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Preface 

The whole work presented in this dissertation has been carried out at the Institute of Chemical 

Researcher of Catalonia (ICIQ), during the period of December 2015 to October 2019 under the 

guidance of Professor Rubén Martín. The thesis contains five chapters: a general introduction, three 

research chapters, and a last chapter with a general conclusion of all the research work. Each of the 

research chapter includes an introduction and an aim of the presenting project, followed by a 

discussion of experimental results, mechanistic analysis, conclusions, and experimental sections. 

The first chapter includes the general background of silicon–based interelement linkages. A brief 

overview of the preparation and activation pathways of silicon–heteroatom compounds, and their 

application in functionalization reactions are discussed. 

The second chapter, ‘‘Ni-Catalyzed Stannylation of Aryl Ester via C–O Bond Cleavage’’, 

describes the synthesis of arylstannanes via sp2 C–O bond cleavage of aryl pivalates. Preliminary 

mechanistic studies and control experiments have indicated that a canonical catalytic cycle consisting 

of oxidative addition, transmetalation and reductive elimination comes into play. The results of this 

chapter have been published in Angew. Chem. Int. Ed. 2017, 56, 3187-3190. 

The third chapter, ‘‘A Mild and Direct Site Selective sp2 C–H Silylation of (Poly)Azines’’, 

describes the synthesis of silylated azines through C–H functionalization of unactivated azines in the 

presence of stoichiometric amounts of base. This technology allows to access valuable silylated 

azines under mild conditions that are not easily within reach by traditional cross-coupling 

methodologies. Preliminary mechanistic studies and control experiments have indicated a silyl anion 

pathway, with site-selectivity modulated by the denticity of the solvent. The results in this chapter 

have been published in J. Am. Chem. Soc. 2019, 141, 127-132, with Dr. Yangyang Shen as co-author. 

The last chapter, “Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes’’, 

presents our efforts toward the direct, atom-economical 1,1-difunctionalization of sp C–H bonds 

catalyzed by KHMDS. Our method allows to incorporate both a silyl and a boron fragment across an 

alkyne with an exquisite site-selectivity pattern, representing a complementary approach to traditional 

silylborations of p-components that require the utilization of transition metals and that operate with 

a different selectivity pattern. Additionally, we demonstrate the synthetic versatility of the 

corresponding silylborane adducts in a series of orthogonal C–C bond-forming reactions. The 

manuscript of this chapter is submitted, and it has been possible due to the collaboration with Dr Yaya 

Duan and Dr Yangyang Shen. 
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Abstract of This Doctoral Thesis 

Synthetic chemistry is almost unimaginable without three main group elements, namely, boron, silicon, 

and tin. When attached to a carbon atom of any hybridization, these functional groups serve as exceptionally 

versatile linchpins in synthesis, selectively transforming into an enormous breadth of C–C and C−X bonds. 

Therefore, the means to discover new methods to forge valuable C–Si, C–B and C–Sn bonds are always in 

high demand. In line with the research interest of Martín’s group in the activation of strong s-bonds, this 

doctoral thesis will be focused on the development of novel techniques to make use of silicon-heteroatom 

interelement linkages to functionalize inert C–O & C–H bonds via either nickel catalysis or transition metal-

free protocols. We hope that the transformations described in my PhD thesis will inspire others for the 

development of cross-coupling reactions and functionalization techniques that make use of interelement 

linkages as coupling partners. 

 

 

Figure 1. General abstract of this doctoral thesis 

 

Our first effort on interelement linkages was focused on a nickel-catalyzed stannylation of aryl esters via 

sp2 C–O functionalization aided by silicon-tin nucleophiles. In this project we chose sterically bulky aryl 

pivalates as precursors, as these are less likely to undergo hydrolysis compared with their corresponding 

acetate congeners. In addition, the electronegativity difference of silicon and tin allows for chemoselective 

activation of the Si−Sn bond, allowing to transfer selectively the tin fragment. This protocol was distinguished 

with its wide scope and mild conditions, thus representing a useful entry to synthetically versatile aryl 

stannane building blocks. Following up our interest on interelement linkages, chapter 2 will be based on the 

utilization of silylboranes for the development of a rather unusual site-selective sp2 C–H silylation of 

(poly)azines in the absence of transition metal. Our method is characterized by its mild conditions, wide 

substrate scope, switchable regioselectivity by subtle modulation of the solvent denticity and its application 
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in late-stage functionalization in (poly)azine drugs. Mechanistic studies suggest the intermediacy of silyl anion 

species and the involvement of contacted or separated ion pairs depending on the solvent utilized. Our last 

project deals with the difunctionalization of alkynes with silylboranes in the absence of transition metals. 

Specifically, we have found a rather abnormal 1,1-difunctionalization event that has allowed us to unlock a 

new pathway for forging C(sp2)–B and C(sp2)–Si bonds in an atom-economical manner in the presence of  

catalytic amounts of KHMDS. This transformation is distinguished by its excellent site-selectivity, exploiting 

a previously unrecognized opportunity that complements existing 1,1- and 1,2-difunctionalization events of 

alkynes. Additionally, such a platform provides a new strategy for streamlining the synthesis of geminal 

dimetallic reagent with high stereoselectivity and preparative utility in organic synthesis. Mechanistic 

experiments suggest that a 1,2-shift on the boron center to sp carbon comes into play. 

In conclusion, we have developed three new methods towards the functionalization of inert C–O & C–H 

bonds by using silicon-based interelement linkages. All the above transformations display excellent 

chemoselectivity profile under mild conditions. Preliminary mechanistic studies have been carried out, 

allowing to understand how these reactions operate at the molecular level. We believe these protocols will 

contribute to a more systematic utilization of silicon-heteroatom reagents in the arena of inert chemical bond 

functionalization. 
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1.1. General Background 

Main group elements such as boron, silicon, and tin have revolutionized the way synthetic 
chemists build up C–C and C–heteroatom bonds. Apart from the inherent versatility and 
application profile of organoboron, organosilicon and organotin compounds, it is worth noting 
that these building blocks have found immediate application in material science, 
pharmaceuticals and agrochemical settings.1-3 The term “interelement linkage” was introduced 
for chemical bonds constructed by these three elements, which are mutual linkages within the 
heavy main group elements and linkages between the main group elements and the transition 
metals.4 There are six different combinations of these three elements. Among these, 
silylboranes and silylstannanes rank amongst the most widely used reagents in these endeavors.  

 

 
 
 

Scheme 1.1. Interelement linkages from boron, silicon and tin 

Nonpolarized Si–Si bonds are thermally stable, with a bond dissociation energy (BDE) of 55  
kcal/mol in average. In contrast, the electronegativity difference of the two elements in 
silylboranes and silylstannes (cB = 2.04, cSi = 1.90, cSn = 1.96) makes the activation of the Si–B 
and Si–Sn viable. In addition, the inherent distinct reactivities of boryl, silyl and stannyl groups 
suggest that interelement linkages might be used to selectively introducing these moieties into 
organic molecules with high levels of regiocontrol. As Si–B and Si–Sn interelement reagents are 
not naturally-occurring, the next sections summarize known protocols for preparing  
silylboranes and silylstannanes. Although silylstannanes have comparatively been less-studied, 
the different pathways known to activate the Si−B bond might a priori be employed to 
functionalize the Si–Sn linkage as well. As it will become evident from the data compiled in the 
following sections, silylboranes and silylstannanes might serve as a gateway to build up 
molecular diversity in a rapid and reliable manner while allowing to generate useful building 
blocks that would a priori be difficult to reach via other synthetic routes.  
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1.2. Synthesis of Si-B and Si-Sn Compounds 

Pioneering studies by Nöth and co-workers allowed chemists to have a platform to prepare 
stable silylboranes. Specifically, the Si–B bond was formed by transmetalation of silyl lithium 
reagent with electrophilic boron halides (1 to 2).5 Silylboranes with amino groups directly 
attached to the boron atom increase the stability of the Si–B bond due to electronic shielding 
effect of the lone pairs of the nitrogen atoms to the adjacent boron atom, whereas the presence 
of alkyl groups at boron lowers down the stability of the corresponding silylborane. Nöth also 
disclosed that various oxygen-substituted Si–B compounds could easily be prepared by ligand 
exchange of the corresponding amine-containing silylboranes with an appropriate diol (2 to 3).6,7 

The wide applicability and enhanced stability of 3 prompted Suginome and Ito to find a more 
convenient synthetic pathway for its preparation, ending up in a platform that makes use of silyl 
lithium reagents (4 to 3 and 5).8 

 
Scheme 1.2. Synthesis of functionalized silylboranes 

In 1981, Suginome and co-workers elaborated the syntheses of several XR2SiBpin compounds 
from PhMe2SiBpin (3).9 The phenyl group in PhMe2SiBpin was able to be displaced by a chlorine 
substituent to afford ClMe2SiBpin (6) due to β-silicon effect.10 The resulting ClMe2SiBpin served 
as a platform for preparing a wide variety of functionalized silicon-substituted Bpin derivatives, 
including the formation of Si−O bonds (7), Si−N (8) and Si−F (9) in reasonable yields via 
nucleophilic attack. Such modulation of the silicon atom is particularly relevant, setting the stage 
for the utilization of silylboranes in a broader spectrum of cross-coupling reactions and 
oxidative-type transformations. 
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Scheme 1.3. Synthesis of bulky silylboranes  

As PhMe2Si−Bpin is sensitive to air and moisture, significant decomposition of silylboronate 
esters is typically observed upon storage. Driven by the prevailing perception that the inclusion 
of steric bulk at boron or silicon atom would make the corresponding silylboronate esters much 
more stable and particularly resistant to air and moisture, Birot and co-workers prepared a 
series of sterically-encumbered silylboranes possessing mesityl groups at the boron atom by 
reaction with appropriately substituted silyl lithium reagents 10 (Scheme 1.3).11,12 Recently, a 
new family of bulky, air- and moisture-stable tris(trimethylsilyl)silylboranes were made by the 
reaction of tris(trimethylsilyl)silylpotassium with the corresponding boron electrophiles.13 While 
tris(trimethylsilyl)silylboronic acid (12a) hexylene glycol ester TMS3Si−Bhg (12b) could be 
prepared by this route, this protocol failed to prepare related  catecholato (Bcat) and 
neopentylglycolato (Bnep) motifs due to the decomposition upon purification.  

 

 
Scheme 1.4. Synthesis of trialkylsilylboronic esters 

A significant limitation of Ito and Suginome ́s methods is the requirement for silyl-metal 
reagents, which are prepared from the corresponding chlorosilanes, inevitably resulting in the 
formation of significant amounts of disilanes as by-products. Although trialkylsilyl lithium 
reagents can be prepared from disilanes, only a limited number of disilanes are commercially 
available. Taking this into consideration, Hartwig and co-workers reported an Ir-catalyzed Si–B 
bond formation by reaction of trialkylsilanes with B2pin2, thus resulting in the formation of a 
wide variety of trialkylsilylboronate esters, including Et3SiBpin (Scheme 1.4).14 These 
trialkylsilylboranes are fairly stable and could be easily purified by regular column 
chromatography over silica gel.  
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Scheme 1.5. Synthesis of silylstannanes 

Since the seminal studies by Wittig, Gilman and Still, among others, stannyl lithium compounds 
have been utilized as heavy analogues to C–Li reagents in a myriad of functionalization 
reactions.15-18 As for silylboranes, silylstannanes can also be prepared by generating a tin anion 
and subsequent reaction with an appropriate silyl chloride. However, typical protocols for 
preparing Sn–Li reagents have several disadvantages such as large excess of Sn sources, low 
yields, and long reaction times (Scheme 1.5).19 In addition, the inherent toxicity of organotin 
compounds have prevented their full adoption in industry, where the toxicity partly comes from 
the undesired byproducts and remaining excess of Sn. For example, paths a and b lead to the 
formation of rather toxic byproducts such as R4Sn or R3SnCl),20,21 and the corresponding Sn–Si 
bond is formed in low yields (33-75%). In path c, the use of distannanes inevitably result in the 
loss of 50% of the Sn content, and large amounts of toxic MeR3Sn are generated as byproduct.22 
In path d,  an excess of highly toxic R3SnH is needed to obtain satisfactory yields. In this manner, 
the utilization of paths a-c unfortunately result in a low Sn transfer, leading to the generation of 
a non-negligible number of toxic byproducts.23 To such end, Uchiyama and co-workers came up 
with a simple and practical protocol that results in the formation of Sn–Li bonds by using 
polycyclic aromatic hydrocarbons (PAH) as catalysts as electron acceptors (Scheme 1.5, B).24 In 
addition, the corresponding Sn–Li reagents prepared by this route show superior reactivity and 
high stability under ambient conditions, enabling the formation of the targeted silylstannanes 
upon reaction with chlorosilanes in quantitative yield, thus allowing to reduce the toxicity of 
protocols en route to the formation of Si–Sn interelement linkages.  

 

Cl2Sn

R3SnCl

R3SnSnR3

R3SnH

R3Sn Li

PhLi or tBuLi

THF
14

MeLi

Li

THF

 iPrNLi17

13 15

16

THFTHF

or
R3SnSnR3

15

[Si]+

R3Sn [Si]

R3SnCl
14or

R3SnSnR3
15

+ Li
Naphthalene (5 mol%)

THF, rt, < 3h
R3Sn Li

17 rt, 1h

R´3SiCl
R3Sn SiR´3

18

B. PAH-catalyzed synthesis of stannyllithium

Li

Li+

R3SnClR3Sn Li + LiCl

> 99% NMR yield

A. Classical methods to the synthesis of stannyllithium

PAH
catalytic cycle

path dpath b

path cpath a

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 1. 

 6 

1.3. Activation Modes of Si–B and Si–Sn Compounds 

As summarized in Scheme 1.6, various scenarios are conceivable when utilizing silylboranes as 
coupling partners, ranging from oxidative addition pathways with transition metal catalysts to 
stoichiometric processes mediated by Lewis acid activation, among others. For example, Ito and 
co-workers discovered that Si–B bond can undergo oxidative addition to various low-valent 
transition metal complexes such as Pt(0), Pd(0) or Ni(0) (path a).25-27 Subsequently, migratory 
insertion of the oxidative addition metal species to C−C multiple bonds might occur, allowed to 
form both C–B and C–Si bonds while regenerating back the active metal species upon reductive 
elimination. Later on, Suginome and colleagues reported the generation of a Pd-stabilized 
silylene possessing a leaving group at the silicon center of 8, establishing the basis for triggering 
a β-elimination pathway to transition metal-stabilized silylene (19, Path b).28 Alternatively, 
transition metal-based silicon nucleophiles 20 could be easily formed upon transmetalation with 
metal alkoxides via metathesis-type transition state due to the Lewis acidity of the boron atom 
(path c).29 An otherwise similar scenario accounts for the utilization of organolithiums via boron-
metal exchange (paths e).30 Furthermore, photochemical homolytic Si–B bond cleavage thought 
UV irradiation could also be applied under specific reaction conditions (path d).31  Another well-
investigated transformation is the activation of the Si−B reagent by in situ generated 
organometallic derivatives (path g).32 Indeed, Hiyama and co-workers demonstrated that 1,2-
migration can take place in several alkylidene-type and allylic carbenoids,33 setting the stage for 
accessing 1,1-difunctionalized compounds. Recently, it has been reported that N-heterocyclic 
carbene catalysts enable a metal-free intermolecular silyl transfer to Michael acceptors (path 
h).34-36 Despite the advances realized with silylboranes, the utilization of silylstannanes as 
coupling partners have received much less attention. However, the similarity of the Si–B bond 
and Si–Sn bond suggests that silylstannanes could be employed in related transformations, 
including oxidative addition and transmetalation (path a, c).37,38 

 

Scheme 1.6. Activation of Si–B bonds in silylboranes 
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1.4. Application of Si–B and Si–Sn Reagents in Organic Synthesis  

1.4.1. Monofunctionalization technologies using Si–B and Si–Sn reagents 

With the increasing demand for silicon-, boron-, and tin-containing compounds in organic 
synthesis as well as in material sciences, a non-negligible number of methodologies have been 
described that make use of silylboranes and silylstannanes as counterparts.39 For example, our 
group reported that aryl silanes can be prepared via Ni-catalyzed silylation of aryl pivalates and 
aryl methyl ethers via C–O bond-cleavage using Et3SiBpin as coupling partner (Scheme 1.7).40-42 
In the former,40 we found that a bimetallic platform based on Ni/PCy3 and Cu catalysts allowed 
for the dual activation of the C–O and Si–B bond in the presence of an appropriate fluoride 
source. Very recently, in depth mechanistic studies conducted by our group has allowed to 
identify dinickel complexes bearing monodentate PCy3 deriving from oxidative addition and 
comproportionation as key intermediates within the catalytic cycle.41 In the latter, a ligand-free 
protocol enables the targeted silylation in a more demanding C–OMe bond-cleavage.42 
Importantly, such a transformation proceeds at room temperature, with catalyst loadings as low 
as 1 mol%. Gratifyingly, in contrast to other C–OMe bond scission protocols, this reaction could 
be applied to either π–extended or regular aromatic backbones with equal ease. Although we 
were unable to isolate any putative nickel intermediates within the catalytic cycle, we proposed 
that the reaction operates via the formation of Ni(0)-Si ate-complexes (21) that are reminiscent 
of the complexes reported by Pörschke.43,44 Subsequently, a K+ assisted C–O bond activation via 
either five-membered ring intermediate 22 or an internal nucleophilic aromatic substitution  
mechanism (I-SNAr) would lead to the formation of the targeted aryl silane while transferring 
the methoxide anion to the potassium center.   

 

 

Scheme 1.7. Ni-catalyzed silylation via C–O bond cleavage  
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Prompted by our silylation of aryl esters,40 chemists have focused their attention in related 
silylation events. Among these, particularly interesting is the ability to trigger a Ni-catalyzed 
decarbonylative silylation reaction upon exposure of the targeted aryl esters to a similar Ni/Cu 
bimetallic system (Scheme 1.8).45,46 In this case, the protocol utilized catalytic amounts of 
Ni(cod)2 (10 mol%) and PnBu3 (40 mol%) in the presence of CuF2 and KF. The mechanism of this 
transformation is believed to proceed via initial oxidative addition of the C–O bond to the Ni(0) 
center, setting the basis for a transmetalation with an in situ generated copper silane complex. 
A subsequent CO extrusion and a reductive elimination releases the targeted aryl silane while 
regenerating the Ni(0) species.47 Few months after we reported our Ni-catalyzed stannylation of 
aryl esters,48  Rueping and co-workers reported the utilization of the reagent we employed in 
our stannylation reaction (Me3SiSnBu3) in a related  decarbonylative stannylation of aryl methyl 
esters under Ni catalysis.49 

 

 

Scheme 1.8. Ni-catalyzed decarbonylative silylation and stannylation 

Driven by the high bond-dissociation energy of the sp2 C–F bond (125 Kcal/mol), chemists have 
been challenged to design catalytic cross-coupling technologies via C–F cleavage. For example, 
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by our group and Hosoya, demonstrating that the cleavage of C–F bonds with subsequent C–B 
bond-formation can be within reach.50,51 Driven by the observation that the B–F bond ranks 
amongst the strongest bonds in organic chemistry (183 Kcal/mol), it comes as no surprise that 
this observation has been turned into a strategic advantage for activating C–F bonds. In 2018, 
Shibata and co-workers described a novel ipso-silylation of aryl fluorides via C–F bond cleavage 
in the presence of Ni catalyst and silylboranes as silylated reagents under relatively high 
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ethers,42 the reaction was believed to proceed via Ni(0)-silyl ate complexes (21). Very recently, 
and inspired by the development of our stannylation of aryl esters (see chapter 2), Nishihara has 
reported the means to effect a Ni-catalyzed decarbonylative stannylation of acyl fluorides with 
Bu3SnSiMe3 at high temperatures (Scheme 1.9, B).53 In this case, the proposed mechanism 
proceed via oxidative addition of acyl fluoride to Ni(0) species. Then subsequent extrusion of CO 
to form ArNi(II)F intermediate, followed by transmetalation with silylstannane assisted by CsF. 
Finally, reductive elimination occurred to deliver arylstannanes and regenerate Ni(0) catalyst.  
 

 

Scheme 1.9. Ni-catalyzed silylation and stannylation via C–F bond cleavage 

Driven by the observation that high temperatures are generally required for effecting silylation 
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bonds. Shortly afterwards, Shi and co-workers report a defluorosilylation of a variety of 
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theory (DFT) calculations showed that transient silyl anion species undergo SN2’ or SNV 
substitution, which is responsible for such base-mediated defluorosilylation event.56  

 

 

Scheme 1.10. Base-mediated defluorosilylation and stannylation 
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application in a number of bioactive natural products and drug-like molecules. 
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Ito and co-workers showed that silylboranes can be employed as vehicles for triggering 
borylation events for a variety of aryl, alkenyl, and alkyl halides, including sterically hindered 
substrates in the presence of alkoxy bases without transition-metal catalysts (Scheme 1.11).59-61 
This system offers a novel and convenient route to access aryl, heteroaryl, alkenyl and alkyl 
boronates from the corresponding organohalides with high borylation/silylation ratios. A 
representative reaction pathway of this formal nucleophilic boryl substitution was proposed 
based on experimental observations and DFT studies.62 Specifically, a silylborane/KOMe 
complex (I) is initially formed with PhMe2SiBpin and KOMe. Subsequently, nucleophilic attack of 
the silyl moiety of complex I to PhBr leads to the formation of an anionic phenyl species (II) via 
metal–halogen exchange. Attack of the carbon nucleophile to the Lewis-acidic boron atom gives 
the corresponding organoborate salt (PhBpinOMe]–K (III), which finally delivers phenyl 
boronate ester, PhMe2SiOMe and KBr as byproducts. This borylation event was then applied to 
the synthesis of aryldimesitylboranes with Ph2MeSiBMes2,63 which have numerous potential 
applications in the field of material science.64,65 For instance, such boron-containing π-
conjugated systems show intriguing optical properties due to the p-π* conjugation between the 
vacant p orbital of the boron center and the π* orbital of the attached phenyl moiety. However, 
the application of this strategy can be hampered by the formation of both borylation and 
silylation products (67:33 to 96:4 ratios). Notably, the B/Si ratio could be significantly improved 
if bulky tris(trimethylsilyl)silyl groups are employed.13 As expected, the utilization of (TMS)3Silyl 
boronate esters resulted in the corresponding borylation of organic halides in high yields and 
B/Si ratios (up to 99/1) as well as the silaboration of styrene with catalytic KOMe.66-68 

 

 

Scheme 1.12. Copper-catalyzed radical silylation of unactivated alkylhalides 

Recently, Oestreich showed that a CuSCN/dtbbpy protocol that utilizes LiOt-Bu as base in 
THF/DMF (9:1) enables the implementation of a silylation event of tertiary alkyl halides with Si–
B reagents (Scheme 1.12).69 In this particular case, a radical pathway was proposed due to the 
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epimerization observed with diastereomerically pure substrates as well as the inhibition found 
in the presence of TEMPO. In addition, 5-exo-trig cyclization and DFT calculations reinforced the 
notion that open-shell intermediates come into play. It was additionally proposed that a highly 
solvated Li cation led to an elongation of the Si–B bond upon coordination of the tertbutoxy 
anion to the boron center, thus setting the basis for a rapid transmetalation with the Cu catalyst 
en route to (dtbbpy)2Cu–Si species (IV). Subsequently, binding with the alkyl iodide to form a 
loose dative Cu···I bond enables a single electron transfer (SET) to form a transient  alkyl radical 
with concomitant formation of a cationic intermediate VI. Final sp3 C–Si bond-formation was 
proposed to occur via radical recombination. A useful addition to this dehalogenative sp3 C–Si 
cross-coupling is recently reported by the same group using aliphatic N-hydroxy-phthalimide 
esters (NHPI) as radical precursor. The alkyl radical is generated by single-electron-transfer 
reduction with [Cu]-Si species followed by decarboxylation.70 

 

Scheme 1.13. Iridium-catalyzed C-H borylation with silylboranes 

Unlike the vast majority of borylation events enabled by B2pin2, Hartwig developed a sp2 C–H 
borylation using Et3SiBpin under Ir/bipyridine catalyst system.14 This method could successfully 
be applied to trigger a borylation of primary benzylic sp3 C–H bonds.71 Critical for success was 
the discovery of an iridium diborylmonosilyl complex that is more electron-deficient than the 
previously reported iridium trisboryl complex employed in related C−H borylations.72 
Mechanistic studies showed that the rate of sp2 C−H borylation decreases upon decreasing 
electron density at the Ir center, whereas the rate of benzylic sp3 C−H borylation was less 
sensitive to the degree of electron density at the Ir metal center. 
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Scheme 1.14. Conjugate addition of silylboranes to α,β-unsaturated carbonyl compounds 

Addition of diboron to α,β-unsaturated carbonyl compounds are well studied by many 
groups including enantioselective variants which are promoted by transition-metal species, 
phosphines or NHC catalysts.73-75 Subsequently, enantioselective conjugate silyl addition to 
cyclic and acyclic unsaturated carbonyls in presence of rhodium(I) catalyst and (s)-BINAP were 
introduced by Oestreich and co-workers.76 Apart from rhodium(I) catalyst, Lee and Hoveyda 
succeeded in developing a enantioselective conjugate silyl transfer that relies on a combination 
of CuCl, chiral carbene precursor, and NaOt-Bu.77 In these transition metal-involved reactions, 
the nucleophilic M-SiMe2Ph species would be initially delivered followed by insertion of the α,β-
unsaturated acceptor into the M–Si bond. In 2011, the same group found a complementary 
metal-free method for the enantioselective conjugate addition of the silyl group to α,β-
unsaturated carbonyls catalyzed by a readily accessible chiral imidazolinium salt (NHC) and a 
common organic base (DBU). The reaction could be conducted in an aqueous solution (3:1 
mixture of water and THF) and was operationally simpler to perform than the NHC–Cu-catalyzed 
variant.78 Despite moderate yields for some substrates, high enantiomeric purities were 
obtained throughout. Stoichiometric amounts of the NHC/DBU with Me2PhSiBpin resulted in the 
formation of the sp3-hybridized borates via nucleophilic attack to the more Lewis acidic boron 
atom. Detailed spectroscopic evidences demonstrated that the proton source could influence 
the efficiency and/or enantioselectivity of NHC-catalyzed enantioselective transformations.79 
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Scheme 1.15. Allylic silylation with silyl nucleophile 

Oestreich and co-workers have recently elaborated a branched-selective allylic substitution 
of linear allylic chlorides, yielding α-chiral allylic silanes in racemic form (Scheme 1.15).80 The 
reaction was realized by exploiting a Cu(I)-induced generation of silicon nucleophiles that are 
transferred to various acceptors via C–Si bond formation. g-selectivity was observed for halides 
and phosphates, while a-selectivity was obtained for carbonates, carbamates, and carboxylates 
albeit with eroded a-selectivity for the latter. The Oestreich group also present an enantio- and 
regioselective allylic substitution of linear allylic chlorides, and phosphates catalyzed by a 
copper(I) complex containing a chiral N-heterocyclic carbene (NHC) ligand.81 This catalyst also 
exhibits a preference for the same face of both (E)- and (Z)-alkenes, providing stereoconvergent 
outcomes.82 However, enantioconvergence is also an indication of the catalysis passing through 
a common intermediate h3 p-allyl copper(III) complex. Later on, Nozaki and Shintani developed 
a KHMDS-mediated cyclopropanation of allyl phosphates with a silylboronate. Unlike the 
previously reported copper-catalyzed allylic substitution reactions, the nucleophile selectively 
attacks at the b-position of the allylic substrates.83 Investigation of the mechanism showed that 
a silylpotassium species could be the active nucleophilic species as tetracoordinated anionic 
boron species (d = 8.4 ppm) and the desilylated three-coordinate boron species (d = 25.0 ppm) 
were observed from 11B NMR. 
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1.4.2. Difunctionlization events using Si–B and Si–Sn reagents 

Despite the significant advances realized with interelement linkages, the vast majority of 
coupling reactions that make use of silylboranes or silylstannanes result in either a silylation, 
borylation or stannylation event, thus constituting a drawback from an atom-economical 
standpoint. To such end, chemists have been challenged to incorporate both the Si/B or Si/Sn 
unit into an organic molecule. Among various scenarios, the utilization of p-components as 
precursors is particularly attractive, as it will provide access to organic molecular possessing 
multiple organometallic bonds that could be used in synthetic applications while resulting in a 
highly atom-economical technique with great potential in synthetic chemistry.84 

 

 

Scheme 1.16. Regioselectivity in Pd-catalyzed silaboration of terminal alkynes 

The utilization of alkynes as coupling partners in combination with silylboranes could provide 
an useful entry point to generate valuable vinyl boranes and vinyl silanes. This approach was 
shown by Ito and co-workers using a palladium−isonitrile catalytic system that resulted in a 
highly regio- and stereoselective silaboration of terminal and internal alkynes, with the boryl  
group attached to the terminal carbon atom whereas the silyl group was connected to the 
internal position (Scheme 1.16 A).85 Moreover, the reaction gave the Z isomer as major product, 
corresponding to a formal syn-addition of the Si−B bond across the triple bond. Subsequently, 
Suginome and co-workers found that a Z/E isomerization occurred in the presence of excess 
amounts of ClMe2SiBpin and i-PrOH/pyridine (Scheme 1.16, B).86 A Pd-catalyzed regiodivergent 
silaboration of terminal alkynes was found by Ohmura and Suginome by tuning the phosphine 
ligand (Scheme 1.16, C).87 Specifically, it was found that the boryl group was transferred to the 
alkyne terminus if Ph3P is used, whereas bulkier (biphenyl-2-yl)tBu2P (L1) resulted in a 
regioselectivity switch. Specifically, it was suggested that C–B bond formation occurs prior to 
the formation of the C−Si bond by insertion of the alkyne into the B–Pd bond.88 The steric bulk 
of the phosphine accounts for the regioselectivity switch in a ligand-controlled regioselective 
alkyne insertion into the Pd−B bond. 
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Scheme 1.17. Transition-metal-catalyzed silaboration of terminal alkynes 

Regioselective silaboration of alkynes with PhMe2SiBpin was also documented by Stratakis’s 
group using gold nanoparticles supported on TiO2 (Scheme 1.17, A).

89 No additional additives or 
ligands are required, resulting in an abnormal regioselectivity switch that could only be within 
reach in homogeneous conditions using bulky phosphines and Pd catalysts.87 Such 
regioselectivity profile is attributed to steric factors imposed by Au nanoparticles during the 1,2-
addition of silylborane to the alkyne. Subsequently, Uchiyama and co-workers developed a 
dimethylzinc-catalyzed regioselective silaboration of terminal alkynes (Scheme 1.17, B).90 
Silylzinc species were generated in situ by Si–B bond activation in the presence of 
dimethylzinc/phosphine catalyst system. Notably, it was found that a regioselectivity switch was 
observed in the absence of phosphine ligand to yield 2,1-silaborated alkenes, suggesting that 
different species account for such selectivity profile. A ligand -controlled Cu-catalyzed regio- and 
steroselective silaboration was reported by Xu and co-workers (Scheme 1.17, C).91 The utilization 
of Cu(OAc)2 and CuTc resulted in 2-boryl-1-silyl-1-alkenes as major product whereas  a protocol 
based on copper isocaprylate and PPh(t-Bu)2 in heptane led to a selectivity switch. Interestingly, 
protosilylation occurred smoothly when phenylacetylene was used instead of alkyl-substituted 
acetylene. A plausible mechanistic rationale is depicted in Scheme 1.17. It was believed that the 
LCuX catalyst reacts with silylborane to generate VII prior to coordination to the p-cloud of the 
acetylene moiety. Subsequently, a cis insertion generates vinyl cuprate intermediates IX or X, 
setting the stage for a transmetalation event, leading to an alkynyl boronic ester while turning 
over the catalytically competent LCuSiMe2Ph species within the catalytic cycle. 

R R´
+

Me2PhSiBpin
SiMe2Ph

BpinR

Bpin

R SiMe2Ph

LCu(I)X or LCu(II)X

LCuSiMe2Ph

Me2PhSiBpin
XBpin

R R´

R R´

Cu SiMe2PhL

R

[Cu]L
SiMe2Ph

R´

SiMe2Ph
[Cu]LRMe2PhSiBpin

SiMe2Ph
BpinR

Bpin

R SiMe2Ph

or

or

CuTc/PCy3 copper isocaprylate

C      Copper catalyst /R3P

copper
catalytic cycle

PPh(tBu)2

Proposed mechanism

Au/TiO2 ZnMe2/Ph3P

R

Me2PhSiBpin

Bpin

R SiMe2Ph+

Bpin

R SiMe2Ph

StratakisA

Bpin

R Au SiMe2Ph

via
ZnMe

R SiMe2Ph

via

UchiyamaB

Xu

VII
IX

X

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                                                                                                                     General Introduction 

 
 

17 
 
 

 

Scheme 1.18. Phosphine-catalyzed anti-selective vicinal silaboration 

In 2015, Sawamura disclosed an anti-selective vicinal silaboration of alkynoates enabled by 
trialkylphosphine catalyst to produce b-boryl-a-silyl acrylates (Scheme 1.18).92 Notably, the two 
vicinal C–heteroatom bonds could be differentiated and converted to unsymmetrical 
tetrasubstituted alkenes. The reaction was believed to proceed via conjugate addition of the 
phosphine to the alkynoate fragment assisted by Lewis acidic activation of the carbonyl group 
to form a zwitterionic allenolate intermediate XI.93 Then, the terminal silyl fragment migrates to 
the sp carbon center of the allene moiety to form ylide intermediates XII, which will isomerize 
to XIII. The ylide carbon of XIII then attacks the B-atom bound to the oxygen atom to form cyclic 
borate XIV. Finally, elimination of Bu3P with concomitant B−O cleavage affords the desired 
product.  

 

 

Scheme 1.19. Regioselectivity in Pd-catalyzed silastannylation of terminal alkynes 
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The first examples of silastannylation of terminal alkynes were reported by Chenard in  
presence of Pd(PPh3)4.94 Under the best reaction conditions, a high regio- and stereoselectivity 
was observed, obtaining selectively cis-adducts with the silyl group attached to terminal carbon 
(Scheme 1.19, A). Remarkable improvement of catalytic activity was realized by using Ito’s 
palladium-isonitrile catalyst system; unlike the utilization of Pd(PPh3)4 catalyst that required 
heating, the use of Ito’s protocol allowed the silylstannylation to occur at room temperature. 
Unfortunately, the reaction could not be employed with internal alkynes. The presence of a 
propargylic ether enhanced the reactivity of the internal triple bonds, resulting in a regio- and 
stereoselective formation of products bearing a tin fragment at the internal vinylic position 
(Scheme 1.19, B).95 Interestingly, the utilization of ionic liquids allowed to improve the 
recyclability up to 10 times without loss of activity (Scheme 1.19, C).96 While the nature of the 
active catalyst is unknown, it was suggested that either palladium-imidazolylidene carbene 
complexes or palladium metal nanoclusters may be responsible for the observed reactivity. 
 

 

Scheme 1.20. Pd-catalyzed dearomatization of pyridines with silylboranes 

Oshima, Ohmura and Suginome described the addition of Si–B bonds across a pyridine ring by 
means of Pd catalysis (Scheme 1.20).97 Specifically, it was found that the (h3-C3H5)PdCl(PCy3) 
complex promoted the silaboration of pyridine (10 equiv) with XMe2SiBpin as a limiting reagent, 
thereby delivering a dihydropyridine derivative with a boryl group at the nitrogen atom and a 
silyl group at the C4-position. Pyridines bearing 3-methoxy or 3-ester substituents reacted 
smoothly with Me2PhSiBpin to afford the corresponding 1,4-adducts in good to high yields. The 
use of ClMe2SiBpin dramatically improved the reaction efficiency to deliver N-boryl-4-silyl-1,4-
dihydropyridine. Unlike C2- or C3-substituted pyridines, 4-substituted pyridines were 
silaborated in a 1,2-fashion, thereby delivering 4-substituted 1,2-dihydropyridines at the C2-
position. The mechanism of the transformation was believed to proceed via oxidative addition 
of the silylboronic ester to the Pd(0) species, followed by the coordination of pyridine to form 

N
R XMe2SiBpin+

N
R

SiMe2X

Bpin
N

R

Bpin
SiMe2X

or
ƞ3-C3H5PdCl(PCy)3

2 mol%
toluene, 50 oC

LnPd0

N
R

Pd
Bpin

SiMe2XLn

NR

Pd SiMe2X

Ln

N

R

Bpin

XVXVI

24a

palladium
catalytic cycle

N

SiMe2Ph

Bpin
94% (96h)

N

SiMe2Ph

Bpin
95% (96h)

N
Bpin

93% (24h)

SiMe2Cl

Ph

N

SiMe2Cl

Bpin
90% (24h)

MeO

Proposed mechanism

OMe

24b

24a/24b

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                                                                                                                     General Introduction 

 
 

19 
 
 

complex XV. These species presumably underwent a regioselective insertion of Pd–B bond into 
the to form a π-allyl-palladium complex XVI followed by a reductive elimination to afford 
dihydropyridine (24a or 24b) while regenerating the LnPd(0). The regioselectivity C2/C4 pattern 
could be controlled by the positional selectivity of the substituents at the pyridine ring. DFT 
calculations were carried out by Yates and co-workers which indicated the dearomatization step 
to be rather facile (4.3 kcal/mol), presumably due to the formation of a strong covalent bond 
between the nitrogen and boron atoms in the final product, while reductive elimination was 
suggested to be rate-determining.98 

 

Scheme 1.21. TM free dearomatization of pyrazines 

Pyrazines could undergo addition towards Si–B bond under transition-metal-free conditions, 
leading to N-borylated 1,4-dihydropyrazines.99 The Si–B bond was activated by coordination of 
one of the nitrogen atoms of pyrazine to the boron to form a tetracoordinated boron 
intermediate XVII, and Intramolecular nucleophilic attack of silyl group on the C2 carbon takes 
place to give 1,2-adduct XVIII. Rearrangement of XVIII resulted in the final product 24c. High 
yield was observed in the dearomatizing addition reactions, which may be attributed to the 
formation of B–N bond, as mentioned above and also observed in the hydroboration of 
pyridines.100,101 Very recently, Suginome and Ohmura reported an organocatalytic silaboration 
of terminal alkynes and allenes using 4-cyanopyridine as catalyst (Scheme 1.22).102 The reaction 
undergoes regio- and stereoselective 1,2-addition of silaboranes in toluene. It was revealed that 
4-cyanopyridine is capable to homolytically cleave the B–B bond to generate pyridine boryl 
radicals.103 The authors assumed a mechanism as shown in Scheme 1.22. The Si–B bond is 
activated by 4-cyanopyridine coordinated onto the boron atom. The mechanism involves 
homolytic cleavage of the Si–B bond, which forms a stabilized boryl radical. The generated 
radical pair XX rapidly adds to the carbon–carbon triple bond in a syn manner. This addition may 
take place in an almost concerted fashion. The absence of reactive alkyne may result in the 
formation of XXIII as a dead end product. It is also suggested that the more nucleophilic pyridine-
boryl radical preferentially attacks the more electron-deficient alkyne terminus, resulting in the 
observed regioselectivity. 
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Scheme 1.22. Pyridine-based organocatalyst for syn-1,2-silaboration of terminal alkynes 

Silaboration of aromatic alkenes was first reported by Ito and co-workers, in which a regio- 
and diastereoselective 1,2-silaboration proceeded in the presence of a catalytic amount of KOt-
Bu (Scheme 1.23).104 It was found that anti-product was the major product, which is in contrast 
to the results found in transition-metal-catalyzed silaboration reactions. Although the authors 
can´t provide a clear reaction mechanism, the preliminary studies indicated an adduct of 
silaborane and the alkoxide rather than free silyl anion species. Further detailed studies on the 
reaction mechanism are required to understand the stereospecificity of the reaction. 

 

Scheme 1.23. KOt-Bu mediated regioselective silaboration of aromatic alkenes 
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Scheme 1.24. Silaboration of other unsaturated organic compounds 

Other silaboration of unsaturated compounds such as imines,105 alkdehydes,106 dienes107, 
allene108 have also been developed with/without transition metal catalysts (Scheme 1.24).27,39 
These transformations can also proceed in a highly regio- and stereoselective manner, leading 
to the formation of organic compounds bearing silyl and boryl groups that can be used for 
diverse synthetic applications.  

 

Scheme 1.25. 1,1-difunctionalization of carbenoid and related compounds via 1,2-migration 

In order to keep both silyl and boryl group in the molecule, another strategy could be the 
utilization of 1,2-migration in which the silyl group from the boron center is added at the 
adjacent carbon atom. If the carbon atom is substituted with an appropriate leaving group, the 
neat outcome will be generation of geminal functionalized coumpounds (Scheme 1.25). This has 
been applied to many transformations involving the use of as 1,1-dihalalkenes, diazo 
compounds, allyl chloride or 3-bromocyclobutene.109-112, 39 
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Scheme 1.26. Insertion of isonitriles 

Insertion of isonitriles into the Si−B bond of several Si−B compounds without transition metal 
was also reported by Ito and co-workers (Scheme 1.26). A large number of isonitriles reacted 
with silaboranes at elevated or even room temperature, obtaining the corresponding 
(boryl)(silyl)iminomethanes as their borane complexes.113 Chatani developed a copper(I)-
catalyzed indole synthesis involving the utilization of isonitriles.114 The mechanism of this 
domino reaction probably began with an intermolecular silyl transfer from the catalytically 
generated monosilyl copper(I) species onto the isocyano group. Subsequent intramolecular 1,4-
addition led to the formation of the indole ring. Hydrolysis of copper(I) enolate with MeOH 
generated the indol moiety and regenerates the copper(I) methoxide catalyst. 
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1.5. General Objectives of This Doctoral Thesis 

The last decade has witnessed an impressive knowledge in the implementation of silylboranes 
and silylstannanes as coupling partners as vehicles to prepare densely functionalized 
organosilicon, organoboron and organostannane reagents in a high chemo-, regio- and 
stereoselective manner. Despite the significant advances realized, the ability to employ 
interelement linkages within the context of the functionalization of particularly strong s sp2 C–
O or sp2 C–H bonds still remains less explored. Driven by the inherent interest of the Martin 
group for designing new methods for activating strong s-bonds, this thesis is aimed at 
discovering new C–heteroatom bond-forming reactions by using silicon-heteroatom 
interelement linkages as coupling partners. To such end, the following objectives will be pursued:  

Ø To expand the toolbox of C–O bond functionalization techniques to trigger a stannylation 
event with Me3SiSnBu3. 

Ø To develop a direct site-selective sp2 C–H silylation of (poly)azines using Et3SiBpin as silyl 
reagent under transition-metal-free conditions, ending up in a new tool for rapid 
diversification via late-stage functionalization of drug-type molecules.  

Ø To explore the viability of conducting an atom-economical 1,1-difunctionalization of terminal 
alkynes with  Et3SiBpin via 1,2-metallate shift from boron atom to sp carbon centers. 

Ø To unravel the mode of action by which silicon-based interelement linkages results in the 
formation of C–heteroatom bonds via the functionalization of strong s-bonds.  
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2.1. C–O Electrophiles as Counterparts in Cross-Coupling Reactions 

Transition-metal-catalyzed cross-coupling reactions have provided new dogmas for bond-
construction, changing logics in retrosynthetic analysis when building up molecular complexity.1-

4 Indeed, their use is so pervasive that is difficult to advance any advanced total synthesis or 
target lead in drug discovery approaches that do not take recourse to these methodologies. At 
present, the vast majority of transition metal-catalyzed C–C and C–heteroatom bond-forming 
reactions rely on the utilization of organic halides as coupling partners.5 Despite the advances 
realized in preparative terms, it is worth noting that accessing advanced aryl halides in a both 
chemo- and regioselective manner is not particularly facile and that the toxicity associated to 
the inevitable halide waste can be problematic, particularly in late-stage diversification 
techniques. Prompted by these observations, chemists have been challenged to look for 
alternative coupling partners with improved flexibility, practicality and generality. Among the 
different alternatives, the utilization of C–O electrophiles have gained tremendous momentum 
since the first seminal work by Wenkert in 1979,6 becoming powerful alternatives to commonly 
employed organic halides in transition metal-catalyzed cross-coupling reactions.7-11 Their 
popularity arises from their bench-stability and ease of synthesis from abundant and non-toxic 
phenols. In addition, the utilization of C–O electrophiles as coupling partners might offer the 
possibility of designing orthogonal bond-forming reactions in the presence of organic halides.9 
Scheme 2.1 summarizes the most commonly employed C–O electrophiles in cross-coupling 
reactions ranging from particularly activated sulfonate derivatives to rather unreactive phenols 
or aryl methyl ethers. 
 

 

Scheme 2.1. Phenol derivatives as modern electrophiles in cross-coupling  

2.1.1. Challenges in using C–O electrophiles in Ni-catalyzed cross-coupling reactions 

While the utilization of aryl sulfonates have become routine in Pd-catalyzed cross-coupling 
reactions,12 chemists have turned their attention to the employment of simpler, less-activated 
and more atom-economical aryl ester motifs as counterparts (Scheme 2.1). Although one might 
argue that this would be a trivial extension, a close look at the literature data indicates otherwise. 
First, the bond-dissociation of sp2 C–O bonds in aryl esters is rather uphill when compared to 
both aryl halides or even aryl sulfonates,13 making these counterparts particularly reluctant to 
react via canonical oxidative addition events.14 Intriguingly, Pd catalysts have shown to be inert 
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towards C–O cleavage of aryl esters, whereas the employment of nickel catalysts have proven 
particularly effective for such purposes. In addition, the presence of weaker acyl sp2 C–O bond 
in aryl esters raise the question on whether it would be possible to effect a site-selective 
functionalization of the targeted sp2 C–O bond (Scheme 2.2). Seminal studies by Yamamoto, 
however, indicated that the oxidative addition of these moieties to Ni(0)Ln was reversible, 
suggesting that the design of catalytic cross-coupling reactions by means of functionalizing the 
sp2 C–O bonds would not be a chimera. These studies set the basis for exploring whether steric 
effects might exert a role on site-selective C–O bond-functionalization. Indeed, it was shown 
that bulky pivaloyl groups are particularly suited for sp2 C–O bond-functionalization by 
preventing the cleavage of the proximal and a priori weaker acyl sp2 C–O bond.15 Unfortunately, 
a non-negligible number of cross-coupling reactions with C–O electrophiles are somewhat 

restricted to the utilization of p-extended arenes, suggesting that ƞ2-coordination of the π-

extended system to the low valent metal center might be a prerequisite for tackling C–O bond-
cleavage, probably due to a partial retention of aromaticity.16  
 

 

Scheme 2.2. Challenges in using C–O electrophiles in Ni-catalyzed reactions  

2.1.2. Ni vs Pd in cross-coupling reactions 

In line with the known literature data on C–O cleavage, one might wonder why nickel 
promotes effectively these transformations whereas Pd fails to provide the targeted bond-
forming event. Both Pd and Ni catalysts have their advantages and disadvantages, which are 
highlighted in Scheme 2.3.17-19 Alongside these advantages, nickel has a smaller center, lower 
electronegativity than Pd. The propensity of the nickel center to lose electron density facilitates 
oxidative addition while a more facile reductive elimination is observed with palladium. As result, 
electron-rich Ni(0) can activate strong σ–bonds such as C–F20 and C–N21 bonds via oxidative 
addition. Furthermore, π-back donation is more favorable from Ni(0) compared to Pd(0) 
resulting in a stronger binding to π systems (d–π* back donation). This also explains the 
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particular reactivity of Ni catalysts towards C–O bond activation, in which Ni(0)-arene ƞ2-
complex formation is essential to cleave the C–O bond of phenol derivatives. 

Two factors contribute to slower β-H elimination of Ni-alkyl compounds. The lower 
electronegativity of Ni results in a weaker agostic interaction relative to Pd – the main 

contribution for the agostic interaction with electropositive metals is the s-donation of the C–H 
bond to the metal center – and the smaller radius of Ni leads to a more strained geometry in the 
transition state. Due to the slow β-H elimination of Ni, cross coupling reaction with Ni could 
tolerate alkyl coupling partners that will undergo decomposition through β-H elimination with 
Pd. However, in comparison to Pd catalyzed cross-coupling reactions, those catalyzed by nickel 
are more likely to undergo SET processes, which is likely a result of the higher pairing energy of 
Ni due to a more condensed electron cloud.22 The stability of open-shell Ni(I) and Ni(III), in 
combination with the use of N-containing ligand gives rise to Ni-mediated radical pathways 
which could be merged with photoredox and electrochemical reactions. From these aspects 
above, Ni shows complementary reactivity to Pd, and thus could be applied in the development 
of alternative transformations and expand the scope of cross coupling reactions.23 
 

 

Scheme 2.3. General characteristics of Ni and Pd catalysts. 
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2.2. Ni-Catalyzed Cross-Coupling of Aryl Pivalates  

2.2.1. C–C bond formation via sp2 C–O cleavage 

While Kumada-Corriu cross-coupling reactions of vinyl pivalates or vinyl acetates with 
Grignard reagents could be conducted within the context of Fe catalysis,24,25 extensions to aryl 
esters were found to be particularly problematic, probably due to competitive addition of the 
Grignard reagent to the acyl sp2 C–O bond.  This observation prompted the utilization of less-
basic, yet less-reactive, organozinc reagents as coupling partners (Scheme 2.4). In particular, Shi 
described that air-stable Ni(PCy3)Cl2 could be used for such purposes, resulting in the targeted 
C–C bond-forming reaction in good yields.26 In line with other C–O bond-functionalization 
reactions,26-29,61 the targeted cross-coupling only occurred efficiently when π-extended aryl 
pivalates were employed as substrates. In addition, steric effects played also a role on reactivity, 
as bulky arylzinc reagents were found to be incompetent in the targeted C–C bond-formation. 

 

Scheme 2.4. Ni-catalyzed Negishi-type reactions of aryl pivalates 

Aiming at extending the scope of these reactions, Rueping group reported a Negishi cross-
coupling reaction between aryl pivalates and alkylzinc reagents catalyzed by Ni(cod)2 and a 
bisphosphine ligand (dcype).30 Interestingly, various β-hydrogen-containing alkylzinc reagents 
could be coupled without problems. The absence of isomerization products in this endeavor is 
certainly intriguing, as such parasitic pathways have typically been observed in related cross-
coupling techniques catalyzed by Pd catalysts. Additionally, alkylzinc reagents bearing 
substituents such as ester and chloride all proceeded smoothly with high efficiency. As for Shi’s 
protocol,26 however, this disclosure did not include mechanistic data, leaving a reasonable doubt  
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on whether the reactions follow a classical pathway consisting of oxidative addition followed by 
transmetalation and reductive elimination. Undoubtedly, shedding light into these mechanisms 
will not only clarify how the C–O bond is functionalized, but also will open up new vistas for 
exploring other reactivity within this field of expertise. 

 

Scheme 2.5. Ni-catalyzed Suzuki-Miyaura reactions of aryl pivalates  

Prompted by the air-sensitivity of organozinc reagents or Grignard reagents, chemists have 
turned their attention to the employment of organoboron reagents due to their air- and 
moisture stability and high functional group compatibility. To such end, Shi and Garg 
independently disclosed the first Suzuki-Miyaura reaction of aryl pivalates using Ni(PCy3)2Cl2 as 
precatalyst.31, 32 While Shi employed arylboroxines – a cyclic trimer of arylboronic acids – in 
combination with water (Scheme 2.5, A), Garg used arylboronic acids without additional water 
(Scheme 2.5, B). The latter conditions allowed for the arylation of aryl acetates; this is 
particularly noteworthy if one takes into consideration that the vast majority of aryl ester cross-
coupling reactions are conducted with rather bulky aryl pivalates to suppress the attack into the 
acyl C–O bond. In 2010, Molander expanded the range of Suzuki-Miyaura couplings of aryl esters 
when employing potassium heteroaryltrifluoroborates, even at particularly low catalyst loadings 
(Scheme 2.5, C).33 As for other cases, however, the scope was limited to π-extended systems 
Later on, a bench-stable Ni(II)PCy3Cl(1-naphthy) precatalyst was discovered by Percec, showing 
its competence in Suzuki-Miyaura cross-coupling reactions of aryl boronic esters (Scheme 2.5, 
D).34 More recently, Rueping reported an aryl-alkyl cross-coupling of aryl esters catalyzed by a 
Ni(cod)2/NHC catalyst system based on the utilization of B-Alkyl-9-borabicyclo[3.3.1]nonanes 
(Scheme 2.5, E).35 Although a wide range of alkyl boron reagents possessing β-hydrogens could 
be utilized, these transformations could not be applied to either secondary or tertiary 
alkylboranes. Unfortunately, no mechanistic data was provided in all these cases, thus leaving a 
halo of mystery on the reaction mechanism. 
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Scheme 2.6. Ni-catalyzed C–O/C–H cross-coupling reactions of aryl pivalates  

Despite the advances realized in C–O bond-cleavage, the vast majority of catalytic cross-
coupling reactions of aryl esters rely on the utilization of well-defined organometallic reagents 
as coupling partners. From a conceptual and practical standpoint, it would be particularly 
attractive the development of a technique aimed at enabling C–C bond-formation of aryl esters 
within the context of C–H functionalization. This transformation was described by Itami, 
Yamaguchi and co-workers in which the utilization of Ni(cod)2/dcype was critical for success 
(Scheme 2.6, A).36 Note, however, that the reaction could only be conducted efficiently with 
rather acidic sp2 C–H bonds and with π-extended aryl pivalates at high temperatures. The 
mechanism of this transformation was studied by density functional theory (DFT) calculations 
and experimental studies.37, 38 While the former suggested that a Cs-cluster intervenes to assist 
C–H nickelation, there exists certain ambiguity on whether this rather sophisticated pathway 
comes into play. Indeed, no experiments were performed to determine the involvement of 
these species. More interestingly, it was found that the oxidative addition complex Ar-
Ni(dcype)OPiv could be isolated in pure form, allowing to rationalize that a canonical Ni(0)/Ni(II) 
pathway takes place under these reaction conditions. Extending this reaction to alkenes could 
be tackled by employing a Ni(cod)2/dppf system at high temperatures (Scheme 2.6, B),39, 40 giving 
access to E-olefins and with an excess of alkene. Care should be taken when generalizing this, as 
the reaction is better visualized as a Heck-type endeavor rather than a C–H functionalization. 

