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Cuando emprendas tu viaje a Ítaca

pide que el camino sea largo,

lleno de aventuras, lleno de experiencias.

No temas a los lestrigones ni a los cíclopes

ni al colérico Poseidón,

seres tales jamás hallarás en tu camino,

si tu pensar es elevado, si selecta

es la emoción que toca tu espíritu y tu cuerpo.

Ni a los lestrigones ni a los cíclopes

ni al salvaje Poseidón encontrarás,

si no los llevas dentro de tu alma,

si no los yergue tu alma ante ti.

Pide que el camino sea largo.

Que muchas sean las mañanas de verano

en que llegues -¡con qué placer y alegría!-

a puertos nunca vistos antes.

Detente en los emporios de Fenicia

y hazte con hermosas mercancías,

nácar y coral, ámbar y ébano

y toda suerte de perfumes sensuales,

cuantos más abundantes perfumes sensuales puedas.

Ve a muchas ciudades egipcias

a aprender, a aprender de sus sabios.

Ten siempre a Ítaca en tu mente.

Llegar allí es tu destino.

Mas no apresures nunca el viaje.

Mejor que dure muchos años

y atracar, viejo ya, en la isla,

enriquecido de cuanto ganaste en el camino

sin aguantar a que Ítaca te enriquezca.

Ítaca te brindó tan hermoso viaje.

Sin ella no habrías emprendido el camino.

Pero no tiene ya nada que darte.

Aunque la halles pobre, Ítaca no te ha engañado.

Así, sabio como te has vuelto, con tanta experiencia,

entenderás ya qué significan las Ítacas.

As you set out for Ithaka

hope your road is a long one,

full of adventure, full of discovery.

Laistrygonians, Cyclops,

angry Poseidon—don’t be afraid of them:

you’ll never find things like that on your way

as long as you keep your thoughts raised high,

as long as a rare excitement

stirs your spirit and your body.

Laistrygonians, Cyclops,

wild Poseidon—you won’t encounter them

unless you bring them along inside your soul,

unless your soul sets them up in front of you.

Hope your road is a long one.

May there be many summer mornings when,

with what pleasure, what joy,

you enter harbors you’re seeing for the first time;

may you stop at Phoenician trading stations

to buy fine things,

mother of pearl and coral, amber and ebony,

sensual perfume of every kind—

as many sensual perfumes as you can;

and may you visit many Egyptian cities

to learn and go on learning from their scholars.

Keep Ithaka always in your mind.

Arriving there is what you’re destined for.

But don’t hurry the journey at all.

Better if it lasts for years,

so you’re old by the time you reach the island,

wealthy with all you’ve gained on the way,

not expecting Ithaka to make you rich.

Ithaka gave you the marvelous journey.

Without her you wouldn’t have set out.

She has nothing left to give you now.

And if you find her poor, Ithaka won’t have fooled you.

Wise as you will have become, so full of experience,

you’ll have understood by then what these Ithakas mean.

Ithaka, Konstantinos P. Kavafis
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Abstract

In recent decades, most developed countries have suffered several financial crises, which highlights

the need of creating methods and techniques that assess the stability of their stock markets. Specif-

ically, the literature on financial contagion has shown that models based on the interaction between

heterogeneous agents shed some light on the fragility of financial markets. Many scholars pro-

posed models with different settings (like coordination mechanism in traders’ behaviour, compe-

tition among different investors’ strategies or behavioural switching among different trading strate-

gies) in order to describe the stock market dynamics by means of the connection between price fluc-

tuations and social interaction. In the same line, firm dynamics literature also demonstrates that

simple agent based models give rise to the statistical regularities identified in the empirical data at

the macro level. The best example is the Laplace distribution of cross-sectional firms growth rates,

which can be thought as the macroscopic evidence of the existence of complex interactions among

firms.

With this doctoral dissertation, we aim to contribute to the literature in two different ways. On the

one hand, using an agent based model, we provide policymakers and investors with new methods

that can be used in financial markets to assess their stability, describe their dynamics, and forecast

their future performance. On the other hand, we analyse the evolution of the cross-sectional dis-

tribution of activity in the real economy to better understand the firms’ destiny. The main results

of our two first chapters show that models based on the social interactions provide investors with

useful information to set trading strategies, while the last chapter of this thesis demonstrates that the

firms’ destiny can be tracked by means of the analysis of their profit and growth rate cross-sectional

distribution over time.
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Resumen

En décadas recientes, la mayoría de los países desarrollados han sufrido diversas crisis financieras,

lo que subraya la necesidad de crear métodos y técnicas que evalúen la estabilidad de los mercados

financieros. Específicamente, la literatura enfocada en el contagio financiero ha demostrado que

modelos basados en la interacción entre agentes heterogéneos arroja luz sobre la fragilidad de estos

mercados. De esta forma, muchos investigadores proponen modelos con distintas especificaciones

(cómo mecanismos de coordinación entre el comportamiento de los inversores o competición entre

distintas estrategias de inversión) para describir la dinámica de los mercados financieros mediante la

conexión entre las fluctuaciones de los precios y la interacción social de los inversores. En la misma

línea, la literatura enfocada en la dinámica de las empresas también demuestra que simples modelos

basados en agentes dan lugar a regularidades estadísticas identificadas en los datos empíricos a nivel

macro. El mejor ejemplo es la distribución Laplace de la tasa de crecimiento de las empresas, lo cual

puede ser entendido como una evidencia macroscopica de la existencia de interacciones complejas

entre empresas.

Con esta tesis doctoral, contribuimos en la literatura de dos formas distintas. Por un lado, medi-

ante un modelo basado en agentes, proporcionamos a los inversores e instituciones gubernamentales

nuevos métodos que pueden ser usados en los mercados financieros para evaluar su estabilidad,

describir su dinámica, y predecir su comportamiento. Por otro lado, analizamos la evolución de

la distribución transversal de la actividad económica para entender apropiadamente el futuro de

las empresas. Los principales resultados de los dos primeros capítulos muestran que los modelos

basados en las interacciones sociales proporcionan a los inversores información útil para establecer

estrategias de inversión, mientras que el último capítulo de la tesis demuestra que el destino de las

empresas puede ser evaluado mediante el análisis de la distribución de la rentabilidad económica y

los ratios de crecimiento.
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Chapter 1

Motivation

The increasing complexity of modern economies, composed of many individuals that mutually in-

teract, obliges scholars to consider in their models the agents’ interactions in order to understand the

dynamics of interactive complex systems and the corresponding emergent properties (Tesfatsion and

Judd, 2006). The mainstream economic literature, in fact, shows that existing theories do not include

interactions between economic agents (Tedeschi et al., 2012).

One of the recent methodologies that can take into account those characteristics among a large

number of individuals is the Agent-Based model (ABM hereafter), which is based on the "bottom up"

approach (De Grauwe, 2010). Compared to the Stochastic Dynamics General Equilibrium approach,

characterized by a representative agent and an aggregate system outcome, ABMs are able to explain

different phenomena at the macroeconomic level through the interaction of heterogeneous agents at

the micro level (Bargigli and Tedeschi, 2013). More specifically, this new approach has been applied to

different fields like Industrial Dynamics (Delli Gatti et al., 2005), Macroeconomics (Teglio et al., 2012)

and Behavioural Finance (Lux and Alfarano, 2016), among others. Thus, the "bottom up" approach

is able to better describe real world phenomena, such as herding in financial markets, banking crises,

financial bubbles or competitive processes among firms. Moreover, it also provides an explanation

of some empirical regularities, such as the power law probability density function for firms’ size

(Delli Gatti et al., 2005), or the fatness of the tail of return distribution in financial markets (Alfarano

et al., 2005).

In this thesis, we are mainly focused on two fields: Behavioural Finance and Industrial Dynam-

ics. The field of Behavioral Finance aims at examining stock markets by taking into account the

behaviour of the traders as a relevant factor in describing the dynamics of financial markets. The

Efficient Market Hypothesis, the paradigm to describe the behaviour of financial markets, is essen-

tially based only on the incorporation of exogenous flow of information. Nevertheless, the price in a

financial market is also the result of the investors’ interactions. Most scholars of the ABM approach

consider generally two main categories of traders in the market: fundamentalists and chartists. The

former behaves according to the deviation of prices from the fundamental value, while the latter
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deviates from the rational behaviour, with different approaches, like the imitative behaviour. How-

ever, it is possible to find different group of traders depending on the objective of the research, like

informed/non-informed, smart/naive, pessimist/optimist or rational/noise traders among other ex-

amples (Lux and Alfarano, 2016). Within this framework, the heterogeneity of these groups is always

considered as a crucial feature, thus it allows to shed more light on the effect of the traders’ social

interaction on financial markets (Alfarano, 2006).

In fact, most of these models (Lux, 1995, 1996, 1998; Aoki and Yoshikawa, 2002; Wagner, 2003;

Alfarano et al., 2005, 2008; Chiarella et al., 2009) show that social dynamics gives rise to the main

empirical regularities in financial markets, namely heteroskedasticity in the fluctuations of financial

returns, their unpredictability, the fat tails of their unconditional distribution, and the long-term de-

pendence in their volatility. In other words, these contributions show that in the financial markets do

not exist a simple one-to-one relationship between price changes and the new incoming information

hitting the market, given that the statistical regularities can be considered as an emergent property

of the traders’ behaviour. Therefore, although these studies model differently the way that traders

interact with each other, they can replicate these stylised facts observed in the empirical data by us-

ing social dynamics as the main ingredient of their models. Nevertheless, the direct estimation of the

parameters represents one of the main drawbacks of the literature given the complexity of the under-

lying social dynamics. To address this issue, some scholars introduce indirect estimation methods

using the time series of returns to estimate some parameters related to the behaviour of traders (Gilli

and Winker, 2003; Franke and Westerhoff, 2011).

Considering this context, in the first chapter of this thesis we propose a market breadth indicator

that describes the agents’ behaviour by means of the collective movement of the stocks. This proxy

of the optimistic/pessimistic mood of traders can be considered as a kind of "mesoscopic device" to

analyse the social interaction of traders. We are able to estimate directly from the price time series

some parameters connected with the internal dynamics of the market by using the modification of

the Kirman model proposed by Alfarano et al. (2005). These parameters can be empirically used to

detect bull and bear market phases due to the optimism/pessimism of the investors. Hence, investors

can examine the state of the market allowing them to set different strategies to beat the market. In

particular, we show that the methodology proposed is useful for nine different international stock

markets, which provides enough robustness to the empirical findings of this chapter. However, one

of the main limitations of the market breadth indicator proposed in the first chapter is the need of

having a considerable number of assets in a given market to represent the sentiment of investors by

means of the collective movement of the stocks.

We propose in the second chapter of this thesis a behavioural model that allows us to describe the

internal dynamics of a given asset in terms of the interaction between two different groups of traders.
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More specifically, we define a simple stochastic model that describes the ratio of two consecutive

prices as the odds ratio of bullish to bearish traders. By means of this approach, we assess the price

changes as the historical competition between bullish traders, who believe in an increase in price,

and bearish traders, who believe in a decrease in price. Related to the first chapter of this thesis,

the odds ratio is modelled by a stochastic dynamics that is derived from the modification of the

Kirman model proposed by Alfarano et al. (2005). However, unlike the first chapter, we employ the

behavioural model to analyse Bitcoin.

Compared to other financial assets, Bitcoin is mainly driven by the interaction of traders (Baek

and Elbeck, 2015) since there is not a explicit fundamental value, which most of the times is related

to particular features like hashrate, blockchain position and liquidity (Corbet et al., 2018). Due to this

fact, Bitcoin is characterised by an explosive behaviour with continuous bubbles (Cheah and Fry,

2015) generated by the enthusiasm and fear of the traders that buy and sell according to the news

in social media. Even though most of the proposed models in the literature try to describe Bitcoin

dynamics by means of machine learning and neuronal networks (Jang and Lee, 2018; McNally et al.,

2018), we believe that a behavioral model based on the Kirman model is more suitable to describe

this kind of asset whose value is given by the interaction of agents. With this model, we show in

the second chapter that it is possible not only to describe the state of the market, but also to forecast

Bitcoin price and volatility with satisfactory results compared to other recent models (Jang and Lee,

2018; McNally et al., 2018; Catania et al., 2019; Atsalakis et al., 2019).

In the third chapter, we are focused on the field of Industrial Dynamics. Gibrat (1931) was the

first scholar to examine the dynamics and growth of individual firms whose influential idea was

to contend that the growth rate of each firm is independent of its size. This fact would imply nor-

mally distributed growth rates, and a log-normal distribution of firm sizes. However, many authors

demonstrate that (i) the distribution of firms’ size follows a power law rather than a log-normal dis-

tribution (Axtell, 2001; Gaffeo et al., 2003) and (ii) growth rate of firms follows a Laplace distribution

rather than a Normal distribution (Amaral et al., 1997; Bottazzi et al., 2001; Bottazzi and Secchi, 2003,

2006; Bottazzi and Secchi, 2011; Buldyrev et al., 2007; Alfarano et al., 2008; Riccaboni et al., 2011).

The non-normality of the growth rate distribution could be considered as an imprint of the complex

interactions among firms in a competitive process. In fact, Delli Gatti et al. (2005) show that a simple

financial fragility agent based model based on complex interaction of heterogeneous agents (firms

and banks) gives rise to (i) the power law distribution of firms’size and (ii) a Laplace distribution for

growth rates of firms’ output and countries’ GDP. The approach used in this study is based on the

assumption that the interactions among the single units of a given system may give rise to some sta-

tistical regularities at the macro level that are not related to the behavior of the sub-units. Bottazzi and

Secchi (2006) also underline the relevance of agents’ interaction given that the Laplace distribution
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stems from a competitive context in which firms are able to seize new growth opportunities propor-

tional to opportunities already taken. Therefore, Industrial dynamics relates the interaction of agents

to some statistical regularities like the cross-sectional distribution of activity in the real economy. In

fact, Aoki and Yoshikawa (2011) underlined the relevance of studying probability distributions since

"equilibrium in the macroeconomy is better described by a probability distribution than by a ‘point’

in some space or set." This view is in line with Haltiwanger (1997), who stated that "it is becoming

increasingly apparent that changes in the key macroaggregates at cyclical and secular frequencies are

best understood by tracking the evolution of the cross-sectional distribution of activity and changes

at the micro level." Given the relevance of the probability distribution in macroeconomics, it is impor-

tant to choose those variables that are able to characterise properly the complexity of the economic

system. The existing literature (like Bottazzi and Secchi, 2003, 2006) considers that growth rates is

the best measure to describe the dynamics of individual firms. However, some authors (Alfarano

et al., 2012; Erlingsson et al., 2013; Mundt et al., 2016) have changed the attention towards profit rates

instead of growth rates. In fact, Mundt et al. (2016) affirm that profit rates are more convenient to

find a general principle for the dynamics of corporations since volatility is independent of size, they

exhibit significant autocorrelation and are more stable regardless of the country and period consid-

ered. In this context, we analyse in the third chapter whether profit rates are more convenient to

analyse firm dynamics, compared to growth rates, in the Spanish economy from 1998 to 2016. This

unstable period, characterised by the remarkable impact of the housing bubble on the economy, al-

lows us to observe which variable shows more robust statistical regularities. The main result of our

study underlines the stability of profit rates over time for the largest long-lived firms, even during

the downturn.

All in all, this thesis consists of three chapters that, to a greater or lesser extent, underline the

relevance of the agent interactions at different levels. Despite the fact that these chapters do not show

a complete common thread, the thesis presents those topics that have attracted the attention of the

author over these years with the social dynamics as the cornerstone. The readers of my dissertation

will hopefully excuse the absence of a unique scientific topic. This fact has allowed me to broaden

my mind in different ways, which would not have happened otherwise.
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Chapter 2

An agent-based early warning

indicator for financial market

instability

“I define a speculative bubble as a situation in which news of price increases spurs investor enthu-

siasm, which spreads by psychological contagion from person to person, in the process amplifying

stories that might justify the price increases and bringing in a larger and larger class of investors,

who, despite doubts about the real value of an investment, are drawn to it partly through envy of

others’ successes and partly through a gambler‘s excitement." (Robert J Shiller; Irrational Exuberance,

2015)

2.1 Introduction

Traditional economic literature, based on the efficient market hypothesis (Fama, 1965, 1991; Malkiel

and Fama, 1970), highlights the irrelevant role of irrational traders in the long run, since they would

disappear from the stock market due to their poor performance (Friedman, 1953). A popular term

for investors acting irrationally is "noise traders" (Kyle, 1985; Black, 1986), whose trading might gen-

erate crashes and bubbles due to social contagion. This phenomenon is emphasized in Shiller’s quote

(from above) that underlines the importance of social interactions in the stock market as a source of

price deviations from their fundamental value. Thus, the presence of noise traders creates situations

in which rational investors with risk aversion cannot maintain their position given that "price diver-

gence can become worse before it gets better" (Shleifer, 2000). In other words, noise traders are able

to create a particular place in the stock market in which to survive (Lux, 2011) to the detriment of

rational traders (De Long et al., 1990).
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Agent-based models (ABMs) in finance shed more light on the connection between price fluctu-

ations and social interactions, since they are able to include more features like herding and conta-

gion phenomena as main features of their dynamics (Lux and Alfarano, 2016). The herding model

of Kirman (1991, 1993) represents one of the first references in this field with the introduction of a

stochastic model of information transmission that was initially designed to explain the behavior of

an ant colony in the presence of two sources of food. His seminal work was adapted into a finan-

cial perspective in which foreign exchange dealers choose their strategy (chartist or fundamentalist)

under the influence of social interactions. Most of these models (Lux, 1995, 1996, 1998; Aoki and

Yoshikawa, 2002; Wagner, 2003; Alfarano et al., 2005, 2008) have been proposed to provide an expla-

nation of empirical regularities in financial markets, namely, heteroskedasticity in the fluctuations

of financial returns, their unpredictability, the fat tails of their unconditional distribution, and the

long-term dependence in their volatility. These studies show mainly that those statistical regularities

can be considered as an emergent property of internal dynamics governed by the interaction of dif-

ferent groups of traders and are not just a mere reflection of the new incoming information hitting

the market.

One of the main problems in the empirical application of agent-based models to financial data

lies in the hidden nature of some of the quantities responsible for the internal dynamics of the

market. In particular, the fraction of chartists/fundamentalists or pessimist/optimist investors is

an unobservable quantity, which should be estimated indirectly from the time series of price re-

turns. Gilli and Winker (2003) were the first to estimate some parameters of the Kirman model by

means of a global optimization heuristic, whose main outcome underlined that the DM/USD (Ger-

man Mark/U S dollar) foreign exchange market was characterized by the changing moods of the

agents. Franke and Westerhoff (2011) employ the method of simulated moments (SMM), along with

bootstrap and Monte Carlo techniques, to estimate a structural stochastic volatility model of asset

pricing. Their main empirical finding underlines the different behavior of agents in the S&P 500

index and USD/DM exchange rate. Chen and Lux (2015) use the SMM to estimate the model of

Alfarano et al. (2008), which is applied to three stock market indices (DAX30, S&P 500, Nikkei225),

three foreign exchange rates (USD/EUR [Euro], JPY [Japanese Yen]/USD, CHF [Swiss Franc]/EUR)

and the gold price, showing the different behavior of traders in those markets.

The aim of this paper is to shed more light on the empirical research of agent-based models

that have been previously mentioned. In particular, we employed the herding model introduced by

Kirman (1991, 1993) to describe the evolution of a sentiment index that was inspired by the Bank

of America Merrill Lynch (BofAML) global breadth rule (Hartnett et al., 2015). This rule is defined

as a contrarian indicator of the equity market according to the nomenclature of financial technical

analysis. A market breadth indicator measures the number of companies advancing relative to those
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declining during a given time period. Positive market breadth occurs when more assets in a market

are advancing than declining, suggesting that the market is bullish. Conversely, a disproportionate

number of declining stocks are interpreted as a bearish market phase.

Instead of estimating indirectly the fraction of pessimists/optimists from a financial time series

of returns, we consider the evolution of the breadth of the entire market as a direct proxy of the opti-

mistic/pessimistic mood of traders. Such a dichotomic classification of the sentiment of traders, very

often employed in the behavioral finance literature, is obviously an oversimplification of a much

more complex psychological description of the investment attitude of the traders. The use of this

simple classification allows us to apply an extensive battery of analytical tools already available in

the literature. We implicitly assume that the collective behavior of the stocks in a given market is a

reflection of the collective mood of traders and the idiosyncratic shocks to the individual firms. We

conjecture that the collective movement of the stocks can be decomposed into idiosyncratic shocks

to each stock and a global coupling among them. Such a decomposition is the core of the Kirman

herding model, typically employed to describe the behavior of a population of investors. In other

words, we consider all the stocks in a given market as sorts of "mesoscopic devices" to detect some

aspect of the micro behavior of the investors. We do not explicitly model the connection between

the micro motives of the traders and the dynamics of the stock prices and the market index. Such

complex interaction has been exhaustively modeled in an extensive part of agent-based finance lit-

erature. The main advantage of a shift from the investors’ sentiment to the market breadth is that

the latter can be directly computed from the price time series, while the former should be indirectly

estimated after assuming a particular agent-based model.

The aim of the paper is twofold. The first contribution of the paper is showing that this model can

accurately reproduce the main statistical properties of the empirical sentiment index, constructed us-

ing the S&P 500 financial index. This was accomplished after noticing that the evolution of the market

breadth visually resembled a time series generated by the herding model of Kirman. In particular,

we focused our attention on the unconditional distribution, the heteroskedasticity of the fluctuations

of the index changes, and the exponential decay of the autocorrelation function. Moreover, we could

easily estimate the three parameters of the model with a straightforward application of the maximum

likelihood method.

Our second contribution focuses on an empirical application of our model to the sentiment index in

order to detect the turning points from bull markets to bear markets. We used a measure of asym-

metry of the attitude of the investors based on the sentiment index zt as an early warning indicator.

By means of this tool, we can identify bull markets in which most of the stocks are simultaneously
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moving together due to the optimism of investors. Hence, this indicator allows investors and policy-

makers to anticipate the emergence of pessimistic phases that stem from persistent bull markets. In-

vestors are able to reduce their financial exposure through the progressive sale of stocks or purchas-

ing put-options, while policy-makers can control the mood of investors and apply efficient policies

to minimize the contagion from financial markets to the real economy. Finally, the robustness of our

results is demonstrated using two different stock indices in the USA (S&P 400 midcap and Nasdaq

100) and six different worldwide stock indices: ASX 200 (Australia), TSX (Canada), Euro Stoxx 600

(Europe), Nikkei 225 (Japan), JSE (South Africa), and FTSE 100 (UK). We observed generally similar

features in all the stock indices, thus we can apply our sentiment index and early warning indicator

in any market regardless of the country-specific characteristics. It is remarkable that, despite quite a

large degree of heterogeneity in the sample of assets and markets considered, the early warning indi-

cator as well as the underlying herding model proved to be fairly robust in predicting the optimistic

and pessimistic phases and in describing the dynamics of the market breadth.

The rest of the paper is organized as follows. We describe the data in Section (2.2) along with

the introduction of the sentiment index, zt, in Section (2.3). The herding mechanism is described in

Section (2.4), and the estimation of the parameters is shown in Section (2.5) along with the validation

of the model. The definition of the early warning indicator and its empirical application are described

in Section (2.6). The estimations for the USA and worldwide stock markets are shown in Section (2.7).

Finally, we summarize the main results of this paper with the conclusion in Section (4.5).

2.2 Data

Our data sample was constituted of daily stock prices that were sourced from the Thomson Reuters

Datastream. More specifically, we employed all the S&P 500 stocks that had been trading from

01/01/1981 to 01/06/2018. The sample included 208 stocks.

To ensure the robustness of our results, we employed two other stock market groups. On the one

hand, we studied the S&P 400 midcap and Nasdaq 100 to observe whether the firm size and sector

characteristics gave rise to different results. On the other hand, we analyzed six stock markets from

different countries to examine whether investors’ sentiment can be described by the same model

regardless of the different market structures, trading mechanisms or country-specific characteristics

(Australia, Canada, Europe1, Japan, South Africa, and the UK). We examined these indices from

01/01/1993 to 01/06/2018 due to the availability of data.2 Table 2.1 shows all the stock markets that

1Given the similarities in relation to the Euro Stoxx 600, we did not report results related to countries like Germany (DAX),
France (CAC), and Spain (IBEX). Hence, we focused on the Euro Stoxx 600 to include representation of the European countries.

2The only exception was the JSE All-Share index. In this case, our initial year was 2000.
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were used in this study, including the corresponding index, sample period, country, and number of

stocks.

Table 2.1: Details of the stock indices used in the empirical analysis.

