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Abstract 

 

The study of transport of reacting solute through aquifers is relevant in many 

engineering fields. Reactive transport (RT) is complex because it consists of two 

phenomena, solute transport and chemical reactions, both of which are affected by 

heterogeneity. Because of this complexity, RT is solved by using numerical methods 

obtained from mathematical formulations. This thesis seeks to improve these 

mathematical formulations for RT and, specifically, to (a) provide a formulation that 

recognizes the heterogeneity of transport and chemistry at different scales and (b) 

improve the algorithms to solve RT.  

The thesis proposes using water exchange to describe mixing, which controls fast 

chemical reactions. This choice leads to a family of formulations. The Water Mixing 

Approach (WMA) is initially proposed as an efficient formulation equivalent to the 

Advection Dispersion equation (ADE). Multi-Rate Water Mixing (MRWM) is 

employed to account explicitly for chemical heterogeneity. Finally, the Multi-Advective 

Water Mixing Approach (MAWMA) allows distinguishing between dispersion, driven 

by hydraulic heterogeneity, and mixing, driven by both hydraulic heterogeneity and 

diffusion. In all these formulations, the entire transport phenomenon may be modeled as 

water processes. This implies that solute concentration becomes an attribute of water, 

exclusively relevant for chemical phenomena that become decoupled from transport. 

The accuracy of these formulations is tested in several cases. 
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Resum 

 

L’estudi de transport de soluts reactius en aqüífers és rellevant en molts camps de 

l’enginyeria. Aquest transport reactiu (TR) és complex perquè és una conseqüència de 

dos fenòmens (transport de solut i reaccions químiques) i ambdós afectats per 

l’heterogeneïtat. Donada la seva complexitat, el TR es resol mitjançant models numèrics 

obtinguts a partir de formulacions matemàtiques. La present tesis busca millorar 

aquestes formulacions matemàtiques pel TR i, específicament (a) donar una formulació 

que reconegui la heterogeneïtat del transport i la química implicada a diferents escales i 

(b) millorar els algoritmes per resoldre el TR. 

La tesis proposa utilitzar intercanvi d’aigües per descriure la mescla de soluts, la qual 

controla les reaccions químiques ràpides. La proposta condueix a una família de 

formulacions. La Water Mixing Approach (WMA) es proposa inicialment com una 

formulació eficient i equivalent a l’Equació d’Advecció i Dispersion (ADE). La 

formulació Multi-Rate Water Mixing (MRWM) s’utilitza per representar explícitament 

l’heterogeneïtat química. Finalment, la formulació Multi-Advective Water Mixing 

Approach (MAWMA), permet distingir la mescal (controlada per l’heterogenitat 

hidràulica i la difusió) de la dispersió (controlada únicament per l’heterogenitat 

hidràulica). En totes aquestes formulacions, el fenomen de transport es pot modelar 

exclusivament com a processos de transport d’aigua. Per tant, la concentració de solut 

esdevé un atribut de l’aigua i afecta únicament al fenomen químic, que és completament 

desacoblat del fenomen de transport. Comprovem en repetides ocasions la precisió 

d’aquestes formulacions. 
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Resumen 

 

El estudio de transporte de solutos reactivos en acuíferos es importante en muchos 

campos de la ingeniería. El transporte reactivo (TR) es complejo porque resulta de dos 

fenómenos, transporte de soluto y reacciones químicas,  afectados por heterogeneidad. 

Dada la complejidad del TR, su solución requiere modelos numéricos obtenidos a partir 

de formulaciones matemáticas. La presente tesis busca mejorar estas formulaciones para 

el TR y específicamente: (a) dar una formulación que reconozca la heterogeneidad 

química y del transporte a diversas escalas y (b) mejorar los algoritmos para resolver el 

TR. 

La tesis propone emplear el intercambio de aguas para definir la mezcla, lo que da 

lugar a una familia de formulaciones. La Formulación de mezcla de aguas (WMA) se 

propone inicialmente como una forma eficiente y equivalente de la Ecuación de 

Advección y Dispersión. La formulación de mezcla de aguas Multi-Ritmo (MRWM) se 

utiliza para representar explícitamente la heterogeneidad química. Finalmente, la 

formulación de mezcla de aguas Multi- Advectiva (MAWMA), distingue la mezcla de la 

dispersión. En todas estas formulaciones, el fenómeno de transporte se puede modelar 

únicamente mediante procesos de transporte de agua. Por lo tanto, la concentración de 

soluto se convierte exclusivamente en un atributo del agua, que afecta los fenómenos 

químicos, que quedan desacoplados del fenómeno de transporte. Comprobamos en 

repetidas ocasiones la precisión de estas formulaciones.  
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Chapter 1 

1. Introduction 

Introduction 

 

 

The study of groundwater phenomena is of environmental interest and involves 

different sciences, such as physics, thermodynamics, chemistry, politics, sociology or 

economics, among others. In particular, the transport of reactive solutes through 

geologic media is needed for engineering applications such as aquifer de-contamination 

(Jurado et al., 2014), artificial recharge (Valhondo et al., 2015), geologic nuclear waste 

disposal and carbon sequestration (Auli Niemi et al., 2016). Partial Differential 

Equations (PDE) are used to describe mathematically reactive transport (RT) problems, 

which leads to complex and non-linear behaviour. Analytical solutions have been 

presented for particular problems (Donado et al. 2009; Cirpka and Valocchi 2007; De 

Simoni et al. 2005), but numerical methods must be used in general. Moreover, iterative 

algorithms such as Sequential Iteration Approach (SIA) and Direct Substitution 

Approach (DSA) must be used due to the non-linearity.  

RT consists of two different phenomena: solute transport and chemical reactions. In 

turn, two types of chemical reactions can be distinguished considering the reaction rate. 

On the one hand, kinetic reactions are slow and controlled by the residence time of the 

solute. On the other hand, equilibrium reactions are fast and controlled by mixing (De 

Simoni et al., 2005). Both types of reactions require an accurate definition of transport. 

Transport is also required in many natural and engineered processes including animal 
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foraging patterns (Viswanathan et al., 1996), freely diffusing molecules in tissue (Yu et 

al., 2009), tracer diffusion in suspensions of swimming microorganisms (Leptos et al., 

2009), biased transport in complex networks (Nicolaides et al. 2010), disease spreading 

through river networks (Rinaldo et al., 2012), medical applications in microfluidic 

devices (Whitesides, 2006) and urban traffic (Kerner, 1998).  

 

Solute transport in homogeneous media is well characterized by the advection-

dispersion equation (ADE). However, this is not the case when solutes are transported 

by groundwater because natural materials are highly heterogeneous (Le Borgne et al. 

2008; Gjetvaj et al. 2015; Willmann et al. 2008), which leads to a commonly observed 

non-equilibrium (Alcolea et al. 2008; Vogel et al. 2006). This is termed anomalous 

transport (i.e., non-Fickian transport), which is critical when chemical reactions take 

place (Battiato et al. 2009; Sadhukhan et al. 2014; Scheibe et al. 2015; Soler-Sagarra et 

al. 2016; Tartakovsky et al. 2009; Luquot et al. 2016). Anomalous transport occurs at 

various scales from pore (Bijeljic et al. 2011; Kang et al. 2014; Seymour et al. 2004) to 

column (Hatano et al. 1998; Heidari et al. 2014) and field scale (Becker et al. 2000; 

Garabedian and LeBlanc 1991; Kang et al. 2015; Mckenna et al. 2001). Anomalous 

transport is evidenced by tailing in concentration breakthrough curves (Valocchi 1985; 

Carrera 1993). The classic ADE is no longer valid in heterogeneous media because it 

does not distinguish between dispersion (solute spreading, driven by velocity 

heterogeneity) and mixing (solute dilution, occurring by diffusion, but also driven by 

dispersion).  

Dispersion is caused by spatial fluctuations in velocity. It is characterized by solute 

spreading (i.e., the variance of the spatial distribution of concentration)and its value is 

scale dependent (L.W. Gelhar et al., 1985). This reflects that every scale has different 

heterogeneity. Deterministic information on both the structure of the soil and their 

parameters is essential to bound the growth of dispersion with scale. However, it must 

be dealt with unknown heterogeneity at some scales. In such cases, the velocity 

evolution is best defined as Markovian in space (Le Borgne et al. 2008b; De Anna et al. 

2013; Holzner et al. 2015; Kang et al. 2014). It can therefore be characterized with a 

Transition Matrix 𝑴𝒗𝒔 which expresses the probability to change the velocity state v 

given constant steps in space phase s (De Anna et al. 2013; Kang et al. 2011, 2014, 
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2015). The above suggests adopting velocity as a new dimension of the state variable 

such as space and time. This new dimension must be taken into account in a phase space 

formulation such as the one proposed by Kang et al. 2017. However, this formulation 

does not consider mixing.  

Mixing is caused by reflects Brownian displacements of solute particles within the 

flowing fluid. It is characterized by solute dilution (i.e., the variance of concentration). 

Therefore mixing should be Markovian in time despite the fact that the fluid velocity 

evolution is Markovian in space. Unlike dispersion, mixing is a direct cause of chemical 

reactions in fluids (Cirpka and Valocchi 2007; Rezaei et al. 2005; De Simoni et al. 

2005, 2007; Tartakovsky et al. 2008). Mixing is also important when applied to porous 

media (Kapoor and Kitanidis 1998; Kitanidis 1994; Kleinfelter et al. 2005). Locally, 

mixing is defined in terms of concentration gradients, which helps in defining the rate of 

fast chemical reactions (De Simoni et al., 2005). Nevertheless, conventional transport 

formulations tend to equate mixing and dispersion and do not account for the fact that 

mixing occurs because of the Brownian motion of each particle (Einstein, 1905).  

There are some links between dispersion and mixing despite the fact that they are 

different processes (Peter K. Kitanidis, 1988, 1994). Solute spreading increases the 

concentration contrast, which enhances mixing (Le Borgne et al. 2010; Chiogna et al. 

2011; Rolle et al. 2009; Tartakovsky et al. 2008). In particular, processes such as 

stretching and folding have been identified (De Anna et al. 2013; Jiménez-Martínez et 

al. 2015; Le Borgne et al. 2015). This leads to non-Fickian behaviour at early times 

(Berkowitz et al. 2006; Le Borgne et al. 2008a; Le Borgne and Gouze 2008; Neuman 

and Tartakovsky 2009; Zhang et al. 2009). Fickian behaviour at late times are explained 

by the spreading rate (Tanguy Le Borgne et al., 2010a). 

Numerous alternatives to ADE have been proposed to address anomalous transport 

(Frippiat & Holeyman, 2008). Examples of continuum scale non-local in time methods 

include CTRW (Berkowitz and Scher 1997; Bijeljic et al. 2011; Le Borgne et al. 2008a; 

Le Borgne et al. 2008b; Dentz et al. 2004; Dentz et al. 2015; Edery et al. 2014; Geiger 

et al. 2010; Kang et al. 2011; Wang and Cardenas 2014), fADE (Benson et al., SCST 

(Becker & Shapiro, 2003) or MRMT (Babey et al. 2015; Carrera et al. 1998; De Dreuzy 

et al. 2013; Fernandez-Garcia and Sanchez-Vila 2015; Haggerty and Gorelick 1995; 

Soler-Sagarra et al. 2016). It has been demonstrated that these methods methods do not 
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reproduce mixing appropetly (Jean Raynald De Dreuzy & Carrera, 2016). Given that the 

chemical reaction occurs at pore scale (Steefel et al., 2005), other alternative methods 

that have been proposed include Lattice Boltzmann equation (Acharya et al. 2007; 

Benzi et al. 1992; Chen and Doolen 1998; Kang et al. 2006; Willingham et al. 2008), 

Smoothed Particle Hydrodynamics (Liu & Liu, 2010;  a. M. Tartakovsky et al., 2009, 

2015; Alexandre M. Tartakovsky et al., 2007) or pore network models (Blunt, 2001; 

Blunt et al., 2002; Li, et al., 2006; Meile and Tuncay, 2006; Raoof et al., 2010; Raoof 

and Hassanizadeh, 2012; Varloteaux, 2013). However, dealing with field scale 

problems demands a continuum formulation that represents properly mixing and 

dispersion. Hybrid methods have been proposed to overcome this scale duality (Battiato 

et al. 2011; Leemput et al. 2007; Tartakovsky et al. 2008) but they are complex because 

coupling the continuum and pore scale domain is required. A new formulation is 

therefore necessary. The suitable equation for anomalous transport must take into 

consideration advection, dispersion and mixing (de Dreuzy et al. 2012; De Dreuzy et al. 

2016). This distinction between dispersion and mixing must be assessed carefully. 

The aim of this thesis is to present an efficient formulation for RT. Specific objectives 

are to:  

1. improve the algorithms to solve reactive transport,  

2. recognize the heterogeneity of transport and chemistry at different scales. and  

3. separate explicitly dispersion and mixing.  

The thesis consists of four parts. 

In the first part (second chapter), a formulation to solve RT in porous media is 

presented. We term this formulation the Water Mixing Approach (WMA). The essence 

of this formulation is to represent transport through the mixing of water instead of 

individual solute concentrations. This concept simplifies calculations of water, which 

facilitates decoupling chemical and transport calculations because (1) concentration is 

reduced to just an attribute of water used for chemical calculations, and (2) transport is 

restricted to the computation of water mixing ratios, which can be used for any transport 

solution method. The WMA has been implemented into a transport solver with a 

streamline-oriented grid with constant travel time between sequential cells (isochronal 

grid), which is free of numerical dispersion. . The accuracy and efficiency (low CPU 
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cost) of the WMA are illustrated by comparison with the Direct Substitution Approach 

(DSA), on two RT cases (an analytical solution of a binary system and a calcite 

dissolution problem). 

The second part (third chapter, based on Soler-Sagarra et al. (2016)) focuses on the 

simulation of the geochemical micro localization at pore scale. To this end, WMA is 

extended to Multi-Rate Mass Transfer formulation (mobile-immobile zones). The 

method is termed Multi-Rate Water Mixing (MRWM). MRWM is employed to 

simulate laboratory experiments of CO2-rich brine transport through carbonate rich 

samples. Pore scale chemical heterogeneity is reproduced by varying the mineral 

assemblages and residence time of immobile regions. Unlike conventional formulations, 

MRWM reproduces the geochemical localization observed in reality (i.e., the 

occurrence of two different pH micro environments, none of which would be consistent 

with local equilibrium). The resulting method is very practical since it can reproduce a 

broad range of pore scale processes in a Darcy scale model.  

A phase space formulation is proposed in the third part (fourth chapter) to simulate 

transport through heterogeneous media. The essence of this formulation is to consider 

velocity as a new dimension such as time or space. The formulation is based on the 

WMA and is termed the Multi-Advective Water Mixing Approach (MAWMA). This 

formulation includes a new mixing term between velocity classes. It is tested on 

Taylor’s stratified flow case by using the Water Parcel method (WP), which is obtained 

by discretizing MAWMA in space, time and velocity. Results show high accuracy in 

both dispersion and mixing. Moreover, the mixing process exhibits Markovianity in 

space even though it is modeled with time steps. 

The MAWMA formulation is tested for highly heterogeneous domains in the last part 

(fifth chapter). In these cases WP needs two velocity transition matrices (probabilities of 

water transitions between two velocity classes): one for advection (Markovian in space) 

and one for mixing (Markovian in time). This chapter shows how the water transition 

matrix of mixing is obtained and demonstrates that it is constant in time. Moreover, the 

WP method is compared with a classic Random Walk method (RW) in a highly 

heterogeneous domain. Results show that WP overestimates mixing at late times as do 

the classic methods since mixing is a sub-velocity phase process (the WP method must 
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be extended to take into account incomplete mixing within velocity classes), but 

represents satisfactorily the separation between dispersion and mixing. 
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Chapter 2 

2. WMA for reactive transport modeling 

Water Mixing Approach (WMA) for 

reactive transport modeling 

 

 

2.1. Introduction 
 

The study of geochemical processes in porous media is critical in many engineering 

fields (e.g., clean-up of contaminated aquifers, geological storage of CO2, nuclear waste 

storage, mining or other geoenvironmental problems). In all of these, solute transport 

mechanisms such as advection and dispersion need to be coupled to chemical reactions 

(e.g., complexation, adsorption, biodegradation or precipitation), leading to reactive 

transport (RT). Fully coupled RT is needed to assess the rate of chemical reactions, their 

location, or the conditions under which they occur (Rezaei et al., 2005). Although 

analytical solutions exist for particular conditions and problems (Donado et al. 2009; 

Haberman 1998; Cirpka and Valocchi 2007; De Simoni et al. 2005), numerical methods 

are needed in most cases.  

Numerical solution of reactive transport involves coupling transport PDEs for each 

species to algebraic equations representing chemical reactions (basically mass action 

law for fast reactions and kinetic laws for slow reactions), which leads to a nonlinear set 

of equations. Nonlinearity often causes RT to become complex and non-trivial and 
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requires iterative solution methods. Both Picard (e.g., the Sequential Iteration Approach, 

SIA or Operator splitting approach), and Newton-Raphson methods (e.g., the Direct 

Substitution Approach, DSA or Global implicit) have been used to solve RT problems 

(reviews of RT are given by  Steefel and MacQuarrie, 1996, Steefel, 2019; or Liu et al., 

2019). It should be noted, that SIA and DSA become identical when explicit schemes 

are used. Examples of model codes that use SIA include those of  Nardi et al. (2014); 

Parkhurst and Appelo (1999); Parkhurst et al. (2010); Samper et al. (2003); Šimůnek et 

al. (2008); Xu et al. (2011); Yeh and Li (2004). Examples of model codes that use DSA 

include those of Mayer et al. (1999); Mills et al. (2005); Pruess (2005); Saaltink et al. 

(2004); Steefel and Yabusaki (1996). See Steefel et al. (2015) for a review. Figure 2. 1a 

and 2. 1b provide the calculation flow algorithm of SIA and DSA, respectively. 

Actually, the key to accurate reactive transport is proper simulation of (1) mixing, 

which control the rate of fast reactions (Rezaei et al. 2005; De Simoni et al. 2005; 

Sanchez-Vila et al. 2007), and (2) residence times, which control the rate of slow 

reactions. The latter is well reproduced by most simulation methods. Therefore, the 

challenge is to develop an approach that reproduces mixing properly. 

In this paper, we propose a reactive transport methodology to simplify and effectively 

decouple transport from chemical calculations by formulating reactive transport as a 

reactive mixing calculation of waters at every time step. Therefore, we term it Water 

Mixing Approach (WMA).  
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Figure 2. 1: Algorithm flow to solve reactive transport time step simulation using: a) 

SIA, b) DSA and c) applied WMA formulation to reactive transport 

 

 

2.2. Governing equations 
 

2.2.1. The ADE as a Water Mixing Equation 

 

The standard formulation for solute reactive transport relies on representing transport 

through the Advection Dispersion equation (ADE), which expresses the mass balance of 

each aqueous species (Saaltink et al. 1998; Yeh and Tripathi 1989) as 

𝜙
𝜕𝑐

𝜕𝑡
= ∇ ⋅ (𝑫∇𝑐) − 𝒒 · ∇𝑐 + 𝑏(𝑐𝑒 − 𝑐) + 𝑓𝑄 (2. 1) 

where c [M/L3] is concentration, 𝜙 [-] is porosity, 𝑡 [T] is time, 𝑫[L2/T] is the 

hydrodynamic dispersion tensor, 𝒒[L3/L2/T] is the Darcy flux, 𝑏 represent sink/sources 
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of water with concentration 𝑐𝑒(when 𝑏 > 0) or directly the resident concentration 𝑐 

(when 𝑏 < 0) and 𝑓𝑄 [M/L3/T] includes the contributions of chemical reactions to the 

mass balance of the species. This equation applies to aqueous species. The full reactive 

problem needs to be complemented with the mass balance of immobile species 

(minerals and sorbed species), the mass action law for equilibrium reactions, and 

appropriate expressions for kinetic reactions (See, e.g., Bethke 1996, Parkhurst and 

Appelo, 1999 or  Saaltink et al., 1998  for details).  

The ADE expresses that the rate at which concentration change (left hand side of 

Eq.(2. 1)) results from dispersion, advection, chemical reactions, and sinks and sources. 

Insight on dispersion can be gained from perturbation approaches, typical of stochastic 

formulations. In these formulations, variables are split as the sum of an (ensemble) 

mean plus a zero-mean perturbation (i.e., 𝑐 = 𝑐̅ + 𝑐′, 𝒒 = 𝒒̅ + 𝒒′). Assuming that the 

ADE is valid at some microscopic scale, the “hydromechanical” dispersive flux 

becomes 𝒒′𝑐′̅̅ ̅̅ ̅, and the total (“hydrodynamic”) dispersive flux is 

𝑱𝐷 = 𝒒′𝑐′̅̅ ̅̅ ̅ − 𝐷𝑚𝜵𝑐 (2. 2) 

where D𝑚 is the molecular diffusion coefficient. Eq. (2. 2) expresses that the solute is 

spread by molecular diffusion and by velocity fluctuations with respect to the mean. 

Gelhar and Axness (1983) demonstrated that this dispersive flux can be approximated 

by a fickian term (𝑫𝜵𝑐) for large scale transport, but the choice of a fickian form for 

dispersion is much older (Bear, 1972). Dispersion represents that, when the plume 

advances, the high permeability portions of the porous medium (i.e., where 𝒒 is larger 

than the mean) will likely be invaded by the (upstream) water (i.e., where c is larger 

than the mean), whereas the low 𝒒 portions will remain with downstream water. That is, 

dispersion represents exchange between the upstream and downstream waters. Since the 

difference in upstream and downstream concentrations can be approximated by 𝜵𝑐 

times a characteristic exchange distance (𝐿𝐷), the fickian form emerges naturally. 