Later on, Itami disclosed the a-arylation of carbonyl compounds and aryl pivalates by employing 
the Ni/dcypt couple (Scheme 2.6, C).41 Although these transformations suggested that the 
means to promote C–C bond-forming reactions with aryl esters should be conducted at high 
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allowing to generate enantioenriched quaternary stereocenters in high yields and selectivity (up 
to 99:1 e.r) under remarkable mild conditions (Scheme 2.6, D).42 

 

Scheme 2.7. Ni-catalyzed cyanation of aryl pivalates with aminoacetonitriles 

Following up their interest in C–O functionalization of aryl esters, Itami and Yamaguchi 
described a catalytic cyanation of aryl ester derivatives by using aminoacetonitrile as cyanide 
source with a Ni/dcypt couple (Scheme 2.7).43 Unlike related C–C bond-formations, this 

technique could be extended to non-p-extended arenes. The authors favored a pathway 
consisting of oxidative addition of aryl pivalate to Ni(0)Ln followed by anion exchange with the 
nitrile and a final reductive elimination. Still, however, no mechanistic studies were performed. 

 

Scheme 2.8. Ni-catalyzed reductive cross-coupling with aryl bromides, CO2 and isocyanates 
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Aiming at providing an alternative to the utilization of well-defined organometallic reagents 
in Suzuki-Miyaura, Negishi or Kumada-Corriu couplings, Shi reported a formal cross-electrophile 
coupling between aryl pivalates and aryl halides that is viable in the presence of Mg as 
stoichiometric reductant  (Scheme 2.8, top).44 Although preliminary experiments suggested that 
this reaction does not proceed through the formation of a Grignard reagent, it was not 
particularly clear the role of Mg in the reaction media. While a step-forward, the utilization of 
stoichiometric amounts of Mg does not represent a bonus from a chemoselectivity standpoint 
when compared to organozinc or organoboron reagents. In addition, and as for other C–O cross-

couplings,27-29 this reaction turned out to be limited to p-extended aryl pivalates. As part of a 
program aimed at designing catalytic carboxylation reactions with abundant and inexpensive 
CO2,45 our group described a Ni-catalyzed reductive carboxylation of aryl and benzyl pivalates, 
representing a powerful alternative to the classical carboxylation protocols based on 
stoichiometric amounts of Grignard reagents or organozinc derivatives (Scheme 2.8, middle).46 

This protocol was based on the use of Ni/dppf as catalyst and cheap Mn as stoichiometric 
reductant, offering a superior chemoselectivity profile when compared with other carboxylation 
techniques based on well-defined aryl metal reagents. This transformation was believed to 
operate via initial oxidative addition followed by SET reduction mediated by Mn, generating the 
corresponding ArNi(I)Ln species in situ prior to CO2 insertion. The targeted carboxylic acid was 
obtained after SET reduction, allowing to turn over the catalytically competent Ni(0)/dppf 
species. As expected, an otherwise related Ni-catalyzed amidation of aryl pivalates was 
accomplished by the use of isoelectronic isocyanates in the presence of Zn as reductant (Scheme 
2.8, bottom).47  

2.2.2. C–heteroatom bond formation via C–O cleavage 

Unlike Pd-catalyzed cross-coupling reactions,48 Ni-catalyzed C–heteroatom bond-forming 
reactions are not as commonly practiced as one might initially anticipate. This is particularly the 
case when employing C–O electrophiles as coupling partners. This paucity is probably associated 
to (a) the lower nucleophilicity of heteroatom-based nucleophiles and (b) the inherent difficulty 
of enabling C–heteroatom bond-reductive elimination. The first protocol that demonstrated the 
viability for triggering such a reaction was described by Chatani and Tobisu in the presence of 
Ni(0)/IPr and using secondary amines as pronucleophiles (Scheme 2.9, top).49 The use of a 
pivalate leaving group is crucial to preventing undesired Cacyl–O bond cleavage, which becomes 
a major pathway resulting in hydrolysis when aryl acetates and benzoates are used as substrates 
instead.	A range of secondary amines can be used to form the corresponding aminated products. 
In comparison to their previously described amination of aryl methyl ethers via C–OMe bond-
cleavage, the new protocol has better generality as it allows the amination of unbiased regular 
aryl pivalates to be conducted under comparatively milder conditions. 
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 Scheme 2.9. Ni-catalyzed amination of aryl pivalates 

Prompted by Chatani and Tobisu’s amination,49 Rueping developed an amination technology 
that resulted in the formation of anilines (Scheme 2.9, bottom).50 Key for success was the 
utilization of benzophenone imine, a strategy already employed by Buchwald when promoting 
an otherwise analogous amination of organic halides by means of Pd catalysis.xx In this case ,the 
transformation was promoted by Ni(0)/dcype in combination with Cs2CO3 at relatively high 
temperatures, resulting in the corresponding imine that subsequently was reduced in the 
presence of sodium borohydride (NaBH4) to the targeted aniline.  

 

 

Scheme 2.10. Ni-catalyzed silylation of aryl pivalates 
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In 2014, our group described a catalytic silylation of aryl esters by means of C–O 
functionalization with silylboranes (Scheme 2.10, top).51 Interestingly, this transformation was 
promoted by both Cu and Ni catalysts with PCy3 as supporting ligand, allowing to effect the 
targeted transformation at remarkable low temperatures (50 oC). This was particularly 

important, as it allowed the reaction to be extended to non-p-extended aryl pivalates, including 
those bearing sensitive functional groups. While originally the transformation was believed to 
proceed via the intermediacy of silylcopper species as pronucleophiles, recent mechanistic 
studies described by our group indicated that a different pathway came into play.52 Specifically, 
it was discovered that the transformation did not proceed via mononuclear oxidative addition, 
but rather by a dinickel intermediate that could be characterized and isolated in pure form 
(Scheme 2.10, bottom). In depth mechanistic studies, kinetic experiments and theoretical 
calculations allowed to rationalize the intricacies of the reaction, indicating that Cu salts can be 
replaced by Cs salts, with a C–Si bond-formation occurring via transmetalation of the putative 
oxidative addition species with silyl pronucleophiles followed by reductive elimination.  

 

Scheme 2.11. Ni-catalyzed Phosphorylation of aryl pivalates via C–O/P–H cross-coupling 

Han, Chen and co-workers demonstrated that phosphorus-based nucleophiles are also viable 
coupling partners in the nickel-catalyzed cross-coupling of aryl pivalates (Scheme 2.11).53 
Diphenylphosphines, diphenylphosphine oxides, and phosphonate reagents can all be 
successfully cross-coupled to form the corresponding aryl phosphine derivatives, which are used 
extensively in catalysis, materials science, coordination chemistry, and medicinal chemistry.54 

This discovery offered an alternative method for the construction of C–P bonds to those based 
on organolithium, Grignard reagents or toxic phosphorus halides. By tuning the reaction 
conditions, the phosphorylation of benzyl and allylic pivalates and non π-extended system was 
also achieved.55 In line with Itami’s studies with Ni/dcype regimes, a catalytic cycle based on an 
oxidative addition followed by ligand exchange aided by base and C–P bond-reductive 
elimination was proposed, resulting in the targeted phosphorylation event with regeneration of 
the catalytically competent Ni(0)/dcype species. 
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Scheme 2.12. Ni-catalyzed stereospecific borylation of secondary benzyl pivalates 

Following up our interest on C–O cleavage, we recently developed a Ni-catalyzed 
stereospecific borylation of enantioenriched benzyl pivalates in which C–B bond formation was 
catalyzed by Ni(cod)2/PCy3 aided by copper salts and CsF (Scheme 2.12).56 Unfortunately, both 
yields and enantioselectivities  were eroded when larger alkyl side chains were employed. This 
was tentatively ascribed to a lower tendency for transmetalation, leaving ample room for 
parasitic β-hydride elimination. Attempts to expand the substrate scope to regular aryl pivalates 
were unsuccessful as well, due to the lack of strong ƞ2 interaction of non-π extended systems 
with the low-valent Ni complexes that precede C–O bond cleavage.  Interestingly, it was found 
that the reaction occurred via neat stereoretention. As both transmetalation and reductive 
elimination should occur with stereoretention, these results suggested a scenario consisting of 
a pivalate-assisted SN2’ type oxidative addition taking place with retention of configuration.  

As judged by the wealth of literature data, it is evident that considerable progress has been 
made in the area of Ni-catalyzed cross-coupling reactions of aryl esters.8,9 Unlike the 
corresponding C–C bond-forming reactions, however, there exists a paucity on C–heteroatom 
bond-forming reactions, probably due to the intrinsically lower reactivity of the corresponding 
nucleophilic congeners and the low proclivity to trigger C–heteroatom bond-reductive 
elimination. In addition, a non-negligible number of C–O bond-functionalization reactions are 

still confined to the utilization of p-extended systems and relatively high temperatures, offering 
new opportunities to improve upon existing cross-coupling reactions and to understand how 
these reactions operate at the molecular level.  
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2.3. General Aim of the Project 

Aiming at extending the scope of Ni-catalyzed cross-coupling of aryl esters with heteroatom 
pronucleophiles, we wondered whether we could effect a stannylation of C–O electrophiles en 
route to aryltin reagents. The interest for such a technology relies on the observation that the 
access to aryltin reagents typically involves the utilization of well-defined, stoichiometric 
amounts of Grignard reagents or organolithium compounds. In addition, it is worth noting that 
the Stille-Migita-Kosugi reaction of aryltin reagents remains one of the most robust, versatile 
and widely applicable cross-coupling reaction; indeed, this reaction is typically employed in the 
context of total synthesis, and can be conducted under neutral conditions, being the cross-
coupling of choice when attempting the always challenging cross-coupling of densely 
functionalized polyheterocyclic cores. To such end, during this thesis we decided to focus on the 
viability to enable a C–Sn bond-formation via sp2 C–O bond-cleavage aided by Ni catalysis 
(Scheme 2.13). 
 

 

Scheme 2.13. Catalytic C–O stannylation of aryl pivalate  
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2.4. Ni-Catalyzed Stannylation of Aryl Pivalates 

2.4.1. Optimization of the reaction conditions 

We began our optimization by selecting the appropriate aryl pivalate and suitable stannyl 
reagent for our targeted C–O cleavage. Based on previous studies carried out in our group on 
C–O bond activation,42,47,51 we choose 2-naphthyl pivalate 25a as the model starting material 
and Bu3SnSiMe3 (18a) reagent as a bench-stable stannyl source. Indeed, Bu3SnSiMe3 can be 
easily prepared on a large scale from easily prepared Bu3Sn-Li reagent with Me3SiMeCl.57 During 
the screening of the optimized reaction conditions, naphthalene (27), naphthol (28), and silyl 
ether (29) were observed as the side products. The formation of these compounds can be 
explained by competitive hydrogenolysis, attack to acyl sp2 C–O bond and silyl transfer to the 
oxygen atom.  
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Reaction conditions: 25a (0.20 mmol), Bu3SnSiMe3 (0.26 mmol), Ni(cod)2 (10 mol %), ligand 
(10 mol%), CsF (0.2 mmol), Toluene (1.0 mL) at 90 °C, 8 h. a GC yields using decane as internal 
standard. b Ligand 20 mol %. c+NaOtBu (20 mol%). 

Table 2.1. Screening of supporting ligands 

As judged by the knowledge acquired in the field, electron-rich, bulky phosphines or NHC 
ligands are typically needed to effect C–O bond-cleavage. This could be due to an increase of 
electron-density at nickel that may facilitate C–O scission, while the steric bulk exerted by these 
ligands might speed up reductive elimination. As evident from the results compiled in Table 2.1, 
the nature of the ligand played a crucial role on the targeted stannylation event. Specifically, we 
found that stannylation was particularly effective when dcpye was used as ligand (entry 8). The 
use of other bidentate phosphine ligands bearing different bite angle and electronic properties 
led to lower yields (entries 6-7, 9-15), whereas some classical monodentate NHC and phosphine 
ligands gave no desired product (entries 1-5, 17-18).    
   

 
Reaction conditions: 25a (0.2 mmol), Bu3SnSiMe3 (0.26 mmol), Ni catalyst (0.02 mmol), dcype 
(0.02 mmol), CsF (0.2 mmol), toluene (1 mL). a Determined by GC analysis using decane as 
internal standard. b  Using Ni(cod)2 (5 mol %), dcype (5 mol %). 

Table 2.2. Screening of Ni source utilized 

With dcype as the optimal ligand, we examined the effect of Ni sources (Table 2.2). The 
reaction worked better with Ni(cod)2 instead of Ni(II) precatalysts. Although the Ni(II) 
precatalysts can be reduced to the active Ni(0) species by double transmetalation with 
Bu3SnSiMe3, these results likely indicate the non-innocent character of cod as an ancillary ligand, 
stabilizing the propagating Ni(0) species within the catalytic cycle while preventing 
decomposition pathways.63  
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Reaction conditions: 25a (0.2 mmol), Bu3SnSiMe3 (0.26 mmol), Ni(cod)2 (0.02 mmol), dcype 
(0.02 mmol), base (0.2 mmol), toluene (1 mL). a Determined by GC analysis using decane as 
internal standard.  

Table 2.3. Screening of bases 

In line with our group´s knowledge on Si–B interelements bonds,51 the use of a base was 
expected to have a profound impact for delivering the stannyl motif. As shown in Table 2.3, this 
turned out to be the case, with CsF providing the best yields with full conversion to products 
(Table 2.3, entry 13). If strong bases such as KOtBu and KHMDS were employed, we found 
considerable amounts of naphthalene was detected. This is probably due to hydride generation 
from decomposition of the ligand via C–P bond cleavage.58 With these results in hand, we 
questioned whether the escorting counteranion could also have an effect on the formation of 
26a. As shown in entries 14-17, it is evident that a significant erosion in yield was found for 
anions other than fluorides. This is probably due to the formation of a rather strong Si–F bond 
that brings the reaction forward on thermodynamic grounds. In addition, the role of Cs can be 
explained by its greater solubility in aprotic solvents when compared to other cations on the 
fluoride series (Table 2.4), as well as for the formation of a strong Cs–O bond that can facilitate 
Sn–Si cleavage. The cesium effect can also be attributed to its large cationic radius, low charge 
density and large polarizability, thus making the cesium ion the one with the lowest degree of 
solvation and ion-pairing as compared to the ions of analogous alkali metal salts.59  
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Reaction conditions: 25a (0.2 mmol), Bu3SnSiMe3 (0.26 mmol), Ni(cod)2 (0.02 mmol), dcype 
(0.02 mmol), fluoride source (0.2 mmol), toluene (1 mL). a Determined by GC analysis using 
decane as internal standard. 

Table 2.4. Effect of fluoride source utilized 

 

 
 Reaction conditions: 25a (0.2 mmol), Bu3SnSiMe3 (0.26 mmol), Ni(cod)2 (0.02 mmol), dcype 
(0.02 mmol), fluoride additive (0.2 mmol), solvent (1 mL). a Determined by GC using decane as 
internal standard. 

Table 2.5. Screening of solvents 

As shown in Table 2.5, the solvent also had an influence on productive stannylation. In 
particular, the best results were accomplished with benzene-based non-polar solvents (entries 
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1-3), with toluene giving the highest yield. Notably, moderate yields were observed in the 
presence of coordinating ethereal solvents (entries 4-5), which might be able to compete with 
binding at the nickel(II) center after oxidative addition. Likewise, a significant erosion in yield 
was observed with non-coordinating or polar aprotic solvents (entries 6-8). 

 

 
Reaction conditions: 25a (0.2 mmol), Bu3SnSiMe3 (0.26 mmol), Ni(cod)2 (0.02 mmol), dcype 
(0.02 mmol), CsF (0.2 mmol), toluene (1 mL). a GC yields using decane as internal standard.  

Table 2.6. Effect of temperatures 

Having established a Ni(cod)2/dcype regime as the most promising results, we next evaluated 
the effect of the temperature on the C–Sn bond-forming reaction (Table 2.6). The best 
conditions were found when conducting the stannylation event at 90 oC, obtaining 26a in 92% 
GC yield. At higher temperatures, significant amounts of side-products 27 or 28 were observed 
(entries 4-6). The formation of 28 is likely due to competitive Cacyl–O bond cleavage. 
Unfortunately, the reaction does not work at room temperature (entry 1), as the oxidative 
addition of 25a to Ni(0) might require an input of energy.    

 
Reaction conditions: C–O electrophile (0.2 mmol), Bu3SnSiMe3 (0.26 mmol), Ni(cod)2 (0.02 
mmol), dcype (0.02 mmol), CsF (0.2 mmol), toluene (1 mL). a Determined by GC analysis 
using decane as internal standard. 

Table 2.7. Effect of the nature of C–O electrophiles 
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Reaction conditions: 25a (0.2 mmol), organotin (0.26 mmol), Ni(cod)2 (0.02 mmol), dcype(0.02 
mmol), CsF (0.2 mmol), toluene (1 mL). a GC yields using decane as internal standard. 

Table 2.8. Screening of organotin reagent 

Other parameters such as the nature of the C–O electrophile or the stannyl interelement  
group were investigated. If less-sterically encumbered 2-naphthyl acetate was used as substrate, 
traces amounts of 26a were observed (Table 2.7, entry 2). This is due to a competitive cleavage 
of the most accessible sp2 acyl C–O bond. An otherwise identical outcome was observed for aryl 
mesylates or carbamates, obtaining 2-naphthol (28) as the main byproduct (Table 2.7 ,entries 3-
4). Unfortunately, aryl methyl ethers or naphthol cannot be employed as C–O electrophiles, 
resulting in low conversion of the starting material (entries 5-7). Influence of the nucleophilic 
entity was further assessed by synthesizing a series of stannyl interelement compounds (Table 
2.8). Among all reagents employed, it was evident that Bu3SnSiMe3 (18a) turned out to be the 
most efficient transmetallating reagent. No improvement was found when using more bulky or 
electronically-biased silyl groups (entries 2-6). In contrast to the Sn–Si bond, the cleavage of Sn–
Sn or Sn–O bonds was found to be more difficult and no product was observed in these cases 
(entries 7-8). Alternatively, an air-sensitive Bu3SnLi reagent could also be employed in moderate 
yields, but at the expense of using a non-bench stable nucleophile (entry 8).  
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0
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17
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Reaction conditions: 25a (0.2 mmol), Bu3SnSiMe3 (0.26 mmol), Ni(cod)2 (x mol%), dcype (y 
mol%), CsF (0.2 mmol), toluene (1 mL). a Determined by GC analysis using decane as internal 
standard.  

Table 2.9. Effect of Ni(cod)2/ligand ratio 

We next assessed whether the ratio of Ni/ligand played an influence on both reactivity and 
chemoselectivity (Table 2.9). Specifically, the best results were found at 10% loading with a 
Ni/ligand ratio of 1:1. Indeed, lower yields were found either by reducing the catalyst loading to 
5% or by increasing the amount of ligand. The latter results suggest the formation of rather 
stable 18-electron Ni(0)L2 species, thus making the whole system kinetically less-accessible, thus 
lowering down the rate for the initial oxidative addition due to the difficulty for accessing the 
14-electron Ni(0)L1 species.  Finally, blank experiments were carried out in order to ensure that 
all the reaction parameters were necessary for the stannylation to take place. Indeed, Table 2.10 
tacitly shows that no product was formed in the absence of  nickel catalyst, ligand and CsF 
(entries 2-5).  
 

 
Reaction conditions: 25a (0.2 mmol), Bu3SnSiMe3 (0.26 mmol), Ni(cod)2 (0.02 mmol), dcype 
(0.02 mmol), CsF (0.2 mmol), Toluene (1 mL), 90 ºC, 8 h. a Determined by GC analysis using 
decane as internal standard. ✗ indicates that no reagent was added; ✓ indicates that the reagent 
was added.  

Table 2.10. Blank experiments 
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Entry
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✓

✓

✓

Bu3SnSiMe3 Ni(cod)2 dcype CsF Yield of 26a (%)a

1

2

3

4

5

✓

✓

✓
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✗
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✓

✗

✗
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✓
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✓

✗
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0

0

0
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2.4.2. Preparative substrate scope 

2.4.2.1 Scope of naphthyl pivalates 

With the best conditions in hand, the scope of our stannylation reaction was investigated by 
evaluating a wide range of π-extended aryl pivalates. As shown in Scheme 2.14, the electronic 
nature of the aromatic ring does not interfere with productive C–Sn bond formation. Our 
protocol turned out to be highly chemoselective, as amides (26f and 26g), silyl ethers (26c), aryl 
silanes (26h), nitriles (26i), esters (26j and 26k), carbazoles (26l), and benzofurans (26m) were 
all accommodated quite well with satisfactory yields. Notably, stannylation of sterically hindered 
26k bearing an ortho-substituent – typically a problematic substitution pattern in multiple C–O 
bond-functionalization techniques60 – was achieved with a slightly lower yield. Generally, the 
presence of nitrogen-containing heterocycles is problematic in C–O functionalization due to 
competitive binding to the nickel center, leading to low catalytic turnovers. Fortunately, this was 
not the case, and 26e and 26n were both prepared in good yields following our optimized 
protocol. In addition, the stannylation of 25a could be easily scaled up to 5 mmol without 
significant erosion in yield. Likewise, a double stannylation was within reach in high yields (26o), 
indicating the robustness and potential applicability to prepare multiple organometallic 
reagents via C–O bond-functionalization. 

 
 

Reaction conditions: As Table 2.10, entry 1; yield of isolated product, average of at least two 
independent runs. a 25a (5.0 mmol). b Bu3SnSiMe3 (2.3 equiv). c 6 h. 

Scheme 2.14. Scope of π-extended aryl pivalates  

           

Ni(cod)2 (10 mol%)
OPiv SnBu3

SnBu3

R R
dcype (10 mol%)

CsF (1.0 equiv)
PhMe, 90 ºC

R

N
Me

SnBu3

65% (26l)

N

SnBu3

90% (26n)

SnBu3

NN

68% (26e)

(1.3 equiv)

SnBu3

NMe Piv

80%(26f)

SnBu3

85% (26d)
R = OMe, 84% (26b)
R = OTBS, 72% (26c)

SnBu3

R

SnBu3

N
R = CN, 82% (26i)c
R = CO2Me, 79% (26j)

SnBu3

CO2Me

61% (26k)

81% (26o)b

R = H, 92%, 91%a (26a)

O SnBu3

87% (26m)

O

73% (26g)

SnBu3Bu3Sn

SnBu3

TMS

88% (26h)

Bu3SnSiMe3+

25a-o 26a-o

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 2.                                                            

 52 

2.4.2.2. Scope of phenyl pivalates 

Encouraged by the wide functional group tolerance observed with naphthyl pivalates, we 
next wondered whether our protocol could be extended to non-activated phenyl pivalates, as 

these are typically less reactive than their p-extended congeners.26-29, 61 As shown in Scheme 
2.15, substrates possessing either electron-withdrawing or electron-donating groups at para, 
meta or ortho position all afforded the targeted stannylated products in good yields (31a to 31k). 
Likewise, the presence of esters (31e and 31f), trifluoromethyl (31g), nitriles (31i) or even 
unbiased pyridyl backbone (31k) could equally be tolerated. Surprisingly, a fluoride-containing 
substrate (31h) could also undergo the C–Sn bond formation at the C–O site. This is somewhat 
surprising if we take into consideration the ease for promoting an oxidative addition into the sp2 

C–F bond by using Ni(0)(PCy3)2 species in related borylation events.62 
 

 
Reaction conditions: As Table 2.10, entry 1; yield of isolated product, average of at least two 
independent runs. a Bu3SnSiMe3 (2.0 equiv). 

Scheme 2.15. Scope of none π-extended aryl pivalates 

2.4.2.3. Scope of benzyl and allyl pivalates 

Next, we decided to test whether our stannylation protocol could be implemented with 
benzylic or allylic pivalates (Scheme 2.16). Indeed, we found that not only primary (32a and 32c), 
but also secondary benzyl pivalates (33b) with pendant β-hydrogen atoms and nitrogen donors 
could be stannylated in high yields under our optimal conditions. Likewise, allyl pivalates (32d 
and 31e) could also be used as substrates, obtaining the corresponding compounds with the 
double bond conjugated to the arene backbone.     
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Reaction conditions: As Table 2.10, entry 1; yield of isolated product, average of at least two 
independent runs. a 6 h. b at 110 oC. c Bu3SnSiMe3 (2.0 equiv). 

Scheme 2.16. Scope of benzyl and allyl pivalates 

2.4.2.4. Unsuccessful substrates 

Although we demonstrated that the stannylation of aryl pivalates occurred with a wide 
substrate scope, a non-negligible number of examples failed to provide the targeted C–Sn bond. 
For instance, substrates bearing unprotected phenol (34a), nitro group (34b), and a double bond 
(34h and 34i) resulted in no conversion. Strikingly, no conversion was observed in the presence 
of aryl chloride and aryl bromide. Unfortunately, we do not have a rational explanation, as a 
priori one might argue that a stannylation event should occur more rapidly at the C–halide bond 
due to their much higher tendency to promote oxidative addition to Ni(0) centers.  Sterically-
crowded benzylic pivalate (34l) was met with little success (<5% yield), whereas particularly 
electron-poor pivalate (34c) failed to provide the targeted product, even at higher temperature 
or higher loadings. In this particular case, the presence of multiple C–F bonds might result in the 
formation of rather stable oxidative addition species. The presence of C–S or other C–O bonds 
was equally incompatible, due to the strong binding to Ni centers in the former and competitive 
oxidative addition in the latter.63 Unfortunately, 34j and 34k possessing enolizable aromatic or 
aliphatic ketones failed to provide even traces of the targeted products, probably due to the 
presence of acidic α-hydrogens (no product formation was even observed with >2 equivalents 
of base).  Moreover, Bpin-substituted pivalate (34g) gave low yields of the organotin compound 
due to problems in the isolation of the final product.  
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Scheme 2.17. Unsuccessful substrates of aryl pivalates  

2.4.3. Synthetic applicability and orthogonal strategy 

Putting our results into perspective, we conclude that our protocol provides a rapid entry for 
the formation of organotin reagents from readily available C–O electrophiles. In order to show 
the potential applicability of our method, we decided to show a range of transformations 
available that derive from C–Sn cleavage. Indeed, the polarized C–Sn bond can be easily 
transformed into the corresponding C–halide or C–C bonds.64 Taking into consideration that aryl 
halides are typically used as conventional coupling partners in a myriad of transformations, we 
decided to show the viability for converting our organotin reagents into their corresponding aryl 
halide congeners. As shown in Scheme 2.18, these transformations could be easily executed by 
reacting 26a with I2 or Selectfluor,65,66 ending up in the corresponding halogenated compounds 
35 and 36.  In a formal sense, this transformation can be visualized as a means to transform a 
C–O electrophile into the corresponding aryl halide. Likewise, Migita-Kosugi-Stille (MKS) cross-
coupling reactions were within reach by means of Pd catalysis. In order to show the potential of 
these technologies, we decided to show the applicability of the method with challenging 
heteroaryl halides that typically fail in classical Suzuki-Miyaura or Negishi couplings where the 
basic nitrogen atom might interfere with binding at the metal center. As shown for 37 and 38, 
the targeted C–C bond-formation occurred rather smoothly, even in the absence of base with a 
regular Pd(PPh3)4 catalyst, resulting in the formation of the bipyridine or tripyridine motifs in 
excellent yields. 
 

 

Scheme 2.18. Halogenation of 26a with I2 and selectfluor 
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Scheme 2.19. Migita-Kosugi-Stille cross-coupling reactions of 31k with azines 

Recognizing that the functionalization of the C–O bonds is more difficult than the 
corresponding C–halide bonds, we wondered whether we could implement orthogonal 
strategies for C–C and C–heteroatom bond-formation with polyhalogenated arenes containing 
aryl ester motifs. As shown in Scheme 2.20, this turned out to be the case, and sequential cross-
coupling reactions could be implemented by using Cu, Pd and Ni catalysts. First, a Cu-catalyzed 
C–N bond formation reaction rapidly occurred at the aryl bromide terminus to give compound 
40 by using N,N’-dimethylethylendiamine as ligand. This was followed by a Pd-catalyzed Suzuki-
Miyaura reaction with PhB(OH)2 with a Pd(II)XPhos precatalyst to construct the biaryl motif (41) 
in high yields.67,68 Finally, the corresponding organotin reagent was within reach by exposing 41 
under our optimized reaction conditions.  
 

 

Scheme 2.20. Orthogonal cross-coupling reactions of compound 39 
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2.5. Mechanistic Considerations: Catalytic Cycle and Discussions 

With the preparative results of our stannylation in hand, we next focused our attention to 
elucidate the mechanism of our protocol. In order to do so, we started by monitoring the 
stannylation reaction by 31P NMR (Scheme 2.21). Interestingly, the signal of the plausible 
reaction intermediates could be detected, as two new downfield peaks (63.60 and 61.63 ppm) 
appeared alongside the signal of the Ni(cod)dcype (60.17 ppm).41 Such downfield peaks are 
consistent with the formation of an oxidative addition species with two phosphorus atoms in 
different chemical environments, as one might initially expect from a bidentate phosphine 
bound in a cis-fashion. After 8h, the two peaks disappeared indicating the full conversion of 25a 
to 26a with concomitant formation of the propagating Ni(cod)dcype species.  
 

 

  
 

Scheme 2.21. 31P NMR monitoring reaction of 25a 

 
To further elucidate the mechanism, we decided to isolate the putative oxidative addition 

species. In order to do so, we prepared Ni-1 by exposing naphthyl pivalate 25a to Ni(cod)dcype 
in PhMe at 90 oC. Under these conditions, we could isolate Ni-1 in pure form and in high yield. 
As expected, 31P NMR revealed an identical set of signals to that shown in the in situ monitoring 
experiment shown in Scheme 2.21. This is consistent with a Ni atom in a square-planar geometry 
surrounded by two phosphorus donor atoms in a cis-configuration with a κ1-O-pivalate ligand.  
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Scheme 2.22. Catalytic and stoichiometric experiments with Ni-1 oxidative complex 

As expected, Ni-1 was found to be catalytically competent as reaction intermediate, and 26a 
was invariably formed in good yields regardless of whether Ni-1 was used in a stoichiometric or 
catalytic manner. Notably, the reactions only provided trace of the desired product in the 
absence of CsF, indicating the critical role exerted by CsF for activating the Sn–Si interelement 
bond and facilitate the subsequent transmetalation between Ni-1 and Bu3SnSiMe3. 
 

 

Scheme 2.23. Plausible mechanism via Ni-1 intermediate 

At present, we believe that the superior reactivity of dcype vs its monodentate analogue PCy3 
is attributed to the ease for oxidative addition with dcype when compared to PCy3, the more 
rigid coordination of bidentate ligands, the formation of stable long-lived entities with dcype, 
the low tendency for rapid ligand dissociation and avoiding unproductive disproportionation 
events.41,52 Although we were not able to observe the aryl-Ni(II)-SnBu3 intermediate, the 
formation of  Me3SiF was confirmed by 19F NMR and 29Si NMR spectroscopy. Likewise, 113Cs and 
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1H NMR spectroscopy supported the formation of CsOPiv as byproduct. Based on the 
preliminary results presented above, at present we proposed a mechanistic rationale consisting 
of a canonical oxidative addition of the aryl pivalate to Ni(0)dcype followed by transmetalation 
aided by CsF and a final C–Sn bond reductive elimination, thus delivering the targeted organotin 
reagent while recovering back the corresponding Ni(0)dcype catalyst (Scheme 2.23).  

2.6. Conclusions 

This chapter summarizes our efforts towards the development of a Ni-catalyzed stannylation 
of aryl pivalates via C–O bond scission. The key to achieve this transformation was to find an 
efficient Ni/ligand catalyst system based on a suitable stannyl reagent. The mild reaction 
conditions utilized and the broad functional group tolerance makes these transformation an 
useful entry for the preparation of organotin reagents, and a complementary alternative to 
existing protocols based on organometallic reagents. In contrast to the known reluctance of non 
π-extended C–O electrophiles to react with Ni catalyst in other C–C or C–heteroatom bond-
formations not involving organometallic reagents, our protocol can be applied to these motifs 
without much problems under relatively mild conditions. In addition, this technique can be 
extended to both benzyl and allyl pivalates, even in the presence of nitrogen-containing 
heterocycles containing donor sites that might cause competitive binding at the Ni center. These 
findings have been applied in the context of Migita-Kosugi-Stille couplings as well as in the 
design of orthogonal strategies in the presence of polyhalogenated aryl esters. The study of the 
mechanism indicates that the reaction occurs via a canonical oxidative addition species that can 
be isolated and characterized in pure form, followed by a transmetalation aided by base and a 
final reductive elimination to deliver the targeted organotin reagent. 
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2.8. Experimental Section 

      2.8.1. General considerations 

Reagents: Commercially available materials were used without further purification. Ni(COD)2 and dcype 
were purchased from Strem Chemicals. Anhydrous toluene was purchased from Alfa Aesar. CsF was 
purchased from Aldrich. Silylstannane 18a was prepared according to a known literature procedure.51 All 
the other reagents were purchased from commercial sources and used as received. Flash chromatography 
was performed with EM Science silica gel 60 (230-400 mesh). Thin layer chromatography was carried out 

using Merck TLC Silica gel 60 F254. 

Analytical Methods. 1H NMR, 13C NMR, 19F NMR and 119Sn-NMR spectra are included for all compounds. 
1H NMR, 13C NMR, 19F NMR, 31P-NMR and 119Sn-NMR spectra were recorded on a Bruker 300 MHz, a Bruker 
400 MHz or a Bruker 500 MHz at 20 oC. All 1H NMR spectra are reported in parts per million (ppm) 
downfield of TMS and were measured relative to the signals for CHCl3 (7.26 ppm). All 13C NMR spectra 
were reported in ppm relative to residual CHCl3 (77.16 ppm) and were obtained with 1H decoupling. 
Coupling constants, J, are reported in hertz (Hz). Melting points were measured using open glass 
capillaries in a Büchi B540 apparatus. Infrared spectra were recorded on a Bruker Tensor 27. Mass spectra 
were recorded on a Waters LCT Premier spectrometer. Gas chromatographic analyses were performed 

on HewlettPackard 6890 gas chromatography instrument with a FID detector using 25m x 0.20 mm 
capillary column with cross-linked methyl siloxane as the stationary phase. Flash chromatography was 
performed with EM Science silica gel 60 (230-400 mesh) and using KMnO4 TLC stain. The procedures 
described in this section are representative. Thus, the yields may differ slightly from those given in the 
mentioned Schemes. 

      2.8.2. Synthesis of the starting materials 

 

General procedure for the synthesis of pivalates. A round bottom flask was charged with the 
corresponding phenol (1.0 equiv) and dissolved with CH2Cl2 (3 mL/mmol). Triethylamine (1.1 equiv) and 
acetyl chloride derivative (1.1 equiv) were subsequently added dropwise to the reaction vessel at 0 oC. 
The mixture was then allowed to warm to room temperature, and stirred for 3-4 h. The mixture was then 
quenched with NH4Cl(aq) and extracted three times with CH2Cl2. The combined organic layers were 
washed with brine, dried over MgSO4, and concentrated under reduced pressure. The crude residue was 
purified by flash chromatography (Hex/EtOAc) to afford corresponding products. 

 

3-bromo-5-chlorophenyl pivalate (39). Following the general procedure, using 3-bromo-5-chlorophenol 
(2g, 10 mmol) provided the corresponding pivalate as a colorless oil in 85% yield (2.50 g). 1H NMR (400 
MHz, CDCl3): δ 7.38 (t, J = 1.7 Hz, 1H), 7.17 (t, J = 1.8 Hz, 1H), 7.06 (t, J = 1.9 Hz, 1H), 1.34 (s, 9H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 176.4, 152.0, 135.5, 128.9, 123.7, 122.6, 121.4, 39.3, 27.1 ppm. IR (neat, cm-1): 

PivCl (1.1 equiv)

DCM, 0 °C- rt
R

OH Et3N (1.1 equiv)
R

OPiv

OPiv

Br Cl
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1756, 1573, 1423, 1212, 1396, 1088, 771, 667. HRMS (APCI) [C11H12BrClNaO2] (M+Na) calcd. 312.9601, 
found 312.9592. 

      2.8.3. General procedure for Ni-catalyzed stannylation of aryl esters via C–O cleavage 

An oven-dried 5 mL screw-capped test tube containing a stirring bar was charged with the aryl pivalate 
(0.20 mmol). The test tube was introduced in an argon-filled glovebox where Ni(cod)2 (5.4 mg, 10.0 mol %), 
dcype (L1, 8.4 mg, 10.0 mol %), CsF (30.2 mg, 1.0 equiv), anhydrous toluene (1 mL) were added. The 

mixture was stirred at room temperature for 1 minute and then 18a (94.4 mg, 1.30 equiv) was added. The 
reaction tube was taken out of the glovebox and stirred at 90 oC for 8 h. The mixture was then allowed to 
cool to room temperature, diluted with EtOAc (5 mL) and filtered through a Celite® plug, eluting with 
additional EtOAc (10 mL). The filtrate was concentrated and the products were purified by flash 
chromatography to afford the targeted stannyl derivative. 

 

Tributyl(naphthalen-2-yl)stannane (26a). Following the general procedure A, using 25a (45.6 mg, 0.20 

mmol). Purification by column chromatography on silica gel (Hexane) afforded the title compound as a 
colorless oil in 91% yield (75.8 mg). 1H NMR (300 MHz, CDCl3): δ 8.03 (s, 1H), 7.91-7.85 (m, 3H), 7.65 (d, J 

= 8.7 Hz, 1H), 7.56-7.51 (m, 2H), 1.73-1.63 (m, 6H), 1.51-1.39 (m, 6H), 1.25-1.20 (m, JH-Sn = 49.9 Hz, 6H), 
0.99 (t, J = 7.2 Hz, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ 139.7, 136.7, 133.4, 133.4, 133.3, 127.9, 127.7, 
126.9, 125.9, 125.8, 29.3, 27.6, 13.9, 9.8 ppm. 119Sn NMR (149 MHz, CDCl3) δ -40.80 ppm. Spectroscopic 
data for 26a match those previously reported in the literature.1  

 

Tributyl(7-methoxynaphthalen-2-yl)stannane (26b). Following the general procedure A, using 25b (51.5 
mg, 0.20 mmol). Purification by column chromatography on silica gel (Hexane) afforded the title 
compound as a colorless oil in 85% yield (75.9 mg). 1H NMR (300 MHz, CDCl3): δ 7.85 (s, 1H), 7.34-7.70 (m, 
2H), 7.43 (dd, J = 7.9, 0.7 Hz, 1H), 7.15-7.12 (m, 2H), 3.94 (s, 3H), 1.65-1.55 (m, 6H), 1.43-1.31 (m, 6H), 
1.16-1.11 (m, JH-Sn = 50.0 Hz, 6H), 0.91 (t, J = 7.2 Hz, 9H) ppm.  13C NMR (75 MHz, CDCl3) δ 157.6, 140.3, 
135.5, 134.4, 131.1, 129.4, 128.9, 126.7, 118.7, 105.5, 55.4, 29.3, 27.6, 13.9, 9.8 ppm. 119Sn NMR (149 

MHz, CDCl3) δ -40.82 ppm. IR (neat, cm-1): 2954, 2923, 2870, 2850, 1624, 1457, 1212, 836. HRMS (ESI) 
[C23H36NaOSn] (M+Na) calcd. 471.1680, found 471.1660. 

 

Tert-butyldimethyl((7-(tributylstannyl)naphthalen-2-yl)oxy)silane(26c). Following the general 
procedure A, using 25c (71.6 mg, 0.20 mmol). Purification by column chromatography on silica gel 

(Hexane) afforded the title compound as a colorless oil in 70% yield (76.6 mg). 1H NMR (500 MHz, CDCl3): 
δ 7.89-7.80 (m, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.64 (d, J = 8.1 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.15 (d, J = 2.0 
Hz, 1H), 7.06 (dd, J = 8.5, 2.5 Hz, 1H), 1.64-1.54 (m, 6H), 1.39-1.31 (m, 6H), 1.12-1.09 (m, JH-Sn = 66.4 Hz, 
6H), 1.02 (s, 9H), 0.89 (t, J = 10.0 HZ, 9H), 0.24 (s, 6H) ppm. 13C NMR (126 MHz, CDCl3) δ 153.6, 136.8, 
136.4, 134.6, 133.6, 129.5, 129.2, 125.9, 122.1, 114.9, 29.3, 27.6, 25.9, 18.4, 13.8, 9.8, -4.2 ppm. 119Sn 

SnBu3

SnBu3MeO

SnBu3TBSO
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NMR (149 MHz, CDCl3) δ -40.77 ppm. IR (neat, cm-1): 2956, 2927, 2856, 1624, 1467, 1258, 932. HRMS 
(APCI) [C28H49OSiSn] (M+H) calcd. 549.2569, found 549.2574.  

 

Tributyl(naphthalen-1-yl)stannane (26d). Following the general procedure A, using 25d (45.6 mg, 0.20 
mmol). Purification by column chromatography on silica gel (Hexane) afforded the title compound as a 
colorless oil in 86% yield (71.7 mg). 1H NMR (300 MHz, CDCl3): δ 7.87-7.77 (m, 3H), 7.65 (dd, J = 6.6, 1.2 
Hz, 1H), 7.53-7.42 (m, 3H), 1.64-1.54 (m, 6H), 1.42-1.30 (m, 6H), 1.25-1.90 (m, JH-Sn = 50.5 Hz, 6H), 0.89 (t, 

J = 7.2 Hz, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ 143.07, 139.14, 135.24, 133.80, 130.31, 129.03, 128.56, 
125.76, 125.46, 29.34, 27.52, 13.81, 10.55 ppm. 119Sn NMR (149 MHz, CDCl3) δ -39.71 ppm. Spectroscopic 
data for 26d match those previously reported in the literature.1 

 

1-(6-(tributylstannyl)naphthalen-2-yl)-1H-pyrazole (26e). Following the general procedure A, using 25e 

(58.9 mg, 0.20 mmol) and 18a (145.2 mg, 0.40 mmol). After 6 hours, purification by column 
chromatography on silica gel (Hex:EtOAc 5:1) afforded the title compound as a colorless oil in 66% yield 
(63.8 mg). 1H NMR (300 MHz, CDCl3): δ 8.08-8.06 (m, 2H), 7.96-7.78 (m, 5H), 7.62-7.57 (m, 1H), 6.53-6.51 
(m, 1H), 1.65-1.55 (m, 6H), 1.43-1.33 (m, 6H), 1.17-1.12 (m, JH-Sn = 50.3 Hz, 6H), 0.91 (t, J = 7.2 Hz, 9H) ppm. 
13C NMR (75 MHz, CDCl3) δ 141.3, 140.1, 137.6, 136.5, 134.4, 133.5, 131.8, 129.4, 127.1, 126.7, 118.5, 
116.4, 107.9, 29.3, 27.5, 13.8, 9.8 ppm. 119Sn NMR (149 MHz, CDCl3) δ -40.56 ppm. IR (neat, cm-1): 2955, 
2921, 2870, 2851, 1686, 1579, 1375, 861. HRMS (ESI) [C25H36N2NaSn] (M+Na) calcd. 507.1792, found 

507.1786. 

 

N-methyl-N-(7-(tributylstannyl)naphthalen-1-yl)pivalamide (26f). Following the general procedure A, 
using 25f (68.2 mg, 0.20 mmol). Purification by column chromatography on silica gel (Hex:EtOAc 5:2) 
afforded the title compound as a colorless oil in 80% yield (84.9 mg). 1H NMR (500 MHz, CDCl3): δ 7.94 (s, 
1H), 7.82 (t, J = 10.0 Hz, 2H), 7.63-7.61 (m, 1H), 7.43-7.40 (m, 1H), 7.33-7.32 (m, 1H), 3.31 (s, 3H), 1.59-
1.53 (m, 6H), 1.36-1.31 (m, 6H), 1.13-1.10 (m, JH-Sn = 67.1 Hz, 6H), 0.97 (s, 9H), 0.87 (t, J = 8.0 Hz, 9H) ppm. 
13C NMR (126 MHz, CDCl3) δ 179.1, 141.9, 141.2, 134.52, 133.9, 131.9, 130.3, 128.6, 127.3, 126.2, 125.2, 
77.2, 41.1, 40.8, 29.4, 29.3, 27.5, 13.8, 9.9 ppm. 119Sn NMR (149 MHz, CDCl3) δ -38.98 ppm. IR (neat, cm-

1): 2955, 2923, 2870, 2852, 1639, 1480, 1364, 1083, 829. HRMS (ESI) [C28H46NOSn] (M+H) calcd. 523.2596, 
found 523.2607. 

 

1-(6-(tributylstannyl)naphthalen-2-yl)pyrrolidin-2-one (26g). Following the general procedure A, using 
25g (62.3 mg, 0.20 mmol). Purification by column chromatography on silica gel (Hex:EtOAc 1:1) afforded 
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the title compound as a colorless oil in 73% yield (72.9 mg). 1H NMR (300 MHz, CDCl3): δ 7.98 (dd, J = 9.0, 
2.1 Hz, 1H), 7.90-7.74 (m, 4H), 7.55 (dd, J = 8.0, 1.0 Hz, 1H), 3.97 (t, J = 7.2 Hz, 2H), 2.66 (t, J = 7.8 Hz, 2H), 
2.25-2.15 (m, 2H), 1.68-1.53 (m, 6H), 1.42-1.30 (m, 6H), 1.15-1.10 (m, JH-Sn = 66.6 Hz, 6H), 0.90 (t, J = 7.2 

Hz, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ 174.5, 139.0, 137.2, 136.2, 133.8, 133.4, 130.7, 128.4, 126.7, 
119.8, 116.7, 49.2, 33.0, 29.3, 27.5, 18.2, 13.8, 9.8 ppm. 119Sn NMR (149 MHz, CDCl3) δ -40.55 ppm. IR 
(neat, cm-1): 2955, 2922, 2870, 2851, 1686, 1407, 1299, 861. HRMS (APCI) [C26H40NOSn] (M+H) calcd. 
502.2126, found 502.2132. 

 

Trimethyl(6-(tributylstannyl)naphthalen-2-yl)silane (26h). Following the general procedure A, using 25h 
(60.0 mg, 0.20 mmol). Purification by column chromatography on silica gel (Hexane) afforded the title 
compound as a colorless oil in 89% yield (87.1 mg). 1H NMR (300 MHz, CDCl3): δ 8.00-7.94 (m, 2H), 7.82 
(d, J = 8.0 Hz, 2H), 7.60 (t, J = 8.6 Hz, 2H), 1.66-1.53 (m, 6H), 1.42-1.35 (m, 6H), 1.18-1.13 (m, JH-Sn = 66.9 
Hz, 6H), 0.92 (t, J = 7.2 Hz, 9H), 0.37 (s, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ 140.3, 137.9, 136.5, 133.8, 

133.5, 133.4, 132.9, 129.8, 127.0, 126.7, 29.3, 27.5, 13.9, 9.8, -0.9 ppm. 119Sn NMR (149 MHz, CDCl3) δ -
40.55 ppm. IR (neat, cm-1): 2955, 2924, 2871, 2851, 1246, 1086, 833, 815. HRMS (ESI) [C21H33SiSn] (M-Bu) 
calcd. 433.1368, found 433.1354. 

 

6-(tributylstannyl)-2-naphthonitrile (26i). Following the general procedure A, using 25i (50.6 mg, 0.20 
mmol). After 6 hours, purification by column chromatography on silica gel (Hexane) afforded the title 
compound as a colorless oil in 80% yield (70.7 mg). 1H NMR (500 MHz, CDCl3): δ 8.20 (s, 1H), 7.99 (s, 1H), 
7.88 (d, J = 8.5 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.60 (dd, J = 8.5, 1.5 Hz, 1H), 1.64-
1.56 (m, 6H), 1.40-1.33(m, 6H), 1.18-1.15 (m, JH-Sn = 68.4 Hz, 6H), 0.91 (t, J = 7.2 Hz, 9H) ppm. 13C NMR (126 
MHz, CDCl3) δ 145.2, 136.6, 135.3, 134.2, 134.2, 132.2, 128.9, 127.0, 126.3, 119.5, 109.2, 29.2, 27.5, 13.8, 
9.9 ppm. 119Sn NMR (149 MHz, CDCl3) δ -38.81 ppm. IR (neat, cm-1): 2955, 2922, 2870, 2851, 2226, 1462, 

892, 816. HRMS (ESI) [C23H33NNaSn] (M+Na) calcd. 466.1527, found 466.1522. 

 

Methyl 6-(tributylstannyl)-2-naphthoate (26j). Following the general procedure A, using 25j (57.2 mg, 
0.20 mmol). Purification by column chromatography on silica gel (Hex:EtOAc 20:1) afforded the title 
compound as a colorless oil in 80% yield (76.1 mg). 1H NMR (300 MHz, CDCl3): δ 8.58 (s, 1H), 8.06 (dd, J = 
8.6, 1.7 Hz, 2H), 7.90-7.83 (m, 2H), 7.63 (d, J = 8.0 Hz, 1H), 3.98 (s, 3H), 1.64-1.53 (m, 6H), 1.42-1.30 (m, 
6H), 1.17-1.12 (m, JH-Sn = 51.6 Hz, 6H), 0.90 (t, J = 7.2 Hz, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ 167.5, 143.8, 
136.4, 135.2, 134.1, 132.4, 131.2, 128.1, 127.9, 127.3, 125.3, 52.3, 29.3, 27.5, 13.8, 9.9 ppm. 119Sn NMR 
(149 MHz, CDCl3) δ -39.93 ppm. IR (neat, cm-1): 2954, 2924, 2870, 2850, 1719, 1280, 1225, 747. HRMS (ESI) 

[C24H36NaO2Sn] (M+Na) calcd. 499.1629, found 499.1621. 
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Methyl 3-(tributylstannyl)-2-naphthoate (26k). Following the general procedure A, using 25k (57.3 mg, 
0.20 mmol). Purification by column chromatography on silica gel (Hex:EtOAc 20:1) afforded the title 
compound as a colorless oil in 61% yield (57.9 mg). 1H NMR (300 MHz, CDCl3): δ 8.66 (t, J = 6.0 Hz, 1H), 
8.15-7.99 (m, 1H), 7.89 (dd, J = 14.7, 8.0 Hz, 2H), 7.62-7.49 (m, 2H), 3.98 (s, 3H), 1.59-1.48 (m, 6H), 1.38-
1.27 (m, 6H), 1.16-1.10 (m, JH-Sn = 66.3 Hz, 6H), 0.86 (t, J = 7.2 Hz, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ 
169.3, 141.3, 137.6, 135.0, 132.6, 132.4, 130.8, 129.2, 128.3, 127.7, 126.6, 52.5, 29.4, 27.6, 13.9, 11.4 
ppm. 119Sn NMR (149 MHz, CDCl3) δ -38.33 ppm. IR (neat, cm-1): 2954, 2920, 2870, 2853, 1709, 1446, 1282, 

742. HRMS (ESI) [C24H36NaO2Sn] (M+Na) calcd. 499.1629, found 499.1621. 

 

9-methyl-2-(tributylstannyl)-9H-carbazole (26l). Following the general procedure A, using 25l (56.2 mg, 
0.20 mmol) and 2a (166.9 mg, 0.46 mol). Purification by column chromatography on silica gel (Hex:EtOAc 
20:1) afforded the title compound as a colorless oil in 63% yield (60.1 mg). 1H NMR (500 MHz, CDCl3): δ 
8.07 (t, J = 10.0 Hz, 2H), 7.49-7.37 (m, 3H), 7.31 (d, J = 7.5 Hz, 1H), 7.24-7.19 (m, 1 H), 3.86 (s, 3H), 1.66-
1.56 (m, 6H), 1.41-1.32 (m, 6H), 1.15-1.11 (m, JH-Sn = 53.6 Hz, 6H), 0.90 (t, J = 7.2 Hz, 9H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 141.0, 140.8, 139.2, 126.6, 125.8, 123.0, 122.9, 120.4, 119.8, 118.8, 116.1, 108.5, 29.3, 
29.1, 27.6, 13.8, 10.0 ppm. 119Sn NMR (149 MHz, CDCl3) δ -37.58 ppm. IR (neat, cm-1): 2954, 2922, 2870, 
2850, 1590, 1318, 1246, 743, 724. HRMS (ESI) [C25H37NNaSn] (M+Na) calcd. 494.1844, found 494.1845. 

