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Abstract

Marine ecological research related to the increasing importance which the fisheries

sector has reached so far, new methods and tools to study the biological compo-

nents of our oceans are needed. The capacity to measure different population and

environmental parameters of marine species allows a greater knowledge of the hu-

man impact, improving exploitation strategies of these resources. For example,

the displacement capacity and mobility patterns are crucial to obtain the required

knowledge for a sustainable management of fisheries.

However, underwater localisation is one of the main problems which must be

addressed in subsea exploration, where no Global Positioning System (GPS) is avail-

able. In addition to the traditional underwater localisation systems, such as Long

BaseLine (LBL) or Ultra-Short BaseLine (USBL), new methods have been developed

to increase navigation performance, flexibility, and to reduce deployment costs. For

example, the Range-Only and Single-Beacon (ROSB) is based on an autonomous

vehicle which localises and tracks different underwater targets using slant range mea-

surements conducted by acoustic modems. In a moving target tracking scenario, the

ROSB target tracking method can be seen as a Hidden Markov Model (HMM) prob-

lem. Using Bayes’ rule, the probability distribution function of the HMM states can

be solved by using different filtering methods. Accordingly, this thesis presents dif-

ferent strategies to improve the ROSB localisation and tracking methods for static

and moving targets. Determining the optimal parameters to minimize acoustic en-

ergy use and search time, and to maximize the localisation accuracy and precision,

is therefore one of the discussed aspects of ROSB. Thus, we present and compare

different methods under different scenarios, both evaluated in simulations and field

tests. The main mathematical notation and performance of each algorithm are pre-

sented, where the best practice has been derived. From a methodology point of

view, this work advances the understanding of accuracy that can be achieved by

using ROSB target tracking methods with autonomous vehicles.

Moreover, whereas most of the work conducted during the last years has been

focused on target tracking using acoustic modems, here we also present a novel
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method called the Area-Only Target Tracking (AOTT). This method works with

commercially available acoustic tags, thereby reducing the costs and complexity

over other tracking systems. These tags do not have bidirectional communication

capabilities, and therefore, the ROSB techniques are not applicable. However, this

method can be used to track small targets such as jellyfish due to the reduced tag’s

size. The methodology behind the area-only technique is shown, and results from

the first field tests conducted in Monterey Bay area, California, are also presented.

Keywords: Range-only, underwater target, tracking, autonomous underwater ve-

hicle, autonomous surface vehicle, acoustics, acoustic modem, biologging, marine

animal.
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Chapter 1

Introduction

The oceans provide important ecosystem services for the human well-being, which

includes supply services, cultural services, and environmental regulations [1]. How-

ever, the food supply is the main benefit that the human being obtains from the

oceans. 15% of animal protein consumed worldwide is provided by the marine habi-

tat, and furthermore, this ratio is expected to increas in the future. Therefore, a

sustainable development of our marine resources in order to guarantee the availabil-

ity and the access to sufficient food, innocuous and nutritive, is a key priority in the

European H2020 programme, inside of what is known as Blue Growth [2].

Previously, the directive 2008/56/EC of the European Parliament and of the

Council of 17 June 2008 established a framework for community action in the field

of marine environmental policy, which states “The marine environment is a precious

heritage that must be protected, preserved and, where practicable, restored with the

ultimate aim of maintaining biodiversity and providing diverse and dynamic oceans

and seas which are clean, healthy and productive. In that respect, this Directive

should, inter alia, promote the integration of environmental considerations into all

relevant policy areas and deliver the environmental pillar of the future maritime

policy for the European Union”. This directive also pinpointed an indicative list

of characteristics which should be taken into consideration to analyse the marine

habitat. This list can be seen in table 1 of annex III in the cited European directive,

which indicates aspects such as physical and chemical features, habitat types, and

biological features.

During the last century, the measurement of these marine and oceanographic

indicators is under a constant development. It has been possible with technological

advances to execute more observations with a greater detail and base. The main

characteristics which are addressed with these new technologies are threefold: the

frequency resolution, which allows a great number of measurements in a single point
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under study; the spatial resolution, which guarantees small distances between mea-

surement points; and the increase of the total observable area to obtain conclusions

of studies conducted in a specific region.

In the middle of the XX century, exploration was characterised by the use of

oceanographic buoys and vessels designed specifically for this purpose [3], [4], [5], [6]

and [7]. This allowed the acquisition of a great temporal frequency measurements,

as well as the increase of the duration of the missions, and consequently, it was

possible to capture a great volume of information in specific zones.

At the same time, new technology emerges in space. The ocean’s motorisation

from space by satellites has allowed the increasing of the extension under obser-

vation [8], and [9], which has been used to study global phenomena such as El

Niño [10]. Nonetheless, these methods are not useful to obtain measurements with

great frequency resolution neither spatial resolution, and as a consequence, can not

be used for detailed studies in specific regions (e.g. coast zones), to study infrequent

events (e.g. oil spills), or to track benthic and pelagic marine species [11], and [12].

As a result of these necessities, since the 1950s new unmanned vehicles have

been created, such as the Remote Operated Vehicles (ROVs), the Autonomous Un-

derwater Vehicles (AUVs), and the AUV Gliders [13], [14], and [15]. Their main

function is to decrease the cost of manned vehicles as well as increase the robustness

of the operations. Nowadays, a great number of commercial vehicles can be found,

which are used in a great number of applications (e.g. underwater surveillance,

intervention or manipulation). Nevertheless, as the oceans become widely known,

more and more specific needs arise. For example, the collaboration among multiple

autonomous vehicles [16], [17], [18], and [19], which can be used to create 3D maps

of complex underwater features [20]. In those circumstances new navigation control

and localisation techniques need to be developed.

Another example of new applications arises in the area of marine biology related

to the increasing importance which the fisheries sector has reached. The capacity to

measure different population and environmental parameters of marine species allows

a greater knowledge of the human impact [21], improving exploitation strategies of

these resources [22], and [23]. For example, the displacement capacity and mobility

patterns are crucial to obtain the required knowledge for a sustainable management

of the involved fisheries [24] and [25]. For that purpose, electronic tags are com-

monly used, which provide information about the behaviour of marine species, and

environmental measurements about their surroundings [26]. Many studies focused

on great species (e.g. cetaceans, dolphins, and selachimorpha) can be found, which

habitually rise to the sea surface [27] and [28]. This behaviour allows the possibil-

ity to use Global Positioning System (GPS) devices and satellite communication,

2



|

which are used to know their movements in real time. Currently, many commercial

electronic tags can be found, such as: Desert Star System (www.desertstar.com),

Argos (www.argos-system.org), and Spot (www.findmespot.com). The accuracy

of the system, the satellite network used, and its weight, are aspects which must be

taken into consideration to choose the appropriate device for each purpose. Weight

is an important limitation in such cases, where the size of those tags should not

exceed the commonly used tag-to-body-mass rule of 2% [29].

However, this methodology is not suitable for benthic and pelagic species, where

electromagnetic waves suffer a high attenuation due to the water [30]. For this

reason, acoustic positioning methods are the most common in underwater scenar-

ios [31], [32], and [33]. Unfortunately, the acoustic underwater communication chan-

nel has some constraints, such as: propagation delay, multi-path behaviour, small

bandwidth, the Doppler effect, or variations in phase and amplitude [34]. These

characteristics mean that important technological challenges have to be faced in the

development of acoustic devices, and still nowadays, a standard acoustic positioning

method is not possible.

The study of marine animal movements, and their behaviour by acoustic tags is

based on the implementation of acoustic transducers on them [28]. Then, using dif-

ferent receivers spread on a specific zone, the presence of the tagged animal inside the

reception’s range can be detected, or otherwise its absence derived. The reception’s

range varies as a function of the tag’s size and its transmission power, typically a few

hundred meters. Different companies have developed their own acoustic tags, for

example the most common are Vemco (www.vemco.com), Lotek (www.Lotek.com),

or HtiSonar (www.HtiSonar.com). The functionality of these tags is similar, which

consists in the transmission of an acoustic signal periodically with a unique identi-

fication code. Nowadays, one of the smallest commercial tag is produced by Vemco

(model V4), which is 5x12 mm in size, and can transmit a signal every 90 s for 100

days. The reception of these signals is conducted by compatible devices. In general,

these receptors are used as data loggers and only after the experiment, when they

are recovered, the information recorded can be studied [35]. This method allows

the study of the presence of species in specific zones, or their migration between

them. Nevertheless, small movements inside the zone can not be studied (i.e. only

presence/absence studies related to daytime behaviour [36], or long migrations [26]

are possible). In these cases an error of one hundred meter is assumable. Therefore,

an optimal target localisation and tracking system for marine species, with great

performance, can not be found [37].

Some high end methods allow the localisation of underwater tagged animals

using triangulation techniques [38] and [39]. Recently, Vemco has introduced a new
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asynchronous monitoring system which allows the localisation of an acoustic tag if

it is received by at least three receivers [40]. Whereas Vemco offers this technology,

its performance is still far from meeting the scientists’ needs, especially in deep-

sea studies, where the correct deployment of each receiver is increasingly difficult

with the depth. Moreover, it is necessary to use specially designed synchronisation

tags in order to keep synchronisation between each receiver, which increases the

complexity of both deployment and post-process (which must be conducted by the

company) [37].

For example, if the species under study is the Norway lobster (Nephrops norvegi-

cus), the standard tags are not suitable. This species, small in size, can live deeper

than 300 m, and in general its movements are limited around its burrow ∼5 m

(i.e. it is very territorial [25]). Hence, not only knowing its movements inside its

territory, but also in the adjacent areas (spillover effect), is a key aspect to man-

age no take zones, which are used to establish methods for a sustainable fishery

management [41]. On the other hand, soft-bodied marine invertebrates such as jel-

lyfish play critical roles in many oceanic ecosystems [42]. Nonetheless, fine-scale

behaviours (e.g. accelerations or swimming) are not discernible using the commer-

cially available tools. Furthermore, environmental measures are often conducted in a

broad area by satellites but not in the immediate surroundings of the animal, which

can obscure potentially interactions with fine-scale conditions such as thermoclines.

Thus, it is necessary to develop new acoustic underwater systems to track and

monitor the behaviour of different marine species. To accomplish this necessity, this

thesis has focused on threefold: studying the limitations of the traditional acoustic

localisation methods, improving and developing newer range-only tracking methods

using autonomous vehicles, and proposing novel methods to track tagged animals

using current commercially available tags and setting the basis for further improved

acoustic tags.

1.1 Previous work

The Sistemes d’Adquisició Remota i Tractament de la Informació (SARTI) research

group in the Electronics Department for the Universitat Politècnica de Catalunya

(UPC) has been working on underwater communications over the past years. For

example, the PhD thesis by Pallarés [43] was focused on the study and development

of new acoustic synchronisation methods between acoustic modems. The thesis

presented by Sarriá [44], who studied different methodologies to monitor marine

species in both the laboratory and field must also be mentioned. Moreover, Sarriá

developed an acoustic modem and tested many piezoelectric transducers.
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On the other hand, SARTI has been developing an AUV called Guanay II.

This project has also derived in many PhD thesis. For example, Gonzalez [45]

determines the equations and parameters of the vehicle’s mathematical model and

studied different control techniques for path following and way-point following on

the x − y plane. A posterior PhD thesis, presented by Galarza [46], extended the

navigation capabilities of Guanay II in the z dimension, and introduced an obstacle

avoidance system using a sonar.

Furthermore, SARTI has a long experience in underwater technology, which has

successfully developed, keeping in operation, an underwater cabled observatory since

2009 (www.obsea.es). In addition, SARTI has been collaborating with national and

international oceanographic institutions such as Institut de Ciències del Mar (ICM)

and Monterey Bay Aquarium Research Institute (MBARI). As a result, the UPC

research group SARTI had the enough background related to underwater acoustics

and autonomous vehicles to successfully accomplish the goals of this thesis, which is

inside of the scope of interest of the group, and can be seen as another contribution

to this line of research.

1.2 Motivation

The motivation of this thesis is twofold. Firstly, as stated in the introduction, the

study of marine animal behaviour is an important aspect which has to be addressed

in order to preserve the different species, which develops a key role in our society

and environment. In this framework, studying their movements and being able to

correlate them with different surrounding aspects, such as climate change or fisheries,

are crucial to understand our world and the species that live in it. Here, acoustic

tracking methodologies are essential due to the underwater environment, where no

radio-frequency signals can be used (e.g. GPS or satellite communications).

On the other hand, due to the boom which consumer electronic devices have

suffered over the last decades, many small devices, with low power consumption

and relatively cheap in price, can be found everywhere (e.g. smartphones, wearable

technology, or Internet of Things (IoT)). Those devices have pushed the limits of

technology and have brought these to many applications. For example, nowadays

different underwater or surface autonomous vehicles are used to explore our oceans.

And moreover, fleets of them are normally used by researchers, which increase the

coverage zone of study and allow more complex missions (e.g. thermal front tracking

or complex seabed surface mapping). In this framework, the underwater localisation

has a key role, where new methods with improved capabilities (e.g. more flexible,

or less expensive) are required.
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Regarding the first idea, this PhD thesis wants to address the study of different

acoustic target localisation and tracking algorithms, which go from traditional Long

BaseLine (LBL) systems to newer Range-Only and Single-Beacon (ROSB) methods,

where the best practices have been derived, as well as the best accuracy achievable.

Furthermore, we proposed a novel method to track acoustic tags implanted in marine

species, which is the most common method used by scientists.

Regarding the second idea, this thesis has been conducted in its main part with

the use of autonomous vehicles. Nowadays, both AUV and Autonomous Surface

Vehicle (ASV) are used extensively in oceanographic research, which reduce the

cost of expensive research vessels while increasing their capabilities. Here, as well as

the analytical study of different methods and techniques, different real experiments

have been conducted. For instance, the tracking of a benthic Rover with an ASV.

Finally, these target tracking methods using autonomous vehicles can be seen as

an important part of a more general view of the growing interconnection between

different platforms, for example AUV, and cabled observatories, which are used to

study our oceans, Fig. 1.1.

UNDERWATER 
VEHICLE

- GPS Positioning 
- Dead Reckoning          

(INS - DVL)
- Acoustic positioning 

(USBL - LBL)

UNDERWATER 
OBSERVATORY
- Acoustic positioning        

(USBL - LBL)

MARINE ANIMALS 
MONITORING

- Acoustic positioning 
(Tags)

- Vemco positioning systems

SARTI

MBARI ICM

Figure 1.1: Block diagram of the background and the work conducted at SARTI with
their collaborators (ICM and MBARI). The most important achievements have been
performed in the ambit of underwater vehicles, cabled observatories, and marine
animal monitoring.
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1.3 Related work

One of the first acoustic underwater localisation methods was the LBL, which ap-

pears in the 1960s and 1970s [47]. Since then, different alternatives have been de-

veloped, such as the Short BaseLine (SBL), the Ultra-Short BaseLine (USBL), the

GPS Intelligent Buoy (GIB) systems or the use of acoustic modems [48] and [49].

A The LBL and SBL systems

The LBL system employs a set of different transponders deployed on the seabed,

which are called landmarks. The position of each of them must be known in ad-

vance with a high accuracy, and also their synchronisation is a key factor. Therefore,

calibration procedures with vessels [50] and also helicopters [51] are commonly con-

ducted [52]. Then, the target (e.g. an AUV) can interrogate each transponder and

compute the Time Of Flight (TOF), which is used to know the distance between

the target and each landmark. Another option is using the Time Difference Of Ar-

rival (TDOA) of a signal transmitted by the target and received by two or more

landmarks. Finally, using triangulation techniques, the target’s position can be es-

timated. This kind of system has typical errors between 0.1 m and 10 m, using

transmitting frequencies of 12 kHz, sampling rates of 20 s, and working ranges of

up to 12 km [53]. These values can be improved using higher frequencies (300 kHz)

and sampling rates (10 Hz) [54], these devices can achieve an accuracy below 1 cm.

The SBL system is similar to the LBL, where the main difference is the separation

between landmarks. Usually, if the range between the target and each landmark is

smaller than the distance between landmarks (inter-baseline), the system is called

LBL, otherwise it is known as a SBL [38]. The accuracy achievable with the SBL

systems increases proportionally with the inter-baseline of the landmarks, which

theoretically can reach the same accuracy as the LBL method. However, as the size

of the SBL system is smaller, its deployment is easier and cheaper. This system can

also be mounted on a mobile platform such as oceanographic vessels.

B The USBL system

The operating principle of the USBL system is similar to the one explained above.

Different transponders receive an acoustic signal with slight differences of time due to

the inter-distance between them. Then triangulation techniques are used to compute

the angle of arrival (elevation and bearing) of a signal transmitted by a target, which

is used to estimate its position.

Yet, in a USBL system, all the transducers are placed together in a single device,

where the inter-baseline is typically around ∼10 cm, which allows the use of this
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system on small platforms such as boats. Moreover, a USBL is commonly used with

a GPS (to have a geodetic reference) and an Inertial Navigation System (INS) (to

know the platform’s attitude) [55].

Because of the use of the INS and small inter-baseline distances, the error of

these systems is worse than the previous ones. Furthermore, calibration procedures

must be conducted in order to adjust all the different systems involved in localising

a target [56].

C The GIB system

The GIB method was developed to avoid the complexity and the costs derived

from the LBL’s deployment and calibration, and to increase the accuracy of the

USBL systems. The main idea of the GIB system is to place the landmarks on

buoys on the sea surface. With this simple idea, its deployment is simpler, and

additionally, the GPS signal can be used to know the landmarks’ position and adjust

their synchronisation with high precision [57]. This system is commercialized by

Alseamar-alcen (www.alseamar-alcen.com), model GIB-SAR.

D The single-beacon system

Finally, other methods have been developed to reduce even more the deployment’s

complexity of acoustic positioning systems, such as, the single-beacon methods. In

this case, only one mobile landmark is used, which reduce the deployment complexity

of the GIB method, whereas it can reach the same accuracy.

The main idea behind this architecture is to use an autonomous vehicle as a

mobile landmark to compute the position of an underwater target, which, while

moving in the area, takes some ranges between the target and itself to triangulate

the target’s position.

The interest in this methodology has been increased over the past years, as a

consequence of the necessity to reduce localisation costs, and find new techniques to

localise and track multiple nodes in Underwater Acoustic Networks (UWAN) [58],

or in fleets of AUVs, where all the nodes have their own acoustic communication

modem, and the crore,efan be used to know the ranges from other nodes on the

gird. For instance, this methodology is used in the MORPH EC FP7 project [20]

as explained in [59]. The authors present a system called Distributed Long Base-

line (DLBL), where high synchronised modems from EvoLogics in 4-node network

composed for AUVs were used.

In contrast, this technique is also used in single node architectures. For example,

it is used in applications such as Simultaneous Localisation and Mapping (SLAM),
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AUVs aid navigation, [60], [61], and [62], and in AUV homing as well, [63] and [64].

Finally, single-beacon localisation using autonomous vehicles as a moving landmark

can also be used for target positioning and tracking in large areas without fixed

beacon constraints. As an example, in [65] a tracking and following method of a

tagged Leopard shark was presented.

1.4 Goal of the thesis

After the description of the research antecedents, motivation and related work, the

goal of this thesis is stated. The general purpose is summarised as:

“The improvement of underwater target tracking methods using au-

tonomous vehicles, with a close focus on underwater marine species track-

ing. Studying the best practices, and deriving the accuracy that can be

achievable”.

This main goal is divided into six related hypothesis:

1. Using smart hydrophones with signal processing, Ethernet connectivity, and

synchronisation capabilities will allow an easy integration in an underwater

cabled observatory network, which can be used to implement a short baseline

target tracking system.

2. Using a USBL system in an ASV, such as a Wave Glider, which is smaller

than standard oceanographic vessels, will introduce more uncertainty in the

prediction of the target’s position due to the sea state (e.g. waves and surface

wind).

3. Range-only and single-beacon target localization using autonomous vehicles

and acoustic modems will solve the limitations in the coverage zone and de-

ployment costs presented by the LBL systems, and will solve the uncertainty

presented by the USBL systems when working in complex scenarios such as

shallow waters.

4. Range-only and single-beacon underwater target localisation methods using

an autonomous vehicle and acoustic modems can also be used to track mobile

targets. In such case, the previous target state and its propagation model must

be taken into consideration.

5. The area-only underwater target localisation and tracking algorithm using

acoustic tags will allow the study of the behaviour of small marine species and

their movements in a way which has not been possible until the present day.

9
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6. A new smart acoustic tag with bidirectional communications and range ca-

pabilities will allow the increase of the estimated target’s position accuracy

and will allow the transmission of important environmental measures. Both

aspects could be used to increase the knowledge of biologging marine animals

behaviour.

1.5 Thesis main contributions

This research has several objectives related to each hypothesis above:

• Chapter 2 Studying an SBL system using smart hydrophones:

– Calibration procedures for the SBL system

– Accuracy achievable in the estimation of the target’s position

• Chapter 3 Studying the USBL system installed on an ASV:

– Calibration procedures for the USBL system

– Accuracy achievable in the estimation of the target’s position

– Derivation of the main source of errors

• Chapter 4 Studying the ROSB methods for static targets

– The study of the optimal path which must be conducted by an observer

– Comparison among different target localization algorithms

– Best practices derived to improve the target’s estimation accuracy

• Chapter 5 Studying the ROSB methods for moving targets:

– The study of the optimal path which must be conducted by a tracker

– Comparison among different target tracking algorithms

– Best practices derived to improve the target’s estimation accuracy

• Chapter 6 Presentation of the Area-Only Target Tracking (AOTT) method:

– The study of the optimal path which must be conducted by a tracker

– Comparison among other target tracking methods

– Best practices derived to improve the target’s estimation accuracy

• Chapter 7 Smart tag development:

10
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– Setting the basis of a new tag design with bidirectional communication

capabilities

– Tag implementation using the CompactRIO (cRIO) platform

– Laboratory tests

1.6 Dissertation Structure

This chapter has provided a high-level introduction to acoustic underwater localisa-

tion methods and an explicit statement of the thesis. The following chapters present

each individual contribution in detail, which has been structured in four main blocks:

• Firstly, Chapter 2 and 3 present the main limitations of the traditional acoustic

localisation methods LBL/SBL and USBL

• Then, Chapter 4 and 5 compare different target localisation and tracking meth-

ods using the ROSB technique

• On the other hand, Chapter 6 presents a novel method for tagged target track-

ing called AOTT

• Finally, the basis of a new acoustic tag with bidirectional communication ca-

pabilities to improve current marine animal tracking methods has been derived

in Chapter 7
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Chapter 2

LBL/SBL systems using smart

hydrophones

Using smart hydrophones with signal processing, Ethernet connectivity, and syn-

chronisation capabilities will allow an easy integration in an underwater cabled ob-

servatory network. For example, these smart hydrophones could be used to imple-

ment a short baseline target tracking system.

2.1 Introduction

A cost-efficient, innovative and interoperable ocean passive acoustic sensor system

has been developed within the European FP7 project called NeXOS (Next generation

Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine,

Maritime and Fisheries Management), which can be deployed both on fixed and

mobile platforms [66], [67] and [68]. Within this context, two passive acoustic sensors

have been designed and developed called A1 and A2 [69].

2.1.1 Motivation

An important part of the effort of NeXOS project was focused on the develop-

ment of a device with a great dynamic range, improved processing performance,

and integration capabilities on autonomous platforms [70]. The A1 is a standalone

small, compact, low power, and low consumption digital hydrophone with embedded

pre-processing, which is suitable for mobile platforms with limited autonomy and

communication capabilities. The A2 consists of four A1 digital hydrophones with

Ethernet interface and one master unit for data processing, which enables real-time

measurements of underwater noise and several soundscape sources.

Moreover, the A2 device can be used to localise and track different sound’s
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sources using its in situ processing and synchronization capabilities. However, after

its deployment, a calibration process must be conducted to estimate the position of

each A1 hydrophone, and to adjust the internal parameters. In this framework, the

methodology used and the results obtained are presented in the following sections.

2.1.2 Contributions

A target localization method is presented in this chapter, which uses the capabilities

of the new A1 hydrophones developed within the NeXOS project. This method is

based on the Time Difference Of Arrival (TDOA) tecniques [71] and [72], which

consist of computing the differences between the arrival time of a signal at different

locations. Moreover, a complete study to calibrate the system is presented, and

different field tests to validate the development have also been conducted.

2.2 NeXOS A2 system

The A2 system designed within the NeXOS project consists of an array of four A1

hydrophones and a master unit [73]. Each hydrophone have one transducer and

two Analog-to-Digital Converters (ADCs), which are simultaneously sampling at

different gains. These are used to detect acoustic source levels from 50 dB re 1µPa

to 180 dB re 1µPa in the frequency range of 1 Hz to 50 kHz. The use of two amplifier

stages with different gains is a cost efficient approach in order to obtain a wide

dynamic range. Then, a micro-controller processes the sampled data and transmits

the result through a EIA RS-232 serial port. Moreover, the A1 is equipped with

a real time clock which is used to temporally tag the sampled data, and it is also

equipped with a Pulse Per Second (PPS) input from a Global Positioning System

(GPS) link.

The hardware designed to build each hydrophone is presented in Fig. 2.1, where

the sensor internals and externals are shown.

(a) (b)

Figure 2.1: The sensor internal electronic circuit (a), and the external rubber cover
(b).
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The A2 master unit has been build with an ODROID-C2 (Hardkernel, South

Korea). The ODROID-C2 is a 64-bit quad-core single board computer, which is one

of the most cost-effective 64-bit development boards available in the ARM world.

This embedded computer is used to process the signal of the four A1 hydrophones

in real-time, which is used to implement the TDOA algorithm required to estimate

the position of a source of sound. Here, the most important point when computing

the TDOA is the accuracy and precision between each internal clock. The time

synchronization of the master unit and the slave units (A1 hydrophones) is conducted

by using the IEEE 1588 Precision Time Protocol (PTP) standard [74].

The NeXOS A2 system is briefly described below and presented in Fig. 2.2:

• The A2 sensor is a digital passive acoustic transducers array, and its output

(raw signal) can be processed by a master unit.

• The acoustic array A2 is composed by four A1 acoustic devices, called the

A2hyd, which provide the acoustic data output to the Master Unit through a

serial digital port with Ethernet protocol.

• The master Unit manages the timing synchronization of the four A2hyd to get

the proper simultaneous sampling.

(a) (b)

Figure 2.2: The NeXOS A2 system, (a) internal, and (b) external with the A1
hydrophones installed.

This system has been validated in the framework of NeXOS project. For example,

a single smart hydrophone (A1) was installed on an Autonomous Underwater Vehicle

(AUV) glider in order to measure the underwater noise. However, in this thesis, a

TDOA algorithm has been developed and tested, which has been used to acoustically

track sound sources using four smart hydrophones (A2).
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2.3 TDOA algorithm

The algorithm used to localize the source of an underwater acoustic sound has been

developed using the TDOA estimation method [75], which is commonly used in

Long BaseLine (LBL) systems. As depicted in Fig. 2.3, the centre of the first

hydrophone is considered as the origin of the Cartesian coordinate system arranged

by the others 3 hydrophones. In this configuration, the 4 hydrophones are placed

on the same plane, which is on the seabed.

Figure 2.3: A2 array configuration for a 2D localization

The Difference Of Arrival (DOA) of a source sound is characterized by two

angles, the azimuth (φ) and the elevation (θ). The DOA estimation deals with the

case where the source is in the array’s far field, which is equivalent to a plane wave

at the sensor array [76]. With this assumption, the unit vector aθ,φ ∈ Rn (where

n is the dimension state) at the sensor array pointing towards the source can be

consider as

aθ,φ = aDOA = [−sinθcosφ − sinθsinφ − cosθ]T . (2.1)

The TDOA of the source signal from each hydrophone pair ij is defined as τij ,

and corresponds to the estimated time required for the sound wave-front coming in

the direction of aθ,φ to travel a distance dij [76], given by

dij = aTθ,φ(pi − pj), (2.2)

where pi ∈ Rn and pj ∈ Rn are the position vectors of two sensor array elements,

where i, j ∈ {0, . . . ,m − 1} and m equals to the number of hydrophones used.

Moreover, the dij can be computed under far-field assumption as
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dij ' τ̂ijc, (2.3)

where c is the sound speed in water. These equations, (2.1)-(2.3), can be written in

a linear matrix form Ax = b as

A = ∆p =


(pix − pjx) (piy − pjy) (piz − pjz)

...
...