However, it might have been equally natural to keep the water exchange formulation, 

that is: 

𝑱𝐷 = 𝒒′𝑐′̅̅ ̅̅ ̅ − 𝐷𝑚𝜵𝑐 ≃ −𝑫𝜵𝑐 = 𝒒𝐷𝑐̅̅ ̅̅ ̅ (2. 3) 
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where 𝒒𝐷 is the water flux that exchanges around the mean flux (similar to 𝒒′, but 

accounting also for molecular diffusion) and we have chosen to write 𝑐, instead of 𝑐′, in 

the last term to emphasize that it is the whole water parcel (not only the concentration 

perturbation) what is exchanging around the mean flux. The water exchange instead of 

net flux of solute is why no concentration gradient appears in Eq. (2. 3) (see Figure 2. 

2). 

 

Figure 2. 2: Graphical scheme of dispersion process in ADE and WMA formulations. 

LD [M] is the length scale of the dispersion process 

 

In the following we will adopt a WMA form of the ADE, by assuming (2. 3) to be 

valid, so that (2. 1) can be written as:  

𝜙
𝜕𝑐

𝜕𝑡
= −𝛻 ⋅ (𝒒𝐷𝑐̅̅ ̅̅ ̅) − 𝒒 · 𝜵𝑐 + 𝑏(𝑐𝑒 − 𝑐) + 𝑓𝑄 (2. 4) 

Several remarks can be made regarding this equation. First, when 𝒒𝐷𝑐 represents 

Fickian dispersion term, then Eq. (2. 4) is just another form of the ADE. But other forms 

of dispersion may be adopted and Eq. (2. 4) would still be valid. We write it here in this 
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way both for generality and, especially, to highlight that mixing can be viewed as 

occurring in response to water flux fluctuations. The latter is convenient for reactive 

transport, but they are identical provided that 𝐷𝐿 = q𝐷𝐿𝐿𝐷𝐿 and 𝐷𝑇 = q𝐷𝑇𝐿𝐷𝑇, where 

subscripts 𝐿 and 𝑇 stand for longitudinal and transverse, respectively (in fact, we will 

assume that 𝐷𝐿 and 𝐷𝑇 are known to define the water exchange rates). Therefore, Eq. (2. 

4) represents a possibly crude approximation of reality because, at the microscopic 

scale, 𝒒′𝑐′̅̅ ̅̅ ̅ spreads solutes but does not produce mixing, but equating mixing and 

spreading is a feature of the ADE. If all species have the same dispersion coefficient,  

Eq. (2. 4)  can be extended to transport of a concentrations vector 𝑐 = 〈𝑐1, 𝑐2, … , 𝑐𝑛𝑠〉 

where ns is the number of species. In this case, Eq. (2. 4)  could be seen as a water 

transport equation. However, it might be argued that mixing (if viewed as dissipation of 

concentration gradients) is species dependent in at least two cases: (1) when diffusion is 

acknowledged to be species dependent, or (2) when advection is slowed down by fast 

adsorption. In the first case, it is possible to correct Eq. (2. 4) for the species dependent 

molecular diffusion (and we will show how to do it in Section 2.2.1). However, species 

dependent diffusivity implies also a species dependent dispersion (Chiogna et al. 2010), 

for which a proper formulation is lacking. While the issue may be important for neutral 

compounds, it is usually disregarded for ionic species on the basis that the resulting 

electrical imbalance tends to compensate the relative displacements of one species with 

respect to another (but this remains to be proven). Adsorption is strictly a chemical 

reaction and, as such, its role is included in the reaction rates term. The fact that the 

reaction rate is proportional to 𝜕𝑐 𝜕𝑡⁄  causes the velocity of concentration fronts to 

depend on the retardation coefficient, but this effect is properly represented in Eq. (2. 4), 

although it may complicate numerical solution.  

 

 

2.2.2. Generic numerical formulation.  

 

The ADE and WMA can be solved with a broad range of numerical methods (Finite 

Element Method, Finite Volumes or Finite Differences among others), but all of them 

lead to equations of the form (e.g.,Huyakorn 1983): 
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𝜙𝑖𝑉𝑖

𝑐𝑖
𝑘+1 − 𝑐𝑖

𝑘

∆𝑡
= ∑ 𝐹𝑖𝑗(𝑐𝑗 − 𝑐𝑖)

𝑁𝑐𝑜𝑛𝑛

𝑗≠𝑖

+ 𝑏𝑖𝑉𝑖(𝑐𝑒𝑖 − 𝑐𝑖) + 𝑉𝑖 𝑓𝑄𝑖            (2. 5) 

where 𝑘 identifies the time step and typically, 𝑉𝑖 represents the volume associated to 

numerical target (i.e., nodes, cell or elements) 𝑖, ∆𝑡 is the time increment, Nconn is the 

number of all targets 𝑗 connected to 𝑖 (i.e.: 𝐹𝑖𝑗 ≠ 0). Note that the first term on the right-

hand side of Eq. (2. 5) represents the contributions associated to water exchanges 

(including both advective and dispersive exchanges) from targets. The second term 

represents mass input from inflowing water. Note also that we have left purposefully 

undefined the time at which concentrations are evaluated in the right-hand side of Eq. 

(2. 5). In traditional numerical formulations, this time can be 𝑘, 𝑘 + 1, or any time in 

between, which leads to explicit, fully implicit or time centered schemes, respectively.  

Regardless of the time integration scheme, transport is linear, so that concentrations 

at time step 𝑘 + 1 can be written as a linear combination of those at time step 𝑘, plus the 

possibly non-linear reactions term, which reads:  

𝑐𝑖
𝑘+1 = ∑ λ𝑖𝑗𝑐𝑗

𝑘

𝑁𝑐𝑜𝑛𝑛+1

𝑗

+
𝑓𝑄𝑖

𝜙𝑖
∆𝑡 (2. 6) 

where the sum now includes not only targets connected to 𝑖, but also target 𝑖 and 

external waters. Note that ∑ λ𝑖𝑗𝑗 = 1, to ensure that when all 𝑐𝑗
𝑘 are equal and in the 

absence of reactions, 𝑐𝑖
𝑘+1 is equal to the same value. Therefore, Eq. (2. 6) can be 

viewed as a reactive mixing equation (e.g., Pelizard et al., 2017) and it is natural to call 

λ𝑖𝑗 a mixing ratio, although it represents not only mixing but also advection (it is simply 

the fraction of water in target i that started in target j at the beginning of the time step). 

 While this equation can represent any transport formulation, its terms are easiest to 

obtain for explicit integration schemes (otherwise inversion of the full system matrix or 

subblocks is required). In such case, Eq. (2. 6) can be obtained by dividing Eq. (2. 5)  by 

the volume of parcel i (water content associated to the numerical target i, i.e., 𝜙𝑖𝑉𝑖) and 

multplying by the time step ∆𝑡. Therefore,λ𝑖𝑗 = ∆𝑡 𝐹𝑖𝑗 𝜙𝑖𝑉𝑖⁄  for connected parcels or 

λ𝑖𝑗 = ∆𝑡 𝑏𝑖 𝜙𝑖⁄  for external waters. Note that mixing ratio is expressed as a fraction of 
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the parcel volume i. The latter differs from the use of mixing ratios of end members 

proposed by (De Simoni et al. 2007; Cirpka and Valocchi 2007; Ginn et al. 2017).  

Some observations can now be made about Eq. (2. 6). First, c can be extended to a 

vector of only concentrations of aqueous species with the result that it can be regarded 

as a definition of a water zone. Thus, Eq. (2. 6) indicates that solute transport can be 

reproduced as a consequence of mixing between connected waters and/or external 

sources waters. In other words, Eq. (2. 6) could be understood as a fluid mass balance 

that takes into account water diffusion (Harris and Woolf 1980; Spyrou 2009), which 

has no effect on water flux phenomenon but can reproduce the solute diffusion. This is 

important because it reduces the number of transport equations from ns (the number of 

aqueous species) to 1: 

𝑊𝑖
𝑘+1 = ∑ λ𝑖𝑗𝑊𝑗

𝑘

𝑁𝑐𝑜𝑛𝑛+1

𝑗

 (2. 7) 

 where 𝑊𝑖 is the water parcel definition (or water solution) of cell i. Moreover, the 

equation is very simple. Now concentrations are considered just attributes of W (like 

Temperature, viscosity or density). This way, chemistry is separated from transport 

because transport is defined entirely by the water mixing ratio term λ. Thus, the WMA 

only iterates at chemical step (unlike DSA or SIA) because concentration becomes 

solely a chemical variable (see Figure 2. 1). Chemical effects are produced by 𝑓𝑄𝑖 which 

is calculated as described in section 2.2.3. 

The use of water as a transport of solute has already been applied by (Konikow, 2010; 

Winston et al., 2018), although it was not formulated as an equation. 

 

 

2.2.3. Chemical Calculations 
 

The evaluation of the chemical sink/source term, 𝑓𝑄𝑖, or directly, the computation of 

concentrations can be viewed as the mass balance resulting from reactive mixing of 

waters connected to parcel 𝑖, with mixing ratios λ𝑖𝑗, given by 
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[
𝒄𝑎𝑖

𝑘+1

𝒄𝑖𝑚𝑖
𝑘+1] =

[
 
 
 

∑ 𝜆𝑖𝑗𝒄𝑎𝑗
𝑘

𝑁𝑐𝑜𝑛𝑛+1

𝑗

𝒄𝑖𝑚𝑖
𝑘 ]

 
 
 

+ 𝑺𝑒𝑖
𝑡 𝒓𝑒𝑖

∆𝑡

𝜙𝑖
+ 𝑺𝑘𝑖

𝑡 𝒓𝑘𝑖

∆𝑡

𝜙𝑖
+ [

𝒇𝑖
𝑐

𝟎
] (2. 8) 

where the top row represents the mass balance of aqueous (mobile) species (vector of 

concentrations 𝒄𝑎𝑖 at parcel 𝑖) and the bottom row represents the mass balance of 

immobile species (vector of concentrations 𝒄𝑖𝑚𝑖), 𝑺𝑒𝑖 and 𝑺𝑘𝑖 are the stoichiometric 

matrices for equilibrium and kinetic reactions, which depends on 𝑖 because the number 

and types of reactions may change depending on the minerals and sorption surfaces 

available (Rubin, 1983), 𝒓𝑒𝑖 and 𝒓𝑘𝑖 are the vectors of equilibrium and kinetic reaction 

rates, respectively, and 𝒇𝑖
𝑐 is the vector of correction terms for species dependent 

dispersion. These equations need to be complemented with the mass action law for 

equilibrium reactions and with kinetic rate laws for kinetic reactions. 

Note that, except for the separation between mobile and immobile species and the 

inclusion of the correction term, 𝒇𝑖
𝑐, Eq. (2. 8) is a conventional set of reactive mixing 

equations (similar to, e.g., Eq. (5.57) of Parkhurst and Appelo, 1999, or Eq. (8) of 

Pelizardi et al. 2017). Numerous methods are available to solve this type of equations 

(Fang et al. 2003; Friedly and Rubin 1992; Kräutle and Knabner 2005, 2007; Molins et 

al. 2004; Saaltink et al. 1998; De Simoni et al. 2005; Yeh and Tripathi 1989). Here, we 

multiply the concentration vector by a full-ranked components matrix U (Steefel, 

MacQuarrie 1996; Lichtner 1985) to eliminate the rates of equilibrium reactions and by 

a matrix E (Saaltink et al. 1998) to eliminate constant activity species. Saaltink et al. 

1998 discussed six of such formulations to reduce the number of chemical equations. 

Any of the six formulations would be valid for WMA. We use their fifth formulation. 

[
𝑬𝑖𝑼𝑎𝑖𝒄𝑎𝑖

𝑘+1

𝑬𝑖𝑼𝑠𝑖𝒄𝑠𝑖
𝑘+1] =

[
 
 
 

∑ 𝜆𝑖𝑗𝒖𝑎𝑗
𝑘

𝑁𝑐𝑜𝑛𝑛+1

𝑗

𝒖𝑠𝑖
𝑘 ]

 
 
 

+ ∑𝑬𝑖𝑼𝑖𝑺𝒌𝒊𝒏
𝑡

𝑗

𝒓𝒌𝒊𝒏(𝒄𝑗
𝑘)

∆𝑡

𝜙𝑖
+ [

𝑬𝑖𝑼𝑎𝑖𝒇𝑖
𝑐

𝟎
] (2. 9) 

where Ua and Us are submatrices of components matrix U referring to aqueous and 

sorbed species, respectively, and where ua and us are the aqueous and sorbed 

component concentrations (ua = Uaca, us = Uscs).  Note that if there are no kinetic and 

no adsorption reactions, rkin and us disappear and component ua may be found by 

solving the system as a conservative solute problem. Concentrations of the next time 
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step (ca,i
k+1 and cs,i

k+1) can be solved from Eq. (2. 9) and the mass action laws for the 

equilibrium reactions. Note that the right-hand side of Eq. (2. 9) is calculated entirely 

from the concentrations of the previous time step. However, other time schemes can 

also be used. Calculation of ca,i
k+1 and cs,i

k+1 constitutes the only non-linear part of the 

proposed method, and is therefore the costliest part of the calculations with respect to 

CPU time. However, Eq. (2. 9) can be solved for each parcel independently, thereby 

reducing the size of the non-linear system to the number of chemical components. The 

concentration of the minerals can also be calculated by formulating a mass balance 

similar to Eq. (2. 9) but without eliminating the minerals. Solving Eq. (2. 9) is a standard 

chemical speciation calculation and any speciation code may be used.  

 

 

2.2.4. Isochronal formulation for WMA. 
 

For the sake of generality, section 2.2.1 formulates ADE as water mixing terms (i.e. 

WMA) in Eulerian form. Then, a general discretization valid for any numerical method 

was presented in section 2.2.2 . However, standard ADE models tend to overpredict 

solute mixing (Ginn et al. 1995; Kitanidis 1988, 1994; MacQuarrie and Sudicky 1990; 

Molz and Widdowson 1988) in part because modellers adopting Eulerian transport 

formulations are forced to either use large dispersion coefficients (which affects mixing 

ratios in Eq. (2. 6)) or to accept numerical dispersion. The latter can be explained 

because Eq. (2. 6) includes advection, so that that the “mixing ratios” for parcels 

downstream of 𝑖 will tend to be negative, which is appropriate to represent advection, 

but not for mixing calculations (pointing that mixing is a dissipative process, while 

advection is not). These problems can be overcome by adopting Eulerian-Lagrangian 

formulations (e.g., Bell and Binning, 2004 ; Cirpka et al., 1999b; Batlle et al., 2002; 

Ramasomanana et al., 2012; Zhang et al., 2007), which allows modelling advection 

dominated problems. In these formulations, the time variation of concentration in a 

flowing parcel of water is written with the material derivative 𝐷𝑐 𝐷𝑡⁄ = 𝜕𝑐 𝜕𝑡⁄ +

(𝒒 𝜙⁄ ) · 𝜵𝑐.  Using this definition in Eq. (2. 4) leads to 
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𝜙
𝐷𝑐

𝐷𝑡
= −∇ ⋅ (𝒒𝐷𝑐̅̅ ̅̅ ̅) + 𝑟(𝑐𝑒 − 𝑐) + 𝑓𝑄 (2. 10) 

Written this way, the equation expresses that flowing water concentration changes 

only due to mixing and reactions, thus highlighting that advection does not produce 

mixing and therefore does not produce change in the concentrations of flowing water. 

The material derivative can be approximated as 

𝐷𝑐

𝐷𝑡
=

𝑐𝑖
𝑘+1 − 𝑐𝑖−

𝑘

∆𝑡
 (2. 11) 

where i- refers to the location in the previous time step of the center of the water 

parcel that ended in parcel i at time k+1. Note that Eqs. (2. 5), (2. 6) and (2. 7) may still 

be valid, except that (1) now the sum is extended over the concentrations that were at 

locations i- at the end of the previous time step, and (2) only dispersive processes are 

included within Fij, which ensures that λ𝑖𝑗 are positive (a sufficient condition of stability 

for all conventional numerical methods).  

To facilitate numerical evaluation of the material derivative and water mixing fluxes, 

we adopt a streamline oriented grid (Cirpka et al 1999a; Frind 1982; Crane and Blunt 

1999; Thiele et al. 1997; Di Donato et al. 2003; Yabusaki et al. 1998; Herrera et al. 

2010). This choice reduces significantly numerical dispersion (Cirpka et al. 1999a) and 

facilitates the use of finite volumes methods. Still, some smoothing may remain because 

concentrations at locations i- need to be interpolated from the surrounding parcels.  

To eliminate interpolation errors, we define isochronal grids by ensuring that location 

i- must coincide with a cell center (see Figure 2. 3). That is, a downstream position 𝑗 

exists such that 

𝑥𝑗 = 𝑥𝑖−  =  𝑥𝑖 − 𝒗∆𝑡 (2. 12) 

where 𝒗 is the velocity (𝒒 𝜙⁄ ) upstream of cell i.  
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Figure 2. 3: Advection within a dual stream-tube in the proposed isochronal grid 

 

Eq. (2. 12) implies that the initial mesh must be recalculated if either time step 

simulation or flow (velocity) change. Appendix A shows the building procedure of the 

proposed isochronal grid. This grid also facilitates the computation of the mixing ratios 

λ𝑖𝑗. Transport terms are calculated from concentrations of the previous time step in 

explicit schemes. Explicit schemes are fast, but they are subject to stability criteria that 

require dispersion coefficients to be small. Therefore, mixing ratios equal zero except 

for the following cases: 

λ𝑖𝑗 =
𝐷𝐿𝑤𝑖𝑗∆𝑡

𝜙𝑖𝑉𝑖𝐿𝑖𝑗
 if  𝑖 and 𝑗 are adjacent along a streamline (2. 13a) 

𝜆𝑖𝑗 =
𝐷𝑇𝑤𝑖𝑗∆𝑡

𝜙𝑖𝑉𝑖𝐿𝑖𝑗
 𝑖𝑓  𝑖 𝑎𝑛𝑑 𝑗  be𝑙𝑜𝑛𝑔  to 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑡𝑟𝑎𝑚𝑙𝑖𝑛𝑒𝑠 (2. 13b) 

𝜆𝑖𝑗 =
𝑟𝑖∆𝑡

𝜙𝑖
 𝑖𝑓   𝑗  represents an external inflow (2. 13c) 
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𝜆𝑖𝑖 = 1 − ∑ λ𝑖𝑗

𝑁𝑎𝑑𝑗

𝑗≠𝑖

 (2. 13d) 

where 𝑤𝑖𝑗 is the width of the interface between cells 𝑖 and 𝑗, 𝐿𝑖𝑗 is the distance 

between cell centers in (2. 13a) or the mean distance between streamlines in (2. 13b), 

and 𝐷𝐿 and 𝐷𝑇 are the longitudinal and transverse, respectively, dispersion coefficients. 

Note that, for 𝜆𝑖𝑖 to be positive, Eq. (2. 13d) requires ∑ λ𝑖𝑗𝑗≠𝑖 < 1, which is a stability 

condition for any explicit method. Otherwise, the parcel volume entering the cell would 

be larger than that in the cell. 

The obtained formulation can be viewed as a generalization of the mixing-cells 

approach of Campana (1975), which was extended to reactive transport by Appelo and 

Willemsen (1987), and is now widely used in 1-D as part of PHREEQC (Parkhurst and 

Appelo 1999). However, one can use it in 2D problems (see Eq. (2. 13b)). 

It must be stressed that these mixing ratios are identical for all species provided that 

the dispersion coefficients are. We obtain the following expression 

𝑐𝑖
𝑘+1 = ∑ λ𝑖𝑗𝑐𝑗−

𝑘

𝑁𝑎𝑑𝑗+1

𝑗−

+
𝑓𝑄𝑖

𝜙𝑖
∆𝑡 (2. 14)  

where Nadj is the number of all parcels 𝑗 adjacent to 𝑖. If dispersion coefficients are 

species dependent, the transport equation can be corrected as follows 

𝑐𝑖
𝑘+1 = ∑ λ𝑖𝑗𝑐𝑗−

𝑘

𝑁𝑎𝑑𝑗+1

𝑗−

+
𝑓𝑄𝑖

𝜙𝑖
∆𝑡 + 𝑓𝑖

𝑐 (2. 15) 

Where 𝑓𝑖
𝑐 = ∑ λ𝑖𝑗

𝑐
𝑗− 𝑐𝑗−

𝑘  is a species dependent correction, with λ𝑖𝑗
𝑐

 given by Eq. (2. 

13), except that 𝐷’s in (2. 13a) and (2. 13b) are substituted by (𝐷 − 𝐷𝑐), where 𝐷𝑐 is 

the dispersion coefficient of each species. As discussed in section 2.2.1, this correction 

should be small for ionic species.  
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2.3. Applications 
 

We test here the accuracy and efficiency of the WMA by comparison to both 

analytical solutions (section 2.3.1) and computational results from the literature (section 

2.3.2). While the WMA could be implemented in any transport simulator, we test it on 

the formulation presented in section 2.2.4 in all cases. An explicit scheme is used. We 

employed the chemical library CHEPROO in both WMA and DSA models. CHEPROO 

is an object oriented code for geochemical calculations (S. A. Bea et al., 2009).  

 

2.3.1. Half injection domain 
 

This test aims at verifying that the WMA performs well in cases of transverse 

dispersion and equilibrium reactions, which are particularly relevant for the amount of 

mixing and reaction rate  (see e.g., Werth et al. 2006; De Simoni et al. 2005). We 

consider the steady-state analytical solution of De Simoni et al. (2007) for reactive 

transport, based on the analytical solution of Haberman (1998) for conservative 

transport. Flow occurs in a 2D homogeneous domain with velocity aligned along the x 

axis. Two end member waters enter the domain at the inflow boundary (𝑥 = 0), creating 

a transverse mixing zone. Longitudinal dispersion is neglected. We consider a binary 

chemical system consisting of two species, Ca2+ and SO4
2-, in equilibrium with gypsum. 