 

Tributyl(dibenzo[b,d]furan-4-yl)stannane (26m). Following the general procedure A, using 25m (53.6 mg, 
0.20 mmol) and purification by column chromatography on silica gel (Hexane) afforded the title 
compound as a colorless oil in 87% yield (79.5 mg). 1H NMR (400 MHz, CDCl3): δ 7.97 (d, J = 8.0 Hz, 1H), 
7.94 (dd, J = 7.6, 1.2 Hz, 1H), 7.58-7.54 (m, 2H), 7.48-7.44 (m, 1H), 7.35 (dt, J = 7.4, 2.5 Hz, 2H), 1.71-1.59 
(m, 6H), 1.45-1.39 (m, 6H), 1.32-1.25 (m, JH-Sn = 52.9 Hz, 6H), 0.93 (t, J = 8.0 Hz, 9H) ppm. 13C NMR (101 
MHz, CDCl3) δ 162.3, 156.1, 135.0, 126.8, 124.9, 123.6, 122.8, 122.5, 122.1, 120.8, 120.6, 111.7, 29.3, 27.5, 
13.8, 10.1 ppm. 119Sn NMR (149 MHz, CDCl3) δ -39.79 ppm. Spectroscopic data for 26m match those 
previously reported in the literature.3 

 

6-(tributylstannyl)quinoline (26n). Following the general procedure A, using 25n (45.8 mg, 0.20 mmol) 
and purification by column chromatography on silica gel (Hex:EtOAc 4:1) afforded the title compound as 
a colorless oil in 88% yield (73.9 mg). 1H NMR (400 MHz, CDCl3): δ 8.88 (dd, J = 4.2, 1.7 Hz, 1H), 8.12 (d, J 

= 8.0 Hz, 1H), 8.05 (dd, J = 8.2, 4.1 Hz, 1H), 7.90 (s, 1H), 7.81 (dd, J = 8.2, 1.1 Hz, 1H), 7.38 (dd, J = 8.3, 4.2 
Hz, 1H), 1.64-1.55 (m, 6H), 1.40-1.31 (m, 6H), 1.16-1.12 (m, JH-Sn = 67.3 Hz, 6H), 0.89 (t, J = 8.0 Hz, 9H) ppm. 
13C NMR (101 MHz, CDCl3) δ 150.4, 148.4, 141.4, 136.9, 136.4, 135.8, 128.3, 128.2, 121.1, 29.2, 27.5, 13.8, 
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9.9 ppm. 119Sn NMR (149 MHz, CDCl3) δ -39.38 ppm. Spectroscopic data for 26n match those previously 
reported in the literature.4 

 

2,7-bis(tributylstannyl)naphthalene (26o). Following the general procedure A, using 25o (65.7 mg, 0.20 
mmol) and 18a (166.9 mg, 0.46 mmol). Purification by column chromatography on silica gel (Hexane) 
afforded the title compound as a colorless oil in 81% yield (114.3 mg). 1H NMR (500 MHz, CDCl3): δ 7.95-
7.86 (m, 2H), 7.83-7.75 (m, 2H), 7.55-7.44 (m, 2H), 1.63-1.56 (m, 12H), 1.41-1.34 (m, 12H), 1.16-1.13 (m, 
JH-Sn = 68.0 Hz, 12H), 0.91 (t, J = 7.0 Hz, 18H) ppm. 13C NMR (101 MHz, CDCl3) δ 139.8, 139.6, 136.7, 136.4, 

133.2, 127.9, 127.7, 126.9, 126.8, 125.8, 29.3, 27.6, 13.8, 9.8 ppm. 119Sn NMR (149 MHz, CDCl3) δ -40.93 
ppm. IR (neat, cm-1): 2955, 2922, 2870, 2851, 1462, 1376, 1061, 835. HRMS (APCI) [C30H51Sn2] (M-Bu) 
calcd. 651.2029, found 651.2058. 

 

Tributyl(phenyl)stannane (31a). Following the general procedure A, using 30a (35.6 mg, 0.20 mmol) and 
18a (145.2 mg, 0.40 mmol). Purification by column chromatography on silica gel (Hexane) afforded the 
title compound as a colorless oil in 77% yield (56.5 mg). 1H NMR (300 MHz, CDCl3): δ 7.49-7.46 (m, 2H), 
7.35-7.30 (m, 3H), 1.61-1.51 (m, 6H), 1.41-1.29 (m, 6H), 1.09-1.04 (m, JH-Sn = 59.3 Hz, 6H), 0.90 (t, J = 7.2 
Hz, 9H) ppm. 13C NMR (126 MHz, CDCl3) δ 142.2, 136.6, 128.1, 128.0, 29.3, 27.5, 13.8, 9.7 ppm. 119Sn NMR 
(149 MHz, CDCl3) δ -43.23 ppm. Spectroscopic data for 31a match those previously reported in the 
literature.1 

 

Tributyl(p-tolyl)stannane (31b). Following the general procedure A, using 30b (38.4 mg, 0.20 mmol) and 
18a (145.2 mg, 0.40 mmol). Purification by column chromatography on silica gel (Hexane) afforded the 
title compound as a colorless oil in 68% yield (52.3 mg). 1H NMR (300 MHz, CDCl3): δ 7.35 (d, J = 4.0 Hz, 

2H), 7.15 (d, J = 4.0 Hz, 2H), 2.33 (s, 3H), 1.57-1.49 (m, 6H), 1.35-1.26 (m, 6H), 1.05-1.01 (m, JH-Sn = 59.3 Hz, 
6H), 0.88 (t, J = 7.2 Hz, 9H) ppm. 13C NMR (101 MHz, CDCl3) δ 138.0, 137.8, 136.6, 129.0, 29.3, 27.5, 21.6, 
13.8, 9.7 ppm. 119Sn NMR (149 MHz, CDCl3) δ -42.73 ppm. Spectroscopic data for 31b match those 
previously reported in the literature.1 

 

[1,1'-biphenyl]-4-yltributylstannane (31c). Following the general procedure A, using 30c (50.9 mg, 0.20 
mmol). Purification by column chromatography on silica gel (Hexane) afforded the title compound as a 
colorless oil in 64% yield (56.8 mg). 1H NMR (400 MHz, CDCl3): δ 7.62-7.56 (m, 6H), 7.46-7.42 (m, 2H), 
7.36-7.32 (m, 1H), 1.62-1.54 (m, 6H), 1.41-1.32 (m, 6H), 1.18-1.01 (m, JH-Sn = 67.4 Hz, 6H), 0.91 (t, J = 7.2 
Hz, 9H) ppm. 13C NMR (126 MHz, CDCl3) δ 141.5, 141.0, 140.9, 137.0, 128.9, 127.3, 127.3, 126.8, 29.3, 

27.6, 13.8, 9.8 ppm. 119Sn NMR (149 MHz, CDCl3) δ -42.16 ppm. Spectroscopic data for 31c match those 
previously reported in the literature.5 
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[1,1'-biphenyl]-2-yltributylstannane (31d). Following the general procedure A, using 30d (50.9 mg, 0.20 
mmol). Purification by column chromatography on silica gel (Hexane) afforded the title compound as a 
colorless oil in 67% yield (59.5 mg). 1H NMR (400 MHz, CDCl3): δ 7.54 (dt, J = 6.9, 1.2 Hz, 1H), 7.41-7.29 
(m, 8H), 1.38-1.30 (m, 6H), 1.26-1.19 (m, 6H), 0.83 (t, J = 7.2 Hz, 9H), 0.74-0.70 (m, JH-Sn = 59.8 Hz, 6H) ppm. 
13C NMR (126 MHz, CDCl3) δ 150.6, 145.9, 142.1, 137.1, 128.9, 128.9, 128.3, 128.1, 127.1, 126.4, 29.2, 

27.5, 13.8, 10.9 ppm. 119Sn NMR (149 MHz, CDCl3) δ -38.70 ppm. Spectroscopic data for 31d match those 
previously reported in the literature.6 

 

Methyl 4-(tributylstannyl)benzoate (31e). Following the general procedure A, using 30e (47.2 mg, 0.20 
mmol). Purification by column chromatography on silica gel (Hex:EtOAc 20:1) afforded the title compound 
as a colorless oil in 60% yield (51.1 mg). 1H NMR (500 MHz, CDCl3): δ 7.95 (d, J = 8.1 Hz 2H), 7.55 (d, J = 
8.1 Hz, 2H), 3.91 (s, 3H), 1.57-1.50 (m, 6H), 1.35-1.30 (m, 6H), 1.10-1.07 (m, JH-Sn = 68.5 Hz, 6H), 0.88 (t, J 
= 7.2 Hz, 9H) ppm. 13C NMR (126 MHz, CDCl3) δ 167.7, 149.8, 136.6, 129.7, 128.5, 52.1, 29.2, 27.5, 13.8, 
9.8 ppm. 119Sn NMR (149 MHz, CDCl3) δ -40.78 ppm. IR (neat, cm-1): 2955, 2924, 2871, 2852, 1726, 1276, 

1114, 751. HRMS (ESI) [C20H34NaO2Sn] (M+Na) calcd. 449.1473, found 449.1474. 

 

Methyl 3-(tributylstannyl)benzoate (31f). Following the general procedure A, using 30f (47.2 mg, 0.20 
mmol). Purification by column chromatography on silica gel (Hex:EtOAc 20:1) afforded the title compound 
as a colorless oil in 73% yield (62.5 mg). 1H NMR (500 MHz, CDCl3): δ 8.17-8.10 (m, 1H), 7.96 (dt, J = 7.8, 

1.6 Hz, 1H), 7.65 (dt, J = 7.2, 1.2 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 3.92 (s, 3H), 1.58-1.50 (m, 6H), 1.34-1.30 
(m, 6H), 1.11-1.08 (m, JH-Sn = 67.5 Hz, 6H), 0.89 (t, J = 7.2 Hz, 9H) ppm. 13C NMR (126 MHz, CDCl3) δ 167.8, 
142.7, 141.1, 137.4, 129.5, 129.3, 127.8, 52.1, 29.2, 27.5, 13.8, 9.8 ppm. 119Sn NMR (149 MHz, CDCl3) δ -
39.80 ppm. IR (neat, cm-1): 2955, 2924, 2871, 2857, 1724, 1274, 1113, 741. HRMS (ESI) [C20H34NaO2Sn] 
(M+Na) calcd. 449.1473, found 449.1469. 

 

Tributyl(3-(trifluoromethyl)phenyl)stannane (31g). Following the general procedure A, using 31g (49.3 
mg, 0.20 mmol). Purification by column chromatography on silica gel (Hexane) afforded the title 
compound as a colorless oil in 79% yield (67.2 mg). 1H NMR (400 MHz, CDCl3): δ 7.77-7.71 (m, 1H), 7.66-
7.64 (m, 1H), 7.57-7.54 (m, 1H), 7.43 (t, J = 7.5 Hz, 1H), 1.65-1.52 (m, 6H), 1.42-1.30 (m, 6H), 1.14-1.09 (m, 
JH-Sn = 66.5 Hz, 6H), 0.91 (t, J = 7.2 Hz, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ 143.6, 139.9, 132.7, 132.7, 
128.0, 124.8, 124.8, 29.2, 27.5, 13.8, 9.8 ppm. 19F NMR (367 MHz, CDCl3) δ -26.7 ppm. 119Sn NMR (149 
MHz, CDCl3) δ -38.71 ppm. IR (neat, cm-1): 2957, 2924, 2872, 2853, 1313, 1124, 1081, 703. HRMS (APCI) 
[C15H22F3Sn] (M-Bu) calcd. 379.0683, found 379.0683. 
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Tributyl(3-fluorophenyl)stannane (31h). Following the general procedure A, using 30h (38.5 mg, 0.20 
mmol). Purification by column chromatography on silica gel (Hexane) afforded the title compound as a 
colorless oil in 62% yield (47.8 mg). 1H NMR (500 MHz, CDCl3): δ 7.35-7.30 (m, 1H), 7.24 (dd, J = 7.1, 0.8 
Hz, 1H), 7.19 (dd, J = 8.1, 2.7 Hz, 1H), 7.02-6.98 (m, 1H), 1.60-1.54 (m, 6H), 1.40-1.33 (m, 6H), 1.12-1.08 
(m, JH-Sn = 67.6 Hz, 6H), 0.92 (t, J = 7.2 Hz, 9H) ppm. 13C NMR (126 MHz, CDCl3) δ 162.7 (d, J = 125.4 Hz), 
145.1, 132.0, 129.4, 122.7, 115.0, 29.2, 27.5, 13.8, 9.8 ppm. 19F NMR (376 MHz, CDCl3) δ -113.9 ppm. 119Sn 
NMR (149 MHz, CDCl3) δ -39.23 ppm. IR (neat, cm-1): 2956, 2923, 2871, 2852, 1571, 1467, 1408, 1206, 

780. HRMS (ESI) [C14H222FSn] (M-Bu) calcd. 329.0722, found 329.0723. 

 

3-(tributylstannyl)benzonitrile (31i). Following the general procedure A, using 30i (40.7 mg, 0.20 mmol). 
Purification by column chromatography on silica gel (Hexane) afforded the title compound as a colorless 
oil in 60% yield (47.5 mg). 1H NMR (400 MHz, CDCl3): δ 7.72 (t, J = 1.0 Hz, 1H), 7.68-7.66 (m, 1H), 7.67 (dt, 

J = 7.3, 1.1 Hz, 1H), 7.57 (dt, J = 7.8, 1.5 Hz, 1H), 1.57-1.49 (m, 6H), 1.37-1.29 (m, 6H), 1.11-1.07 (m, JH-Sn = 
56.7 Hz, 6H), 0.89 (t, J = 7.2 Hz, 9H) ppm. 13C NMR (101 MHz, CDCl3) δ 144.3, 140.6, 139.8, 131.6, 128.2, 
119.6, 112.3, 29.1, 27.4, 13.8, 9.9 ppm. 119Sn NMR (149 MHz, CDCl3) δ -36.95 ppm. Spectroscopic data for 
31i match those previously reported in the literature.8 

 

tributyl(3-methoxyphenyl)stannane (31j). Following the general procedure A, using 30j (41.6 mg, 0.20 
mmol). Purification by column chromatography on silica gel (Hexane) afforded the title compound as a 
colorless oil in 74% yield (58.8 mg). 1H NMR (300 MHz, CDCl3): δ 7.32-7.25 (m, 1H), 7.14-6.99 (m, 2H), 6.86 
(dd, J = 8.2, 1.8 Hz, 1H), 3.84 (s, 3H), 1.63-1.52 (m, 6H), 1.42-1.30 (m, 7H), 1.11-1.05 (m, JH-Sn = 51.3 Hz, 
5H), 0.92 (t, J = 7.2 Hz, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ 159.0, 143.6, 128.9, 128.8, 122.2, 113.1, 55.2, 
29.2, 27.5, 13.8, 9.7 ppm. 119Sn NMR (149 MHz, CDCl3) δ -41.08 ppm. Spectroscopic data for 31j match 
those previously reported in the literature.7 

 

3-(tributylstannyl)pyridine (31k). Following the general procedure A, using 30k (35.8 mg, 0.20 mmol). 
Purification by column chromatography on silica gel (Hex:EtOAc 10:1) afforded the title compound as a 
colorless oil in 60% yield (44.2 mg). Scaling up the reaction to 6.0 mmol resulted in 63% yield of 5k. 1H 

NMR (500 MHz, CDCl3): δ 8.59 (t, J = 9.5 Hz, 1H), 8.50 (dd, J = 7.8, 1.5 Hz, 1H), 7.73 (dt, J = 7.3, 1.7 Hz, 1H), 
7.21 (ddd, J = 7.3, 4.9, 1.7 Hz, 1H), 1.58-1.48 (m, 6H), 1.36-1.29 (m, 6H), 1.10-1.07 (m, JH-Sn = 68.8 Hz, 6H), 
0.88 (t, J = 7.5 Hz, 9H) ppm. 13C NMR (126 MHz, CDCl3) δ 156.2, 149.3, 144.2, 137.1, 124.0, 29.1, 27.4, 13.7, 
9.7 ppm. 119Sn NMR (149 MHz, CDCl3) δ -40.90 ppm. Spectroscopic data for 31k match those previously 
reported in the literature.8 

 

SnBu3F

SnBu3NC

SnBu3MeO

N

SnBu3
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Tributyl(naphthalen-2-ylmethyl)stannane (33a). Following the general procedure A, using 32a (48.5 mg, 
0.20 mmol). After 6 hours, purification by column chromatography on silica gel (Hexane) afforded the title 

compound as a colorless oil in 82% yield (70.6 mg). 1H NMR (400 MHz, CDCl3): δ 7.78 (d, J = 8.1 Hz, 1H), 
7.71 (d, J = 8.2 Hz, 2H), 7.45-7.34 (m, 3H), 7.20 (dd, J = 8.4, 1.8 Hz, 1H), 2.53 (s with Sn satellites, JH-Sn = 56.4 
Hz, 2H), 1.57-1.50 (m, 6H), 1.35-1.30 (m, 6H), 0.88 (m, JH-Sn = 65.1 Hz, 15H) ppm. 13C NMR (101 MHz, CDCl3) 
δ 141.6, 134.2, 130.7, 127.8, 127.7, 127.4, 126.8, 125.9, 124.0, 123.6, 29.2, 27.5, 18.9, 13.8, 9.6 ppm. 119Sn 
NMR (149 MHz, CDCl3) δ -10.33 ppm. Spectroscopic data for 32a match those previously reported in the 
literature.2 

 

Tributyl(1-(naphthalen-2-yl)ethyl)stannane (33b). Following the general procedure A, using 32b (51.4 mg, 
0.20 mmol) at 110 0C. Purification by column chromatography on silica gel (Hexane) afforded the title 
compound as a colorless oil in 69% yield (61.4 mg). 1H NMR (300 MHz, CDCl3): δ 7.76-7.66 (m, 3H), 7.43-
7.30 (m, 3H), 7.19 (dd, J = 8.4, 1.9 Hz, 1H), 2.95-2.81 (m, JH-Sn = 79.1 Hz, 1H), 1.67 (d with Sn satellites, JH-Sn 

= 66.5 Hz, J = 7.5 Hz, 3H), 1.47-1.33 (m, 6H), 1.29-1.17 (m, 6H), 0.88-0.77 (m, 15H) ppm. 13C NMR (101 
MHz, CDCl3) δ 146.9, 134.2, 131.0, 127.6, 127.6, 127.1, 126.5, 125.8, 124.1, 121.9, 29.2, 27.6, 17.5, 13.8, 
9.1 ppm. 119Sn NMR (149 MHz, CDCl3) δ -6.98 ppm. IR (neat, cm-1): 2954, 2926, 2870, 2850, 1666, 1580, 
1375, 761. HRMS (APCI) [C20H29Sn] (M-Bu) calcd. 389.1294, found 389.1286. 

 

3-((tributylstannyl)methyl)pyridine (33c). Following the general procedure A, using 32c (38.6 mg, 0.20 
mmol) and 2a (145.2 mg, 0.40 mmol). Purification by column chromatography on silica gel (Hexane) 
afforded the title compound as a colorless oil in 64% yield (48.7 mg). 1H NMR (400 MHz, CDCl3): δ 8.29 (d, 
J = 2.1 Hz, 1H), 8.22 (dd, J = 4.7, 1.4 Hz, 1H), 7.29-7.26 (m, 1H), 7.08 (dd, J = 7.5, 4.5 Hz, 1H), 2.24 (s with 

Sn satellites, JH-Sn = 54.6 Hz, 2H), 1.49-1.38 (m, 6H), 1.29-1.21 (m, 6H), 0.89-0.81 (m, JH-Sn = 64.5 Hz, 15H) 
ppm. 13C NMR (101 MHz, CDCl3) δ 148.6, 144.5, 139.8, 134.0, 123.2, 29.1, 27.4, 15.0, 13.8, 9.6 ppm. 119Sn 
NMR (149 MHz, CDCl3) δ -7.28 ppm. IR (neat, cm-1): 2955, 2922, 2871, 2851, 1568, 1463, 1224, 1189, 797, 
712. HRMS (ESI) [C18H34NSn] (M+H) calcd. 384.1708, found 384.1707. 

 

(E)-tributyl(3-(naphthalen-2-yl)allyl)stannane (33d). Following the general procedure A, using 32d (53.7 
mg, 0.20 mmol). Purification by column chromatography on silica gel (Hexane) afforded the title 

compound as a colorless oil in 90% yield (82.3 mg). 1H NMR (400 MHz, CDCl3): δ 7.77-7.72 (m, 3H), 7.57 
(s, 1H), 7.52 (dd, J = 8.5, 1.6 Hz, 1H), 7.46-7.35 (m, 2H), 6.56 (dt, J = 15.5, 8.7 Hz, 1H), 6.36 (dt, J = 15.7, 1.4 
Hz, 1H), 2.09 (dd, JH-Sn = 71.0 Hz, J = 8.7, 1.0 Hz, 2H), 1.58-1.46 (m, 6H), 1.37-1.27 (m, 6H), 0.97-0.89 (m, JH-

Sn = 68.7 Hz, 15H) ppm. 13C NMR (101 MHz, CDCl3) δ 136.5, 134.1, 132.3, 132.0, 128.0, 127.7, 126.1, 125.2, 
125.0, 124.0, 123.6, 29.3, 27.5, 16.5, 13.9, 9.8 ppm. 119Sn NMR (149 MHz, CDCl3) δ -11.35 ppm. IR (neat, 

SnBu3

SnBu3

Me

N

SnBu3

SnBu3
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cm-1): 2954, 2924, 2854, 1586, 1463, 1374, 744, 671. HRMS (APCI) [C25H38Sn] (M+H) calcd. 458.1984, found 
458.1965. 

 

Tributyl(cinnamyl)stannane (33e). Following the general procedure A, using 32e (43.7 mg, 0.20 mmol). 

Purification by column chromatography on silica gel (Hexane) afforded the title compound as a colorless 
oil in 84% yield (68.6 mg). 1H NMR (500 MHz, CDCl3): δ 7.25-7.23 (m, 4H), 7.13-7.09 (m, 1H), 6.40 (dt, J = 
15.5, 8.8 Hz, 1H), 6.19 (m, J = 15.5, 1.2 Hz, 1H), 1.95 (dd with Sn satellites, JH-Sn = 72.2 Hz, J = 8.2, 1.1 HZ, 
2H), 1.54-1.46 (m, 6H), 1.34-1.26 (m, 6H), 0.98-0.87 (m, 15H) ppm. 13C NMR (126 MHz, CDCl3) δ 139.0, 
131.3, 128.5, 125.8, 125.3, 125.1, 29.3, 27.5, 16.2, 13.9, 9.7 ppm. 119Sn NMR (149 MHz, CDCl3) δ -11.78 
ppm. Spectroscopic data for 33e match those previously reported in the literature.9 

      2.8.4. Gram scale reaction and synthetic applicability  

                       

 

A 100 mL Schlenk was charged with 25a (1.14 g, 5 mmol), Ni(COD)2 (137 mg, 10 mol %), dcype (211 mg, 
10 mol %) and CsF (760 mg, 5 mmol) and 20 mL of anhydrous toluene. The mixture was stirred for 2 

minutes at room temperature. Then, Me3SiSnBu3 (2.3 g, 6.5 mmol) was added dropwise. The flask was 
taken out of the glovebox, and the mixture was stirred for 8 h at 90 oC. The flask as then cooled to room 
temperature and diluted with 60 mL hexane. The organic layer was washed with H2O (3x) and brine, dried 
over anhydrous MgSO4, and concentrated under reduced pressure. The crude material was purified by 
silica gel column chromatography (pentane) to yield 26a (1.9 g, 91%) as colorless oil.  

 

2-iodonaphthalene (35). An oven-dried 10 mL screw-capped test tube containing a stirring bar was 
charged with 26a (208.5 mg, 0.50 mmol), I2 (126.5 mg, 0.50 mmol) and CH2Cl2 (5.0 mL). The resulting 
solution was stirred at room temperature for 2 h.14 Then the mixture was concentrated and purified by 
column chromatography in silica gel (Hexane) to yield the title compound as a white solid in 85% yield 
(108 mg). 1H NMR (300 MHz, CDCl3): δ 8.26 (s, 1H), 7.82-7.79 (m, 1H), 7.74-7.71 (m, 2H), 7.58-7.55 (m, 1H), 

7.51-7.49 (m, 2H) ppm. 13C NMR (126 MHz, CDCl3) δ 136.7, 135.1, 134.5, 132.2, 129.6, 128.0, 126.9, 126.8, 
126.6, 91.7 ppm. Mp 53.2-54.6 ºC, (Lit. 54.0-54.5 ºC).  Spectroscopic data for 35 match those previously 
reported in the literature.15  

 

SnBu3

OPiv

[gram-scale reaction]
Ni(COD)2 (10 mol%)
dcype (10 mol%)

Bu3SnSiMe3 (1.3 equiv)
CsF (1 equiv), PhMe

90 °C, 8h

SnBu3

26a25a
91%

SnBu3 I

 85% yield

I2 (1.0 equiv)

CH2Cl2, rt, 2h

Selectfluor (1.2 equiv)
AgOTf (2.0 equiv)

acetone, rt, 20 min

SnBu3 F

73% yield
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2-fluoronaphthalene (36). A 25 mL round bottom flask containing a stirring bar was charged with 26a 
(208.5 mg, 0.50 mmol) and acetone (5.0 mL). Subsequently, AgOTf (256.9 mg, 1.0 mmol) and Selectfluor 
(212.4 mg, 0.6 mmol) were sequentially added at room temperature. The reaction mixture was stirred for 

20 min at 25 ºC and then concentrated under vacuum.12 The residue was purified by chromatography 
(hexane:EA  50:1) to yield the title compound as white solid in 73% isolated yield (54 mg). 1H NMR (300 
MHz, CDCl3): δ 8.18 (s, 1H), 7.98-7.88 (m, 4H), 7.56-7.48 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 138.6, 
133.9, 132.8, 128.7, 128.4, 127.8, 126.5, 126.3, 126.2, 125.9 ppm. 19F NMR (376 MHz, CDCl3) δ -128.1 ppm. 
Mp 59.4-60.3 oC, (Lit. 59.0-60.0 oC). Spectroscopic data for 36 match those previously reported in the 
literature.13 

 

6-(trifluoromethyl)-2,3'-bipyridine(37). An oven-dried 10 mL screw-capped test tube containing a stirring 
bar was charged with 31k (184 mg, 0.50 mmol), 2-chloro-5-fluoropyridine (90 mg, 0.5 mmol) and 
Pd(PPh3)4 (10.4 mg, 0.025 mmol). Anhydrous toluene (3 mL) was then added by syringe and the mixture 
was stirred for 16 h at 110 ºC. The reaction was then cooled to room temperature and filtered through a 
short silica gel column eluting with dichloromethane. The solution was concentrated under reduced 
pressure to give a crude residue, which was purified by silica gel flash column chromatography 
(Hex:EtOAc:DCM 1:3:1) to yield the title product as a white solid in 85% yield (95.2 mg). 1H NMR (500 MHz, 
CDCl3): δ 9.20 (d, J = 2.0 Hz, 1H), 8.92 (s, 1H), 8.65 (dd, J = 4.8, 1.6 Hz, 1H), 8.31 (dt, J = 8.0, 1.8 Hz, 1H), 

7.97 (dt, J = 8.3, 2.3 Hz, 1H), 7.84-7.82 (m, 1H), 7.38 (ddd, J = 8.0, 4.8, 0.8 Hz, 1H) ppm. 13C NMR (101 MHz, 
CDCl3) δ 158.1, 150.9, 148.5, 146.9, 134.7, 134.2, 133.5, 127.6, 125.6 (J = 49.5 Hz, 17.2 Hz), 123.7, 123.6 
(J = 409.6 Hz, 135.3 Hz), 120.0 ppm. 19F NMR (376 MHz, CDCl3) δ -62.5 ppm. Mp 61.4-63.1 oC. IR (neat, cm-

1): 1601, 1582, 1326, 1302, 1109, 1082, 812, 701, 432.  HRMS (ESI) [C11H8F3N2] (M+H) calcd. 225.0634, 
found 225.0635. 

 

2,2',3',3''-terpyridine(38). An oven-dried 10 mL screw-capped test tube containing a stirring bar was 
charged with 31k (184 mg, 0.5 mmol), 2-bromo-5-fluoropyridine (117 mg, 0.5 mmol) and Pd(PPh3)4 (10.4 
mg, 0.025 mmol). Anhydrous toluene (3 mL) was then added by syringe and the mixture was stirred for 
16 h at 110 ºC. The reaction was then cooled to room temperature and filtered through a short silica gel 
column eluting with dichloromethane. The solution was concentrated under reduced pressure to give a 
crude residue, which was purified by silica gel flash column chromatography (Hex:EtOAc:DCM 2:4:1) to 

yield the title product as a white solid in 92% yield (107.2 mg). 1H NMR (500 MHz, d8-Toulene): δ 9.42 (s, 
1H), 8.60-8.56 (m, 3H), 8.52 (d, J = 8.6 Hz, 1H), 8.09 (dt, J = 7.9, 2.0 Hz, 1H), 7.30-7.20 (m, 2H), 7.13-7.11 
(m, 1H), 6.89 (dd, J = 7.9, 2.0 Hz, 1H), 6.76 (ddd, J = 7.4, 4.7, 1.1 Hz, 1H) ppm. 13C NMR (126 MHz, CDCl3) δ 
156.3, 156.1, 154.0, 150.1, 149.3, 148.6, 138.10, 137.1, 134.9, 134.4, 124.1, 123.7, 121.4, 120.4, 120.2 
ppm. Mp 99.5-101.8 oC. IR (neat, cm-1): 1582, 1561, 1470, 1421, 1391, 767, 742, 701, 618. HRMS (ESI) 
[C15H12N3] (M+H) calcd. 234.1026, found 234.1030. 

 

N

SnBu3

N

N

Pd(PPh3)4
(5 mol%)Cl

N
PhMeCF3

+ CF3

NN

Br

N

SnBu3
Pd(PPh3)4
(5 mol%)

PhMe
+

N N

N

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 2.                                                            

 74 

 

3-chloro-5-(2-oxopyrrolidin-1-yl)phenyl pivalate (40). A Schlenk tube was charged with CuI (19 mg, 0.1 
mmol, 10 mol%), K2CO3 (277 mg, 2 mmol, 2.0 equiv), and was evacuated and backfilled with argon three 

times. Subsequently, N,N'-Dimethylethylenediamine (17.6 mg, 0.2 mmol, 20 mol%), 2-Pyrrolidinone (85 
mg, 1 mmol, 1.0 equiv) and a solution of 39 (291 mg, 1 mmol, 1.0 equiv) in 5 mL anhydrous PhMe were 
added under argon. The Schlenk tube was sealed with a Teflon valve and the reaction mixture was stirred 
at 90 ºC for 10 h.10 The resulting suspension was allowed to reach room temperature and filtered through 
silica gel eluting with ethyl acetate (10 mL). The filtrate was concentrated and the residue was purified by 
flash chromatography in silica gel (Hex:EtOAc 1:1) to afford the title compound as a pale yellow oil in 64% 
yield (188.8 mg). 1H NMR (300 MHz, CDCl3): δ 7.47 (t, J = 3.0 Hz, 1H), 7.39 (t, J = 3.0 Hz, 1H), 6.86 (t, J = 3.0 
Hz, 1H), 3.81 (t, J = 6.0 Hz, 2H), 2.60 (t, J = 6.0 Hz, 2H), 2.19-2.09 (m, 2H), 1.33 (s, 9H) ppm. 13C NMR (75 

MHz, CDCl3) δ 176.6, 174.4, 151.7, 141.0, 134.6, 117.8, 116.5, 111.3, 48.6, 39.1, 32.8, 27.1, 17.7 ppm. IR 
(neat, cm-1): 2975, 1751, 1702, 1598, 1457, 1325, 1219, 1188, 1176, 730. HRMS (ESI) [C15H19ClNO3] (M+H) 
calcd. 296.1048, found 296.1051. 

 

5-(2-oxopyrrolidin-1-yl)-[1,1'-biphenyl]-3-yl pivalate (41). An oven-dried schlenk tube containing a 

stirring bar was charged with XPhos Pd G2 (11.8 mg, 0.015 mmol, 3mol%), and phenylboronic acid (90 mg, 
0.75 mmol, 1.50 equiv). The schlenk tube was evacuated and back-filled under Ar (this procedure was 
repeated two times). A solution of 40 (147 mg, 0.5 mmol, 1.0 equiv) in degassed THF (1.0 mL) and a 0.5 
M solution of K3PO4 in degassed H2O (2.0 mL) were then added. The schlenk tube was next closed and 
stirred at rt for 12 h.11 Water and EtOAc were then added to the mixture and extracted twice with EtOAc. 
The combined organic layers were dried over MgSO4 and concentrated under reduced pressure. 
Purification by flash column chromatography in silica gel (Hex:EtOAc 1:1) provided the title compound as 
a pale yellow oil in 83% yield (139.8 mg). 1H NMR (300 MHz, CDCl3): δ 7.64 (t, J = 3.0 Hz, 1H), 7.59-7.56 (m, 

2H), 7.48 (t, J = 3.0 Hz, 1H), 7.45-7.34 (m, 3H), 7.70 (t, J = 3.0 Hz, 1H), 3.88 (t, J = 6.0 Hz, 2H), 2.60 (t, J = 6.0 
Hz, 2H), 2.18-2.08 (m, 2H), 1.38 (s, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ 177.0, 174.4, 151.7, 142.9, 140.7, 
140.2, 128.8, 127.8, 127.3, 116.4, 115.5, 112.1, 48.7, 39.2, 32.8, 27.2, 17.9 ppm. IR (neat, cm-1): 3026, 
2980, 2950, 1739, 1705, 1239, 729, 694. HRMS (ESI) [C21H24NO3] (M+H) calcd. 338.1751, found 338.1754. 

 

1-(5-(tributylstannyl)-[1,1'-biphenyl]-3-yl)pyrrolidin-2-one (42). Following the general procedure A using 
41 (67.4 mg, 0.2 mmol) at 90 ºC. After 10 h, purification by column chromatography in silica gel (Hex: 2:1) 
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afforded the title compound as a pale yellow oil in 74% yield (77.8 mg). 1H NMR (300 MHz, CDCl3): δ 7.79 
(t, J = 3.0 Hz, 1H), 7.64-7.59 (m, 3H), 7.48-7.42 (m, 3H), 7.38-7.33 (m, 1H), 3.93 (t, J = 6.0 Hz, 2H), 2.64 (t, 
J = 6.0 Hz, 2H), 2.24-2.21 (m, 2H), 1.70-1.53 (m, 6H), 1.40-1.30 (m, 6H), 1.14-1.08 (m, JH-Sn = 66.8 Hz, 6H), 

0.91 (t, J = 9.0 Hz, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ 174.4, 143.5, 141.5, 141.3, 139.4, 131.5, 128.8, 
127.5, 127.4, 126.6, 119.3, 49.2, 32.9, 29.21, 27.5, 18.3, 13.8, 9.9 ppm. 119Sn NMR (149 MHz, CDCl3) δ -
38.94 ppm. IR (neat, cm-1): 2955, 2923, 2870, 2851, 1696, 1411, 1378, 732, 698. HRMS (ESI) [C28H42NOSn] 
(M+H) calcd. 528.2283, found 528.2293. 

2.8.5. Synthesis of oxidative addition complex Ni-1  

 

Synthesis of Ni(cod)dcype. An oven-dried 20 mL vial containing a stirring bar was introduced in a nitrogen-
filled glovebox and charged with the Ni(COD)2 and dcype (1:1) in THF (1 M). After stirring the mixture for 
20 min, it was cooled to 0 ºC and the title compound cleanly precipitated from the solution as a yellow 
solid in 83% yield. Spectroscopic data for Ni(cod)dcype match those previously reported in the literature.17 

Synthesis of Ni-1. An oven-dried 5 mL screw-capped test tube containing a stirring bar was introduced in 
a nitrogen-filled glovebox and charged with Ni(cod)dcype (236 mg, 0.4 mmol, 1.0 equiv), 25a (1.0 equiv) 

and anhydrous toluene (8 mL). The tube was then taken out of the glovebox and stirred at 90 oC for 8 h. 
The mixture was then allowed to cool to room temperature, and the liquids were removed under vacuum. 
The residue was recrystallized from toluene:Hex (1:20) at 0 ºC to afford complex Ni-1 as an orange 
crystalline solid (204 mg, 72% yield). 1H NMR (400 MHz, d8-toluene): δ 8.24-8.20 (m, 1H), 8.17 (d, J = 8.0 
Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.26 (t, J = 8.8 Hz, 1H), 7.15 
(t, J = 8.8 Hz, 1H), 2.61-2.58 (m, 2H), 2.40-2.20 (m, 2H), 1.94-0.82 (m, 53H) ppm. 31P NMR (162 MHz, d8-
toluene): δ 63.6 (d, JPP = 13.9 Hz, 1P), 61.5 (d, JPP = 13.9 Hz, 1P) ppm. Spectroscopic data for complex I 
match those previously reported in the literature.17 

 

 

 

 

 

 

 

 

 

 

Ni(cod)2

dcype

THF, rt, 20 min

P
Ni

P

OPiv

72%  isolated yield

Ni-1

Ni(cod)dcype
1.0 equiv

PhMe, 90 ºC, 6 h

OPiv

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 2.                                                            

 76 

1H NMR of complex Ni-1 

 

31P NMR of complex Ni-1 
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       2.8.7. NMR spectra 
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3.1. General Characteristics of (Poly)Azines 

(Poly)azines are six-membered heteroaromatic rings that contain one or more nitrogen 
atoms. Due to their electron-withdrawing nature when compared to other nitrogen-
containing heterocycles, (poly)azines have been frequently employed in SNAr reactions and as 
versatile building blocks to build up molecular complexity. In addition, it is worth noting that 
(poly)azines rank among the most prevalent motifs in a myriad of drug-type molecules 
(Scheme 3.1).1-6 These observations have prompted chemists to develop new efficient 
protocols to selectively modify (poly)azines in a rapid and reliable manner with exquisite 
control of the site-selectivity. 

 

Scheme 3.1. Selected examples containing (poly)azines  

(Poly)azines are structurally related to benzene, but have different properties. Owing to 
the presence of the electronegative nitrogen atom, the electron density of an azine is not 
distributed equally well over the aromatic ring. For example, pyridine possesses its free 
electron pair and it has conjugated system of six π electrons that are delocalized over the sp

2-
hybridized ring. The nitrogen atom involved in the π-bonding aromatic system use a non-
hybridized p orbital. The lone pair is in an sp

2 orbital, projecting outward from the ring in the 
same plane. As a result, pyridine is inherently electron-deficient and Lewis basic (Scheme 3.2).  
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Scheme 3.2.. Electron deficient property and resonance structure of pyridine 

Unlike electron-rich 5-membered nitrogen-containing heterocycles such as pyrroles, 
indoles, furans or thiophenes, (poly)azines are considerably less reactive and therefore 
significantly more difficult to functionalize under mild reaction conditions with high selectivity 
profile. For example, classical aromatic electrophilic substitution (SEAr) reactions on pyridine 
such as halogenation and nitration require harsh reaction conditions (>300 oC), typically 
eroding the regioselectivity pattern. In addition, the presence of a Lewis basic nitrogen atom 
prevents the possibility of conducting Friedel-Craft-type reactions. Indeed, the resonance 
structure of pyridine indicates that nucleophilic aromatic substitution (SNAr) takes place 
relatively easily at C2 and C4 position.  

3.2. C–H Functionalization of Pyridine 

3.2.1. Overview on C–H bond functionalization of pyridine 

 

Scheme 3.3.. C–H functionalization of electron-deficient heterocycles 

A wide variety of protocols have been reported for the direct C–H functionalization of 
pyridine and other electron-poor azines via nucleophilic substitution, radical addition, 
deprotonative metalation, and transition metal-catalyzed C–H functionalization, among 
others (Scheme 3.3).34 Due to the electron-poor nature of the pyridine π system, most of the 
current protocols for the functionalization of pyridine and related azines involve nucleophilic 
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addition to the π system, followed by oxidation in order to obtain the formal C–H 
functionalization product. Initial studies aimed at this goal were reported by  Chichibabin and 
co-workers, allowing to convert pyridines into the corresponding 2-aminopyridines using 
sodium or potassium amides as pronucleophiles (Scheme 3.4, A).7, 8 Later on, it was found that 
pyridine could directly react with PhLi to afford the corresponding 2-arylpyridine at high 
temperature upon oxidation under air (Scheme 3.4, B).9   
 

 

Scheme 3.4. SNAr reaction of pyridine 

The Chichibabin-type alkylation of pyridyl alcohols using alkyl lithium reagents has been 
accomplished by Sarpong and co-workers (Scheme 3.4, C).10 The reaction is thought to 
proceed via the intermediacy of a lithium alkoxide intermediate. Interaction between the 
alkoxide countercation (M) and the pyridine nitrogen enhances the electrophilicity at C6 
position, while simultaneously increasing the basicity of the alkoxide lone pairs. The increased 
basicity of the alkoxide would enhance interactions with the incoming organometallic reagent. 
In 2013, Hartwig group reported a Chichibabin-type sp

2
 C–H fluorination of pyridines and 

diazines by using commercially available and easy-to-handle silver(II) fluoride as fluorinating 
reagent (Scheme 3.4, D).11 The reaction occurs at ambient temperature with exclusively 
selectivity for fluorination adjacent to nitrogen atom. A tandem sequence of sp

2
 C–H 

fluorination followed by SNAr allowed to obtain a series of alkoxyl-, amino- and thio-
substituted pyridines that can be difficult to access through traditional methods.12 A different, 
yet equally powerful, strategy to functionalize pyridines includes the utilization of carbon 
radical intermediates (Scheme 3.5).13 This technology was first employed in 1971 by Minisci 
and co-workers, demonstrating the viability to trigger C2-alkylation of pyridines with alkyl 
carboxylic acids and Ag(I) salts via the intermediacy of transient open-shell intermediates.14 
This transformation is limited to alkyl or acyl radicals and often requires higher temperatures 
(greater than 70 oC), transition-metal additives and strongly oxidizing conditions. 
Regioisomeric mixtures are inevitably observed, but the innate regioselectivity can be 
influenced by the presence of acids,15 solvents,16 the nature of the substituents on the azine 
ring17 and the nature of the carbon radical.18 Inspired by Minisci´s work, aryl boronic acids can 
be used as aryl radical precursors en route to C2-arylated azines.19, 20  The reaction of Ag(I) with 
S2O8

2− affords reactive SO4
•− that can easily generate the aryl radical by formal SET oxidation 
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upon addition to the corresponding arylboronic acid. Few years later it was shown that alkyl 
trifluoroborate salts can also serve as radical precursors via SET oxidation in the presence of 
appropriate electron donors,21  including the utilization of iron.22 In 2012, zinc 
bis(alkanesulphinate) salts have been utilized as bench stable reagents that generate alkyl 
radicals in situ.23 Notably, this platform was later on extended to accommodate a large family 
of alkylating (R−SO2)2Zn reagents [R = CF3, CF2H, CF3CH2, CH2F, CH(CH3)2, CH3(CH2CH2O)3]. 
These reagents were found to be applied in a myriad of different (poly)azines, resulting in the 
innate C–H functionalization at either C2 or C4, with a reactivity trend that could be predicted 
on the basis of the substitution pattern.24 

 

	
Scheme 3.5. Minisci-type radical addition to pyridine rings. 

Driven by the unique ability of visible light photoredox catalysis to  generate fleeting 
reaction intermediates under mild conditions, it comes as no surprise that photochemical 
techniques have been applied within the realm of Minisci-type reactions.25 A particularly 
attractive methodology was reported by MacMillan, who demonstrated the implementation 
of an alkylation of azine with alcohols under visible light irradiation.26 The reaction initiates 
from the addition of α-oxy radicals to azines to form α-amino radicals, which are dehydrated 
to give pyridyl-alkyl radicals via spin center shift. A single-electron transfer from the catalyst 
affords the corresponding products while recovering back the ground state of the 
photocatalyst. Very recently, Phipps disclose the direct addition of α-amino alkyl radicals to 
the C2-position of pyridine by a combination of chiral Brønsted acid catalyst and photoredox 
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catalysis.27 Upon generation of amino radical from the amino acid redox active ester, the chiral 
phosphoric acid dictates the enantioselective radical attack to the protonated pyridine via 
hydrogen bonding. A fast deprotonation occurred, forming  readily oxidized α-amino radicals, 
followed by the single electron transfer to the photocatalyst (Scheme 3.5, bottom).  
 

 

Scheme 3.6. Deprotonative metalation of Pyridine  

Traditionally, strong bases such as n-butyllithium and/or lithium amides have been used 
for the direct metalation of pyridine. However, these bases often lead to undesirable side 
reactions as a result of their high reactivity and their strong nucleophilicity (Chichibabin-type  
additions for example). Alternatives have been developed using a combination of n-BuLi with 
TMEDA, which could disrupt the organolithium aggregates into much more reactive dimeric 
complexes.28, 29 Cauberè and co-workers reported a new class of unimetallic superbases 
combining an alkyllithium and a lithium aminoalkoxide (BuLi-LiDMAE), which could change the 
regioselectivity of lithiation of the 6-position of 2-alkoxypyridine (Scheme 3.6, left).30 However, 
the functional group tolerance is limited due to the high nucleophilicity of the organolithium 
reagent, making it difficult to be applied in the late stages of synthesis. Knochel and co-
workers developed a series of LiCl-complexed 2,2,6,6-tetramethylpiperidyl (tmp) metal amide 
bases, such as tmpMgCl·LiCl, tmpZnCl·LiCl, TMPMgCl·LiCl as efficient deprotonation reagents, 
allowing to effect a site-selective metalation of sensitive aromatic compounds and azines, 
with deprotonation typically occurring at the most acidic C–H site (Scheme 3.6, right).31, 32 
However, attempts to access otherwise related pyridines bearing a C–Mg, C–Zn or C–Al bonds 
proved to be unsuccessful. An interesting solution could be performed upon complexation of 
the pyridine with BF3 prior to metalation with hindered Mg/Zn/Li bases or using BF3-based 
frustrated Lewis Pair (tmpMgCl·BF3·LiCl), which allows an efficient, regioselective metalation 
of various N-containing heterocycles to occur.33 Importantly, these metalation techniques 
enables the implementation of a complementary regioselective functionalization to generate 
a range of new polyfunctional pyridines. 
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Scheme 3.7. Regioselectivity of Transition metal-catalyzed pyridine C–H functionalization.  

The last decades have witnessed the rapid development of transition-metal-catalyzed 
direct C–H functionalization techniques. However, few examples are available regarding the 
direct C–H functionalization of unactivated pyridines and the scope of these methods is 
inherently limited due to low reactivity of pyridine and the coordinative nature of the nitrogen 
atom.34,35 The regioselectivity in transition-metal-catalyzed C–H functionalization of pyridine 
through non-radical pathways is summarized in Scheme 3.7. Most transition metals have their 
inherent reactivities toward specific positions of the pyridyl core. Notably, the fine-tuning of 
the catalyst or reaction conditions allowed for a modulation of the regioselectivity pattern.36 
Given the prevalence of (poly)azines in a myriad of pharmaceuticals, a mild, site-selective and  
tunable pyridine C−H functionalization that operates with a broad scope and chemoselectivity 
pattern will have important implications at the community.   

3.2.2. C–heteroatom bond-formation via C–H functionalization with transition metal 

Ritter and co-workers reported an elegant work on the direct C–H imidation of pyridine 
with NFSI in the presence of N-oxide-ligated palladium catalyst and Ag(bipy)2ClO4 as co-
catalyst (Scheme 3.8, A).37 This transformation involved a Pd/Ag-mediated sulfonimidyl radical 
transfer from NFSI to pyridine substrates at C3 and C5 followed by silver-mediated single 
electron transfer. The reaction is believed to proceed via Pd(IV) complexes, with C−N bond 
formation occurring without the involvement of a canonical C−H palladation event. In 2014, a 
ferrocene-catalyzed C–H imidation of (hetero)arenes has been developed by Baran with an 
imidyl radical N-succinimidyl perester precursor (NSP) (Scheme 3.8 B).38 The succinimidyl 
group was installed at the electron-rich position of the (hetero)arenes. The reaction showed 
broad scope in the presence of multiple functional groups. On the basis of these experiments, 
it was anticipated that ferrocene acts as an electron shuttle, generating an imidyl radical 
through an outer-sphere single electron transfer (SET).  
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Scheme 3.8. Metal-catalyzed regioselectivity of pyridine 

The Sanford group developed a rather intriguing visible light-induced C3-amination of 
pyridines with N-acyloxyphthalimide with Ir-based photocatalysts at room temperature 
(Scheme 3.8, C).39 Key for the success was the formation of PhthN• radicals with PhthNCO2R 
compounds possessing electron-withdrawing CF3 groups, likely due to improving the  leaving 
group ability of the carboxylate anion, thereby favoring fragmentation to release RCO2

− and 
PhthN•. A similar work by Lee described a visible light induced, Ir- catalyzed amination of 
pyridines by using N-chlorophthalimide as amination reagent.40 

 

Scheme 3.9. Regioselective metal-catalyzed borylation of pyridine 

Ishiyama and Miyaura described a highly active catalyst for arene borylation generated 
from the combination of [Ir(cod)(OMe)]2 and 4,4ʹ-di-t-butylbipyridine (dtbpy).41 Notably, Ir-
catalyzed C−H borylation preferentially occurred at the C3-position of unsubstituted pyridine. 
Subsequently, Hartwig reported a one-pot method for the synthesis of bromoarenes and 
chloroarenes using the combination of a [Ir(cod)(OMe)]2/dtbpy catalyzed borylation of arenes 
followed by a halogenation event with CuBr2 or CuCl2 (Scheme 3.9 ).42 The regioselectivity of 
the corresponding products can be explained by steric effects. In 2014, Chirik and co-workers 
reported a Co-catalyzed borylation of pyridines at C2 and C4 by using pincer-type ligands 
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possessing σ-donating phosphines.43 As expected, C4-borylation took place if C2-substituted 
pyridines are employed as substrates, whereas C4-selectivity is observed for C2-substituted 
analogues.  

3.2.3. Selectivity control in C–H functionalization of pyridine  

Since azines contain several C−H bonds with different innate reactivities, the development 
of new synthetic methods that allows for discriminating at will these moieties has become an 
important problem to be overcome in synthetic organic endeavors.  As shown in scheme 3.10, 
such challenge has been tackled by a number of different approaches. The following section 
summarizes recent advances to control the site-selectivity in the direct C−H functionalization 
of pyridine or related azines. 

 

Scheme 3.10. Metal-catalyzed regioselectivity of pyridine 

Steric control allows to functionalize the less sterically encumbered C–H bond. An 
unprecedented strategy for controlling the regioselectivity of C–H borylation of pyridines has 
been successfully developed by Nakao (Scheme 3.11).44 The authors employed cooperative 
bulky aluminum-based Lewis acid and Iridium catalysts to furnish para-selective C–H 
borylation. The efficiency of this Ir/Al regime could be rationalized by the following: (a) the 
pyridine core coordinates a Lewis acid (MAD), resulting in a charge transfer while making the 
pyridine moiety considerably more electron-deficient, (b) steric repulsion between dtbpy on 
iridium and Lewis acid blocks the C2- and C3-positions, thus directing the  C–H borylation at 
C4 instead. In a formal sense, this work shows the potential of cooperative iridium/aluminum 
catalysis as a powerful tool to control the regioselectivity of otherwise difficult C–H 
functionalization reactions. 

 

Scheme 3.11. para-Selective C–H borylation by cooperative Ir/Al catalysis 
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Scheme 3.12. Nickel-catalyzed C–H alkenylation of pyridine 

Scheme 3.12 shows different strategies used in Ni-catalyzed direct C–H alkenylation with 
4-octyne to control the site-selectivity and overcome the inherent low reactivity of pyridine 
via the intermediacy of pyridine-N-oxides. The reactivity of the latter is enhanced compared 
with that of parent pyridines, probably due to an increase in acidity at the proximal C2 C–H 
bond. The presence of a N-oxide does not hamper the application profile, as this motif can be 
easily deprotected by using classical reduction events with Pd/C or Zn dust. In all cases 
analyzed, this technology results in (E)-2-alkenylpyridine-N-oxides.45 The reaction proceeds 
via initial activation of pyridine by a Lewis acid, setting the basis for an oxidative addition of 
the C2 C–H bond to Ni(0). Coordination with the alkyne moiety followed by migratory insertion 
and reductive elimination affords the corresponding vinyl moiety. Recent work by Hiyama and 
Nakao utilizes bifunctional catalysts consisting of nickel and a Lewis acid to derivatize the C2–
H bond of pyridines.46 Specifically, it was found that the combination of zinc and aluminum 
catalysts with mild Lewis acidity was critical for success. Thus, C2-alkenylation could be 
obtained in the presence of ZnMe2 obtaining the targeted compound in 95% yield with high 
stereoselectivity. The regioselectivity can be altered to induce C4-selectivity when amino-
linked NHC are utilized as ligands.47 The hard donor amino side arm may act as a hemilabile 
group, stabilizing the reactive nickel center before being displaced by small molecule 
substrates. Owing to the steric bulk, oxidative addition to Ni(0)Ln occurs at C4 instead. 
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Scheme 3.13. Metal-catalyzed regioselectivity of pyridine 

Site-selective functionalization of pyridines can also be achieved through functional group 
interconversions by pre-functionalizing the initial reaction site. Very recently, McNally and co-
workers reported a new approach for the two-step C4-functionalization of pyridine (Scheme 
3.13).48 Heterocyclic phosphonium salts, which can be prepared via reactions of azines with 
triphenylphosphine in the presence of trifluoromethanesulfonic anhydride undergo SNAr 
reactions with various nucleophiles such as alkoxides, thiolates, azides, or organolithium 
reagents.49, 50 As expected, the reaction of C4-substituted azines result in exclusive C2-
functionalization. Subsequently, the same group described a Ni-catalyzed cross-coupling 
reaction of heteroaryl phosphonium salt with boronic acid to prepare heterobiaryls.51 
Interestingly, deuterium and tritium atoms could also be incorporated into pyridine, diazine 
and pharmaceuticals using the same strategy, thus providing new ways to labelled N-
containing heterocycles that are critical for absorption, distribution, metabolism and 
excretion (ADME) studies.52 More recently, a transition metal free C–C bond-forming reaction 
of pyridines was discovered via P(V) intermediates by reacting 4-phosphino azines with a 
different azine in combination with TfOH en route to a bis-heteroaryl phosphonium salt.53 The 
targeted C–C bond-formation was then triggered upon exposure to acidic conditions, 
delivering the densely functionalized heterobiaryl compound in good yields.  