Number Stock index Sample period Country Stocks

1 S&P 500 01/01/1981 - 01/06/2018 USA 208

2 S&P 400 midcap 01/01/1993 - 01/06/2018 USA 188

3 Nasdaq 100 01/01/1993 - 01/06/2018 USA 48

4 ASX 200 01/01/1993 - 01/06/2018 Australia 53

5 TSX 01/01/1993 - 01/06/2018 Canada 81

6 Euro Stoxx 600 01/01/1993 - 01/06/2018 Europe 282

7 Nikkei 225 01/01/1993 - 01/06/2018 Japan 183

8 JSE All-Share 01/01/2000 - 01/06/2018 South Africa 86

9 FTSE 100 01/01/1993 - 01/06/2018 UK 57

Given that we were analyzing stock indices for a time span of 37 years (in the case of S&P 500)

and 25 years (for the rest of stock markets with the exception of the JSE index), we detrended the

stock prices in order to focus on the behavior of fluctuations around the long-term trends. The basic

idea is to detrend the exponential long-term trend of the stock prices using a simple linear regres-

sion on the cumulative log-returns for each stock index. The long-term trend of the stock market is

mainly affected by the general evolution of the economy and not by the short-term fluctuations in

the sentiment of the investors, which was the focus of our study. In order to do so, the first step was

to compute the cumulative returns of each stock index calculated as:

rj,τ = ln

(
Sj,τ

Sj,1

)
, j = 1, ..., 9; τ ≥ 1, (2.1)

where Sj,τ is the stock index from Table 2.1. Afterwards, we employed an ordinary least squares

regression to obtain the corresponding average daily return for each index, defined as β j.3 We then

computed the detrended prices for each one of the stocks in the corresponding market, defined as:

j pi,τ =
jPi,τ

eβ jτ
, (2.3)

where jPi,τ are the raw prices while j pi,τ denotes the detrended prices of the stock i in market j.4

3The equation that has been estimated is
rj,τ = αj + β jτ (2.2)

where τ denotes an incremental index for each day of the time series and, consequently, β denotes the average daily return
for each index. We checked for the impact of the starting value Sj,1 on the estimation of β j, varying it in a time window of
approximately 200 days. The estimation was not significantly affected.

4If we consider the original time series of prices, our results were not significantly affected, since for the sentiment index,
we used a moving average to extract the traders’ mood. The detrending technique has been employed to eliminate the small
systematic optimistic bias in the sentiment index due to the presence of the exponential long-term growth.
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2.3 Sentiment Index

Our paper was inspired by the GBR from the Bank of America Merrill Lynch, which indicates extreme

pessimistic scenarios when most of the stock indices around the world are oversold, thus triggering a

buy signal to take advantage of possible rebounds. The GBR is based on the market breadth technical

trading analysis, which employs a comparison of moving averages as a classic chartist technique. The

GBR triggers a buy signal when 88% of stock indices included in the MSCI All Country World Index5

are simultaneously below their 200-day moving average and 50-day moving average. Such collective

movement of all international markets in the same direction is considered an imprint of a pessimistic

market mood affecting all the global financial markets. The origin of this collective movement can

be found in a pessimistic persistent sentiment of investors, possibly overreacting to some exogenous

factors. The main idea of this trading rule is to identify a period of overall pessimistic sentiment in

the world financial markets, and consequently, to set the proper timing to enter into the market.

Given that the GBR and other similar indices of market breadth rely inherently on the sentiment

of agents in the worldwide stock market, we similarly created sentiment indices based on individ-

ual stocks belonging to the stock indices reported in Table 2.1. The technical trading rules based on

market breadth indicators are widespread among financial traders to estimate the changes of senti-

ment of financial investors. Our starting research question was whether we could employ concepts

and techniques developed in the agent-based literature to conveniently model such indicators. To

do so, we constructed an index similar to GBR that is based on the stocks of a single financial market

instead of the financial indices included in the MSCI All Country World Index.

In order to construct our sentiment index, we categorized each one of the N stocks of a given

market (N is the fixed number of stocks that we considered) according to two possible states: nt

(State 1) and N − nt (State 2), where nt is defined as the number of stocks advancing and N − nt as

the number of stocks declining.

As a proxy for the impact of optimism and pessimism on a given stock, we computed the relative

price in a given day with respect to its exponential moving average (EMA, hereafter). In contrast to

the GBR index, we only used the price and the moving average, instead of two moving averages, so

that we had a binary and mutually exclusive characterization of the state of each stock.6 The EMA

was calculated as a linear combination of the day’s closing price and the previous day’s EMA value

with a given weight W. We denote the EMA of stock i at time t as p̄i,t, recursively defined as:

p̄i,t = W · pi,t + (1−W) · p̄i,t−1 for t ≥ 1, (2.4)

5The MSCI All Country World Index aggregates 46 indices, 23 developed and 23 emerging markets.
6The GBR allows for three possible states of a stock, given the relative level of the price with respect to the two moving

averages.
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where the first term denotes the percentage of the day’s price that is added to the previous day’s

exponential moving average.7 We define the weight W to compute the EMA as:

W =
2

L + 1
, (2.5)

where L is the "equivalent" length of the time window measured in days.8 We computed the starting

value of p̄i,0 as the simple arithmetic average over a window of length H, i.e.,

p̄i,0 =
1
H

H

∑
τ=1

pi,τ . (2.6)

This value was essentially irrelevant for our results, since after a few iterations of Eq. (2.4)

(roughly L) the starting value did not have an impact on the value of p̄i,t, so that a possible con-

straint is H ≤ L.9

Having defined pi,t and p̄i,t, we consider that the stock i at time t is in a "pessimistic state" when

the price of the stock, pi,t, is below p̄i,t, while we consider that the stock is in an "optimistic state"

when the price of the stock is above p̄i,t. We denote the state of each stock i as ni,t, which takes the

values:

ni,t =

{
1 if pi,t < p̄i,t−1,

0 if pi,t ≥ p̄i,t−1.
(2.7)

This binary characterization of the state of a given stock is just a rough approximation of the mood of

the investors, since the state of a single stock might change abruptly due to small fluctuations of the

current price with respect to its exponential moving average. It is the aggregate index, in fact, which

carries the information on the collective dynamics of the sentiment of the investors in the market. We

define nt as the sum of the individual state of each stock at time t, i.e.,

nt =
N

∑
i=1

ni,t. (2.8)

We introduce the normalized sentiment index zt, which represents the collective behavior of the

market at time t in relation to the size of the market N:

zt =
∑N

i=1 ni,t

N
=

nt

N
. (2.9)

We are implicitly assuming that our estimator of a sentiment index is a reflection of the behavior

of the investors. We have several layers involved in the dynamics of the system, some of them not
7In this and the following sections, we omit an index indicating the particular market to which a stock belongs in order to

avoid unwieldy notation. We are implicitly assuming that all the stocks refer to the corresponding market.
8Such value for the weight factor allows for an intuitive comparison between an EMA and a simple arithmetic average

of the rolling window L. For W = 2/(L + 1), both moving averages have the same center of mass. Using Eq. (2.5), we can
characterize an EMA with a timescale (see Murphy, 1999 and Hansun, 2013).

9Without a loss of generality, we set H = L. The choice did not influence our results as soon as H << T.
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explicitly modeled: i) the micro level where investors, based on their particular trading strategies

and expectations, trade the stocks; ii) the price dynamics of the single stock, which reflect to some

extent the behavior of the agents and their sentiment; iii) the index of Eq. (2.9), which captures at

an aggregate level the sentiment of the investors and its dynamics. A connection between (i) and (ii)

is assumed to exist; the price dynamics of a single stock partially reflect the overall sentiment of the

investors in the market. Many models in the literature on agent-based finance have indirectly shown

the existence of a connection between the trading strategies employed by the financial investors and

the properties of the financial time series of prices and returns, like the model proposed by Lux and

Marchesi (1999a) or the nonlinear dynamical system introduced by Brock and Hommes (1997) (for

references to other models in the literature, see Lux and Alfarano, 2016). In this paper, we proxied

the evolution of the sentiment of financial investors with our index constructed from the collective

movement of the stocks, which had the great advantage to be an observable quantity.

A bear market is characterized by a value of the variable zt that is close to one; conversely, a bull

market is associated to a value of zt close to zero. So, when the vast majority of stocks have a price

lower than their corresponding moving average, we are in the presence of a widespread pessimistic

sentiment of the market or possibly of a negative exogenous event, affecting all the stocks at the same

time. Fig. (2.1) shows the resulting sentiment index zt of the S&P 500 along with the time series of

daily changes, computed as the difference between zt and zt−1. We observed swings of sentiment

of the market between the two extreme values, z = 0 and z = 1. Moreover, a visual inspection of

the time series of index changes showed the presence of volatility clusters, a phenomenon shared

with the time series of price returns (Cont, 2001). Interestingly, periods of high volatility of the index

changes coincided with the value of zt around a balanced configuration (zt ≈ 1/2). Conversely, when

zt takes extreme values (zt ≈ 1 or zt ≈ 0) the index changes exhibit lower volatility. Our simple fil-

tering technique might be useful to characterize the overall behavior of investors in the market. Fig.

(2.1) shows a remarkable visual similarity (swings between the two extremes, a heteroskedastic time

series of index changes, a specific correlation of high/low value volatility of the index changes with

zt) to the time series generated by the herding model proposed by Kirman (Kirman, 1991; Kirman,

1993), which was inspired by an entomological experiment on the behavior of ants. In this paper, we

analyzed to what extent such visual similarity can be translated into a quantitative correspondence.

In addition to the visual correspondence, we take the position that the collective movement of the

stocks at the macro level can be an imprint of the behavior of financial investors at the micro level.

The model of Kirman has been extensively used in the literature to successfully model the behavior

of financial agents. Based on this premise, we conjectured that this model could be useful to quan-

titatively describe not only the behavior of traders, but also the collective movement of stocks in an

asset market.
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Figure. 2.1: Sentiment index and index changes of the S&P 500 (L=100).
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2.4 Kirman Herding Model

Kirman (1991, 1993) has popularized an entomological experiment on the behavior of an ant colony

where the insects could choose between two identical sources of food near their nest. Surprisingly,

one can observe that most of the ants rest in the proximity of one source of food instead of observ-

ing an approximately equal number of ants around the two sources, a scenario which one might

intuitively think at first sight. Even more surprisingly, such an asymmetric distribution is not stable

over time, but it switches between the two sources. Those experimental observations have been ex-

plained through a combination of recruitment interactions among ants and autonomous switchings

of individual ants as a result of their stochastic search for food. In particular, the pairwise recruiting

interaction of two ants, due to the exchange of pheromones to communicate with each other, can be

interpreted as a herding behavior in that one ant decides to follow another ant regardless of its own

information on the location of the source of food.

Kirman has introduced a simple stochastic model in order to explain the aggregate asymmetric

behavior of the colony together with the switching of the majority of ants over time. His model

has been successfully applied to financial markets in order to describe the switching mechanism

among different strategies used by agents to trade an asset.10 The main idea is that investors can

be categorized into a few groups based on their trading strategies: fundamentalists/chartists, opti-

mists/pessimists, followers/contrarians, etc. They can switch category depending on some sort of

10Two main examples of this literature are Lux and Marchesi (2000) and Alfarano et al. (2005). The former relates volatility
clustering, fat tails, and the unit root property of assets to the interaction of chartists, who can be optimistic and pessimistic,
and fundamentalists. In fact, chartists change their mood not only due to the price trend but also because of the majority
opinion. The latter also shows that fat tails and volatility clustering can be considered as emergent properties of the interaction
of traders, whose main contribution lies in the direct estimation of the underlying parameters of their herding model given a
closed-form solution for the distribution of returns.



14 Chapter 2. An agent-based early warning indicator for financial market instability

peer pressure or herding interaction, which might create a prevalent optimistic or pessimistic senti-

ment among investors in a given time period. They can also change investment strategies following

some idiosyncratic influences. We assume that the herding coupling among traders at a market level

retains its effects on the dynamics of the individual stock price and ultimately allows us to estimate

the prevailing sentiment in the market. In line with a large number of contributions in agent-based

finance and taking into account a qualitative similarity of the time-series properties, we applied the

ant model of Kirman to formally describe the dynamics of the observable sentiment index defined in

Eq. (2.9). This allowed us to have an analytical model for the evolution of the sentiment of investors

in a financial market whose parameters could be easily estimated.

2.4.1 Transition probabilities

Here, we illustrate the main properties of the Kirman herding model, and how we can adopt it to

describe the evolution of the sentiment index introduced in Section (2.3). The formalization of the

model assumes that the stochastic population dynamics, determined by the aggregate variable nt

from Eq. (2.8), evolves according to the Poisson probabilities governing the state of one stock. The

aggregate indicator changes from nt at time t to some n′t+∆t0
at time t+∆t0 according to the given

conditional probabilities denoted by ρ(n′t+∆t0
| nt). For sufficiently small time increments ∆t0, the

probabilities are linear in the time interval and are defined as:

ρ(n′t+∆t0
= nt + 1 | nt) = (N − nt)(a1 + bnt) · ∆t0,

ρ(n′t+∆t0
= nt − 1 | nt) = nt(a2 + b(N − nt)) · ∆t0,

(2.10)

with the further constraint that:

ρ(n′t+∆t0
= nt | nt) = 1− ρ(n′t+∆t0

= n + 1 | nt)− ρ(n′t+∆t0
= n− 1 | nt). (2.11)

Moreover, given that the conditional probabilities ρ(n′t+∆t0
| nt) must be bounded to 1 and must

be positive, an upper limit can be computed for the elementary time step, ∆t0:

∆t0 ≤
2

bN(N + a1
b + a2

b )
. (2.12)

The probabilities from Eqs. (2.10) and (2.11) define a Markov chain that can be more precisely
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classified within the class of nonlinear one-step processes (Van Kampen, 1992).11 The constants a1

and a2 account for the average intensity of random switching of state of a stock. Those changes are

originated by idiosyncratic exogenous shocks affecting a particular asset. The quadratic term instead

accounts for the global coupling among all assets responsible for their collective movements in the

market. In this regard, the constant parameter b accounts for the relative intensity of such global

coupling with respect to the idiosyncratic propensity to switch.

An individual stock might change its state due to an idiosyncratic external event, for instance, new

information affecting the prospects of future cash flow of a given firm. New information affects

the trading attitude of investors, triggering their buy or sell signals on that particular stock, which,

in turn, might change the current stock price, possibly modifying its relative position with respect

to the EMA and eventually its state. The terms a1 and a2 trigger random switches among states,

regardless of the state of the other stocks. Notice, however, that this sensitivity to change the state

depends on the direction of the transition, given the asymmetry of the two coefficients (a1 and a2).

The state of a stock might also change under the market pressure modeled by the dependence of

the probabilities on the overall number of stocks in the opposite state, governed by the constant

parameter b. In other words, with this term we account for the global coupling among all stocks in a

given market, which is captured within the capital asset pricing model (CAPM) by the dependence

of the individual stock return on the return of the index. Collective changes of the mood of investors

due to social interactions based on herd behavior are reflected in the corresponding changes of the

states of the stocks. Our sentiment index can be considered, therefore, a device to detect indirectly

the unobservable movement of the sentiment of investors. The nonlinear term in Eq. (2.10) accounts

for the impact that the mutual influence in the behavior of traders has on the collective movements

of the stocks.

2.4.2 The aggregate dynamics and the Langevin equation

In Alfarano (2006) and Garibaldi and Scalas (2010), the finitary equilibrium distribution of the Markov

chain of Eq. (2.10) is derived, which turns out to be a Polya distribution. In addition to the un-

conditional distribution, it is possible to compute the conditional distribution of the variable nt,

ρ(nt+∆t | n0) for any value of ∆t, as an infinite polynomial expansion in the leading eigenvalue of the

transition matrix defined in Eq. (2.10) and (2.11) (see Garibaldi and Scalas, 2010). Such a solution can

11The Markov chain described in Eq. (2.10) and (2.11) is characterized by being homogeneous, irreducible, aperiodic,
ergodic, with a unique equilibrium distribution (Feller, 1968). In particular, the transition probabilities are homogeneous
since they are time independent. Each state can be reached from the rest of the states in a finite number of states, thus the
chain is irreducible. Given that the probabilities ρ(n′t+∆t0

| nt) 6= 0, the chain is aperiodic. Hence, the Markov chain is ergodic,
since it is aperiodic and irreducible. Finally, the equilibrium distribution exists and is unique. Garibaldi and Scalas (2010) give
a detailed account of the properties of such process.
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be handled just with numeric techniques, and it does not allow for a clear comprehension of the dy-

namical structure of the process. Even though the discrete process can be computed numerically, we

decided to introduce the continuous approximation which allows for a more intuitive understand-

ing of the dynamics of the aggregate index nt than the description in terms of the discrete variable.

In order to approximate the discrete stochastic process by a continuous diffusion process (Alfarano

et al., 2005, 2008, 2013; Alfarano and Milaković, 2009), we define the collective behavior of the whole

market with respect to the intensive variable zt. Alfarano et al. (2005) shows that the Markov chain

of Eq. (2.10) can be approximated by the dynamics of the variable zt within the framework of the

Fokker-Planck equation (FPE),

∂p(z, t)
∂t

= − ∂

∂z
[A(z)p(z, t)] +

1
2

∂2

∂z2 [D(z)p(z, t)], (2.13)

where A(z) represents the drift term,

A(z) = a1 − (a1 + a2)z, (2.14)

and the diffusion term D(z) is given by

D(z) = 2b(1− z)z. (2.15)

The resulting equilibrium distribution, obtained by Alfarano et al. (2005) is

p0(z) =
1

B(ε1, ε2)
zε1−1(1− z)ε2−1, (2.16)

where

B(ε1, ε2) =
Γ(ε1)Γ(ε2)

Γ(ε1 + ε2)
, (2.17)

being Γ(·) the gamma function.12 Interestingly, it turns out that it depends only on the ratios ε1 =

a1/b and ε2 = a2/b but not on the size of the constants a1, a2, and b. The resulting distribution of

Eq. (2.16) is known as the beta distribution which is characterized by being a flexible distribution in

a bounded domain.

12Despite the fact that our sentiment index zt is not a continuous variable given the finite number N of stocks in the system,
for coherence of the estimation procedure, we examined the beta as an equilibrium distribution instead of the Polya distribu-
tion (Alfarano et al., 2005), since we employed the continuous conditional likelihood to estimate the underlying parameters
of the model.
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The time evolution of the stochastic variable zt, from Eq. (2.13), can be alternatively described by

the stochastic differential equation in continuous time,

dzt = A(zt)dt +
√

D(zt) dWt, (2.18)

where dzt is the infinitesimal increment of zt, and dWt is the Wiener increment.13 The Eq. (2.18) can

be approximated by the discrete time stochastic difference equation, known in physics terminology

as a Langevin equation, using the Euler–Maruyama approximation (see Kloeden and Platen, 2013).

Therefore, instead of simulating the stochastic process of Eq. (2.10) at the microscopic level with a

single transition at a time or solving the FPE of Eq. (2.13) (see Alfarano, 2006), we can also describe

the herding mechanism at the macroscopic level by means of the Langevin equation. This approach

allows an approximation of the conditional distribution, ρ(nt+∆t | n0) of the discrete process of Eq.

(2.10) with a Gaussian distribution. In other words, instead of following the herding dynamics at

the microscopic timescale ∆t0, when we observed at most a switch of a single asset, we considered a

macroscopic time scale ∆t, during which we aggregated several variations of the variable zt in order

to obtain a simpler description of its dynamics. The main intuition is that the aggregation of many

"micro increments" of the variable zt leads to a Gaussian conditional distribution because of the cen-

tral limit theorem. Based on this intuition, Alfarano et al. (2005) derive the following approximation

for the stochastic process of Eq. (2.10):

zt+∆t = zt + (ε1 − (ε1 + ε2)zt)b∆t +
√

2b∆t(1− zt)zt · λt,

= zt + (ε1 + ε2)(z̄− zt)b∆t +
√

2b∆t(1− zt)zt · λt,
(2.19)

where λt is an iid normally distributed random variable, and z̄t is defined as ε1/(ε1 + ε2), which

is the mean of the process itself. The macroscopic time scale ∆t is proportional to N2, i.e., ∆t ∼
N2∆t0.14 The process of Eq. (2.19) is characterized by a linear mean reverting component and a

heteroskedastic random term, conditional to the value of zt. Given the parabolic dependence of the

diffusion function, values of zt close to 0.5 generate higher fluctuations than when zt is close to the

boundaries of its range. This dependence generates heteroskedastic fluctuations in the time series of

∆zt, which may resemble those illustrated in Fig. (2.1). The main justification in using the continuous

approximation of Eq. (2.18) and its associated discrete version of Eq. (2.19) lies in the possibility

of clearly understanding the connection between the dynamical properties of the generated time

series and the structure of the stochastic process. It is evident that such a connection is not trivial to

13The classic book written by Gardiner et al. (1985) accounts for the connection between the Fokker-Planck equation and
the associated stochastic differential equation.

14See Alfarano et al. (2008) for the details of the derivation.
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understand from the original Markov chain of Eq. (2.10). Obviously, Eq. (2.19) is an approximation

for a large N of the process in Eq. (2.10) with the further restriction that the variable zt cannot be close

to the boundaries zt = 0 and zt = 1. In those regions, the continuous approximation is no longer

valid since it may violate the boundary conditions. Hence, the natural boundaries implemented in

Eq. (2.10) must be exogenously added to Eq. (2.19). Consequently, in order to simulate the process

of Eq. (2.19), we have to add reflecting boundaries at zt = 0 and zt = 1 by hand:

if zt > 1 then
zt+∆t + zt

2
= 1,

if zt < 0 then
zt+∆t + zt

2
= 0,

(2.20)

which are equivalent to a reflection around the edges of the domain of zt, zt = 1, and zt = 0,

respectively. One of the advantages of the Langevin equation is that it is relatively simple to estimate

via maximum likelihood, since the conditional probability density function of zt+∆t given zt is a

Gaussian with mean zt + (ε1 − (ε1 + ε2)zt)b∆t and standard deviation
√

2b∆t(1− zt)zt. However,

note that using the results from the theory of stochastic processes, it can be shown that the stochastic

discrete Eq. (2.19) can be characterized by an equilibrium distribution from Eq. (2.16).

Finally, Alfarano et al., 2005 derive the autocorrelation function (ACF) through the Langevin

equation by using a recursive method15, leading to an exponential autocorrelation function:

Cz(t) = e−b(ε1+ε2)t. (2.21)

Summarizing, the model of Eq. (2.19) is characterized by a beta equilibrium distribution, a mean

reverting property with heteroskedastic persistent fluctuations and an exponential autocorrelation

function. Furthermore, an additional advantage in using Eq. (2.19) derived from the continuous

approximation of Eq. (2.10) lies in the possibility of employing the maximum likelihood technique

in order to estimate the underlying parameters.

2.5 Validation of the model and estimation of its parameters

In this section, we validated the Kirman model by comparing its theoretical predictions to the em-

pirical properties of the sentiment index defined in Eq. (2.9). We used the time series of the senti-

ment index based on the 208 stocks of the S&P 500 that have been listed in this stock market from

01/01/1981 to 01/06/2018. To compute the sentiment index we fixed the parameter of the EMA

L=100. We show in Section (2.5.2) the sensitivity of the parameter values of the model to the choice

of L.

15Eq. (2.21) can be also computed using the FPE or the Markov chain of Eq. (2.10).
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Figure. 2.2: Probability density function of the sentiment index compared to the theoretical dis-
tribution, given the estimates of each method.
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2.5.1 Estimation of the parameters of the Kirman model

We estimated the three parameters (ε1, ε2, and b) that characterize the conditional dynamics of zt

based on Eq. (2.19) using the maximum likelihood method (conditional likelihood).16 Alternatively,

we estimated the parameters ε1 and ε2 using the maximum likelihood method based only on the

unconditional distribution (unconditional likelihood) from Eq. (2.17) (for the details of this method-

ology, see Alfarano et al., 2005). The parameter b, which governs the timescale of the process, does

not enter in the determination of the unconditional distribution and, therefore, cannot be estimated

with the last method. The comparison of the two methods allowed us to evaluate the goodness of

the Langevin equation in describing the evolution of the empirical time series. Asymptotically, the

two methods should provide the same estimates for the parameters ε1 and ε2. A significant discrep-

ancy between the two methods would indicate a limitation of Eq. (2.19) in describing the conditional

properties of the sentiment index.

In Table 2.2 and Fig. (2.2), we show the estimations of ε1, ε2 and b, and the corresponding fit

of the unconditional distribution. Comparing the values of the Chi-squared statistics, we observed

that the unconditional likelihood gave a better fit of the empirical probability density of the senti-

ment index than the corresponding parameters estimated using Eq. (2.19). We observed, in fact, the

presence of a clear asymmetry in the empirical distribution, while the values of ε1 and ε2 estimated

with the conditional likelihood point to a symmetrical distribution. Such a poor performance of the

conditional likelihood, compared to the estimation based solely on the unconditional distribution,

revealed a certain degree of incoherence between the process of Eq. (2.19) and the evolution of the

empirical time series.