The physical problem is defined in Table 2. 1. The analytical solution for aqueous 

component concentration, considering the end members with u values of 1 and 0, is the 

follow 

𝑢𝑎(𝑥, 𝑦) =
1

2
(1 − 𝑒𝑟𝑓 [

𝜂

2
]) (2. 16) 

Where 𝜂 = √𝑃𝑒 𝑦 𝑥⁄  is a similarity variable, representing a normalized transverse 

coordinate with dependency of x and y space coordinates and Peclet number Pe=v·x/𝐷𝑇. 

v is the velocity. erf[·] is the error function. The analytical expression of reaction rate is 

giving as 

𝑟(𝑥, 𝑦) = 𝜙
𝑣

𝑥

𝜕2𝑐𝐶𝑎2+

𝜕𝑢2
(
𝑑𝑢

𝑑𝜂
)
2

 (2. 17) 
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Where 𝑑𝑢 𝑑𝜂⁄ = −1 (2√𝜋)⁄ 𝑒𝑥𝑝[−𝜂2 4⁄ ] and 𝜕2𝑐𝐶𝑎2+ 𝜕𝑢2⁄ =2K/(u2+4K)3/2. K is the 

equilibrium constant. Although the analytical solution is steady state, WMA is solved as 

a transient problem. 

Table 2. 1: Solute transport parameters of half injection domain 

Transport Chemistry 

q (m/d) 0.142857 K = 10-2 (Temperature 25 ⁰C) 

Δx (m) 0.25 

Injection water 1 

(kg/m3) 

Injection water 2 

(kg/m3) 

Δy (m) 0.25 𝑐𝐶𝑎2+ 9.902·10-3 𝑐𝐶𝑎2+ 0.1 

𝜙 0.3 𝑐𝑆𝑂4
2− 1.009902 𝑐𝑆𝑂4

2− 0.1 

Δt (d) 0.525 ua 1 ua 0 

αt (m) 0.02 

Pe 12.5 
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Figure 2. 4 shows the cross sections along the y axis of (a) reaction rates and (b) u 

component at three different x values. Analytical and numerical solutions appear to be 

very similar. Nevertheless, errors are slightly larger close to the injection boundary 

where concentration gradients are highest. This may be attributed to the poor 

reproduction of concentration gradient at this stage, which may violates the criterion of 

5 elements across a front suggested by Kinzelbach (1986). Close to the injection 

boundary, the size of the transverse front is too small with respect to element size. 

 

Figure 2. 4: Profiles at different x positions of reaction rate and component 

concentration of numerical and analytical solutions for the half injection domain. 

Because no concentration gradient is defined in mixing term of Eq. (2. 4) neither in 

Eq. (2. 6), the WMA formulation supplies a complementary explanation. The 
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conservative form of Eq. (2. 14) tells us that the error comes from either the mixing 

rationsλ𝑖𝑗or the previous step concentration distribution 𝑐𝑗−
𝑘 . It is easy to check that λ is 

constant at any time step because all the terms of Eq. (2. 13b) are also constants. That is, 

only a small portion of solute near the interface does actually exchange. Therefore, 

approximating it by the mean parcel concentration is poor close to the injection 

boundary, when concentration varies sharply within the cell. In short, a proper 

discretization is needed for an accurate solution. The discretization is sufficient when 

concentrations are smooth. Despite the previous discussion, the results are very 

acceptable even near the injection boundary.  

 

 

2.3.2. The CAL case 
 

Accuracy and efficiency of WMA for reactive transport performance are tested in this 

section by comparison with the DSA method. DSA method has been preferred because 

it is more robust than SIA. We tests the chemical system of Saaltink et al. (2001) termed 

CAL, which consists of the injection of calcite subsaturated water in a domain with 

initial saturated water and the consequent dissolution of calcite. Both, equilibrium and 

kinetic cases are tested. Transport and chemical details are shown in Table 2. 2.  

The transport part of the DSA method is performed by TRACONF code (Carrera et 

al. 1993). Both compared codes use the same chemical library, CHEPROO (S. A. Bea et 

al., 2009). Therefore, the differences between the two methods are due to the treatment 

of transport. TRACONF transport formulation has two main differences from the 

formulation defined in section 2.2.4 First, time integration of TRACONF transport is 

calculated with implicit scheme which involves concentrations at the next time step. 

Although this implies the use of full system matrix, it is free of time instabilities, unlike 

faster explicit schemes. Second, an Eulerian formulation (Eq. (2. 1)) is applied instead 

of mixed Eulerian-Lagrangian formulation (Eq. (2. 10)). Eulerian solution approaches 

need to meet spatial stability criteria. To avoid complications with stability, the stability 

criteria are met in all tested models.  
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Table 2. 2: Physical and chemical parameters of the CAL case in both equilibrium and 

kinetic reactions. Equilibrium constant is taken from the program EQ3NR (Wolery, 

1992) 

CAL case 

Transport Chemistry 

q (m/yr) 2 Mineral Calcite 
Rate Constant 

(mol·m-2s-1) 

4.64·10-

7 

𝜙 0.1 
Initial conc. Of primary species 

(log mol l-1) 

Injection conc. Of primary 

species (log mol l-1) 

1D problem 𝐻+  -7.978 𝐻+
 -5.496 

L (m) 𝐻𝐶𝑂3
− 𝐻𝐶𝑂3

− 𝐻𝐶𝑂3
−

 𝐻𝐶𝑂3
−

 -5.421 

α (m) 𝐶𝑎2+ 𝐶𝑎2+ 𝐶𝑎2+
 𝐶𝑎2+

 -4.398 

2D problem Kinetic case 
Initial reactive 

surface (m-1) 
6.8·10-5 

Lx (m) 280     

Ly (m) 100     

αx (m) 1.2     

αy (m) 1.2     

 

First, we compare the CPU time as a function of the number of numerical targets. We 

perform a 2D simulation (see Table 2. 2). A calculation proposed by Saaltink et al. 

(2001) is used to predict the CPU time for more refined grids. We assumed that the 

CPU time consumed by DSA is the sum of that of the chemical calculations, the LU 

decomposition and the construction of the Jacobian matrix expressed by subscripts 

chem, dec and jac, respectively. Then the CPUDSA time can be calculated as  

𝐶𝑃𝑈𝐷𝑆𝐴 = 𝐶𝑃𝑈𝑐ℎ𝑒𝑚
𝐷𝑆𝐴 + 𝐶𝑃𝑈𝑑𝑒𝑐

𝐷𝑆𝐴 + 𝐶𝑃𝑈𝑗𝑎𝑐
𝐷𝑆𝐴 (2. 18) 

𝐶𝑃𝑈𝑐ℎ𝑒𝑚
𝐷𝑆𝐴 = 𝑘𝑐ℎ𝑒𝑚

𝐷𝑆𝐴 𝑁𝑛𝑜𝑑  (2. 19) 

𝐶𝑃𝑈𝑗𝑎𝑐
𝐷𝑆𝐴 = 𝑘𝑗𝑎𝑐

𝐷𝑆𝐴𝑁𝑛𝑜𝑑𝑁𝑐𝑜𝑛 
(2. 20) 
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𝐶𝑃𝑈𝑑𝑒𝑐
𝐷𝑆𝐴 = 𝑘𝑑𝑒𝑐

𝐷𝑆𝐴(𝑁𝑏𝑎𝑛)2𝑁𝑛𝑜𝑑 = 𝑘𝑑𝑒𝑐
𝐷𝑆𝐴𝑚(𝑁𝑛𝑜𝑑)2 (2. 21) 

Where Nnod is the number of nodes and Nban is the semi-bandwith. As we work with 

rectangular grids (because the medium is homogeneous), Nban is proportional to the 

square root of Nnod times m (m being the ratio between the number of rows and 

columns). k are constants that only depend on the test case. Ncon is the maximum 

number of nodes connected to a particular node including itself (which equals 7 for 

regular grids of triangular finite elements). 

Since we use an explicit scheme for the WMA transport part, the module does not 

need to solve a system of equations. Almost all CPU time is consumed by the 

calculation of the chemistry. However, unlike DSA, the spatial discretization affects the 

time discretization because of the isochronal mesh (see Figure 2. 3). To calculate the 

CPU time we assumed the number of chemical systems to be solved to be proportional 

to the number of nodes and the number of time steps. Therefore, the consumption of 

CPU time can be expressed as: 

𝐶𝑃𝑈𝑊𝑀𝐴 = 𝐶𝑃𝑈𝑐ℎ𝑒𝑚
𝑊𝑀𝐴 = 𝑘𝑐ℎ𝑒𝑚

𝑊𝑀𝐴𝑁𝑛𝑜𝑑𝑁∆𝑡 (2. 22) 

Where NΔt is the number of time steps, which is proportional to the number of 

columns (Figure 2. 3). This, together with the definition of m, leads to: 

𝐶𝑃𝑈𝑊𝑀𝐴 = 𝑘𝑐ℎ𝑒𝑚
𝑊𝑀𝐴(𝑁𝑛𝑜𝑑)1.5 (2. 23) 

The results are plotted in Figure 2. 5. As can be observed, the measured CPU time is 

consistent with the calculated CPU time for DSA cases. Kinetic case is slightly costlier 

though equal convergence criteria are employed. Regarding WMA, calculations using 

equation (2. 23) do not fit well the measured CPU time. The measurements fit better an 

exponent of 1.2 instead of 1.5. This can be attributed to the fact that less iterations are 

employed to solve chemical systems with finer grids. In both cases the differences 

between WMA and DSA become important when large numbers of nodes are 

employed. It may therefore be concluded that the WMA outperforms the DSA in both 

equilibrium and kinetic problems.  
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Figure 2. 5: Measured and calculated CPU times as a function of the total number of 

nodes for both WMA and DSA for (a) equilibrium CAL case and (b) kinetic CAL case. 

 

Second, the absence of numerical dispersion as evidenced in section 2.2.4 should be 

confirmed. To this end, 1D simulations were performed (see Table 2. 2) using the 

previous WMA and DSA codes. Three different time steps were used for both methods 

(3 months, 1.5 month and 22 days). Because of the mesh definition (see Figure 2. 3), the 

WMA needs 20, 40 and 80 parcels, respectively whereas the DSA mesh is composed by 

101 nodes in all models. Results are plotted in Figure 2. 6. Note that results of the DSA 
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using an implicit scheme depend on the time step indicating numerical dispersion. On 

the other hand, the WMA isochronal method presents no numerical dispersion even 

when the isochronal grid employs a smaller number of nodes.  

DSA is also performed and plotted with Crank-Nicholson time integration in Figure 

2. 6a. Crank-Nicholson provides a second order error, unlike the first order error of 

explicit and implicit scheme. Theoretically, this should be without numerical dispersion. 

Indeed, it gives almost identical results to the WMA. 

 

Figure 2. 6: Spatial distribution of pH at 1 pore volume (5 years) for WMA using 

isochronal mesh, DSA in implicit scheme and DSA in Crank-Nicolson scheme using 3 

different time steps for (a) equilibrium CAL case and (b) kinetic CAL case. 
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2.4. Conclusions 
 

We have presented a new reactive transport formulation and modeling method based 

on water mixing which we term the Water Mixing Approach (WMA). The basic idea 

behind the approach is to restrict the coupling between chemistry and transport only to 

the terms that matter: residence time (relevant for kinetic reactions) and mixing 

(relevant for fast reactions). These are strictly transport concepts. The resulting reactive 

transport problem is restricted to the computation of a sequence of reactive mixing 

calculations, which is simpler and more efficient than traditional reactive transport 

methods. Effectively, the method implies modelling the transport of water volumes 

instead of components or species. This decouples transport from chemistry. 

Two cases have tested the satisfactory accuracy and computational efficiency of 

WMA. The approach can be employed in any existing transport approach, although the 

proper definition and computation of mixing ratios is an important issue. This is why 

the WMA method has been tested using a streamline oriented isochronal grid, which 

allows for numerical simulations free of numerical dispersion even for coarse grids. In 

particular, mixing ratios definition should be especially relevant for transport 

formulations in heterogeneous media. In this article we have discussed only cases with 

uniform flow. Nevertheless, the results suggest that the WMA will also perform well for 

2D or 3D heterogeneous cases with non-uniform flow. This is shown by the fact that the 

WMA becomes increasingly more competitive to the Eulerian methods of DSA for 

grids of higher dimension and larger number of targets. 
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Chapter 3 

3. Chemical reaction localization using MRWM 

Simulation of chemical reaction 

localization using a multi-porosity 

reactive transport approach*
 

 

 

3.1. Introduction 

 

Reactive transport deals with geochemical processes that occur in porous media due 

to the physical transport of reacting chemical species. It plays a major role in many civil 

and/or environmental issues such as cleanup of contaminated aquifers, nuclear waste 

storage, mining and geological storage of CO2. Reactive transport may be very complex 

and non-trivial. As a result, numerical models are an indispensable tool for 

understanding and predicting these processes. One problem encountered is the high 

level of heterogeneity, which can be both chemical and hydrodynamic. Reactive 

transport models typically assume local equilibrium with fast dissolution kinetic 

minerals. Even so,  non-equilibrium is commonly observed and is attributed to this 

heterogeneity (Alcolea et al., 2008; Vogel et al., 2006). For instance, breakthrough 

curves typically display tailing at late times (Valocchi 1985; Carrera 1993). This non-

                                                           
* This chapter is based on the paper by Soler-Sagarra et al. (2016)  
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equilibrium may be due to diffusion into immobile regions, kinetic sorption or 

heterogeneity. This implies that reactive transport should be formulated as non-local in 

time which means that the concentration at a given point depends on its concentration 

history. A large number of formulations (Carrera et al., 1998; Dentz and Berkowitz, 

2003; Haggerty and Gorelick, 1995; Silva et al., 2009; Sudicky, 1989), simulation 

approaches (Ray et al., 1997; Salamon et al., 2006; Suresh Kumar, 2008; Tsang, 1995; 

Willmann et al., 2008; Zhang et al., 2006; Zhang et al., 2007) and analytical solutions 

(Toride et al., 1993) have been proposed to deal with non-local in time transport (see 

Dentz et al., 2011a, for a review). 

In parallel with Darcy scale models, a number of researchers have overcome this non-

locality by formulating transport at pore scale because chemical processes occur at pore 

scale (Steefel et al., 2005) . One such formulation is the Lattice Boltzmann equation, 

which replaces the velocities of individual particles by a distribution function of 

velocities in which the population of particles moves (Benzi et al., 1992; Chen and 

Doolen, 1998; Kang et al., 2006; Acharya et al., 2007; Willingham et al., 2008). 

Another formulation is Smoothed Particle Hydrodynamics, which is based on the idea 

that a continuous field can be represented by a superposition of smooth bell-shaped 

functions centered on a set of points whereas the gradient of the field is given by the 

same superposition of the gradients of the smoothing function (Liu and Liu, 2010; 

Tartakovsky et al., 2007, 2009, 2015). A third option consists of simulating the pore 

network to explicitly simulate the pore volumes and connecting necks (Blunt, 2001; 

Blunt et al., 2002; Li, et al., 2006; Meile and Tuncay, 2006; Raoof et al., 2010; Raoof 

and Hassanizadeh, 2012; Varloteaux, 2013). These formulations are very accurate in 

reproducing local physics, but are computationally demanding for large scale models or 

when many chemical species and reactions are involved. Moreover, the upscaling of the 

results to field scale has not yet been resolved. 

Other researchers prefer continuous models at larger than pore scales to gain in 

computational cost and model simplicity. The classic approach consists on representing 

heterogeneity by a dispersion tensor, but it fails to quantify solute mixing accurately 

(Ginn et al., 1995; Kitanidis, 1988; MacQuarrie and Sudicky, 1990; Molz and 

Widdowson, 1988; Dreuzy et al., 2012), which is critical for reactive transport as 

reaction rates are driven by mixing (De Simoni et al., 2007). There are a number of 

approaches to quantify mixing rates more accurately. The most widely used are the 
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Multi-Rate Mass Transfer (MRMT) and Continuous Time Random Walk (CTRW). 

MRMT is a non-local in time continuous formulation that simulates mass transfer 

between a mobile and multiple immobile regions by diffusive or first-order mass 

transfer terms (Benson and Meerschaert, 2009; Carrera et al., 1998; Donado et al., 2009; 

Fernandez-Garcia and Sanchez-Vila, 2015; Geiger et al., 2013; Gouze et al., 2008; 

Haggerty and Gorelick, 1995; Haggerty et al., 2000; Roth and Jury, 1993; Wang et al., 

2005; Willmann et al., 2010; Zhang et al., 2007). Models similar to MRMT exist for 

diffusion from a fracture into the matrix of the rock (Cvetkovic et al., 1999; Gerke and 

van Genuchten, 1996; Grisak and Pickens, 1980; Małoszewski and Zuber, 1985; 

Moreno and Neretnieks, 1993; Shapiro, 2001). CTRW is a class of Random Walk 

methods in which not only particle displacements, but also time steps are modeled as a 

stochastic process (Montroll and Weiss, 1965; Berkowitz and Scher, 1998; Metzler and 

Klafter, 2000; Barkai and Cheng, 2003; Cortis, 2004; Dentz et al., 2004; Berkowitz et 

al., 2006). Its validity has been proven using pore network models (Bijeljic and Blunt, 

2006). CTRW has been applied to reactive transport using particles explicitly, which is 

computationally demanding. But, in practice, CTRW and MRMT are equivalent (Dentz 

and Berkowitz, 2003; Neuman and Tartakovsky, 2009; Silva et al., 2009). 

The latter methods have been used to study the effect of hydrodynamic heterogeneity 

on reactive transport. Most of these studies used simple chemical systems of one or 

more chemical reactions (e.g., Donado et al., 2009; Willmann et al., 2010). Other 

studies have focused on more complex chemical systems (Ayora et al., 1998; Steefel 

and Lichtner, 1998). Research has been carried out on specific surface area 

heterogeneity (Cvetkovic and Gotovac, 2014) and on network fracture heterogeneities 

(Cheng et al., 2003; Frampton and Cvetkovic, 2007, Painter et al., 2008). The effect of 

chemical heterogeneity was addressed by Dentz el al. (2011b), but on an abstract system 

that did not allow acknowledging explicitly that porous media consist of multiple 

mineral phases, which create their own local conditions and precipitation/dissolution 

reactions. We use the term geochemical localization to describe the creation of local 

micro environments favoring reactions that would not occur in media that are fully 

mixed at the Representative Elementary Volume (REV) scale. We argue that 

geochemical localization is driven by mineral heterogeneity at the pore scale and may 

cause reaction heterogeneity at such scale. Geochemical localization has been observed 

by Luquot et al. (2016), who performed percolation experiments under in situ 
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temperature, pressure and salinity conditions to predict the different chemical reactions 

which can occur during the migration of CO2-rich brine at the Heletz site (A. Niemi et 

al., 2012; Auli Niemi et al., 2016). These authors  verified their experimental results 

using the CrunchFlow code (Steefel, 2009) that regards dispersion as the only mixing 

process. They obtained good matches between the experimental and numerical results 

for the main dissolved and precipitated minerals with fast reaction kinetics (carbonates 

and gypsum). Nevertheless, secondary mineral reactions were not predicted accurately 

(e.g., K-feldspar dissolution and clay precipitation). They concluded that these 

secondary reactions, which may play an important role in the change of hydrodynamic 

properties, occur at scales smaller than the REV and cannot be taken into account in 

conventional reactive transport models that are based on the Advection-Dispersion 

Equation (ADE).  

We conjecture that geochemical localization can be reproduced using multi-porosity 

formulations, such as MRMT, provided that geochemical heterogeneity is included in 

the model. The objective of this work is to test such conjecture and to gain further 

insight into the effect of mineralogical and hydrodynamic heterogeneity. To this end, 

the MRMT based method was used, varying the mineral composition of mobile and 

immobile zones (see Figure 3. 1). A simplified chemical system based on Luquot et al. 

(2016), was employed. The mathematical formulation of reactive transport used in the 

MRMT approach is described in section 3.2. In section 3.3, we discuss the numerical 

solution of these equations, which basically consists of extending the Water Mixing 

Approach (WMA) of chapter 2 to MRMT, obtaining the proposed Multi-Rate Water 

Mixing (MRWM). Models definitions and their results are presented in section 3.43.4. 

Finally, section 3.5 is dedicated to discussion and conclusions. 
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Figure 3. 1: Schematic spatial mineralogy distribution. The top image displays the ‘real’ 

distribution. The central image shows a classical MRMT distribution without 

considering mineralogical localization. The bottom image shows the distribution of the 

mineral phases in several immobile zones connected to a mobile node. 

 

 

3.2. Governing equations 

The standard formulation for reactive transport is based on applying the ADE to all 

chemical species with sink/source terms to represent reactions (i.e., sinks for reactants 

and sources for reaction products). This leads to a complex set of Ns ADE (Ns is the 

number of species), which uses the vector concentrations c [M/L3] as state variable, and 

Nr constraints (mass action laws for equilibrium reactions and rate laws for kinetic 

reactions) for the chemical reactions. Instead, here the WMA formulation is extended to 

MRMT by adding the mixing of mobile and immobile zones. This reduces the number 
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of transport equations. As a consequence, The Multi-Rate Water Mixing (MRWM) 

formulation is obtained. The system may be simplified by the use of components. These 

are obtained by multiplying the concentration vector by a full-ranked kernel matrix U, 

dimensions (Ns-Ne)· Ns, where Ne is the number of equilibrium reactions so that 

equilibrium reaction rates are eliminated (Lichtner, 1985; Steefel and MacQuarrie, 

1996). The advantage is twofold: equilibrium reaction rates are eliminated from the 

system and the dimension of the problem is reduced from Ns+Nr to Ns-Ne. Therefore, the 

reactive ADE is usually formulated as mass balances of components. A variety of 

approaches are available to define the components (Fang et al., 2003; Friedly and 

Rubin, 1992; Kräutle and Knabner, 2005, 2007; Molins et al., 2004; Saaltink et al., 

1998; De Simoni et al. 2005; Yeh and Tripathi, 1989). Here, we use the method of 

Saaltink et al. (1998), which complements the aqueous reactions component matrix with 

a matrix E to eliminate rapid dissolution/precipitation reactions, further reducing the 

number of unknowns and equations.  