...

(pmx − pmx) (pmy − pmy) (pmz − pmz)

 , (2.4)

x = aθ,φ =

axay
az

 = −

sinθcosφ

sinθsinφ

cosθ

 , (2.5)

b = d =


dij
...

dmm

 , (2.6)

Using a minimum of three sensors in a 2D scenario, and four or more sensors in a

3D scenario, knowing the TDOA, and the sensor array position, the aθ,φ is uniquely

determined, with full-rank matrix where all equations are linearly independent, and

can be computed in a closed-form solution, directly or using a least squares method

for overdetermined systems [77]. Finally, from (2.5) the azimuth angle estimation can

be computed as φ̂ = tan−1(ây/âx) and the elevation angle is given by θ̂ = cos−1(−âz)
as in [72].

A Maximum expected performance

Finally, the maximum expected performance which can be achievable with this sys-

tem is computed, which will be used to compare both simulation and field test

results.

In an estimation problem, where a set of noisy observations are used to estimate

a certain parameter of interest, the Cramér-Rao Bound (CRB) sets the lowest bound

on the covariance matrix that is asymptotically achievable by any unbiased estima-

tion algorithm, and therefore, sets its maximum accuracy. The CRB is calculated

using the inverse of the Fisher Information Matrix (FIM), represented as FIM, of

the likelihood function of a system. Let the emitter location q ∈ Rn be the parame-

ter of interest obtained from a vector of TDOAs measurements z = h(p) + w ∈ Rm,

where m is the number of measurements and wm is a zero mean Gaussian error with

covariance R ∈ Rm×m. Each entry of the vector h(p) has the form
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h1j(p) = r1(p)− rj(p) = |q− p1| − |q− pj |, (2.7)

where the TDOAs have been taken between the reference sensor p1 and the sensors

pj with j ∈ {2, . . . ,m}. Due to the Gaussian measurement noise, the likelihood

function p(z1j |p) for a single TDOA measurement is given by

p(z1j |p) =
1

2πm/2R1/2
exp
{
− 1

2
[z1j − h1j(p)]TR−1[z1j − h1j(p)]

}
. (2.8)

And the gradient of the log likelihood function p(z1j |p) with respect to p com-

puted as [78] results in a FIM equal to

FIM = ∇h1j(p)TR−1∇h1j(p), (2.9)

where

∇h1j(p) =
h1j(∂p)

∂p
=

1

r1(p)
(q− p1)

T − 1

rj(p)
(q− pj)

T , (2.10)

which in matrix formulation can be described as

∇h(p) =


∇h1j(p)

...

∇h1m(p)

 =
1

r1(p)
(q− p1)

T I

−


1

rj(p)
· · · 0

...
. . .

...

0 · · · 1
rm(p)




(q− pj)
T

...

(q− pm)T

 ,
(2.11)

where I ∈ Rm×m is an identity matrix with size m by m.

Therefore, using (2.9) and (2.11) the CRB inequalities can be computed as fol-

lows. Suppose that q̂ is some unbiased estimation of the source of the sound position,

which is computed using as observations some noisy TDOA measurements z̄ then

var{q̂} = E{|q̂(z̄)− q|2} ≥ tr[FIM(p)−1] (2.12)

Finally, a simulation using the FIM for a set of two TDOA measurements is

calculated for a grid of possible emitter positions in the plane, which is shown in

Fig. 2.4. A Standard Deviation (STD) of 1 µs has been used to compute the CRB,

which yields in this typical pattern, where in some areas the accuracy of the source’s

localization is better than others (e.g. the error goes from 3 m to 30 m). This is due
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to the source’s position relative to the hydrophones’ position. If the source’s position

is collinear with two or more hydrophones’ positions, the resulting system will be

undermined, and therefore, the estimated position using the computed TDOA will

have less accuracy.
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Figure 2.4: Simulation: The estimation of the expected accuracy using the CRB
method for a set of two TDOA measurements.

2.4 NeXOS A2 software

All these equations are implemented in the algorithm shown in Fig. 2.5, which is

used to estimate the DOA of an underwater acoustic signal source. This algorithm,

which runs inside the master unit, has two main parts. The first part consists

of four sub-processes, which run in parallel with the main process. These sub-

processes are used to read the User Datagram Protocol (UDP) packets sent from

the four hydrophones (Hyd]1 ... Hyd]4). In this step, a first synchronization is

carried out using a zero crossing detector of a reference counter inside each UDP

packet. After that, the acquisition is started. Each sub-process generates groups

of N UDP packets, corresponding to the sampling windows defined previously by

the user. Finally, these groups are saved as a valid data into a First-In First-Out

(FIFO) queue which is used to share information between parallel processes.

The second part of this algorithm is the reading of one item from the four FIFO

queues at each iteration. All of these signals have their own timestamp, and there-

fore, a second synchronization is carried out to obtain a common timestamp. After

that, each signal is filtered using a Band-Pass Filter (BPF) and compared with a

minimum threshold. When all channels have a signal greater than the threshold and
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are centred in the sampling windows, the signal is processed to estimate the TDOA

and the DOA.

H1..H4

Queue

FIFO

Read and 

Decode

Grouping 

N paquets

Sync. t = 0
Synchronization 4 Hydrophones 

(internal timestamps) 

Pre-process:

A) Band-Pass Filter

B) Set a minimum threshold

All hydrophones have 

received a signal? 

Low-Pass Filter 

Cross-correlation in freq. Domain 

(TDOA) 

Compute angles of arrival (DOA) 

Save and UDP send 

Take 1 data from each FIFO 

no

yes

Figure 2.5: Block diagram of the algorithms used to compute the DOA of a sound’s
source using the NeXOS A2 sensor.

2.5 Simulation tests

The initial validation of the DOA algorithm has been carried out by performing

four simulations with four different virtual locations of the sound’s source (e.g. a

boat) around the A2 array configuration, which is shown in Fig. 2.6. The TDOA

is then calculated depending on the distance between the virtual sound source and

the hydrophones. This delay is simulated by taking different audio signals with

the corresponding delay in samples. Moreover, the signal’s attenuation due to the

spherical divergence is also calculated for each simulated signal. The output of the

algorithm consists with the angle (φ) between x-axis and the vector which defines

the DOA.

The result of these simulations are shown in Table 2.1, where the DOA estima-

tion is compared with an ideal case (using the real positions). The result shows a

great correlation, and therefore, corroborates the algorithm’s performance as a good

estimator. On the other hand the error computed is between the error predicted by

CRB presented in Section A.
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Figure 2.6: 2D representation of the hydrophones’ positions and the 4 sources’
locations during the simulations carried out to evaluate the algorithm proposed.

Table 2.1: Algorithm Difference Of Arrival (DOA) estimation compared with ideal
case in 4 different source’s positions.

Source x-pos (m) y-pos (m) Ideal φ (deg) Estimated φ (deg) error (deg)

P1 52.1 27.9 28.5 25.5 3.0

P2 -21.0 56.9 110.6 109.2 1.4

P3 -45.0 -25.0 209.1 211.4 -2.3

P4 5.3 63.0 274.8 275.1 -0.3

2.6 Sea tests

The A2 sensor (configurated as a Short BaseLine (SBL)) was deployed on June

7, 2017 to observe its performance. The SBL is similar to the LBL, the main

difference is the inter-baseline between hydrophones. Here, the SBL system was

used because of its lower deployment complexity. The A2 sensor was connected into

the OBSEA observatory (www.obsea.es), near Barcelona, Spain (Fig. 2.7) and [79].

The OBSEA can provide 12/24 V up to 3 A to power supply an external sensor, and

Ethernet connection through their specific instrument ports. One of these ports was

connected to the A2 sensor master unit using a wet-mate connector. Fig. 2.7 also

shows one of the four A2 hydrophones deployed on the OBSEA observatory, and the

final deployment scheme where the 4 hydrophones were positioned in the vertices of
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a 10 x 10 m square shape.

(a)

A2 deployment coordinates
N

A2 (41.182126°, 1.752610°)

H1 (41.182080°,  1.752643°)

H2 (41.182100°, 1.752552°)

H4 (41.182157°, 1.752662°)

H3 (41.182170°, 1.752576°)

OBSESA (41.182049°, 1.752723°)

10 m

(b)

Figure 2.7: The OBSEA observatory (a)-top and one of the A2 hydrophones de-
ployed on the seabed (a)-bottom. Final deployment location of each component
once connected to the OBSEA, hydrophones (H1,H2,H3,H4) and the A2 master
unit (b).

In this test, an A2-centred 500 m radius circle path was performed using a

boat equipped with a sound generator, allowing a 360 deg assessment of A2 DOA

performance. The tone generated had the pattern presented in Fig. 2.8, and was

used to facilitate the post-process carried out for calibration purposes.

10 kHz Tone

200 ms5 ms 5 ms

Figure 2.8: Sound pattern generated used to calibrate the system. Each tone was
conducted with a 10 kHz sinusoidal signal during 5 ms, and the separation between
tones was always 5 ms, and between tone’s groups was 200 ms.

The raw signal received at each hydrophone is shown in Fig. 2.9, where the time

delays between each device can be observed, which are also notated in Table 2.2.

For example, in this acquisition can be observed that the first hydrophone which

received the transmitted signal was H2, followed by H3 and finally H4. Therefore,

the signal was arriving from the west side of the system, as can be noticed due to

the array configuration (Fig. 2.7b). The angle between the boat and the A2 SBL
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was 270 deg (based on GPS positions) whereas the angle computed using the A2

was 269 deg, which yields with an error of −1 deg.
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Figure 2.9: Field test: Raw signals received at each hydrophone during a field test.

During this test the hydrophone number 1 (H1) was not working properly due to

some hardware failure. Therefore, the signal measured was always 0. Nevertheless,

the boat could be detected in a 2D plane which was placed on the sea surface. In

this scenario, a minimum of 3 hydrophones are mandatory to compute the source of

sound, which allowed to carry out the test.

Table 2.2: Time Of Arrival (TOA) and TDOA obtained from a single transmission
when the source of sound where on the west side of the A2 system.

Hydrophone TOA (s) TDOA (ms) Pair

H4 47.233 – –

H3 47.228 -4.9 H4-H3

H2 47.225 -7.4 H4-H2

H1 – – –

On the other hand, all the DOA estimations computed during the test were

sent to the Sensor Observation Service (SOS) server, which also received the ”true”

angle between the A2 and the boat computed using the boat’s GPS. These angles
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can be observed in Fig. 2.10, where the computed DOA estimation is depicted in

red whereas the ”true” angle between the A2 and the boat is depicted in blue.

Figure 2.10: The A2 sensor DOA vs GPS-measured of boat’s location delivered
to NeXOS SOS server and viewed in the NeXOS Sensor Web Enablement (SWE)
viewer. The blue line is the ”true” angle between the A2 sensor and the boat,
whereas the red line is the computed angle by the A2.

However, in order to improve the accuracy of the system, a python-based post

processing was applied to the SOS-downloaded data. The results are shown below.

First the outliers generated by the A2 were eliminated, Fig. 2.11a and Fig.

2.11b. A derivative method was used to eliminate unnatural discontinuities. Then,

a 0 to 360 deg segment was used and the A2 headings interpolated to correlate the

timestamps and the values of both GPS-based and A2-estimated DOAs to perform

a calibration Fig. 2.11c. Then, the values were divided in three segments to improve

the calibration curve. Moreover, a high grade curve fitting on each of these three

segments was used. The result is shown in Fig. 2.11d, where the heading value error

of the A2 respect to the Boat is represented.

Finally, the error in a polar plot representation can be observed in Fig. 2.12.

In some areas the error is much higher than others, this kind of pattern is typically

expected as it is shown in [78], where the authors runs a simulation using the CRB,

and also presented in Section A.
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Figure 2.11: Field test: (a) Raw data obtained from the SOS server. (b) Data
without the outliers using a derivative method. (c) Segment of data used to calibrate
the system and the three curve fitting employed. And (d) the error obtained after
the calibration.

Figure 2.12: Field test: Polar representation of the heading error.
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2.7 Conclusions

Finally, we can conclude that A2 estimates fit reasonably well with the actual sound

generator location and therefore the result of this test was successful, partly vali-

dating/demonstrating, the capability of A2 to estimate. The DOA estimations with

A2, tested at OBSEA observatory, have similar values to the simulation tests, pre-

senting errors lower than 3 m on the good areas and errors around 30 m in the

worst cases. Moreover, the differences between the field test estimations and the

simulations can be due to the accuracy of the hydrophones position during their

deployment. More experiments would be needed for further validation in different

scenarios (e.g. changing landscape or robustness vs background noise).
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USBL systems on autonomous

surface vehicles

Introducing a Ultra-Short BaseLine (USBL) system in an Autonomous Surface Ve-

hicle (ASV), such as a Wave Glider, which is smaller than standard oceanographic

vessels, will introduce more uncertainty in the prediction of the target’s position due

to the sea state (e.g. waves and surface wind).

3.1 Introduction

The Long BaseLine (LBL) and Short BaseLine (SBL) systems are usually installed

on the seafloor, which increases their deployment costs and complexity. Whereas

these methods offers a great target localisation accuracy, they can only be used

to track devices which are inside an specific area, i.e. those targets which are too

far away, and therefore not inside the system zone of influence, cannot be tracked.

Moreover, the LBL needs a complex procedure to be calibrated, which has to be done

after each deployment. For example, each transponder must be located accurately,

where the difficulty is proportional to the transponder’s depth. Consequently, if

the required deployment’s and the calibration’s times are taken into account, it can

be conclude that these systems are hardly mobile, and therefore, are only used to

monitor specific areas (e.g. areas around an offshore oil platform or an underwater

observatory).

To solve this problem, other target localisation methods have been developed.

For example, the USBL system. This device has the four transducers, which are

typically used in LBL systems, integrated into a single acoustic receiver, which can

easily be installed in different observation platforms (e.g. oceanographic vessels).

As a result, with this system the localisation is not restricted to the system coverage
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zone (as happens with the LBL), because of the fact that the vessel can easily move

to different areas of interest. Nevertheless, this system also has to be calibrated, but

only the first time which is installed on the vessel.

Nowadays, with the size and power consumption reduction implemented in the

modern USBL systems, these can be used in smaller platforms such as ASV or

Autonomous Underwater Vehicle (AUV) [80] and [81]. However, the integration

of these devices in such platforms rises different specific problems which have to be

taken into consideration. For example, the calibration procedures and the maximum

target localization accuracy that can be achievable. In general, the ASV can navigate

in sallower waters and suffers more consequences in front of worse sea state conditions

compared with bigger ships. Some of these specific problems will be addressed below.

3.1.1 Motivation

This study is motivated by the problem observed when an USBL system was used

in one of the Monterey Bay Aquarium Research Institute (MBARI)’s Wave Glider

(Liquid Robotics, USA). The USBL used was the Directional Acoustic Transpon-

der (DAT) system (Benthos Teledyne, USA, www.teledynemarine.com/benthos/).

This is an extension to the Teledyne Benthos ATM-900 Series modem, which auto-

matically estimates the azimuthal and vertical arrival angles of a message sent by a

remote modem [82].

It is known that the USBL must be calibrated after its installation in order to

adjust some possible misalignment between the transducer, the Inertial Measurement

Unit (IMU), and the vehicle itself. Furthermore, when these kind of systems are

installed in a small mobile platform (e.g. a Wave Glider) the sea state can potentially

have an important influence in their performance. Finally, due to the small profile

of these vehicles, this instrument can also be used in shallow waters, where other

problems may appear, such as acoustic multipath behaviour.

3.1.2 Related work

The calibration methods typically used in USBL systems can be divided in three

groups [83]: the Linear Algebra Batch Methods (LA-BM), the Linear Algebra On-

line Methods (LA-OM), and the Geometric Algebra Batch Methods (GA-BM).

From these methods, the constrained Least Square (LS) solution using Single Value

Decomposition (SVD), known as Least Square Single Value Decomposition (LS-

SVD) [84], is the present standard batch method for rotation identification, which

guarantees a rigid body rotation, and therefore, it is a better approach than the

previous LS methods such as [85]. On the other hand, in [83], Stanway focused
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his research in the developing of a new method for GA-BM calibration procedures,

which used a more compact and efficient encoding method for rotation matrix than

the Linear Algebra (LA) methods. In addition, the Geometric Algebra (GA) for-

mulations provides a greater meaningful and intuitive error measures than the LA

approaches.

These methods can be used under different scenarios when the rotation and

translation transformation matrix between two groups of points are desirable. For

example, these methods are very common in computing vision. In underwater lo-

calisation and navigation environments using autonomous vehicles, these methods

have been used to calibrate some misalignment between the Doppler Velocity Log

(DVL) or USBL devices and the vehicle reference frame [86] and [87]. Here, the

LS-SVD method is presented and used.

3.1.3 Contributions

In this chapter a complete study in order to identify and characterize the best

accuracy achievable with an USBL installed on an ASV and working in a complex

scenarios, such as shallow waters and adverse sea state conditions, is conducted. For

this study, not only analytical procedures have been carried out, but also sea tests.

Whereas the present standard method LS-SVD has been used to calibrate the

misalignment presented in the USBL systems, here the most important contribution

has been the demonstration of the USBL performance when it is used on autonomous

vehicles. Different localisation manoeuvres have been conducted in shallow waters,

and the target prediction accuracy has been characterized.

3.2 Calibration method using LS-SVD

Following the first work carried out by Arun et al. and Umeyama, [88] and [84]

respectively, the following procedure to identify the USBL’s misalignment can be

presented.

The LS-SVD needs more than two distinct points in 2D scenarios, and more than

three non-collinear points in 3D scenarios. In such circumstances, the algorithm can

determine uniquely the parameters of the transformation matrix. If the relationship

between two set of points (X and Y ) is restricted to the rigid body rotations, the

solution is constrained into the special orthogonal group

y = Rx : R ∈ SO(3), (3.1)

which has the orthogonality and normality constrains, where the columns of the

29



| Chapter 3. USBL systems on autonomous surface vehicles

matrix are orthogonal (i.e. independent) and the scale and chirality are preserved.

These constrains can be defined as

SO(3) ≡ {R : R ∈ R3×3,RTR = I3×3,det(R) = 1}. (3.2)

Using this rotation matrix in three dimensions, the misalignment between the

instrument frame and the vehicle frame can be defined by

qw(t) = Rw
b (t)Rb

iq
i(t), (3.3)

where qi(t) is the position of a target in the instrument reference frame (denoted by

the superscript i), Rb
i constant is the unknown misalignment matrix which must be

found, Rw
b (t) is the transformation matrix to rotate and translate the target position

in the body frame (denoted by the superscript b) to the world coordinates (denoted

by the superscript w), and finally, qw(t) is the target position in world coordinates.

In this formulation, the matrix Rw
b (t) is function of the Euler angles roll, pitch and

yaw (denoted by φ, θ, and ψ respectively), and the Global Positioning System (GPS)

positions.

In order to obtain (3.3) in parameters of (3.1), we can multiply both sides of

(3.3) by Rb
w(t), which is equal to Rw

b (t)T .

Rb
w(t)q(t)w = Rb

w(t)Rw
b (t)Rb

iq
i(t) = Rb

iq
i(t). (3.4)

Then, considering a set of target positions measurements obtained at different

discrete times k using the USBL, which can be denoted as X = {qi(k+1), . . . ,qi(k+

n)}, where n is the number of the measurements carried out. These measurements

yields in a set of output points denoted by Y = {qw(k + 1), . . . ,qw(k + n)}. The

following group of equations are used to define the mean µ, the variance σ2, and the

covariance matrix ΣXY of these vectors

µX =
1

n

n∑
k=1

qik, (3.5)

µY =
1

n

n∑
k=1

qwk , (3.6)

σ2X =
1

n

n∑
k=1

||qik − µX ||2, (3.7)

σ2Y =
1

n

n∑
k=1

||qwk − µY ||2, (3.8)
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Σ2
XY =

1

n

n∑
k=1

(qwk − µY )(qik − µX)T . (3.9)

Finally, the LS-SVD method can be solved to find Rb
i , which will contain a

rotation matrix RSV D, a translation matrix TSV D, and a scaling factor cSV D. From

[84], these parameters can be computed as

RSV D = USVT , (3.10)

TSV D = µY − cSV DRµX , (3.11)

cSV D =
1

σ2X
tr(DS), (3.12)

where U, D, and VT are the values of the SVD with the input matrix Σ2
XY , and S

must be chosen as

S =

I, if det(U)det(V) = 1

diag(1, . . . , 1,−1), if det(U)det(V) = −1
. (3.13)

With this method, the optimum transformation is determined uniquely when

rank(ΣXY ) ≥ m− 1.

3.3 Simulations

Different simulations have been conducted in order to validate the implemented

algorithm, which has been used to calibrate the possible misalignment presented be-

tween the USBL installed on the Wave Glider and the others navigation instruments

involved, such as the IMU and the GPS.

The main idea behind the calibration procedure is to conduct a set of maneuvers

around a fixed transponder, usually deployed on the seabed. These maneuvers must

enfatisace the possible misalignment presented. The general method used by most of

the acoustic manufactures is known as the cardinal point scheme, where the vessel

occupies four primary cardinal points around the transponder [89]. For example,

moving the vessel systematically either side of the transponder and by reversing

its heading at the static cardinal collection point. Nonetheless, in vehicles without

Dynamic positioning (DP) systems this can be hard to achieve. In such cases, a

constant movement around the transponder can be used.

On the other hand, the traditional ideal distance from each cardinal point to
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the transponder was around three times the water depth. However, due to the

nowadays deeper water scenarios, the distance used is typically limited at 500 m,

which reduce the amount of ray bending that might occur, and maximise the signal

to noise ratio [89].

Here, a square path has been used to calibrate the USBL, where two of its sides

has been conducted twice, each one using an opposite direction (i.e. north/south

and east/west). Each side of the square path is 400 m long, and a new measurement

is conducted every 20 m. For example, Fig. 3.1 shows the two simulated paths

conducted by the ASV (up-down left side, and up-down right side), the real target

position and its estimation using the USBL, where some noise was added and a

misalignment was introduced. In this case, 1 m and 1 deg of noise is added in the

range, roll, pitch and yaw measurements respectively, and a misalignment of 45 deg

in the roll, pitch and yaw angles.

In Fig. 3.2, a complete path is presented. Additionally, the target estimation

position, before and after the calibration, is shown. The following parameters have

been used in this example:

• Noise:

– Range = 1 m

– Roll = 1 deg

– Pitch = 1 deg

– Yaw = 1 deg

• Misalignment (angular):

– Roll = 20 deg

– Pitch = 20 deg

– Yaw = 20 deg

• Misalignment variability (angular):

– Roll = ±5 deg

– Pitch = ±5 deg

– Yaw = ±5 deg

• Misalignment (distance):

– x-axis = 2 m

– y-axis = 0.5 m

– z-axis = 0 m
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Figure 3.1: 45 deg of misalignment behaviour on the roll (a), pitch (b) and yaw (c)
angles. Simulations conducted with 1 deg of noise on the angle’s measurements and
1 m on the range’s measurements.
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with these parameters, the initial average error before the calibration was 96.45 m,

which decrease down to 17.24 m after the calibration, see the circumferences of Fig.

3.2. The misalignment computed using the LS-SVD method were:

• Misalignment (angular):

– Roll = 19.9 deg

– Pitch = 19.7 deg

– Yaw = 20.7 deg

• Misalignment (distance):

– x-axis = 0.3 m

– y-axis = 1.0 m

– z-axis = 0.1 m

which are similar to the real parameters introduced. Hance, the great performance

of the implemented LS-SVD method can be derived. In Fig. 3.3 the Root Mean

Square Error (RMSE) of the target’s estimation before and after the calibration

procedure is represented.
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Figure 3.2: Simulation results after conducting a square path trajectory around
the target with an ASV in order to calibrate its USBL. The arrows indicates the
trajectory’s direction of the ASV (WG), the yellow points are the target predic-
tion without the calibration, and the magenta points are the estimations after the
calibration. The circumferences indicate the RMSE after and before the calibration.
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Figure 3.3: The RMSE of the target position result estimated with the USBL before
and after its calibration.

3.4 Field tests

Finally, a set of tests have been conducted to calibrate and parameterise the Benthos

DAT modem error. The DAT transponder is installed on a keel situated in the stern

part of the Wave Glider, as can be observed in Fig. 3.4. Firstly, a detailed set of

measurements were conducted to measure all the misalignments between the DAT

transponder, the Inertial Navigation System (INS), and the GPS elements. These

measurements are shown in Fig. 3.5 and Fig. 3.6.

Figure 3.4: The Wave Glider used during the tests, and a zoom of the DAT system
installed in the keel (inset)
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Figure 3.6: The roll, pitch and yaw angles representation using the Wave glider as
a reference

On the other hand, these tests were conducted using an acoustic modem which

was deployed in a moored line (used as a target), near to the Moss Landing harbour,

at ∼34 m depth on July 20, of 2016. The moored line had a surface buoy with a

Stella GPS to know its position. This configuration is shown in Fig. 3.7, and a

photography conducted after its deployment is shown in Fig. 3.8. The geographic

coordinates of the target obtained using the Stella GPS were 36.81359 deg latitude
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and -121.82074 deg longitude.

34.2 m

31 m
3.2 m

53 m (max)

Figure 3.7: Configuration of the Benthos acoustic modem and the Stella GPS sys-
tems used to calibrate the USBL of the Wave Glider

Figure 3.8: The moored line used as a target to calibrate the Wave Glider’s DAT
system

With this modem as a target to detect, different tests were conducted, each

one with a different path configuration, the results obtained are presented in the

following section.
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3.5 DAT filter

In order to improve the data generated by the Benthos DAT system, a filter should be

implemented. This is specially important in acoustically complicated scenarios such

as shallow waters (e.g. due to the multipath propagation). Under this consideration,

here the filter proposed by Bred Jones [90] was used. This filter was designed

specifically for the same Wave Glider (with the DAT) used in these tests, which is

used to remove the influence of the data outliers produced by multipath behaviour.

The main idea is to use an error function weighted moving range average filter. This

filter is combined with the bearing and elevation data to better estimate a real time

position for an underwater target.

Firstly, the average of the target estimation position q̂k ∈ Rn using the latest

N ∈ N estimations is computed, where k ∈ N is the current discrete time, and

n ∈ {2, 3} is the space dimension of the problem. This is defined as

q̂k =
1

N

N∑
i=1

q̂k−i. (3.14)

Then, the difference between the estimated position q̂ and the new position q is

computed for each new DAT measurement as

∆qk = qk − q̂k, (3.15)

which yields into a difference equal to

∆rk = ||q̂k|| =
√

q̂Tk q̂k. (3.16)

The position difference is then weighted according to the following exponential

decay function

∆qw = w∆qk, (3.17)

where w = exp(−∆r/τ), and τ is an empirically derived constant. Using (3.17), the

new weighted position becomes

q̂w = qk + ∆qw, (3.18)

which is used to compute the final target position by

q̂k =
1

N

[(N−1∑
i=1

q̂k−i

)
+ q̂w

]
(3.19)
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3.6 Results

Different Wave Glider tracks were conducted on July 2016 to observe some possible

misalignment and to characterize the target position estimation accuracy obtained

using the Benthos DAT system.

3.6.1 Preliminary adjustments

A set of tests were carried out on July 21, 25 and 27, where a square path with 400

m at each side was used for the two first tests, and a square path with 800 m side

was used for the third test. Different information could be obtained with the raw

data registered during these tests, such as filtering performance, range error and

compass misalignment.

In addition, the real target position was obtained using a range-only target local-

isation method based in the LS algorithm. This method is well explained in Section

4.3, here it has only been used to adjust the initial deployment position measured

with the boat’s GPS, and to correct the difference between the Stella GPS position

on the sea surface and the modem deployed on the sea floor.

A Filtering performance

In Fig. 3.9 the data generated during the three tests is presented, where besides the

Wave Glider’s path and the real target position, the target estimated by the DAT

before and after applying the filter explained in Section 3.5 are shown.

We can observe that the raw target position obtained with the DAT system

presented some outliers, in those cases, the estimation had a significant error which

was greater than 400 m. The error computed between the real target position and

the measured one with the DAT before and after the filter are presented in Fig. 3.9

(right column).