16The value of the parameter b is expressed in units of ∆t. We set ∆t = 1 day.
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Table 2.2: Estimated parameters, ε1, ε2 and b for the sentiment index.

Method ε1 ε2 b Chi-squared

Unconditional likelihood 1.99 ± 0.07 2.25 ± 0.06 - 618

Conditional likelihood 1.64 ± 0.16 1.74 ± 0.14 0.0055 ± 0.0001 1004

In order to identify the origin of such a discrepancy, we eliminated from the time series the large

values of zt, i.e., zt > 0.95. In Table 2.3 and Fig. (2.3), we show the results of the estimation procedure

excluding those events. Interestingly, considering the standard errors of both estimates, the estimated

values from the conditional and the unconditional likelihood were not statistically different. From

our exercise, we can conclude that the empirical realizations of zt at the upper boundary were much

more persistent than what was expected under the Kirman model.

Fig. (2.4) shows the empirical and simulated indices with their corresponding daily changes for

the first 2000 observations for better visibility. The synthetic series was simulated using the Langevin

equation with the parameters from Table 2.3. Both time series exhibit swings of pessimism and

optimism with similar characteristics. The time series of the empirical changes of the index and

the corresponding simulated time series show heteroskedastic fluctuations. We detected volatility

clustering in the empirical data by means of the ARCH (autoregressive conditional heteroskedastic)

test (Engle, 1982) and McLeod-Li test (McLeod and Li, 1983) with p-values extremely close to zero in

both cases. In the case of the simulated data, we have used the parameters of the Langevin equation

ε1 = 2.22, ε2 = 2.86, and b = 0.0054 to compute the 500 Monte Carlo simulations. The medians

of the p-values for the two tests were 0.0023 and 0.0032, respectively. Thus, the model captured the

volatility clustering phenomenon in the time series of the sentiment index.

Figure. 2.3: Probability density function of the sentiment index compared to the theoretical dis-
tribution, given the estimates of each method and excluding extreme events (zt > 0.95).
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Table 2.3: Estimated parameters, ε1, ε2 and b for the sentiment index, excluding extreme events
(zt > 0.95).

Method ε1 ε2 b Chi-squared

Unconditional likelihood 2.28 ± 0.09 2.72 ± 0.10 - 336

Conditional likelihood 2.22 ± 0.18 2.86 ± 0.22 0.0054 ± 0.0001 279

Figure. 2.4: Empirical index (continuous line) and simulated sentiment index (dashed line). The
Langevin equation was used with the parameters of Table 2.3 to simulate the time series.
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To better capture the similarities of the empirical index and the simulated series, in Fig. (2.5), we

show box plots that report some moments (mean, median, and standard deviation) obtained from

the 500 Monte Carlo simulations of Eq. (2.19) with the parameters estimated with the conditional

likelihood without extreme events. As can be observed, the moments of the empirical time series are

in line with those of the simulated time series at the 95% confidence level.
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Figure. 2.5: Box plots that report the moments of the 500 Monte Carlo simulations. The mo-
ments of the empirical time series (blue diamond), and the empirical time series without ex-
treme events (zt > 0.95) (red circle) were added.
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Figure. 2.6: Correlogram of the empirical sentiment index zt as compared to the theoretical auto-
correlation function. The latter was calculated with the parameters from Table 2.3.
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In order to analyze to what extent the model captured well the time evolution of the empirical

data, we considered the autocorrelation function. Fig. (A.34) shows the fit of the correlogram of the

empirical time series of the index zt as compared to the theoretical autocorrelation function from Eq.

(2.21), which turned out to be particularly accurate. We concluded that the herding model could

satisfactorily describe the degree of persistence of the time series of the sentiment index zt.

2.5.2 Choice of the parameter L of the EMA

In this section, we examine the sensitivity of the estimation of the main parameters of the model to

different values for L. We estimated the parameters using the conditional likelihood, changing the

value of L to compute the sentiment index from Eq. (2.9). In particular, we considered a plausible

range of values for L from 10 to 200 days, based on the moving average chartist techniques typically

applied in the analysis of financial data. As can be observed in Fig. (2.7), both ε1 and ε2 did not
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exhibit large deviations by increasing L, thus the unconditional distribution was robust to the choice

of L. On the contrary, the herding parameter b decreased significantly the higher the value of L.

Interestingly, the choice of L affected the level of fluctuations of the increments of the variable zt,

as shown in Fig. (2.7). Employing Eq. (2.19), we show that a direct connection exists between the

magnitude of the fluctuations of zt, measured as their variance E[∆z2], and the parameter b:

E[∆z2] = (ε1 + ε2)
2 ·Var[z]b2∆t2 + 2b∆tE[z(1− z)] ≈ b∆t

2
. (2.22)

To obtain Eq. (2.22), we have neglected the term proportional to b2∆t2, and we have considered

the approximation ε1 ≈ ε2, so that E[z(1− z)] = 1/4. The dependence of the parameter b from L

stems directly from an equivalent dependence of the influence in the level of fluctuations of ∆z as a

function of L.17 Fig. (2.7) shows that the scaling of Eq. (2.22), which is a direct consequence of the

Langevin equation, accurately describes the empirical relation between b and the fluctuations of zt.

Given that the estimated value of the herding parameter b varies with L, the decay rate of the au-

tocorrelation function will also change, see Eq. (2.21). We wanted to verify if the good fit of the

correlogram from Fig. (A.34) was just related to the particular choice L=100. In order to study the

robustness of the fit of the correlogram for different choices of L, we analyzed whether the correlo-

gram of the sentiment index was well approximated by the theoretical ACF, described in Eq. (2.21),

for any value of L. To do so, we computed the decay rate of the ACF from Eq. (2.21), i.e., b(ε1 + ε2),

using the estimated values of the parameters for a given L. Thus, this decay rate is compared to the

slope (βL) of the correlogram, which is computed by means of an OLS regression:

ln(ACFL(t)) = αL − βL t, (2.23)

where t denotes the lags, and βL is the empirical decay given L. 18 Fig. (2.8) shows that the decay

rate computed using the estimated values and the empirical rate βL were approximately equal for

the different choices of L. We can infer that our model provided a good fit of the autocorrelation of

the sentiment index independently of the choice of L.

Given these results, we can contend that the parameter L did not alter the parameters of the

unconditional distribution. Moreover, despite the fact that b changes with L, the correlogram was in

line with the theoretical prediction, thus the ACF was also robust to the choice of the parameter L.

We have decided to fix L=100, since it was a sufficiently long timescale compared to a single day and

not too long with respect to the duration of the different phases of the market.

17More rigorous calculation of the term E[z(1− z)] does not change this line of reasoning.
18We employ a maximum of 20 lags in the regression. There are not significant differences if we use a number of lags equal

to 30, 40 or 50.
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Figure. 2.7: Estimated parameters ε1, ε2, and b according to different values of L. The scaling
between the variation of E[∆z2] as a function of L and the parameter b is reported (dotted black
line).
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Figure. 2.8: Scatter plot of b(ε1 + ε2) and βL using different values of L (from 10 to 200 with an
increment of 5). We can appreciate a deviation from the 45-degree line just for very low values
of L, which corresponds to large values of βL.
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2.6 Empirical application: Early warning indicator

The sentiment of investors in financial markets has been analyzed from many different approaches

in a sizeable empirical literature often with the objective of detecting bubbles with their subse-

quent financial crises. Some examples are the index cohesive force (Kenett et al., 2011; Kenett et al.,

2012), power law distributions (Kaizoji, 2006; Mizuno et al., 2016), the leverage of the banking sec-

tor (Adrian and Shin, 2009), cross-correlations (Podobnik et al., 2009), the CAPE (cyclically-adjusted

price-to-earnings) ratio (Shiller, 2015) and regime-switching approaches (Preis et al., 2011), among

other studies. We aim now to employ the sentiment index developed in the previous sections to

detect potential optimistic phases in the market, with the objective of providing an early warning

indicator of possible downturn periods. A direct use of the indicator zt to detect possible downturn

periods would be based on the simplistic premise that the time evolution of the stock market index

is a "perfect mirror" of the waves of optimism and pessimism of investors. The connection between

the sentiment of the investors, as measured by our proxy, and the prices of stocks is much more
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complex than a mere one-to-one relationship. As a consequence of that, we can observe visually that

the dynamics of the variable zt turns out to be too volatile to be employed as a direct measure of the

turning points of the market. Relying on the value of zt to detect an early warning indicator for the

market phase would in fact suggest too many false positive turning points. Therefore, even though

the Kirman model had proved to be a valuable tool to reasonably describe the dynamics of the sen-

timent index, we had to develop a filtering technique in order to extract a more readable signal from

the raw time series of the sentiment index zt.

To extract the information from the raw index, we rely on the battery of analytical tools introduced

in Section 2.4. An extreme value of zt (either close to 0 or 1) can be, in principle, an outcome of

a symmetric transition probabilities of the stocks between the two states, i.e., when ε1 = ε2 in Eq.

(2.10). Extreme events of zt can then be observed without being an indicator of a systematic bias in

the underlying sentiment of the traders, i.e., when ε1 6= ε2. Instead, a persistence asymmetry of the

two coefficients would systematically favor extreme values of zt. For instance, the case ε1 > ε2 would

favor values of zt close to 1, contemporaneously reducing the probability of observing the opposite

extreme case. We conjecture that a persistent optimistic or pessimistic phase in the sentiment of the

traders can anticipate critical movements in the market prices. An imbalance between the two values

of ε1 and ε2 can be generally employed as a more reliable measure for a systematic predisposition of

the traders to pessimism or optimism and, therefore, used as the basis of an early warning indicator.

In order to aggregate the information of the sentiment index during a given time interval and

identify the phase of the market, we estimated the parameters ε1,t and ε2,t through a rolling window

of 750 days (three years).19 We implemented a recursive estimation for ε1,t and ε2,t using the obser-

vations of zt from t− 750 to t. Considering that Eq. (2.19) is the law of motion of the sentiment index,

we estimated the parameters ε1,t, ε2,t, and bt using the conditional maximum likelihood method for

each rolling window.20 We can now employ as a summary indicator for the phase of the market the

difference between the value of the two estimated parameters21:

Λt = ε2,t − ε1,t. (2.24)

We can have three different scenarios: ε2,t ≈ ε1,t, so that Λt ≈ 0, which represents a "symmetric"

market with approximately the same number of stocks in a pessimistic and optimistic phase; ε2,t >

ε1,t and Λt > 0 represent a strong bull market, when most of the stock prices are, on average, raising

19The choice of 750 days for the rolling window was based on the length of the standard business cycle, which is around
7-11 years. More specifically, given that we wanted to observe the transitions of the different market phases, we used a shorter
time window equal to 3 years, i.e., 750 days. On the other hand, shortening the length of the rolling window would affect the
precision of the estimates of ε1,t and ε2,t.

20We use all data in each window without removing extreme values. In this case, using short running windows, we did
not observe that extreme events affected the fit of the distribution. In fact, we observed similar results even excluding those
values of zt > 0.95.

21We have employed the alternative measure Λ̃t = ε2,t/ε1,t. Mutatis mutandis, the results of the early warning indicator
based on the ratio of the two parameters (Λ̃t) were consistent with respect to the results of the early warning indicator Λt.
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Figure. 2.9: Three possible scenarios for the stock index based on ε1 and ε2. In the first one (ε1 <
ε2), there is optimism in the market. In the second one (ε1 ≈ ε2), there is no dominant mood. In
the last one (ε1 > ε2), there is pessimism in the market.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

1

2

3

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

1

2

3

D
en

si
ty

at the same time; finally, ε2,t < ε1,t and Λt < 0 underline the existence of a bear market, when most

of the stock prices are, on average, falling simultaneously, as shown in Fig. (2.9).

Fig. (2.10) shows the evolution of the indicator Λt using a 100-day EMA and a time interval of

750 days rolling window for the estimation of parameters. To obtain a sharper characterization of

the phase of the market, we considered certain levels of "excess asymmetry", establishing a threshold

equal to the 90th percentile, which are represented by dark gray areas, for bull phases, and a threshold

equal to the 10th percentile, which are represented by light gray areas, for bear markets.22 We show

the sequence of the S&P 500 index and its detrended series.23 Moreover, we plot in Fig. (2.10) the

sequence of the 30 most negative weeks in S&P 500 history.

22We computed the two thresholds using the entire data set at our disposal. However, as can be observed in the Appendix
(A.3), we obtained very similar results using past data to compute recursively the value of the two thresholds.

23Given that we were not analyzing exactly the S&P 500, since we only had 208 stocks at our disposal, we show the
corresponding index of the available stocks (S̄t), defined as the exponential cumulative sum of market returns at each time t,

S̄t = emrt ·t, (2.25)

where mrt denotes the market return at t defined as:

mrt =
1
N

N

∑
i=1

ri,t, N = 208, (2.26)

and ri,t denotes the return of each stock i. We also report the S&P 500 detrended index, which was calculated following the
same procedure using the returns calculated by means of the detrended prices (pi,t).
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Figure. 2.10: Early warning indicator using a 100-day EMA and a time interval of 750 days for
the estimation of parameters. Light and dark gray areas represent the 10th (bear market) and
90th (bull market) percentiles. The dotted red line denotes the 30 most negative weekly returns.
S&P 500 index.

Note. Bull market phases and the subsequent negative events: 1987 (Black Monday), 1994 (tight-
ening monetary policy), 1997-1998 (Russian financial crisis), 2006 (tightening monetary policy),
2007 (sub-prime mortgage crisis) and 2015-2016 (weakness of the Chinese economy). Bear mar-
ket phases: 1987-1990 (Black Monday and the Gulf War), 2001-2003 (burst of the dot-com bub-
ble), 2008-2009 (burst of the housing bubble).

Fig. (2.10) shows the different periods in which we observed the sequence of optimistic and

pessimistic phases of the market, along with extreme negative weekly events. The objective of this

figure was to evaluate the performance of the early warning indicator with empirical data, that is:

• We expected to observe at least a downtrend period (underlined by negative weeks in the stock

index) shortly after the early warning indicator had detected a bull market phase (around its

90th percentile).

• We expected higher prices after bear market phases (around the 10th percentile) due to the low

prices of stocks during extreme pessimistic phases.

The detection of the bull and the bear market phases can be exploited by investors to set a long-

term trading strategy based on the prospect of future prices. In particular, a possible trading strategy

detecting a bull market phase would be based on the progressive sale of stocks, or the purchase of

put-options, in order to possibly avoid or smooth the downtrends or persistent downturns. In the

opposite scenario, a bear market would give the opportunity to accumulate stocks due to the low

stock prices as a consequence of the pessimism in the market. The early warning indicator can be
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also considered as a valid instrument for policy-makers to set more efficient policies in order to avoid

the contagion from the financial to the real side of the economy.

In Fig. (2.10), we identify the following optimistic market phases: 1987, 1994, 1997-1998, 2006,

2007, and 2014-2015. In favor of the proper performance of the indicator, all these optimistic phases

of the market preceded at least an extreme negative weekly return, which were triggered by well-

identified events. In chronological order, the first optimistic period appeared some months before

the Black Monday (October, 1987), from April to August 1987. In fact, we observed in our sample the

most negative event with a weekly return equal to -18.92% due to the errors of the computerized trad-

ing system, which triggered sell orders of an enormous block of stocks as prices fell (Waldrop, 1987).

The second optimistic period was detected from March 1997 to August 1998, whose end was found

on the last week of August 1998 as a result of the Russian financial crisis (Buchs, 1999) with a negative

weekly return of -7%. Another extreme optimistic period in the S&P 500 could be identified, from

January to May 2006, in which a downtrend stopped the increase in prices due to a new prospect of

further tightening of the monetary policy in USA, Europe, and Japan (IMF, 2006). Despite this small

decrease in prices, the optimism remained in the market with another peak of optimism from June to

July 2007. Interestingly, our indicator included the previous maximum price on the US bear market

(2007-2009), triggered by the subprime mortgage crisis in October 2007 (Demyanyk and Van Hemert,

2009). The last optimistic period observed in our sample was detected during 2014-2015, which arose

from the unconventional expansionary monetary policy implemented by the central banks, known

as quantitative easing, generating an increase in prices without precedence that currently still re-

mains. This surprising scenario has only been interrupted by the stock market sell-off in 2015, as a

result of fears about the Chinese economy and investors’ concerns over the end of the quantitative

easing (Bendini, 2015; Sornette et al., 2015). Our empirical analysis stressed the validity of the early

warning indicator since the six extreme bull market phases identified by the early warning indicator

systematically preceded a downtrend of the market.

Focusing on the second hypothesis, Fig. (2.10) shows generally three extreme pessimistic periods

(levels around the 10th percentile): after the Black Monday (1987-1990), the burst of the dot-com

bubble (2001-2003), and the burst of the housing bubble (2008-2009). As can be observed from the

S&P 500 index, there was a considerable increase in prices after the detection of the pessimistic phase.

In particular, we noted three increases in prices: after the Gulf War (1990), after the burst of the dot-

com bubble (2003), and after the burst of the housing bubble (2005). Thus, persistent downturns can

be used to progressively accumulate call-options or stocks since they are expected at the end of the

pessimistic phase of the market.
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2.7 Robustness analysis

So far, we have examined the statistical properties of our proxy for the mood of investors estimated

using the collective movement of S&P 500 stocks. However, any stock market can be potentially

driven in some measure by the sentiment of agents. Different statistical properties of the evolution

of the sentiment index could characterize diverse stock markets due to factors like country’s fea-

tures (Anderson et al., 2011, Karlsson and Nordén, 2007) proportion of institutional investors, firm

size (Ferreira and Matos, 2008) or quality of reports (Biddle et al., 2009) among other aspects. Given

these differences among markets, it is interesting to study whether the sentiment index and the early

warning indicator could be meaningfully applied to other financial markets regardless of the appar-

ent differences among countries and indices.

In order to do so, we repeated the procedure to compute the sentiment index of Eq. (2.9) for

two alternative data sets: US stock markets and worldwide stock markets. On the one hand, by ex-

amining different stock markets in the same country, i.e., assuming that the country features were

invariant, we could study whether aspects like firm size, proportion of institutional investors, liq-

uidity, or the specificity of a sector could affect the behavior of the sentiment index. Therefore, we

analyzed the S&P 400 midcap index whose companies are smaller than S&P 500 firms with a lower

level of liquidity and a clearly different proportion of institutional investors given the absence of ana-

lyst recommendations for these companies. We also analyzed the Nasdaq index, whose core business

of the companies is focused on the information technology sector.

On the other hand, we studied the indices of six different countries in order to observe whether

a different result arose, not only due to stock market characteristics, but also due to country features

like cultural or economic conditions. Thus, we examined the following countries and indices: ASX

200 (Australia), TSX (Canada), Euro Stoxx 600 (Europe), Nikkei 225 (Japan), JSE (South Africa), and

FTSE 100 (UK).

2.7.1 US stock markets

Investor preference is one of the main features to take into account in order to know who is investing

in each type of market. In fact, Ferreira and Matos (2008) show that institutional investors prefer

firms that are characterized by being large, well-governed, and with high levels of stock-trading liq-

uidity. In the same line, Aggarwal et al. (2005) find that US funds are more interested in investing in

large firms with transparent accounting policies. The relevance of financial reports is highlighted by

Biddle et al. (2009), since those firms with higher financial reporting quality suffer less from macroe-

conomic conditions and deviate less from predicted investment levels. Financial aspects are also

crucial, since domestic managers prefer companies with large dividends, low financial distress, and
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Figure. 2.11: Probability density function of the US sentiment indices compared to the theoret-
ical distribution. The Langevin equation was used to obtain the estimates, excluding extreme
events (zt > 0.95).
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low-return variability (Covrig et al., 2006), which are features of firms with high-market capitaliza-

tion. Considering these characteristics, institutional investors would prefer to invest in companies

from the S&P 500 rather than those from the S&P 400 midcap. If we consider the median total market

cap, the S&P 500 is five times larger than the S&P 400 midcap with the following market capitaliza-

tion: 20493.91 and 4178.83 USD millions for the S&P 500 and the S&P 400, respectively.24

Despite differences among these market indices, it is possible to observe in Fig. (2.11) and Table

2.4 that the estimates were in line with those obtained for the S&P 500. Moreover, when we used

stock markets like the Nasdaq, focused on firms from the information technology sector, we kept

observing very similar estimates. Therefore, even with a different type of investor, liquidity, sector,

or market cap, our proxy for the sentiment of investors showed very similar statistical properties:

volatility clustering in the time series of sentiment index increments and the exponential autocorre-

lation function of the sentiment index (a detailed statistical analysis is shown in the Appendix A.5).

Table 2.4: Estimated parameters, ε1, ε2 and b for the US stock indices. The Langevin equation
was used to obtain the estimates excluding extreme events (zt > 0.95).

Stock market Date ε1 ε2 b Chi-squared

S&P 400 midcap 1993-2018 2.55 ± 0.23 2.72 ± 0.23 0.0060 ± 0.0002 220

Nasdaq 1993-2018 2.18 ± 0.17 2.82 ± 0.21 0.0088 ± 0.0002 208

2.7.2 Worldwide stock markets

A remarkable feature of worldwide stock markets is the high level of portfolio concentration in do-

mestic markets. This phenomenon, known as "home bias", goes not only against the advantages of

international diversification but also many standard asset-pricing models. This traditional feature,

which was highlighted in the 1990s by French and Poterba (1991), Cooper and Kaplanis (1994), and

24The median total market capitalization of the S&P 500 and S&P 400 midcap refers to June 2018.
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Tesar and Werner (1995), is still present nowadays despite the many improvements in terms of in-

formation channels.25 Anderson et al. (2011) demonstrate that home bias exists in institutionally

managed portfolios from more than 60 countries. In the same vein, Grinblatt and Keloharju (2001)

with a database focused on Finland, contend that investors prefer those firms that are nearby with a

common language and culture.

Home bias underlines the fact that local agents are investing in those companies and stocks that

are present in the corresponding local or domestic financial market. Therefore, we can assume that

when analyzing a worldwide stock market, the main proportion of capital is given by local investors.

This aspect is of paramount importance for this study since the fact of observing a proper fit of the

unconditional distribution of the sentiment index, regardless of the country, implies that we can use

our model to describe the optimism and pessimism of agents regardless of the country-specific char-

acteristics. Table 2.5 and Fig. (2.12) show how the Langevin process and its equilibrium distribution

provided us with a fairly good description of financial markets from different countries. We obvi-

ously observed different values of the estimates given the diverse dynamics of each sentiment index

zt, which was reasonably explained by the different features of each index and, above all, the in-

vestors’ moods. More specifically, Euro Stoxx 600, JSE All-Share, and FTSE 100 are characterized by

a generalized optimism of the investors (ε2 > ε1), which was higher than the optimism observed in

the ASX 200 and TSX given the difference between ε2 and ε1. A special case was found in the Nikkei

225 given a "quasi" uniform distribution representing a market in which there was not a prevailing

(optimistic/pessimistic) mood.

Excluding the latter index, the sentiment index of all the other financial markets seemed to be

generally well characterized by an asymmetric uni-modal beta distribution, with a non-monotonic

probability density. Nevertheless, Euro Stoxx 600 and TSX showed a worse performance both visu-

ally and quantitatively (Chi-squared), compared to the rest of the market, due to an excess optimism

that was not completely described by the herding process and its estimates. Despite the fact that

the fit of these markets was not always satisfactory, the optimistic mood of investors was roughly

captured in both cases.

Finally, also in the case of international markets, we observed heteroskedastic fluctuations of the

index increments and an exponential decay of the autocorrelation.26

25Although Gehrig (1993), Ivković and Weisbenner (2005), and Massa and Simonov (2006) suggest that investors can take
advantage of exploiting local information, Seasholes and Zhu (2010) state that investors do not have value-relevant informa-
tion on local companies.

26As with the S&P 500, we used the ARCH test (Engle, 1982) and McLeod-Li test (McLeod and Li, 1983) to study volatility
clustering in the empirical and simulated indices. The results showed that most of the indices were characterized by volatility
clustering. The only exception seemed to be the TSX index. We also analyzed the sensitivity of the estimated parameters to
the choice of L, as done for the S&P 500. The results are included in the Appendix A.5.
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Table 2.5: Estimated parameters, ε1, ε2 and b for worldwide stock indices. The Langevin equa-
tion was used to obtain the estimates excluding extreme events when zt > 0.95.