We used the above formulation in a MRMT framework (Donado et al., 2009; 

Willmann et al., 2010) but the framework was specially designed to allocate different 

chemical systems in each immobile zone. Therefore, the system of equations contains 

not only mass balances (transport equations) but also different chemical system in the 

mobile and immobile zones. The set of equations to be resolved may be written in 

compact form as: 

𝜙𝑚

𝜕𝒖𝒂𝒎

𝜕𝑡
= 𝛻 ⋅ (𝒒𝐷𝒖𝒂𝒎̅̅ ̅̅ ̅̅ ̅̅ ̅) − 𝒒 ⋅ ∇𝒖𝒂𝒎 − ∑ 𝛼𝑗(𝒖𝒂𝒎 − 𝒖𝒂𝒊𝒎,𝒋)

𝑁𝑖𝑚

𝑗=1

+ 𝒇 + 𝒇𝒄𝒉𝒆𝒎,𝒎 (3. 1) 

𝜙𝑖𝑚,𝑗

𝜕𝒖𝒂𝒊𝒎,𝒋

𝜕𝑡
= 𝛼𝑗(𝒖𝒂𝒎 − 𝒖𝒂𝒊𝒎,𝒋) + 𝒇𝒄𝒉𝒆𝒎,𝒊𝒎,𝒋      𝑗 = 1, … , 𝑁𝑖𝑚 (3. 2) 

log 𝒄𝟐 = 𝑺𝒂(log 𝒄𝟏 + log 𝜸𝟏) − log 𝜸𝟐 − log 𝒌𝒂 (3. 3) 

log 𝒄𝒔 = 𝑺𝒔(log 𝒄𝟏 + log 𝜸𝟏) − log 𝜸𝒔 − log 𝒌𝒔 
(3. 4) 

0 = 𝑺𝒎𝒊𝒏(log 𝒄𝟏 + log 𝜸𝟏) − log 𝒌𝒎𝒊𝒏 
(3. 5) 

𝒄𝒂 = (
𝒄𝟏

𝒄𝟐
) (3. 6) 

𝒖𝒂 = 𝑬𝑼𝒂𝒄𝒂 (3. 7) 
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𝒖𝒔 = 𝑬𝑼𝒔𝒄𝒔 
(3. 8) 

𝒇𝒄𝒉𝒆𝒎,𝒍 = 𝑬𝑼𝑺𝒌
𝒕 𝒓𝒌(𝒖𝒂, 𝒖𝒔) − 𝜙𝑙

𝜕𝒖𝒔

𝜕𝑡
               𝑙 = 𝑚, 𝑖𝑚 (3. 9) 

In these equations, subscript a, s and min stand for aqueous, sorbed and mineral 

concentrations and components, respectively, and m and im refer to mobile and 

immobile zones, respectively. Equation (3. 1) defines the transport equation in mobile 

domains but the third term in the right-hand side represents a linear mass exchange 

between mobile and immobile zones. In this equation, vector u [M/L3] contains 

component concentrations defined by equations (3. 7) and (3. 8), 𝜙 [-] is porosity, 𝑡 [T] 

time, 𝒒[L3/L2/T]  Darcy flux, f [M/L3/T] is a non-chemical sink/source term, 

𝒒𝐷[L3/L2/T]  is the water flux that exchanges due to dispersion in the mobile zone, fchem 

[M/L3/T] is a sink/source term for kinetic and sorption reactions and αj [T-1] is a first-

order mass transfer rate coefficient. Equation (3. 2) defines the specific mass balance in 

the jth immobile region as a linear exchange with the mobile domain. Nim is the number 

of immobile zones connected to a mobile. Note that the sum of equations (3. 1) and (3. 

2) expresses the total mass balance in both mobile and immobile zones. Equations (3. 3), 

(3. 4) and (3. 5) describe the mass action laws for equilibrium reactions in the aqueous, 

surface (sorption and cation exchange) and mineral phases, respectively. The vector of 

aqueous species concentrations (𝒄𝒂) is split into two vectors 𝒄𝟏 and 𝒄𝟐 of primary and 

secondary concentrations (equation (3. 6)) such that c2 can be expressed as an explicit 

function of c1 by means of equations (3. 3). Vector γ has the same subscripts as c and 

contains the activity coefficients. Sk and rk in (3. 9) are the stoichiometric matrix and the 

vector of reaction rates for kinetic reactions, respectively. Note that in the absence of 

kinetic reactions and adsorption, component uam can be resolved as a conservative 

transport problem.  

In these equations, the set of chemical reaction occurring at any point and defined by 

the stoichiometric matrices S are space dependent. That is, different chemical systems 

can be defined in different portions of the domain to represent large scale heterogeneity 

or in different immobile zones to represent sub-REV (pore scale) chemical 

heterogeneity. Therefore the definition of components will also be space dependent. A 

potential source of conflict may arise from adjacent cells with different chemical 

systems and thus different components. To circumvent them, we adopt the rule 
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“dressing code defined by the host”, meaning that the mass balance of a cell, which can 

include contributions from adjacent cells, is defined for the components of the chemical 

system of that cell. This way, components are defined at every point with the local 

chemical system.  

3.3. Numerical Formulation 

We use here an isochronal grid (Appendix A) to model the mobile domain of 

MRWM. That is, travel time between nodes equals the time step, which facilitates 

simulating advection by simply displacing concentrations from one cell to the next one 

downstream. Dispersion is simulated by mixing water of a cell with that of adjacent 

cells. The method is well suited to advection dominated problems. In this way we can 

express the aqueous concentration of a component at a mobile cell i as a function of 

concentrations of adjacent cells at a previous time step: 

𝒖𝒂𝒎,𝒊
𝑘+1 = 𝒖𝒂𝒎,𝒊−

𝑘 + ∑ λ𝑖𝑛(𝒖𝒂𝒎,𝒏
𝑘 − 𝒖𝒂𝒎,𝒊−

𝑘 )

𝑁𝑚

𝑛=1

+ ∑ λ𝑖𝑗(𝒖𝒂𝒊𝒎,𝒋
𝑘

𝑁𝑖𝑚

𝑗=1

− 𝒖𝒂𝒎,𝒊−
𝑘 ) + 𝑹𝒊 (3. 10) 

where subscript i- indicates the position of ith cell at time step k, i.e. the upstream cell 

if an isochronal grid is used, λ𝑖𝑛 is the mixing ratio, i.e. the proportion of n cell water 

that mixes with i cell water during the time step, Nm and Nim are the number of mobile 

and immobile cells connected to cell i, respectively, and 𝑹𝒊 is the vector of 

contributions from kinetic and sorption reactions to aqueous components. For the sake 

of simplicity, the non-chemical sink/source term is represented by one of the mixing 

terms n. Therefore λ [-] can have different expressions depending on whether they 

represent the mixing fraction with adjacent mobile cells, the source term and exchange 

with the immobile zone, respectively. 

λ𝑖𝑛 = 𝐷𝑖𝑛

𝐴𝑖𝑛 · ∆𝑡

𝐿𝑖𝑛 · 𝜙𝑚,𝑖 · 𝑉𝑖
 (3. 11) 

λ𝑖𝑛 =
𝑄𝑖

𝜙𝑚,𝑖 · 𝑉𝑖
∆𝑡 (3. 12) 

λ𝑖𝑗 =
𝛼𝑖𝑗

𝜙𝑚,𝑖
∆𝑡 (3. 13) 

 

where ∆𝑡 is the time step, Din [L2/T] is the dispersion coefficient at the i-n interface, 

i.e. longitudinal dispersion in the flow direction or transverse dispersion, with area Ain 
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[L2], at a distance Lin [L], 𝑉𝑖 is the water volume of the cell, and 𝑄𝑖is the flow rate of 

sources into cell i.  Ri [M/L3/T] in equation (3. 10) is given by 

𝑹𝒊 = 𝒖𝒔𝒎,𝒊
𝑘 − 𝒖𝒔𝒎,𝒊

𝑘+1 +
𝑬𝑼𝑺𝒌

𝑡 𝒓𝒌(𝒖𝒂𝒎,𝒊
𝑘 )

𝜙𝑚,𝑖
∆𝑡 (3. 14) 

Advection is defined through 𝒖𝒂𝒎,𝒊−
𝑘 . Using an isochronal one-dimensional mesh 

allows us to write 

𝒖𝒂𝒎,𝒊−
𝑘  =  𝒖𝒂𝒎,𝒊−1

𝑘
 (3. 15) 

Substituting (3. 15) into (3. 10) yields: 

𝒖𝒂𝒎,𝒊
𝑘+1 = λ𝑖𝑖𝒖𝒂𝒎,𝒊−1

𝑘 + ∑ λ𝑖𝑛𝒖𝒂𝒎,𝒏−𝟏
𝑘

𝑁𝑚−1

𝑛=1
𝑛≠𝑖

+ ∑ λ𝑖𝑗𝒖𝒂𝒊𝒎,𝒋
𝑘

𝑁𝑖𝑚

𝑗=1

+ 𝑹𝒊 (3. 16) 

Note that the mixing ratio λii [-] is simply the fraction of water that is not exchanged 

with adjacent cells:  

λ𝑖𝑖 = 1 − ∑ λ𝑗𝑛

𝑁𝑚−1

𝑛=1
𝑛≠𝑖

− ∑ λ𝑖𝑗

𝑁𝑖𝑚

𝑗=1

 (3. 17) 

A full numerical analysis of the solution method falls beyond the scope of this paper. 

Let us simply state here that the method is consistent, but stability is conditional and  

requires λ𝑖𝑖 > 0, which limits the maximum time step to be used. If this condition is met 

and an isochronal mesh is used, convergence is second-order for conservative transport. 

Speciation would have to be done once the components were calculated. In practice, 

however, speciation is done simultaneously with mixing calculations equation (3. 10), 

because species concentrations are necessary for evaluating 𝑹𝒊, by means of equation 

14. This calculation is also explicit and we assume that it will also be conditionally 

stable, but we have not been able to derive an easy to apply stability condition. 

Therefore, we have made sensitivity analysis to the time step size. In the results 

presented here, the solution was not sensitive to the time step. The algorithm is 

described in Figure 2. 1a and is linked to chemical library CHEPROO, which is an 

Object Oriented code for geochemical calculations (Bea et al., 2009). 

For the sake of simplicity, porosity changes caused by mineral 

precipitation/dissolution were neglected. Hence, flux may be regarded as steady state. 

Otherwise, the isochronal mesh would have to be recalculated at each time step and 
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several parameters (such as permeability and mass transfer rate) should be recalculated 

for each new element causing numerical errors. 

 

3.4. Application models 

3.4.1. Model descriptions and parameters 

 

The MRWM method was applied to a simplification of the G5 laboratory experiment 

performed by Luquot et al. (2016). The G5 experiment involved injecting CO2 rich 

brine into a sandstone sample from Heletz at a low flow rate. In order to study the 

localization of chemical reactions, we built four numerical models (Figure 3. 2) by 

varying the hydrodynamic and/or chemical heterogeneity. However, parameters such as 

inflow rate, porosity, domain bulk volume or total surface area of every mineral (except 

WMA-2) remained constant for all models. 

 

 

Figure 3. 2: Conceptual sketch of the different simulations. WMA and MRWM schemes 

are represented with 4 and 2 mobile nodes scheme, respectively. WMA numerical 

models use 150 mobile nodes whereas MRWM models use 75 mobile nodes. 
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We used a one-dimensional domain discretized by an isochronal mesh (i.e., transit 

time per cell equal to the time step). The first two models (WMA 1 and WMA 2) 

consisted of 150 mobile cells, each with a volume of 3.85·10-9 m3. The other two 

models (MRWM 1 and MRWM 2) had the same total volume as the WMA models but 

only half of this volume was defined as mobile. The MRWM mobile cells (75) have the 

same volume as the WMA cells (3.85·10-9 m3). Therefore, the time step is the same for 

all the models because so are the flow rate, cell volume and mobile porosity. The fact 

that water flows only through half of the domain (the other half is immobile) causes 

velocity to be twice as high (hence, MRWM cells have lengths twice that of WMA cells 

and the number of mobile MRWM cells is half that of WMA cells). 

Each mobile cell was connected to 2 immobile cells of 1.925·10-9 m3 in the MRWM 

models. Hydrodynamic parameters are summarized in Table 3. 1. The time step was set 

to 0.905 seconds with a total simulated time of 5 hours. According to equation (3. 11) 

this gives a mixing ratio of 0.1 between the mobile cells. With a transfer coefficient (α) 

of 2.07876·10-5 s-1, the water mixing ratio between mobile and immobile cells becomes 

9.9·10-5, 1010 times lower value than for exchange between mobile cells.  

Table 3. 1: Physical hydrodynamic parameters used in the models. First column refers 

to those used in all models. First row of the second column refer to WMA models and 

third row to MRWM models, respectively. 

All models Specific models WMA 1, WMA 2 

Initial porosity (𝜙𝑚) 0.19 Mobile nodes 150 

Input flow (Q) 8.33·10-10  m3 s-1 Specific models MRWM 1, MRWM 2 

Domain length 1.5·10-2 m Mobile nodes 75 

Time increment (Δt) 0.904762 s Immobile cell volume 1.9·10-9 m3 

Mix. ratio mob. cells (λin) 0.1 Initial immobile porosity (𝜙𝑖𝑚) 0.19 

Mobile cell volume 3.8·10-9 m3 
Mixing ratio mobile-immobile 

cells (λij) 
9.9·10-5 

 

 

Model mineralogical compositions are motivated by those of Luquot et al. (2016), 

only simpler to facilitate interpretation (see Table 3. 2). The only carbonate phase is 

dolomite. The model considers two minerals with fast reaction kinetics (dolomite and 

gypsum) as well as three slowly reacting minerals (quartz, K-feldspar and kaolinite). 

Total porosity (18.8%), rate laws for reacting minerals (Table 3. 3) and effective 
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reactive surface areas were taken equal to those of Luquot et al. (2016) for experiment 

G5. The initial surface areas of secondary minerals (gypsum and kaolinite) were set to 1 

m2/m3 to initiate the precipitation. Gypsum was assumed initially present in small 

concentrations. 

Table 3. 2: Brine composition of the Heletz field and those used here as well as the 

saturation index for the different minerals used in experiment G5 (Luquot et al., 2016). 

Brine compositions (mol/kgw) 

Heletz brine eq. Gypsum Brine composition used here 

Element Concentration 
Concentration pore 

water 
Concentration injected 

solution 

Ca 6,88·10-2 6,88·10-2 6,88·10-2 

Cr 1,29·10-6 - - 

Cu 2,79·10-5 - - 

Fe 2,17·10-5 - - 

K 1,08·10-2 1,08·10-2 1,08·10-2 

Mg 2,13·10-2 2,13·10-2 2,13·10-2 

Mn 1,05·10-6 - - 

Na 7,68·10-1 7,88·10-1 7,88·10-1 

Ni 3,03·10-7 - - 

S 3,21·10-2 2,48·10-2 2,48·10-2 

Si 4,70·10-5 4,70·10-5 4,70·10-5 

Sr 1,13·10-4 - - 

Cl 7,99·10-1 8,99·10-1 8,99·10-1 

Al 3,46·10-7 3,46·10-7 3,46·10-7 

C 3,28·10-4 3,28·10-4 1,10·10-1 

pH 7,30 7,30 2,33 
    

 
Saturation index 

 Mineral log(IAP/K) log(IAP/K) 

 Quartz -0,85 -0,81 

 Dolomite 0,00 -11,94 

 K-Feldspar -1,33 -12,54 

 Kaolinite -0,05 -12,69 

 Gypsum 0,00 0,00 

 

 

The brine composition is shown in Table 3. 3. The composition of the injected 

solution is the same as that of the initial solution, after adding 0.11 mol of CO2 per kg of 
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water (equilibrium with CO2 at 18 bar). This lowers pH and renders the solution 

unsaturated with respect to the main minerals. 

Table 3. 3: Simplified mineral composition of the Heletz sandstone and parameters used 

in numerical models. Values of Ea are taken from Palandri and Kharaka 2004. Illite, 

ankerite and pyrite are not considered here. 

 

 

 

Forty-nine aqueous species were considered in the simulations. All the equilibrium 

constants (log K at 60 °C), including those for the mineral reactions, and stoichiometric 

coefficients were taken from the EQ3/6 database (Wolery et al., 1990). Activity 

coefficients were calculated using the extended Debye-Hückel formulation (b-dot 

model) with the parameters listed in the database.  

 

3.4.2. WMA – 1: model with homogeneous mineral zones 

 

The WMA-1 model represents a homogeneous mineral distribution along the core 

sample with transport dominated by advection. It has the same configuration as the one 

used by Luquot et al. (2016). The resulting dissolution and precipitation processes are in 

agreement with those of Luquot et al. (2016) despite our simplified chemical system. 

The total volume of dissolved and precipitated minerals at the end of the simulation is 

presented in Table 3. 4.  We predict high dolomite dissolution near the sample inlet, 

which diminishes near the outlet (Figure 3. 3b). As a result, pH increases (Figure 3. 3a). 

The rate of dolomite dissolution falls at 3 mm from the inlet due to the dependence of 

Mineral wt.%

Reactive 

surface area 

(m2/m3)

k m,25 (mol m
-2

 s
-1

) n H
+ E a  (kcal 

mol-1)

Zone_q,d,kf Zone_q,d Zone_q,kf

Quartz 60.06 ± 2.13 67,28 75,19 59,39 4300 3,98 E-14 -0,3 21,72

K-Feldspar 17.44 ± 2.05 20,25 0 40,49 4500 8,71 E-11 0,5 12,36

Dolomite 8.87 ± 0.23 12,35 24,69 0 150 6,46 E-4 0,5 8,63

Kaolinite 2.24 ± 1.31 1 4,90 E-12 0,77 15,75

Gypsum 2.30 ± 0.84 1 1,62 E-3 - 0

Illite 5.62 ± 0.93

Ankerite 2.95 ± 0.11

Pyrite 0.52 ± 0.11

wt.% *
, ¥

0

Mineral compositions and reactive parameters

Heletz mineral 

0,12

*) the zero values indicate the potential precipitated minerals taken into account in the model.

¥) q, d and kf are respectively used for quartz, dolomite and K-Feldspar.
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dolomite dissolution kinetics on pH (Table 3. 3). Gypsum precipitates near the inlet, 

peaking also at some 3 mm from the inlet, due to the build-up of Ca driven by dolomite 

dissolution (Figure 3. 3d). The dissolution of K-feldspar is not displayed in Figure 3. 3 

because it is similar to that of dolomite in shape, albeit with lower rates, because of a 

similar dependence on pH. 

 

Figure 3. 3: Variation along the sample length for different time steps (0.075 h, 2.5 h 

and 5h) of (a) pH, (b) dolomite (c) kaolinite, and (d) gypsum concentration changes for 

simulation WMA-1. The dashed green line shows the minimum pH at which Kaolinite 

precipitation occurs. For comparison, the final time step of WMA-2 variation 

concentration of pH, gypsum and kaolinite are shown. The Representative Elementary 

Volume (REV) bulk volume is 3.85·10-9 m3 

Table 3. 4: Total volume of dissolved and precipitated minerals for the four simulations. 

Total dissolved and precipitated mineral  (m3) 

Model Quartz Dolomite K-Feldspar Kaolinite Gypsum 

WMA-1 -3.05·10-14 -3.65·10-9 -5.10·10-14 5.96·10-21 1.49·10-9 

      
WMA-2 -2.30·10-14 -2.89·10-9 -4.13·10-14 0 1.41·10-9 

      
MRWM-1 -4.35·10-14 -2.93·10-9 -4.41·10-14 1.50·10-18 9.50·10-10 

Mobile -1.14·10-14 -2.84·10-9 -4.00·10-14 0 9.23·10-10 

Immobile -3.21·10-14 -9.23·10-11 -4.13·10-15 1.50·10-18 2.72·10-11 
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MRWM-2 -3.49·10-14 -2.91·10-9 -7.48·10-14 4.28·10-19 9.48·10-10 

Mobile -1.13·10-14 -2.86·10-9 -4.03·10-14 0 9.23·10-10 

Immobile q,kf -5.31·10-15 0 -3.45·10-14 1.76·10-21 1.14·10-11 

Immobile q,d -1.83·10-14 -4.80·10-11 0 4.26·10-19 1.36·10-11 

 

 

Kaolinite precipitates are transient. Some kaolinite precipitates during very early 

times ahead of the pH front, which is slightly delayed by dolomite dissolution, 

promoted by the arrival of K-feldspar dissolution products. However, this kaolinite 

dissolves subsequently (Figure 3. 4) upon the drop in pH. In fact, most of the time, the 

experiment runs under quasi-steady state conditions, with an slight increase in pH over 

time, as dolomite dissolution causes a small reduction in specific area and, thus, in 

reaction rate. As a result, only a small, but growing, amount of kaolinite remains at the 

last 3 mm of the sample (Figure 3. 3c), where pH stays above 4.6 throughout the 

simulation (Figure 3. 3a). Kaolinite precipitation is often driven by K-feldspar 

dissolution (Carroll et al., 2013; Fu et al., 2009; Luquot et al., 2012; Tutolo et al., 2015). 

