperatures by means of the estimation of 

the bus dynamic behavior. The bus temperature signals and the estimated power 

demand compared to the measured power production are shown in Fig 3.5 for a period 

of three days in August. 
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Fig 3.5 Normalized power demand signal drivers. a) Bus impulsion and return temperatures. b) Bus 

power production and estimated demand. 

As it can be observed in Fig. 5 b), the power demand signal, corresponding to the 

aggregated power drawn by the consumption endpoints in the building, presents higher 

dynamics than the power production, corresponding to the aggregated power 

generated by the production equipment, while having the same integral value, as the 

consumed energy must be equal to the production. It is worth mentioning that there is 

a delay between the risings and fallings of the power demand compared to the power 

production. This is due to the control scheme implemented in this HVAC system, which 

does not take into account power demand, and instead focuses on maintaining the bus 

temperature between thresholds. The difference between the power production and 

the power demand at the end of each workday is energy that is wasted and will not be 

consumed by the HVAC system. This energy remains in the distribution bus until it is 

dissipated because of insulation losses. Having a power demand forecast, this could 

be improved by producing the minimal energy that is required to match the power 

demand. 

In order to build the power demand model, a set of variables are selected as the inputs 

for the model from the available signals in order to facilitate the work of the training 
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algorithm. The following signals were considered as inputs: external temperature, solar 

irradiation, bus impulsion temperature, bus return temperature, bus differential 

temperature and finally the estimated activity indicator. To select the model’s inputs, 

the cross-correlation between the target signal and each of the input candidates is 

calculated in order to rule out uncorrelated signals. 

 

Fig 3.6 Cross-correlation between each model input candidate and the forecasting target. 

The different cross-correlation pairs are shown in Fig 3.6, where each series shows the 

correlation between an input candidate and the thermal power demand as a time shift 

is applied between the two signals. It is desirable that the selected inputs show a high 

correlation with the target signal at the forecasting horizon, which is set to 1 hour in this 

case. As it can be observed, the most strongly correlated input candidates when the 

offset between each pair is 1 hour are the external temperature, the solar irradiance, 

the activity indicator and the bus return temperature. On the other hand, the bus 

impulsion temperature and the bus temperature differential present low correlation with 

the target. Finally, it is noticeable that the target shows a strong correlation with itself 

when a 1-hour offset is applied, therefore the current power demand value was also 

considered as an input for the model. A sample of the preselected input variables is 

shown in Fig 3.7. 
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Fig 3.7 Selected input variables during a period of 5 days in August 

The study of the signal’s frequency components, shown in Fig 3.8 as the frequency 

spectrum analysis, revealed the magnitude of the signal’s dynamics. As it can be 

observed, the solar irradiation and the external temperature present rather slower 

dynamics than the power demand, which is expected as they mostly follow a daily 

pattern. Instead, the activity indicator presents significant dynamics up to sub-hour 

period frequencies, which is more aligned with those observed in the power demand, 

as is the case of the bus return temperature, which presents even higher frequency 

components. Thus, the inclusion of the activity indicator and the bus return temperature 

may help the model to better adapt to the power demand’s dynamics, as these signals 

present more similar frequency components. 
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Fig 3.8 Frequency spectrum comparison between the power demand model input candidates and the 

power demand target signal. 

Additional empirical analyses carried out with the available signals, reveal that the use 

of both the external temperature and the solar irradiance do not improve the modeling 

performance, as these two signals present correlation between them and introduce 

redundant information into the model. As the external temperature presents a smoother 

behavior than the solar irradiance, which has very steep peaks due to passing clouds, 

and a forecast of the external temperature is readily available through a local weather 

service provider, but not for the case of the irradiance, the latter was discarded and 

only the former was used. Regarding the current value of the target, it was noticed that 

it improved the forecasting accuracy when included, as it provided a reference point to 

calculate the next values. Concerning the bus temperature signals, only the return 

temperature was used, as it provides feedback about the state of the 

production/demand match. The bus differential temperature was considered, even 

though it presented low correlation with the target, in an attempt to increase the 

accuracy of the model during rapid changes, as the bus differential presents high 

dynamics. This helps the model perform better in some cases, but overall introduces 

noise and is finally discarded. Finally, another considered variable is the day of the 

week, which was included as it helps the ANFIS rule inference step to properly 

characterize the behavior of the power demand during weekends. In summary, the 

study revealed that the most appropriate set of signals to characterize the power 
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demand of the building is: the external temperature, the activity indicator, the bus return 

temperature, the current power demand value and the day of the week. 

The result of the model training is shown in Fig 3.9, where it can be observed that the 

model closely matches the target on most of the signal, presenting a low average error. 

However, there are also error peaks that occur when the target signal presents the 

fastest dynamics, causing error spikes due to steep changes, but having very short 

duration. 

 

Fig 3.9 Comparison between the power demand signal and a prediction obtained using the trained 

power demand model 

In order to validate the methodology and to evaluate its performance and generalization 

capabilities, a cross-validation strategy was followed. The cross-validation 

implementation removes one week of data at a time from the dataset, builds a model 

using the remaining data and validates the model against the removed subset. Thus 

an 11-fold cross-validation is considered. The results of the cross-validation are shown 

in Fig 3.9, where several performance indicators were calculated when the model is 

applied to the training set and separately over the validation set. As it can be observed, 

the error indicators are quite low, with the mean absolute error being the most 

compelling at an average value of 2% during training and 3% during validation. The 

maximum error shows an average of 13%, which is acceptable due to the occasional 

rapid changes observed in the signal, but reaches a value of 26% when week 3 is not 
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present in the training set. In fact, the other error indicators are also noticeably higher 

when week 3 is used as validation and is excluded from the training. This observation 

indicates that week 3 presents a behavior that differs from the rest of the data, as the 

resulting model achieves worse prediction performance when learning from the other 

cases. 

 

     

    

   

Fig 3.10 Results of the cross-validation process when splitting the data into 11 subsets, corresponding 

to the weeks in the dataset. 

Finally, in order to quantify the increase of performance provided by the application of 

the proposed methodology, the obtained results have been compared with a classical 

load forecasting implementation based on ANFIS. The evaluation of the power demand 

modeling stage using the proposed methodology resulted in decreased error metrics. 

The following Table 3.1 shows the performance change when comparing the average 

performance metrics of the proposed methodology to the ones obtained from the cross-

validation of the classical approach both including and withholding the activity 

information. 



Power demand forecasting in buildings 

 Experimental implementation and validation 
 

 

Advanced energy management strategies for HVAC systems in smart buildings 55 
 

 A B C 

 Value Value ∆% Value ∆% 

RMSE 3.932 4.239 -7.81 5.196 -32.15 

MAPE 5.571 6.205 -11.38 7.745 -39.02 

MAE 3.055 3.384 -10.77 4.198 -37.41 

MAX 13.200 12.941 +1.96 13.352 -1.14 

R2 0.821 0.775 +5.58 0.704 +14.25 

TIME 51.21 51.57 -0.70 30.260 +40.91 

Table 3.1 Performance comparison between the proposed method (A), and the classical single ANFIS 

approach with the activity Indicator (B), and the classical single ANFIS approach without the activity 

indicator (C) 

As it can be observed, the introduction of the activity indicator causes a significant 

improvement in most of the performance metrics over a classical ANFIS approach that 

does not take into account occupancy data, except for the training time, which is almost 

halved. This reduction in the duration of the training time is likely due to the reduction 

in the size of the data and the loss of one dimension in the input space by not 

considering the activity indicator, which allowed the modeling to speed up convergence 

at the cost of increased error. Additionally, the integration of the occupancy forecasting 

in the proposed methodology in order to provide more updated activity values helped 

to further increase the performance metrics over a classical approach that used the 

activity indicator. 
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3.4 Discussion and conclusions 

A short-term activity-aware thermal power demand forecasting methodology is studied 

in this chapter, aligned with the state of the art on load forecasting in buildings for 

energy management applications. The proposed methodology consists in a hybrid 

modeling process where a dedicated recurrent neural network learns the dynamics 

present in an activity indicator developed for this study, and an adaptive neuro-fuzzy 

inference system correlates activity predictions obtained in this manner with the 

outdoor temperature and the bus return temperature in order to characterize the 

thermal power demand of the building’s HVAC system. 

The integration of the activity assessment into the modeling process, through the 

definition of an indicator that reflects the occupancy state of the whole building, has 

been shown to increase the accuracy of the power demand forecasting. The error 

metrics are significantly decreased when the activity is used as an additional input for 

the power demand forecasting, but they are further diminished when the neural network 

is included as a dedicated means to learn the activity’s dynamics, providing an 

estimation of the use that the building shall receive in the following hour. To this end, 

the implementation of the activity modeling with a recurrent neural network is validated 

as a suitable approach in order to consider the temporal patterns of the building’s 

activity, as the proposed activity modeling process exhibits an important performance 

increase compared with state-of-the-art approaches, achieving a mean absolute error 

below 10%. 

The proposed thermal power demand estimation procedure allows the modeling of the 

total power being drawn by the consumption endpoints in the building, instead of 

modeling the consumption of the entire installation as is done in most related studies. 

The estimation is achieved by means of an energy meter that monitors the aggregate 

output of the production stage equipment and the simulation of the bus capacity in 

order to calculate the difference. The main benefit of this change is to allow the 

decoupling of the effect of the capacity of the distribution bus and the effect of the 

management strategy followed by the HVAC energy production equipment. Therefore, 

future studies may build on this methodology for implementing production management 

strategies that optimize the operation of the equipment according to the forecasted 

power demand in order to increase the energy efficiency. 
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A study of the available input candidates for implementing the power demand model 

was carried out in order to obtain a set of variables that allows the accurate modeling 

of the target signal. This study helped identify the set that achieves the best results: 

the current power demand, the activity indicator, the external temperature, the bus 

return temperature and the day of the week. The developed methodology can be 

generalized to other cases, extending its applicability. 

Besides increased accuracy, the proposed methodology presents other advantages, 

such as the possibility of using separate datasets of potentially different sizes for the 

activity indicator model and for the power demand model, which allowed the selection 

of representative datasets for each case. Additionally, this decoupling allowed the 

separation of concerns, promoting the specialization during the selection of the best 

modeling algorithm for each signal and the independent tuning of the configuration of 

each model, including the use of different inputs and dynamics to match each target 

signal’s behavior. The proposed structure also decouples the model tuning process, 

allowing to update a model independently of the other when necessary, since the 

activity model may need to be updated more often due to the changing behavior of the 

activity of the building. 
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4. 
Performance modeling of HVAC equipment 

Obtaining models establishing the relationship between the operating performance 

of HVAC equipment and their control settings and operating conditions is an essential 

milestone for the implementation of different energy management applications that rely on 

them. This chapter introduces a novel operating performance modeling method for HVAC 

production equipment based on a deep learning approach. 

CONTENTS: 

4.1    Introduction 

4.2    Deep Learning with AutoEncoders 

4.3    Operational performance modeling methodology 
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4. Performance modeling of HVAC equipment 

In this chapter, the most employed methods for establishing the relationship between 

operating state, control actions and energy performance of HVAC equipment are 

reviewed and their drawbacks identified, leading to the development of a novel generic 

method for modeling HVAC equipment based on a deep learning approach. 

4.1 Introduction 

This section introduces the background and motivation for pursuing this line of 

research, reviews the state of the art related to how the relationship between operating 

state, control actions and resulting energy performance is established in practice in 

current energy management applications and describes the innovative contributions of 

this work. 

4.1.1 Background and motivation 

As has been previously described, buildings are one of the largest energy consumers 

world-wide, with a substantial share of energy being used for operating HVAC systems 

[87]. Operational improvements aimed at increasing the efficiency of buildings may 

lead to considerable savings, potentially up to 20-30% according to different studies 

[88,89], considering that the control of HVAC systems is consistently suboptimal [90]. 