3.2.3. sp2 C–H silylation of pyridine 

Traditional C–Si bond formation often relies on prefunctionalized substrates and typically 
employs stoichiometric amount of organometallic reagents such as organolithium, Grignard 
reagents, silicon halides or silicon alkoxides as electrophiles. Therefore, the development of a 
direct silylation of sp

2
 C–H bonds would be a much more desirable endeavor, as it might allow 
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to access heteroaryl organic silanes, versatile building blocks with promising  therapeutic 
agents with interesting biological properties.54-58 Over the last years, a handful of studies have 
been described to enable a sp

2
 C–H silylation of electron-deficient (poly)azines.  

 

Scheme 3.14. Iridium-catalyzed silylation of sp2 C–H bonds in (poly)azines. 

Unlike the corresponding metal-boryl complexes, metal−silyl complexes are much less 
reactive towards C−H bond functionalization, and the vast majority of methods for the 
catalytic intermolecular silylation of aryl C−H bonds often require high temperatures, a large 
excess of the arene,59 or ortho-directing groups.60 Recent approaches have overcome these 
limitations, affording electron-deficient heteroarylsilanes under mild reaction conditions. For 
example, Cheng and Hartwig have developed a series of steric-controlled Rh- or Ir-catalyzed 
C–H silylation of pyridines (Scheme 3.14). The use of [Rh(cod)OH]2 and a chiral biaryl 
phosphine allowed for a mild intermolecular silylation using arenes as limiting reagent. 
However, the applicability of this protocol is compromised by the high cost of the ligand as 
well as the poor functional group tolerance and the absence of reactivity in the presence of 
azines. Subsequently, the authors discovered a combination of [Ir(cod)(OMe)]2 and 
phenanthroline as ligand that enabled the C–H silylation of various heteroarenes with high 
functional group compatibility.61 Nevertheless, high temperatures with prolonged reaction 
time are still required and poor regioselectivity is obtained with 1,2-disubstituted substrates.62  
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Scheme 3.15. Nickel/Iridium catalyzed one-pot synthesis of dihydrosiloles 

The development of intramolecular C–H silylation is comparatively easier than the 
intermolecular C–H silylation event due to the innate control of the regioselectivity while 
preventing undesirable two-fold C–H silylation. To such end, Gevorgyan described an 
interesting nickel-catalyzed intramolecular hydrosilylation followed by Iridium-catalyzed 
dehydrogenative coupling (Scheme 3.15).63 Higher yields are usually obtained when a 
sacrificial H2 acceptor (norbornene) is added to the reaction mixture as hydrogen is released 
as byproduct. It was found that both electron-donating and electron-withdrawing groups 
were tolerated leading to a dehydrogenative Si–H/C–H coupling at the less hindered site.  

 

Scheme 3.16. Copper or thiol-catalyzed C–H silylation of azines 

Maruoka and coworkers disclosed an interesting thiol-catalyzed approach for the C–H 
silylation of electron-deficient heteroarenes such as pyridines, pyrazines and quinoxalines.64 
The reaction gives rise to mono-silylation at the ortho-position in low yields (4 - 53%) 
accompanied with the formation of a significant amount of bis-silylation products (Scheme 
3.16). Furthermore, this process is carried out at high reaction temperature (110 °C) with a 
large excess amount of non-particularly friendly DTBP, thus causing a significant safety 
concern. In 2017, the Liu group reported a Cu2O catalyzed site-selective approach enabling 
the introduction of trialkylsilyl groups into pyridine rings at high temperatures.65 The observed 
site-selectivity presumably arises from the better resonance stabilization of the radical σ-
complex through conjugation with the para substituent. Although C2-silylation would benefit 
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from the same stabilizing effect, steric hindrance prevents functionalization of this position. It 
is worth noting that electron-deficient heteroarenes display lower efficiency and only two 
pyridine examples were shown. Taking all these observations into consideration, the 
development of a mild, efficient and tunable site-selective silylation of electron-deficient 
azines still represents a problematic endeavor, and an opportunity for method development.  

 

Scheme 3.17. Photocatalytic C–H silylation of heteroarenes 

Recently, a photoredox C–H silylation of heteroarenes under visible light irradiation has 
been reported by Zhang  (Scheme 3.17).66 The significant advantage of this approach is that 
the reaction employed safe and readily available oxidants under very mild temperatures (30°C) 
and open to air. With the right choice of oxidant [Na2S2O8 or (Me3SiO)2], silylation of electron-
deficient isoquinolines and benzonitriles as well as electron-rich heterocyclic systems could 
be achieved. However, stoichiometric amounts of peroxides were necessary for this reaction.  
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Scheme 3.18. Ru-catalyzed electrophilic C–H silylation of pyridine 

Apart from the above examples that describe the means to effect a radical or a transition 
metal-catalyzed C–H silylation, the preparation of heteroarylsilanes can also be effected by 
electrophilic aromatic substitution reactions (SEAr). However, this technology is particularly 
challenging due to parasitic protodesilylation, as the Wheland intermediate is substantially 
stabilized by the β-silicon effect. Therefore, proton capture at the ipso position of the 
arylsilane is more likely, which will lead to release of the silicon electrophile and regeneration 
of the defunctionalized arene. As a result, protons have to be effectively removed from the 
reaction mixture to suppress the backward reaction. Oestreich and coworkers have developed 
a counterintuitive Ru-catalyzed dehydrogenative aromatic C–H silylation reaction using 
hydrosilanes as counterparts (Scheme 3.18).67 The polar ruthenium thiolate complex 43 is 
capable of generating silicon electrophiles in a catalytic manner through cooperative Si–H 
bond activation. In this manner, the sulfur-stabilized silicon cation species 44 could promote 
the SEAr reaction. The reaction shows perfect regioselectivity at the more nucleophilic meta 
(C3) position. This unusual reaction takes place via a SEAr mechanism which involves formation 
of cationic low-energy σ-complex followed by deprotonation in the presence of  the basic 
sulfur atom in 45 with the release of hydrogen. In fact, the ruthenium thiolate complex 45 
serves as both hydride donor and proton acceptor and the reaction proceeds through a 
sequence of dearomatization, silylation, and rearomatization over the pyridine motif.68, 69 
Unfortunately, the reactivity is limited to  mainly 2-substituted pyridines.  
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Scheme 3.19. Nucleophilic substitution with trimethylsiliconide anion 

Rossi and coworkers found that fluorobenzene smoothly undergoes para and ortho 
silylation instead of displacement of the fluoride group when treated with silyl anions in HMPA 
(Scheme 3.19).70-72 Even electron-deficient pyridine can be silylated as well. The authors 
rationalized these observations via an anionic σ-complex XXVI (Meisenheimer intermediate) 
arising from the attack of silyl anion at the para position of pyridine. This adduct could produce 
the silylated product through deprotonation of the methyl group from the trimethylsilyl 
substituent to furnish silylated pyridine (path b). Alternatively, a 1,2-H shift from carbon to 
silicon could take place (path a). A pentacoordinate silicon species would thus be formed, 
which can persist in an anionic form until aqueous workup, delivering the targeted compound.  

3. 3. General Aim of the Project 

The general interest of our research group is primarily focused on the activation of strong 

s-bonds with the aim of producing synthetically relevant molecules. Azines containing C–Si 
bonds are of great contemporary interest in drug discovery, material science, organic 
synthesis and complex molecule synthesis.54-58 Among the many strategies that have been 
investigated, direct C–H functionalization of azines would allow to access azine-cores, useful 
building blocks that can be easily transformed into other congeners via C–Si bond-cleavage. 
In this chapter, we will tackle the challenge of promoting a switchable site-selective C–H 
silylation of azines under mild conditions and in the absence of transition metal complexes.  

 

Scheme 3.4. Base-mediated C–H silylation of azines. 
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3.4. KHMDS Mediated Direct Site-Selected C–H Silylation of (Poly)Azines 

3.4.1. Optimization of the reaction conditions 

Our study began by using simple pyridine as substrate with Et3SiBpin (47) as the silicon 
source. The choice of the latter was not arbitrary due to its ease of synthesis in bulk from 
simple precursors,73 its effectiveness in related silylation events from our group74-77 and more 
importantly, the ability to functionalize the C–Si bond at later stages without site-selectivity 
problems that typically arise if using otherwise related Me2PhSiBpin (3). After some 
experimentation, we found that a transition metal-free protocol simply consisting of a base 
and Et3SiBpin in DME could afford the targeted C–H silylated pyridine. As shown in Table 3.1, 

the role of the base was found to be crucial for success. Only strong, non-nucleophilic bases 
resulted in high conversions to 48a/48a´. Likewise, the escorting counterion had a non-
obvious influence on reactivity and site-selectivity (entries 1-3), with KHMDS giving the best 
reactivity and the highest ratio (1:5.6) of C4 to C2 silylation. Other bases with higher 
nucleophilicity such as KOMe, that are known to efficiently activate Si–B compounds, didn´t 
afford  48a or 48a´. Similarly, milder bases were found to have a deleterious effect on 
reactivity (entries 8-18).  

 
Reaction conditions: Conditions: 46a (0.40 mmol), Et3SiBpin (0.4 mmol), KHMDS (0.4 
mmol), DME (1.0 mL) at 90 °C, 8h. a Yield of 48a and 48a´ detected by GC, using decane as 
internal standard. 

Table 3.1. Screening of bases 

We decided to evaluate the direct C4-silylation of pyridine with Et3SiBpin by changing the  
solvent of the reaction (Table 3.2). Interestingly, a strong solvent effect was noticed. Non-
polar solvents such as hexane and toluene provided silylated product in moderate yields, but 
the ratio of 48a and 48a´ was found to be 1:1 (entries 1, 2). An otherwise similar result was 
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DME (0.2 M ), 90 ºC, 3h

Base (1.0 equiv)+ Et3SiBpin

Entry Base 48a/48a´Yield (%)a
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11
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16
17
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LiHMDS
NaHMDS
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LiOt-Bu
NaOt-Bu
KOt-Bu

NaH
KOMe

KOTMS

KOAc
KOH
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Mg(HMDS)2

Cs2CO3

CsF
KF

NaOPh
DABCO

Yield (%)aEntry Base

27
59
61
0
0
51
0
0
0

0
0
0
0
0
0
0
0
0

2:1
3.3:1
5.6:1

—
—

1.7:1
—
—
—

N

SiEt3

48a
N SiEt3

48a´46a

+
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observed when the reaction was conducted without solvent (entry 3). Notably, ethereal 
solvents such as Et2O, t-BuOMe or THP provided the C2-silylated 48a as major product (entries 
4-10). Specifically, C2 silylation was predominantly observed with dioxane (entry 10), whereas 
the use of bidentate DME and diglyme gave the opposite selectivity, predominantly forming 
C4-silylation instead (entry 11, 12). Particularly noteworthy was the observation that highly 
polar aprotic solvents such as DMF or MeCN shut down the reactivity profile (entries 13, 14). 
 

 
Reaction conditions: Conditions: 46a (0.40 mmol), Et3SiBpin (0.4 mmol), KHMDS (0.4 
mmol), Toluene (1.0 mL) at 90 °C, 8h. a Yield of 48a and 48a´ detected by GC, using decane 
as internal standard. 

Table 3.2. Screening of solvent 

With these results in hand, we then focused our attention on studying the effect of the 
temperature. As shown in Table 3.3, the ratio of C4 silylated product 48a was improved as the 
temperature decreased from 90 oC to rt (entries 1-3). The best results were found at room 
temperature providing 82% of silylated product (C4:C2 = 9.8:1 ratio). Notably, this transition-
metal free C–H silylation was equally effective at temperatures as low as 0 oC (entry 6). In line 
with the strong solvent effect, the use of commercially available KHMDS (2M in toluene) had 
a deleterious impact on site-selectivity (entries 4, 5).  

(1.0 equiv) Solvent (0.2 M ), 90 ºC, 3h

KHMDS (1.0 equiv)
+ Et3SiBpin

Entry Solvent 48a/48a´Yield (%)a

1
2
3
4
5
6
7
8
9
10
11
12
13
14

n-hexane
Toluene
None
Et2O
t-Bu2O
i-Pr2O
t-BuOMe

THF
THP

Dioxane
DME

Diglyme
DMF
AcCN

1.1:1
1.3:1
1.5:1
1:1.8
1:2.4
1:2.4
1:2.7
1.7:1
1:2.9
1:3.2
5.5:1
12:1
—
—

54
59
58
56
46
48
43
58
49
55
59
49
0
0

N
46a

2

4

N

SiEt3

48a
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+
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Reaction conditions: Conditions: 46a (0.40 mmol), Et3SiBpin (0.4 mmol), KHMDS (0.4 
mmol), Toluene (1.0 mL) at 90 °C, 8h. a Yield of 48a and 48a´ detected by GC, using decane 
as internal standard. bReaction time 18h. c KHMDS solution (2M in toulene) was used . d 

KHMDS solution (1M in toluene) was used. 

Table 3.3. Screening of reaction temperature 

 
Reaction conditions: Conditions: 46a (0.40 mmol), Et3SiBpin (0.4 mmol), KHMDS (0.4 
mmol), Toluene (1.0 mL) at 90 °C, 8h. a Yield of 48aa and 48aa´ detected by GC, using decane 
as internal standard. 

Table 3.4. Screening of the silicon source 

Next, we decided to explore the effect of  the silicon source (Table 3.4). As shown in entries 
2-5, among all silylboranes utilized, only PhMe2SiBpin gave moderate yields in a high C4:C2 
ratio. Unfortunately, we do not have any rationale for such striking behavior and the role of 
the substituents at the silicon atom on the targeted reactivity. Intriguingly, hexaethyldisilane, 
TMS4Si or Et3SiH failed to provide desired product (entry 7-9). Driven by the perception that 
in situ generated silyl metal species were generated under the reaction conditions, we found 

N (1.0 equiv) DME (0.2 M ),T ºC, 3h

KHMDS (1.0 equiv)
+ Et3SiBpin

Entry T ºC 48a/48a´Yield (%)a

1
2
3

4
5
6

90
50
rt

rt
rt
0

61
70b

82b

72b,c

70b,d

65b

5.6:1
6.2:1
9.8:1

7:1
6:1

8.1:1

2

4

N

SiEt3

48a
N SiEt3

48a´

+

46a

N      (1.0 equiv) N

4
Si

DME (0.2 M ), rt

KHMDS (1.0 equiv)
+ Si X

Entry [Si]-X 48aa/48aa´Yield (%)a

1
2
3
4
5
6
7
8
9

none
PhMe2SiBpin

MeOMe2SiBpin
FMe2SiBpin
ClMe2SiBpin
PhMe2SiLi
Et3SiSiEt3
TMS4Si
SiEt3H

80
72
0
0
0
38
0
0
0

10:1
9:1
—
—
—

>20:1
—
—
—

46a
N Si

2+

48aa 48aa´
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that freshly prepared PhMe2SiLi (2M in THF) led to 48 in lower yields, but with a high C4:C2 
ratio (entry 6).   

3.4.2. Substrate scope and late-stage silylation of functional azines 

 

 

aAs Table 3.3 (entry 3). b Isolated yields, average of two independent runs. c KHMDS (2 equiv). 
d 0 °C. e 5 mmol scale. f From N-oxide derivative. g C4:C5 = 2.7:1. h mono:bis = 8:1 from PhH. 

Scheme 3.20. Scope of site-selective silylation of azines 

With a robust set of reaction conditions in hand, we decided to study the generality of our 
site-selective C–H silylation. As shown in Scheme 3.20., a wide variety of azines underwent 
the targeted site-selective C–H silylation. Notably, aliphatic or aromatic substituents at either 
C2 or C3 position did not interfere with C4-silylation, even for bulky substrates (50a-50o). 
Substituents at C4 gave rise to C2−silylated compounds (50p-50s). Our C–H silylation displayed 
an excellent chemoselectivity profile, and ethers (50l), chlorides (50g) or free amines (50n) 
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were well-tolerated. Surprisingly, ketone (50f) did not unergo silicon attack across the C=O 
bond under our optimized reaction conditions. Furthermore, other azines such as pyrazine 
(50t), pyrimidine (50u, 50w), imidazo[1,2-b]pyridazines (50v), bipyridine (50x) were also 
accommodated with high selectivity. Interestingly, the reaction utilizing N-oxide derivatives 
proceeded in a highly regioselective manner, leading to C2-silylation exclusively due to its 
ability to coordinate the potassium cation (48a´ and 50y). Even unactivated benzene can be 
silylated in moderate yield (51). This finding showcases the complementarity between our 
transition-metal-free technique and classical methods based on Rh/Ir/Ru catalysts that 
typically require high temperatures and only provide low site-selectivity. 
 

  

Scheme 3.21. Late-stage silylation of azine drugs 

Prompted by the broad generality of our C–H silylation, we anticipated that our protocol 
might streamline the synthesis of complex molecules within the context of late-stage 
functionalization. To this end, we found that a wide variety of pharmaceuticals with C2 or C3 
substitution underwent late-stage C4-silylation, giving rise to silylated drugs in high yields and 
excellent site-selectivities (52-60). Substrates containing two pyridine motifs could be 
selectively silylated on the more electron-poor pyridyl backbone. C2-selectivity was observed 
with antiretroviral Nevirapine and Metyrapone (52 and 53), which was confirmed by NMR 
spectroscopy and X-ray crystallography of 52. The amide group in 52 activates ortho and para 
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position because of its π-conjugation to induce d+ charge at the ortho and para sites, which 
are correspondingly activated to attack by nucleophilles.24 And the amine group functions as 

meta-deactivators with the effect being particularly strong at the pyridine b and g positions. 
The reason for this is unclear but may be due to the π-donor capability. Although it is elusive 
about the selectivity in 53, one explanation is that the carbonyl group at meta position might 
act as directing group. Notably, we also found that a three-fold C4- silylation protocol was 
applicable to crystal material TmPyPB (58). Other pyrimidine-containing drugs such as piribedil 
and buspirone worked equally well, and the latter reaction could be easily scaled up to a gram-
scale (59 and 60).	The results in Scheme 3.21 highlight the impact of our protocol on rapidly 
generating structural diversity in drug discovery	 as the prevalence of diazines in 
pharmaceuticals. 

 

Scheme 3.22. Unsuccessful substrates 

As shown in Scheme 3.22, our system currently has some limitations with advanced 
intermediates substrates possessing particularly activated benzylic C–H bonds. Indeed, 
Imatinib underwent mono- and bis-silylation, giving inseparable mixture of silylated products. 
Preparative HPLC was investigated as a method of separating the silylated Imatinib products, 
but unfortunately we failed to isolate the corresponding products. While the basic and 
nucleophilic NH functionality in nialamide may compromise the stability of the Et3SiBpin 
reagent, the presence of a particularly activated benzylic C–H bond in bisacodyl (63) led to the 
formation of the benzylic anion instead. The inability of using sulfadiazine (64) under our 
silylation procedure can be explained by deprotonation of the acidic NH bond, deactivating 
the azine for nucleophilic attack. Although we initially assumed that silylation of triazines 
should occur with similar ease, no desired silylated products were observed when using 65, 
leading to rapid decomposition. Interestingly, the utilization of π-extended acridine as 
substrate resulted in dearomatized product 66, which might arise from a silaboration of 
acridine followed by deborylation during the subsequent quenching process. 
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3.4.3. Regiodivergent C–H silylation 

 

Scheme 3.23. Regiodivergent silylation of pyridine 

During the screening of the reaction conditions, we noticed a different C2/C4 ratio 
depending  on the nature of the ethereal solvent (Table 3.2). These results prompted us to 
investigate whether the C2-selective silylation could be further improved. Interestingly, the 
selectivity could be easily switched by simply changing the solvent to dioxane. As depicted in 
Scheme 3.23, silylation of simple pyridine in DME showed highly C4 selectivity, while a 
completely reversed selectivity was observed in dioxane (48a´-48b´). The same trend also 
applied to C3-substituted pyridines (48c´-48e´). It is known that ethereal ligands such as THF, 
THP, and dioxane are able to coordinate to alkali metal salts of HMDS (1,1,1,3,3,3-
hexamethyldisilazide). Although the aggregation, solvation and stability of KHMDS in a variety 

of coordinating solvents is largely unexplored compared to that of LiHMDS and NaHMDS, we 

propose that a solvent-separated ion pair comes into play in DME, thus explaining the C4-
selectivity profile. In this model, two DME ligands are coordinated to the potassium cation, 
making the approach to the C2 position more difficult due to steric effects. In contrast, the 
utilization of dioxane might lead to a contacted ion pair, resulting in a C2-silylation instead. 
We cannot certainly rule out that site-selectivity might also be influenced by the different 
solubility and aggregation of KHMDS in DME when compared to that in dioxane.  
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3.4.4. Application of silylated pyridines 

In view of the application profile of our protocol, we decided to explore the synthetic 
applicability of our method by transforming the corresponding silylated azines into valuable 
heterocylic building blocks by promoting the functionalization of the new C–Si bond (Scheme 
3.24). As shown, 50p could easily be converted to the corresponding arylsulfone upon 
treatment with DABSO and alkybromide 67 in the presence of a fluoride source.78 A copper 
catalyzed Hiyama cross-coupling reaction also occurred smoothly with 50p as stable and easy-
handing organometalic reagent to afford biaryl compound 69 in high yield.79Intriguingly, we 
found that 70 could successfully undergo defluorinative C−H silylation via nucleophilic attack 
followed by two consecutive [1,3]-H shifts giving rise to 71 in 48%.  
 

 

Scheme 3.24. Synthetic applications  
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3. 5. Mechanistic Studies and Proposal 

In order to shed light onto the mechanism, an orthogonal strategy was designed to study 
the course of the reaction (Scheme 3.25). Recently, our group reported that dibenzofuran (72) 
could be smoothly converted into 73 by Ni catalyzed C–O bond cleavage via Ni(0)-silyl ate 
complexes (Scheme 3.25, A).75 Alternatively, o-, p-Silylated dibenzofuran could also be formed 
using Grubbs´ KOt-Bu/Et3SiH-promoted protocol (Scheme 3.25, B).80 However, when 72 was 
subjected to our silylation system, dearomatization of dibenzofuran (75 and 76) was found 
upon quenching with D2O or Me3SiCl. Subsequently, treatment with an oxidant led to 
rearomatization forming 77 and 78 (Scheme 3.25, C). In line with this notion, it is fairly 
apparent that a different mechanism to that depicted in Scheme 3.25 A-B takes place under 
our protocol. Although tentative, we suggest that silyl anion species are involved in the sp

2
 C–

H silylation reaction, thus indicating that our transition metal-free silylation protocol 
constitutes a new reactivity mode complementary to “classical” ortho-metalation or modern 
catalytic C−H silylation techniques. 

 

 

Scheme 3.25. Unraveling the nature of the silyl anionic species 
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Scheme 3.26. Control experiment with ring opening reaction of epoxide 

Next, we turned our attention to study the nature of the nucleophilic silylated species. As 
shown in Table 3.4 (entry 6), we found that PhMe2SiLi can be employed as silyl reagent, 
suggesting that silyl anions might be the responsible for the targeted C–Si bond-formation. To 
such end, we turned our attention to the reaction of cyclohexene oxide, as it is known that 
such substrate undergoes nucleophilic ring opening by silyl anions (Scheme 3.26, A).81 As 
expected, we indeed obtained the ring opening product in high yield (Scheme 3.26, B). To lend 
support for silyl anion intermediates, we decided to conduct our KHMDS–mediated reaction 
with 4-t-Bu-pyridine (49p) as substrate in the presence of cyclohexene oxide (79) as an 
additive (Scheme 3.26, C). Intriguingly 86% of the cyclohexene epoxide was recovered after 
the reaction, with moderate yield of the targeted C2-silylation product 50p being observed in 
the crude mixtures, suggesting that the silyl anion obtained upon reacting Et3SiBpin/KHMDS 
preferentially attacks the azine moiety, probably by the polarization of the azine upon 
coordination to the escorting counter cation. 

 

 
 
 
 
 
 
 
 
 
 

Scheme 3.27. NMR experiments to detect possible reaction intermediates 
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Next, we attempted to detect reaction intermediates using NMR spectroscopy. Silylation 
of 4-tBu-pyridine in d8-THF under optimized condition was carried out at room temperature. 
After stirring for 2 hours, the reaction mixture was transferred to a J-Young NMR tube and 
analyzed by 1H NMR. The results summarized in Scheme 3.27 show a 58% yield of silylated 
pyridine together with a new species with a new set of signals at 6.39, 4.39, 4.25 and 3.97 
ppm in 1H NMR. We tentatively assigned these signals to N-Bpin-2-triethylsilyl-4-tBu-1,2-
dihydropyridine (81). Interestingly, upon extending the reaction time or by adding additional 
KHMDS under standard condition, we could obtain the corresponding silylated pyridine in 
almost quantitative yield, thus suggesting that the dearomatized pyridine seems the most 
plausible avenue to explain our observations.  
 
 
 
 
 
 
 
 
 
 
 

 
We also monitored a mixture of Et3SiBpin (23.2 mg, 1.25 eq, 0.10 mmol) and KHMDS (15.9 

mg, 1.0 eq, 0.08 mmol) in d8-THF by 11B NMR spectroscopy at -20oC. As a result, three peaks 

at d = 4.1, 25.7 and 35.1 ppm were observed. These peaks could be assigned as 
tetracoordinated anionic boron species, Et3SiBpin and (TMS)2NBpin,82,83 the formation of 
which and likely suggests the in situ generation of triethylsilyl potassium.84-85 
 

Sample Fe Cu Ni Mn Co Ti Pd Ir Rh 

KHMDS <DL <DL <DL <DL <DL <DL 0.028 0.093 0.018 

Et3SiBpin 0.025 0.016 <DL <DL <DL <DL 0.019 <DL <DL 

Reaction in Dioxane <DL <DL <DL <DL 0.414 <DL 0.016 0.002 <DL 

Reaction in DME 0,034 0,005 <DL <DL <DL <DL 0.017 <DL <DL 

Blank <DL <DL <DL <DL <DL <DL 0.016 0.141 <DL 

Scheme 3.28. ICP-OES analysis 

(TMS)2NBPin

Et3SiBPin
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ICP-OES (Inductively coupled plasma atomic emission spectroscopy) trace metal analysis 
of all the reaction components ruled out the possibility that adventitious trace metal species 
would be enabling a C–H functionalization (Scheme 3.28). The results from quantitative 
analysis revealed that most metal contaminants were present below the instrument’s lowest 
limit of detection. The DL (Detection limit, in mg/l) for the different elements measured are: 
Fe 0.0006 ppm, Cu 0.0014 ppm, Ni 0.0002 ppm, Mn 0.0006 ppm, Co 0.0004 ppm, Ti 0.0003 
ppm, Pd 0.0033 ppm, Ir 0.0033 ppm, Rh 0.0029 ppm.   
 

 

Scheme 3.29. Effect of DME and additives 

In order to gain some insight into the solvent dependent site-selectivity, the effect of DME 
was studied by varying the amount of solvent utilized (Scheme 3.29). Surprisingly, the more 
DME added to the reaction mixture, the higher C4-silyated product 48a, an observation that 
is consistent with the ability of bidentate ethereal motifs to coordinate potassium cations.86 
If 50 equiv DME were added, the site-selectivity was totally switched from C2 to C4 (entries 
1-5). In line with this notion, the utilization of TMEDA or 18-crown-6 as additive led to an 
improved C4-silylation due to its proclivity to act as bidentate ligand that might sequester the 
potassium cation (entries 6 and 7).     
 
 

N (1.0 equiv) Dioxane (0.2 M ), rt, 3h

KHMDS (1.0 equiv)
+ Et3SiBpin

Entry Coordinating solvent 48a/48a´Yield (%)a

1
2
3
4
5
6
7

DME
DME
DME
DME
DME

TMEDA
18-crown-6

67
75
73
77
78
61
64

1:3
1:2

1:1.2
2:1
5:1
1:1

>20:1

X equiv.

1
5

10
20
50
1
1

2

4

N

SiEt3

48a
N SiEt3

48a´

+

46a DME (x equiv) or additive

 a Yield of 48a and 48a´ detected by GC, using decane as internal standard.
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Scheme 3.30. Mechanistic proposal 

Based on the above experiments, we propose that our C–H silylation involves the 
intermediacy of silyl anion and dearomatized intermediates, with site-selectivity being 
particularly sensitive to the denticity of the solvent (Scheme 3.30). We believe that the 
reaction is initiated by in situ generation of silyl anion species in the presence of KHMDS and 
Et3SiBpin. If DME is utilized, we propose that a separated ion pair XXIX is generated due to the 
bidentate nature of the solvent,87,88 leading to a preferential attack of the silicon anion at C4 
due to steric effects. In dioxane, however, a different denticity comes into play, and the 
corresponding contacted ion pair XXXII leads to a silicon anion attack at C2 (XXXIII). The higher 
solubility of KHMDS in DME vs dioxane does not allow us to completely rule out whether 
kinetics come into play for determining C2/C4-selectivity. Careful monitoring of  the reaction 
mixtures by GC allowed to observe quantitative formation of  (TMS)2N-Bpin, suggesting that 
the activation of Et3SiBpin by KHMDS, likely via the initial formation of discrete 
[(Me3Si)2N(Bpin)SiEt3]K species and a dearomatized product is a reaction intermediate en 
route to the corresponding silylated arene. At present, we are not entirely sure on how the 
rearomatization takes place; although one might argue that oxidation might take place in the 
presence of advantageous oxygen, we observed the final aromatized silylated azine in the 
exclusion of oxygen. Although further experiments should be conducted, we cannot rule out 
that rearomatization might also be promoted with KHMDS by forming a strong N–B bond.89,90  
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3.6. Conclusions 

We have discovered a KHMDS-mediated direct C–H silylation of (poly)azines using 
Et3SiBpin. The substrate scope of this reaction includes challenging substrate combinations 
with multiple (poly)azines, which would be of potential value in both pharmaceutical and 
academic laboratories. This methodology displays excellent regioselectivity and broad 
substrate scope. Importantly, regioselectivity could be switched by tuning the denticity and 
aggregation of ethereal solvents. Moreover, its simplicity and mild reaction conditions make 
our method applicable to late stage silylation events, thus showcasing the potential value for 
medicinal chemists. In addition, we have presented a mechanistic discussion based on 
experimental evidence and literature precedent, although more experiments should be 
conducted to unravel the intricacies of this reaction.  

 

Scheme 3.31. KHMDS-mediated site-selective silylation of (poly)azines 
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3.8. Experimental Section 

      3.8.1. General considerations 

Reagents. Commercially available materials were used without further purification. KHMDS was 
purchased from Strem Chemicals. Anhydrous DME and Dioxane were purchased from Alfa Aesar. 
Silylborane Et3SiBpin was prepared in bulk quantities in one-step from Et3SiH and B2pin2 according to a 
known literature procedure.1 All the other reagents were purchased from commercial sources and used 
as received. Flash chromatography was performed with EM Science silica gel 60 (230-400 mesh). Thin 
layer chromatography was carried out using Merck TLC Silica gel 60 F254. 

Analytical methods: 1H-NMR, 13C-NMR, and 19F-NMR spectra and melting points (where applicable) are 
included for all new compounds. 1H-NMR, 13C-NMR, and 19F-NMR spectra were recorded on a Bruker 
300 MHz, a Bruker 400 MHz or Bruker 500 MHz. All 1H-NMR spectra are reported in parts per million 
(ppm) downfield of TMS and were measured relative to the signals for CHCl3 (7.26 ppm). All 13C-NMR 
spectra were reported in ppm relative to residual CHCl3 (77.2 ppm) and were obtained with 1H 
decoupling. Coupling constants, J, are reported in hertz (Hz). Melting points were measured using open 
glass capillaries in a Büchi B540 apparatus. Infrared spectra were recorded on a Bruker Tensor 27. 
Specific optical rotation measurements were carried out on a Jasco P-1030 model polarimeter 
equipped with a PMT detector using the Sodium line at 589 nm. Mass spectra were recorded on a 
Waters LCT Premier spectrometer. Gas chromatographic analyses were performed on HewlettPackard 
6890 gas chromatography instrument with a FID detector using 25m x 0.20 mm capillary column with 
cross-linked methyl siloxane as the stationary phase. Atomic absortion analysis was measured in a ICP-
OES Spectro Arcos at the “Servei de Recursos Científics i Tècnics de la URV” in Tarragona, Spain. The 
yields reported refer to isolated yields and represent an average of at least two independent runs. The 
procedures described in this section are representative. Thus, the yields may differ slightly from those 
given in the tables and Schemes of the manuscript. 

      3.8.2 Synthesis of starting materials 

General conditions for Suzuki cross-coupling: In a 4.0 mL Schlenk tube, PdCl2(PPh3)2 (35 mg, 5 mmol%), 
Aryl halide (1.0 mmol), 3-pyridinylboronic acid (146.4 mg, 1.2 mmol) and K2CO3 (441.6 mg, 3.2 mmol) 
were weight out. Then, DME (10 mL) and water (4 ml) were added. The reaction mixture was stirred at 

120 °C for 16 h. After cooling to room temperature, the reaction mixture was diluted with ether (15 
ml), washed with water (10 ml), the organic phase was dried over MgSO4, filtered and concentrated. 
The product was isolated by column chromatography to give the corresponding substituted pyridine. 

 

(8R,9S,13S,14S)-13-methyl-3-(pyridin-3-yl)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-
cyclopenta[a]phenanthren-17-one. Following the general procedure, using (8R,9S,13S,14S)-3-bromo-
13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (333.2 mg, 
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0.4 mmol), the title compound was obtained in 82% yield (271.5 mg) as white solid. R
f 0.65 (Hex: EtOAc 

2:1). 1H NMR (300 MHz, CDCl3) δ 8.84 (s, 1H), 8.57 (d, J = 4.1 Hz, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.45- 7.35 
(m, 3H), 7.33 (s, 1H), 3.12-2.91 (m, 2H), 2.62-2.42 (m, 2H), 2.37 (dt, J = 14.6, 7.0 Hz, 1H), 2.25-2.03 (m, 
3H), 2.00 (dd, J = 9.2, 2.5 Hz, 1H), 1.80-1.40 (m, 6H), 0.93 (s, 3H) ppm. 13C NMR (75 MHz, CDCl3) δ 220.8, 
147.3, 140.3, 137.6, 137.0, 135.1, 134.9, 127.8, 126.4, 124.6, 124.0, 50.6, 48.1, 44.5, 38.2, 35.9, 31.7, 
29.6, 26.5, 25.8, 21.7, 14.0 ppm. Mp 172.1-173.5 ºC. [α]D

26 = 268.8 (c = 0.1053, CH2Cl2). IR (neat, cm-1): 
2925, 2853, 1733, 1471, 1422, 1005, 806, 711. HRMS (ESI) [C23H26NO] (M+H) calcd. 332.2004, found 
332.2009. 

 

3-(2-(trifluoromethoxy)phenyl)pyridine (46d). Following the general procedure, using 1-bromo-2-
(trifluoromethoxy)benzene (241.0 mg, 0.4 mmol), the title compound was obtained in 88% yield (210.4 
mg) as colorless oil. R

f 0.45 (Hex: EtOAc 4:1).  1H NMR (400 MHz, CDCl3) δ 8.70 (dd, J = 2.3, 0.9 Hz, 1H), 

8.61 (dd, J = 4.9, 1.7 Hz, 1H), 7.79 (dt, J = 7.9, 1.8 Hz, 1H), 7.50-7.26 (m, 5H) ppm. 13C NMR (101 MHz, 
CDCl3) δ 149.9, 149.0, 146.5 (d, J = 1.8 Hz), 136.7, 132.8, 131.8, 131.4, 129.7, 127.4, 123.2, 121.6 (d, JC-

F = 1.5 Hz), 120.46 (q, JC-F = 258.3 Hz) ppm. 19F NMR (376 MHz, CDCl3) δ -57.36 ppm. IR (neat, cm-1): 2958, 
2875, 1677, 1580, 1301, 1265, 1024, 709. HRMS (ESI) [C12H9F3NO] (M+H) calcd. 240.0631, found 
240.0626. 

      3.8.3 General procedure for site-selective sp2 C–H silylation of (poly)azines 

An oven-dried 10 mL screw-capped test tube containing a stirring bar was charged with corresponding 
azine (1.0 eq, 0.4 mmol). The test tube was transferred to a nitrogen-filled glove-box where KHMDS 
(79.8 mg, 0.4 mmol), Et3SiBpin (96.9 mg, 0.4 mmol) and dry ethylene glycol dimethyl ether (DME, 0.2 
M, 2mL) were added. Then, the reaction mixture was stirred for 1 minute and taken out of the glovebox. 
The reaction was rigorously stirred for 3 h and diluted with EtOAc (8 mL). After filtered through a Celite® 
plug, the desired product was directly purified by flash column chromatography in silica gel. 

 

2-ethyl-4-(triethylsilyl)pyridine (50a). Following the general procedure, using 2-ethylpyridine (42.8 mg, 
0.4 mmol), the title compound was obtained in 64% yield (56.6 mg) as colorless oil. R

f 0.40 (Hex: EtOAc 

10:1). 1H NMR (300 MHz, CDCl3) δ 8.45 (dd, J = 4.8, 1.0 Hz, 1H), 7.20 (s, 1H), 7.14 (dd, J = 4.8, 1.1 Hz, 
1H), 2.79 (q, J = 7.6 Hz, 2H), 1.29 (t, J = 7.6 Hz, 3H), 1.08-0.86 (m, 9H), 0.85-0.62 (m, 6H) ppm. 13C NMR 
(75 MHz, CDCl3) δ 162.1, 148.0, 127.5, 126.3, 31.5, 14.2, 7.3, 3.0 ppm. IR (neat, cm-1): 2955, 2875, 1587, 
1458, 1382, 1110, 1009, 718. HRMS (ESI) [C13H24NSi] (M+H) calcd. 222.1673, found 222.1665. 
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3-methyl-4-(triethylsilyl)pyridine(50b). Following the general procedure, using 3-methylpyridine (37.2 
mg, 0.4 mmol), the title compound was obtained in 85% yield (70.4 mg) as colorless oil. R

f 0.52 (Hex: 

EtOAc 5:1). 1H NMR (300 MHz, CDCl3) δ 8.36 (br, 2H), 7.27 (d, J = 4.8 Hz, 1H), 2.38 (s, 3H), 1.05-0.80 (m, 
15H) ppm. 13C NMR (75 MHz, CDCl3) δ 149.9, 146.0, 145.6, 138.6, 129.6, 19.9, 7.4, 3.4 ppm. IR (neat, 
cm-1): 2954, 2875, 1457, 1398, 1095, 1002, 714, 671. HRMS (ESI) [C12H22NSi] (M+H) calcd. 208.1516, 
found 208.1515. 

 

3,5-dimethyl-4-(triethylsilyl)pyridine (50c). Following the general procedure, using 3,5-
dimethylpyridine (42.8 mg, 0.4 mmol), the title compound was obtained in 69% yield (61.1 mg) as 
colorless oil. R

f 0.55 (Hex: EtOAc 10:1). 1H NMR (300 MHz, CDCl3) δ 8.13 (s, 2H), 2.37 (s, 6H), 0.96-0.88 

(m, 15H) ppm. 13C NMR (75 MHz, CDCl3) δ 148.4, 144.5, 138.6, 21.3, 7.8, 5.7 ppm. IR (neat, cm-1): 2954, 
2874, 1457, 1410, 1182, 1082, 999, 725. HRMS (ESI) [C13H24NSi] (M+H) calcd. 222.1673, found 226.1667. 

 

3-methyl-5-phenyl-4-(triethylsilyl)pyridine (50d). Following the general procedure, using 3-methyl-5-
phenylpyridine (67.6 mg, 0.4 mmol), the title compound was obtained in 71% yield (80.4 mg) as 
colorless oil. R

f 0.65 (Hex: EtOAc 10:1). 1H NMR (300 MHz, CDCl3) δ 8.34 (s, 1H), 8.20 (s, 1H), 7.39-7.34 

(m, 3H), 7.26-7.20 (m, 2H), 2.50 (s, 3H), 0.79 (t, J = 7.8 Hz, 9H), 0.48 (q, J = 7.8 Hz, 6H) ppm. 13C NMR (75 
MHz, CDCl3) δ 149.2, 147.8, 145.0, 144.0, 142.0, 138.8, 129.8, 127.9, 127.7, 21.1, 7.9, 4.8 ppm. IR (neat, 
cm-1): 2953, 2874, 1459, 1404, 1076, 999, 726, 699. HRMS (ESI) [C18H26NSi] (M+H) calcd. 284.1829, 
found 284.1835. 

 

2-phenyl-4-(triethylsilyl)pyridine (50e). Following the general procedure, using 2-phenylpyridine (62.1 
mg, 0.4 mmol), the title compound was obtained in 77% yield (82.9 mg) as colorless oil. R

f 0.63 (Hex: 

EtOAc 5:1). 1H NMR (400 MHz, CDCl3) δ 8.65 (dd, J = 4.7, 0.9 Hz, 1H), 7.98 (dd, J = 8.3, 1.2 Hz, 2H), 7.80 
(t, J = 0.9 Hz, 1H), 7.48 (t, J = 7.4 Hz, 2H), 7.45-7.38 (m, 1H), 7.31 (dd, J = 4.7, 1.0 Hz, 1H) 1.00 (t, J = 7.7 
Hz, 9H), 0.91-0.80 (m, 6H) ppm. 13C NMR (101 MHz, CDCl3) δ 156.3, 148.6, 148.5, 140.0, 128.9, 128.8, 
127.6, 127.2, 126.1, 7.4, 3.0 ppm. Spectroscopic data for 50e match those previously reported in the 
literature.2 

 

1-(4-(4-(triethylsilyl)pyridin-2-yl)phenyl)ethan-1-one (50f). Following the general procedure, using 1-
(4-(pyridin-2-yl)phenyl)ethan-1-one (78.9 mg, 0.4 mmol) and 2 equivalent of KHMDS, the title 
compound was obtained in 53% yield (66.1 mg) as colorless oil. R

f 0.45 (Hex: EtOAc 4:1). 1H NMR (300 

MHz, CDCl3) δ 8.67 (dd, J = 4.7, 1.0 Hz, 1H), 8.12-8.02 (m, 4H), 7.83 (t, J = 1.1 Hz, 1H), 7.36 (dd, J = 4.7, 
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1.0 Hz, 1H), 2.64 (s, 3H), 1.02-0.96 (m, 9H), 0.92-0.80 (m, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 197.9, 
154.9, 149.0, 148.8, 144.2, 137.1, 128.9, 128.5, 127.3, 126.38, 26.85, 7.37, 2.99 ppm. IR (neat, cm-1): 
2954, 2875, 1682, 1585, 1359, 1264, 1014, 701. HRMS (ESI) [C19H26NOSi] (M+H) calcd. 312.1778, found 

312.1778. 

 

3-(4-chlorophenyl)-4-(triethylsilyl)pyridine (50g). Following the general procedure, using 3-(4-
chlorophenyl)pyridine (75.8 mg, 0.4 mmol), the title compound was obtained in 70% yield (85.1 mg) as 
colorless oil. R

f 0.48 (Hex: EtOAc 4:1). 1H NMR (400 MHz, CDCl3) δ 8.54 (d, J = 4.9 Hz, 1H), 8.39 (d, J = 

0.9 Hz, 1H), 7.42 (dd, J = 4.9, 0.9 Hz, 1H), 7.42-7.35 (m, 2H), 7.24-7.17 (m, 2H), 0.81 (t, J = 7.9 Hz, 9H), 
0.51 (q, J = 8.3, 7.9 Hz, 6H) ppm. 13C NMR (101 MHz, CDCl3) δ 149.5, 147.5, 145.5, 143.3, 139.4, 134.2, 
130.8, 129.9, 128.3, 7.4, 3.9 ppm. IR (neat, cm-1): 2954, 2870, 1470, 1350, 1074, 1051, 998, 710. HRMS 
(ESI) [C17H23ClNSi] (M+H) calcd. 304.1283, found 304.1281. 

 

4-(triethylsilyl)-3-(4-(trifluoromethyl)phenyl)pyridine (50h). Following the general procedure, 3-(4-
(trifluoromethyl)phenyl)pyridine (89.2 mg, 0.4 mmol) was used. The reaction was conducted at 0 ºC 
and the title compound was obtained in 75% yield (101.2 mg) as colorless oil. R

f 0.51 (Hex: EtOAc 4:1). 
1H NMR (300 MHz, CDCl3) δ 8.58 (d, J = 4.9 Hz, 1H), 8.41 (s, 1H), 7.68 (d, J = 8.1 Hz, 2H), 7.46 (d, J = 4.1 
Hz, 1H), 7.40 (d, J = 8.5 Hz, 2H), 0.81 (t, J = 7.8 Hz, 9H), 0.50 (q, J = 8.4, 7.8 Hz, 6H) ppm. 13C NMR (101 
MHz, CDCl3) δ 149.1, 148.6, 145.7, 144.6, 144.6, 143.2, 130.4 (q, JC-F = 32.7 Hz), 130.1, 129.9, 125.1 (q, 
JC-F = 3.7 Hz), 124.2 (q, JC-F = 272.2 Hz), 7.6, 3.9 ppm. 19F NMR (376 MHz, CDCl3) δ -62.57 ppm. IR (neat, 
cm-1): 2955, 2877, 1322, 1125, 1066, 1002, 721, 663. HRMS (ESI) [C18H23F3NSi] (M+H) calcd. 338.1546, 
found 338.1556. 

 

3-(4-(methylthio)phenyl)-4-(triethylsilyl)pyridine (50i). Following the general procedure, using 3-(4-
(methylthio)phenyl)pyridine (80.4 mg, 0.4 mmol), the title compound was obtained in 80% yield (100.9 
mg) as colorless oil. R

f 0.46 (Hex: EtOAc 4:1). 1H NMR (400 MHz, CDCl3) δ 8.52 (d, J = 4.9 Hz, 1H), 8.40 

(d, J = 0.8 Hz, 1H), 7.40 (dd, J = 4.9, 0.8 Hz, 1H), 7.30-7.25 (m, 2H), 7.20-7.16 (m, 2H), 2.53 (s, 3H), 0.81 
(t, J = 7.9 Hz, 9H), 0.52 (q, J = 7.9 Hz, 6H) ppm. 13C NMR (101 MHz, CDCl3) δ 149.7, 147.1, 145.4, 144.0, 
138.5, 137.7, 129.9, 129.8, 125.9, 15.9, 7.4, 3.9 ppm. IR (neat, cm-1): 2952, 2873, 1461, 1391, 1101, 
1090, 1000, 718. HRMS (ESI) [C18H26NSSi] (M+H) calcd. 316.1550, found 316.1550. 

 

2,5-dimethyl-4-(triethylsilyl)pyridine (50j). Following the general procedure, using 2,5-
dimethylpyridine (42.8 mg, 0.4 mmol), the title compound was obtained in 80% yield (70.8 mg) as 
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colorless oil. R
f 0.62 (Hex: EtOAc 4:1). 1H NMR (300 MHz, CDCl3) δ 8.21 (s, 1H), 7.10 (s, 1H), 2.47 (s, 3H), 

2.31 (s, 3H), 0.95-0.78 (m, 15H) ppm. 13C NMR (75 MHz, CDCl3) δ 154.2, 149.3, 145.7, 135.1, 129.1, 24.0, 
19.4, 7.4, 3.4 ppm. IR (neat, cm-1): 2954, 2875, 1584, 1458, 1330, 1082, 1002, 717. HRMS (ESI) 
[C13H24NSi] (M+H) calcd. 222.1673, found 226.1672. 

 

2,3-dimethyl-4-(triethylsilyl)pyridine (50k). Following the general procedure, using 2,3-
dimethylpyridine (42.8 mg, 0.4 mmol), the title compound was obtained in 55% yield (48.7 mg) as 
colorless oil. R

f 0.48 (Hex: EtOAc 10:1). 1H NMR (300 MHz, CDCl3) δ 8.27 (d, J = 4.8 Hz, 1H), 7.13 (d, J = 

4.8 Hz, 1H), 2.51 (s, 3H), 2.33 (s, 3H), 0.97-0.81 (m, 15H) ppm. 13C NMR (75 MHz, CDCl3) δ 156.2, 145.6, 
145.3, 136.9, 127.9, 23.4, 19.4, 7.6, 3.9 ppm. IR (neat, cm-1): 2953, 2875, 1458, 1400, 1381, 1175, 1005, 
722. HRMS (ESI) [C13H24NSi] (M+H) calcd. 222.1673, found 226.1671. 

 

3-cyclopropyl-4-(triethylsilyl)pyridine (50l). Following the general procedure, using 3-
cyclopropylpyridine (47.6 mg, 0.4 mmol), the title compound was obtained in 72% yield (67.2 mg) as 
colorless oil. R

f 0.54 (Hex: Et2O 3:1). 1H NMR (300 MHz, CDCl3) δ 8.35 (d, J = 4.8 Hz, 1H), 8.13 (s, 1H), 

7.27 (dd, J = 4.4, 1.1 Hz, 1H), 1.97 (tt, J = 8.4, 5.3 Hz, 1H), 1.02-0.89 (m, 17H), 0.88-0.82 (m, 2H) ppm. 
13C NMR (75 MHz, CDCl3) δ 146.4, 145.8, 145.0, 143.7, 129.4, 14.3, 9.1, 7.5, 3.8 ppm. IR (neat, cm-1): 
2954, 2874, 1457, 1404, 1089, 1002, 712, 671. HRMS (ESI) [C14H24NSi] (M+H) calcd. 234.1673, found 
234.1670. 

 

4-(triethylsilyl)-6,7-dihydro-5H-cyclopenta[b]pyridine (50m). Following the general procedure, using 
6,7-dihydro-5H-cyclopenta[b]pyridine (47.6 mg, 0.4 mmol), the title compound was obtained in 85% 
yield (79.3 mg) as colorless oil. R

f 0.54 (Hex: EtOAc 5:1). 1H NMR (300 MHz, CDCl3) δ 8.27 (d, J = 4.9 Hz, 

1H), 7.07 (d, J = 4.9 Hz, 1H), 3.01-2.91 (m, 4H), 2.08 (p, J = 7.7 Hz, 2H), 0.91 (d, J = 6.5 Hz, 9H), 0.86-0.75 
(m, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 163.9, 146.3, 142.6, 142.4, 126.9, 34.0, 32.3, 23.0, 7.4, 3.1 
ppm. IR (neat, cm-1): 2953, 2874, 1573, 1459, 1369, 1003, 829, 720. HRMS (ESI) [C14H24NSi] (M+H) calcd. 

234.1673, found 234.1679. 

 

2-(piperazin-1-yl)-4-(triethylsilyl)pyrimidine (50n). Following the general procedure, using 1-(pyridin-
2-yl)piperazine (65.3 mg, 0.4 mmol) and 2 equivalent of KHMDS,  the title compound was obtained in 
55% yield (61.1 mg) as colorless oil. R

f 0.33 (Hex: EtOAc 2:1). 1H NMR (300 MHz, CDCl3) δ 8.15 (dd, J = 

4.8, 1.0 Hz, 1H), 6.74 (s, 1H), 6.71 (dd, J = 4.8, 0.8 Hz, 1H), 3.52 (t, J = 6.8 Hz, 4H), 3.02 (t, J = 6.8 Hz, 4H), 
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2.32 (br, 1H), 0.96 (t, J = 7.8 Hz, 9H), 0.77 (q, J = 8.9 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 159.0, 
148.9, 146.8, 118.9, 112.7, 46.4, 45.9, 7.4, 3.1 ppm. IR (neat, cm-1): 2952, 2874, 1583, 1522, 1413, 1243, 
985, 720. HRMS (ESI) [C15H28N3Si] (M+H) calcd. 278.2052, found 278.2056. 

 

2-(4-(triethylsilyl)pyridin-3-yl)-1H-benzo[d]imidazole (50o). Following the general procedure, using 2-
(pyridin-3-yl)-1H-benzo[d]imidazole (78.1 mg, 0.4 mmol) and 2 equivalent of KHMDS, the title 
compound was obtained in 42% yield (51.8 mg) as colorless oil. R

f 0.68 (EtOAc). 1H NMR (300 MHz, 

CDCl3) δ 9.14 (s, 1H), 8.58 (d, J = 5.1 Hz, 1H), 7.73-7.70 (m, 3H), 7.32 (dd, J = 6.1, 3.2 Hz, 2H), 0.88-0.85 
(m, 15H). 13C NMR (75 MHz, CDCl3) δ 157.3, 148.1, 138.4, 123.9, 121.4, 116.0, 7.7, 4.2. IR (neat, cm-1): 
2856, 2794, 1673, 1419, 1332, 1296, 1105, 786. HRMS (ESI) [C18H24N3Si] (M+H) calcd. 310.1734, found 
310.1730. 