Index Country Date ε1 ε2 b Chi-squared

ASX 200 Australia 1993-2018 2.68 ± 0.23 3.09 ± 0.26 0.0060 ± 0.0001 261

TSX Canada 1993-2018 3.18 ± 0.33 3.62 ± 0.36 0.0036 ± 0.0001 530

Nikkei 225 Japan 1993-2018 0.96 ± 0.10 1.29 ± 0.13 0.0086 ± 0.0002 354

Euro Stoxx 600 Europe 1993-2018 1.56 ± 0.18 2.37 ± 0.25 0.0050 ± 0.0001 454

JSE South Africa 2000-2018 1.70 ± 0.21 3.00 ± 0.40 0.0081 ± 0.0001 118

FTSE 100 UK 1993-2018 1.74 ± 0.15 2.63 ± 0.20 0.0081 ± 0.0002 365

Figure. 2.12: Probability density function of the worldwide sentiment indices compared to the
theoretical distribution. The Langevin equation was used to obtain the estimates excluding ex-
treme events (zt > 0.95).
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2.7.3 Global financial village

The fact that financial financial markets have become a coupled complex system is not surprising

given the growing correlation between stock market indices (Mantegna and Stanley, 1996; Forbes

and Rigobon, 2002), as it is underlined by Kenett et al. (2012) when identifying that US, UK, German

and Japanese indices are highly interconnected. Consequently, the "global financial village is highly

prone to systemic collapses which can sweep the entire village" (Kenett et al., 2012). In the same

line, by means of our early warning indicator, we observe how all the stock indices were behaving

in a similar manner regardless of the country-specific characteristics of each index. The effect of the

Russian financial crisis in 1998, the dot-com crash in 2001-2003, the burst of the housing bubble in

2008-2009 and the downtrend in prices during 2015-2016 (due to the weakness of China economy)

are the best example of the consequences of the "global financial village", since to a greater or lesser

extent, it was possible to observe those events regardless of the market [see in this section: Nasdaq
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100 (USA), Fig. (2.14); Eurostoxx 600 (Europe), Fig. (2.15) and Nikkei 225 (Japan), Fig. (2.16)].27 As

a result, in favor of the two hypotheses of our early warning indicator, we could identify negative

weekly returns after an optimistic market phase had been detected, while a pessimistic market phase

was characterized by low prices compared to the future price of the indices. We identified a high

concentration of negative weekly returns in all the stock indices after the burst of the housing bubble

(2008-2009), along with a lower concentration during the burst of the dot-com bubble (2001-2003),

and the downtrend caused by the Chinese economy (2015-2016). To show better the co-movements of

the financial markets, we plotted standardized early warning indicators of the S&P 500, Nasdaq 100,

Nikkei 225, and Euro Stoxx 600 in Fig. (2.13) along with shaded areas that represent the US Business

cycle contractions according to the National Bureau of Economic Research.28 The standardization

has been computed by dividing jΛt by the market-specific 90% quantile threshold. From Fig. (2.13),

we can identify business cycle contractions after worldwide waves of optimism, like the dot-com

bubble and the housing bubble, which supports the inter-connectedness of stock markets through

the investor’s moods. In this regard, it was interesting to observe that a bubble in one specific market

was generating financial downturns in other markets that were not involved in such an optimistic

scenario. To explain this point, we underline two main periods of recent financial history (the dot-

com bubble and housing bubble) using the main stock indices [see Fig. (2.13) and S&P 500 (USA),

Fig. (2.10); Nasdaq 100 (USA), Fig. (2.14); EuroStoxx 600 (Europe), Fig. (2.15) and the Nikkei 225

(Japan), Fig. (2.16)]. As can be easily observed, despite the Russian financial crisis in 1998, investors

trading in Nasdaq stocks maintained their positive mood giving rise to a bull market from February

to May 2000. The burst of the bubble was in March 2000, as we can note due to the continuous

negative weeks in Fig. (2.14).

27In the Appendix (A.4): S&P 400 midcap (USA), Fig. (A.3); ASX 200 (Australia), Fig. (A.4); TSX (Canada), Fig. (A.5); JSE
All-Share (South Africa), Fig. (A.6), and FTSE 100 (UK), Fig. (A.7)

28We also show in the Appendix (A.4) all the the early warning indicators (jΛt) computed for all the financial markets
considered in the paper, Fig. (A.2).
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Figure. 2.13: Standardized early warning indicators of the S&P 500, Nasdaq 100, Nikkei 225,
and Euro Stoxx 600. Light areas represent the US Business Cycle contractions according to the
National Bureau of Economic Research.

1997 2000 2002 2005 2007 2010 2012 2015 2017
-1

-0.5

0

0.5

1

1.5

2

2.5

3

S&P500 Nasdaq 100 Nikkei 225 Euro Stoxx 600

Surprisingly, we did not observe the previous optimism to the burst in the rest of indices, like

the S&P 500 or Euro Stoxx 600. In fact, the Nikkei 225 did not even have an optimistic period before

the Russian financial crisis. However all the markets suffered from the burst of the dot-com bubble

with a wave of pessimism in the ensuing years, mainly from 2001. In other words, the bubble origi-

nated in a particular market (Nasdaq) due to the optimism of their traders, and the resulting herding

phenomena gave rise to a pessimistic scenario in very different markets [S&P 500, Euro Stoxx 600,

Nikkei 225, and the rest of the markets in Appendix (A.4)] whose traders were not so optimistic. In-

terestingly, we could observe during the housing bubble the opposite scenario. A wave of optimism

dominated most of the stock markets like the Euro Stoxx 600 and Nikkei 225 indices, which were

affected by the same negative events in May 2006 and October 2008 as in the S&P 500 index. Never-

theless, the Nasdaq 100 did not have an optimistic period nor was it affected by the same negative

events during this period. At any rate, and in the same line as the dot-com bubble, Nasdaq and all

the markets suffered from the housing crash, even though there was not an optimistic phase in the

Nasdaq index, i.e., despite the fact that there was not a bubble in a specific market, it will be still

affected by the mood of other markets due to financial contagion. Therefore, the early warning in-

dicator also allowed us to describe the different behavior of each stock index with more detail, even

though all of them are connected, as can be observed due to the effect of the financial downturns.
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Figure. 2.14: Early warning indicator using a 100-day EMA and a time interval of 750 days for
the estimation of parameters. Light and dark gray areas represent the 10th (bear market) and
90th (bull market) percentiles. The dotted red line denotes the 30 most negative weekly returns.
Nasdaq 100 index.

Note. Bull market phases and the subsequent negative events: 1997-1998 (Russian financial cri-
sis), 2000 (burst of the dot-com bubble) and 2015-2016 (weakness of the Chinese economy). Bear
market phases: 2002-2003 (burst of the dot-com bubble) and 2008-2010 (burst of the housing
bubble).

Figure. 2.15: Early warning indicator using a 100-day EMA and a time interval of 750 days for
the estimation of parameters. Light and dark gray areas represent the 10th (bear market) and
90th (bull market) percentiles. The dotted red line denotes the 30 most negative weekly returns.
Euro Stoxx 600 index.

Note. Bull market phases and the subsequent negative events: 1997-1998 (Russian financial
crisis), 2006 (tightening monetary policy), 2007 (subprime mortgage crisis) and 2015 (weakness
of the Chinese economy). Bear market phases: 2001-2003 (burst of the dot-com bubble) and 2009
(burst of the housing bubble).
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Figure. 2.16: Early warning indicator using a 100-day EMA and a time interval of 750 days for
the estimation of parameters. Light and dark gray areas represent the 10th (bear market) and
90th (bull market) percentiles. The dotted red line denotes the 30 most negative weekly returns.
Nikkei 225 index.

Note. Bull market phases and the subsequent negative events: 2006 (tightening monetary pol-
icy), 2007 (subprime mortgage crisis) and 2015-2016 (weakness of the Chinese economy). Bear
market phases: 2002-2003 (burst of the dot-com bubble) and 2008-2010 (burst of the housing
bubble).

2.8 Conclusion

Inspired by the Bank of America Merrill Lynch global breath rule, we have introduced an index of

financial investor sentiment based on the collective movements of the stocks in a given financial mar-

ket. The underlying hypothesis was that such an index reflects and captures the collective behavior

of the investors influencing each other in waves of optimism and pessimism transmitted by the so-

cial interactions. The index zt aggregates the state of each single stock, which depends on the relative

position of its price with respect to its EMA. The time evolution of the index can be successfully

described by the herding model introduced by Kirman (1991, 1993). In particular, the unconditional

distribution of the sentiment index, the heteroskedastic fluctuations of the time series of its incre-

ments and the autocorrelation function match satisfactorily the analytical properties of the herding

model. Based on the herding model and the sentiment index, we introduced an early warning indi-

cator, using the distributional asymmetry of the sentiment index computed in a rolling window. Our

early warning indicator can clearly identify the optimistic and pessimistic phases of the market. Our

results were robust when applying the early warning indicator to other indices of the US financial

markets and the financial market indices of other countries like Japan, Australia, and Canada, among

others.
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Moreover, our research points out that one of the most celebrated models in the agent-based liter-

ature demonstrates once again to be very flexible in describing different aspects of financial data. The

Kirman model can successfully describe the behavior of traders and the collective movement of the

stocks. The fact that the same model can be employed to account for the dynamics of different entities

(traders’ expectations and the collective movement of stock in a market) can be considered as a fur-

ther indirect indication of a connection between the complex behavior of the traders and the market

movements. The strength of our approach lies in its analytical apparatus, which allows for a (partial)

identification of the connection of the time-series properties of the sentiment index with the struc-

tural parameters of the model, i.e., the nature of the interactions among the model constituents and

the fluctuations generated at the macro level. However, as a main weakness, we cannot satisfactorily

take into account the extreme events in the evolution of the sentiment index, which is partially due

to the homogeneity assumption in the influence of the global coupling among stocks instead of the

fully connected network implicit in the formalization of Eq. 2.10 (see Alfarano and Milaković, 2009).

Ongoing research is focused on the introduction of a more realistic network of influence among the

different stocks. The model can also be applied to alternative definitions of market breadth in order

to design efficient estimators for the sentiment of the investors and to develop more timing early

warning indicators.

As a final comment, note that we do not propose any model that links the sentiment index to the evo-

lution of the price of a stock or the market index. This connection is more complex than a one-to-one

relationship. The agent-based financial literature has identified additional important ingredients to

account for such a connection. In particular, pointing out the crucial role played by the fundamental-

ists. Future research will be devoted to incorporating the fundamental information in the dynamics

of the early warning indicator.
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Chapter 3

Should I herd or should I not? A

stochastic herding model for Bitcoin

dynamics

3.1 Introduction

In 2008, inspired by the growing number of currency crises, Nakamoto created a means of payment

disconnected from central banks and governments: Bitcoin. As many economists, journalists and

practitioners claimed, at the beginning, this cryptocurrency was motivated by philosophical reasons:

the desire to separate money from the state (see, Feuer, 2013, Krugman, 2018). Nakamoto himself

wrote in his white paper: "The root problem with conventional currencies is all the trust that’s re-

quired to make it work. The central bank must be trusted not to debase the currency, but the history

of fiat currencies is full of breaches of that trust" (see, Nakamoto, 2009 and Feuer, 2013). In the

wake of Bitcoin’s great success, more than 1000 other digital currencies were created. However just

a small subgroup of them, made up of 50 currencies, remained functional for more than one year

(see, Wei, 2018). The great impact of these currencies, seen both as a means of payment and specula-

tive stocks, did not go unnoticed by the scientific community and investors, who began to carefully

analyze them. It was easy to realize that, those objects created to be free from the possibility of in-

terference from malicious governments or banks were, on the other hand, highly manipulable and

volatile (see, Dodd, 2018). This appeared especially true for Bitcoin, which proved to be particularly

volatile in the face of external shocks driving traders to buy or sell large amounts of the cryptocur-

rency in short time periods. The initial utopian desire to free this currency from external influences

failed, and it was soon understood that the Bitcoin dynamics was determined by the behavior of a

few investors. Specifically, the economic literature showed how this cryptocurrency moved due to

the effect of herding phenomena normally trigged by few traders. For instance, Gandal et al. (2018)
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demonstrated that, during the Bitcoin bubble of 2013, the cryptocurrency was manipulated by two

investors who, with their trading activity, caused a significant increase in the Bitcoin price in the

Mt.Gox, the Bitsamp, the Bifinex and the BTC-e trading platforms. In this regard, the authors wrote:

"It is likely their activity sent a signal to the market and encouraged others to enter and purchase

Bitcoins. This may be one of the reasons why their activity could have such a large effect on the

Bitcoin price".

The fact that Bitcoin is driven by herding phenomena is now well documented by empirical litera-

ture.1 In fact, many studies have shown the existence of a co-movement between the cryptocurrency

price trend and the information published on social media. Many are the mechanisms which have

been proven able to influence / manipulate the Bitcoin price dynamics. Part of the literature has fo-

cused on the existence of a bidirectional relationship between searched queries and the Bitcoin price,

volatility, volume and returns at different time lags (see, Kristoufek, 2013 and Urquhart, 2018). All

these studies have highlighted the presence of a "positive feedback", meaning that on-line searches

on Bitcoin influence their dynamics (i.e., price, volatility, volume and returns) which, in turn, influ-

ence the number of searches. Clearly, positive or negative news also play an important role in the

cryptocurrency movement. Specifically, a recent study has shown how positive and negative news

have a strong positive impact on currency returns (see, Vidal-Tomás and Ibañez, 2018). Therefore, all

these studies have confirmed how the presence of animal spirits can generate strong fluctuations in

this currency dynamics via waves of optimism and pessimism. More generally, this "mass-uniform"

behavior has been proven to be the key ingredient in affecting the currency price oscillation, which

seems completely separated from any economic fundamental values, such as unemployment, pro-

duction or consumption (Baek and Elbeck, 2015).

Some insights into coordination of traders’ strategies and large aggregate fluctuations have been

provided by theoretical models which have taken into account the interaction among heterogeneous

agents (or groups of agents). For example, Lux (1995, 1996, 1998), Brock and Hommes (1998), Li-

calzi and Pellizzari (2003), LeBaron and Yamamoto (2008) and Chiarella et al. (2009) have studied

how coordination phenomena in traders’ behavior (for example by following chartist trading rules)

or mechanisms of behavioral switching lead to speculative bubbles. Specifically, these studies have

introduced some kind of competition among different investors’ strategies and a switching mecha-

nism re-addressing traders from the least profitable tactic to the most profitable one. When, at the

aggregate level, one strategy dominates the others in popularity, strong prices fluctuations emerge

due to the coordination in agents trading positions.

A similar mechanism capable of triggering large price fluctuations is the phenomenon known as

herding which occurs in presence of information externalities, when agents’ private information is

1Herding phenomenon has been also underlined as a relevant feature in the rest of the cryptocurrency market (see, for
instance, Vidal-Tomás et al., 2019 and da Gama Silva et al., 2019).
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swamped by the information derived from directly observing others’ actions (see, Banerjee, 1992,

1993; Orléan, 1995; Cont and Bouchaud, 2000; Tedeschi et al., 2009, 2012).

Inspired by the above mentioned empirical and theoretical studies, in this paper we present a

model where a population of traders with heterogeneous beliefs can change their expectations based

on a switching herding mechanism. We show how this model is able to describe the specifications of

traders into a simple dicotomic identification and forecast prices and volatility of this cryptocurrency.

Specifically, we model two groups: bullish and bearish traders. Our investors can switch between

the two investment attitudes when they observe that one of the two strategies becomes more popu-

lar. The switching mechanism is modeled following the modified version of the Kirman’s ant colony

model (see, Kirman, 1993) proposed by Alfarano et al. (2005). Moreover, we model the ratio of two

Bitcoin consecutive prices as the odds ratio of bullish to bearish traders. The reason behind this im-

portant assumption derives from the empirical evidence. In fact, several studies show that markets

driven by the bullish strategy are characterized by waves of optimism which inflate prices. Con-

versely, the bearish behavior acts as a thermostat and deflates speculative bubbles (see, for instance,

Recchioni et al., 2015; Tedeschi et al., 2019). Overall, it is exactly this alternation of optimism and

pessimism waves that allows us to describe price fluctuations and some other stylized facts of the

returns time series (see, for instance, Cont, 2001). As far as we know, Cocco et al. (2017) are the

only ones to use a behavioral switching model to reproduce the stylized facts of the cryptocurrency

returns time series.

It is worthy of note that, while the ability of the odds ratio to model prices’ volatility is well known

in the economic literature (see, for instance, Kirman, 1993; LeBaron and Yamamoto, 2008; Lux and

Marchesi, 2000; Chiarella et al., 2009; Raberto et al., 2001; Tedeschi et al., 2009), the idea of linking

this ratio with that of two consecutive prices is unexplored and has the advantage to provide a price

model able to explain several empirical findings of the recent literature on Bitcoin. Moreover, our

price model has two other important properties we have to mention. First, since the dynamics of the

percentage of traders following each strategy (see, zt in Eq. (3.3)) belongs to the Pearson diffusions,

we can statistically deal with the diffusion process (see, Forman and Sørensen, 2008). Second, our

price model just involves three parameters (i.e. the propensities to change strategy and the herding

parameter) and this allows us to easily estimate it via the indirect inference method (see, Gouriéroux

and Valéry, 2004). Precisely these two model characteristics allow us to contribute to the financial

literature in two important aspects. On the one hand, we enrich the still too scarce literature on the

estimation of behavioral financial models (see, for instance, Gilli and Winker, 2003; Alfarano et al.,

2005, 2006; Boswijk et al., 2007; Kukacka and Barunik, 2017). On the other hand, the mathematical

properties of the model and its estimation allow us both to describe the agents’ behavior trading in

Bitcoin and to predict prices. To our knowledge, indeed, this is the only model simultaneously able
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to produce a good input validation (i.e. to describe traders’ behaviour) and to generate an efficient

output prediction2 capable of competing with other models focused on Bitcoin price prediction (see,

McNally et al., 2018; Jang and Lee, 2018; Catania et al., 2019; Atsalakis et al., 2019).

The rest of the paper is organized as follows. In Sec. (3.2), we explain the model. In Sec. (3.3),

we describe Bitcoin data used for the model estimation. The estimation procedure and forecasting

are defined in Sec. (3.4). In Sec. (3.5), we prove the model ability in successfully describing the

investors’ behavior trading in the cryptocurrency market and in efficiently generating predictive

output validation. Finally, in Sec. (3.6) we draw conclusions.

3.2 The model

Inspired by a rich economic literature, which explains price fluctuations starting from the interac-

tion of heterogeneous agents, our model describes Bitcoin dynamics by combining a switching with

a herding mechanism. In fact, the co-ordination of traders’ strategies by market mediated interac-

tions (for example by following chartist trading rules) or mechanisms of behavioural switching have

been shown to lead to large aggregate fluctuations (see, Lux, 1995, 1996, 1998, Lux and Marchesi,

1999b and Brock and Hommes, 1998, among the first studies)3. Therefore, inspired by these studies,

and following the modified version of the Kirman’s ant colony model (see Kirman, 1993) proposed

by Alfarano et al. (2005), we show that a combination of these two forces well represents Bitcoin

dynamics.

Given the influence of different groups of traders at the micro-level to explain several phenom-

ena at the macro-level, we focus our analysis on the behavior of two groups of traders to describe

Bitcoin dynamics, namely, bullish and bearish traders. We assume that in the Bitcoin market the ab-

sence of a clear definition of fundamentals renders the use of fundamental strategies rather marginal.

Specifically, we employ the odds ratio of bullish traders to bearish traders, zt/(1− zt), to quantify

the relative impact of one group of agents on the other one at any time in the market. We connect

the odds ratio with Bitcoin prices and we assume that bullish traders expect prices to rise, while the

other group expects them to decrease. Consequently,

Pt

Pt−∆t
=

zt

1− zt
, (3.1)

2As Leigh Tesfatsion points out in her website on the validation, there are three different ways of validating computational
models: (a) Descriptive output validation, which matches computationally generated output against already-acquired system
data; (b) Input validation, which ensures that the structural conditions, institutional arrangements and behavioral dispositions
incorporated into the model capture the salient aspects of the actual system; (c) Predictive output validation, which matches
computationally generated output against yet-to-be-acquired system data.

3A good survey of this type of work is Hommes (2006), where these models have been extensively discussed.
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where Pt denotes the price of Bitcoin at time t and zt is a discrete time stochastic difference equation,

known in physics as a Langevin equation4 (Alfarano et al., 2005):

zt+∆t = zt + (ε1 − (ε1 + ε2)zt)b∆t +
√

2b∆t (1− zt)zt λt . (3.3)

In Eq. (3.3) variables ε1 and ε2 represent the propensity to change strategy from bullish to bearish, b is

the herding parameter, and λt, t > 0, a random variable drawn from a standard normal distribution

(i.e., λt ∼ N(0, 1)). In Sec. (3.2.1), we derive Eq. (3.3) starting from a Markov Chain, which represents

a stylised herding model.

The model (3.1)-(3.3) has several advantages. The first one is the combination of a switching and

a herding mechanism driving the dynamics of zt (see Sec. (3.2.1) for more details). This composite

mechanism, that operates at the micro level, is approximated at the aggregate level by a Langevin

equation which drives the percentage of bullish traders, zt. Interestingly, the continuous counterpart

of the z-dynamics in Eq. (3.3) belongs to the family of Wright-Fisher diffusion processes, widely used

for evolutionary models (see, for example, Ewens, 2004; Larsen and Sorensen, 2007):

dzt = b(ε1 + ε2)

(
ε1

(ε1 + ε2)
− zt

)
dt +

√
2b (1− zt)zt dBt, (3.4)

where Bt is a Wiener process with B0 = 0. Originally, this Itô stochastic differential equation is used

in population dynamics to model the frequency of genes or alleles within a population Ewens (2004).

The continuous version of the z-dynamics highlights that the process zt, t > 0 is trapped in the

interval [0, 1] (i.e., 0 ≤ zt ≤ 1, t > 0) given that 0 < z0 < 1 and ε1 > 1, ε2 > 1 and the dynamics of

the conditional expected value of zt+∆t given zt is (see, Larsen and Sorensen, 2007):

E (zt+∆t | zt) =
ε1

ε1 + ε2
+

(
zt −

ε1

ε1 + ε2

)
e−(ε1+ε2)b∆t. (3.5)

Thus, the process (3.4) shows a mean reverting behavior in that when ∆t → ∞ the long term mean

of the process is ε1/(ε1 + ε2) while the speed of mean reversion is b(ε1 + ε2).

The second advantage is the low number of model parameters. In fact, model (3.1)-(3.3) allows

for a fast estimation procedure in that only three parameters have to be estimated. Going into details,

an indirect inference method (see, Gouriéroux and Valéry, 2004) can be successfully used to estimate

the model parameters ε1, ε2 and b (see Sec. (3.4.1)).

4In Eq. (3.3) we have to add the reflecting boundaries conditions at zt = 0 and zt = 1 by hand:

if zt > 1 then
zt+∆t + zt

2
= 1,

if zt < 0 then
zt+∆t + zt

2
= 0,

(3.2)

which are equivalent to a reflection around the edges of the domain of zt, zt = 1, and zt = 0, respectively.
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The third benefit is the relationship between the model (3.1)–(3.3) and the normal model for the

log-return. Specifically, model (3.1)–(3.3) allows us to explain the connection between the price drift

and the fraction of bullish traders. In order to show it, we need to compare the odds model dynamics

(3.1) and the following dynamics, which we refer to as "standard dynamics", namely the standard

log-normal price model:

Pt

Pt−∆t
= eµt+ξt , (3.6)

where µt is a deterministic function of time while ξt is a random number drawn from a normal

distribution with zero mean and variance σ2∆t, where σ is a constant. Taking the logarithms of both

sides of Eq. (3.3) and Eq. (3.6) we obtain:

rt = log
(

Pt

Pt−∆t

)
= log

(
zt

1− zt

)
= µt + ξt. (3.7)

We note that zt is 1/2 when the fraction of bullish traders equals that of bearish one, and the price

does not change with respect to the previous period. Hence, we use the Taylor expansion of the odds

ratio logarithm with base point z∗ = 1/2 to investigate the relationship between the drift µt and the

fraction of bullish traders. It is easy to see that the Taylor series of the logarithm of the odds ratio is

given by:

log
(

z
1− z

)
=

+∞

∑
j=1

4j

(2j− 1)

(
z− 1

2

)2j−1
, z ∈ (0, 1). (3.8)

Thus, using the first order of the expansion, we obtain the following relationship:

rt = µt + ξt ≈ 4
(

zt −
1
2

)
+ o

((
zt −

1
2

)2
)

, zt →
1
2

, (3.9)

where o(·) is the Landau’s symbol. Neglecting the terms with order higher than 2 and taking the

unconditional expected value of both sides in Eq. (3.9) we obtain:

E[rt] = E[µt] = µ̂t = E
[

log
(

Pt

Pt−∆t

)]
≈ 4E

[
zt −

1
2

]
= 4

(
ε1

(ε1 + ε2)
− 1

2

)
. (3.10)

Eq. (3.10) shows that the estimated drift depends on the deviation of the long term mean, ε1
(ε1+ε2)

,

from 1/2.

The fourth advantage is a formula for the variance of the price. Model (3.1) and the stochastic dy-

namics of the fraction of bullish traders, Eq. (3.4), allow us to determine the variance of the logarithm

of the odds ratio, which coincides with returns. This formula is obtained by simply differentiating

the logarithm of the ratio of two consecutive prices (see, Eq. (3.1)) and applying Ito’s lemma. This
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Figure. 3.1: Ants model.
Figure. 1: Ants model.
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in the empirical analysis the fraction of bullish traders zt oscillates around its average 1/2, thus the price volatility

mainly depends on the herding parameter.