In this regard, the operating performance modeling and tracking of HVAC equipment 

represents an enabling tool for the implementation different energy management 

schemes [91], including optimization and maintenance functionalities [92–94], which 

perform an essential part in achieving the optimal use of energy resources and for 

reducing operating costs [95]. Such energy management functionalities often rely on 

accurate operational performance data being available [96]. However, obtaining 

performance data of specific equipment and providing performance maps suitable for: 

i) predicting the expected behavior, and ii) selecting the control parameters to achieve 

a desired state, currently represents a challenging and costly process that requires 

scientific and technical attention [97]. 
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4.1.2 State of the art 

By means of a thorough review of the state-of-the-art related to HVAC equipment 

performance characterization, modeling and applications requiring performance maps, 

three main strategies can be identified based on i) manufacturer data, ii) simulation 

tools and iii) empirical methods. 

In the first case, the use of performance tables from equipment manufacturers is 

common, especially in control applications [98]. Its main advantage is that the 

characterization effort is done by the manufacturer, meaning that no further step is 

necessary because the data is tabulated and ready for use. However, even when such 

data is accessible, it still faces a crucial issue: inaccuracy due to not reflecting that 

equipment performance is highly dependent on operating conditions [99]. Indeed, 

manufacturer-provided tables do not reflect the real operation context because they 

are obtained from testing equipment in controlled settings, while operating on a 

standard test environment and near design load [100]. Therefore, it is not 

comprehensive, often does not contain the full range of operation and does not provide 

the correlation with the full set of influencing variables, most of the time presenting only 

the correlation between the Coefficient of Performance (COP) and the Partial Load 

Ratio (PLR), while presenting insufficient granularity [101]. Thus, applications relying 

in such performance data may not fulfill the energy savings potential [102]. 

In the second case, the characterization of HVAC equipment behavior through its 

simulation is also a common strategy. Powerful specialized tools like TRNSYS [103], 

or general-purpose toolkits like Simulink [104], are often used for building 

thermodynamic models of HVAC systems. The simulation of their internal variables in 

order to study their response to control settings and to influencing external conditions, 

like the weather, is a common way of use [105]. This approach achieves great precision 

and data granularity, as it is not restricted by the cost of empirical experimentation, and 

only incurs in computational and expert time cost. However, they are complex tools 

that require ample domain knowledge, information and time for both implementation 

and usage [106], and require fine-tuning of the physical parameters of the equipment 

to be simulated in order to guarantee a certain degree of reliability [107]. Furthermore, 

simulation tools, likewise manufacturer tables, do not reflect the state of performance 

degradation due to aging or faults [108], which is a very important effect that requires 

the models to be able to adapt during the system’s lifecycle [109]. Indeed, this kind of 
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models are more adequate during the design and test stages of the equipment’s 

lifecycle [110]. 

Finally, in the third case, empirical performance characterization approaches can be 

sub-classified into gray-box and black-box modeling methods. Gray-box methods rely 

on physical equations that define the underlying physical processes and use 

empirically obtained data to estimate and tune the equations’ parameters [111]. 

Nonetheless, gray-box methods also present drawbacks, such as the requirement of a 

comprehensive dataset that sufficiently represents the operating conditions of the 

equipment, which is also a problem in black-box methods. However, even though this 

obstacle can be overcome due to the pervasiveness of monitoring solutions in Building 

Energy Management Systems (BEMS), which often track and store large amounts of 

operational information [112], ample domain knowledge is still necessary for defining 

the physical equations and for tuning their parameters [113]. 

Several recent studies are favoring black-box approaches to achieve accurate and 

practical performance characterization and modeling of HVAC equipment, because 

they provide a general solution that can be applied with a higher degree of 

independence from installation type or complexity. The main advantage of black-box 

approaches is that they are capable of extracting signal relationships from historical 

datasets, based on the behavior observed in the data, which may be nonlinear, as in 

the case of chiller performance maps [114]. Numerous black-box methods exist and 

some have been applied to solve the performance modeling problem, from simple 

approaches consisting in regression methods [115], to more complex solutions based 

on Neural Networks (NN) [116,117]. Indeed, a recent comparison among black-box 

methods concluded that NN represents a viable method because of its adaptability and 

capacity for learning non-linear relationships between the input variables and the target 

[118], which is a required feature in this problem given the non-linear behavior of the 

chiller’s power properties, dependent on the operating temperatures [51]. However, as 

stated by different authors, NN presents some limitations that make their application in 

a particular case non-trivial, mainly: i) they require a comprehensive dataset that 

properly represents the behavior of the system to be modeled, ii) the process of 

selecting the hyper-parameters for a specific application is a subject of ongoing 

discussion [119,120], and iii) the training process by means of the back-propagation 

(BP) algorithm can lead to sub-optimal solutions [121]. 



Performance modeling of HVAC equipment 

 Introduction 
 

 

Advanced energy management strategies for HVAC systems in smart buildings 63 
 

Although a few techniques have been adopted for lessening these issues [122], NN 

still present limitations to their applicability in specific cases. From the engineering 

perspective, extensive work is required in terms of dimensionality reduction and feature 

engineering, which is usually application-specific and needs to be performed by an 

expert [123,124]. In addition, from the practical perspective, performance maps are 

required on a per-machine basis, which means that empirical approaches rely on 

extensive instrumentation at the machine level. This leads to high costs when carried 

out beyond small-scale installations. 

In this regard, a recent advancement in the field of artificial intelligence and machine 

learning approaches, is the introduction of deep learning for overcoming such 

limitations [125]. Deep learning refers to non-linear algorithmic approaches that extract 

a hierarchical abstraction model from raw data. Most of deep learning deployments use 

neural networks architectures. Thus, each layer of a deep neural network (DNN) 

represents a non-linear data mapping fed by the output of a previous layer using a set 

of computation elements [126]. These data-layer representations depict extracted 

features from the data for its characterization. Indeed, deep learning is commonly 

referred to as feature learning, emphasizing the fact that the feature extraction itself is 

learned from data during the training. In fact, standard machine learning approaches 

requires specific feature reduction assistance, since the direct introduction of all 

available features leads to poor convergence during the learning phase [127]. In this 

regard, optimization techniques, as genetic algorithm (GA) based, are often considered 

to locally maximize the model accuracy by selecting a subset of the available features. 

These approaches, however, lead to a lack of generalization capabilities in front of 

slight variations of the input data, the so-called overfitting effect [128]. Deep learning 

approaches avoid the preceding feature selection, instead, dealing directly with data, 

allowing the so called end-to-end learning. This concept, although through a more 

complex structure, leads to three potentialities: i) increase of generalization 

capabilities, since higher order spatial interpolation is available, ii) visualization of the 

features significance through the analysis of the resulting layers, and iii) transfer 

learning, since additional data can be incrementally learnt without the need of complete 

model re-training and previous feature selection constraints. Although deep learning 

theory has been available for decades, three recent advancements are helping to 

increase its adoption, that is: i) training process improvements, ii) large amounts of 

data required for deep learning have become attainable, in this case facilitated by 
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BEMS, and iii) the increase of computational power that has allowed the utilization of 

training algorithms to become feasible. 

4.1.3 Innovative contribution 

In this chapter, a novel methodology for performance modeling of HVAC equipment 

based on deep learning is introduced. The originality of this work includes the 

development of a deep neural network based scheme that overcomes the drawbacks 

of approaches found in the state of the art and delivers a solution to model the 

coefficient of performance, electrical consumption and thermal power production of a 

multi-machine based HVAC system. The main contributions of this research work 

include: 

 The proposal of a methodology based on the performance analysis of a set of 

machines as a group by means of a deep learning approach, lowering 

implementation costs by permitting to reduce the amount of required sensors.  

 The estimation of the expected electric power consumption and the expected 

thermal power production besides the expected operating performance of each 

machine, while enclosed in a single modeling process. 

 The visualization of the feature significance resulting from the modeling process 

and its adaption during an incremental learning process. 

It must be noted that this work represents an important step to the introduction of deep 

learning techniques to the development of HVAC modeling procedures, being the first 

time that is has been applied at the equipment level. Moreover, the suitability and 

accuracy of the proposed method is validated in a real case study in a tertiary sector 

building, and the results are compared with a classical modeling approach. 
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4.2 Deep Learning with AutoEncoders 

Traditional NN applications implement shallow architectures, being the feed-forward 

network with three layers the most common, where the first layer corresponds to the 

inputs, the middle layer is a hidden layer and the final layer corresponds to the outputs. 

In such shallow networks, the inputs are a carefully curated set of signals obtained by 

means of feature reduction and/or feature engineering, because they are unable to 

learn complex features and relationships from the raw data [129]. In contrast, deep 

learning takes a feature learning approach, i.e. features are discovered instead of being 

given, by taking advantage of the properties of deep networks, where the initial layers 

extract meaningful features in an unsupervised manner and the final layers map these 

features to the target [130]. By following this approach, the resulting network is able to 

work with a wider set of inputs, where the training stage identifies features and assigns 

weights autonomously [131]. 

Unfortunately, the larger number of layers contained in deep networks poses a crippling 

issue in practice, where the classical backpropagation algorithm fails to update the 

weights through the layers during the training process as the gradient becomes too 

small to influence a change and prevents further learning, a problem known as the 

vanishing gradient [132]. Several techniques have been shown to be effective in 

alleviating this issue in recent years, including the use of different network 

architectures, or the use of regularization techniques such as the dropout method [133]. 

However, one of the best performing solutions is the implementation of layer-wise pre-

training schemes, where each layer is trained separately instead of presenting a target 

to the network and using a supervised learning algorithm such as backpropagation to 

update all the weights of the network at once. Still, it is not possible to train each layer 

in a supervised manner, as the values observed on each intermediate layer are 

unknown. Instead, an unsupervised approach can be adopted by considering the 

network as a deep autoencoder where each layer is treated as single layer 

autoencoder, as shown in Fig 4.1. In this sample network there are two consecutive 

encoder layers that transform the input to a latent space representation located at the 

center of the network, which is then followed by two decoder layers that transform it 

back to the input data space. 
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Fig 4.1 Sample architecture of a multiple-layer autoencoder composed of two encoder and two decoder 

steps. 

Single autoencoders are trained individually, where each subsequent layer uses the 

result of the prior encoder as the input. After each autoencoder has been trained in this 

manner, the set of autoencoders is unrolled in order to build the deep autoencoder, 

which can then be further fine-tuned [134]. The result is a deep autoencoder that is 

only capable of reconstructing the input space on the output of the network, as it has 

not been shown any labelled data yet, but it has learned an internal representation of 

the data and relationships between the input signals. This trained autoencoder can 

then be adapted for classification or regression applications by extending it and 

applying a further supervised learning stage so it can learn to map the internal 

representation to a target, an approach that has been shown to provide notably better 

results in practice [135]. 

4.2.1 Base autoencoder implementation 

Autoencoders are neural network based structures that are trained in an unsupervised 

manner, usually by backpropagation, where the objective is to learn a transformation 

that approximates the identity function [136]. By means of the introduction of 

constraints, the information flowing through each encoder becomes compressed while 
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the autoencoder is forced to reconstruct the input at the output, leading to the discovery 

of signal relationships and the internal structure of the data [137]. 

A single-layer autoencoder is can be defined as shown in Fig 4.2, where ࢞ is the vector 

of length ࢑ containing the set of inputs signals. 

Input
Layer

Hidden
Layer

Output
Layer

Encoder

Decoder

x1 x2 x3 x4

h1 h2 h3

y1 y2 y3 y4

 

Fig 4.2 Single-layer autoencoder architecture. 