 

4-(tert-butyl)-2-(triethylsilyl)pyridine (50p). Following the general procedure, using 4-(tert-
butyl)pyridine (54.1 mg, 0.4 mmol), the title compound was obtained in 74% yield (73.8 mg) as colorless 
oil. R

f 0.82 (Hex: EtOAc 10:1). 1H NMR (500 MHz, CDCl3) δ 8.67 (dd, J = 5.3, 0.8 Hz, 1H), 7.44 (dd, J = 2.1, 

0.8 Hz, 1H), 7.16 (dd, J = 5.3, 2.2 Hz, 1H), 1.29 (s, 9H), 0.98 (t, J = 7.8 Hz, 9H), 0.89-0.82 (m, 6H) ppm. 13C 
NMR (126 MHz, CDCl3) δ 165.7, 157.1, 150.2, 126.9, 119.7, 34.6, 30.7, 7.5, 3.2 ppm. IR (neat, cm-1): 2954, 
2875, 1603, 1414, 1005, 842, 822, 720. HRMS (ESI) [C15H28NSi] (M+H) calcd. 250.1986, found 250.1984. 

 

4-(dimethyl(phenyl)silyl)-2-(triethylsilyl)pyridine (50q). Following the general procedure, using 4-
(dimethyl(phenyl)silyl)pyridine (85.2 mg, 0.4 mmol), the title compound was obtained in 59% yield (77.3 
mg) as colorless oil. R

f 0.82 (Hex: EtOAc 5:1). 1H NMR (300 MHz, CDCl3) δ 8.73 (dd, J = 4.8, 1.0 Hz, 1H), 

7.55 (t, J = 1.2 Hz, 1H), 7.54-7.45 (m, 2H), 7.42-7.33 (m, 3H), 7.27 (dd, J = 4.8, 1.3 Hz, 1H), 0.97 (t, J = 7.5 
Hz, 9H), 0.90-0.81 (m, 6H), 0.57 (s, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 164.9, 149.2, 145.1, 136.7, 
134.9, 134.3, 129.7, 128.1, 127.9, 7.5, 3.1, -2.9 ppm. IR (neat, cm-1): 2955, 1875, 1737, 1406, 1250, 1113, 
818, 730.  HRMS (ESI) [C19H30NSi2] (M+H) calcd. 328.1911, found 328.1915. 

 

4-methoxy-2-(triethylsilyl)pyridine (50r). Following the general procedure, using 4-methoxypyridine 
(43.7 mg, 0.4 mmol), the title compound was obtained in 55% yield (49.2 mg) as colorless oil. R

f 0.54 

(Hex: EtOAc 4:1). 1H NMR (300 MHz, CDCl3) δ 8.60 (d, J = 5.7 Hz, 1H), 7.00 (d, J = 2.7 Hz, 1H), 6.70 (dd, J 
= 5.7, 2.7 Hz, 1H), 3.82 (s, 3H), 0.97 (t, J = 7.5 Hz, 9H), 0.89-0.79 (m, 6H) ppm. 13C NMR (75 MHz, CDCl3) 
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δ 167.7, 164.0, 151.6, 116.9, 108.1, 54.8, 7.5, 3.0 ppm. IR (neat, cm-1): 2953, 2875, 1600, 1460, 1290, 
1211, 1015, 722. HRMS (ESI) [C12H22NOSi] (M+H) calcd. 224.1465, found 224.1459. 

 

N,N-dimethyl-2-(triethylsilyl)pyridin-4-amine (50s). Following the general procedure, using N,N-
dimethylpyridin-4-amine (48.9 mg, 0.4 mmol), the title compound was obtained in 79% yield (74.7 mg) 
as colorless oil. R

f 0.43 (Methanol: EtOAc 1:1). 1H NMR (500 MHz, CDCl3) δ 8.39 (d, J = 6.3 Hz, 1H), 6.70 

(d, J = 2.9 Hz, 1H), 6.46 (dd, J = 6.3, 2.9 Hz, 1H), 3.03 (s, 6H), 0.97 (t, J = 7.6 Hz, 9H), 0.88 (q, J = 6.9 Hz, 
6H) ppm. 13C NMR (126 MHz, CDCl3) δ 153.3, 148.2, 113.3, 105.8, 39.3, 7.5, 3.0 ppm. IR (neat, cm-1): 
2927, 1736, 1604, 1525, 1446, 1375, 1229, 1043. HRMS (ESI) [C13H25N2Si] (M+H) calcd. 237.1782, found 

237.1781. 

 

2-(triethylsilyl)pyrazine (50t). Following the general procedure, using pyrazine (32 mg, 0.4 mmol), the 
title compound was obtained in 61% yield (47.4 mg) as colorless oil. R

f 0.71 (Hex: EtOAc 5:1). 1H NMR 

(300 MHz, CDCl3) δ 8.73 (t, J = 2.4 Hz, 1H), 8.62 (s, 1H), 8.44 (d, J = 2.5 Hz, 1H), 0.99 (t, J = 7.5 Hz, 9H), 
0.93-0.82 (m, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 149.8, 146.1, 143.8, 7.4, 2.9 ppm. IR (neat, cm-1): 
2964, 2874, 1506, 1350, 1103, 823, 795, 701. HRMS (ESI) [C10H19N2Si] (M+H) calcd. 195.1312, found 
195.1306. 

 

4-(triethylsilyl)pyrimidine (50u). Following the general procedure, using pyrimidine (32 mg, 0.4 mmol), 
the title compound was obtained in 70% yield (54.4 mg) as colorless oil. R

f 0.69 (Hex: EtOAc 10:1). 1H 

NMR (300 MHz, CDCl3) δ 9.23 (d, J = 1.6 Hz, 1H), 8.52 (d, J = 4.9 Hz, 1H), 7.37 (dd, J = 4.9, 1.6 Hz, 1H), 
0.95-0.87 (m, 9H), 0.83-0.74 (m, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 176.5, 158.2, 154.4, 127.5, 7.2, 
2.5 ppm. IR (neat, cm-1): 2954, 2876, 1565, 1520, 1380, 1006, 719, 690. HRMS (ESI) [C10H19N2Si] (M+H) 
calcd. 195.1312, found 195.1309. 

 

8-(triethylsilyl)imidazo[1,2-b]pyridazine (50v). Following the general procedure, using imidazo[1,2-
b]pyridazine (47.6 mg, 0.4 mmol), the title compound was obtained in 49% yield (45.7 mg) as colorless 
oil. R

f 0.44 (Hex: EtOAc 5:1). 1H NMR (300 MHz, CDCl3) δ 8.21 (d, J = 4.3 Hz, 1H), 7.92 (d, J = 1.3 Hz, 1H), 

7.77 (d, J = 1.3 Hz, 1H), 7.04 (d, J = 4.3 Hz, 1H), 1.17-0.90 (m, 15H) ppm. 13C NMR (75 MHz, CDCl3) δ 
142.2, 141.9, 138.3, 133.0, 123.3, 116.0, 7.4, 2.9 ppm. IR (neat, cm-1): 2953, 2874, 1456, 1319, 1249, 
1198, 1005, 722. HRMS (ESI) [C12H20N3Si] (M+H) calcd. 234.1421, found 234.1416. 

N SiEt3

NMe2

N

N

SiEt3

N

N SiEt3

N
N

N

SiEt3

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                                        A Mild and Site-Selective sp
2
 C–H Silylation of (Poly)Azines 

 

 159 

 

5-(triethylsilyl)imidazo[1,2-a]pyrimidine  (50w). Following the general procedure, using imidazo[1,2-

a]pyrimidine (47.6 mg, 0.4 mmol) and 2 equivalent of KHMDS, the reaction was conducted at 0 °C. The 
title compound was obtained in 44% yield (41.1 mg) as colorless oil. R

f 0.34 (Hex: EtOAc 5:1). 1H NMR 

(300 MHz, CDCl3) δ 8.46 (d, J = 4.0 Hz, 1H), 7.82 (d, J = 1.4 Hz, 1H), 7.60 (d, J = 1.4 Hz, 1H), 6.89 (d, J = 
4.0 Hz, 1H), 1.05-0.90 (m, 15H) ppm. 13C NMR (75 MHz, CDCl3) δ 148.5, 148.4, 135.2, 116.9, 111.5, 7.2, 
2.3 ppm. IR (neat, cm-1): 2962, 2860, 1532, 1239, 1218, 1181, 1006, 723. HRMS (ESI) [C12H20N3Si] (M+H) 
calcd. 234.1436, found 234.1438. 

 

4-(triethylsilyl)-2,2'-bipyridine (50x). Following the general procedure, using 2,2'-bipyridine (68.8 mg, 
0.4 mmol), the product was obtained in 70% yield (75.6 mg) in a mixture (C4:C5=2.7:1) as pale yellow 
oil. R

f 0.32 (Hex: Methanol 10:1). [C4]: 1H NMR (300 MHz, CDCl3) δ  8.75 (s, 1H), 8.69-8.68 (m, 2H), 8.44-

8.35 (m, 2H), 7.91 (dd, J = 7.8, 1.7 Hz, 1H), 7.84-7.77(m, 1H), 1.02-0.95 (m, 9H), 0.90-0.83 (m, 6H) ppm. 
[C5]: 1H NMR (300 MHz, CDCl3) δ 8.69-8.62 (m, 1H), 8.63 (d, J = 4.8 Hz, 1H), 8.50 (s, 1H), 8.40-8.48 (m, 
1H), 7.81 (t, J = 7.8 Hz, 1H), 7.44 (d, J = 4.8 Hz, 1H), 7.27-7.32 (m, 1H), 1.02-0.95 (m, 9H), 0.90-0.83 (m, 
6H) ppm. 13C NMR (75 MHz, CDCl3) δ 156.5, 156.0, 155.9, 154.5, 153.87, 149.3, 149.3, 147.8, 143.5, 
137.1, 137.1, 132.9, 129.4, 126.5, 124.0, 123.7, 121.5, 121.3, 120.6, 7.4, 7.4, 3.3, 2.9 ppm. IR (neat, cm-

1): 2874, 2868, 1612, 1503, 1436, 1276, 1098, 1011. HRMS (ESI) [C19H28NO2Si] (M+H) calcd. 330.1884, 
found 330.1872. 

 

 

 

 

The reaction with 2,2'-bipyridine deliver a mixture of regioisomers (C4:C5 = 2.7 :1). This result is 
interpreted on the basis of the electron-withdrawing ability of the nitrogen atom, making the C5-
position particularly electron-poor.  

 

6-(triethylsilyl)-2,2'-bipyridine (50y). Following the general procedure, using [2,2'-bipyridine] 1-oxide 
(68.8 mg, 0.4 mmol), the title compound was obtained in 64% yield (68 mg) as colorless oil. R

f 0.39 (Hex: 

EtOAc 4:1). 1H NMR (300 MHz, CDCl3) δ 8.66 (ddd, J = 4.8, 1.6, 0.8 Hz, 1H), 8.55 (d, J = 8.0 Hz, 1H), 8.31 
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(dd, J = 8.0, 1.1 Hz, 1H), 7.81 (td, J = 7.8, 1.8 Hz, 1H), 7.73-7.65 (m, 1H), 7.46 (dd, J = 7.4, 1.2 Hz, 1H), 
7.34-7.26 (m, 1H), 1.10-1.01 (m, 9H), 0.95-0.86 (m, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 165.9, 157.1, 
155.8, 149.0, 136.9, 134.6, 129.8, 123.6, 121.4, 119.8, 7.6, 3.3 ppm. IR (neat, cm-1): 2954, 2865, 1614, 
1570, 1453, 1241, 1203, 1110, 998. HRMS (ESI) [C16H23N2Si] (M+H) calcd. 271.1625, found 271.1623. 

 

The reactivity of pyridine-N-oxides could be explained by activating the adjacent motif upon 
coordination of the potassium ion, thus setting the stage for triggering the corresponding C2-attack. In 
this case, the N-oxides could also act as an internal oxidant, thus facilitating the rearomatization process.  

 

6-methoxy-4-(triethylsilyl)quinolone (50z). Following the general procedure, using 6-
methoxyquinoline 1-oxide (70.1 mg, 0.4 mmol), the title compound was obtained in 58% yield (63.4 mg) 
as yellow oil. R

f 0.41 (Hex: EtOAc 2:1). 1H NMR (300 MHz, CDCl3) δ 8.71 (d, J = 4.2 Hz, 1H), 8.02 (d, J = 

9.0 Hz, 1H), 7.46 (d, J = 4.2 Hz, 1H), 7.41-7.31 (m, 3H), 3.93 (s, 3H), 1.08-0.93 (m, 15H) ppm. 13C NMR 
(75 MHz, CDCl3) δ 157.4, 147.0, 144.5, 143.6, 133.5, 131.9, 129.1, 121.1, 106.3, 55.6, 7.7, 4.2 ppm. IR 
(neat, cm-1): 2953, 2874, 1619, 1503, 1464, 1231, 826, 720. HRMS (ESI) [C16H24NOSi] (M+H) calcd. 

274.1622, found 274.1619. 

 

An oven-dried 10 mL screw-capped test tube containing a stirring bar was transferred to a nitrogen-
filled glove-box, where KHMDS (79.8 mg, 0.4 mmol), Et3SiBpin (96.9 mg, 0.4 mmol) and Benzene (0.4 

mmol) were added. The reaction was rigorously stirred for 3 hours at 90 °C and diluted with Et2O. The 
desired product 51 was directly purified by flash column chromatography in silica gel. R

f 0.88 (Hexanes). 
1H NMR (300 MHz, CDCl3) δ 7.60-7.50 (m, 2H), 7.46-7.36 (m, 3H), 1.03 (t, J = 7.6 Hz, 9H), 0.85 (q, J = 8.6, 
7.6 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 137.6, 134.3, 128.8, 127.8, 7.5, 3.5 ppm. Spectroscopic 
data match those previously reported in the literature.6 
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General procedure Late-stage silylation of (poly)azine drugs: An oven-dried 10 mL screw-capped test 
tube containing a stirring bar was charged with corresponding azine (1.0 eq, 0.4 mmol). The test tube 
was transferred to a nitrogen-filled glove-box where the KHMDS (100 mol%, 79.8 mg, 0.4 mmol), 
Et3SiBpin (100 mol%, 96.9 mg, 0.4 mmol and dry ethylene glycol dimethyl ether (DME, 0.2 M, 2mL) were 
added. Then the reaction mixture was stirred for 1 minute and taken out of the glovebox. The reaction 
was rigorously stirred for 3 h and diluted with EtOAc (8 mL). After filtered through a Celite® plug, the 
desired product was directly purified by flash column chromatography in silica gel. 

 

11-cyclopropyl-4-methyl-9-(triethylsilyl)-5,11-dihydro-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one 
(52). Following the general procedure, using Nevirapine (106.5 mg, 0.4 mmol), 2.0 eq. of KHMDS and 
2.0 eq. of Et3SiBpin, the title compound was obtained in 74% yield (112.7 mg) as white solid. R

f 0.81 

(Hex: EtOAc 2:1). 1H NMR (300 MHz, CDCl3) δ 8.69 (s, 1H), 8.14 (d, J = 4.9 Hz, 1H), 7.96 (d, J = 7.5 Hz, 
1H), 7.21 (d, J = 4.9 Hz, 1H), 6.89 (d, J = 4.9 Hz, 1H), 3.77 (tt, J = 6.6, 3.9 Hz, 1H), 2.39 (s, 3H), 1.02-0.78 
(m, 17H), 0.45 (m, 2H) ppm. 13C NMR (75 MHz, CDCl3) δ 171.6, 169.7, 159.7, 154.5, 144.3, 139.3, 137.4, 
125.0, 125.0, 121.8, 118.6, 29.9, 17.9, 9.3, 8.8, 7.5, 3.1 ppm. Mp 208.1-209.3 ºC. IR (neat, cm-1): 2956, 
2872, 1653, 1575, 1405, 1334, 1285, 711. HRMS (ESI) [C21H29N4OSi] (M+H) calcd. 381.2105, found 

381.2104. 

 

2-methyl-2-(pyridin-3-yl)-1-(2-(triethylsilyl)pyridin-3-yl)propan-1-one (53). Following the general 
procedure, using Metyrapone (90.5 mg, 0.4 mmol), the title compound was obtained in 54% yield (73.5 
mg) as colorless oil. In this case,  36% of the starting material could be recovered. R

f 0.61 (Hex: EtOAc 

4:1). 1H NMR (300 MHz, CDCl3) δ 8.81 (dd, J = 2.2, 1.0 Hz, 1H), 8.60 (dd, J = 2.6, 0.9 Hz, 1H), 8.55 (dd, J 
= 4.8, 1.6 Hz, 1H), 7.71 (dd, J = 8.0, 2.2 Hz, 1H), 7.63 (ddd, J = 8.1, 2.5, 1.6 Hz, 1H), 7.42 (dd, J = 7.9, 1.0 
Hz, 1H), 7.31 (ddd, J = 8.0, 4.8, 0.9 Hz, 1H), 1.66 (s, 6H), 0.96-0.90 (m, 9H), 0.86-0.79 (m, 6H) ppm. 13C 
NMR (75 MHz, CDCl3) δ 201.7, 171.5, 150.3, 148.6, 147.5, 140.2, 134.7, 133.7, 129.8, 129.6, 124.2, 50.4, 
27.5, 7.4, 2.9 ppm. IR (neat, cm-1): 2954, 2875, 1681, 1577, 1465, 1416, 1256, 970. HRMS (ESI) 
[C20H29N2OSi] (M+H) calcd. 341.2041, found 341.2044. 

 

N,N-dimethyl-2-(1-phenyl-1-(4-(triethylsilyl)pyridin-2-yl)ethoxy)ethan-1-amine (54). Following the 
general procedure, using Doxylamine (108.1 mg, 0.4 mmol), the title compound was obtained in 45% 
yield (69.2 mg) as colorless oil. R

f 0.54 (Hex: EtOAc 3:1). 1H NMR (300 MHz, CDCl3) δ 8.49 (dd, J = 4.7, 
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1.0 Hz, 1H), 7.69 (t, J = 1.1 Hz, 1H), 7.41-7.38 (m, 2H), 7.31-7.25 (m, 2H), 7.23-7.16 (m, 2H), 3.68-3.26 
(m, 2H), 2.66 (td, J = 6.1, 2.0 Hz, 2H), 2.34 (s, 6H), 2.00 (s, 3H), 0.94 (t, J = 7.7 Hz, 9H), 0.85-0.66 (m, 6H) 
ppm. 13C NMR (75 MHz, CDCl3) δ 163.3, 147.9, 147.4, 146.0, 128.1, 127.2, 126.9, 126.5, 126.3, 82.4, 
61.4, 59.5, 46.1, 24.2, 7.4, 3.0 ppm. IR (neat, cm-1): 2952, 2875, 2768, 1583, 1458, 1367, 1141, 1100. 
HRMS (ESI) [C23H37N2OSi] (M+H) calcd. 385.2689, found 385.2670. 

 

ethyl 4-(8-chloro-4-(triethylsilyl)-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-
ylidene)piperidine-1-carboxylate (55). Following the general procedure, using Loratadine (153.1 mg, 
0.4 mmol), the title compound was obtained in 51% yield (107.3 mg) as colorless oil. In this case, 30% 
of the starting material could be recovered. R

f 0.36 (Hex: EtOAc 2:1). 1H NMR (500 MHz, CDCl3) δ 8.34 

(d, J = 4.9 Hz, 1H), 7.22 (d, J = 4.9 Hz, 1H), 7.16-7.05 (m, 3H), 4.12 (q, J = 7.1 Hz, 2H), 3.85-3.70 (m, 2H), 
3.43 (td, J = 13.5, 4.3 Hz, 1H), 3.35 (dt, J = 17.2, 4.5 Hz, 1H), 3.21 (dt, J = 13.1, 6.5 Hz, 1H), 3.10 (ddd, J = 
13.1, 9.3, 3.8 Hz, 1H), 2.93 (dt, J = 14.1, 4.4 Hz, 1H), 2.83 (ddd, J = 17.3, 12.9, 4.3 Hz, 1H), 2.45 (t, J = 5.8 
Hz, 2H), 2.31 (ddd, J = 13.7, 9.1, 4.4 Hz, 1H), 2.12 – 1.99 (m, 1H), 1.23 (t, J = 7.1 Hz, 3H), 0.95 (t, J = 7.4 
Hz, 9H), 0.95-0.83 (m, 6H) ppm. 13C NMR (126 MHz, CDCl3) δ 159.2, 155.6, 145.7, 139.2, 138.6, 136.3, 
135.1, 134.7, 133.0, 131.8, 130.3, 129.2, 126.0, 61.4, 44.9, 44.6, 32.8, 30.8, 30.5, 29.78, 14.8, 7.6, 4.1 
ppm. IR (neat, cm-1): 2963, 2861, 1664, 1570, 1398, 1325, 1165, 701. HRMS (ESI) [C28H38ClN2O2Si] (M+H) 
calcd. 497.2379, found 497.2386. 

 

(8R,9S,13S,14S)-13-methyl-3-(4-(triethylsilyl)pyridin-3-yl)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-
cyclopenta[a]phenanthren-17-one (56). Following the general procedure, using (8R,9S,13S,14S)-13-
methyl-3-(pyridin-3-yl)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one 
(132.6 mg, 0.4 mmol), the title compound was obtained in 48% yield (85.6 mg) as colorless oil. In this 
case, 28% of the starting material could be recovered. R

f 0.74 (Hex: EtOAc 2:1). 1H NMR (500 MHz, 

CDCl3) δ 8.51 (d, J = 4.8 Hz, 1H), 8.43 (s, 1H), 7.43 (d, J = 4.8 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.05 (d, J = 
6.7 Hz, 1H), 6.99 (s, 1H), 3.00-2.85 (m, 2H), 2.59-2.44 (m, 2H), 2.39 (td, J = 10.9, 4.2 Hz, 1H), 2.21-2.13 
(m, 1H), 2.12-2.03 (m, 2H), 2.00 (dd, J = 12.5, 3.2 Hz, 1H), 1.71-1.60 (m, 2H), 1.60-1.46 (m, 4H), 0.95 (s, 
3H), 0.81 (t, J = 7.9 Hz, 9H), 0.51 (q, J = 7.9 Hz, 6H) ppm. 13C NMR (126 MHz, CDCl3) δ 220.9, 149.0, 146.3, 
146.2, 144.7, 139.6, 138.1, 136.1, 130.1, 130.0, 126.8, 125.0, 50.7, 48.1, 44.5, 38.3, 36.0, 31.8, 29.5, 
26.6, 25.9, 21.7, 14.1, 7.4, 3.9 ppm. [α]D

26 = 146.8 (c = 0.1053, CH2Cl2). IR (neat, cm-1): 2932, 2873, 1738, 
1463, 1373, 1238, 1007, 731. HRMS (ESI) [C29H40NOSi] (M+H) calcd. 446.2874, found 446.2868. 

N

N

CO2Et

SiEt3
Cl

N

O

SiEt3
HH

H

Me

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                                        A Mild and Site-Selective sp
2
 C–H Silylation of (Poly)Azines 

 

 163 

 

(S)-3-(1-methylpyrrolidin-2-yl)-4-(triethylsilyl)pyridine (57). Following the general procedure, using 
Nicotine (64.9 mg, 0.4 mmol), the title compound was obtained in 55% yield (60.8 mg) as colorless oil. 
In this case, 33% of the starting material could be recovered. R

f 0.36 (Methanol: EtOAc 1:4). 1H NMR 

(300 MHz, CDCl3) δ 8.84 (s, 1H), 8.38 (d, J = 4.9 Hz, 1H), 7.22 (d, J = 4.9 Hz, 1H), 3.33-3.10 (m, 2H), 2.33-
2.20 (m, 1H), 2.15 (s, 3H), 2.10-1.50 (m, 4H), 0.96-0.80 (m, 15H) ppm. 13C NMR (75 MHz, CDCl3) δ 149.2, 
146.8, 145.2, 145.1, 129.1, 68.8, 57.0, 40.4, 36.5, 22.9, 7.4, 4.3 ppm. [α]D

26 = -76.9 (c = 0.1000, CH2Cl2). 
IR (neat, cm-1): 2953, 2875, 2776, 1458, 1399, 1001, 720, 674. HRMS (ESI) [C16H29N2Si] (M+H) calcd. 
277.2095, found 277.2089. 

 

3,3'-(5'-(3-(4-(triethylsilyl)pyridin-3-yl)phenyl)-[1,1':3',1''-terphenyl]-3,3''-diyl)bis(4-

(triethylsilyl)pyridine) (58). Following the general procedure, using TmPyPB (215.0 mg, 0.4 mmol), 3.0 
eq. of KHMDS and 3.0 eq. of Et3SiBpin in this case, and the title compound was obtained in 45% yield 
(158.4 mg) as colorless oil. R

f 0.28 (EtOAc). 1H NMR (300 MHz, CDCl3) δ 8.56 (d, J = 4.9 Hz, 3H), 8.51 (s, 

1H), 7.87 (s, 3H), 7.77 (dt, J = 7.9, 1.4 Hz, 3H), 7.62 (t, J = 1.8 Hz, 3H), 7.53 (t, J = 7.7 Hz, 3H), 7.46 (dd, J 
= 4.9, 0.8 Hz, 3H), 7.31 (dt, J = 7.6, 1.4 Hz, 3H), 0.80 (t, J = 7.8 Hz, 27H), 0.54 (q, J = 8.5, 7.9 Hz, 18H) ppm. 
13C NMR (75 MHz, CDCl3) δ 149.1, 146.9, 146.1, 144.4, 142.1, 141.4, 140.5, 130.1, 128.8, 128.3, 126.9, 
125.2, 7.4, 3.9 ppm. IR (neat, cm-1): 2953, 2874, 1594, 1463, 1379, 1238, 1102, 1003. HRMS (ESI) 
[C57H70N3Si3] (M+H) calcd. 880.4872, found 880.4847. 

 

2-(4-(benzo[d][1,3]dioxol-5-ylmethyl)piperazin-1-yl)-4-(triethylsilyl)pyrimidine (59). Following the 
general procedure, using Piribedil (119.3 mg, 0.4 mmol), the title compound was obtained in 79% yield 
(130.2 mg) as colorless oil. R

f 0.54 (Hex: EtOAc 1:1). 1H NMR (300 MHz, CDCl3) δ 8.18 (d, J = 4.7 Hz, 1H), 

6.90 (s, 1H), 6.80-6.72 (m, 2H), 6.62 (d, J = 4.7 Hz, 1H), 5.95 (s, 2H), 4.02-3.76 (m, 4H), 3.46 (s, 2H), 2.70-
2.35 (m, 4H), 0.98 (t, J = 7.8 Hz, 9H), 0.86-0.69 (m, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 176.9, 161.0, 
155.2, 147.8, 146.8, 132.1, 122.4, 116.3, 109.7, 108.0, 101.0, 63.1, 53.0, 43.8, 7.5, 2.8 ppm. IR (neat, 
cm-1): 2943, 2845, 1730, 1557, 1530, 1438, 1130, 722. HRMS (ESI) [C22H33N4O2Si] (M+H) calcd. 413.2367, 
found 413.2369. 
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8-(4-(4-(4-(triethylsilyl)pyrimidin-2-yl)piperazin-1-yl)butyl)-8-azaspiro[4.5]decane-7,9-dione (60). 
Following the general procedure, using Buspirone (154.2 mg, 0.4 mmol), the title compound was 
obtained in 64% yield (127.5 mg) as colorless oil. In this case, 29% of the starting material could be 
recovered. R

f 0.42 (EtOAc). 1H NMR (400 MHz, CDCl3) δ 8.17 (d, J = 4.7 Hz, 1H), 6.63 (d, J = 4.7 Hz, 1H), 

3.86 (t, J = 5.6 Hz, 4H), 3.77 (t, J = 6.9 Hz, 2H), 2.57 (s, 4H), 2.54 (t, J = 5.1 Hz, 4H), 2.46-2.42 (m, 2H), 
1.74-1.66 (m, 4H), 1.56-1.54 (m, 4H), 1.48 (t, J = 7.1 Hz, 4H), 0.97 (t, J = 7.8 Hz, 9H), 0.77 (q, J = 8.3 Hz, 
6H) ppm. 13C NMR (101 MHz, CDCl3) δ 177.0, 172.4, 160.9, 155.2, 116.5, 58.3, 53.1, 45.0, 43.4, 39.6, 
39.3, 37.7, 26.1, 24.3, 23.9, 7.5, 2.8 ppm. IR (neat, cm-1): 3450, 2949, 2875, 1665, 1556, 1438, 1359, 
1133. HRMS (ESI) [C27H46N5O2Si] (M+H) calcd. 500.3415, found 500.3419. 

General procedure for regiodivergent silylation conditions: An oven-dried 10 mL screw-capped test 
tube containing a stirring bar was charged with pyridine derivative (0.4 mmol). The test tube was 
transferred to a nitrogen-filled glove-box where the KHMDS (79.8 mg, 0.4 mmol), Et3SiBpin (96.9 mg, 
0.4 mmol) and dry solvent (0.2 M, 2mL) were added. Then the reaction mixture was stirred for 1 minute 
and taken out of the glovebox. The reaction was rigorously stirred for 3 h and diluted with EtOAc (8 mL). 
After filtered through a Celite® plug, the filtrate was evaporated and dried in vacuum. The ratio of 
regioisomers was detect by crude NMR. Then the desired product was purified by flash chromatography 
in silica gel. 

 

4-(triethylsilyl)pyridine (48a). Following the general procedure, using pyridine (31.6 mg, 0.4 mmol), 2 
mL DME as solvent, the title compound was obtained in 67% yield (51.8 mg) as colorless oil. R

f 0.50 

(Hex: EtOAc 10:1). 1H NMR (300 MHz, CDCl3) δ 8.53 (d, J = 5.7 Hz, 2H), 7.34 (d, J = 5.7 Hz, 2H), 0.94 (t, J 
= 7.6 Hz, 9H), 0.84-0.74 (m, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 148.7, 147.8, 129.2, 7.3, 2.9 ppm. IR 
(neat, cm-1): 2954, 2875, 1583, 1458, 1402, 1120, 718, 672. HRMS (ESI) [C11H20NSi] (M+H) calcd. 
194.1360, found 194.1361. 

 

2-(triethylsilyl)pyridine (48a´). Following the general procedure, using pyridine (31.6 mg, 0.4 mmol), 2 
mL Dioxane as solvent, the title compound was obtained in 48% yield (37.1 mg) as colorless oil. R

f 0.82 

(Hex: EtOAc 10:1). 1H NMR (300 MHz, CDCl3) δ 8.75 (d, J = 4.9 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.43 (d, J 
= 7.5 Hz, 1H), 7.16-7.12 (m, 1H), 0.96 (t, J = 7.5 Hz, 9H), 0.90-0.80 (m, 6H) ppm. 13C NMR (75 MHz, CDCl3) 
δ 166.5, 150.3, 133.7, 129.9, 122.6, 7.5, 3.0 ppm. Spectroscopic data for 48a´ match those previously 
reported in the literature.3 
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4-(dimethyl(phenyl)silyl)pyridine (48b). Following the general procedure, using pyridine (31.6 mg, 0.4 
mmol), PhMe2SiBpin (104.8 mg, 0.4 mmol), 2 mL DME as solvent, the title compound was obtained in 
64% yield (54.6 mg) as colorless oil. 1H NMR (300 MHz, CDCl3) 8.60-8.51 (m, 2H), 7.54-7.46 (m, 2H), 
7.42-7.33 (m, 5H), 0.58 (s, 6H) ppm. R

f 0.56 (Hex: EtOAc 10:1). 13C NMR (75 MHz, CDCl3) δ 148.9, 148.5, 

136.3, 134.2, 129.7, 128.9, 128.2, -3.0 ppm. Spectroscopic data for 48b match those previously 
reported in the literature.4 

 

2-(dimethyl(phenyl)silyl)pyridine (48b´). Following the general procedure, using pyridine (31.6 mg, 0.4 
mmol), PhMe2SiBpin (104.8 mg, 0.4 mmol),  2 mL Dioxane as solvent,  the title compound was obtained 
in 46% yield (39.1 mg) as colorless oil. R

f 0.68 (Hex: EtOAc 5:1). 1H NMR (300 MHz, CDCl3) δ 8.80 (ddd, J 

= 4.9, 1.7, 1.1 Hz, 1H), 7.63-7.55 (m, 2H), 7.54 (dd, J = 7.6, 1.8 Hz, 1H), 7.44 (dt, J = 7.6, 1.3 Hz, 1H), 7.40 
-7.38 (m, 3H), 7.19 (ddd, J = 7.6, 4.9, 1.5 Hz, 1H), 0.62 (s, 3H) ppm. 13C NMR (75 MHz, CDCl3) δ 166.6, 
150.2, 137.3, 134.4, 130.0, 129.5, 128.1, 128.0, 123.1, -3.0 ppm. Spectroscopic data for 48b´ match 
those previously reported in the literature.5 

 

3-phenyl-4-(triethylsilyl)pyridine (48c). Following the general procedure, using 3-phenylpyridine (62.1 
mg, 0.4 mmol), 2 mL DME as solvent, the title compound was obtained in 76% yield (81.5 mg) as 
colorless oil. R

f 0.81 (Hex: EtOAc 10:1). 1H NMR (300 MHz, CDCl3) δ 8.55 (d, J = 4.9 Hz, 1H), 8.45 (s, 1H), 

7.45-7.40 (m, 4H), 7.29 (dd, J = 5.5, 2.0 Hz, 2H), 0.82 (t, J = 7.8 Hz, 9H), 0.51 (q, J = 8.4, 7.9 Hz, 6H) ppm. 
13C NMR (75 MHz, CDCl3) δ 149.6, 147.2, 145.3, 144.6, 141.0, 129.9, 129.5, 128.0, 128.0, 7.4, 3.8 ppm. 
IR (neat, cm-1): 2953, 2874, 1462, 1442, 1393, 1174, 1097, 1003. HRMS (ESI) [C17H24NSi] (M+H) calcd. 
270.1673, found 270.1681. 

 

3-phenyl-2-(triethylsilyl)pyridine (48c´). Following the general procedure, using x 3-phenylpyridine 
(62.1 mg, 0.4 mmol), 2 mL Dioxane as solvent, the title compound was obtained in 46% yield (49.4 mg) 
as colorless oil. R

f 0.62 (Hex: EtOAc 10:1). 1H NMR (300 MHz, CDCl3) δ 9.04 (dd, J = 2.3, 0.8 Hz, 1H), 7.77 

(dd, J = 7.8, 2.3 Hz, 1H), 7.60 (dd, J = 8.3, 1.3 Hz, 2H), 7.55 (dd, J = 7.8, 0.8 Hz, 1H), 7.48 (t, J = 7.3 Hz, 
2H), 7.43-7.36 (m, 1H), 1.02 (t, J = 7.5 Hz, 9H), 0.96-0.86 (m, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 165.0, 
148.9, 138.4, 135.3, 132.0, 129.9, 129.2, 128.1, 127.2, 7.6, 3.2 ppm. IR (neat, cm-1): 2952, 2874, 1457, 
1412, 1237, 1003, 840, 695. HRMS (ESI) [C17H24NSi] (M+H) calcd. 270.1673, found 270.1674. 
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4-(triethylsilyl)-3-(2-(trifluoromethoxy)phenyl)pyridine (48d). Following the general procedure, using 
3-(2-(trifluoromethoxy)phenyl)pyridine (95.6 mg, 0.4 mmol), 2 mL DME as solvent, the title compound 
was obtained in 47% yield (66.2 mg) as colorless oil. R

f 0.53 (Hex: EtOAc 4:1). 1H NMR (400 MHz, CDCl3) 

δ 8.58 (d, J = 4.9 Hz, 1H), 8.40 (s, 1H), 7.56-7.42 (m, 2H), 7.40-7.31 (m, 2H), 7.31-7.24 (m, 1H), 0.82 (t, J 
= 7.9 Hz, 9H), 0.58-0.37 (m, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 149.9, 147.5, 147.3 (q, JC-F = 1.5 Hz), 
146.7, 138.6, 133.6, 132.4, 129.9, 129.7, 126.2, 120.4 (q, JC-F = 258.3 Hz), 120.1 (q, JC-F = 1.8 Hz), 7.2, 3.2 
ppm. 19F NMR (376 MHz, CDCl3) δ -56.93 ppm. IR (neat, cm-1): 2986, 2877, 1248, 1216, 1160, 1094, 
1002, 720. HRMS (ESI) [C18H23F3NOSi] (M+H) calcd. 354.1496, found 354.1492. 

 

2-(triethylsilyl)-5-(2-(trifluoromethoxy)phenyl)pyridine (48d´). Following the general procedure, using 
3-(2-(trifluoromethoxy)phenyl)pyridine (95.6 mg, 0.4 mmol), 2 mL Dioxane as solvent, the title 
compound was obtained in 50% yield (70.6 mg) as colorless oil. R

f 0.25 (Hex: EtOAc 4:1). 1H NMR (300 

MHz, CDCl3) δ 8.87 (dd, J = 2.3, 1.0 Hz, 1H), 7.70 (dd, J = 7.8, 2.3 Hz, 1H), 7.55 (dd, J = 7.8, 1.0 Hz, 1H), 
7.48-7.35 (m, 4H), 1.05-0.99 (m, 9H), 0.95-0.89 (m, 6H) ppm.13C NMR (75 MHz, CDCl3) δ 150.1, 146.6, 
134.3, 131.5, 129.6, 129.4, 127.4, 127.3, 121.4 (q, JC-F = 1.8 Hz), 7.5, 3.1 ppm. 19F NMR (376 MHz, CDCl3) 
δ -57.22 ppm. IR (neat, cm-1): 1984, 1956, 1731, 1484, 1373, 1234, 1044, 847. HRMS (ESI) [C18H23F3NOSi] 
(M+H) calcd. 354.1496, found 354.1489. 

 

3-(2,4-dimethoxyphenyl)-4-(triethylsilyl)pyridine (48e). Following the general procedure, using 3-(2,4-
dimethoxyphenyl)pyridine (86.1 mg, 0.4 mmol), 2 mL DME as solvent, the title compound was obtained 
in 53% yield (69.8 mg) as colorless oil. R

f 0.72 (Hex: EtOAc 3:1). 1H NMR (500 MHz, CDCl3) δ 8.49 (d, J = 

4.9 Hz, 1H), 8.34 (s, 1H), 7.42 (dd, J = 4.9, 0.9 Hz, 1H), 6.99 (d, J = 8.3 Hz, 1H), 6.53-6.40 (m, 2H), 3.87 (s, 
3H), 3.68 (s, 3H), 0.81 (t, J = 7.9 Hz, 9H), 0.50 (q, J = 7.9 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 161.1, 
158.3, 150.8, 147.0, 146.6, 140.7, 131.9, 129.8, 122.3, 103.5, 98.3, 55.6, 55.1, 7.3, 3.4 ppm. IR (neat, 
cm-1): 2952, 2874, 1610, 1461, 1393, 1279, 1207, 1158. HRMS (ESI) [C19H28NO2Si] (M+H) calcd. 

330.1884, found 330.1872. 

 

5-(2,4-dimethoxyphenyl)-2-(triethylsilyl)pyridine (48e´). Following the general procedure, using 3-
(2,4-dimethoxyphenyl)pyridine (86.1 mg, 0.4 mmol), 2 mL Dioxane as solvent, the title compound was 
obtained in 38% yield (50.1 mg) as colorless oil. R

f 0.48 (Hex: EtOAc 3:1). 1H NMR (300 MHz, CDCl3) δ 
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8.94 (d, J = 1.4 Hz, 1H), 7.73 (dd, J = 7.8, 2.2 Hz, 1H), 7.49 (dd, J = 7.8, 1.0 Hz, 1H), 7.26 (dd, J = 8.0, 0.6 
Hz, 1H), 6.61-6.50 (m, 2H), 3.85 (s, 3H), 3.81 (s, 3H), 1.02 (t, J = 7.5 Hz, 9H), 0.95-0.83 (m, 6H) ppm. 13C 
NMR (75 MHz, CDCl3) δ 163.5, 161.0, 157.8, 150.7, 134.2, 132.8, 131.2, 129.3, 120.3, 105.0, 99.1, 55.6, 
55.5, 7.6, 3.2 ppm. IR (neat, cm-1): 2952, 2874, 1610, 1580, 1457, 1301, 1208, 1160, 1032. HRMS (ESI) 
[C19H28NO2Si] (M+H) calcd. 330.1884, found 330.1882. 

      3.8.4. Synthetic application profile 

 

2-sulfonylbenzyl pyridine-4-tertbutyl (68). A general procedure for synthesis pyridylsulfones from SO2
 

and 4-(tert-butyl)-2-(triethylsilyl)pyridine.
8 A mixture of 4-(tert-butyl)-2-(triethylsilyl)pyridine 50p (74.7 

mg, 0.3 mmol), DABSO (36 mg, 0.15 mmol), CsF (45.3 mg, 0.3 mmol) and benzyl bromide (36 μL, 0.3 
mmol) in dichloromethane (0.6 mL) was stirred 24 h at room temperature. The reaction mixture was 
then quenched with 15 mL H2O. The aqueous phase was extracted with Et2O (3 x 10 mL) and the 
combined organic phases were dried under reduced pressure. The concentrated residue was purified 
by column chromatography over silica gel to afford 2-(benzylsulfonyl)-4-(tert-butyl)pyridine (68) as a 
yellow oil in 80% yield (69.1 mg). R

f 0.53 (Hex: EtOAc 2:1). 1H NMR (300 MHz, CDCl3) δ 8.69 (d, J = 5.1 

Hz, 1H), 7.71 (dd, J = 1.9, 0.7 Hz, 1H), 7.47 (dd, J = 5.1, 1.9 Hz, 1H), 7.28-7.20 (m, 3H), 7.18-7.14 (m, 2H), 
4.60 (s, 2H), 1.23 (s, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ 163.0, 156.2, 150.3, 131.1, 129.1, 128.8, 128.7, 
127.8, 124.4, 120.8, 58.8, 35.5, 30.4 ppm. HRMS (ESI) [C16H19NO2SiNa] (M+Na) calcd. 312.1029, found 

312.1035. 

 

4-(tert-butyl)-2-(4-methoxyphenyl)pyridine (69). A general procedure for Copper(II) catalyzed cross-

coupling of 4-(tert-butyl)-2-(triethylsilyl)pyridine with 1-iodo-4-methoxybenzene.
3
 In a glove box, 50p 

(74.7 mg, 0.3 mmol) was added to a solution of CuBr2 (6.7 mg, 30 μmol), Ph-Davephos (11.5 mg, 30 
μmol), CsF (68 mg, 0.45 mmol), and Et3SiBpin (105.3 mg, 0.45 mmol) in DMI (0.1 mL) prepared in a 4.0 
mL Schlenk tube. The resultant mixture was heated at 150 °C for 24 h. Then the resulting suspension 
was allowed to reach room temperature and was diluted with dichloromethane. After filtrated with 
glass filter, the filtrate was evaporated and dried in vacuum. The residue was purified by flash 
chromatography in silica gel to afford the desired product 69 as a pale yellow oil in 78% yield (56.3 mg). 
R

f 0.36(Hex: EtOAc 5:1). 1H NMR (300 MHz, CDCl3) δ 8.56 (d, J = 5.3 Hz, 1H), 7.95 (d, J = 8.8 Hz, 2H), 7.66 

(d, J = 1.5 Hz, 1H), 7.21 (dd, J = 5.3, 1.8 Hz, 1H), 7.00 (d, J = 8.9 Hz, 2H), 3.86 (s, 3H), 1.36 (s, 9H) ppm. 
13C NMR (75 MHz, CDCl3) δ 161.5, 160.6, 156.9, 149.0, 132.1, 128.5, 119.0, 117.3, 114.3, 55.5, 35.1, 30.7 
ppm. Spectroscopic data for 69 match those previously reported in the literature.3 
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5-(difluoromethyl)-2-(triethylsilyl)pyridine (71). Following the general procedure, using 3-
trigluoromethyl pyridene (58.8 mg, 0.4 mmol), the title compound was obtained in 47% yield (45.7 mg) 
as colorless oil. R

f 0.46 (Hex: EtOAc 10:1). 1H NMR (500 MHz CDCl3) δ 8.89 (s, 1H), 7.72 (dd, J = 7.5, 2.2 

Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 6.68 (t, JH-F = 55.9 Hz, 1H), 0.98 (t, J = 7.7 Hz, 13H), 0.88 (q, J = 7.0 Hz, 
8H) ppm. 13C NMR (101 MHz, CDCl3) δ 170.4, 147.3 (t, JC-F = 6.6 Hz), 130.9 (t, JC-F = 5.5 Hz), 129.6, 128.8 
(t, JC-F = 22.9 Hz), 113.9 (t, JC-F = 239.2 Hz), 7.4, 3.0 ppm. 19F NMR (376 MHz, CDCl3) δ -112.51 ppm. IR 
(neat, cm-1): 2955, 2912, 2876, 1349, 1235, 1076, 1020, 719. HRMS (ESI) [C12H20F2NSi] (M+H) calcd. 

244.1328, found 244.1319. 

      3.8.5 Orthogonal strategies and intermediacy of silyl anion species 

 

 

 

General procedure: An oven-dried 10 mL screw-capped test tube containing a stirring bar was charged 
with dibenzo[b,d]furan (67.2 mg, 0.4 mmol). The test tube was transferred to a nitrogen-filled glove-
box where the KHMDS (79.8 mg, 0.4 mmol), Et3SiBpin (96.9 mg, 0.4 mmol and DME (0.2 M, 2mL) were 
added. Then the reaction mixture was stirred for 10 minutes at room temperature, and taken out of 
the glovebox. The reaction was quenched with D2O or Me3SiCl (10 eq). Stirring for another 10 mins, the 
reaction mixture was diluted with EA (6mL) and filtered through a Celite® plug. The filtrate was 
evaporated and dried in vacuum. Then the desired product was purified by flash chromatography in 
silica gel. 

 

(3,4-dihydrodibenzo[b,d]furan-3-yl-4-d)triethylsilane (75). Following the general procedure, using D2O 
(80.0 mg, 10eq) to quench the reaction, the title compound was obtained in 87% yield (99.3 mg, dr = 3: 
2) as colorless oil. R

f 0.80 (Hex: EtOAc 30:1). 1H NMR (500 MHz, CDCl3) δ 7.47-7.39 (m, 2H), 7.31-7.14 

(m, 2H), 6.00 (ddd, J = 9.8, 4.4, 2.4 Hz, 1H), 5.87-5.75 (m, 1H), 3.57-3.37 (m, 1H), 3.22 (t, J = 5.1 Hz, 1H), 
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Et3SiBPin
DME, rt

NN

SiEt3

F F

Et3Si

CF2Hformal
[1,5]
shift

O
O SiEt3OH

SiEt3

TESBpin
KOtBu

20 mol% KOtBu

via Si radical or ionic 
or neutral mechanisms

via
Ni(0)-silyl ate complexes

 Et3SiH
65 ºC

⍺:⍴ > 20:1
mono:bis = 15:1 

71%

60%

Ni(cod)2

ref. 6 ref. 7

O

Et3Si

then “X” quench O

Et3Si X

probe silyl anion

O

Et3Si D
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0.97 (t, J = 8.0 Hz, 9H), 0.75-0.60 (m, 6H) ppm. 13C NMR (126 MHz, CDCl3) δ 154.7, 149.6, 128.2, 127.9, 
123.0, 122.0, 120.0, 119.4, 113.03, 111.0, 25.8 (J =23.9 Hz), 25.6 (J = 20.2 Hz), 25.4, 7.6, 2.9 ppm. IR 
(neat, cm-1): 2951, 2909, 1450, 1250, 1127, 1008, 739, 698. HRMS (ESI) [C18H23DOSi] (M) calcd. 
285.1659, found 285.1651. 

 

triethyl(2-(trimethylsilyl)-1,2-dihydrodibenzo[b,d]furan-1-yl)silane (76). Following the general 
procedure, using Me3SiCl (432.0 mg, 10 eq) to quench the reaction, the title compound was obtained 
in 66% yield (94.1 mg, dr = 3: 2) as colorless oil. R

f 0.85 (Hex: EtOAc 30:1). 1H NMR (300 MHz, CDCl3) δ 

7.40-7.36 (m, 2H), 7.19-7.15 (m, 2H), 5.82 (ddd, J = 9.9, 4.2, 2.6 Hz, 1H), 5.62 (ddd, J = 9.9, 2.7, 1.4 Hz, 
1H), 3.21 (ddd, J = 7.0, 4.2, 1.4 Hz, 1H), 3.07 (dt, J = 7.0, 2.6 Hz, 1H), 0.95 (t, J = 7.9 Hz, 9H), 0.74-0.50 
(m, 6H), 0.12 (s, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ 154.3, 152.8, 128.2, 126.2, 122.4, 121.8, 121.7, 
119.1, 111.3, 110.6, 29.7, 25.0, 7.7, 3.1, -2.3 ppm. IR (neat, cm-1): 2953, 1874, 1450, 1247, 1195, 838, 
730, 701. HRMS (ESI) [C21H32OSi2] (M+H) calcd. 357.2064, found 357.2064. 

 

(3,4-dihydrodibenzo[b,d]furan-3-yl)triethylsilane (75´). Following the general procedure, using H2O 
(72.0 mg, 10 eq)  to quench the reaction, the title compound was obtained in 92% yield (104.3 mg) as 
colorless oil. R

f 0.83 (Hex: EtOAc 30:1). 1H NMR (300 MHz, CDCl3) δ 7.52-7.40 (m, 2H), 7.32-7.18 (m, 2H), 

6.10-6.95 (m, 1H), 5.88-5.75 (m, 1H), 3.65-3.40 (m, 2H), 3.30-3.18 (m, 1H), 0.98 (t, J = 7.8 Hz, 9H), 0.74-
0.60 (m, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 154.7, 149.6, 128.1, 127.9, 122.0, 120.0, 119.4, 113.0, 
111.0, 25.9, 25.3, 7.6, 2.9 ppm. IR (neat, cm-1): 2965, 2883, 1596, 1439, 1235, 786, 748, 714, 654. HRMS 
(ESI) [C18H24OSi] (M) calcd. 284.1596, found 284.1604. 

 

Rearomatization 

 

 

dibenzo[b,d]furan-1-yltriethylsilane (77). An oven-dried 10 mL screw-capped test tube containing a 
stirring bar was charged with 75´ (56.7 mg, 0.2 mmol), PhI(OAc)2 (5 equiv, 322.1mg), and 2mL Et2O was 
added. Then the reaction mixture was stirred for 5 hours at room temperature before diluted with EA 
(10mL). The mixture was filtered through a Celite® plug, then the filtrate was evaporated and dried in 

O

Et3Si SiMe3

O

Et3Si

O

Et3Si

O

Et3Si SiMe3

under airPhI(OAc)2 (5 equiv)

Et2O, rt, 5h O

Et3Si

48h O

Et3Si SiMe3

O

Et3Si
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vacuum. The desired product was purified by flash chromatography in silica gel, and 20 was obtained 
in 56% (31.5 mg) as colorless oil. R

f 0.78 (Hexanes). 1H NMR (500 MHz, CDCl3) δ 8.09 (d, J = 7.4 Hz, 1H), 

7.60 (t, J = 7.5 Hz, 2H), 7.51-7.39 (m, 3H), 7.36 (t, J = 7.6 Hz, 1H), 1.09 (t, J = 7.4 Hz, 6H), 1.03-0.99 (m, 
9H) ppm. 13C NMR (75 MHz, CDCl3) δ 156.4, 156.0, 132.3, 130.2, 127.3, 126.8, 126.4, 123.2, 122.4, 120.8, 
112.7, 111.9, 7.8, 3.5 ppm. IR (neat, cm-1): 2963, 2855, 1560, 1362, 1113, 845, 720, 702, 642. HRMS (ESI) 
[C16H17OSi] (M-Et) calcd. 253.1043, found 253.1044. 

 

triethyl(2-(trimethylsilyl)dibenzo[b,d]furan-1-yl)silane (78). 0.2 mmol ( mg) 19 was exposure to the air 
for 48 hours. Then the desired product was purified by flash chromatography in silica gel. The titled 
compound was obtained in 70% (99.2 mg) as colorless oil. R

f 0.85 (Hexanes). 1H NMR (300 MHz, CDCl3) 

δ 8.09 (d, J = 7.9 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.56-7.41 (m, 3H), 7.35 (t, J = 8.1 Hz, 1H), 1.13-1.08 (m, 
6H), 1.05-1.00 (m, 9H), 0.48 (s, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ 156.2, 133.2, 131.7, 129.8, 126.5, 
125.2, 123.8, 123.1, 122.1, 111.9, 7.9, 3.5, -0.9 ppm. IR (neat, cm-1): 2953, 2874, 1450, 1342, 1195, 838, 
729, 701, 630. HRMS (APCI) [C21H30OSi2] (M) calcd. 354.1830, found 354.1827. 

80 

R
f 0.68 (Hex: EtOAc 5:1). 1H NMR (300 MHz CDCl3) δ 3.52 (td, J = 10.3, 3.8 Hz, 1H), 2.01-1.94 (m, 1H), 

1.79-1.71 (m, 2H), 1.66-1.60 (m, 1H), 1.31-1.07 (m, 5H), 0.96 (t, J = 7.9 Hz, 9H), 0.79-0.70 (m, 1H), 0.61 
(q, J = 7.9 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 73.3, 38.6, 32.5, 27.4, 27.0, 25.4, 7.9, 3.2 ppm. IR 
(neat, cm-1): 2873, 1446 1418, 1236, 1084, 1007, 961,715. HRMS (APCI) [C12H25OSi] (M-H) calcd. 

213.1669, found 213.1669. 