However, it can also be affected by the total alkalinity of the solution leading to an 

oversaturation with respect to kaolinite, as shown in Figure 3. 3. The dashed green line 

indicates the pH necessary to precipitate kaolinite. Despite the foregoing, the volume of 

precipitated Kaolinite is negligible. 
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Figure 3. 4: Comparison of kaolinite concentration variation along the sample length for 

different early time steps for simulations WMA-1 and WMA-2. The Representative 

Elementary Volume (REV) bulk volume is 3.85·10-9 m3 

 

  

3.4.3. WMA - 2: model with heterogeneous mineral zones 

 

The WMA -2 model uses the same average mineralogy and transport conditions as 

the model WMA-1. However, the initial mineralogy is different because heterogeneity 

is acknowledged. Odd cells are only composed of quartz and K-feldspar. All even cells 

contain quartz and dolomite. Simulations were performed both with the same total 

mineral surfaces as in WMA-1 (i.e., multiplying by two the specific surfaces of 

dolomite and K-feldspar in the corresponding cells) and with the same specific mineral 

surfaces. Results for the first case are not shown because they are virtually identical to 

those of WMA-1, which implies that mineral localization along the mobile flow path 
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does not affect much the results, at least in this kinetics controlled case. There, in the 

following, we restrict the discussion to the case in which specific surfaces are identical 

to those of WMA-1, which can be viewed as an analysis of the sensitivity of model 

results to mineral surfaces. 

Like the WMA-1 model, pH increases downstream as a result of dolomite dissolution 

(Figure 3. 3a). However, acid water penetrates deeper in the WMA-2 model and the 

change in the pH slope occurs at 6mm instead of 3mm. This is attributed to the 

slowdown in mineral distribution which implies that only half of the domain counteracts 

the input acidity. Dolomite and K-feldspar dissolution is slower than in the WMA-1 

model (Table 3. 4) despite the fact the model contains the same amount of mineral. 

Mineral distribution thus plays a role in the reaction. The reaction is transport-limited 

since the total amount of dolomite and K-feldspar remains identical. 

No precipitation of kaolinite is predicted in the total mass balance in Table 3. 4, 

because pH stays below 4.6 throughout the simulation (Figure 3. 3a). Nevertheless, as 

observed for WMA-1, kaolinite precipitates at early times ahead of the pH front (Figure 

3. 4).  

In the case of WMA-2 the fronts move faster with the result that no kaolinite remains 

after the simulated time of 5 hours. Given that gypsum precipitation depends on 

dolomite dissolution, its peak is found further from the inlet than in the case of WMA-1 

(Figure 3. 3d). In addition, this peak is lower and more dispersed. 

 

3.4.4. MRWM - 1: model with homogeneous mineral immobile zones 

 

Mobile and immobile zones, and their mineralogy are homogeneously distributed in 

the model MRWM-1, identical to those of WMA-1 (see Figure 3. 2).  

As the volume of the mobile zone is smaller than in the previous models, the pore 

water velocity is higher. This leads to a deeper penetration of the acid water (Figure 3. 

5), similar to that of model WMA-2. Dissolution of dolomite and K-feldspar in addition 

to gypsum precipitation occurs mainly in the mobile zone (Table 3. 4). The pH remains 

relatively high in the immobile cells (around 5.3, Figure 3. 5) due to the limited 

exchange of acidity with the mobile zone. An autonomous equilibrium is established in 
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immobile zones between the protons diffusing into the immobile zone and their 

consumption by dolomite dissolution. This moderate pH, together with the diffusion of 

Al and Si create favorable conditions for kaolinite precipitation in the immobile zone 

(see Figure 3. 5). In summary, limiting the diffusion of acidity is sufficient to promote 

chemical localization and favor the precipitation of kaolinite despite the fact that 

flowing water is too acid to sustain kaolinite precipitates. 

 

Figure 3. 5: pH and kaolinite concentration variation along the sample length at final 

time steps for simulations WMA-1 (blue), MRWM-1 (green) and MRWM-2 (orange). 

Mobile zones are represented by continuum lines. Immobile zones are depicted by 

dashed or dotted lines. The Representative Elementary Volume (REV) bulk volume for 

WMA-1 is 3.85·10-9 m3. The REV bulk volume for MRWM models is 7.7·10-9 m3 and 

includes one mobile node and two connected immobile nodes. 
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3.4.5. MRWM - 2: model with heterogeneous mineral distribution in 

immobile zones 

 

Model MRWM-2 also contains mobile and immobile zones, but the mineralogy is 

heterogeneously distributed in the immobile zones using the same definition as in the 

model WMA-2. The results in the mobile zones are similar to those in MRWM-1 (Table 

3. 4 and Figure 3. 5). However, because of the mineralogical heterogeneity of the 

immobile zones, precipitation/dissolution is also different in each immobile zone. 

Obviously, dolomite dissolution occurs only in the immobile zone_q,d (see Table 3. 3 

and Figure 3. 2). K-feldspar dissolves only in zone_q,kf. The distribution of pH in the 

immobile zone_q,d is similar to that of MRWM-1 (Figure 3. 5) because a similar 

autonomous equilibrium is reached between diffusion of protons and theirs 

consumption by dolomite dissolution. This causes kaolinite to precipitate, albeit in a 

smaller amount (Table 3. 4) because K-feldspar is not present in this zone, so that Al 

and Si need to diffuse from the mobile zone. Ironically, in the immobile zone_q,kf, 

which contains K-feldspar,  source of Al and Si for kaolinite, this mineral does not 

precipitate because pH is in slaved equilibrium with the mobile zone and remains low. 

These results are supported by the experiments of Luquot at al. (2016), who observed 

that kaolinite tends to precipitate preferentially around dissolved carbonate crystals. 

The above discussion supports the conjecture that motivated this work. Geochemical 

localization (i.e., the occurrence of reactions that would not occur in well mixed media) 

requires both mineralogical localization and transport limitation. In our case, it controls 

whether, where, and how much kaolinite precipitates (Table 3. 4). Kaolinite 

precipitation occurs mainly in immobile zones where dolomite is dissolved and pH 

remains moderately high. We call the precipitation of Kaolinite slaved, because it 

results from the diffusion of reactants that were produced elsewhere and occurs solely 

because local conditions are favorable. As a result, it will come closer to equilibrium 

and, we conjecture, produce more crystalline precipitates than “autonomous” reactions.  

 

The case of gypsum allows us to illustrate further the concept of autonomous and 

slaved reactions. Gypsum precipitates both in immobile zone_q,d and zone_q,kf. The 

difference between these two immobile zones is observed only on the inflow side of the 
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domain (Figure 3. 6). Less gypsum is obtained in zone_q,kf (Table 3. 4) because it 

results from Ca and SO4 diffusing from the mobile zone. Therefore, gypsum 

precipitation in zone_q,kf can be regarded as a chemically “slaved” process, whereas 

gypsum precipitation zone_q,d should be regarded as “autonomous” since the amount of 

precipitated mineral is controlled by the local dissolution of dolomite.  

 

Figure 3. 6: Comparison of gypsum concentration variations along the sample length at 

final time steps in immobile zones_q,kf (pointed) and zones_q,d (dashed) for 

simulations MRWM-2. The Representative Elementary Volume (REV) bulk is 7.7·10-9 

m3 and includes 1 mobile node and two connected immobile nodes. 

 

 

3.4.6. Sensitivity to immobile zone parameters 

 

The immobile volume and exchange mass coefficients of models MRWM-1 and 

MRWM-2 have been chosen somewhat arbitrarily. The discussion of results of these 

two models makes it clear that the impact of multi-rate model parameters on the 

reactions is non-trivial, as it is controlled by several simultaneous processes. On the one 

hand, kinetically limited reactions are controlled by residence time (𝜙𝑖𝑚,𝑗/𝛼𝑗), but also 

by the flux of reactants, which is proportional to 𝛼𝑗, and whether their concentrations 

are the result of an autonomous or a slaved process.   

The rate of slaved reactions can be easily derived from Eq. (3. 2) by assuming that the 

slaved reaction is governed by first order kinetics (i.e., 𝑓𝑐ℎ𝑒𝑚,𝑗 = 𝜇 · 𝑢𝑎𝑖𝑚,𝑗 , where 

𝑢𝑎𝑖𝑚,𝑗 is the concentration of the species or component controlling the reaction rate). 
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This yields 𝑟 = 𝜇𝛼𝑗 (𝛼𝑗 + 𝜇)⁄ · 𝑢𝑎𝑚, assuming that the reaction of the controlling 

species or component in the mobile domain, 𝑢𝑎𝑚, is (quasi) stationary. This implies that 

[1] the reaction rate is independent of the fraction of immobile region (𝜙𝑖𝑚,𝑗) or 

residence time, but [2] it will depends equally on both the local reaction rate constant 

and the exchange rate. The reaction grows with both 𝛼𝑗  and 𝜇 and is controlled by the 

smallest of them. That is, the reaction rate is small when either of them is small and 

large when both are large. 

 The situation is more complex in the case of autonomous reactions. Figure 3. 7 

illustrates the effect of reducing the mixing fraction between mobile and immobile 

zones (λij), which is equivalent to reducing 𝛼𝑗. On the one hand, kaolinite precipitation 

increases because of the resulting high pH, even though a smaller amount of K-feldspar 

is dissolved. This reflects that the supply of Si and Al due to K-feldspar dissolution is 

sufficient to feed kaolinite precipitation, which was limited by pH. On the other hand, 

gypsum precipitation is reduced, which reflects a reduced supply of Ca and/or SO4, both 

limited by the reduced exchange rate. 

 

Figure 3. 7: Comparison of total volume variation of gypsum and kaolinite in immobile 

zones at final time steps for simulation MRWM-1 applied to different water mass ratio 

exchanged between mobile and immobile zones. 

 

3.5. Discussion and conclusions 

We developed a multi-continuum formulation model (MRWM), which was applied to 

simulate geochemical localization. This model aims at reproducing the effect of pore 

scale heterogeneity by creating localized micro environments favoring reactions that 
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would not occur in the traditional ADE reactive transport models where local 

homogenization and full mixing are assumed. To this end, we used the MRMT 

approach with diverse mineral compositions for different cells. Transport was calculated 

by the WMA of chapter 7, which was extended to account for immobile zones and 

chemical localization. 

We applied this method to four models inspired by dissolved CO2 flow-through 

experiments performed on sandstone samples from Heletz (Luquot et al., 2016). Model 

results confirm the original conjecture that coupling chemical and hydrodynamic 

heterogeneities exerts a significant influence on reactive transport processes. 

Specifically, including immobile zones containing dolomite allows us to simulate 

kaolinite precipitation, which would not occur if concentrations were homogenized. 

These results indicate that kaolinite precipitation is pH controlled and precipitated only 

close to carbonate dissolution or at least a pH buffer as observed by Luquot et al. 

(2016). In summary, localization and how it is represented in the model controls 

whether, where, and how much kaolinite precipitates. 

The MRWM model requires three additional parameters for each immobile domain: 

porosity, exchange rate and mineralogy. We found that the spatial distribution of 

dissolution and precipitation processes is sensitive to all of them. As a result, the 

behaviour of the model is complex and hard to anticipate. In an attempt to facilitate the 

explanation of model results and parametrization, we distinguish between “slaved” and 

“autonomous” reactions. Autonomous reactions occur between reactants produced 

locally. For example, gypsum precipitation in a dolomite zone is an autonomous 

reaction because it is driven by dolomite dissolution in this zone. Actual rates are the 

result of interactions between the two kinetic laws (e.g., dolomite dissolution and 

gypsum precipitation) with the mobile-immobile exchange rate and the immobile 

porosity. As a result, these reaction rates are hard to predict. Slaved reactions occur 

between reactants produced elsewhere that diffuse into (away from) the precipitation 

(dissolution) site, where conditions are favourable. An example of these is the 

precipitation of kaolinite in a dolomite immobile domain controlled by the local high 

pH even though SiO2 and Al result from dissolution of K-feldspar in other zones. The 

behaviour of these reactions appears to be more predictable than that of autonomous 

reactions because the reaction rate is controlled monotonically by both the exchange and 

the local kinetics rates. However, things may be more complex than they look, because 
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local conditions for slaved reactants may be controlled by autonomous reactions. For 

example, kaolinite precipitation is controlled by pH, which is the result of an 

autonomous reaction (dolomite dissolution).  

It may therefore be concluded that, although the MRWM model is very powerful in 

reproducing the effect of pore scale chemical processes in Darcy scale models, reliable 

parameterization is difficult and further research is warranted before application. 
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Chapter 4 

4. Mixing in stratified flow with MAWMA 

Modeling mixing in high 

heterogeneous media: the role of 

water discretization in phase space 

formulation 

 

 

4.1. Introduction 

 

Solute transport in homogeneous media is well reproduced by the advection-

dispersion equation (ADE). However, this is not the case  in real aquifers because of the 

heterogeneity of the soil (Le Borgne et al. 2008; Gjetvaj et al. 2015; Willmann et al. 

2008), which leads to a commonly observed non-equilibrium (Alcolea et al., 2008; 

Vogel et al., 2006). Observed transports is termed anomalous (i.e., non-Fickian 

anomalous transport is evidenced by tailing in concentration breakthrough curves 

(Valocchi 1985; Carrera 1993). But beyond failing, accurate representation of 

anomalous transport is critical when chemical reactions take place (Battiato et al. 2009; 

Sadhukhan et al. 2014; Scheibe et al. 2015; Soler-Sagarra et al. 2016; Tartakovsky et al. 
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2009). For instance, the classic ADE is no longer valid in heterogeneous media because 

it does not distinguish between dispersion (solute spreading) and mixing (diffusion of 

the solute). ADE employs Fick’s law (Fick, 1855) to characterize both processes by 

using concentration gradients. As an alternative, the Water Mixing Approach (WMA) 

has been proposed in chapter 2, which uses water exchange instead. In contrast to 

dispersion, mixing is a direct cause of chemical reactions in fluids (Cirpka and Valocchi 

2007; Rezaei et al. 2005; De Simoni et al. 2005, 2007; Tartakovsky et al. 2008). A new 

formulation is therefore needed. The new equation for anomalous transport must 

reproduce advection, dispersion and mixing (de Dreuzy et al. 2012; De Dreuzy et al. 

2016).  

A large number of Particle based methods have been proposed as alternatives to ADE 

(Benson et al. 2009; Bijeljic et al. 2006; Le Borgne et al. 2008a; Delay et al. 2005; 

Fernàndez-Garcia et al. 2011; Lester et al. 2014; Painter et al. 2005 and Russian et al. 

2016). Particle, methods have shown that velocity transitions can be viewed as a 

correlated random process. This process is markovian when transitions are made not 

after a fixed time step, but after particles have (reverse) covered a fixed spatial distance 

(Le Borgne et al. 2008b).  The fact that velocities may change after a fixed spatial step 

is consistent with a fixed heterogeneity structure. We conjecture that this is a good basis 

for alternative transport formulations. Although all the discussions above are relevant. 

They have yielded a new view on transport. Yet, none of them considers mixing. 

The difficulty in representing mixing lies in its close relationship with spreading. 

Velocity variation produce stretching of lamelas, which enhances mixing by increasing 

the contact area between different waters. The fact that velocity variations occur at all 

scales and that they control mixing suggest using velocity as a new dimension of the 

state variable (like time and space), which leads to a phase space formulation. The 

success of Markovian formulation further suggests representing velocity variability as a 

Markov process. Markovian processes are typically represented by means of a 

Transition Matrix 𝑴𝒗𝒔, which here expresses the probability of a particle to change the 

velocity state v given constant steps in space phase s (De Anna et al., 2013; P. K. Kang 

et al., 2011, 2014, 2017; P. K. Kang, Borgne, et al., 2015). Transitions may occur either 

because of heterogeneity along a flow line, which does not produce mixing, or because 

of water particles diffusion across flow tubes, which is the mixing mechanism 
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associated to plume stretching. A proper representation of mixing should distinguish 

these two types of transitions. 

In this chapter, we propose a phase space formulation for transport that acknowledges 

velocity transitions both by heterogeneity along the flowlines and by diffusion. The 

formulation based on the WMA. We present a numerical method based on the equation 

and tested with Taylor’s laminar flow case. 

 

 

4.2. Governing equations 

 

Kang et al. (2017) proposed a phase space formulation for heterogeneous domains to 

find an alternative to ADE. Phase space formulations express state variables not only as 

dependent on time and space, but also on velocity. The formulation was originally 

presented for pore-scale models using particle probability p. However, it can be easily 

extended to Darcy scale. We express it in terms of concentrations, c=c(x,v,t) [M/L3] by 

using basic definitions to write 𝑝 = 𝑐𝜙/𝑀, where 𝜙 [-] is porosity and M is the total 

solute mass. With these definitions, Kang et al. (2017) can be rewritten as 

𝜙
𝜕𝑐

𝜕𝑡
= −𝜙𝑣 ⋅ ∇𝑐 − 𝜙

𝑣

𝑙 ̅
𝑐 + ∫ 𝜙𝑔𝑣𝑠(𝑣|𝑣′)

𝑣

𝑙 ̅
𝑐′𝑑𝑣′

𝑣′

+ 𝑟 (4. 1) 

where 𝑡 [T] is time, v [L/T] is velocity, 𝑙[̅L] is the characteristic length, 𝑔𝑣𝑠 [T/L] is 

the transition probability density of jumping from v’ to v after a 𝑙 ̅space step, c’=c(x,v’,t) 

and r [M/L3/T] is the sink/source term. Thus, the formulation implies a non-unique 

concentration value at fixed time and space. Eq. (4. 1) expresses dispersion naturally by 

acknowledging velocity variability. The second and third terms of the right-hand side 

(RHS) define the solute transition to velocity states, but they do not distinguish between 

diffusion transitions (purple arrow in Figure 4. 1) and advection transitions (green arrow 

in Figure 4. 1). This is inappropriate since it does not allow treating mixing and 

dispersion as separate processes. To overcome this limitation, we propose to (a) restrict 

transitions caused by heterogeneity to advection transitions (i.e., changes in velocity 
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along streamlines, like defined by green arrow in Figure 4. 1), and (b) simulate diffusion 

separately.  

We use the WMA formulation proposed in chapter 2 to define the mixing process. 

Originally, the WMA expresses ADE as a mixing of different waters, rather than 

solutes, which is convenient for reactive transport. The WMA is formulated as follows 

𝜙
𝜕𝑐

𝜕𝑡
= −𝜙𝑣 · 𝛻𝑐 − 𝛻 ⋅ (𝑞𝐷𝑐̅̅ ̅̅ ̅) + 𝑟 (4. 2) 

where the term 𝑞𝐷𝑐̅̅ ̅̅ ̅ represent solute exchange driven by water dispersion and mixing. 

That is 𝑞𝐷 [L3/L2/T] represents water flux exchange with respect to the mean water flux, 

which is accounted for in the advection term. Here, we propose to restrict this concept 

to molecular diffusion. This may sound confusing since diffusion is commonly 

associated to solute, rather than water. In reality, water is exchanged by diffusion at a 

rate comparable to that of solutes (Harris and Woolf, 1980). Furthermore, without 

entering into this debate, the formulation of Eq. (4. 2) is equivalent to Fickian diffusion, 

which employs concentration gradient, if 𝑞𝐷 = 𝜙𝐷𝑤/𝐿𝐷, where 𝐷𝑤[L2/T] and 𝐿𝐷 [L] 

are water molecular diffusion coefficient and the characteristic diffusion scale, 

respectively.  

The new formulation is obtained by restricting Eq. (4. 1) to advective transitions and 

Eq. (4. 2) as to diffusion term  

𝜙
𝜕𝑐

𝜕𝑡
= −𝜙𝑣 ⋅ ∇𝑐 − 𝜙

𝑣

𝑙 ̅
𝑐 + ∫ 𝜙𝑔𝑣𝑠(𝑣|𝑣′)

𝑣

𝑙 ̅
𝑐′𝑑𝑣′

𝑣′

+ 𝛻 ⋅ (𝑞𝐷𝑐̅̅ ̅̅ ̅) + 𝑟 (4. 3) 

Eq. (4. 3) is not a complete formulation yet. Velocity transitions occur due to 

advection and diffusion (Figure 4. 1). Since we are still restricting 𝑔𝑣𝑠 to characterize 

velocity transitions along streamlines, we need a new transition term for velocity 

changes driven by diffusion (purple arrow in Figure 4. 1). Advection changes 

characterized by 𝑔𝑣𝑠 are Markovian in space (Le Borgne et al. 2008b), but diffusion 

driven exchanges should be Markovian in time. The two transitions must be described 

independently. Diffusion transitions require adding two terms to (4. 3), which yields  
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𝜙
𝜕𝑐

𝜕𝑡
= −𝜙𝑣 ⋅ ∇𝑐 − 𝜙

𝑣

𝑙 ̅
𝑐 + ∫ 𝜙𝑔𝑣𝑠(𝑣|𝑣′)

𝑣

𝑙 ̅
𝑐𝑑𝑣′

𝑣′

+ 𝛻 ⋅ (𝑞𝐷𝑐̅̅ ̅̅ ̅) 

+∫ 𝜙𝑓𝑣𝑡(𝑣|𝑣′)𝑐′𝑑𝑣′
𝑣′

− ∫ 𝜙𝑓𝑣𝑡(𝑣′|𝑣)𝑐𝑑𝑣′
𝑣′

+ 𝑟 

(4. 4) 

where 𝑓𝑣𝑡(𝑣|𝑣′)[T/L/T] is the probability density of exchange between velocity states 

v per unit time. The fourth term on the RHS define the diffusion process in space 

domain (orange arrow in Figure 4. 1), while the fifth and sixth expresses the diffusive 

mass balance in velocity domain (purple arrow in Figure 4. 1). Assuming that 𝑓𝑣𝑡 is 

solute independent, this equation is consistent with the WMA: define the diffusion of 

water instead of solute. This is why we termed the formulation Multi-Advective Water 

Mixing Approach (MAWMA). Note that we consider the requirements highlighted by 

De Dreuzy and Carrera (2016): adequate separation of advection, diffusion and 

dispersion. 