In order to transform the input data to the hidden layer representation ࢎ consisting of 

 sparse-activated neurons, the encoder transformation (Eq. 4.1) is applied to the input ࢔

vector, where ࢋࢃ and ࢋ࢈ are the weights and biases matrices respectively, and ࢌ is 

the chosen activation function. 

݄ ൌ ݂ሺ ௘ܹݔ ൅ ܾ௘ሻ Eq. 4.1 

Different activation functions exist, being the sigmoid function (Eq. 4.2) the most 

commonly used. 

ܵሺݐሻ ൌ 1 ሺ1 ൅ ݁ି௧ሻ⁄  Eq. 4.2

Then, the encoded hidden layer is transformed again in order to obtain the output of 

the autoencoder by applying the decoder transformation (Eq. 4.3), where ࢊࢃ and ࢊ࢈ 

are the weights and biases matrices of the decoder, respectively, and ࢟ is the output 

of the network, having the same dimension as ࢞. 

ݕ ൌ ݂ሺ ௗܹ݄ ൅ ܾௗሻ Eq. 4.3 
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The parameters of the autoencoder can then be tuned by training the network with the 

aim of reconstructing the inputs vales at the output layer. This can be achieved by 

defining the loss function as the L2-norm error between the inputs and their 

reconstruction (¡Error! No se encuentra el origen de la referencia.). 

ఌܬ ൌ ௜ݔ‖ െ ௜‖ଶݕ ൌ෍ሺݔ௜ െ ௜ݕ ሻଶ
௞

௜ୀଵ

 Eq. 4.4 

In order to limit overfitting, a weight-decay regularization term (¡Error! No se 

encuentra el origen de la referencia.) is added to prevent large weights from 

appearing, where ࣓ࢼ is a parameter that controls the weight decay, ࢇ is the number of 

weight parameters, ࢈ is the number of rows and ࢉ is the number of columns in each 

weight matrix. 

ఠܬ ൌ ఠ෍෍෍ߚ ௜ܹሺ݆, ݇ሻଶ
௖

௞ୀଵ

௕

௝ୀଵ

௔

௜ୀଵ

 Eq. 4.5 

4.2.2 Sparse autoencoder implementation 

There are two ways to achieve information compression in autoencoders: i) constrictive 

autoencoders, which limit the size of subsequent hidden layers in the network, resulting 

in a form of dimensionality reduction, or ii) restrictive autoencoders, which enforce a 

sparsity constraint on the activations of the neurons in the hidden layers, allowing an 

autoencoder to learn relationships in the data even when subsequent layers present a 

higher dimension that the inputs. In fact, the units present in the hidden layer of 

sparsely-activated autoencoders, as shown in Fig 4.3, are tuned so that they seldom 

activate, effectively functioning as specialized feature detectors. Thus, sparsity is a 

useful property that offers great potential for the purpose of feature learning [138]. 
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Fig 4.3 Single-layer autoencoder with sparse-activated neurons. 

In order to coerce the activation of the neurons into becoming sparse when a larger 

number of units is present at the hidden layer of the autoencoder than at the input layer, 

an additional penalty term is introduced to restrict the tuning of the parameters. This 

sparsity penalty term (Eq. 4.6) forces the neurons to activate sparsely throughout the 

dataset. The term is implemented using the Kullback-Leibler divergence (Eq. 4.7), 

which is a standard measure of how a probability distribution diverges from the 

expected distribution, where ࣋ is the desired sparsity parameter and ࣋ෝ࢏ is the effective 

sparsity of a given hidden unit. 

The characterization of the sparsity is defined as the mean activation of the hidden unit 

over all the training samples in the dataset. In general, a small sparsity parameter is 

desired so that the units seldom activate. 

௦௣ܬ ൌ ො௜ሻߩ‖ߩሺܮܭ௦௣෍ߚ
௡

௜ୀଵ

 Eq. 4.6 

ො௜ሻߩ‖ߩሺܮܭ ൌ ߩ log
ߩ
ො௜ߩ
൅ ሺ1 െ ሻߩ log

1 െ ߩ
1 െ ො௜ߩ

 Eq. 4.7 

However, several different units may activate in common sections of the data. In order 

to prevent feature over-representation, a concurrent activation penalty is introduced 

(Eq. 4.8), where ࢐ࢎሺ࢏࢞ሻ denotes the activation value of a given hidden unit when 

presented with a data sample ࢏࢞, the maximum allowed concurrency is represented by 

 is an adjustable weight. This term’s value increases when overlapping is ࢽࢼ while,ࢽ

observed in the activation of hidden units, forcing them to become differentiated. A 
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small concurrency value is recommended so that the neurons become distinct 

indicators. 

ఊܬ ൌ ఊ෍ቌmaxቌ෍ߚ ௝݄ሺݔ௜ሻ
௡

௝ୀଵ

െ ,ߛ 0ቍቍ

ே

௜ୀଵ

 Eq. 4.8 

Finally, the loss function to be minimized is defined as the sum of the error term plus 

the regularization penalty terms, so the parameter-tuning problem can be stated as an 

optimization problem where the networks parameters are adjusted in order to minimize 

the resulting loss function (Eq. 4.9). 

min		൛		ܬሺ ௘ܹ, ܾ௘, ௗܹ, ܾௗሻ ൌ ఌܬ ൅ ఠܬ ൅ ௦௣ܬ ൅ ఊܬ ൟ Eq. 4.9 

 



Performance modeling of HVAC equipment 

 Operational performance modeling methodology 
 

 

Advanced energy management strategies for HVAC systems in smart buildings 71 
 

4.3 Operational performance modeling methodology 

A step-by-step diagram of the proposed performance modeling methodology is shown 

in Fig 4.4, which is divided into two main stages: the feature learning stage, where the 

raw input signals are consolidated into an internal representation through an 

unsupervised layer-wise autoencoder pre-training approach, and the performance 

mapping stage, where the internal representation is mapped to the targets by means 

of a supervised training scheme. 

U
ns

up
er

vi
se

d
 F

e
at

ur
e 

Le
ar

ni
ng

S
up

er
vi

se
d

 T
ar

g
et

 M
ap

pi
ng

Data Preprocessing (b)

Equipment Historical
Database (a)

Create AutoEncoder Layer (c)

Layer Pre-training (d)

Attach Supervised Structure (g)

Target Training (h)

Performance Map (i)

Fine-tuning (f)

Evaluation (e):

 

Fig 4.4 Steps of the proposed performance modeling methodology divided into two main stages: 

unsupervised feature learning and supervised target mapping. 
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Initially, a dataset is extracted from the database that stores the historical operation of 

the building’s HVAC equipment (a), including for instance consumed and produced 

power, control signals, state variables and weather conditions. The extracted dataset 

is preprocessed in order to remove gaps caused by acquisition interruptions, outlier 

removal and erroneous readings (b). 

Following the proposed methodology, during the unsupervised feature learning stage, 

a deep autoencoder structure is built by iteratively stacking layers (c), and trained to 

reconstruct the input space by means of the layer-wise pre-training strategy (d). After 

the pre-training of each layer, the reconstruction is evaluated by comparing it to the 

previous layer in order to assess whether additional layers should be created (e). When 

the stacked layers meet the evaluation criteria, a fine-tuning process (f), further 

improves the reconstruction error. After the feature learning stage is completed, the 

decoder half of the deep autoencoder is detached to proceed with the supervised target 

mapping stage. First, additional layers are attached to the central layer of the network 

(g), in order to perform the mapping from the latent space to the target variables. Then, 

the additional layers are trained in a supervised manner (h), in order to learn the 

relationship between the power consumption, production and coefficient of 

performance and the latent space. 

Finally, the performance map (i), is obtained in the form of a deep neural network that 

is able to calculate the expected power consumption, production and coefficient of 

performance for a given set of operating conditions. The accuracy of the resulting 

performance map is then evaluated using several error metrics. 

The following subsections describe the main stages of the methodology in detail. 

4.3.1 Unsupervised feature learning 

The aim of this stage is to construct a deep neural network able to discover features in 

the input data space in an unsupervised manner. This is achieved by means of a 

stacked autoencoder architecture where features are extracted at each layer and 

composed through the layers in order to perform complex feature learning. 

Single-layer sparse autoencoders are created and trained following the implementation 

described in the previous section. The advantage of following a layer-wise pre-training 

scheme is that the parameters of each layer in the network are tuned separately by 

means of backpropagation, where the vanishing gradient problem is non-existent due 

to each autoencoder being composed of a single layer. However, in order to build the 
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multi-layer network by stacking single-layer autoencoders, care must be taken to 

ensure the proper sizing of the intermediate layers, as the amount of necessary hidden 

units is difficult to ascertain beforehand due to the intrinsic relationship of this 

magnitude with the complexity of the data. Thus, a dimensioning strategy is 

implemented in this methodology by means of the evaluation of the activations of the 

units in the hidden layer. 

Firstly, an initially large amount of hidden units is configured, the layer is trained and 

its reconstruction error is evaluated. After the initial training, due to the large amount of 

units and the training constraints imposed, the evaluation of the activations of the units 

throughout the dataset shall reveal the presence of neurons that never activate, being 

effectively inert, which indicates that the layer is too large. The next step is to reduce 

the hidden layer and to retrain the autoencoder to evaluate the change in the unit’s 

activations and its effect on the reconstruction error. The number of units is decreased 

according to a fixed percentage of the initial size of the layer in order to follow a linear 

rate. This process can be expressed as an optimization problem (Eq. 4.10), where 

 ,ሻ corresponds to the presence of inactive units࢔ሺࢾ ,ሻ is the reconstruction error࢔ሺࢋࡶ

determined by their mean activation value not surpassing an activation threshold and 

 is the parameter to be selected, representing the number of units. By repeating this ࢔

process, the optimal dimension of the hidden layer is determined empirically, 

conducting to the equilibrium between the presence of inactive units and the error. 

min		ሼ		݂ሺ݊ሻ ൌ ௘ሺ݊ሻܬ ൅ ሺ݊ሻߜ ሽ, ݊ ∈ Թ Eq. 4.10 

When the training of the first autoencoder has resulted in a suitable hidden layer, its 

decoder stage is detached and a new autoencoder is defined where the hidden layer 

of the first autoencoder becomes the input layer of the second autoencoder. The input 

data used in the first autoencoder is transformed using its encoder stage in order to 

obtain the dataset for the next autoencoder. Then, this training process is carried out 

sequentially to tune new layers until sufficient layers have been created. In order to 

evaluate if sufficient layers are present, the following criteria are employed: as 

successive layers become smaller due to the implemented dimensioning strategy, the 

creation of new layers is stopped when the next layer is unable to further reduce its 

dimension without increasing the reconstruction error, or when a pre-established 

maximum number of layers is reached. 
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The result is a deep autoencoder composed of stacked sparse autoencoders, where 

the data flows through the layers causing the activation of the internal feature detectors 

that have adapted to the internal structure of the data. 

4.3.2 Supervised target mapping 

The deep autoencoder has performed the discovery of features in the structure of the 

data. Nevertheless, this process was carried out in an unsupervised manner, which 

means that the features are not correlated yet to the performance of the machines. The 

next stage of the methodology is to take advantage of the feature learning stage in 

order to map the target variables to these features. In this case, the target variables 

are defined as the power consumption and power production of the equipment, and 

the coefficient of performance at the current operating point. 

This mapping of the discovered features to the targets is implemented as a feedforward 

multilayer perceptron (MLP) that transforms the latent space data representation to the 

required output values. To train this additional structure, the input data of the network 

is passed through the deep autoencoder to calculate the value of the latent space for 

each input sample. The new dataset composed of the transformed inputs and the 

targets is then used for training the MLP by means of standard backpropagation. 