Whith these figures, the necessity of a filter in order to eliminate outliers (proba-

bly produced by multipath behaviour due to the shallow water scenario) was demon-

strated, where the good performance of the filter proposed in [90] was also validated,

which proportionate a maximum error down to ∼200 m.
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Figure 3.9: Left column: x-y representation of the target estimated position using
the DAT system, before the filter (Raw) and after applying the filter (Filtered).
Moreover, the Wave Glider’s track and the real target position are represented as
blue dots and a red triangle respectively. Right column: Error computed between the
real target position and the measured one with the DAT, before and after applying
the filter.
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B Range adjustments

In the following subsection, the range measured between the Wave Glider and the

acoustic modem deployed on the sea floor was studied, see Fig. 3.10. The main

goal here was to compute the error which might appear due to the variation of the

sound velocity in water, which is typically ∼1500 m/s, which may vary depending on

different parameters (e.g. due to the temperature or salinity). Then, a compensation

parameter can be added to adjust the slant range measured with the DAT. It is

known that, using the Time Of Flight (TOF), the range between two devices is

defined by

rDAT = τc+ τwc, (3.20)

where τ is the time that a signal transmitted by the device A needs to reach the

device B, c is the sound velocity in water (1500 m/s), and wc is the unknown

uncertainty about the sound velocity in water.

Then, using the real slant range rGPS = τc which was computed by the GPS

positions of both devices, (3.20) can be rewritten as

rDAT = rGPS +
rGPS
c

wc = rGPS
(
1 +

wc
c

)
= krGPS , (3.21)

where the constant ratio k = 1 + wc/c can be easily computed dividing the slant

range measured by the DAT and the one computed using the GPS’s positions. This

ratio is shown in Fig. 3.10 right column. We can see that the ratio is ∼1, which

demonstrates that the range measurement by (3.20) is very precise.
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Figure 3.10: Left column: Slant range obtained using the DAT system, and the slant
range computed using the Wave Glider’s GPS. Right column: Range ratio used to
adjust the slant range measured by the DAT
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C Compass calibration

The compass is an important element which must be regularly calibrated. Usually,

all manufacturers have their own dedicated software to accomplish that. Nonethe-

less, a good praxis is to check frequently if some bias is presented in situ. For this

purpose, a theoretical ideal vehicle yaw was computed using the GPS positions, us-

ing the following assumption: The Wave Glider’s yaw and its direction velocity were

the same. Whereas this assumption can be wrong (e.g. due to strong sea currents),

its the best estimation that we had. For that reason, only an approximation of

the compass’s performance is conducted in this section, and a detailed calibration

should be conducted in a deck for a better result.

In Fig. 3.11 the ideal compass yaw (green colour), and the vehicle yaw (blue

colour) and the easting position (red colour) are represented. On the other hand, in

Fig. 3.11 (right column) the error between the compass and vehicle yaw with a curve

fitting of 2nd order is also represented. We can observe that some misalignment is

presented in the yaw compass, especially for the angle values close to 0 deg.

D Bearing and elevation angles

Finally, a close look into the bearing and elevation angles measured by the DAT

system are shown in Fig. 3.12 and Fig. 3.13 respectively. In these figures we can

observe the large error presented in the measurements, specially in the elevation

angles. This poor performance was probably due to the complicated scenario used

to conduct these tests. In shallow waters, the multipath behaviour is a challenging

aspect which must be faced by any acoustic localisation system, specially by the

USBL system, which is less robust in front of this behaviour.

43



| Chapter 3. USBL systems on autonomous surface vehicles

23:21 23:33 23:45 23:56 00:08 00:20
Jul 21, 2016 (UTC)

0

50

100

150

200

250

300

Co
m

pa
ss

 y
aw

 (d
eg

)

605000

605100

605200

605300

605400

W
G 

ea
st

in
g 

(m
)

Test 1: compass yaw

Compass
Ideal
WG(x)

0 50 100 150 200 250 300 350
Compass yaw (deg)

75

50

25

0

25

50

75

100

Co
m

pa
ss

 e
rro

r (
de

g) -0.057x2 0.372x -0.572

Test 1: compass yaw error

18:45 19:05 19:25 19:45 20:05 20:25
Jul 25, 2016 (UTC)

0

50

100

150

200

250

300

Co
m

pa
ss

 y
aw

 (d
eg

)

605000

605100

605200

605300

605400

W
G 

ea
st

in
g 

(m
)

Test 2: compass yaw

Compass
Ideal
WG(x)

0 50 100 150 200 250 300 350
Compass yaw (deg)

50

0

50

100

150

200

250

Co
m

pa
ss

 e
rro

r (
de

g)

-0.051x2 0.393x -0.762

Test 2: compass yaw error

18:42 19:12 19:42 20:12 20:42 21:12
Jul 27, 2016 (UTC)

0

50

100

150

200

250

300

350

Co
m

pa
ss

 y
aw

 (d
eg

)

604800

605000

605200

605400

605600

W
G 

ea
st

in
g 

(m
)

Test 3: compass yaw

Compass
Ideal
WG(x)

0 50 100 150 200 250 300 350
Compass yaw (deg)

80

60

40

20

0

20

40

60

80

Co
m

pa
ss

 e
rro

r (
de

g)

-0.054x2 0.378x -0.698

Test 3: compass yaw error

Figure 3.11: Left column: Comparison between the compass yaw (Compass) and the
real yaw (Ideal) computed using the Wave Glider’s velocity direction. The easting
values of Wave Glider path are represented as WG(x). Right column: Compass
error and its second degree polynomial curve fitting
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Figure 3.12: Left column: Comparison between the target bearing measured by the
DAT, and the real bearing computed using the Wave Glider’s and target’s position.
Right column: Bearing error
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Figure 3.13: Left column: Comparison between the target elevation measured by
the DAT, and the real elevation computed using the Wave Glider’s and target’s
position. Right column: Elevation error
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E Recapitulation

Finally the parameters obtained during the three tests presented above are summa-

rized in Table 3.1.

Table 3.1: Preliminary parameters to adjust the Benthos Directional Acoustic
Transponder (DAT) system.

Test number Date Range ratio Compass coefficients

1 July 21 0.987 −0.057x2 + 0.371x− 0.552

2 July 25 0.982 −0.051x2 + 0.393x− 0.762

3 July 27 0.986 −0.054x2 + 0.378x− 0.698

Taken into consideration the mean of the three tests, the range ratio was equal

to 0.985, and the compass calibration coefficients were equal to −0.054x2 +0.381x−
0.671.

3.6.2 DAT calibration parameters

Now, with the information obtained during the three tests explained in the previous

section, the LS-SVD algorithm explained in Section 3.2 was used to compute the

possible misalignments presented between the Wave Glider and the different USBL

elements. The results for all three tests are shown in Fig. 3.14, where the error

before and after applying the misalignment correction is presented. We can see that

in all cases the estimated final target position was better when the misalignment

adjustment was conducted. The misalignment parameters for all the three tests are

summarized in Table 3.2.

Finally, in Table 3.3 the target position error is presented. In this case, the

final estimated target position was computed using the average values between the

first two tests as a misalignment coefficients. With these parameters, the target

estimated positions and their errors were computed again. In this table, the errors’

reduction in percentage are also presented.
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Figure 3.14: The left plots show the x − y plane with the Wave Glider positions
(blue dots), the true target position (red triangle), and the target estimations using
the DAT before and after the misalignment’s correction (yellow circles and violet
triangles respectively). The right plots show the errors and their average values
before and after the misalignment correction.
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Table 3.2: Misalignment parameters: Rotation matrix, translation matrix and scal-
ing factor

Test RSV D TSV D cSV D

1


0.962 0.087 −0.258

−0.037 0.98 0.194

0.27 −0.177 0.947




46.040

−3.143

61.549

 0.986

2


0.944 −0.032 −0.329

0.152 0.925 0.348

0.293 −0.378 0.878




47.234

16.272

77.306

 1.046

3


0.822 0.127 −0.556

0.13 0.907 0.4

0.555 −0.401 0.729




23.723

14.9

210.308

 1.053

Table 3.3: Target estimation errors before and after the misalignment’s adjustment

Error (m)

Test Initial Compensated a Reduction (%) Compensated b Reduction (%)

1 128.83 92.83 28 95.10 26

2 126.16 94.0 25 95.27 24

3 299.79 231.9 23 259.02 14

a using their own misalignment parameters

b using the average value of the two first tests
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3.7 Conclusions

As observed in this section, the use of an USBL to localise an underwater target

is a great tool, but has its limitations. For example, in complex scenarios, such as

shallow waters, this system has important errors. Some of them provably due to the

multipath propagation. Moreover, the Wave Glider is more vulnerable in front of

adverse sea state than bigger vessels.

This behaviour can be observed specially in the elevation angles, which are really

noisy and have lots of outliers during all the tests conducted. The error measured

in this section is not unusual. For example, in posterior tests conducted by Brent

Jones [90] the estimated target error obtained for a target’s depth equal to 80 m

was also around 100 m, and only was better when the target was tracked at 200 m

depth, in that case the error was ∼30 m.

On the other hand, the installation of a USBL in small platforms, such as a

Wave Glider, yields in a complex configurations, where both the size and power

consumption restrictions cause the use of better devices infeasible (e.g. Fibre Optic

Gyro Compass (FOG) systems).

As a result, other acoustic underwater target localisation methods should be

taken into considerations, for example the ones which lies on range measurements,

which have been demonstrated much more reliable. These methods are extensively

explained in the following sections.
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Range-only and single-beacon

methods: A static scenario

The Range-Only and Single-Beacon (ROSB) target localisation using autonomous

vehicles and acoustic modems will solve the limitations in the coverage zone and

deployment costs presented by Long BaseLine (LBL) systems, and will solve the

uncertainty presented by Ultra-Short BaseLine (USBL) systems when working in

complex scenarios such as shallow waters.

4.1 Introduction

Underwater localisation using acoustic signals is one of the main components in a

navigation system for an Autonomous Underwater Vehicle (AUV) as a more accu-

rate alternative to dead-reckoning techniques. While different methods based on the

idea of multiple beacons have been studied, other approaches use only one beacon,

which reduces the system’s costs and deployment complexity. The inverse approach

for single-beacon navigation is to use this method for target localisation by an under-

water or surface vehicle. In the previous chapters, we have observed some limitations

of the traditional Short BaseLine (SBL) and USBL methods. For example, the SBL

system require a complex deployment and calibration procedure, and the USBL sys-

tem has important errors measuring the bearing and elevation angles, whereas the

range error was quite low. Therefore, if a more dynamic system, capable of localis-

ing targets in different zones without previous interventions, and with high accuracy

is needed, a system by the use of autonomous vehicles and range measurements is

the most appropriate. Here, a method of ROSB target localisation using a Wave

Glider is presented, for which simulations and sea tests have been conducted to de-

termine optimal parameters to minimize acoustic energy use and search time, and

51



| Chapter 4. ROSB methods: A static scenario

to maximize location accuracy and precision. Finally, a field mission is presented,

where a benthic Rover (an autonomous seafloor vehicle) is localized and tracked us-

ing low human intervention. This mission shows, as an example, the power of using

autonomous vehicles in collaboration for oceanographic research.

4.1.1 Motivation

One of the main challenges in oceanographic research lies in underwater positioning.

Due to the large attenuation of radio waves in water, it is well known that Global Po-

sitioning System (GPS) signals are not suitable underwater. Consequently, different

methods and architectures have been developed using acoustic signals, which have

better a underwater performance, such as LBL, USBL and GPS Intelligent Buoy

(GIB). Usually, the range between two transponders is computed knowing the Time

Of Flight (TOF) of a transmitted signal (and the sound speed in water), then these

ranges are used to calculate the position of the sound source. Each of these systems

has its own application as a function of the project’s necessities and constraints.

For example, the LBL system offers the best precision and accuracy, but with high

deployment and maintenance costs. These costs can be somewhat reduced by GIB

systems, which use surface buoys instead of sea-floor nodes. If the main goal is to

reduce the set up time, the best option is a USBL system, but with less accuracy

than the other methods.

On other hand, some studies have focused on single beacon localisation methods

to reduce the deployment costs (e.g. [63], [78], [91] and [92]). The main idea behind

this architecture is to use an autonomous vehicle as a mobile landmark to compute

the position of an underwater target, which, while moving in the area, takes some

ranges between the target and itself to triangulate the target’s position.

4.1.2 Related work

In general, the ROSB methods are based on an autonomous vehicle which is used as

a tracker (or observer). This vehicle conducts a set of manoeuvres in order to track

(or localise) some target(s). In this manoeuvre, the vehicle periodically performs

new slant range measurements using the TOF of exchanged messages between the

tracker and the target (e.g. [93]), whereas the LBL method uses the Time Difference

Of Arrival (TDOA) between different well localized and synchronized transponders

deployed previously on the seafloor (e.g. [94], [95], and [96]). The TOF method es-

timates the target’s position by the use of different range measurements, and then,

applying triangulation methods [97]. The interest in ROSB has increased in recent

years as a consequence of the necessity to reduce localisation costs (e.g. transpon-
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ders’ deployment and clocks’ synchronization) [58] [98], and to find new techniques to

localize and track multiple nodes in Underwater Acoustic Networks (UWAN), [58],

or in fleets of AUVs, where all the nodes have their own acoustic communication

modem, which can be used to know the ranges from other nodes on the gird. For

example, this methodology is used in the MORPH EC FP7 project [20] as explained

in [59]. The authors present a system called Distributed Long Baseline (DLBL),

where high synchronized modems from EvoLogics in 4-node network composed for

AUVs were used.

In contrast, this technique is also used in single node architectures. For example,

it is used in applications such as Simultaneous Localisation and Mapping (SLAM)

and AUVs aid navigation, [60], [61], and [62], and AUV homing as well, [63] and [64].

Finally, single-beacon localisation using autonomous vehicles as a moving landmark

can also be used for target positioning and tracking in large areas without the fixed

beacons’ constraints. As an example, in [65] a tracking and following method of a

tagged Leopard shark was presented.

However, the ROSB has its particular challenges, such as path characterisation

(path shape, number of points and maximum range) or performance evaluation

(accuracy and reliability). All of these parameters must be evaluated under different

circumstances and setup characteristics.

In the literature, different papers about observability (which introduces some

restrictions in paths and maneuvers) can be found, for example in [99] the authors

derive that the best trajectory is to do turning motions around the beacon, and in

[91] a similar approach is used with a surface vehicle following three AUVs. On other

hand, [98] shows a complete study to determine the optimal sensor placement for

acoustic underwater target positioning with range-only measurements. Other works

are focused on algorithms and their improvement under specific circumstances, such

as in [100], where the authors improve a recursive algorithm for target localisation in

an isogradient sound speed profile. Nevertheless, all these works are mathematical

developments and only show some simulations.

[101] have studied cooperative AUV navigation using surface vehicles, which

use acoustic ranges as navigation aids. They studied three filtering and smooth-

ing techniques, the Extended Kalman Filter (EKF), the Particle Filter (PF), and

the Nonlinear Least Squares (NLS), where the NLS yielded with a better accuracy.

Experiments and field tests had been conducted in a shallow water environment.

Posterior studies conducted by [102] show the performance of the Centralized Ex-

tended Kalman Filter (CEKF) to improve the dead-reckoning navigation systems,

using acoustic ranges from a surface vehicle as a navigation aid. Moreover, they

show different experiments in a deep water area. In both studies, they used the
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Woods Hole Oceanographic Institution (WHOI) micro-modems, [103]. Nonetheless,

whereas their studies are extended and completed in the use of acoustic range as nav-

igation aids, more studies are needed to characterize the ROSB target localisation

method; e.g. to find the best range distances or path shapes.

Finally, in other works such as [92] and [104] the authors present some field

test results to localize an underwater target using range-only methods, but in their

case, they do not present a general study to find the best parameters for target

localisation.

4.1.3 Contributions

The work presented in this chapter shows how to determine the optimal parameters

of the ROSB target localisation method for static targets. Additionally, results of

simulations and sea tests to demonstrate the good performance of a Wave Glider used

as a single-beacon LBL system for target localisation are presented. This method

can be used in a wide range of applications using the long-duration, autonomous

navigation, and computational characteristics of Wave Glider applications:

(i) Target localisation in a benthic zone:

– Instruments on seabed, which may be stationary or moving (e.g. slowly

sliding down a submarine canyon, or on a benthic Rover)

– Low motion tagged benthic marine species

(ii) Target localisation in a Pelagic zone:

– Drifter buoys

– Autonomous Underwater Vehicle (AUV)

– Low motion tagged pelagic marine species

Preliminary studies were presented in [105], where both simulations and field test

results were shown under different circumstances such as circular radius and offsets.

However, the field results in the case of different offsets did not coincide with the

simulations with the same accuracy as in the radius case. In this chapter, a more

accurate random error model, which it was described in [106], and a systematic error

is studied in order to increase the simulations’ accuracy. Finally, more cases such as

path shape, time and power consumption are presented to have a completed study.
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4.2 Optimal path shape

The relationship between the sensor location and the accuracy that can be achieved

in measurement estimation has been widely studied, see [107] and the references

therein. The potential areas which are faced with the sensor-location problem can

be for example environmental monitoring, surveillance, and meteorology.

In general, the computation of the optimal sensor configuration can be carried

out by examining the Cramér-Rao Bound (CRB) or its Fisher Information Matrix

(FIM) as is well known [108]. In an estimation problem, where a set of noisy obser-

vations are used to estimate a certain parameter of interest, the CRB sets the lowest

bound on the covariance matrix that is asymptotically achievable by any unbiased

estimation algorithm.

Therefore, because the CRB is calculated from the inverse of the FIM of the

likelihood function, one can use both to find the optimal sensor configuration. At

this point, the determinant of the FIM is used as a performance indicator, where

maximizing this quantity yields the most appropriate sensor formation geometry.

For example, [98] used this method to find the optimal sensors’ locations of an

underwater sensor network to find a target using their ranges, and [94] derived

the target’s localisation accuracy using TDOAs measurements on different sensor

geometry scenarios. In this chapter, similar approaches are used, where the optimal

path shape can be derived taken into consideration that each sensor’s position is

where the Wave Glider will obtain a new range measurement from the target. This

method can be called: ROSB target localisation.

As a reslut, following standard procedures, the FIM corresponding to the prob-

lem of range-based target positioning can be computed from the likelihood function

p(z|pT ) =
1

(2π)m/2|R|1/2 exp
{
− 1

2

(
z − r(pT )

)
R−1

(
z − r(pT )

)}
, (4.1)

where m is the number of measurements, pT is the target’s position, z = [z1, ..., zm]T

are the measured ranges, r(pT ) are the true ranges between each position of the

WG and target, and R are the covariance matrix. In the particular case that R =

σ2Im (where Im is the identity matrix), taking the logarithm of (4.1), computing

its derivative with respect to pT , and taking its expected value, the FIM can be

expressed as

FIM =
1

σ2
∇r(pT )T∇r(pT ). (4.2)

For a notation simplicity, and without loss of generality, hereinafter the target is

considered to be placed at the origin of the inertial coordinate frame. Consequently,
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(4.2) can be rewritten as

FIM =
1

σ2

m∑
i=1


(∂ri(pT )

∂pTx

)2 ∂ri(pT )
∂pTx

∂ri(pT )
∂pTy

∂ri(pT )
∂pTx

∂ri(pT )
∂pTz

∂ri(pT )
∂pTy

∂ri(pT )
∂pTx

(∂ri(pT )
∂pTy

)2 ∂ri(pT )
∂pTy

∂ri(pT )
∂pTz

∂ri(pT )
∂pTz

∂ri(pT )
∂pTx

∂ri(pT )
∂pTz

∂ri(pT )
∂pTy

(∂ri(pT )
∂pTz

)2

 , (4.3)

FIM =
1

σ2

m∑
i=1

1

r2i


p2ix pixpiy pixpiz

piypix p2iy piypiz

pizpix pizpiy p2iz

 , (4.4)

where pi = [pix, piy, piz]
T for i ∈ {1, ...,m} is the position of the i-th ranging Wave

Glider position, and ri the actual distance between target pT and the i-th WG

position.

The log|FIM | function is used to define the optimal FIM which provides the max-

imum FIM determinant for simplicity reasons. Then, its derivatives with respect to

the norms of the vectors and with respect to the angles have to be computed and

equalled to zero to find its maximum, and consequently, the optimal path configu-

ration. All this process is derived in [98], and therefore, here the final result is only

presented, that is

FIMopt =
1

σ2


m
3 0 0

0 m
3 0

0 0 m
3

 . (4.5)

Finally, the general conditions that must be satisfied by the Wave Glider path

in order to be optimal can be derived comparing the optimal FIM in (4.5) with the

generic one in (4.4) as follows

m∑
i=1

p2ix
r2i

=
m∑
i=1

p2iy
r2i

=
m∑
i=1

p2iz
r2i

=
m

3
, (4.6)

m∑
i=1

pixpiy
r2i

=
m∑
i=1

pixpiz
r2i

=
m∑
i=1

pizpiy
r2i

= 0. (4.7)

The above equations can be rewritten in terms of the angles that each range

vector makes with the unit vector of the inertial reference frame as cos(αij) = pij/ri

for i ∈ {1, ...,m} and j ∈ {x, y, z}, obtaining

m∑
i=1

cos2(αix) =
m∑
i=1

cos2(αiy) =
m∑
i=1

cos2(αiz) =
m

3
, (4.8)
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m∑
i=1

cos(αix) cos(αiy) =

m∑
i=1

cos(αix) cos(αiz)

=

m∑
i=1

cos(αiz) cos(αiy) = 0.

(4.9)

With this formulation, the optimal sensor configuration is described in terms

of the angles between the range vectors and the inertial frame. Consequently, the

ranges themselves are not an important factor in this 3D scenario, and it can be

concluded that the optimal sensor configuration lies on a sphere centred on the

target.

Finding a generic formulation for a 3D scenario that solves these equations to

obtain the optimal geometry is not trivial, however, the scenario presented in this

chapter is a surface vehicle trying to localize an underwater target, which in other

words means that all the sensors are placed on a plane. This situation is derived in

the following subsection.

4.2.1 Surface vehicle and underwater target scenario

Considering that all the measurements are taken from a plane, which in this case is

the sea surface, the optimal geometry is the intersection between a sphere centred on

the target and this plane, Fig. 4.1. The circumference obtained (which with radius

rc) presents a relation between the target’s depth zT and the ranges ri between

the target pT and the Wave Glider pi, which will define the optimal path that the

vehicle must follow in order to obtain the best accuracy on the target’s localisation

prediction problem.

Thus, using piz = zT , assuming that all ranges are equal, and substituting that

in (4.6) the following relation is derived

m∑
i=1

p2iz
r2i

=
mz2T
r2

=
m

3
→ zT

r
=

1√
3
. (4.10)

Using simply a trigonometric formulation (r2c + z2T = r2) the optimal path can

be found, which is a circumference centred over the target with a radius equal to

rc =
√

2zT . (4.11)

In contrast, the difference between the optimal solution and a solution by using
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Figure 4.1: Optimal geometry from the intersection between a sphere centred on the
target and sea surface plane.

different values of rc can be derived using (4.10) as

ε1 =
1

3
− z2T
r2c + z2T

, (4.12)

which can be used as an indicator of how the circumference radius affects the optimal

solution, which is found when ε1 = 0. Fig. 4.2 shows a specific case for a target

depth equal to 1800 m, the optimal circumference radius is equal to 2546 m can be

observed.

Now, after the circumference geometry has been derived, it is necessary to find

the optimal distribution of all measurements over this path. Consequently, rewriting

(4.6) and (4.7) in polar coordinates, considering a unit sphere (zT = 1/
√

3 and

rc =
√

2/
√

3), and pix = rccos(αi), piy = rcsin(αi) (where αi is the projected angle

of the i-th range vector on the {x, y} plane), and piz = zT , the following notation is

obtained
m∑
i=1

cos2(αi) =

m∑
i=1

sin2(αi) =
m

2
, (4.13)

m∑
i=1

cos(αi) sin(αi) =

m∑
i=1

cos(αi) =

m∑
i=1

sin(αi) = 0. (4.14)

A simple and elegant solution for αi is obtained by noticing the orthogonality

relationship for sines and cosines from Fourier’s analysis, which yields with the

solution

αi =
2π

m
i, i ∈ {0, ...,m− 1}. (4.15)

This means that all the measurements have to be taken uniformly distributed
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over the entire circumference in order to compute the target’s most accurate position.

Finally, it can be pinpointed that a large number of measurements m yield with

a better estimation because of FIMopt = m/(σ633) increases proportionally to m.

4.2.2 With a known target depth

Commonly, the target’s depth can be known easily using a small and affordable sen-

sor, which implies simple computation methods for target localisation. The informa-

tion of the target’s depth can be sent to the Wave Glider at each range interrogation

through the acoustic modems. On the other hand, if the target lies on the sea floor,

the area’s bathymetry can be used to compute its depth. In such situations, a 2D

scenario can be derived from the 3D problem explained in the previous subsection

knowing zT , where instead of ri, its projection rci to the {x, y} plane is used. Then,

the Fisher Information Matrix for the 2D scenario can be obtained rewriting (4.3)

and (4.4) as

FIM =
1

σ2

m∑
i=1

 (∂ri(pT )
∂pTx

)2 ∂ri(pT )
∂pTx

∂ri(pT )
∂pTy

∂ri(pT )
∂pTy

∂ri(pT )
∂pTx

(∂ri(pT )
∂pTy

)2
 , (4.16)

FIM =
1

σ2

m∑
i=1

1

r2ci

 p2ix pixpiy

piypix p2iy

 , (4.17)

where r2ci = r2i (1− z2T /r2i ), which yields with a FIMopt equal to

FIMopt =
1

σ2

m2 (1− z2T
r2i

) 0

0 m
2 (1− z2T

r2i
)

 . (4.18)

In this scenario, the ratio between the slant range measurement and the target’s

depth plays a different role to the previous one. Here, the maximum FIM will be

reached when r2i tends to infinite, in such a case FIMopt ' m/(2σ2)I2, which is the

maximum achievable value and it is equal to the 2D scenario (zT = 0). Therefore,

if the target’s depth is different to zero and it is known, a bigger circumference’s

radius will proportion a better estimation on the target’s position.

As done before, the difference between the optimal solution and a solution by

using different values of the circumference’s radius value can be derived using

ε2 =
1

2
− 1

2

(
1− z2T

r2c + z2T

)
, (4.19)

which can be used as an indicator of how the circumference’s radius effects the

optimal solution, which is found when ε2 = 0. Fig. 4.2 shows a specific case for
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a target depth equal to 1800 m, where the optimal circumference radius tends to

infinite can be observed.

Until now, all the errors that have been used were assumed constant, range in-

dependent, and with mean equal to zero, error ∼ N (0, σ2). Whereas this is a good

approximation, which yields with a tractable formulation to be analytically studied,

in the reality the error is more complex. As a consequency, a set of different simula-

tions with a more complex error have been carried out to study the performance, and

the optimal path of the ROSB localisation algorithms. Nevertheless, the starting

point for these simulations were the results obtained in this section.

0 2000 4000 6000 8000
Circumference radius (m)

0.0

0.1

0.2

0.3
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0.6
Planar sensors ( 1)
Known depth ( 2)

Figure 4.2: Error ε between the optimal solution and a solution by using different
values of rc. Results obtained for both scenarios: planar sensors (ε1) and planar
sensors with a known target’s depth (ε2). These graphs should be only used as an
indicator of the localisation performance, they do not give the absolute accuracy
reachable. Values computed for a target depth equal to 1800 m.

4.3 Static target localisation algorithms

The concept of single-beacon range-only positioning can be divided into two groups:

as a navigational aid for a moving vehicle [62] (group 1), or to localize a stationary

or moving target [63] (group 2). All these methods use a set of ranges between a

target and different static nodes, known as anchor nodes or landmarks. Typically,

these ranges can be obtained using TOF given the speed of sound in water. Then,

the unknown underwater target position problem can be solved using trilateration,

where in general, three or more points are needed in 2D dimensions and, at least,

four points in 3D scenarios.

In general, the navigation aid problem has received more attention in the litera-

ture (group 1) where an AUV needs to be located using a set of known transponders,
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as in [78]. Nonetheless, similar approaches can be used in the inverse case, where

an autonomous vehicle is used to find an underwater target (group 2). The method

used in this chapter can be seen in Fig. 4.3, where a range-only target localisa-

tion method based on single-beacon architecture is presented. The target’s position

is computed using a Wave Glider, which periodically measures the range to the

underwater target, while it is moving on the surface.

r1

r2

r3

rm

p1

p2
p3

pm
Underwater Target

pT

Wave Glider

{ℐ}

Figure 4.3: Range-only single-beacon underwater target localisation methodology
representation, using a Wave Glider as a moving LBL.