      3.8.6. ICP-OES trace metal analysis and ring opening reaction with epoxide 

2.0 g KHMDS (from Aldrich), 700 mg Et3SiBpin, two standard reaction mixtures (0.8 mmol scale, 
prepared following the general procedure with 63.2 mg of pyridine, 157.6 mg of KHMDS, 193.2 mg of 
Et3SiBpin in 4 mL of DME or Dioxane, then stirred in the glovebox for 3 h.) were analyzed. Each sample 
was added to a 100 mL tefolon reactor followed by addition of 2.0 mL of nitric acid (scharlab, untratrace, 
ppb-trace analysis grade) and heating to 80 oC for 24 hours. After digestion, each sample was diluted 
with Milli Q water to 100 mL and sample analysis was performed on Inductively coupled plasma ICP-
OES 400 PerkinElmer. Element concentration expressed in mg/l (ppm) on measured sample. 

 

O

Et3Si SiMe3

OH
SiEt3
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      3.8.7. NMR experiments 

non-innocent role of the escorting K counterion 
In a nitrogen filled glove box, 0.6 mL of d8-THF were added to a small vial containing 4p (13.5 mg, 0.1 
mmol) and KHMDS (19.9 mg, 0.1 mmol), and the mixture was stirred at room temperature for 10 mins. 
Then, the solution was transferred to the NMR tube using a syringe, and analyzed by 1H NMR. As evident 
from the spectra below, two new downfield peaks (8.76 and 7.18 ppm) appeared, thus suggesting the 
establishment of a binding mode between the pyridine and KHMDS.  
 
 
 
 

 
 
 
 
 
 
Mechanistic Rationale 
 
 
 
 
 
 
 
 
 

 

 

 

 

N

t-Bu

N

t-Bu

+ KHMDS

N

t-Bu

+ Et3SiBpin
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      3.8.8. X-ray crystallography 

 

Table 1.  Crystal data and structure refinement for compound 52. 

____________________________________________________________________ 

Identification code  YTG323-b 

Empirical formula  C21 H28 N4 O Si 

Formula weight  380.56 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a =  10.3674(15)Å a=  85.780(4)°. 

b =  10.4431(15)Å b = 85.901(4)°. 

 

c =  10.6187(15)Å g =  63.710(4)°. 

Volume 1027.0(3) Å3 

Z 2 

Density (calculated) 1.231 Mg/m3 

Absorption coefficient 0.132 mm-1 

F(000)  408 

Crystal size  0.30 x 0.15 x 0.05 mm3 

Theta range for data collection 1.925 to 30.564°. 

Index ranges -14<=h<=13,-14<=k<=14,-15<=l<=10 

Reflections collected  13156 

Independent reflections 5984[R(int) = 0.0305] 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                                        A Mild and Site-Selective sp
2
 C–H Silylation of (Poly)Azines 

 

 173 

Completeness to theta =30.564°  95.0% 

Absorption correction  Multi-scan 

Max. and min. transmission  0.993 and 0.861 

Refinement method  Full-matrix least-squares on F2 

Data / restraints / parameters  5984/ 0/ 248 

Goodness-of-fit on F2  1.030 

Final R indices [I>2sigma(I)]  R1 = 0.0447, wR2 = 0.1040 

R indices (all data)  R1 = 0.0660, wR2 = 0.1140 

Largest diff. peak and hole  0.491 and -0.382 e.Å-3 
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Table 2.   Bond lengths [Å] and angles [°] for  10. 

_____________________________________________________ 

Bond lengths---- 

Si1-C16  1.8734(16) 

Si1-C18  1.8741(17) 

Si1-C20  1.8767(16) 

Si1-C1  1.8980(13) 

O1-C6  1.2349(17) 

N1-C2  1.3380(15) 

N1-C1  1.3591(17) 

N2-C2  1.4189(17) 

N2-C8  1.4215(18) 

N2-C13  1.4462(17) 

N3-C6  1.3495(18) 

N3-C7  1.4137(18) 

N3-H3  0.8800 

N4-C8  1.3283(19) 

N4-C9  1.342(2) 

C1-C5  1.390(2) 

C2-C3  1.4023(19) 

C3-C4  1.3869(19) 

C3-C6  1.4906(17) 

C4-C5  1.3903(18) 

C4-H4  0.9500 

C5-H5  0.9500 

C7-C11  1.400(2) 

C7-C8  1.4039(19) 

C9-C10  1.376(2) 

C9-H9  0.9500 

C10-C11  1.392(2) 

C10-H10  0.9500 

C11-C12  1.503(2) 
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C12-H12A  0.9800 

C12-H12B  0.9800 

C12-H12C  0.9800 

C13-C15  1.489(2) 

C13-C14  1.491(2) 

C13-H13  1.0000 

C14-C15  1.510(2) 

C14-H14A  0.9900 

C14-H14B  0.9900 

C15-H15A  0.9900 

C15-H15B  0.9900 

C16-C17  1.526(2) 

C16-H16A  0.9900 

C16-H16B  0.9900 

C17-H17A  0.9800 

C17-H17B  0.9800 

C17-H17C  0.9800 

C18-C19  1.530(2) 

C18-H18A  0.9900 

C18-H18B  0.9900 

C19-H19A  0.9800 

C19-H19B  0.9800 

C19-H19C  0.9800 

C20-C21  1.5387(19) 

C20-H20A  0.9900 

C20-H20B  0.9900 

C21-H21A  0.9800 

C21-H21B  0.9800 

C21-H21C  0.9800 

 

Angles---------- 

C16-Si1-C18 110.82(7) 
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C16-Si1-C20 110.46(7) 

C18-Si1-C20 113.17(8) 

C16-Si1-C1 108.15(6) 

C18-Si1-C1 107.52(7) 

C20-Si1-C1 106.45(6) 

C2-N1-C1 119.10(12) 

C2-N2-C8 115.06(11) 

C2-N2-C13 114.78(10) 

C8-N2-C13 115.23(12) 

C6-N3-C7 128.96(11) 

C6-N3-H3 115.5 

C7-N3-H3 115.5 

C8-N4-C9 116.95(13) 

N1-C1-C5 121.01(12) 

N1-C1-Si1 115.51(10) 

C5-C1-Si1 123.47(10) 

N1-C2-C3 122.88(12) 

N1-C2-N2 116.70(12) 

C3-C2-N2 120.36(11) 

C4-C3-C2 117.83(11) 

C4-C3-C6 117.29(12) 

C2-C3-C6 124.69(12) 

C3-C4-C5 119.48(13) 

C3-C4-H4 120.3 

C5-C4-H4 120.3 

C1-C5-C4 119.63(13) 

C1-C5-H5 120.2 

C4-C5-H5 120.2 

O1-C6-N3 120.90(12) 

O1-C6-C3 119.45(12) 

N3-C6-C3 119.62(12) 

C11-C7-C8 118.67(13) 
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C11-C7-N3 118.79(12) 

C8-C7-N3 122.42(12) 

N4-C8-C7 123.60(13) 

N4-C8-N2 116.50(12) 

C7-C8-N2 119.90(12) 

N4-C9-C10 123.78(15) 

N4-C9-H9 118.1 

C10-C9-H9 118.1 

C9-C10-C11 119.76(14) 

C9-C10-H10 120.1 

C11-C10-H10 120.1 

C10-C11-C7 117.11(14) 

C10-C11-C12 121.24(14) 

C7-C11-C12 121.65(14) 

C11-C12-H12A 109.5 

C11-C12-H12B 109.5 

H12A-C12-H12B 109.5 

C11-C12-H12C 109.5 

H12A-C12-H12C 109.5 

H12B-C12-H12C 109.5 

N2-C13-C15 116.33(13) 

N2-C13-C14 117.03(11) 

C15-C13-C14 60.87(11) 

N2-C13-H13 116.9 

C15-C13-H13 116.9 

C14-C13-H13 116.9 

C13-C14-C15 59.51(10) 

C13-C14-H14A 117.8 

C15-C14-H14A 117.8 

C13-C14-H14B 117.8 

C15-C14-H14B 117.8 

H14A-C14-H14B 115.0 
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C13-C15-C14 59.63(10) 

C13-C15-H15A 117.8 

C14-C15-H15A 117.8 

C13-C15-H15B 117.8 

C14-C15-H15B 117.8 

H15A-C15-H15B 114.9 

C17-C16-Si1 114.79(12) 

C17-C16-H16A 108.6 

Si1-C16-H16A 108.6 

C17-C16-H16B 108.6 

Si1-C16-H16B 108.6 

H16A-C16-H16B 107.5 

C16-C17-H17A 109.5 

C16-C17-H17B 109.5 

H17A-C17-H17B 109.5 

C16-C17-H17C 109.5 

H17A-C17-H17C 109.5 

H17B-C17-H17C 109.5 

C19-C18-Si1 117.04(12) 

C19-C18-H18A 108.0 

Si1-C18-H18A 108.0 

C19-C18-H18B 108.0 

Si1-C18-H18B 108.0 

H18A-C18-H18B 107.3 

C18-C19-H19A 109.5 

C18-C19-H19B 109.5 

H19A-C19-H19B 109.5 

C18-C19-H19C 109.5 

H19A-C19-H19C 109.5 

H19B-C19-H19C 109.5 

C21-C20-Si1 114.62(11) 

C21-C20-H20A 108.6 
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Si1-C20-H20A 108.6 

C21-C20-H20B 108.6 

Si1-C20-H20B 108.6 

H20A-C20-H20B 107.6 

C20-C21-H21A 109.5 

C20-C21-H21B 109.5 

H21A-C21-H21B 109.5 

C20-C21-H21C 109.5 

H21A-C21-H21C 109.5 

H21B-C21-H21C 109.5 

------------------------------------------------------- 
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Table 3.  Torsion angles [°] for 10. 

________________________________________________________________ 

C2-N1-C1-C5 1.7(2) 

C2-N1-C1-Si1 -178.09(10) 

C16-Si1-C1-N1 60.33(12) 

C18-Si1-C1-N1 -59.39(12) 

C20-Si1-C1-N1 179.05(11) 

C16-Si1-C1-C5 -119.43(13) 

C18-Si1-C1-C5 120.84(13) 

C20-Si1-C1-C5 -0.72(15) 

C1-N1-C2-C3 -0.7(2) 

C1-N1-C2-N2 -178.01(12) 

C8-N2-C2-N1 -118.10(13) 

C13-N2-C2-N1 19.14(18) 

C8-N2-C2-C3 64.54(17) 

C13-N2-C2-C3 -158.23(13) 

N1-C2-C3-C4 -1.4(2) 

N2-C2-C3-C4 175.76(13) 

N1-C2-C3-C6 -176.31(13) 

N2-C2-C3-C6 0.9(2) 

C2-C3-C4-C5 2.6(2) 

C6-C3-C4-C5 177.87(14) 

N1-C1-C5-C4 -0.5(2) 

Si1-C1-C5-C4 179.29(11) 

C3-C4-C5-C1 -1.7(2) 

C7-N3-C6-O1 173.84(14) 

C7-N3-C6-C3 -4.1(2) 

C4-C3-C6-O1 -29.6(2) 

C2-C3-C6-O1 145.34(15) 

C4-C3-C6-N3 148.42(14) 

C2-C3-C6-N3 -36.7(2) 

C6-N3-C7-C11 -138.95(15) 
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C6-N3-C7-C8 45.2(2) 

C9-N4-C8-C7 1.6(2) 

C9-N4-C8-N2 -178.85(13) 

C11-C7-C8-N4 -4.0(2) 

N3-C7-C8-N4 171.82(13) 

C11-C7-C8-N2 176.44(12) 

N3-C7-C8-N2 -7.7(2) 

C2-N2-C8-N4 120.14(13) 

C13-N2-C8-N4 -16.90(17) 

C2-N2-C8-C7 -60.31(16) 

C13-N2-C8-C7 162.65(12) 

C8-N4-C9-C10 1.8(2) 

N4-C9-C10-C11 -2.6(2) 

C9-C10-C11-C7 0.1(2) 

C9-C10-C11-C12 -179.49(14) 

C8-C7-C11-C10 3.0(2) 

N3-C7-C11-C10 -173.03(12) 

C8-C7-C11-C12 -177.43(13) 

N3-C7-C11-C12 6.6(2) 

C2-N2-C13-C15 76.31(16) 

C8-N2-C13-C15 -146.52(12) 

C2-N2-C13-C14 145.38(14) 

C8-N2-C13-C14 -77.45(17) 

N2-C13-C14-C15 -106.60(15) 

N2-C13-C15-C14 107.74(13) 

C18-Si1-C16-C17 -173.64(11) 

C20-Si1-C16-C17 -47.39(12) 

C1-Si1-C16-C17 68.74(12) 

C16-Si1-C18-C19 42.05(16) 

C20-Si1-C18-C19 -82.67(15) 

C1-Si1-C18-C19 160.06(14) 

C16-Si1-C20-C21 -59.12(13) 
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C18-Si1-C20-C21 65.80(14) 

C1-Si1-C20-C21 -176.31(11) 

----------------------------------------------------------------- 
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Table 1.  Crystal data and structure refinement for 60. 

_____________________________________________________________________ 

Identification code  mo_YGU801_0m 

Empirical formula  C27 H45 N5 O2 Si 

Formula weight  499.77 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a =  7.1983(7)Å a=  101.815(3)°. 

b =  11.5830(12)Å b = 94.813(3)°. 

c =  17.2442(18)Å g =  99.388(3)°. 

Volume 1378.2(2) Å3 

Z 2 

Density (calculated) 1.204 Mg/m3 

Absorption coefficient 0.118 mm-1 

F(000)  544 

Crystal size  0.20 x 0.10 x 0.02 mm3 

Theta range for data collection 1.828 to 30.686°. 

Index ranges -8<=h<=10,-14<=k<=16,-23<=l<=24 

Reflections collected  14894 

Independent reflections 7821[R(int) = 0.0575] 

Completeness to theta =30.686°  91.5% 

Absorption correction  Multi-scan 

Max. and min. transmission  0.998 and 0.66 

Refinement method  Full-matrix least-squares on F2 
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Data / restraints / parameters  7821/ 0/ 319 

Goodness-of-fit on F2  1.035 

Final R indices [I>2sigma(I)]  R1 = 0.0640, wR2 = 0.1654 

R indices (all data)  R1 = 0.0874, wR2 = 0.1852 

Largest diff. peak and hole  0.762 and -0.395 e.Å-3 
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Table 2.   Bond lengths [Å] and angles [°] for  14. 

_____________________________________________________ 

Bond lengths---- 

Si1-C24  1.8653(18) 

Si1-C22  1.8682(18) 

Si1-C26  1.8732(19) 

Si1-C1  1.8924(17) 

O1-C13  1.216(2) 

O2-C17  1.210(2) 

N1-C3  1.324(2) 

N1-C4  1.354(2) 

N2-C1  1.349(2) 

N2-C4  1.353(2) 

N3-C4  1.372(2) 

N3-C5  1.465(2) 

N3-C8  1.470(2) 

N4-C7  1.460(2) 

N4-C6  1.466(2) 

N4-C9  1.468(2) 

N5-C13  1.390(2) 

N5-C17  1.407(2) 

N5-C12  1.473(2) 

C1-C2  1.387(2) 

C2-C3  1.390(2) 

C2-H2  0.9500 

C3-H3  0.9500 

C5-C6  1.514(2) 

C5-H5A  0.9900 

C5-H5AB  0.9900 

C6-H6A  0.9900 

C6-H6AB  0.9900 

C7-C8  1.520(2) 
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C7-H7A  0.9900 

C7-H7AB  0.9900 

C8-H8A  0.9900 

C8-H8AB  0.9900 

C9-C10  1.523(2) 

C9-H9A  0.9900 

C9-H9AB  0.9900 

C10-C11  1.529(2) 

C10-H10A  0.9900 

C10-H10B  0.9900 

C11-C12  1.522(2) 

C11-H11A  0.9900 

C11-H11B  0.9900 

C12-H12A  0.9900 

C12-H12B  0.9900 

C13-C14  1.507(2) 

C14-C15  1.526(2) 

C14-H14A  0.9900 

C14-H14B  0.9900 

C15-C16  1.517(3) 

C15-C18  1.538(2) 

C15-C21  1.544(2) 

C16-C17  1.503(2) 

C16-H16A  0.9900 

C16-H16B  0.9900 

C18-C19  1.522(3) 

C18-H18A  0.9900 

C18-H18B  0.9900 

C19-C20  1.527(3) 

C19-H19A  0.9900 

C19-H19B  0.9900 

C20-C21  1.516(3) 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                                        A Mild and Site-Selective sp
2
 C–H Silylation of (Poly)Azines 

 

 187 

C20-H20A  0.9900 

C20-H20B  0.9900 

C21-H21A  0.9900 

C21-H21B  0.9900 

C22-C23  1.537(2) 

C22-H22A  0.9900 

C22-H22B  0.9900 

C23-H23A  0.9800 

C23-H23B  0.9800 

C23-H23C  0.9800 

C24-C25  1.534(2) 

C24-H24A  0.9900 

C24-H24B  0.9900 

C25-H25A  0.9800 

C25-H25B  0.9800 

C25-H25C  0.9800 

C26-C27  1.528(3) 

C26-H26A  0.9900 

C26-H26B  0.9900 

C27-H27A  0.9800 

C27-H27B  0.9800 

C27-H27C  0.9800 

 

Angles---------- 

C24-Si1-C22 109.47(8) 

C24-Si1-C26 111.33(9) 

C22-Si1-C26 109.25(9) 

C24-Si1-C1 108.26(8) 

C22-Si1-C1 110.00(8) 

C26-Si1-C1 108.51(8) 

C3-N1-C4 115.83(14) 

C1-N2-C4 116.78(14) 
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C4-N3-C5 117.97(14) 

C4-N3-C8 117.96(13) 

C5-N3-C8 113.64(14) 

C7-N4-C6 108.15(14) 

C7-N4-C9 111.95(13) 

C6-N4-C9 110.11(12) 

C13-N5-C17 124.08(14) 

C13-N5-C12 118.24(14) 

C17-N5-C12 117.67(14) 

N2-C1-C2 121.17(15) 

N2-C1-Si1 115.11(12) 

C2-C1-Si1 123.71(13) 

C1-C2-C3 117.24(16) 

C1-C2-H2 121.4 

C3-C2-H2 121.4 

N1-C3-C2 123.21(16) 

N1-C3-H3 118.4 

C2-C3-H3 118.4 

N2-C4-N1 125.74(15) 

N2-C4-N3 117.44(15) 

N1-C4-N3 116.80(14) 

N3-C5-C6 110.47(14) 

N3-C5-H5A 109.6 

C6-C5-H5A 109.6 

N3-C5-H5AB 109.6 

C6-C5-H5AB 109.6 

H5A-C5-H5AB 108.1 

N4-C6-C5 111.09(13) 

N4-C6-H6A 109.4 

C5-C6-H6A 109.4 

N4-C6-H6AB 109.4 

C5-C6-H6AB 109.4 
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H6A-C6-H6AB 108.0 

N4-C7-C8 111.34(14) 

N4-C7-H7A 109.4 

C8-C7-H7A 109.4 

N4-C7-H7AB 109.4 

C8-C7-H7AB 109.4 

H7A-C7-H7AB 108.0 

N3-C8-C7 110.98(12) 

N3-C8-H8A 109.4 

C7-C8-H8A 109.4 

N3-C8-H8AB 109.4 

C7-C8-H8AB 109.4 

H8A-C8-H8AB 108.0 

N4-C9-C10 112.95(13) 

N4-C9-H9A 109.0 

C10-C9-H9A 109.0 

N4-C9-H9AB 109.0 

C10-C9-H9AB 109.0 

H9A-C9-H9AB 107.8 

C9-C10-C11 113.23(13) 

C9-C10-H10A 108.9 

C11-C10-H10A 108.9 

C9-C10-H10B 108.9 

C11-C10-H10B 108.9 

H10A-C10-H10B 107.7 

C12-C11-C10 112.05(14) 

C12-C11-H11A 109.2 

C10-C11-H11A 109.2 

C12-C11-H11B 109.2 

C10-C11-H11B 109.2 

H11A-C11-H11B 107.9 

N5-C12-C11 112.76(14) 
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N5-C12-H12A 109.0 

C11-C12-H12A 109.0 

N5-C12-H12B 109.0 

C11-C12-H12B 109.0 

H12A-C12-H12B 107.8 

O1-C13-N5 120.45(16) 

O1-C13-C14 121.77(16) 

N5-C13-C14 117.77(15) 

C13-C14-C15 114.96(13) 

C13-C14-H14A 108.5 

C15-C14-H14A 108.5 

C13-C14-H14B 108.5 

C15-C14-H14B 108.5 

H14A-C14-H14B 107.5 

C16-C15-C14 107.46(14) 

C16-C15-C18 112.84(14) 

C14-C15-C18 111.07(13) 

C16-C15-C21 112.33(13) 

C14-C15-C21 111.50(14) 

C18-C15-C21 101.68(14) 

C17-C16-C15 112.87(14) 

C17-C16-H16A 109.0 

C15-C16-H16A 109.0 

C17-C16-H16B 109.0 

C15-C16-H16B 109.0 

H16A-C16-H16B 107.8 

O2-C17-N5 119.98(16) 

O2-C17-C16 122.93(16) 

N5-C17-C16 117.06(14) 

C19-C18-C15 104.54(15) 

C19-C18-H18A 110.8 

C15-C18-H18A 110.8 
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C19-C18-H18B 110.8 

C15-C18-H18B 110.8 

H18A-C18-H18B 108.9 

C18-C19-C20 105.43(17) 

C18-C19-H19A 110.7 

C20-C19-H19A 110.7 

C18-C19-H19B 110.7 

C20-C19-H19B 110.7 

H19A-C19-H19B 108.8 

C21-C20-C19 107.14(17) 

C21-C20-H20A 110.3 

C19-C20-H20A 110.3 

C21-C20-H20B 110.3 

C19-C20-H20B 110.3 

H20A-C20-H20B 108.5 

C20-C21-C15 105.77(15) 

C20-C21-H21A 110.6 

C15-C21-H21A 110.6 

C20-C21-H21B 110.6 

C15-C21-H21B 110.6 

H21A-C21-H21B 108.7 

C23-C22-Si1 114.85(13) 

C23-C22-H22A 108.6 

Si1-C22-H22A 108.6 

C23-C22-H22B 108.6 

Si1-C22-H22B 108.6 

H22A-C22-H22B 107.5 

C22-C23-H23A 109.5 

C22-C23-H23B 109.5 

H23A-C23-H23B 109.5 

C22-C23-H23C 109.5 

H23A-C23-H23C 109.5 
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H23B-C23-H23C 109.5 

C25-C24-Si1 112.06(13) 

C25-C24-H24A 109.2 

Si1-C24-H24A 109.2 

C25-C24-H24B 109.2 

Si1-C24-H24B 109.2 

H24A-C24-H24B 107.9 

C24-C25-H25A 109.5 

C24-C25-H25B 109.5 

H25A-C25-H25B 109.5 

C24-C25-H25C 109.5 

H25A-C25-H25C 109.5 

H25B-C25-H25C 109.5 

C27-C26-Si1 115.47(15) 

C27-C26-H26A 108.4 

Si1-C26-H26A 108.4 

C27-C26-H26B 108.4 

Si1-C26-H26B 108.4 

H26A-C26-H26B 107.5 

C26-C27-H27A 109.5 

C26-C27-H27B 109.5 

H27A-C27-H27B 109.5 

C26-C27-H27C 109.5 

H27A-C27-H27C 109.5 

H27B-C27-H27C 109.5 

------------------------------------------------------- 
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Table 3.  Torsion angles [°] for 14. 

________________________________________________________________ 

C4-N2-C1-C2 -0.2(2) 

C4-N2-C1-Si1 178.90(11) 

C24-Si1-C1-N2 51.50(14) 

C22-Si1-C1-N2 171.08(11) 

C26-Si1-C1-N2 -69.46(14) 

C24-Si1-C1-C2 -129.47(15) 

C22-Si1-C1-C2 -9.89(17) 

C26-Si1-C1-C2 109.57(15) 

N2-C1-C2-C3 1.5(2) 

Si1-C1-C2-C3 -177.50(12) 

C4-N1-C3-C2 0.0(2) 

C1-C2-C3-N1 -1.4(3) 

C1-N2-C4-N1 -1.4(2) 

C1-N2-C4-N3 -179.99(13) 

C3-N1-C4-N2 1.5(2) 

C3-N1-C4-N3 -179.93(14) 

C5-N3-C4-N2 -157.65(14) 

C8-N3-C4-N2 -14.9(2) 

C5-N3-C4-N1 23.7(2) 

C8-N3-C4-N1 166.39(14) 

C4-N3-C5-C6 -164.62(13) 

C8-N3-C5-C6 51.10(17) 

C7-N4-C6-C5 61.68(17) 

C9-N4-C6-C5 -175.70(14) 

N3-C5-C6-N4 -56.99(19) 

C6-N4-C7-C8 -60.48(16) 

C9-N4-C7-C8 178.04(12) 

C4-N3-C8-C7 165.60(14) 

C5-N3-C8-C7 -50.11(18) 

N4-C7-C8-N3 54.90(18) 
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C7-N4-C9-C10 -66.60(18) 

C6-N4-C9-C10 173.05(15) 

N4-C9-C10-C11 -168.46(14) 

C9-C10-C11-C12 -67.4(2) 

C13-N5-C12-C11 -87.65(18) 

C17-N5-C12-C11 91.26(18) 

C10-C11-C12-N5 -168.81(14) 

C17-N5-C13-O1 -178.25(15) 

C12-N5-C13-O1 0.6(2) 

C17-N5-C13-C14 2.8(2) 

C12-N5-C13-C14 -178.33(14) 

O1-C13-C14-C15 155.85(16) 

N5-C13-C14-C15 -25.3(2) 

C13-C14-C15-C16 50.63(18) 

C13-C14-C15-C18 174.50(14) 

C13-C14-C15-C21 -72.86(19) 

C14-C15-C16-C17 -55.96(17) 

C18-C15-C16-C17 -178.74(14) 

C21-C15-C16-C17 67.02(18) 

C13-N5-C17-O2 173.22(16) 

C12-N5-C17-O2 -5.6(2) 

C13-N5-C17-C16 -8.7(2) 

C12-N5-C17-C16 172.44(14) 

C15-C16-C17-O2 -145.28(17) 

C15-C16-C17-N5 36.7(2) 

C16-C15-C18-C19 -159.86(16) 

C14-C15-C18-C19 79.40(18) 

C21-C15-C18-C19 -39.33(18) 

C15-C18-C19-C20 30.2(2) 

C18-C19-C20-C21 -8.8(3) 

C19-C20-C21-C15 -15.9(2) 

C16-C15-C21-C20 154.71(17) 
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C14-C15-C21-C20 -84.6(2) 

C18-C15-C21-C20 33.8(2) 

C24-Si1-C22-C23 45.17(15) 

C26-Si1-C22-C23 167.32(12) 

C1-Si1-C22-C23 -73.67(14) 

C22-Si1-C24-C25 60.55(14) 

C26-Si1-C24-C25 -60.35(15) 

C1-Si1-C24-C25 -179.54(12) 

C24-Si1-C26-C27 -46.44(16) 

C22-Si1-C26-C27 -167.46(13) 

C1-Si1-C26-C27 72.61(16) 

----------------------------------------------------------------- 
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3.8.10. NMR spectra 
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4.1. 1,1-Difunctionalization of Terminal Alkynes 

The C≡C triple bond rank amongst the most basic functional groups in organic synthesis. Each 
carbon of acetylene is sp hybridized (Scheme 4.1). One sp orbital overlaps the s orbital of a 
hydrogen, and the other overlaps an sp orbital of the other carbon. Because the sp orbitals are 
oriented as far from each other as possible to minimize electron repulsion, acetylene is a linear 
molecule with bond angles of 180°. Due to the higher s orbital character, terminal alkynes are 
mildly acidic, with pKa values of around 25, thus leaving ample space for deprotonation-
functionalization chemistry.1-3 Indeed, terminal alkynes are far more acidic than alkenes and 
alkanes, which have pKa values of around 44 and 50, respectively. The C≡C triple is very strong 
with bond strength of 200.6 kcal/mol, in which the sigma bond contributes 88.2 kcal/mol while 
the π bonds have bond strength of 64.1 kcal/mol and 48.3 kcal/mol, respectively. The relatively 
weak π-bonds make the alkyne functionality ‘vulnerable’ to the addition of hydrogen, halogens, 
oxidations and cycloadditions.4, 5 
 

 

Scheme 4.1. Structure of terminal alkyne and interaction with metal 

One of the most attractive methodologies in the alkyne functionalization arena is the ability 
to generate heavily functionalized alkenes in a highly stereoselective manner. As judged by the 
wealth of literature data, the utilization of alkynes in chemical endeavors has witnessed a 
renaissance due to not only its prevalence in biochemistry or material sciences, but also as 
versatile synthon to build up molecular complexity.6 Such interest has been fueled by the 
development of new powerful synthetic methodologies based on transition metal catalysis such 
as Pd, Ni, Au, Fe or Cu, among others.7-9 Indeed, the marriage of alkynes with transition metals 
create an avalanche of progress in triple bond functionalization, thus providing numerous tools 
for organic synthesis. Such reactivity arises from the fact that a metal catalyst binds to the π-
orbitals of the alkyne and transferring a group via syn migratory insertion such as 
hydrometallation, carbon-metallation or via an external anti nucleophilic attack. Alternatively, 
transition-metal-catalyzed radical addition/coupling reaction of alkynes, typically favoring anti-
addition, is dominated by steric factors of vinyl radicals in the coupling step.10 As expected, the 
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resulting nucleophilic vinyl-metal species can undergo a range of further reactions to form 1,2-
functionalized alkenes. 
 

 

Scheme 4.2. Difunctionalization of terminal alkyne 

In recent years, a non-negligible number of methods have been designed for the 
difunctionalization of terminal alkynes by means of transition-metal catalysts, Lewis acid 
catalysis or Lewis basic catalysis, among others (Scheme 4.2)11-17 Regardless of the synthetic 
route employed, these methods almost exclusively result in 1,2-difunctionalization, a common 
reactivity mode for addition to C≡C multiple bonds. By contrast, only a few reports are related 
to the 1,1-difunctionalization of terminal alkynes. To the best of our knowledge, the 1,1-
difunctionalization of terminal alkynes by one-step process is still of great challenge although 
several elegant disclosures have been made in the area of 1,1-diboration of alkynes. 18, 19 In this 
chapter, recent advances of the 1,1-difunctionalization of terminal alkynes for the preparation 
of multifunctionalized alkenes are presented. 

4.1.1. TM-catalyzed three-component 1,1-difunctinalization of terminal alkynes   

Driven by the rapid buildup of molecular complexity, multicomponent reactions (MCRs) have 
been rapidly adopted within the context of alkyne functionalization.20 Unlike commonly applied 
1,2-difunctionalization reactions, extensions to the 1,1-site-selective pattern are rather rare. In 
2007, the Fujii group presented a copper(I)-catalyzed domino three-component 
coupling/cyclization reaction of N-protected ethynylaniline derivatives (Scheme 4.3).21 With 
water as the only by-product, this reaction led to functionalized 2-aminomethyl)indoles in a high 
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atom-economical fashion. The reaction presumably proceeded through a Mannich-type MCR 
followed by the formation of an indole ring. Subsequently, it was believed that the Cu catalyst 
acted as a π acid to activate the alkyne, yielding the final product via an intramolecular alkyne 
hydroamination reaction while regenerating the CuBr catalyst.  

 

 

Scheme 4.3. Cu-catalyzed coupling/cyclization in the synthesis of 2-aminomethyl)indoles 

 

Scheme 4.4. Cu-catalyzed three-component reaction for the construction of vinyl sulfones 
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More recently, a copper-catalyzed three-component reaction of phenylacetylene, diazo ester 
and sulfonyl hydrazine has been designed, delivering a variety of vinyl sulfones with high 
stereoselectivity (Scheme 4.4).22 Preliminary mechanistic studies suggested that the reaction 
operates via Cu-catalyzed formal C–H insertion to produce XXXVI. After protonation of  XXXVI, 
the presence of TEA results in an allene intermediate XXXVIII, which could be trapped by the 
sulfonyl anion to give the formal 1,1-difunctionalization product. The stereoselectivity of the 
reaction can be explained by steric effects between the sulfonyl group and the phenyl moiety at 
the alkyne terminus.  

 

Scheme 4.5. Cu-catalyzed dicarbofunctionalization of terminal alkynes 

A copper-catalyzed selective 1,1-arylalkylation of alkynes with α- haloacetamides and 
organoboronic acids by the addition of both alkyl and aryl groups to the terminal carbon of 
alkynes was realized by Shi by using a removable, bidentate 8-aminoquinoline auxiliary (Scheme 
4.5). 23 The plausible mechanism is believed to proceed via a copper acetylide generated from 
LnCuI and the alkyne under basic conditions. Subsequently, interaction with α- haloacetamides 
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haloacetamide may serve both as the auxiliary group and as electron-withdrawing group to 
facilitate the cross-coupling. Then, allenamide XLI is rapidly generated in situ from intermediate 
XL followed by transmetalation with arylboronic acid to form copper-aryl complex XLII or XLIII 
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with the assistance of a bidentate 8-aminoquinoline. Subsequently, XLII undergoes syn-
carbocupration to afford XLIV, thus explaining the regioselectivity and stereoselectivity of the 
reaction. Alternatively, a LnCuI could participate in a transmetalation to generate an LnCuAr2 

complex followed by syn-carbocupration with XL en route to vinylcopper intermediate, which 
undergoes protonolysis to give product 85 and regenerate the copper catalyst.  

 
Scheme 4.6. Pd-catalyzed coupling-addition of propiolates with arylsulfonyl hydrazides 

Yin and co-workers reported a novel strategy for one-pot 1,1-difunctionalization of terminal 
alkynes via Pd-catalyzed cross-coupling reaction of propiolates with readily available arylsulfonyl 
hydrazides, providing a broad range of highly functionalized (E)-vinylsulfones.24 The reaction 
mechanism is depicted in Scheme 4.6. The reaction of Pd(OAc)2 with arylsulfonyl hydrazide gives 
intermediate XLVII, which is formed via successive dehydrogenation of arylsulfonyl hydrazide, 
together with the release of N2 and SO2. Transmetalation of XLVII with copper acetylides gives 
palladium arylacetylides XLVIII, which undergoes reductive elimination to generate the cross-
coupling product, simultaneously releasing Pd(0) catalyst. Intermediate LI undergoes syn 
migratory insertion into the internal alkynes XLIX, followed by protonolysis to afford product 86 
and the Pd(II) catalyst. Different electronic effects occurred in the desulfonative cross-coupling 
and sulfonative addition. Indeed, the electron-withdrawing groups on the aryl group facilitate 
the cross-coupling reaction via cleavage of the Ar(C)−S bond, but disfavor the subsequent 
addition reaction via cleavage of the S−N bond.  
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organoborane intermediates by using alkynes as coupling acceptors.25-28 Indeed, the ability to 
access a gem-diborylalkene from the corresponding alkyne will be particularly attractive given 
the possibility of transforming these intermediates into highly substituted, stereodefined 
alkenes by means of subsequent C–B bond-cleavage reactions.29-32 Among these, particularly 
attractive is the development of a transition metal-catalyzed 1,1-diboration of terminal alkynes 
en route to the corresponding diborylated alkene. 
 

 

Scheme 4.7. Methods for the  synthesis of 1,1-diborylalkenes  

Ozerov and co-workers reported a one-pot, two-step protocol to convert terminal alkynes 
into triborylalkenes using a SiNN pincer cyclooctene iridium complex with HBpin under an 
atmosphere of CO (Scheme 4.8).33 In the first step, the terminal alkyne and pinacolborane are 
converted into an 1-alkynylboronate by means of Ir catalysis. Subsequently, treatment of the 
reaction mixture with CO promotes the carbonylation of the [(SiNN)Ir(COE)] catalyst, thus 
generating a new species that triggered a dehydrogenative diboration of 1-alkynylboronate with 
pinacolborane. The plausible active [(SiNN)Ir(CO)] (Ir-2) catalyst could be isolated and 
characterized, showing its catalytic competence as reaction intermediate in the 
dehydrogenative diboration of  alkynylboronate. Preliminary mechanistic studies by treating A1-
Bpin2 with HBpin under 1 atm CO, resulting in no reaction, suggesting that triborylalkenes are 
not produced from the borylation of free diborylalkenes. Unfortunately, this method suffers 
from weak functional group tolerance, tedious procedures and expensive catalysts. 
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Scheme 4.8. Iridium-catalyzed tandem C–H borylation and diboration 

 

Scheme 4.9. Copper-catalyzed triboration of terminal alkyne 

Recently, Marder and co-workers disclosed a copper-catalyzed triborylation of terminal 
alkynes using readily available Cu(OAc)2 and B2pin2.34 The process features mild reaction 
conditions, broad substrate scope and can be conducted on a gram scale. A plausible mechanism 
is proposed in Scheme 4.9. The terminal alkyne reacts with LnCuOAc species to afford copper 
acetylides, setting the basis for a σ-bond metathesis with B2pin2 to afford the alkynylboronate 
and a copper-boryl complex. Insertion of alkynylboronate into a Cu–B bond generates 
alkenylcopper species LV, giving rise to the desired product after σ-bond metathesis with B2pin2. 
It is worth noting that hydroboration of acrylonitrile is faster than that of alkynes, thus 
suppressing alkyne hydroboration while improving the efficiency of the triborylation process. 
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Scheme 4.10. Cobalt-catalyzed 1,1-diboration of terminal alkyne 

In 2017, Chirik and co-workers developed a novel protocol aimed at preparing 1,1-
diborylated alkenes from the corresponding alkyne by using a cyclohexyl-substituted pyridine 
diamine cobalt complex (Scheme 4.6).19 The reaction features mild reaction conditions and 
exclusive 1,1-selectivity, thus furnishing various 1,1-diborylalkenes with excellent functional 
group tolerance. The authors proposed an initial formation of a cobalt acetylide LVI from which 
an alkynyl diboronate cobalt(III) complex LVII is generated upon oxidative addition of B–B bond. 
Then, an alkynylboronate complex LVIII is formed upon reductive elimination. A syn-
functionalization then affords vinylcobalt intermediate LXI, ultimately leading to the 
corresponding Z-configured compound. The high stereo-selectivity observed in the 1,1-
diboration with PinBBDan could be a result of selective reaction of one vinylcobalt intermediate 
over another (LVIII vs LIX), but is also consistent with the more Lewis acidic boron substituent 
(Bpin) being transferred to the alkyne first and the resulting LVIII to undergo syn-
functionalization. Formal deprotonation with another terminal alkyne is believed to deliver the 
targeted 1,1-diborylalkene product. The proposed mechanism was supported by the isolation 
of cobalt intermediates LVI and LIX and their full characterization by X-ray diffraction analysis. 
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Scheme 4.11. NHC-Zinc-hydride complex catalyzed alkyne C-H borylation and hydroboration  

Recently, the Ingleson group reported a low coordinate NHC-zinc-hydride complex catalyzed 
C–H borylation and hydroboration with pinacolborane.35 In this transformation a Zn–C/H–B 
metathesis step is key to enabling a Zn-catalyzed borylation and internal alkyne hydroboration 
in one pot, thereby converting terminal alkynes into 1,1-diborylated alkenes without isolation 
of sensitive alkynyl boronate ester intermediates. The proposed mechanism is shown in Scheme 
4.11. Firstly, NHC-Zn-PhNTf undergoes transmetalation with HBpin to afford a low-coordinate 
[(7-DIPP)ZnH] cationic species LXII, from which Zn−alkynyl species LXIII could be formed upon 
reaction with the terminal alkyne. Subsequently, LXIII further reacts with HBpin through σ-bond 
metathesis to produce the C–H borylation product and regenerate LXII. In the second cycle, 
alkynyl boronate esters are proposed to undergo hydrozincation followed by metathesis with 
HBpin to form the diborylated alkenes. Isolation of intermediates, stoichiometric experiments 
and DFT calculations supported the intermediacy of organozinc species, zinc hydrides, and 
Zn−C/H−B σ-bond metathesis. Bulky N-heterocyclic carbenes are critical for success, as their 
steric hindrance enhances the stability of NHC-Zn species and provides access to low coordinate 
(NHC)Zn-H cations. 
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4.2. 1,2-Metallate Shift from Boron to an sp Center 

The anionotropic 1,2-migration of an organic substituent from a tetrasubstituted borate ion 
–often referred to as an “ate” complex – to an acceptor atom is the basis of the most useful 
application of organoboranes in organic synthesis.36 Since its discovery over 50 years ago,30 the 
1,2-metallate rearrangement of a boronate complex has been developed and refined into a 
powerful and versatile method for chemical invention.37-40 Not surprisingly, the rearrangement 
of alkynylboronate complexes to access alkenylboronates has also attracted much attention in 
recent years. In line with this context, the 1,2-metalate shift of an ate complex from boron to an 
sp center has been developed with remarkable results. For example, Zweifel and coworkers 
demonstrated, for the first time, the 1,2-migration by nucleophilic displacement requiring a 
leaving group (Scheme 4.12, A).41 They also reported another type of 1,2-metallate shift 
triggered by addition of an external electrophile (Scheme 4.12, B).42 In 2009, the Murakami 
group discovered the π-acidic late transition metal-induced 1,2-metallate shift of alkynyl 
boronates (Scheme 4.12, C).43 

 

Scheme 4.12. Three types of 1,2 metallate shift to an sp center 

A gem-silylborylation of terminal alkynes in the presence of stoichiometric base through 
nucleophilic displacement in the presence of an appropriate leaving group was discovered by 
Hiyama in 2003 (Scheme 4.13).44 The reaction proceeds via 1,2-migration of the silyl group from 
the negatively charged boron atom to the terminal acetylenic carbon. If methanesulfonyl 
derivatives are employed as leaving groups, the addition of chlorotrimethylsilane – formally 
considered as a Lewis acid that promotes the elimination of the mesyloxy group – is necessary 
to accelerate the reaction. 
 

 

Scheme 4.13. Gem-silylborylation of an sp carbon to synthesize 1-boryl-1-silylallene 
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Electrophile induced 1,2-metallate shifts in alkenylborates was first proposed by Zweifel in 
iodine-promoted rearrangements of trialkylborane-derived substrates, where the 
corresponding alkyl-substituted alkyne was obtained upon spontaneous deiodoboration.45 In 
1975, Brown showed that lithium acetylides readily add to alkylboranes to form borate 
complexes.46 Further reaction of the borate with a variety of electrophiles induces an alkyl group 
migration from boron to carbon leading to the formation of both isomers of alkenyl borane. The 
stereochemical outcome has been attributed to the nature of the 1,2-metalate shift, which is 
proposed to proceed through a carbocation intermediate. Subsequent protodeboration 
provided a mixture of Z- and E- alkenes.  
 

 

Scheme 4.14. Reaction of lithium ethynyltrialkylborates with Brønsted acid 

Murakami and co-workers reported a Pd-catalyzed biarylation of alkynylborates with aryl 
halides in which the two aryl groups were introduced trans to each other.47, 48 A proposed 
mechanism for the stereoselective trans-addition reaction is shown in Scheme 4.15. Oxidative 
addition of Ar2Br to LPd(0) gives arylPd(II) bromide LXV. Alkynylborate then coordinates to LXV 

to form intermediate LXVI. Carbopalladation across the C≡C triple bond occurs in a cis fashion 
to provide alkenylpalladium LXVII, followed by the migration of the phenyl group with formal 
inversion of stereochemistry, resulting in the formation of trans-addition product and the 

regeneration of the propagatinc active Pd(0)(XantPhos) species within the catalytic cycle. The 

stereochemical outcome was largely dependent on the ligand: With XantPhos, transmetalation 
is inhibited and 1,2-migration of the phenyl group onto the a carbon occurs, resulting in the E 
product. In contrast,the utilization of tri(o-tolyl)phosphine results in 1,3-migration of the phenyl 
group from boron to palladium (LXVIII), thereby delivering the Z isomer.  
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Scheme 4.15. Pd-catalyzed stereoselective reaction of alkynylborates with aryl halides  

In 2015, a transition-metal-free 1,1-diboration between terminal alkynes and B2pin2 using 
LiOt-Bu as catalyst was reported by Ohmiya and Sawamura (Scheme 4.16).18 The authors 
proposed a mechanism consisting of deprotonation of the terminal alkyne with LiOt-Bu to give 
a lithium acetylide LXIX  in which they proposed the coordination with t-BuOH. Subsequently, 
reaction with B2pin2 led to an alkynyl borate intermediate LXX followed by 1,2-migration of the 
terminal boryl group into the sp-hybridized carbon atom. An allenol or allenamine intermediate, 
generated by the protonation of the carbonyl or the azole group in LXXI with the Li cation-
coordinated t-BuOH, would immediately isomerize to LXXII and regenerate the catalytically 
competent species. Unfortunately, this reaction was limited to activated alkynes bearing 
electron-withdrawing substituents such as propiolates. 
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Scheme 4.16. LiOt-Bu-catalyzed 1,1-diboration of activated terminal alkynes 

The preparation of gem-silaborylated alkenes by the utilization of organolithium 
intermediates and lithium carbenoid species has been developed (Scheme 4.17). In 2001, 
Hiyama and Shimizu showed that 1,1-dihaloalkene or 1-haloalkenes can react with either n-BuLi 
or LiTMP to afford 1-boryl-1-silylalkenes via 1,2-migration, resulting in inversion of configuration 
at the sp2 carbon centre.49, 50 Subsequently, Fernández and co-workers discovered a new 
olefination reagent, HC(Bpin)2(SiMe3), which can be deprotonated in the presence of LiTMP to 
generate boron and silicon stabilized carbanions.51 This reagent was able to subsequently 
undergo addition to a carbonyl functionality, followed by the syn B�O elimination to access the 

gem-silaborated olefins. Noteworthily, HC(Bpin)2(SiMe3 ) can be efficiently prepared on gram 
scale from B2pin2 and commercially available (trimethylsilyl)diazomethane. 

 

Scheme 4.17. Synthesis of gem-silaborylated alkenes with lithium carbenoid 
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4.3. General Aim of the Project 

At the outset of our investigations, 1,1-difunctionalization of terminal alkynes was a relatively 
unknown area of expertise, and mainly limited to the utilization of transition metal catalysts or 
stoichiometric organolithium reagents. We wondered whether we could implement a 
transition-metal-free 1,1-heterodifunctionalization of terminal alkynes. Among different 
scenarios, we focused on the possibility of enabling the simultaneous incorporation of both C–
Si and C–B atoms in a 1,1-fashion with total control of the diastereoselectivity. If successful, we 
anticipated that such a technology will allow for preparing densely functionalized alkenes via 
site-selective C–Si & C–B bond-cleavage, thus offering new techniques for converting useful 
building blocks into valuable compounds from simple precursors.  
 

 

Scheme 4.18. Base-catalyzed stereoselective 1,1-silaboration of terminal alkynes 
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4.4. Catalytic Base-Catalyzed Site-Selective 1,1-Silaboration of Terminal Alkynes  

4.4.1. Optimization of the reaction conditions 

We initiated our study by reacting phenylacetylene (87a) with Et3SiBpin in DME in the 
presence of an appropriate base. After systematic screening of the reaction conditions (Table 
4.1), we detected the desired product 88a when LiHMDS, NaHMDS, KHMDS, or KOt-Bu were 
employed as bases (entries 1-4, 7). As expected from the acidity of the acetylenic C–H bond 
(pKa~25), weaker bases such as KOMe, K2CO3, and CsF failed to promote the targeted 1,1-
silaboration. Furthermore, the amount of KHMDS could be reduced to 20 mol% while 
maintaining a similar yield of 88a (entry 4). Importantly, in all cases analysed we only obtained 
a single diastereoisomer, with the silyl group and the arene being in a cis-fashion. 
 

 
 
Reaction conditions: 87a (0.40 mmol), Et3SiBpin (0.40 mmol), base (100 mol%) in DME (2.0 
mL) at room temperature, 12h. 

a
 GC yields using decane as internal standard. b 20 mol% of 

KHMDS was used. 
Table 4.1. Screening of bases 

 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

LiHMDS
NaHMDS
KHMDS
KHMDS
LiOt-Bu
NaOt-Bu
KOt-Bu
KOMe
KOTM
KOH

Zn(HMDS)2

Mg(HMDS)2

K3PO4

K2CO3

Cs2CO3

CsF
KF

28
37
44
38b

0
0

12
0
0
0
0
0
0
0
0
0
0

65
61
66
43
11
15
34
6
9

12
8
2
5
4
2
7
4

(1.0 equiv) DME (0.2 M ), rt, 12h

Base (100 mol%)
+

Entry Yield of 88a (%)aBase

Et3SiBpin Bpin

SiEt3

Conversion of 87a (%)

87a 88a
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Reaction conditions: 87a (0.40 mmol), Et3SiBpin (0.40 mmol), base (20 mol%) in DME (2.0 mL), 
12h. 

a
 GC yields using decane as internal standard.b 48h instead of 12h. c 10 mol% KHMDS was 

used. 
Table 4.2. Screening of temperature 

Next, we evaluated the reaction temperature in order to further improve the conversion of 
87a and the yield of 88a (Table 4.2). The yield of the desired product was increased when the 
reaction temperature was raised beyond room temperature, resulting in yields up to 96% 
(entries 1-7). As expected, the nature of the base and the counterion had marked effects on 
reactivity (entries 7-10). The highest yield of 88a was detected when 20 mol% of KHMDS was 
used (entries 5-7), but a lower yield was observed when the amount of KHMDS was reduced to 
10 mol% (entry 11, 12). As the identity of the solvent has a strong influence on the aggregation 
and solubility of KHMDS,52-54 the effect of different solvents was studied (Table 4.3). As expected, 
better results were observed in DME, toluene and MeCN (entry 1, 8, 10), probably due to the 
good solubility of KHMDS in these solvents. In contrast, nonpolar solvents such as pentane or 
other ether solvents led to moderate yields of the desired product. The reaction also occurred 
in the absence of solvent to give the desired product in a decent yield (entry 12).   

 

1
2
3
4
5
6
7
8
9
10
11
12

KHMDS
KHMDS
KHMDS
KHMDS
KHMDS
KHMDS
KHMDS
LiHMDS
NaHMDS
KOt-Bu
KHMDS
KHMDS

50b

65
80
86
94
95
96
39
70
50
49c 
51c

rt
40
50
60
70
80
90
90
90
90
90
70

T (ºC)

52
71
88
90
96
96

100
42
79
51
60
64

(1.0 equiv) DME (0.2 M ), T (ºC), 12h

Base (20 mol%)
+

Entry Yield of 88a (%)aBase (0.2 equiv)

Et3SiBpin Bpin

SiEt3

Conversion of 87a (%)

87a 88a
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Reaction conditions: 87a (0.40 mmol), Et3SiBpin (0.40 mmol), KHMDS (20 mol%) in solvent 
(2.0 mL) at 70 ºC, 12h. 

a GC yields using decane as internal standard. 
Table 4.3. Screening of solvents 

As shown in Table 4.4, Et3SiBpin was found to be the most efficient reagent among all X–Bpin 
or X–Si compounds utilized. Indeed, changing the electronic properties of the silyl group did not 
improve the yield (entry 2), whereas the inclusion of bulky groups at silicon shut down the 
reactivity (entry 3). Likewise, no reactivity was found for either (Et3Si)2 or B2pin2 (entries 4, 7).  
 

 
 

Reaction conditions: 87a (0.40 mmol), Et3SiBpin (0.40 mmol), KHMDS (20 mol%) in solvent 
(2.0 mL) at 70 ºC, 12h. 

a
 GC yields using decane as internal standard. 

Table 4.4. Screening of X-Bpin or X-[Si] reagents  

(1.0 equiv) Solvent (0.2 M ), 70 ºC, 12h

KHMDS (20 mol%)
+

Entry

1
2
3
4
5
6
7
8
9
10
11
12

DME
Dioxane

Et2O
t-BuOMe

THF
Pentane

Cyclohexane
Toluene

DMF
MeCN
DCM
none

Yield of 88a (%)a

97
32
65
42
65
29
33
96
58
94
0
76

Solvent

Et3SiBpin Bpin

SiEt3

Conversion of 87a (%)

100
45
69
46
68
32
37
100
100
100
9%
81

87a 88a

1

2

3

4

5

6

7

8

Et3SiBpin

Ph2MeSiBpin

(TMS)3SiBpin

Et3SiSiEt3
TMS4Si

HBpin

B2pin2

HSiEt3

92

80

ND

ND

ND

ND

ND

ND

X-Bpin or [Si]-X

(1.0 equiv)

DME (0.2 M ), 70 ºC, 12h

KHMDS (20 mol%)
+ X-Bpin Bpin/Si

X
[Si]-X

or

100

100

60

32

16

15

25

13

8987a

Entry Yield of 89 (%)aConversion of 87 (%)
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4.4.2. Preparative substrate scope 

4.4.2.1. Scope of terminal alkyne 

 

Reaction conditions: As Table 4.3, entry 1; yield of isolated product, average of at least two 
independent runs a 10 mol scale. b T = rt. c Et3SiBpin (3.5 equiv). 