 

Fig 4.5 Coupling of a supervised multiple-layer perceptron to the encoder stage of an unsupervised 

deep autoencoder. 
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After this supervised tuning step, the MLP is coupled to the encoder stage of the deep 

autoencoder so that the inputs flow through the encoding layers to calculate the 

features and then through the MLP to map them to the targets. The final structure is 

shown in Fig 4.5, where ࢞ are the inputs of the deep network, ࢎ are sparse-activated 

neurons of the unsupervised autoencoder composed of ࡺ layers, ࢙ are the neurons of 

the ࡹ-layer MLP and ࢟ are the outputs of the network, which now correspond to the 

dataset’s target variables. After the coupling of both networks, supervised 

backpropagation is then also applied to the complete set of parameters of the resulting 

structure in order to fine-tune them. This last step may improve the modeling’s 

accuracy in some cases, as the initial layers that performed the feature learning in an 

unsupervised manner, may experience slight adjustments when presented with the 

target data. 

Finally, the accuracy of the performance mapping model obtained is evaluated using 

the following set of error metrics: the Root Mean Squared Error (RMSE), the Mean 

Absolute Percentage Error (MAPE), the Mean Absolute Error (MAE), the Determination 

Coefficient (R2) and the Maximum Error (MAX). 
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4.4 Experimental implementation and validation 

This section shows the implementation of the proposed operational performance 

modeling methodology and discusses the obtained experimental results in the test 

environment described in Annex 1. Test environment. 

As it has been aforementioned, the objective is to build a deep neural network based 

model to characterize the equipment’s power performance in terms of electric power 

consumption, thermal power production and coefficient of performance of the 

machines as a function of their operating conditions. Two cases are defined for the 

evaluation of the proposed methodology. A complex case is studied where multiple 

machines are present in an installation but only general power metering is available, 

which is a common scenario due to instrumentation costs. Additionally the considered 

equipment is heterogeneous, presenting different efficiency curves, which further 

complicates the problem but is also a general issue [139]. A simpler case deals with a 

single machine scenario, having dedicated power consumption and power production 

meters installed. Thus, the complex case considers all the cooling equipment, 

consisting of two chillers (CH1, CH2) and two heat pumps (HP1, HP2), while the simple 

case considers only chiller CH1. 

A four-month dataset was employed for the implementation and validation of the 

methodology by recording the operation of the building’s cooling equipment over the 

summer of 2017. Since the acquired period encompasses the full cooling season, the 

resulting dataset comprises a wide range of operating conditions, from mild weather 

and low power demand to warm weather and high power demand, at various machine 

operation combinations and different levels of occupancy in the building. 

4.4.1 Unsupervised feature learning 
During the feature learning stage, the unsupervised layer-wise pre-training strategy is 

followed in order to build the deep autoencoder. This process involves creating and 

training the individual layers, which must be properly dimensioned in order to facilitate 

the reduction of the reconstruction error. The defined dimensioning strategy is followed, 

setting an initially high number of units and evaluating the activations of the hidden 

layer units in order to determine the optimal size for each layer, according to the 

sparsity and concurrency constraints. Regarding the sparsity constraint, a value 

between 0.05 and 0.10 is generally recommended, while in the case of concurrency, a 

suitable setting is between 2 and 10, but should be determined by an expert user as it 
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relates to the complexity of the problem, given by the amount of machines and their 

modes of operation. 

The result of the dimensioning strategy is shown in Fig 4.6, where the reconstruction 

errors when varying the number of units in the hidden layers are presented. As it can 

be observed, the initial size of the layers is set to 100 neurons, which is progressively 

decreased in steps of 5 units (5% of the total), causing little effect to the reconstruction 

error at first, which is stable during the first layer reduction iterations, due to the 

presence of inactive units. As the layer’s size is reduced, the training process is further 

constrained in terms of the amount of available units to distribute the structure of the 

data, leading to the increase of the reconstruction error. 

 

Fig 4.6 Comparison between the reconstruction error and the number of units present in each 

autoencoder layer with a sparsity of 0.07 and a concurrency of 5. 

In the multiple-machine case, shown in Fig 4.6, the examination of the presence of 

inactive units established the threshold at 80 units for the first autoencoder layer, at 60 

units for the second autoencoder layer and at 40 units for the third layer. A slight slope 

change can also be observed at this point, where furtherly reducing the size of the layer 

results in a larger error increase. To assess the necessity of additional layers, the 

behavior of each new layer is compared to the previous layer. In this case, the process 

was stopped at the third layer because the next layer presented the same behavior, 

considering that inactive neurons disappeared when 35 units were configured, and the 

reconstruction error steeply increased. In the case of a single machine, three layers 

were also used, with sizes 33, 21 and 15 for the first, second and third layers, 

respectively, with a decrease step of 3 units per iteration from a starting size of 60. 
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Thus, the number of hidden units in the single-machine case was smaller, which is 

expected due the number of units necessary being closely related to the complexity of 

the data. 

After the training of each layer individually, the full autoencoder can be evaluated in 

order to determine the end-to-end reconstruction error, 13.70% RMSE and 10.49% 

MAE in the multi-machine case, which are indeed poor results when compared to the 

direct training of a deep autoencoder with the same layer configurations, resulting in 

10.38% RMSE and 7.07% MAE. However, a fine-tuning step is applied to the layer-

wise pre-trained deep autoencoder using the tuned parameters as a initialization 

values, which further reduces the reconstruction error to 5.64% RMSE and 3.96% MAE 

for the validation set, leading to a great improvement of the reconstruction 

performance. Similar results were obtained in the single-machine case, where the error 

was reduced from 10.07% RMSE and 7.09% MAE during pre-training to 6.12% RMSE 

and 3.82% MASE after fine-tuning, compared to the direct training of the network 

without the pre-training implementation, which resulted in 8.26% RMSE and 6.09% 

MAE. 

 

Fig 4.7 Representation of the activation of a subset of neurons over the first two components of a 

principal component analysis. 

The trained autoencoder can then be evaluated in order to study the features that the 

unsupervised learning has discovered. To demonstrate this, the color-coded 

activations of a subset of hidden units from the first autoencoder layer in the multi-

machine case are rendered over the samples of a principal component analysis (PCA) 
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in Fig 4.7, where each color represents the activation of a single unit across the data 

space. The first two PCA components are used for illustration purposes, accounting for 

72% of the accumulated variance. As it can be observed, several clusters of samples 

materialize, each corresponding to the activation of a different hidden unit. Therefore, 

the desired effect is achieved, where the units have scattered over the dataset 

according to two key concerns: the sparsity constraint forces the units to seldom 

activate, restricting their activation throughout the dataset, and the concurrency 

constraint discourages simultaneous activations in the same area of the data space, 

making the units disperse and cover different regions. It is important to note the 

reversibility of this transformation, which allows the reconstruction of the input data. 

The activations of the hidden units are compared to the target variables in Fig 4.8. As 

it can be observed, many of the units’ activation events can be correlated to changes 

in the target variables, even though no target information has been shown to the 

network at this point. Furthermore, while the meaning of some units may only make 

sense in composition, their activation can be interpreted in some cases, such as in 

regions where neurons are active during similar target values. For example, the 

activations of unit 7 can be traced to samples with high production values, while the 

activations of unit 4 can be traced to samples with low production values in the multiple 

machine case. It is important to note that this effect can consistently be observed, even 

though the units are repositioned each time the training process is repeated, indicating 

that the hidden units are able to discover features in the data. 
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Fig 4.8 Comparison between the activation a subset of the eighty hidden units in the first layer and the 

target production and coefficient of performance. 

4.4.2 Supervised performance mapping 

During the supervised performance mapping, the feature learning stage is coupled to 

an MLP in order to map the discovered features to the desired outputs. The supervised 

structure is connected at the middle layer, representative of the latent space learned 

by the unsupervised training, replacing the decoder stage of the deep autoencoder. 

First, the encoded representation of the input data is obtained by means of the 

application of the encoder stage. Then the supervised layers are trained with the 

objective of mapping the encoded data to the performance data, consisting of electric 

consumption, thermal production and coefficient of performance. Finally, the full 

structure is fine-tuned in order to improve the accuracy further. 

4.4.2.1 Case with a single machine 

The result of the supervised training consisting in a two-hidden layer MLP applied to 

the single-machine case is shown in Fig 4.9, where it can be observed that the network 

model accurately follows the real performance characteristics of the machine. 
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Fig 4.9 Comparison between the real targets (consumption, production, COP) and the deep neural 

network model for the single machine case. 

The accuracy of the proposed methodology has been compared to a traditional neural 

network approach consisting in a MLP with two hidden layers, of dimensions 6 and 4, 

which directly mapped the inputs to the performance targets without the unsupervised 

autoencoder pre-training. The accuracy of both approaches has been evaluated by 

means of the defined error metrics. A comparison of the results is presented in Table 

4.1. As it can be observed, the proposed method achieves a substantial improvement 

of all the error metrics, decreasing the mean RMSE and MAE by 20.11% and 23.41%, 

respectively, and increasing the coefficient of correlation by 2.70%. Another 

observation is that the COP prediction is not as accurate as the consumption or 

production, which is expected due to the COP being calculated as a quotient instead 

of measured. 
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 Consumption Production COP Mean 

 A B A B A B A B 

RMSE 2.24 3.02 1.73 2.40 4.72 5.46 2.90 3.63 

MAE 1.58 2.30 1.30 1.69 2.89 3.57 1.93 2.52 

MAPE 15.06 13.96 6.28 6.61 5.90 6.77 9.08 9.11 

MAX 21.55 34.35 10.42 29.66 67.59 75.12 33.18 46.37 

R2 0.9863 0.9713 0.9913 0.9831 0.8886 0.8366 0.9554 0.9303 

Table 4.1 Single machine case: accuracy comparison between the proposed method (A), and a 

classical NN based implementation (B). 

A histogram representation of the absolute value of the error is shown in Fig 4.10, 

where the distribution of the error can be observed. It is worth mentioning that besides 

the reduction of the overall error metrics, the standard deviation of the error was also 

decreased, presenting fewer samples with large errors. This could be due to the nature 

of the sparse autoencoder implementation, where a large amount of neurons is 

distributed over the dataset, therefore broadening the focus of the network, and 

successfully learning more complex features of the data. 

 

Fig 4.10 Error distribution comparison between a) the proposed deep autoencoder approach and b) a 

traditional neural network, for each of the outputs: consumption, production and coefficient of 

performance. 

4.4.2.2 Case with multiple machines 

In this case, the methodology is applied to the group of four machines as a whole, 

assuming that partial energy metering is unavailable. The inputs are defined as the 

pooling of the inputs of each of the machines, while the outputs are defined as the 

electric consumption, thermal production and coefficient of performance, as observed 
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by the general meters. The result of the supervised training of the additional two-hidden 

layer MLP is shown in Fig 4.11, where it can be observed that the deep network also 

models the real performance characteristics of the machine with good accuracy, even 

in samples that present drastic changes, which are a typical affliction of modeling 

methodologies. 

 

Fig 4.11 Comparison between the real targets (consumption, production, COP) and the deep neural 

network estimation for the multiple machine case. 