Consequently, following the same notation as [78], the underwater target posi-

tioning vector can be defined as pT ∈ Rn, where n can be either 2 or 3 and is the

space dimension of the problem. All the Wave Glider positions used in the trilatera-

tion problem can be denoted as pi ∈ Rn where i ∈ {1, 2, . . . ,m}, where m indicates

the number of measurements carried out. Then, the ranges measured with Wave

Glider between itself and the target can be expressed as

ri = ‖pT − pi‖+ wi, i ∈ {1, 2, . . . ,m}, (4.20)

where ‖pT − pi‖ = ri is the true range, and wi ∼ N (ε, σ2) is some nonzero mean

Gaussian measurement error where σ2 is the variance and ε is the systematic error.

Thus, (4.20) can be written in matrix form as r = r +w. In general, this non-

linear, non-smooth and overdetermined (when m > n + 1) system does not have a

straightforward solution. At this point, two different methodologies are used in the

literature to solve the system and find the target’s position through ranges, [109]:

linearise the function and find a closed-form Least Square (LS) solution; or use an

iterative minimisation algorithm to minimize a cost function related to the Maximum

Likelihood (ML) estimate.
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4.3.1 Closed-form Least Squares algorithm

As the main goal of this chapter is not to compare the performance of different

algorithms, a simple Unconstrained Least Square (ULS) algorithm is used, which

was introduced in [110]. However, as it will be shown, its performance is quite good.

The main idea on LS algorithms lies in a linearisation of the system by using

the squared range measurements to obtain a linear equation as a function of the

unknown target’s position pT and its norm,

d = d+ ξ, (4.21)

where d is equal to the squared range r2, and ξ is the new measurement error

as a function of w and r. In this case, it is not obvious that ξ ∼ N (ε,σ2) as

before, and the new error is not independent to the range. Nevertheless, under

some circumstances this assumption is possible, for example when ri � σi, but this

assumption is not true when the vehicle is close to the target. See [78] for more

information. However, from hereafter it is assumed an error that is independent to

the range and its square, which is true as the ranges used will be much bigger than

the error itself.

On the other hand, when all the points used to compute the underwater target

position are coplanar (e.g. in the same z-plane), which in this case is on the sea

surface, a 2D formulation can be used. The square ranges are defined by

di =‖pT − pi‖2

=(pTx − pix)2 + (pTy − piy)2 + (pTz − piz)2

=‖p′T − p′i‖2 + z2T

=p′Ti p
′
i − 2p′Ti p

′
T + ‖p′T ‖2 + z2T ,

(4.22)

where p′ represents the projection of p on the {x, y} plane, and zT is the target

depth. This equation can be formulated in a matrix form as

d = δ(P ′TP ′)− 2P ′p′T + (‖p′T ‖2 + z2T )1m, (4.23)

where P = [p1, ...,pm] ∈ Rnxm, and δ is defined as the diagonal of the matrix.

The unknown scalar terms ‖p′T ‖2 + δ2z are multiplying the vector of ones 1m.

Therefore, this unknown term can be deleted multiplying both sides of the equation

by matrix M, which has 1m in its null space, obtaining

Md = Mδ(P ′TP ′)− 2MP ′Tp′T = Md′. (4.24)
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Consequently, the square range in 2D is the same as in 3D and the same algorithm

can be used. In this situation, the depth of the target is not necessary to obtain

its (x,y) position. Hence, the depth can be computed using Pythagoras’ theorem.

Finally, (4.23) can be written as a linear system with form Aθ = b + ξ, which can

be solved by minimizing as small as possible the length of the error, with solution

ATAθ̂ = ATb. Therefore, the target position estimation is

p̂T = N(ATA)−1ATb, (4.25)

where

N =
[
In 0

]
(4.26)

A =


2pT1 −1

...
...

2pTm −1

 (4.27)

b =


‖p1‖2 − d1

...

‖pm‖2 − dm

 (4.28)

θ =

[
pT

‖pT ‖2

]
. (4.29)

4.3.2 Iterative minimisation algorithm

The main goal of this method is to use the Maximum Likelihood Estimation (MLE),

a statistical technique to compute the value that maximizes the similarity between

selected values and observed data, which come with an unknown probability density

function. For a normal distribution and using the log-likelihood function, which is

a continuous strictly increasing function over the range of the likelihood, the log-

likelihood can be written as

logL(pT ) =

−m
2
log2π − 1

2
log|R| − 1

2
(r − r)TR−1(r − r)

=K − 1

2
(r − r)TR−1(r − r),

(4.30)

where R is a diagonal matrix, the values of which are the measurement error co-

variance σ2. Then the MLE can be found by solving the optimisation problem
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θ̂ = arg min
pT

f(pT ), where the cost function is

f(pT ) :=
1

2
(r − r)TR−1(r − r). (4.31)

In general, this cost function is non-linear because of the square root that defines

the range measurements, therefore there is no closed form solution. Nonetheless, an

iterative method can be used to solve this minimisation problem, such as negative

gradient descent or Newton’s methods. Only the final formulation is presented in

this chapter to reduce its length, for detailed development see [78] and [61].

To use these two iterative minimisation methods the cost function gradient and

its Hessian must be calculated, obtaining

∇f(pT ) = −Cδ(r)−1R−1(r − r), (4.32)

and

∇2f(pT ) =

−Cδ(r)−2R−1δ(2r − r)CT +αT δ(r)−11mIn
, (4.33)

where

R =


σ2 · · · 0
...

. . .
...

0 · · · σ2

 (4.34)

α = R−1(r − r) (4.35)

C =
[
pT − p1 · · · pT − pm

]
. (4.36)

Using the gradient of the cost function and its Hessian the iterative minimisation

algorithm can be computed by Algorithm 1.

After these mathematical formulations, a set of different simulations and real

tests can be conducted to characterize the performance of the system and identify

the best parameters for underwater target localisation using a Wave Glider with

single-range and single-beacon architecture.
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if Init then Initialize:
pT0, k = 0

end
while ‖∇f(pT )‖ ≤ ε or k ≥ kmax do

1: Calculate a search direction using Gradient descent (4.32) or Newton
descent (4.33):
h(pT ) = −∇f(pT )
h(pT ) = −(∇2f(pT ))−1∇f(pT )

2: Determine the step size (Armijo rule):
sk = sβmi

where s > 0, β, σ ∈ (0, 1), and mi is the first integer that satisfies:
f(pTk + sβmih(pTk)) ≤ f(pTk) + σsβmih(pTk)

T∇f(pTk)

3: Update the estimation value:
pTk+1 = pTk + skh(pT )
k = k + 1

end
Algorithm 1: Iterative Minimisation method.

4.4 Simulations

Different simulations were conducted to determine the best parameters to increase

the capabilities of the acoustic positioning system. The scenario chosen is a Wave

Glider on the surface conducting different paths and an underwater target at 1800 m

of depth to be located. Four parameters were selected: path shape, number of points

needed, radius around target, and offset from target. Moreover, the performance of

the derived LS and MLE algorithms was compared to the CRB, which specifies the

best possible performance attainable with any estimator [111].

The CRB theorem states that under some regular conditions of the probability

density functions, the variance (4.37) represents the lower bound on the mean-square

error of an unbiased estimator. Where, for a scalar unbiased case, the variance of

estimator p̂T is bounded by the Fisher information I(p̂T ) as

var(p̂T ) ≥ 1

I(p̂T )
, (4.37)

where the Fisher information is defined by

I(p̂T ) = −E
[
∂2`(r;pT )

∂p2T

]
, (4.38)

where `(r;pT ) = logL(pT ), which can be seen in (4.30), and E denotes the expected

value. Computing the second derivative of the likelihood logarithm function and its
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expected value, the CRB obtained is

var(p̂T ) ≥ tr[(Cδ(r)−1R−1δ(r)−1CT )−1] (4.39)

which can be compared to the Root Mean Square Error (RMSE), which represents

the sample standard deviation of the differences between predicted values and ob-

served values, using the expression

RMSE =
√
var(p̂T ). (4.40)

Different scenarios can be computed using (4.39) to observe the theoretical per-

formance of the system (a Wave Glider as a LBL system to find an underwater target

at 1800 m of depth). For example, Fig. 4.4 shows the CRB using different points

and configurations as landmarks to compute the target’s location. This figure shows

that the best accuracy and precision are obtained when the target is located in the

path’s centre and using distributed points around it (Fig. 4.4e and Fig. 4.4f).

Nevertheless, more scenarios have been simulated to obtain a better character-

isation, such as path shape, radius around the target, number of points or offset

from the target. All the simulations conducted for this chapter have been obtained

through 1000 Monte Carlo iterations, with a normal noise probability distribution,

with zero mean and variance equal to (4.41). For a better explanation of this math-

ematical error model and all of their parameters see [106].

U2
c (r) =

N∑
i=1

( ∂r
∂xi

)2
U2(xi) =

1

2

N∑
i=1

ciU2(xi). (4.41)
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Figure 4.4: CRB representation for 3 landmarks with inter-baseline equal to 1000
m (a), 4 landmarks with inter-baseline equal to 500 m (c), and 4 landmarks with
inter-baseline equal to 1000 m (e) (Blue dots). Planar representation and 3D repre-
sentation are shown on left and right plots respectively.
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4.4.1 Path Shape

One of the first aspects to be considered in range-only target localisation is the

landmark’s position, or in our case the Wave Glider path shape. It is well known

that the non-collinear points are mandatory, where the circular path is the optimum

one as was demonstrated in the previous section. However, the best landmark

positions will be determined in each case for the specific mission requirements (e.g.

vehicle’s use, time required, or power consumption). In this situation, others than

circle path shapes could be used, where any shape can be considered as a conjunction

of multiple circles, and therefore, its optimum performance is guaranteed. Fig. 4.5

shows the RMSE evolution as a function of the path’s completed ratio for four path

shapes: a circle with 400 m of radius, and a square, a triangle and an L shape with

800 m for each side. They all use 17 points of landmarks, which are placed on the

surface of the sea, due to the use of a Wave Glider. The dimension of these paths

were chosen due to time constraints as it is exposed in the following subsection,

where they had compared with real field tests.
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Figure 4.5: (a) Paths conducted to study the performance of range-only localisation
methods under different observer’s trajectories. (b) RMSE evolution as a function
of path completed ratio. The Circle, Square, Triangle and L shape paths are repre-
sented.

The RMSE for the square, the L and the triangle paths is much bigger than the

circle path at the beginning of the path, when the path’s completed ratio is less than

20%, can be observed. This is because all the points in these cases are still coplanar.

At the end of the path the best case obtained is the square path, while the worst

cases are the triangle and L path. This difference is because of the ranges obtained

between the Wave Glider and the target. Longer ranges are used in the square path,

and have been demonstrated in the previous sections, longer ranges cause better
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accuracy, where the square path can be considered as a combined set of multiple

circle paths, [98]. For that reason, other aspects such as time to the path completed

or power consumption should also be taken into account (for example, the Wave

Glider will take more time to finish the square path than the circle path). Finally,

if the path is not closed a worse performance is obtained (i.e. the square and L

shape), and therefore a closed path is desired, which has been demonstrated in the

previous section, where all the measurements should be made equally distributed

over the whole path.

4.4.2 Radius around target

Another interesting test is to observe the behaviour under different circle path radii

centered over the target, this parameter is shown in Fig. 4.6 where 50, 100, 200,

400, 600, 800, 1000, 5000, 10000 and 20000 metres path radii are simulated, where

6 points as landmarks have been used in each case. LS and ML algorithms have

been compared to CRB. Nonetheless, it was observed that the performance of both

algorithms was very similar and very close to the CRB. Thus, only the LS is repre-

sented for a better graph understanding. Furthermore, the depth error due to the

systematic range measurement error has been treated separately (dash line). Lastly,

the time necessary to finish the path has been plotted (PathTime), which can be

helpful to decide the optimal circle radius.

On the other hand, a greater radius results in a lower RMSE until a specific

distance where the Signal-to-Noise Ratio (SNR) error causes an important error

increase can be observed. This behaviour can be derived computing the surface

range rs, which is

rs =
√
r2 − depth2 =

√
r2 − (r − α)2, (4.42)

where α is the difference between range and depth. The error can be defined as the

true value and its estimation ε = (rs − rs), and is

ε =
√

2rα− α2 −
√

2r(α+ w)− α2 + w2 (4.43)

where w is some non-zero mean Gaussian measurement error. With (4.43) if α ' 0

(depth and range are very similar) the error is ε '
√

2rw + w2 and if α ' r (range

is much bigger than depth) the error is ε ' w can be observed.

If the error model described in [106], and is shown in (4.41), is used (blue dots

line, LS(Emod)), the RMSE increases rapidly after a radius equal to 5000 m can

be observed. As a result, the best radius will be between 1000 and 5000 metres.

Novertheless, the time required to complete the path have to be considered, in this

case the best radius can be less than 1000 metres, where the necessary time is less
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Figure 4.6: The RMSE evolution as a function of the circle radius for a target at
1800 m of depth, using LS algorithm. Where, LS(Emod)+Depth incorporates the
range error model shown in (4.41). Also the RMSE, when depth error is not taken
into account, is plotted as LS(Emod)-Depth. In both cases a 1% of systematic error
is added to the range measurement. These two results can be compared to a simple
σ = 1 error, which is used in section 4.2, where the optimal radius 4.30 is defined.
Finally, the time to complete the path is also shown (black line).

than 1 hour (moreover, the depth error is the most reduced).

Another method such as increasing the number of points used as landmarks can

be used to reduce the RMSE instead of lengthening the radius.

4.4.3 Number of points as landmarks

One of the main ways to increase the precision of the system is by using more points

to compute the target’s position. This is the most common method to reduce the

variance of any measurement with random noise, and is given by

var(zi) =
1

n− 1

n∑
i=1

(zi − z)2, (4.44)

where zi are n independent observations of z. This behaviour can be seen in Fig. 4.7,

which shows the results for 4, 6, 12, 24 and 48 points. However, the optimal number

of points will also be constrained by power consumption requirements, where more

points will produce more power consumption.

Fig. 4.7 shows that if more points are used to compute the target’s position, a

better accuracy in x and y position is obtained, while the depth error is still equal.

Therefore, the best solution is to use as many points as can be possible if the power

consumption is not taken into account. This consumption can also be observed
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Figure 4.7: The RMSE evolution as a function of the number of points used to com-
pute the target’s position, for circles centred over the target (with 1800 m target
depth and 400 m of radius). The red line is the simulation result using LS algo-
rithm. The triangular blue dash line is the same algorithm but with the error model
LS(Emod)+Depth, and the dotted blue dash line is the error without the depth
error, LS(Emod)-Depth. In both cases, a 1% of systematic error is added to each
range measurement. Finally, the black line is the normalized power consumption
(PowerCon.).

(black line) as a normalized power consumption in Fig. 4.7, where if 50 points are

used the maximum power ”1” will be used, and otherwise, if zero points are used,

the minimum power ”0” will be used. An important difference between 20 and 50

points cannot be observed, whereas a great power consumption reduction can be

obtained (note that y-axis is in logarithmic scale). As a result, around 20 points will

be the desired number of landmarks to use for target locating.

4.4.4 Offset from target

Finally, a set of simulations have been conducted to observe the RMSE with different

offsets between the centre of the circular path and the underwater target, with a

400 m radius and 12 landmarks (Fig. 4.8).

In this case, the introduction of a systematic error and error model LS(Emod) due

to the uncertainty of water sound velocity knowledge lead to a significant difference

between this and the previous work shown in [105], where a simple random error

was used (LS). In addition, this is also different to what is derived in section 4.4.2,

and also explained in [98], where the systematic error is not taken into account,

and therefore, the error produced by circles not centred over the target is neglected.

Finally, the worst effect produced by the offset is in the x and y RMSE can be
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Figure 4.8: The RMSE evolution as a function of the offset between the circum-
ference centre and the target, for a target at 1800 m of depth. The red line is the
simulation result using the LS algorithm, the triangular blue dash line is the same
algorithm but with the error model plus a systematic error of 1% LS(Emod)+Depth,
and the dotted blue dash line is without the depth error, LS(Emod)-Depth.

observed in Fig. 4.8, which in the end will rise to the same error that it is obtained

with the depth measurement (LS(Emod)+Depth). For that reason, a zero offset is

mandatory if a good target accuracy is desired.

4.5 Field tests

Several sea tests have been conducted to compare and validate the algorithm’s abil-

ity to locate a target, and to validate the optimal path, radius and number of points

suggested by simulations. These tests have been conducted with the Benthic Instru-

ment Node (BIN) target placed in Monterey Bay, California, which is at 1800 m of

depth (in the middle of Monterey Canyon). Three groups of tests were conducted

over the BIN instrument node, one to determine the best shape, another one to find

the best radius, and finally a third one to characterize the offset effect.

4.5.1 Path shape

Firstly, three path shapes were made with the same dimensional characteristics in

order to observe the main differences among them. These paths were a circle with

400 metres of radius, and a square and triangle with 800 metres of side. These values

have been chosen to be able to compare them with simulations. Fig. 4.9 shows the

paths obtained and Table 4.1 shows the main values: the target’s position computed
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using the LS algorithm (easting, northing and depth), the error versus the target’s

true position, the number of points used (Np), and the total of time to complete

the path. The target’s true position was obtained using the average value of three

paths shapes with a total of 154 ranges.
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Figure 4.9: Field test: Wave Glider trajectories performed over the BIN target (X)
with three different paths, a square, a triangle and a circle. The colour bar indicates
the slant ranges obtained between both devices.

Table 4.1: Main results for field test 1

Path Easting Error1 Northing Error1 Depth Error1 Np Time

Circle 580937.0 0.9 4062175.6 -3.8 1858.7 -5.1 36 56’

Square 580937.5 1.4 4062177.4 -2.0 1861.9 -1.9 51 1h50’

Triangle 580937.9 1.8 4062176.0 -3.4 1858.5 -5.3 39 55’

1Error from target’s true position was obtained using the average value of three
path shapes with a total of 154 ranges. Values in metres.

In Table 4.1 the main results obtained during the three different path shape tests

can be observed. The target localisation RMSE (for x and y positions) obtained

during these paths was approximately the same, 3.5 metres. However, a better

accuracy for the square path was measured, this is due to twofold: firstly, the square

path uses longer ranges, and this cause a better accuracy (section 4.4.2) as it has been

pinpointed in section 4.4.1, where the square path can be considered as a combined

set of multiple circle paths without loss of generality [98]; secondly, the square path

used in this field test had more points to compute the target’s localisation (Np = 51),

and increasing the number of points yields into the reduction of the variance of a
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measured value as it is highlighted in section 4.4.3. Nevertheless, the square shape’s

time required to complete the path was around 1h more than the time required for

the triangle and circle paths, this reduce the viability of using this path for scenarios

where speed is an important factor, for example where multiple scientific tests have

to be carried out or the weather prediction is not very good. Similar results were

obtained with the simulations, therefore the circle is one of the best paths among

these path shapes can be concluded, due to its speed and accuracy.

4.5.2 Radius around target

Fig. 4.10 shows the path shapes of the second group of tests, which consist of three

circles of 100 m, 400 m and 800 m of radius, all of them centred over the BIN, where

the main results are shown in Table 4.2. Note that an 800 m of maximum radius

was selected during the field test to reduce the time consumption, which does not

compromise the accuracy, as explained in section 4.4.2.
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Figure 4.10: Field test: Wave Glider trajectories conducted over BIN target with
three different radius, which were 100, 400 and 800 metres. The ranges are also
plotted using the colour bar legend on the right.

In addition, the ranges obtained during the field tests can be observed in Fig.

4.10, which were around 2020 m, 1920 m and 1880 m for path circles with a radius

equal to 800 m, 400 m and 100 m consecutively, and a target depth equal to 1800

m.

To compare field test results with the simulation results the target’s position

using only 6 equidistant points among all the ranges obtained in the field test during

one circle path was computed, which allows us to choose different groups of 6 points

and take the average value of the RMSE (represented by red circles and denoted
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Table 4.2: Main results for field test 2

Path Easting Error1 Northing Error1 Depth Error1 Np Time

r100 580922.1 15.1 4062178.8 -1.2 1860.7 0.7 11 13’

r400 580937.0 0.2 4062175.6 2.0 1858.7 2.7 36 56’

r800 580936.1 1.1 4062179.4 -1.8 1863.8 -2.4 64 1h57’

1Error from target’s true position was obtained using the average value of the
three paths’ shapes from test 1 with a total of 154 ranges. Values in metres.

as Real Data in Fig. 4.11). Additionally, the power trend line (red dash line) is

computed and represented to obtain a better performance’s representation. The

target position was computed using the LS algorithm in both simulations and field

test. The LS algorithm is accurate enough compared to MLE as is explained in

section 4.4. Moreover, the error bars are plotted to show the standard deviation

of uncertainty and the mean point LS(Emod), during a 1000 run times simulation

using the error model described in [106].

0 200 400 600 800 1000
Radius (m)

0

5

10

15

20

25

30

35

40

RM
SE

 re
al

 (m
)

Real Data
Power Trendline
PathTime
LS(Emod)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Pa

th
 T

im
e 

(H
ou

rs
)

Figure 4.11: Comparison between simulation (with error model LS(Emod)) and real
data results for different radii of circle paths centred over the BIN target. Using 6
equidistant points to compute the target’s localisation and the LS algorithm. The
dash line is the power trend line computed using real data (red circles). Additionally,
the time which was required to complete the path is also represented (black line).

In this graph the real data behaviour is similar to the results obtained with

simulations can be observed. And with a radius equal or greater than 400 m a good

performance was obtained, with a RMSE lower than 10 m. It can be obtained a

RMSE lower than 5 m for a radius greater than 800 m. However, the time required

(PathTime) by the Wave Glider to complete the path has to be taken into account,
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which introduces an important limitation. For example, the Wave Glider needs

practically 2 h to complete a circle of 800 m radius, while this time is reduced to 1

h for a radius equal to 400 m.

4.5.3 Offset from target

Finally, a third field test was conducted over the BIN target to observe the offset’s

influence in the accuracy. For this purpose three paths were conducted, with dis-

tances of 0 m, 500 m and 1000 m between the circumference centre and the target,

and with a radius of 400 m. Fig. 4.12 shows the path shapes of this third test,

where the ranges obtained are also represented using the colour bar on the right.

Ranges between 2030 m and 1870 m were obtained for a target depth equal to 1800

m. Moreover, the main results are shown in Table 4.3.
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Figure 4.12: Field test: Wave Glider trajectories performed over BIN target with
three different offsets between target and circle centre, which were 0, 500 and 1000
m. The ranges are also plotted using the colour bar legend on the right. Target
depth equal to 1800 m.

Table 4.3: Main results for field test 3

Path Easting Error1 Northing Error1 Depth Error1 Np Time

d0 580937.0 0.2 4062175.6 2.0 1858.7 2.7 36 56’

d500 580946.3 -9.1 4062187.1 -9.5 1860.3 1.1 34 59’

d1000 580956.8 -19.6 4062190.2 -12.6 1856.3 5.1 43 1h4’

1Error from the target’s true position was obtained using the average value of the
three paths’ shapes from test 1 with a total of 154 ranges. Values in metres.
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The RMSE using different groups of 6 equidistant ranges to compare the field

results with simulations were computed, as it has done in the above subchapter.

These results can be observed in Fig. 4.13, where the similarity between both the

behaviour and the RMSE in real tests and simulations can be observed. Conse-

quently, a better mathematical model than in our previous work [105] has been

obtained, which consisted in taking into account the systematic error and a better

random error model (4.41).
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Figure 4.13: Comparison between simulation (with error model LS(Emod)) and real
data results for different offsets of circle paths over the BIN target. Using 6 equidis-
tant points to compute the target’s localisation. The dash line is the exponential
trend line computed using real data.
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4.6 Benthic Rover mission

Finally, a mission performed to find a benthic Rover [112], and to know its trajectory

is explained in this section. This is a final demonstration to show some of the uses

of a Wave Glider as a moving LBL system. The benthic Rover is a mobile physi-

ology laboratory designed by Dr. Ken Smith at Monterey Bay Aquarium Research

Institute (MBARI), which slowly crawls along the seafloor. The Rover and its de-

ployment localisation can be observed in Fig. 4.14, which also shows the Monterey

Bay and the MBARI laboratories’ localisation.

2016 Benthic Rover Localization

Initial Rover deployment at “Station M” in the north eastern Pacific:
(34º 50’ N, 123º 00’ W, 4000 m depth, 220 km west of central 
California coast)

15

Figure 4.14: The initial benthic Rover deployment at ”Station M” in the north
eastern Pacific ocean, at 34o50′N and 123o00′W , a region with 4000 m of depth,
situated at 220 km west of central California coast. Also, the MBARI localisation
is represented at the centre of Monterey Bay, California.

The main goal of this mission was to observe if the moving benthic instrument

was working correctly. The rover was moving forward very slowly on the seafloor

following a straight line. The initial parameters were set to a velocity equal to

5 metres/day, following a line of 45o in inclination with respect to the magnetic

north. As a result, its position’s estimation could be computed. As a consequence,

the rover’s position estimated using its initial parameters and the position founded

using the Wave Glider could be compared, and used to observe if the trajectory

followed by the rover was the programmed one.

To accomplish this objective, an initial position and two localisation missions

were used (as is shown in Fig. 4.15):
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(a) Initial position: The benthic Rover was deployed at geographic coordinates

35o 7′ 59.988′′N and 123oW , on August 11, 2015.

(b) Test 1: First localisation mission conducted on April 14, 2016. In this case

the Rover was localized at 35o 8′ 22.0668′′N and 122o 59′ 39.3′′W , which

means that it had travelled 858 metres in 158 days, with an angle of 52o. The

parameters used are summarized below:

– Circle’s radius = 200 m

– Number of points = 39

– Test duration = 1h 8.15’

(c) Test 2: Finally, a last mission conducted on July 11, 2016, localized the Rover

at 35o8′30.5736′′N and 122o59′31.9236′′W . In this case, it had travelled 322

metres in 88 days, with an angle of 55o, from the last known point. The

parameters used are summarized below:

– Circle’s radius = 800 m

– Number of points = 81

– Test duration = 1h 22’
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Figure 4.15: Field test: This figure shows the benthic Rover’s deployment position
(yellow star), and the two missions conducted to find it (red dot and green triangle).

Therefore, the benthic Rover travelled 1180 metres in total for 246 days. This

indicates a velocity of 4.8 metres/day, which is highly close to the programmed one,

obtaining an error of 40 metres between the final estimated position and the position

obtained using the Wave Glider. On the other hand, the inclination followed by the
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Rover was around 53.5o in respect to the geodetic north. If the magnetic declination

is taken into consideration, which was 13.15o east in this area, the trajectory of the

rover was 40.35o in respect to the magnetic north, which yields an error less than 5o

compared to the programmed one.

The missions performed to find and track the benthic Rover, using a Wave Glider,

shows an example of collaboration between two autonomous vehicles, with low hu-

man intervention. Furthermore, using the ROSB methods for target localisation,

we are not limited to work in a specific area (like in traditional LBL systems),

and we do not need to introduce more instruments (like a USBL), instead of that,

standard acoustic modems can be used, which are also used to communicate and

download information from underwater instruments. For these reasons, this method

is interesting in terms of cost, flexibility and consumption.

Finally, the reasons to choose the paths selected to perform this mission were

twofold, the time required to complete the path and the desirable accuracy. The

first test was carried out using a 200 metres radius circle. In this case, a first

inaccurate estimation of the Rover’s position was required. Moreover, due to other

tests that had to be carried out, the time constraint was a key factor. Then, a more

accurate localisation was desirable during the second test, and therefore, more time

was designated for the localisation mission. In this case, an 800 metre radii circle

was used, which is one of the best radius in terms of accuracy and time consumption,

as can be observed in the previous study explained above.
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4.7 Discussion

The aim of this work was to study and develop new procedures for underwater target

localisation using a Wave Glider, Autonomous Surface Vehicle (ASV), which could

be used as a platform in support of applications in marine, geoscientific, ecology and

archaeology, which have been increasingly used over the past 30 years [113]. Here,

a complete study about the best practices for underwater target localisation using

range-only techniques has been carried out, which includes different areas such as

analytical studies, simulations, and field tests. At the same time, a real mission

to find an underwater rover has been presented, where the successful collaboration

between both autonomous vehicles was shown. From a methodology point of view,

this work advanced the understanding of accuracy that can be achievable by using

both the ROSB localisation methods and an autonomous vehicle, which has been

demonstrated not only numerically, but also in real tests. In this context, those

advancements would contribute to expanding the use of surface vehicles, and in

concrete Wave Gliders, as multi-purpose platforms, which have been used widely

around the world [114].