Finally, the fifth advantage, already anticipated in the first point, is the model ability in detecting bubble

periods in the Bitcoin market. Given that the parameters allow us to identify those periods in which bullish traders

are dominating the market (ε1/ε2 > 1), at the expense of bearish traders (ε1/ε2 < 1), we are able to provide investors

with an early warning system alert that detect periods with an excess of optimism in the market.

2.1. The Switching mechanism

The behavioural model previously described works under the assumption that the price increments are given by

the interaction of two groups of agents: bullish and bearish traders. This traders’ dynamics is denoted by the variable

zt (zt − 1) representing the percentage of bullish (bearish) traders. In this subsection we illustrate the switching

mechanism underlying the price odds ratio, which is based on the modification of Kirman’s ant colony model (see

Kirman, 1993) proposed by Alfarano et al. (2005).

Let us start from the seminal Kirman’s ants model. We have a population of N ants and two sources of food

with “a priori” probability of attracting the ants given by π1, π2 (see Fig. (1)).

The dynamic evolution of the process is given by:

p1 = P (n, n+ 1) =

(
N − n
N

)(
π1 + (1− δ) n

N − 1

)
, (20)

p2 = P (n, n− 1) =
n

N

(
π2 + (1− δ)N − n

N − 1

)
, (21)

p3 = P (n, n) = 1− p1 − p2, (22)

where π1 = π2 = ε, δ < 1 and p1 + p2 ≤ 1. The quantity (1− δ) accounts for the herding effect in that the “a priori”

probability increases with the number of ants already present in the source. In absence of herding (i.e. δ = 1) π1 and

π2 are “a priori” probabilities associated with the two urns (sources of food) and consequently, π1 + π2 ≤ 1 since, at

each step of the Markov chain, we have a trinomial random variable. When these probabilities are equal π1 = π2 = ε

and no herding is present (i.e., δ = 1) we have the Ehrenfest urn model and ε = 1/2.

Let us now come back to Alfarano et al. model. The model is populated by N agents, which can be in the state 1

or 2. Traders in state 1 (2) are denoted by n (N − n). The stochastic population dynamics evolves according to the

8

very standard computation provides the following expression for the integrated variance, namely

the quadratic variation, of the Bitcoin log-price:

σ2
t =

∫ t

t−∆t

2b
zτ(1− zτ)

dτ . (3.11)

Eq. (3.11) tells us that the higher the herding parameter, the higher the volatility of Bitcoin. Inter-

estingly, the volatility increases also in the presence of an excess of bullish or bearish sentiment (i.e.,

zt → 1 or zt → 0). As shown in the empirical analysis the fraction of bullish traders zt oscillates

around its average 1/2, thus the price volatility mainly depends on the herding parameter.

Finally, the fifth advantage is the model ability in detecting bubble periods in the Bitcoin market.

Given that the parameters allow us to identify those periods in which bullish traders are dominating

the market (ε1/ε2 > 1), at the expense of bearish traders (ε1/ε2 < 1), we are able to provide investors

with an early warning system alert that detect periods with an excess of optimism in the market.

3.2.1 The Switching mechanism

The behavioural model previously described works under the assumption that the price increments

are given by the interaction of two groups of agents: bullish and bearish traders. This traders’ dy-

namics is denoted by the variable zt representing the percentage of bullish traders, while 1− zt rep-

resents the percentage of bearish traders. In this subsection, we illustrate the switching mechanism

underlying the price odds ratio, which is based on the modification of Kirman’s ant colony model

(see Kirman, 1993) proposed by Alfarano et al. (2005).

Let us start from the seminal Kirman’s ants model. We have a population of N ants and two

sources of food with "a priori" probability of attracting the ants given by π1, π2 (see Fig. (3.1)).

The dynamic evolution of the process is given by:
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p1 = P(n, n + 1) =
(

N − n
N

)(
π1 + (1− δ)

n
N − 1

)
, (3.12)

p2 = P(n, n− 1) =
n
N

(
π2 + (1− δ)

N − n
N − 1

)
, (3.13)

p3 = P(n, n) = 1− p1 − p2, (3.14)

where π1 = π2 = ε, δ < 1 and p1 + p2 ≤ 1. The quantity (1− δ) accounts for the herding effect

in that the "a priori" probability increases with the number of ants already present in the source. In

absence of herding (i.e. δ = 1) π1 and π2 are "a priori" probabilities associated with the two urns

(sources of food) and consequently, π1 + π2 ≤ 1 since, at each step of the Markov chain, we have

a trinomial random variable. When these probabilities are equal π1 = π2 = ε and no herding is

present (i.e., δ = 1) we have the Ehrenfest urn model and ε = 1/2.

Let us now come back to Alfarano et al. (2005) model. The model is populated by N agents, which

can be in the state 1 or 2. Traders in state 1 (2) are denoted by n (N − n). The stochastic population

dynamics evolves according to the probability of changing from state n at time t, nt, to some n′t+∆t0
at

time t+∆t0 according to the given conditional probabilities denoted by ρ(n′t+∆t0
| nt). For sufficiently

small time increments ∆t0, the probabilities are linear in the time interval and are defined as:

ρ(n′t+∆t0
= nt + 1 | nt) = (N − nt)(a1 + bnt) · ∆t0,

ρ(n′t+∆t0
= nt − 1 | nt) = nt(a2 + b(N − nt)) · ∆t0,

(3.15)

with the further constraint that:

ρ(n′t+∆t0
= nt | nt) = 1− ρ(n′t+∆t0

= n + 1 | nt)− ρ(n′t+∆t0
= n− 1 | nt). (3.16)

We rewrite Eqs. (3.15) to make a comparison with the Kirman model. To this end, we drop t and

we write:

ρ(n′t+∆t0
= nt + 1 | nt) = (∆t0N)

(
N − n

N

)(
a1 + (b(N − 1))

n
N − 1

)
=

=

(
N − n

N

)

((∆t0N)a1)︸ ︷︷ ︸

π1

+ (∆t0N)(b(N − 1))︸ ︷︷ ︸
1−δ

n
N − 1


 ,

(3.17)
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ρ(n′t+∆t0
= nt − 1 | nt) = (∆t0N)

( n
N

)(
a2 + b(N − 1)

(N − n)
N − 1

)
=

=
n
N


(∆t0N)a2︸ ︷︷ ︸

π2

+ (∆t0N)(b(N − 1))︸ ︷︷ ︸
1−δ

(N − n)
N − 1


 .

(3.18)

Comparing Eqs. (3.12)-(3.13) with Eqs. (3.17)-(3.18) we have:

π1 = a1(∆t0N), (3.19)

π2 = a2(∆t0N), (3.20)

1− δ = b(N − 1)(∆t0N). (3.21)

Setting nt = ztN which implies N − nt = N − Nzt = N(1− zt), t > 0 and ∆t = N∆t0, from Eqs.

(3.17)-(3.18) we have:

ρ(n′t+∆t0
= nt + 1 | nt) = (1− zt)


a1∆t︸︷︷︸

π1

+ b(N − 1)∆t︸ ︷︷ ︸
1−δ

zt
N

N − 1


 , (3.22)

ρ(n′t+∆t0
= nt − 1 | nt) = zt


a2∆t︸︷︷︸

π2

+ b(N − 1)∆t︸ ︷︷ ︸
1−δ

(1− zt)
N

N − 1


 . (3.23)

We have now to define the step from zt to zt+∆t. We know that ∆t = N∆t0 so we set

zt+∆t = zt +
N

∑
i=1

ηt+i∆t0 , (3.24)

where ηt+i∆t0 are independent and identically distributed random variable defined by:

ηt+i∆t0 =





1
N , p+i = (1− zt)


a1∆t︸︷︷︸

π1

+ b(N − 1)∆t︸ ︷︷ ︸
1−δ

zt
N

N−1




− 1
N , p−i = zt


a2∆t︸︷︷︸

π2

+ b(N − 1)∆t︸ ︷︷ ︸
1−δ

(1− zt)
N

N−1




0, 1− p+i − p−i

(3.25)

with expected value

µi = E(ηt+i∆t0) =
1
N

∆t (a1(1− zt)− a2zt) =
1
N

∆t (a1 − (a1 + a2)zt) , (3.26)
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and variance

σ2
i = V(ηt+i∆t0) = E

(
η2

t+i∆t0

)
−
(
E(ηt+i∆t0)

)2
=

=
∆t
N2

[
(1− zt)a1 + zta2 + 2bzt(1− zt)(N − 1)

N
N − 1

]
− ∆t2

N2 (a1 − (a1 + a2)zt)
2 . (3.27)

Keeping only the dominant term of the variance we have

σ2
i = V(ηt+i∆t0) ≈

∆t
N2

[
2bzt(1− zt)(N − 1)

N
N − 1

]
=

∆t
N

(2bzt(1− zt)). (3.28)

For sufficiently large N, for the central limit theorem, we have that

1
N ∑N

i=1 ηt+i∆t0 − µi

σi/
√

N
∼ N(0, 1), (3.29)

so the variable ξt = ∑N
i=1 ηt+i∆t0 is a normal variable with mean

Nµi = NE(ηt+i∆t0) = ∆t (a1 − (a1 + a2)zt) , (3.30)

and variance

N2 σ2
i

N
= N2 V(ηt+i∆t0)

N
= N2 ∆t

N2 (2bzt(1− zt)) = 2b∆tzt(1− zt). (3.31)

Consequently, we obtain:

zt+∆t = zt + ∆t (a1 − (a1 + a2)zt) +
√

2b∆tzt(1− zt)λt, (3.32)

where λt is a random number drawn from a normal distribution. The CLT and Eq. (3.32) hold true

far from the boundaries.

In continuous time we can write

dzt = (a1 − (a1 + a2)zt) dt +
√

2bzt(1− zt)dBt, (3.33)

where dBt is the differential of a Wiener process Bt ∼ N(0, t) and B0 = 0.

The choice of rewriting a1 and a2 as follows:

a1 = bε1,

a2 = bε2,
(3.34)
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is only a way to parameterize the dynamics. Concluding the restrictions to new parameters that

guarantee the correct linkage with the original Markov chain are:

δ = 1− b(N − 1)∆t < 1,

π1 = ε1b∆t ≤ 1,

π2 = ε2b∆t ≤ 1,

π1 + π2 ≤ 1.

(3.35)

Note that in Eq. (3.33), the boundaries conditions are natural and, therefore, it is not necessary to

impose any further exogenous restriction like in the discrete version in Eq. (3.32).

3.3 Data description

We use the Bitcoin close price from July 16, 2010 to January 1, 2019. Data are freely downloadable

from Yahoo Finance website in daily frequency.

Fig. (3.2) shows the evolution of Bitcoin daily price over time. Although the highest value of

Bitcoin is 19.345$ on 16/12/2018, using log prices it is possible to observe that the most profitable

period of Bitcoin is from 2010 to 2014. The turning point seems to be the bankruptcy of Mt. Gox

market in 2014, as shown by returns at the beginning of this year. Fig. (3.2) and Table 3.1 show that

Bitcoin returns are characterized by an extremely high standard deviation. Moreover, the daily mean

and median of returns are equal to 0.36% and 0.19%, and this highlights the profitability of trading

in Bitcoin during the last 8 years.

Table 3.1: Descriptive statistics.

Bitcoin Mean Median Std.Dev Skewness Kurtosis Min. Max.

Return 0.0036 0.0019 0.0684 2.9370 94.2214 -0.8488 1.4744
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Figure. 3.2: Bitcoin daily prices and daily log-prices, along with the daily returns, from
16/07/2010 to 01/01/2019.
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3.4 Estimation and forecasting procedures

3.4.1 The indirect inference method

In this subsection, we present the procedure used to estimate the parameters, ε1, ε2 and b ∆t. More-

over, since these parameters are estimated over time, via a rolling window approach, we explain how

the calibration window, Nw, is selected in Sec. (3.4.2).

Let us consider a sample zt1 , zt2 , . . . , ztn of fractions of bullish traders. Following Gouriéroux and

Valéry (2004), the indirect inference method estimates the parameters appearing in Eq. (3.3) using

the autoregression with conditional heteroskedasticity as the instrumental model:

zti+1 − zti√
2zti (1− zti )

=
β0√

2zti (1− zti )
+

β1zti√
2zti (1− zti )

+ ν λti+1 , i = 1, 2, . . . , n, (3.36)

where λti+1 , i = 1, 2, . . . , n are standard normally distributed errors, while the estimated values of β0

and β1 are related to the estimates of the model parameters ε̂1, ε̂2 and b̂ ∆t from Eq. (3.3) as follows:

β̂0 = ε̂1 b̂ ∆t, (3.37)

β̂1 = −(ε̂1 + ε̂2) b̂ ∆t, (3.38)

and

ν̂2 = b̂ ∆t . (3.39)

The parameters (β̂0, β̂1, ν̂) are estimated by the ordinary least squares approach.
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3.4.2 Choice of the time window Nw

The estimation procedure uses a rolling window of a fixed sample size Nw, which moves along the

time series discarding the oldest data observation and inserting the newest one. The first step of

the estimation procedure consists in determining the time window size, i.e. the time period over

which is reliable to assume that model parameters are constant. We consider a plausible range for

Nw, from 30 to 900 days. Following Larsen and Sorensen (2007), to select the proper time window we

use the simulated uniform residuals (Pedersen, 1994). Let F(y | x; ε1, ε2, b∆t) denotes the conditional

distribution function associated with the model (3.3) and Ui = F(zti | zti−1 ; ε̂1, ε̂2, b̂∆t), i = 1, 2, . . . , n.

If the data zti , i = 1, 2, . . . , n, have been generated by Eq. (3.3) with model parameters ε̂1, ε̂2, b̂∆t, then

Ui, i = 1, 2, . . . , n, are independent and uniformly distributed in the unit interval. The Kolmogorov-

Smirnov test statistics is used to assess the reliability of the assumption of constant values of model

parameters over the time window considered. Thus, we test the null hypothesis that the residuals

are uniformly distributed in each possible interval, Nw. This approach to select the value of Nw is

feasible in that it does not require the knowledge of the model parameters.

The p-values obtained with Kolmogorov Smirnov test statistics are shown in Fig. (3.3), where we

can observe their value to be higher than 0.5. To better investigate the p-value dynamics, we calculate

the difference of the p-values corresponding to two consecutive values of the window size Nw. We

can observe that the time series of the p-value variations approaches zero when Nw is longer than

450. Therefore, we use Nw = 450 to estimate the parameters during the forecasting analysis.

Figure. 3.3: Kolmogorov Smirnov test based on Pedersen approach for each Nw.
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3.4.3 Forecasting procedure

In this section, we define a price forecast using Eq. (3.40):

ln
(

Pt

Pt−∆t

)
= ln

(
zt

1− zt

)
= ft+∆t, (3.40)
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where ft+∆t is defined using Eq. (3.8) up to the 8th term:

ft+∆t =
8

∑
j=1

4j

(2j− 1)
E

[(
zt −

1
2

)2j−1
]

. (3.41)

Then we estimate ft+∆t using the sample moments as follows:

f̂t+∆t =
8

∑
j=1

4j

2j− 1
1

Nw

[(
ẑt+∆t −

1
2

)2j−1
+

Nw−1

∑
m=1

(
zt−(m−1)∆t −

1
2

)2j−1
]

. (3.42)

where, ẑt+∆t = E (zt+∆t | zt) from Eq. (3.5)

Here, Nw is the sample size5 while ẑt+∆t is the forecast of the fraction of bullish traders at t + ∆t.

Thanks to the estimate of ft+∆t the one-period ahead price forecast reads:

P̂t+∆t = Pte f̂t+∆t . (3.43)

Formula (3.43) can be generalized to define the k-period-ahead forecasts as follows:

P̂t+k∆t = Pt

k

∏
m=1

e f̂t+m∆t , k = 1, 2, . . . , (3.44)

where f̂t+m∆t is defined as

f̂t+m∆t =
8

∑
j=1

4j

2j− 1
1

Nw

[
m

∑
l=1

(
ẑt+l∆t −

1
2

)2j−1
+

Nw−1

∑
l=1

(
zt−(l−1)∆t −

1
2

)2j−1
]

, (3.45)

while ẑt+m∆t, m = 2, 3, . . .,

ẑ(t + m∆t) =
ε1

ε1 + ε2
+

(
ẑt+(m−1)∆t −

ε1

ε1 + ε2

)
e−(ε1+ε2)b∆t. (3.46)

3.5 Empirical analysis

3.5.1 Model consistency

Firstly, we explore the relation between the odds model dynamics (see Eq. (3.1)) and the "standard

dynamics" (see Eq. (3.6)). Let us denote with ε1,t, ε2,t and bt the daily time series of the estimated

model parameters6, with µ̂t the drift of the log-return estimated over the rolling windows and with

xt the log-return of prices (i.e., xt = log (Pt/Pt−∆t)).

5Specifically, Nw refers to the window of in-sample data needed to estimate the model’s parameters.
6We omit the hevaier notation ε̂1,t, ε̂2,t, b̂∆t.
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On the one hand, the left panel of Fig. 3.4 shows the dynamics of 4(zt − 1/2) (black solid line)

and the log-return, i.e., xt (blue dashed line). On the other hand, the right panel shows the density of

the log-return xt (blue dashed line) and the 4(zt − 1/2) (black solid line). As expected, the two lines

overlap due to the theoretical link between the two dynamics (see Eq. 3.9 and 3.10).

Figure. 3.4: Dynamics (left panel) and density (right panel) of 4(zt − 1/2) (black solid line) and
the log-return xt (blue dashed line).
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We now study the parameters’ dynamics by testing two characteristics of the theoretical model

shown in Sec. (3.2):

i) the "normalization" condition, i.e., (a1,t + a2,t)∆t ≤ 1, or equivalently, (ε1,t + ε2,t)bt∆t ≤ 1 (see

Eqs. 3.35);

ii) the relationship between the estimated drift and the long term mean given in Eq. (3.10).

Thus, we proceed testing two models. The first one regards the "normalization condition":

(ε1,t + ε2,t)bt∆t = α0 + ξt, (3.47)

the second one the behavioral explanation of the drift dynamics:

µ̂t = γ0 + γ1

(
ε1,t

ε1,t + ε2,t
− 1

2

)
+ ξt . (3.48)

Here, ξt is a random number normally distributed with zero mean and constant variance, while α0,

γ0 and γ1 are constant. The expected results of the two linear regressions are α0 ≤ 1, γ0 = 0 and

γ1 = 4. Table 3.2 shows the results of the linear regressions, which confirm our expectations.
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Table 3.2: Testing model 1: bt∆t(ε1,t + ε2,t) = α0 + noise, α0 = 1 (first two lines); Testing model
II: µ̂t = γ0 + γ1 (ε1,t/(ε1,t + ε2,t)− 1/2) + noise, γ0 = 0, γ1 = 4 (last two lines).

Testing normalization - bt∆t(ε1,t + ε2,t) = α0 + ξt

Asset α0 − R2 p-value (test F) res. std. error

Bitcoin 0.977(***) - - 2.0e-16 0.05156

Testing drift relationship - µ̂t = γ0 + γ1 (ε1,t/(ε1,t + ε2,t)− 1/2) + ξt

Asset γ0 γ1 R2 p-value (test F) res. std. error

Bitcoin 2.27e-5(***) 3.965(***) 0.9946 2.2e-16 2.346e-4

3.5.2 Forecasting analysis

Having shown the approach to select the optimal time window size (Nw) to estimate model parame-

ters, we now investigate the potential of the model in forecasting.

We report in Fig. (3.5) the price forecast one-day ahead using Eq. (3.43). On the left we plot one

point out of every fifty points while on the right we plot the worst fifty forecasts. As can be observed,

the worst forecasts of our model are mainly found before 2015. In particular, during the bankruptcy

of Mt. Gox exchange in February 2014, and during the DDos (distributed denial of service) attack in

April 2013. In addition to these particular events, the model is not able to properly forecast prices

during the final phase of the bubbles, i.e. the crashes.

Figure. 3.5: One period ahead forecast (blue dashed line) and observed prices (black solid line).
In the left panel prices and forecast are represented one out of every fifty ones. In the right panel
the worst fifty one-period ahead forecasts.
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Following the Bitcoin literature, we employ five measures to examine the predictive power of our

model: Root Mean Square Error (RMSE) (Jang and Lee, 2018; McNally et al., 2018; Atsalakis et al.,

2019), Mean Square Error (MSE) (Han et al., 2019), Mean Absolute Percentage Error (MAPE) (Jang

and Lee, 2018), Mean Absolute error (MAE) (Atsalakis et al., 2019), and the accuracy of our model to

predict properly the direction in the change of the future Bitcoin prices (McNally et al., 2018; Catania

et al., 2019; Atsalakis et al., 2019). We define these measures in the following way:
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MSE =
1
T

T

∑
t=1

(xt − x̂t)
2, (3.49)

RMSE =

√√√√ 1
T

T

∑
t=1

(xt − x̂t)2, (3.50)

MAE =
1
T

T

∑
t=1
|(xt − x̂t)| , (3.51)

MAPE =
1
T

T

∑
t=1

∣∣∣∣
(xt − x̂t)

xt

∣∣∣∣ , (3.52)

where T is the number of forecasts of the out-sample period, xt the t− th observed Bitcoin log-

price and x̂t the t-th log-price forecast. Finally, the accuracy to predict the direction is defined as the

ratio of the correct forecasts between the total number of forecasts T. The results are reported in Table

3.3 where three data samples are investigated: i) the complete dataset, ii) a sub-sample reporting the

data before Mt. Gox bankruptcy, iii) a sub-sample reporting the data after Mt. Gox bankruptcy. As

the reader can notice our model results improve after Mt. Gox bankruptcy and this supports the

visual results showed in Fig. (3.5). This fact can be attributed to the increase in liquidity and market

capitalization of Bitcoin, which reduce the impact of extreme events in asset prices.

Table 3.3: Mean square error (MSE), root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE) and percentage of accuracy of our model for
the corresponding periods. Forecast log-prices.

Our model MSE RMSE MAE MAPE %Accuracy

All sample (11/10/2011 - 01/01/2019) 0.0039 0.0625 0.031 0.00741 54.22%

Before Mt. Gox Bankruptcy (01-02-2014) 0.00385 0.06211 0.03641 0.01433 57.76%

After Mt. Gox Bankruptcy (01-04-2014) 0.001552 0.03939 0.02535 0.00359 53.11%

At this point a question arises: how does our model perform in forecasting prices compared with

other studies? To answer this question, we compare the results of our price forecasts with those of

other recent studies shown in Table 3.4 (the first column).

Before going into details on the comparison results some explanations on the Bitcoin prices forecast-

ing mechanisms used by other models are necessary. Most of these studies use neural networks for

modeling the price prediction. For instance, McNally et al. (2018) employ a Bayesian optimized recur-

rent neural network (RNN) and a long short term memory (LSTM) network to forecast Bitcoin prices.

Similarly, Jang and Lee (2018) compute a Bayesian neural network (BNN) to forecast Bitcoin via 16

explanatory variables. Finally, Atsalakis et al. (2019) employ an artificial neural network (ANN), an

adaptive neuro-fuzzy inference system (ANFIS) and a hybrid neuro-fuzzy controller system, namely
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PATSOS, which is a combination of two adaptive neuro-fuzzy inference system. Differently from

these studies, Catania et al. (2019) study the performance of several alternative univariate and mul-

tivariate models with 13 explanatory variables. In particular, their best models are: the dynamic

model averaging across all model (DMA), the dynamics model selection (DMS), and their restricted

versions, DMA-NR and DMS-NR, where only the lagged values of Bitcoin prices are used. On the

one hand, the DMA averages the forecasts across all the different model combinations7 based on the

predictive likelihood that measured the ability of a model to predict Bitcoin prices. On the other

hand, the DMS refers to the model with the highest probability among all the possible model combi-

nations.

Let us now compare results on price forecasts of these different methodologies. First of all, two clar-

ifications are needed: i) given that these studies analyze different time periods, we homogenize the

out-of-sample data used for our forecast with those of each one of these studies (see the third column

of the Table 3.4); ii) the comparison is based on error measures, i.e. the mean square error (MSE), the

root mean square error (RMSE), the mean absolute error (MAE) and the mean absolute percentage

error (MAPE) and on the accuracy to provide price trend predictions (see the last five columns of Ta-

ble 3.4). As the reader can observe there is a strong competition among the different models in terms

of forecasting errors. In fact, in some cases our model shows better performances (as demonstrated

with the RNN, the LSTM and the ANN) while in others worse results (as with the PATOS). Finally,

with some models (see, for instance, the BNN and the ANFIS) the forecast errors are the same and,

therefore, a supremacy is not recognizable. Similar findings are observed analyzing the accuracy on

price trend predictions. Here, for example, we observe that our model underperforms the DMA,

the DMA-NR, the DMS and all the Atsalakis et al. (2019) model specifications8, but outperforms the

RNN, the LSTM and the DMS-NR.