An important observation can be made by examining the COP signal, which shows the 

normalized value of the performance. It can be observed that the effective COP of the 

group of machines presents high variability in different periods, even between periods 

that present similar values in the consumption and production signals. This effect is 

caused by the composite operation of machines of different technologies which are 

being controlled at various load ratios by a controller that does not take optimal 

operating points into consideration. In fact, the control strategy of the HVAC controller 

in this test environment is designed with the objective of evenly distributing the time of 

operation so that all the machines age at an equal rate. Thus, the availability of 

accurate performance maps that reflect the real characteristics of the installation could 

be a great asset in the development of control strategies that account for the variations 

in performance at different operating conditions. 
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In this case, the accuracy of the proposed methodology was also compared to a 

traditional neural network approach, consisting in a MLP with three hidden layers, of 

dimensions 14, 10 and 6. However, due to the large number of input signals, consisting 

in the pooling of the inputs of the four cooling machines, a feature reduction process 

was implemented by means of a genetic algorithm pruning the input space, which is a 

common approach in feature selection applications [140]. This process resulted in the 

elimination of all but one bus return temperature, as its behavior is largely the same for 

all machines with the addition of an offset, and a few other signals related to modes of 

operation that had low relative representation in the dataset. This is due to the 

characteristics of a traditional NN, which may have difficulty learning those behaviors 

that are less represented, in favor of those more common in the dataset. Thus, 

approaches like sparse autoencoders, where feature detectors are distributed over the 

data, may pose an advantage in cases that aggregate different patterns and modes of 

operation. 

 Consumption Production COP Mean 

 A B A B A B A B 

RMSE 1.59 2.21 1.47 2.69 5.98 7.91 3.01 4.27 

MAE 1.07 1.64 1.05 1.97 4.33 6.07 2.15 3.23 

MAPE 2.91 5.34 3.09 4.94 11.56 15.34 5.85 8.54 

MAX 16.11 24.27 20.13 39.09 61.41 74.25 32.55 45.87 

R2 0.9946 0.9852 0.9956 0.9837 0.8957 0.8029 0.9619 0.9239 

Table 4.2 Multiple machines case: accuracy comparison between the proposed method (A), and a 

classical NN implementation with GA feature selection (B). 

The accuracy of both approaches has been evaluated by means of the same error 

metrics. A comparison of the results is presented in Table 4.2. As it can be observed, 

the proposed method achieves a greater improvement of all the error indicators, 

decreasing the mean RMSE and MAE by 29.51% and 33.43%, respectively, while 

increasing the coefficient of correlation by 4.11%. 

The error distribution analysis, shown in Fig 4.12, reveals similar results in this case. 

The deep autoencoder-based methodology outperforms the traditional neural network 

approach with feature selection implemented by means of genetic algorithm, both in 

terms on mean absolute error and the standard deviation of the error distribution. In 

this case, the consumption and production outputs achieve great accuracy, even 
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though this case presents more complexity because each of this signals is the 

aggregate composition of several machines. 

 

Fig 4.12 Error distribution comparison between a) the proposed deep autoencoder approach and b) a 

traditional MLP with GA feature selection, for each of the outputs: consumption, production and 

coefficient of performance. 
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4.5 Discussion and conclusions 

A data driven operating performance modeling methodology for the characterization 

for HVAC production equipment based on a deep learning approach is presented in 

this chapter, aligned with the state of the art regarding the analysis of performance of 

equipment for modeling and control applications. The proposed method consists in the 

implementation of a feature learning stage by means of stacked sparse autoencoders, 

which are able to pre-train the initial layers of a deep neural network in an unsupervised 

manner. The autoencoders are then followed by a supervised stage where the learnt 

features are mapped to the target variables. 

The implementation of the proposed methodology has been shown to improve the 

accuracy of the modeling of the behavior of a machine when compared with a 

traditional neural network approach. The defined error metrics were improved up to a 

23% in the single machine case during the estimation of the electrical consumption, 

thermal power production and coefficient of performance based on the machine’s 

operation conditions. Besides the single machine case, a more complex multi-machine 

case was also studied, where a group of machines was treated as a whole with the 

objective of estimating the group’s total consumption, production and performance, 

therefore including cross-effects that would otherwise not be accounted for. The 

improvement over the traditional neural network, this time complemented by a feature 

selection stage implemented by means of genetic algorithms due to the large amount 

of input variables, was larger than in the single machine case, with up to a 33% 

improvement of the defined error metrics, indicating that the feature learning approach 

is better suited when complexity grows. 

In addition to increased accuracy, the proposed methodology presents other 

advantages, such as the ability for feature introspection, consisting in the study of the 

sparse detectors in order to determine the conditions that caused their activation, and 

leading to the potential uncovering of the causes of a given behavior. Furthermore, this 

approach helps to reduce the initial feature selection and engineering effort by 

embedding it in the network, decreasing the pre-processing needs to a minimum. 

However, deep learning approaches do present a significant drawback, consisting in 

the increase of hyper-parameters that need to be properly adjusted for the modeling to 

be successful, such as the number of layers and the amount of units per layer. The 

tuning of such hyper-parameters is a non-obvious task, which was mitigated in this 

case by the implementation of a dimensioning strategy that supported the selection a 
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proper network configuration. For these reasons, the deep learning-based modeling by 

means of stacked sparse autoencoders has been validated as a suitable approach for 

the modeling of the performance of HVAC equipment in real operating conditions. 
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5. 
Predictive control of chiller groups 

The state of the art relating to solving the optimal chiller loading and sequencing 

problems is critically reviewed in order to highlight the potential avenues for increasing energy 

efficiency, and a novel control strategy is developed by taking advantage of the previous 

thermal demand forecasting modeling and equipment performance modeling to implement a 

multi-objective predictive control solution. 
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5. Predictive control of chiller groups 

This chapter performs a review of the state of the art relating to solving the optimal 

chiller loading and sequencing problems in order to highlight the potential avenues for 

improving energy efficiency. Then, a novel control strategy is developed by taking 

advantage of the previous thermal demand forecasting model and equipment 

performance model to implement a multi-objective predictive control solution. 

5.1 Introduction 

This section introduces the background and motivation for pursuing this line of 

research, reviews the state of the art related to control applications for chiller groups 

focusing on the chiller loading and sequencing problem, and describes the innovative 

contributions of this work. 

5.1.1 Background and motivation 

Considering the goal of increasing the energy efficiency of buildings, production 

equipment such as chillers are one of the areas that present the greatest potential for 

causing a significant impact [141] since these are one of the largest consumers in 

buildings, especially in the residential and tertiary sector where they can account for 

up to 40% of the building’s energy consumption [142]. This is especially true in multi-

chiller plants commonly found in medium to large buildings, where proper chiller 

loading and coordination is critical for increasing efficiency, and achieving an optimal 

control solution is of great interest with many studies attempting to tackle this issue 

with a variety of methods [143]. 

The potential for improvement is due to the fact the Coefficient of Performance (COP) 

of production equipment is not uniform throughout their operation range, meaning that 

differences in the control strategy of multi-chiller systems can lead to significant 

changes in the resulting energy consumption [64,144]. Indeed, a recent study 

concluded that up to 70% of the annual power consumption occurred while the chillers 

were operating at low Partial Load Ratio (PLR) which is the range were the coefficient 

of performance of chillers is typically at its lowest [145], while a study evaluating ideal 

operation levels concluded there was a potential for improvement of up to 23.4% [146]. 

Thus, a strategy able to optimally control the chillers’ operation has the potential to 

increase the operational efficiency of the overall system, minimizing the energy 
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consumption by ensuring that each machine operates at its optimal COP while 

considering the affecting operating state, like weather conditions, inlet temperature 

from the distribution bus and future load demand. 

5.1.2 State of the art 

The chiller sequencing and optimal loading problems refer to the necessity to find a 

strategy for coordinating the operation of a group of chillers in order to meet the cooling 

demand while minimizing energy consumption, in terms of the loading ratio of each 

chiller [147] and the sequence at which they should be turned on or off according to 

the cooling load requirements [148]. A thorough review of the related state-of-the-art 

reveals that this is a complex problem having several facets that need to be carefully 

considered in order to achieve a performant solution. The main key aspects identified 

are: i) the need of chiller performance characterization; ii) the objective function of the 

controller and iii) the choice of optimization strategy and implementation. 

Regarding the chiller performance characterization, chiller sequencing and optimal 

loading methodologies rely on the capability of mapping control actions to expected 

performance in order to select the chiller’s settings that lead to their operation at optimal 

COP, given a set of operating conditions [149]. The most common approach in recent 

methodologies is the utilization of manufacturer-provided datasheets that specify the 

performance according to specific operating conditions or the simulation and modeling 

of the equipment using software tools like TRNSYS [150]. For example, performance 

data obtained from datasheet lookup tables were employed for implementing a 

predictive HVAC controller based on a mixed-integer approach, which has the 

downside of providing only static figures and not considering all affecting parameters 

[98]. Instead, a study focused on the determination of a probabilistic approach for chiller 

replacement discussed the utilization of simulation compared to other methods, 

concluding that these could be viable for energy estimation if calibrated using 

measured data [151]. Even though the employment of such solutions in control 

applications is useful for research purposes, in practice, it is essential to have 

performance maps that accurately reflect the actual behavior of the equipment 

considering the multiple affecting factors besides the PLR, such as weather conditions, 

operating state and aging. In contrast, a methodology for optimizing the operation of a 

chiller plant employed a data-driven approach based on the modeling of the chiller 

group using a neural network and the implementation of a two-level algorithm, which 

allowed to achieve energy savings of 14% under simulation [116]. 
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Another key aspect of the problem is the selection of a proper objective function for the 

optimization process. The de facto standard objective function is based on the 

aggregate power consumption of the group of chillers, being a useful strategy when 

the minimization of the used energy is the ultimate goal of the solution [150]. However, 

the need to tackle other concerns indicate that a multi-objective strategy may be 

preferred. In particular, some studies make reference to the switching problem, which 

can be described as the frequency and magnitude of changes to the relevant control 

settings. An application of real-time HVAC optimization looked into minimizing the 

disturbances caused by controller actions, comparing rate-limited setpoint reset to 

controlled step-changes [152]. The conclusions reflect that frequent changes to control 

variables may lead to system instability, especially when simultaneous and having 

large magnitude, thus showing that in practice limiting the amount of changes and 

moderating their delta is desirable. Furthermore, another argument for considering the 

minimization of switching is that increased control changes may lead to energy losses 

and faster equipment degradation due to the dynamics of the equipment and their 

mechanical wear [153]. 

Finally, when suitable performance maps are available and an appropriate objective 

function is determined, an optimization algorithm needs to be applied to carry out the 

control of the group of chillers in an efficient manner. Mainly two types of methodologies 

can be found on the literature, i) generic global optimization tools and ii) specific 

heuristics-based controller implementations. Generic global optimization tools are 

common in chiller control applications, a study of air-cooled chillers optimal control 

used random forests to implement an empirical model of the chillers and then applied 

generic algorithms to carry out the estimation of the optimal values of the control 

parameters [154]. Similarly, particle swarm optimization was employed to adjust the 

control parameters of a water-cooled chiller plant, simulated using Modelica models 

adjusted using empirical data in [155]. However, controller implementations of this type 

are slow and have a randomness component, thus both their results and runtime are 

nondeterministic by nature. Instead, other researchers have focused on the design of 

control algorithms that implement specific heuristics, making the controllers more 

computationally efficient and robust, which is a desirable property of the system even 

though the global optimum may not consistently be achieved by this means [156]. 
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5.1.3 Innovative contribution 

In consideration of the described shortcoming in the state of the art solutions for the 

chiller loading and sequencing problem, this chapter proposes a novel methodology 

for the optimal control of chiller combining data-driven performance map modeling, a 

thermal demand forecasting methodology and a multi-objective model-predictive 

controller implementation. 