Most of the works about optimal sensor placement for underwater target locali-

sation are centred on analytical studies, [98] and [94]. Whereas this is an important

area of study, real tests have a great impact on the final users, which demonstrates

not only in simulations but also in real missions the operability of this kind of sys-

tems. As far as the authors know, such complete study, where both theoretical and

practical work is addressed, has not been conducted previously.

The initial point of this chapter is the work performed by [98], which studied the

optimal sensor placement for target localisation. However, whereas they work with

multiple sensors, the work presented here is focused on a single sensor (which is the

Wave Glider), therefore a different point of view is used. In addition, due to the

mission’s limitations, such as time and power consumption, new different limitations

have been studied. One has to take into consideration such limits before planning

each missions, these are a key factor, which are really important for vehicle operators.

As shown, finally a relationship between accuracy and time/power consumption is

obtained, and the mission planner must deal with that.

As a summary, the below indications should be in general followed before plan-

ning a mission in order to find the optimal path:

a) The optimal path is a circle centred over the target’s position

b) The optimal circle’s radius is:

- rc =
√

2zT if the target’s depth is unknown
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- As large as possible if the target’s depth is known

c) The optimal measurements distribution is equally distributed over the circle’s

path

d) The optimal number of measurements is as large as possible

Nevertheless, as demonstrated, in some scenarios it is not possible to use these

indications (e.g. when the time to complete the mission is not enough), and therefore,

a smaller radius has to be used. Nevertheless, in the field test (for a target depth

equal to 1800 m) a RMSE less than 5 m had been obtained using a radius of 800 m

instead of 1800
√

2 m, which is in general good enough for many missions.

In contrast, a Gaussian noise with zero mean and variance equal to σ as range

error has been used during the analytical derivation of the optimal path’s shape.

It was assumed that this error was range independent and equal for all range val-

ues. This procedure enables the analityical interpretation of the mathematical equa-

tions. However, the variance of the range error can be much more complex, which

is determined by different parameters such as SNR, transmission frequency, weather

conditions and sea state. All of these factors were discussed in [106]. Moreover,

the range error suffers from a systematic error, which is due to underwater sound

speed uncertainty, which is usually difficult to measure qualitatively in-situ. As a

consequence, this error introduces a constant error in the range measured. This is

also dependent to the range. Concequently, in the simulations that have been con-

ducted, the range error introduced in [106], plus a 1% of systematic error have been

used in order to increase the similarity between simulations and the real world. It

has been observed that to reduce the range error consequences, a path centred over

the target is desired. Nonetheless, while the error in x and y can be solved easily

using this recommendation, with the depth error one has to be more careful. The

common way to solve the depth error is by using a depth sensor, since it is easy to

find a small and cheaper one on the market with a good performance. In addition,

other methodologies can be used such as pre-calibration or path techniques in order

to find the exact underwater speed sound or depth position [104].

Finally, the similarity among the performance of the analytical methodology

used, the simulations using LS and MLE, and the field tests can be highlighted. For

example, if Fig. 4.2 and Fig. 4.6 are compared, in both cases a minimum error is

obtained at a similar radius, which is when the ε1 and LS graphics are minimum.

Nevertheless, if the error model plus a systematic error is used, the minimum error

that is achievable is obtained much earlier, LS(Emod)+Depth. This performance is

also observed in the field tests, Fig. 4.11. Similar situations can be derived in the

other cases under study, such as path shape and target offset.
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To conclude, the main benefit of the simulations in respect to the analytical

studies is that they can give the final users the expected RMSE, instead of a simple

indication of their performance. Consequently, the simulations can be used to find

the accuracy that can be achievable under different conditions, such as the path

shape, but also the range error estimated.

4.8 Conclusions

This work extends the study conducted in [105] and shows the Wave Glider’s per-

formance as a moving LBL with simulations and real sea tests. Mathematical

algorithms and performance have been compared with sea tests, showing a good

similarity, which corroborates the simulations conducted in this chapter.

Two different algorithms have been implemented, the LS and the MLE, which

have been compared through 1000 Monte Carlo iteration simulations. The scenario

implemented was a static target at 1800 m depth. In this case, both algorithms

show a similar performance, which is close to the CRB, used as a reference.

Furthermore, three types of field tests have been conducted to observe the sys-

tem’s performance under different conditions: the path shape, the path radius and

the offset from the target. For each test three different paths have been conducted,

which result in 9 Wave Glider missions, more than 300 ranges, and around 10 hours

of tests.

With this study the best path and its characteristics can be determined, such as

the number of points, the radius or offset, to obtain the desired target localisation

performance, which are a minimum number of points equal to 12, a radius between

400 m and 800 m, and an offset as low as possible. With these parameters a RMSE

less than 4 metres can be obtained, while maintaining both low time and power

consumption requirements.

Finally, it can be concluded that the Wave Glider can be used as a moving LBL

to find underwater targets with a good accuracy, as demonstrated in the experimen-

tal tests and the benthic Rover mission explained in this chapter. This system has

been mathematically modeled and tested in real conditions, obtaining a good per-

formance. Therefore, this will be a new powerful tool among MBARI’s equipment

for future missions.
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Chapter 5

Range-only and single-beacon

methods: A dynamic scenario

Range-only and single-beacon underwater target localisation methods using an au-

tonomous vehicle and acoustic modems can also be used to track mobile targets. In

such case, the previous target state and its propagation model must be taken into

consideration.

5.1 Introduction

Underwater localisation is one of the main problems which has to be addressed

in ocean exploration, as it has been observed in the previous Chapters, where no

Global Positioning System (GPS) is available due to the high attenuation that elec-

tromagnetic waves suffer in seawater [30]. Therefore, most underwater positioning

systems have to be conducted with acoustic communications, despite the channel

limitations, such as frequency dependent attenuation, Doppler spread and multipath

propagation [34].

5.1.1 Motivation

In addition to the traditional Long BaseLine (LBL) and Ultra-Short BaseLine (USBL)

methods for target localisation (Chapter 2 and Chapter 3), new methods are being

developed (e.g. moving long baseline or cooperative range-only tracking methods,

Chapter 4) using improvements in autonomous vehicles’ performance, and their ca-

pabilities to work in more complex scenarios (e.g. [20]). Here we present different

approaches which have been conducted to solve the Range-Only and Single-Beacon

(ROSB) strategy for underwater target tracking in a moving target scenario, de-

scribing the algorithms and characterizing their performance.
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5.1.2 Related work

In the previous Chapter, the optimal path for static target localisation was not only

demonstrated analytically and using simulations, but also in real field tests. In both

cases a Least Square (LS) and a Maximum Likelihood (ML) estimator where used,

and a circumference path was determined as optimal. However, to track moving

targets, another approximation is required using filtering and estimation techniques.

For example, in [115], the authors derived the same idea but for cooperative range-

based underwater moving target localisation. In that case an Extended Kalman

Filter (EKF) estimator was used.

As previously observed, the ROSB methods are based on an autonomous vehicle

which is used as a tracker. This vehicle conducts a set of manoeuvres in order

to track some target(s). However, in a dynamic scenario, where both tracker and

targets are mobile, the ROSB target tracking method can also be seen as a Hidden

Markov Model (HMM) problem. Usually, the HMM is defined as a sequence of

states, known as a Markov chain, and a set of observations for each state [116].

Using Bayes’ rule

p(xk|z) =
p(z|xk)p(xk−1)

p(z)
, (5.1)

the probability distribution function of the HMM states can be derived given a set

of observations z ∈ Rm, and therefore, the current state x ∈ R2n can be estimated.

Where m indicates the number of observations carried out, and n can be either 2

or 3, which is the space dimension of the problem. And p(xk|z) is the posterior

probability distribution, expressed also as p(xk|z:k); :k subscript denotes all obser-

vations up to k. The p(xk−1) is the prior probability distribution expressed also as

p(xk|z:k−1). And finally, p(z) is the total probability of z [117], expressed also as∫
xk
p(z|xk)p(xk−1)dxk, which is used as a normalized factor. However, to compute

the predicted state xk, the total probability p(z) can be ignored, which yields in the

optimal solution of the following maximization problem

xOPT
k = argmax

xk

p(xk|z:k). (5.2)

In prediction theory and filtering, the posterior distribution can be computed

recursively from the prior distribution using a prediction step p(xk|z:k−1) and an

update step p(xk|z:k).
In general, the existing filtering methodologies compute either the predictions

with respect to the conditional probability distribution p(xk|z:k), such as Particle

Filter (PF), or with respect to the probability joint distribution p(xk, zk|z:k−1),
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such as EKF, see [118] and the references therein. One of the differences between

these methods is the computational cost. Whereas the computational cost of the

first methodology increases exponentially with the state dimension, the second one

increases linearly with the state dimensions. Consequently, in areas with either

great state dimensions or computational restrictions, this performance should be

taken into consideration, see Table 5.6.

Hereinafter, the following considerations and parameters will be considered in all

filtering methodologies which have been studied. In order to simplify the notation,

a 2D scenario is used, where the tracker conducts manoeuvres on the sea surface

to predict the target’s position. This is a common procedure due to the facility of

knowing the target’s depth with high accuracy using cheap devices (e.g. used in GPS

Intelligent Buoys [119, Chapter 3]), and therefore, a 3D scenario can be projected

into a 2D plane. Consequently, the state vector used for both tracker and target is

defined as

x = [x ẋ y ẏ]T , (5.3)

where x and y are the positions in the 2D plane, and ẋ and ẏ are their associated

velocities. Finally, the observation measurement vector is defined as

z = [z1, . . . , zm]T , (5.4)

where m denotes the number of observations conducted. In ROSB methods, those

are the ranges between the tracker and the target, which will be computed using

the slant range measured by acoustic modems and the target’s depth provided by a

pressure sensor during the exchange message procedure conducted to measure the

range between both devices or by the prior knowledge of the target’s depth.

5.1.3 Contributions

Our data may be useful in developing autonomous networks to monitor and quan-

tify human impacts, as described by the Marine Strategy Framework Directive of

the European Commission [120]. The spatial scaling of data gathered at fixed ob-

servatories, could be complemented by the use of flexible and adaptive networks

of monitors and autonomous underwater vehicles. Our data could help toward the

implementation of multi-parametric coordinated monitoring.

The ROSB target tracking methods can be studied from different points of view.

For example, the tracker’s optimal path, where [98] and [121] developed a complete

analytical study for an optimal sensor placement in an underwater target localisation

scenario. In Chapter 4 the optimal path for static target localisation was not only
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demonstrated analytically and using simulations, but also in real field tests. In both

cases a LS and a ML estimator where used, and a circumference path was determined

as optimal. Later, in [115], the authors derived the same idea but for cooperative

range-based underwater moving target localisation. In that case an EKF estimator

was used.

5.2 Range-Only and Single-Beacon Methods

In Chapter 4 we studied the optimal path shape which should be performed by

an autonomous vehicle to increase the accuracy of a static target localisation using

a ROSB method. The LS and the ML estimators were compared to Cramér-Rao

Bound (CRB) and different field tests. These two methods are commonly used when

no straightforward solution is possible [109]. For example, for either non-linear, non-

smooth, or overdetermined systems (when m > n+ 1).

Nevertheless, when the target to be localised is not static, but moving, and active

tracking is desired, the LS and ML estimators are not suitable. These dynamic

scenarios are typically modelled in a state-space representation of HMM, where the

next state only depends on the current state, and the current measurement depends

only on the current state.

In this Chapter, different filters and methods have been studied and compared,

presenting main aspects and some implementation. These methods are:

• Extended Kalman Filter (EKF)

• Unscented Kalman Filter (UKF)

• Maximum A Posteriori (MAP)

• Particle Filter (PF)

The main aspects of these filters are presented below with a description for their

implementation. We have conducted a study of the performance of different ROSB

methods through simulations, and validated them through field tests. This extended

study has been carried out focusing on performance comparison among different al-

gorithms (EKF, Unscented Kalman Filter (UKF), Maximum A Posteriori (MAP),

and PF), specifically designed for 3 typical underwater scenarios: localising a static

target, tracking a dynamic target, and multi-target tracking. For a methodology

point of view, this work advanced the understanding of accuracy that can be achiev-

able using ROSB localisation methods and an autonomous vehicle.

The notation employed to develop these algorithms is summarized in Table 5.1.
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Table 5.1: Nomenclature

List of symbols

x ∈ R2n State vector

x̂k ∈ R2n Target state vector estimated at time k

q ∈ Rn Target position

p ∈ Rn Tracker position

z ∈ Rm Vector of ranges

F ∈ Rn×n State transition matrix

Q ∈ Rn×n Process noise matrix

R ∈ Rn×n Range measurement error covariance matrix

P ∈ Rn×n State covariance matrix

h(·) Measurement model function

H ∈ Rn Jacobian matrix of h(·)
n ∈ {2, 3} Dimension of estimation problem

m ∈ N Number of measurements

5.2.1 Extended Kalman Filter

The EKF is the classical inference method for non-linear dynamic systems, which

is based on the linearisation of the state and measurement equations along the

trajectory [122] and [123]. This deterministic and parametric method estimates the

target position based on the probability joint distribution. First of all, the state

vector of the target at time-step k is defined by xk = [xTk ẋTk yTk ẏTk]
T . Then,

assuming a constant target velocity, which is a general consideration, the motion

model of the target is

xk = Fk−1xk−1 + Qk−1, (5.5)

where F is the state transition matrix, and Q is the process noise, which has variance

σ2v . Both are related to time-step ∆t, and are described as

F =


1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1

 (5.6)

and
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Q =



1
4∆t4 1

2∆t3 0 0

1
2∆t3 ∆t2 0 0

0 0 1
4∆t4 1

2∆t3

0 0 1
2∆t3 ∆t2


σ2v . (5.7)

On the other hand, the measurement model used at time-step k can be described

by

h(xk) =‖ qk − pk ‖ +wk

=
√

(xqk − xpk)2 + (yqk − ypk)2 + wk,
(5.8)

where qk ∈ R2 and pk ∈ R2 are the target and observer positions respectively in

a 2D scenario, and wk ∼ N (0, σ2wk) is a zero-mean Gaussian noise, leading to a

covariance matrix equal to R = diag[σ2wk]. Finally, the Jacobian matrix of h(xk) is

computed as

H =
∂h(xk)

∂x

∣∣∣∣
xk

=



(xqk − xpk)√
(xqk − xpk)2 + (yqk − ypk)2

0

(yqk − ypk)√
(xqk − xpk)2 + (yqk − ypk)2

0


. (5.9)

Algorithm 2 has been designed to track an underwater target using the ROSB

method and the EKF, which has been derived using the equations explained above,

where the target state estimation x̂k and its associated covariance Pk = FPk−1F
T +

Q at each step k are given.

5.2.2 Unscented Kalman Filter

The UKF was proposed in [124] as a derivative-free alternative to the EKF. Whereas

the EKF’s linearisation process incorporates inherent flaws (i.e. the expressions are

approximated using a firs-order Taylor series), the UKF addresses them by utilizing

a deterministic sampling strategy [125], where essentially, a set of points are prop-

agated through the true nonlinearity, without approximation. i.e. the unscented

transformation uses a set of appropriately chosen weighted points to parameterise

the means and covariances of probability distributions. These points, called sigma

points χ, are propagated through the system using the state transition matrix F

presented in (5.6).
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Input: ∆t, zi, New range
Output: Next target state estimation x̂k
if Init then Initialize:

F,R,Q,P0, x̂0

end
Predict step:
x̂k = Fx̂k−1
Pk = FPk−1F

T + Q
if New range then Update step:

Hx = H(x̂k)
S = HxPHT

x + R
k = PHT

xS−1

hx = h(x̂k)
y = zk − hx
x̂k = x̂k + ky
Ik = Ik−1 − kHx

Pk = IPkI
T + kRkT

end
Algorithm 2: EKF method for Range-Only and Single-Beacon target tracking.

Different methods can be used to choose the sigma points (e.g. [126] and [127]).

Here, the method presented in [127] has been used, where χ ∈ R(n x 2n+1) is defined

as

χ =

 x̂T

x̂ + γ
√

P

x̂− γ
√

P

 , (5.10)

where γ =
√
n+ λ, with λ = α2(n+ k)−n. These constant values are usually set as

follows: α is chosen between 1e−4 and 1, which determines the spread of the sigma

points; k is set to 0 for state estimation; and β = 2 for Gaussian distributions.

Finally, these sigma points are weighted as follows,

W
(x)
0 =

λ

n+ λ
, (5.11)

W
(P)
0 =

λ

n+ λ
+ 1− α2 + β, (5.12)

W
(x)
i = W

(P)
i =

1

2(n+ λ)
, i ∈ {1, . . . , 2n}. (5.13)

The equations (5.5)-(5.9) presented in the previous section are also used in the

UKF. Following the notation of [124] and [127] the UKF for ROSB tracking is

described in Algorithm 3.
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Input: ∆t, zi, New range
Output: Next target state estimation x̂k
if Init then Initialize:

F,R,Q,P0, x̂0

end
Predict step:
χ = [ x̂k−1, x̂k−1 + γ

√
Pk−1, x̂k−1 − γ

√
Pk−1 ]

χF = Fχ

x̂k =
2n∑
i=0

W
(x)
i χF

Pk =
2n∑
i=0

W
(P)
i [χF − x̂k][χF − x̂k]

T + Q

if New range then Update step:
χ = [ x̂k, x̂k + γ

√
Pk, x̂k − γ

√
Pk ]

hχ = h(χ)

ŷk =
2n∑
i=0

W
(x)
i hχ,i

Phχŷ =
2n∑
i=0

W
(P)
i [hχ,i − ŷk][hχ,i − ŷk]

T + R

Px̂ŷ =
2n∑
i=0

W
(P)
i [χi − x̂k][hχ,i − ŷk]

T

k = Px̂ŷP
−1
hχŷ

y = zk − ŷk
x̂k = x̂k + ky
Pk = Pk − kPhχŷk

T

end
Algorithm 3: UKF for Range-Only and Single-Beacon target tracking.

5.2.3 Maximum a Posteriori Estimation

The MAP estimation [116] is a well-known method for target tracking problems.

Although, the MAP estimator had long been considered to be too computationally

intensive for real-time applications [128], it is becoming more commonly used thanks

to processor improvements (e.g. [129] and the references therein).

The EKF addresses the non-linear estimation problems by applying linearisation

methods, which introduce inherent errors. While UKF has been developed as an

alternative strategy to address these errors, it only refines the current state, being

unable to refine past linearized points (see the previous Section. In contrast, the

MAP estimator computes the estimations of all states at all time steps, by using all

available measurements.

The main equations of the MAP estimator are described below (adapted from

[116] and [129]). Firstly, as mentioned, all available information is used to estimate
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the entire target trajectory by stacking all states in the time interval [0, . . . , k],

x0:k = [xT0 xT1 · · · xTk ]T . (5.14)

Then, the entire state vector is estimated by maximising the posterior probability

density function as follows

p(x0:k|z0:k) ∝ p(x0)

k∏
k=1

p(xk|xk−1)p(zk|xk), (5.15)

where p(x0) ∼ N (x̂0,P0) is the prior distribution. By applying Bayes’ rule, and as-

suming a Gaussian and independent noise in both measurement and state functions,

plus using the target motion model (5.5) and the range measurement model (5.8)

explained above, (5.15) can be rewritten as

p(x0:k|z0:k) ∝
1√

(2π)2n|P0|
exp

(
− 1

2
||x0 − x̂0||2P0

)
︸ ︷︷ ︸

Initial state constraint

×

k∏
k=1

1√
(2π)2n|Qk−1|

exp

(
− 1

2
||xk − Fxk−1||2Qk−1

)
︸ ︷︷ ︸

State transition constraint

×

k∏
k=1

1√
2πσ2wk

exp

(
− 1

2
||zk − h(xk)||2σ2

wk

)
︸ ︷︷ ︸

Measurement constraint

,

(5.16)

where ||a||M , aTM−1a.

Using the monotonicity of the negative logarithm, the maximisation of (5.16) is

equivalent to the minimisation of the following cost function

c(x0:k) =
1

2
||x0 − x̂0||2P0

+
k∑
k=1

1

2
||xk − Fxk−1||2Qk−1

+

k∑
k=1

1

2
||zk − h(xk)||2σ2

wk

, (5.17)

Due to the non-linearity of the measurement model (5.8), there is no straight-

forward solution. A standard approach for its optimisation is to employ iterative

algorithms, which can find the solution from an initial estimation x̂0 based on the
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recursion of

x̂i+1
0:k = x̂i0:k + δxi0:k, (5.18)

where the parameter δxi0:k is a correction factor, which indicates the step size and

its direction. Employing the Newton-Raphson iterative minimisation method [130],

as in previous works (e.g. [119]), and following [129], δxi0:k can be found solving the

linear system

δxi0:k = −Ai−1bi, (5.19)

where A and b are the Jacobian (∇) and Hessian (∇2) of the cost function (5.17)

with respect to all stacked states (5.14), evaluated at the latest state estimation,

which can be obtained as

bi = ΠTP−10 (x̂i0:k − x̂0)

+
k∑
k=1

F i
k−1

T
Q−1k−1(x̂

i
k − Fk−1x̂

i
k−1)

+
k∑
k=1

H i
k
T
R−1k (zk − h(x̂ik))

, (5.20)

and
Ai ' ΠTP−10 Π

+
k∑
k=1

F i
k−1

T
Q−1k−1F

i
k−1

+
k∑
k=1

H i
k
T
R−1k H i

k

, (5.21)

where Π, H, and F are used to adjust the dimension of a single state estimation to

the entire stacked state, which have the following structure

Π = [I2n 0 · · · 0], (5.22)

H = [01×2n · · · −H · · · 01×2n], (5.23)

F = [02n×2n · · · − F I2n · · · 02n×2n]. (5.24)

Hence, the MAP algorithm can be formulated using these equations as shown in

Algorithm 4.

Finally, a marginalisation method can be used to reduce the computational cost

of stacking all the states, which at a certain point can be computationally intractable.

Different marginalisation methods have been developed to discard old states, which

are not affected significantly by a new measurement available at the current target
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| 5.2. Range-Only and Single-Beacon Methods

Input: ∆t, zi, New range
Output: Next target state estimation x̂k
if Init then Initialize:

F,R,Q,P0, x̂0

end
Predict step:
x̂k = Fk−1x̂k−1
Pk = Fk−1Pk−1F

T
k−1 + Qk−1

if New range then Update step:
x0:k = [xT0 xT1 · · · xTk ]T

Refine all the states using Newton-Raphson iterative minimisation
algorithm:

while i <max or ∇c(x0:k) >min do

Find bi and Ai using (5.20) and (5.21)

δxi0:k = −Ai−1bi

x̂i+1
0:k = x̂i0:k + δxi0:k,

end

end
Algorithm 4: MAP for Range-Only and Single-Beacon target tracking.

position. For example, in [129] the Schur complement is used. Nonetheless, as will

be shown, a simple sliding window can also be applied with good results, where at

each time-step k the state vector is updated with a new state, while the oldest one

is discarded. As a result, the stacked state vector always has the same size, and

therefore, the computational cost does not change.

5.2.4 Particle Filter

Despite the benefits of the above algorithms, the EKF, the UKF or the MAP all have

difficulties in tracking multi-modal probability density functions, which is a usual

problem in ROSB tracking methods [131]. Only a few estimators are specifically

designed to treat multi-modal distributions. Nowadays, the PF is one of the most

commonly used [132] and [133].

The PF solves, in a non-parametric way, the probability distribution problem of

the HMM using the Bayes’ rule (5.1) with the recursion of

p(xk|z:k−1) =
∑
xk−1

p(xk|xk−1)︸ ︷︷ ︸
Motion
model

p(xk−1|z:k−1)︸ ︷︷ ︸
Particles

, (5.25)

and

p(xk|z:k) ∝ p(zk|xk)︸ ︷︷ ︸
Importance
weights

p(xk|z:k−1)︸ ︷︷ ︸
Particles

, (5.26)
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where a bunch of particles x ∈ R2n are spread on a 2D area, and are used to repre-

sent different possible states. Equation (5.25) represents the prediction step, which

uses the motion model presented in (5.5) to move each particle with some random

noise. In this case, the mean of all these particles represents the prior probability

distribution. Then, using (5.26), each particle is weighted with a likelihood ratio

based on the measurement probability function

Wn
k =

1√
2πσ2wk

exp

(
− (h(xnk)− zk)2

2σ2wk

)
, (5.27)

which calculates the probability of the state xnk for one dimensional Gaussian func-

tion with mean equal to the distance between the observer and the particle h(xnk),

which is the measurement model described in (5.8), and variance equal to σ2wk. In

this case, the index n ∈ {0, . . . , N} indicates the particle number up to N .

Finally, all the particles are resampled according to their weight in order to obtain

the posterior probability distribution and to estimate the target’s position. Different

resampling methods have been developed [134], where the Systematic method offers

a good performance in terms of computational complexity and resampling quality.

However, [135], demonstrated that other methods, such as the Compound strategy,

have better performance under fast target manoeuvre circumstances.

The Compound method consists of a twofold strategy: a standard Systematic

resampling method for (N − `) particles; and a Random resampling method for the

last (`) particles, which are dropped randomly inside a circular area around the

previous target position that has been estimated as x̂k−1. This strategy maintains

particles near the target in all directions, improving the PF’s time response in front

of unexpected target position variations. Moreover, it maintains the particles’ spatial

variability, which helps to reduce the common degeneracy problem in the PF.

Using all these considerations, Algorithm 5 can be used to track underwater

targets using the PF.
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| 5.3. Optimal path

Input: ∆t, zi, New range
Output: Next target state estimation x̂k
if Init then Initialize:

F,Q, x̂0

The state vector for each particle and its weight associated are also
initialised:
{xn0}Nn=1 ∼ p(x0)
{Wn

0 }Nn=1 = 1/Np

end
Predict step (5.25):
{x̂nk}Nn=1 = Fk−1{x̂nk−1}Nn=1 + Qk−1
if New range then update step (5.26):

Importance weight update using (5.27)
{Wn

k }Nn=1

Normalize the importance weights
{Wn

k }Nn=1 = {Wn
k }Nn=1/

∑N
j=1W

j
k

Resampling:
c = [W 0

k ,W
i−1
k +W i

k, . . . ,W
N−1
k +WN

k ] for
i = {1, . . . , N − 1}
u = random()/(N − `)
i = 0
for j in range(N − `) do

while u > ci do
i += 1

end
auxj = xik
u += 1/(N − `)

end
for i in range(`) do

auxj+i+1 = random(x)
end
{xnk}Nn=1 = aux

x̂k = 1
N

∑N
n=1 xnkW

n
k

end
Algorithm 5: PF for Range-Only and Single-Beacon target tracking.

5.3 Optimal path

One of the first problems to solve in underwater target tracking is to determine the

path that should be followed by the observer in order to increase the accuracy of the

target estimations. The ROSB methods suffers from the multi-modal distribution

estimation, which is difficult to solve using standard algorithms such as the EKF.

Different solutions have been found to solve this problem. For example, EKF or MAP

filters have been used in parallel, where each filter tracks one possible trajectory, and

a cost function is derived to find the most probable target path. One example of
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| Chapter 5. ROSB methods: A dynamic scenario

this is the RP-EKF [136], where each EKF uses a different initial range estimation

to track a target using bearings-only, and the bank-MAP in [129], where the authors

used different MAP estimators for Range-Only target tracking.

Other authors (e.g. [98], [93], [99], and [91]) have solved the multimodal prob-

lem from the system’s observability perspective: i.e. by driving specific paths to

maximise the amount of information or quality of the measurements conducted, af-

fecting the accuracy of the estimated target position. Using an optimum path, the

multimodal problem can be avoided, and consequently, the tracking algorithms can

compute the correct target position. These studies, which are based on the Fisher

Information Matrix [108], determined that a circular trajectory centred over the tar-

get maximises the system’s observability. In Chapter 4, the optimal circumference

for target tracking using a surface vehicle was derived not only analytically, but with

field tests. Whereas the ideal circumference is one with a radius as large as possible,

in real scenarios the maximum radius is typically a few hundred metres due to time

constraints. For example, for a typical velocity of 1 m/s, an boat will need more

than 50 min to conducts one trajectory with 500 m of radius, and Furthermore, the

power consumption and battery limitations should also be taken into consideration.