7Considering the 13 explanatory variables and the additional factors there are 2,621,440 possible combinations.
8In this regard, a clarification is necessary: in this comparison analysis we are using only 60 observations out-of-sample,

which certainly weakens our performances.
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Table 3.4: Comparison of our model when forecasting prices in relation to the models proposed
in the literature by means of the mean square error (MSE), root mean square error (RMSE),
mean absolute error (MAE), mean absolute percentage error (MAPE) and % of accuracy of our
model for the corresponding out-sample periods.

Model Specification Out-sample MSE RMSE MAE MAPE %Accuracy

Our model Dec 15-Jul 16 0.00088 0.0286 0.0173 0.0028 59.34%

McNally et al. (2018) RNN 0.0545 50.25%

LSTM 0.0687 52.78%

Our model Dec 16 -Aug 2017 0.00196 0.044 0.0301 0.0041 64.15%

Jang and Lee (2018) BNN 0.0069 0.018

Our model Jan 16 - Dec 17 0.00151 0.03886 0.0244 0.0031 59.64%

Catania et al. (2019) DMA-NR 62.00%

DMS-NR 59.00%

DMA 63.00%

DMS 60.00%

Our model Aug 17 - Oct 17 0.00239 0.04893 0.0341 0.0040 51.66%

Atsalakis et al. (2019) ANN 0.0847 0.0476 55.10%

ANFIS 0.0489 0.0402 57.70%

PATSOS 0.0376 0.0307 63.22%

Given the above reported results, we can focus on the main advantages / disadvantages of our

model forecast in comparison with the others. Three are the main advantages of our procedure.

Firstly, we just use Bitcoin price to describe future dynamics, while the other studies incorporate

many other explanatory variables (see, for instance, Jang and Lee, 2018 and Catania et al., 2019).

Secondly, we do not need considerable in-sample data to calibrate the model and this implies an

easy data achievement for forecasts. Many of the works above presented, in fact, require long time

windows of in-sample data (see, McNally et al. (2018), Jang and Lee (2018), and Atsalakis et al.

(2019)). Finally, as shown in the next sections, the estimated model parameters (ε1, ε2, b) allow us to

capture market sentiments and, also, to forecast the realized volatility. Regarding the disadvantages,

as already stressed, our estimation procedure is particularly sensitive to some episodes that have

strongly influenced Bitcoin, such as the Mt. Gox bankruptcy. However it is interesting to note that

these episodes, which generated fluctuations in the price time series of up to ±20%, are typical of

the first years of this currency creation. This means that from 2015 onwards our procedure produces

good results in price forecasts even in the presence of bubbles (see Cheung et al., 2015; Corbet et al.,

2018).

Model ability to forecast the realized volatility

Having successfully proven our estimation procedure for prices forecasting, we also test its efficiency

in predicting the realized volatility. The realized variance typically used in the swap contract is

defined as:
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σ2
RV,t =

A
Nw

t

∑
i=t−Nw

(log(Pi/Pi−1))
2 (3.53)

where A is the annualisation factor normally chosen to be approximately the number of sampled

points in a year (i.e. A=252). Here we choose A = 1, that is we consider a daily volatility since the

Bitcoin volatility is very high.

We forecast the realized volatility at t by using Eq. (3.11) where the process zt is replaced by its

conditional expectation (3.5) and the integral is approximated by the rectangular rule:

σ̂2
t =

A
Nw

[
2b∆t

ẑt(1− ẑt)
+

t−1

∑
τ=t−Nw

2b∆t
zτ(1− zτ)

]
, (3.54)

where ∆t = 1 day and, as already mentioned, A = 1.

Fig. (3.6) shows the realized variance σ2
RV,t and the model variance σ̂2

t as function of time. As

can be observed, our model seems to forecast properly the volatility with the exception of the pe-

riod between 2014 - July 2015. In the same line as forecasting prices, the model is sensitive to the

bankruptcy of Mt. Gox exchange. However, compared to the price forecast, the volatility is more

affected by this event. The impact of this outlier disappears in July 2015 when the event is excluded

from the rolling window, i.e. after Nw observations (450) the rolling window excludes the effect of

this event. This fact is supported by Table 3.5 where we observe a better fit of the volatility before

Mt. Gox bankruptcy and after July 2015.

Figure. 3.6: Observed (black solid line) and forecast (blue dashed line) realized variance over
time.
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Table 3.5: Mean square error (MSE), root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE) and % of accuracy of our model of the corre-
sponding periods. Volatility.

Our model MSE RMSE MAE MAPE

All sample (11/10/2011 - 01/01/2019) 4.402E-07 0.00066 0.000305 0.0000685

Before Mt. Gox Bankruptcy (01/02/2014) 1.146E-08 0.000107 0.0000834 0.0000159

After Mt. Gox Bankruptcy (01/04/2014) 5.867E-07 0.000766 0.000381 0.0000867

After July 2015 3.027E-10 0.0000174 0.0000107 0.00000168

We now compare our model ability in forecasting the realized volatility compared to that of dif-

ferent procedures reported by Trucíos (2019). Specifically, the author examines the performances

of several GARCH models (i.e GARCH, IGARCH, EGARCH, GJR, APARCH, CGARCH, TGARCH,

AVGARCH, NGARCH, NAGARCH, FGARCH and robust GARCH), alternative GARCH models

(i.e betaRGARCH, betaSkewEGARCH and t-GAS) and other techniques using high-frequency data

(i.e ARFIMA, ARFIMAL, HAR, HARL, HEAVY and Realised GARCH). In Table 3.6 we just report

the GARCH models with lower MSE from each group, that is Robust GARCH Model, t-GAS model

and realized GARCH model. As can be observed, our model compares favorably with the robust

GARCH model with a lower MSE. However, the t-GAS model and realized GARCH models show

slightly better results, even though we observe the same order of magnitude. This result is not sur-

prising since, as Trucíos (2019) contends, t-GAS model is able to down-weight extreme observations

while the realized GARCH model is specifically designed to predict the realized volatility using high

frequency data. Given that one of the disadvantage of our model is its extreme sensitivity during

extreme events, we also report in Table 3.6 the MSE after the Mt. Gox bankruptcy, that is June 2015.

As the reader can observe in this subsample we observe a remarkable improve of our forecast which

provide empirical evidence of its good performance in the absence of this kind of events.

Table 3.6: Comparison of our model when forecasting volatility in relation to the models pro-
posed in the literature by means of the mean square error (MSE) for the corresponding out-
sample periods.

Specification Date MSE

Our model June 2014 - December 2017 6.53E-07

June 2015 - December 2017 2.79E-10

Trucíos (2019) Robust GARCH Model June 2014 - December 2017 1.03E-06

t-GAS model June 2014 - December 2017 3.37E-07

Realised GARCH model June 2014 - December 2017 2.05E-07

3.5.3 Early warning alert system

As already mentioned, an advantage of our model is its ability to describe the evolution of the market

sentiment by estimating the parameters ε1 and ε2, which identify the trader strategy (i.e bullish vs
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bearish) (see, also Alfarano et al., 2005).

In this regard, we compute the ratio ε1/ε2 using a rolling window of Nw = 450. This ratio summa-

rizes three possible behaviors in the currency market: i) ε1/ε2 = 1 means that there is no dominance

of one strategy over the other; ii) ε1/ε2 > 1 describes a market where the bullish behaviour controls

the market; iii) ε1/ε2 < 1 shows a market influenced by the bearish attitude.

As is known (Alfarano et al., 2005), the predominance of the bullish strategy generates financial

bubbles. To verify the impact of this strategy on the dynamics of Bitcoin prices, we compare the

values of our ratio with the bubbles identified with the early warning alert system proposed by

Phillips et al. (2015).9 Results are reported in Fig. (3.7) where our ratio (blue dashed line), the bubbles

identified by GSADF test (Gray area) and the Bitcoin log prices (black solid line) are shown.

As the reader can observe, Fig. (3.7) shows that the Bitcoin market is mainly dominated by bullish

strategy as indicated by the value of the ratio higher than one. This result is certainly in line with

the presence of strong fluctuations in Bitcoin prices caused by this strategy. It is worth noting that,

when sharp falls in the price series emerge, as in 2012 and in 2014, the bearish behavior takes over.

This result is in line with other studies where the emergence of switching behaviors during pre/post

periods of financial instability is detected (see Tedeschi et al., 2019 and Grilli et al., 2020). In this sense,

in our model the bullish strategy generates fluctuations and volatility, while the bearish one works as

a thermostat of the society by realigning prices. The Fig. (3.7) shows another interesting feature of our

estimation procedure. By comparing the detection of bubbles obtained with our ratio with respect

to those obtained with the GSADF, it seems that this second technique can also identify short-term

bubbles. The reason for this important difference lies in the size of the calibration windows. In this

regard, Phillips et al. (2015) recommend to use a minimum size window to detect bubbles, r0 · T
, where r0 = (0.01 + 1.8/

√
T), and T is equal to the length of the sample. The resulting window

includes 130 observations. However in Fig. (3.7), our parameters ε1 and ε2 are estimated using a

time window of 450 days.

9Phillips et al. (2015) developed a generalized version of the sup augmented Dickey-Fuller (GSADF) test (Phillips et al.,
2011) able to identify multiple bubbles in the S&P 500 stock market, from January 1871 to December 2010. The new recursive
testing procedure is defined as a rolling window right-sided ADF unit root test with a double-sup window selection criteria
(Phillips et al., 2015). Compared to their previous work (Phillips et al., 2011), which was just able to identify the existence of
one single bubble, Phillips et al. (2015) provides a new framework for testing and dating bubble phenomena in presence of
multiple bubbles.
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Figure. 3.7: Bullish/bearish traders ratio computed as ε1,t/ε2,t (blue dashed line) and the log-
arithm of the price (black solid line). Gray area highlights bubble periods detected by Phillips
et al. (2015) methodology (GSADF). Nw = 450.
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To verify the impact of the calibration window in detecting short-term bubbles, we estimate the

model with Nw = 130. As the reader can observe in Fig. (3.8), this simple modification allows us to

capture all bubbles and to re-align our results with those of Phillips et al. (2015).

Figure. 3.8: Bullish/bearish traders ratio computed as ε1,t/ε2,t (blue dashed line) and the log-
arithm of the price (black solid line). Gray area highlights bubble periods detected by Phillips
et al. (2015) methodology (GSADF). Nw = 130.
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3.6 Concluding remarks

In this paper we have proposed a simple stochastic model where the Bitcoin price dynamic is driven

by the interaction between the bullish and bearish strategy. Specifically, we have described the ra-

tio of two consecutive Bitcoin prices as the odds ratio of bullish and bearish traders. Moreover, the



62 Chapter 3. Should I herd or should I not? A stochastic herding model for Bitcoin dynamics

evolution of these two strategic groups has been modeled following the modified version of the Kir-

man’s ant colony model (see Kirman, 1993) proposed by Alfarano et al. (2005).

Our results have shown that the proposed model, estimated via the indirect inference method, well

performs in forecasting price trends, dynamics and realized volatilities of Bitcoin daily data. The

efficiency of our procedure in generating predictive output validation has been also compared with

those of several other studies used to forecast this cryptocurrency. The comparison with some of

these models have showed a close competition. Although we have not always been the winners, a

consideration with those models against which we underperform must be made: all these models

need multiple explanatory variables or/and long time windows of in-sample data to obtain price

predictions better than ours. Clearly, the collection of this additional data has time and information

costs that our model does not have to face.

In addition, we have shown that the odds ratio of bullish and bearish traders explains market senti-

ments. In this regard, we have found out that Bitcoin is predominantly driven by the bullish strategy,

which generates wider price swings. Instead, the bearish behavior emerges during pre/post periods

of financial instability such as the Mt. Gox bankruptcy. This evolutionary analysis on the market sen-

timents has shown important characteristics in traders’ behavior. On the one hand, we have noted

that the bullish strategy has a destabilizing power on prices. This behavior, in fact, generates waves

of optimism able to create bubbles. On the other hand, the bearish behavior works as a thermostat

causing bubble implosion.

In conclusion, our contribution does not want to compete with the other studies, but to support them

by trying to describe various aspects of the Bitcoin price dynamics by using a single simple model.
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Chapter 4

A cross-sectional analysis of growth

and profit rate distribution : the

Spanish case

4.1 Introduction

Historically, Gibrat (1931) was the first scholar to propose a stochastic process in order to model

the growth of firms based solely on general probabilistic concepts. His basic hypothesis states that

the logarithmic growth rate of a firm is independent of its size and it is Normally distributed. The

Normal distribution assumption can be justified on the premise of the Central Limit Theorem (CLT

hereafter). The logarithmic growth rate of a firm in a given time period (one year for instance) can

be decomposed as a sum of a large number of shocks hitting the firm at a higher frequency (e.g.

daily). Within this time decomposition, the emergence of the Normal distribution of growth rates

is a natural consequence of the CLT, assuming that the shocks are independent and identically dis-

tributed. Under these assumptions, the distribution of firms’ size is a lognormal distribution. From

an economic perspective, the Gibrat’s hypotheses are compatible with an ensemble of independent

firms, experiencing a common trend and idiosyncratic destinies. The Gibrat’s statistical approach has

been generalised in order to account for other economic phenomena, such as the entry and exit of

firms in a market, the turbulence and the learning of firms, leading Sutton to call for the existence of

a Gibrat’s legacy (Sutton, 1997).

Challenging the Gibrat’s hypothesis of Normality, many authors (Amaral et al., 1997; Bottazzi

et al., 2001; Bottazzi and Secchi, 2003, 2006; Bottazzi and Secchi, 2011; Buldyrev et al., 2007; Alfarano

and Milakovic, 2008; Riccaboni et al., 2011) have empirically shown that firms’ growth rates follow
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a Laplace distribution rather than a Normal distribution.1 Starting from the basic assumption of iid

shocks leading to a Gaussian distribution, the empirical identification of the Laplace distribution can

be alternatively interpreted as the imprint of a systemic dependence among the shocks hitting all

firms. In order to account for the "Laplacian" deviations from the Gaussian hypothesis, one must

replace the assumption of iid shocks by perturbations characterised by some degree of system-wide

correlation due to specific economic interactions among firms. The Laplace distribution of cross-

sectional firms growth rates, thus, can be thought as the macroscopic evidence of the existence of

complex interactions among firms. Some models have been proposed in order to account for the

emergence of the Laplace distribution. Bottazzi and Secchi (2006) show that the Laplace distribution

stems from a competitive context in which firms are able to seize new growth opportunities pro-

portional to opportunities already taken. Under the resource-based view of the firm (Penrose and

Penrose, 2009), Coad and Planck (2012) consider a mechanism of employment growth in a hierarchy,

leading to an exponential distributed firm size and a Laplace distribution of growth rates.

Recently, some authors (Alfarano et al., 2012; Mundt et al., 2016) proposed a new focus to analyse

firms dynamics from the Gibrat’s perspective beyond the growth rates of firm size. They claim that

a more informative quantity to account for the dynamics of the ensemble of firms in an economy is

to consider firm profit rates instead of growth rates as the key measure of firm performance. This

change of focus allows to rely on the general principle of tendency for equalisation of profit rates

based on the idea of classical competition. In this respect, Alfarano and Milakovic (2008) introduced

a theoretical framework for the profit rate distribution by considering as the intellectual base Adam

Smith’s notion of classical competition (Smith, 1776), which describes a negative feedback mecha-

nism: capital seeks out those sectors in which profit rates are higher than the economy-wide average,

essentially attracting labour, raising output, reducing prices and eventually profit rates. Capital,

thus, leaves the sector giving rise to an increase of price and profit rates for those firms that remain

in the industry. The entire process tends to equalise profit rates across sectors and firms. The idea

of classical competition can be framed in terms of a statistical equilibrium model for the profit rate

distribution, which leads to an Exponential Power or Subbotin distribution (Subbotin, 1923). Such

theoretical framework has been empirically tested in several contributions (Alfarano et al., 2012; Er-

lingsson et al., 2013; Mundt et al., 2016), showing that the profit rate distribution can be described

by a Laplace distribution, whose first and second moment are very stable over time, much more

than the corresponding moments of the growth rate distribution. In particular, it has been shown

that such stability is linked to restrict the empirical analysis to large and firms surviving for suffi-

cient time. In this regard, Mundt and Oh (2019) show that the Laplace distribution is not flexible

enough to describe the profit rate distribution when entry and exit dynamics of firms is included.

1Moreover, some authors (Axtell, 2001; Gaffeo et al., 2003) show that the distribution of firms’ size follows a power law
rather than a lognormal distribution.
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They observe an empirical profit rate distribution that exhibits a higher degree of leptokurtosis and

a significant asymmetry when compared to a Laplace distribution. Hence, Mundt and Oh (2019)

generalise the model proposed by Alfarano et al. (2012) in order to include changes in the nature

of the competitive environment and the strength of competitive pressure between entering/existing

and incumbent firms. Their model shows that these features can be accounted by the Asymmetric

Exponential Power (AEP hereafter) distribution (Bottazzi and Secchi, 2011). The AEP generalises the

Subottin distribution in order to include a given degree of asymmetry. Economically, this feature

captures the difference between the behaviour of the growth of the typical firm from the average one

(Bottazzi et al., 2019), showing its importance to account for aggregate fluctuations.

To shed more light on this strand of literature, we study a large dataset of 35.910 Spanish long-

lived firms, analysing the last financial crisis with all the business cycle phases: the period of the

real state bubble (1998-2007), the subsequent crisis (2008-2013) and the period of economic recov-

ery (2014-2016). The much larger dataset at our disposal allows for a more extensive analysis of the

Laplacian hypothesis of profit rate distribution and its stability over time. In particular, the contri-

bution of our paper is threefold. First, following Alfarano et al. (2012) and Mundt and Oh (2019),

we examine whether the empirical profit rate and growth rate distribution of Spanish firms is de-

scribed by the Laplace, Subbotin or AEP distribution. Compared Mundt and Oh (2019), our analysis

is not limited to profit rates but also include the comparison to growth rates. Second, we analyse

how the empirical distribution changes according to the different size of the companies. Finally, we

also study how the distributions of the profit and growth rates are affected by the different phases

of the business cycle. Understanding cross-sectional distribution of growth and profit rates during

the different phases of the business cycle can help us to shed more light on macroeconomic fluctua-

tions (Higson et al., 2002, 2004; Gabaix, 2011). In fact, macroeconomic literature has been extended

in order to find more sound microfoundations in relation to business cycles models (Holly et al.,

2013; Bachmann and Bayer, 2014). Traditionally, most of these analysis used comovements between

key macroeconomic aggregates, e.g. consumption and output among other measures (Fidrmuc and

Korhonen, 2006). However, the availability of micro-data allows scholars to study how the microe-

conomic adjustment behaviour of firms affects to the aggregate dynamics of a given economy. For

example, Higson et al. (2002) show that fastest growers and declining firms seem to be indifferent

to recessions, in the same line as Geroski and Gregg (1997). De Veirman and Levin (2011) analyse

trends and cycles in the volatility of U.S. companies observing that firm-specific volatility is not an

important driver of the business cycle. Holly et al. (2013) underline that changes in the density of

firm growth are a relevant factor to analyse the evolution of the business cycle. Bachmann and Bayer

(2014) propose a heterogeneous-firm business cycle model that is able to replicate the procyclical

behaviour of the empirical cross-sectional dispersion of firm-level investment rates. Therefore, such
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as Haltiwanger (1997) states, "it is becoming increasingly apparent that changes in the key macroag-

gregates at cyclical and secular frequencies are best understood by tracking the evolution of the

cross-sectional distribution of activity and changes at the micro level."

The paper is structured as follows. After providing a summary in the introduction, we give

a description of our data in Sec. (4.2). The employed methodology for the empirical analysis is

described in Sec. (4.3). The results of the empirical analysis are shown in Sec. (4.4), distinguishing

between symmetric and asymmetric distributions, namely the Subbotin and the AEP. Finally, Sec.

(4.5) summarise the main findings of the paper.

4.2 Data

The dataset is sourced from the System of Analysis of Iberian Balance Sheets and it offers informa-

tion over the balance sheet of 2.000.000 Spanish firms from 1985 to 2016. Thus, we can examine the

evolution of the distribution of growth and profit rates during different phases of the business cycle.

In line with most of the industrial dynamics literature mentioned in the introduction, our empirical

analysis focuses on long-lived firms. We filter a total of 35.910 firms that have been present in the

market for the whole period.2 Our dataset allows to generalise the previous findings on the distribu-

tional properties of the profit rates of large long-lived companies, since we extend the the number of

firms of more than two orders of magnitude, from few hundreds to several thousands, whose sizes

span five orders of magnitude. In order to compare to previous literature we consider four groups

of firms according to their sales in 2016. These groups include the 200, 1.000, 10.000 largest firms and

the entire sample.3

As starting point, we consider the 200 largest firms due to two main reasons. First, we take as

intellectual base the Gabaix’s granular hypothesis (Gabaix, 2011). His seminal paper rests on the

idea that the idiosyncratic shocks to the largest firms account for a significant fraction of the GDP

fluctuations. Following Gabaix (2011), one third of aggregate fluctuations in US GDP growth can

be explained by the idiosyncratic shocks of the 100 largest firms. Blanco-Arroyo et al. (2018) and

Blanco-Arroyo et al. (2019) show that the Spanish economy is also characterised by granular fluctu-

ations, since the granular residual of the 100 largest firms accounts approximately for 45% of GDP

variations. The second reason is related to the fact that we employ the AEP distribution, proposed

by Bottazzi and Secchi (2011), to characterise the profit and growth rate distribution. By means of

numerical simulations, they state that "the bias of the maximum likelihood estimators, being very

2All firms from the financial sector (Standard Industrial Classification (SIC) codes 6000-6799) have been excluded since
their total assets are on average about one order of magnitude larger than firms included in all the other sectors. This is due
to the different nature of the banking/financial sector, where total assets can be increased due to the financial intermediation
activity. The average ROA for banks turns out to be one order of magnitude larger than for firms in other sectors.

3Fig. (B.1), in the Appendix, shows the sales as a function of GDP for each group of firms.
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small, can be safely ignored at least for samples with more than 100 observations". Therefore, we

start the empirical analysis considering the largest 200 firms to ensure the reliability of the parame-

ters estimated.

As the first step, we compute the logarithmic growth rate for each firm i defined as:

g̃i(t) = ln (Si(t))− ln (Si(t− 1)), (4.1)

where t denotes the year and Si(t) the firm size, whose proxy is the value of total assets or sales

(Axtell, 2001; Stanley et al., 1996).

The variable chosen as a proxy for profit rate is the return on assets (ROA), which is defined as

earnings before interest and taxes (EBIT) divided by total assets (TA) of firm i at time t,

ROAi(t) =
EBITi(t)
TAi(t)

. (4.2)

Figure. 4.1: The evolution of the cross-sectional median and standard deviation of growth (g̃)
and profit rates for the 200 largest long-lived firms and the entire sample at our disposal (base
year 2016).
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A visual inspection to Fig. (4.1) (a and b) shows that the median of profit rates for the largest 200

long-lived firms exhibits a considerable stability over time compared to the the median growth rates

of total assets and sales, which instead exhibits a much higher volatility. The time evolution of the
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median of profit and growth rates is also reported by Alfarano et al. (2012) using a sample of publicly

traded US companies, observing similar results. Our results are also in line with Mundt et al. (2014),

who find that the median of profit rates is much more stable than the median of growth rates in more

than 40 countries using a dataset of publicly traded companies. Moreover, we confirm the results

reported by Coad et al. (2013), who observe a much higher stability of the cross sectional average

of profit rates when companies survive more than 11 years. When considering the entire sample

of long-lived firms, we observe that the median of profit rates exhibits a higher stability compared

to the median of growth rates. However, it shows higher fluctuations with respect to the sample

composed by the 200 largest firms, due to the impact of the smaller firms. In both cases reported in

Fig. (4.1), the first two moments of the profit rate distribution are more stable than those of growth

rates.

The analysis of the first two moments of Fig. (4.1) would be sufficient under a Gaussian hypoth-

esis for the distribution of profit and growth rates. However, an extensive literature in industrial

dynamics (see e.g. Sutton, 1997) shows that the empirical distribution of relevant measures of firm

performance exhibits significant deviations from the Normality assumption. We, therefore, focus our

attention to the characterisation of the entire distribution of profit and growth rates. Following the

literature (Bottazzi and Secchi, 2006), we delete possible trends by using the normalized logarithmic

size:

si(t) = ln (Si(t))− N−1
N

∑
i=1

ln (Si(t)). (4.3)

where N is the number of considered firms in the sample, namely 200, 1.000, 10.000 and the entire

sample. We define the annual growth rate of a firm i as:

gi(t) = si(t + 1)− si(t), (4.4)

where t denotes time and si denotes normalised logarithm of firm size. Profit rates are not nor-

malized in any way and simply remain in the raw form.