Specifically, the originality of this work consists of the following key aspects: 

 The integration of data-driven COP maps of the involved equipment, defining 

their performance depending on their operating conditions and considering 

several affecting factors (multi-variate approach); 

 The short-term forecasting of the building’s future thermal demand, considering 

affecting factors such as the weather and the building’s occupancy patterns, to 

provide accurate and reliable demand requirements to the optimization stage; 

 The consideration of the thermal dynamics of the building, taking advantage of 

the distribution system’s thermal capacity, recalculating and adjusting their 

operating setpoints for scheduling the operation over the time horizon; 

 The definition of a strategy considering multiple criteria for the determination of 

the optimal control sequence of the chillers, including the minimization of 

energy usage and switching. 
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5.2 Formulation of the optimization problem 

The mathematical formulation of the optimization problem can be considered as a 

multi-period nonlinear problem and it can be described as the determination of the 

optimal operating set-points ࢏࢜ of the HVAC equipment, for each time instant ࢚ of the 

optimization horizon, where ሼ	࢚	 ∊ 	Գ		|	૚	 ൑ 	࢚	 ൑  ሽ, with objective to satisfy the	ࡷ	

thermal energy demand of the building (L), while minimizing a multi-criteria function 

(ftrans) and satisfying the established operating bus temperature thresholds (࢔࢏࢓ࢀ, 

 .(࢞ࢇ࢓ࢀ

Minimize: ෍ ෍ ௝݂
௧௥௔௡௦,௧ሺݒ௜

௧ሻ
஼

௝ୀଵ

௄

௧ୀଵ
 Eq. 5.1 

Subject to: ܮ௧ െ෍ሺ ௜ܲ
௧ ∗ ௜ሻߟ

௡

௜ୀଵ

ൌ 0 Eq. 5.2 

 ௠ܶ௜௡ ൑ ௧ܶ ൑ ௠ܶ௔௫ Eq. 5.3 

 
෍ ௜ܲ

௧

௡

௜ୀଵ

൑ ௠ܲ௔௫
௚௥௜ௗ Eq. 5.4 

 ௜ܲ ൑ ௜ܲ
௧ ∗ ௜ߟ ൑ ௜ܲ Eq. 5.5 

In the above formulation, ࡯ describes the number of the optimization criteria, ࢔ 

describes the number of the HVAC equipment, ࢔࢏࢓ࢀ and ࢞ࢇ࢓ࢀ indicate the lower and 

upper temperature bounds for the distribution bus, while ࢞ࢇ࢓ࡼ
࢖ࢇࢉ  describes the maximum 

cooling capacity that the equipment can supply, and ࢏ࡼ ,࢏ࡼ ,࢏ࡼ and ࢏ࣁ describe the 

energy consumption, minimum power generation, maximum power generation and 

COP of the equipment ࢏, respectively. 

For the formulation of the multi-objective function, the weighted global criterion method 

has been used, in which all the objective criteria are combined to form a single criterion. 

In order to sum the results of each criterion, a unit normalization function is made, as 

described in (Eq. 5.6). 
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௝݂
௧௥௔௡௦ ൌ

௝݂ሺݒ௜ሻ െ ௝݂
௢

௝݂
௠௔௫ െ ௝݂

௢  Eq. 5.6 

Whereas ࢐ࢌ
 and ,࢐ is described the transformed objective function value of criterion ࢙࢔ࢇ࢚࢘

as ࢐ࢌ
࢐ࢌ and ࢕

 are the utopia point of and maximum objective function values of ࢞ࢇ࢓

criterion ݆, respectively. In this case, the optimization criteria are the combination of the 

maximization of the COP and the minimization of the switching cost. The COP metric 

is defined as the quotient between the output and input power, while the switching cost 

is defined as the sum of differences in magnitude of the setpoints considered for each 

of the machines. 
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5.3 Chiller group control methodology 

A step-by-step diagram of the proposed optimization and control procedure is shown 

in Fig 5.1, which is composed of three stacked control loops: 1) operating mode 

selection, 2) predictive control strategy and 3) load profile reconfiguration. 
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Fig 5.1 Step diagram of the implementation of the proposed three-stage chiller operation optimization 

and control framework. 

5.3.1 Operating mode selection 

This is the inner-most control loop, which relies on the performance map obtained by 

means of the neural network model to estimate the cooling capacity, consumption and 

performance of viable setpoints in order to select the optimal control state for the 

current instant. 

This stage is executed as follows. First, the current operating state is evaluated (e) by 

acquiring the signals affecting the control: inlet and outlet temperatures, external 

temperature, humidity, current cooling demand and previous operating state of the 

group of machines. 

Afterwards, the setpoint candidates are determined by establishing the possible control 

actions. This is achieved by exhaustive combinatorial of control states of the individual 

machines. For machines having discrete operating modes, the full range of modes will 

be employed, but for machines having a continuous operating range this is not 
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possible, so the operating range is discretized up to the desired granularity. In practice, 

coarse granularity shall be sufficient, given that HVAC equipment cannot be regulated 

with infinite precision. Each combination is then evaluated in conjunction with the 

current operating state in order to determine the equipment’s performance (f) by 

feeding it through the performance model. The full evaluation of the exhaustive 

combinations is possible due to the runtime of this evaluation being instantaneous, 

even though the implementation and training of the performance model being a lengthy 

process. 

Finally, having obtained the cooling capacity, electrical consumption and COP of each 

control setting, these are scored and sorted in order to select the locally optimal 

setpoint (g) according to the defined objective function, which considers performance 

and switching cost to apply the new setpoint. 

5.3.2 Predictive control strategy 

This loop is proposed to operate on top of the previous one, iterating over ܰ steps in 

the prediction horizon to determine the optimal future sequence of control actions that 

will satisfy the forecasted load demand. Instead of selecting the best performing control 

action as determined in (f), the top setpoint subset is selected and used as starting 

setpoint candidates (c). Each of these setpoints is used as the starting point of a control 

sequence evaluated ܰ steps into the future, which shall allow to determine which of 

the starting points leads to the most beneficial outcome. 

This is motivated by the fact that control setpoints that are locally optimal for the current 

control iteration may not be globally optimal due to switching to a state that is 

suboptimal, because it might be preventing that more efficient states are reached later 

on. This is likely to happen due to the switching being considered in the objective 

function, which penalizes control actions that make drastic changes to the setpoints, 

thus selecting the absolute best control action for the next step might lead to suboptimal 

situations. 

Therefore, the performance of a subset of the top performing candidate setpoints is 

applied over the optimization horizon to evaluate the full implications of taking that 

control action. However, this presents one main difficulty: the evaluation of future 

control actions is not possible due to the operating state being unknown. 
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The data necessary for evaluating a control setpoint using the performance map can 

be classified into three types: 

 Known future state: part of the future operating state is known, i.e. the future 

cooling demand is obtained from the load forecasting model evaluation, and the 

external temperature and humidity can be queried from local weather services. 

 Unknown future state: state that relates to the operating state of the machines, 

in this case each machine’s inlet and outlet temperatures. 

 Control action: the setting of each of the machines in the equipment group, 

which is the optimization variable and is always known for the previous control 

iteration. 

Thus, knowing the future state of bus temperatures is required to be able to apply the 

operating mode control loop during future iterations in order to determine the future 

control sequence. To solve this problem, a simulation model of the distribution bus is 

employed, implemented in this case as a first order energy storage model with a single 

capacity coefficient, estimated using the historical data available. 

Using the bus model, a control sequence is determined by iterating from each of the 

setpoint candidates, simulating the application of the control action on the distribution 

bus (d) while keeping track of the COP achieved by each sequence over the 

optimization horizon. Each of the control sequences obtained is then evaluated using 

the objective function, which allows the final selection of the predicted setpoints (h), i.e. 

the optimal control sequence over the optimization horizon for matching the predicted 

cooling load profile. 

5.3.3 Load profile reconfiguration 

The previous loop focused on the determination of the optimal control sequence to 

force the matching between the cooling demand and production, however this 

constraint can be relaxed on account of the thermal dynamics of the system. 

In order to ensure that the equipment on the consumption stage of the HVAC system 

are able to effectively draw power from the distribution bus, production stage controllers 

focus on maintaining the temperature of the bus within a certain range, i.e. the goal of 
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the production controller is to keep the temperature of the bus between a minimum and 

maximum threshold. 

Thus, the bus acts as the buffer between the production and the consumption stages, 

but due to the thermal dynamics of the building and associated thermal capacity, it 

allows the temporal decoupling of the production and consumption equipment, in a 

similar manner as dedicated energy storage equipment would allow. Therefore, the 

production setpoints can be altered as long as the temperature of the bus is kept within 

the required thresholds, which is a property of the system that is proposed to be 

exploited in order to increase the performance. By shifting the load of the production 

equipment in time it is possible to take advantage of periods of time where conditions 

are more favorable, for example conditions such as better COP due to affecting 

operating state or varying cost of energy. 

This control stage handles the determination of a load profile that shall take advantage 

of favorable production conditions while satisfying the temperature constraints. To 

solve this problem, a global optimization tool like particle swarm optimization or genetic 

algorithm could be used to overcome the non-derivable nature of the problem. 

However, these tools may present robustness issues and could be impractical for 

cases that involve running simulations, which makes them inadequate for solving this 

type of control problem [157]. Instead, a heuristics technique is employed which 

searches the possible production profile configuration space according to the following 

approach: i) an initial load profile is determined by considering the production uniform 

throughout the control horizon in step (a), with a value equal to the average load 

demand in the same period, ii) the maximum and minimum production rate that would 

lead the system to exceed the temperature thresholds are computed and used as 

upper and lower bounds, respectively, and iii) the space is binary-searched up to a 

predefined amount of iterations evaluating viable demand profiles in step (b), ensuring 

that a solution is found in deterministic time. This is desirable property in control 

applications and important in this case due to the fact that evaluation of each 

configuration depends on the evaluation of the previous stages which includes 

simulations. Finally, the best performing profile and associated production control 

sequence are selected and applied only to the current instant in step (i), because the 

next control iteration shall recalculate and determine a new control sequence starting 

from this iteration. 
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5.4 Experimental implementation and validation 

This section shows the implementation of the proposed loading and sequencing chiller 

control methodology and discusses the obtained experimental results in the test 

environment described in Annex 1. Test environment. 

The objective is to demonstrate the performance gained by taking advantage of the 

integration of data-driven models with the controller and the effectiveness of the 

developed control strategy in increasing the overall energy efficiency. For this purpose, 

the stages the control strategy are evaluated in steps, showing the effect of each stage 

relative to the base control strategy. 

For the implementation and validation of the proposed control strategy, a dataset of the 

equipment’s operation was acquired by recording the operation of the building’s cooling 

equipment during the summer period of 2017. The dataset comprises 120 days, from 

May 16th to October 27th of 2017, not including weekends, where each day is treated 

as a standalone validation case. 

5.4.1 Operating mode selection 

This stage operates in current time, selecting the best operating mode for the next 

control iteration considering how the performance of the equipment is affected by the 

operating conditions. However, since at each control iteration a new mode can be 

selected, this control results in excessive commutation, as slight change in the state 

can lead to another mode surpassing its instantaneous performance. To overcome this 

issue, two mitigating actions are considered; first, the setpoint candidates are truncated 

post-evaluation to those causing up to a maximum switching cost; second, the control 

frequency is decreased in order to limit the switching. 

The result of operating the group of chillers with this strategy is shown in Fig 5.4, which 

shows a comparison between the actual cooling demand and the cooling power 

produced by the cooling equipment implementing the selected control sequence. 
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Fig 5.2 Actual cooling demand compared to the cooling power production resulting from the application 

of the resulting from the application of the selected sequence of operating modes. 

As it can be observed in the figure, the equipment switches between operation modes 

to match the instantaneous cooling demand. At each control iteration, the operating 

mode that offers the best tradeoff between instantaneous performance and minimal 

switching is selected. 

 

Fig 5.3 Operating modes of the cooling equipment, obtained from the application of the first stage 

controller: the instantaneous operating mode selection. 