This circumference can be written as follows

p∗k = qk + d∗kg(βk), (5.28)

where p∗k is the optimal position of the tracker, qk is the target’s position, g(βk) =

[cosβk sinβk]
T with βk = 2m−1πk, where m is the number of range measurements

per circle, and d∗k is the optimal circumference’s radius.

On the other hand, in [115] the optimal radius was estimated when the tracker’s

velocity was taken into account according to the larger magnitude of

dk = | − ||qk − p∗k−1||cosθk ±
√
α2
k − (||qk − p∗k−1||sinθk)|, (5.29)

where αk is the tracker’s displacement at time k, defined by the time elapsed ∆T

and the tracker’s velocity v̄ as αk = ∆T v̄k, and θk is the angle between the vectors

(qk − p∗k−1) and g(βk).

The maximum radius in (5.29) has two main boundaries: the tracker’s maxi-

mum velocity v̄; and the number of range measurements m to be conducted for

each circumference, both implicitly defined in αk and θk. As the tracker’s velocity

is constrained by the specifications of the vehicle being used, the only parameter

that can be adjusted is the number of measurements. If a small number of mea-

surements is used, a small circular radius will be obtained, otherwise the number

of measurements must be increased. Nevertheless, another option is to introduce
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| 5.4. Simulations

additional time steps M ∈ {1, ...,M} between measurements to increase the circum-

ference’s radius while respecting the vehicle’s maximum velocity. In this case the

circumference is defined by βk = 2(Mm)−1πk.

As a result, considering all these factors, a circular tracker path with a constant

radius of 100 m (∼10 min per circle) and range measurements every 40 s have been

used in our study, in order to evaluate the performance of each ROSB method.

5.4 Simulations

A set of simulations have been conducted for the following scenarios: (a) Static

Target Tracking; (b) Mobile Target Tracking; and (c) Multi-Target Tracking. These

simulations have been performed in order to characterize the performance of each

method described above, and tested them under different noise levels.

In general, Gaussian noise with zero mean and unit variance during the process

of measurement is typically assumed [118] in analytical developments, whereas it has

been observed that in some cases this is not accurate [93]. A Gaussian noise with

non-zero mean and non-unit variance errors, w ∼ N (εw, σ
2
w), introduces a systematic

error and a random uncertainty respectively in field measurements. Moreover, some

measurements can differ substantially from the true range (i.e. outliers), with a

potentially strong influence on the estimations. During simulations, different outlier

measurements were randomly introduced by multiplying the real range by four. The

total number of outlier measurements did not exceed the 1% of the total number

of measurements. Consequently, each scenario has been studied using Monte Carlo

Simulation (MCS) methods [137], where different noise levels have been added to

each range measurement to evaluate the tracking method’s robustness in the face of

them, and to obtain a more realistic simulation.

To characterise the tracking filters’ performance, the step response criteria has

been used. The step response concept is generally used in control system analysis

to characterise the time evolution of a dynamic system [138, Fig. 5-2]. It is known

that the system’s response has two components: transient response and steady state

response. The transient response is present in the short period of time immediately

after the system is turned on or a change is conducted on the input control. If

the system is asymptotically stable, then the transient disappears and the system is

determined by its steady state component only. Under this assumption, the ROSB

methods presented in this Chapter can be characterised by

• Settling Time (TS): Time required to reach and stay below a threshold error

• Recovery Time (TR): Time required to reach and stay below a threshold error
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| Chapter 5. ROSB methods: A dynamic scenario

after a step response

• Steady State Error (εSS): The error between the real target position and its

estimation in the limit as time goes to infinity

• Root Mean Square Error (RMSE): The X-Y error between the true target

position and its estimation computed as

RMSE =

√
E
{∥∥xk − x̂k

∥∥2} (5.30)

Finally, with all these considerations, the main parameters used to conduct the

simulations are described below:

• Observer velocity: 1 m/s

• Observer circumference radius: 100 m

• Target velocity: 0 or 0.2 m/s (variable among tests)

• Random range noise: 1 or 4 m (variable among tests)

• Systematic range noise: up to 1%

• Range measurement outliers: up to 1%

• Time between iterations: 20 s

• Time between range measurements: 40 s

• Simulation steps: 200

• MCS iterations: 100

• Number of particles (PF): 3000

5.4.1 Static target localisation

The target localisation algorithms explained in the previous section were first tested

in a static scenario. This scenario is used as an initial test to evaluate the perfor-

mance of the ROSB methods. Moreover, we were able to compare them against

standard target localisation methods such as the LS [93], which is a good estimator

to localise targets in static scenarios.

Fig. 5.1a shows the simulated RMSE average value and its Standard Deviation

(STD) after 100 MCS iterations, showing the filters’ time response, and Fig. 5.1b

shows the filters covariance matrix response. This test was conducted with a range
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noise equal to εw = 1% and σw = 4 m. The fastest algorithm to reach an RMSE

lower than 15 m is the LS (2.0 min), which is also the algorithm with the lowest εSS

(0.8 m). On the other hand, the EKF provided the worst performance with an εSS

of 9.5 m, and a TS of 30 min, i.e. it did not estimate the target’s position with very

high accuracy.

Table 5.2 shows the simulated filters’ performance under other range noise pa-

rameters. The LS method is the best one in many scenarios. However, the most

robust filter in the face of outliers is the PF, which has an average TS = 11 min and

εSS = 8.8 m. In contrast, the inclusion of a systematic error was not relevant to

the filters’ performance. It is known that concentric circumferences around a target

constitute the most robust path in the face of systematic errors, as explained in

Chapter 4.
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Figure 5.1: (a) algorithms’ time response for static target localisation. The settling
time and the steady state error have been derived for the EKF, UKF, PF, MAP
and LS algorithms. Results obtained through 100 MCS iterations with εw = 1%
and σw = 4 m. The dark colours represent the average whereas the light colours
represent their standard deviation. (b) indicates the covariance matrix response,
where a confidence interval of 98 % has been used to draw each circumference.
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5.4.2 Mobile target tracking

In this section we discuss the results of simulations, where a mobile target with

constant velocity of 0.2 m/s plus a 90° right turn after the 100th step (i.e. at 35 min

from starting) was used as the second testing scenario. Besides the TS and the εSS ,

the TR was also computed as the filter’s time response after the right turn, when the

accuracy of the target’s trajectory is lost, see Fig. 5.2a. Moreover, Fig. 5.2b shows

the filters covariance matrix response.

The result of these indicators (TS , TR, and εSS) after 100 MCS and for different

configurations of range noise are shown in Table 5.3. In general, the PF algorithm

out-performed all the other methods, followed by the MAP algorithm. On the

other hand, the LS was unable to track the mobile target as expected. The same

performance is observed in all the noise cases, and for all the indicators studied.
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Figure 5.2: (a) agorithms’ time response for dynamic target tracking. The settling
time and the steady state error are derived for the EKF, UKF, PF, MAP and LS
algorithms. Moreover, the increase of the RMSE due to the target’s right turn can
also be observed. Results obtained through 100 MCS iterations with εw = 1% and
σw = 4 m. The dark colours represent the mean whereas the light colours represent
their standard deviation. (b) indicates the covariance matrix response, where a
confidence interval of 98 % has been used to draw each circumference.
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We now discuss the performance of the PF using different configurations, e.g.

the contribution of different resampling methods, the number of particles used, and

the computational time required.

A PF: Resampling Method

The Compound (C) method has the advantage of sudden response in case of fast

changes in the target’s direction (see Section 5.2.4), by combining Systematic and

Random resampling algorithms. Therefore, it can be adjusted by modifying the

ratio between the number of particles used for the Systematic method (Nsys) and

for the Random method (Nrand) respectively.

We conducted a set of simulations using different resampling methods as: (1)

Multimodal, (2) Systematic, and (3) Compound. The results obtained in the time

domain are presented in Table 5.4. After different iterations, we observed that the

best ratio (r(%) = Nrand/Nsys ∗ 100) for the Compound resampling method was

∼6.7 (i.e. only 6.7% of particles are resampled using the Random method).

Table 5.4: Particle Filter (PF)’s performance for different resampling strategies:
Dynamic scenario.

TR(min) TS(min) εSS(m)

Resamplinga Mean (STD)b Mean (STD)b Mean (STD)b

Multimodal 24.7 (5.0) 3.7 (1.9) 5.7 (9.8)

Systematic 21.2 (4.6) 4.4 (2.9) 2.6 (2.9)

C(r = 0.3) 13.3 (8.2) 4.4 (2.7) 3.1 (6.2)

C(r = 1.7) 9.6 (5.9) 3.3 (1.2) 1.3 (0.6)

C(r = 3.3) 5.8 (2.5) 3.2 (0.4) 1.3 (0.7)

C(r = 6.7) 5.6 (2.2) 3.3 (0.5) 1.2 (0.7)

C(r = 10.0) 5.9 (1.9) 3.5 (0.9) 1.4 (0.6)

C(r = 16.7) 5.6 (2.9) 3.4 (1.0) 1.3 (0.7)

C(r = 33.3) 12.6 (8.2) 5.2 (4.2) 2.8 (0.9)

C(r = 66.7) 29 (0.0) 29 (0.0) 14.5 (2.2)

a see [134] and [135] for a detailed description of these

methods

b (σ2w = 1m)
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B PF: Number of Particles

The number of particles also has an important impact on the PF’s performance.

The more particles used to represent the target’s position, the more accurate its

estimation will be. In Table 5.5 the results for 1000, 3000, 6000, and 10000 particles

are shown. In all these simulations, the Compound method with ratio 6.7 was used.

Table 5.5: PF’s performance for different number of particles: Dynamic scenario.

TR(min) TS(min) εSS(m)

# particles Mean (STD)a Mean (STD)a Mean (STD)a

1000 13.2 (3.9) 6.1 (3.4) 1.4 (0.7)

3000 9.6 (5.9) 3.3 (1.2) 1.3 (0.6)

6000 7.3 (3.1) 2.8 (0.7) 1.1 (0.5)

10000 6.1 (2.4) 2.5 (0.4) 1.1 (0.5)

a (σ2w = 1m)

C Processing Time Required

Finally, the processing time can be an important constraint and a decisive factor

to choose one or another method. While processing time may not be a limiting

factor in some underwater scenarios due to slow dynamic processes involved, in

some cases this may not be true. For example, in centralised multi-target tracking

situations, the total time required to compute all the targets’ positions could increase

significantly with the number of targets, and therefore, the processing time must be

taken into consideration.

The algorithms’ runtime performance is shown in Table 5.6, where clearly the PF

is the most expensive method from the computational time point of view, whereas

the MAP algorithm appears as good compromise between performance and compu-

tation time. Nonetheless, both methods are suitable for this application due to the

slow dynamics in most underwater scenarios.
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Table 5.6: Filter’s average runtime required at each step.

Filter Runtimea (ms)

EKF 0.2

LS 0.4

UKF 0.6

MAP 10.6

PF (1000) 34.4

PF (3000) 98.4

PF (6000) 181.9

PF (10000) 276.7

a Processor Intel(R) Core(TM)

i7-4760HQ CPU @ 2.10 GHz

with 8 GB of RAM memory
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5.4.3 Multi-Target Tracking

Multi-target Monte Carlo simulations using both static and dynamic target were

used to characterise the filters’ performance, in order to determine: (1) the filter’s

response when the tracker is not conducting its manoeuvres directly over the target,

but with some offset; and (2) the feasibility of tracking multiple targets simultane-

ously.

Firstly, 49 targets were spread on a grid of 7x7, each one separated 100 m from

its immediate neighbour. Then, a tracker conducted circular manoeuvres over the

centre of the grid with a radius of 100 m and a velocity of 1 m/s. Every 40 seconds

a new range measurement was computed between the tracker and each of the 49

targets, updating an individual filter for each target in order to estimate its position.

This procedure was repeated 5 times, one for each tracking algorithm.

A Multiple Static Targets

The filter’s performance in a multi-static target localisation scenario is represented

through coloured maps (Fig. 5.3). Those maps indicate the RMSE between the

true target position (black triangles) and its estimation. This test was conducted

50 times using MCS iterations with a range noise equal to εw = 1% and σw = 4 m.

The average value among all RMSE is presented in Fig. 5.3a. This style of X-Y

representation is commonly used [119], which indicates the target’s estimation error

obtained as a function of its position with respect to the tracker’s path centre. For

example, the best performance achievable using the LS algorithm for static target

localisation was presented in [93, Fig. 4], where the CRB was used, and then verified

through real field tests. Here, not only the LS but also the MAP and PF algorithms

followed a similar performance.

The simulations show that the LS, MAP, and PF have a superior performance,

where the targets close to the centre were better estimated. This behaviour is due to

the observability of the system (see Section 5.3). On the other hand, both the EKF

and UKF have the poorest performance, with more accurate estimated positions

close to the centre of the tracker’s path. This behaviour can be explained by the

state’s initialisation, where the first tracker position is used as an initial target

estimation. As a result, the targets which are close to the tracker have the best

initial estimation.

Finally, the average values of the 49 target estimations for the TS and the εSS

are shown in Fig. 5.3 (top left) and in Table 5.7. The LS algorithm exhibited the

best performance with a TS = 4.2 min and a εSS = 6 m. This result is similar to the

result obtained in the previous section. However, here we also showed what could
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be expected in the case of tracking only one target which is not directly below the

tracker’s path centre.

Table 5.7: Target tracking algorithms’ performance in a multi-target scenario. Av-
erage results obtained from 49 targets: Static scenario.

TS(min) εSS(m)

Filter Mean (STD)a Mean (STD)a

LS 4.2 (1.3) 6.0 (0.1)

EKF 29.3 (2.8) 64.5 (6.8)

UKF 25.1 (9.0) 55.0 (7.4)

MAP 15.4 (7.4) 9.7 (1.1)

PF 8.9 (4.0) 7.3 (0.4)

a (σ2w = 4 m, εw = 1 %)

109



| Chapter 5. ROSB methods: A dynamic scenario

0 10 20 30
Time (min)

0

5

10

15

20

25

30

35

40

Po
si

tio
n 

R
M

SE
 (m

)

Time response

EKF
UKF
PF
MAP
LS

(a)

0 200 400 600
Easting (m)

0

100

200

300

400

500

600

N
or

th
in

g 
(m

)

LS Error

2

4

6

8

10

>90

R
M

SE
 (m

)

(b)

0 200 400 600
Easting (m)

0

100

200

300

400

500

600

N
or

th
in

g 
(m

)

EKF Error

2

4

6

8

10

>90

R
M

SE
 (m

)

(c)

0 200 400 600
Easting (m)

0

100

200

300

400

500

600
N

or
th

in
g 

(m
)

UKF Error

2

4

6

8

10

>90

R
M

SE
 (m

)

(d)

0 200 400 600
Easting (m)

0

100

200

300

400

500

600

N
or

th
in

g 
(m

)

MAP Error

2

4

6

8

10

12

R
M

SE
 (m

)

(e)

0 200 400 600
Easting (m)

0

100

200

300

400

500

600

N
or

th
in

g 
(m

)

PF Error

2

4

6

8

10

12
R

M
SE

 (m
)

(f)

Figure 5.3: Algorithms’ performance for static multi-target tracking scenario. A
Gaussian error of 4 m plus a systematic error of 1% at each range measurement
have been added. Each triangle represents the targets’ position. The blue line and
the circle represents the tracker’s trajectory and its last position respectively. The
colour map indicates the interpolation of the RMSE between the real target position
and its estimation (the average of the last value over all the MCS iteration). Subplot
(a) indicates the average of the time response over all the targets’ RMSE, where the
methods not depicted had an error greater than 40 m, and the dashed line represents
the threshold used to compute the TS .
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B Multiple Mobile Targets

The performance of each tracking method using mobile targets is presented in Fig.

5.4. The EKF and the UKF had difficulties to track the targets when these were not

directly below the centre of the tracker’s path. Obviously, the LS algorithm cannot

accurately estimate their position either.

In Table 5.8, the values of TR, TS , and εSS are shown, where a Gaussian noise

of 4 m with 1% of systematic error has been added in all range measurements. The

results show that only the PF and the MAP algorithms were able to track all the

targets with an acceptable accuracy, where the PF had the best performance, also

when they conduct a right turn (∼30 min after the simulation’s beginning).

Table 5.8: Target tracking algorithms’ performance in a multi-target scenario. Av-
erage results obtained from 49 targets: Dynamic scenario.

TR(min) TS(min) εSS(m)

Filter Mean (STD)a Mean (STD)a Mean (STD)a

LS 29.7 (0.0) 65.0 (0.0) 313.6 (9.1)

EKF 29.7 (0.0) 65.0 (0.0) 51.4 (5.6)

UKF 26.2 (5.7) 65.0 (0.0) 114.7 (9.7)

MAP 18.0 (9.0) 11.3 (5.4) 10.1 (1.5)

PF 13.4 (5.8) 12.3 (7.4) 7.8 (0.6)

a (σ2w = 4 m, εw = 1 %)
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Figure 5.4: Algorithms’ performance for dynamic multi-target tracking scenario. A
Gaussian error of 4 m plus a systematic error of 1% at each range measurement
have been added. Each triangle represents the targets’ last position. The blue line
and the circle represent the tracker’s trajectory and its last position respectively.
The colour map indicates the interpolation of the RMSE obtained at each target
(the average of the last value over all the MCS iterations. Subplot (a) indicates
the average of the time response over all the targets’ RMSE, where the methods
not depicted had an error greater than 40 m, and the dashed line represents the
threshold used to compute the TS .
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5.5 Field Tests

After the study conducted using the MCS methods, different field tests were con-

ducted in order to validate the results and conclusions derived. These tests were

divided into two groups:

1. Tests carried out in the OBSEA underwater observatory (www.obsea.es) of

the Universitat Politècnica de Catalunya (UPC)

(a) Static test

(b) Dynamic test

2. Dynamic tests conducted in Monterey Bay with the support of the Monterey

Bay Aquarium Research Institute (MBARI) (www.mbari.org)

During those tests, the main parameters were the same ones used in Section 5.4

to be able to perform the appropriate comparisons (e.g. number of particles (PF)

= 3000).

5.5.1 OBSEA Tests

These tests consisted in localizing three static targets and tracking a mobile one lo-

cated at the coastal cabled observatory OBSEA. In both cases, S2C-18/34 acoustic

modems from the EvoLogics company were used to measure ranges between observer

and targets. These modems use the Sweep-Spread Carrier (S2C) technology, deliv-

ering an excellent performance, and working at 18 - 34 kHz. For these tests, a small

boat was employed as observer, which computes the target position using the dif-

ferent methods studied. Fig. 5.5 shows one of the modems deployed in the seafloor

used in the static test (left picture), and the drifter buoy used in the dynamic test

(right picture).

A Static test at OBSEA

The first experiment carried out at OBSEA was designed to localise three acoustic

modems previously deployed. One was attached to the observatory’s buoy (M3) at

5 m depth, and two other modems deployed on the seafloor (M1 and M2), near the

observatory’s junction box at 20 m depth. Moreover, one of the seafloor modems

had USBL capabilities (M1).

The slant range between the boat and each modem is represented in Fig. 5.6,

where only one outlier (out of more than 300 measurements) between the boat and

the USBL was obtained. However, this outlier must be taken into consideration,
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Figure 5.5: Underwater photography of the USBL (left) used as a target to localise
during the static test, and the drifter buoy (right) used as a target to track during
the dynamic test conducted in the OBSEA observatory.

which has an important implication in the performance of the localisation algo-

rithms, especially for the LS method as observed in Table 5.2. Thus, it has to be

removed in order to obtain an accurate estimation, whereas the PF is more robust

even with the outlier included.
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Figure 5.6: Slant ranges obtained between the boat and the underwater modems
deployed at OBSEA.

Fig. 5.7 shows a geographic Cartesian coordinate map, where the target po-

sition estimations using the LS, MAP and PF, and the boat path conducted are

represented. The PF algorithm has been executed 10 times in order to observe the
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prediction’s variability due to the inherent random processes involved. The estima-

tion of the second modem (M2) using the MAP algorithm has an important error,

which can be caused by the lack of observability in the system. The M2 was the far-

ther modem from the centre of the boat path, and as observed in Section 5.4.3, not

only the steady state error is worse, but also the settling time, which is important

in such situations. Under these circumstances the MAP algorithm needs more time

to obtain an accurate estimation of the target’s position.
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Figure 5.7: Static target localisation results obtained in the OBSEA observatory.
The small blue dots represent the X-Y coordinates where a range measurement
between the boat and each underwater target were carried out. The dotted blue
line represents the boat’s trajectory, where the start and square dots are the start
and end positions respectively. Finally, the estimated positions for M1, M2 and M3
modems using LS, PF, and MAP algorithms are also represented.

Finally, the results obtained during this experiment can be compared against

the results obtained through simulations as depicted in Table 5.9. Unfortunately,

the true deployment position was not available, and therefore, the RMSE could not

be computed. In this case, the error between the slant range measured with the

modems and the theoretical slant range computed using the targets’ prediction was

used, denoted as Real εSS(Mean). On the other hand, the STD variation of the

latest 10 estimations of each filter were used to obtain an indicator of its variability,

denoted as Real εSS(STD). Therefore, the values are not equal, even so, the error’s

proportion is the same. On the other hand, both the EKF and the UKF were not

taken into consideration during the field tests because of their lower performance,

especially for targets not centred below the tracker’s path (Table 5.7).
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Table 5.9: Target tracking algorithms’ performance for multi-target localisation pur-
poses. Simulations vs real field tests: Static scenario. Test conducted on July 8,
2018.

Sim εSS(m) Real εSS(m)

# Filter Mean (STD)a Mean (STD)b Mean (STD)

LS 0.8 (0.4) 6.0 (0.1) 8.2 (0.0)

EKF 9.5 (6.2) 64.5 (6.8) – (–)

UKF 2.3 (1.2) 55.0 (7.4) – (–)

MAP 4.2 (2.2) 9.7 (1.1) 29.3 (5.9)

PF 4.4 (2.0) 7.3 (0.4) 10.7 (3.3)

a (σ2w = 4 m, εw = 1 %) from static scenario (Table 5.2)

b (σ2w = 4 m, εw = 1 %) from static multi-target scenario (Table 5.7)

B Dynamic test at OBSEA

The second experiment carried out in the OBSEA was designed to track a dynamic

target, which was a drifting buoy with an acoustic modem. The results obtained are

presented in Fig. 5.8a, where the boat path (blue dotted line), the range measure-

ments (blue dots), the real target position (black dotted line), the PF estimation

(red dots), and the MAP estimation (green dots) are represented. On the other

hand, the inset graphic (in the bottom-right corner) shows the RMSE between the

estimated target position and its real position. Whereas the communication with

the drifter was lost around 10:10 h UTC, the boat was able to track the drifter as

soon as the communication was available again.

Nevertheless, it has to be taken into consideration that the real target position

was interpolated using its initial deployment and recovery positions, and the sea cur-

rents present during the test, where the GPS position was not available during this

experiment. For that reason, the mean error computed during this test should not

be taken strictly into consideration, but as an indicator of the filter’s performance.

For example, as demonstrated in simulations, the MAP algorithm has a Recovery

Time greater than the PF algorithm, and such performance is also observed in this

field test, see Fig. 5.8b.
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Figure 5.8: (a) Dynamic target tracking results obtained in the OBSEA observatory.
The small blue dots represents the X-Y coordinates where a range measurement be-
tween the boat and drifter was carried out. The dotted blue line represents the boat
trajectory. The red dots represent the target’s estimation using the PF algorithm,
whereas the green dots represent the target’s estimation using the MAP algorithm.
The black slashed line is the drifter trajectory. Finally, (b) represents the RMSE
between the real and the estimated target’s position.
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5.5.2 MBARI tests

Finally, a last test in Monterey Bay California in collaboration with the Monterey

Bay Aquarium Research Institute (MBARI) was conducted in order to validate

the algorithms and observe their performance under real conditions. This test was

performed using a Wave Glider (WG) from the Liquid Robotics company, which

tracked a Coastal Profiling Float (CPF) [139] for more than 15 hours, Fig. 5.9.

Figure 5.9: Coastal Profile Float (left) and Wave Glider (right) during sea tests
conducted at Monterey Bay, California.

The CPF is a device which spends the majority of its time static, resting on the

seabed. It periodically goes to the surface to fix a GPS position, then it drifts with

the sea currents a few metres until it conducts another immersion to return to the

seabed. During the test, the CPF conducted three immersions to ∼60 m depth, as

depicted in Fig. 5.10 (red line).

In order to know the CPF’s position, the WG conducted circular paths around

the area while periodically measuring the slant range to the CPF. An acoustic mo-

dem (ATM-900) from the Teledyne Benthos company was installed in the CPF and

a Benthos DAT modem installed in the WG to measure the ranges. Both devices

work at 16-21 kHz, and use a phase shift keying modulation technique. The Ben-

thos DAT modem is a standard acoustic modem which also has USBL capabilities.

Because of that, a comparative study between the target’s position obtained with

the USBL and the position estimated using the ROSB tracking algorithms explained

above could be performed.
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Figure 5.10: The CPF’s depth profile (red line), when a CPF (red triangles) and
a Wave Glider (blue triangles) positions were fixed, and when a slant range mea-
surement was conducted between both devices (black dots) are presented in this
graph.

Fig. 5.11 shows the path conducted by the Wave Glider and the CPF, both

obtained using their own GPS. Moreover, the CPF estimated path computed using

the PF (red dots) and the MAP (green dots) algorithms are also shown.
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Figure 5.11: The Wave Glider trajectory during the field test WG(GPS), the CPF

path CPF(GPS), and the CPF estimated position using PF ĈPF (PF) and MAP

estimation ĈPF (MAP), are shown in this figure.

In addition, Fig. 5.12a shows the RMSE between the real CPF position and its

estimations provided by the USBL system, and the PF and the MAP algorithms.

The real CPF position has been computed by using the GPS positions while on

the surface. However, it should be taken into consideration that no ”true” CPF

position while on the seabed was available. Therefore, this can cause an increase in
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the average error. For example, the CPF’s displacement produced by sea currents

during the immersion has not been taken into consideration to compute the real

CPF position.

On the other hand, the error obtained from USBL is much greater than the error

obtained from the PF or MAP algorithms. In general, a USBL system has to be

calibrated in advance, especially to eliminate the attitude misalignment between the

acoustic transducer and the Inertial Measurement Unit (IMU), and also to adjust

their internal clocks. However, despite the calibrations, large errors can be expected

due to the sea state when a USBL instrument is installed on small platforms, such as

a Wave Glider. Nonetheless, the error measured during this test is something unex-

pected, and therefore, indicates a poor calibration or some undetected misalignment.

Finally, the inset of Fig. 5.12b shows a zoom of PF’ and MAP’ RMSE results,

where a mean of 21.9 m (PF) and 22.4 m (MAP) with an STD of 0.8 (PF) and 2.3

(MAP) have been obtained, which can be compared to the results obtained through

the simulations as shown in Table 5.10.

Table 5.10: Target tracking algorithm’s performance for target tracking. Simulations
vs real field tests: Dynamic scenario. Test conducted on July 31, 2018.

Sim εSS(m) Real εSS(m)

# Filter Mean (STD)a Mean (STD)b Mean (STD)

LS 277.8 (0.2) 313.6 (9.1) – (–)

EKF 9.3 (6.3) 51.4 (5.6) – (–)

UKF 38.3 (1.7) 114.7 (9.7) – (–)

MAP 4.8 (2.3) 10.1 (1.5) 22.4 (2.3)

PF 4.0 (2.2) 7.8 (0.6) 21.9 (0.8)

a (σ2w = 4 m, εw = 1 %) from dynamic scenario (Table 5.3)

b (σ2w = 4 m, εw = 1 %) from dynamic multi-target scenario (Table 5.8)
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Figure 5.12: (a) RMSE between the real CPF position and its estimation. Compari-
son between USBL (purple triangles), PF algorithm (red dots), and MAP algorithm
(green dots). Inset shows a close look of the RMSE between 8:00 and 12:00 hours.
Finally, (b) shows a closed view of the error.