4.3 Methodology

Alfarano and Milakovic (2008) introduce a theoretical framework to analyse the distribution of profit

rates by considering as an intellectual base the Adam Smith’s notion of classical competition (Smith,

1776). It describes a negative feedback mechanism in the reallocation of capital in perpetual search

for profitability, leading to a tendency for the equalisation of profit rates among competitive economic

activities. In the empirical data, however, the complete elimination of profit rates differentials is
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never achieved.4 Alfarano et al. (2012), thus, express the outcome of classical competition in terms

of a statistical equilibrium model, considering that the complexity of the competitive interactions

among firms leads to a non-degenerate distribution of profit rates. In particular, firms disperse their

profit rates, denoted as x, around a measure of central tendency, denoted as m, which represents the

economy-wide profit rate. The tendency for equalization of profit rates can be encoded as a moment

constrain on the dispersion of their distribution measured by the standardized α-th moment:

σα = E [|x−m|α] . (4.5)

In order to obtain the profit rate distribution, Alfarano and Milakovic (2008) employ the Maxi-

mum Entropy Principle (MEP), which establishes a unique connection between a set of given mo-

ment constraints and a probability distribution. The MEP yields the combinatorially most likely

distribution maximising the multiplicity of feasible assignments given the moment constrains (see

Jaynes, 1979). The result of MEP for the moment constraint in Eq. (4.5) is an Exponential Power or

Subbotin distribution, defined as

f (x; m, σ, α) =
1

2σα
1
α Γ(1 + 1

α )
exp

(
− 1

α

∣∣∣∣
x−m

σ

∣∣∣∣
α)

. (4.6)

This symmetric distribution is characterized by three parameters: a location parameter m, a scale

parameter σ > 0 and a shape parameter α > 0. Depending on the value of the shape parameter,

we have three different cases: (i) a platykurtic distribution for α > 2, (ii) a leptokurtic distribution

for α < 2 , and (iii) a Gaussian distribution for the edge case α = 2. In particular, the Subbotin

distribution reduces to the Laplace distribution when α = 1. The distribution in Eq. (4.6) has been

widely employed in the literature of industrial dynamics (Bottazzi and Secchi, 2003; Bottazzi and

Secchi, 2006; Coad and Planck, 2012; Alfarano et al., 2012; Erlingsson et al., 2013; Mundt et al., 2016)

to characterise the empirical distribution of profit and growth rates of firm size, essentially because it

interpolates between the Gaussian and the Laplace distribution. Following the growth rate literature

(Stanley et al. (1996), Bottazzi and Secchi, 2006 and Coad and Planck, 2012), we consider the Laplace

distribution as the benchmark to compare the estimation results.

In this paper, we complement the distributional analysis based on the symmetric distribution

of Eq. (4.6) by using the AEP distribution. Mundt and Oh (2019), generalising the result given by

Alfarano and Milakovic (2008), provide an economic foundation for the AEP distribution within a

statistical equilibrium approach that includes structural differences between the right and left part of

the distribution. In particular, they show that the former reflects the activity of incumbent firms while

the latter represents the activity of entering/existing companies characterised by low/negative profit

4A perfect elimination of profit rate differentials would lead to a Dirac’s delta distribution.
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rates. Instead of a symmetric behaviour around the measure of central tendency, defined by the Eq.

(4.5), which implies the emergence of a symmetric distribution, they define two different conditional

measures of dispersion around m: σαl = [E|x − m|αl ] for x < m and σαr = [E|x−m|αr ] for x > m,

where l and r refer to the left and right part of the distribution, respectively. Using the MEP, the

probability distribution for the variable x based on the two moment constraints is the following:

fAEP(x; p) =
1
C

exp
[
−
(

1
αl

∣∣∣∣
x−m

σl

∣∣∣∣
αl

θ(m− x) +
1
αr

∣∣∣∣
x−m

σr

∣∣∣∣
αr

θ(x−m)

)]
, (4.7)

where p = (αl , αr, σl , σr, m), θ(x) is the Heaviside function5 and C = σlα
1/αl
l Γ(1+ 1/αl)+σrα1/αr

r Γ(1+

1/αr) is the normalization constant with Γ(·) the Gamma function. Eq. (4.7) is a five-parameters

family of distributions that is characterized by the location parameter, m, which is the mode of the

distribution, two shape parameters, αl and αr, describing the density in the lower and upper tail

respectively, and two scale parameters, σl and σr, connected with the distribution width below and

above m. The Laplace distribution is nested in the AEP when αl = αr = 1 and σl = σr = σ. Note

that the parameter m in Eq. (4.6) represents the mean, the median and the mode of the distribution.

Those three measures of central tendency might not coincide in the AEP distribution.

4.4 Empirical results

In this section, we report the main results of our empirical analysis. In Sec. (4.4.1), we analyse

the empirical probability density of profit and growth rates by testing the goodness of fit of the

Laplace distribution against the Subbotin distribution. In Sec. (4.4.2), we examine the distributional

properties of profit and growth rates testing the Laplace distribution against the AEP distribution.

4.4.1 Symmetric case

We estimate the main parameters of the Subbotin distribution for the largest 200 long-lived firms,

using the the maximum likelihood estimation method.6 We observe that the Laplace distribution

provides a relatively poor fit for the profit rate distribution, since, at the 5% significance level, we

reject the null hypothesis of α = 1 in 11 out of 19 years (see Fig. (4.2)). However, as it has been

underlined by Bottazzi and Secchi (2006), Bottazzi et al. (2014) and Mundt et al. (2016), the presence

of outliers can significantly affect the estimation of the shape parameter α. Fig. (4.6) shows the

presence of some large negative and positive values in several years.7 Therefore, to avoid the effect
5The function θ(x) is equal to 1 for x > 0, and 0 for x < 0.
6For the parameter m the likelihood function is non-analytical and, therefore, the ML estimator does not have the typical

asymptotic properties. To avoid convergence and consistency problems, we estimate m as the mode of the distribution and
then, we apply the ML to estimate the parameters α and σ conditionally on the value of m (Bottazzi and Secchi, 2006). Using
the mean or the median the results are not significantly different when we estimate the parameters of the AEP distribution
(material upon request). We opt for the mode for consistency.

7The presence of outliers is also observed for growth rates of total assets (Fig. (4.8)) and sales (Fig. (B.2))
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of the outliers in the estimation of the parameters α and σ, we delete in each year the most positive

and negative observation.8 We show in the inset of Fig. (4.2) that the Laplace distribution cannot

be rejected at the 5% significance level with the exception of 2009. Growth rates of total assets and

sales, instead, show a more leptokurtic distribution compared to profit rates distribution with a shape

parameter significantly smaller than unity for all years. If we delete the most positive and negative

value of sales growth rates, the shape parameter α remains significantly smaller than 1. In the case of

growth rates of total assets, the Laplace distribution can be rejected in the majority of cases. Looking

at estimators of the scale parameter, we confirm the astonishing stability in the magnitude of profit

rate fluctuations. Interestingly, we cannot reject the hypothesis that the scale parameter is constant

along the entire period regardless of the phase of the business cycle. This is not the case for the scale

parameter of the distributions of growth rates of sales and total assets whose time evolution shows

swings, with periods significantly above or below the long term median value (see Sec. (4.4.1)).

Figure. 4.2: Estimates of the shape and scale parameter of the Subbotin distribution for profit
rates. Error bars show two standard errors. The results refer to the 200 largest long-lived firms
according to their sales in 2016. The dashed line in the scale parameter figure represents the
median of the estimates.
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8From now on, we always delete the extreme positive and negative observations in each year when estimating the param-
eters of the Subbotin as well as the AEP distribution.
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Figure. 4.3: Estimates of the shape and scale parameter of the Subbotin distribution for growth
rates of total assets and sales. Error bars show two standard errors. The results refer to the 200
largest long-lived firms according to their sales in 2016. The dotted line (sales) and dashed line
with dots (total assets) in the scale parameter figure represent the median of the estimates.
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To go beyond a visual inspection, we employ the likelihood ratio test (LRT hereafter) to assess

the performance of the Laplace distribution in describing the data. We obtain similar results (see

Table B.1 in the Appendix) as compared to the simpler inspection of the estimates of α and σ in

Figs. (4.2) and (4.3). The Laplace distribution does not provide a good performance in describing the

probability distribution of profit rates, unless deleting the highest and lowest values in each year. In

this case, the results of the LRT, reported in Table 4.1, support the previous findings, since we can only

reject the null hypothesis for the profit rate distribution in 2009 (p− value = 0.04). When comparing

the results of the LRT to Fig. (4.3), we observe virtually identical results for the distribution of growth

rates of total assets and sales.

Table 4.1: P-values of the likelihood ratio test for profit and growth rates of total assets and
sales. The null hypothesis is the Laplace distribution, while the alternative hypothesis is the
Subbotin distribution. The results refer to the 200 largest long-lived firms, according to their
sales in 2016, when deleting the extreme positive and negative value.

LRT 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Profit rate 0.87 0.93 0.39 0.64 0.81 0.58 0.95 0.53 0.20 0.14

Total assets - 0.00 0.77 0.01 0.00 0.00 0.57 0.05 0.05 0.09

Sales - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LRT 2008 2009 2010 2011 2012 2013 2014 2015 2016

Profit rate 0.61 0.04 0.35 0.29 0.19 0.61 0.72 0.88 0.93

Total assets 0.11 0.42 0.84 0.77 0.42 0.08 0.86 0.29 0.15

Sales 0.00 0.01 0.01 0.48 0.35 0.01 0.01 0.01 0.00
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Distributional properties conditional on size and business cycle phase

When increasing the sample, Fig. (4.4) shows that the distribution of profit and growth rates exhibits

a shape parameter α significantly smaller than 1 most of the years. The data indicate that the distri-

bution of growth rates of firm size roughly retains its shape parameter across the different samples

(see Table 4.2), excluding the sample with the largest firms (see Table 4.2). The profit rate distribution,

instead, exhibit a clear tendency to become more leptokurtic, while the scale parameter is virtually

independent of the size of the considered firms, showing an astonishing stability. For the growth rate

distribution, we observe a slight increase in the estimate of the scale parameter with size (see Table

4.3), which is compatible with the power law scaling of the volatility of growth rates as a function of

firm size (Bottazzi et al., 2019).

Table 4.2: Median of the estimates of the shape parameter reported in Fig. (4.4).

Nº firms Profit rate TA Sales

200 0.94 0.88 0.70

1000 0.83 0.79 0.67

10000 0.74 0.79 0.66

Entire sample 0.66 0.72 0.58

Table 4.3: Median of the estimates of the scale parameter reported in Fig. (4.5).

Nº firms Profit rate TA Sales

200 0.055 0.123 0.105

1000 0.054 0.122 0.112

10000 0.053 0.119 0.117

Entire sample 0.055 0.130 0.145

Overall, our results shows that the distribution of profit rates is well described by the Laplace

distribution, when we limit the analysis to the case of large long-lived firms. We observe, instead,

systematic deviations from the Laplace benchmark when we include smaller firms in the sample, i.e.

the smaller the firm we include the fatter the tails of the distribution of profit rate.9

9The LRT shows virtually identical results as Fig. (4.4) and Fig. (4.5), rejecting the Laplace distribution with p-values
equal to 0 for most of the cases (see Appendix (B)).
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Figure. 4.4: Estimates of the shape parameter of the Subbotin distribution of profit rates, growth
of total assets and sales. Error bars show two standard errors. Results refer to the largest long-
lived firms of our sample according to their sales in 2016.
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Figure. 4.5: Estimates of the scale parameter of the Subbotin distribution for profit rates, growth
of total assets and sales. Error bars show two standard errors. Results refer to the largest long-
lived firms of our sample according to their sales in 2016. The dashed line (profit), dotted line
(sales) and dashed line with dots (total assets) in the scale parameter figure represent the me-
dian of the estimates.
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Following Holly et al. (2013), in order to analyse the relation of the estimates for the profit rate

distribution with the business cycle, we report in Table 4.4 the Pearson correlation coefficients be-

tween the time series of GDP growth rates with those of the estimates of m, α and σ. Regarding the

parameter m, we observe a general tendency in which the correlation increases as we include smaller

firms in the sample. Interestingly, the parameter σ and α of the profit rate distribution for large firms

are essentially independent of the phase of the business cycle, where the only dependence is through

m, which confirm the stability of the parameters over time. Such independence is instead lost as

soon as we include small firms in the sample. Large firms, then, show more resilience to the business

cycle, while small firms are much more dependent on the phase of the economy.

Results of the dependence for σ and α could give rise to misleading findings since we do not

know which part of the distribution (right or left) is affected by the business cycle. Using the AEP

helps us to understand the dynamics of the firms activity in terms of the GDP.

Table 4.4: Pearson correlation coefficient between the time series of the estimates of m, α and σ
with the time series of GDP growth rates.

m & GDP α & GDP σ & GDP

Nº of Firms Profit rates TA Sales Profit rates TA Sales Profit rates TA Sales

200 0.51** 0.27 0.48** 0.07 -0.38 -0.76*** 0.00 0.38 -0.14

1000 0.36 0.64*** 0.58** 0.37 -0.51** -0.68*** 0.69*** 0.46** -0.25

10000 0.59*** 0.81*** 0.59*** 0.79*** -0.21 -0.50** 0.78*** 0.70*** -0.59***

Entire sample 0.63*** 0.93*** 0.92*** 0.83*** 0.40 -0.36 0.74*** 0.76*** -0.76***

Our results are in line with the literature since, in the case of growth rates, Dosi and Nelson (2010),

Bottazzi and Secchi (2011), Erlingsson et al. (2013) and Mundt et al. (2016) show that the growth rate

distribution is more leptokurtic than the Laplace distribution. We clearly show that the Laplace

distribution nicely accounts for the profit rate distribution just in the case of large and long-lived

firms, with the scale parameter almost invariant over time.

4.4.2 Asymmetric case

The parameters p=(αl , αr, σl , σr) of the AEP distribution of profit and growth rates are estimated

with the maximum likelihood method using the software SUBBOTOOLS created by Bottazzi (2004),

conditional on the value of m estimated with the mode of the distribution.10 The estimation of the

slope and scale parameters are shown in Fig. (4.7) and Fig. (4.9) for the 200 largest long-lived firms.

Recall that a given AEP distribution turns out to be a symmetric Laplace as long as αl = αr = 1

and σl = σr. Considering the sample of large firms, the shape parameters of the distribution of

profit rates fluctuate around the condition αl = αr = 1 without any systematic pattern, confirmed

10For the symmetric distribution the estimates are essentially independent of the chosen estimator for m, namely median,
mean or mode. For the AEP distribution, using the mean or the median bias significantly the results (see Bottazzi and Secchi
(2011)).
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also by the absence of significant correlations with the growth rate of GDP (see Tables 4.7 and 4.8).

The scale parameters, instead, show a significant difference most of the years, favouring the right

scale parameter, i.e. σr > σl . Such gap widens during the housing bubble and the subsequent

banking crisis, while it seems to close during the years of the economic recovery. The use of the AEP

distribution makes apparent the bad fit of the symmetric Laplace benchmark for large and long-lived

companies. A more appropriate model for the profit rate distribution of large firms is an asymmetric

Laplace distribution with the mode correlated to the business cycle.11

Figure. 4.6: Probability density function (PDF) of profit rates along with the AEP (dotted line)
and Laplace (dashed line) distribution. The results refer to the 200 largest long-lived firms ac-
cording to their sales in 2016.
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11We support these results with the LRT in Sec. (B.2) of the Appendix, in which (i) the symmetric Laplace distribution
is rejected most of the years while (ii) the asymmetric Laplace is not rejected in 12 out of 19 years, compared to the AEP
distribution.
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Figure. 4.7: Estimates of the two shape parameters (αl and αr) and two scale parameters (σl and
σr) for the profit rates distribution. The results refer to the 200 largest long-lived firms according
to their sales in 2016, removing the two extreme values in each year. Gray and black dashed
lines refer to the mean of the estimates of σl and σr , respectively.
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The distribution of growth rates of total assets and sales of the largest long-lived firms (see Fig.

(4.9)) are characterised by a strong deviation from the Laplace distribution and a high level of volatil-

ity, which is in line with the literature (see for instance,Fu et al., 2005, Bottazzi and Secchi, 2006 and

Dosi and Nelson, 2010)

Figure. 4.8: Probability density function (PDF) of growth rates of total assets along with the AEP
(dotted line) and Laplace (dashed line) distributions. The results refer to the 200 largest long-
lived firms according to their sales in 2016.
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Figure. 4.9: Estimates of the two shape parameters (αl and αr) and two scale parameters (σl and
σr) for growth rates of total assets and sales. Results refer to the 200 largest long-lived firms
according to their sales in 2016. Gray and black dashed lines refer to the mean of the estimates
of σl and σr , respectively.
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Distributional properties conditional on size and business cycle phase

In Figs. (4.10), (4.11) and (4.12), we report the estimates of the shape and scale parameters of the AEP

computed for profit and growth rates of total assets and sales, conditional on size.

Regarding profit rates, we observe that αl and αr are significantly smaller than 1 most of the

years. The shape of the distribution of profit rates depends on the size of the firms becoming fatter

the smaller are the firms included in the sample. The scale parameter, instead, shows a remarkable

stability as a function of the size, with the systematic tendency σr > σl .

This condition changes when we consider the entire sample. The dispersion on the left side,

measured by σl , is higher than the σr during the phase of the crisis. This change can be attributed to

the effect of the business cycle on the profitability of small firms. As can be observed in Tables 4.7 and

4.8, the correlation between the AEP estimated and the GDP growth rates is stronger when including

small firms. This result underlines the robustness of the profitability of large firms to the business

cycle phase, while the small firms seem to be more affected by the adverse phase of the cycle.
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Figure. 4.10: Estimates of the two shape parameters (αl and αr) and two scale parameters (σl and
σr) of the AEP distribution for profit rates conditional on size. Error bars show two standard
errors. Gray and black dashed lines refer to the mean of the estimates of σl and σr , respectively.
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Focusing on growth rates of total assets, we always reject the Laplace distribution hypothesis, due

to the differences in the scale parameters and shape parameters, i.e. αl 6= αr and σl 6= σr. Moreover,

the estimates of the shape parameters are different from 1 most of the years. Interestingly, the scale

parameters show a similar behaviour to profit rates since the cross-sectional volatility is higher on

the right side (σr) for the large firms but, when analysing the entire sample, we identify a remarkable

decrease/increase of the cross sectional volatility on the right/left side during the crisis period.



80 Chapter 4. A cross-sectional analysis of growth and profit rate distribution : the Spanish case

Figure. 4.11: Estimates of the two shape parameters (αl and αr) and two scale parameters (σl and
σr) of the AEP distribution for growth rates of total assets conditional on size. Error bars show
two standard errors. Gray and black dashed lines refer to the mean of the estimates of σl and σr ,
respectively.
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Finally, in relation to growth rates of sales, the Laplace distribution is also rejected since αl 6= αr 6=
1 and σl 6= σr. When including the smallest firms in the analysis, we observe a higher volatility on

the left part of the distribution compared to the right one during the downturn, which is consistent

with the results reported for profit rates and growth rates of total assets.12 Thus, with Figs. (4.10),

(4.11) and (4.12), we are able to underline the effect of the crisis on small firms by means of the scale

parameters of profit and growth rates. On the other hand, in relation to the shape parameters, we

observe a different dynamics between profit and growth rates. More specifically, profit rates tend to

be more leptokurtic on both parts of the distribution when including smaller firms on the sample.

However, the shape parameters of growth rates on the left part of the distribution become more

platikurtic (i.e. we observe a slimming down of the left tail) during the crisis period, compared to

the right tail. This particular behaviour has been already reported with the 200 largest long-lived

12The main difference from profit rates and growth rates of total assets is found on the dispersion of the right part of the
distribution of growth rates of sales given that it is quite constant regardless of the crisis, as can be observed in Fig. (4.12) and
Table 4.8. This feature can be attributed to the natural volatility of sales in both parts of the distribution (Bottazzi et al., 2019).
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firms (see Figs. (4.9) and (B.2)) in which we observe that, during the downturn, growth rates show a

higher dispersion on the left part of the distribution with a slimming down of the left tail.13

Figure. 4.12: Estimates of the two shape parameters (αl and αr) and two scale parameters (σl
and σr) of the AEP distribution for growth rates of sales conditional on size. Error bars show
two standard errors. Gray and black dashed lines refer to the mean of the estimates of σl and σr ,
respectively.
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Table 4.5: Median of the estimates αl and αr reported in Figs. (4.10), (4.11) and (4.12).

αl αr

Nº of firms Profit rates TA Sales Profit rates TA Sales

200 1.00 0.91 0.75 0.93 0.84 0.63

1000 0.81 0.74 0.60 0.89 0.81 0.65

10000 0.69 0.79 0.63 0.78 0.80 0.65

Entire sample 0.57 0.68 0.50 0.66 0.75 0.59

13This feature can be clearly observed in Fig. (B.2) in 2009 and 2010.
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Table 4.6: Median of the estimates σl and σr reported in Figs. (4.10), (4.11) and (4.12).

σl σr

Nº of firms Profit rates TA Sales Profit rates TA Sales

200 0.04 0.10 0.09 0.06 0.13 0.11

1000 0.04 0.09 0.09 0.07 0.14 0.11

10000 0.04 0.10 0.10 0.06 0.13 0.12

Entire sample 0.05 0.10 0.14 0.06 0.14 0.14

Table 4.7: Pearson correlation coefficient between the time series of the estimates of αl and αr
with the time series of GDP growth rates.

αl & GDP αr & GDP

Nº of Firms Profit rates TA Sales Profit rates TA Sales

200 0.35 0.05 -0.61*** 0.07 -0.43 -0.68***

1000 -0.04 -0.04 -0.49** 0.4 -0.4 -0.61***

10000 0.33 0.16 -0.52** 0.77*** -0.02 -0.35

Entire sample 0.63*** -0.33 -0.72*** 0.78*** 0.83*** 0.71***

Table 4.8: Pearson correlation coefficient between the time series of the estimates of σl and σr
with the time series of GDP growth rates.

σl & GDP σr & GDP

Nº of Firms Profit rates TA Sales Profit rates TA Sales

200 0.07 -0.38 -0.30 0.21 0.54** -0.11

1000 0.12 -0.14 -0.46* 0.73*** 0.58** -0.35

10000 -0.26 0.11 -0.61*** 0.86*** 0.83*** -0.45*

Entire sample -0.88**** -0.21 -0.81*** 0.89*** 0.87*** 0.00

4.5 Conclusion

In this paper, we shed some light on the firm dynamics literature by analysing on what extent the

Laplace distribution describes the Spanish long-lived firms distribution of profit and growth rate,

against its alternative more general distributions, namely Subbotin and AEP. Moreover, compared to

recent literature, we analyse the effect of the different phases of the business cycle and the firm size

on the distributional characteristics of profit and growth rates.

We find evidence of systematic deviations of the profit rate distribution from the Laplace bench-

mark when small firms are included in the analysis. The empirical distribution becomes more lep-

tokurtic without changing the scale parameters. Therefore, the Laplace benchmark turns out to be a

reasonable approximation if we limit the sample to large firms. Relaxing the symmetric constraint,

the use of the AEP distribution shows that, instead of a Laplace, the better approximation for firm
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profit rate distribution seems to be an asymmetric Laplace. Interestingly, except for the location pa-

rameter, the shape and scale parameters do not depend on the business cycle phase. Small firms,

instead, show a much higher dependence of their profit rates on the business cycle phase, signalling

again a marked difference with large firms. Taking into account these results, we underline the ro-

bustness of the large firms during the financial crisis in terms of profitability given (i) the significant

larger dispersion of the right part of the distribution, compared to the left one, and (ii) the absence

of relation between the time series of GDP growth rates and the time series of the estimates of σl ,

σr, αl and αr for the largest 200 long-lived firms’ profit rates. However, this robustness is lost when

including small firms in the sample since (i) we observe that the dispersion of the left part of the

distribution is significantly larger than the right one during the years of the downturn, and (ii) the

estimates of the entire sample show a remarkable relation with the GDP growth rates.

Finally, focusing on growth rates, we observe a similar tendency compared to profit rates given

the effect of the crisis on small firms growth distribution (σr < σl). This result is supported by the

stronger correlation between the time series of the estimate parameters and GDP growth rates when

including small firms in the sample. Interestingly, we observe that profit and growth rates of total

assets show a similar dynamics in terms of dispersion, while growth rates of total assets and sales

are more similar regarding the shape of the distribution.

Overall, given our outcome, this study underlines the relevance of studying the business cycle

and firm size given that the small firms behave differently to the large firms during the turmoil.
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Chapter 5

Concluding remarks

To conclude this thesis, we summarise the main results, underlining the future lines of research.