The commutations between operating modes can be observed in Fig 5.3. As it can be 

observed, the machines switch between operating modes to supply the instantaneous 

cooling power demand, however the switching between operating modes happens in 

a controlled manner, limiting both the rapid succession of switching and restricting the 

magnitude of changes. The resulting control sequence prevents the equipment from 

being forced to rapidly switch between low and high power production modes, which is 
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desirable to avoid energy losses due to transient states and to lengthen the lifespan of 

the equipment. 

 

Fig 5.4 Impulsion temperature of the distribution bus after the application of the selected sequence of 

operating modes*, compared to the actual bus temperature during the same period of time. 

The application of the selected control sequence results in a cooling power production 

curve being introduced into the bus. This production curve, combined with the cooling 

load causes the temperature of the bus to fluctuate. This temperature is shown in Fig 

5.4, where the new, simulated, behavior of the temperature of the bus is compared to 

prior, measured, behavior of the temperature of the bus. This new temperature curve 

presents a similar behavior, still being maintained within operational constraints, but 

presenting deviations from the original curve. This is expected due to the new selection 

of equipment control actions, which selects different operating points that produce 

cooling power in a similar range but increased COP. As a result, the accumulated 

cooling power produced may not be exactly the same, thus the temperature of the bus 

at the end of the shown period becoming warmer in this case. 
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Fig 5.5 Power production, consumption and coefficient of performance resulting from the application of 

the selected sequence of operating modes*, compared to the operation of the base controller during the 

same period of time. 

The comparison between the application of the old and new control strategies, in terms 

of energy production, consumption and COP are shown in Fig 5.5. During this period, 

the accumulated production value was reduced by 1.16%, which is the cause of the 

bus temperature becoming warmer at the end of the period. However, the new 

controller selects operating modes that overall are more efficient than the base 

controller, which is unaware of the performance of the equipment. 

In summary, this controls strategy manages to supply cooling power to the system with 

increased average COP by using different control actions that lead to a different cooling 

profile. This new production profile performs differently in terms of bus temperature but 

is kept within operational constraints. This behavior can be consistently observed 

throughout the day, except for periods of time where the base controller selects the 

optimal setpoint by chance, or the switching cost from the current state becomes too 

great. 

5.4.2 Predictive control strategy 

This stage considers the determination of control sequence that matches the 

forecasted cooling demand for the prediction horizon, in this case of 1 hour because it 
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allows to plan control actions with sufficient foresight given the dynamics observed in 

the building’s dataset, which are in the range from two to three hours. The setting of 

the control action, i.e. operation mode of the equipment, is restricted to allow a change 

every 15 minutes to limit the amount of switching, so 4 control points are calculated 

within each control horizon. 

The improvement that this stage offers is based on considering how the selection of an 

operating mode affects the outcome of the complete prediction horizon, instead of only 

the current control step. The result of the application of this strategy is shows in Fig 

5.6, which shows the cumulative average performance of a set of initial control setpoint 

candidates as each one is evaluated over the prediction horizon. 

 

Fig 5.6 Cumulative average performance of a set of setpoint candidates, evaluated over the prediction 

horizon. 

As it can be observed, setpoints that initially lead to the largest instantaneous 

performance are not necessarily the best option once the prediction range is evaluated. 

For example, the operating mode that offers the best COP at the start of the prediction 

horizon leads to lower average performance when considering the behavior of the full 

time window than the setpoint that is initially ranked fifth best. This behavior is due to 

the imposed switching constraint which discourages drastic changes between 

operating modes.  
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Therefore, this control stages achieves the desired effect, the anticipation of favorable 

and adverse conditions and the selection of a predictive control sequence that leads to 

the best average performance. 

5.4.3 Load profile reconfiguration 

This stage comprises the determination of a better control sequence by reconfiguring 

the load profile, considering the forecasted cooling demand and the operational 

constraints of the distribution bus. Thus, this strategy allows more freedom in the 

determination of the control sequence, since each of the selected control points do not 

need to match the instantaneous load, i.e. load shifting is allowed as long as the 

temperature thresholds are not exceeded. 

As described, the load profile reconfiguration process begins with the determination of 

the initial control sequence profile, and the maximum and minimum production 

sequences that would keep the system operating within thresholds. Then these profiles 

are evaluated and binary search is employed for determining the best profile 

configuration, allowing up to a maximum number of iterations. In this case 4 iterations 

are employed, as it is a good compromise between precision and computation time. 

The result of the implementation of this profile selection strategy is shown in Fig 5.7 

where it can be observed that different control sequences are evaluated within the 

temperature thresholds. 

 

Fig 5.7 Evaluation of candidate control sequences that reconfigure the forecasted cooling demand. 
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The forecasted cooling demand and the base control sequence, which matches in 

magnitude the average demand on each control period, are shown highlighted in Fig 

5.7 a), while the other bus load profiles correspond to some of the attempted control 

sequences, having varying magnitudes within the ranges from the minimum viable 

production to the base sequence and from the maximum viable production to the base 

sequence. The actual production value is curtailed to ensure the bus temperature does 

not exceed the limits, considering that a control action can only be carried out every 15 

minutes. The simulated bus temperature response when each of the control sequences 

in Fig 5.7 a) is applied is shown in Fig 5.7 b). As it can be observed, each simulation 

begins at the current temperature reading, and gets cooler or warmer depending on 

whether the magnitude of the sequence is above or below the base control sequence, 

respectively. The base sequence is stabilized at the initial temperature value, with slight 

fluctuations corresponding to the changes in the load, because it’s values are 

calculated to match the average cooling demand per control period, while other 

sequences follow different trajectories with varying steepness depending on the 

magnitude of the production. 

5.4.4 Energy efficiency improvements 

A comparative summary of the results achieved by all three control stages is presented 

in Fig 5.8, which shows a histogram of the performance obtained when applying the 

relevant stage over single day periods, for each of the 120 days available in the dataset. 

The experimental results of the application of the three-stage control strategy 

consistently show a performance increase throughout the dataset. 

 

Fig 5.8 Histogram of the daily average performance achieved by the different control stages, relative to 

the base controller. 
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The application of the first controller stage, consisting on the selection of the operating 

mode based on current load demand, achieves an improvement of between 3.92% and 

17.05% of the COP respective to the base controller, with daily average increase of 

10.88%, surpassing 10% performance increase in a significant part of the considered 

dates. However, there’s cases where this stage is unable to achieve such 

improvements, which is due to the base controller already operating on moderately 

efficient modes, and the inability of this stage to realize large improvements due to 

being penalized by the consideration of the switching in the cost function. 

The application of the second stage, supported by the usage of the load forecasting 

capabilities to anticipate demand changes, achieves an improvement in the range of 

9.84% to 24.11% respective to the base controller, with an average increase of 

17.27%. This significant performance increase is due to the ability of this stage to 

consider the future control sequence, allowing the selection of control setpoints that 

lead to continued efficient operation while overcoming the switching minimization 

consideration. 

Finally, the proposed control strategy is realized with the incorporation of the third 

stage, the re-configuration of the load profile to take advantage of favorable production 

conditions by taking advantage of the thermal dynamics. The application of the full 

strategy achieves a performance improvement in the range of 12.39% to 24.30% 

respective to the base controller, and an average increase of 19.54%. As described, 

the performance gain respective to the second stage is not as extensive as when 

comparing the second stage respective to the first one, in part due to the second stage 

already accomplishing a highly efficient control sequence, but also due to this 

installation not including dedicated thermal storage. 
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5.5 Discussion and conclusions 

This chapter introduced a framework for implementing a control strategy aimed at 

solving the optimal loading and scheduling problem in HVAC installations. 

The framework is based on the selection of the control sequence that maximizes the 

performance of the production equipment in an HVAC installation by driving the 

machines to their most efficient setpoints, supported by the integration of data-driven 

models. A neural network-based model of the equipment’s COP behavior respective 

to operating conditions and implemented using a deep learning approach is used for 

evaluating the response to potential setpoint candidates, while a model of the building’s 

thermal load demand considering the building occupant’s behavior is used for 

anticipating the energy production requirements. 

The control sequence determination problem is formulated as an optimization problem, 

but finding a solution is a complex task, as the problem is not derivable and the 

exhaustive search of the solution space is infeasible. Instead of using a global 

optimization tool, a heuristics-based control method composed of three stages is 

designed and implemented achieving a substantial performance increase while 

maintaining a low and most importantly constant computational time. 

The obtained results consistently show a performance increase by the implementation 

of the control strategy, with the complete solution achieving a 19.54% daily average 

COP increase with 2.68% standard deviation. These results are coherent with the 

efficiency improvement potential inferred by related studies in the state-of-the-art 

literature over current control solutions in established HVAC systems. 

As future work, additional optimization criteria could be considered to further fine-tune 

the control sequence, for example the uniform utilization of the equipment could be 

enforced so that all of the machine’s aging follows a similar rate, or the variable cost of 

energy which could be paired with the load profile determination to achieve greater 

economic savings. 
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6. 
Conclusions and future work 

This chapter presents the general conclusions of the research conducted in this 

thesis, outlining potential avenues for improvement in future works. 

CONTENTS: 

6.1    Conclusions 

6.2    Future work 
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6. Conclusions and future work 

This chapter presents the main conclusions of the thesis and outlines the future work. 

6.1 Conclusions 

This section presents the main conclusions of this thesis relating to the initial 

hypotheses and stated objectives. 

As the introductory research topic section established, buildings take a large share of 

the world’s total energy consumption and specifically HVAC systems account for a 

large percentage of that share. This, in part, is the reason for the growing interest in 

researching ways to increase energy efficiency in this kind of systems, as it could have 

a significant impact in lowering energy consumption. 

The main hypothesis of this thesis states that by taking advantage of the wealth of 

historical operation information available in building management software suites it 

could be possible to identify the actual operating context and conditions of the underling 

subsystems. This information could be exploited in order to reach an optimal tradeoff 

between energy consumption and comfort trough the introduction of models and 

control schemes to tackle the performance gap documented in the literature, relating 

to the ideal operating performance and the performance observed in practice. 

Initially, a review of the state of the art in the topic of HVAC energy management in 

buildings was conducted to find potential avenues for improvement. This prompted the 

identification of three main contribution areas, and the definition of a research plan to 

investigate how to improve the current solutions. After the definition of the research 

plan, a pilot plant was identified to be used as a test environment for the development 

of the thesis. The plant’s HVAC installation and energy management software suite 

was studied and supplementary instrumentation was installed with the purpose of 

facilitating the development and validation of the thesis. Afterwards, the work 

concentrated on the contribution on these areas: 

The first contribution belongs to the topic of load forecasting of thermal demand for 

HVAC systems in buildings. The review of the state of the art in this topic revealed 

shortcomings in terms of taking into account the operating context of the building for 

the calculation of energy demand forecasts, and the lack of solutions for estimating the 

thermal demand instead of the electrical consumption. In particular, the consideration 
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of the behavior of the users of the buildings was found to be a concern with rising 

interest, and a modeling approach was proposed to take advantage of real-time 

occupancy data in order to build an activity indicator that could be integrated with the 

demand forecasting. Furthermore, an estimation method was proposed for the 

calculation of the actual power draw by the air handling units from the distribution bus, 

allowing the determination of the thermal power needs of the building, decoupling the 

effects of the control strategy and thermal capacity of the distribution bus. 

The implementation of the forecasting methodology in the test environment included 

the study of the input candidates for modeling the power demand in order to obtain the 

set of variables that allows to accurately model this signal. This study was performed 

by comparing different aspects like the cross-correlation and frequency analysis of the 

signals. The comprehensive process resulted in a modeling methodology specifically 

tailored for thermal demand estimation in buildings which achieves significant accuracy 

and could support different applications. 