Scheme 4.19. Scope of terminal alkyne  

The generality of the stereoselective silaboration was studied by applying the optimized 
conditions to a diverse set of substituted phenylacetylenes, most of which were commercially 
available. As becomes evident from the results compiled in Scheme 4.19, the scope of alkyne 
partner turned out to be rather wide regardless of the electronic and steric environments on 
the aryl ring. Substrates containing halide entities at the ortho-position were tolerated without 
noticeable side-reactions (88c and 88d). Furthermore, nitriles (88l), ethers (88f, 88j, 88p), 
carbazoles (88n), ketones (88m), or thiochromane (88o) could all perfectly be accommodated. 
Notably, the silaboration of 87a could be executed on a gram scale (10 mmol) without significant 
erosion in yield. The presence of nitrogen-containing heterocycles did not interfere with the 
targeted 1,1-silaboration (88q and 88r).  Interestingly, a substrate bearing two terminal alkynyl 
moieties (87s) underwent 1,1-diboration at only one alkynyl group; However, three-fold 

Bpin

SiEt3R

SiEt3Cl

X-ray

Bpin

93%b (88i)

R = F, 70% (88g)
R = Br, 89%b (88h)

N

Bpin

SiEt3

Bpin

R

85% (88r)

Bpin

SiEt3

R

Bpin

SiEt3N

BpinEt3Si

SiEt3

Bpin

SiEt3

O

O

SiEt3

Bpin

65% (88m)

MeO N

Bpin

SiEt3

86%c (88t)

89% (88q)80%b (88n)

Bpin

SiEt3

85% (88p)

82% (88s)

Bpin

SiEt3

R = Me, 84% (88e)
R = OCF2H, 89% (88f)

R = SiEt3, 92%, 81%a (88a)
R = SiMe2Ph, 87% (88b)

S

Bpin

SiEt3

Bpin

R = F, 80% (88c)
R = Cl, 83% (88d)

R

84% (88o)

Et3Si Bpin
EtO

O

SiEt3

Bpin

81%b, (Z:E=1:3)

R = OCF3, 79% (88j)
R = OTs, 92% (88k)
R = CN, 85% (88l)

Bpin

SiEt3R

87a-t 70 °C, 12h

 Et3SiBpin (1.0 equiv)

88a-t

KHMDS (20 mol%)
DME (0.2 M)

high stereospecific

geminal dimetallic reagent
complete atom economyR R

Bpin

SiEt3

(88u´:88u)
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silaboration was within reach after carefully adjusting the stoichiometry of the reaction(88t). 
Notably, E/Z mixtures of propiolate (87u) were observed if 87u was used as starting material. 
This result could be explained by a pathway similar to that shown by Ohmiya and Sawamura´s,18 
in which an allene intermediate is involved in.  

4.4.2.2. Unsuccessful substrates 

 

 
Scheme 4.20. Unsuccessful substrates of aryl pivalates  

The limitations on the alkyne partner were identified while studying the scope of the reaction 
(Scheme 4.20). For example, unprotected phenols (90a), nitro groups (90b) and ferrocenes (90c) 
were not compatible under our reaction conditions. 3-ethynylthiophene (90d) was decomposed 
during the reaction, leading to low yields of the final silaboration event and no improvement 
was found upon lowering down the temperature. Unfortunately, no reactivity was found with 
unactivated alkyl-substituted acetylenes (90e) even by changing all reaction parameters or 
stronger bases. Likewise, the use of (triethylsilyl)acetylene (90f) resulted in a complex mixture 
of unidentified by products and alkynyl MIDA boronate (90g) was recovered under the reaction 
condition. In the case of Erlotinb derivative (90j), no reaction took place, presumably by 
sequestering the potassium cation by the ethereal environment. Likewise, enynes could not be 
employed as substrates, suggesting that the conjugated arene was essential for promoting our 
1,1-silaboration.  

    

 

 

 

 

 

 

O2N

Fe

NH

N

NO
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O
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OH

TES BMIDA

9

90a 90b 90c
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4.4.3. Synthetic Application of 1-boryl-1-silylalkene 

 

 

Scheme 4.21. Scope of benzyl and allyl pivalates 

With a powerful methodology in hand for accessing silaborated alkenes, we next wondered 
whether we could access densely substituted alkenes by means of site-selective C–Si or C–B 
bond-cleavage. As shown in Scheme 4.21,  the Bpin group could first be converted to an aryl or 
alkyl group by means of a Pd-catalyzed Suzuki-Miyaura coupling or a Rh-catalyzed 1,4-addition 
to an appropriate Michael acceptors (Scheme 4.21, A, B).55 Subsequently, a nucleophilic addition 
of 92 to an aldehyde or protodesilylation of the silyl group could be achieved, leading to 93 and 
94 respectively (Scheme 4.21, C, D).56 In addition, halogen exchange by exposing 92 to NBS 
delivered 95 in high yield (Scheme 4.21, E) whereas a Hiyama-type cross-coupling reaction was 
within reach by synergistic Pd/Cu catalysis if coupled with 2-methyl thiophene under oxidative 
conditions (Scheme 4.21, F).57 Although a trisubstituted alkene should be obtained upon 
oxidative C–H functionalization, the formation of 96 can tentatively be interpreted on the basis 
of a subsequent metal hydride insertion into the π-system followed by protonolysis. 

It is worth noting that substrates posessing electron withdrawing groups such as CONEt2 or 

Ac (97a, 97b) at the para position delivered E/Z mixtures (Scheme 4.22). Note, however, that a 
single isomer could be obtained by simply changing the solvent from DME to toluene. In these 
two particular cases, it becomes apparent that the non-coordinating solvent favors the 
generation of the Z isomer. The reason behind this remains unclear so far, but the result can 
tentatively be interpreted on the basis of the strong coordination of DME to the escorting 
potassium counterion, thus generating a separated silylboronated ion pair LXXIII that precedes 
the formation of allene-type intermediates LXXV via [1,2]-shift from the boron ate complex.18, 58  

SiEt3

PdCl2(MeCN)2 (5 mol%)
CuCl2

OMe

X

THF, 60 ºC, 24h
TBAF (5 eq)

94, X=H, 79%
95, X=Br, 80%

OMe

O

CF3

SiEt3

O

C

D NBS
MeCN

0 ºC, 5h

E

93, 74% 96, 62%

F

DCE, 80 ºC, 16h

OMe

S
Me

91, 77% (Z:E=5:1)

MeOH/H2O

Rh(acac)(CO)2
dppb

O

2-methylthiopheneTHF, 60 ºC, 5h

Me4NF (3 eq)
p-CF3-PhCHO

87a

92, 88%

A

OMe

88a

B Pd(Ph3)4 (5 mol%)
KOH(aq)

p-OMeC6H4-I

As Table 4.3
entry1

92%
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Scheme 4.22. Solvent-dependent selectivity and intermediacy of allene species 

In addition, we found an intriguing defluorosilylation reaction when p-CF3-phenylacetylene 
was used under our optimized condition. Specifically, defluorosilylation of 99 was observed 
instead in a 61% yield (Scheme 4.22). The mechanism of the transformation is believed to 
proceed via a boronate complex, leading to the formation of a silaborallene LXXVI upon fluoride 
extrusion. Subsequent nucleophilic attack of the fluoride anion at the boron followed by 
rearomatization resulted in the formal defluorosilylated product. In a formal sense, the 
formation of LXXVI serves as a testament that a migration might occur through allene 
intermediates, suggesting a similar reaction pathway to that compounds possessing 
electronwithdrawing groups at the para position such as 97a and 97b. 
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4.4.4. Mechanistic considerations 

 

Scheme 4.23. Mechanistic studies  

To gain insight into the mechanism, a deuterium labeling experiment was conducted 
(Scheme 4.23, A). The reaction with d-87a a (>96 % D) afforded d-88a with 93% incorporation 
of deuterium incorporation at the vinylic motif. In line with our expectations, the reaction of 
unlabeled acetylene 87a with d8-toluene led to the final product with no deuterium 
incorporation. Taken together, these results suggest that the hydrogen atom derives exclusively 
from the acetylenic sp C–H bond. Interestingly, a deuterium-labeled crossover experiment 
between d-87a (>96 % D) and 87k resulted in nearly complete H/D scrambling in both products 
d-88a and d-88k, suggesting that the final protonolysis of the vinylic motif takes place via 
intermolecular events (Scheme 4.23, B). In line with these experiments, we propose that the 
reaction was initiated by deprotonation of the acetylenic sp C–H bond (pKa ~ 25) by KHMDS (pKa 
= 27). This assumption was tested by reacting 87a with n-BuLi in a stoichiometric fashion 
followed by reaction with Et3SiBpin (Scheme 4.23, C). Although a moderate 22 % of 88a was 
isolated after the reaction was stirred at 70 oC for 3h, we presume that such low yield is due to 
the use of lithium rather than potassium cation and also the lack of proton source to induce the 
migration. Notably, no desired product was obtained when the reaction mixture was treated at 
room temperature instead of 70 oC; in the absence of further kinetic studies, we believe that 
these observations suggest that the proposed 1,2-shift is likely endothermic. Interestingly, no 
reaction was found when exposing 101 to PhSiMe2Li. It seems there is no driving force in the 
absence of proton, thus favoring a concerted 1,2-shift/deprotonation pathway.  
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Scheme 4.24. Plausible mechanistic scenario 

Although additional studies should await further investigations, our results are consistent 
with a mechanism occurring via initial deprotonation followed by addition of Et3SiBpin, leading 
to a silylboronate adduct (Scheme 4.24). A subsequent 1,2-metallate shift likely gives access to 
the final product by abstracting a hydrogen atom from the starting alkyne, thus leading to the 
final product and generating back the key potassium acetylide.  
 

 
Scheme 4.25. Attempts to trap intermediacy anion 

In light of these observations, one might argue whether the intermediate vinyl anion might 
be trapped with a different electrophile other than simple protonolysis in the presence of excess 
amounts of an alkyne. All our efforts to trap the nucleophilic entity with TMSCl, I2 or D2O were 
unsuccessful regardless of whether catalytic or stoichiometric amounts of KHMDS or even KH 
were used or not (Scheme 4.25).59-62 Although tentative, this observation might indicate that the 
1,2-migration is triggered with concomitant protonolysis in a concerted pathway. Alternatively, 

such a pathway might be triggered by cation p-interactions.63 in that the potassium ion 
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coordinates to the arene of the phenylacetylene so that the deprotonation occurs in a concerted 
manner (LXXX or LXXXI). Although further experiments should be conducted to find whether 
this pathway occurs or not, this hypothesis is in line with the lack of reactivity found for alkyl-
substituted acetylenes in our silaboration. Certainly, DFT calculations and in depth NMR 
studies64 should be conducted to unravel whether such pathways intervene or not. 

4.5. Conclusions 

In summary, we have reported the development of a catalytic 1,1-silaboration of terminal 
alkynes that operates with excellent stereoselectivity catalyzed by KHMDS. This method does 
not only provide rapid access to rather useful 1,1-dimetalated building blocks, but also establish 
a platform to generate densely functionalized olefins by subsequent C–Si and C–B 
transformation. Our protocol is characterized by its mild conditions, accessing compounds in an 
atom-economical fashion in the absence of either stoichiometric organolithium species or 
transition metal complexes. Unfortunately, the reaction is mainly restricted to acetylenes end-
capped with arenes, but efforts to incorporate alkyl substituted acetylenes are currently ongoing 
in our lab. A preliminarily mechanistic pathway based on 1,2-metallate rearrangement from 
boron to the sp carbon has been proposed, although further studies are necessary to unravel 
the underpinnings of these processes. 
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4.7. Experimental Section 

      4.7.1. General considerations 

Reagents. Commercially available materials were used without further purification. KHMDS was 
purchased from Strem Chemicals. Anhydrous DME and Dioxane were purchased from Alfa Aesar. 
Silylborane Et3SiBpin was prepared in bulk quantities in one-step from Et3SiH and B2pin2 according to a 
known literature procedure.  All the other reagents were purchased from commercial sources and used 
as received. Flash chromatography was performed with EM Science silica gel 60 (230-400 mesh). Thin 
layer chromatography was carried out using Merck TLC Silica gel 60 F254. 
 
Analytical methods: 1H-NMR, 13C-NMR, and 19F-NMR spectra and melting points (where applicable) are 
included for all new compounds. 1H-NMR, 13C-NMR, and 19F-NMR spectra were recorded on a Bruker 300 
MHz, a Bruker 400 MHz or Bruker 500 MHz. All 1H-NMR spectra are reported in parts per million (ppm) 
downfield of TMS and were measured relative to the signals for CHCl3 (7.26 ppm). All 13C-NMR spectra 
were reported in ppm relative to residual CHCl3 (77.2 ppm) and were obtained with 1H decoupling. 
Coupling constants, J, are reported in hertz (Hz). Melting points were measured using open glass 
capillaries in a Büchi B540 apparatus. Infrared spectra were recorded on a Bruker Tensor 27. Specific 
optical rotation measurements were carried out on a Jasco P-1030 model polarimeter equipped with a 
PMT detector using the Sodium line at 589 nm. Mass spectra were recorded on a Waters LCT Premier 
spectrometer. Gas chromatographic analyses were performed on HewlettPackard 6890 gas 
chromatography instrument with a FID detector using 25m x 0.20 mm capillary column with cross-linked 
methyl siloxane as the stationary phase. EPR signals were recorded with EMX Micro EPR spectrometer. 
The yields reported refer to isolated yields and represent an average of at least two independent runs. 
The procedures described in this section are representative. Thus, the yields may differ slightly from those 
given in the tables of the manuscript. 

      4.7.2. General procedure for base-catalyzed 1,1-silaboration of terminal alkynes 

 
 
 
 
 
 
 
 
 
 
 
 
(Left) KHMDS dissolved in DME. (Middle) alkyne was added, deprotonation occurs immediately. (Right) 
TESBpin was added in the end. 
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General procedure A: An oven-dried 10 mL screw-capped test tube containing a stirring bar was 
transferred to a nitrogen-filled glove-box where KHMDS (16.0 mg, 0.08 mmol), and dry ethylene glycol 
dimethyl ether (DME, 0.2 M, 2mL) were added. (left) The corresponding alkyne (1.0 eq, 0.4 mmol) was 
subsequently added. (middle) Then, Et3SiBpin (96.9 mg, 0.4 mmol) was added in the end. (right) The 
reaction mixture was taken out of the glovebox and heated to 70 oC. After rigorously stirred for 12 h, the 
reaction was diluted with EtOAc (8 mL). the mixture filtered through a Celite® plug and concentrated 
under reduced pressure, the desired product was directly purified by flash column chromatography in 
silica. The product was isolated by column chromatography to give the corresponding 1,1-silaborylalkenes 

 

(Z)-triethyl(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (88a). Following the 
general procedure, using ethynylbenzene (40.8 mg, 0.4 mmol), the title compound was obtained in 91% 
yield (125.3 mg) as colorless oil. Rf 0.65 (Hex: EtOAc 50:1). 1H NMR (300 MHz, CDCl3) δ 8.14 (s, 1H), 7.29 
(s, 5H), 1.32 (s, 12H), 0.85 (t, J = 7.8 Hz, 9H), 0.55 (q, J = 7.8 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 158.5, 
141.9, 128.1, 127.7, 127.6, 83.2, 24.9, 7.8, 5.0 ppm. IR (neat, cm-1): 2953, 2874, 1562, 1353, 1321, 1144, 
860, 756. HRMS (ESI) [C20H34BOSi] (M+H) calcd. 334.2443, found 334. 2364. 

 

(Z)-dimethyl(phenyl)(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (88b). 
Following the general procedure, using ethynylbenzene (40.8 mg, 0.4 mmol), the title compound was 
obtained in 87% yield (126.6 mg) as colorless oil. Rf 0.62 (Hex: EtOAc 50:1). 1H NMR (300 MHz, CDCl3) δ 
8.12 (s, 1H), 7.58-7.54 (m, 2H), 7.41-7.24 (m, 3H), 7.18 (s, 5H), 1.25 (s, 12H), 0.22 (s, 6H) ppm. 13C NMR 
(75 MHz, CDCl3) δ 158.4, 140.9, 134.1, 128.6, 128.5, 127.8, 127.7, 127.7, 83.5, 24.9, -0.4 ppm. IR (neat, 
cm-1): 2977, 1427, 1352, 1321, 1211, 249, 1142, 814. HRMS (ESI) [C23H29BO2SiNa] (M+Na) calcd. 386.1958, 
found 386.1962. 

 

(Z)-triethyl(2-(2-fluorophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (88c). 
Following the general procedure, using 1-ethynyl-2-fluorobenzene (48.1 mg, 0.4 mmol), the title 
compound was obtained in 80% yield (115.8 mg) as colorless oil. Rf 0.55 (Hex: EtOAc 20:1). 1H NMR (300 
MHz, CDCl3) δ 8.04 (s, 1H), 7.32-7.14 (m, 2H), 7.14-6.93 (m, 2H), 1.32 (s, 12H), 0.85 (t, J = 7.8 Hz, 9H), 0.53 
(q, J = 7.9 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 160.0 (d, J = 246.6 Hz), 151.5 (d, J = 2.3 Hz), 130.5 (d, J 
= 3.6 Hz), 129.6 (d, J = 16.3 Hz), 129.4 (d, J = 8.0 Hz), 123.3 (d, J = 3.6 Hz), 115.1 (d, J = 21.7 Hz), 83.3, 24.9, 
7.7, 4.6 ppm. 19F NMR (376 MHz, CDCl3) δ -114.48 ppm. IR (neat, cm-1): 2952, 2874, 1739, 1481, 1317, 
1270, 1143, 735. HRMS (ESI) [C20H32BFO2SiNa] (M+Na) calcd. 384.2177, found 384.2177. 

 

(Z)-(2-(2-chlorophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)triethylsilane (88d). 
Following the general procedure, using 1-chloro-2-ethynylbenzene (54.6 mg, 0.4 mmol), the title 
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compound was obtained in 83% yield (125.4 mg) as colorless oil. Rf 0.58 (Hex: EtOAc 20:1). 1H NMR (300 
MHz, CDCl3) δ 8.05 (s, 1H), 7.45-7.30 (m, 1H), 7.28-7.14 (m, 3H), 1.32 (s, 12H), 0.85 (t, J = 7.8 Hz, 9H), 0.49 
(q, J = 7.9 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 155.9, 140.5, 133.0, 130.3, 128.9, 126.0, 83.2, 24.9, 
7.7, 4.6 ppm. IR (neat, cm-1): 2951, 2873, 1573, 1463, 1316, 1269, 1143, 1003, 857, 721. HRMS (ESI) 
[C20H32BClO2SiNa] (M+Na) calcd. 400.1882, found 400.1874. 

 

(Z)-triethyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(m-tolyl)vinyl)silane (88e). Following the 
general procedure, using 1-ethynyl-3-methylbenzene (46.5 mg, 0.4 mmol), the title compound was 
obtained in 73% yield (104.6 mg) as colorless oil. Rf 0.43 (Hex: EtOAc 50:1). 1H NMR (300 MHz, CDCl3) δ 
8.08 (s, 1H), 7.20-7.16 (m, 1H),7.15-7.00 (m, 3H), 2.33 (s, 3H), 1.29 (s, 12H), 0.82 (t, J = 7.8 Hz, 9H), 0.52 
(q, J = 8.5, 7.9 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 158.7, 141.8, 137.1, 128.9, 128.3, 127.6, 125.2, 
83.2, 25.0, 21.5, 7.8, 5.0 ppm. IR (neat, cm-1): 2951, 1873, 1564, 1316, 1270, 1143, 855, 734. HRMS (ESI) 
[C21H35BO2SiNa] (M+Na) calcd. 380.2428, found 380.2432. 

 

(Z)-(2-(3-(difluoromethoxy)phenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)triethylsilane 
(88f). Following the general procedure, using 1-(difluoromethoxy)-3-ethynylbenzene (67.2 mg, 0.4 mmol), 
the title compound was obtained in 87% yield (141.8 mg) as colorless oil. Rf 0.66 (Hex: EtOAc 20:1). 1H 
NMR (300 MHz, CDCl3) δ 8.03 (s, 1H), 7.31-7.25 (m, 1H), 7.14-7.05 (m, 1H), 7.05-6.98 (m, 2H), 6.49 (t, J = 
74.0 Hz, 1H), 1.29 (s, 12H), 0.82 (t, J = 7.8 Hz, 9H), 0.51 (q, J = 8.2 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 
156.7, 150.8, 143.9, 129.2, 125.2, 119.1, 118.6, 83.4, 24.9, 7.7, 4.8 ppm. 19F NMR (376 MHz, CDCl3) δ 80.58 
ppm. IR (neat, cm-1): 2954, 2875, 1738, 1372, 1320, 1234, 1142, 1047, 734. HRMS (ESI) [C21H33NaBF2O3Si] 
(M+Na) calcd. 432,2189, found 432.2203. 

 

(Z)-triethyl(2-(4-fluorophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (88g). 
Following the general procedure, using 1-ethynyl-4-fluorobenzene (48.1 mg, 0.4 mmol), the title 
compound was obtained in 70% yield (101.3 mg) as colorless oil. Rf 0.63 (Hex: EtOAc 20:1). 1H NMR (400 
MHz, CDCl3) δ 8.03 (s, 1H), 7.26-7.18 (m, 2H), 6.97 (t, J = 8.7 Hz , 2H), 1.29 (s, 12H), 0.82 (t, J = 7.9 Hz, 9H), 
0.52 (q, J = 7.8 Hz, 6H) ppm. 13C NMR (101 MHz, CDCl3) δ 168.84 (d, J = 229.2 Hz), 157.2, 137.9 (d, J = 3.7 
Hz), 129.8 (d, J = 8.1 Hz), 114.7 (d, J = 21.4 Hz), 83.3, 24.9, 7.8, 5.0 ppm. 19F NMR (376 MHz, CDCl3) δ -
114.44 ppm. IR (neat, cm-1): 2982, 1733, 1504, 1373, 1237, 1045, 910, 729. HRMS (ESI) [C21H33BNO2Si] 
(M+H) calcd. 369.2404, found 369.2403. 

 

(Z)-(2-(4-bromophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)triethylsilane (88h). 
Following the general procedure, using 1-bromo-4-ethynylbenzene (72.4 mg, 0.4 mmol), the title 
compound was obtained in 89% yield (150.6 mg) as colorless oil. Rf 0.49 (Hex: EtOAc 50:1). 1H NMR (300 
MHz, CDCl3) δ 7.99 (s, 1H), 7.41 (d, J = 8.3 Hz, 2H), 7.12 (d, J = 8.2 Hz, 2H), 1.29 (s, 12H), 0.82 (t, J = 7.8 Hz, 
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9H), 0.52 (q, J = 7.8 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 156.9, 140.7, 130.9, 129.8, 121.7, 83.4, 24.9, 
7.8, 4.9 ppm. IR (neat, cm-1): 2955, 2856, 1496, 1355, 1144, 1045, 1008, 735. HRMS (ESI) [C20H32BrBO2SiNa] 
(M+H) calcd. 444.1377, found 444.1366. 

 

(Z)-(2-(4-chlorophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)triethylsilane (88i). 
Following the general procedure, using 1-chloro-4-ethynylbenzene (54.6 mg, 0.4 mmol), the title 
compound was obtained in 93% yield (140.9 mg) as colorless oil. Rf 0.54 (Hex: EtOAc 20:1). 1H NMR (300 
MHz, CDCl3) δ 8.03 (s, 1H), 7.31-7.24 (m, 2H), 7.21-7.18 (m, 2H), 1.31 (s, 12H), 0.84 (t, J = 7.7 Hz, 9H), 0.54 
(q, J = 7.7 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 157.0, 140.2, 133.4, 129.5, 127.9, 83.4, 24.9, 7.8, 5.0 
ppm. IR (neat, cm-1): 2952, 2874, 1486, 1318, 1143, 1092, 1014, 734. HRMS (ESI) C20H32BClO2SiNa] (M+Na)  
calcd. 400.1882, found 400.1876. 

 

(Z)-triethyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(4-(trifluoromethoxy)phenyl)vinyl)silane 
(88j). Following the general procedure, using 1-ethynyl-4-(trifluoromethoxy)benzene (74.5 mg, 0.4 mmol), 
the title compound was obtained in 79% yield (135.2 mg) as colorless oil. Rf 0.56 (Hex: EtOAc 20:1). 1H 
NMR (300 MHz, CDCl3) δ 8.05 (s, 1H), 7.28 (d, J = 5.4 Hz, 2H), 7.14 (d, J = 8.3 Hz, 2H), 1.30 (s, 12H), 0.82 (t, 
J = 7.8 Hz, 9H), 0.51 (q, J = 7.8 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 156.6, 148.7, 140.6, 129.5, 120.2, 
83.4, 24.9, 7.7, 4.9 ppm. 19F NMR (376 MHz, CDCl3) δ -57.96 ppm. IR (neat, cm-1): 2954, 1734, 1502, 1372, 
1252,1144, 1045, 731. HRMS (ESI) [C21H33BF3O3Si] (M+H) calcd. 428.2278, found 428.2276. 

 

(Z)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(triethylsilyl)vinyl)phenyl 4-
methylbenzenesulfonate (88k). Following the general procedure, using 4-ethynylphenyl 4-
methylbenzenesulfonate  (108.9 mg, 0.4 mmol), the title compound was obtained in 92% yield (189.3 mg) 
as colorless oil. Rf 0.62 (Hex: EtOAc 10:1). 1H NMR (300 MHz, CDCl3) δ 8.01 (s, 1H), 7.67 (d, J = 8.3 Hz, 2H), 
7.29 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.5 Hz, 2H), 2.44 (s, 3H), 1.29 (s, 12H), 0.81 (t, J 
= 7.8 Hz, 9H), 0.47 (q, J = 7.8 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 156.7, 149.1, 145.5, 140.9, 132.2, 
129.8, 129.2, 128.7, 121.8, 83.4, 24.9, 21.8, 7.7, 4.9 ppm. IR (neat, cm-1): 2955, 1626, 1500, 1348, 1176, 
1143, 863, 715. HRMS (ESI) [C27H39BO5SSiNa] (M+Na) calcd. 536.2309, found 536.2326. 

 

(Z)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(triethylsilyl)vinyl)benzonitrile (88l). Following 
the general procedure, using 4-ethynylbenzonitrile (50.8 mg, 0.4 mmol), the title compound was obtained 
in 85% yield (125.2 mg) as colorless oil. Rf 0.63 (Hex: EtOAc 30:1). 1H NMR (300 MHz, CDCl3) δ 8.03 (s, 1H), 
7.58 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 1.29 (s, 12H), 0.81 (t, J = 7.8 Hz, 9H), 0.48 (q, J = 7.8 Hz, 6H) 
ppm. 13C NMR (75 MHz, CDCl3) δ 155.8, 146.6, 131.7, 128.8, 111.1, 83.6, 24.9, 7.7, 4.9 ppm. IR (neat, cm-
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1): 2982, 1737, 1372, 1320, 1235, 1144, 1045, 733. HRMS (ESI) [C21H33BNO2Si] (M+H) calcd. 369.2404, 
found 369.2403. 

 

(Z)-(2-(4-(1,3-dioxolan-2-yl)phenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)triethylsilane 

(88m). Following the general procedure, using 2-(4-ethynylphenyl)-1,3-dioxolane (69.7 mg, 0.4 mmol), 
the title compound was obtained in 65% yield (108.1 mg) as colorless oil. Rf 0.69 (Hex: EtOAc 10:1). 1H 
NMR (300 MHz, CDCl3) δ 8.09 (s, 1H), 7.42 (d, J = 7.9 Hz, 2H), 7.29 (d, J = 7.5 Hz, 2H), 5.82 (s, 1H), 4.29-
3.84 (m, 4H), 1.31 (s, 12H), 0.83 (t, J = 7.8 Hz, 9H), 0.53 (q, J = 7.8 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) 
δ 157.9, 142.8, 137.0, 128.2, 126.0, 103.8, 83.3, 65.4, 24.9, 7.8, 4.9 ppm. IR (neat, cm-1): 3284, 2955, 1718, 
1607, 1271, 1076, 858, 770. HRMS (ESI) [C23H38BO4Si] (M+H) calcd. 417.2627, found 417.2629. 

 

(Z)-9-(4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(triethylsilyl)vinyl)phenyl)-9H-carbazole 

(88n). Following the general procedure, using 9-(4-ethynylphenyl)-9H-carbazole (106.9 mg, 0.4 mmol), 
the title compound was obtained in 80% yield (163.0 mg) as colorless oil. Rf 0.65 (Hex: EtOAc 50:1). 1H 
NMR (300 MHz, CDCl3) δ 8.23 (s, 1H), 8.16 (d, J = 7.7 Hz, 2H), 7.50 (s, 4H), 7.46-7.37 (m, 4H), 7.30 (ddd, J 
= 8.0, 6.3, 1.9 Hz, 2H), 1.34 (s, 12H), 0.90 (t, J = 7.8 Hz, 9H), 0.62 (q, J = 7.4 Hz, 6H) ppm. 13C NMR (75 MHz, 
CDCl3) δ 157.3, 141.3, 141.0, 136.9, 129.6, 126.4, 126.1, 123.5, 120.4, 120.0, 109.9, 83.4, 25.0, 7.9, 5.1 
ppm. IR (neat, cm-1): 2952, 1714,, 1602, 1509, 1315, 1219, 1142, 723. HRMS (ESI) [C32H41BNO2Si] (M+H) 
calcd. 509.3030, found 509.3013. 

 

(Z)-(2-(4,4-dimethylthiochroman-6-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)vinyl)triethylsilane (88o). Following the general procedure, using 6-ethynyl-4,4-dimethylthiochromane 
(80.9 mg, 0.4 mmol), the title compound was obtained in 84% yield (124.1 mg) as colorless oil. Rf 0.44 
(Hex: EtOAc 50:1). 1H NMR (300 MHz, CDCl3) δ 8.01 (s, 1H), 7.27 (s, 1H), 7.08-6.82 (m, 2H), 3.19-2.83 (m, 
2H), 2.06-1.84 (m, 2H), 1.32 (s, 6H), 1.30 (s, 12H), 0.84 (t, J = 7.8 Hz, 9H), 0.57 (q, J = 8.5, 8.0 Hz, 6H) ppm. 
13C NMR (75 MHz, CDCl3) δ 158.5, 141.1, 137.6, 131.2, 126.6, 126.1, 125.9, 83.2, 37.9, 33.2, 30.3, 25.0, 
23.3, 7.8, 5.0 ppm. IR (neat, cm-1): 2955, 1741, 1469, 1315, 1238, 1143, 1050, 854, 730. HRMS (ESI) 
[C25H42BO2SiS] (M+H) calcd. 444.2799, found 444.2797. 

 

(Z)-triethyl(2-(6-methoxynaphthalen-2-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane 
(88p). Following the general procedure, using 2-ethynyl-6-methoxynaphthalene (75.3 mg, 0.4 mmol), the 
title compound was obtained in 85% yield (144.8 mg) as colorless oil. Rf 0.66 (Hex: EtOAc 20:1). 1H NMR 
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(300 MHz, , CDCl3) δ 8.22 (s, 1H), 7.76-7.58 (m, 3H), 7.39 (dd, J = 8.4, 1.7 Hz, 1H), 7.19-7.07 (m, 2H), 3.92 
(s, 3H), 1.32 (s, 12H), 0.83 (t, J = 7.8 Hz, 9H), 0.57 (q, J = 8.6, 8.2 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 
158.6, 157.9, 137.1, 134.1, 129.8, 128.4, 127.2, 127.1, 126.1, 119.0, 105.9, 83.3, 55.4, 25.0, 7.9, 5.1 ppm. 
IR (neat, cm-1): 2971, 1619, 1481, 1392, 1356, 1320, 1260, 1148, 843. HRMS (ESI) [C25H37BO3SiNa] (M+Na) 
calcd. 446.2534, found 446.2552. 

 

(Z)-2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(triethylsilyl)vinyl)pyridine (88q). Following the 
general procedure, using 2-ethynylpyridine (41.2 mg, 0.4 mmol), the title compound was obtained in 89% 
yield (122.8 mg) as colorless oil. Rf 0.51 (Hex: EtOAc 10:1). 1H NMR (300 MHz, CDCl3) δ 8.57 (d, J = 4.6 Hz, 
1H), 7.85 (s, 1H), 7.63 (td, J = 7.6, 1.6 Hz, 1H), 7.26 (d, J = 7.9 Hz, 1H), 7.14 (dd, J = 7.5, 4.8 Hz, 1H), 1.31 (s, 
12H), 0.88 (t, J = 7.6 Hz, 9H), 0.71 (q, J = 9.0, 8.3 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 157.2, 154.0, 
148.5, 136.0, 124.2, 122.4, 83.4, 25.0, 8.2, 5.4 ppm. IR (neat, cm-1): 2949, 2872, 1735, 1426, 1372, 1320, 
1238, 1144, 731. HRMS (ESI) [C19H33BNO2Si] (M+H) calcd. 345.2404, found 345.2404. 

 

(Z)-3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(triethylsilyl)vinyl)pyridine (88r). Following the 
general procedure, using 3-ethynylpyridine (41.2 mg, 0.4 mmol), the title compound was obtained in 85% 
yield (117.3 mg) as colorless oil. Rf 0.45 (Hex: EtOAc 10:1). 1H NMR (300 MHz, CDCl3) δ 8.62 (d, J = 2.2 Hz, 
1H), 8.44 (dd, J = 4.8, 1.5 Hz, 1H), 7.69 (dt, J = 7.9, 1.9 Hz, 1H), 7.21-7.09 (m, 2H), 1.25 (s, 12H), 0.97 (t, J = 
7.8 Hz, 9H), 0.71 (q, J = 8.6, 7.8 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 149.2, 148.6, 147.4, 136.1, 134.8, 
122.9, 83.7, 25.2, 7.5, 3.6 ppm. IR (neat, cm-1): 2952, 2874, 1591, 1371, 1330, 1297, 1139, 1005, 856, 706. 
HRMS (ESI) [C19H33BNO2Si] (M+H) calcd. 345.2404, found 345.2390. 

 

(Z)-triethyl(2-(4-ethynylphenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (88s). 
Following the general procedure, using 1,4-diethynylbenzene (50.5 mg, 0.4 mmol), the title compound 
was obtained in 81% yield (119.2 mg) as colorless oil. Rf 0.65 (Hex: EtOAc 20:1). 1H NMR (300 MHz, CDCl3) 
δ 8.04 (s, 1H), 7.42 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 3.09 (s, 1H), 1.29 (s, 12H), 0.82 (t, J = 7.8 Hz, 
9H), 0.52 (q, J = 7.8 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 157.4, 142.4, 131.6, 128.2, 121.2, 83.9, 83.4, 
77.7, 24.9, 7.8, 5.0 ppm. IR (neat, cm-1): 3299, 2952, 2873, 1573, 1499, 1318, 1270, 1144, 1005, 738. HRMS 
(ESI) [C22H34BO2Si] (M+H) calcd. 368.2436, found 368.2452. 
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1,3,5-tris((Z)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(triethylsilyl)vinyl)benzene (88t). 
Following the general procedure, using  1,3,5-triethynylbenzene (60.1 mg, 0.4 mmol), the title compound 
was obtained in 84% yield (294.2 mg) as colorless oil. Rf 0.59 (Hex: EtOAc 20:1). 1H NMR (300 MHz, CDCl3) 
δ 8.05 (s, 3H), 6.99 (s, 3H), 1.29 (s, 36H), 0.81 (t, J = 7.8 Hz, 27H), 0.51 (q, J = 7.8 Hz, 18H) ppm. 13C NMR 
(75 MHz, CDCl3) δ 158.6, 140.8, 126.9, 83.2, 24.9, 7.8, 4.9 ppm. IR (neat, cm-1): 2952, 2874, 1557, 1312, 
1269, 1143, 1005, 854. HRMS (ESI) [C48H88B3O6Si] (M+H) calcd. 876.6199, found 876.6233. 

 

Following the general procedure, using ethyl propiolate (39.2 mg, 0.4 mmol), the title compound was 
obtained in 20.2% of ZZ and 60.8% of EE as colorless oil. Rf 0.43 (Hex: EtOAc 10:1). ethyl (Z)-3-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(triethylsilyl)acrylate (88u). 1H NMR (300 MHz, CDCl3) δ 6.91 (s, 
1H), 4.17 (q, J = 7.1 Hz, 2H), 1.27 (s, 15H), 0.92 (t, J = 7.7 Hz, 9H), 0.85-0.70 (m, 6H) ppm. 13C NMR (75 MHz, 
CDCl3) δ 166.4, 143.1, 83.9, 60.5, 24.9, 14.4, 8.0, 4.0 ppm. IR (neat, cm-1): 2953, 2874, 1724, 1368,1319, 
1189, 1142, 851, 736. HRMS (ESI) [C17H33NaBO4Si] (M+Na) calcd. 362.2170, found 362.2178. ethyl (E)-3-
(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(triethylsilyl)acrylate (88u´). 1H NMR (300 MHz, CDCl3) 
δ 6.40 (s, 1H), 4.19 (q, J = 7.1 Hz, 2H), 1.35 (s, 12H), 1.27 (t, J = 7.1 Hz, 3H), 0.95 (t, J = 7.8 Hz, 9H), 0.68 (q, 
J = 8.7, 8.3 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 166.3, 138.1, 83.9, 60.8, 25.3, 14.4, 7.3, 3.3 ppm. IR 
(neat, cm-1): 2955, 1717, 1350, 1301, 1187, 1139, 1007, 852, 731. HRMS (ESI) [C17H33NaBO4Si] (M+Na) 
calcd. 362.2170, found 362.2177. 

 

Following the general procedure, using 1-(4-ethynylphenyl)ethan-1-one (57.7 mg, 0.4 mmol) in DME, the 
title compound was obtained in 52% yield of 98a, 25% of 98a´ separately. While 2 mL of Toluene was used 
as solvent instead of DME, the only Z isomer was obtained in 79% yield. (Z)-1-(4-(2-(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)-2-(triethylsilyl)vinyl)phenyl)ethan-1-one (98a). Following the general 
procedure, using 1-(4-ethynylphenyl)ethan-1-one (57.7 mg, 0.4 mmol) in Toulene, the title compound was 
obtained in 78% yield (120.1 mg) as colorless oil. Rf 0.63 (Hex: EtOAc 10:1). 1H NMR (300 MHz, CDCl3) δ 
8.07 (s, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 2.61 (s, 3H), 1.30 (s, 12H), 0.81 (t, J = 7.8 Hz, 
9H), 0.51 (q, J = 8.2 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 198.0, 156.9, 146.8, 136.1, 128.3, 128.0, 83.5, 
26.8, 24.9, 7.8, 4.9 ppm. IR (neat, cm-1): 2952, 2873, 1685, 1575, 1317, 1263, 1142, 722. HRMS (ESI) 
[C22H35BO3SiNa] (M+Na) calcd. 408.2377, found 408.2378. (E)-1-(4-(2-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)-2-(triethylsilyl)vinyl)phenyl)ethan-1-one (98a´). Rf 0.58 (Hex: EtOAc 10:1).1H NMR 
(300 MHz, CDCl3) δ 7.90 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.28 (s, 1H), 2.60 (s, 3H), 1.29 (s, 12H), 
1.01 (t, J = 7.8 Hz, 9H), 0.74 (q, J = 8.3 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 197.9, 149.7, 145.2, 136.1, 
128.4, 128.1, 83.7, 26.8, 25.3, 7.5, 3.7 ppm. IR (neat, cm-1): 2953, 1738, 1683, 1602, 1372, 1297, 1139, 
1005, 732. HRMS (ESI) [C22H35BO3SiNa] (M+Na) calcd. 408.2377, found 408.2385. 

 

Following the general procedure, using N,N-diethyl-4-ethynylbenzamide (80.5 mg, 0.4 mmol) in DME, the 
title compound was obtained in 53% of 98b and 27% of 98b´ as colorless oil. While 2 mL of Toluene was 
used as solvent instead of DME, the only Z isomer was obtained in 85% yield. (Z)-N,N-diethyl-4-(2-(4,4,5,5-
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tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(triethylsilyl)vinyl)benzamide (98b). Rf 0.49 (Hex: EtOAc 2:1). 1H 
NMR (300 MHz, CDCl3) δ 8.09 (s, 1H), 7.29 (s, 4H), 3.54 (s, 2H), 3.23 (s, 2H), 1.29 (s, 12H), 1.26-0.97 (m, 
6H), 0.81 (t, J = 7.8 Hz, 9H), 0.51 (q, J = 7.8 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3) δ 171.3, 157.5, 142.7, 
136.3, 128.0, 125.8, 83.3, 43.4, 39.4, 24.9, 14.2, 13.0, 7.7, 4.9 ppm. IR (neat, cm-1): 2951, 2873, 1634, 1575, 
1424, 1317, 1144, 1094, 722. HRMS (ESI) [C25H43NO3BSi] (M+H) calcd. 443.3136, found 443.3118. (E)-N,N-
diethyl-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(triethylsilyl)vinyl)benzamide (98b´). Rf 

0.44 (Hex: EtOAc 2:1). 1H NMR (300 MHz, CDCl3) δ 7.45 (d, J = 8.1 Hz, 2H), 7.34-7.24 (m, 3H), 3.53 (s, 2H), 
3.24 (s, 2H), 1.28 (s, 12H), 1.25-1.04 (m, 6H), 1.00 (t, J = 7.8 Hz, 9H), 0.73 (q, J = 7.8 Hz, 6H) ppm. 13C NMR 
(75 MHz, CDCl3) δ 150.3, 141.5, 136.5, 127.9, 126.2, 83.6, 43.4, 39.5, 25.2, 14.2, 12.9, 7.5, 3.7 ppm. IR 
(neat, cm-1): 2972, 2884, 1634, 1373, 1294, 1234, 1141, 731. HRMS (ESI) [C25H43NO3BSi] (M+H) calcd. 
443.3136, found 443.3115. 

      4.7.3. Synthetic application profile 

 

(Z)-6-phenyl-5-(triethylsilyl)hex-5-en-2-one (91). A general procedure for Rhodium catalyzed conjugate 
addition of 88a to enone. Methanol (1mL) was added to an oven-dried schlenk tube containing 
Rh(acac)(CO)2 (1.5 mg, 0.006 mmol), dppp (2.5 mg, 0.006 mmol), and 88a (34.4 mg, 0.10 mmol). After 
being stirred for 15 min at room temperature, the mixture was treated with water (0.20 mL) and methyl 
vinyl ketone (28 mg, 0.40 mmol). The resulting mixture was stirred at 50 oC for 24h, diluted with diethyl 
ether (10 mL), and washed with water (3 mL). The organic layer was then separated, dried over MgSO4, 
and concentrated. The resulting crude product was purified by column chromatography on silica gel to 
give desired product as a colorless oil (22.2 mg, 77% yield, Z:E = 5:1). Rf 0.36 (hexane/ethyl acetate 5:1). 
1H NMR (300 MHz, CDCl3) δ 7.42 -7.16 (m, 4H), 7.21-7.10 (m, 2H), 5.52 (t, J = 1.4 Hz, 1H), 2.77-2.68 (m, 
2H), 2.56-2.47 (m, 2H), 2.11 (s, 3H), 0.81 (t, J = 7.9 Hz, 9H), 0.29 (q, J = 7.9 Hz, 6H) ppm. 13C NMR (101 MHz, 
CDCl3) δ 208.4, 158.6, 143.7, 128.6, 128.5, 128.0, 127.9, 127.3, 124.5, 42.5, 37.1, 30.0, 7.6, 4.5 ppm. IR 
(neat, cm-1): 2951, 2873, 1717, 1594, 1359, 1158, 1014, 771, 702. HRMS (ESI) [C18H28NaOSi] (M+Na) calcd. 
311.1799, found 311.1794. 

 

(Z)-triethyl(1-(4-methoxyphenyl)-2-phenylvinyl)silane (92). A general procedure for suzuli coupling of 
88a with 1-iodo-4-methoxybenzene. A mixture of 88a (68.8 mg, 0.20 mmol), 1-iodo-4-methoxybenzene 
(70.5 mg, 0.30 mmol), Pd(PPh3)4 (11.6 mg, 0.01mmol), and 3 M KOH aqueous solution (0.20 mL, 0.60 
mmol) in dioxane (2 mL) was heated at 90 oC for 12h. The reaction mixture was diluted with diethyl ether 
(10 mL), washed with water (3 mL). The organic layer was then separated, dried over anhydrous MgSO4, 
and concentrated. The crude product was purified by column chromatography on silica gel to give the 
desired product  as colorless oil in 88% (57.1 mg). Rf 0.67 (Hex: EtOAc 10:1).  1H NMR (300 MHz, CDCl3) δ 
7.34-7.27 (m, 6H), 7.12 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 3.82 (s, 3H), 0.80 (t, J = 7.8 Hz, 12H), 0.41 

MeOH/H2O
50 ºC, 16h

Rh(acac)(CO)2 (6 mmol%)
dppb(6 mmol%)

O

BPin

SiEt3 SiEt3

O

BPin

SiEt3

p-OMe-PhI

KOH(aq),dioxane,

Pd(PPh3)4 (5 mmol%)

70 ºC, 24h
SiEt3

OMe
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(q, J = 7.9 Hz, 9H) ppm. 13C NMR (75 MHz, CDCl3) δ 157.9, 146.2, 144.6, 140.2, 140.2, 128.5, 128.5, 127.9, 
127.2, 113.4, 55.4, 7.7, 4.8 ppm. Spectroscopic data for 92 match those previously reported in the 
literature.2 

 

2-(4-methoxyphenyl)-3-phenyl-1-(4-(trifluoromethyl)phenyl)propan-1-one (93). A THF solution of 
anhydrous Me4NF (55.8 mg, 0.60 mmol) was added to 4-(trifluoromethyl)benzaldehyde (69.6 mg, 0.40 
mmol) and (Z)-triethyl(1-(4-methoxyphenyl)-2-phenylvinyl)silane (64.9 mg, 0.20 mmol) under an argon 
atmosphere. The resulting solution was stirred at 60 oC for 24 h. The reaction mixture was diluted with 
diethyl ether (10 mL) and washed with saturated aq. NH4Cl (6 mL). The organic layer was then separated, 
dried over MgSO4, and concentrated. The crude product was purified by column chromatography to give 
the title compound as a colorless oil in 74% (56.8 mg). Rf 0.44 (Hex: EtOAc 10:1). 1H NMR (300 MHz, CDCl3) 
δ 7.96 (d, J = 8.1 Hz, 2H), 7.60 (d, J = 8.1 Hz, 2H), 7.24-6.99 (m, 7H), 6.80 (d, J = 8.7 Hz, 2H), 4.72 (t, J = 7.2 
Hz, 1H), 3.75 (s, 3H), 3.53 (dd, J = 13.7, 7.4 Hz, 1H), 3.04 (dd, J = 13.7, 7.1 Hz, 1H) ppm. 13C NMR (101 MHz, 
CDCl3) δ 198.7, 159.0, 139.7, 139.7, 134.13 (d, J = 32.7 Hz), 130.5, 129.5, 129.3, 129.1, 128.4, 126.4, 125.67 
(q, J = 3.8 Hz), 114.7, 55.7, 55.4, 40.1 ppm. 19F NMR (376 MHz, CDCl3) δ -63.3 ppm. IR (neat, cm-1): 3029, 
2935, 1686, 1509, 1321, 1126, 1065, 830, 699. HRMS (ESI) [C23H19F3NaO2] (M+Na) calcd. 407.1229, found 
407.1225. 

 

(E)-1-methoxy-4-styrylbenzene (94). To a solution of (Z)-triethyl(1-(4-methoxyphenyl)-2-
phenylvinyl)silane (64.9 mg, 0.20 mmol) in THF (2 mL) was added 1 M solution of TBAF in THF (1 mL), and 
the resulting solution was heated at 60 oC for 3 h. The mixture was diluted with diethyl ether (3 mL) and 
treated with water (3mL). The organic layer was separated, dried over anhydrous MgSO4, and 
concentrated. The crude product was purified by column chromatography on silica gel to afford (E)-1-
methoxy-4-styrylbenzene as colorless oil in 79% (33.7 mg). Rf 0.54 (Hex: EtOAc 40:1). 1H NMR (300 MHz, 
CDCl3) δ 7.53-7.41 (m, 4H), 7.35 (t, J = 7.5 Hz, 2H), 7.26-7.20 (m, 1H), 7.15-6.94 (m, 2H), 6.91 (d, J = 8.8 Hz, 
2H), 3.84 (s, 3H) ppm. 13C NMR (75 MHz, CDCl3) δ 159.5, 137.8, 130.3, 128.8, 128.4, 127.9, 127.4, 126.8, 
126.4, 114.3, 55.5 ppm. Spectroscopic data for 94 match those previously reported in the literature.3 

  

(Z)-1-(1-bromo-2-phenylvinyl)-4-methoxybenzene (95). To a solution of NBS (53.2 mg, 0.24 mmol, 1.2 
equiv) in 1.0 mL dry MeCN, (Z)-triethyl(1-(4-methoxyphenyl)-2-phenylvinyl)silane (64.9 mg, 0.2 mmol) in  
1.0 mL dry MeCN was added. After the reaction was stirring at 0 oC for 4 h , the resulting mixture was 
extracted with EtOAc (10 mL) and the organic layer was dried over MgSO4. After filtration and evaporation 
of all volatiles, the residue was purified by column chromatography. The title compound was isolated as 

SiEt3

OMe

THF, 60 ºC, 5h

Me4NF (3 eq)
p-CF3-PhCHO

OMe

O

CF3

SiEt3

OMe OMe

HTHF, 60 ºC, 24h

TBAF (5 eq)

SiEt3

OMe OMe

BrMeCN, 0 ºC, 5h

NBS (1.2 equiv)
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a colorless oil in 80 % (46.1 mg) after chromatography on silica. Rf 0.63 (Hex: EtOAc 50:1).  1H NMR (300 
MHz, Chloroform-d) δ 7.30 (d, J = 8.9 Hz, 2H), 7.19 -7.11 (m, 3H), 7.12 (s, 1H), 7.04-6.95 (m, 2H), 6.83 (d, J 
= 8.8 Hz, 2H), 3.82 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 160.0, 136.4, 132.5, 131.9, 130.9, 128.8, 128.4, 
127.5, 123.8, 114.1, 55.4 ppm. Spectroscopic data for 95 match those previously reported in the 
literature.4 

 

(S)-4-(1-(4-methoxyphenyl)-2-phenylethyl)-2-methylthiophene (96). In a glove box, a reaction tube was 
charged with PdCl2(MeCN)2 (1.3 mg, 5 mol %, 0.005 mmol), CuCl2 (13.4 mg, 0.1 mmol). Then, 0.4 mL of 
dry 1,2-dichloroethane, (Z)-triethyl(1-(4-methoxyphenyl)-2-phenylvinyl)silane (32.5 mg, 0.1 mmol), and 
thiophene substrate (17.8 mg, 0.2 mmol) were added, and the resulting mixture was stirred at 80 °C for 
16 h. The reaction mixture was cooled to room temperature, and passed through a silica gel short column. 
After the volatile was removed in vacuo, the residue was purified by silica gel flash column 
chromatography to give the corresponding product in 62% (18.9 mg) as colorless oil. Rf 0.54 (Hex: EtOAc 
20:1). 1H NMR (400 MHz, CDCl3) δ 7.23-7.06 (m, 5H), 7.02 (d, J = 7.8 Hz, 2H), 6.80 (s, 2H), 6.58-6.53 (m, 
1H), 6.54-6.47 (m, 1H), 4.30 (t, J = 7.7 Hz, 1H), 3.77 (s, 3H), 3.39 (dd, J = 13.6, 6.9 Hz, 1H), 3.22 (dd, J = 13.6, 
8.5 Hz, 1H), 2.39 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 158.3, 147.1, 140.1, 138.2, 136.4, 129.2, 128.9, 
128.2, 126.1, 124.6, 123.8, 113.8, 55.3, 48.2, 43.8, 15.5 ppm. IR (neat, cm-1): 2955, 2863, 1713, 1609, 1455, 
1249, 1167, 1032, 779, 754. HRMS (ESI) [C20H20SO] (M+H) calcd. 308.1238, found 308.1236. 

  

((4-(difluoromethyl)phenyl)ethynyl)triethylsilane (100). Following the general procedure, using  1-
ethynyl-4-(trifluoromethyl)benzene (68.2 mg, 0.4 mmol), the title compound was obtained in 61% yield 
(64.7 mg) as colorless oil. Rf 0.49 (Hex: EtOAc 20:1). 1H NMR (300 MHz, CDCl3) δ 7.55 (d, J = 8.5 Hz, 2H), 
7.44 (d, J = 8.3 Hz, 2H), 6.63 (t, J = 56.4 Hz, 1H), 1.06 (t, J = 7.8 Hz, 9H), 0.69 (q, J = 8.4, 7.9 Hz, 6H) ppm. 
13C NMR (101 MHz, CDCl3) δ 134.2 (t, J = 22.5 Hz), 132.4, 126.1, 125.6 (t, J = 6.1 Hz), 114.5 (t, J = 239.1 Hz), 
105.4, 93.9, 7.6, 4.5 ppm. 19F NMR (376 MHz, CDCl3) δ -111.0 ppm. IR (neat, cm-1): 2957, 2876, 2159, 1737, 
1374, 1234, 1043, 729. HRMS (ESI) [C15H20NaF2Si] (M+Na) calcd. 288.1131, found 288.1140. 