 

Figure 4. 1: Scheme of particle transport processes through continuum heterogeneous 

domain. The left image is a computed velocity field. The right-top image displays the 

advection path of two particles. The right-bottom image shows the diffusion 

possibilities of a single particle. 
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4.3. MAWMA formulation applied to WP method 

 

Assessing the validity of the MAWMA, Eq. (4. 4), could be arduous. Given that the 

novel processes presented are the fifth and sixth terms on the RHS, we make three 

simplifications:  

a) A stratified parallel flow may be considered. This implies that no velocity 

transition occurs due to advection, which leads to neglecting the second and 

third terms on the RHS of the Eq. (4. 4). We further assume that all strata 

carry the same flow rate (i.e., high velocity strata are narrower than low 

velocity strata) to simplify space and velocity discretization (Figure 4. 2b)   

b) Diffusion is only considered transversal to the main flow direction. Adding 

this to the stratified flow leads to velocity changes because of diffusion 

(Bolster et al., 2011; Dentz and Carrera, 2007; Taylor, 1953). The fourth term 

of the RHS may therefore be ignored. Transverse mixing has been proven to 

be of paramount importance when chemical reactions are involved (Werth, et 

al. 2006)  

c) A Lagrangian formulation is adopted for advection by using material 

derivative 𝑑 ·/𝑑𝑡 since it provides a better definition of mixing (Batlle et al. 

2002; Bell and Binning 2004; Cirpka et al. 1999; Ramasomanana et al. 2012; 

Zhang et al. 2007).  

These three simplifications allow us to rewrite Eq. (4. 4) as 

𝜙
𝑑𝑐

𝑑𝑡
= ∫ 𝜙𝑓𝑣𝑡(𝑣|𝑣′)𝑐′𝑑𝑣′

𝑣′

− ∫ 𝜙𝑓𝑣𝑡(𝑣′|𝑣)𝑐𝑑𝑣′
𝑣′

+ 𝑟 (4. 5) 

Time, space and velocity should be discretized and integrated in Eq. (4. 5). We now 

describe the Water Parcel (WP) method used to solve this equation. Other methods 

might also be used. 
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The spatial domain is discretized in parcels (see Figure 4. 2c) with the same water 

volume as the isochronal structured water (IW) method using the WMA formulation 

(see Figure 4. 2b). This discretization covers the domain, in the sense that water parcels 

represent actual water and the sum of their volumes should be equal to the total water 

within the spatial domain. The concentration is only considered an attribute of each 

parcial and is homogeneous within each parcel. The later implies that the shape function 

used for space integration associated to the parcel is equal to 1 if (x,v)  belong in the 

parcel domain, and 0 otherwise. Each water parcel is associated to a centroid that 

determines its position in both x axis and velocity state. Therefore the shape function 

associated is also mobile. Centroids are injected and displaced through the domain like 

a single solute particle.  

 

Figure 4. 2: Scheme of heterogeneous stratified models using three velocity classes: (a) 

Random Walk Particle (b) Isochronal Water method using Water Mixing Approach 

formulation and (c) Water Parcels method using Multi-Advective Water Mixing 

Approach formulation 
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The velocity state of each parcel is assigned randomly after injection, which is 

conditioned and leads to an unstructured mesh unlike IW (see Figure 4. 2b and 4. 2c). 

We integrate along the y coordinate for simplicity and for demonstration purposes. That 

is, we perform a dimension reduction, so that concentration in Eq. (4. 5) depends solely 

on x and v. As shown in Figure 4. 2,  this simplification might look trivial as it suggests 

that we are substituting the y coordinate by v. Note, however, that we assume that we do 

not know the vertical structure of velocity, but only its velocity distribution and 

transition probabilities. Figure 4. 2c shows parcel shape dependence on velocity state. 

As suggested by the tub-lines (see Figure 4. 2b), the longitudinal axis of our water 

parcels is proportional to their velocities, while their width is inversely proportional (see 

Figure 4. 2c). Another explanation is that the distance travelled Δx is proportional to the 

velocity v at the same time step Δt. As a consequence, the water parcels with low 

velocity tend to cram longitudinally (i.e., number of low velocity water parcels per unit 

length is inverse proportional to velocity). This ensures an adequate representation of 

the entire distribution of velocities. 

Velocity may be discretized adopting Eulerian or Lagrangian distribution. The 

Eulerian distribution yields the probability density function (pdf) of velocity sampled 

randomly in space. Discretizing Eulerian pdf determines the velocity classes with the 

same volume in the domain at a given moment. The Lagrangian distribution yields the 

distribution of fluxes (i.e., the pdf of velocity along a streamline sampled at equal 

spatial intervals). The Lagrangian pdf equals the Eulerian pdf weighted by the velocity 

(Dentz et al. 2016). Discretizing Lagrangian pdf determines velocities with the same 

flux (i.e., same injection probability, see Figure 4. 2c). Therefore, we use the 

Lagrangian distribution to discretize the velocity dimension in equally probable flux 

intervals.  

The simulation proceeds by integrating Eq. (4. 5) by time steps. The question 

therefore is how to reproduce mixing between the parcels (i.e., the first two terms in the 

RHS). We use the finite volume method. The discretized form of (4. 5) for every parcel 

i   in velocity class l is 

𝑉𝑤𝑖

𝑐𝑖
𝑘+1 − 𝑐𝑖

𝑘

∆𝑡
= ∑ ∑ 𝑎𝑖𝑗𝐹𝑙𝑚

𝑣𝑡𝑐𝑗
𝑘 − ∑ ∑ 𝑎𝑗𝑖𝐹𝑚𝑙

𝑣𝑡𝑐𝑖
𝑘

𝑁𝑚𝑖

𝑗

𝑁𝑣

𝑚≠𝑙

𝑁𝑚𝑖

𝑗

𝑁𝑣

𝑚≠𝑙

,            𝑖 ∈ 𝐼𝑙 (4. 6) 
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where Vw [L3] is the volume water in parcel, Δt[T] is the time step, Nv is the number 

of discretized velocity classes, Nmi is the number of parcels of velocity class m 

connected with parcel i. 𝐹𝑙𝑚
𝑣𝑡  is the volume of water exchanged between velocity classes 

l and m per unit time. k is time steps number and 𝐼𝑙 is the domain associated to the 

velocity class l. Finally, 𝑎𝑖𝑗 is the fraction of this flux that will be exchanged between 

parcels i and j. per unit time 𝑎𝑖𝑗 could be either equi-distributed or weighted contact-

area. Here, a weighted contact-area is assumed. As in WMA, this is an exchange 

process, which implies that 𝐹𝑙𝑚
𝑣𝑡 = 𝐹𝑚𝑙

𝑣𝑡  and aij=aji. The expression of a concentration in 

time step k+1 can be obtained. 

𝑐𝑖
𝑘+1 = 𝑐𝑖

𝑘 − ∆𝑡 ∑ ∑ 𝑎𝑖𝑗𝐹𝑙𝑚
𝑣𝑡𝑐𝑖

𝑘

𝑁𝑚𝑖

𝑗

𝑁𝑣

𝑚≠𝑙

+ ∆𝑡 ∑ ∑ 𝑎𝑗𝑖𝐹𝑚𝑙
𝑣𝑡𝑐𝑗

𝑘

𝑁𝑚𝑖

𝑗

𝑁𝑣

𝑚≠𝑙

,            𝑖 ∈ 𝐼𝑙 (4. 7) 

Some new terms may now be defined: (a) 𝜆𝑙𝑚 = ∆𝑡 · 𝐹𝑙𝑚
𝑣𝑡/𝑉𝑤𝑙

 is the water mass 

mixing ratio (chapter 7) but applied to exchanges of velocity class. 𝜆𝑙𝑚 is term at the 

lm-th position of the water transition matrix 𝑴𝒗𝒕. Note that the matrix is Markovian in 

time applied to velocity phase. This matrix differs from the classic transition matrix 

𝑴𝒗𝒔 (De Anna et al., 2013; P. K. Kang et al., 2011, 2014, 2017; P. K. Kang, Borgne, et 

al., 2015; Le Borgne et al., 2008a) because Markovianity is applied in time t instead of 

space s. 𝑴𝒗𝒕 is obtained like 𝑴𝒗𝒔, but accounting only diffusive transitions during a 

fixed ∆𝑡; (b) the self-water mixing ratio of the l velocity must satisfy 𝜆𝑙𝑙 = 1 −

∑ 𝜆𝑙𝑚
𝑁𝑣
𝑚

𝑚≠𝑙
 with the result that ∑ 𝜆𝑙𝑚

𝑁𝑣
𝑚 = 1.  If the velocity discretization is Eulerian 

(equi-probable classes), this matrix must also satisfy ∑ 𝜆𝑙𝑚
𝑁𝑣
𝑙 = 1; (c) the water mixing 

ratio between ith and jth parcels may be defined as 𝜆𝑖𝑗 = 𝑎𝑖𝑗𝜆𝑙𝑚  

𝑐𝑖
𝑘+1 = 𝜆𝑖𝑖𝑐𝑖

𝑘 + ∑ ∑ 𝜆𝑖𝑗𝑐𝑗
𝑘

𝑁𝑚𝑖

𝑗

𝑁𝑣

𝑚
𝑚≠𝑙

 (4. 8) 

The use of 𝜆 implies that mixing does not depend on the concentration gradient, as in 

WMA. As a result, concentration is just an attribute (such as temperature), which is 

transferred with the water fraction. Note that the mixing of parcels depends on their 

velocity class. However, the unstructured mesh does not ensure mass conservation in 
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the mixing process such as 𝜆𝑖𝑗 = 𝜆𝑗𝑖, which diminishes exchanges of water volume. 

This is why a post-process by defining 𝜆𝑖𝑗 = 𝜆𝑗𝑖 =  𝑚𝑎𝑥{𝜆𝑖𝑗, 𝜆𝑗𝑖} is necessary.  

Although chemical reactions are not the main objective of this work, they are the 

ultimate goal of our research. By using the water mass mixing ratio formulation, the 

link with chemical processes is immediate (chapter 7). 

 

 

4.4. Applications 

 

To compute mixing and dispersion of equation (4. 5), a stratified case is needed  

(Taylor, 1953). We considered the velocity distribution v in parallel planes  

𝑣 = (3/2)𝑣𝑚𝑒𝑎𝑛(1 − (1 − 𝑦/𝑎)2) (4. 9) 

where vmean is the mean velocity of the distribution, y is the vertical position and a is 

the half distance between the planes. Owing to the horizontal symmetry of the case, we 

only modeled the half domain y = {0,a} (Figure 4. 2). We focused on the time 

evolution, especially at times earlier than the dispersion time scale τD, which denotes the 

typical time for the macrodispersive spreading of the solute.   

𝜏𝐷 =
𝑎2

𝐷𝑤
 (4. 10) 

 

We opted for Lagrangian velocity discretization since low velocities are more 

probable than high velocities (Gotovac et al. 2009), which contrasts sharply with 

Eulerian equi-probable discretization. Moreover, we considered a continuum injection 

of solute instead of an instantaneous injection used by other authors (Bolster et al., 

2011; Dentz and Carrera, 2007). 

The WP model was compared with IW and Particle Random Walk (RW) models 

(Figure 4. 2). Note that the concentration associated with parcels (WP and IW) is 

analogous to particle solute. The WP was simulated using the KRATOS framework 



4.4. Applications 

 

63 
 

(Dadvand et al. 2010). As regards the particle random walk model, a flux weight 

injection was used at every time step. The RW simulations were performed as proposed 

by Dentz and Carrera (2007). The concentration was obtained by projecting the particles 

in the IW mesh cells. The simulation details are shown in Table 4. 1. 

Table 4. 1: Transport problem parameters and simulation details 

Transport Problem 

vmean 1 m/s Dw 0.5 m2/s cinitial 0 mol/(mwater)3 

a 1 m 𝜙 0.5 cinjection 1 mol/(mwater)3 

Simulation 

  Δt 4·10-3 s   

WP IW RW 

Nv 30 Nv 10 
cunitari 

103 particles

2 · 10−4 (mwater)
3

 
Vw parcel 3.3·10-5 (mwater)3 Vw parcel 2·10-4 (mwater)3 

 

 

 

4.4.1. Statistical parameters 

 

Both, mixing and spreading must be tested. Mixing was calibrated by the Dissipation 

Rate (Pope, 2000). The classic scalar dissipation rate uses the local concentration 

gradient. However, a  simpler and more robust and stable quantification has been 

proposed by Le Borgne et al. (2010). We extend in here (Appendix B) the one 

continuous injection  

𝜒(𝑡) = ∫ 𝑐𝜙𝑣(𝑐𝑖𝑛𝑗 − 𝑐
2⁄ )𝑑𝛤

𝛤

−
1

2
∫ 𝜙

𝜕(𝑐2)

𝜕𝑡
𝛺

𝑑𝛺 (4. 11) 

where Ω is the simulation domain, Γ is its boundary and cinj is the injection 

concentration. The results of the three models are plotted in Figure 4. 3a. Only a slight 

mismatch is observed at the earliest times. The oscillations of the particle model may be 

attributed to the fact that concentrations are calculated from the particle positions 

(Figure 4. 1a) in the IW mesh (Figure 4. 1b). The WP model presents lower values at 

the earliest times, indicating more mixing. This is due to the max post-process described 
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above. Despite these lower values, the same overall behavior is displayed by all the 

models. 

 

Figure 4. 3: (a) Scalar Dissipation rate and (b) apparent Dispersion of concentration 

gradient for continuum injection. Dashed black line and yellow line display the 

analytical solution of the apparent dispersion (Haber and  Mauris, 1988) and the 

asymptotic dispersion (Aris, 1956), respectively 
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In instantaneous injection, the scalar dissipation rate typically displays a diminishing 

monotonous behavior (Bolster et al., 2011; Le Borgne et al., 2010b). However, an initial 

increase is observed in continuum injection, resulting in a bell shape which peaks at 

0.1τD. This is due to the combination of only transverse diffusion and vertical interface. 

Thus, two regimes were distinguished. The earlier regime displays an increasing scalar 

dissipation rate, which suggests that mixing is enhanced because the contact area is 

increased in the longitudinal direction. This stretching phenomenon has already been 

observed in instantaneous injection (Le Borgne et al. 2013, 2014 and 2015). However, it 

is the continuous injection what causes the dissipation rate to increase in the later 

regime, dissipation rate decreases. Mixing diminishes because concentration contrast 

becomes smoother and a relaxed state is achieved. 

As for dispersion, this would have a linear behavior if computed in the standard way, 

(which is termed apparent dispersion by Dentz and Carrera 2007) because of the 

continuous injection employed. Thus, the classic definition of dispersion is no longer 

valid in this case. However, an equivalent definition is obtained from the concentration 

gradient distribution instead of the concentration distribution. We integrate vertically 

the concentration to obtain its correlation with the x coordinate. The concentration 

gradient of this distribution is computed to obtain its (apparent) dispersion Dacg 

𝐷𝑎𝑐𝑔(𝑡) =
1

2

𝜕(𝜎∇𝑐
2)

𝜕𝑡
 (4. 12) 

where 𝜎∇𝑐
2 is the variance of the concentration gradient. The definition of Dacg helps 

us to study the interface evolution. The analytical solution of the temporal dispersion 

evolution Da (Haber and Mauris, 1988) and its asymptotic value Dasy (Aris, 1956) are 

also computed.  

𝐷𝑎𝑠𝑦 =
4

210

𝑎2𝑣2

𝐷𝑤
 (4. 13) 

𝐷𝑎(𝑡) =
2

105
𝑣2𝜏𝐷 − 18𝑣2𝜏𝐷 ∑(𝑛𝜋)−6

∞

𝑛=1

× exp (−(𝑛𝜋)2
𝑡

𝜏𝐷
) (4. 14) 
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The results are plotted in Figure 4. 3b. Although the WP dispersion oscillates (owing 

to the unstructured character of the mesh) a satisfactory agreement is again observed. As 

in the dissipation rate, at least two different regimes of the solute distribution may be 

distinguished: (a) a linear increase in the variance is observed. This confirms the 

stretching phenomenon described above; (b) an asymptotic state is attained. The 

transition regime roughly coincides with the scalar dissipation rate, suggesting a link 

between both behaviors. Indeed, spreading enhances mixing in the earlier regime. In the 

later regime, solute plume extension is limited since sufficient mixing occurs. 

 

 

4.4.2. Markovianity in space 

 

Although solute only changes its velocity class because of the mixing process (which 

is Markovian in time), we can calculate the Transition Matrix in space 𝑴𝒗𝒔 (Le Borgne 

et al. 2008b) from the particle model. We believe that they are also Markovian in space, 

which is consistent with (Le Borgne et al., 2008a). We tested the Markovianity by 

comparing the transition probabilities with the ones obtained from a Markov chain 

model. The transition model must satisfy the Chapman-Kolmogorov equation (Risken, 

1996), which reads for the transition matrices M(x) of a discrete Markov chain such as 

𝑴(𝑥 + ∆𝑥) = 𝑴(𝑥)𝑴(∆𝑥) (4. 15) 

with x,Δx > 0. The latter implies 

𝑴(𝑛𝑥) = 𝑴𝑛(𝑥) (4. 16) 
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Although the agreement is not exact (Figure 4. 4), the particles satisfactorily 

reproduce the Markov chain results. We can therefore conclude that mixing  is 

Markovianity not only in time, but also in space. 

 

 

Figure 4. 4: Comparison of Particle Random Walk model and Markov model in distance 

for the return probability. The Markov model is defined for spatial increment of x = 

0.02 

 

 

 

4.5. Conclusions 

 

We present a new formulation for solute transport in heterogeneous cases, termed 

MAWMA. The formulation aims to reproduce diffusion and dispersion that could occur 

at pore scale applied to both continuum and Darcy scale. The formulation is an 

extension of WMA by making the transport state dependent on velocity as well as on 

time and space.  

Water parcel models were employed to solve numerically the proposed equation. A 

centroid point was associated with each parcel, which defines its velocity and position 

at a given time. We tested the velocity transition produced by the mixing process 
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applying a water transition matrix in time Mvt. This differs from the solute transition 

matrix in space Mvs used in the correlated CTRW model. 

Taylor’s stratified flow case was employed. MAWMA based method was compared 

with WMA based method and Random Walk particle models. A good agreement for 

diffusion and dispersion was observed. The results suggest that MAWMA will perform 

well for high heterogeneity cases. 
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Chapter 5 

5. Testing MAWMA in high heterogeneous media 

Testing Multi-Advective Water 

Mixing Approach in high 

heterogeneous media 

 

 

5.1. Introduction 

 

Although the Advection-dispersion equation (ADE) is the most widely used 

formulation to model solute transport through porous media, it does not adequately  

characterize transport in heterogeneous media (Le Borgne et al. 2008; Gjetvaj et al. 

2015 and Willmann et al. 2008) where dispersion grows with scale (L.W. Gelhar et al., 

1985; Neuman, 1990), non-equilibrium occurs (Alcolea et al., 2008 and Vogel et al., 

2006), or breakthrough curves display tailing (Valocchi 1985; Carrera 1993). These 

features are not well represented by the ADE. Therefore, transport through 

heterogeneous media is called anomalous (i.e. non-Fickian transport). The problem 

becomes critical when chemical reactions are involved (Battiato et al. 2009; Sadhukhan 

et al. 2014; Scheibe et al. 2015; Soler-Sagarra et al. 2016 and Tartakovsky et al. 2009). 

Anomalous transport can be observed at different scales: from pore (Bijeljic et al. 2011; 

Kang et al. 2014; Seymour et al. 2004), column (Hatano et al. 1998; Heidari et al. 2014) 
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to field scale (Becker et al. 2000; Garabedian and LeBlanc 1991; Kang, Borgne, et al. 

2015; Mckenna et al. 2001; Zech et al. 2015). Therefore, an alternative formulation for 

anomalous transport that takes advection, dispersion and mixing into consideration is 

therefore warranted (de Dreuzy et al. 2012; De Dreuzy et al. 2016).  

Thus, below a certain scale, it is necessary to address the absence of structure 

definition. At this point, the velocity development shows Markovianity in space rather 

than time (Berkowitz et al. 2006; Klafter and Silbey 1980; Metzler and Klafter 2000; 

Montroll and Weiss 1965; Neuman and Tartakovsky 2009; Scher and Lax 1973; Scher 

and Montroll 1975). A number of alternatives to the ADE have been proposed to 

address anomalous transport. The most widely extended is the Continuous Time 

Random Walk, CTRW. It consists in random velocity transitions once the solute has 

travelled a certain space step. However, these transitions are not fully random processes, 

but correlated ones (Le Borgne et al. 2008a). Thus, a Transition Matrix 𝑴𝒗𝒔 is needed 

(De Anna et al. 2013; Benke and Painter 2003; Kang et al. 2011, 2014, 2015). 𝑴𝒗𝒔 

stands for the matrix probability to change the velocity state v given a fixed space phase 

s step. In this context, velocity becomes a variable of concentration such as space and 

time. The solute dependency of velocity was expressed in a phase space formulation  

proposed by (P. K. Kang et al., 2017). However, this formulation does not take into 

account mixing. 