In the second chapter of the dissertation, we have proposed an investor sentiment index based on

the collective movement of stock prices in a given market, inspired by the Bank of America Merrill

Lynch global breath rule. We show that the time evolution of the sentiment index can be reasonably

described by the herding model proposed by Kirman in his seminal paper "Ants, rationality and

recruitment" (Kirman, 1993). The correspondence between the index and the model allowed us to

easily estimate its parameters. Based on the model and the empirical evolution of the sentiment

index, we propose an early warning indicator able to identify optimistic and pessimistic phases of

the market. As a result, investors and policy-makers can set different strategies anticipating financial

market instability. Investors can reduce the risk of their portfolio while policy-makers can set more

efficient policies to avoid the effects of financial instability on the real economy. The validity of our

results is supported by means of a robustness analysis showing the application of the early warning

indicator in eight different worldwide stock markets. In our future research, we will study how the

results presented in this thesis change when including different network topologies in the model.

Given that the current chapter considers the existence of a fully connected network, we will be able

to observe how the market behaves with more realistic network topologies like the core-periphery

network among others.

In the third chapter, we have proposed a behavioural model able to describe the internal dynamics

of Bitcoin in terms of the interaction of two contrasting groups of agents. In particular, this model

describes the ratio of two consecutive Bitcoin prices as the odds ratio of bullish to bearish traders,

which is modeled by a stochastic dynamics and supported by a switching behavioral model. Using

the model proposed, we contribute to the literature in different ways. First, we provide an explicit

formula for the price drift dynamics as a function of the behavioral parameters. Second, we obtain

satisfactory results when forecasting Bitcoin price and volatility. Third, we can use our model as an

early warning indicator system to detect bullish periods. In the next studies related to this chapter, we

will apply our model to different financial markets and frequencies, in order to prove its robustness
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and proper performance.

Finally, in the fourth chapter of this thesis, we analyse the evolution of the empirical cross-

correlation distribution of profit and growth rates comparing its fitness to the Laplace distribution,

considered as a benchmark, additionally to the Subbotin and the Asymmetric Exponential Power

distributions. Unlike recent literature, we analyse how the evolution of the distribution depends

on the size of the firms and business cycle phase. Our results show that the profit rates of large

firms seem to be characterised by an asymmetric Laplace with parameters largely independent of

the business cycle. Small firms, instead, are characterised by the AEP distribution, which accounts

for the dependence of profit and growth rates on firm size and phase of the business cycle. We also

observe that the largest firms are more robust to downturns, in terms of profitability, compared to

the small firms given their different distributional characteristics during crisis periods. This result is

extended to growth rates, which confirms the dependence of small firms on the business cycle phase.

In our future research, we will study whether differences exit in different countries in terms of their

distributional properties.
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Appendix A

An agent-based early warning

indicator for financial market

instability

A.1 Derivation of the Fokker-Planck equation

Following Alfarano et al. (2005) and Alfarano (2006), the Fokker-Planck equation can be derived as a

second-order Taylor approximation for the continuum of our population dynamics considering Eq.

(2.10). The transition probabilities in Eq. (2.10) have to be rewritten as a function of the intensive

variable z, instead of the extensive variable n. The relation between the transition rates (2.10) for n

and z is given by the following formula:

π±n = ρ(n′t+∆t0
= nt ± 1 | nt) = N2π±z (A.1)

with:

π(z→ z + 1/N) = π+
z = (1− z)

( a1
N + bz

)
,

π(z→ z− 1/N) = π−z = z
( a2

N + b(1− z)
)

.
(A.2)

Following the notation used by Van Kampen (1992), we introduce the "step" operators E and E−1.

Their effect on an arbitrary function f (n) are respectively to add to or to drop off one unit to their

integer argument n. Formally:

E[ f (n)] = f (n + 1) and E−1[ f (n)] = f (n− 1). (A.3)

Using these operators E and E−1, Alfarano (2006) rewrites the Chapman-Kolmogorov equation

for the one-step process:
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∂

∂t
Pn,t = (E− 1)

[
π−n Pn,t

]
+
(

E−1 − 1
) [

π+
n Pn,t

]
, (A.4)

where Pn,t is the probability to have n agents at time t in State 1. The time derivative in the left-hand

side of Eq. (A.4) stands for the continuous time approximation for the evolution of the probability

Pn,t. This is called, in the pertinent literature, Master equation.

Using the variable z and excluding the obvious time dependence of Pz,t, the Master equation, Eq.

(A.4), can be approximated with the Fokker-Plank equation obtaining the form:

∂

∂t
Pz = (E− 1)

[
π−z N2Pz

]
+
(

E−1 − 1
) [

π+
z N2Pz

]
, (A.5)

where the transition rates are given by Eq. (A.2). Note that the probabilities are invariant under this

transformation, therefore Pn = Pz. The probability density of the variable z is defined according to

the following limit:

pz,t = lim
N→∞

Pz,t

∆z
= lim

N→∞
NPz,t, (A.6)

where pz is a continuous function of z. Eq. (A.6) can be rewritten as:

∂

∂t
pz = N2

{
(E− 1)

[
π−z pz

]
+
(

E−1 − 1
) [

π+
z pz

]}
. (A.7)

Using the Taylor expansions for E and E−1 up to the second order, Alfarano (2006) ends up with:

∂

∂t
pz = N2

{
−∆z

∂

∂z
[(

π+
z − π−z

)
pz
]
+

1
2

∆z2 ∂2

∂z2

[(
π+

z + π−z
)

.pz
]}

(A.8)

The N2 factor in front of the equation disappears, given the independence of the overall dynamics

of the number of agents N. The resulting expression is the Fokker-Planck equation in Eq. (2.13).

A.2 Derivation of the equilibrium distribution

To compute the equilibrium distribution p0(z), we use the standard formula (Van Kampen, 1992):

p0(z) =
K(ε1, ε2)

D(z)
exp

(∫ z 2A(y)
D(y)

dy
)

(A.9)

obtained with the condition ∂
∂t p(z, t) = 0 and natural boundary conditions.

Calculating the integral, we obtain the following formula for p0(z):

p0(z) = K (ε1, ε2) zε1−1 · (1− z)ε2−1 (A.10)
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The normalization constant K(·, ·) follows from
∫

p0(z)dz = 1, which turns out to be:

1
K (ε1, ε2)

=
∫ 1

0
zξ1−1(1− z)ε2−1dz =

Γ (ε1) Γ (ε2)

Γ (ε1 + ε2)
= B (ε1, ε2) . (A.11)

A.3 Robustness analysis of the determination of the thresholds

In order to study the robustness of the results of Fig. (2.10), we computed the two thresholds at the

10th and 90th percentile using past data instead of the entire sample. So, we computed the percentiles

considering (i) 500 data points, from Day 1 to Day 500; (ii) adding the other values of Λt, from Day

501 to the end of the time series and computing the new values of the thresholds. As we can see from

Fig. (A.1), the results were essentially unchanged with respect to Fig. (2.10).

Figure. A.1: Early warning indicator using a 100-day EMA and a time interval of 750 days for
the estimation of parameters. Light and dark gray areas represent the 10th (bear market) and
90th (bull market) percentiles. The dotted red line denotes the 30 most negative weekly returns.
S&P 500 index.

Note. Bull market phases and the subsequent negative events: 1987 (Black Monday), 1994
(tightening monetary policy), 1997-1998 (Russian financial crisis), 2006 (tightening monetary
policy), 2007 (subprime mortgage crisis) and 2015-2016 (weakness of the Chinese economy).
Bear market phases: 1987-1990 (Black Monday and Gulf War), 2001-2003 (burst of the dot-com
bubble) and 2008-2009 (burst of the housing bubble).
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A.4 Early warning indicators

Figure. A.2: Standardized early warning indicators of all the international markets. Light and
areas represent the US Business Cycle contractions according to the National Bureau of Eco-
nomic Research.

1997 2000 2002 2005 2007 2010 2012 2015 2017
-3

-2

-1

0

1

2

3

4

S&P 500 S&P400 midcap Nasdaq 100 ASX 200 TSX Nikkei 225 FTSE 100 Euro Stoxx 600 JSE All-Share

Figure. A.3: Early warning indicator using a 100-day EMA and a time interval of 750 days for
the estimation of parameters. Light and dark gray areas represent the 10th (bear market) and
90th (bull market) percentiles. The dotted red line denotes the 30 most negative weekly returns.
S&P 400 midcap index.

Note. Bull market phases and the subsequent negative events: 1997-1998 (Russian financial
crisis), 2006 (subprime mortgage crisis) and 2014-2015 (weakness of the Chinese economy). Bear
market phases: 2000-2001 (burst of the dot-com bubble) and 2008-2009 (burst of the housing
bubble).
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Figure. A.4: Early warning indicator using a 100-day EMA and a time interval of 750 days for
the estimation of parameters. Light and dark gray areas represent the 10th (bear market) and
90th (bull market) percentiles. The dotted red line denotes the 30 most negative weekly returns.
ASX 200 index.

Note. Bull market phases and the subsequent negative events: 1997-1998 (Russian financial
crisis), 2006 (tightening monetary policy) and 2007 (subprime mortgage crisis). Bear market
phases: 2000-2001 (burst of the dot-com bubble) and 2009 (burst of the housing bubble).

Figure. A.5: Early warning indicator using a 100-day EMA and a time interval of 750 days for
the estimation of parameters. Light and dark gray areas represent the 10th (bear market) and
90th (bull market) percentiles. The dotted red line denotes the 30 most negative weekly returns.
TSX index.

Note. Bull market phases and the subsequent negative events: 1997-1998 (Russian financial
crisis), 2006 (tightening monetary policy), 2007 (subprime mortgage crisis) and 2015 (weakness
of the Chinese economy). Bear market phases: 2000-2001 (burst of the dot-com bubble) and
2008-2009 (burst of the housing bubble).
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Figure. A.6: Early warning indicator using a 100-day EMA and a time interval of 750 days for
the estimation of parameters. Light and dark gray areas represent the 10th (bear market) and
90th (bull market) percentiles. The dotted red line denotes the 30 most negative weekly returns.
JSE All-Share index.

Note. Bull market phases and the subsequent negative events: 2006 (tightening monetary pol-
icy), 2007 (subprime mortgage crisis) and 2014-2015 (weakness of the Chinese economy). Bear
market phases: 2008-2009 (burst of the housing bubble) and 2016 (Chinese financial crash).

Figure. A.7: Early warning indicator using a 100-day EMA and a time interval of 750 days for
the estimation of parameters. Light and dark gray areas represent the 10th (bear market) and
90th (bull market) percentiles. The dotted red line denotes the 30 most negative weekly returns.
FTSE 100 index.

Note. Bull market phases and the subsequent negative events: 1997-1998 (Russian financial
crisis), 2006 (tightening monetary policy), 2007 (subprime mortgage crisis) and 2014-2015 (weak-
ness of the Chinese economy). Bear market phases: 2002-2004 (burst of the dot-com bubble) and
2009 (burst of the housing bubble).
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A.5 Worldwide stock markets

In this section we show the analysis of the international stock markets. More specifically, we report

(i) the computation of the sentiment index, (ii) tests of volatility clustering, (iii) box plots that show

the moments obtained from the 500 Monte Carlo simulations for each market, (iv) the effect of the

parameter L on ε1, ε2, b and the ACF, and (v) the autocorrelation function.

A.5.1 Sentiment index

As with the S&P500 in Fig. (1) of the paper, we compute the sentiment index for each market by

using L=100. In all the financial markets it is possible to observe remarkable swings of the index.

Figure. A.8: Sentiment index and index changes of the S&P 400 midcap.

1995 1997 2000 2002 2005 2007 2010 2012 2015 2017

Year

0

0.5

1

S
&

P
 4

00
 m

id
ca

p

1995 1997 2000 2002 2005 2007 2010 2012 2015 2017

Year

-0.5

0

0.5

In
de

x 
ch

an
ge
s

Figure. A.9: Sentiment index and index changes of the Nasdaq 100.
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Figure. A.10: Sentiment index and index changes of the ASX 200.
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Figure. A.11: Sentiment index and index changes of the TSX.
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Figure. A.12: Sentiment index and index changes of the Euro Stoxx 600.
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Figure. A.13: Sentiment index and index changes of the Nikkei 225.
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Figure. A.14: Sentiment index and index changes of the JSE All-Share.
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Figure. A.15: Sentiment index and index changes of the FTSE 100.
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A.5.2 Tests of volatility clustering

In order to test the existence of volatility clustering we employ two traditional tests of the financial

literature: McLeod-Li test (McLeod and Li, 1983) and Engle’s ARCH test (Engle, 1982).

On the one hand, for the empirical data, we simply apply the corresponding tests to the sentiment

indices. However, for the simulated data, we compute 500 Monte Carlo simulations to generate sen-

timent indices by using the conditional likelihood with the parameters reported in Table 4 and Table

5 of the paper. Consequently, for each stock market we calculate the median of the p-values obtained

by the tests from the 500 Monte Carlo simulations. As can be observed in Table A.1, the sentiment in-

dices computed with empirical data are characterised by volatility clustering without any exception.

In the case of simulated data we generally observe the existence of conditional heteroskedasticity in

all the markets. The only exception is found in the TSX index given that the median of the p-values

is slightly higher than the 10% significance level. This fact can be explained due to the low herding

parameter reported for this market, equal to 0.0036, which signals a low level of fluctuations in the

changes of the sentiment index.

Table A.1: P-values of the McLeod-Li and Engle’s ARCH test for empirical data, and median of
the p-values obtained from the 500 Monte Carlo simulations (Langevin equation) for simulated
data.

Simulated data Empirical data

Stock market McLeod-Li test Engle’s ARCH test McLeod-Li test Engle’s ARCH test

S&P 400 0,0420 0,0341 0,0000 0,0000

Nasdaq 0,0219 0,0172 0,0000 0,0000

ASX 200 0,0695 0,0639 0,0000 0,0000

TSX 0,1189 0,1068 0,0000 0,0000

Nikkei 0,0000 0,0000 0,0000 0,0045

FTSE 100 0,0000 0,0000 0,0000 0,0000

Euro Stoxx 600 0,0000 0,0000 0,0000 0,0000

JSE All-Share index 0,0000 0,0000 0,0000 0,0027

A.5.3 Box plots of the moments of simulated data

We also analyse the similarities of the empirical index and our simulated series by means of some

moments (mean, median and standard deviation). We compute 500 Monte Carlo simulations with

the parameters estimated from the conditional likelihood reported in Table 4 and Table 5 of the paper.

The results show that the moments of the empirical data are in line with those of the sentiment indices

generated by the Langevin equation, since the mean, median and standard deviation are inside the

95% confidence level. The only exceptions are the Nikkei 225 and FTSE 100 in which the moments

are inside the 99% confidence level.
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Figure. A.16: Box plots that report the moments of the 500 Monte Carlo simulations. The mo-
ments of the empirical time series (blue diamond), and the empirical time series without ex-
treme events (zt > 0.95) (red circle) were added. S&P 400 midcap.
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Figure. A.17: Box plots that report the moments of the 500 Monte Carlo simulations. The mo-
ments of the empirical time series (blue diamond), and the empirical time series without ex-
treme events (zt > 0.95) (red circle) were added. Nasdaq 100.
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Figure. A.18: Box plots that report the moments of the 500 Monte Carlo simulations. The mo-
ments of the empirical time series (blue diamond), and the empirical time series without ex-
treme events (zt > 0.95) (red circle) were added. ASX 200.
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Figure. A.19: Box plots that report the moments of the 500 Monte Carlo simulations. The mo-
ments of the empirical time series (blue diamond), and the empirical time series without ex-
treme events (zt > 0.95) (red circle) were added. TSX.
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Figure. A.20: Box plots that report the moments of the 500 Monte Carlo simulations. The mo-
ments of the empirical time series (blue diamond), and the empirical time series without ex-
treme events (zt > 0.95) (red circle) were added. Euro Stoxx 600.
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Figure. A.21: Box plots that report the moments of the 500 Monte Carlo simulations. The mo-
ments of the empirical time series (blue diamond), and the empirical time series without ex-
treme events (zt > 0.95) (red circle) were added. Nikkei 225.
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Figure. A.22: Box plots that report the moments of the 500 Monte Carlo simulations. The mo-
ments of the empirical time series (blue diamond), and the empirical time series without ex-
treme events (zt > 0.95) (red circle) were added. JSE All-Share.
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Figure. A.23: Box plots that report the moments of the 500 Monte Carlo simulations. The mo-
ments of the empirical time series (blue diamond), and the empirical time series without ex-
treme events (zt > 0.95) (red circle) were added. FTSE 100.
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A.5.4 Choice of the parameter L of the EMA

In this section, we analyse for all the international stock markets the sensitivity of the estimation of

the main parameters to different values of L.

As reported in the paper, the parameters are estimated by using the conditional likelihood, chang-

ing the value of L to compute the corresponding sentiment index. We observe that the evolution of

the parameters is line with the S&P 500, i.e. ε1 and ε2 do not exhibit large deviations by increasing

L, thus the unconditional distribution is robust to the choice of L. Some particular cases could be

highlighted like the JSE All-Share or TSX due to their deviations with low values of L, however, the

parameters tend to be stable from L=100. Conversely, the herding parameter b also decreases sig-

nificantly the higher the value of L, regardless of the stock market that we analyse. Therefore, the

dynamics of ε1, ε2 and b is similar for all the stock markets: ε1, ε2 are quite stable while b varies

according to the parameter L.
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Figure. A.24: Estimated parameters ε1, ε2 and b according to different values of L. The scaling
between the variation of E[∆z2] as a function of L and the parameter b is reported (dotted black
line).
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We examine now whether the variations of the herding parameter b affects the decay rate of the

autocorrelation function for the worldwide stock markets. In other words, we want to analyse if the

parameter L of the EMA is connected with the fit of the correlogram. To do so, we compare the decay

rate of the ACF, b(ε1 + ε2), which is computed using the estimated values of the parameters for a

given L, to the slope (βL) of the correlogram, as it is explained in the Sec. 2.5.2.

In Fig. (A.25) we show the relation between βL and b(ε1 + ε2) for all the stock markets at our

disposal, which are ordered according to the number of stocks included in each financial market.

As can be observed, for the stock markets with a sufficient number of stocks, βL and b(ε1 + ε2) are

practically equal regardless of L. This is the case of the Euro Stoxx 600 (282 stocks), S&P 500 (208

stocks), S&P 400 (188 stocks), Nikkei 225 (183 stocks) and JSE All-Share (86 stocks). However, for the

rest of the stock markets, we do not observe a proper fit of βL and b(ε1 + ε2).
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Figure. A.25: Scatter plot of b(ε1 + ε2) and βL using different values of L (from 10 to 200 with an
increment of 5). Worldwide stock markets.
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In order to study this point, we analyse whether it exists a relation between the number of stocks

and the difference between βL and b(ε1 + ε2). To do so, we examine the S&P 500 by computing

the decay rate with different number of stocks. In Fig. (A.26), we show the corresponding results

by using 40, 80, 150 and 208 stocks. By analysing the same stock market, but including a different

number of stocks in each case, we can observe that the relation of βL and b(ε1 + ε2) is affected by the

number of stocks used in the computation of each sentiment index zt. More specifically, in the case

of the S&P 500 with 40 stocks, we observe a similar outcome compared to the Nasdaq, FTSE 100, TSX

and ASX in Fig. (A.25), however, the fit of the correlogram improves when including more stocks.



A.5. Worldwide stock markets 105

Figure. A.26: Scatter plot of b(ε1 + ε2) and βL using different values of L (from 10 to 200 with an
increment of 5). S&P 500 index including 40, 80, 150 and 208 stocks.
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A.5.5 Autocorrelation function

Finally, we analyse the autocorrelation function and the correlogram of each worldwide stock mar-

ket. The results reported in the following figures support what we have explained previously. Those

stock markets with a sufficient number of stocks show a proper fit of the theoretical function with

the correlogram. However, the fit of the correlogram and the theoretical ACF is not acceptable when

analysing stock markets with few listed stocks.
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Figure. A.27: Autocorrelation function of the sentiment index compared to the theoretical au-
tocorrelation function. The latter was calculated with the parameters from Table 4 of the paper.
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Figure. A.28: Autocorrelation function of the sentiment index compared to the theoretical au-
tocorrelation function. The latter was calculated with the parameters from Table 4 of the paper.
Nasdaq 100 index.
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Figure. A.29: Autocorrelation function of the sentiment index compared to the theoretical au-
tocorrelation function. The latter was calculated with the parameters from Table 5 of the paper.
ASX 200 index.
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Figure. A.30: Autocorrelation function of the sentiment index compared to the theoretical au-
tocorrelation function. The latter was calculated with the parameters from Table 5 of the paper.
TSX index.
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Figure. A.31: Autocorrelation function of the sentiment index compared to the theoretical au-
tocorrelation function. The latter was calculated with the parameters from Table 5 of the paper.
Nikkei 225 index.
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Figure. A.32: Autocorrelation function of the sentiment index compared to the theoretical au-
tocorrelation function. The latter was calculated with the parameters from Table 5 of the paper.
Euro Stoxx 600 index.
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Figure. A.33: Autocorrelation function of the sentiment index compared to the theoretical au-
tocorrelation function. The latter was calculated with the parameters from Table 5 of the paper.
JSE All-Share index.
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Figure. A.34: Autocorrelation function of the sentiment index compared to the theoretical au-
tocorrelation function. The latter was calculated with the parameters from Table 5 of the paper.
FTSE 100 index.
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Appendix B

A cross-sectional analysis of growth

and profit rate distribution : the

Spanish case

B.1 Firms

Figure. B.1: Sales as a function of GDP for the largest long-lived firms in our sample.
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B.2 Likelihood ratio test for the 200 largest long-lived firms

Table B.1 and Table B.2 show the LRT in which we test the Laplace distribution compared to the

AEP as alternative hypothesis. As can be observed, the null hypothesis of the Laplace distribution

is rejected most of the years for profit rates and growth rates of total assets and sales. This result

supports the outcome observed by Mundt and Oh (2019) since the AEP seems to characterise better

the empirical density of profit rates.
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On the other hand, in Table B.3, we report the LRT testing the asymmetric Laplace distribution

compared to the AEP distribution. In this case, we observe that the asymmetric Laplace is not rejected

in 12 out of 19 years, for profit rates, and in 7 out of 18 years for growth rates of total assets. Compared

to Table B.2, the asymmetric Laplace describes better the probability density distribution of profit

rates and growth rates of total assets compared to the symmetric Laplace distribution.

Table B.1: P-values of the likelihood ratio test for profit and growth rates of total assets and
sales. The null hypothesis is the Laplace distribution, while the alternative hypothesis is the
Subbotin distribution. The results refer to the 200 largest long-lived firms according to their
sales in 2016.

LRT 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Profit rate 0.17 0.05 0.04 0.16 0.06 0.11 0.21 0.06 0.01 0.00

Total assets - 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.01

Sales - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LRT 2008 2009 2010 2011 2012 2013 2014 2015 2016

Profit rate 0.27 0.01 0.02 0.02 0.01 0.73 0.15 0.08 0.04

Total assets 0.01 0.17 0.16 0.04 0.00 0.00 0.02 0.06 0.00

Sales 0.00 0.00 0.00 0.62 0.05 0.00 0.00 0.00 0.00

Table B.2: P-values of the likelihood ratio test for profit rates and growth rates of total assets
and sales. The null hypothesis is the Laplace distribution, while the alternative hypothesis is
the AEP distribution. Results refer to the 200 largest long-lived firms, according to their sales in
2016.

LRT 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Profit rate 0.00 0.00 0.00 0.03 0.04 0.01 0.00 0.00 0.00 0.00

Total assets - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LRT 2008 2009 2010 2011 2012 2013 2014 2015 2016

Profit rate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total assets 0.00 0.00 0.00 0.22 0.39 0.00 0.03 0.00 0.00

Sales 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
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Table B.3: P-values of the likelihood ratio test for profit rates and growth rates of total assets
and sales. The null hypothesis is the asymmetric Laplace distribution, while the alternative
hypothesis is the AEP distribution. Results refer to the 200 largest long-lived firms, according to
their sales in 2016.

LRT 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Profit rates 0.57 0.01 0.40 0.39 0.56 0.58 0.01 0.00 0.39 0.15

Total assets 0.00 0.01 0.00 0.00 0.00 0.02 0.14 0.00 0.10

Sales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LRT 2008 2009 2010 2011 2012 2013 2014 2015 2016

Profit rates 0.01 0.01 0.00 0.29 0.58 0.07 0.81 0.43 0.01

Total assets 0.18 0.01 0.00 0.28 0.41 0.03 0.29 0.29 0.00

Sales 0.00 0.00 0.00 0.08 0.03 0.00 0.01 0.00 0.00

B.3 Probability density function of growth rates of sales

Figure. B.2: Probability density function (PDF) of growth rates of sales along with the AEP (dot-
ted line) and Laplace (dashed line) distribution. The results refer to the 200 largest long-lived
firms according to their sales in 2016.
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