 

 

 

 

 

SiEt3

OMe PdCl2(MeCN)2 (5mol%)
CuCl2 (1.0 equiv)

DCE, 80 ºC, 16h

OMe

S
MeS

Me
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      4.7.4. Mechanistic studies 

 
 

Reaction between 87a and Et3SiBpin in the presence of stoichiometric Amount of n-BuLi. 
phenylacetylene (87a) (20.4 mg, 0.2 mmol) was placed in an oven-dried 10 mL screw-capped test tube 
containing a magnetic stirring bar. DME (1.0 mL) and nBuLi (200 μL, 0.2 mmol, 1.0 M hexane) were 
sequentially added to the vial at –78 oC. After stirring for 30 min at –78  oC, Et3SiBpin (47) (48.4 mg, 0.2 
mmol) was added, and the mixture was warmed to room temperature. After 12 hours, no desired product 
88a was detected from GC and GC-MS. After Et3SiBpin was added, if the reaction mixture was directly 
warmed to 70 oC with stirring for 3h. Then the mixture was quenched with EtOAc, filtered through a 
Celite® plug and concentrated under reduced pressure. The desired product was directly purified by flash 
column chromatography in silica to give the corresponding product in 22% (15.1 mg) as colorless oil.  
Reaction between 87a and PhMe2SiLi 

To a solution of naphthalene (12.8 mg, 0.1 mmol) in THF (10 mL), were added lithium clippings (70 mg, 10 
mmol). The resulting mixture started turning dark green and was stirred at room temperature for 1 h 
under an argon atmosphere. Then PhMe2SiCl (341.4 mg, 2 mmol) was added dropwise and the mixture 
was stirred at room temperature for 3 h. The resulting 10 mL solution was transferred via cannula to a 
Schlenk reaction vessel under argon and then stored at room temperature. A portion of 1.5 mL of the 
above solution (0.3 mmol) was added into a solution of 101 (45.6 mg, 0.2 mmol) in 1.0 mL DME at –78  oC. 
The reaction was warmed to 70 oC. After 3 h, the reaction quenched with 2 equiv of H2O. No desired 
product was detected from GC and GC-MS.  
 

 
 

-78 to 70 °C

 Et3SiBpin (1 equiv)

n-BuLi (1 equiv)
DME/hexane  A: 88a, R = SiEt3, 22%

 B: 88b, R = SiMe2Ph, 0%87a 101
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NMR experiment of Et3SiBpin and KHMDS 
 
    d8-Toluene  

 

To gain insights into the nature of the active nucleophilic component, we monitored the model reaction 
using a  mixture of Phenylacetylene (15.3 mg, 1.0 eq, 0.15 mol), KHMDS (1.8 mg, 0.2 eq, 0.03 mmol) and 
Et3SiBpin (34.7 mg, 1.0 eq, 0.15 mmol) in 0.6 mL d8-Toluene at 90 degrees. After 30 min by 11B NMR 
spectroscopy, three peaks at δ = 3.4, 31.8 and 35.1 ppm were observed. These peaks could be assigned 
as tetracoordinated anionic boron species, silaboralated product and Et3SiBpin. And the formation of  
tetracoordinated anionic boron species might support the plausible reaction mechanism. 
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      4.7.5. X-ray diffraction of 88i 

 
Table 1.  Crystal data and structure refinement for mo_88i_0m. 
_____________________________________________________________________ 
Identification code  mo_YGU928_0m 
Empirical formula  C20 H32 B Cl O2 Si  
Formula weight  378.80 
Temperature  100(2)K 
Wavelength    0.71073 Å 
Crystal system  triclinic 
Space group  P -1 
Unit cell dimensions a =  7.2616(11)Å a=  70.227(4)°. 
 b =  15.344(3)Å b = 81.937(4)°. 
 c =  20.498(3)Å g =  88.840(5)°. 

Volume 2127.2(6) Å3 
Z 4 

Density (calculated) 1.183 Mg/m3 

Absorption coefficient 0.246 mm-1 
F(000)  816 

Crystal size  0.150 x 0.100 x 0.050 mm3 
Theta range for data collection 1.066 to 28.888°. 
Index ranges -9<=h<=5,-20<=k<=20,-27<=l<=27 
Reflections collected  29061 
Independent reflections 11058[R(int) = 0.0720] 
Completeness to theta =28.888°  98.9%  
Absorption correction  Multi-scan 
Max. and min. transmission 0.74 and 0.41 

Refinement method  Full-matrix least-squares on F2 
Data / restraints / parameters  11058/ 0/ 465 

Goodness-of-fit on F2  1.013 
Final R indices [I>2sigma(I)]  R1 = 0.0648, wR2 = 0.1659 
R indices (all data)  R1 = 0.1016, wR2 = 0.1945 

Largest diff. peak and hole  0.849 and -0.696 e.Å-3 
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Table 2.   Bond lengths [Å] and angles [°] for  mo_YGU928_0m. 
_____________________________________________________ 
Bond lengths---- 
Cl1B   C1B    1.743(2)         
Si1B   C13B   1.878(2)         
Si1B   C9B    1.881(2)         
Si1B   C11B   1.886(3)         
Si1B   C8B    1.897(2)         
O1B    B1B    1.369(3)         
O1B    C15B   1.459(3)         
O2B    B1B    1.381(3)         
O2B    C16B   1.460(3)         
C1B    C2B    1.383(3)         
C1B    C6B    1.387(3)         
C2B    C3B    1.386(3)         
C3B    C4B    1.399(3)         
C4B    C5B    1.403(3)         
C4B    C7B    1.465(3)         
C5B    C6B    1.379(3)         
C7B    C8B    1.355(3)         
C8B    B1B    1.557(3)         
C9B    C10B   1.535(3)         
C11B   C12B   1.520(4)         
C13B   C14B   1.528(3)         
C15B   C17B   1.506(3)         
C15B   C18B   1.523(3)         
C15B   C16B   1.557(3)         
C16B   C20B   1.514(3)         
C16B   C19B   1.519(3)         
Cl1A   C1A    1.743(3)         
Si1A   C13A   1.876(2)         
Si1A   C11A   1.876(2)         
Si1A   C9A    1.890(2)         
Si1A   C8A    1.894(2)         
O1A    B1A    1.371(3)         
O1A    C15A   1.464(3)         
O2A    B1A    1.376(3)         
O2A    C16A   1.466(3)         
C1A    C2A    1.377(3)         
C1A    C6A    1.383(4)         
C2A    C3A    1.378(3)         
C3A    C4A    1.396(3)         
C4A    C5A    1.390(3)         
C4A    C7A    1.474(3)         
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C5A    C6A    1.382(4)         
C7A    C8A    1.352(3)         
C8A    B1A    1.557(3)         
C9A    C10A   1.531(3)         
C11A   C12A   1.529(3)         
C13A   C14A   1.529(3)         
C15A   C17A   1.508(3)         
C15A   C18A   1.524(3)         
C15A   C16A   1.553(3)         
C16A   C20A   1.510(3)         
C16A   C19A   1.522(3)         
 
Angles---------- 
C13B   Si1B   C9B    107.80(11)                
C13B   Si1B   C11B   107.76(11)                
C9B    Si1B   C11B   109.97(11)                
C13B   Si1B   C8B    113.76(10)                
C9B    Si1B   C8B    104.57(10)                
C11B   Si1B   C8B    112.83(11)                
B1B    O1B    C15B   107.67(17)                
B1B    O2B    C16B   106.85(17)                
C2B    C1B    C6B    121.7(2)                  
C2B    C1B    Cl1B   119.04(19)                
C6B    C1B    Cl1B   119.27(18)                
C1B    C2B    C3B    118.7(2)                  
C2B    C3B    C4B    121.5(2)                  
C3B    C4B    C5B    117.7(2)                  
C3B    C4B    C7B    122.9(2)                  
C5B    C4B    C7B    119.3(2)                  
C6B    C5B    C4B    121.7(2)                  
C5B    C6B    C1B    118.7(2)                  
C8B    C7B    C4B    130.5(2)                  
C7B    C8B    B1B    113.1(2)                  
C7B    C8B    Si1B   128.12(18)                
B1B    C8B    Si1B   118.56(16)                
C10B   C9B    Si1B   115.24(17)                
C12B   C11B   Si1B   115.72(18)                
C14B   C13B   Si1B   115.43(17)                
O1B    C15B   C17B   109.26(19)                
O1B    C15B   C18B   106.82(18)                
C17B   C15B   C18B   110.6(2)                  
O1B    C15B   C16B   101.62(16)                
C17B   C15B   C16B   115.18(18)                
C18B   C15B   C16B   112.66(19)                

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 300 

O2B    C16B   C20B   108.59(19)                
O2B    C16B   C19B   106.53(18)                
C20B   C16B   C19B   110.37(19)                
O2B    C16B   C15B   102.14(16)                
C20B   C16B   C15B   115.07(19)                
C19B   C16B   C15B   113.36(19)                
O1B    B1B    O2B    112.2(2)                  
O1B    B1B    C8B    124.5(2)                  
O2B    B1B    C8B    123.2(2)                  
C13A   Si1A   C11A   110.70(11)                
C13A   Si1A   C9A    107.28(11)                
C11A   Si1A   C9A    110.81(11)                
C13A   Si1A   C8A    114.50(10)                
C11A   Si1A   C8A    108.27(10)                
C9A    Si1A   C8A    105.14(10)                
B1A    O1A    C15A   107.22(17)                
B1A    O2A    C16A   106.98(17)                
C2A    C1A    C6A    121.0(2)                  
C2A    C1A    Cl1A   119.3(2)                  
C6A    C1A    Cl1A   119.62(19)                
C1A    C2A    C3A    119.5(2)                  
C2A    C3A    C4A    121.0(2)                  
C5A    C4A    C3A    118.0(2)                  
C5A    C4A    C7A    120.0(2)                  
C3A    C4A    C7A    121.8(2)                  
C6A    C5A    C4A    121.5(2)                  
C5A    C6A    C1A    118.8(2)                  
C8A    C7A    C4A    129.5(2)                  
C7A    C8A    B1A    114.06(19)                
C7A    C8A    Si1A   129.42(18)                
B1A    C8A    Si1A   116.49(16)                
C10A   C9A    Si1A   116.51(17)                
C12A   C11A   Si1A   116.55(17)                
C14A   C13A   Si1A   114.80(17)                
O1A    C15A   C17A   109.1(2)                  
O1A    C15A   C18A   106.53(18)                
C17A   C15A   C18A   110.7(2)                  
O1A    C15A   C16A   101.87(17)                
C17A   C15A   C16A   114.81(19)                
C18A   C15A   C16A   113.0(2)                  
O2A    C16A   C20A   108.70(19)                
O2A    C16A   C19A   106.57(19)                
C20A   C16A   C19A   110.58(19)                
O2A    C16A   C15A   102.04(16)                
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C20A   C16A   C15A   114.9(2)                  
C19A   C16A   C15A   113.2(2)                  
O1A    B1A    O2A    112.5(2)                  
O1A    B1A    C8A    123.6(2)                  
O2A    B1A    C8A    123.9(2)                  
------------------------------------------------------- 
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Table 3.  Torsion angles [°] for mo_YGU928_0m. 
________________________________________________________________ 
C6B    C1B    C2B    C3B    1.5(3)                                      
Cl1B   C1B    C2B    C3B    -179.44(16)                                 
C1B    C2B    C3B    C4B    -0.6(3)                                     
C2B    C3B    C4B    C5B    -1.2(3)                                     
C2B    C3B    C4B    C7B    -177.5(2)                                   
C3B    C4B    C5B    C6B    2.2(3)                                      
C7B    C4B    C5B    C6B    178.6(2)                                    
C4B    C5B    C6B    C1B    -1.3(3)                                     
C2B    C1B    C6B    C5B    -0.6(3)                                     
Cl1B   C1B    C6B    C5B    -179.65(17)                                 
C3B    C4B    C7B    C8B    -38.5(4)                                    
C5B    C4B    C7B    C8B    145.4(3)                                    
C4B    C7B    C8B    B1B    172.9(2)                                    
C4B    C7B    C8B    Si1B   -12.1(4)                                    
C13B   Si1B   C8B    C7B    -23.9(3)                                    
C9B    Si1B   C8B    C7B    -141.3(2)                                   
C11B   Si1B   C8B    C7B    99.2(2)                                     
C13B   Si1B   C8B    B1B    150.87(18)                                  
C9B    Si1B   C8B    B1B    33.5(2)                                     
C11B   Si1B   C8B    B1B    -86.0(2)                                    
C13B   Si1B   C9B    C10B   49.4(2)                                     
C11B   Si1B   C9B    C10B   -67.9(2)                                    
C8B    Si1B   C9B    C10B   170.75(18)                                  
C13B   Si1B   C11B   C12B   -165.22(17)                                 
C9B    Si1B   C11B   C12B   -48.0(2)                                    
C8B    Si1B   C11B   C12B   68.3(2)                                     
C9B    Si1B   C13B   C14B   65.40(18)                                   
C11B   Si1B   C13B   C14B   -175.95(16)                                 
C8B    Si1B   C13B   C14B   -50.06(19)                                  
B1B    O1B    C15B   C17B   -147.08(19)                                 
B1B    O1B    C15B   C18B   93.3(2)                                     
B1B    O1B    C15B   C16B   -24.9(2)                                    
B1B    O2B    C16B   C20B   -147.40(19)                                 
B1B    O2B    C16B   C19B   93.7(2)                                     
B1B    O2B    C16B   C15B   -25.4(2)                                    
O1B    C15B   C16B   O2B    30.2(2)                                     
C17B   C15B   C16B   O2B    148.1(2)                                    
C18B   C15B   C16B   O2B    -83.8(2)                                    
O1B    C15B   C16B   C20B   147.60(19)                                  
C17B   C15B   C16B   C20B   -94.4(3)                                    
C18B   C15B   C16B   C20B   33.7(3)                                     
O1B    C15B   C16B   C19B   -84.0(2)                                    
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C17B   C15B   C16B   C19B   33.9(3)                                     
C18B   C15B   C16B   C19B   162.0(2)                                    
C15B   O1B    B1B    O2B    10.1(3)                                     
C15B   O1B    B1B    C8B    -172.6(2)                                   
C16B   O2B    B1B    O1B    10.9(3)                                     
C16B   O2B    B1B    C8B    -166.5(2)                                   
C7B    C8B    B1B    O1B    -157.3(2)                                   
Si1B   C8B    B1B    O1B    27.1(3)                                     
C7B    C8B    B1B    O2B    19.7(3)                                     
Si1B   C8B    B1B    O2B    -155.86(18)                                 
C6A    C1A    C2A    C3A    1.8(4)                                      
Cl1A   C1A    C2A    C3A    -179.34(18)                                 
C1A    C2A    C3A    C4A    -0.4(3)                                     
C2A    C3A    C4A    C5A    -1.9(3)                                     
C2A    C3A    C4A    C7A    -177.6(2)                                   
C3A    C4A    C5A    C6A    2.9(4)                                      
C7A    C4A    C5A    C6A    178.7(2)                                    
C4A    C5A    C6A    C1A    -1.6(4)                                     
C2A    C1A    C6A    C5A    -0.8(4)                                     
Cl1A   C1A    C6A    C5A    -179.7(2)                                   
C5A    C4A    C7A    C8A    143.4(3)                                    
C3A    C4A    C7A    C8A    -41.0(4)                                    
C4A    C7A    C8A    B1A    172.5(2)                                    
C4A    C7A    C8A    Si1A   -9.5(4)                                     
C13A   Si1A   C8A    C7A    -23.2(3)                                    
C11A   Si1A   C8A    C7A    100.8(2)                                    
C9A    Si1A   C8A    C7A    -140.7(2)                                   
C13A   Si1A   C8A    B1A    154.72(17)                                  
C11A   Si1A   C8A    B1A    -81.2(2)                                    
C9A    Si1A   C8A    B1A    37.2(2)                                     
C13A   Si1A   C9A    C10A   34.9(2)                                     
C11A   Si1A   C9A    C10A   -86.0(2)                                    
C8A    Si1A   C9A    C10A   157.23(18)                                  
C13A   Si1A   C11A   C12A   -75.0(2)                                    
C9A    Si1A   C11A   C12A   43.9(2)                                     
C8A    Si1A   C11A   C12A   158.7(2)                                    
C11A   Si1A   C13A   C14A   -173.10(16)                                 
C9A    Si1A   C13A   C14A   65.88(18)                                   
C8A    Si1A   C13A   C14A   -50.4(2)                                    
B1A    O1A    C15A   C17A   -147.2(2)                                   
B1A    O1A    C15A   C18A   93.3(2)                                     
B1A    O1A    C15A   C16A   -25.4(2)                                    
B1A    O2A    C16A   C20A   -146.5(2)                                   
B1A    O2A    C16A   C19A   94.3(2)                                     
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B1A    O2A    C16A   C15A   -24.7(2)                                    
O1A    C15A   C16A   O2A    30.0(2)                                     
C17A   C15A   C16A   O2A    147.7(2)                                    
C18A   C15A   C16A   O2A    -83.9(2)                                    
O1A    C15A   C16A   C20A   147.4(2)                                    
C17A   C15A   C16A   C20A   -94.8(3)                                    
C18A   C15A   C16A   C20A   33.5(3)                                     
O1A    C15A   C16A   C19A   -84.2(2)                                    
C17A   C15A   C16A   C19A   33.6(3)                                     
C18A   C15A   C16A   C19A   161.9(2)                                    
C15A   O1A    B1A    O2A    10.9(3)                                     
C15A   O1A    B1A    C8A    -171.2(2)                                   
C16A   O2A    B1A    O1A    9.8(3)                                      
C16A   O2A    B1A    C8A    -168.0(2)                                   
C7A    C8A    B1A    O1A    -158.3(2)                                   
Si1A   C8A    B1A    O1A    23.4(3)                                     
C7A    C8A    B1A    O2A    19.3(3)                                     
Si1A   C8A    B1A    O2A    -159.00(19)                                 
----------------------------------------------------------------- 
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Symetry operations 
________________________________________________________________ 
1  'x, y, z' 
2  '-x, -y, -z' 
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      4.7.7. NMR spectra 

 
 

 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.0
5

9
.0
7

1
2
.9
0

5
.3
5

1
.0
0

0
.5
1

0
.5
3

0
.5
6

0
.5
8

0
.8
2

0
.8
5

0
.8
7

1
.3
2

7
.2
9

8
.1
4

-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

4
.9

5
7

7
.7

9
1

2
4

.9
2

6

7
7

.1
6

0
 C

D
C

l3

8
3

.2
3

6

1
2

7
.5

5
5

1
2

7
.7

0
4

1
2

8
.1

0
9

1
4

1
.8

7
0

1
5

8
.5

4
1

Bpin

SiEt3

88a 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 307 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.0

7

1
2

.4
0

5
.1

5

3
.4

2

2
.1

3

1
.0

0

0
.2

2
1

1
.2

4
9

7
.1

8
5

7
.2

6
0

 C
D

C
l3

7
.2

9
4

7
.3

0
5

7
.3

1
5

7
.5

4
6

7
.5

5
6

7
.5

6
3

7
.5

7
8

8
.1

2
1

-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

-
0

.4
2

0

2
4

.8
8

6

7
7

.1
6

0
 C

D
C

l3

8
3

.4
6

1

1
2

7
.6

6
5

1
2

7
.7

1
6

1
2

7
.7

7
7

1
2

8
.5

3
2

1
2

8
.5

6
3

1
3

4
.0

6
0

1
4

0
.9

3
1

1
5

8
.3

9
5

Bpin

SiMe2Ph

88b 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 308 

 
 
 

 
 
 
 
 

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.3
3

9
.4
4

1
2
.2
0

2
.3
0

2
.2
0

1
.0
0

0
.4
9

0
.5
1

0
.5
4

0
.5
7

0
.8
2

0
.8
5

0
.8
8

1
.3
2

6
.9
8

7
.0
4

7
.0
9

7
.1
9

7
.2
5

7
.2
8

7
.3
0

8
.0
4

-20-100102030405060708090100110120130140150160170180190200210
f1	(ppm)

4
.6

0

7
.6

7

2
4

.9
1

7
7

.1
6

 C
D

C
l3

8
3

.2
9

1
1

4
.9

7

1
1

5
.2

6

1
2

3
.2

4

1
2

3
.2

8

1
2

9
.3

8

1
2

9
.4

8

1
2

9
.7

3

1
3

0
.5

0

1
3

0
.5

5

1
5

1
.5

3

1
5

1
.5

6

1
5

8
.3

2

1
6

1
.5

9

BPin

SiEt3

F

88c 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 309 

 
 
 

 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.2
7

9
.4
2

1
2
.5
5

3
.3
3

1
.0
9

1
.0
0

0
.4
5

0
.4
8

0
.5
0

0
.5
3

0
.8
2

0
.8
5

0
.8
7

1
.3
2

7
.1
9

7
.2
1

7
.2
4

7
.3
3

7
.3
4

7
.3
6

8
.0
5

-100102030405060708090100110120130140150160170180190200210
f1	(ppm)

4
.6

2

7
.6

7

2
4

.9
0

7
7

.1
6

 C
D

C
l3

8
3

.2
4

1
2

5
.9

5

1
2

8
.9

3

1
3

0
.3

1

1
3

3
.0

2

1
4

0
.4

7

1
5

5
.9

1

Bpin

SiEt3

Cl

88d 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 310 

 
 
 
 

 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0
f1	(ppm)

6
.0

4

9
.0

2

1
2

.3
8

3
.0

7

3
.0

0

1
.0

3

1
.0

0

0
.4

8
2

0
.5

1
0

0
.5

3
7

0
.5

6
1

0
.7

9
7

0
.8

2
3

0
.8

4
9

1
.2

9
1

2
.3

3
1

7
.0

4
8

7
.0

7
8

7
.1

4
5

7
.1

6
9

7
.1

9
5

7
.2

6
0

 C
D

C
l3

8
.0

8
2

-20-100102030405060708090100110120130140150160170180190200210
f1	(ppm)

5
.0

0
8

7
.8

2
1

2
1

.5
0

0

2
4

.9
3

8

7
7

.1
6

0
 C

D
C

l3

8
3

.2
1

9

1
2

5
.2

1
3

1
2

7
.6

1
0

1
2

8
.2

8
2

1
2

8
.9

4
1

1
3

7
.1

1
4

1
4

1
.7

5
9

1
5

8
.7

2
2

Bpin

SiEt3

Me

88e 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 311 

 
 
 
 
 

 
 
 

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.2

0

9
.2

9

1
2

.4
6

1
.0

1

2
.0

7

1
.0

2

1
.5

7

1
.0

0

0
.4

6
9

0
.4

9
7

0
.5

2
4

0
.5

5
0

0
.7

9
3

0
.8

1
9

0
.8

4
6

1
.2

9
4

6
.2

4
5

6
.4

9
1

6
.7

3
8

7
.0

0
7

7
.0

1
5

7
.0

2
2

7
.0

8
3

7
.1

0
9

7
.2

5
2

7
.2

6
0

 C
D

C
l3

7
.2

8
1

7
.2

9
2

7
.3

0
6

8
.0

3
1

-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

4
.8

2
5

7
.7

4
2

2
4

.9
3

5

7
7

.1
6

0
 C

D
C

l3

8
3

.4
1

9

1
1

8
.6

1
2

1
1

9
.0

5
8

1
2

5
.2

0
5

1
2

9
.2

0
0

1
4

3
.8

8
4

1
5

0
.7

8
1

1
5

6
.7

1
1

Bpin

SiEt3

HF2CO

88f 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 312 

 
 
 

 
 
 
 
 

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5
f1	(ppm)

6
.0

0

9
.0

2

1
2

.1
7

2
.0

6

2
.1

0

1
.0

0

0
.4

8
6

0
.5

0
5

0
.5

2
5

0
.5

4
5

0
.7

9
8

0
.8

1
7

0
.8

3
7

1
.2

9
0

6
.9

6
5

6
.9

7
6

6
.9

9
2

7
.1

9
1

7
.1

9
9

7
.2

1
9

7
.2

3
5

7
.2

6
0

 C
D

C
l3

8
.0

3
3

-100102030405060708090100110120130140150160170180190200210
f1	(ppm)

4
.9

7
4

7
.7

7
9

2
4

.9
4

2

7
7

.1
6

0
 C

D
C

l3

8
3

.3
2

7

1
1

4
.5

6
4

1
1

4
.7

7
6

1
2

9
.7

6
8

1
2

9
.8

4
8

1
3

7
.8

7
2

1
3

7
.9

0
1

1
5

7
.2

1
3

1
6

1
.2

5
0

1
6

3
.7

0
0

Bpin

SiEt3F

88g 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 313 

 
 
 
 

 
 
 
 

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.5
f1	(ppm)

6
.3

3

9
.5

8

1
3

.1
5

2
.0

9

2
.1

2

1
.0

0

0
.4

7
8

0
.5

0
4

0
.5

3
1

0
.5

5
6

0
.7

9
5

0
.8

2
1

0
.8

4
7

1
.2

8
9

7
.1

0
7

7
.1

3
4

7
.2

6
0

 C
D

C
l3

7
.3

9
7

7
.4

2
5

7
.9

8
8

-20-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

4
.9

3
9

7
.7

7
7

2
4

.9
3

1

7
7

.1
6

0
 C

D
C

l3

8
3

.3
7

4

1
2

1
.6

4
7

1
2

9
.8

0
9

1
3

0
.8

9
8

1
4

0
.6

8
6

1
5

6
.9

0
4

Bpin

SiEt3Br

88h 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 314 

 
 
 

 
 
 
 

-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.5
0

9
.9
4

1
3
.8
9

2
.0
3

2
.4
8

1
.0
0

0
.4
9
9

0
.5
2
5

0
.5
5
0

0
.5
7
6

0
.8
1
6

0
.8
4
1

0
.8
6
7

1
.3
1
1

7
.1
8
7

7
.2
1
3

7
.2
6
7

7
.2
8
2

7
.2
9
1

8
.0
3
2

-20-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

4
.9

3
9

7
.7

7
0

2
4

.9
2

1

7
7

.1
6

0
 C

D
C

l3

8
3

.3
5

0

1
2

7
.9

4
5

1
2

9
.4

8
5

1
3

3
.4

3
9

1
4

0
.2

3
7

1
5

6
.9

3
1

Bpin

SiEt3Cl

88i 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 315 

 
 
 
 
 

 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.0

5

9
.1

9

1
2

.8
1

2
.2

1

2
.3

4

1
.0

0

0
.4

7
5

0
.5

0
2

0
.5

2
8

0
.5

5
3

0
.7

9
6

0
.8

2
2

0
.8

4
9

1
.3

0
5

7
.1

2
8

7
.1

5
5

7
.2

6
0

 C
D

C
l3

7
.2

7
1

7
.2

8
9

8
.0

5
1

-20-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

4
.9

3
1

7
.7

4
1

2
4

.9
3

3

7
7

.1
6

0
 C

D
C

l3

8
3

.4
0

8

1
2

0
.1

9
5

1
2

9
.4

9
9

1
4

0
.5

5
7

1
4

8
.7

2
5

1
5

6
.6

2
2

Bpin

SiEt3F3CO

88j 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 316 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

5
.8
5

8
.7
6

1
2
.0
2

2
.9
5

1
.9
9

1
.9
9

2
.1
4

1
.9
4

0
.9
7

0
.4
2
9

0
.4
5
6

0
.4
8
2

0
.5
0
8

0
.7
8
0

0
.8
0
6

0
.8
3
2

1
.2
9
0

2
.4
4
3

6
.8
7
8

6
.9
0
7

7
.1
3
1

7
.1
5
9

7
.2
7
3

7
.3
0
0

7
.6
5
6

7
.6
8
4

8
.0
1
1

-20-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

4
.8

7
4

7
.7

3
5

2
1

.8
1

3

2
4

.8
8

8

7
7

.1
6

0
 C

D
C

l3

8
3

.3
6

4

1
2

1
.7

8
3

1
2

8
.7

4
1

1
2

9
.2

0
8

1
2

9
.7

6
6

1
3

2
.1

6
3

1
4

0
.8

9
8

1
4

5
.4

5
1

1
4

9
.0

6
4

1
5

6
.7

3
3

Bpin

SiEt3TsO

88k 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 317 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5
f1	(ppm)

6
.0

0

9
.2

5

1
2

.2
0

2
.0

4

2
.0

8

1
.0

5

0
.4

4
3

0
.4

7
0

0
.4

9
6

0
.5

2
2

0
.7

8
1

0
.8

0
7

0
.8

3
3

1
.2

9
4

7
.2

6
0

 C
D

C
l3

7
.3

1
9

7
.3

4
6

7
.5

6
8

7
.5

9
5

8
.0

2
6

-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

4
.8

4
7

7
.7

1
0

2
4

.9
2

6

7
7

.1
6

0
 C

D
C

l3

8
3

.5
9

8

1
1

1
.1

3
1

1
2

8
.7

5
5

1
3

1
.6

8
0

1
4

6
.5

6
9

1
5

5
.7

7
4

Bpin

SiEt3NC

88l 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 318 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.0
0

9
.3
5

1
2
.0
8

4
.2
9

1
.0
6

2
.1
7

2
.2
7

0
.9
6

0
.4
9
2

0
.5
1
8

0
.5
4
4

0
.5
7
0

0
.8
0
3

0
.8
2
9

0
.8
5
5

1
.3
0
8

4
.0
4
6

4
.0
5
5

4
.0
6
2

4
.0
7
1

4
.1
0
2

4
.1
3
3

4
.1
4
2

4
.1
4
9

4
.1
5
8

5
.8
2
4

7
.2
7
4

7
.3
0
0

7
.4
0
4

7
.4
3
1

8
.0
9
4

-100102030405060708090100110120130140150160170180190200
f1	(ppm)

4
.9

2
8

7
.7

8
4

2
4

.9
2

8

6
5

.4
0

7

7
7

.1
6

0
 C

D
C

l3

8
3

.2
8

3

1
0

3
.8

3
3

1
2

5
.9

5
5

1
2

8
.1

5
2

1
3

7
.0

2
6

1
4

2
.7

6
6

1
5

7
.9

2
2

O

O

SiEt3

Bpin

88m 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 319 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.0

9

9
.5

1

1
1

.9
2

2
.2

3

4
.2

9

4
.2

1

2
.3

5

1
.0

0

0
.5

8
5

0
.6

1
1

0
.6

3
7

0
.6

6
1

0
.8

7
5

0
.9

0
0

0
.9

2
8

1
.3

4
4

7
.2

6
0

 C
D

C
l3

7
.2

7
4

7
.2

8
0

7
.2

9
5

7
.3

0
1

7
.3

0
6

7
.3

2
1

7
.3

2
7

7
.3

8
3

7
.4

1
4

7
.4

3
5

7
.4

9
9

8
.1

4
6

8
.1

7
1

8
.2

2
5

-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

5
.0

9
4

7
.8

6
9

2
4

.9
6

5

7
7

.1
6

0
 C

D
C

l3

8
3

.4
1

1

1
0

9
.8

6
9

1
2

0
.0

4
3

1
2

0
.4

3
2

1
2

3
.5

1
1

1
2

6
.0

8
1

1
2

6
.4

3
9

1
2

9
.6

2
1

1
3

6
.9

3
6

1
4

1
.0

1
3

1
4

1
.2

4
8

1
5

7
.3

2
7

Bpin

SiEt3N

88n 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 320 

 
 
 

 
 
 
 
 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

6
.0

0

9
.0

0

1
1

.7
3

6
.1

1

2
.0

4

2
.0

2

2
.0

0

1
.3

7

1
.0

1

0
.5

2
9

0
.5

5
7

0
.5

8
4

0
.6

0
8

0
.8

1
6

0
.8

4
2

0
.8

6
8

1
.2

9
6

1
.3

1
5

1
.9

4
3

1
.9

5
7

1
.9

6
3

1
.9

7
1

1
.9

8
4

3
.0

1
8

3
.0

3
1

3
.0

3
8

3
.0

4
4

3
.0

5
8

6
.9

3
4

6
.9

6
1

6
.9

9
4

7
.0

2
1

7
.2

6
0

 C
D

C
l3

7
.2

6
8

8
.0

1
2

-20-100102030405060708090100110120130140150160170180190200
f1	(ppm)

4
.9

7
3

7
.8

4
1

2
3

.2
9

6

2
4

.9
5

4

3
0

.2
5

5

3
3

.1
4

6

3
7

.8
8

3

7
7

.1
6

0
 C

D
C

l3

8
3

.2
2

7

1
2

5
.9

2
9

1
2

6
.0

8
6

1
2

6
.6

1
5

1
3

1
.2

4
0

1
3

7
.6

4
5

1
4

1
.0

9
5

1
5

8
.5

4
1

S

Bpin

SiEt3

88o 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 321 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.3

4

9
.3

8

1
2

.3
4

3
.1

1

2
.0

7

1
.0

4

3
.1

2

1
.0

0

0
.5

2
6

0
.5

5
4

0
.5

8
1

0
.6

0
7

0
.8

0
4

0
.8

2
9

0
.8

5
6

1
.3

1
6

3
.9

2
5

7
.1

2
5

7
.1

5
2

7
.1

6
1

7
.2

6
0

 C
D

C
l3

7
.3

7
2

7
.3

7
8

7
.4

0
0

7
.4

0
5

7
.6

4
2

7
.6

7
2

7
.6

9
2

7
.7

2
1

8
.2

2
4

-100102030405060708090100110120130140150160170180190200210
f1	(ppm)

5
.1

1
7

7
.8

6
5

2
4

.9
6

2

5
5

.4
3

3

7
7

.1
6

0
 C

D
C

l3

8
3

.2
6

4

1
0

5
.8

5
8

1
1

9
.0

2
7

1
2

6
.0

8
3

1
2

7
.0

9
0

1
2

7
.1

6
6

1
2

8
.4

1
4

1
2

9
.8

0
3

1
3

4
.1

0
4

1
3

7
.0

9
7

1
5

7
.9

4
3

1
5

8
.6

1
0

MeO

Bpin

SiEt3

88p 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 322 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.1
4

9
.1
0

1
2
.2
2

1
.0
1

1
.1
4

1
.0
1

0
.9
9

1
.0
0

0
.6
6
6

0
.6
9
6

0
.7
2
2

0
.7
4
7

0
.8
5
8

0
.8
8
3

0
.9
0
8

1
.3
1
5

7
.1
1
9

7
.1
3
6

7
.1
4
4

7
.1
6
0

7
.2
5
1

7
.2
7
7

7
.5
9
9

7
.6
0
4

7
.6
2
5

7
.6
3
0

7
.6
5
0

7
.6
5
5

7
.8
4
6

8
.5
6
0

8
.5
7
5

-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

5
.3

8
1

8
.1

4
6

2
4

.9
6

2

7
7

.1
6

0
 C

D
C

l3

8
3

.3
6

4

1
2

2
.3

7
3

1
2

4
.1

8
9

1
3

6
.0

3
8

1
4

8
.5

2
1

1
5

3
.9

6
4

1
5

7
.2

0
7

N

Bpin

SiEt3

88q 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 323 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.2

2

9
.4

2

1
2

.5
8

2
.0

3

1
.0

3

1
.0

2

1
.0

0

0
.6

6
5

0
.6

9
4

0
.7

2
0

0
.7

4
4

0
.9

4
8

0
.9

7
3

1
.0

0
1

1
.2

4
7

7
.1

6
5

7
.1

8
1

7
.2

0
7

7
.2

6
0

 C
D

C
l3

7
.6

6
7

7
.6

7
4

7
.6

8
0

7
.6

9
3

7
.7

0
0

7
.7

0
6

8
.4

3
2

8
.4

3
7

8
.4

4
8

8
.4

5
3

8
.6

1
3

8
.6

2
0

-20-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

3
.5

8
2

7
.4

7
3

2
5

.1
9

0

7
7

.1
6

0
 C

D
C

l3

8
3

.7
2

9

1
2

2
.8

8
5

1
3

4
.8

2
7

1
3

6
.1

4
1

1
4

7
.4

3
6

1
4

8
.6

1
5

1
4

9
.1

8
7

88r 
N

Bpin

SiEt3

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 324 

 
 

 
 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.1

8

9
.2

2

1
2

.0
7

1
.0

1

2
.0

7

2
.1

4

1
.0

0

0
.4

8
0

0
.5

0
5

0
.5

3
2

0
.5

5
8

0
.7

9
0

0
.8

1
6

0
.8

4
2

1
.2

8
9

3
.0

9
4

7
.1

9
6

7
.2

2
3

7
.2

6
0

 C
D

C
l3

7
.4

0
2

7
.4

2
9

8
.0

4
4

-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

4
.9

4
6

7
.7

7
8

2
4

.9
3

1

7
7

.1
6

0
 C

D
C

l3

7
7

.6
4

9

8
3

.3
7

1

8
3

.9
0

0

1
2

1
.1

4
6

1
2

8
.1

4
7

1
3

1
.5

9
0

1
4

2
.3

9
0

1
5

7
.3

4
9

Et3Si Bpin

88s 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 325 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.0
f1	(ppm)

1
9

.3
6

2
8

.5
5

3
7

.1
1

3
.0

8

3
.1

7

0
.4

6
6

0
.4

9
3

0
.5

1
9

0
.5

4
4

0
.7

8
2

0
.8

0
8

0
.8

3
4

1
.2

8
6

6
.9

9
4

7
.2

6
0

 C
D

C
l3

8
.0

5
3

-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

4
.9

2
6

7
.8

4
4

2
4

.9
0

3

7
7

.1
6

0
 C

D
C

l3

8
3

.1
4

7

1
2

6
.8

8
0

1
4

0
.7

4
6

1
5

8
.5

9
1

88t 

BpinEt3Si

SiEt3

Bpin

SiEt3

Bpin

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 326 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0
f1	(ppm)

6
.4

9

1
0

.0
8

1
7

.6
6

2
.1

6

1
.0

0

0
.7

4
6

0
.7

8
1

0
.8

0
2

0
.8

1
0

0
.8

9
3

0
.9

1
6

0
.9

4
4

1
.2

0
0

1
.2

2
4

1
.2

6
8

1
.3

0
1

4
.1

3
8

4
.1

6
2

4
.1

8
6

4
.2

0
9

6
.9

1
0

7
.2

6
0

 C
D

C
l3

-100102030405060708090100110120130140150160170180190200210
f1	(ppm)

3
.9

8
7

7
.9

5
1

1
4

.3
6

8

2
4

.9
2

3

6
0

.4
5

7

7
7

.1
6

0
 C

D
C

l3

8
3

.9
3

1

1
4

3
.0

9
6

1
6

6
.4

4
3

EtO

O

Bpin

SiEt3

88u 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 327 

 
 
 

 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0
f1	(ppm)

6
.0

9

9
.1

9

3
.5

6

1
2

.0
0

2
.0

6

1
.0

0

0
.6

3
4

0
.6

6
3

0
.6

8
9

0
.7

1
5

0
.9

2
8

0
.9

5
3

0
.9

8
0

1
.2

5
0

1
.2

7
4

1
.2

9
8

1
.3

5
3

4
.1

5
3

4
.1

7
6

4
.2

0
0

4
.2

2
4

6
.3

9
8

7
.2

6
0

 C
D

C
l3

-20-100102030405060708090100110120130140150160170180190200
f1	(ppm)

3
.3

0
3

7
.3

1
8

1
4

.3
9

7

2
5

.2
9

7

6
0

.8
2

1

7
7

.1
6

0
 C

D
C

l3

8
3

.8
4

8

1
3

8
.1

0
2

1
6

6
.3

1
4

EtO

O

SiEt3

Bpin

88u´ 
 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 328 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0
f1	(ppm)

6
.7

8

1
0

.6
3

1
2

.9
4

3
.2

7

2
.2

0

2
.1

5

1
.0

0

0
.4

6
5

0
.4

9
3

0
.5

2
0

0
.5

4
6

0
.7

8
7

0
.8

1
2

0
.8

3
9

1
.2

9
7

2
.6

0
8

7
.2

6
0

 C
D

C
l3

7
.3

2
3

7
.3

5
0

7
.8

7
6

7
.9

0
3

8
.0

7
4

-20-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

4
.8

8
6

7
.7

5
5

2
4

.9
3

8

2
6

.7
7

5

7
7

.1
6

0
 C

D
C

l3

8
3

.4
7

0

1
2

7
.9

5
3

1
2

8
.3

3
2

1
3

6
.0

9
0

1
4

6
.7

6
6

1
5

6
.8

7
8

1
9

7
.9

8
2

SiEt3

Bpin

Ac

97a 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 329 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0
f1	(ppm)

6
.0
1

9
.1
1

1
1
.9
5

3
.0
3

1
.0
6

2
.0
0

2
.0
1

0
.6
9
8

0
.7
2
7

0
.7
5
4

0
.7
8
0

0
.9
8
2

1
.0
0
7

1
.0
3
4

1
.2
9
3

2
.6
0
5

7
.2
7
8

7
.4
9
5

7
.5
2
2

7
.8
8
8

7
.9
1
6

-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

3
.6

5
8

7
.5

1
3

2
5

.2
7

1

2
6

.7
7

5

7
7

.1
6

0
 C

D
C

l3

8
3

.7
3

5

1
2

8
.0

7
0

1
2

8
.3

6
4

1
3

6
.1

2
1

1
4

5
.1

6
8

1
4

9
.6

4
7

1
9

7
.8

9
3

Bpin

SiEt3

Ac

97a´ 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 330 

 
 
 

 
 
 
 
 

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5
f1	(ppm)

6
.1
0

9
.3
1

7
.4
8

1
2
.0
2

2
.1
5

2
.0
5

4
.2
3

1
.0
0

0
.4
6
9

0
.4
9
5

0
.5
2
2

0
.5
4
7

0
.7
8
1

0
.8
0
7

0
.8
3
3

1
.0
1
5

1
.0
8
1

1
.0
9
1

1
.1
4
2

1
.2
3
0

1
.2
9
2

3
.2
3
4

3
.5
3
5

7
.2
8
7

8
.0
9
1

-20-100102030405060708090100110120130140150160170180190200
f1	(ppm)

4
.9

0
7

7
.7

2
7

1
3

.0
5

3

1
4

.2
3

4

2
4

.8
7

3

3
9

.4
3

1

4
3

.3
9

2

7
7

.1
6

0
 C

D
C

l3

8
3

.2
9

6

1
2

5
.7

6
2

1
2

8
.0

2
9

1
3

6
.2

9
2

1
4

2
.7

2
4

1
5

7
.5

2
0

1
7

1
.3

1
6

SiEt3

Bpin

Et2NOC
98b 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 331 

 
 
 

 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0
f1	(ppm)

6
.2
5

9
.4
0

6
.3
6

1
2
.5
6

2
.1
4

2
.1
2

3
.2
7

2
.0
0

0
.6
8
9

0
.7
1
5

0
.7
4
1

0
.7
6
7

0
.9
7
7

1
.0
0
3

1
.0
2
9

1
.0
7
1

1
.1
0
3

1
.1
6
6

1
.2
1
6

1
.2
8
3

3
.2
4
4

3
.5
3
2

7
.2
6
5

7
.2
7
8

7
.2
9
7

7
.3
2
4

7
.4
3
4

7
.4
6
1

-100102030405060708090100110120130140150160170180190200
f1	(ppm)

3
.7

0
6

7
.5

3
8

1
2

.8
9

3

1
4

.2
1

7

2
5

.2
4

8

3
9

.4
7

5

4
3

.3
7

0

7
7

.1
6

0
 C

D
C

l3

8
3

.5
9

5

1
2

6
.2

4
0

1
2

7
.9

1
3

1
3

6
.4

7
7

1
4

1
.5

4
0

1
5

0
.3

0
5

Bpin

SiEt3

Et2NOC
98b´ 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 332 

 
 
 

 
 
 
 
 

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5
f1	(ppm)

6
.0
0

9
.1
7

0
.5
7

3
.0
6

2
.1
0

2
.1
2

1
.0
4

2
.0
6

4
.7
6

0
.2
4
8

0
.2
7
4

0
.3
0
0

0
.3
2
6

0
.7
8
5

0
.8
1
2

0
.8
3
8

2
.1
1
4

2
.4
8
9

2
.5
1
2

2
.5
4
0

2
.7
0
2

2
.7
2
5

2
.7
5
0

5
.5
2
0

5
.5
2
5

5
.5
2
9

7
.1
3
5

7
.1
4
8

7
.1
5
7

7
.1
6
7

7
.2
3
7

7
.2
7
2

7
.2
9
3

7
.3
3
6

-100102030405060708090100110120130140150160170180190200210
f1	(ppm)

4
.5

3
3

7
.5

9
0

3
0

.0
7

0

3
7

.0
8

7

4
2

.4
7

3

7
7

.1
6

0
 C

D
C

l3

1
2

4
.5

2
4

1
2

7
.3

2
8

1
2

7
.9

6
0

1
2

7
.9

7
9

1
2

8
.4

8
4

1
2

8
.5

7
1

1
4

3
.6

6
1

1
5

8
.6

4
2

2
0

8
.3

6
3

SiEt3

O

91 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 333 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.0

0

9
.1

2

3
.1

8

2
.0

1

2
.0

6

5
.9

7

0
.3

6
6

0
.3

9
3

0
.4

2
0

0
.4

4
5

0
.7

7
8

0
.8

0
4

0
.8

3
1

3
.8

2
5

6
.8

4
7

6
.8

7
6

7
.1

0
2

7
.1

3
1

7
.2

6
0

 C
D

C
l3

7
.2

7
1

7
.3

1
0

7
.3

3
5

-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

4
.8

2
6

7
.6

9
9

5
5

.3
8

5

7
7

.1
6

0
 C

D
C

l3

1
1

3
.4

1
2

1
2

7
.2

2
6

1
2

7
.8

9
0

1
2

8
.4

7
1

1
2

8
.5

1
1

1
4

0
.1

5
1

1
4

0
.2

1
7

1
4

4
.6

4
3

1
4

6
.2

0
2

1
5

7
.8

7
4

SiEt3

OMe

SiEt3

OMe

92 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 334 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

1
.0

4

1
.0

8

3
.0

9

1
.0

4

2
.0

8

7
.0

7

2
.0

8

2
.0

0

3
.0

0
7

3
.0

3
1

3
.0

5
3

3
.0

7
6

3
.4

9
1

3
.5

1
6

3
.5

3
7

3
.5

6
1

3
.7

5
1

4
.6

9
1

4
.7

1
5

4
.7

3
9

6
.7

8
6

6
.8

1
5

7
.0

0
2

7
.0

5
2

7
.0

6
3

7
.2

3
6

7
.2

6
0

 C
D

C
l3

7
.5

8
6

7
.6

1
3

7
.9

4
6

7
.9

7
3

-100102030405060708090100110120130140150160170180190200210
f1	(ppm)

4
0

.1
3

8

5
5

.3
4

8

5
5

.7
4

4

7
7

.1
6

0
 C

D
C

l3

1
1

4
.6

5
1

1
2

5
.6

0
8

1
2

5
.6

4
7

1
2

5
.6

8
5

1
2

5
.7

2
2

1
2

6
.3

8
2

1
2

8
.4

4
3

1
2

9
.0

8
1

1
2

9
.2

7
8

1
2

9
.4

7
7

1
3

0
.4

5
1

1
3

3
.9

6
4

1
3

4
.2

8
9

1
3

9
.6

4
8

1
3

9
.6

8
0

1
5

9
.0

4
5

1
9

8
.6

4
8

93 

OMe

O

CF3

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 335 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

3
.0

5

2
.0

0

2
.0

7

0
.9

6

2
.0

5

4
.0

4

3
.8

3
6

6
.8

9
1

6
.9

2
1

6
.9

4
8

7
.0

0
3

7
.0

5
0

7
.1

0
4

7
.2

3
5

7
.2

6
0

 C
D

C
l3

7
.3

2
3

7
.3

4
9

7
.3

7
3

7
.4

4
6

7
.4

7
5

7
.4

8
0

7
.4

8
3

7
.4

8
8

7
.5

0
6

7
.5

1
2

-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

5
5

.4
8

0

7
7

.1
6

0
 C

D
C

l3

1
1

4
.2

8
1

1
2

6
.3

9
4

1
2

6
.7

6
7

1
2

7
.3

5
8

1
2

7
.8

6
0

1
2

8
.3

5
6

1
2

8
.7

8
6

1
3

0
.2

9
6

1
3

7
.7

9
8

1
5

9
.4

5
0

OMe

H

94 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 336 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

3
.1

2

2
.0

2

2
.0

3

1
.1

0

2
.9

1

2
.0

3

3
.8

1
9

6
.8

0
4

6
.8

1
3

6
.8

4
3

6
.9

7
7

6
.9

8
7

6
.9

9
6

7
.0

1
0

7
.1

1
8

7
.1

3
6

7
.1

4
1

7
.1

4
6

7
.1

5
8

7
.2

6
0

 C
D

C
l3

7
.2

8
6

7
.3

1
5

-100102030405060708090100110120130140150160170180190200210
f1	(ppm)

5
5

.4
3

9

7
7

.1
6

0
 C

D
C

l3

1
1

4
.1

0
8

1
2

3
.8

2
2

1
2

7
.4

5
9

1
2

8
.3

7
2

1
2

8
.7

6
2

1
3

0
.8

8
5

1
3

1
.9

1
0

1
3

2
.5

4
3

1
3

6
.4

3
5

1
5

9
.9

7
2

OMe

Br

95 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



                                            Stereoselective Base-Catalyzed 1,1-Silaboration of Terminal Alkynes 
 

 337 

 
 
 

 
 
 
 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5
f1	(ppm)

3
.0

9

3
.2

5

1
.0

9

1
.0

1

1
.0

0

2
.1

1

2
.1

0

5
.2

6

2
.3

9
2

3
.1

9
3

3
.2

1
4

3
.2

2
7

3
.2

4
8

3
.3

6
1

3
.3

7
8

3
.3

9
5

3
.4

1
2

3
.7

6
6

4
.2

7
7

4
.2

9
6

4
.3

1
5

6
.5

0
9

6
.5

1
5

6
.5

1
8

6
.5

4
9

6
.5

5
8

6
.5

6
0

6
.7

6
8

6
.7

9
7

7
.0

1
1

7
.0

3
1

7
.0

9
3

7
.1

1
5

7
.1

5
8

7
.2

0
3

7
.2

6
0

 C
D

C
l3

-100102030405060708090100110120130140150160170180190200210
f1	(ppm)

1
5

.4
4

9

4
3

.8
2

9

4
8

.2
1

1

5
5

.3
3

1

7
7

.1
6

0
 C

D
C

l3

1
1

3
.8

4
2

1
2

3
.7

4
7

1
2

4
.5

6
7

1
2

6
.1

3
1

1
2

8
.2

0
5

1
2

8
.9

3
8

1
2

9
.2

3
0

1
3

6
.4

0
4

1
3

8
.1

5
4

1
4

0
.0

6
4

1
4

7
.1

1
7

1
5

8
.3

0
3

OMe

S
Me

96 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 4. 

 338 

 
 
 

 
 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

6
.0

2

9
.0

0

1
.0

6

2
.0

1

2
.0

1

0
.6

5
0

0
.6

7
8

0
.7

0
4

0
.7

2
9

1
.0

3
0

1
.0

5
5

1
.0

8
2

6
.4

4
1

6
.6

2
9

6
.8

1
6

7
.2

6
0

 C
D

C
l3

7
.4

2
6

7
.4

5
3

7
.5

3
5

7
.5

6
3

-100102030405060708090100110120130140150160170180190200210
f1	(ppm)

4
.4

9
8

7
.6

1
6

7
7

.1
6

0
 C

D
C

l3

9
3

.9
1

5

1
0

5
.3

5
0

1
1

2
.0

7
4

1
1

4
.4

5
0

1
1

6
.8

2
6

1
2

5
.5

0
7

1
2

5
.5

6
8

1
2

5
.6

2
9

1
2

6
.0

8
2

1
3

2
.4

2
9

1
3

3
.9

6
7

1
3

4
.1

9
0

1
3

4
.4

1
5

HF2C

SiEt3

100 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



 

 

 

 

 

 

Chapter 5. 

General Conclusions 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI  
C–H & C–O FUNCTIONALIZATION BY SILICON–HETEROATOM INTERELEMENT LINKAGES 
Yiting Gu



Chapter 5. 

 340 

The methods realized in this Doctoral Thesis showed wide utilization of silicon-heteroatom 

interelement linkage in functionalization of inert chemical bonds, enabling access value 

compounds via manifold activation pathways. It would be useful to highlight what we have 

achieved in our initial aims. 

Chapter 2: 

Ø A mild Ni-catalyzed stannylation of aryl pivalates via sp2 C–O bond cleavage has been 

developed. 

Ø This transformation represents an alternative methodology for efficient synthesis of 

arylstannes, various intermediates in organic synthesis; and is characterized by its wide 

substrate scope including rather sensitive functionalities. 

Ø The applicability of the transformation is demonstrated with further functionalization of 

the synthesized arylstannanes, and  orthogonal C–heteroatom bond formations. 

Ø Based on experimental studies and precedent literatures, a Ni(0)-Ni(II) catalytic cycle was 

proposed to further understand the mechanism. 

Chapter 3: 

Ø A direct site-selective sp2 C–H silylation of (poly)azines is described using stoichiometric 

KHMDS and silylboranes.  

Ø The method features as its simplicity and mild reaction conditions, enabling late-stage 

silylation of drug molecules.     

Ø It is also demonstrated that regioselectivity between C4 and C2 could be simply tuned by a 

judicious choice of corresponding ethereal solvents. 

Ø Detailed mechanistic studies suggest the initially formation of intermediacy silyl anion 

species and a plausible catalytic cycle including dearomatized intermediates is presented.  

Chapter 4: 

Ø A KHMDS-catalyzed stereoselective 1,1-silaboration of terminal alkynes under surprisingly 

mild reaction conditions has been documented. 

Ø The method is characterized by no transition metal catalyst, complete atom economy, and 

exquisite stereoselectivity, thus offering a convenient route to densely functionalized 

trisubstituted olefins.  

Ø Although more rigorous mechanistic investigations are required in order to draw a catalytic 

cycle with full confidence, a 1,2-metallate shift from tetracoordinated boron atom to an sp 

carbon center is proposed to deliver geminal bimetallic alkenes.  

Ø The potential usage of our protocol is illustrated by further transformation of silaborylated 

alkenes which could serve as versatile building blocks in stereoselective synthesis. 
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