5.6 Discussion

The aim of this Chapter is the study and development of different algorithms to

track targets with autonomous marine vehicles moving along an horizontal plane

by using range-only methods, such approach reduces the cost, power requirements,

and complexity over other methods (e.g. using a USBL system which also requires

an IMU). The methods presented in this Chapter may improve autonomous target

tracking as a key factor for maritime and industries activities. For example, in the

framework of fishery management (i.e. producing ancillary data for fishery manage-

ment of relevant commercial items, as the Norway lobster (Nephrops norvegicus), as

well as snow crabs [140]), where multiple platforms intercommunication protocols

and autonomous navigation capabilities should be developed (i.e. the acoustic track-

ing of emitters placed on freely moving animals, spreading out from repopulating

marine reserves).

Our data may also be useful in developing autonomous networks to monitor and

quantify human impacts, as described by the Marine Strategy Framework Directive

of the European Commission [120]. The spatial scaling of data gathered at fixed

observatories, could be complemented by the use of flexible and adaptive networks

of monitors and autonomous underwater vehicles. Our data could help toward the

implementation of multi-parametric coordinated monitoring.

In this work, an extended study has been carried out focusing on performance

comparisons among different ROSB algorithms (LS, EKF, UKF, MAP, and PF),
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specifically designed for 3 typical underwater scenarios: localising a static target,

tracking a dynamic target, and multi-target tracking. The MCS method provides

a close comparison between the simulations and real field tests conducted. Simula-

tions are powerful tools which allow a close study of more complex and noisy/real

scenarios, compared to strictly deterministic analytical studies.

For example, Table 5.9 summarises the field test results conducted in the cabled

observatory station OBSEA (www.obsea.es) to localise multiple targets, which have

been compared with the Steady State Error (εSS) among 100 MCS for single target

localisation (with 4 m of Gaussian error and 1% of systematic error), and 100 MCS

for multi-target localisation (with 4 m of Gaussian error and 1% of systematic error).

The results show that the target which is in the centre of the tracker path is estimated

better. Finally, the real results show a greater error than the simulations, however,

the error’s proportion is the same, where the LS is the best algorithms whereas

the MAP is the worst method. One can observe that neither the EKF nor UKF

algorithms have been considered for real field tests. Moreover, the variability of

these filters (STD) also follows the same trend presented in the simulations. It

should also be noted that the real position of each modem was not available, and

the mean error presented has been obtained using the slant range measured with

the acoustic modems, and the slant range computed using their estimated positions.

Furthermore, the greatest error presented in the field tests may be due to the lower

number of ranges used, since the more measurements used, the greater the accuracy

can be achieved.

The dynamic target tracking test conducted in the OBSEA, where a drifter buoy

was used as a target, and presented in Fig. 5.8, shows the performance of PF and

MAP algorithms in real field tests. The inset shows the evolution of the RMSE over

time, where one can clearly observe that the PF has a settling time faster than that

of the MAP. This behaviour has been observed previously using MCS (e.g. Fig.

5.4).

Finally, the test conducted in Monterey Bay with the PF and the MAP algo-

rithms can be compared as before with simulations, see Table 5.10. The field test

performance is shown to be quite similar to that of the simulations. However, in this

case one should take into consideration that the real position of the CPF was only

obtained when it was on the surface, using a GPS. As a consequence, its displace-

ment while it conducted the immersion and before it settled down on the seafloor

could not be computed. This means that the RMSE presented in Fig. 5.12b may

have an inherent error, although the general performance was demonstrated.
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5.7 Conclusion

This work shows the performance of different algorithms under different scenarios

with the objective of tracking underwater target by using autonomous vehicles.

The main mathematical notation of each algorithm, and their performance under

simulations and field tests have been conducted, and the best practice has been

derived. From a methodological point of view, this work advances the understanding

of accuracy that can be achieved by using ROSB target tracking methods with

autonomous vehicles.

The algorithms considered in this study are LS, EKF, UKF, MAP, and PF. All

these algorithms have been compared with each other. Simulations and experimen-

tal results suggest that that an accuracy of a few metres can be achieved using the

PF, which we demonstrated to be the fastest and the most accurate algorithm with

respect to other studied approaches to estimate an underwater target position es-

pecially when this target is moving. For example, in a simulated dynamic scenario

with a quasi ideal noise measurement of 1m, the PF achieves a settling time equal

to 1.7 min, a recovery time equal to 5.8 min, and a steady state error of 1 m, but it

also has more accurate values than the other algorithms in noisier cases.
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Chapter 6

A novel Area-Only biologging

method

The area-only underwater target localisation and tracking algorithm using acous-

tic tags will allow the study at the behaviour of small marine species and their

movements in a way which has not been possible until the present day.

6.1 Introduction

One of the main challenges in oceanographic research is underwater localisation. It

is well known that Global Positioning System (GPS) signals suffer large attenuation

underwater. Therefore, different methods have been developed using acoustic sig-

nals, which have better underwater performance. Besides the traditional Long Base-

Line (LBL) and Ultra-Short BaseLine (USBL), new strategies are being developed

(e.g. moving long baseline) which leverage the higher performance of autonomous

vehicles and their capabilities to work in increasingly complex scenarios, as it has

been explained in the previous Chapters.

6.1.1 Motivation

However, the size and power requirements of current modems that provide range

measurement capabilities are not negligible, and therefore, are not viable to track

small targets, such as some marine species (e.g. jellyfishes). For example, the

standard modem S2C-M-18/34 (Evologics) has a total length of 310 mm and a

weight of 1265 g.

In this framework, we present a novel Area-Only Target Tracking (AOTT)

method using an autonomous vehicles, such as a Wave Glider from the Liquid

Robotics company, which detects and tracks a tagged underwater target while mov-
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ing on the surface. Using the detection/no-detection information provided by an

acoustic receiver, the algorithm is able to compute the target position and the ve-

hicle follows it. The main algorithm used in this method is based on the Particle

Filter (PF), which has been used successfully in the Range-Only Target Tracking

(ROTT) method [135].

6.1.2 Related work

In ROTT methods, the information used to track the target is the slant range

measured using acoustic modems. However, the size and power requirements of

current modems that provide such capability are not negligible, whereas the AOTT

method can be implemented to track smaller animals due to the small size of acous-

tic tags [37]. Nonetheless, the only information available in AOTT is the pres-

ence/absence of tag detection, which requires a more complex method.

The AOTT method is a passive, ”listen-only” approach where there is no in-

terrogation between the tracker and the target. This distinction contrasts with the

ROTT method, which uses two-way communication to compute the slant range

between two devices.

Current tracking methods for marine species use acoustic tags, which enable two

kind of studies [37]: (a) study their long-range migrations through receivers spread

in specific points, which only provides general information about their movements;

and (b) study their small movements in a reduced area using different receivers

nearby, which has the same limitations of the traditional LBL systems (e.g. deploy-

ment cost or synchronisation between devices). In addition, animals that emerge

periodically on the surface can send their position by satellite communications [141].

Other studies have focused in the development of new tags to study the animal be-

haviour [42]. Whereas these tags can be used to measure different behavioural and

environmental parameters, they do not transmit any acoustic signal, and therefore,

can not be tracked. Finally, the Woods Hole Oceanographic Institution (WHOI)

has developed a new method to track tagged animals (e.g. sharks or turtles) using

an Autonomous Underwater Vehicle (AUV) and custom build USBL and transpon-

ders [142] and [143]. In this case however, whereas the results are impressive, the

USBL uses more energy than a simple hydrophone (i.e. the USBL needs to com-

municate with the transponder to measure the range) and is necessary to tagged

the marine animal with a ”big” tag with bidirectional communication capabilities,

and therefore, could not be optimum in some applications such as the use of glider

vehicles, where the power consumption is an important constraint. Others, such as

Clark C.M. et al [65] and [133], have used two passive hydrophones (mounted in a
∼2 m frame) to find the angle of arrival of a signal transmitted by a tagged leopard

126



| 6.2. Area-only target tracking method

shark.

6.1.3 Contributions

The method presented in this Chapter can be used in a wide range of applications

using the long-duration, autonomous navigation and on-board processing charac-

teristics of Wave Glider vehicles, which can geolocate stationary or slowly moving

tagged targets on the seabed or in the water column (e.g. benthic vehicles [93] or

marine animals [144]). However, the AOTT method is especially an important step

forward to track spatiotemporal changes in animal behaviour, which is not feasible

using the current state-of-the-art.

6.2 Area-only target tracking method

In the following, the main idea behind the AOTT method and its mathematical

formulation are presented.

6.2.1 AOTT idea

Given the acoustic receiver and tag used for this effort, the only information that can

be determined is presence or absence of tag transmissions in the area of the receiver.

In other words, the receiver only ”knows” whether the tag is inside the area of

reception, but has no-information about the tag’s direction or range. The AOTT

method infers the target position by taking the area determined by the maximum

reception range as the only filter input (illustrated in Fig. 6.1).

Two types of areas can be observed: one where the tag is detected (blue circles),

and one where the tag is not detected (white circles). The estimation of the target’s

localisation can then be computed by overlapping all of these areas, where the zone

with a main coincidence is where the target should be, thereby representing its

probability distribution.

The AOTT is implemented using a PF algorithm, where initially all the particles

are placed in a specific area. Then, each particle is moved accordingly to a motion

model, and each particle’s weight is updated for each new detection (or no-detection)

until all of them converge into the target position estimation.

6.2.2 Mathematical formulation

The AOTT target tracking method can also be seen as a Hidden Markov Model

(HMM) problem. Generally, the HMM is defined as a sequence of states, known as
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2

Target position estimation

Wave Glider

Figure 6.1: Area-Only Target Tracking (AOTT) problem representation. Blue cir-
cles represent the area around the Wave Glider where a tag transmission was de-
tected. White circles represent the area around the Wave Glider where a tag trans-
mission was missing. The centre point of the overlapping area among all these
detection/no-detection is the target estimated position.

a Markov chain, and a set of observations for each state [116]. Using Bayes’ rule

p(xk|z) =
p(z|xk)p(xk−1)

p(z)
, (6.1)

the probability distribution function of the HMM states can be derived given a set

of observations z ∈ Rm, and therefore, the current state x ∈ R2n can be estimated.

Where m indicates the number of observations carried out, and n can be either 2

or 3, which is the space dimension of the problem. And p(xk|z) is the posterior

probability distribution, expressed also as p(xk|z:k); :k subscript denotes all obser-

vations up to k. The p(xk−1) is the prior probability distribution expressed also as

p(xk|z:k−1). And finally, p(z) is the total probability of z [117], expressed also as∫
xk
p(z|xk)p(xk−1)dxk, which is used as a normalized factor. However, to compute

the predicted state xk, the total probability p(z) can be ignored, which yields in the

optimal solution of the following maximization problem

xOPT
k = argmax

xk

p(xk|z:k). (6.2)

In prediction theory and filtering, the posterior distribution can be computed

recursively from the prior distribution using a prediction step p(xk|z:k−1) and an

update step p(xk|z:k).
In general, the existing filtering methodologies compute either the predictions
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with reference to the conditional probability distribution p(xk|z:k), such as the PF,

or with reference to the probability joint distribution p(xk, zk|z:k−1), such as the

Extended Kalman Filter (EKF), see [118] and the references therein.

On the other hand, in order to simplify the notation, a 2D scenario has been

used, where the tracker conducts manoeuvres on the sea surface to predict the

target’s position. This is a common procedure due to the facility of knowing the

target’s depth with high accuracy using cheap devices (e.g. used in GPS Intelligent

Buoys [119, Chapter 3]), and therefore, a 3D scenario can be projected into a 2D

plane. Consequently, and hereinafter, the following considerations and parameters

will be considered. Firstly, the state vector used for both tracker and target is

defined as

x = [x ẋ y ẏ]T , (6.3)

where x and y are the positions in the 2D plane, and ẋ and ẏ are their associated

velocities. The observation measurement vector is defined as

z = [z1, . . . , zm]T , (6.4)

where m denotes the number of observations conducted. In the ROTT methods,

those are the ranges between the tracker and the target, whereas in the AOTT the

measurement will be

zm =

1 if tag detection = True

0 if tag detection = False
, (6.5)

which is used in the filter update step to indicate if a tag’s transmission was or was

not detected.

Finally, assuming that the target state vector at time-step k is defined by xk,

and a constant target velocity, which is a general consideration, the target motion

model is

xk = Fk−1xk−1 + Qk−1, (6.6)

where F is the state transition matrix, and Q is the process noise, which has variance

σ2v . Both are related to time-step ∆t, and are described as

F =


1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1

 (6.7)

and
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Q =



1
4∆t4 1

2∆t3 0 0

1
2∆t3 ∆t2 0 0

0 0 1
4∆t4 1

2∆t3

0 0 1
2∆t3 ∆t2


σ2v . (6.8)

6.2.3 Algorithm designed using PF

Nowadays, the PF is one of the most used method in target tracking [132] [133],

especially for its robustness in front of multi-modal probability density functions.

The PF solves, in a non-parametric way, the probability distribution problem of the

HMM using the Bayes’ rule (6.1) with the recursion of

p(xk|z:k−1) =
∑
xk−1

p(xk|xk−1)︸ ︷︷ ︸
Motion
model

p(xk−1|z:k−1)︸ ︷︷ ︸
Particles

, (6.9)

and

p(xk|z:k) ∝ p(zk|xk)︸ ︷︷ ︸
Importance
weights

p(xk|z:k−1)︸ ︷︷ ︸
Particles

, (6.10)

where a bunch of particles x ∈ R2n are spread on a 2D area, which are used to

represent different possible states. Equation (6.10) represents the prediction step,

which uses the motion model presented in (6.6) to move each particle with some

random noise. In this case, the mean of all these particles represents the prior

probability distribution.

Then, using (6.10), each particle is weighted with a likelihood ratio based on a

measurement probability function. Here, an important difference with reference to

ROTT methods is introduced as follows:

Range-only In the ROTT methods, this function is based on the error between

the real range measurement zk and the range that each particle have between each

other and the observer, expressed as

Wn
k =

1√
2πσ2W

exp

(
− (h(xnk)− zk)2

2σ2W

)
, (6.11)

which calculates the probability of the state xnk for one dimension Gaussian function

with mean equal to the distance between the observer and the particle, and variance

equal to σ2W . In this case, the index n ∈ {0, . . . , N} indicates the particle number
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up to N . Where the measurement model can be described by

h(xnk) =‖ xnk − pk ‖ +wk

=
√

(xnxk − xpk)2 + (ynxk − ypk)2 + wk,
(6.12)

where pk ∈ R2 is the observer position, and wk ∼ N (0, σ2wk) is a zero-mean Gaussian

noise.

Equation (6.11) is known as Probability Density Function (PDF), and its repre-

sentation is presented in Fig. 6.2a, where a σ2W = 40 was used.

Area-only However, in the AOTT method the measurement probability function

is based on the distance that each particle has between each other and the observer,

where the particles which are inside an area defined by the maximum range that

a tag can be detected will be more weighted than the particles which are outside

of this area. On the other hand, if a tag detection is missed, the particles inside

the area will be less weighted than the particles which are outside. This behaviour

can be represented using the Cumulative Distribution Function (CDF) [145] and its

complementary Survival Function (SF) (known also as Q-function [146]), which can

be expressed as

Wn
k =



1√
2πσ2

W

r∫
−∞

exp

(
− (x− µ)2

2σ2W

)
dx if zm = 1

1− 1√
2πσ2

W

r∫
−∞

exp

(
− (x− µ)2

2σ2W

)
dx if zm = 0

, (6.13)

where r is the distance between each particle and the observer, µ is the maximum

range that a tag can be detected, and σ2W is the variance, which is used to modify

the slope of the function.

The 3D representation of (6.13) is shown in Fig. 6.2b and Fig. 6.2c. Where the

weight’s distribution used in the area-only method is computed using a σ2W = 20 for

the SF, and a σ2W = 80 for the CDF functions, which are detection and no-detection

scenarios respectively.

Finally, all the particles are resampled accordingly to their weight in order to

obtain the posterior probability distribution and to estimate the target’s position.
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(a)

(b)

(c)

Figure 6.2: (a) weight’s distribution used in the range-only method, for a σ2W = 40.
(b) weight’s distribution used in the area-only method when a tag is detected (SF),
for a σ2W = 20. And (c) weight’s distribution used in the area-only method when a
tag transmission is missed CDF, for a σ2W = 80.
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Resampling method Different resampling methods have been developed over

the past years [134], where the Systematic method offers a good performance in

terms of computational complexity and resampling quality. However, in [135], we

demonstrated that other methods, such as the Compound strategy, have a greater

performance under fast target manoeuvre circumstances.

The Compound method consists of twofold strategies: a standard Systematic

resampling method for (N − `) particles; and a Random resampling method for the

last (`) particles, which are drooped randomly inside a circular area around the

latest Wave Glider position. This strategy is carried out to always maintain some

particles nearby the last tag’s detection, which improves the PF time response in

front of unexpected target position variations. Moreover, it maintains the particles’

diversity, which helps to reduce the common degeneracy problem presented in the

PF [134].

Using all these considerations, the following algorithm can be used to track

underwater targets using autonomous vehicles by the use of PFs, Algorithm 6.
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Input: ∆t, zi, New range
Output: Next target state estimation x̂k
if Init then Initialize:

F,Q, x̂0

The state vector for each particle and its weight associated are also
initialised:
{xn0}Nn=1 ∼ p(x0)
{Wn

0 }Nn=1 = 1/Np

end
Predict step (6.9):
{x̂nk}Nn=1 = Fk−1{x̂nk−1}Nn=1 + Qk−1
if Time has elapsed then update step (6.10):

Importance weight update using (6.13)
{Wn

k }Nn=1

Normalize the importance weights
{Wn

k }Nn=1 = {Wn
k }Nn=1/

∑N
j=1W

j
k

Resampling:
c = [W 0

k ,W
i−1
k +W i

k, . . . ,W
N−1
k +WN

k ] for
i = {1, . . . , N − 1}
u = random()/(N − `)
i = 0
for j in range(N − `) do

while u > ci do
i += 1

end
aj = xik
u += 1/(N − `)

end
for i in range(`) do

aj+i+1 = random(x)
end
{xnk}Nn=1 = a

x̂k = 1
N

∑N
n=1 xnkW

n
k

end
Algorithm 6: PF for Area-Only tagged target tracking.
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6.3 Optimal parameters

In this section different simulations have been conducted in order to characterize

the AOTT algorithm under different parameters and scenarios. These simulations

have been carried out using the Monte Carlo Simulation (MCS) method. For all the

simulations, the mean and the average result after 30 iterations are presented. The

other parameters, which are not involved in the current simulation, have been con-

sidered ideal. Two different scenarios have been studied in each case: (a) localising

a static target, and (b) tracking a moving target which had a velocity equal to 0.2

m/s.

6.3.1 Optimal path

The optimal path that should be conducted by an observer in order to maximise the

accuracy of the estimated target position is a common problem of the target tracking

methods, which has been addressed exhaustively over the past years. For example,

Moreno-Salinas et al. [98] conducted a study to find the optimal sensor placement

in an underwater range-only target localisation scenario. In the previous Chapters,

we presented a complete study to derive the optimal path to conduct by a surface

vehicle in a range-only and single-beacon static target localisation scenario. Further

in [115], Crasta et al. extended the path optimisation problem for underwater target

tracking using multiple trackers. Whereas all these works have been conducted for

the ROTT methods, some of the results derived can also be applied in the AOTT.

These studies pinpointed two basic rules to follow: (a) all the measurements must

be performed uniformly distributed on a circumference centred over the target, and

(b) the circumference’s radius must be greater than the target depth and in some

cases as large as possible:

Measurements’ distribution We can derived intuitively that the measurements

have to be uniformly distributed to maximise the system observability, and therefore,

the target’s estimation. The algorithms used in the ROTT methods find the inter-

section between circumferences to estimate the target position, if the measurements’

positions are not well distributed, the possibility of errors due to noisy measurements

increase (i.e. measurements too close between each other and obtained in a small

region, provide circumferences too difficult to differentiate between them). This

idea can also be applied in the AOTT method, if the tag’s receptions are uniformly

distributed around itself, the area that results by overlapping all those receptions is

smaller, and therefore, the tag’s uncertainty is reduced.
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Circumference’s radius The ROTT optimal circumference radius to follow by

a tracker can be derived analytically which results in rc =
√

2Zq, where zq is the

target’s depth. However, this basic rule has the limitation defined by the maxi-

mum tracker time required to perform the path. In real scenarios a circumference

with rc < 800 m is desired. On the other hand, the only information available

in the AOTT method is the tag’s detection/no-detection, which is specified by the

Maximum Transmission Range (MTR) achievable by an acoustic tag. Therefore,

seems logical that the maximum range to conduct by a tracker should be less than

the maximum transmission range, but closer to it in order to reduce the area that

results by overlapping all the tag receptions circles.

Following these two ideas, a set of simulations has been conducted. Fig. 6.3a

shows the relation between the Tracker Circumference Radius (TCR) and the target

estimation error, where the ratio expressed as Γrange = TCR/MTR was used. We

can see that the best circumference’s radius is the closest one to the tag’s MTR

but lower than that. In contrast, radius too small or larger than the MTR produce

a poor target’s estimation. Therefore, these values are not recommended, which

some times can cause the target’s lost. Here, it is also interesting to observe that

radius close to zero (TCR 7→ 0) yielded to an error equal to 50 m (on static target

scenario). In this case, the target’s prediction was equal to the tracker’s position,

and the error was equal to the initial separation between them, which was 50 m. In

real situations this will not be accurate, and therefore, this value must be discarded

to determine the optimal value.

6.3.2 Maximum transmission range

The MTR achievable by an acoustic tag is hard to known a priori, where different

in situ field tests are recommended to be conducted to estimate its value. The

transmission range performance can be affected by different factors such as the

sea state, the acoustic noise, the sea temperature, or the battery charge. All these

factors introduce an uncertainty in the MTR which is difficult to known and to study

analytically. Here a set of different simulations with different relations between the

MTR and the Maximum Particles Range (MPR) have been conducted, where the

MPR is a key element used to spread the particles in the zone, expressed as µ in

(6.13). These simulations allow to identify the relation between the ratio Γrange =

MPR/MTR and the AOTT’s performance, and therefore, indicates the best MPR

which should be used when the accurate real value of the MTR is unknown.

Fig. 6.3b shows that the optimum Γrange was 1.4 for static targets, and 1.2 for

moving targets. When the MPR was too low or high, the observer was not able

to localise and track the target. Therefore, the best maximum particles range that
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| 6.3. Optimal parameters

should be used to spread all the particles and compute their weight at each new tag

detection is bounded by 0.8MTR 6 MPR 6 1.4MTR.

6.3.3 Reception ratio

The power transmission capability of standard tags is strongly limited by their size,

which is restricted by the size of the marine specie under study. Moreover, if the

different sources of noise that exist in the environment (e.g. sea waves [147]) are

taken into consideration, it is obvious to think that the transmission will not always

reach the observer, i.e. some tag’s transmission will be missed, even though the

tracker stays inside the tag’s MTR.

The Time has elapsed variable in Algorithm 6 is used to update the PF. How-

ever, only after four missing tag receptions it starts a no-reception cycle by applying

the CDF, which weights all the particles accordingly to (6.13). This procedure is

carried out to improve the algorithm performance, and to increase its robustness in

front of missing receptions.

Nonetheless, if the number of transmissions carried out by the tag and success-

fully received by the observer is very low, the algorithm will be unable to localise the

target. This behaviour can be observed in Fig. 6.3c, where the Successful Reception

(SR) over the Total Transmissions (TT) ratio defined by Γreception = SR/TT is pre-

sented. Here, a Γreception 6 0.5 yielded in a poor AOTT performance, and therefore,

the target could not be localised and followed.

6.3.4 Resampling method

As was pinpointed in [135], a Compound resampling method for the PF can increase

the target tracking performance. The main idea of the Compound method is to

spread a certain number of particles in a zone nearby the target, which helps the

algorithm to track sudden changes in the direction of the target.

Here, the particles are deployed around the tracker instead of spreading them

around the latest estimated target position. This action helps to increase the parti-

cles diversity, and emphasise the latest time that the tag was detected. The results

obtained are shown in Fig. 6.3d. Whereas the influence of the resampling method

to localise static targets is minimum, the Compound method overperforms the Sys-

tematic method in moving target scenarios.

Finally, all the optimum parameters obtained in this section are summarized in

Table 6.1.
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Figure 6.3: Estimated target position error as a function of the tracker circumference
ratio (a), the maximum particles range ratio (b), the tag reception ratio (c), and
the resampling method (d): Systematic (Sys), and Compound (Cxx) with different
ratios. The dotted line indicates a 50 m of error. Simulations conducted for static
target (dark color) and moving target (light color) cases. The mean and the Standard
Deviation (STD) after 50 iterations are represented.
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6.4 Simulated scenario

The next simulation has been conducted to observe the AOTT’s performance using

all the recommendations derived from the previous section. In this case, the target

was moving at 0.2 m/s and performed a 90° right turn after 67 min, the rest of the

parameters were:

• Tag transmission delay = 60 s

• Maximum tag transmission range = 250 m

• Tracker radius = 200 m

• Tracker velocity = 1 m/s

• Number of particles = 10000

• Resampling method = Compound with ratio 1.5%

• Maximum particles range = 300 m

• Number of iterations = 50

The result obtained in this simulation is shown in Fig. 6.4a, where the tracker and

target trajectories are represented. In addition, at each time that a tag’s transmis-

sion was received or missed is also visible with a black and a grey start consecutively.

The estimated target position is shown in red.

Fig. 6.4b shows the error obtained between the estimated and the real tar-

get position, where the dark color represents the average value and the light color

represents its STD, both after 50 iterations. Two set of simulations with different

Γreception were conducted, using ratios equal to 100% and 60%. Before and after the

target right turn (at 67 min), the error was ∼50 m using the ideal reception ratio,

and ∼100 m using the 60% ratio. In this situation, the AOTT had more problems to

find and track the real target position, which lose the target position about ∼2% of

the iterations. Despite that, the tracker in general did not loss the target’s position,

and therefore, the great capabilities of the AOTT method were demonstrated.
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Figure 6.4: Simulations: (a) x-y map where the tracker (WG), the target (T ), and
the estimated target position using the PF (AOTT − PF ) are presented. Black
stars represent tag transmission receptions, whereas grey stars represent a missing
tag detection; (b) Evolution of the estimated target position error over time. Mean
(dark color) and STD (light color) limits after 50 iterations, for a Γreception = 100%
and 60%. Field tests: (c) Wave Glider and Coastal Profiling Float (CPF) positions,
and the estimated CPF position using both the ROTT and the AOTT algorithms;
(d) Estimated target position error comparison among USBL, ROTT, and AOTT
methods.

6.5 Field tests

Different field tests were conducted on June 27-28, 2018 using a Wave Glider as a

tracker and the MBARI’s CPF [139] as a target. The Wave Glider was equipped

with a Vemco receiver (VR2C), and two Vemco tags (V7P-69k) were installed to the

CPF. Additionally, the CPF was equipped with a Benthos acoustic modem (ATM-

900), and the Wave Glider with a Benthos DAT (Direction Acoustic Transponder)

modem, which is a type of USBL, both from the Teledyne company. Fig. 6.5 shows

the CPF’s deployment moment, and one of the acoustic tags affixed with a 3D
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| Chapter 6. A novel Area-Only biologging method

printed housing (inset). This target does not required the use of small tags due

to its size. Nonetheless, it was used to compere the performance between different

methods.

Figure 6.5: The CPF’s deployment during the test, with the Vemco tags affixed to
the float (inset) via a 3D printed housing.

This test lasted more than 15 h, where the CPF conducted 3 immersions at ∼60

m depth. During all the test, the Wave Glider carried out different circumferences

around the area which were used in twofold purposes: (a) to perform a tag detection

ratio versus range test, finding the maximum range where the tags could be detected;

and (b) to compare the accuracy of the USBL, the ROTT, and the AOTT methods.

6.5.1 Reception ratio

As we explained in Section 6.3.3, the maximum range that an acoustic tag can

be detected is unknown a priori, and it is strongly dependent on the sea state.

Moreover, the Γreception decrease dramatically with the distance between the tag

and the receiver due to the attenuation that acoustic waves suffers in water [147].

Therefore, in situ tests before each mission are recommended to know the MTR.