Mixing is a consequence of diffusion among water bodies at a given time. Therefore, 

mixing is Markovian in time in contrast to dispersion. This observation suggests that 

solute transport should be localized not only in space and time, but also in velocity. The 

localization in time is of paramount importance since mixing has a direct impact on 

chemical reactions in fluids (Cirpka and Valocchi, 2007; De Simoni et al., 2005, 2007; 

Rezaei et al., 2005; Tartakovsky et al., 2008). The classic definition of mixing is 

proportional to the concentration gradient (Fick, 1855). In fast chemical reactions, the 

reaction rate may also be calculated with the concentration gradient (De Simoni et al., 

2005). However, Einstein (1905) demonstrated that mixing is due to the Brownian 

movement of single particles. Although this is a downscaling formulation of Fick 

(1855) and leads to the same results, the comparison of these two expressions is 

inconsistent (as discussed in chapter 2). This inconsistency is evidenced by the fact that 

domains with constant concentration (where the concentration gradients are equal to 
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zero) are defined as immobile zones by Fick (1855) even though they are full of 

diffusing solute particles. As an alternative, the Water Mixing Approach (WMA) has 

been proposed in chapter 2. WMA defines the mixing flux as an exchange of waters that 

carries the mean concentrations of the cells. Thus, mixing is dependent on the 

concentrations (i.e. number of particles that cross the cell interface) instead of on their 

gradients.  

Dispersion and mixing are different processes, but they are closely linked (Kitanidis, 

1988, 1994). Spreading is essentially driven by advection variability and tends to 

enhance the concentration contrast, which in turn enhances mixing (Le Borgne et al. 

2010; Chiogna et al. 2011; Rolle et al. 2009; Tartakovsky et al. 2008). The link is 

evidenced by the stretching and folding processes (De Anna et al. 2013; Jiménez-

Martínez et al. 2015; Le Borgne et al. 2015). This link leads to a non-Fickian mixing at 

earlier times over a considerable period (Berkowitz et al. 2006; Le Borgne et al. 2008a; 

Le Borgne and Gouze 2008; Neuman and Tartakovsky 2009; Zhang et al. 2009). 

Fickian mixing at later times attributed to the spreading rate (Le Borgne et al., 2010a). 

Several formulations have been put forward to overcome the problems of the ADE 

(Frippiat and Holeyman, 2008). At the continuum scale, alternative methods include 

CTRW (Berkowitz and Scher 1997; Bijeljic et al. 2011; Le Borgne et al. 2008a; Le 

Borgne et al. 2008b; Dentz et al. 2004; Dentz et al. 2015; Edery et al. 2014; Geiger et al. 

2010; Kang et al. 2011; Wang and Cardenas 2014; Aquino and Dentz 2017), fADE 

(Benson et al., 2000; Cushman and Ginn, 2000), SCST (Becker and Shapiro, 2003) or 

MRMT (Babey et al., 2015; Jesús Carrera et al., 1998; J. R. De Dreuzy et al., 2013; 

Fernandez-Garcia and Sanchez-Vila, 2015; Haggerty and Gorelick, 1995; Soler-Sagarra 

et al., 2016). Given that chemical reaction occurs at pore scale (Steefel et al., 2005), 

some pore-scale methods such as Lattice Boltzmann equation (Acharya et al., 2007; 

Benzi et al., 1992; Chen and Doolen, 1998; Q. Kang et al., 2006; Willingham et al., 

2008), Smoothed Particle Hydrodynamics (Liu and Liu, 2010;  Tartakovsky et al., 2009, 

2015; Tartakovsky et al., 2007), Pore Network models (Blunt, 2001; Blunt et al., 2002; 

Li, et al., 2006; Meile and Tuncay, 2006; Raoof et al., 2010; Raoof and Hassanizadeh, 

2012; Varloteaux, 2013) or Density Kernel methods (Schmidt et al., 2017; Sole-Mari et 

al., 2019) have been studied. Hybrid continuum-pore scale methods have also been 

proposed (Ilenia Battiato et al., 2011; Leemput et al., 2007; Tartakovsky et al., 2008). 
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All these approaches partially meet the requirements listed by De Dreuzy and Carrera 

(2016). 

Recently, the Multi-Advective Water Mixing Approach (MAWMA) was advanced in 

chapter 4 to simulate anomalous transport. MAWMA can be taken as a WMA 

extension. It is a phase space formulation (detailed in 5.2) where velocity is a new 

dimension of the state variable. The Water Parcel method (WP) can be derived by 

discretizing space, time and velocity (section 5.3.1). In this chapter we test the capacity 

of the WP model to reproduce transport through heterogeneous porous media. 

 

 

5.2. Governing equations 

 

In chapter 4, we proposed a phase space formulation (MAWMA) to describe solute 

transport through porous media while meeting the requirements of De Dreuzy and 

Carrera (2016). As a phase space formulation, MAWMA considers that concentration 

depends not only on space and time, but also on velocity, i.e. c=c(x,v,t) [M/L3]. Using 

velocity as a new dimension facilitates describing dispersion, because spreading results 

naturally from velocity variability, so that no explicit accounting is need for dispersion.  

Advection and mixing processes are defined by fluxes f in both the space, 𝑠, and 

velocity, 𝑣, domains. That is, 

𝜙
𝜕𝑐(𝑥, 𝑣, 𝑡)

𝜕𝑡
= 𝑓𝑎𝑑𝑣,𝑠 + 𝑓𝑑𝑖𝑓𝑓,𝑠 + 𝑓𝑎𝑑𝑣,𝑣 + 𝑓𝑑𝑖𝑓𝑓,𝑣 + 𝑟 (5. 1) 

where 𝜙 [L3/L3] is porosity, 𝑡 [T] is time and r [M/L3/T] is a sink/source term, 

possibly reflecting chemical reactions. The first term on the right-hand side (rhs) 

represents advection within a velocity class, traditionally expressed in terms of Darcy 

flux, which we prefer to write here as a function of velocity as q= 𝜙v [L3/L2/T] (blue 

arrow in Figure 4. 1) as follows 

𝑓𝑎𝑑𝑣,𝑠 = − 𝜙𝑣 ⋅ ∇𝑐 
(5. 2) 
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The second term of the rhs represents diffusion within a velocity class, classically 

defined by Fick’s law (orange arrow in Figure 4. 1). However, the Water Mixing 

Approach (WMA) was proposed as an alternative in chapter 7  

𝑓𝑑𝑖𝑓𝑓,𝑠 = −𝛻 ⋅ (𝑞𝐷𝑐̅̅ ̅̅ ̅) 
(5. 3) 

Where the term 𝑞𝐷𝑐̅̅ ̅̅ ̅ is used to express solute exchanges associated to water mass 

exchanges,  𝑞𝐷 = 𝜙𝐷𝑤/𝐿𝐷 [L3/L2/T] is the water diffusion flux exchanged, 𝐷𝑤[L2/T] is 

the water molecular diffusion coefficient and 𝐿𝐷 [L] is a characteristic diffusion scale. 

Eq. (5. 3) expresses diffusion as the exchange of water depending on the concentration 

instead of on its gradient.  

The third term on the rhs of Eq. (5. 1) represents changes in c(x,v,t) due to changes in 

velocity (green arrow in Figure 4. 1). Kang et al. (2017) expressed it in terms of solute 

mass probability p. We express it in terms of concentration considering that 𝑝 = 𝜙𝑐 𝑀⁄  

(𝑀 being the total solute mass), which yields 

𝑓𝑎𝑑𝑣,𝑣 = −
𝑣

𝐿𝐴
𝜙𝑐 + ∫ 𝑔𝑣𝑠(𝑣|𝑣′)

𝑣

𝐿𝐴
𝜙𝑐′𝑑𝑣′

𝑣′

+ 𝑟 (5. 4) 

where 𝐿𝐴 [L] is the characteristic advection length, 𝑔𝑣𝑠 [TL-1] is probability density 

of a velocity transition after covering a step 𝐿𝐴 in space and c’=c(x,v’,t). Note that the 

first term in the rhs of Eq. (5. 4) refers to transitions to velocity v. It does not involve 

any velocity integration because ∫ 𝑔𝑣𝑠(𝑣′|𝑣)𝑑𝑣′
𝑣′

= 1.  

Finally, we proposed expressing diffusive transitions in velocity in chapter 4 (purple 

arrow in Figure 4. 1) as  

𝑓𝑑𝑖𝑓𝑓,𝑣 = ∫ 𝜙𝑓𝑣𝑡(𝑣|𝑣′)𝑐′𝑑𝑣′
𝑣′

− ∫ 𝜙𝑓𝑣𝑡(𝑣′|𝑣)𝑐𝑑𝑣′
𝑣′

 (5. 5) 

where 𝑓𝑣𝑡 [L-1] is the probability density, per unit time, of diffusive transitions 

between velocity states v. The expression 𝜙𝑓𝑣𝑡 has units of water flux.  
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Note that, as in WMA, all fluxes are expressed in terms of water instead of solute 

concentrations, which become a mere attribute of water. This is why we termed the 

formulation of Eq. (5. 4) Multi-Advective Water Mixing Approach (MAWMA).  

Eq. (5. 4) could also be expressed as a Lagrangian formulation. This requires revising 

the definition of material derivative. d(·)/dt reflects all changes in a flowing element of 

water and, thus. Therefore, it is expressed as the partial derivative minus the changes in 

c caused by advection. Since we are defining 𝑓𝑎𝑑𝑣,𝑣 to represent advective velocity 

transitions, we can write the material derivative as 

𝜙
𝑑𝑐

𝑑𝑡
= 𝜙

𝜕𝑐

𝜕𝑡
+ 𝜙𝑣 ⋅ ∇𝑐 +

𝑣

𝑙 ̅
𝜙𝑐 − ∫ 𝑔𝑣𝑠(𝑣|𝑣′)

𝑣

𝑙 ̅
𝜙𝑐′𝑑𝑣′

𝑣′

 (5. 6) 

This definition acknowledges that velocity transitions due to heterogeneity do not 

cause mixing, which helps us to focus on the impact of mixing, which depends 

exclusively on diffusive processes:  

𝜙
𝑑𝑐

𝑑𝑡
= −𝛻 ⋅ (𝑞𝐷𝑐̅̅ ̅̅ ̅) + ∫ 𝜙𝑓𝑣𝑡(𝑣|𝑣′)𝑐′𝑑𝑣′

𝑣′

− ∫ 𝜙𝑓𝑣𝑡(𝑣′|𝑣)𝑐𝑑𝑣′
𝑣′

 (5. 7) 

 

 

 

5.3. Solution method 

 

The equation presented in the previous section can be solved with any numerical 

methods. Here we present a modeling option (section 5.3.1), termed the Water Parcel 

(WP) method, which is an extension of the one proposed in in chapter 4. We present 

first this new extension, which require two transition probability matrices. We then 

describe the computation of these matrices and their properties. 
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5.3.1. Water Parcel method 

 

Time, space and velocity must be discretized to solve Eq. (5. 7). For simplicity, the 

discretization procedure is the one used in chapter 4. We reduce the spatial dimensions 

to 1 by integrating the dimensions perpendicular to the mean flow. The velocity field of 

the entire domain is discretized in classes with the same flux (i.e., equally probable in 

the lagrangian velocity distribution). Since fast velocities concentrate most of the flux, 

they are less probable than slow velocities from an Eulerian point of view. Details of 

this velocity discretization are reported in Dentz et al. (2016).  

The space and velocity domains are discretized in parcels with the same water 

volume. Each water parcel is associated to its centroid, which determines the position 

(inspace and velocity) at a given time. The length of a single parcel (i.e. its space 

extension along the x coordinate) is proportional to its velocity as reported in chapter 4. 

As a result, slow velocities have more parcels than fast velocities (see Figure 5. 1a), 

which is consistent with their higher eulerian probability (i.e. 𝑝𝑒 in Dentz et al. 2016). 

The width is proportional to its probability (inversely proportional to its velocity). Eq. 

(5. 7) is integrated into the continuum space-velocity by using shape functions 

associated with each parcel. As in the Finite Volume method, the shape function equals 

1 when (x,v) exists in the parcel domain. Otherwise it equals to 0. Therefore, all 

attributes of water parcels (e.g., concentration) will be regarded as homogeneous within 

each parcel.  



5. Testing MAWMA in high heterogeneous media 

 

76 
 

 

Figure 5. 1: Scheme of Water Parcels (WP) method using the Multi-Advective Water 

Mixing Approach formulation with three velocity classes: (a) initial distribution of 

parcels in the (x,v) domain and the initial concentration condition, (b) Advective 

process for a single water parcel and (c) Mixing process for a single water parcel 

 

Parcels are injected and advected through the domain like solute particles. The 

injection velocity class is assigned randomly with equal probability for all classes.  

Advection, Eqs. (5. 2) and (5. 4), is simulated by simply displacing the parcel 

centroid with its associated velocity until it has covered the distance 𝐿𝐴. Then, a random 

event is performed to assign a new velocity for the next space step 𝐿𝐴 according to 

transition probabilities given by the transition matrix 𝑴𝒂𝒅𝒗
𝒗𝒔  (𝑀𝑖𝑗 is the probability of 

jumping from velocity 𝑣𝑗  to 𝑣𝑖). This transition matrix is similar to the classic solute 

transition matrix 𝑴𝒗𝒔 of Le Borgne et al. (2008b) (De Anna et al. 2013; Kang et al. 

2011, 2014, 2015, 2017) except that it only accounts for advection transitions. Since the 

simulation takes place with fixed time steps, each parcel will take a different number of 
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steps to perform the next random event. However, the frequency of transitions is the 

same in all the velocity classes because they are equi-probable in flux. The advection 

scheme is plotted in Figure 5. 1b. 

The discretized form of Eq. (5. 7) in a single parcel i  of velocity class l is given by 

𝑉𝑤

𝑐𝑖
𝑘+1 − 𝑐𝑖

𝑘

∆𝑡
= ∑𝐹𝑖𝑦(𝑐𝑦 − 𝑐𝑖)

𝑁𝑙𝑖

𝑦≠𝑖

+ ∑ ∑ 𝑎𝑖𝑗𝐹𝑙𝑚
𝑣𝑡𝑐𝑗

𝑘 − ∑ ∑ 𝑎𝑗𝑖𝐹𝑚𝑙
𝑣𝑡𝑐𝑖

𝑘

𝑁𝑚𝑖

𝑗

𝑁𝑣

𝑚≠𝑙

𝑁𝑚𝑖

𝑗

𝑁𝑣

𝑚≠𝑙

  𝑖 ∊ 𝐼𝑙 (5. 8) 

where Vw [L3] is the water volume of each parcel, ∆𝑡 [T] is the time step, Nli is the 

number of parcels 𝑦 with velocity l spatially connected to i, F is the water volumetric 

flux diffused, Nv is the number of velocity classes, Nmi is the number of parcels of 

velocity class m connected with parcel i, and 𝑎𝑖𝑗 is the fraction of the diffusive flux 

assigned to velocity m, which will be exchanged with the j parcel. We interpret mixing 

as a water exchange process derived from water diffusion, which implies symmetry 

(i.e., 𝐹𝑖𝑦 = 𝐹𝑦𝑖, 𝐹𝑙𝑚
𝑣𝑡 = 𝐹𝑚𝑙

𝑣𝑡  and 𝑎𝑖𝑗 = 𝑎𝑗𝑖)(the latter requires post processing).  

We can rewrite Eq. (5. 8)  using the concept of mixing ratio 𝜆 = 𝑎 ∆𝑡 𝐹/𝑉𝑤 (chapter 

2), which leads to  

𝑐𝑖
𝑘+1 = 𝜆𝑖𝑖𝑐𝑖

𝑘 + ∑𝜆𝑖𝑦𝑐𝑦
𝑘

𝑁𝑙𝑖

𝑦≠𝑖

+ ∑ ∑ 𝜆𝑖𝑗𝑐𝑗
𝑘

𝑁𝑚𝑖

𝑗

𝑁𝑣

𝑚≠𝑙

 
(5. 9) 

The sum of all 𝜆 equals 1, because the coefficients multiplying 𝑐𝑗
𝑘 (∀𝑗 ≠ 𝑖) in the rhs 

of Eq. (5. 8) are always compensated by the same coefficient multiplying −𝑐𝑖
𝑘. 

Therefore 𝜆𝑖𝑖 = 1 − ∑ 𝜆𝑖𝑦
𝑁𝑙𝑖
𝑦 − ∑ ∑ 𝜆𝑖𝑗

𝑁𝑚𝑖
𝑗

𝑁𝑣
𝑚 . A necessary and sufficient condition for 

stability is that 𝜆𝑖𝑖 > 0 ∀𝑖.  

Eq. (5. 9)  represents a mixing equation with mixing ratios that are independent of the 

species, which is consistent with the fact that it has been derived from the mixing of 

waters. Note that all transport processes described above involve water transfers. In 

chapter 2, we demonstrate the immediate extension from Eq. (5. 9) to reactive 

formulation. 
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5.3.2. Random Walk method 

 

The WP method described in section 5.3.1 requires the velocity distribution, the 

diffusive transition matrix 𝑴𝒎𝒊𝒙
𝒗𝒕  for mixing and the advective transition matrix 𝑴𝒂𝒅𝒗

𝒗𝒔 . 

Here, we compute these from random walk simulations of flow and transport, which we 

will also use to test the proposed approach. The model to simulate flow is essentially 

that of Hakoun et al. 2019. We summarize it for the sake of completeness. A 2-D multi-

lognormal random permeability field 𝐾(𝑥) is generated with an isotropic Gaussian 

covariance function 

〈𝑌′(𝑥)𝑌′(𝑥′)〉 = 𝜎𝑌
2𝑒𝑥𝑝(−(

|𝑥|

𝜆
)

2

) (5. 10) 

where 𝑌′(𝑥) = 𝑌(𝑥) − 〈𝑌(𝑥)〉, 𝑌(𝑥) = 𝑙𝑛(𝐾(𝑥)), 𝜎𝑌
2 is the log-permeability 

variance and 𝜆 is the correlation length. The random field 𝑌(𝑥) with mean 𝜇𝑌 = 〈𝑌(𝑥)〉 

is generated using the Random Fields Package (Schlather et al., 2015) of the R software 

environment (R Core Team, 2015). Groundwater steady-state saturated flow is solved 

by imposing mass conservation and the Darcy equation: 

𝑣(𝑥) = −
𝐾(𝑥)∇ℎ(𝑥)

𝜙
 (5. 11) 

where h is the hydraulic head. Fixed head boundary conditions are imposed to the 

upstream and downstream boundaries. No-flow conditions are imposed to the top and 

bottom boundaries. The flow model is solved by using the Finite Volume Method to 

first obtain heads and, then, using Eq. (5. 11) for the velocity field 𝑣(𝑥).  

A Python code is employed to solve particle transport. Particle advection is calculated 

as in Pollock (1988). Diffusion displacement at a given time step is 𝐿𝐷ξ, where ξ

~𝑁(0,1). 
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5.3.3. Algebra of Mixing Matrices 

 

The water mixing ratio 𝜆𝑖𝑗 defined in section 5.3.1 can be understood as the 𝑖𝑗-th 

position of the water transition matrix 𝑴𝒎𝒊𝒙
𝒗𝒕  applied to time step. Here we describe how 

to compute the mixing matrix 𝑴𝒎𝒊𝒙
𝒗𝒕  from a RW simulation avobe the procedure is 

general, in the sense that it could be employed for transition matrices of advection 

(applied after space steps) or transition matrices of mixing to the space phase (e.g. 

chapter 2). 

Transition matrices are obtained directly from their Markovian probability definition 

(i.e., 𝑀𝑖𝑗 is the probability of a particle to end in velocity class 𝑖, given that it started in 

class 𝑗, which implicitly carries the Markovian statement that the next state solely 

depends on the current state). Therefore, 𝑀𝑖𝑗 = 𝑁𝑖𝑗
𝑘+1/𝑁𝑗

𝑘, where 𝑁𝑖𝑗
𝑘+1 is the number of 

particles that ended in velocity class 𝑖 at time 𝑡𝑘+1 after a diffusion step (to avoid 

advection transitions) having started in class 𝑗 at time 𝑡𝑘 and 𝑁𝑗
𝑘. 𝑴𝒂𝒅𝒗

𝒗𝒔  is computed 

analogously, except that accounting is made not at every time step, but after the particle 

has covered the characteristic advection scale.  

Two issues need to be addressed. First, the above definition refers to probabilities, 

while we need volumetric water exchanges. Second, markovianity needs to be tested. It 

was demonstrated by Leborgne et al (2018) for advection transitions, and it would be 

trivially true for mixing transitions in the absence of advection. However, it is not so 

clear when coupling advection and diffusion, especially when considering that low 

velocities occupy a much larger volume than high velocities. We will test markovianity 

as part of the example in section 5.4. However, we need first to clarify the relationship 

between transition probabilities and mixing matrices.  

The relationship between the vector of solute probabilities p (𝑝𝑡 according to Dentz et 

al. (2016)) and velocity class concentration is expressed as  

𝒑 = 𝑚𝑇
−1𝑺𝒄 (5. 12) 

where mT is the total mass and S is the storage matrix containing the volume of each 

class. S is not expressed in Eularian processes (time steps) as in Lagrangian processes 
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(space steps). As explained above, we can obtain the probability transition matrix Mp by 

accounting particle transitions in RW simulations, which can be expressed as 

𝒑𝒌+𝟏 = 𝑴𝒑𝒑
𝒌 (5. 13) 

Combining (5. 12) and (5. 13) 

𝑺𝒄𝒌+𝟏 = 𝑴𝒑𝑺𝒄𝒌 (5. 14) 

Then the concentrations for the next time step are as follows 

𝒄𝒌+𝟏 = 𝑺−𝟏𝑴𝒑𝑺𝒄𝒌 (5. 15) 

Therefore, the transition matrix for transport simulations Mc can be obtained from the 

RW matrix Mp 

𝑴𝒄 = 𝑺−𝟏𝑴𝒑𝑺 
(5. 16) 

A well-known property of Markov probability transition matrices is that the sum of 

the columns of 𝑴𝒑 equals 1 (a particle in any velocity class must end in some class). 