The second contribution belongs to the topic of operation performance modeling of 

HVAC equipment in buildings. The review of the state of the art of this topic revealed 

that a wide range of applications rely on operating performance maps of HVAC 

equipment being available in order to perform their function. However, in frequent 

instances these applications are based on inaccurate or insufficient data due to the 

unavailability of proper equipment models that establish the relationship between their 

operating state, the control setpoints and their expected energetic characteristics, i.e. 

energy consumption, production and performance. A generic solution is required to 

approach this issue, as most HVAC installations are different and may include various 

types of equipment. Thus, a novel modeling methodology based on deep learning was 

developed which drastically reduces the feature selection and engineering steps by 

providing a feature learning stage. The unsupervised learning process supports a large 

number of input signals due to being capable of uncovering relationship between them 

and discovering features. Therefore, the model supports the analysis of a set of 

machines as a group, lowering implementation costs by reducing the amount of 

instrumentation required. Furthermore, it is possible to visualize the feature 

significance resulting from the modeling process and its adaption during an incremental 

learning process, which can help in understanding the reasons for variance in the 

performance of the equipment depending on their operating state and control setpoints. 
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The implementation of the performance modeling methodology in the test environment 

successfully permitted the modeling of a group of chillers as standalone machines but 

also as a group, and achieved high accuracy for estimating the energy characteristics 

of these machines in both cases. Thus, it was verified that the modeling process is 

suitable for this use case, but that it is also compatible with different types of equipment, 

asserting that it can be an effective implementation for modeling HVAC equipment 

performance. 

The third contribution belongs to the topic of optimal chiller loading and sequencing of 

chiller groups in buildings. The review of the state of the art of this topic described how 

the chiller loading and sequencing problems are being faced in the literature, and 

highlighted their drawbacks and avenues for improvement, which are threefold: i) the 

insufficient accuracy of equipment performance models employed, being in many 

cases simple lookup tables showing the expected COP at certain points of the partial 

load ratio, ii) the need for consideration of additional criteria during the optimization 

process besides simply the amount of consumed energy, and iii) the optimization 

process implementation, which often relies on generic global optimization tools like 

genetic algorithms or particle swarm optimization, which are useful but inconvenient 

for control applications. Accordingly, a control strategy was developed with the main 

focus of integrating the developed operating performance model of the equipment 

which allows to simulate equipment setpoints at given operating conditions and 

determine the expected consumption, production and performance, the integration of 

the thermal demand forecasting which allows to estimate the future energy needs of 

the building to anticipate changes, and the implementation of an efficient control 

strategy that is capable of also considering the switching criteria. 

The implementation of the chiller control strategy with experimental data from the test 

environment successfully permitted to significantly reduce the energy consumption 

required to meet the energetic demands of the HVAC system, due to being able of 

taking advantage of the highest performing modes of operation of the equipment, and 

to being capable of anticipating changes in the thermal demand and planning 

accordingly. Furthermore, the generic formulation of the optimization problem allowed 

the consideration of the switching criteria in order to ensure stability and reduce losses 

and aging, but resulted in an extensible solution that could accommodate other criteria 

if required. Thus, the control strategy was shown to be an effective solution for 

increasing the performance of an HVAC installation while having a minimal to no effect 
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on the comfort of its occupants due to its focus being on optimizing the operation of the 

production stage to meet the demands of the consumption stage. 

In conclusion, a complete analysis and actuation framework was developed, 

implemented and validated by means of an experimental database acquired from the 

pilot plant during the research period of this thesis. The obtained results demonstrate 

the efficacy of the proposed standalone contributions, and as a whole represent a 

suitable solution for helping decrease the energy consumption footprint of buildings. 

The methodology for load forecasting, designed specifically for usage in HVAC 

systems in buildings, together with the general operating performance modeling 

methodology for HVAC equipment, and finally the development of the extendable 

framework for implementing control strategies for chiller groups considering the 

maximization of their performance, extend the state of the art in energy management 

in buildings and represent an advancement in this topic. 
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6.2 Future work 

The outcomes of the research work conducted in this thesis include the development 

and validation of a novel equipment modeling technique, load forecasting methodology 

and HVAC installation control strategy that surpass the state of the art regarding their 

characteristic features and performance. The presented methods offer increased 

modeling accuracy, generalization capabilities and applicability to different types of 

HVAC equipment and installation configurations, leading to a potential increase of the 

energetic efficiency in buildings with the application of the accomplished solution. 

However, certain improvements could be considered to further improve the 

methodologies resulting from the contributions of this thesis: 

 Load forecasting in buildings: the forecasting horizon was determined by 

analyzing the experimental data pertaining to the practical case study, but 

future work could involve the investigation of an automated method for 

establishing the maximum horizon given a predetermined accuracy 

requirement. Furthermore, future work could include the integration of a 

confidence estimation process to provide prediction confidence intervals. 

 Operational performance modelling: this modelling methodology is supported 

by an unsupervised approach that is able to discover structure and relationship 

between the input signals of the model. This could permit the further analysis 

of the determined features and of what conditions lead to the activation of the 

sparse feature detectors, which could provide insight into what causes a certain 

behavior and to help quantify their effect, besides being used as a model to 

evaluate control setpoint scenarios. Additionally, the methodology includes a 

network dimensioning strategy to decrease the hyper-parameter tuning, but 

future work could focus on further alleviating this issue. 

 Chiller group control strategy: the concluding strategy allows the consideration 

of multi-objective criteria, thus it could be extended to consider other factors if 

necessary. For example it could be adapted to enforce the uniform utilization of 

the HVAC equipment so that the aging of the equipment follows a similar rate, 

or it could be made to consider the variable cost of energy to achieve greater 

economic savings. 
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Finally, the equipment modeling and load forecasting methods are the advancements 

that have supported the implementation of the control strategy, but they can also 

provide value as standalone tools, or supporting other types of applications. For 

example, the operational performance modeling of HVAC equipment could be 

employed to implement supervision and maintenance solutions by establishing a 

baseline of a given installation and detecting deviations or tracking trends. Similarly, 

the load forecasting for buildings could support other applications such as demand 

response schemes in the context of the smart grid. 
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Annex 1. Test environment 

For the experimental validation of the proposed methodology, data from a real tertiary-

sector building has been used as a test environment. The selected building consists of 

a 3-floor university campus building that contains spaces with different usages, with a 

total surface of 2.400m2. The building is considered a research ecosystem of the 

Universitat Politècnica de Catalunya, which includes an installation of renewable 

energy sources (photovoltaics), several energy production equipment, as well as a 

SCADA with extensive instrumentation, permitting to be used as a pilot-plant for 

research in the field of energy efficiency, smart-grids and industrial electronics among 

others. Fig A1.1 shows a 3D representation model of the building’s structure, consisting 

of 2 building blocks of 3 and 1 floors, respectively. The HVAC machines that were used 

for the validation of the proposed methodology are located on the upper part the 

building, on its deck. 

 

Fig A1.1 3D representation of the pilot plant, highlighting the location of the HVAC equipment on the 

building’s deck. 

In terms of HVAC equipment, the installation consists of two electric chillers, two 

electric heat pumps, one gas boiler and two air handling units, which manage the 

energy production, energy distribution, pre-conditioning and air-renewal for the 

building's spaces. 
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No cooling tower is present in this installation, and secondary devices such as such as 

valves, dampers fans or pumps are considered out of the scope of this study, with the 

main focus being on the equipment at the production stage 

The power characteristics of the HVAC machines are listed in Table A1.1. 

Id Type Pelec [kW] Pthermal [kW] 

CH1 Electric chiller 56.6 150 

CH2 Electric chiller 56.6 150 

HP1 Heat pump 56.7 130 

HP2 Heat pump 66.2 150 

B1 Gas boiler 2 430 

AHU1 Air handling unit 5.5 n/a 

AHU2 Air handling unit 7.5 n/a 

Table A1.1 Power characteristics of the HVAC machines of the pilot plant. 

Most instrumentation required was already installed, configured and accessible 

through the SCADA’s OPC server, where it could be easily queried periodically, but 

additional instrumentation was installed in order to provide an exhaustive view of the 

operation of the HVAC systems and to support the validation of the developments of 

this thesis. In particular, the following additional sensors were installed and 

incorporated into the building’s SCADA: 

 Individual electric power meters Circutor CVM Mini-MC-ITF-HAR-RS485-C2 

plus MC3-125 current transformers were installed to measure the electrical 

consumption of each of the cooling production machines (CH1, CH2, HP1, 

HP2). 

 Individual thermal power meters Kamstrup MULTICAL 602 plus ultrasonic flow 

meters LTM 100E to measure the produced thermal energy and allow the 

calculation of the coefficient of performance were also installed on each of the 

cooling production machines. 

A summary of the signals acquired for from the HVAC equipment is presented in Table 

A1.2. 
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Name Description 

௘ܲ௟௘௖
௜ Electrical power consumption of equipment ݅ 

௧ܲ௛௘௥
௜ Thermal power production of equipment ݅ 

 ݅ ௜ Coefficient of performance of equipmentܱܲܥ

௜ܶ௡
௜ Inlet or return temperature of equipment ݅ 

௢ܶ௨௧
௜ Outlet or impulsion temperature of equipment ݅ 

௜ܶ௡௖
௜ Temperature differential of equipment ݅ 

௡ܥ
௜ Command signal for compressor ݊ of equipment ݅ 

Table A1.2 Summary of acquired machine signals from the SCADA system. 

All signals are measured using field sensors except for the COP, which is calculated 

as the quotient between the thermal power production and the electric power 

consumption, and ௜ܶ௡௖
௜ which is the difference between the outlet and inlet 

temperatures. 

At the consumption stage, besides the two general distribution AHUs at the building 

level, each of the spaces of the building also includes one or two terminal AHUs 

depending on their surface, installed in offices, meeting rooms, laboratories and 

common areas. These units are wired to passive infrared presence detectors and use 

their feedback for the regulation of the temperature in each space, which allows the 

fine-grained control of the internal temperatures in the building. Each space is allowed 

to define its own comfort range, within global constraints. 

A summary of the signals acquired from the AHUs present in the spaces of the building 

is presented in Table A1.3. 

Name Description 

௜ܶ௡
௦ Indoor temperature of space ݏ 

௦ܶ௘௧
௦ Indoor temperature setpoint of space ݏ 

ܱܿܿ௦ Occupancy detector signal of space ݏ 

௡ܮ
௦ Load of AHU ݊ of space ݏ 

Table A1.3 Summary of acquired space signals from the SCADA system. 
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Additionally, the building’s SCADA has access to a local weather station that provides 

the following weather parameters shown in Table A1.4: 

Name Description 

௘ܶ௫௧ Outdoor temperature 

 ௥௘௟ Outdoor relative humidityܪ

 Solar irradiance ݈݋ܵ

Table A1.4 Summary of acquired weather signals from the SCADA system. 

The supervision and control of all of the installation is made through the main SCADA 

system, which monitors the operation of the equipment, the condition of the heating 

and cooling distribution bus, as well as the environment conditions, such as the 

weather, the occupancy of the spaces and the temperature setpoints configured by 

occupants. In order to operate the equipment, a Modbus communication bus reads 

status variables such as temperatures and operation modes and delivers control 

signals to the HVAC installation. Additionally, these signals are also exposed on an 

OPC server linked to the SCADA. The control of the overall HVAC system performed 

through the SCADA also supports manually setting up priorities and schedules for the 

machines as well as supervising their state in real time. 

In order to acquire a dataset including all of the required signals from the building, a 

desktop application was implemented which allowed to select the signals of interest 

from the OPC server and to periodically scan and store them in a dedicated time-series 

database for posterior processing and analysis. 