Fig. 6.6 shows the results obtained after two days of tests, where a huge variation in

Γreception at different days can be observed, probably due to different sea conditions.

Here, the TT value was computed as TT = Ttag∆t, where Ttag is the tag trans-

mission period, and ∆t is the elapsed time. And the SR where grouped in ranges of

25 m between the target and the tracker. The result shows that a Γreception close to

80% for distances up to 75 m, and then it lows to ∼30% until 400 m range.

Therefore, a tracker trajectory close enough to the target is mandatory in order
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to maintain an acceptable reception ratio. Conducting not too large circumferences

was also derived in Section 6.3.1 as a good practice.
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Figure 6.6: Reception ratio versus distance between devices. Results obtained during
field trials in Monterey Bay, California.

6.5.2 Area-only vs range-only and traditional tracking methods

The second test was carried out to compare the performance of the AOTT method

to others. These methods where the ROTT using the slant range measurements

conducted by the acoustic modems, and the estimated target position obtained by

the USBL. Both methods are widely used in the target localisation and tracking

field.

Fig. 6.4c shows the paths conducted by the Wave Glider and the CPF, and their

initial positions. Moreover, the estimated target position using both the ROTT

and the AOTT methods are presented. On the other hand, Fig. 6.4d shows the

estimated target position error of the AOTT, ROTT, and USBL methods.

From the AOTT’s error we can pinpointed three elements: (a) the algorithm

was notably stable, where the target was mostly all the time correctly localised;

(b) during the first CPF’s immersion, the error was lower than 100 m, and then it

increased up to ¡200 m. If we compare this performance with the study conducted

previously, and if we take into consideration that the Wave Glider’s path was not

optimal, the error’s values were inside the expected boundaries; and (c) when the

CPF was in the surface (at 05h) the error obtained was greater, probably due to a

poorest tag reception.

On the other hand, we also can see from Fig. 6.4d that the USBL’s error was

bigger than 200 m, specially at the end of the test. This poor performance can be
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produced by threefold causes: (a) due to a poor weather and sea state condition,

which could increase the acoustic multi-path behaviour, and could make the vehicle

more unstable; (b) due to the presence of some misalignment error in the USBL

device (e.g. an offset between the transducer and the Inertial Measurement Unit

(IMU)); and (c) the strong multi-path behaviour that existed due to the shallow

water area where the test was conducted. The USBL range measurements are typ-

ically more robust than the bearing and elevation measurements. Therefore, the

use of a filter to increase the system’s performance is a good practice, e.g. in [90]

the authors used a simple weighted filter to increase the estimated target position

accuracy. In addition, the USBL should be calibrated in advance to reduce those

possible misalignments. However, here the raw (i.e. without post processing) data

is presented, which can explain the poor behaviour presented by the USBL.

Finally, we can see that the ROTT method was the best one to estimate the

target position, which had an error lower than 20 m during almost all the test. The

range-only methods can be used when two-way communication between the target

and the tracker is possible. However, this functionality is not available in current

commercial acoustic tags, at least to the best knowledge of the authors and until

nowadays.

6.6 Conclusions

This work has described the basis of a novel method for target tracking using marine

autonomous vehicles, which has been called AOTT. This technique can be used to

track tagged marine species that could not be tracked otherwise due to their size.

Here, an extended study to find the optimal parameters for the AOTT method

has been carried out, and its results are presented. With this study, best practices

under different scenarios have been derived, which sets the basis of future tests and

applications.

Moreover, different field tests have also been performed. For example, a target

has been localised and tracked using a Wave Glider. This field test has been used

to validate the simulations conducted and the hypothesis derived, and to evaluate

its performance in a real scenario. In addition, a comparison between the AOTT’s

performance among other methods has been conducted. Whereas the error of AOTT

is greater than the error of ROTT (as expected), the AOTT method overperforms

other localisation techniques due to the use of small tags instead of bigger, more

complex, and more expensive acoustic modems.
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Smart tag development

A new smart acoustic tag with bidirectional communications and range capabilities

will allow the increase of the estimated target’s position accuracy and will allow the

transmission of important environmental measures. Both aspects could be used to

increase the knowledge of biologging marine animals behaviour.

7.1 Introduction

The Range-Only and Single-Beacon (ROSB) method can be used when the range be-

tween the target and the tracker is known, as shown in Chapter 4 and 5. Those range

measurements are usually conducted by acoustic modems which have bidirectional

communication capabilities, and therefore, the range can be computed through the

Time Of Flight (TOF) of exchanged messages. Nonetheless, the commercially avail-

able acoustic modems have important dimensions, and cannot be fitted in small

objectives (e.g. marine animals such as jellyfish or Norway lobsters). One alterna-

tive to track small targets could be the method developed in Chapter 6 which uses

small acoustic tags instead of modems. However, these tags do not have bidirec-

tional communication capabilities, and therefore, the range between the target and

the tracker cannot be measured.

7.1.1 Motivation

Nowadays, one of the most important tag’s manufacturer is Vemco (www.vemco.co

m), which develops different tag’s sizes and their correspondent receptors. However,

those are only transmitters, and therefore, cannot be used for target tracking using

the ROSB methods presented above, which have better performance than the Area-

Only Target Tracking (AOTT) method developed in this thesis.

In this framework, the development of a new smart tag will allow the use of better
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monitoring techniques for marine animals monitoring by the use of Autonomous Un-

derwater Vehicle (AUV). That could be used for fishery management (i.e. producing

ancillary data for fishery management of the relevant commercial items, as Nephrops,

as well as the Ocean Tracking Network (OTN) tracking of snow crabs [140]), and in

scenarios of multiple platforms intercommunicated.

7.1.2 Related work

Different new tags have been developed during the last years with new sensors, and

improved capabilities (e.g. in size, power, and communication protocols). Those

developments have utilized the expansion of miniature sensors and devices used

in the boom which consumer electronics have suffered over last decades, such as

smart phones and wearable fitness devices [148]. Nonetheless, in land environments,

the animal tracking is relatively easier compared with underwater scenarios, where

the Global Positioning System (GPS) and standard satellite communications are

not available. Consequently, other tag strategies have been used (e.g. acoustic

communication or stand-alone data-loggers), some of them are summarized in Table

7.1.

On the one hand, the size of the marine tags is determined by different factors,

such as, the size and power of their batteries, or the number of sensors included. On

the other hand, the size of those tags should not exceed the commonly used tag-to-

body-mass rule of 2% [29]. This rule is used to not disturb the normal behaviour

of the host marine specie. For that reason, the tag performance/size ratio is a key

limiting factor which must be taken into consideration for each new development.

The typical available sensors are depth and temperature, where accelerometers

or light sensors are also possible (see [37] and references therein). These sensors are

used to study the behaviour of the marine specie (e.g. maximum depth or day/night

activity). Moreover, these information can also be used to track the animal, where

the temperature and depth information are correlated with global maps to estimate

the path followed by the tagged animal [149].

Finally, some of these tags have acoustic communication, which can be used to

detect their position when they are close to a receiver while underwater. These

acoustic receivers are generally spread on specific spots of interest and are used to

detect the presence of the tagged animals. Others tags have satellite communication,

which is used to send their position and some telemetry. Nevertheless, these can

only be used when they are on the sea surface. Also tags which non-communication

capabilities can be found, in those cases, the tags must be recovered in order to

download all the sensor’s information recorded. However, in all these cases, the

communication is one-way between the tag and the receiver (i.e. the user cannot send
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information or commands to the tag). This is an important constraint, for example

two-way communication (i.e. communication from the tag to the receiver, and from

the receiver to the tag) will allow the conduction of range measurements between

the tag and the receiver, which will be useful to track the tag using the Range-Only

Target Tracking (ROTT) methods. In addition, two-way communication will allow

the modification of different measurement parameters in-situ, such as the sampling

frequency.

7.1.3 Contributions

In this chapter, the basis of a new smart tag is developed. This device will have

bidirectional capabilities to communicate to/from a master device. This will enable

the measure of the slant range between them, and therefore, the range-only tracking

algorithms explained above could be used. Furthermore, this smart tag will also

have different sensors to measure important surrounding parameters. As a result,

the combination of both communication and measuring capabilities will allow new

studies which are not possible nowadays.
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7.2 Common tags

In this section, the study of a Vemco tag is conducted using a Naxys hydrophone

(Bjørge ASA, Norway), model Ethernet 02345. As it has been explained, these are

one of the most used tags, and therefore, will be used as a reference.

7.2.1 Modulation

The Vemco’s tags utilize a simple pulse position modulation [151], which uses the

separation between eight pulses to encode the Identifier (ID) of each tag. These

pulses are generated with a 69 kHz sinusoidal signal, each one with 5 ms of duration.

For example, the tag model V16-4x with an ID number equals to A69-1601-

2687 has 8 pulses separated 300 ms, 420 ms, 350 ms, 380 ms, 400 ms, and 340 ms

respectively.

7.2.2 Field tests

These tags have been tested in the OBSEA underwater observatory, using its hy-

drophone. Thanks to this instrument, we could observe in a real environment the

signal generated by the tag, as well as all the interferences and noise presented in

the area. As an example, Fig. 7.1 shows a single tag’s transmission received by

the hydrophone. The top plots show the raw signal received, whereas the bottom

ones show the signal after the application of a 69 kHz Band-Pass Filter (BPF). In

addition, the right plots are a zoom of the initial left plots.

In these plots, we can observe the kind of noise that must be faced in a real

environment. The noise and interferences can be even worst in more adverse sce-

narios. For example, near a harbour or with the presence of boats or scuba divers

nearby. In such circumstances the signal transmitted by the tag can be intractable,

and therefore, the communication lost.
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Figure 7.1: Representation of a single tag transmission received by the hydrophone.
The top plots show the raw signal received, whereas the bottom ones show the signal
after the application of a 69 kHz BPF. Additonally, the right plots are a zoom of
the initial left plots.
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7.3 Proposed smart tag

Here, we propose the development of a new tag with bidirectional acoustic and mea-

suring capabilities, which is called smart tag. For this purpose, different simulations

were conducted using Python, and a first implementation was realized using the

CompactRIO (cRIO) platform from the National Instruments company.

7.3.1 Python implementation

The first approach to develop the smart tag was its implementation using the Python

software, which allows a rapid implementation and modification scheme. Here, the

main idea was to study the behaviour of a simple bidirectional communication in

a simulated environment. For this purpose, a signal was generated, then it was

transmission through a simulated channel, and finally it was de-codified and its

TOF calculated. This was conducted twice, master-to-slave and slave-to-master.

The main parts of the developed program are summarized below.

A TX waveform (master)

Firstly, a base band chirp signal is generated as

xc = ej2πt(
−B
2

+ B
2T

t), (7.1)

where B is the chirp bandwidth, T is the chirp length, and t ∈ {0, . . . , T − 1} is the

time scale. Then, the pass-band chirp signal is computed as

x = ej2πF0txc, (7.2)

where F0 is the waveform center frequency.

B Master to slave channel

To simulate the channel, a simple low pass filter response is used. The filter response

is also shifted to the right to represent the channel range delay using a zero array

defined by Zdelay = zeros{0, . . . , |range/(vFs)|}, where v is the speed of sound

in water, and Fs is the sampling frequency. Thus, the channel response can be

computed as

hM2S = Zdelay _ e−100τ , (7.3)

where τ ∈ {0, . . . , ds}, where ds is the channel delay spread, is the exponential decay

values.
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C Applying the channel

Then, the channel response is applied to the chirp signal using a Finite Impulse

Response (FIR) filter. Moreover, the response is normalized by

hnorm =
1√∑ |hM2S |2

, (7.4)

and some random noise is added using

Aw =
1

2
10

−SNR
10 , (7.5)

where the SNR is the signal to noise ratio. The final signal after applying the channel

response is

yS = hnormFIR(hM2S ,x) +Aw, (7.6)

D RX decoding (slave)

The first step to decoding the signal is to convert the yS into a base band by

ySdown = ySe
−j2πF0t, (7.7)

and then it is filtered with a low pass filter. Finally, a correlation between the

received ySdown signal with the generated xc signal is conducted to find the exact

time of arrival.

E Slave to Master

A similar procedure is conducted to send a chirp signal from the slave modem to the

master. This is conducted each time that a ”good” correlation is observed, where a

simple threshold is used.

F Range computation

Finally, the range between both modems is computed using the TOF of the ex-

changed messages, which is the sound velocity in water multiplied by the TOF.

7.3.2 Simulations

With the model of the modem explained above, a set of simulations was conducted.

These simulations were used to know the behaviour of the proposed modem under

a quasi-ideal scenario. For example, we could test two kind of signals: a simple

sinusoidal tone of 5 ms, such as the one used by Vemco, and a chirp pulse of 5 ms.
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The chirp signal had better detection accuracy than the simple tone, as it can be

observed in Fig. 7.2. Therefore, if the TOF is wanted to be accurately detected,

which then will be used to measure the slant range between two devices, the chirp

signal should be used.
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Figure 7.2: (a) range error computed using a chirp signal. And (b) the range error
computed using a simple tone. In both cases 100 iterations have been conducted.

7.3.3 cRIO design

The platform used to design and test the acoustic modem was the CompactRIO

(cRIO) (National Instruments, USA), which is programmed through the LabView

language, also from the National Instruments company. The main parts of the

cRIO system are: a real-time computer, a Field-Programmable Gate Array (FPGA)

module, and a slots’ bus to connect either analog or digital modules. Consequently,

this versatile platform is useful to implement and test different parts of the designed

acoustic modem. The system implemented is shown in Fig. 7.3. In this case,

two cRIO model NI cRIO-9024 were used. Both equipped with a Digital-to-Analog

Converter (DAC) and Analog-to-Digital Converter (ADC) modules, the NI-9263

and the NI-9215 respectively. These cRIO were controlled with a Personal Computer

(PC) and the corresponding LabView software. The signals generated were amplified

with a power amplifier and then transmitted using an acoustic transducer into a

test tank. Then, the signal received with another transducer was conditioned and

processed with a second cRIO.
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cRIO ADC DAC cRIO ADC DAC
Power amplifier

Signal Conditioner

Test Tank

Acoustic Transducers

Modem 1 Modem 2

Figure 7.3: Bloc diagram of the two cRIO used to test the algorithms designed for
slant range measurements in the laboratory. Each cRIO represents one acoustic
modem/smart-tag
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A Block diagram

The main parts of the software developed, which has been used to implement all the

aspects of an acoustic communication between two devices, are represented in Fig.

7.4. In this case, one modem was used as a master and a second modem was used as

a slave. The master started the communication sending a waveform signal through

the channel (in this case, the channel could be real or simulated). Then, the signal

was received by the slave modem.

The signal generated had two main parts: a wake up tone and a chirp signal. The

slave modem was waiting for a wake up tone. When this was detected, it started the

decoding and correlation procedure. Each time a correlated signal was detected, the

slave computed the time between the start acquisition time and the correlated signal

detection. Then this time was used to compute a constant time between the slave

signal detection and the acknowledgement signal transmitted by the slave. This is

an important step, because the master cannot know a priory the time required by

the slave to process the signal, and therefore, this time must always be the same.

Finally, the master computed the range between both modems using the TOF

elapsed.
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Figure 7.4: Bloc diagram of the communication scheme used to measure the slant
range between two acoustic devices.

TX waveform The signal transmitted by both the master and the slave modems

were composed by a wake up tone of 30 kHz and 5 ms of duration, and a chirp signal

of 20 ms of duration. These had 100 ms of separation.

Wake-up tone In this case, a simple threshold method was used to set if the

wake-up tone was detected or not.
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RX decoding The decoding method used had two steps. Firstly, the received

signal was converted into base band, multiplying it by the waveform centre frequency

and then applying a low pass filter. Then, a correlation and a peak detection method

were used to find the exact detection time.

Waiting time Using the cRIO’s FPGA, the acquisition start time can be known.

In addition, the chirp time detection can be known with the RX Decoding. Conse-

quently, with both times, we could set a constant time between the chirp detection

and the acknowledgement transmission. This constant time was indispensable to

accurately compute the range between both modems.

Range Then the TOF was used to compute the range. The cRIO’s FPGA module

was also used to obtain a hardware time-stamp, which was used to known with

precision both the transmission and the reception time. This time-stamp is needed

to compute the TOF with high accuracy. Finally, knowing the TOF and the sound

speed in water, the range between both modems can be computed.

B Software implementation

Each cRIO was programmed using its real-time processor and its FPGA module.

The FPGA was used to obtain a high accuracy hardware time-stamp of both trans-

mission and reception times. Additionally, the FPGA was also used to control the

DAC and the ADC modules. On the other hand, the real-time processor was used

to implement the rest of the code, which was in charge to conduct the wake up

detection, the signal’s decoding, and measure the slant range.

Real-time unit Fig. 7.5 shows the code implemented in LabView which runs

inside of each cRIO. On the left, the project directory with all subVI developed is

presented, an the two right images show the front panels of the acoustic modems of

both slave and master units.

On the other hand, Fig. 7.6 shows the block diagram of the main software

developed for the master and the slave units. In this picture, the different modules

explained above are represented (e.g. wake up system, decoding, and ranging).

FPGA unit Fig. 7.7 shows the code implemented in LabView which was compiled

for the FPGA module. The main purpose of this code was to have an accurate and

reliable time of when a signal was either transmitted or received, which was crucial

to measure the TOF, and therefore, to compute the range between the two acoustic

modems.
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7.3.4 Accurately computing the timestamp

To obtain an accurate and precise signal reception time, two methods have been

used: (a) an exact and reliable hardware control, and (b) a robust signal detection

procedure. Both strategies are explained below.

A Timestamp by hardware

A fundamental condition to obtain an accurate and reliable timestamp, either when

the signal is transmitted or received, is be able control precisely the execution time

of each instruction. Nonetheless, in some processors or microcontrollers this is not

possible due to the Operating System (OS), which introduce some uncertainty. In

general, the user does not have the control of the execution process of an OS, which

can stop some current execution to attend to external interruptions. For this reason,

is essential to have physical timers and direct access to them, which have to control

the transmission and reception times.

The physic timers required to have a good timestamp have been implemented

directly in the FPGA, which give to the upper software layers the requested time

of when a signal has been received or when a signal has been transmitted. These

timers are very reliable and does not have any kind of maladjustment produced by

the OS.

B Signal detection algorithm

The second important aspect which must be addressed to obtain a good signal

reception timestamp is the signal detection algorithm. The most used method is

a simple correlation between the received signal with the known ideal one. This

technique gives a maximum peak when both signals are equal, and therefore, the

exact time when the signal was received. However, if the received signal is very noisy,

or the reception is conducted in an important multipath scenario, the correlation

might ends into false detections or inaccuracies.

To design a more robust detection algorithm, the correlation signal is computed

using the following steps:

• Peak-scale related to noise

• Normalisation

• Envelope detection

• Center of gravity detection
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Peak-scale related to noise The first step conducted when a correlation is per-

formed is adjust the resultant correlated signal C with the noise level, using a

predefined windows size L, where each correlation value is divided by the average

values inside the windows as follows

CP =
|Ck|2

2L−1∑
n=0
|Ck+(n−L)|2

. (7.8)

Normalisation After the peak-scale related to noise (7.8) adjustment, a normal-

isation step is conducted which adjust the values between 0 and 1.

CN =
CPk

max(CP)
. (7.9)

Envelope detection Then, an envelope detection algorithm is applied using a

Butterworth low pass filter of order 5 and low cutoff frequency equal to 800 Hz,

which yields in a normalized impulse response h(k). As a consequence, the envelope

of the correlation CP can be written as

CE = CN(k) ∗ h(k), (7.10)

where ∗ is the convolution product.

Center of gravity detection Finally, the center of gravity around the first peak

greater than a prefixed threshold is computed using a windows size L as

CG =

2L−1∑
n=0

[k + (n− L)]CEk+(n−L)

2L−1∑
n=0

CEk+(n−L)

. (7.11)

As a result, after each correlation, the final timestamp obtained indicating when

a signal has been received is timestamp = CG/fs, where fs is the sampling frequency

used.
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Figure 7.5: Project directory and front panel of the main program designed to
acoustically communicate two cRIO and measure the range between them using the
TOF. Real-time unit.
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Figure 7.6: Bloc diagram of the main program designed to acoustically communicate
two cRIO and measure the range between them using the TOF. Real-time unit.
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Figure 7.7: Bloc diagram of the main program designed to have a hardware times-
tamp of both reception signal and transmitted signal. FPGA unit.
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7.3.5 Experimental results

The experimental results were conducted at Institut Supérieur De L’electronique Et

Du Numérique (ISEN) - Brest (France) (isen-brest.fr), using the Seacom research

group testing facilities. There, they have a water tank for underwater acoustics with

all the required acoustic instrumentation. The photographs presented in Fig. 7.8

show the water tank used as a test-tank, the cRIO modules, and all the set used.

Figure 7.8: Images taken during a laboratory experiment, where the test-tank used
and the cRIO modules can be observed.

Some of the results obtained are shown in Fig. 7.9. On the top left side the

correlation signal between the received and the transmitted signal obtained after

its normalisation is presented. This figure shows a non-clear peak. This behaviour

is due to the test conditions. This test was conducted inside a water tank, and

whereas it is prepared for acoustic tests, the acoustic waves still have rebounds and

multi-path effects. Therefore, a simple peak-detection algorithm have occasionally

difficulties to compute the correct time-stamp. This behaviour can be observed

in the range measured using this technique (Fig. 7.9c), where the range measured

between two acoustic modems had a large variation, sometimes the ranges measured
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were ∼2 m whereas others were ∼5 m.

On the other hand, the right plots presented in Fig. 7.9 show the correlation

and the range measurement results applying a more robust method (explained in

Section B), which was used to avoid the poor performance experimented above.

With this method, the range measured was ∼2 m with a Standard Deviation (STD)

of 0.068 m, which is a variability less than 7 cm. If we take into account the

challenging environment (i.e. strong multipath effects), the result obtained validates

the methodology proposed.
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Figure 7.9: (a) result obtained after the received signal was correlated with the
transmitted signal, and normalized. (b) correlation obtained after the the peak-
scale related to noise plus the envelope detection was applied. (c) 500 distances
measured between the two modems using a simple peak detection algorithm from
the normalized correlation. (d) 500 distances measured between the two modems
using a combined detection algorithm, where the peak-scale related to noise plus
envelope detection correlation was used and the center of gravity was measured.
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7.4 Conclusions

The current commercial tags are not suitable for range-only tracking purposes. As

a result, here the basis of a new smart tag is proposed, which is designed with the

goal to be able to track small marine animals using range-only methods by the use

of autonomous underwater vehicles.

A set of simulations and an implementation using the cRIO architecture have

been presented. Furthermore, initial laboratory experiments have been conducted

to demonstrate the great capabilities of the methodology proposed and the algo-

rithms designed. In these laboratory tests, different range measurements between

two transponders with an error less than 10 cm were obtained.
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Conclusions and future work

This chapter contains the conclusions of the work presented throughout this thesis,

which has been focused on the study and development of new acoustic target tracking

methods.

Firstly, the study of classic acoustic tracking methods (e.g. Short BaseLine (SBL)

and Ultra-Short BaseLine (USBL)) has been conducted, where the main constrains

and problems have been observed. For example, the SBL deployment complexity,

or the errors presented in the USBL due to the multipath or the sea state.

Then, a complete study about the best practices (e.g. optimal path or best

tracker radius) for underwater target localisation and tracking using the Range-Only

and Single-Beacon (ROSB) techniques has been carried out, which has included dif-

ferent areas such as analytical studies, simulations, and field tests. At the same

time, real missions have been presented (e.g. finding a benthic Rover using a Wave

Glider, situated at 220 km west of central California coast and 4000 m depth), where

the successful collaboration between autonomous vehicles was conducted. From a

methodology point of view, this work advanced the understanding of accuracy that

can be achievable by using both range-only and single-beacon localisation and track-

ing methods by an autonomous vehicles, which has been demonstrated not only

numerically but also in real tests. In this context, those advancements would con-

tribute to expand the use of such autonomous vehicles as a multi-purpose platforms,

which have been used widely around the world. From this study we could conclude

that the ROSB methods is an interesting option, which can offer target position

estimations with an accuracy lower than 5 m in many scenarios.

On the other hand, a novel method to track commercially available acoustic tags

has been presented, which has been called Area-Only Target Tracking (AOTT).

This technique can be used to track tagged marine species that could not be tracked

otherwise due to their size. These acoustic tags do not have bidirectional commu-
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nication capabilities, and therefore, the ROSB techniques are not applicable. Here,

an extended study to find the optimal parameters as well as the results obtained

through simulations are presented. With this study, best practices under different

scenarios have been derived, which sets the basis of future tests and applications.

Additionally, not only analytical studies and simulations have been conducted, but

also many field tests. For example, tracking a Coastal Profiling Float (CPF) with a

Wave Glider, where a comparison among the AOTT, the ROSB, and the USBL was

carried out. In this study, we could observe that whereas the AOTT error (∼100)

is greater than the other methods (as expected), the AOTT method overperforms

other localisation and tracking techniques due to the use of small tags instead of

bigger, more complex, and more expensive acoustic modems. Consequently, this

method is optimum to track tagged marine animals.

Finally, the basis of a new acoustic tag with bidirectional communications ca-

pabilities have been presented. This tag aims to improve the current standard

tags, which can only be detected in a passive ”listen-only” approach where there

is no interrogation between the tracker an the target. Here, its implementation

using the CompactRIO (cRIO) architecture form National Instruments, and differ-

ent laboratory tests are presented, which sets the main ideas to consider in further

developments.

8.1 Future work

The development of a research project always brings about the discovery of new

problems, as well as new interesting research projects. As future work, here we

can pinpoint four areas of interest. The first, and more obvious one, could be the

development of an acoustic tag with bidirectional communication capabilities and

small size; a second area of research could be the development of new strategies to

obtain the optimal path which should be conducted by a tracker in order to optimize

and increase the accuracy of the estimation of the target’s position; moreover, the

target tracking algorithms could be used in collaboration with other methods such

as visual tracking; finally, the last area of interest as a future research could be the

use of the tracking methods studied in this thesis in a multi-vehicle collaboration

environment.

A Acoustic tag

In this thesis the basis of an acoustic tag with bidirectional communications ca-

pabilities have been presented. This device will allow new methods to study the

behaviour of the marine species and their habitats. For this purpose, the Sistemas
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Acusticos Submarinos para la monitorizacion del comportamiento especial de ES-

pecies (SASES) project has been financed this year (Proyectos I+D+i “Retos In-

vestigación” del Ministerio de Ciencia, Innovacón y universidades ref. RTI2018-

095112-B-I00), which will conclude with the development of a prototype. Therefore,

the SASES project can be seen as a natural continuation of this thesis, which will

finish the development of the acoustic tag using the study conducted here.

B Path optimization

In this thesis the optimization of the tracker’s path has been conducted using the

Fisher Information Matrix (FIM) method. However, other methods could be devel-

oped in the future where aspects such as the velocity of the target and the tracker,

the presence of sea currents, or the power consumption could be taken into con-

sideration. For example, the advances conducted in Artificial Intelligence (AI) in

areas such as the Deep Reinforcement Learning (DRL) could bring new strategies to

find the optimal path. The DRL refers to a goal-oriented algorithms, which learns

how to attain a complex objective or maximize along a particular function. In this

case, the key factor is to chose the correct rewarding function, which is not a priori

obvious.

C Merge tracking methods

One of the main goal of this thesis has been the study and development of acoustic

tracking methods to study the behaviour of marine species. This topic is very

important for many scientists, who study not only the species, but also the impact

that these have in the ecosystem and in our society. For example, a recent project has

been announced which uses a new Autonomous Underwater Vehicle (AUV) called

Mesobot to autonomously track marine animals using a stereo cameras. This vehicle

has been developed in collaboration by the Woods Hole Oceanographic Institution

(WHOI) and the Monterey Bay Aquarium Research Institute (MBARI), among

others. In the future, will be interesting to merge the acoustic tracking methods

with visual methods, where the best aspects of both worlds could be combined.

For example, the acoustic methods can be used on longer distances between the

tracker and the target. And the visual methods can offer more information about

the animal’s movements.

D Multi-vehicle scenario

Finally, all the tracking algorithms studied and developed in this thesis have focused

in the use of a single tracker vehicle. However, as a future work, these methods
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can be modified to be used in a multi-vehicle scenario, where multiple vehicles in

collaboration could be used to track a target.
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179



| Bibliography
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