However, the rows of the 𝑴𝒄 must add up to 1, to express that concentrations do not 

change if equal in all velocity classes. In fact, component 𝑀𝐶𝑖𝑗 can be viewed that as the 

volume of water received by class 𝑖 from class 𝑗, expressed as a fraction of the volume 

in 𝑖 (i.e., a mixing ratio), so that the rows must add up to 1 also to ensure that the class 

volume does not change. Therefore, the volume of water exchanged is expressed as 

𝑴𝑽 = 𝑴𝒑𝑺 
(5. 17) 

To satisfy mass conservation, water volume exchanged between velocity classes i and 

j must be equal (i.e.,  𝑴𝑽 must be symmetric). The computation procedure (starting with 

the probability transition matrix) does not ensure symmetry. In practice, it is nearly so. 

So, symmetry is imposed by setting  

𝑴𝑽 =
𝑴𝑽

′ 𝑡
+ 𝑴𝑽

′

2
 (5. 18) 
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where 𝑴𝑽
′  is the volume exchange matrix computed initially from Eq. (5. 17).  

Finally, the water transition matrix is expressed as 

𝑴𝒘 = 𝑺−𝟏𝑴𝑽 (5. 19) 

 

5.4. Applications 

Although WP is a continuum scale method, its solute evolution must reproduce the 

particle based behaviour (Einstein, 1905). This is why it is tested with the classic RW 

presented in section 5.3.2. The model parameters are detailed in Table 5. 1. Three 

different Peclet number simulations are defined: ∞; 1000 and 50. The Peclet number is 

defined as follows 

𝑃𝑒 = 𝜆〈𝑣〉/𝐷𝑤 (5. 20) 

Initial concentrations are defined in both methods. The WP method employs the 

initial flux weighted distribution of solute mass (Figure 5. 1a) 

𝑐𝑖(𝑡 = 0) = 𝑐𝑟𝑒𝑓

𝑣𝑖

〈𝑣〉
 

(5. 21) 

where 𝑐𝑟𝑒𝑓 is the initial concentration reference, the angular bracket 〈·〉 denotes the 

mean injection velocity (mean of the Lagrangian distribution) and 𝑣𝑖 is the parcel 

velocity.  

In order to simulate a water parcel distribution, each particle of the RW method has 

an initial time step with a random definition Δt0= Δt·γ, being γ~unif(0,1). This definition 

provides an innovative way to simulate transport since it differs from the classic Dirac 

delta. We believe it is a realistic situation, as it reproduces water injection. An initial 

number of particles 𝑁𝑝 are placed along the domain width 𝐿𝑦 at the fixed 𝑥0 coordinate 

position. The particles have an initial Flux weighted distribution. This means that each 

cell in 𝑥0 has 𝑁𝑐 particles, which is a function of the cell velocity 𝑣𝑐 expressed as 

follows 

𝑁𝑐 =
𝑁𝑝

𝐿𝑦 ∆𝑦⁄

𝑣𝑐

〈𝑣〉
 (5. 22) 
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where Δy is the cell width. In order to simulate an injected concentration equal to 1, 

the mass of a single particle 𝑚𝑝is 

𝑚𝑝 =
𝑐𝑟𝑒𝑓𝜙〈𝑣〉𝛥𝑡𝐿𝑦

𝑁𝑝
 (5. 23) 

The WP method should reproduce mean advection, dispersion, mixing and “be 

flexible enough to be applicable to real problems” (De Dreuzy and Carrera, 2016). This 

latter condition is somewhat subjective and will not be considered here, but we believe 

that WP may be applied to field cases because (i) it is defined at the continuum scale, so 

that it can benefit  (ii) it localizes concentration in the (x,v,t) continuum domain and (iii) 

it is easily extended to reactive transport (chapter 2). Still, a number of developments 

are needed to address the real cases with a level of maturity comparable to stochastic 

methods (Neuman and Tartakovsky, 2009; Pool et al., 2015). Therefore, we restrict 

ourselves test advection, dispersion and mixing on the synthetic case for stationary 

conditions and mean uniform flow. 

The mean advection is characterized by the mean position 𝜇 defined as 

𝜇(𝑡) = 𝑚𝑥
(1)

(𝑡) − 𝑥0 (5. 24) 

where 𝑚𝑥
(𝑘)

 is the k-th order moment of the solute distribution in space 

𝑚𝑥
(𝑘)

(𝑡) = ∫ 𝑐

𝛺

𝑥𝑘𝑑𝛺 ∫ 𝑐

𝛺

𝑑𝛺⁄  (5. 25) 

where 𝛺 is the flow domain. From the above definition, we can express dispersion by 

the standard deviation of spatial solute distribution 𝜎𝑥
2, which is described as 

𝜎𝑥
2(𝑡) = 𝑚𝑥

(2)(𝑡) − 𝜇(𝑡)2 (5. 26) 

The Global mixing G (Pope, 2000) is defined as 

𝐺(𝑡) = ∫ 𝑐2𝑑𝛺

𝛺

 (5. 27) 
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Note that we can also define Global mixing G’ in terms of the velocity domain such 

as 

𝐺′(𝑡) = ∫ 𝑐′2𝑑𝑣

𝑣

 (5. 28) 

where c’=c(v,t) is the mean concentration of an velocity class.  

Table 5. 1: Flow and transport problem parameters and simulation details 

FLOW TRANSPORT 

λ (m) 10 Num. time steps 100 𝑐𝑟𝑒𝑓 (kg/m3) 1 

𝐿𝑥 600λ 𝜙 0.3 Δt (s) 1 

𝐿𝑦 150λ RW Cases 

Δx, Δy λ/10 𝑁𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 2.25·106 𝐷𝑤 (m2/s) Peclet 

𝜇𝑌  0 WP 0 ∞ 

𝜎𝑌
2 1 𝑁𝑣 30 10-2 103 
 

 𝑁𝑝𝑎𝑟𝑐𝑒𝑙𝑠 1.44·105 0.2 50 

 

 

  

 

5.4.1. Transition matrix validation with Markovian models 

 

We defined three transition matrices in section 5.3.3: 𝑴𝒑, 𝑴𝒄, and 𝑴𝒘. We test here 

the validity of their computation using a Markov chain model (Risken, 1996). We first 

compute the transition matrix 𝑴𝒑 from RW (at 𝜎𝑌
2 = 1 and Pe = 50) simulations at 

three different times: t = 1, 5 and 250. The last time corresponds to the characteristic 

diffusive time (𝜆2 2/𝐷𝑤⁄ ), so that we can assume that injected particles have sampled 

exhaustively the whole velocity space (recall that we are using flux averaged injection, 

so that the slow velocities volume is less exhaustively sampled than the fast velocities 

volume). 

 Matrices 𝑴𝒄 and 𝑴𝒘 are calculated as in section 5.3.3. Equation (5. 16) defines the 

step computation for the matrices 𝑴𝒑. The Markovian models that employ Mc and Mw 
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use concentration c instead of p as the state variable. Concentration c is readily 

converted to p by using (5. 15). The initial solute probability distribution for any 

velocity class i is 𝑝𝑖
0 = 1/𝑁𝑣. 

The computed evolution of G’ (Equation (5. 28)) in time is shown in Figure 5. 2. The 

first observation from Figure 5. 2 is that σ decreases in time, which reflects that a 

uniform flow averaged probability leads to a non-uniform concentration. That is, the 

same mass flux occurs in all velocity classes, but concentration is much longer in the 

high velocity classes. Mixing causes concentration to become uniform in all classes. 

Second, the Mp and Mc models evolve identically in time. Second, we observe that the 

𝑴𝒘 models always give identical results even though they are obtained from different 

𝑴𝒑 matrices. Mixing state deceases (higher G’ in Figure 5. 2) in the 𝑴𝒑 models from 

time t = 1 until reaching t = 5, when the poorest mixing state is attained. A state 

identical to 𝑴𝒘 is reached at the characteristic time of diffusion (t = 250), confirming 

that the water transitions are always constant. This occurs despite the heterogeneity of 

solute distributions within the velocity class and is of major significance because 

mixing can be defined in a constant water transition matrix during the entire simulation, 

which is not the case with the solute matrices. 

 

Figure 5. 2: Global mixing state evolution in v velocity phase of Markov models using 

the computed transition matrix of mixing in RW simulations at different time steps. 
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5.4.2. Statistical parameter comparison of transport through 

heterogeneous porous media  

 

Mean position, spreading and mixing results for MAWMA and RW and 𝜎𝑌
2 = 1 are 

shown in Figure 5. 3. A perfect fit of mean position 𝜇 (Eq. (5. 24)) can be observed for 

all cases in Figure 5. 3a. Regarding spreading, the evolution of 𝜎𝑥
2 (Eq. (5. 26)), using 

the RW, is consistent with those of Comolli et al. (2017) and Perez et al. (2019). Perez 

et al. 2019 also showed that at early times deviation is controlled by diffusion and is 

proportional to t2. This explains differences in the 𝑊𝑃 and 𝑅𝑊 results in Figure 5. 3b. 

The 𝑊𝑃 grid is too coarse to reproduce early time diffusion of a Dirac pulse. The 𝑅𝑊 

and 𝑊𝑃 results converge at late times because of advection variability resulting in the 

proportionality of t. Most of the simulations occur during an intermediate regime 

observed by Comolli et al. (2017). The RW results of the standard deviation deviate at 

early times and converge at late times, as expected. However, WP simulations converge 

at early times and deviate at late times for any Peclet number. This is because the initial 

concentration exceeds the initial zone (Figure 5. 1a). We suspect that an overmixing 

account for the deviation at late times.  
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Figure 5. 3: Temporal evolution comparison of Statistic parameters between Random 

Walk and Water Parcel methods at 𝜎𝑌
2 = 1 heterogeneity level. (a) Mean x position (b) 

solute concentration variance in x and (c) Global mixing state 
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We now compare the results of global mix G plotted in Figure 5. 3c. We first evaluate 

the 𝑃𝑒 = ∞ case. The mismatch observed is due to the mesh evaluation. WP displays 

the correct constant G because the entire solute remains in the initial parcel. In other 

words, no transition of solute occurs between parcels. By contrast, RW uses a structured 

mesh that is fixed for evaluation of concentration. The number of concentrated elements 

increases with time owing due to stretching (Le Borgne et al. 2014), which implies a 

reduction in the computed concentration, this is a common problem when comparing 

Eulerian (RW) and Lagrangian (WP) methods. For a more accurate comparison, RW 

should therefore be performed with a Lagrangian mesh (such as the one proposed in 

chapter 2).  

In the other Pe cases, RW shows a monotonic decrease in G. However, WP 

underestimates mixing at early times. This mismatch is attributed to the mesh 

distinction given that similar discrepancies are again observed. In contrast, WP 

overestimates mixing with respect to RW at late times. This is consistent with the WP 

standard deviation behavior observed previously. We suspect this overestimation is 

related to incomplete mixing (Le Borgne et al. 2011; Gramlinget al. 2002). In other 

words, mixing occurs at scales lower than velocity discretization whereas WP changes 

the entire parcel concentration in the mixing process (i.e. homogenization), which 

confirms the mixing results observed in the above section. Some alternatives to 

incomplete mixing have been proposed (Perez et al., 2019). However, the mixing 

criterion of these authors is dependent on the solute state, whereas we seek to base it on 

the water volumes.  

 

 

5.5. Conclusions 

 

We present and test the MAWMA formulation for transport through heterogeneous 

porous media. The formulation is an extension of WMA, which considers transport of 
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water instead of solute concentration. Exchange of water volumes is used to reproduce 

mixing instead of individual species diffusion. Individual species concentrations are 

considered attributes of water. They may vary spatially, in which case the net solute 

mass exchange turns out to be proportionally to concentration gradient. But water and 

solutes exchanges occur independently of concentration gradients, which is why no 

concentration gradient is used to calculate the mixing process.  

We use the WP method to reproduce MAWMA. WP requires a velocity discretization 

and two transition matrices: one to reproduce advection transitions, which is Markovian 

in space (i.e., transitions occur after fixed spatial steps, which is consistent with a fixed 

heterogeneity) and one to reproduce mixing which is Markovian in time (i.e., velocity 

transitions occur at a constant rate in time, which is consistent with  Brownian motion). 

We have described how to compute these matrices from RW models. Our study shows 

that it is possible to obtain the water transition matrices from the classic solute transition 

matrices.  

We use Markovian models with transition matices computed from different time steps 

of the RW simulations to compare transition matrices. We showed that, unlike Mc, Mw  

are invariant in time. Then, the adequate performance of WP of advection, dispersion 

and mixing are tested by comparing statistical parameters with the RW simulations. 

Although advective results show a suitable definition of velocity classes, mixing is 

poorly reproduced for two reasons: (a) mesh inequivalence and (b) incomplete mixing. 

The structured mesh of RW is Eulerian in contrast to the unstructured Lagrangian mesh 

used in WP. The WP method assumes a homogeneous concentration value within the 

parcel volume. However, in our study this is inappropriate because mixing is a process 

conducted at a lower scale than velocity definition.  

In summary, the RW concentration evaluation requires a Lagrangian mesh (such as 

the isochronal one proposed by chapter 2). Moreover, WP needs a new evaluation of 

concentration in order to takes into account heterogeneity inside the parcels. This new 

evaluation should consider water volumes, which will ensure the independence of 

concentration states. This will facilitate coupling with chemical reaction calculations. 

 

 



 

89 
 

 

 

Chapter 6 

6. Conclusions 

Conclusions  

 

 

This thesis proposes a new family of formulations for solute transport. The essence of 

the proposal lies in transporting water by advection (i.e., dragging of a water mass with 

its mean velocity), dispersion (i.e., spreading of a water mass caused by local 

fluctuations of velocity with respect to its mean), and mixing (i.e., blending different 

water masses by Brownian motion). Since water is the transported, solute concentration 

is reduced exclusively to a chemical attribute. An implication is that diffusive and 

dispersive processes are not written in terms of concentration gradients. Instead, Fick’s 

Law emerges as a result of mixing water exchanges. That is, the proposed formulation 

is consistent with traditional formulations (e.g., Advection-Dispersion Equation, ADE) 

but leads naturally a new family of formulations where the entire transport phenomenon 

may be modeled as water processes. In homogeneous media, the formulation is termed 

Water Mixing Approach (WMA), which provides a clear decoupling of transport and 

chemistry. As a result, an easy algorithm was obtained to solve complex reactive 

transport simulations. The algorithm demonstrates that reactive problems can be solved 

immediately when transport is formulated as water exchange in any numerical method. 

We demonstrate the satisfactory accuracy and the computational cost (CPU) of WMA 

by using the Finite Volumes method in isochronal grids. 

In order to confirm the usefulness of the WMA algorithm for reactive transport, it 

was extended to the Multi-Rate Mass Transfer (MRMT) formulation, which simulates 

mass transfer between a mobile and multiple immobile regions by diffusive or first-
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order mass transfer terms. The resulting formulation, termed Multi-Rate Water Mixing 

(MRWM), was applied to four models inspired by dissolved CO2 flow-through 

experiments to test the influence of geochemical localization (i.e., the localized spots 

occurrence of chemical reactions that could not take place with the mean 

concentrations). This application confirms the strong influence that coupling chemical 

and transport heterogeneity exerts on reactive transport phenomenon. 

The WMA has also been extended to heterogeneous media by using a phase space 

formulation. Phase space formulations assume that the transport state depends not only 

on space and time but also on velocity. Adding a velocity complicates the problem, but 

solves elegantly the problem of dispersion. Spreading results naturally from transport 

variability among velocity classes, so that no explicit dispersion term is needed. 

Furthermore, they are well suited to incorporate the Markovianity of advection in space. 

Velocity transitions are Markovian in that they only depend on the current state after 

traveling a fixed spatial step. However, phase space formulations to date did not include 

mixing. In this thesis, mixing is treated also as a Markovian process, but in time (the 

next position after a time, not space, step only depends on the current one). The new 

formulation is termed Multi-Advective Water Mixing Approach (MAWMA). We have 

solved numerically using the of Water Parcel (WP) method, obtained by discretizing the 

space, time and velocity dimensions.  

Two different velocity transition probability density functions (matrices, after 

discretizing velocities) are needed to compute advection and mixing in WP. These can 

be obtained from the original solute transition matrices computed by classical Random 

Walk (RW) simulations. We first test only the mixing transition matrix in a stratified 

flow case (Taylor dispersion problem), where no advection transtions occur. A 

satisfactory agreement is observed. We also confirm the Markovianity in space 

observed by other authors, although the mixing process is Markovian in time. 

Afterwards the entire formulation is tested in heterogeneous porous media. We then 

include the matrix transition for advection in the WP models. Statistical measures of 

displacement, spreading and mixing were compared with RW simulations to test the 

method. The results show that WP overestimates mixing. We attribute this shortcoming 

to incomplete mixing, which is not acknowledged by the WP. Further research is 

therefore warranted to define a sub-WP scale mixing.    
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Appendix A 

Appendix A: Streamline oriented isochronal mesh  

Example of streamline oriented 

isochronal mesh building procedure 

 

The procedure to build the isochronal grid consists of the following steps (Figure A 1: ): 

1. Solve the flow equation using any available method to compute the flux field. 

Here we used the finite elements code TRACONF (Carrera et al. 1993).  

2. Compute 2N+1 streamlines, N being the number of flowtubes. Again, any 

method may be appropriate. Here we used the method of Cordes and Kinzelbach 

(1992). The one of Pollock (1988) would have been appropriate for finite 

differences. 

3. Define “isochronal” points (Figure A 1: b), starting at the inflow points of even 

streamlines and separated a distance ∆𝑠 = ∆𝑡 · 𝑞 𝜙⁄  along stream lines. 

4. Finally, build the cells by any of two options: (a) by joining points with the same 

travel time from the inflow, which is best for regular geometry boundaries; or 

(b) by joining points with the same head (Figure A 1: c and Figure A1d).  

 

Note that, using the isochronal grid, advection is perfectly reproduced by the water 

parcels moving from cell to cell during each time step. 
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Figure A 1: Construction methodology of an isochronal grid 
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Appendix B 

Appendix B: Dissipation rate in continuum 

injection  

Dissipation rate in continuum 

injection 

 

Although several works have contributed to the concept of the scalar dissipation rate 

(Le Borgne et al. 2010; Hidalgo et al. 2012; Jha et al. 2011; Nicolaides et al. 2015), we 

start with the classic vector expression (Pope, 2000; De Simoni et al, 2005) 

𝜒(𝑡) = ∫ 𝛁𝑐𝑫𝛁𝑐 𝑑𝛺
𝛺

 ( A 1) 

 We apply Green’s first identity 

𝜒(𝑡) = ∫ 𝑐𝑫𝛁𝑐 · 𝒏 𝑑𝛤
𝛤

− ∫ 𝑐𝛁 · (𝑫𝛁𝑐) 𝑑𝛺
𝛺

 ( A 2) 

where n is the unit vector perpendicular to boundary Γ. We now use the ADE, ∇ ·

(𝐷∇𝑐) = 𝜙(𝜕𝑐 𝜕𝑡⁄ ) + 𝑞∇𝑐, and substitute it in the second term of the RHS of equation 

( A 2)  

𝜒(𝑡) = ∫ 𝑐𝑫𝛁𝑐 · 𝒏 𝑑𝛤
𝛤

− ∫ 𝜙
𝛺

1

2

𝜕𝑐2

𝜕𝑡
𝑑𝛺 − ∫

1

2
𝒒𝛁𝑐2 𝑑𝛺

𝛺

 ( A 3) 

We use again Green’s first identity in the third term of the RHS 

𝜒(𝑡) = ∫ 𝑐𝑫𝛁𝑐 · 𝒏 𝑑𝛤
𝛤

− ∫ 𝜙
𝛺

1

2

𝜕𝑐2

𝜕𝑡
𝑑𝛺 − ∫

1

2
𝒒𝑐2 · 𝒏 𝑑𝛤

𝛤

+ ∫
1

2
𝑐2𝛁𝒒 𝑑𝛺

𝛺

 ( A 4) 
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The last term is usually neglected, but its contribution can be acknowledged in 

transient flow problems. Therefore, we use the flow equation  𝜕𝜙 𝜕𝑡⁄ = −∇𝑞 in the 

fourth term of the RHS and regroup the equation  

𝜒(𝑡) = ∫ 𝑐 (𝑫𝛁𝑐 −
1

2
𝒒𝑐) · 𝒏 𝑑𝛤

𝛤

− ∫
1

2
(𝜙

𝜕𝑐2

𝜕𝑡
+ 𝑐2

𝜕𝜙

𝜕𝑡
)𝑑𝛺

𝛺

 ( A 5) 

We now consider the inlet boundary condition 𝑞𝑐𝑖𝑛𝑗 = −(𝒒𝑐 − 𝑫𝛁𝑐) · 𝒏|𝛤 

𝜒(𝑡) = ∫ −𝑐𝒒 (𝑐𝑖𝑛𝑗 −
1

2
𝑐) · 𝒏𝑑𝛤

𝛤

− ∫
1

2
(𝜙

𝜕𝑐2

𝜕𝑡
+ 𝑐2

𝜕𝜙

𝜕𝑡
)𝑑𝛺

𝛺

 ( A 6) 

Note that n has a sign opposite to that of the flux at inlet boundaries because n points 

outwards (i.e., 𝑞 = −𝒒 · 𝒏|𝛤) Given the latter and assuming that porosity is constant, we 

end up with 

𝜒(𝑡) = ∫ 𝑐𝑞 (𝑐𝑖𝑛𝑗 −
1

2
𝑐) 𝑑𝛤

𝛤

− ∫
1

2
(𝜙

𝜕𝑐2

𝜕𝑡
) 𝑑𝛺

𝛺

 ( A 7) 
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